UML Profilefor Enterprise Distributed
Object Computing Specification

This OMG document replaces the submission (ad/2001-06-09) and the draft adopted specification
(ptc/2001-12-04). Itisan OMG Fina Adopted Specification, which has been approved by the OMG
board and technical plenaries, and is currently in the finalization phase. Comments on the content of
this document are welcomed, and should be directed to issues@omg.org by July 1, 2002.

You may view the pending issues for this specification from the OMG revision issues web page
http://mww.omg.org/issues/; however, at the time of thiswriting there were no pending issues.

The FTF Recommendation and Report for this specification will be published on September 20,
2002.

OMG Adopted Specification
ptc/02-02-05

UML Profilefor Enterprise Distributed
Object Computing Specification

FTFFinal Adopted Specification
February 2002

Copyright 2000, 2001, CBOP

Copyright 2000, 2001, Data Access Technologies
Copyright 2000, 2001, DSTC

Copyright 2000, 2001, EDS

Copyright 2000, 2001, Fujitsu

Copyright 2000, 2001, IBM

Copyright 2000, 2001, lona Technologies
Copyright 2000, 2001, Open_IT

Copyright 2000, 2001, Sun Microsystems
Copyright 2000, 2001, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid
up, worldwide license to copy and distribute thisdocument and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to haveinfringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to i mplement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIESLISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THISMATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIEDWARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companieslisted
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize devel opers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may bereproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Dataand Computer Software Clause at DFARS 252.227.7013 OM G® and
Object Management are registered trademarks of the Object Management Group, Inc. OMG OBJECT MANAGEMENT

GROUPR, CORBA, CORBA ACADEMY, CORBA ACADEMY & DESIGN, THE INFORMATION BROKERAGE,
OBJECT REQUEST BROKER, OMG IDL, CORBAFACILITIES, CORBASERVICES, CORBANET, CORBAMED,
CORBADOMAINS, GIOP, [IOP, OMA, CORBA THE GEEK, UNIFIED MODELING LANGUAGE, UML, and UML
CUBE LOGO areregistered trademarks or trademarks of the Object Management Group, Inc.

X/Open isatrademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuraci es they may find by completing the | ssue Reporting Form listed on
the main web page http://mww.omg.org, under Documents & Specifications, Report a Bug/lssue.

February 2002

Contents

Preface Xiii
1. Introduction 1-1
1.1 Guideto the Specification 1-1
1.1.1 Overdl Structure of the Specification 1-1

12 Conformancelssuesccoiiiiinnnnnn.. 1-3
1.2.1 Summary of optional versus mandatory interfaces 1-3

122 CompliancePoints...................... 1-3

1.2.3 Optional Compliance Points 1-4

13 Proofof Concept 1-5
131 CBOP .. 1-5

1.3.2 DataAccess Technologies 1-5

133 DSTC ... 1-6

134 EDS ... 1-6

135 FUitsU ..o 1-6

136 IBM ..o 1-7

137 dona ... 1-7

138 Open-ITand SINTEF 1-7

1.3.9 SunMicrosystems, 1-8

1320 UNisysot 1-8

1311 ebXML ... 1-8

2. EDOC Profile: Rationaleand Application 2-1

Section | - Vision

2.1 OVEIVIBW . o e e e e e e e e e e 2-2

UML Profilefor Enterprise Distributed Object Computing i

Contents

Section Il - The EDOC Profile Elements

2.2 TheEnterprise Collaboration Architecture
2.21 Component Collaboration Architecture
2.2.2 Entitiesprofile
223 EventsProfile
2.24 BusinessProcessprofile
2.25 Relationshipsprofile
23 Patterns

2.4 Technology Specific Models and Technology Mappings .
Section |11 - Application of the EDOC Profile Elements

25 Separation of Concerns andViewpoint Specifications . . .
2.6 Enterprise Specification
261 Concepts ...
2.6.2 EDOC Enterprise Subprofile
2.7 Computational Specification
271 Concepts
2.7.2 EDOC Computational Specifications

2.7.3 Levelsof ProcessComponent in a Computational

Specification L.

2.8 Information Specification
281 Concepts ...t
2.8.2 EDOC Information Specifications
2.9 Engineering Specification
291 Concepts ...t
2.9.2 EDOC Engineering Specifications
210 Technology Specification
211 Specification Integrity - Interviewpoint Correspondences .
2.11.1 Computational-Enterprise Interrelationships . .
2.11.2 Computational-Information Interrel ationships
2.11.3 Computational-Engineering I nterrelationships
2.11.4 Engineering-Technology Interrelationships . . .

3. TheEnterprise Collaboration Architecture
Section | - ECA Design Rationale

31 KeyDesignFeaturesccoiiiiiinn..
3.1.1 Recursive component composition
3.1.2 Process Specification

2-17

UML Profilefor Enterprise Distributed Object Computing February 2002

Contents

3.1.3 Specification of Event Driven Systems 3-6
3.1.4 Integration of Process and Information Models 3-6
3.1.5 Rigorousrelationship specification 3-7
3.1.6 Mappingsto Technology - Platform Independence 38
32 ECAElements........ ..o 3-9
Section |1 - the Component Collaboration Architecture
33 Rationale 3-10
3.3.1 Problemstobesolved 3-10
332 Approach 3-14
333 Concepts ... 3-14
3.3.4 Conceptual Framework 3-17
34 CCA Metamodel0 i 3-20
3.4.1 Structural Specification 3-21
3.42 Choreographycoviui... 3-38
3.43 Compositionc..iiiiiiian., 3-48
3.44 DocumentModel 3-59
345 Mode Management 3-67
35 CCANOtationc.ciiiii i 3-71
3.5.1 CCA Specification Notation 371
3.5.2 Composite Component Notation 3-73
3.5.3 Community Process Notation 3-75
36 UMLProfile 3-75
3.6.1 Tables mapping concepts to profile elements . 3-75
3.6.2 Introduction 3-79
3.6.3 Stereotypesfor Structural Specification. 3-81
3.6.4 Stereotypesfor Choreography 3-97
3.6.5 Stereotypesfor Composition 3-104
3.6.6 DocumentModel «profile» Package......... 3-111
3.6.7 UML Model_Management Package........ 3-115
3.6.8 Relationships.......................... 3-115
3.6.9 General OCL Déefinition Constraints. 3-130
3.7 Diagramming CCA 3-131
3.7.1 Typesof Diagram 3-131
3.72 TheBuy/SellExample 3-131
3.7.3 Collaboration diagram shows community
PrOCESSot 3-132
3.7.4 Classdiagram for protocol structure 3-133
3.7.5 Activity Diagram (Choreography) for a
Protocol i 3-135

February 2002

UML Profilefor Enterprise Distributed Object Computing iii

Contents

3.7.6 Class Diagram for Component Structure 3-136
3.7.7 ClassDiagramfor Interface 3-138
3.7.8 Class Diagram for Process Components

with multipleports 3-140
3.7.9 Activity Diagram showing the Choreography

of aProcessComponent 3-141
3.7.10 Coallaboration Diagram for Process Component

Composition 3-141
3.711 Model Management 3-144
3.7.12 Using the CCA Notation for Component & Protocol

Structure 3-146

Section |11 - The Entities Profile

3.8 Introduction 3-147
3.81 Normativesections 3-147
3.8.2 Relationship to other partsof ECA 3-147
3.83 DesignConceptscoiiinin... 3-148
3.84 Standard UML Facilities 3-154
3.9 EntityViewpoints 3-155
3.9.1 Information Viewpoint................... 3-155
3.9.2 Compositionviewpoint 3-156
3.10 Entity Metamodel 3-157
3.10.1 OVEIVIAW ..ot 3-157
3.10.2 EntityPackage 3-158
311 Entity UML Profile o i 3-168
3.11.1 Metamodel Mapping to Profile 3-169
3.11.2 EntityPackage 3-169

Section 1V - The Events Profile

312 Rationaleiii i 3-179
3.12.1 Introduction 3-179
3.12.2 Overall designrationale 3-180
3.123 Concepts 3-181
3.12.4 Key Concepts of event driven business
andsystemmodels. 3-182
3.12.5 Event and Notification based | nteraction
Models 3-185
3.12.6 Leveraging event based models 3-188
313 Metamodel 3-190
3.13.1 BusinessProcessView 3-190
3132 EntityView i 3-192

iv UML Profilefor Enterprise Distributed Object Computing February 2002

Contents

February 2002

3.13.3 WholeEventModel 3-192

3.13.4 Publish and Subscribe Package 3-194

3135 EventPackage 3-199

314 UML Profile 3-206
3.14.1 Table mapping concepts to profile elements . . 3-206

3.14.2 Introduction 3-207

3.14.3 Publish and SubscribePackage 3-207

3.144 EventPackage2 3-210

3.15 Relationship to other ECA profiles 3-215
3.15.1 Relationship to Business Process profile and Entities

profile 3-215

3.15.2 Relationship to ECA CCA profile 3-216

3.16 Relationship other paradigms 3-217
3161 ebXML 3-218

317 Example ... 3-218

Section V - The Business Process Profile

318 INtroduCtion 3-220
319 Metamodel ... 3-220
3.19.1 Business Processmetamodel 3-225
320 UML Profile 3-245
3.20.1 Table mapping conceptsto profile elements . . 3-245
3.20.2 Relationships 3-266
3.21 Notation for Activity and ProcessRole 3-268
3.22 ProcessModel Patterns 3-270
3221 TIMEOUL ..ottt 3-271
3222 Terminatet 3-272

3.22.3 Activity Preconditions and Activity
Postconditions 3-273
3.224 SIMpleLoopciiiiii 3-275
3.22.5 While and Repeat-Until Loops 3-276
3226 FOrLOOpcoiiii i 3-277
3227 Multi-Task ... 3-278
323 FullModel 3-279

Section VI - The Relationships Profile

324 ReqUIremMentsiuiiiine . 3-280

3.24.1 Introduction, 3-280

3.24.2 Non-Binary Relationships 3-281

UML Profilefor Enterprise Distributed Object Computing v

Contents

3.24.3 Example: Mutually Orthogonal Non-Binary

AQgregations 3-282

3.24.4 Example: Multiple Subtyping 3-285

3.24.5 Other Relationship Requirements 3-285

3.25 Using UML to Address the Requirements: An Overview . 3-286
3.26 Formal Virtual Metamodel of the UML Extensions 3-286
3.26.1 AQQregationsiiiiiian.. 3-287

3.26.2 ReferenceRelationships 3-294

3.27 Mapping the Relationships to Technical Platforms 3-298
3.27.1 AQQregationsiiiiiiian.. 3-298

3.27.2 ReferenceRelationships 3-301

3.28 ExamplesUsing the UML Extensions................ 3-302
3.28.1 Example: List and Subordination 3-302

3.28.2 Example: Reference Relationships 3-304

4. ThePatternsProfile, 4-1

Section | - Rationale

4.1 Introduction 4-2
42 PatternPrinciple 4-3
4.3 NotationforPatterns 4-4
4.4 SimplePattern 4-6
45 Patterninheritance............ 4-6
46 Pattern Composition i 4-7
4.7 Summary of Pattern Formats 4-8
4.8 ApplyingPatterns 4-8

Section || - Patterns Metamodel

49 EDOC:Pattern Packagec.covuinn.. 4-11
49.1 BusinessPatternName 4-11
4.9.2 BusinessPatternPackage 4-12
4.9.3 BusnessPatternBinding 4-13

Section |11 - UML Profile

410 Table mapping conceptsto profileelements 4-14
411 IntroduCtiont 4-14
412 PatternPackage i 4-15
4121 BPName 4-15
4122 BPPackage it 4-15

vi UML Profilefor Enterprise Distributed Object Computing February 2002

Contents

4123 BPBinding 4-17
5. Technology SpecificModels 5-1

Section | - The EJB and Java M etamodels

51 Introduction 5-1
52 TheJdavaMetamodel 5-2
521 ClassContentscvviininen... 5-3
5.22 Polymorphism 5-8
523 Javalype i 5-9
5.24 TypeDescriptorciiiin... 5-10
525 DataTypes...........c.oiiiiio.. 511
526 Names ... 5-12
5.3 TheEnterprise JavaBeans Metamodel 5-12
531 Main ... 5-13
532 EJB .. 5-18
533 EntityBean 5-23
534 Assembly 5-24
5.35 EJB Implementation 5-26
5.3.6 ReferencestoResources 5-28
537 DataTypes......... ... 5-30
54 UML Profile 5-31
541 JavaProfile 5-31
542 EIBProfile 5-32

Section |1 - Flow Composition Model

55 Introduction........... 5-32
56 FCMCorePackage 5-33
5.6.1 FCMComposition 5-34
5.6.2 FCMComponent 5-34
563 FCMNode 5-35
56.4 FCMConnection 5-35
565 FCMOperation...............ccovivnn.. 5-35
56.6 FCMParameter 5-35
567 FCMCommand 5-35
56.8 FCMFunction 5-36
569 FCMTerminal 5-36
5.6.10 FCMTerminalToNodeLink and
FCMTerminalToTerminalLink 5-36
5.6.11 FCMAnNnotation........................ 5-36

February 2002 UML Profilefor Enterprise Distributed Object Computing vii

Contents

viii

5.6.12 FCMSourceand FCMSink 5-37

5.6.13 FCMCompositionBinding 5-37

5.6.14 TDLangElement 5-37

5615 FCMTYpE ...ttt 5-37

57 FCMPackageccoiiiiiiii 5-38
571 FCMControlLink 5-39

572 FCMDataLink 5-39

573 FCMDecisionNode 5-39

5.74 FCMConditionalControlLink 5-40

575 FCMJoinNode 5-40

576 FCMJoinCommand 5-40

577 FCMMappingNode 5-40

578 FCMMappingDataLink 5-41

579 FCMMappingcovviiiinnnnnn.. 5-41

5,710 FCMCondition......................... 5-41

5711 FCMBranchNode 5-41

58 FCM Profile 5-41
59 Example ... 5-42
6. UML Profilefor MOF 6-1

Section | - Introduction

Section Il - UML to MOF Mapping Table

Section |11 - Mapping Details

6.1 ModelElement 6-4

6.1.1 Tagson UML ModelElement 6-4

6.1.2 ModelElement Property Map 6-4

6.1.3 ModelElement Constraints 6-4

6.1.4 ModelElement Limitations 6-4

6.2 Package 6-4
6.21 Tagson UML Model with Stereotype

<<metamodel>> 6-5

6.2.2 Model-to-Package Property Map 6-5

6.2.3 Model-to-Package Constraints 6-5

6.2.4 Model-to-Package Limitations 6-5

6.3 Import 6-6

6.3.1 Tagson UML Elementimport 6-6

6.3.2 ElementImport-to-Import Property Map. 6-6

6.3.3 Elementimport-to-Import Constraints 6-6

UML Profilefor Enterprise Distributed Object Computing February 2002

Contents

February 2002

6.3.4 Elementimport-to-Import Limitations 6-6

6.4 ClasS ... 6-6

6.41 TagsonUMLClass 6-6

6.42 ClassPropertyMapo.... 6-7

6.43 ClassConstraints 6-7

6.44 ClassLimitations....................... 6-7

6.5 Attribute 6-7

6.5.1 Tagson UML Attribute with No Stereotype .. 6-7

6.5.2 Attribute Property Map 6-8

6.5.3 Attribute Constraints 6-8

6.5.4 Attribute Limitations 6-8

6.6 Reference 6-8
6.6.1 Tagson UML Attribute with Stereotype

<<reference>> 6-9

6.6.2 Explicit Reference Property Map 6-9

6.6.3 Implicit Reference Property Map........... 6-9

6.6.4 ReferenceConstraints 6-9

6.6.5 ReferenceLimitations 6-10

6.7 OpEralion 6-10

6.7.1 Tagson UML Operation 6-10

6.7.2 Operation Property Map 6-10

6.7.3 Operation Constraints 6-10

6.7.4 Operation Limitations 6-10

6.8 Parameter 6-11

6.8.1 TagsonUML Parameter 6-11

6.8.2 Parameter Property Map 6-11

6.8.3 Parameter Constraints 6-11

6.8.4 Parameter Limitations 6-11

6.9 Exception........... 6-11

6.9.1 Tagson UML Exception 6-11

6.9.2 ExceptionProperty Map 6-12

6.9.3 Exception Constraints 6-12

6.9.4 ExceptionLimitations 6-12

6.10 ExceptionParameter 6-12

6.10.1 Tags on Attribute of UML Exception 6-12

6.10.2 Attribute-to-Parameter Property Map 6-12

6.10.3 Attribute-to-Parameter Constraints 6-12

6.10.4 Attribute-to-Parameter Limitations 6-12

6.11 ASSOCIALION . ..ot e e 6-13

6.11.1 Tagson UML Association 6-13

UML Profilefor Enterprise Distributed Object Computing ix

Contents

6.12

6.13

6.14

6.15

6.16

6.17

6.18
6.19
6.20
6.21
6.22

6.11.2 Association Property Map 6-13
6.11.3 Association Constraints 6-13
6.11.4 Association Limitations 6-13
AssociationEnd 6-13
6.12.1 Tagson UML AssociationEnd 6-13
6.12.2 AssociationEnd Property Map 6-14
6.12.3 AssociationEnd Constraints 6-14
6.12.4 AssociationEnd Limitations 6-14
Datalype 6-14
6.13.1 TagsonUML Datalype.................. 6-15
6.13.2 DataTypePropertyMap 6-15
6.13.3 DataType Constraints 6-15
6.13.4 DataType Limitations 6-15
Constant 6-16
6.14.1 Tagson UML Datavalue 6-16
6.14.2 DataValue-to-Constant Property Map 6-16
6.14.3 DataValue-to-Constant Constraints 6-16
6.14.4 DataValue-to-Constant Limitations 6-16
Constraint i 6-16
6.15.1 Tagson UML Constraint 6-16
6.15.2 Constraint PropertyMap 6-17
6.15.3 Constraint Constraints 6-17
6.15.4 Constraint Limitations 6-17
Generalizes 6-17
6.16.1 Tagson UML Generalization.............. 6-17

6.16.2 Generalization-to-Generalizes Property Map . 6-17
6.16.3 Generalization-to-Generalizes Constraints ... 6-17
6.16.4 Generalization-to-Generalizes Limitations ... 6-17

Tag 6-17
6.17.1 Tagson UML TaggedValue 6-18
6.17.2 TaggedValue-to-Tag Property Map 6-18
6.17.3 TaggedVaue-to-Tag Constraints 6-18
6.17.4 TaggedVaue-to-Tag Limitations 6-18

Modularity 6-19

ASSOCIAtiONS o e 6-19

References 6-20

Datalypes 6-20

Names 6-20

UML Profilefor Enterprise Distributed Object Computing February 2002

Contents

February 2002 UML Profilefor Enterprise Distributed Object Computing Xi

Contents

Xii UML Profilefor Enterprise Distributed Object Computing February 2002

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) isan international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OM G promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

I ntended Audienceand Use

The information described in this manual is aimed at managers and software designers
who want to produce applications that comply with the family of OMG standards. The
benefit of compliance is, in generd, to be able to produce interoperable applications
that run in heterogeneous, distributed environments.

Context of OMG Modeling

February 2002

The OMG is dedicated to producing a framework and specifications for commercially
available object-oriented environments. The Object Management Architecture (as
defined in the Object Management Architecture Guide) is the umbrella architecture for
OMG specifications. The defining model for the architecture is the Reference Model,

UML Profilefor Enterprise Distributed Object Computing xiii

Xiv

which classifies the components, interfaces, and protocols that compose an object
system. The Reference Model consists of the following components:

Object Request Broker, which enables objects to transparently make and receive
reguests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification

Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.

Application Objects, which are objects specific to particular commercial
products or end user systems. Application Objects correspond to the traditional
notion of applications, so they are not standardized by the OMG. Instead,
Application Objects constitute the uppermost layer of the Reference Model.

OMG Modeling, a collection of modeling specifications that advance the state of
the industry by enabling OO visual modeling tool interoperability. OMG
Modeling provides a set of CORBA interfaces that can be used to define and
manipulate a set of interoperable metamodels.

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc., at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

UML Profilefor Enterprise Distributed Object Computing February 2002

Typographical Conventions

Acknowl edgments

February 2002

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

This specification was prepared by the following companies:
* CBOP

® Data Access Technologies
®* DSTC

®* EDS

® Fujitsu

* |IBM

® |ona Technologies

®* Open-IT

® Sun Microsystems

® Unisys

Supporting companies are:

® Adaptive

® Hitachi

® Netaccount

® SINTEF

UML Profile for EDOC XV

XVi UML Profilefor Enterprise Distributed Object Computing February 2002

| ntroduction 1

Contents

This chapter includes the following topics.

Topic Page
“Guide to the Specification” 1-1
“Conformance Issues’ 1-3
“Proof of Concept” 1-5

1.1 Guidetothe Specification

February 2002

1.1.1 Overall Sructure of the Specification

Chapter 1 introduces the specification.

Chapter 2 explains the overall rationale for the approach, and provides a framework for
system specification using the EDOC Profile. It provides a detailed rationale for the
modeling choices made and describes how the various elements in the specification
may be used, within the viewpoint oriented framework of the Reference Model of
Open Distributed Processing (RM-ODP), to model all phases of a software system’s
lifecycle, including, but not limited to:

® The analysis phase when the roles played by the system's components in the
business it supports are defined and related to the business requirements.

® The design and implementation phases, when detailed specifications for the
system’s components are devel oped.

UML Profilefor Enterprise Distributed Object Computing 1-1

1-2

® The maintenance phase, when, after implementation, the system’s structure or
behavior is modified and tuned to meet the changing business environment in which
it will work.

Chapter 3 is the Enterprise Collaboration Architecture (ECA) and contains the detailed
profile specifications for platform/ technology independent modeling elements of the
profile, specificaly:

® The Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to model, at
varying and mixed levels of granularity, the structure and behavior of the
components that comprise a system.

® The Entities profile, which describes a set of UML extensions that may be used to
model entity objects that are representations of concepts in the application problem
domain and define them as composable components.

® The Events profile, which describes a set of UML extensions that may be used on
their own, or in combination with the other EDOC elements, to model event driven
systems.

® The Business Processes profile, which specializes the CCA, and describes a set of
UML extensions that may be used on their own, or in combination with the other
EDOC elements, to model workflow-style business processes in the context of the
components and entities that model the business.

® The Relationships profile, which describes the extensions to the UML core facilities
to meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular.

Chapter 4 is the Patterns Profile, which defines how to use UML and relevant parts of
the ECA profile to express object models such as Business Function Object Patterns
(BFOP) using pattern application mechanisms.

Chapter 5 provides a set of technology specific mappings. It contains Java, Enterprise
JavaBeans (EJB) and Flow Composition Model (FCM) metamodels abstracted from
their respective specifications:

® The EJB metamodel is intended to provide sufficient detail to support the creation
assembly and deployment of Enterprise JavaBeans.

® The Java metamodel is intended to provide sufficient detail to support the EJB
metamodel.

® The Flow Composition Model provides acommon set of design abstractions across
avariety of flow model types used in message brokering and delivery.

Chapter 6 (UML Profile for MOF) is a normative two way mapping between UML and
the MOF. Although this is not called for in the RFR, it is deemed essential, since, for
the profiles proposed to be understood, it has been necessary to include metamodels
that explain the concepts that the profiles express.

UML Profilefor Enterprise Distributed Object Computing February 2002

Note: Part 11 of this specification, (ad/2001/08/20) is hon-normative and contains

supporting information in the form of the following Annexes:

Annex A - Procurement, Buyer/Seller example

Annex B - Meeting Room example

Annex C - Hospital example

Annex D - Examples of Patterns

Annex E - Technology mappings from EDOC to Distributed Component and

M essage Flow Platform Specific Models

In addition, XMI and DTD data files for the metamodels in the EJB/Java/FCM profiles

are included in the zip file containing this Part 11 of the specification, in the folder

named “XMI| and DTDs.”

1.2 Conformancelssues

1.2.1 Summary of optional versus mandatory interfaces

For amodeling tool to claim compliance to the EDOC specification it must implement
at least one of the mandatory compliance points in Section 1.2.2.1, and state the name
of the compliance point(s). The mandatory compliance points are all variations on the
ability to model or interchange designs using the Enterprise Component Architecture
(ECA), which forms the core of EDOC.

There are a number of other normative profiles and metamodels contained within this
specification, and these are given named optional compliance points in Section 1.2.3,
“Optional Compliance Points,” on page 1-4.

1.2.2 Compliance Points

1.2.2.1 Mandatory Compliance Points

At least one of the following compliance points must be implemented for a tool or

model to claim compliance with the EDOC specification.

Table 1-1 Mandatory Compliance Points

Mandatory Compliance Point MOF MOF XMI UML Profile UML Profile XMI
Name Repository interchange interchange

ECA MOF Repository yes no no no

ECA MOF XMI Interchange no yes no no

ECA MOF Repository and yes yes no no

Interchange

ECA UML Profile no no yes no

February 2002

UML Profile for EDOC

. Conformance I ssues

1-3

Table 1-1 Mandatory Compliance Points

ECA UML XMI Interchange

no no no yes

ECA UML Profile and Interchange | no no yes yes

The columns in Table 1-1 are defined as follows:

MOF Repository

Any implementation of a CORBA server defined by generating and implementing the
IDL and its semantics, as defined in MOF 1.3 (formal/00-04-03), from MOF models
defined in the package "ECA" and all of its sub-packages.

MOF XM interchange

Any implementation of a service that produces XML documents that conform to the
XMI DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the
MOF package "ECA" and all of its sub-packages.

UML Profile

Any tool or model that implements the Profile mechanisms defined in UML 1.4 (ad/01-
02-13), and which is populated with stereotypes, tagged values and constraints defined
in the ECA «profile» Package, and all of its sub-packages, and provides standard

UML 1.4 notation for such models.

UML Profile XMI interchange

Any tool or model which is capable of producing XML documents that comform to the
XMI DTD produced by applying the XMI 1.1 specification (formal/00-11-02) to the
MOF package UML Interchange metamodel, as defined in chapter 5 of UML 1.4
(ad/01-02-13), and correctly encodes the stereotypes and tagged values defined in the
ECA «profile» Package, and all of its sub-packages.

1.2.3 Optional Compliance Points

1-4

The specification has the following optional compliance points:

PatternsProfile

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13),
and which is populated with stereotypes, tagged values and constraints defined in the
EDOC::Pattern «profile» Package, and al of its sub-packages.

Patterns M odel

Or any tool that implements the semantics of the MOF metamodel EDOC::Pattern
package (Chapter 4), and allows access to patterns generated either by generated MOF
1.3 (formal/00-04-03) IDL interfaces or via XML documents produced via the
application of XMI 1.1 (formal/00-11-02) to the metamodel.

UML Profilefor Enterprise Distributed Object Computing February 2002

Java M odel

Use of the normative Java metamodel (see Section 5.2, “The Java Metamodel,” on
page 5-2) by instantiation, code generation, invocation, or serialization as defined by
the MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-02) specifications.

EJB Model

Use of the normative EJB metamodel (see Section 5.3, “The Enterprise JavaBeans
Metamodel,” on page 5-12) by instantiation, code generation, invocation, or
serialization as defined by the MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-
02) specifications.

FCM Model

Use of the normative FCM metamodel (see Chapter 5, “ Section Il - Flow Composition
Model”) by instantiation, code generation, invocation, or serialization as defined by the
MOF 1.3 (formal/00-04-03) and XMI 1.1 (formal/00-11-02) specifications.

UML Profilefor MOF

Any tool that implements the Profile mechanisms defined in UML 1.4 (ad/01-02-13),
and which is populated with stereotypes, tagged values and constraints defined in the
uml2mof «profile» Package (Chapter 6).

CCA Notation

1.3 Proof of Concept

February 2002

1.3.1 CBOP

This specification is a practical approach to the need for specifying EDOC systems,
based on the following real world experience of the companies concerned:

CBOP is a consortium in Japan, promoting the reuse and the sharing of business
domain models and software components. The submission of the pattern mechanism to
the UML profile for EDOC RFP was based on the CBOP standards that are focused on
the normalization of business object patterns for modeling. Current work of CBOP is,
inter alia, concerned with the development of UML toolsthat enable the application of
patterns in object modeling with UML. The EDOC standard will be taken in to account
in these tools as well as the CBOP standards.

1.3.2 Data Access Technologies

The CCA profile (see Chapter 3, “Section Il - The Component Collaboration
Architecture”) is based on product development done by Data Access Technologies
under a cooperative agreement with the National Institute of Technologies - Advanced
Technology Program. The basis for CCA has been proven in two related works - one as
a distributed user interface toolkit for Enterprise Java Beans and more recently as the

UML Profilefor EDOC: Proof of Concept 1-5

1-6

1.3.3 DSIC

1.3.4 EDS

basis for "Component X Studio" which provides drag-and-drop assembly of server-side
application components. Component-X Studio is has been released as a product.
Portions of this same model have also been incorporated into ebXml for it's
specification schema, giving CCA an XML based technology mapping. Finally,
portions of CCA and the related entity model derive from standards, development and
consulting work done in relation to the "Business Object Component Architecture”
which, while never standardized has proven to be a solid foundation for modeling and
implementing a systems information viewpoint. In all cases of the above works, model
based development has been used throughout the lifecycle, from design to deployment
- proving the sufficiency of the base models to drive execution.

DSTC has used its dM OF product to develop a MOF respository and Human Usable
Textual Notation I/O tools which support modeling of Business Processes conforming
to the metamodel in Chapter 3, “Section V - The Business Process Profile”).
Significant Business Process models have been created using these generated tools, and
mapped using XSLT into XML workflow process definitions, which execute on the
DSTC's Breeze workflow engine. dMOF is a commercia product installed at many
customer sites world-wide, and Breeze isin development and is currently being beta-
tested by four DSTC partner organizations.

In addition the dMOF tool has been used to validate the MOF conformance of all the
meta-modelsin Chapter 3. XMI documents containing these meta-models will be
submitted as separate conveniece documents.

EDS developed the Enterprise Business Object Facility (EBOF) product in conjunction
with work on the Business Object Facility specification. This product serves as a proof
of concept for important aspects of this submission. It incorporated UML models as
the basis for generating executable, distributed, CORBA applications. This involved
consideration of transactions, persistence, management of relationships, operations on
extents, performance optimization and many other factors. This product was sold to a
major software vendor.

1.3.5 Fujitsu

This submission is based in part upon Fujitsu's system analysis and design
methodology, "Application Architecture/Business Rule Modeling". The methodology is
built into Fujitsu's product, "Application Architecture / Business Rule Modeler -
AA/BRMODELER", which has been used for the development of many mission
critical business systems. Although applied mainly to the development of COBOL
applications, the methodology includes object-oriented characteristics. In this
submission, the elements of the methodology and its related product are represented as
UML elements and extensions. In the methodology, the specification of business rules
isof specia concern. The business rules are separated in types and attributed to objects
corresponding to the types. These rules are represented in aformal grammar, and they

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

are compiled into executable programs by using AA/BRMODELER.
AA/BRMODELER has sold approximately 5000 sets in Japan since it was devel oped
in 1994. It has been applied to approximately 300 projects, some of scale greater than
7,000 person-months.

1.3.6 IBM
IBM has extensive experience in enterprise architectures, Java, Enterprise Java Beans,
CORBA, UML, MOF, and metadata. The WebSphere, MQ, and Visual Age product
lines provide sophisticated analysis, design, deployment, and execution functionality
embodying all of the key representative technologies.

1.3.7 lona

The Relationships Profile is based on many years of modeling experience in industry
and in the development of related products and standards. It uses ISO's General
Relationship Model and the work of Haim Kilov and James Ross in their book
"Information Modeling", which is based on long-term modeling experience in areas
such as telecommunications, finance, insurance, document management, and business
process change.

The Process Profile incorporates ona experience modeling enterprise processes with
customers from use case descriptions, business models, and other IT system
requirements information. It is also based on experience developing process definition
and management products for environments ranging from concurrent engineering to
document processing.

1.3.8 Open-IT and SINTEF

The profile incorporates results and experience from the UML profile and associated
lexical language that was developed in the European Union funded OBOE project. As
part of this project supporting tools were developed and the technology was applied at
auser site. A full description of the project is available at [7]. (see Appendix A).

The ODP concepts have been applied for the development of the OMG Finance domain
General Ledgers specification in the COM PASS project, and a mapping framework for
Microsoft COM has been developed by Netaccount (formerly Economica). More
information on thisis available at [6] (see Appendix A).

The ODP concepts have also been applied in the domain of geographic information
systems. The DISGIS project has demonstrated the usefulness of the separation of
concerns in terms of the 5 viewpoints defined by the RM-ODP, and developed an
interoperability framework based on this (See [5], Appendix A). The use of the ODP
viewpoints have also been found useful in the context of geographic information
system standardization in ISO/TC211 (See [8], Appendix A) and the Open Geodata
Consortium (See [9], Appendix A).

UML Profilefor EDOC: Proof of Concept 1-7

The enterprise specification concepts have been derived from work for the UK
Ministry of Defence and Eurocontrol together with participation in the development of
the ODP — Enterprise Language standard (See [4], Appendix A).

1.3.9 Sun Microsystems

Sun Microsystems' internal IT group has successfully implemented large scale
Enterprise Integration using a conceptual meta-model close to that defined in the
Events profile (Chapter 3, “Section IV - The Events Profile”), covering business
process, entity, and event architecture. While this has not been using UML, the work
modeled the enterprise and the interaction between system components based on an
enterprise business object/event information model. Business objects and events have
been modeled in a Sun IT internal language, SDDL, a self describing data language,
the syntax of which is equivalent to the modeling framework proposed here.

This implementation is successful, and by a rough estimate 50% of Sun’s key
applications participate in event driven processes, and in total about a million event
notifications are sent among these applications every day.

1.3.10 Unisys

Unisys has extensive experience in enterprise architectures, commercial metadata
repositories, metadata interchange, Java, Enterprise Java Beans, CORBA, COM+,
UML, and MOF. Unisys products provide extensive and distributed metadata
management services. Unisys has designed numerous metamodels using UML, and
has deployed numerous metamodels using MOF, including metamodels of Java,
CORBA IDL, UML, and CWM.

1.3.11 ebXML

The ebXML Business Process Specification Schema (BPSS), which was adopted as a
specification on May 11" 2001, is aligned with and validates the Component
Collaboration Architecture (CCA). This alignment was demonstrated as part of the
ebXML “proof of concept” on the same day. This alignment validates the use of CCA
concepts to express Business-to-Business processes in a precise (executable) manner.
The United Nations and Oasis jointly sponsor EbXML.

UML Profilefor Enterprise Distributed Object Computing February 2002

EDOC Profile: Rationaleand
Application

Contents

This chapter includes the following topics.

Topic Page
Section | - Vision

“Overview” 2-2
Section 11 - The EDOC Profile Elements

“The Enterprise Collaboration Architecture” 2-3
“Patterns’ 2-8
“Technology Specific Models and Technology Mappings” | 2-10

Section 111 - Application of the EDOC Profile Elements

Correspondences’

“Separation of Concerns and Viewpoint Specifications’ 2-12
“Enterprise Specification” 2-14
“Computational Specification” 2-16
“Information Specification” 2-19
“Engineering Specification” 2-20
“Technology Specification” 2-21
“Specification Integrity - Interviewpoint 2-21

February 2002 UML Profilefor Enterprise Distributed Object Computing

2-1

2

Section | - Vision

2-2

2.1 Overview

The vision of the EDOC Profile is to simplify the development of component based
EDOC systems by means of a modeling framework, based on UML 1.4 and
conforming to the OMG Model Driven Architecture (see [30] in Appendix A), that
provides:

A platform independent, recursive collaboration based modeling approach that can
be used at different levels of granularity and different degrees of coupling, for both
business and systems modeling and encompasses:

* A loosely coupled, re-useable business collaboration architecture that can be
leveraged by business-to-business (b2b) and business-to-customer (b2c)
applications, as well as for enterprise application integration.

< A business component architecture that provides interoperable business
components and services, re-use and composability of components and re-use of
designs and patterns, while being independent of choice of technology (e.g.,
component models), independent of choice of middleware (e.g., message services)
and independent of choice of paradigms (e.g., synchronous or asynchronous
interactions).

Modeling concepts for describing clearly the business processes and associated
rules that the systems support, the application structure and use of infrastructure
services, and the breakdown of the system into configurable components.

An architectural approach that allows the integration of “process models’ and
“information models.”

A development approach that allows two-way traceability between the specification,
implementation and operation of Enterprise computing systems and the business
functions that they are designed to support.

Support for system evolution and the specification of collaboration between
systems.

A notation that is accessible and coherent.

The vision addresses key business needs by enabling the development of tools that
support:

Business collaborations as a central concern — covering aliances, outsourcing,
supply chains, and internet commerce, and dealing with relationships that are in
constant flux where what is inside the enterprise today is outside tomorrow, and
vice versa

Process engineering by assembling services — so that basic business functions can
remain relatively constant while who performs them and in what sequence changes,
and services themselves can become proactive.

The ability for parts of the enterprise to react quickly and reliably to change
through:

UML Profilefor Enterprise Distributed Object Computing February 2002

2

 Shorter development time and improved quality of applications meeting market
needs, improved interoperability between systems and support for distributed
computing.

* Reduced lead time and improved quality resulting from the ability to generate a
substantial portion of application code.

« More robust specification by removing ambiguity and enabling more rigorous
analysis of designs.

* A new marketplace for interoperable collaboration based infrastructures and
business components.

The EDOC Profile provides this modeling framework by defining:

® A set of Profile Elements comprising:

A technology independent profile, the Enterprise Collaboration Architecture
(ECA) dlowing the definition of Platform Independent Models as defined by the
MDA.

« A Patterns Profile that can be applied in specifications that use the ECA.
« A set of Technology specific Models allowing the definition of Platform
Dependent Models as defined by the MDA.

® A structure for the application of the Profile Elements in the specification of EDOC
systems that conforms to the MDA.

This remainder of this chapter:
® provides an overview of the Profile Elements (Section I1), and

® defines how the Profile Elements are applied in the specification of an EDOC
system (Section I11).

The ECA is fully defined in Chapter 3, the Patterns Profile in Chapter 4, and the
Technology specific Models in Chapter 5. Non-normative mappings from the ECA to
the Technology specific Models defined in Chapter 5 are described in Section I1.

Section Il - The EDOC Profile Elements

2.2 TheEnterprise Collaboration Architecture

February 2002

The Enterprise Collaboration Architecture (ECA) comprises a set of five UML
profiles:

® The Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to model, at
varying and mixed levels of granularity, the structure and behavior of the
components that comprise a system.

® The Entities profile, which describes a set of UML extensions that may be used to
model entity objects that are representations of concepts in the application problem
domain and define them as composable components.

UML Profilefor EDOC: TheEnterprise Collaboration Architecture 2-3

® The Events profile, which describes a set of UML extensions that may be used on
their own, or in combination with the other EDOC elements, to model event driven
systems.

® The Business Process profile, which specializes the CCA, and describes a set of
UML extensions that may be used on their own, or in combination with the other
EDOC elements, to model system behavior in the context of the business it
supports.

® The Relationships profile, which describes the extensions to the UML core facilities
to meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular.

Each profile consists of a set of UML extensions that represent concepts needed to
model specific aspects of EDOC systems. The concepts are described in terms of UML
profiles.

The semantics of each profile (except for the Relationships Profile) are also expressed
in a UML-independent MOF metamodel.

The ECA profiles are technology independent and are used together to define platform
independent models of EDOC systems in conformance with the MDA. In particular,
they enable the modeling of the concepts that until now have had to be specified
programmatically in terms of the use of services such as events/ notifications, support
for relationships and persistence.

2.2.1 Component Collaboration Architecture

The Component Collaboration Architecture (CCA) details how the UML concepts of
classes, collaborations and activity graphs can be used to model, at varying and mixed
levels of granularity, the structure and behavior of the components that comprise a
system. It defines an architecture of recursive decomposition and assembly of parts,
which may be applied to many domains.

The term component is used here to designate alogical concept - a“part,” something
that can be incorporated in alogical composition. It is referred to in the CCA asa

Process Component. In many cases Process Components will correspond, and have a
mapping, to physical components and/or deployment units in a particular technology.

A Process Component is a processing component: it collaborates with other Process
Components within a CCA Composition, interacting with them through Ports, where
Ports are an abstraction of interfaces of various types (e.g., synchronous,
asynchronous). Process Components can be used to build other Process Components
or to implement roles in a process — such as a vendor in a buy-sell process.

Process Components collaborate at a given level of specification collaborate and are
themselves decomposed at the next lower level of specification. Thus the concepts of
Process Component and Composition are interdependent.

UML Profilefor Enterprise Distributed Object Computing February 2002

2

February 2002

The recursive decomposition of Process Components utilizes two constructsin parallel:
Composition (using UML Collaboration) to show what Process Components must be
assembled and how they are put together to achieve the goal, and Choreography (using
UML Activity Graph) to show the flow of activities to achieve a goal. The CCA
integrates these concepts of “what” and “when” at each level.

Since CCA, by its very nature, may be applied at many levels and the specification
requirements at these various levels are not exactly the same, the CCA can be further
specialized with profiles for each level using the same profile mechanisms. Thus
Process Components exposed on the Internet will require features of security and
distribution, while more local Process Components will only require away to
communicate, and there may be requirements for Process Components for specific
purposes such as business-2-business e-commerce, enterprise application integration,
distributed objects, real-time etc.

It is specifically intended that different kinds and granularities of Process Components
at different levels will be joined by the recursive nature of the CCA. Thus Process
Components describing a worldwide B2B business process can decompose into
application level Process Components integrated across the enterprise and these can
decompose into program level Process Components within a single system. However,
this capability for recursive decomposition is not always required. Any Process
Component may be implemented directly in the technology of choice without requiring
decomposition into other Process Components.

2.2.2 Entities profile

The Entities profile describes a set of UML extensions that may be used to model
entity objects that are representations of concepts in the application problem domain
and define them as composable components.

The goal is to define the entities with their attributes, relationships, operations,
constraints and dependencies at a technology-independent level as components within
system modeled using the CCA. The component determinesthe unit of distribution and
interfaces that must be complemented by other components. The profile includes
declarative elements for placing constraints on the profile and for rules that will
propagate the effects of changes and events.

The Entities profile is used with the Events and Business Process profiles to allow
definition of the logic of automated business processes and of events that may be
exchanged to achieve more loosely coupled integration. These three profiles together
support the design of an EDOC system on the foundation provided by the CCA.

The Entities profile is used to define a representation of the business and operations
that effect changes in state of the business model. Business processes modeled using
the Events profile and the Business Process profile operate on this model where the
process flow determines when operations should occur as aresult of inputs from other
systems, the occurrence of business events or the actions of human participants.

UML Profilefor EDOC: TheEnterprise Collaboration Architecture 2-5

2.2.3 Events Profile

The Events profile describes a set of UML extensions that may be used on their own,
or in combination with the other EDOC elements, to model event driven systems.

An event driven system is a system in which actions result from business events.
Whenever a business event happens anywhere in the enterprise, some person or thing,
somewhere, may react to it by taking some action. Business rules determine what event
leads to what action. Usually the action is a business activity that changes the state of
one or more business entities. Any state change to a business entity may constitute a
new business event, to which, in turn, some other person or thing, somewhere else,
may react by taking some action. The purpose of the Event Profile is to define the use
of the concepts in the CCA, Entity and Event profiles, and to extend them in order to
support the design of event-driven business systems.

The main concepts in event driven business models are the business entity, business
event, business process, business activity and business rule. So the basic building
blocks are the business process and the business entity. The two are ‘wired together’ by
aflow of actions from process to entity, and by aflow of events from entity to process.
In a component framework, therefore, business processes have event inflow and action
outflow, and entities have action inflow and event outflow.

This means that CCA business process components and CCA business entity
components can be created by modeling:

® A business process as a set of rules of the type notification/condition/activity (This
is the event-driven equivalent of the commonly known event/condition/action rule).

® A business entity as set of operation/state/event causalities.

The connection from business process to business entity is a configurable mapping of
activity to operation.

The connection from business entity to business process is a configurable set of
subscriptions.

With these building blocks it is possible to model anumber of event-based interactions.
Furthermore, by reconfiguring the activity to operation mapping and/or the
subscriptions, it is possible to re-engineer the business process and its execution in the
system.

However, neither the business world, nor the computing world applies only one
paradigm to their problem space. Businesses use a combination of loosely coupled and
tightly coupled processes and computing solutions deploy a combination of loosely
coupled and tightly coupled styles of communication and interaction between
distributed components. Consequently, while the Events profile is defined to support
the event-driven flavor of loosely coupled business and systems models, it allows such
models to co-habit with more tightly coupled models.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

2.2.4 Business Process profile

The Business Process profile specializes the CCA, and describes a set of UML
extensions that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports.

The Business Process profile provides modeling concepts that allow the description of
business processes in terms of a composition of business activities, selection criteria
for the entities that carry out these activities, and their communication and
coordination. In particular, the Business Process profile provides the ability to express:

® Complex dependencies between individual business tasks (i.e., logical units of
work) congtituting a business process, as well as rich concurrency semantics.

® Representation of severa business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks.

® Representation of iteration in business tasks.

® Various time expressions, such as duration of a task and support for expression of
deadlines.

® Support for the detection of unexpected occurrences while performing business
tasks that need to be acted upon, i.e., exceptional situations.

® Associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution.

® |nitiation of specific tasks in response to the occurrence of business events.

® The exposure of actions that take place during a business process as business events.

2.2.5 Relationships profile

The Relationships profile describes the extensions to the UML core facilities to meet
the need for rigorous relationship specification in general and in business modeling and
software modeling in particular.

Relationships are fundamental to behavior because they are the paths over which
actions occur, therefore clear, concise and rigorous specification of relationship
semantics is of utmost importance. Furthermore, it should be noted that multiplicities
are not the most important or most interesting properties of relationships. Property
determinations are much more important for the semantics of a relationship, and
distinguish among different kinds of relationships. The fragments of relationship
invariants about property determination represent an essential fragment of those elusive
“business rules” that are the backbone of a good specification and that should never be
only “in the code.”

At the same time, it is very desirable to discover and specify — rather than reinvent —
those kinds of relationships that are encountered in al specifications, so that reuse at
the specification level becomes possible. Such generic relationships extend the set of
reusable constructs that already exist in UML.

UML Profilefor EDOC: TheEnterprise Collaboration Architecture 2-7

2-8

2.3 Patterns

The Relationships profile defines generic relationships that provide concepts and
constructs that permit UML to be used for specification of businesses and systemsin a
more rigorous manner than (and without restrictions currently imposed by) the base
UML 1.4. Generic relationships provide for explicit specification of relationship
semantics in class diagrams using invariants, in accordance with UML 1.4 Section
2.3.2: “The static semantics ... are defined as a set of invariants of an instance of the
[association].... These invariants have to be satisfied for the construct to be
meaningful.”

The approach presented is extensible, and if it appears that in a particular business (or
a set of applications) additional generic relationships are needed and useful, then they
may be precisely and explicitly defined and added in a manner similar to the
definitions provided here.

The profile also provides advice for choosing and using a subset of UML for business
modeling such athat the business models represented in terms of this subset will be
readable and understandable by all stakeholders, specifically, business subject matter
experts, analysts, and developers (as well as managers). The generic relationships
described here are among the most important constructs of this subset.

A key element of the EDOC Profile design rationale is the ability to exploit the
capability of patterns to capture modeling know-how or techniques and help developers
to maintain efficiency and consistency in products. Patterns allow standard models to
be reused to build good object models for EDOC systems.

Many approaches to the use of patterns have been proposed, for example “Design
Pattern” proposed by E.Gamma et.al (see [28] in Appendix A), “Analysis Patterns’
proposed by M. Fowler [27] or “Catalysis Approach” proposed by D. D’ Souza[26]. In
its use of patterns the EDOC Profile focuses on improving sharability and reusability
of object models rather than on assisting modeling efforts by illustrating good
modeling techniques.

EDOC Patterns improve the sharability and reusability of models, by supporting the
following features:

® Models are made consistent with predefined normative modeling constructs, not
only with modeling manners and notations.

® Modeling constructs for common atomic objects, such as, Date, Currency, Country-
code are predefined.

® Common aggregated objects, such as Customer, Company, or Order, which
represent business entities, are predefined as normative modeling constructs, using
normative atomic objects.

® Business concepts, such as Trade, Invoice, or Settlement, which are typically
represented as relationships among objects, are defined as aggregations of the
common elementary aggregated objects or simple objects, and are predefined as
normative modeling constructs.

UML Profilefor Enterprise Distributed Object Computing February 2002

2

February 2002

® Aggregations that can be predefined using the more basic and elementary patterns
as base, are defined as object patterns.

® Patterns can represent business concepts where they provide for aggregation of
more elementary patterns, thus aggregation or composition mechanisms are
provided in patterns.

® Business rules that govern a business concept are represented with a pattern with
encapsulated constraints and a mechanism for constraint inheritance among
patterns is provided.

A pattern is a set of types that can be instantiated to create an object model. Making a
pattern from a set of object models requiresidentifying and defining the common types
among those object models as their metamodel as in the ECA. Identifying and
specifying many reusable business object patterns enables quick and high quality
model development by selecting appropriate patterns to use in the project as a
template.

The Patterns profile defines a standard means, Business Function Object Patterns
(BFOP), for expressing object models using the UML package notation, together with
the mechanisms for applying patterns that are required to describe models.

BFOP is a set of object patterns laid out in a hierarchical multi-layer structure, the
Basic, Unit, Basic Model, Product (application systems) and Option layers. For
example, Figure 2-1 illustrates how “ Sales/Purchase Pattern” is composed from “ Sales
Order & Purchase Order Pattern”, “Closing Pattern” and so on. The UML
parameterized collaboration mechanism is used to materialize the pattern integration.

One of the major benefits of using this multi-layered structure is that it enables reuse
(inheritance) of the constraints that have been defined and encapsulated in patterns in
the layers. It provides a normalized way to define constraints and is effective in
maintaining consistency within the object model.

The concepts of Business Pattern Package (defining a pattern) and Business Pattern
Binding (applying a pattern) have the features of pattern inheritance and pattern
composition. This capability is useful for expressing patterns that include the objects
constructed by recursive component composition as defined by the ECA.

The Patterns Profile defines three basic forms of pattern:

® A simple pattern, which is a pattern consisting of minimal elements needed to form
a pattern.

® An inherited pattern, which is a pattern defined by inheriting from another pattern.

® A composite pattern, which is a pattern defined as a result of combining more than
two patterns: the composite pattern concept is an extension of the inherited pattern.

Using the above three basic forms of pattern as the base, notations for expressing
patterns and their metamodel are defined.

The instantiation of a composite pattern in a hierarchical structure becomes possible by
resolving pattern inheritance and collaboration by performing "unfold." When
composite patterns are granular enough to include implementation details, it is possible
to use them to describe a component concept such as that defined in the CCA, each

UML Profilefor EDOC: Patterns 2-9

pattern package can be implemented with real components instead of unfolding it into
a components pattern. In short, the proposed pattern concept and mechanism can be
applied to the components based development that is required for EDOC systems.

The Patterns profile also includes standard models from the ECA such as Business
Entities, Business Processes, Business Events and Business Rules, together with a set
of common and reusable patterns of relationship properties that occur in business
modeling.

The profile does not define any new metamodel elements. The pattern notation uses
currently available metamodel elements and patterns are described using the UML
pattern notation.

——— —
Basic Layer Master & Detail Association Common
‘\ patterns
1
Unit Layer Closing Industrial
components
X
]
Sales Order & Purchase
Order
< =7

Basic Model Layer

Frameworks
Sales/Purchase

T

1
System/.Subsystem Products

Figure 1: An Example of BFOP Pattern Hierarchy

Figure2-1 An Example of BFOP Pattern Hierarchy

2.4 Technology Specific Models and Technol ogy Mappings

2-10

The focus of the ECA is on enterprise, computational and information specifications
for a platform independent model of an EDOC system. These are transformed further
to engineering and technology specifications for platform specific models using
technology concepts from an appropriate Technology Specific Model.

Neither the business world, nor the computing world, applies only one paradigm to
their problem space. Businesses use a combination of loosely coupled and tightly
coupled processes, and computing solutions to deploy a combination of loosely
coupled and tightly coupled styles of communication and interaction between
distributed components.

UML Profilefor Enterprise Distributed Object Computing February 2002

2

February 2002

An ECA based business process can be defined as event driven for some of its steps
and workflow or request/response driven for others. Likewise, distributed components
in the ECA can be configured to communicate with each other in a mixture of event-
driven publish-and-subscribe, asynchronous peer-to-peer, and client-server remote
invocation styles.

The EDOC Profile anticipates three levels of component coupling: linked, tightly
coupled and loosely coupled.

Linked coupling refers to components that are co-located in the same address space.
These components interact with each other directly, without communicating over a
network. As such, they can interact without being identifiable over the network.
Messaging will generally be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers. These components
will also interact with synchronous messaging, but messaging will occur over a
network. While some messaging between the components may be asynchronous for
performance and recoverability considerations, components are tightly coupled if any
interactions between them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously,
through a messaging infrastructure. Communication is through messages and events.
A message or event is issued in the scope of one transaction and accepted by one or
more recipients in independent transactions. M essages and events are stored and
forwarded. A message is a communicated with a defined recipient, and an event is a
communicated (published) with self-declaring recipients (subscribers) unknown to the
publisher.

The level of coupling between components has important performance and system
flexibility implications. Generally, components should be designed in a level-of-
coupling hierarchy so that components that are linked are within components that are
tightly coupled, and tightly coupled components are then loosely coupled with each
other. This coupling hierarchy should be reflected in the network accessibility
property of components and the synchronous vs. asynchronous property of their ports.

With a consistent mapping to a particular technology, implementations of
independently developed specifications should be operationally interoperable.
Furthermore, components implemented with different technologies should be
operationally interoperable if the technology mappings are consistent with the
transformations provided by bridges between the technologies.

ECA based specifications can be mapped down to various technology choices, and in
particular both container-managed components and message-based services. Two
Technology Specific Models are defined as part of the EDOC Profile, for Enterprise
Java Beans and Java enterprise computing architectures, and for the Flow Composition
Model (FCM).

The EJB metamodel captures the concepts that will be used to design an Enterprise
JavaBean-based application down to the Java implementation classes. The metamodel
includes the assembly and deployment descriptor.

FCM is a general-purpose model that supports creating flow compositions of
components and defining behaviors of those compositions using wiring diagrams. It
provides a common set of technology abstractions across a variety of flow model types

UML Profilefor EDOC: Technology Specific Modelsand Technol ogy Mappings 2-11

used in message brokering. FCM is closely tied to MQ-Series but it has more general
applicability and is positioned as a layer of abstraction just above middleware
technology,in contrast to the ECA Processes profile which is intended technology
neutral and intended for use in an analysis level model.

Normative mappings from ECA to these models is the subject of future RFPs. Proof of
concept mappings are given in Section 111.

Section Il - Application of the EDOC Profile Elements

2.5 Separation of Concernsand Viewpoint Specifications

2-12

The RFP states that:

“Successful implementation of an enterprise computing system requires the operation
of the system to be directly related to the business processes it supports. A good
object-oriented model for an enterprise computing system must therefore provide a
clear connection back to the business processes and business domain that are the basis
for the requirements of the system. However, this model must also be carried forward
into an effective implementation architecture for the system. Thisis not trivial because
of the demanding nature of the target enterprise distributed computing environment.”

This is reflected in the vision for this EDOC profile to provide:

® A development approach that allows two-way traceability between the specification,
implementation and operation of Enterprise computing systems and the business
functions that they are designed to support.

® |norder to clearly and coherently address these requirements, the specification of an

EDOC system must be structured to address a number of distinct sets of concerns:

« The behavior of the system, in the context of the business for which it is
implemented (i.e., its roles in some enterprise that is greater than it itself), hasto
be specified in a way that can be traceably linked to its design.

« The structure of the application processing carried out by the system has to be
defined in terms of configurations of objects and the interactions between them.

« The semantics of the application processing carried out by the system have to be
expressed in a way that can be traceably linked from its roles through to the
functions the system provides.

e The infrastructure of the system has to be defined in terms of the use of object
services to support the application processing structure.

1. RFP p19 under the heading of “ Enterprise Computing Systems”

UML Profilefor Enterprise Distributed Object Computing February 2002

2

February 2002

« The qualitative aspects of the system (e.g., performance and reliability objectives)
have to be defined together with the hardware and software products that realize
the system. These determine the physical configuration of application processing
and supporting services across available resources, and how the system is
managed.

This is the problem addressed by the Reference Model of Open Distributed Processing
(RM-ODP) (see[1], [2], [3] Appendix A) and this specification uses as the conceptual
framework for an EDOC system specification the concept of viewpoints defined in the
RM-ODP. It partitions a system specification into five viewpoint specifications, namely
the

* enterprise specification,

e computational specification,

« information specification,

* engineering specification, and

« technology specification.

The set of linked specifications, taken together, ensure that the system can be
implemented and operated in such away that its behavior will meet the business needs
of its owners, and, furthermore, that its owners will understand the constraints on their
business that operation of the system will impose.

This section explains how the concepts defined by in the EDOC Profile can be used to
develop a full set of viewpoint specifications for an EDOC system and how
specification integrity across the various viewpoint specifications can be ensured. In
summary (Figure 2-2):

® The CCA, the Events profile, the Entities profile the Processes profile and the
Relationships profile from the ECA are used, with relevant Patterns, to produce an
enterprise specification (Enterprise viewpoint).

® The CCA, the Entities profile and the Events profile from the ECA are used, with
relevant Patterns, to produce a computational specification (Computational
viewpoint).

® The Entities profile and Relationships profile from the ECA are used, with relevant
Patterns, to produce an information specification (Information viewpoint).

® A technology abstraction model such as the Flow Composition Model (FCM), with
relevant Patterns, is used to produce an engineering specification (Engineering
viewpoint).

® The mappings to various technologies, in particular, to J2EE with EJB, to CORBA
3 with CCM and to MS DNA/.NET with DCOM, are used to produce technology
specifications (Technology viewpoint).

UML Profilefor EDOC: Separation of Concernsand Viewpoint Specifications 2-13

Enterprise viewpoint
(CCA, Processes, Entities, Relationships, Events)

Partl: ECA
Information viewpoint ——— Computational viewpoint
(Entities, Relationships) (CCA, Entities, Events)
\ /

\/ PartIl:

Engineering viewpoint ECA to
(Technology abstraction: FCM) technology
mappings

Part |:Technology
Specific Models

Technology viewpoint
(UML for J2EE/EJB/IJM S, CORBA 3/CCM, COM, SOAP, ebXML)

Part |: Patterns - applied to all viewpoints

Figure 2-2 EDOC Profile elements related to the ISO RM ODP viewpoints
Such a specification structure is valid for all phases of a software system’s lifecycle,
including, but not limited to the

¢ analysis phase when the roles played by the system’s components in the business it
supports are defined and related to the business requirements,

® design and implementation phases, when detailed specifications for the system’s
components are developed, and

® maintenance phase, when, after implementation, the system’s behavior is modified
and tuned to meet the changing business environment in which it will work.

The overall structure of the EDOC Profile in the context of the ISO RM-ODP
viewpoints isillustrated in Figure 2-2.

2.6 Enterprise Specification

2.6.1 Concepts

The enterprise specification of an EDOCsystem provides the essential traceability
between the system design and the business processes and the business domain that are
the basis for the requirement for the system.

The basis of the enterprise specification is provided by the concepts of the ODP
enterprise language (modeled using the ECA elements). These concepts are defined in
Appendix A - [4].

An enterprise specification models the structure and behavior of the system in the
context of the business organization of which it forms a part in the following terms:

2-14 UML Profilefor Enterprise Distributed Object Computing February 2002

® the business processes supported by the system,

® steps in those processes and relationships between steps,

® husiness rules (policies) that apply to the steps,

® artifacts acted on by each step,

® enterprise objects representing the business entities involved,

® theroles that they fulfil in supporting the business processes, and

® the relationships between roles (including interaction relationships) where roles
identify responsibility for steps in the business processes.

An EDOC system or each component of that system is modeled as an enterprise object
and is assigned arole or roles in the community: hence, it is associated with specific
parts of one or more processes. These roles identify the parts of the business processes
for which the system is responsible and the artifacts that are involved. Such artifacts

and resources represent the information held and acted upon by the system.

The central concept of any enterprise specification is that of a community that models
a collection of entities interacting to achieve some purpose, which is defined by the
objective of the community concerned. Each community is modeled as a configuration
of enterprise objectsin roles. The EDOC system of concern (or the components of that
system) is modeled as one or more of the enterprise objects that are the members of the
community.

The behavior of the members of the community is identified by the roles they fulfil,
and is defined in terms of a set of actions, each of which may also be modeled as a
step of one or more processes. Each process is designed to achieve the objective of the
community.

Depending upon what it models, an enterprise object may be further refined as a
community in a process of recursive decomposition.

Policies (business rules) may be associated with any other enterprise language concept
and may be expressed in the form of constraints on any concept, or relationship
between two concepts.

2.6.2 EDOC Enterprise Subprofile

The EDOC enterprise specification makes use of the CCA for the role-based definition
of the enterprise structure, where:

® Communities are modeled as Composed Components with associated Composition
and Choreography definitions.

® Enterprise objects are modeled as ProcessComponents.

® Theinteractions in which enterprise objects can participate are defined by Ports and
the associated Protocols.

It makes use of the Processes profile for the process-based definition of the enterprise
structure.

February 2002 UML Profilefor EDOC: Enterprise Specification 2-15

It makes use of the Event profile for the definition of event driven enterprise structures.

It makes use of the Entities profile for the definition of entities and rules. Artifacts,
performers and responsible parties, which are the subject of the interactions, are
modeled as entities.

It makes use of the Relationships profile for rigorous specification of relationships.

2.7 Computational Specification

2-16

2.7.1 Concepts

The computational specification describes the implementation of the EDOC system (or
components that comprise that system) in order to carry out the processing required by
the system roles in the enterprise specification. It does this in terms of functional
decomposition of the system into computational objects that interact at interfaces, and
thereby enables distribution. It defines:

® Computational objects that play some functional role in the system and which can
be described in terms of provided interfaces and used interfaces: a set of
computational objects will correspond to the implementation of roles of the system
in enterprise processes, and associated enterprise events and business rules.

® The interfaces at which the computational objects interact: this includes different
types of interfaces and also describes data involved in computational interactions
corresponding to the information objects in the information specification.

® The collaboration structures among a set of computational objects.

The computational viewpoint is closely related to the enterprise viewpoint in that the
computationa objects represent a functional mapping of enterprise concepts like
business processes, rules, events etc. where these relate to the roles of the system in the
enterprise specification. Ways of ensuring consistency (conformance/reference points)
between enterprise and computational specifications should be supported (consistency
statements for corresponding conformance/reference points in the two viewpoint
specifications).

The EDOC computational specification concepts are based on the RM-ODP Part 3
Clause 7 (see Appendix A [3]).

2.7.2 EDOC Computational Specifications

An EDOC computational specification makes use of the CCA for the basic definition
of the computational structure, where:

® Computational objects are modeled as ProcessComponents.
® The interfaces at which computational objects interact are modeled by Ports.

® Collaboration structures among a set of computational objects are modeled by
Compositions with associated Choreographies.

UML Profilefor Enterprise Distributed Object Computing February 2002

2

February 2002

It makes use of the Entities Model for the definition of entity components, where entity
components correspond to entities in the information specification.

It makes use of the Events Model for the definition of event driven computational
structures.

2.7.3 Levels of ProcessComponent in a Computational Specification

2.7.3.1

2.7.3.2

An EDOC computational specification can specify ProcessComponents at a number of
different levels. These levels correspond to four general categories of
ProcessComponent:

® E-Business Components
® Application Components
® Distributed Components

® Program Components

E-Business Components

E-Business Components are used as the integration point between enterprises,
enterprises and customers or somewhat independent parts of alarge enterprise (such as
an acquired division). Interfaces to E-Business Componentswill frequently be directly
accessible on the Internet as part of a web portal.

The E-Business Component has the potential to spawn new forms of business and new
ways for business to work together.

E-Business Components integrate business entities that may share no common
computing management or infrastructure. Interactions between E-Business
components must be very loosely coupled and are always asynchronous. No
assumptions of shared resources may be made between the parties, and the internal s of
the E-Business components will frequently be changed without informing other parties.

Application Components

Application Components represent new and legacy applications within an enterprise.
Application Components are used to integrate applications (EAI) and create new
applications, freguently to facilitate E-Business Components.

Application Components represent large-grain functional units. Each Application
Component may be implemented in different technologies for different parts of the
enterprise. Integrating Application Components facilitates enterprise-wide business
processes and efficiencies.

Individual Application Components may be individually managed, but the integration
falls under common management that may impose standards for interoperability and
security.

UML Profilefor EDOC: Computational Specification 2-17

2-18

2.7.3.3

2.7.3.4

2.7.3.5

Application Components use a wide variety of integration techniques including
messaging, events, Internet exchanges and object or procedural RPC. Application
Components are frequently wrapped legacy systems.

Distributed Components

Distributed Components are functional parts of distributed applications. These
components are generally integrated within a common middleware infrastructure such
as EJB, CORBA Components or DCOM. Distributed components have well defined
interfaces and share common services and resources within an application.

Distributed Components provide for world-wide applications that can use a variety of
technologies. Most distributed component interactions are synchronous.

Program Components

Program Components act within a single process to facilitate a program or larger grain
component. Program Components may be technical in nature — such as a query
component, or business focused — such as a “customer” component. These
components will integrate under a common technology — such as J2EE.

Program Components provide the capability for drag-and-drop assembly of
applications from fine-grain parts.

Note that some Program Components will provide access to the “outside world”, such
as CORBA or XML thus making a set of Program Components into a larger grain
component.

The destination between Program Components and all others is quite important as
these are the only components that do not use some kind of distributed technology —
they are only used and visible within the context of “a program.”

Relationships between ProcessComponent levels

Relationships between ProcessComponent levels

Figure 2-3 shows how configurations of ProcessComponents at one level may use and
be composed of ProcessComponents at lower levels. It also shows that at any level
ProcessComponents may be primitive, that is — directly implemented without being a
Composition. ProcessComponents may re-use and compose ProcessComponents at
lower levels or the same level.

UML Profilefor Enterprise Distributed Object Computing February 2002

E-business Components

Application Components

Digtributed Components

ﬁ- Program Components

Figure 2-3 ProcessComponent Composition at multiple levels

There is no requirement or expectation that an EDOC computational specification must
use al of these levels. For example, an E-Business Component could be directly
composed of Program Components or it could use every levels.

2.8 Information Specification

February 2002

2.8.1 Concepts

The information specification defines the semantics of information and information
processing involved in the parts of the business processes carried out by the EDOC
system (or by components that comprise that system). The information specification
concepts are taken from the RM-ODP Part 3 Clause 6 (see Appendix A [3]).

The information specification is expressed in terms of

® aconfiguration of information objects (static schema),

® the behavior of those information objects (dynamic schema), and
® the congtraints that apply to either of the above (invariant schema).

The information objects identified correspond to enterprise objects in the enterprise
specification for which information is held and processed by the system.

The structure of the information objects and the relationships between them are defined
in terms of static (structural) configurations of information objects. This includes the
structure of individual information objects and the structure comprising a set of related
information objects.

The behavior of the interrelated information objects is defined in terms of state
changes that can occur and relate to the effects of the process steps in the enterprise
specification.

UML Profilefor EDOC: Information Specification 2-19

The constraints relate to the business rules that apply to the process steps in the
enterprise specification and define predicates on the information objects that must
always be true.

2.8.2 EDOC Information Specifications

An EDOC information specification makes use of the Entities profile and the
Relationships profile for the basic definition of the information structure, where:

® information objects are modeled as Entities and Relationships;

® constraints are defined in terms of enumerated states, relationship properties, and
invariants from UML.

It makes use of the Choreography from the CCA for the definition of behavior of
Entities in terms of changes of EntityState.

It makes use of the Relationships profile for rigorous specification of relationships.

2.9 Engineering Specification

2-20

2.9.1 Concepts

The engineering specification defines the distribution transparency reguirements and
the services required to provide these transparencies in support of the processing
specified by the computational specification. In addition, the engineering specification
describes the means by which distribution is provided. The engineering specification
concepts are taken from the RM-ODP Part 3 Clause 8 (see Appendix A [3]).

The engineering specification is derived from the computational specification by
applying a technology mapping. The technology mapping incorporates standard
interface and naming protocols to define consistent interface types and specifications.

The engineering specification will aso incorporate additional design decisions. One of
the key aspects of the engineering specification is the strategy for distributed
computing, governing such issues as:

® which objects are network accessible and which are not: objects that are not
network accessible must be co-located with objects with which they have
relationships or from which they receive messages;

® the scope of transactions and the use of asynchronous messaging;

® which elements are persistent and how they are mapped to a persistent data store.

The engineering specification provides the basis for code generation. Currently, the
ECA elements along with current UML design facilities can provide specifications for
code to implement the objects, their interfaces, code to assure model integrity and
methods to support certain services and protocols. Humans will still be required to
program the business logic of methods and processes.

UML Profilefor Enterprise Distributed Object Computing February 2002

2.9.2 EDOC Engineering Specifications

These are defined by mapping from the computational specification to a technology
abstraction model such as FCM. Examples of such mappings are given in Section II.

2.10 Technology Specification

The technology specification is concerned with the choice and deployment of software
and hardware products for implementing the system and with the associated mappings
from technology abstraction models such as FCM to the corresponding technologies
(e.g. J2EE with EJB, Flow Composition Model (FCM), CORBA 3 with CCM and MS
DNA/.Net with DCOM).

2.11 Specification Integrity - Interviewpoint Correspondences

February 2002

This section identifies relationships that are required to exist between viewpoint
specifications and are expressed through relationships between elements in different
viewpoint specifications.

2.11.1 Computational-Enterprise Interrelationships

A Process in the computational specification isrelated one or more sets of Activitiesin
one or more Processes in the enterprise specification, where performance of those
Activitiesis the responsibility of the EDOC system. It may also be related to Business
Rules that apply to those Activities.

An Entity in the computational specification is related to a Entity referenced (as an
artifact) in at least one Activity in a Process in the enterprise specification, where the
Activity is the responsibility of the EDOC system.

A BusinessNotification in the computational specification is related to a
BusinessNotification associated with an Activity in a Process in the enterprise
specification, where the Activity is the responsibility of the EDOC system.

A Rulein the computational specification is related to a Rule that applies to Activities
in one or more Processes in the enterprise specification, where the Activities are the
responsibility of the EDOC system.

2.11.2 Computational-Information Interrelationships

A Entity in the computational specification is related to an entity or a configuration of
Entities in a static schema in the information specification.

A Process in the computational specification is related to a Choreography in the
information description and can be related also to an invariant schema.

A BusinessNotification in the computational specification is related to a Choreogrphy
in the information description.

UML Profilefor EDOC: Technology Specification 2-21

A Rule in the computational specification is related to an invariant schema in the
information specification.

2.11.3 Computational-Engineering Interrelationships

These depend upon the specific technology mappings that are applied.

2.11.4 Engineering-Technology | nterrelationships

These depend upon the specific technology mappings that are applied.

2-22 UML Profilefor Enterprise Distributed Object Computing February 2002

TheEnterpriseCollaboration
Architecture

Contents

This chapter includes the following topics.

Topic Page
Section | - ECA Design Rationale 3-1
“Key Design Features’ 3-2
“ECA Elements” 39
Section |1 - The Component Collaboration 3-9
Architecture

“Rationale” 3-10
“CCA Metamodel” 3-20
“CCA Notation” 371
“UML Profile” 3-75
“Diagramming CCA” 3-131
Section |11 - The Entities Profile 3-146
“Introduction” 3-147
“Entity Viewpoints’ 3-155
“Entity Metamodel” 3-157
“Entity UML Profile” 3-168
Section 1V - The Events Profile 3-177
“Rationale” 3-179

February 2002 UML Profilefor Enterprise Distributed Object Computing

Topic Page
“Metamodel” 3-190
“UML Profile” 3-206
“Relationship to other ECA profiles’ 3-215
“Relationship other paradigms’ 3-217
“Example’ 3-218
Section V - The Business Process Profile 3-218
“Introduction” 3-220
“Metamodel” 3-220
“UML Profile” 3-245
“Notation for Activity and ProcessRole” 3-268
“Process Model Patterns’ 3-270
“Full Model” 3-279
Section VI - The Relationships Profile 3-279
“Requirements” 3-280
“Using UML to Address the Requirements: An Overview” | 3-286
“Formal Virtual Metamodel of the UML Extensions” 3-286
“Mapping the Relationships to Technical Platforms’ 3-298
“Examples Using the UML Extensions’ 3-302

Section | - ECA Design Rationale

3-2

This chapter describes the Enterprise Collaboration Architecture (ECA) — a model-
driven architecture approach for specifying Enterprise Distributed Object Computing

systems.

3.1 KeyDesign Features

Five key design features of the ECA address the EDOC vision:

UML Profilefor Enterprise Distributed Object Computing

Recursive component composition;
Support for event-driven systems;

Process specification;

Integration of process and information models;

Technology independence, allowing implementation of a design using different

technologies.

February 2002

February 2002

3.1.1 Recursive component composition

Business processes are by their very nature collaborations — a set of people,
departments, divisions or companies, working together to achieve some purpose or set
of purposes.

Such a collaboration can be viewed as a “composition” with the people, departments
etc. as “components’ of that composition having “roles’ that represent how each
component is to behave within the composition (note that the same component may
have different roles in the same or different compositions, just as a person, department
etc. may have many roles with respect to many processes).

This dynamic of component and composition is fundamental, the concept of
component only makes sense with respect to some specific kind of composition and the
concept of composition only makes sense when there can be components to compose
it.

When a high-level business process is considered, such as buying and selling, there are
roles within this buy-sell process for the buyer and seller. In some cases there may be
other roles, such as banks, freight forwarders and brokers. Each of these is defined as
a component within the high-level process, e.g. it is a component of the “buy-sell”
process, playing some role.

Besides identifying the roles it is necessary to identify how each of the components
must interact with the other components for the process to unfold. Thus, for each kind
of interaction that exists between roles there is a protocol for that interaction defined
by the information that flows and the timing of that flow, for example the interaction of
the seller with afreight forwarder is completely different from the interaction with the
buyer. Thisleads to the next important concept — that of interactions. Interactions are
well defined protocols between roles within some composition. Each interaction point
on a component is called a “port”, which is the point of interaction of roles.

Finaly, reflecting what is seen in the world, it is necessary to allow “drill down” from
one level of granularity to another. When you place an order on the web you see a
single face (the web portal) playing a single role (the seller). This simplified view
represents the seller’s role in the buy-sell process (you represent the other role). Inside
of the seller, when it is opened up, you see order processing, credit, warehousing,
shipping — al of the roles it takes to get you your order. This more fine-grain process
represents the way a particular component has been configured to play the role of the
seller, another seller may involve other choices.

Adding this concept of drill-down takes us from “flat” component composition to
recursive component composition — the ability to define components as compositions
of finer grain components.

Thus, components are defined in terms of sub-components playing roles and
interacting through ports. At the highest level, processes are self-contained, the entire
community of rolesisidentified. When you “open up” one of the components you
may find a“primitive” component, one defined in terms of pre-established constructs
such as may be found in Java or the UML Action language. The other thing you may
find is another composition. What looks like an atomic component at one level may
reveal a complex lattice of sub-components when “opened up”.

UML Profilefor EDOC: Key Design Features 3-3

3-4

A recursive component architecture can be used “top down”, by defining new
processes in terms of higher level compositions. It can also be used “bottom up” by
assembling existing components into new compositions — making new components.
As new basic capabilities are required they can either by defined from existing
components or new primitive components can be supplied, so there is no “brick wall”
when some fundamental capability you need was not anticipated.

In such a recursive component architecture there is a clear separation between the
“inside” of a component and its “outside”. The outside of a component exposes a set
of named ports, each with a defined interaction that connects it with a compatible port
in another component. These ports specify what information flows between the
compatible components and under what conditions the information flows. The outside
of a component is not concerned with the internal composition or process of the
component.

One other aspect of component technology is that of configurability. Components may
be very general in nature, which promotes reuse. These very general components must
be configured when used in a specific role. This may be seen in the property panels of
bean-boxes or COM components. The ability to configure a component is essentia to
making it general and reusable. We call a configuration point a “property”.

To summarize the points;

® The concepts of component and composition are fundamentally tied.

® Components may be primitive or compositions of sub-components

® Each component can play roles within other compositions.

® Components interact with each other, within composite processes, through ports.
¢ Component composition is recursive, allowing decomposition and assembly.
The advantages of this approach are

® A single simple paradigm describes large grain and fine grain process components.
® Components are reusable across many compositions

* New components may be defined as collaborations of existing components

®* New fundamental capabilities may defined as primitive components.

® The collaborative and recursive nature of processes may be directly represented.

3.1.2 Process Specification

The Business Process profile specializes the CCA, and describes a set of UML
extensions that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports.

The profile provides modeling concepts that allow the description of business
processes in terms of a composition of business activities, selection criteria for the
entities that carry out these activities, and their communication and coordination. In
particular, the Business Process profile provides the ability to express:

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

® complex dependencies between individual business tasks (i.e. logical units of work)
constituting a business process, as well as rich concurrency semantics;

® representation of several business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks;

® representation of iteration in business tasks;

® various time expressions, such as duration of atask and support for expression of
deadlines;

® support for the detection of unexpected occurrences while performing business tasks
that need to be acted upon, i.e. exceptional situations;

® associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution;

® initiation of specific tasks in response to the occurrence of business events,

® the exposure of actions that take place during a business process as business events.

The modeling of processes in the ECA profile addresses an RFP requirement, but,
more importantly, processes are important elements in the representation of
interactions between components, systems and enterprises. Processes are the
mechanisms of collaborations. Processes define the roles of the participants and
artifacts involved in collaborations. Processes also define the manner in which events
can drive the operation of the enterprise. Consequently, it is essential that the ECA
model include a representation of processes that enables a modeler to define a
framework for the operation of an enterprise.

The modeling of processes in the ECA profile reflects the OMG Workflow
Management Facility model. A process contains activities, which perform the actions
of the process. The activities may invoke other processes, and they may employ
resources. The Workflow Management Facility resource interface represents the
participation of that resource, i.e., arole in the ECA context. The resource/role
captures the state and supports the interaction between the activity and a potentially
wide variety of resources.

The ECA model goes sightly beyond the Workflow Management Facility
specification. First, it extends the resource concept by defining performers and
artifacts (active and passive participants). Second, it adds the ability to attach pre and
post conditions to activities. These are concepts that are consistent with workflow
management concepts and provide basic flow control mechanisms. These were not
addressed in the Workflow Management Facility specification because it focused
primarily on interoperability between workflow management systems.

The ECA profile does not attempt to define a representation of the action semantics of
processes, nor does it define the relationship of processes to organizations or
applications. These are left to other RFPs to be addressed by specialistsin these areas.

UML Profilefor EDOC: Key Design Features 35

3.1.3 Specification of Event Driven Systems

Event driven computing is becoming the preferred distributed computing paradigm in
many enterprises and in many collaborations between enterprises. Event driven
computing combines two kinds of loosely coupled architectures.

The first oneis loosely coupled, distributed components that communicate with each
other through asynchronous messaging.

The other one is loosely coupled business process execution. Here enterprises
collaborate under an overall long term contract, but do not execute their day to day
interaction in traditional workflow, or request/response style interaction.

In event driven computing the most important aspect of a process is the events that
happen during its execution, and the most important part of the component-to-
component communication is the notification of such events from the party that made
them happen to all the parties that need to react to them.

In ECA we support both the definition of loosely coupled business processes, as well
as the loosely coupled communication between distributed components.

Neither the world, nor the computing world, however, apply only one paradigm to their
problem space. Businesses use a combination of loosely coupled and tightly coupled
processes, and computing solutions deploy a combination of loosely coupled and
tightly coupled styles of communication and interaction between distributed
components.

An ECA process can be defined as event driven for some of its steps and workflow or
request/response driven for others. ECA distributed components can be configured to
communicate with each other in a mixture of event-driven publish-and-subscribe,
asynchronous peer-to-peer, and client-server remote invocation styles.

The essential elements of the purely event driven approach are:

® Business Process objects are configured with a set of Business Rule parameters that
determine what Business Events trigger actions, and what the action should be.

® Business Process objects operate on Business Entity objects which represent people,
products, and other business resources and artifacts.

® When actions are performed on Business Entity objects, Business Events happen.

® All Business Entity objects are capable of notifying the world of events that happen
to them.

® All Business Process objects are capable of subscribing to such events and
interpreting them throughout their set of business rules.

3.1.4 Integration of Process and Information Models
IT systems are specified with entity and process models, where entity models describe
the things (entities, attributes, relationships, invariants) in the IT system and process

models specify the processes, sub-processes, activities, resources, roles, and rules of 1T
system behavior.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

Information modeling tools, such as those based on the UML metamodel, are used to
specify entity models. Process definition tools, such as those provided by BPR and
workflow vendors, are used to specify process models. As these entity model and
process model tools are based on different metamodels, the integration of their models
into the IT system specification is a problem.

IT system designers and developers typicaly work round the problem by looking at
one model, then the other, and then do their own composition for that moment (perhaps
influenced by memories of other compositions). One result of thisisthat the normative
entity and process models when composed, by each individual at multiple momentsin
time, become non-normative individual interpretations of the IT system specification.
Also of concern is the impact of model changes to the composition — evolution of
process and entity models is reasonably certain, especially during IT system
development projects.

This specification specifies how the UML metamodel may be extended to become a
common underlying metamodel for expressing IT system entities, processes, and their
relationships, Although entity and process modeling styles are very different, their
underlying metamodels are not and thus the process and information viewpoints can be
reconciled.

With this metamodel UML, workflow, and BPR vendors can provide new tools that
combine entity-orientated and process-orientated modeling techniques to produce
integrated IT system models.

3.1.5 Rigorous relationship specification

Rigorous relationship specification is a major aspect of business modeling and
software modeling. The semantics of a class diagram is shown in its structure — the
collections of “lines’ — that has to be defined by means of appropriate invariants and
represented graphically. Moreover, relationships are fundamental to behavior because
they are the paths over which actions occur, therefore clear, concise and rigorous
specification of relationship semantics is of utmost importance.

Multiplicities are not the most important or most interesting properties of
relationships®. Property determinations are much more important for the semantics of a
relationship, and distinguish among different kinds of relationships. The fragments of
relationship invariants about property determination represent an essential fragment of
those elusive “business rules’ that are the backbone of a good specification and that
should never be only “in the code.”

1. Inmost cases, the multiplicitiesfollow from the generic rel ationship invariant and therefore
do not need to be explicitly shown in the diagram: the Stereotype takes care of that. Such
diagramsare less cluttered.

UML Profilefor EDOC: Key Design Features 3-7

3-8

At the same time, it is very desirable to discover and specify — rather than reinvent —
those kinds of relationships that are encountered in al specifications, so that reuse at
the specification level becomes possible. Such generic relationships extend the set of
reusable constructs that already exist in UML.

It is also desirable that the approach taken for the specification of relationships should
be extensible so that, if it appears that in a particular business (or a set of applications)
additional generic relationships are needed and useful, then they may be precisely and
explicitly defined and added in a manner similar to the existing definitions.

Generic relationships can provide concepts and constructs that permit UML to be used
for specification of businesses and systems in a more rigorous manner than (and
without restrictions currently imposed by) the base UML 1.3. Generic relationships can
provide for explicit specification of relationship semantics in class diagrams, aline
between boxes — even a named line! — should not be considered an adequate
relationship specificaIion.2

3.1.6 Mappings to Technology - Platform Independence

Viewpoint abstractions in the context of model-based development provide
mechanisms for specifying platform independent models of business applications.

Such platform independence is an important element in systems that can adapt to
change and, hence, is a fundamental element of the EDOC vision (). The rate of
change of today’s enterprises and their requirements generates demands for flexible
and dynamic systems that are capable of coping with the ever changing business
requirements and with changes in software and hardware technologies.

2. A combination of two interrelated lines required by the currently existing UML metamodel
isan exception; specifically, an association linethat simply mandates alink isacceptable,
but only if it is paired with a<<Reference>> dependency line.

UML Profilefor Enterprise Distributed Object Computing February 2002

CORBA
(CORBA
Services)

Enterprise

JavaBeans Cor:;‘;‘;"ition CORBA DCOM ActiveX
(Jsa;\rl\allleRtr;/l) | M odel Components etc

Platform specific

3.2 ECAElements

February 2002

Figure3-1 EDOC framework vision

The Enterprise Collaboration Architecture (ECA) comprises a set of five UML profiles.
Each profile consists of a set of UML extensions that represent concepts needed to
model specific aspects of EDOC systems and address specific aspects of the key design
features. The concepts are described in terms of UML profiles. The semantics of each
profile (except for the Relationships Profile) are also expressed in a UML-independent
MOF metamodel. These profiles are defined in the remainder of this chapter:

the Component Collaboration Architecture (CCA) which details how the UML
concepts of classes, collaborations and activity graphs can be used to model, at
varying and mixed levels of granularity, the structure and behavior of the
components that comprise a system — Section I1;

the Entities profile, which describes a set of UML extensions that may be used to
model entity objects that are representations of concepts in the application problem
domain and define them as composable components — Section I11;

the Events profile, which describes a set of UML extensions that may be used on
their own, or in combination with the other EDOC elements, to model event driven
systems — Section 1V

the Business Process profile, which specializes the CCA, and describes a set of
UML extensions that may be used on their own, or in combination with the other
EDOC elements, to model system behavior in the context of the business it supports
— Section V;

the Relationships profile, which describes the extensions to the UML core facilities
to meet the need for rigorous relationship specification in general and in business
modeling and software modeling in particular — Section V1.

UML Profilefor EDOC: ECA Elements 3-9

The ECA profiles are technology independent and are used together to define platform
independent models of EDOC systems in conformance with the MDA. In particular,
they enable the modeling of the concepts that until now have had to be specified
programmatically in terms of the use of services such as events/ notification, support
for relationships and persistence.

Section Il - The Component Collaboration Architecture

3.3 Rationale

3-10

The Component Collaboration Architecture (CCA) details how the UML concepts of
classes, collaborations and activity graphs can be used to model, at varying and mixed
levels of granularity, the structure and behavior of the components that comprise a
system.

3.3.1 Problems to be solved

3311

The information system has become the backbone of the modern enterprise. Within
the enterprise, business processes are instrumented with applications, workflow
systems, web portals and productivity tools that are necessary for the business to
function.

While the enterprise has become more dependent on the information system the rate of
change in business has increased, making it imperative that the information system
keeps pace with and facilitates the changing needs of the enterprise.

Enterprise information systems are, by their very nature, large and complex. Many of
these systems have evolved over years in such a way that they are not well understood,
do not integrate and are fragile. Theresult is that the business may become dependent
on an information infrastructure that cannot evolve at the pace required to support
business goals.

The way in which to design, build, integrate and maintain information systems that are
flexible, reusable, resilient and scalable is now becoming well understood but not well
supported. The CCA is one of a number of the elements required to address these
needs by supporting a scalable and resilient architecture.

The following subsections detail some of the specific problems addressed by CCA.

Recursive decomposition and assembly

Information systems are, by their very nature, complex. The only viable way to
manage and isolate this complexity is to decompose these systems into simpler parts
that work together in well-defined ways and may evolve independently over time.
These parts can than be separately managed and understood. We must also avoid re-
inventing parts that have already been produced, by reusing knowledge and
functionality whenever practical.

UML Profilefor Enterprise Distributed Object Computing February 2002

The requirements to decompose and reuse are two aspects of the same problem. A
complex system may be decomposed “top down”, revealing the underlying parts.
However, systems will also be assembled from existing or bought-in parts — building
up from parts to larger systems.

Virtually every project involves both top-down decomposition in specification and
“bottom up” assembly of existing parts. Bringing together top-down specification and
bottom-up assembly is the challenge of information system engineering.

This pattern of combining decomposition in specification and assembly of partsin
implementation is repeated at many levels. The composition of parts at one level isthe
part at the next level up. In today’s web-integrated world this pattern repeats up to the
global information system that is the Internet and extends down into the technology
components that make up a system infrastructure — such as operating systems,
communications, DBMS systems and desktop tools.

Having a rigorous and consistent way to understand and deal with this hierarchy of
parts and compositions, how they work and interact at each level and how one level
relates to the next, is absolutely necessary for achieve the business goals of a flexible
and scalable information systems.

3.3.1.2 Traceability

The development process not only extends “up and down” as described above, but also
evolves over time and at different levels of abstraction. The artifacts of the
development process at the beginning of a project may be general and “fuzzy”
requirements that, as the project progresses, become precisely defined either in terms
of formal requirements or the parts of the resulting system. Requirements at various
stages of the project result in designs, implementations and running systems (at least
when everything goes well!). Since parts evolve over time at multiple levels and at
differing rates it can become almost impossible to keep track of what happened and
why.

Old approaches to this problem required locking-down each level of the processin a
“waterfall”. Such approacheswould work in environments where everything is known,
well understood and stable. Unfortunately such environments seldom, if ever, occur in
reality. In most cases the system becomes understood as it evolves, the technology
changes, and new business requirements are introduced for good and valid reasons.
Change is reality.

Dealing with this dynamic environment while maintaining control requires that the
parts of the system and the artifacts of the development process be traceable both in
terms of cause-effect and of changes over time. Moreover, this traceability must take
into account the fact that changes happen at different rates with different parts of the
system, further complicating the relationships among them. The tools and techniques
of the development process must maintain and support this traceability.

February 2002 UML Profilefor EDOC: Rationale 311

3-12

3.3.1.3 Automating the development process

3314

In the early days of any complex and specialized new technology, there are “gurus’
able to cope with it. However, as a technology progresses the ways to use it for
common needs becomes better understood and better supported. Eventually those
things that required the gurus can be done by “normal people” or at least as part of
repeatable “factory” processes. As the technology progresses, the gurus are needed to
solve new and harder problems — but not those already solved.

Software technology is undergoing this evolution. The initial advances in automated

software production came from compilers and languages, leading to DBMS systems,

spreadsheets, word processors, workflow systems and a host of other tools. The end-
user today is able to accomplish some things that would have challenged the gurus of
30 years ago.

This evolution in automation has not gone far enough. It is still common to re-invent
infrastructures, techniques and capabilities every time a new application is produced.

Thisis not only expensive, it makes the resulting solutions very specialized, and hard
to integrate and evolve.

Automation depends on the ability to abstract away from common features, services,
patterns and technology bindings so that application developers can focus on
application problems. In this way the ability to automate is coupled with the ability to
define abstract viewpoints of a system — some of which may be constant across the
entire system.

The challenge today is to take the advances in high-level modeling, design and
specification and use them to produce factory-like automation of enterprise systems.
We can use techniques that have been successful in the past, both in software and other
disciplines to automate the steps of going from design to deployment of enterprise
scale systems. Automating the development process at this level will embrace two
central concepts; reusable parts, and model-based development. It will allow tools to
apply pre-established implementation patterns to known modeling patterns. CCA
defines one such modeling pattern.

Loose coupling

Systems that are constructed from parts and must survive over time, and survive reuse
in multiple environments, present some special requirements. The way in which the
parts interact must be precisely understood so that they can work together, yet they
must also be loosely coupled so that each may evolve independently. These seemingly
contradictory goals depend on being able to describe what is important about how parts
interact while specifically not coupling that description to things that will change or
how the parts carry out their responsibility.

Software parts interact within the context of some agreement or contract — there must
be some common basis for communication. The richer the basis of communication the
richer the potential for interaction and collaboration. The technology of interaction is
generally taken care of by communications and middleware while the semantics of
interaction are better described by UML and the CCA.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.3.1.5

3.3.1.6

3.3.17

So while the contract for interaction is required, factors such as implementation,
location and technology should be separately specified. This allows the contract of
interaction to survive the inevitable changes in requirements, technol ogies and systems.

L oose coupling is necessarily achieved by the capability of the systemsto provide “late
binding” of interactions to implementation.

Technol ogy Independence

A factor in loose coupling is technology independence i.e. the ability to separate the
high-level design of a part or a composition of parts from the technology choices that
realizeit. Since technology is so transient and variations so prevalent it is common for
the same “logical” part to use different technologies over time and interact with
different technologies at the same time. Thus a key ingredient is the separation high-
level design from the technology that implementsit. This separation is also key to the
goa of automated development.

Enabling a business component Mar ketplace

The demand to rapidly deploy and evolve large scale applications on the internet has
made brute force methods of producing applications a threat to the enterprise. Only by
being able to provision solutions quickly and integrate those solutions with existing
legacy applications can the enterprise hope to achieve new business initiatives in the
timeframe required to compete.

Component technologies have already been a success in desktop systems and user
interfaces. But this does not solve the enterprise problem. Recently the methods and
technologies for enterprise scale components have started to become available. These
include the “alphabet soup” of middleware such as XML, CORBA, Soap, Java, ebXml,
EJB & .net., What has not emerged is the way to bring these technol ogies together into
a coherent enterprise solution and component marketplace.

Our vision is one of asimple drag and drop environment for the assembly of

enter prise components that is integrated with and leverages a component
marketplace. This will make buying and using a software component as natural as
buying a battery for a flashlight.

Smplicity

A solution that encompasses all the other requirements but is too complex will not be
used. Thusour final requirement is one of simplicity. A CCA model must make sense
without too much theory or special knowledge, and must be tractable for those who
understand the domain, rather than the technology. It must support the construction of
simple tools and techniques that assist the developer by providing a simple yet
powerful paradigm. Simplicity needs to be defined in terms of the problem — how
simply can the paradigm soOlve my business problems. Simplistic infrastructure and
tools that make it hard to solve real problems are not viable.

UML Profilefor EDOC: Rationale 3-13

3-14

3.3.2 Approach

3321

3.3.2.2

3.3.2.3

3.3.24

Our approach to these requirements is to utilize the Unified Modeling Language
(UML) as abasisfor an architecture of recursive decomposition and assembly of parts.
CCA profiles three UML diagrams and adds one optional diagram.

Class Structure (Structure)
The class structure is used to show the structure of ProcessComponents and the
information which flows between them.

Satecharts (Choreography)

Statecharts are used to specify the dynamic (or temporal) contract of protocols and
components, when messages should be sent or received on various ports. The
Choreography specifies the intended external behavior of a component, either by
specifying transitions directly on its ports or indirectly via its protocols.

Collaborations (Composition)

Collaborations are used to show the composition of a ProcessComponent (or
community) by using a set of other ProcessComponents, configuring them and
connecting them together.

CCA Notation (Structure & Composition)

CCA Also defines a notation which integrates the ProcessComponent structure and
composition.

3.3.3 Concepts

At the outset it should be made clear that we are dealing with a logical concept of
component - “part”, something that can be incorporated in a logical composition. It is
referred to in the CCA as a ProcessComponent. In some cases ProcessComponents will
correspond and have a mapping to physical components and/or deployment unitsin a
particular technology.

Since CCA, by its very nature, may be applied at many levels, it is intended that CCA
be further specialized, using the same mechanisms, for specific purposes such as
Business-2-Business, e-commerce, enterprise application integration (EAI), distributed
objects, real-time etc.

It is specifically intended that different kinds and granularities of ProcessComponents
at different levels will be joined by the recursive nature of the CCA. Thus
ProcessComponents describing a worldwide B2B business process can decompose into
application level ProcessComponents integrated across the enterprise which can
decompose into program level ProcessComponents within a single system. However,

UML Profilefor Enterprise Distributed Object Computing February 2002

this capability for recursive decomposition is not always required. Any
ProcessComponent’s part may be implemented directly in the technology of choice
without requiring decomposition into other ProcessComponents.

The CCA describes how ProcessComponents at a given level of specification
collaborate and how they are decomposed at the next lower level of specification.
Since the specification requirements at these various levels are not exactly the same,
the CCA is further specialized with profiles for each level. For example,
ProcessComponents exposed on the Internet will require features of security and
distribution, while more local ProcessComponents will only require a way to
communicate.

The recursive decomposition of ProcessComponents utilizes two constructs in parallel:
composition (using UML Collaboration) to show what ProcessComponents must be
assembled and how they are put together to achieve the goal, and choreography (the
UML Statechart) to show the coordination of activities to achieve agoa. The CCA
integrates these concepts of “what” and “when” at each level.

Concepts from the Object Oriented Role Analysis Method (OORAM) and Real-time
Object Oriented Modeling (ROOM) have been adapted and incorporated into CCA.

3.3.3.1 Whatisa Component Anyway?

There are many kinds of components — software and otherwise. A component is
simply something capable of composing into a composition — or part of an assembly.
There are very different kinds of compositions and very different kinds of components.
For every kind of component there must be a corresponding kind of composition for it
to assemble into. Therefore any kind of component should be qualified as to the type
of composition. CCA does not claim to be “the” component model, it is“a” component
model with a corresponding compaosition model.

CCA ProcessComponents are processing components, ones that collaborate with other
CCA ProcessComponents within a CCA composition. CCA ProcessComponents can
be used to build other CCA ProcessComponents or to implement roles in a process —
such as a vendor in a buy-sell process. The CCA concepts of component and
composition are interdependent.

There are other forms of software and design components, including UML
components, EJBs, COM components, CORBA components, etc. CCA
ProcessComponents and composition are orthogonal to these concepts. A technology
component, such as an EJB may be the implementation platform for a CCA
ProcessComponent.

Some forms of components and compositions allow components to be built from other
components, this is a recursive component architecture. CCA is such arecursive
component architecture.

February 2002 UML Profilefor EDOC: Rationale 3-15

3-16

3.3.3.2

3.3.3.3

3.3.34

ProcessComponent Libraries

While the CCA describes the mechanisms of composition it does not provide a
complete ProcessComponent library. ProcessComponent libraries may be defined and
extended for various domains. A ProcessComponent library is essential for CCA to
become useful without having to re-invent basic concepts.

Execution & Technology profiles

The CCA does not, in itself, specify sufficient detail to provide an executable system.
However, it is a specific goal of CCA that when a CCA specification is combined with
a specific infrastructure, executable primitive ProcessComponents and a technology
profile, it will be executable.

A technology profile describes how the CCA or a specialization of CCA can be
realized by a given technology set. For example, a technology profile for Java may
enable Java components to be composed and execute using dynamic execution and/or
code generation. A technology profile for CORBA may describe how CORBA
components can be composed to create new CORBA components and systems. In
RM-ODP terms, the technology profile represents the engineering and technology
specifications.

Some technology profiles may require additional information in the specification to
execute as desired; this is generally done using tagged values in the specification and
options in the mapping. The way in which technology specific choices are combined
with a CCA specification is outside of the scope of the CCA, but within the scope of
the technology profile. For example, a Java mapping may provide away to specify the
signatures of methods required for Java to implement a component.

The combination of the CCA with a technology profile provides for the automated
development of executable systems from high-level specifications.

For details of possible (non-normative) mappings from the CCA Profile to various
engineering and technology options, see Section Il of this specification.

Specification Vs. Methodology

The CCA provides a way to specify a system in terms of a hierarchical structure of
Communities of ProcessComponents and Entities that, when combined with
specifications prepared using technology profiles, is sufficiently complete to execute.
Thus the CCA specification is the end-result of the analysis and design process. The
CCA does not specify the method by which this specification is achieved. Different
situations may reguire different methods. For example; a project involving the
integration of existing legacy systems will require a different method than one
involving the creation of anew real-time system —but both may share certain kinds of
specification.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.3.35

Notation

The CCA defines some new notations to simplify the presentation of designs for the
user. These new notations are optional in that standard UML notation may be used
when such is preferred or CCA specific tooling is not available. The CCA notation can
be used to achieve greater simplicity and economy of expression.

3.3.4 Conceptual Framework

]

—‘ Model
— Management
Component Specification R >(from CcaProfile)

(from CcaProfile)

/ N Document Model

*‘ (from CcaProfile)

Composition Choreography
(from CcaProfile)l— — — >{(from CcaProfile)

3341

3.3.4.2

Figure 3-2 Structure and dependencies of the CCA Metamodel

ProcessComponent Specification

In keeping with the concept of encapsulation, the external “contract” of a CCA
component is separate from how that component is realized. The contract specifies the
“outside” of the component. Inside of acomponent isits realization — how it satisfies
its contract. The outside of the component is the component specification. A
component with only a specification is abstract, it is just the “outside” with no
“inside.”

Protocols and Choreography

Part of a component’s specification is the set of protocols it implements. A protocol
specifies what messages the component sends and receives when it collaborates with
another component and the choreography of those messages — when they can be sent
and received. Each protocol the component supports is provided via a “port”, the
connection point between components.

Protocols, ports and choreography comprise the contract on the outside of the
component. Protocols are aso used for large-grain interactions, such as for B2B
components.

UML Profilefor EDOC: Rationale 3-17

3-18

3.34.3

3344

3.34.5

The protocol specifies the conversation between two components (via their ports).
Each component that is using that protocol must use it from the perspective of the
“initiating role” or the “responding role”. Each of these components will use every
port in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow
port “B” that responds to a message. Component “Y” which responds to protocol “X”
will also receive “A” and initiate “B”. But, Component “Z” which initiates protocol
“X” will dso initiate message “A” and respond to message “B” — thus initiating a
protocol will “invert” the directions of all ports in the protocol.

Primitive and Composed Components

Components may be abstract (having only an outside) or concrete (having an inside
and outside). Frequently a concrete component inherits its external contract from an
abstract component — implementing that component.

There may be any number of implementations for a ProcessComponent and various
ways to “bind” the correct implementation when a component is used.

The two basic kinds of concrete components are:

® primitive components — those that are built with programming languages or by
wrapping legacy systems.

® Composed Components— Componentsthat are built from other components; these
use other components to implement the new components functionality. Composed
components are defined using a composition.

Composition

Compositions define how components are used. Inside of a composition components
are used, configured and connected. This connected set of component usages
implements the behavior of the composition in terms of these other components —
which may be primitive, composed or abstract components.

Compositions are used to build composed components out of other components and to
describe community processes — how a set of large grain components works together
for some purpose. Components used in a community process represent the roles of
that process.

Central to compositions are the connections between components, values for
configuration properties and the ability to bind concrete components to a component

usage.

Document & Information Model

The information that flows between components is described in a Document M odel,
the structure of information exchanged. The document model also forms the basis for
information entities and a generic information model. The information model is acted
on by CCA ProcessComponents (see the Entities profile, Section |11, below).

UML Profilefor Enterprise Distributed Object Computing February 2002

3.3.4.6 Mode Management

To help organize the elements of a CCA model a “package” structure is used exactly
asitisused in UML. Packages provide a hierarchical name space in which to define
components and component artifacts. Model elements that are specific to a process,
protocol or component may also be nested within these, since they also act as
packages.

February 2002 UML Profilefor EDOC: Rationale 3-19

3.4 CCA Metamodel

3-20

0.1
Choreography
+supertype n
n +connections ; ; ——
\ _ +incoming +target Node UsageContext
n| AbstractTransition |n 1 |- name : String
+subtypes +outgoing +source +extent 1
n 1
N Connection Transition PseudoState +portsUs|
<<Enumeration>> = = . PortUsage
PseudostateKind - preCondition : Status - kind : PseuwdostateKind
choice n 4
fork
initial
join P
S - . PortConnector PortActivity
failure
IsChorepgraph
1 @ +owner gy
1 +owner
Composition | ™y
+owner
Hinitiator | protocol +represghts
InitiatingRole
- name : String|0..1 tpos | 1 IsComposition
<<bot;r;1nary>> ProcessComponent
— - granularity : GranularityKind .
-name: String - isPersistent : Boolean = false| |- CoMmunityProcess
+responder - isSynchronous : Boolean - primitiveKind : String = "
- -isTransactional : Bodlean| | _iiiveSpec : String
RespondingRole - direction : DirectionType
-name : String Interface | |- postCondition : Status 1
‘ +component 1 +bindsTo n
suses L +bindings
‘ ZF ContextualBinding
| .
\ +properties | n Uses
uliPort || <<boundary>> | | <boundary>>| | <<boundary>>
OperationPort | | ProtocolPort FlowPort 0.n +typeProperty propertyDefinition ruses
+constrains 0.1l name : String n +ills n
n "7 |- initial : Expression 1
- -isLocked : Boolean ComponentUsage
<<Enumeration>> name : String
Status n 1 :
+owner
success <<Enumeration>> i
timeoutFailure GranularityKind 1
technicalFailure - program +ype| 0.1 1| +type n <<Enumeration>>
blslngssFalIure R DirectionType
anyFailure - shared DataElement Propertyvalue |n iniiates
anyStatus (from DocumentModel) - \alue : Expression responds

Figure 3-3 CCA Mgjor Elements

Figure 3-3 is a combined model of the major elements of the CCA component
specification defined below.

UML Profilefor Enterprise Distributed Object Computing February 2002

3.4.1 Structural Specification
The structural specification represents the physical structure of the component contract,

February 2002

defining the component and its ports.

Choreography +supertype
0..1
n ——
Generalization
+subtypes
IsChorepography
PortOwner
Composition || UsageContext
+owner 1%
Parts IsCom position
Protocol
+initiator 1 n +ports
e p-1 o <<boundary>>
InitiatingRole |- I ort ProcessComponent
- name : String 1 - name : String - granularity : GranularityKind
- isSynchronous : Bodean - isPersistent : Boolean = false
+uses - isTransactional : Boolean - primitiveKind : String = ™"
- direction : DirectionType - primitiveSpec : String

- postCondition : Status

+componenty 1

+responder / 0.1
: ProtocolType
RespondingRole
- name : String /‘/
/ Interface Properties
/
/
//
// +properties | n
/
! DynType PropertyDefinition
MultiPort <boundary>> | | <<boundary>> <<boundary>>| . +typeProperty name : String
OperationPort ProtocolPort FlowPort - - initial : Expression
*eonstrains 0..1 |- isLocked : Boolean
n
FlowType
<<Enumeration>> owlyp PropertyType
GranularityKind <<Enumeration>>
irecti 0.1
~program .IIlJ|f'ect|onType +type 1 |, +type
- owned - initiates DataE lement
- ShiEtEe) - fesponds (from Document Model)

Figure 3-4 Structural Specification Metamodel

A ProcessComponent represents the contract for a component that performs actions —
it “does something”. A ProcessComponent may define a set of Ports for interaction

with other ProcessComponents. The ProcessComponent defines the external contract
of the component in terms of ports and a Choreography of port activities (sending or

3-21

UML Profile for EDOC: CCA Metamodel

3-22

34.11

receiving messages or initiating sub-protocols). At a high level of abstraction a
ProcessComponent can represent a business partner, other ProcessComponents
represent business activities or finer-grain capabilities.

The contract of the ProcessComponent isrealized via ports. A port defines a point of
interaction between ProcessComponents. The simpler form of port is the FlowPort,
which may produce or consume a single data type. More complex interactions
between components use a ProtocolPort, which refers to a Protocol, a complete
“conversation” between components. Protocols may also use other protocols as sub-
protocols. Protocols, like ProcessComponents, are defined in terms of the set of ports
they realize and the choreography of interactions across those ports. A protocol may
optionally define names for the initiating and responding roles.

ProcessComponents may have Property Definitions. A property definition defines a
configuration parameter of the component, which can be set, when the component is
used.

The behavior of a ProcessComponent may be further specified by its composition, the
composition shows how other components are used to define and implement the
composite component. The specification of the ProcessComponent and protocol may
include Choreography to sequence the actions of multiple ports and their associated
actions. The actions of each port may be Choreographed. Composition and
Choreography are defined in their own sections.

A ProcessComponent may have a supertype (derived from Choreography). One
common use of supertype isto place abstract ProcessComponents within compositions
and then produce separate realizations of those components as subtype composite or
primitive components, which can then be substituted for the abstract components when
the composition is used, or even at runtime.

An Interface represents a standard object interface. 1t may contain OperationPorts,
representing call-return semantics, and FlowPorts — representing one-way operations.

A MultiPort is agrouping of ports whose actions are tied together. Information must
be available on all sub-ports of the MultiPort for any action to occur within an
attached component.

An OperationPort defines a port which realizes a typical request/response operation
and allows ProcessComponents to represent both document oriented (FlowPort) and
method oriented (OperationPort) subsystems.

ProcessComponent

Semantics

A ProcessComponent represents an active processing unit — it does something. A
ProcessComponent may realize a set of Ports for interaction with other
ProcessComponents and it may be configured with properties.

Each ProcessComponent defines a set of ports for interaction with other
ProcessComponents and has a set of properties that are used to configure the
ProcessComponent when it is used.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

The order in which actions of the Process Component’s ports do something may be
specified using Choreography. The choreography of a ProcessComponent specifies the
external temporal contact of the ProcessComponent (when it will do what) based on
the actions of its ports and the ports in protocols of its ports.

UML baseelement(s) in the Profileand Stereotype

Classifier Stereotyped as <<ProcessComponent>>

Fully Scoped name
ECA::CCA::ProcessComponent

Owned by
Package

Extends

Composition (indicating that the ProcessComponent may be composed of other
ProcessComponents and that its ports may be choreographed).

Package (Indicating that a ProcessComponent may own the specification of other
elements).

UsageContext (Indicating that the ProcessComponent may be the context for
PortUsages representing the activities of its ports).

Properties

Granularity

A GranularityKind which defines the scope in which the component operates. The
values may be:

® Program — the component is local to a program instance (default)

® Owned — the component is visible outside of the scope of a particular program but
dedicated to a particular task or session which controlsits life cycle.

® Shared — the component is generadly visible to external entities via some kind of
distributed infrastructure.

Specializations of CCA may define additional granularity values.

UML Representation
Tagged value
isPersistent

Indicates that the component stores session specific state across interactions. The
mechanisms for management of sessions are defined outside of the scope of CCA.

UML Profile for EDOC: CCA Metamodel 3-23

3-24

UML Representation
Tagged value

primitiveKind

Components implementation includes additional implementation semantics defined
elsewhere, perhaps in an action language or programming language. 1f the component
has an implementation specification primitiveKind specifies the implementation
specific type, normally the name of a programming language. If primitive kind is
blank, the composition is the full specification of the components implantation — the
component is not primitive.

UML Representation
Tagged value

primitiveSpec

If primitiveKind has a value, primitiveSpec identifies the location of the
implementation. The syntax of primitiveKind is implementation specific.

UML Representation
Tagged value

Related elements

Ports (via“ PortOwner”)

“Ports’ isthe set of Ports on the ProcessComponent. Each port provides a connection
point for interaction with other components or services and realizes a specific protocol.
The protocol may be simple and use a “FlowPort” or the protocol may be complex and
use a “ProtocolPort” or an “OperationPort”. |f allowed by its protocol, a port may
send and receive information.

UML Representation
Required Aggregation Association from Port (Ports)

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent may inherit specification elements (ports, properties & states
(from Choreography) from a supertype. That supertype must also be a
ProcessComponent. A subtype component is bound by the contract of its supertypes
but it may add elements, override property values and restrict referenced types.

A component may be substituted by a subtype of that component.

UML Representation
Generalization

UML Profilefor Enterprise Distributed Object Computing February 2002

Properties (Any number)

To make a component capable of being reused in avariety of conditions it is necessary
to be able to define and set properties of that component. Properties represents the list
of properties defined for this component.

UML Representation
Classifier.feature referencing an attribute.

Constraints

A process component may only inherit from another process component.

3.4.1.2 Port

Semantics

A port realizes a simple or complex conversation for a ProcessComponent or protocol.
All interactions with a ProcessComponent are done via one of its ports.

When a component is instantiated, each of its ports is instantiated as well, providing a
well-defined connection point for other components.

Each port is connected with collaborative components that speak the same protocol.
Multi-party conversions are defined by components using multiple ports, one for each
kind of party.

Business Example: Flight reservation Port

UML base element(s) in the Profileand Stereotype
Class (abstract)

Fully Scoped nhame
ECA::CCA::Port

Owned by

ProcessComponent or Protocol via PortOwner

Extends

None

February 2002 UML Profilefor EDOC: CCA Metamodel 3-25

3-26

Properties

isTransactional

Indicates that interactions with the component are transactional & atomic (in most
implementations thiswill require that a transaction be started on receipt of a message).
Non-transactional components either maintain no state or must execute within a
transactional component. The mechanisms for management of transactions are defined
outside of the scope of CCA.

UML Representation
Tagged Value

isSynchronous

A port may interact synchronously or asynchronously. A port that is marked as
synchronous is required to interact using synchronous messages and return values.

UML Representation
Tagged Value

name

The name of the port. The name will, by default, be the same as the name of the
protocol role or document type it realizes.

UML Representation
Model Element::name

Direction

Indicates that the port will either initiate or respond to the related type. An initiating
port will send the first message. Note that by using Protocol Ports a port may be the
initiator of some protocols and the responder to others. The values of DirectionKind
may be:

Initiates — this port will initiate the conversation by sending the first message.
Responds — this port will respond to the initial message and (potentially) continue the

conversation.

UML Representation
Tagged Value and stereotype of “Owner” relation.

PostCondition
The status of the conversation indicated by the use of this port. This status may be

queried in the postCondition of a transition.

UML Representation
Tagged Value

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.13

Related elements

“Owner” ProcessComponent or Protocol (Exactly Onevia PortOwner)

A Port specifies the realization of protocol by a ProcessComponent. This relation
specifies the ProcessComponent that realizes the protocol.

UML Representation

Required aggregate association (Ports). This association will have a stereotype of
“initiates’ or “responds” to indicate “direction.”

Constraints

None

FlowPort

Semantics

A Flow Port is a port which defines a data flow in or out of the port on behalf of the
owning component or protocol.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <<FlowPort>>

Fully Scoped name
ECA::CCA::FlowPort

Owned by
PortOwner

Extends
Port

Properties

None

Related elements

type
The type of data element that may flow into our out of the port.

UML Representation
Required relation

UML Profile for EDOC: CCA Metamodel 3-27

3-28

3414

TypeProperty

The type of information sent or received by this port as determined by a configurable
property. The expression must return avalid type name. Thisis used to build generic
components that may have the type of their ports configured. If type and typeProperty
are both set then the property expression must return the name of a subtype of type.

UML Representation
Tagged vaue containing the name of the property attribute.

Constraints

None

Protocol Port

Semantics

A protocol port is a port which defines the use of a protocol A protocol port is used
for potentially complex two-way interactions between components, such asis common
in B2B protocols. Since a protocol has two “roles” (the initiator and responder), the
direction is used to determine which role the protocol port is taking on.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <<Protocol Port>>

Fully Scoped name
ECA::CCA::Protocol Port

Owned by
PortOwner

Extends
Port

Properties

None

Related elements

uses
The protocol to use, which becomes the specification of this port’s behavior.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.15

UML Representation
Generalization — the Protocol Port inherits the Protocol.

Constraints

None

OperationPort

Semantics

An operation port represents the typical call/return pattern of an operation. The
OperationPort is a PortOwner which is constrained to contain only flow ports, exactly
one of which must have its direction set to “initiates’. The other “responds’ ports will
be the return values of the operation.

UML base element(s) in the Profileand Stereotype
Operation (no stereotype)

Notel: The type of the “initiates’ flow port will be the signature of the operation.
Each attribute of the type will be one parameter of the operation.

Note2: Owned flow ports of postCondition==Success and direction=="responds” will
be areturn value for the operation. All other flow ports where direction=="responds’
will correspond to an exception.

Fully Scoped name
ECA::CCA::OperationPort

Owned by

PortOwner (Protocol or ProcessComponent)

Extends
Port and PortOwner

Properties

None

Related elements

Ports (Via PortOwner)
The flow ports representing the call and returns.

UML Representation
Initiates ports — signature of the operation

UML Profile for EDOC: CCA Metamodel 3-29

3-30

34.16

Responds ports — return values of the operation.

Constraints

As a PortOwner, the OperationPort:

® May only contain FlowPorts.

® Must contain exactly one flow port with direction set to "responds.”

® Must contain exactly one flow port with direction set to “initiates’ (the cal).

MultiPort

Semantics

A MultiPort combines a set of ports which are behaviorally related. Each port owned
by the MultiPort will “buffer” information sent to that port until all the ports within the
MultiPort have received data, at this time all the ports will send their data.

UML base element(s) in the Profileand Stereotype
Class stereotyped as <<MultiPort>>

Fully Scoped name
ECA::CCA::MultiPort

Owned by
PortOwner

Extends
Port & PortOwner

Properties

None

Related elements

Ports (Via PortOwner)
The flow ports owned by the MultiPort.

UML Representation
Required aggregation association

Constraints

Owned ports will not forward data until al sub-ports have received data.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.4.1.7 Protocol

Semantics

A protocol defines atype of conversation between two parties, the initiator and
responder. One protocol role is the initiator of the conversation and the other the
responder. However, after the conversation has been initiated, individual messages and
sub-protocols may by initiated by either party. The ports of a protocol are specified
with respect to the responder.

Within the protocol are sub-ports. Each port contained by a protocol defines a sub-
action of that protocol until, ultimately, everything is defined in terms of FlowPorts.

A Protocol is also a choreography, indicating that activities of its ports (and, potentially
their sub-ports) may be sequenced using an activity graph.

A protocol must be used by a two Protocol Ports to become active.

The protocol specifies the conversation between two ProcessComponents (via their
ports). Each component that is using that protocol must use it from the perspective of
the “initiating role” or the “responding role.” Each of these components will use every
port in the protocol, but in complementary directions.

For example, a protocol “X” has a flow port “A” that initiates a message and a flow
port “B” that responds to a message. Component “Y” which responds to protocol “X”
will also receive “A” and initiate “B”. But, Component “Z” which initiates protocol
“X” will initiate message “A” and respond to message “B” — thus initiating a protocol
will “invert” the directions of all portsin the protocol.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <<Protocol>>

Fully Scoped name
ECA::CCA::Protocol

Owned by
Package

Extends

Choreography — Indicating that the contract of the protocol includes a sequencing of
the port activities.

Package — Indicating that the protocol may contain the specification of other model
elements (Most probably other protocols or documents).

Properties

None

UML Profile for EDOC: CCA Metamodel 3-31

3-32

34.18

Related elements

Ports (Via PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” FlowPort and a “return” FlowPort.

UML Representation
Required aggregate association

Initiator

The role which sends the first message in the protocol. Note that this is optional, in
which case the initiating role name will be “Initiator”.

UML Representation
Required relation

Responder

The role which receives the first message in the protocol. Note that thisis optional, in
which case the responding role name will be “Responder”.

UML Representation
Required relation

Constraints

None

Interface

Semantics

An interface is a protocol constrained to match the capabilities of the typica object
interface. It isconstrained to only contain OperationPorts and FlowPorts and all of its
ports must respond to the interaction (making interfaces one-way).

Each OperationPort or FlowPort in the Interface will map to a method. A Protocol Port
which initiates the Interface will call the interface. A Protocol Port which Responds
will implement the interface.

UML base element(s) in the Profileand Stereotype

Classifier (Usually Interface, but any classifier will do)

Fully Scoped name
ECA::CCA::Interface

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.19

Owned by
Package

Extends

Protocol

Properties

None

Related elements

Ports (Via Protocol & PortOwner)

The ports which define the sub-actions of the protocol. For example, a “callReturn”
protocol may have a “call” flowport and a “return” port.

Initiator (Mia Protocol)

The role which calls the interface. Note that this is optional, in which case the
initiating role name will be “Initiator”. roles.

Responder (Via Protocol)

The role which implements the interface. Note that thisis optional, in which case the
responding role name will be “Responder”.

Constraints
The Ports related by the “Ports” association must;
be of type OperationPort or FlowPort.

have direction == "responds’.

InitiatingRole

Semantics
The role of the protocol which will send the first message.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <InitiatingRole>

Fully Scoped name
ECA::CCA::InitiatingRole

UML Profile for EDOC: CCA Metamodel 3-33

3-34

3.4.1.10

Owned by

Protocol

Extends

None

Properties

name
Role name

UML Representation
Model Element::name

Related elements

Protocol
The protocol for which the role is being defined.

UML Representation
Required relation

Constraints

None
RespondingRole

Semantics

The role in the protocol which will receive the first message.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <RespondingRole>

Fully Scoped name
ECA::CCA::RespondingRole

Owned by

Protocol

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

34.111

Extends

None

Properties

Name

UML Representation
Model Element::name

Related elements

Protocol
The protocol for which the role is being defined.

UML Representation
Required relation

Constraints

None
PropertyDefinition

Semantics

To alow for greater flexibility and reuse, ProcessComponents may have properties
which may be set when the ProcessComponent is used. A PropertyDefinition defines
that such a property exists, its name and type.

UML base element(s) in the Profileand Stereotype

Attribute (No stereotype)

Fully Scoped nhame
ECA::CCA::PropertyDefinition

Owned by

ProcessComponent

Extends

None

UML Profile for EDOC: CCA Metamodel 3-35

Properties

name
Name of the property being modeled

UML Representation
Model Element:name

initial
An expression indicating the initial & default value.

UML Representation
Attribute::initial Value

isLocked
The property may not be changed.

UML Representation
Structural Feature::changeability

Related elements

component
The owning component

UML Representation
Classifier.feature referencing an attribute.M odel Element::namespace

type
The type of the property

UML Representation
Structural Feature::type

Constraints

If the “constrains’ relation contains any links, the PropertyV alue must contain the fully
qualified name of a DataElement.

3-36 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.4.1.12 PortOwner

Semantics

An abstract meta-class used to group the meta-classes that may own ports: Process

component, Protocol, OperationPort and MultiPort.

UML baseelement(s) in the Profileand Stereotype

None (Abstract)

Fully Scoped hame

ECA::CCA::PortOwner

Owned by

None

Extends
None
Related elements

ports
The owned ports

UML Representation
Required relation

Constraints

None

UML Profile for EDOC: CCA Metamodel

3-37

3-38

34.2

Choreography

+supertype

Choreography 0.1

A Choreography uses

transitions to order n

Generalization

usages of ports. tsubtypes
Nodes
Connections
+nodes)
N ttarget arget Lincoming n | t+connections
Node 1 s N AbstractTransition
- name : Stringysource >°UCC+outgoing
n
1
- Transition
Connection —
- preCondition : Status
PseudoState
- kind : PseudostateKind UsageContext S EETGIES
Status
1
+extent = SeEEss
- timeoutFailure
<<Enumeration>> PortUsages - technlcaIFa!Iure
PseudostateKind = busme_ssFanure
- choice PortUsage f bsed ::yg?;tlg:
- fork portsUse y
- !n!nal n
- join
- success Represents
- failure +represents
- 1 <<boundary>>
PortActivity

Port
- name : String
- iIsSynchronous : Boolean
- isTransactional : Boolean
- direction : DirectionType
- postCondition : Status

Figure 3-5 Choreography Metamodel

A Choreography specifies how messages will flow between PortUsages. The
choreography may be externally oriented, specifying the contract a component will
have with other components or, it may be internally oriented, specifying the flow of
messages within a composition. External chirographies are shown asan activity graph
while internal choreography is shown as part of a collaboration. An external
choreography may be defined for a protocol or a ProcessComponent.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3421

A Choreography uses Connections and transitions to order port messages as a state
machine. Each “node” in the choreography must refer to a state or a port usage.

Choreography is an abstract capability that is inherited by ProcessComponents and
protocols.

Initial, interim and terminating states are known as a “PseudoState” as defined in
UML. CCA adds the pseudo states for success and failure end-states.

Ordering is controlled by connections between nodes (state and port usage being a
kind of node). Transitions specify flow of control that will occur if the conditions
(Precondition) are met. Transitions between port activities specify what should happen
(contractually), while Connections between PortConnections specify what will happen
at runtime.

Choreography

Semantics

An abstract class inherited by protocol and ProcessComponent which owns nodes and
AbstractTransitions. A choreography specifies the ordering of port activities.

UML base element(s) in the Profileand Stereotype

Choreography - State M achine stereotyped as <<choreography>>: (context references
classifier)

Fully Scoped nhame
ECA::CCA::Choreography

Owned by

None

Extends

None

Properties

None

Related elements

Nodes
The states and port usages to be choreographed.

UML Representation
PseudoState - StateMachine.top

UML Profile for EDOC: CCA Metamodel 3-39

3-40

3422

PortActivity ::SubmachineState

AbstractTransitions
The connections and transitions between nodes.

UML Representation
Transition: StateMachine:transition

Connection: Collaboration::AssociationRole

Supertype (zero or one) , Subtypes (any number)

A ProcessComponent, protocol or CommunityProcess may inherit specification
elements (ports, properties & states (from Choreography) from a supertype. That
supertype must also be a ProcessComponent. A subtype component is bound by the
contract of its supertypes but it may add elements, override property values and restrict
referenced types.

A component may be substituted by a subtype.

Constraints: The subtype-supertype relation may only exist between elements of the
same meta-type. A ProcessComponent may only inherit from another
ProcessComponent. A Protocol may only inherit from another Protocol and a
CommunityProcess may only inherit from another CommunityProcess.

UML Representation
Generalization of classifier related by context.

Node

Semantics

Node is an abstract element that specifies something that can be the source and/or
target of a connection or transition and thus ordered within the choreographed process.
The nodes that do “real work” are PortUsages.

UML base element(s) in the Profileand Stereotype
None (abstract)

Fully Scoped hame
ECA::CCA::Node

Owned by
Choreography

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.2.3

Extends

None

Properties

name

UML Representation
Model Element:name

Related elements

Choreography
The owning protocol or ProcessComponent.

UML Representation
See Choreography

Incoming
Transitions that cause this node to become active.

UML Representation
Transition: State:incoming

Connection: AssociationEndRole

outgoing
Nodes that may become active after this node completes.

UML Representation
State: outgoing

Connection: AssociationEndRole

Constraints

None

AbstractTransition

Semantics

The flow of data and/or control between two nodes.

UML Profile for EDOC: CCA Metamodel 3-41

UML baseelement(s) in the Profileand Stereotype
None - abstract

Fully Scoped name
ECA::CCA::AbstractTransition

Owned by
Choreography

Extends

None

Properties

None

Related elements

Choreography
The owning choreography.

UML Representation
See Choreography

Source
The node which is transferring control and/or data.

UML Representation
Connection: AssociationEndRole

Transition: Transition:source

Target
The node to which data and/or control will be transferred.

UML Representation
Connection: AssociationEndRole

Transition: Transition:target

Constraints

The source and target nodes associated with the AbstractTransition must be owned by
the same choreography as the AbstractTransition.

3-42 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.4.2.4 Transition

Semantics

The contractual specification that the related nodes will activate based on the ordering
imposed by the set of transitions between nodes. Transitions, which declare a contract
may be differentiated from Connections which realize a contract.

UML base element(s) in the Profileand Stereotype

Transition (No Stereotype)
Fully Scoped name
ECA::CCA::Transition
Owned by

Choreography

Extends
AbstractTransition
Properties

preCondition

A constraint on the transition such that it may only fire if the prior PortUsage
terminated with the referenced condition.

UML Representation
Transition:guard

Related elements

Choreography (Via AbstractTransition)
The owning choreography.

UML Representation
See Choreography

Source
The node which is transferring control and/or data.

UML Representation
Transition: Transition:source

UML Profile for EDOC: CCA Metamodel 3-43

3-44

34.25

Target
The node to which data and/or control will be transferred.

UML Representation
Transition: Transition:target

Constraints

A transition may not connect PortConnectors.

PortUsage

Semantics
The usage of a port as part of a choreography.

UML base element(s) in the Profileand Stereotype
None (Abstract)

Fully Scoped nhame
ECA::CCA::PortUsage

Owned by
Choreography

Extends

Node & Usage Context

Properties

None

Related elements
extent
The component, component usage or PortUsage to which the PortUsage is attached.

If the extent isa ComponentUsage the PortUsage must be a PortConnector for a port of
the underlying ProcessComponent. This allows Connections between components
being used within a composition.

If the extent is a PortUsage the PortUsage must represent a Protocol Port which owns
the represented usage. This allows the choreography of nested ports.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.2.6

If the extent is a ProcessComponent the usage represents a port on the
ProcessComponent and that ProcessComponent must be the composition owning both
the port and the port usage. This allows Connections and transitions to be connected to
the external ports of a component.

UML Representation
State machine: Owner of state machine

Collaboration: Association Role

Represents
The port which the PortUsage uses.

UML Representation
State machine: tagged value

Collaboration: ClassifierRole::base

Constraints

None

UsageContext

Semantics

When a port is used within a choreography it must be used within some context.
UsageContext represents an abstract supertype of all elements that may be the context
of aport. These are;

« ProcessComponent — as the owner of port activities and port connectors.

« ComponentUsage — as the owner of port connectors, representing the use of each of the
component’ s ports.

« PortUsages — representing ports nested via protocols.

UML base element(s) in the Profileand Stereotype
None (abstract)

Fully Scoped name
ECA::CCA::UsageContext

Owned by

None

UML Profile for EDOC: CCA Metamodel 3-45

3-46

34.2.7

Extends

None

Properties

None

Related elements

PortsUsed
Provides context for port usage

UML Representation
State machine: owned states

Collaboration: AssociationRole

Constraints

None

PortActivity

Semantics

Port activity is state, part of the “contract” of a ProcessComponent or protocol,
specifying the activation of a port such the ordering of port activities can be
choreographed with transitions. A PortActivity (used with transitions) defines the
contract of the component while a PortConnector (used with Connections) specifies the
realization of a component’s actions in terms of other components.

UML base element(s) in the Profileand Stereotype

CompositeState Stereotyped as <<PortActivity>>

Fully Scoped name
ECA::CCA::PortActivity

Owned by

Protocol or ProcessComponent via Choreography

Extends

PortUsage

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.2.8

Properties

None

Related elements

None

Constraints

Port Activities may only be connected using transitions.

PseudoState

Semantics

PseudoState specifies starting, ending or intermediate states in the choreography of the
contract of a protocol or ProcessComponent.

UML base element(s) in the Profileand Stereotype
Depending on value of kind:

® Success — FinalState Stereotyped as <<success>>

® Failure — FinalState Stereotyped as <<failure>>

® All Others - PseudoState (no stereotype) with kind set to same value.

Fully Scoped name
ECA::CCA::PseudoState

Owned by
Choreography

Extends
Node

Properties

Kind ; PseudostateKind

choice Splits an incoming transition into severa digjoint outgoing transition. Each
outgoing transition has a guard condition that is evaluated after prior actions on the
incoming path have been completed. At least one outgoing transition must be enabled
or the model isill-formed.

fork - Splits an incoming transition into several concurrent outgoing transitions. All
the transitions fire together.

UML Profile for EDOC: CCA Metamodel 3-47

initial - The default target of a transition to the enclosing composite state.

join - Merges transitions from concurrent regions into a single outgoing transition.
Join PseudoState will proceed after all its incoming Transition have triggered.

success - The end-state indicating that the choreography ended in success.

failure - The end-state indicating that the choreography ended in failure.

Related elements

None

Constraints

PseudoStates may only be connected using transitions.

3.4.3 Composition
Composition is an abstract capability that is used for ProcessComponents and for

community processes. Compositions shows how a set of components can be used to
define and perhaps to implement a process.

3-48 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Connections , ~onnections
Choreography AbstractTransition
+supertype n
n
+subtypes
Is Choreagraphy
Generalization
Compositon | WS — — — s Connection
* 1 ‘
+owner | 1 |
Usage Context
+owner \
Community Process 1 dextent |
ComponentUsages N PortUsages |
IsComposition ‘
L \
Bindings
g n
+uses
Uses L +prc]1rtsUsed |
ComponentUsage |
£ - : ProcessComponent PortUsage connects
name : String n +use |
19 +owner_ 1 A" \
+ills 1 ~ +bindsTo \ / y
~ % P
creates
Teates / \ -
Fills cura ~ \ / P
n | +confguration / e
9 ~ & Represents
PropertyValue
: PortConnector
- value : Expression
+represents
1A
+bindings| n 1
\ _ ort
ContextualBinding n BindsTo - name : String
k - isSynchronous : Boolean
ValueFor - isTransactional : Bodean
\ Dependencies - direction : DirectionType
+ﬁ||s\,‘ 1 are informative, - postCondition : Status
PropertyDefinition not normative.
- name : String

- initial : Expression
- isLocked : Boolean

Figure 3-6 Composition metamodel

A composition contains ComponentUsages to show how other ProcessComponents
may be used to define the composite. Note that the same ProcessComponent may be
used multiple times for different purposes. Each time a ProcessComponent is used,

UML Profile for EDOC: CCA Metamodel 3-49

3-50

each of its ports will also be used with a “PortConnector”. A port connector shows
the connection point for each use of that component within the composition, including
the ports on the component being defined.

Attached to a ProcessComponent usage are PropertyValues, configuring the
ProcessComponent with properties that have been defined in property definitions.

A composition also contains a set of “Connections’. A connection joins
compatible ports on ProcessComponents together to define a flow of data. The
other side will receive anything sent out of one side. So a Connection is a form of
logical event registration (one-way registration for a flow port or Operation port,
two-way registration for a Protocol Port).

A Contextual Binding allows realized ProcessComponents to be substituted for
abstract ProcessComponents when a composition is used.

Compositions may be ProcessComponents or CommunityProcesses.
CommunityProcess define a top-level process in terms of the roles played by
process components representing actors in the process.

3.4.3.1 Composition

Semantics

Composition is an abstract class for CommunityProcesses or ProcessComponents.
Compositions describe how instances of ProcessComponents (called
ComponentUsages) are configured (with PropertyValues and Contextual Bindings) and
connected (with Connections) to implement the composed ProcessComponent or
CommunityProcess.

UML base element(s) in the Profileand Stereotype

Collaboration (with represented classifier being the ProcessComponent or
CommunityProcess being defined) — stereotyped as <<Composition>>

Fully Scoped name
ECA::CCA::Composition

Owned by

None

Extends

Choreography

Properties

None

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.3.2

Related elements

bindings
Contextual Bindings defined within the context of the composition.

UML Representation
M odel Element::clientDependency

uses
ComponentUsages defined within the context of the composition.

UML Representation
Collaboration:: (Owned ClassifierRoles)

Connection (via choreography and AbstractTransition)
The flow of data and control between port connectors.

UML Representation
Collaboration:: ownedElement (Owned AssociationRoles)

PortConnector (via Choreography and nodes)
The port instances to be connected by Connections.

UML Representation
Collaboration:: (Owned ClassifierRoles)

Constraints

None

ComponentUsage

Semantics

A composition uses other ProcessComponents to define the process of the composition
(a community process or ProcessComponent), “ComponentUsage” represents such a
use of acomponent. The “uses” relation references the kind of component being used.
Component Usage is part of the “inside” of a composed component.

The composition can be thought of as a template of ProcessComponent instances.
Each component instance will have a “ ComponentUsage” to say what kind of
ProcessComponent it is, what its property values are and how it is connected to other
ProcessComponents. A ComponentUsage will cause a ProcessComponent instance to
be created at runtime (this instantiation may be real or virtual).

UML Profile for EDOC: CCA Metamodel 3-51

Each use of a ProcessComponent will carry with it a set of “portConnectors’ which
will be the connection points to other ProcessComponents.

UML baseelement(s) in the Profileand Stereotype

ClassifierRole Stereotyped as “ComponentUsage’

Fully Scoped name
ECA::CCA::ComponentUsage

Owned by

Composition

Extends
UsageContext
Properties

Name
The name of the activity for which the component is being used.

UML Representation
Model Element::name

Related elements

owner
The owning composition

UML Representation
ClassifierRole::(owning collaboration)

Uses
The type of ProcessComponent to use.

UML Representation
ClassifierRole::base

PortsUsed (Via UsageContext)
PortConnectors for each port on the used component.

UML Representation
AssociationRole

3-52 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.4.3.3

Constraints

None

PortConnector

Semantics

The PortConnector provides a “connection point” for ComponentUsages within a
composition and exposes the defined ports within the composition. The connections
between PortConnectors are made with Connections.

PortConnections are “implied” by other model elements and will normally be created
by design tools. PortConnections should be created as follows:

For each ComponentUsage there will be exactly one PortUsage for each port defined
for the ProcessComponent being used.

For each port on the ProcessComponent being defined there will be exactly one
PortUsage to support Connections to and from “outside” ports.

For each port within a protocol, OperationPort or MultiPort created for one of the
above two reasons, a PortConnector may be created for each contained port. This
allows Connections to be connected to finer grain elements, such as Connections
within a protocol.

In summary, the “ProcessComponent” / “Port” pattern which defines the components
external interface is essentially replicated in the “ComponentUsage” / “portConnector”
part of the composition. Each time a component is used, each of its ports is used as

well. Sub-ports of protocols also become PortConnectors.

UML base element(s) in the Profileand Stereotype

ClassifierRole stereotyped as PortConnector

Fully Scoped name
ECA::CCA::PortConnector

Owned by

Composition

Extends

PortUsage

Properties

None

UML Profile for EDOC: CCA Metamodel 3-53

3-54

3434

Related elements

Represents (via PortUsage)
The port of which thisis a port.

Contexts (via PortUsage)
The associated owner of the port.

Incoming and Outgoing Connections (Via PortUsage and Node)
The Connections.

Constraints

PortConnectors are intended to be connected with Connections, Transitions may not be
connected to a PortConnector

Connection

Semantics

A Connection connects two PortConnectors within a composition. Each port can
produce and/or consume message events. The connection logically registers each port
connector as a listener to the other, effectively making them collaborators.

A component only declares that given ports will produce or consume given messages,
it doesn’t not know “who” will be on the other side. The composition shows how a
ProcessComponent will be used within a context and thus how it will be connected to
other components within that context. A Connection connects exactly two
PortConnectors.

Connections may be distinguished from transitions in that Connections specify what
events will flow between ProcessComponents while transitions specify the contract of
port ordering.

UML base element(s) in the Profileand Stereotype
AssociationRole optionally stereotyped as <<Connection>>

Note: A Connection to a port contained by an interface will be represented by an
operation, not a classifier. In this case the association role is directed to the
Protocol Port realizing the interface and a message attached with a call action
referencing the operation in question.

Fully Scoped name
ECA::CCA::Connection

Owned by

Composition

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

34.3.5

Extends

AbstractTransition

Properties

None

Related elements

Source and Target PortConnectors (Via PortUsage, Node & AbstractTransition)
The PortConnectors between which the Connection is being defined.

Constraints
® The source and target nodes of a Connection must be PortConnectors.

® The source and target nodes must be port connectors owned by the same
composition as the Connection.

PropertyValue

Semantics

To be useful in a variety of conditions, a ProcessComponent may have configuration
properties —which are defined by a PropertyDefinition. When the component is used in
a ComponentUsage those properties values may be set using a PropertyValue. These
values will be used to construct or configure a component instance.

A PropertyValue should be included whenever the default property value is not correct
in the given context.

UML base element(s) in the Profileand Stereotype

Constraint stereotyped as <PropertyVaue>

Fully Scoped name
ECA::CCA::PropertyValue

Owned by
ComponentUsage

Extends

None

UML Profile for EDOC: CCA Metamodel 3-55

3-56

3.4.3.6

Properties

value
An expression for the value of the property.

UML Representation
Constraint::body

Related elements

Owner
The component usage being configured with a value.

UML Representation
M odel Element::namespace

Fills
The property being modified.

UML Representation
Constraint:constrainedElement referencing an attribute of <Owner>.

Constraints

“fills” must relate to a property definition of the ProcessComponent that the owner
uses.

The type returned by the PropertyValue expression must be compatible with the type
defined by the PropertyDefinition.

Contextual Binding

Semantics

A composition is able to use abstract ProcessComponents in compositions — we call
these abstract compositions. The use of an abstract composition implies that at some
point a concrete component will be bound to that composition. That binding may be
done at runtime or when the composition is used as a component in another
composition.

For example, a composed “Pricing” component may use an abstract component
“PriceFormula.” In our “International Sales” composition we may want to say that
“PriceFormuld’ uses “International Pricing.”

Contextual Binding allows the substitution of a more concrete ProcessComponent for a
compatible abstract ProcessComponent when an abstract composed ProcessComponent
isused. So within the composition that uses the abstract component (International

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

Sales) we say the use of a particular Component (use of PriceFormula) will be bound
to a concrete component (International Pricing). These semantics correspond with the
three relations out of ContextualBinding.

Note that other forms of binding may be used, including runtime binding. But these
are out of scope for CCA. Some specializations of CCA may subtype

Contextual Binding and apply selection formula to the binding, as is common in
workflow systems.

An abstract composition may also be thought of as a pattern, with contextual binding
being the parameter substitution.

UML base element(s) in the Profileand Stereotype

Binding stereotyped as <Contextual Binding>

Fully Scoped hame
ECA::CCA::ContextuaBinding

Owned by

Composition

Extends

None

Properties

None

Related elements

owner

The composition which is using the abstract composed component and wants to bind a
more specific ProcessComponent for an abstract one. The owner of the
Contextual Binding.

UML Representation

M odel Element::namespace

fills

The ComponentUsage which should have the ProcessComponent it uses replaced.
This component usage does not have to be within the same composition as the
contextual binding, it may be anywhere the component usage occurs visible from the
scope of the composition owning the binding.

UML Profile for EDOC: CCA Metamodel 3-57

3-58

3.4.3.7

UML Representation
Binding::client

bindsTo
The concrete component which will be bound to the component usage.

UML Representation
Binding::supplier

Constraints

The ProcessComponent related to by “bindsTo” must be a subtype of the component
used by the component usage related to by “fills.”

CommunityProcess

Semantics

Community processes may be thought of as the “top level composition” in a CCA
specification, it is a specification of a composition of ProcessComponents that work
together for some purpose other than specifying another ProcessComponent.

One kind of CommunityProcess would be abusiness process, in which case the nested
components represent business partner roles in that process. For example, a
community process could define the usage of a buyer, a seller, afreight forwarder and
two banks for a sale and delivery process.

Note that designs can be done “top down” or as an assembly of existing
ProcessComponents (bottom up). When design is being done top down, it is usually
the CommunityProcess which comes first and then ProcessComponents specified to fill
the roles of that process.

CommunityProcesses are also useful for standards bodies to specify the roles and
interactions of a B2B process.

UML base element(s) in the Profileand Stereotype

Subsystem stereotyped as <<CommunityProcess>> with a Composition

Fully Scoped name
ECA::CCA::CommunityProcess

Owned by
Package

Extends

Composition and Package

UML Profilefor Enterprise Distributed Object Computing February 2002

Properties

None

Related elements

None

Constraints

None

3.4.4 Document Model

The document model defines the information that can be transferred between and
manipulated by ProcessComponents. It also forms the base for information in entities.

Datalnvariant

Efexpression : String
EfonCommit : Boolean

+constraints

DataE lement

n

+constrainedElement

1 | +type

Emumeration

+initial \[1 n

February 2002

DataType

+supertype

+enumeration

+values

- 1
CompositeData

0.1

N | +subtypes

Enumeration
Value

E8name : String

ExternalDocument

mimeType : String
specURL : String

externalName :

String

Figure 3-7 Document Metamodel

A data element represents a type of data which may either be primitive DataTypes or
composite. CompositeData has named attributes which reference other types. Any

n

+feature

+owner

=}

Attribute

BEbyVvalue : Boolean
B%required : Boolean

BE8many : Boolean
EEinitialvalue : Expression

type may have a Datal nvariant expression.

UML Profile for EDOC: CCA Metamodel

Attributes may be isByValue, which are strongly contained or may simply reference
other data elements provided by some external service. Attributes may also be marked
as required and/or many to indicate cardinality. DataTypes define local data — these
types are defined outside of CCA. ExternalDocument defines a document defined in
an external type system. An enumeration defines a type with a fixed set of values.

3.4.4.1 DataElement

Semantics

DataElement is the abstract supertype of al data types. It defines some kind of
information.

UML baseelement(s) in the Profileand Stereotype

Classifier (no stereotype)

Fully Scoped name
ECA::DocumentM odel::DataElement

Owned by
Package

Extends

PackageContent

Properties

None

Related elements

constraints
Constraints applied to the values of this data type.

Constraints

None

3.4.4.2 DataType

Semantics

A primitive data type, such as an integer, string, picture, movie...

3-60 UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3443

Primitive data types may have their structure and semantics defined outside of CCA.
The following data types are defined for all specializations of CCA: String, Integer,

Float, Decimal, Boolean.

UML baseelement(s) in the Profileand Stereotype

DataType (no stereotype)

Fully Scoped name
ECA::DocumentM odel ::DataType

Owned by
Package

Extends
DataElement

Properties

None

Related elements

None

Constraints

None

Enumeration

Semantics

An enumeration defines a type that may have afixed set of values.

UML base element(s) in the Profileand Stereotype

Corresponds to User defined enumeration stereotypes of UML DataType.

Fully Scoped nhame

ECA ::Documentmodel::Enumeration

Owned by
Package

UML Profile for EDOC: CCA Metamodel

3-61

3-62

3444

Extends
DataElement

Properties

None

Related elements

Values
The set of values the enumeration may have.

UML Representation
M odel Element::namespace

Initial
The initial, or default, value of the enumeration.

UML Representation
Tagged vaue

Constraints

None

EnumerationValue

Semantics

A possible value of an enumeration.

UML base element(s) in the Profileand Stereotype

The values of User defined enumeration stereotypes of UML DataType.

Fully Scoped hame
ECA::DOCUMENTMODEL ::EnumerationValue

Owned by

Enumeration

Extends

None

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3445

Properties

name

Related elements

Enumeration
The owning enumeration.

UML Representation
M odel Element:namespace

Constraints

None

CompositeData

Semantics

A datatype composed of other types in the form of attributes.

UML base element(s) in the Profileand Stereotype

Class Stereotyped as <<CompositeData>>

Fully Scoped name
ECA::DocumentM odel::CompositreData

Owned by
Package

Extend
DataElements

Properties

None

Related elements

Feature
The attributes which form the composite.

UML Profile for EDOC: CCA Metamodel

3-63

3-64

3.4.4.6

UML Representation
Classifier.feature

Supertype

A type from which this type is specialized. The composite will include all attributes of
all supertypes as attributes of itself.

Subtypes
The types derived from this type.

Constraints
UML Representation

Generalization

Attribute

Semantics
Defines one “dot” of a composite type that may be filled by a data element of “type.”

UML base element(s) in the Profileand Stereotype

Attribute (No stereotype)

Fully Scoped nhame
ECA::DOCUMENTMODEL ::Attribute

Owned by
CompositeData

Extends

None

Properties

isByValue

Indicates that the composite data is stored within the composite as opposed to
referenced by the composite.

UML Representation

Stand-alone Tagged Value to apply to UML Attribute (a Stereotype of Attribute is not
created to hold this TaggedValue :

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3447

required
Indicates that the attribute slot must have a value for the composite to be valid.

UML Representation
Structural Feature::multiplicity

many
Indicates that there may be multiple occurrences of values. These values are always

ordered.

UML Representation
Structural Feature::multiplicity

initialValue
An expression returning the initial value of the attribute.

UML Representation
Attribute::initial Value

Related elements

type

The type of information which the attribute may hold. Type instances may also be
filled by a subtype.

UML Representation
Structural Feature::type

owner
The composite of which this is an attribute.

UML Representation
M odel Element::namespace

Constraints

None

Datal nvariant

Semantics

A constraint on the legal values of a data element.

UML Profile for EDOC: CCA Metamodel 3-65

UML baseelement(s) in the Profileand Stereotype

Constraint

Fully Scoped hame
ECA::DOCUMENTMODEL::Datalnvarient

Owned by
DataElement

Extends
None
Properties

Expression
The expression which must return true for the data element to be valid.

UML Representation
Constraint::body

isOnCommit (Default: False)

True indicates that the constraint only appliesto a fully formed data element, not to
one under construction.

UML Representation
Tagged Value

Related elements

ConstrainedElement
The data element that will be constrained.

UML Representation
Constraint::constrainedElement

3.4.4.8 ExternalDocument
Semantics

A large, self contained document defined in an external type systems such as XML,
Cobol or Java that may or may not map to the ECA document model.

3-66 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

UML baseelement(s) in the Profileand Stereotype

DataType Stereotyped as <<External Document>>

Fully Scoped hame
ECA::DOCUMENTMODEL ::External Document

Owned by
Package

Extends
DataElement

Properties

All properties are tagged values

MimeType

The type of the document specified as a string compatible with the “mime”
declarations.

SpecURL

A reference to an external document definition compatible with the mimiType, such as
aDTD or Schema. If the MimeType does not define a specification form (E.G. GIF)
then this attribute will be blank.

ExternalName

The name of the document within the SpecURL. For example, an element name within
a DTD. If the MimeType does not define a specification form (E.G. GIF) or the
specification form only specifies one document then this attribute will be blank.

Related elements

None

Constraints

None

3.4.5 Model Management

Model management defines how CCA models are structured and organized. It directly
maps to its UML counterparts and is only included as an ownership anchor for the
other elements.

UML Profile for EDOC: CCA Metamodel 3-67

3-68

1

PackageContent

E8name : String
+ownedElements 1

b

n +modelElement

+elementimport

+namespace
n
Package DataElement Elementimport
(from DocumentModel)
Composition
(from CCA)
Protocol
4& (from CCA)
\
ProcessComponent
(from CCA)

E&granularity : String = "Program"”
EfisPersistent : Boolean = false
EEprimitiveKind : String = ™"
E&primitiveSpec : String

CommunityProcess
(from CCA)

3451

Figure 3-8 Model Management M etamodel

A package defines alogica hierarchy of reusable model elements. Elements that may
be defined in a package are PackageContent and may be ProcessComponents,
Protocols, DataElements, CommunityProcesses and other packages. A
ImportedElement defines a “shortcut” visibility of a package content in a package
that is not its owner. Shortcuts are useful to organize reusable elements from different
perspectives.

Note that ProcessComponents are also packages, allowing elements which are specific
to that component to be defined within the scope of that component.

Package
Semantics

Definesastructural container for “top level” model elements that may be referenced by
name for other model elements.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3452

UML baseelement(s) in the Profileand Stereotype

Package

Fully Scoped hame
ECA::Model M anagement::Package

Owned by
Package or model (global scope)

Extends

PackageContent

Properties

None

Related elements

OwnedElements

The model elements within the package and visible from outside of the package.

UML Representation
Namespace::OwnedElement

Constraints

None

PackageContent

Semantics

An abstract capability that represents an element that may be placed in a package and

thus referenced by name from any other element.

UML base element(s) in the Profileand Stereotype

Model Element

Fully Scoped nhame
ECA::ModelManagement::

Owned by
Package

UML Profile for EDOC: CCA Metamodel

3-69

3-70

34.5.3

Extends
None
Properties
name

UML Representation
Model Element::name

Related elements
namespace

UML Representation
M odel Element::namespace

Constraints
Elementimport

Semantics

Defines an “Alias” for one element within another package.

UML base element(s) in the Profileand Stereotype

Elementimport (No Stereotype)

Fully Scoped name
ECA::M odel M anagement::Element! mport

Owned by
Package

Extends

PackageContent

Properties

None

UML Profilefor Enterprise Distributed Object Computing

February 2002

3.5 CCA Notation

Related elements

Model Element
The element to be imported.

Constraints

None

CCA uses UML notation with a few extensions and conventions to make diagrams
more readable and compact for CCA aware tools. The UML mapping shown how
CCA isexpressed in the UML Metamodel which has standard notation. Unless stated
otherwise, al other UML elements use the base UML 1.4 notation. The following are
additions this base UML 1.4 notation.

3.5.1 CCA Specification Notation

February 2002

A ProcessComponent is based on the notation for a subsystem with extensions for
ports and properties. Consider the following diagram template for ProcessComponent
notation.

Component (t)

Receives

Initiator

Responder

Property Type Value ‘}

Figure 3-9 ProcessComponent specification notation

UML Profilefor EDOC: CCA Notation 3-71

3-72

Component @

Receives

? Responder

? Initiator

ReceivesA SendsX

SendsB ReceivesY IR
SendsC ReceivesZ HEEER(

Property Type Value

Figure 3-10 ProcessComponent specification notation (expanded Protocol Ports)

® A ProcessComponent represents its external contract as a subsystems with the

following addition:

The ProcessComponent type may be represented as an icon in the component name
compartment. “t” above.

Ports are represented as going through the boundary of the box. The port is itself a
smaller rectangle with the name of the port inside the rectangle. In the above,
“Receives,” “Sends,” “Responder,” and “Initiator” are all ports. The type of the port
is not represented in the diagram.

Flow ports are represented as an arrow going through a box. Flow ports that send
have the arrow pointing out of the box while flow ports that receive (Receives) have
an arrow pointing into the box. A sender has the background and text color inverted.

Protocol ports and Operation ports are boxes extending out of the component.
Protocol ports representing an initiator have the colors of their background and text
reversed. In the above, “Initiator” is a protocol port of an initiator and “ Responder”
is a protocol port that is not an initiator. Protocol Ports may show nested, the Ports
of the used Protocol.

Multiports are shown as a shaded box grouping the set of ports it contains.

Property Definitions are in a separate compartment listing the property name, type
and default value (if any). The name, type and value are separated by lines. Each
property is on a separate line.

UML Profilefor Enterprise Distributed Object Computing February 2002

3.5.2 Composite Component Notation

A composite is shown as a ProcessComponent with the composition in the center. The
composition is a new notation but may also be rendered with a UML collaboration.

Component @

> Receives

‘ Property Type Value

Figure 3-11 - Composite Component notation (without internal ComponentUsages)

February 2002 UML Profilefor EDOC: CCA Notation 3-73

3-74

Component (t)
5 Receives |
Usagel (t)
4
Property ‘ Type Value

Usage2 (i)
| Responder]i} —{ Responder

Property ‘Type ‘ Value

<

Property Type

Figure 3-12 - Composite Component notation

The ports on the composite component being defined are shown in the same way as
they are on a ProcessComponent, but in this case represent the port connector.

A component usage is shown as a smaller version of a ProcessComponent inside
the composite component. Note Usage (1..2) are component usages.

Port connector s are shown in the same fashion as ports, on component usages. The
ports on Usage 1..2 are al port usages.

Connector s are shown as lines between port usages or port proxies. All thelinesin
the above are connectors.

Property values may be shown on component usages (in the same way as the
property definition), or may be suppressed.

UML Profilefor Enterprise Distributed Object Computing February 2002

3.5.3 Community Process Notation

BuySellProcess

A community process is shown in the same way as a composite component with the
exception that a community process has no external ports.

Buyer

(t) Seller (t)

3.6 UML Profile

February 2002

Figure 3-13 Community Process notation

In the above example “BuySellProcess’ is acommunity process with component usage
for “Buyer” and “Seller” which are connected via their “buy” and “sell” ports,
respectively.

The CCA profile specifies how CCA concepts relate to and are represented in standard
UML using stereotypes, tagged values and constraints. This allows off-the-shelf UML
tools to represent CCA and interchange CCA models.

The CCA profileis organized as a single package which corresponds to the ECA::CCA
package in the logical model and the CCA <<profile>> package. In addition thereisa
package for the document model which is used by CCA.

3.6.1 Tables mapping concepts to profile el ements

The following tables provide a summary of the CCA elements as stereotypes and
tagged values. These stereotypes and tagged values may be used in standard UML
models, and represented in standard UML diagrams (See “Diagramming CCA” for an
example).

UML Profilefor EDOC: UML Profile 3-75

Table 3-1 Stereotypes for Structural Specification (UML notation: Class Diagram)

M etamodel element name Stereotype hame UML Parent Tags Constraints
base Class
ProcessComponent ProcessComponent Classifier N/A granularity
isPersistent
primitiveKind
primitiveSpec
Port Port Class N/A isSynchronous
isTransactional
direction
postCondition
FlowPort FlowPort Class Port typeProperty
Protocol Port Protocol Port Class Port uses
MultiPort MultiPort Class Port
OperationPort N/A Operation Port
Protocol Protocol Class N/A
Interface N/A Classifier N/A
InitiatingRole InitiatingRole Class N/A
RespondingRole InitiatingRole Class N/A
PropertyDefinition PropertyDefinition Attribute N/A
«enumeration» DirectionKind DirectionKind Enumeration
«enumeration» GranularityKind GranularityKind Enumeration | N/A
Direction (value) initiates Association N/A
Direction (value) responds Association N/A
Table 3-2 TaggedValues for Structural Specification
M etamodel attribute
name Tag Stereotype Type Multiplicity | Description
granularity granularity ProcessComponent | «enumeration» 0.1
GranularityKind
primitiveKind primitiveKind String 0.1
primitiveSpec primitiveSpec String 0.1
isPersistent isPersistent Boolean 1 default=false
isSynchronous isSynchronous Port and Boolean 1 default=false
specializations:
ProtocolPort or
FlowPort or
MultiPort or
OperationPort
isTransactional isTransactional Boolean 1 default=false
3-76 UML Profilefor Enterprise Distributed Object Computing February 2002

Table 3-2 TaggedValues for Structural Specification

direction direction «enumeration» 1
DirectionKind
postCondition postCondition «enumeration» 0.1
Status
typeProperty typeProperty FlowPort Attribute 0.1 Reference a
PropertyDefinition of
the owner
ProcessComponent.

Table 3-3 Stereotypes for Choreography (UML notation: Statechart Diagram)

Metamodel element | Stereotype name UML Base Class Parent |Tags Constraints
name
Choreography Choreography StateM achine or N/A
PortActivity PortActivity CompositeState N/A represents
Transition N/A (UML element) Transition N/A
Pseudostate N/A (UML element) or Pseudostate N/A
Success or Failure
Pseudostate Success Final State N/A
Pseudostate Failure Final State N/A
«enumeration» Status Enumeration
Status
Table 3-4 TaggedValues for Choreography
M etamodel Tag Stereotype Type Multiplicity Description
attribute name
represents represents PortActivity Class, constrained to 1
«Protocol Port» or
«FlowPort» or «MultiPort»
or «OperationPort»
Table 3-5 Stereotypes for Composition (UML notation: Collaboration Diagram at specification
level)
M etamodel element name | Ster eotype name UML BaseClass Parent |Tags Con-
straints
Composition Composition Collaboration N/A
ComponentUsage ComponentUsage ClassifierRole N/A
PortConnector PortConnector ClassifierRole N/A
Connection Connection AssociationRole N/A
PropertyValue PropertyValue Constraint N/A
Contextual Binding ContextualBinding Binding N/A
CommunityProcess CommunityProcess Subsystem N/A

February 2002

UML Profilefor EDOC: UML Profile

3-77

Table 3-6 TaggedValues for Composition

M etamodel
attribute name Tag Stereotype Type Multiplicity | Description
represents represents PortConnector Class, 1

constrained to
«Protocol Port» or
«FlowPort» or
«Multi Port»

Table 3-7 Stereotypes for DocumentModel (UML notation: Class Diagram)

Metamodel element name | Stereotype name UML Base Class Parent | Tags Constraints
CompositeData CompositeData Class N/A
External Document External Document DataType N/A
Datal nvariant Datal nvariant Constraint N/A
DataType N/A (UML) DataType N/A
Enumeration N/A (UML) Enumeration N/A
Attribute N/A (UML) Attribute N/A
Table 3-8 TaggedValues for DocumentModel
M etamodel Tag Stereotype Type Multiplicity |Description
attribute name
isOnCommit isOnCommit Datalnvariant Boolean 1
isByValue isByValue N/A Apply to Attribute of
«CompositeData»
mimeType mimeType External Document String 0.1
specURL specURL String 0.1
externalName externalName String 0.1
3-78 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.2 Introduction

The UML Profile for CCA accesses a number of UML Packages. The CCA
<<profile>> extends these packages with CCA stereotypes & semantics.

<<metamodel>>
F—_———— — — — > Data_Types
‘ (from Foundation
/!
‘ - AN N -
—
—
| — / \ AN
| \ / h
AR
‘ \ ~ N
/ N\ -
‘ \ / _ - ~ h
\ Z
<<metamodel>> \ <<metamodel>> <<metamodel>> <<metamodel>>
Collaborations — Core <~ —{ Model_Management State_Machines
(from Behavioral_Elements \ (from Foundation (from Logical View) (from Behavioral_Elements
AN \ A 7 7
N <<access>3 | / -
<<access>> N €ss <<ac‘cess>> <<access/>> <<at:;ess/>>
\ —
SO - -
—~
N / P
A_‘ ‘ / —
—
- L
<<profile>>
CCA
(from ECA)

Figure 3-14 UM L«metamodel» and CCA «profile»Packages

Each CCA stereotype extends a specific UML model element as shown below.

February 2002 UML Profilefor EDOC: UML Profile 3-79

+typedParameter
<<metaclass>> <<metaclass>> n <<metaclass>> <<metaclass>> <<metaclass>>
Signal Classifier Parameter Operation Attribute
(from Common_Behavior) (from Core) |1 +type (from Core) (from Core) (from Core)
<<stereotype>> <<stereotype>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
ProcessComponent RespondingRole InitiatingRole PropertyDefinition
<<taggedValue>> + granularity : String [0..1] <<taggedValue>> + isLocked : Boolean
<<taggedValue>> + isPersistent : Boolean = false
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String
<<metaclass>>
Class
(from Core) oep 4‘ 0.1]
ypePropérty [0..
N A A <<taggedValue>>
<<stereotype> <<stereotype>‘> <<stereotype>> <<stereotype>> ‘ <<stereotype>>‘
<<stereotype>>
<<stereotype>>
Port
Protocol
<<i >> + : =
<<taggedValue>> + initiatingRoleName : String taggedvalue isSynchronous : Boolean = false
<<taggedValue>> + isTransactional : Boolean = false
<<taggedValue>> + respondingRoleName : String
+Iport [0.n] : Class <<taggedValue>> + direction : DirectionKind = Initiates
P e <<taggedValue>> + postCondition [0..1] : Status
N
usel 1] Z>
<<taggedValue>:
<<Enumeration>> <<st o - <<sti " >> <<sti 1) >>
DirectionKind stereotype stereotype stereotype
MultiPort FlowPort

ProtocolPort

+ Initiates
+ Responds

+stateMachine

+transitions
<<enumeration>> <<metaclass>> 0.1 <<metaclass>> <<metaclass>>
Status ine - n Transition CompositeState
e from State_Machines)
+ Success (from State_Machines) (from State_Machines) (—
+ BusinessFailure 4\
+ TimeoutFailure
<<stereotype>>
+ TechnicalFailure <<stereotype>>
+ AnyFailure ‘
+ AnyStatus <<stereotype>> <<metaclass>> <<metaclass>> <<stereotype>>
Choreography Pseudostate FinalState PortActivity
(from State_Machines) (from State_Machines) <<taggedValue>> + represents [1] : Port
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
Binding Collaboration ClassifierRole Class AssociationRole Constraint
(from Core) (from Collaborations) (from Collaborations) (from Core) (from Collaborations) (from Core)
A A AN A A A
‘ <<stere0typ8>>‘ <<5é‘eotype>> J ’<<stere0type>> ‘<<stereotype>>
<<stereotype>> <<stereotype>>| represents [1..1]
<<tagTedValue>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
ContextualBinding Composition ComponentUsage PortConnector Connection PropertyValue
Subsystem
<<stereotype>>

3-80

(from Model_Management)
+ isInstantiable : Boolean

<<stereotype>>
CommunityProcess

CompositeData

<<stLre0type>>

<<metaclass>> <<metaclass>>
Class Constraint
(from Core) (from Core)
<<stereotype>>/"
<<15tereotype>> P
<<stereotype>> <<stereotype>>

ExternalDocument

Datalnvariant

<<taggedValue>> + mimeType : String
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String

+isOnCommit : Boolean = false

Figure 3-15 Stereotypes in the UML Profile for CCA

UML Profilefor Enterprise Distributed Object Computing

February 2002

3.6.3 Stereotypes for Sructural Specification\

+typedParameter.
<<metaclass>> <<metaclass>> n |<<metaclass>> <<metaclass>> <<metaclass>>
Signal = Classifier Parameter Operation Attribute
from Common_Behavior) (from Core) |1+type (from Core) (from Core) (from Core)
A A
<<stereotype>> <<stereotype>> ‘
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
ProcessComponent RespondingRole InitiatingRole PropertyDefinition ‘
<<taggedValue>> + granularity : String [0..1] <<taggedValue>> + isLocked : Boolean
<<taggedValue>> + isPersistent : Boolean = false ‘
<<taggedValue>> + primitiveKind : String
<<taggedValue>> + primitiveSpec : String ‘
<<metaclass>> ‘
Class L
(from Core) typeRroperty [0..1]
<taggedValue>>
A A A A A o
<<stereotype>:+> <<ste¢eotype>> <<stere0type>>‘ <<stereotype>> ‘ <<stereotype>%
<<stereotype>> ‘ <<Sterpe§))2/pe>> ‘ ‘ ‘
Protocol
— v <<taggedValue>> + isSynchronous : Boolean = false
::::gg:gx:m:::: Irr;I;Ia:Jl:giEO::(’J\llzlljl‘zﬁesvgt?in ‘ <<taggedValue>> + isTransactional : Boolean = false ‘ ‘ ‘
) 0?,?[0 n]: Class P 9 : 9 <<taggedValue>> + direction : DirectionKind = Initiates
P e ‘ <<taggedValue>> + postCondition [0..1] : Status ‘ ‘ ‘
useL [1] ‘ 4 ‘ ‘ ‘
<<taggedVaIue>T ‘ ‘ ‘
<<Enumeration>> <<sti type>> <<sti type>> <<sti type>>
DirectionKind stereotype: stereotype stereotype:
ProtocolPort MultiPort FlowPort

+ Initiates
+ Responds

3.6.3.1

February 2002

Figure 3-16 Stereotypes for Structural Specification

Applicable Subset

Classifier, Class, Attribute

«ProcessComponent»

Inheritance

Foundation::Core::Classifier
«ProcessComponent»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor EDOC: UML Profile

381

3.6.3.2 Relationships®

Relationship Role(s)

Ports owner
Generalization supertype subtypes {only with «ProcessComponent»}
Properties component

Uses owner
ComponentUsages owner

Bindings owner

Bindings bindsTo
Connections _connections
Nodes _nodes
PortUsages extent

Is A_Choreography is_specialization
Is_A_Composition is_specialization
PackageElements owner ownerElements
ImportElement model Element elementlmport

Correspondence of metamodel attributes with UML attributes

M etamodel attribute name UML attribute name UML attribute owner Description
name name M odel Element

Tagged Values

Tagged Value name Type Multiplicity Description

granularity String 0.1

primitiveKind String 0.1

primitiveSpec String 0.1

isPersistent Boolean 1 default=false

Constraints expressed generically

The set of all the «Port» of a «ProcessComponent» is the set of «Port» or its
specializations, that are aggregated in the «ProcessComponent».

3. The“Relationships” header referencesthe relationshipsin which the M odel Element
participates, and the name of therolein therelationship. The section " Relationships", see
below, includes the specificationsfor these rel ationships, and their mapping between
metamodel and UML representation.

3-82 UML Profilefor Enterprise Distributed Object Computing February 2002

The supertype of a «ProcessComponent» must be a «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel
cont ext ProcessConponent
inv:

supertype->i senpty() or
supertype. i sStereoKi nded("ProcessConponent ")

def :
-- the Ports in the ProcessConponent
-- conposed in the ProcessConponent

let ports : Set(Cass) =
(associ ation->sel ect(anAssoci ati onEnd : Associ ati onEnd |
anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)
->associ ati on->connection — associ ati on)
->partici pant
->select(aClassifier : Classifier]|
anEl ement . i sSt er eoKi nded(«Port»))

Diagram Notation
N/A

3.6.3.3 «Port»

Inheritance

Foundation::Core::Class
«Port»

I nstantiation in amodel

Abstract

Semantics

Corresponds to the element of same name in the metamodel.

The «Port» stereotype has been introduced for clarity and brevity, defining in a
common ancestor, the taggedValues corresponding to attributes of Port in the
metamodel, and reused along the stereotypes specialization of «Port» : «FlowPort»,
«Protocol Port», «MultiPort» and «OperationPort».

February 2002 UML Profilefor EDOC: UML Profile 3-83

3-84

Relationships

Relationship Role(s)
Ports ports
Represents represents

Correspondence of metamodel attributes with UML attributes

Metamodel attribute name |UML attribute name UML attribute owner | Description
name name M odel Element
Tagged Values
Tagged Value name | Type Multiplicity | Description
isSynchronous Boolean 1 default=false
isTransactional Boolean 1 default=false
direction DirectionKind 1
postCondition «enumeration» Status 0.1

Constraints expressed generically

A «Port» must be aggregated into a «Protocol» or a «ProcessComponent», or a

«MultiPort».

Note that the metamodel Interface correspondsin the UML Profileto aUML Classifier
which may or may not by a UML Interface, and that the metamodel OperationPort
corresponds to a UML Operation. However, UML Interface is the recommended model
element to use. Although in the metamodel both Interface and OperationPort may
contain other Port, in the UML Profile these, and their relationships are directly
supported by UML. Neither Interface or OperationPort appear in the constraint below,
as candidate owners for «Port». This allows arbitrary UML classifiers (of any kind) to
be used with CCA. Only the operations of these classifiers will correspond to CCA

elements.

The relationship between the Port and the PortOwner shall have the stereotype
<<initiates>> or the stereotype <<responds>> which shall have the same value as

“direction.”

Formal Constraints Expressed in Terms of the UML Metamodel

context Port

i nv:

éggr egat edOwner - >not Enpt y()

inv:

owner Aggr egation. i sStereoKi nded("initiates")

direction = "Initiates"

UML Profilefor Enterprise Distributed Object Computing

i mplies

February 2002

February 2002

owner Aggr egati on. i sSt er eoKi nded("responds") inplies
direction = "Responds"

def :
-- the owner of the Port
| et aggregatedOwner : Class = owner Aggregation. parti ci pant

def :
| et owner Aggregation : Class =
(associ ati on->associ ati on->connecti on — associ ati on)->
sel ect (anAssoci ati onEnd : Associ ationEnd |
anAssoci ati onEnd. aggregati onKi nd = ak_conposite)
->sel ect (anAssocRol e : Associ ati onRol e|
anAssocRol e->partici pant.i sSt ereoKi nded(«Protocol ») or
anAssocRol e->parti ci pant.i sStereoKi nded(«ProcessConmponent »)
or
anAssocRol e->partici pant..isStereoKi nded(«MiltiPort»))
->any(true)

Diagram Notation
N/A

3.6.3.4 «FlowPort»

Inheritance

Foundation::Core::Class
ECA.::CCA::ComponentSpecification::«Port»
«FlowPort»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor EDOC: UML Profile 3-85

3-86

Relationships

Relationship Role(s)
FlowType _type
TypeProperty constrains
Tagged Values

Tagged Value name | Type Multiplicity |Description

typeProperty Attribute | 0..1 Refer to a «PropertyDefinition» of the owner
«ProcessComponent». When the «ProcessComponent» is
used as a «ComponentUsage», the value held by the
«PropertyValue» in the «ComponentUsage» will be
interpreted as the actual type of the «FlowPort», for its
specific «PortUsage» in the «ComponentUsage».

Constraints expressed generically

The «FlowPort» must reference as its type a DataType, Enumeration,
«CompositeData» or «ExternalDocument» or their specializations.

The typeProperty of «FlowPort», if is specified, it must reference an Attribute
stereotyped as «PropertyDefinition», owned by the same «ProcessComponent» that
owns the «FlowPort». If the initialValue of the «ProperyDefinition» is set, then the
value must be the name of a DataElement, Enumeration, «CompositeData» or
«External Document».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Fl owPort

inv:
type- >not Enpt y()

inv:
typeProperty->i sEnpty() or (
typeProperty. owner = this.aggregatedOaner)

def :
let type : Classifier =
(associ ati on->associ ati on->connection - associ ation)-
>parti ci pant
->select(aClassifier : Classifier|
anEl ement . i sCcl Ki ndOf (Dat aEl enent) or
anEl ement . i sCcl Ki ndOf (Enumer ati on) or
anEl ement . i sSt er eoKi nded(«Conposit eData») or
anEl ement . i sSt er eoKi nded(«Ext er nal Docunent »))

Diagram Notation
N/A

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.6.3.5 «ProtocolPort»

Inheritance

Foundation::Core::Class
ECA.::CCA::ComponentSpecification::«Port»
«Protocol Port»
I nstantiation in amodel

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Protocol Type _uses
Tagged Values
N/A

Constraints expressed generically

A «Protocol Port» must reference a «Protocol», or its specializations, through a
Generalization Relationship, with the «Protocol» as the parent.

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Protocol Port
inv:
general i zati on->not Enpty() and
general i zation. parent ->sel ect (aGeneralizable :
Gener al i zabl eEl ement |
aGeneral i zabl e. i sSt er eoKi nded(" Prot ocol "))

->not Enpt y()

Diagram Notation
N/A

3.6.3.6 «MultiPort»

Inheritance

Foundation::Core::Class
ECA::CCA::ComponentSpecification::«Port»
«MultiPort»

UML Profilefor EDOC: UML Profile 3-87

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Ports owner
Tagged Values

N/A

Constraints expressed generically

All the «Port» aggregated by the «MultiPort», must be «FlowPort» or its
specializations.

Formal Constraints Expressed in Terms of the UML Metamodel
context Multi Port
inv:

ports->forAll (aC ass : Cass |
aCl ass. i sSt ereoKi nded("Fl owPort "))

def :
let ports : Set(Cass) =
(associ ation->sel ect(anAssoci ati onEnd : Associ ati onEnd |
anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)
->associ ati on->connection — associ ati on)
->parti ci pant
->select(aClassifier : Classifier]|
anEl ement . i sSt er eoKi nded(«Port»))

Diagram Notation
N/A

3.6.3.7 UML Operation represents OperationPort

Semantics

The concept of OperationPort in the metamodel, is represented by a standard UML
operation.

The OperationPort is constrained to contain only FlowPorts.

3-88 UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3.6.3.8

The signature, of the UML Operation representing an OperationPort, is derived from

the type of the one and only FlowPort of the OperationPort, with direction="initiates".
For each Attribute of the FlowPort, the UML Operation will have an input Parameter
with type equal to the type of the Attribute in the FlowPort.

For each ownedFlowPort with direction="responds' and postCondition="Success",
then the UML Operation will have return Parameters with same type as the type of the
FlowPort.

All other FlowPort in the OperationPort with direction="responds", correspond to
raisedException Signal of the UML Operation. The structure of the Signal is derived
from the FlowPort type : the Signal will have Attribute with same name and type of the
Attribute of the type of the FlowPort.

Relationships

N/A

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

«Protocol»

Inheritance

Foundation::Core::Class
«Protocol»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor EDOC: UML Profile 3-89

3-90

Relationships
Relationship Role(s)
Ports owner
Protocol Type _uses

Generalization supertype subtypes (only with «Protocol»)
Node nodes
Connection connections

PackageElements

owner ownedElements

Is_a Choreography

is_specialization

ImportElement model Element elementimport
Initiator _initiator
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute name |UML attribute name |UML attribute owner | Description

name name

M odel Element

Tagged Values
N/A

Constraints expressed generically

The supertype of a «Protocol» must be a «Protocol».

The set of all the «Port»s of a «Protocol» is the set of «Port»s or its specializations,
that are aggregated in the «Protocol ».

A «Protocol» may have an Aggregation with at most one «InitiatingRole».

A «Protocol» may have an Aggregation with at most one «RespondingRole».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Protocol

inv: initiatingRole->size() < 2

i nv: respondi ngRol e->size() < 2

inv:

supertype->i senpty() or supertype.isStereoKi nded("Protocol")

def :

-- the Ports in the Protocol : Association conposed in the

Pr ot ocol

let ports : Set(d ass)

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

(associ ation->sel ect(anAssoci ati onEnd : Associ ati onEnd |

anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)
- >associ ati on->connection — associ ation)
->partici pant
->select(aClassifier : Classifier|
anEl ement . i sSt er eoKi nded(«Port»))

def :
let initiatingRole : Class = (association->sel ect (
anAssoci ati onEnd : Associ ati onEnd |
anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)
- >associ ati on->connection — associ ati on)
->partici pant
->select(aClassifier : Classifier|
anEl ement . i sSt er eoKi nded(«InitiatingRol e»))

def :
| et repondi ngRol e: Cl ass = (associ ation->sel ect(
anAssoci ati onEnd : Associ ati onEnd |
anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)
->associ ati on->connection — associ ati on)
->parti ci pant
->select(aClassifier : Classifier]|
anEl ement . i sSt er eoKi nded(«Respondi ngRol e»))

Diagram Notation
N/A

3.6.3.9 «lnitiatingRole»

Inheritance

Foundation::Core::Class

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor EDOC: UML Profile

391

Relationships
Relationship Role(s)
Initiator _initiator

Correspondence of metamodel attributes with UML attributes

M etamodel attribute name |UML attribute name |UML attribute owner

Description

name

name Model Element

3.6.3.10

3-92

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context InitiatingRole

Diagram Notation
N/A

«RespondingRol e»

Inheritance

Foundation::Core::Class
«RespondingRol e»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

Relationships
Relationship Role(s)
Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute name |UML attribute name |UML attributeowner |Description

name

name M odel Element

3.6.3.11

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
context RespondingRole

Diagram Notation
N/A

UML Classifier representsInterface

Inheritance
N/A

I nstantiation in a model

Concrete subtypes of classifier.

Semantics

The metamodel element Interface corresponds to the UML Classifier.
Foundation::Core::Classifier

A metamodel Interface can only contain metamodel OperationPort, and OperationPort
can only contain constrained FlowPort.

An Classifier Classifier contains UML Operation features, corresponding to the
OperationPort of the metamodel Interface.

The metamodel FlowPort, owned by OperationPort, are mapped into the UML
Parameter of the UML Operation. Parameter include the return type, and alternate
exceptional result types.

UML Profilefor EDOC: UML Profile 3-93

The metamodel FlowPort of the OperationPort must comply with constraints, ensuring
that the OperationPort FlowPort can be mapped to the Parameter of the UML
Operation.

The metamodel Interface can only have OperationPort and FlowPort, because only
these can be mapped to UML Operation. The OperationPort and FlowPort of Interface,
can only have direction="responds".

The «InitiatingRole», initiator of the Classifier, is the role that invokes operations in
the Classifier. The «RespondingRole», responder of the Classifier, is the role that
implements the operations in the Classifier.

Relationships

Relationship Role(s)

Protocol Type _uses

Generalization supertype subtypes (only with Classifier)
Node nodes

Connection connections

PackageElements owner ownedElements

Is_a Choreography is_specialization

Initiator _initiator

Responder _responder

Correspondence of metamodel attributes with UML attributes

Metamodel attribute name |UML attribute name |UML attribute owner | Description

name name M odel Element

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

3-94 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.6.3.12 «PropertyDefinition»

Inheritance

Foundation::Core::Attribute
«PropertyDefinition»

I nstantiation in amodel

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Properties properties
Property Type type
TypeProperty typeProperty
ValueFor fills

Correspondence of metamodel attributes with UML attributes

Metamodel attribute name |UML attribute name |UML attribute owner | Description
name name ModelElement
initial initial Value Attribute
isLocked changeability Structural Feature
Tagged Values

N/A

Constraints expressed generically

The owner of an Attribute stereotyped «PropertyDefinition» must be stereotyped as
«ProcessComponent» or its specializations.

The type of an Attribute stereotyped «PropertyDefinition» must be set, and be a
DataType, or an Enumeration, or a Class stereotyped as «CompositeData» or its
specializations.

If the «PropertyDefinition» is the typeProperty of a «FlowPort», owned by the same
«ProcessComponent» that owns the «PropertyDefinition», then if the initial Value of the
«ProperyDefinition» is set, then the value must be the name of a DataElement,
Enumeration, «CompositeData» or «External Document».

UML Profilefor EDOC: UML Profile 3-95

Formal Constraints Expressed in Terms of the UML Metamodel

context PropertyDefinition

i nv:
owner - >not Enpty() and
owner . i sSt ereoKi nded("ProcessConponent")
inv:
type->not Enpty() and (
type. ocl I sTypeOf (Dat aType) or

type. ocl I sTypeOf (Enuneration) or
type.i sStereoKi nded("ConpositeData"))

-- 0jo constrain initial Val ue when typeProperty of a Fl owPort

Diagram Notation
N/A

3.6.3.13 «enumeration» DirectionKind

I nstantiation in a model

Concrete

Semantics

Corresponds to the enumeration named "DirectionType" in the metamodel.

The DirectionKind enumeration in the metamodel isa UML Enumeration.

Enumeration Literals

Corresponding to the enumeration literals of same name in the metamodel.
Initiates

Responds

3.6.3.14 «enumeration» GranularityKind

I nstantiation in a model

Concrete

Semantics

Corresponds to the enumeration named “ GranularityKind” in the Meta-model, used by
the metaatribute named "granularity”, of ProcessComponent.

3-96 UML Profilefor Enterprise Distributed Object Computing February 2002

3

The set of candidate values for "granularity” in the metamodel, has been formalized in
the UML Profile as an Enumeration named "GranularityKind".

Specializations of CCA may define specializations of GranularityKind with additional
EnumerationLiterals.

Enumeration Literals

Corresponding to the enumeration literals of same name and semantics, in the
metamodel.

Program
Owned
Shared

3.6.4 Sereotypes for Choreography

<<metaclass>> 0.1 n <<metaclass>>
StateMachine > — Transition
(from State_Machines) | +stateMachine Hransitions | (from State_Machines)
A
‘ <<stereotype>>

<<stereotype>>
Choreography

<<metaclass>>
CompositeState
(from State_Machines)

<<enumeration>> <<metaclass>> \A
Status Pseudostate
+ Success (from State_Machines) ‘ <<stereotype>>
+ BusinessFailure ‘
+ TimeoutFailure <<stereotype>>
+ TechnicalFailure <<metaclass>> PortActivity
+ AnyFailure FinalState
+ AnyStatus (from State_Machines) <<taggedValue>> + represents [1] : Port

Figure 3-17 Stereotypes for Choreography

Applicable Subset
StateM achine, CompositeState, Transition, Pseudostate, Final State

3.6.4.1 «Choreography»
Inheritance

Behavioral_Elements::State Machines::StateMachine
«Choreography»

February 2002 UML Profilefor EDOC: UML Profile 3-97

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Is_a Choreography is_generalization
Nodes _node
Connections _connections
Tagged Values
N/A

Constraints expressed generically

The context of a StateM achine stereotyped as «Choreography» will be a Classifier
stereotyped as «ProcessComponent» or a Class stereotyped as «Protocol» or a
Subsystem stereotyped as <<CommunityProcess>>, or their specializations.

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Choreography

inv:

cont ext - >not Enpt y() and (

cont ext - >i sSt er eoKi nded(«ProcessConponent ») or
cont ext - > sSt er eoKi nded(«Protocol ») or
cont ext - >i sSt er eoKi nded(«Comruni t yProcess»))
Diagram Notation

N/A

3.6.4.2 «PortActivity»

Inheritance

Behavioral_Elements::State Machines::CompositeState
«PortActivity»

I nstantiation in a model

Concrete

3-98 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Semantics

Corresponds to the element of same name in the metamodel.

When a PortActivity in the metamodel references as "represents" a FlowPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with no subvertex.

When the PortActivity in the metamodel references as "represents' a MultiPort, then it
corresponds to a «PortActivity» stereotype of CompositeState with subvertexes
«PortActivity» corresponding to the «FlowPort» of the «MultiPort».

When the PortActivity in the metamodel references as "represents’ a «Protocol Port»,
then it corresponds to a «PortActivity» stereotype of CompositeState.

To choreograph the «Port» in the "represents’ «Protocol Port», in the context of the
«PortActivity», then «PortActivity» subvertexes can be nested, corresponding to the
«Port» of the «Protocol» of the "represents” «Protocol Port».

Relationships

Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Represents _represents

Correspondence of metamodel attributes with UML attributes

M etamodel UML UML Description

attribute name | attribute name |attribute owner

name name M odel Element Initialize equal to the name of
the "“represents’ «Port»

Tagged Values
Tagged Type Multiplicity | Description
Value name
represents Class, constrained to «Port» or its 1
specializations

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel

context PortActivity

UML Profilefor EDOC: UML Profile 3-99

Diagram Notation
N/A

3.6.4.3 UML Transition

Inheritance
N/A

I nstantiation in a model

Concrete

Semantics

The metamodel element Transition corresponds to the UML model element of the
same name.

Behavioral_Elements::State Machines::Transition

The "preCondition" metaattribute correspondsto a UML Guard whose expression
body will evaluate true under the same conditions as it would the "preCondition"

metaattribute.

Relationships
Relationship Role(s)
Target incoming
Source outgoing
Connections connections

Tagged Values

N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

3-100 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.6.4.4 UML Pseudostate

Inheritance
N/A

I nstantiation in a model

Concrete

Semantics

The metamodel element Pseudostate corresponds to the UML model element of the

same name.

Behavioral_Elements::State Machines:: Pseudostate

CCA Pseudostate maps to UML Pseudostate except when the CCA-metamodel
attribute "kind" of the Pseudostate has value "Success" or "Failure",

that map to

stereotypes of UML Final State. Please see stereotypes «Success» and «Failure», below.

The semantics of the metamodel element Pseudostate are equivalent to the semantics of
UML Pseudostate with corresponding "kind" values.

M etamodel kind UML kind :
Foundation::Data Types::PseudostateKind
choice pk_choice
fork pk_fork
initial pk_initial
join pk_join
Relationships
Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Tagged Values
N/A

Constraints expressed generically

N/A

UML Profilefor EDOC: UML Profile

3-101

3-102

3.6.4.5

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

«Success»

Inheritance
Behavioral_Elements::State_Machines::Fina State
«Success»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.6.4.6

3.6.4.7

«Failure»

Inheritance
Behavioral_Elements::State_Machines::Fina State
«Failure»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Nodes nodes
Target target
Source source
PortUsages portsUsed
Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

«enumeration» Status

I nstantiation in a model

Concrete

Semantics

Corresponds to the enumeration of same name in the metamodel.

UML Profilefor EDOC: UML Profile

3-103

Enumeration Literals

Corresponding to the enumeration literals of the enumeration of same name in the
metamodel,

Success
BusinessFailure
TimeoutFailure
Technica Failure
AnyFailure
AnyStatus

3.6.5 Sereotypes for Composition

<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
Collaboration ClassifierRole Class AssociationRole
(from Collaborations) (from Collaborations (from Core) (from Collaborations)
A AYX A A
\ <<stereotype>> <<stereotype>> | \
‘<<stereotype>> ‘ . represents [1..1] ‘ <<stereotype>>
\ <<taggedValue>>
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
Composition ComponentUsage PortConnector Connection
Subsystem <<metaclass>> <<metaclass>>
(from Model_Management) Binding Constraint
(from Core) (from Core)
A A A
<<stereotype>r <<stereotype>> ‘ <<stereotype>>‘
<<stereotype>> <<stereotype>> <<stereotype>>
CommunityProcess ContextualBinding PropertyValue

Figure 3-18 Stereotypes for Composition

Applicable Subset

Collaboration, ClassifierRole, AssociationRole, Constraint, Binding.

3-104 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.5.1 «Composition»

Inheritance

Behavioral_Elements::Collaborations::Collaboration
«Composition»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)

Is_a Composition is_generalization

Generalization parent child { only with «Compaosition»}
Componentl Usages owner

Nodes _nodes

Connections _connections

Bindings owner

PackageElements owner ownerElements

UML Namespace owner of «PortConnector» | ClassifierRoles

Tagged Values
N/A

Constraints expressed generically

The supertype of a «Composition» must be a «Composition».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Conposition

i nv:
supertype->i senpty() or supertype.isStereoKi nded(" Conposition")

Diagram Notation
N/A

February 2002 UML Profilefor EDOC: UML Profile 3-105

3.6.5.2 «ComponentUsage»

Inheritance

Behavioral Elements::Collaborations::ClassifierRole

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Nodes nodes
ComponentUsages uses
Fills fills
PortUsages extent
Configuration owner

Correspondence of metamodel attributes with UML attributes

M etamodel attribute UML attribute UML attribute Description
name name owner

name name M odel Element
Tagged Values

N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Conponent Usage

Diagram Notation
N/A

3-106 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.5.3 «PortConnector»

Inheritance

Behavioral_Elements::Collaborations::ClassifierRole
«PortConnector»

I nstantiation in amodel

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
PortUsages PortsUsed, extent
Represents _represents
Target target

Source source

Nodes nodes

Correspondence of metamodel attributes with UML attributes

M etamodel UML UML Description
attribute name attribute name attribute owner

name name M odel Element

Tagged Values

N/A

Constraints expressed generically

If the «Port» used by the «PortConnector» is a «FlowPort», and the «FlowPort»
specifies a "typeProperty" (a «PropertyDefinition» in the owner «ProcessComponent»),
then the actual type of the «PortConnector» will be a DataType, Enumeration,
«CompositeData» or «ExternalDocument», with the name equal to the value of the
«PropertyValue» of the «ComponentUsage» corresponding to the
«PropertyDefinition» in the used «ProcessComponent».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Port Connect or

February 2002 UML Profilefor EDOC: UML Profile 3-107

3-108

3.6.5.4

Diagram Notation
N/A

«Connection»

Inheritance

Behavioral _Elements::Collaborations::AssociationRole
«Connection»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of named "Connection” in the metamodel.

If one of the «Connection»s link participants is a «PortConnector» that "uses' a UML
Classifier (corresponding to ametamodel Interface), then the UML Operation that will
be invoked on the Classifier, is identified by a UML Message of a UML Interaction in
the «Composition». The UML Message will have an action attribute initialized with a
CallAction on the UML Operation.

Relationships
Relationship Role(s)
Connections connections
Source outgoing
Target incoming
Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Connection

Diagram Notation
N/A

UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.5.5 «PropertyValue»

Inheritance

Foundation::Core::Constraint

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
Configuration configuration
ValueFor _fills
Tagged Values
N/A

Constraints expressed generically

If the «PropertyValue» configures the value of a «PropertyDefinition» that is the
"typeProperty" of a «FlowPort», then the value configured by the «PropertyValue»
must be the name of a DataType, Enumeration, «CompositeData» or

«External Document».

A «PropertyValue» is an ownedElement of a «Composition» as Namespace.

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext PropertyVal ue

inv:
nanespace- >not Enpty() and
namespace. i sSt er eoKi nded(" Conposi ti on")

Diagram Notation
N/A

3.6.5.6 «Contextual Binding»

Inheritance

Foundation::Core::Binding

February 2002 UML Profilefor EDOC: UML Profile 3-109

3-110

3.6.5.7

«Contextual Binding»

I nstantiation in a model

Concrete

Semantics
Corresponds to the element of same name in the metamodel.

A «ContextualBinding» is an ownedElement of a «Composition».

The "client" of a ContextualBinding is a «ComponentUsage» in the «Composition».

The "supplier" of a ContextualBinding is a «ProcessComponent».

In the «Composition», the «ProcessComponent» will be used as the "uses’ for the

«ComponenUsage».

Relationships
N/A

Tagged Values
N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Cont ext ual Bi ndi ng

Diagram Notation
N/A

«CommunityProcess»

Inheritance

M odel M anagement:: Subsystem
«CommunityProcess»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

Relationships
N/A

Tagged Values
N/A

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Conmuni t yProcess

Diagram Notation
N/A

3.6.6 DocumentModel «profile» Package

The metamodel elements named Attribute, DataType and Enumeration correspond to
the UML model elements of the same name and are not stereotyped.

The metaattribute named "initial Value" of the metamodel Attribute, corresponds to the
attribute of same name of UML Attribute.

The metaattribute named "required” and "many" of the metamodel Attribute, are
combined as a UML Multiplicity. The MultiplicityRange, will have the "lower"
attribute value equal to 0O, if the corresponding metamodel Attribute has the "required”
meta-attribute equal to false, and greater than O, if "required” is true. The
MultiplicityRange will have the "upper" attribute value equal to 1, if the corresponding
metamodel Attribute has the "many" meta-attribute equal to false, and and greater than
1, if "many" is true.

The metamodel element named Enumeration has a metaattribute named "initial" and
type EnumerationValue. In the UML Profile, the responsibility of specifying an initial
value, is delegated to the UML Attribute with type equal to the Enumeration. The
initialValue attribute, of type Expression, in UML Attribute will be used to specify
the default initial value of Enumeration.

The metamodel element named Enumeration Value corresponds to the UM L model
element named EnumerationLiteral.

The metamodel Attribute and UML Attribute correspond to each other completely,
with the exception of the meta-attribute named "isByValue'.

To represent "isByValue", a TaggedDefinition of same name and type Boolean is
defined, to be applied on UML Attribute.

UML Profilefor EDOC: UML Profile 3-111

3-112

The TaggedDefinition is defined without creating a Stereotype of Attribute.

<<metaclass>> <<metaclass>>
Class Constraint
(from Core) (from Core)
7 X |
<<stereotype>>/ \<<stereotype>> <<stereotype>>‘
/ \ |
/ |
<<stereotype>> <<stereotype>> <<stereotype>>
CompositeData ExternalDocument Datalnvariant
<<taggedValue>> + mimeType : String + isOnCommit : Boolean =false
<<taggedValue>> + specURL : String
<<taggedValue>> + externalName : String
Figure 3-19 Stereotypes for DocumentModel
3.6.6.1 «CompositeData»
Inheritance

Foundation::Core::Class
«CompositeData»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

The «isByValue» TaggedDefinition can be applied to UML Attribute feature of
«CompositeData».

Relationships
Relationship Role(s)
Generalization supertype subtypes {only with «CompositeData»}
Property Type type

AttributeType type
DataAttribute owner
DataConstraint constrainedElement
FlowType type
PackageContent ownedElements
ImportElement importedElement

Tagged Values

N/A

UML Profilefor Enterprise Distributed Object Computing February 2002

Constraints expressed generically

The supertype of an «CompositeData» must be a «CompositeData.

The type of Attributes of «CompositeData» will be a DataType, an Enumeration, or a
Class stereotyped as «CompositeData», or a DataType stereotyped
«Externa Document».

Formal Constraints Expressed in Terms of the UML Metamodel
cont ext ConpositeData

i nv:
supertype->i senpty() or
supertype. i sStereoKi nded(" ConpositeData")

i nv:
feature->select(aFeature : Feature | aFeature.isOCLTypeO (
Attribute))
->col l ect(aFeature : Feature | aFeature.ocl AsType(
Attribute).type)
->forAll (aClassifier : Classifier |
aCl assifier.isCcl KindO(DataType) or
aCl assifier.isCcl KindOf(Enuneration) or
aCl assifier.isStereoKi nded("ConpositeData") or
aCl assifier.isStereoKi nded("External Docunent"))

Diagram Notation
N/A

3.6.6.2 "isByValue" Tagged Definition

The metamodel Attributes and UML Attributes correspond to each other completely,
with the exception of the meta-attribute named "isByValue".

To represent the metamodel attribute named "isByValue", a Tagged Definition of
named "isByValue" and type Boolean is defined, to be applied on UML Attribute.

The Tagged Definition is defined without creating a Stereotype of Attribute.

Tagged Value name Type Multiplicity Description

isByValue Boolean 0.1 default = true

3.6.6.3 «Datalnvariant»
Inheritance

Foundation::Core::Constraint
«Datal nvariant»

February 2002 UML Profilefor EDOC: UML Profile 3-113

3-114

3.6.6.4

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships
Relationship Role(s)
DataConstraint constrains

Correspondence of metamodel attributes with UML attributes

Metamodel attribute |UML attribute UML attribute |Description
name name owner

expression body Congtraint

Tagged Values

Tagged Value name | Type Multiplicity Description

isOnCommit Boolean 1 default=false

Constraints expressed generically

N/A

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Datal nvari ant

Diagram Notation
N/A

«External Document»

Inheritance

Foundation::Core::DataType
«External Document»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.6.7 UML

Relationships
Relationship Role(s)
Generalization supertype subtypes {only with «ExternalDocument»}
Property Type type
AttributeType type
DataAttribute owner
DataConstraint constrainedElement
FlowType type
PackageContent ownedElements
ImportElement importedElement
Tagged Values
Tagged Value name | Type Multiplicity Description
mimeType String 0.1
specURL String 0.1
externalName String 0.1

Constraints expressed generically

N/AFormal Constraints Expressedin Termsof the UML Metamodel

cont ext External Docunment

Diagram Notation
N/A

Model Management Package

There is no «profile» Package in the UML Profile for CCA, corresponding to the
Model Management Package of the metamodel.

All the concrete metamodel elements have counterpartsin UML, and therefore no
stereotypes are required.

The metamodel elements named Package and ElementImport correspond to the UML
model elements of the same name.

3.6.8 Relationships

This section specifies the correspondence between associations defined in the CCA
Meta-model and associations defined in the UML Meta-model. The relationship name
is the same as that found in the CCA Model diagrams (detail level). This
correspondence is shown in the tables below, with a header for each relationship in the

UML Profilefor EDOC: UML Profile 3-115

metamodel. This section provides detailed information for those implementing
transformations between UML and MOF CCA tools, it is not required to use or
understand CCA.

How to use this section.

Each relationship between two concepts in the metamodel, or their specializations, is
represented with a UML relationship(s), and in some cases as a taggedValue, or by
relating through UML Association.

The tables show the Left Hand and Right Hand sides of relationships, with the role
names, the actual model elements at the ends of the relationship, and the
specializations or stereotypes of interest, related through the relationship - directly or
by inheritance. Multiple related metamodel elements or stereotypes may appear, at any
side of relationships used by multiple elements.

The semantics of each row and column in the table are

® For each relationship in the metamodel, there is one or more tables, each table
showing a particular mapping for that relationship. Each table has two lines — one
for the CCA model (MOF) and one for the UML model (UML)

® For each relationship mapping in the metamodel :

® thereis one row, labeled MOF, that describes the relationship in the metamodel. Its

columns mean :

"LeftHandSide" in MOF rows, it names the MOF metamodel element that

participates or inherits the relationship whose UML mapping we want to express.

It may be the same as "LeftHandSide related”, or a subtype of it. There may be

multiple names, for various subtypes of polymorphically related metamodel

elements.

« "LeftHandSide related”: in MOF rows, it names the actual metamodel element
referenced by the relationship. May be the same as "L eftHandSide", or a
supertype of it.

« "LeftHandSide role name": in MOF rows, it names the relationship role on the
L eftHandSide.

* "RightHandSide role name": in MOF rows, it names the relationship role on the
RightHandSide.

» "RightHandSiderelated": in MOF rows it names the other actual M OF metamodel
element referenced by the relationship. May be the same as 'RightHandSide", or a
supertype of it.

* "RightHandSide": in MOF rows, it names the other metamodel element that
participates or inherits the relationship whose UML mapping we want to express.
It may be the same as in "RightHandSide related", or a subtype of it. There may
be multiple names, for various subtypes of polymorphically related metamodel
elements.

® row labeled 'UML' defining the corresponding UML Meta-model relationship.
There may be additional tables for various UML mappings, describing alternative
representations of the metamodel relationship in UML. The UML columns mean:

3-116 UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

"LeftHandSide": In UML rows, it names the UML stereotype corresponding to
the LHS MOF metamodel element. There may be multiple names, for various
stereotypes and specializations.

"LeftHandSide related": In UML rows, it names the baseClass of the LHS UML
stereotype, or the supertype of the baseClass, that is the actual UML model
element referenced by the relationship.

"LeftHandSide role name": in UML rows, it names the relationship role on the
LeftHandSide

"RightHandSide role name": in UML rows, it names the relationship role on the
RightHandSide ".

"RightHandSide related": In UML rows, it names the baseClass of the RHS UML
stereotype, or the supertype of the baseClass, that is the actual UML model
element referenced by the relationship.

"RightHandSide": In UML rows, it names the UML stereotype corresponding to
the RHS MOF metamodel element. There may be multiple names, for various
stereotypes and specializations.

UML Profilefor EDOC: UML Profile 3-117

3.6.8.1 AttributeType

MOFor |LeftHandSide LeftHandSide | LeftHandSide| RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF Attribute Attribute _type type DataElement DataType or
Enumeration or
CompositeData
External Document
UML «Property Attribute typedFeature type Classifier DataType or
Definition» Enumeration or
«CompositeData»
«External Document»
3.6.8.2 Bindings
MOFor |LeftHandSide | LeftHandSide | LeftHandSide | RightHandSide | RightHandSide |RightHandSide
UML related role name role name related
MOF Composition Composition owner bindings ContextualBinding | ContextualBinding
UML «Composition » | Namespace namespace ownedElement Model Element «Contextual Binding»
3.6.8.3 BindsTo
MOF or |LeftHandSide LeftHandSide LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF ContextualBinding ProcessComponent | _bindsTo bindsTo ProcessComponent | ProcessComponent
UML «Contextual Binding» Model Element supplier supplier Model Element «ProcessComponent»
Dependency
3.6.8.4 Configuration
MOFor |LeftHandSide LeftHandSide |LeftHandSide RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF ComponentUsage | ComponentUsage | owner configuration PropertyValue PropertyValue
UML «ComponentUsage» | M odel Element constrained constraint Constraint «PropertyValue»
Element
3.6.8.5 Connectionsin Choreography
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF Choreography Choreography _choreography connections AbstractTransition | Transition
UML «Choreography» | StateMachine stateM achine transitions Transition Transition
3-118 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.8.6 Connectionsin Composition

MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF Composition Choreography _choreography _connections AbstractTransition | Transition
UML «Composition» Collaboration namespace ownedElement AssociationRole «Connection»
3.6.8.7 DataAttribute
MOFor |LeftHandSide |LeftHandSide LeftHandSide | RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF CompositeData | CompositeData owner feature DataElement Attribute
UML «CompositeData» | Classifier owner feature Feature Attribute
3.6.8.8 DataConstraint
MOFor |LeftHandSide |LeftHandSide |LeftHandSide|RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF Datal nvariant Datal nvariant constraints constrained- DataElement DataElement subtypes:
Element DataType or
Enumeration or
CompositeData or
External Document
UML «Datalnvariant» | Constraint constraint constrained- M odel Element DataType or
Element Enumeration or
«CompositeData» or
«External Document»
3.6.8.9 DataGeneralization
MOFor |LeftHandSide |LeftHandSide |LeftHandSide | RightHandSide | RightHandSide |RightHandSide
UML related role name role name related
MOF CompositeData CompositeData | supertype subtypes CompositeData CompositeData
UML «CompositeData» | Generalizable generalization. | specialization. Generalizable- «CompositeData»
Element parent child Element
3.6.8.10 Fills
MOFor |LeftHandSide LeftHandSide L eftHandSide | RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF ContextualBinding | ProcessComponent | _fills fills Process ProcessComponent
Component
UML «Contextual Binding» | Model Element client fills M odel Element «Process
Dependency Component»
February 2002 UML Profilefor EDOC: UML Profile 3-119

3.6.8.11 FlowType

MOF or |LeftHandSide |LeftHandSide L eftHandSide | RightHandSide | RightHandSide RightHandSide
UML related role name role name related
MOF FlowPort FlowPort _ type type DataElement DataType or Enumeration
or CompositeData or
External Document
UML «FlowPort» ClassifierRole association. association. ClassifierRole DataType or Enumeration
(indirectly thru association. association. (indirectly thru or «CompositeData» or
AssociationEnd and connection. connection. AssociationEnd and «External Document»
Association indirectly | participant partici pant Associationindirectly
thru thru
AssociationEndRole AssociationEndRoleand
and AssociationRole€) AssociationRole)
3.6.8.12 Generalization
MOF or |LeftHandSide LeftHandSide LeftHandSide RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessComponent Choreography supertype subtypes Choreography ProcessComponent
UML «ProcessComponent» Generalizable generalization. specialization. Generalizable «ProcessComponent»
Element parent child Element
MOF or |LeftHandSide | LeftHandSide LeftHandSide RightHandSide RightHandSide RightHandSide
UML related role name role name related
MOF Protocol Choreography supertype subtypes Choreography Protocol
UML «Protocol» Generalizable generalization. parent | specialization. Generalizable «Protocol»
Element child Element
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF Community Choreography supertype subtypes Choreography CommunityProcess
Process
UML «Community Generalizable generalization. specialization. Generalizable «CommunityProcess»
Process» Element parent child Element
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF Interface Choreography supertype subtypes Choreography Interface
UML Classifier Generalizable- generalization. specialization. Generalizable Classifier
Element parent child Element
3-120 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.8.13 ImportElement

MOF or |LeftHandSide |LeftHandSide |LeftHandSide RightHandSide RightHandSide RightHandSide
UML related role name role name related
MOF Elementimport Element Import elementimport model Element PackageContent Package or DataType
or Enumeration or
CompositeData or
External Document or
Protocol or Interface or
Process Component or
CommunityProcess
UML Elementimport Elementl mport elementImport importedElement Model Element Package or DataType
or Enumeration or
«CompositeData» or
«Protocol» or Classfier
or «ProcessComponent»
or «CommunityProcess»
3.6.8.14 Initiator
MOFor |LeftHandSide | LeftHandSide | LeftHandSide | RightHandSide | RightHandSide RightHandSide
UML related role name role name related
MOF Protocol or Protocol _initiator initiator InitiatingRole InitiatingRole
Interface
UML «Protocol» or Classifier association. association. Classifier «InitiatingRol e»
Classifier association. association.
connection. connection.
participant participant
3.6.8.15 Is a Choreography
MOFor |LeftHandSide LeftHandSide | LeftHandSide | RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessComponent Process is specialization |is generalization Choreography Choreography
or Protocol or Component
Interface
UML «ProcessComponent» | ModelElement | context behavior StateM achine «Choreography»
or «Protocol» or
Classifier
3.6.8.16 Is a Composition
MOFor |LeftHandSide LeftHandSide |LeftHandSide | RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessComponent Process is specialization |is generalization | Composition Composition
CommunityProcess Component
UML «ProcessComponent» | Classifier represented collaboration Collaboration «Composition»
«ComunityProcess» Classifier

February 2002

UML Profilefor EDOC: UML Profile

3121

3.6.8.17 Nodesin Choreography

MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate
UML «Choreography» | StateMachine container. top.subvertex StateVertex «PortActivity»or
stateM achine top.subvertex. «Success» or
container. subvertex... «Failure» or
container. ... Pseudostate
stateM achine
3.6.8.18 Nodesin Composition
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF Choreography Choreography _choreography _nodes Node PortActivity or
Pseudostate
UML «Choreography» | Composition namespace ownedElement ClassifierRole «PortActivity» or
«Success» or
«Failure» or
Pseudostate
3-122 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.8.19 PackageElements

MOF or |LeftHandSide LeftHandSide | LeftHandSide |RightHandSide |RightHandSide RightHandSide
UML related role name role name related
MOF Package Package owner ownedElements PackageContent Package or
ProcessComponent DataType or
Protocol Enumeration or
Interface CompositeData or
CommunityProcess External Document or
Protocol or Interface or
ProcessComponent or
CommunityProcess
UML Package Namespace owner ownedElement ModelElement Package or DataType or
«ProcessComponent» Enumeration or
«Protocol» «CompositeData» or
Classifier «Protocol» or Classifier
«CommunityProcess» or «ProcessComponent»
or «CommunityProcess»
indirectly through
behavior.top.subvertex
3.6.8.20 Ports
MOFor |LeftHandSide LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessComponent | PortOwner owner ports Port FlowPort or
or Protocol or Protocol Port or
MultiPort * MultiPort
UML «ProcessComponent | Classifier association. association. Classifier «FlowPort» or
» or «Protocol» or | (indirectly thru association. association. (indirectly thru «Protocol Port» or
«MultiPort»* AssociationEnd connection. connection. AssociationEnd «MultiPort»
and Association) | participant participant and A ssociation)
the Association
may be
stereotyped as
«initiates» or
«responds»

February 2002

(*) Constrained to «FlowPort». See Stereotype definitions, in sections above.

Additional Notes:

The MOF row is the description of the relationship in the metamodel:

The ProcessComponent, Protocol and MultiPort inherits from PortOwner, and
therefore has arole ‘owner' in a relationship with Port, which participates in the
relationship with the role name 'ports. Specific subtypes of Port are FlowPort,
Protocol Port, OperationPort and MultiPort, that are related with ProcessComponent
through the relationship inherited from Port.

The UML row identifies the UML relationships to represent the relationship in the

metamodel,

above.

UML Profilefor EDOC: UML Profile

3-123

The stereotypes «ProcessComponents, «Protocol» and «M ultiPort», corresponding
to the metamodel elements of the same name, has a baseClass inheriting from
Classifier, and therefore may be the participant in an AssociationEnd of a UML
Association, with Classifier as the participant of the other AssociationEnd. The
stereotypes with baseClass subtype of Classifier, «Port», «FlowPort»,

«Protocol Port», and «M ultiPort», corresponding to the metamodel elements of same
name, are related with «ProcessComponent» through the said relationships with
UML AssociationEnd and UML Association. MultiPort may only aggregate

FlowPort.
MOFor |LeftHandSide LeftHandSide | LeftHandSide | RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessComponent | PortOwner owner ports Port OperationPort
or Protocol or
Interface
UML «ProcessComponent | Classifier owner feature Feature Operation
» or «Protocol» or
Classifier
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF OperationPort PortOwner owner ports Port Exactly one
FlowPort with
direction
="InitiatesResponds"
UML Operation Behavioral Feature | behavioral Feature | parameter Parameter For each attribute of
the «FlowPort».type
a Parameter with
kind=pdk_in and
Parameter.type=
the type of the
Attribute
MOF or |LeftHandSide |LeftHandSide LeftHandSide RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF OperationPort PortOwner owner ports Port At most one FlowPort
with
direction="Responds" and
postCondition="Success"
UML Operation BehavioralFeature | behavioralFeature | parameter Parameter Parameter with
Parameter.type=
FlowPort.type and
kind=pdk_return
3-124 UML Profilefor Enterprise Distributed Object Computing February 2002

MOF or |LeftHandSide LeftHandSide LeftHandSide |RightHandSide RightHandSide RightHandSide

UML related role name role name related

MOF OperationPort PortOwner owner ports Port with FlowPort

direction="Responds’
and postCondition<>
"Success'

UML Operation BehavioralFeature | context raisedSignal Signal Signal with feature =
«FlowPort».type.
feature

MOFor |LeftHandSide |LeftHandSide |LeftHandSide | RightHandSide | RightHandSide |RightHandSide

UML related role name role name related

MOF Interface PortOwner owner ports Port OperationPort

UML Classifier Classifier owner feature Feature Operation

A metamodel Interface, owner of OperationPort, owner of FlowPort, map in the UML
Profile, to aUML Classifier, owner of UML Operation, with UML Parameter with the
type corresponding to the type of the metamodel FlowPort.

MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide

UML related role name role name related

MOF OperationPort PortOwner owner ports Port FlowPort

UML Operation BehavioralFeature | behavioralFeature | parameter Parameter Parameter

3.6.8.21 PortUsagesin Choreography

MOFor |LeftHandSide LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide

UML related role name role name related

MOF ProcessComponent UsageContext extent portsUsed PortUsage PortActivity or

or Protocol Pseudostate

UML «ProcessComponent» | Model Element indirectly indirectly through | StateVertex «PortActivity» or

or «Protocol» indirectly through behavior. indirectly through | Pseudostate or
indirectly through through container. top.subvertex StateMachine «Success» or
«Choreography» StateM achine stateM achine. «Failure»
context indirectly through
«Choreography»

MOFor |LeftHandSide |LeftHandSide LeftHandSide | RightHandSide | RightHandSide | RightHandSide

UML related role name role name related

MOF PortActivity UsageContext extent portsUsed PortUsage PortActivity or
Pseudostate

UML «PortActivity» CompositeState container subvertex StateVertex «PortActivity» or
Pseudostate or
«Success» or
«Failure»

February 2002

UML Profilefor EDOC: UML Profile

3-125

3.6.8.22 PortUsagesin Composition

MOF or |LeftHandSide LeftHandSide |LeftHandSiderole | RightHandSiderole | RightHandSide |RightHandSide
UML related name name related
MOF ProcessComponent UsageContext extent portsUsed PortUsage PortConnector
UML «ProcessComponent» | Classifier indirectly through indirectly through ClassifierRole «PortConnector»
indirectly through indirectly through | _representedClassifier | owner. indirectly through | indirectly through
«Composition» Collaboration . ownedElements representedClassifier Collaboration «Composition»
or owner.owner
MOF or |LeftHandSide |LeftHandSide LeftHandSide |RightHandSide |RightHandSide RightHandSide
UML related role name role name related
MOF Component Usage | UsageContext extent portsUsed PortUsage PortConnector
UML «Component ClassifierRole association. association. ClassifierRole «PortConnector»
Usage» (indirectly thru association. association. (indirectly thru
AssociationEndRole connection. connection. AssociationEndRole
and AssociationRole) | participant participant and AssociationRole)
MOF or |LeftHandSide LeftHandSide LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF PortConnector UsageContext extent portsUsed PortUsage PortConnector
UML «PortConnector» ClassifierRole association. association. ClassifierRole «PortConnector»
(indirectly thru association. association. (indirectly thru
AssociationEndRole connection. connection. AssociationEndRole
and AssociationRole) | participant participant and
AssociationRole)
3-126 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.8.23 Properties

MOFor |LeftHandSide |LeftHandSide |LeftHandSide | RightHandSide | RightHandSide RightHandSide

UML related role name role name related

MOF Process Process component properties PropertyDefinition PropertyDefinition

Component Component
UML «Process Classifier owner feature Structural Feature «Property
Component» Attribute Definition»
3.6.8.24 PropertyType

MOF or |LeftHandSide L eftHandSide LeftHandSide |RightHandSide |RightHandSide |RightHandSide

UML related role name role name related

MOF PropertyDefinition PropertyDefinition _type type DataElement DataType or
Enumeration or
CompositeData
External Document

UML «PropertyDefintion» Attribute typedFeature type Classifier DataType or
Enumeration or
«CompositeData»
«ExternalDocument»

3.6.8.25 Protocol Type

MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide |RightHandSide

UML related role name role name related

MOF Protocol Port Protocol Port _uses uses Protocol Protocol

UML «Protocol Port» Generalizable specialization. generalization. Generalizable «Protocol»

Element child parent Element

3.6.8.26 Representsin Choreography

February 2002

The metamodel element Choreography is represented by a UML StateMachine, where
a PortActivity in the metamodel is mapped to a stereotype of CompositeState.

UML Profilefor EDOC: UML Profile

3-127

The Represents relationship in the metamodel, that links a PortActivity with a Port,
corresponds in UML to a TaggedValue of the Stereotype «PortActivity».

MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF FlowPort or Port represents _represents PortUsage PortActivity
ProtocolPort or
OperationPort or
MultiPort
UML «FlowPort» or Class taggedValue N/A : tagged values | SimpleState or «PortActivity»
«Protocol Port» or "uses’ not bidirectional Composite State or
«OperationPort » SubmachineState
or «MultiPort» or StubState or
ActionState or
Subactivity State
3.6.8.27 Representsin Composition
The metamodel element Composition is represented by a UML Collaboration.
A PortConnector is mapped to a ClassifierRole.
The "Represents” relationship linking a PortActivity with a Port, is represented in
UML as athe UML relationship between a ClassifierRole and its base Classifier.
MOFor |LeftHandSide LeftHandSide | LeftHandSide | RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF FlowPort or Port represents _represents PortUsage PortConnector
ProtocolPort or
OperationPort or
MultiPort
UML «FlowPort» or Classifier base base ClassifierRole «PortConnector»
«Protocol Port» or
«OperationPort » or
«MultiPort»
3-128 UML Profilefor Enterprise Distributed Object Computing February 2002

3.6.8.28 Responder

MOFor |LeftHandSide |LeftHandSide |LeftHandSide | RightHandSide | RightHandSide |RightHandSide
UML related role name role name related
MOF Protocol or Protocol _initiator initiator RespondingRole RespondingRole
Interface
UML «Protocol» or Classifier association. association. Classifier «RespondingRol e»
Classifier association. association.
connection. connection.
participant participant
3.6.8.29 Source
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF PortActivity or |Node target incoming AbstractTransition | Transition
Pseudostate
UML «PortActivity»or | StateVertex target incoming Transition Transition
«Success» or
«Failure» or
Pseudostate
3.6.8.30 Target
MOFor |LeftHandSide LeftHandSide |LeftHandSide |RightHandSide | RightHandSide | RightHandSide
UML related role name role name related
MOF PortActivity or Node source outgoing AbstractTransition | Transition
Pseudostate
UML «PortActivity»or StateVertex source outgoing Transition Transition
«Success» or
«Failure» or
Pseudostate
3.6.8.31 TypeProperty
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide|RightHandSide
UML related role name role name related
MOF FlowPort FlowPort _ typeProperty typeProperty Property Property Definition
Definition
UML «FlowPort» Class N/A : tagged taggedValue named | Attribute «Property Definition»
values not "typeExp"
bidirectional

February 2002

UML Profilefor EDOC: UML Profile

3-129

3.6.8.32 Uses
MOFor |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF Composition Composition owner uses ComponentUsage ComponentUsage
UML «Composition» | Namespace owner ownedElement M odel Element «Component
Usage»
3.6.8.33 ValueFor
MOFor |LeftHandSide |LeftHandSide | LeftHandSide|RightHandSide |RightHandSide |RightHandSide
UML related role name role name related
MOF PropertyValue PropertyValue | elementimport | fills Property- Property- Definition
Definition
UML «PropertyValue» | Constraint elementimport | constrained M odel Property
Element Element Definition
3.6.9 General OCL Déefinition Constraints
These definition constrains have been incorporated from the OMG Document ad/2000-
02-02, UML Profile for CORBA, Joint Revised Submission Version 1.0 by Data
Access Corporation, DSTC, Genesis Development Corporation, Telelogic AB, UBS
AG, Lucent Technologies, Inc. and Persistence Software.
cont ext Model El enent
def :
let all Stereotypes : Set(Stereotype) =
-- set with the Stereotype applied to the
-- Model El enrent and all the stereotypes
-- inherited by that Stereotype
sel f. st ereot ype- >uni on(
sel f.stereotype. generalization.parent.all Stereotypes)
let isStereoTyped(theStereotypeNane : String) Bool ean =
-- returns true if an Stereotype
-- with name equalto the argunent as been
-- applied to the Model El enent
sel f.stereotype. nane = theSt ereot ypeNane
l et isStereoKinded(theStereotypeNane : String) Bool ean =
-- returns true if an Stereotype with its
-- name equal to the argunment, or equal to
-- any of its inherited Stereotypes,
-- has been applied to the Mdel El enent,
sel f.all Stereotypes->exi sts(aStereotype : Stereotype |
aSt ereot ype. nane = t heSter eot ypeNane)
3-130 UML Profilefor Enterprise Distributed Object Computing February 2002

3.7 Diagramming CCA

CCA models may be diagramed using generic as well as CCA specific notations. The
generic notations (as found in UML 1.4) are supported by awide variety of tools which
allow CCA concepts to be made part of the larger enterprise picture without specific
tool support. When using generic notations the CCA profile stereotypes should be
used. CCA aware design & implementation tools may provide the CCA specific
notation in addition to or instead of the other forms of notation.

This section suggests a non-normative way to utilize generic UML diagrams and CCA
notation to express CCA concepts. For the generic diagrams it does so using an “out
of the box” UML tool — Rational Rose 2000e ®.

3.7.1 Types of Diagram

The diagrams used to express CCA concepts are as follows:

3.7.1.1 ClassDiagramsfor the Document Model

These are used to express the document model.

3.7.1.2 ClassDiagramsfor the Component Structure

These are used to define components & protocols, their ports and properties.

3.7.1.3 Collaboration Diagramsfor Composition
These are used to express the composition of components within another component or
community processes.

3.7.1.4 Sateor Activity Diagramsfor Protocols & Process Components

These express the ordering constraints on ports within or between components.

3.7.1.5 CCA Notation for Process Component Sructure & Composition

This expresses the component structure and composition in a more compact and
intuitive form, thus replacing the class and collaboration diagrams. We will show how
the CCA notation expresses the same concepts found in the generic diagrams.

3.7.2 The Buy/Sell Example

The techniques for diagramming CCA will be presented by example. We will utilize a
simple buy/sell business process to illustrate the concepts. We will summarize the
points in the specification from the perspective of using a diagramming tool.

February 2002 UML Profilefor EDOC: Diagramming CCA 3-131

3-132

The basic business problem of buy/sell is to define a*community process” with two
actors — a buyer and seller. These two actors “ collaborate” within this processto effect
an order.

3.7.3 Collaboration diagram shows community process

At the highest level we show a collaboration diagram of the Buy/Sell community
process. In the design tool we also created a package for this process to hold the
relevant model elements. See Figure 3-20.

Buy/Sell Comminity ﬁ

Process

: Buyer _: Seller

: Buys . Sells

Figure 3-20 Top Level Collaboration Diagram

This collaboration shows both business roles: “Buyer” and “ Seller.” These are each a
“ComponentUsage” in the CCA Meta-model. It also shown that the buyer has a
“buys’ port and the seller has a“sells” port that are connected by a Connection in this
collaboration. The “buys” and “sells’ ports are “PortConnectors” in the CCA Meta-
model. The line between “Buys” and “sells” indicates that the buyer and seller
collaborate on these ports using a “ Connection.”

There is no way to show which port is the initiator and which is the responder in a
collaboration diagram, so we have noted the “buys’ in blue and “sells” in green, for
those of you who have color (for others you may be able to tell from the shade).

Note that “buys” and “sells’ are shown inside of “buyer” and “seller”, respectively.
The use of this nested classifier notation shown that the ports are owned by the
component. We could have also shown the ports separately with a connected line, but
nesting them seems to better reflect the underlying semantics.

The design tool we are using does not show stereotypes in a collaboration diagram, if
they did show you would see that buyer and seller have the <<ComponentUsage>>
stereotype and “Buys’ and “ Sells” have the <<PortConnector>> stereotype Y ou would
also see that the entire package has the stereotype <<CommunityProcess>>.

The following is a summary of the elements, stereotypes and base elements you would
use in a collaboration diagram for a community process:

UML Profilefor Enterprise Distributed Object Computing February 2002

3.7.3.1 Summary of stereotypesfor a Community Process

Table 3-9 Summary of stereotypes for a Community Process

CCA element Stereotype Base UML Element Example Elements
CommunityProcess <<CommunityProcess>> | Package or Subsystem BuySell
ComponentUsage <<ComponentUsage>> Classifier Role (Object*) Buyer, Seller
PortConnector <<PortConnector>> Classifier Role (Object*) Buys, Sells
Connection None Association Role (Object | Link from buys to sells

Link*)

Contextual Binding

None — used to refine which
component type to use

<<Contextua Binding>> Binding (Note*)

PropertyValue

None — use to set a
configuration property of a
component

<<PropertyValue>> Constraint (Note*)

* Denotesthe nameused in the design tool

3.7.4 Class diagram for protocol structure

<<CompositeData>>
rder

<<FlowPort>>

endOrder <<responds>> | <<Protocol>> - —— (fom BuySellProtocol)
= BuySellProtocol
(from Buy SellProtocol)
—<<initiates>>
T <<FlowP ort>> :
etDenied <<CompositeData>>

February 2002

The buys and sells ports seen in the community process must have a prescribed
protocol, a description of what information flows between them. Thisis shownin a
class diagram (). Additional information as to when information flows between them
is shown on an associated state or activity diagram. The class diagram can include the
definition of the data that flows between them (the document model), or this
information can be shown on a separate class diagram

Class diagram for buy/sell protocol

<<FlowP ort>>

etConfirmation <<CompositeData>>

OrderConfirmation

<<initiates>>

OrderDenied
(from BuySellProtocol) rderbenie

Figure 3-21 Class diagram for protocol structure

This diagram shows the protocol as well as the data used in the protocol (detail
suppressed for this view). The protocol is a class stereotyped as <<Protocol>>. It has
aset of flow ports: SendOrder, GetConfirmation, GetDenied. Each of these flow ports
has an association to the data that flows over it; Order, OrderConfirmation and
OrderDenied — respectively.

UML Profilefor EDOC: Diagramming CCA 3-133

A very important aspect of a port is its direction (initiates or responds), which is a
tagged value. Since these tagged values don’t sow on the diagram we have also
stereotyped the relation to the ports as either <<initiates>> or <<responds>> and have
changed their color as was done in the collaboration diagram.

What this diagram shows is that implementers of the protocol “BuySellProtocol” will
receive a “SendOrder” containing an “Order” and will send out a “GetConfirmation”
(with data “ OrderConfirmation”) and/or a“GetDenied” (with data “OrderDenied”).

The following is a summary of the elements, stereotypes and base elements you would
use in a collaboration diagram for a protocol:

3.7.4.1 Summary of stereotypesfor a Protocol
Table 3-10 Summary of stereotypes for a Protocol
CCA element Stereotype Base UML Element |Example Elements
Protocol <<Protocol>> Class or Subsystem BuySellProtocol
FlowPort <<FlowPort>> Class SendOrder, GetConfirmation, GetDenied
“Ports” relation Optional: <<initiates>> or Association Lines between FlowPorts and BuySellProtocol
<<responds>>
Protocol Port <<Protocol Port>> Class None — used to nest one protocol in another
OperationPort <<OperationPort>> Class None — used to define a two-way message (could
have been used for BuySell)
InitiatingRole <<InitiatingRole>> with Class None — Used to name the initiating “side” of the
relation to protocol protocol (the client)
RespondingRole <<RespondingRole>> with | Class None — Used to name the responding “side” of the
relation to protocol protocol (the service)
Interface Optional: <<Interface>> Classifier None — defines an object service
Direction (value) <<initiates>> Association SendOrder
Direction (value) <<responds>> Association OrderConfirmation, OrderDenied

3.7.4.2 Summary of tagged values for a Protocol

While tagged values can’t be seen in the diagram, these elements will have tagged
values. The tagged values used to define a protocol are listed in Table 3-11.

Table 3-11 Summary of tagged values for a Protocol

CCA attribute | Tagged Vale Appliesto Example Values
synchronous synchronous FlowPort, Protocol Port, All ports
OperationPort, MultiPort Synchronous=false (The response may come back
at alater time)
transactional transactional FlowPort, Protocol Port, True for all ports — each interaction is atomic.
OperationPort, MultiPort
direction direction FlowPort, Protocol Port, Initiates for SendOrder.
OperationPort, MultiPort responds for GetConfirmation & GetDenied
postCondition postcondition FlowPort, Protocol Port, GetConfirmation=Success
OperationPort, MultiPort GetDenied=BusinessFailure
3-134 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.7.5 Activity Diagram (Choreography) for a Protocol

The class diagram for a protocol () shows what the protocol will send and receive but
not when. The activity diagram of the protocol adds this information by specifying
when each port will perform its activity (sending and receiving information).

SendOrder

GetConfirmation ‘

/@ <<Success>> /@ <<BusinessFailure>>
))

@ ()
Figure 3-22

3.7.5.1 Choreography of a Protocol

Asyou can see, the activity diagram for the protocol is quite simple, it shows the start
state, one activation of each port and the transitions between them. It also shows that
after the “SendOrder” a choice is made and either “ GetConfirmation” or “GetDenied”
is activated, but not both.

The start state (Black circle) shown where the protocol will start. It then goesto a
“PortActivity” for the SendOrder port (the port and the activity have the same name in
this case). It then shows a choice (the diamond) and PortActivities for
GetConfirmation and GetDenied ports. It then shows that either of these ends the
protocol, but that GetConfirmation ends it with the status of Business Success while
GetDenied ends it with BusinessFailure. (Success and failure can be tested in later
transitions, using a guard on the transition). The transitions (each of the arrows)
clearly shows the flow of control in the protocol.

Note that if there are multiple activities for one port it may be convenient to use swim
lanes, one for each port. But swim lanes are not required.

What can not be seen is that each PortActivity has a tagged value: “represents’ to
connect it to the port it is an activity of. In the example “represents” will be the same
as the activity name.

UML Profilefor EDOC: Diagramming CCA 3-135

3.7.5.2 Summary of stereotypesfor an Activity Diagramor Choreography
Table 3-12 Stereotypes for an Activity Diagram or Choreography

CCA element Stereotype Base UML Element |Example Elements

Choreography <<Choreography>> StateM achine BuySellProtocol (not visible)

PortActivity <<PortActivity>> State SendOrder, GetConfirmation, GetDenied
Pseudostate (initial) None (Black circle) Pseudostate (initial) Start state

Pseudostate (fork) None (bar) Pseudostate (fork) None — shows concurrency in process
Pseudostate (join) None (bar) Pseudostate (join) None — shows concurrency coming together.
Pseudostate (choice) None (diamond) Pseudostate (choice) Choice of confirm or denied.

Transition <<Choreography-Transition>> | Transition All arrows

3.7.5.3 Summary of tagged values for a Choreography

While tagged values can’t be seen in the diagram, these elements will have tagged
values. The tagged values used to define a Choreography are:

Table 3-13 Tagged Values for a Choreography

CCA attribute | Tagged Vale Applies to Example Values

represents <<represents>> PortActivity All Activities
Represents has the same value as
element name.

3.7.6 Class Diagram for Component Sructure

The external “contract” of a component is shown on two diagrams — the class diagram
for structure and the activity diagram for Choreography (much like the protocol). The
structure shows the process component(s), their ports and properties.

<<ProcessComponent>>
Buyer

<<initiates>>

3-136

<<Protocol>>
BuySellProtocol

<<ProtocolPort>>

Buys

(from Buyer)

<<ProtocolPort>>
Sells
(from Seller)

<<ProcessComponent>>

<<responds>>
Seller

Figure 3-23 Class Diagram for Component Structure

UML Profilefor Enterprise Distributed Object Computing

February 2002

This class diagram shows two process components being defined: “Buyer” and
“Seller.” Each process component uses the “ProcessComponent” stereotype. It also
shows that each of these components has one protocol port each: “Buys” and “Sells,”
respectively and that both of these Protocol Ports implement the BuySellProtocol we
saw earlier.

We can also see that the buyer “initiates” the protocol viathe “Buys’ port and that the
seller “responds’ to (or implements) that interface viathe “ Sells” port. As before, both
ports will have their direction set in a tagged value — the color and stereotypes on
relations is just informational.

You may also note that we choose to define the ports as nested classes of their process
components, as can be seen from the phrases (from Buyer) and (from Seller). This
helps organize the classes but is purely optional.

These components are the ones we saw being used inside of the community process.

3.7.6.1 Summary of stereotypesfor a Process Component Class Diagram
Table 3-14 Stereotypes for a Process Component Class Diagram
CCA element Stereotype Base UML Element |Example Elements
ProcessComponent <<ProcessComponent>> StateMachine Buyer, Seller
FlowPort <<FlowPort>> Class None — for primitive flows
“Ports” relation Optional: <<initiates>> or Association Associations between Protocol Ports and
<<responds>> ProcessComponents
Protocol Port <<Protocol Port>> Class Buys, Sells
OperationPort <<OperationPort>> Class None — used to define a two-way message
MultiPort <<MultiPort>> Class None — Shows a set of ports with a behavioral
constraint
PropertyDefinition <<PropertyDefinition>> Attribute None — shows a configuration value
Direction (value) <<initiates>> Association Buyer
Direction (value) <<responds>> Association Seller
3.7.6.2 Summary of tagged values for a Process Component Class Diagram

While tagged values can’t be seen in the diagram, these elements will have tagged
values. The tagged values used to define a process component are:

Table 3-15 tagged values for a Process Component Class Diagram

CCA attribute Tagged Vale Applies to Example Values

granularity granularity ProcessComponent Buyer & Seller are “shared”

i sPersistent isPersistent ProcessComponent Buyer & Seller are persistent

primitiveKind PrimitiveKind ProcessComponent Buyer & Seller are not primitive so have no
primitiveKind.

primitiveSpec PrimitiveSpec ProcessComponent Buyer & Seller are not primitive so have no
primitiveSpec

February 2002 UML Profilefor EDOC: Diagramming CCA 3-137

Table 3-15 tagged values for a Process Component Class Diagram

synchronous synchronous FlowPort, ProtocolPort, All ports
OperationPort, MultiPort Synchronous=false (The response may come back
at alater time)
transactional transactional FlowPort, ProtocolPort, True for all ports — each interaction is atomic.
OperationPort, MultiPort
direction direction FlowPort, ProtocolPort, Initiates for Buys
OperationPort, MultiPort responds for Sells
postCondition postcondition FlowPort, ProtocolPort, N/A
OperationPort, MultiPort
initial None: UML “Initial PropertyDefinition None
Value”
isLocked None: UML PropertyDefinition None
changeability
3.7.7 Class Diagram for Interface
Classical “services’ are provided for with the CCA “Interface”, such aservice interface
corresponds to the normal concept of an object. An interface is a one-way version of
a protocol and may not have sub-protocols. Once such service is defined for our
example.
<<lInterface>>
ustService
®checkCustomer(order : Order)
®checkCredit(amount : Float) : Boolean
Figure 3-24 Class Diagram for Interface
Since the semantics of such an interface are will understood, let’s just relate to the
CCA elements:
Table 3-16 Elements of an Interface
Example Element CCA Element UML Element
CustService Interface Interface
CheckCustomer FlowPort Operation
CheckCustomer. order | DataElement Parameter
checkCredit OperationPort Operation
CheckCredit. amount FlowPort Parameter
Note that the use of a stereotype for an interface is optional., allowing the use of other
forms of UML classifiers.
Interfaces may have the same tagged values as protocol, but interfaces don't need
“direction,” the direction is always “responds.”
3-138 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.7.7.1 Using Interfaces

While we are on the subject, let’s also look at the class diagram for a process
component with a port that implements this interface.

<Interface>>
CustService

#heckCustomer()
#checkCredit()

!

<<ProtocolPort>> <<responds>> <<Entity>>

Sl T @ CustomerComponent
(flom CustomerComponent)

Figure 3-25 Using Interfaces

This diagram shown an “Entity” ProcessComponent (see entity profile) called

“CustomerComponent” which exposes a Protocol Port (EngStatus) which implements
this interface.

UML Profilefor EDOC: Diagramming CCA 3-139

3-140

3.7.8 Class Diagram for Process Components with multiple ports

Up to this point we have seen process components with only one port, while most
process components interact with multiple other components. We are going to define
such a component that will be used inside other components |ater.

<<CompositeData>>
Order
(from BuySell)

<<FlowP ort>>
acceptOrder
(from CheckCustomer)

<<FlowP ort>>
reject r
(from OrderValidation)

<<CompositeData>>
OrderDenied

Order Validation
Component

<\<m\itiates >>

—~

<<FlowPort>>
checkOrder
(from OrderValidation)

|
<<respohds>>
|

*

<initiates>>

<<ProcessComponent>>
OrderValidation

<<initiates>>

<<Interface>>
CustService

®checkCustomer()
M heckCredit()

i

Figure 3-26 Process Components with multiple ports

<<ProtocolPort>>
CheckCustomer
(from OrderValidation)

This diagram defines the OrderValidation ProcessComponent. Note that it has the

followi

ng ports:

® checkOrder — responding flow port (the order)

® CheckCustomer — initiating protocol port to a service

® AcceptOrder — initiating flow port (the order)

® Regject — initiating flow port (OrderDenied)

UML Profilefor Enterprise Distributed Object Computing

February 2002

3

3.7.9 Activity Diagram showing the Choreography of a Process Component

Since our Order Validation process component has multiple ports, we may also want to
specify the choreography of those ports, when each will activate. This isdone using an
activity diagram much like the protocol.

Order Validation
Choreography

¢~ checkOrder
./

/~ CheckCustomer ™\
-~/

~

N

acceptOrder z reject

@ success (. failure

Figure 3-27 Choreography of a Process Component

Since the model elements used here are the same as those for the protocol, we will not
repeat the tables.

3.7.10 Collaboration Diagram for Process Component Composition

A composition collaboration diagram shows how components are used to help define
and (perhaps) implement another component. We have already seen one composition,
for the community process. Now we will look at a collaboration diagram which
specifies the inside of one of our process components — the seller

February 2002 UML Profilefor EDOC: Diagramming CCA 3-141

3-142

Seller Composition ﬁ

Validate : OrderValidation

Seller : Sells

: SendOrder [~

: GetDenied [

= : reject

—— : CheckCustomer —

GetConfirmation

: checkOrder

CustBean :
CustomerComponent

: EngStatus

1: gheckCustomer(order : Order)
—

acceptOrder

Process : OrderProcessing

: doOrder

: ProcessedOrder

Figure 3-28 Process Component Composition

This is a collaboration diagram “inside” the seller, which the seller will do to
implement its protocol by using other components. This is a very specific use of a
collaboration diagram and needs some explanation.

First note that, like the community process, we are showing the ports of components
and of protocols nested inside the component or protocol.

The Component Usages are as follows:
® Validate — uses the “OrderValidation” component
® CustBean — uses the CustomerComponent

® Process — uses the “OrderProcessing” component (not previously shown)

If we look inside of “Validate” we see a classifier role for each port: checkOrder,
reject, CheckCustomer & acceptOrder. We see the same pattern repeated inside of
CustBean and Process.

Note —“Seller : Sells” - Thisis the representation of the “ Sells” port on the component
being defined — in this case “Seller.” There will be such a“proxy” PortConnector for
each port on the outside of the component for which we are making the collaboration
diagram. Since this port is a protocol port, it also has sub-ports which show up as
nested classifier roles.

UML Profilefor Enterprise Distributed Object Computing February 2002

To “connect” one port to another we draw an association role (a line representing a
Connection) from one port to another. The connected ports must have compatible
types and directions. So in this diagram we have made the following connections:

3.7.10.1

Connectionsin the example

Table 3-17 Connections

From Component Usage | From Port Connector | To Port Connector To Component Usage
Seller Sells CheckOrder Validate
CheckOrder Reject GetDenied Seller
Validate CheckCustomer EngStatus * Using Operation “checkCust” CustBean
Validate AcceptOrder DoOrder Process
Process ProcessOrder GetConfirmation Seller
Each of these connections will cause data to flow from one component to the other, via
the selected ports. It is these Connections which connect the activities of the
components together in the context of this composition.
3.7.10.2 Summary of stereotypesfor a Process Component Collaboration
Table 3-18 Stereotypes for a Process Component Collaboration
CCA element Stereotype Base UML Element Example Elements
Composition <<Composition>> Collaboration Seller Composition
ProcessComponent | Implied Classifier Seller
ComponentUsage <<Component- Classifier Role (Object*) Validate, Process, CustBean
Usage>>
PortConnector <<PortConnector>> Classifier Role (Object*) Seller, SendOrder, GetDenied, GetConfirmation
CheckOrder, reject, CheckCustomer, acceptOrder
DoOrder, ProcessOrder
EngStatus
Connection Connection (Optional) Association Role (Object See above table

Link*)

Contextual Binding

<<Contextual Binding>>

Binding (Note*)

None — used to refine which component type to
use

PropertyValue

<<PropertyVaue>>

Constraint (Note*)

None — use to set a configuration property of a
component

February 2002

3.7.10.3 Special noteon * proxy” port activities.

As can be seen from the example, we need to connect the “outside” ports (those on the
component being defined) with the “inside” ports (those on the components being
used). The PortConnectors for the outside ports are shown without an owning
ComponentUsage, while the PortConnectors for the components being used are shown
inside of the ComponentUsage being used.

UML Profilefor EDOC: Diagramming CCA

3-143

3.7.10.4 Special note on protocols

Since protocols give us the ability to “nest” ports, ports may be seen within ports to
any level. This example only shown one level of such nesting. The same kind of
nesting is used within activity diagrams — since activities may be nested as well.

3.7.11 Model Management

While the organizational structure of components is not visible in a diagram, it is
visiblein tools. The screen shot in shows how the example components are organized
in the Data Access Technologies' UML tool. Note how using nested classes (such as
Ports being inside of their ProcessComponent) helps to organize the model and keep
namespaces separate.

3-144 UML Profilefor Enterprise Distributed Object Computing February 2002

Samplez
-3 Use Case View
-3 Logical View
=3 <<CommunityProcesss > BuySel
=3 SelleDetail
..... b airy
----- Ordert alidation
----- S ellerCarnposition
-3 CustomerCompanent
w1 CustService
ElE £<ProcezsCompaonents > OrderProceszing
E £<ProcezzComponent: > Ordetalidation
—}}} Azzociations
..... b a7
----- B Pratocol
----- BuvSellComposition
=B <<ProcessComponent: > Buyer
H-B <<ProtocolPort:» Buys
----- .;;;_f theBuys [Bups |
=B <<Protocal:> BuySelPratocol
H- B <<FlowPort: > GetConfirmation
H-B <<FlowPart:> GetDenied
H- B <<FlowPort:> SendDrder
----- .;;;_f theSendOrder [SendOrder |
----- {T theletConfirmation [GetCanfirmation |
----- o thelGetDenied [GetDenied |
557 StatedActivity Model
B <<CompositeDatass Order
B <<CompositeD ata:» OrderConfirmation
B <<CompositeD atas» OrderDenied
=]

£<ProcessComponent:» Seller
f-B <<ProtocolPorty> Sellz
o theSellz [Sellz]
57 Statedbctiviey Model2
#- =, Associations
..... M ain

= -
----- = Azzociations
— s

Figure 3-29 Model Management

February 2002 UML Profilefor EDOC: Diagramming CCA 3-145

3.7.12 Using the CCA Notation for Component & Protocol Structure

Figur e x-x shows the CCA notation being used for the protocol and process component structure,
above. Notethat aswith the UML notation, thisis done from an out-of-the-box tool (Component-

X®) - the notation is not quite standard CCA yet.
This shows the community process and protocol corresponding to the UML example, above

/CcaSampleBuySellCommunity =

BuySellCammunity ﬁ\

Buyer £\ !Eeller £3

EuyEeIIPrntncul}i- UysellFrotocol

—_— P
{ Ordervaldataon £ CustBaan EB

heckorder | [checkCusiomes g—————ftheckCussamar

caprs
“,

AN

M, [lrderProceszing £}

Figure 3-31 Composition in CCA notation

Figure 3-31 shows the seller composition in CCA notation; it is equivalent to the seller collabora-
tion diagram.

3-146 UML Profilefor Enterprise Distributed Object Computing February 2002

Section Il - The Entities Profile

3.8 Introduction

February 2002

The Entities profile describes a set of UML extensions that may be used to model
entity objects that are representations of concepts in the application problem domain
and define them as composable components.

Section 3.8 introduces the profile and concepts associated with it. Section 3.9
describes different entity viewpoints. Section 3.10 presents the Entity conceptual
metamodel. Section 3.11 defines the UML extensions required to implement the
Entity metamodel as a UML profile.

This section describes the following:

* Normative sections of this section

® The Entities profile relationship to other profiles

® The design concepts incorporated in the Entities profile

® Standard UML facilities incorporated in this profile

3.8.1 Normative sections

Section 3.8 to Section 3.11 of this chapter should be viewed as the adopted
specification. Of those sections, only Section 3.10 and Section 3.11 are normative.
The other sections provide an introduction to the chapter and a conceptual background.

3.8.2 Relationship to other parts of ECA

38.2.1

The following paragraphs briefly describe the links to other profiles in the ECA
specification.

The Business Process profile

The Entities profile is used to define a representation of the application domain.
Processes operate on this model where the process flow determines that operations
should occur on the domain model as a result of inputs from other systems, the
occurrence of business events or the actions of human participants.

The Entities profile also provides a root modeling element for identifiable processes.
In a business domain a process is also an identifiable concept that has instances with
attributes, operations and relationships. As such, it shares the characteristics of Entity
objects and can be operated on the same as entities. A process could be the subject
matter of another process.

UML Profile for EDOC: Introduction 3-147

3-148

3.8.2.2

3.8.2.3

3.8.24

3.8.2.5

The CCA profile

Elements of the Entities profile are also characterized as composed components that
can be composed into larger components. As components they may be made available
for composition of a variety of systems. As composed components, they may be
configured from independently created components. The component profile
determines the unit of composition and the interconnection of interfaces that enables
the components to work together.

The Eventsprofile

The event profile defines the integration of systems and components using events to
drive the processing. Events may be published or received by entities and processes.
Events may be forwarded synchronously or asynchronously. Synchronous events will
typically be delivered within the context of the current transaction. Asynchronous
events will generally be stored and delivered in the context of anew transaction. The
use of eventsfor integration reduces coupling and improves the ease by which a system
may be adapted or extended.

The Entities profile recognizes the publish and subscribe ports as elements that may be
attached to entity components. In addition, it defines the Data Probe port to generate
events requested on an ad hoc basis.

The Relationships profile

Entities have relationships. Relationships represent associations between the real-
world counterparts of domain model elements. The variety of relationships is defined
by the Relationship Profile.

The Patterns profile

Patterns may be used to replicate frequently occurring entity structures including
attributes, relationships, operations, rules, and constraints.

3.8.3 Design Concepts

The entity model reflects the integration of a number of design concepts:
® Composition

® Encapsulation

®* Ports

® |dentity

¢ Events

¢ Domain Modeling

® Entity Role

® Events

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.8.3.1

3.8.3.2

¢ Data Monitoring
® Distributed Computing

® | evels of Coupling

These concepts are each discussed in the paragraphs that follow.

Composition

Entities are representations of concepts that exist in the real world or application
problem domain. The primary purpose of the entity profile is to model entities—their
relationships, attributes and methods—and define them as composable components.

The information viewpoint will provide the primary notation for modeling entities and
their attributes and relationships as data. The entities represented in the information
viewpoint are then incorporated into objects, described as composable components.

Entities are incorporated into systems where they may be acted upon by processes,
interact with other entities and generate events. Thus entities are components in a
larger system. The component relationships of entities to other components is
expressed in the composition viewpoint. In this viewpoint entities are components that
are composed into larger components.

As acomponent, an entity may have several different ports. It receives and responds to
messages. It may send messages and receive return values, it may generate events or
asynchronous messages and it may receive events or asynchronous messages. In
addition, it may accept ad hoc requests to generate messages based on changes in its
state.

Entities that represent primary concepts, such as Customer, will often be composed
with related entities and val ue objects as deployable components. So the Customer and
Account entities could be composed into one component also containing the Customer
Address and Account Entry value objects.

Encapsulation

Entity components are intended to be encapsulations of their associated data and
functionality. Process Component defined in the CCA specification provides the basic
representation of encapsulation. It provides the external interfaces by which these
components are linked to other components and composed into larger components.
At the same time, it does not define the component implementation.

Data Manager extends this by incorporating Composite Data. Consequently, a data
manager contains composite data that describes the state of the component. Data
Manager incorporates the composite data and relationships of Entity Data along with
methods to operate on the data.

A Data Manager may be implemented as an object. The object has an interface,
modeled as a component port, and it has state data that may be accessed through the
port. The object may aso have other ports. It may have data probe ports to generate

UML Profile for EDOC: Introduction 3-149

3-150

3.8.3.3

3.8.34

messages based on ad hoc requests. It may send asynchronous messages and events.
If it has a unique identity (i.e., is an Entity), and is sharable and network accessible, it
can receive asynchronous messages and events.

Data Manager comprehends value objects, objects that are passed by value, i.e., by
copying the data, not by reference. Consequently, the data structure is exposed when a
copy is performed. It isimportant to distinguish between the value object that has a
functional interface, and the state of the value object, the Entity Data, which is passed
when a value object is passed as a parameter.

Value objects are not sharable nor network accessible. They cannot receive messages
over the network, and they are not sharable because they are always passed by value
rather than by reference.

Data Managers may be network accessible or not. A Data Manager may be only
accessible by reference to a related entity that is network accessible. For example, a
order line item is identifiable but may only be accessible through the order.

An Entity may be a copy of a primary Entity, i.e., a clone, for purposes of improving
performance. An Entity clone may be a copy of an entity on a client system that is used
for interactive operations. Or the clone could be the instantiation of an entity when
concurrency control is performed by a database (i.e., the primary entity isin the
database). The clone is instantiated with a copy of the entity’s state. The primary
Entity should be locked when the copy is taken so that it' s state will not change while
operations are being performed on the clone. The clone is not sharable because it
should not exist beyond the transaction in which it was created. Itslock on the
primary entity will expire when its transaction terminates.

Ports

Components interact with their environment through ports. A port has a defined
interaction protocol. Ports may send messages, receive messages, or both. A port may
be implemented as an object interface, e.g.,, CORBA or Java interface.

Ports are synchronous or asynchronous. A synchronous port communicates within the
context of atransaction. An asynchronous port communicates in a store-and-forward
manner so that sending a message occurs in the context of one transaction and receipt
of the message then occurs in the context of another transaction.

Ports may communicate with messages or event notices. A message is directed to a
specific destination. An event notice is published to the communication infrastructure
to be delivered to subscribers—destinations that have expressed interest. The messages
and event notices may be communicated synchronously or asynchronously.

All Data Managers will have interface port(s) that represents the interface of the
component; these ports may be synchronous, asynchronous or a combination of both.

|dentity

Unique identity is introduced on Entity Data and implicitly on Entity with the addition
of aKey. A primekey isrequired to be unique within the extent of the type. In
general, identifiable components are passed by reference.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3.8.3.5

3.8.3.6

The key may be comprised of one or more attributes of the state of the component, and
these elements must be immutable. The key can also have elements that are Foreign
Keys of other Entities. A Foreign Key is identified through arelationship with another
Entity from which the Foreign Key is derived.

An Entity component has a primary instance, i.e., the location of the master copy of its
state. This master copy may bein a database or it may be instantiated as an
object/component. Copies of an Entity state may be instantiated in Entity clones.
These are not sharable and, in general, should not exist beyond the scope of a single
transaction.

Entity components can be “managed.” This property specifies that the extent of all
members of atype and its sub-types is known and may be accessed as a set. The key
of an identifiable component must be unique within its managed extent. The
implementation implication of being managed is that the type will have an extent
manager or “home” that will provide query access to the extent and may provide
attributes and methods that apply to al members of the extent or the members
collectively, e.g., the number of members.

Domain Modeling

The first step in modeling a business domain may be to create and information
viewpoint. The information viewpoint exposes the Entity Data along with its attributes
and relationships. These Entity Data elements will be incorporated into Entity
components to define their functionality and interfaces.

In modeling a business domain, business concepts that are uniquely identifiable must
be represented by identifiable computational components. For example, an object
representing an employee, a purchase order, an office or a part specification will have
aunique identifier that associates the object with the real-world counterpart. As such,
a consistent representation of the business will have a single representation of each
real-world thing as an identifiable object. While an implementation may replicate such
elements for performance or reliability, replicas are till logically a single
representation and must be maintained with consistent state if the system is to yield
consistent results.

For the most part, the identifiable elements that model the business domain are
characterized as Entities. Rules and Processes are also Entities because they have state
and are identifiable, but they are computational artifacts that describe activities in
which entities are involved.

Entity Role

The Entity Role is an important extension to the Entity representation. It may be
impractical to design an Entity component to anticipate all circumstances in which an
entity may be involved. Each situation may involve different state and behavior. An
Entity Role incorporates aspects of an Entity associated with a particular context. It
essentially extends an Entity on an ad hoc basis. The unique identity of an Entity Role
is the entity identifier coupled with its context identifier. Consequently, the context
must also be represented as an Entity component. For example, a person has the role

UML Profile for EDOC: Introduction 3-151

3-152

3.8.3.7

of an employee as a member of an enterprise (context), or may be a member of a
project team. An entity may have many roles as appropriate to the different contextsin
which it participates.

An Entity Role is dependent upon the associated parent entity. The association is
immutable. If an Entity ceases to exist, all of itsroles will also cease to exist. An
Entity Role cannot be assigned to another parent Entity.

An Entity Role is not an appropriate representation for such concepts as an
organizational position or the specification of a process participant. These concepts
may define characteristics of the entities that can be assigned, but should not include
characteristics that are unique to a particular Entity when assigned. Consequently, a
process participant is an Entity that represents a potential association of a process with
an Entity. Different Entities may be assigned to the participation over time. An Entity
Role may be assigned to the participation, as an employee may be assigned to
participate in a process, and a different employee may be substituted at a later time.

An Entity Role may be a “virtual entity” if it incorporates al of the interface
characteristics of the entity it represents. For example, an Entity Role may inherit the
interface of its associated Entity, incorporate the interface by inheritance and
incorporate the entity state and behavior by delegation.

Events

An event represents a change of state in a system that is of interest outside the scope of
the component in which it occurs. An event may be defined as a change of state that
causes a condition of interest to become true, or an event may be associated with a
state transition to a particular state, from a particular state, or from one state to another
state. When an event occurs a notice can be generated.

The ability to generate event notices can be designed into a component. The content of
the event notice is defined to provide appropriate information about the event. Event
notices are published—they are issued to the event communication infrastructure to be
received by subscribers. The publisher of an event notice is not expected to be aware
of the subscribers, and thus there may be many subscribers or none. Similarly, the
subscribers are not aware of the specific sources of event notices to which they
subscribe.

The Event Publication and Event Subscription ports provide the complementary
interfaces for this publish and subscribe linkage between components. These ports
may be defined as operating in synchronous or asynchronous mode.

The mode of a subscriber must match the mode of the receiver for an event notice to be
communicated. In synchronous mode, an event notice would be delivered to all
subscribers within the context of the transaction in which the event occurred. In
asynchronous mode, the event would be delivered in a store-and-forward manner, the
event notice would be captured in one transaction and accepted by each subscriber in
different transactions.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.8.3.8

3.8.3.9

Data Monitoring

Data monitoring refers to the ability to ad hoc initiate detection of changes in data in
order to initiate desired actions. This capability is an important element of flexibility
and modularity of system design. It allows actions to be initiated based on changes in
state without explicitly embedding the initiation of those actionsin the executable logic
that changes the data.

For example, an application may be designed to monitor the price of a commodity to
initiate buy or sell orders or aert a customer. It should not be necessary to modify the
logic of the commaodity tracking system in order to link this monitoring application to
price changes.

Similarly, when a system is assembled or extended using components, actions of some
components may be dependent on changes in state in other components. By providing
the ability to monitor changes in the data of a component, the logic of the component
need not be designed to anticipate each specific dependence.

The Data Probe port provides the interface for accepting and removing monitoring
requests and for issuing events or messages when the specified events occur in the state
of the Entity. A request will definesthe state of interest, the type of message to be sent
and the message addressee.

Distributed Computing

Components that are remotely accessible must be identifiable. Their unique identity is
the basis for locating them in the distributed computing environment. It is also the
basis for sharing a single representation of the state of the thing being represented.

To support network access, they must have one or more ports that support network
access protocols. For example, a network accessible component might have ports
synchronous messaging ports implemented as CORBA interfaces, and event
subscription and publication ports implemented as IM S (Java M essaging Service)
subscriber and publisher interfaces.

Data Managers that are not network accessible will be restricted to being co-located
with components that reference them. For example, an order item is uniquely
identified within an order, but remote access may be only through interfaces to the
containing order.

Relationships require that the participating Entity Data structures are identifiable. At
the same time, the Data Manager of an Entity Data structure may not be network
accessible. In a distributed computing environment, components that participate in
rel ationships must be either co-located or be network accessible. A relationship cannot
be implemented if the members cannot communicate with each other.

While distribution of computing is primarily an implementation issue, the ability for
components to be distributed must be considered fairly early in the design. Where
Entity components are not network accessible, operations on their containing
components will likely reflect indirect access from remote components.

UML Profile for EDOC: Introduction 3-153

3-154

3.8.3.10 Levelsof Coupling

The Entity Model anticipates three levels of component coupling: linked, tightly
coupled and loosely coupled.

Linked coupling refers to components that are co-located in the same address space.
These components interact with each other directly, without communicating over a
network. As such, they can interact without being network accessible components.
Messaging will generally be synchronous, within the scope of a single transaction.

Tightly coupled components are distributed across multiple servers. These components
will also interact with synchronous messaging, but messaging will occur over a
network. While some messaging between the components may be asynchronous for
performance and recoverability considerations, components are tightly coupled if any
interactions between them are synchronous.

Loosely coupled components are distributed and only communicate asynchronously,
through a messaging infrastructure. Communication is through messages and events.
These components might be characterized as enterprise applications. A message or
event isissued in the scope of one transaction and accepted by one or more recipients
in independent transactions. Messages and events are stored and forwarded. A
message is a communicated with a defined recipient, and an event is a communicated
(published) with self-declaring recipients (subscribers) unknown to the publisher.

The level of coupling between components has important performance and system
flexibility implications. Generally, components should be designed in a level-of-
coupling hierarchy so that components that are linked are within components that are
tightly coupled, and tightly coupled components are within components that are
loosely coupled with each other. This coupling hierarchy should be reflected in the
network accessibility property of components and the synchronous vs. asynchronous
property of their ports.

3.8.4 Sandard UML Facilities

This section briefly describes the standard elements of UML that are incorporated in
the profile.

Attributes

Composite Data elements define their data elements with attributes. Composite Data
elements are incorporated as the data structures of Data Managers, which are
specialized to entities. Theinterfacesto Data Managers provide access to the attributes
and will generally have methods by the same name as accessers.

Methods

Methods are specified asin UML. From acomponent perspective, methods, including
the attribute accesser methods, are incorporated in the port(s) which receive messages
and return a result.

UML Profilefor Enterprise Distributed Object Computing February 2002

Relationships

Relationships express associations between non-primitive elements. Identifiable,
sharable and network accessible elements can have relationships that extend over a
distributed network.

Activity Graphs

Activity Graphs may be used to describe flow of control between elements, although
these will be more applicable for describing processes.

State Machines

Changes of state of elements with data may be described with state machines.
Publication of events may be defined in terms of state transitions.

I nteraction diagrams

Interaction diagrams may be used to describe the flow of control between executable
elements.

Object Constraint Language

OCL is used to express conditions for triggers, as well as in other applicable UML
elements.

3.9 Entity Viewpoints

February 2002

The entity profile provides elements that appear in different viewpoints. These
viewpoints are for different purposes and represent entities differently, using different
forms of notation. Two viewpoints of particular interest are presented below: the
information viewpoint and the composition viewpoint. Entities also appear in other
diagrams, for example, in interaction diagrams as verticd lines and in activity
diagrams as swim lanes.

3.9.1 Information Viewpoint

The information viewpoint models Entity Data and their relationships. Entities
represent concepts in the problem domain, and relationships represent relationships
between the problem domain concepts. The model essentially defines the vocabulary
used in discussing the problem domain, and it represents the structure of the objects
and databases used to represent the business concepts in the computer.

A model viewed from the information viewpoint is shown below. It includes four
Entities: Customer, Address, Account, and Entry. Each of these can be uniquely
identified, but Address and Entry are unique within the contexts of Customer and

UML Profilefor EDOC: Entity Viewpoints 3-155

Account, respectively. Consequently, as components, Address and Entry may be
specified as not sharable or network accessible. They would be implemented as pass-
by-value objects.

Address
Customer - Street : String
- Name : String - City : String
- Phone : Intege - State : String
— - ZIP : String
—
| Entry
Account - EntryNumber : Intege
- AccountNumber : Intege@iiii_ Credit/Debit : String
- Balance : Integer - Amount : Currency
- Purpose : String

Figure 3-32 Entity Model in the Information Viewpoint

The information viewpoint says nothing about interfaces or object-oriented
functionality that may be associated with these Entities. Nor does it define how these
objects might be packaged in a composed system. Those aspects are defined by the
Entity components that incorporate the Entity Data.

3.9.2 Composition viewpoint

The composition viewpoint describes how the software artifacts are configured as
components and compositions of components. The diagram below depicts an Account
Composition component, which is composed of Account Entity and Entry Entity
components.

A ccountComposition|

[Account

I e

Entry

Figure 3-33 Entity Model in the Composition Viewpoint

3-156 UML Profilefor Enterprise Distributed Object Computing February 2002

3

The Account entity may request attribute values from the Entry object, or, assuming
the Entry object is a pass-by-value object, it may pass the Entry object by value. This
means it passes a copy of the state of the Entry object, but it retains its reference to the
original Entry object for future operations.

The Account and Entry objects are both components used to compose the
AccountComponent. However, this could be simply the logical model of the
composition. The implementation of the AccountComponent might be primitive,
making the Account and Entry objects inseparable, but logically independent.

The ports in this model are interface ports and message-sending ports—they
incorporate synchronous messages, typical of messaging with objects. The
AccountComposition component may or may not expose the same interfaces as the
Account component. It also could expose an interface for the Entry component, but
none is specified here.

The composition viewpoint drives consideration of network accessibility and the
clustering of objects for composition and distribution.

3.10 Entity Metamodel

February 2002

This section describes the entity meta-model. This model provides a basis for
understanding the modeling concepts and their relationships. The next section
describes the implementation of the model in UML.

3.10.1 Overview

The diagram, below, depicts the elements to be considered; those that are part of this
profile specification are highlighted. Central to this model are Data Manager and its
specializations; these are the core elements of the Entities profile. They encapsulate
data and other components, exposing their functionality through ports.

UML Profilefor EDOC: Entity Metamodel 3-157

3-158

Port Process Component Attribute i
(from CCA) (from CCA) (from CCA) KeyAttribute
Data Manager B
- Composite Data
MultiPort FlowPort + NetworkAccess : Boolean *Manages .
(from CCA)
(from CCA) (from CCA) + Sharable : Boolean 1
\‘
: b
\\
V—‘; \
\
| |
Publication \
(from Events) \\
\
\
\\
Subscription .
. Key
(from Events) EntityData .
+ PrimeKey : Boolean
1 0..n
0O
1.n—
Data Probe (Port) +probes Entity 1.n
- ExtentProbe = Boolean +Managed : Boolean_ > s
0..n Relationship Key Element
1 1 (from Core)
1
+Parent +Context 1
on Entity Role Foreign
“ |+ VirtualEntity : Boolean [0--N Key

Figure 3-34 Entity Metamodel

Through ports components receive and respond to messages, publish and subscribe to
events and expose state changes response to ad hoc requests to Data Probe ports.

model.

Entities represent the application domain. As components they encapsulate the
functionality, state and relationships of domain concepts. Entity components

incorporate Entity Data structures, which are the core elements of the information

3.10.2 Entity Package

This section describes the elements of the Entity metamodel in detail.

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.10.2.1 DataManager

Semantics

A Data Manager is a functional component that provides access to and may perform
operations on its associated Composite Data (i.e., its state).

The Data Manager defines ports for access to operations on the state data.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Data Manager

Owned by
Package

Properties

Network Access

A Boolean value which indicates if the Data Manager is intended to be accessible over
the network.

Sharable

A Boolean value which indicates if the Data Manager can be shared by multiple
transactions/sessions. A Data Manager that is not sharable is either transient or
depends on a sharable Data Manager that contains it for persistence. For example, an
address may not be sharable (although its state may be passed by value), but it can be
persistent by association with a Customer that is sharable.

Related elements

Process Component

Data Manager inherits from Process Component and adds the quality of having
associated state.

Composite Data
Composite Data defines the data structure that is encapsulated by the Data Manager.

Entity

Entity specializes Data Manager for representation of identifiable application domain
things.

UML Profilefor EDOC: Entity Metamodel 3-159

3-160

3.10.2.2

Constraints
N/A

EntityData

Semantics

Entity Data is the data structure that represents a concept in the business domain. It is
equivalent to an entity in data modeling or arelation in arelational database. In a Data
Manager or its specializations, such as Entity, it represents the state of an object.

Entity Data has attributes (from Data Element) and relationships. The information
viewpoint is a viewpoint on Entity Data elements.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::EntityData

Owned by
Package

Properties
N/A

Related elements

Composite Data
Entity Data inherits from Composite Data and adds relationships.

Relationship
Describes an association between Entity Data elements.

Data Manager

A Entity Data element is incorporated in a Data Manager which gives it functionality
and ports as a component.

Constraints

® Entity Data must have a prime Key that is unique within the extent of the Entity
Data type (i.e., the type and all sub-types).

® Entity Data is managed by an Entity Data Manager.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.10.2.3 Key

Semantics

A Key is avalue that may be used to identify a Data Entity for some purpose.
Generally, it will be a unique identifier within some context. A Key designated Prime
Key = true is the key intended for unique identity of the Data Entity within the extent
of the Data Entity type.

A Key is composed of key elements which may be selected attribute values of the
associated Data Entity or Foreign Keys. A Foreign Key is the key of arelated Date
Entity.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Key

Owned by
Entity Data

Properties

Prime Key

A Boolean value that indicates if the Key is intended to be the primary unique identity
of the associated Entity Datatype. If so, the value must be unique within the extent of
the identifiable type.

Related elements

Composite Data
A Key is a specialization of Composite Data.

Entity Data
A Key describes an identifier of an Entity Data type.

Key Element

A Key Element is one segment of a Key, which is either a reference to an attribute of
the associated Data Entity or a reference to the key of an associated Data Entity.

Constraints

® |If Key is Prime Key = true, then the value must be unique within the extent of the
associated Entity Data type and its sub-types.

UML Profilefor EDOC: Entity Metamodel 3-161

® The attributes that are incorporated into the key must be immutable.
® The Key Elements that comprise the key have an immutable sequence.

3.10.2.4 Key Element

Semantics

A Key Element is one segment of a Key, which is either a reference to an attribute of
the associated Data Entity or a reference to the key of an associated Data Entity.

UML baseelement(s) in the Profile

Class

Fully Scoped hame
EDOC::ECA::Entity::Key Element

Owned by
Key

Properties
N/A

Related elements

Key
The Key in which the Key Element appears.

Key Attribute

A Specialization of Key Element that references an attribute in the associated Entity
Data..

Foreign Key
A specialization of Key Element that references the Key of an Entity Data structure
that is related to the Entity Data identified by the containing Key.

Constraints
N/A

3-162 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.10.2.5

3.10.2.6

Foreign Key

Semantics

A Foreign Key is a Key Element that is the value of a related Entity Data structure.
The subject Entity Data structure derives its identity, in part, from the related Entity
Data structure. For example, the line item of an order may be uniquely identified by
the line number and the key of the associated order. The Foreign Key element
references the relationship in order to identify the related Entity Data that contains the
Foreign Key value..

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Foreign Key

Owned by
Key

Properties
N/A.

Related elements

Key Element
Foreign Key is a specialization of Key Element.

Relationship

The associated relationship identifies the Entity Data from which the Foreign Key
value is obtained..

Constraints

® |f the associated Key has PrimeKey = true, then he relationship used to obtain the
Foreign Key value must be immutable.

Key Attribute

Semantics

A Key Attribute identifies an attribute of the associated Entity Data that is included as
an element of the Entity Data key. The value of the attribute becomes an element of
the key of an instance of the Entity Data type.

UML Profilefor EDOC: Entity Metamodel 3-163

3-164

3.10.2.7

UML baseelement(s) in the Profile

Class

Fully Scoped hame
EDOC::ECA::Entity::Key Attribute

Owned by
Key

Properties
N/A.

Related elements

Key Element
Key Attribute inherits from Key Element.

Attribute

Attribute is the Attribute of the Entity Data structure that is to be incorporated as an
element of the containing Key..

Constraints

If the containing Key is designated PrimeKey = true, then the Attribute values that are
incorporated into the key must be immutable.

Entity

Semantics

An Entity is an object representing something in the real world of the application
domain. It incorporates Entity Data that represents the state of the real world thing,
and it provides the functionality to encapsulate the Entity Data and provide associated
business logic.

An Entity instance has identity derived from the Key of its associated Entity Data.

Entity is the abstract super type of all identifiable application domain elements. This
includes Entities that have a collection of rules to operate on the state of related
entities. It also includes Entities that incorporate process elements that act on other
Entities. The rule set and process specializations introduce additional elements, but
have the basic characteristics of being identifiable, having local state (Composite Data)
often viewed as their “context,” and having relationships to other Entities that they
may act upon.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

If an Entity is managed, all instances of the type and its sub-types are known, each
instance has unique identity, and the type can have operations and attributes associated
with the extent (i.e., applicable to al instances). Thisis typically implemented as a
type manager or “home” object that represents the extent.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Entity

Owned by
Package

Properties

In the list, below, only Managed is introduced as a property by Entity, but
NetworkAccess and Sharable, inherited from Data Manager, are also discussed to
clarify the implications.

Managed

A Boolean value that indicates if the Entity type is managed. If it is managed, then the
implementation provides a mechanism for accessing the extent of all instances of the
type and its sub-types and may provide a mechanism for dynamically applying rulesto
all instances. This typically isimplemented as a “home” or “type manager.”

Networ kAccessible

A Boolean value that indicates if the Entity is expected to be accessed over the
network. Thisimplies that it has a network interface (e.g., CORBA IDL). An Entity
that is not NetworkAccessible can only be accessed over the network through an
associated Entity that is NetworkAccessible.

Sharable

A Boolean value that indicates if the Entity can be shared by multiple, concurrent
transactions or users. A Sharable Entity will enforce controls to serialize access by
concurrent transactions.

An Entity that is not sharable may be instantiated for use by a particular user or
transaction. It generally contains a copy of the primary Entity Data instance
representing the real world thing. The primary Entity Data instance may bein a
database and the copy is created to perform operations on the Entity Data.
Alternatively, the Entity Data may be managed by an Entity that is sharable, but the
copy is created so that processing can be localized on another server. In either case, it
would be expected that the primary Entity Data would be locked when the copy is
taken and released when the copy is deleted. Changes to the copy would likely be
applied to the primary instance prior to removing the lock.

UML Profilefor EDOC: Entity Metamodel 3-165

3-166

Entities that are not sharable may also be implemented as value objects, which are
always passed by value over the network. While they may have unique identity by
association with an identifiable Entity, they may not have a key that reflects this unique
identity and their Entity Data does not carry its unique identity when passed by value.

An Entity that is sharable is expected to be persistent. An Entity that is not sharable
may be persistent if it is incorporated in the state of a sharable Entity.

Related elements

DataManager

Entity inherits from DataM anager and adds the requirement that its associated
Composite Data is Entity Data. It also adds the ability to accept Data Probes and the
ability to be Managed.

Entity Role

Entity Role inherits from Entity as a specialized representation of an Entity in a
particular context. The Entity Role contains Entity Data that is associated with the
parent Entity in the particular context. Entity Role is associated with another Entity
that represents the context in which it applies. Thus the parent Entity might be a
person, the Entity Role might be the person as an employee, and the context entity
might be the employer.

An Entity may have many Entity Roles. Each Entity Role defines characteristics of the
Entity in a particular context, such as person in the role of an employee within a
corporation. An Entity may be the context for many Role Entities as a corporation is
the context of many employees.

Data Probe

A Data Probe port is associated with an Entity that accepts requests to detect changes
in the internal state of the Entity and forwards messages or events when the states of
interest become true.

Constraints

® An Entity manages Entity Data, which may have a key and relationships.
® A managed Entity must have a Primary Key.

® A network Accessible Entity must have a Primary Key

® An Entity that is Sharable will serialize concurrent transactions that attempt to
access its data

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.10.2.8 Entity Role

Semantics

An Entity Role extends its parent Entity for participation in a particular context. An
Entity may have a number of associated Entity Roles reflecting participation in
multiple contexts. The Entity might have several Entity Roles of the same type at the
same time, but each should be associated with a different context.

The context of an Entity Roleis also represented by an Entity. The context could be a
corporation where the parent is a person and the Entity Role is an employee. A context
may have many entity roles of the same type or different types representing
participation of different parent Entities for different purposes.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Entity Role

Owned by
Entity (context)

Properties

Virtual Entity

A Boolean value that indicates if the Entity Role incorporates and extends the primary
interface of the parent Entity it represents, i.e., it can be used in place of the primary
Entity.

Related elements

Entity
¢ |nheritance—Entity Role inherits from Entity such that it functions as an entity but
it derives its unique identity from the Entity it represents (i.e., a Foreign Key).

® Context association—An Entity Role represents an Entity in a particular context.
This association defines the context.

® Parent association—An Entity Role represents an entity in a particular context.
This association defines the parent Entity being represented.

Constraints

The parent entity of an entity role cannot be dynamically changed.

UML Profilefor EDOC: Entity Metamodel 3-167

3.10.2.9 DataProbe

Semantics

A Data Probe port is associated with an Entity and accepts ad hoc requests to detect
changes in the internal state of the Entity. The Data Probe then forwards messages or
events when the states of interest become true until the request is removed. A Data
Probe may serve many requests concurrently, producing various messages or events
when the appropriate states occur.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::ECA::Entity::Data Probe

Owned by
Entity

Properties

ExtentProbe

ExtentProbe = true indicates that requests apply to the extent of the associated entity as
opposed to a particular instance. In implementation, an ExtentProbe would be
associated with a “home” or “type manager.”

Related elements

Multi Port
Data Probe inherits from Multi Port.

Entity
The Entity that will accept probe requests.

Constraints
® DataProbes only emit messages (i.e., output only).
® DataProbe can only attach to an Entity with Managed = true..

3.11 Entity UML Profile

3-168

This section specifies the entity model as a UML profile. The profile consists of
standard UML facilities with the addition of a number of extensions specified in terms
of stereotypes, tagged values and constraints.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

The section begins with a table that maps the conceptual metamodel elements to the
UML elements, and then describes the UML package and the UML extensions in
detail.

3.11.1 Metamodel Mapping to Profile

Table 3-19 provides a mapping of metamodel elementsto UML profile elements.

Table 3-19 Element Mappings

February 2002

M etamodel Element UML Profile Element UML Base Class
Data Manager Data Manager Class

Entity Data Entity Data Class

Entity Entity Class

Entity Role Entity Role Class

Key Key Class

Key Element Key Element Attribute

Key Attribute Key Attribute Attribute

Foreign Key Foreign Key Attribute

Data Probe Data Probe Class

3.11.2 Entity Package

Figure 3-35 illustrates the extensions required for the entity model and the
relationships of these extensions to elements described in other ECA models. The
extensions shown in this diagram are discussed in the paragraphs that follow.

UML Profilefor EDOC: Entity UML Profile

3-169

<<Assocjation>>

<<stereotype>>
CompositeData
(from CCA)

<<stereotype>> <<stereotype>>
Port Process Component
(from CCA) (from CCA)
<<Steregtype>>
<<stereotype>> <<st oes>
Multi Port ereotype:
(from CCA)
<<Steregtype>>
<<stereotype>>
DataManager
<<tagDefinition>> - NetworkAccess : Boolean
<<stereotype>> <<tagDefinition>> - Sharable : Boolean
DataProbe

<<tagDefinition>> - ExtentProbe

3-170

gged Value>>

<<Stereotype>>

<<stereotype>>
Entity

<<tagDefinition>> - Managed = Boolean

14

<<Aggregation>>

RoleOf

0..

<<Stereotype>>

<<stereotype>>
EntityRole

B

- virtualEntity : bool

1.

<<Class Feature>>
<<Stereotype>>
<<Stereotype>>
<<stereotype>>
Key
<<tagDefinition>> - primeKey : Boolean
Attribute
<<Tagged Value>> “ i
KeyElgments
<<TaggeF Value>>
<<Steyeotype>> ‘
tereot <<stereotype>> ‘
<<stereotype>> .
ey Element
Entity Data Y <<Tagged Yalue>>
AttributeName
-

<<Aggregation>>

Context

0..n

|

<<Class Feature>>

<<Stereotype>> ‘

Relationship
(from UML)

<<stereotype>>
Key Attribute

<<Stereotype>>
<Tagged Value>> | <<stereotype>>
L KeySeurce——| Foreign Key

Figure 3-35 Entity Model Extensions to UML

3.11.2.1 DataManager

Inheritance

Class

Process Component
Data Manager

I nstantiation in model

Concrete

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.11.2.2

Semantics

A data manager is a functional component that provides access to and may perform
operations on its associated Composite Data (i.e., its state). Since, without
specialization, it is not uniquely identifiable it would be expected to get its identity
from a context, i.e., it may be embedded in another component or it could exist only
for a particular session.

Tagged values

Network Access

A Boolean property that expresses whether the implementation would be expected to
have a network accessible interface.

Sharable

A Boolean property that indicates if the implementation can be shared across multiple
sessions and/or in by concurrent transactions..

Manages
A reference to the associated Composite Data specification.

Constraints
N/A

Diagram notation

Equivalent to Class

Entity Data

Inheritance
Class
Composite Data
Entity Data

I nstantiation in a model

Concrete

Semantics

Entity Data is the data structure that represents a concept in the business domain. It is
equivalent to an entity in data modeling or arelation in arelational database. In a Data
Manager or its specializations, such as Entity, it represents the state of an object.

UML Profilefor EDOC: Entity UML Profile 3171

3-172

3.11.2.3

Entity Data has attributes (from Data Element) and relationships. The information
viewpoint is a viewpoint on Entity Data elements.

Tagged values

Key
A reference to the associated Key specification(s).

Constraints

® Entity Data must have a prime Key that is unique within the extent of the Entity
Data type (i.e., the type and all sub-types).

® Entity Datais managed by an Entity Data Manager.

Diagram notation

None

Key

Inheritance

Class
Composite Data

Key

I nstantiation in a model

Concrete

Semantics

A Key is avalue that may be used to identify a Data Entity for some purpose.
Generally, it will be a unique identifier within some context. A Key designated Prime
Key = true is the key intended for unique identity of the Data Entity within the extent
of the Data Entity type.

A Key is composed of key elements which may be selected attribute values of the
associated Data Entity or Foreign Keys. A Foreign Key is the key of arelated Date
Entity.

Tagged values

Prime Key

A Boolean value that indicates if the Key isintended to be the primary unique identity
of the associated Entity Datatype. If so, the value must be unique within the extent of
the identifiable type.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.11.24

3.11.2.5

Key Elements

A list of key elements consisting of references to attributes and relationships of the
associated Entity Data.

Constraints

* |If Key is Prime Key = true, then the value must be unique within the extent of the
associated Entity Data type and its sub-types.

® The attributes that are incorporated into the key must be immutable.
® The Key Elements that comprise the key have an immutable sequence.

Diagram notation

Similar to Class

Key Element

Inheritance
Attribute
Key Element
I nstantiation in amodel
Abstract

Semantics

A Key Element is one segment of a Key, which is either a reference to an attribute of
the associated Data Entity or a reference to the key of an associated Data Entity.

Tagged values
N/A

Constraints
N/A.

Diagram notation
N/A

Foreign Key
Inheritance

Attribute
Key Element

UML Profilefor EDOC: Entity UML Profile 3-173

Foreign Key

I nstantiation in a model

Concrete

Semantics

A Foreign Key is a Key Element that contains a reference to a related Entity Data
structure. The subject Entity Data structure derives its identity, in part, from the prime
key of the related Entity Data structure. For example, the line item of an order may be
uniquely identified by the line number and the key of the associated order. The
Foreign Key element references the relationship in order to identify the related Entity
Data that contains the Foreign Key value.

Tagged values

KeySource

A reference to the relationship through which the value and structure of the foreign key
are derived.

Constraints
®* The related Entity Data must have a prime key.

® |f the containing Key is designated PrimeKey = true, then the relationship for the
KeySource must be immutable.

Diagram notation
Attribute

3.11.2.6 Key Attribute

Inheritance

Attribute
Key Element
Key Attribute

I nstantiation in a model

Concrete

Semantics

A Key Attribute identifies an attribute of the associated Entity Data that is included as
an element of the Entity Data key. The value of the attribute becomes an element of
the key of an instance of the Entity Data type.

3-174 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.11.2.7

Tagged values

AttributeName

The identity of the attribute in the associated Entity Data that is incorporated as an
element of the Key.

Constraints

® |f the containing Key is designated PrimeKey = true, then the Attribute values that
are incorporated into the key must be immutable.

Diagram notation
Attribute

Entity

Inheritance

Class
Process Component
Data Manager
Entity

I nstantiation in a model

Concrete

Semantics

An Entity is an object representing something in the real world of the application
domain. It incorporates Entity Data that represents the state of the real world thing,
and it provides the functionality to encapsulate the Entity Data and provide associated
business logic.

An Entity instance has identity derived from the Key of its associated Entity Data.

Entity is the abstract super type of all identifiable application domain elements. This
includes Entities that have a collection of rules to operate on the state of related
entities. It aso includes Entities that incorporate process elements that act on other
Entities. The rule set and process specializations introduce additional elements, but
have the basic characteristics of being identifiable, having local state (Composite Data)
often viewed as their “context,” and having relationships to other Entities that they
may act upon.

If an Entity is managed, all instances of the type and its sub-types are known, each
instance has unique identity, and the type can have operations and attributes associated
with the extent (i.e., applicable to al instances). Thisis typically implemented as a
type manager or “home” object that represents the extent.

UML Profilefor EDOC: Entity UML Profile 3-175

3-176

Tagged values

In the list, below, only Managed is introduced as a tagged value by Entity, but
NetworkAccess and Sharable, inherited from Data Manager, are also discussed to
clarify the implications.

Probes
Identifies Data Probe ports associated with the Entity type.

Managed

A Boolean value that indicates if the Entity type is managed. If it is managed, then the
implementation provides a mechanism for accessing the extent of all instances of the

type and its sub-types and may provide a mechanism for dynamically applying rulesto
all instances. This typically is implemented as a “home” or “type manager.”

Networ kAccessible

A Boolean value that indicates if the Entity is expected to be accessed over the
network. Thisimplies that it has a network interface (e.g., CORBA IDL). An Entity
that is not NetworkAccessible can only be accessed over the network through an
associated Entity that is NetworkAccessible.

Sharable

A Boolean value that indicates if the Entity can be shared by multiple, concurrent
transactions or users. A Sharable Entity will enforce controls to serialize access by
concurrent transactions.

An Entity that is not sharable may be instantiated for use by a particular user or
transaction. It generally contains a copy of the primary Entity Data instance
representing the real world thing. The primary Entity Data instance may be in a
database and the copy is created to perform operations on the Entity Data.
Alternatively, the Entity Data may be managed by an Entity that is sharable, but the
copy is created so that processing can be localized on another server. In either case, it
would be expected that the primary Entity Data would be locked when the copy is
taken and released when the copy is deleted. Changes to the copy would likely be
applied to the primary instance prior to removing the lock.

Entities that are not sharable may also be implemented as value objects, which are
always passed by value over the network. While they may have unique identity by
association with an identifiable Entity, they may not have a key that reflects this unique
identity and their Entity Data does not carry its unique identity when passed by value.

An Entity that is sharable is expected to be persistent. An Entity that is not sharable
may be persistent if it is incorporated in the state of a sharable Entity.

Constraints

® An Entity manages Entity Data, which may have a key and relationships.
® A managed Entity must have a Primary Key.

® A network Accessible Entity must have a Primary Key

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.11.2.8

® An Entity that is Sharable will serialize concurrent transactions that attempt to
access its data

Diagram notation

Equivalent to Class

Entity Role

Inheritance

Class
Process Component
Data Manager
Entity
Entity Role

I nstantiation in a model

Concrete

Semantics

An Entity Role extends its parent Entity for participation in a particular context. An
Entity may have a number of associated Entity Roles reflecting participation in
multiple contexts. The Entity might have several Entity Roles of the same type at the
same time, but each should be associated with a different context.

The context of an Entity Roleis also represented by an Entity. The context could be a
corporation where the parent is a person and the Entity Role isan employee. A context
may have many entity roles of the same type or different types representing
participation of different parent Entities for different purposes.

Tagged values

Virtual Entity

A Boolean value that indicates if the Entity Role incorporates and extends the primary
interface of the parent Entity it represents, i.e., it can be used in place of the primary
Entity.

Constraints

The parent entity of an entity role cannot be dynamically changed.

Diagram notation

Equivalent to Class

UML Profilefor EDOC: Entity UML Profile 3-177

3.11.2.9 DataProbe

Inheritance

Class
Proto Port
Port
MultiPort
Data Probe

I nstantiation in a model

Concrete

Semantics

A Data Probe port is associated with an Entity and accepts ad hoc requests to detect
changes in the internal state of the Entity. The Data Probe then forwards messages or
events when the states of interest become true until the request is removed. A Data
Probe may serve many requests concurrently, producing various message types when
the appropriate states occur.

Tagged values

ExtentProbe

ExtentProbe = true indicates that requests apply to the extent of the associated entity as
opposed to a particular instance. In implementation, an ExtentProbe would be
associated with a “home” or “type manager.”

Constraints
® DataProbes only emit messages (i.e., output only).
® DataProbe can only attach to an Entity with Managed = true.

Diagram notation
Same as Port (from CCA).

Section IV - The Events Profile

The Events profile describes a set of UML extensions that may be used on their own,
or in combination with the other EDOC elements, to model event driven systems.

3-178 UML Profilefor Enterprise Distributed Object Computing February 2002

3.12 Rationale

3.12.1 Introduction

February 2002

Event driven computing is becoming the preferred distributed computing paradigm in
many enterprises and in many collaborations between enterprises.

Event driven computing combines two kinds of loosely coupled architectures:

® Event driven process architecture. Thisis aloosely coupled process architecture
where the activities are not sequenced in traditional workflow fashion. Rather each
participant in the process has autonomous responsibilities and performs those
responsibilities on the basis of loosely coupled notifications, (in the supply chain
world a.k.a. business signals).

® Publish and subscribe information distribution architecture. Publish and Subscribe
is aloosely coupled mechanism for getting information from publishers to
subscribers, while keeping the two independent of each other. Publish and subscribe
is often implemented as loosely coupled, distributed components that communicate
with each other through asynchronous messaging.

In event driven computing the most important aspect of the business process is the
events that happen during its execution, and the most important part of the component-
to-component communication is the notification of such events from the component
that made them happen to all the components that need to react to them.

In ECA we support both the definition of loosely coupled event-driven business
processes, and the loosely coupled publish and subscribe communication between
distributed components.

Neither the business world, nor the computing world, however, applies only one
paradigm to their problem space. Businesses use a combination of loosely coupled and
tightly coupled business processes and computing solutions deploy a combination of
loosely coupled and tightly coupled styles of communication and interaction between
distributed components.

This document describes in detail the event-driven flavor of loosely coupled business
and systems models, and also illustrates how such models can co-habit with more
tightly coupled models.

An ECA based business process can be defined as event driven for some of its steps
and workflow or request/response driven for others. Likewise, distributed components
in the ECA component profile can be configured to communicate with each other in a
mixture of publish-and-subscribe, asynchronous Point-to-Point, and client-server
remote invocation styles.

This document will focus on the purely event driven paradigm.

We will cover the following topics:
® Design Rationale

® Event driven business model

UML Profilefor EDOC: Rationale 3-179

Event driven computing

Event driven business computing

Publish and Subscribe

Key Concepts of event driven business and system models
Metamodel for specifying event driven business systems
UML Profile for the Metamodel

Relationship to other ECA profiles

Relationship to other paradigms

Applicability and leverage of event driven models

3.12.2 Overall design rationale

This profile is based on the following design principles:

Alignment with the BOI roadmap (BOM/98-12-04) with respect to business
process, business entity, business event, and business rule.

The event as a central rather than peripheral concept.

Business Processes should be loosely coupled:
e Autonomy of participants in a business process
 Digtinction between process and entity

e Clear separation of business logic, i.e. rules from business execution, i.e. the
action taken once rules have been resolved.

Information distribution should be loosely coupled

» Use of Publish and Subscribe rather than point-to-point
« Ubiquitous event notification

¢ Asynchronous computing

 Shared information model

Loose coupling of the Events profile with the Business Process profile, Entities
profile, and component profile

Re-usability of paradigm
¢ Recursive use of event notifications

Applicability under multiple paradigms

« The Events profile is intended to support both business process modeling and
EAI.

« The proposed profile is intended for either tightly coupled client/server or peer-to-
peer computing, or loosely coupled event-driven computing, or combinations of
both.

3-180 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.12.3 Concepts

3.12.3.1

3.12.3.2

Event Based Business Model

An event based business model is driven by business events. Whenever a business
event happens anywhere in the enterprise, some person or thing, somewhere, reacts to
it by taking some action. Business rules determine what event leads to what action.
Usually the action is abusiness activity that changes the state of one or more business
entities. Every state change to an Entity constitutes a new business event, to which, in
turn, some other person or thing, somewhere else, reacts by taking some action.

The main concepts in event driven business models are the business entity, business
event, business process, business activity and business rule.

This continuous, cyclical view of the interaction between these five business concepts
can be depicted as follows:

Business Buginess
Events Actions

Figure 3-36 Event Based Business Modeling

Event Driven Computing

Event driven computing isa computing paradigm where interaction among components
is based on notification of what happened, as opposed to instructions of what should

happen.

“What happened” is reflected as events. The communication that the event happened is
reflected as notifications. The reaction to the notification (or indirectly to the event) is
reflected as activities.

UML Profilefor EDOC: Rationale 3-181

3-182

3.12.3.3

3.12.34

3.124.1

Two important layers provide loose coupling between event, notification and activity.
The events are decoupled from the act of notification by configurable subscriptions.
The act of notification is decoupled from the activity by configurable notification rules.

Event driven computing is a very flexible, yet powerful architecture for enterprise
distributed object computing. The main architectural principle is that individual
components are kept as autonomous as possible, and that the loose coupling and
configuarability enable rapid reconfiguration of the system to meet changing business
model requirements such as mergers, outsourcing and business re-engineering. Under
event driven enterprise computing all business entities are self-contained, and typically
do not directly change each other’s state.

Event Driven Business Computing

Event driven business computing is a paradigm that executes business processes by
capturing events that happen in the enterprise, notifying the appropriate other partiesin
the enterprise or outside the enterprise, and reacting to such notifications.

Business processes are configured with a set of subscriptions, and a set of notification
rules that determine what activity to start (or end) based on each notification.

Business Entities are the people, products, and other business resources and artifacts
that business activities operate on. When actions are performed on Business Entities,
Business Events happen. All Business Entities are capable of notifying the world of
events that happen to them.

Business Processes that are capable of subscribing to such event notifications are
called EventBasedProcesses. They assign notifications to activities based on a set of
Notification Rules.

Publish and Subscribe

In a Publish and Subscribe information distribution model, publishers publish
information, and subscribers subscribe to information. Publishing simply means make
the information openly available for consumption. Subscribing simply means
expressing an interest in the information and consuming it when it gets delivered. The
information is transferred from Publisher to Subscriber ‘automatically’, usually
through the use of asynchronous message middleware. Publishers do not know which
subscribers will receiver their data, and subscribers do not know where the information
comes from. The information, however, describes the state of a process or an entity
that is of interest to both publisher and subscriber, and both parties share the
information model that describes these states (and state changes).

3.12.4 Key Concepts of event driven business and system models

EventBasedProcess

This is a concept introduced by this ECA Events profile, but based on the
Choreography element in the ECA component profile.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3.12.4.2

3.12.4.3

3.12.4.4

EventBasedProcesses are identifiable series of activities that change states of business
entities, thereby causing business events. For example, the activities in the Shipping
process may cause allocation events against the Inventory Entity, and pick, pack, and
ship events against the Shipment Entity.

Entity
This is a concept from the Entities profile.

Business Entities are representations of entities of significance to the business,
identifiable by an 1D, operated on during business process execution, and characterized
by having a lifecycle expressed as a set of entity states. Examples are Customer,
Purchase Order, Product, and Payment. In the Events profile, we use the supertype of
Entity, DataM anager, as the managers of the data behind an Entity. An
EventBasedDataM anager is capable of publishing information about all changes to the
data it manages. Because a EventBasedDataM anager is akind of EventBasedProcess, it
can also publish information about state changes in its internal process.

BusinessEvent

This is a concept introduced by this ECA Events profile.

BusinessEvents are state changes whose occurrence is of significance to the execution
of business processes. Typically business events reflect state changes in Business
Entities. These can be thought of as entity events. Examples are the approval of a
Purchase Order, or Receipt of a Payment. A more indirect type of business event is a
state change to a business process or to a collaboration between two business
processes. These are called ProcessEvents.

Notification

This is a concept introduced by this ECA Events profile. Thisis a concept only, it is
not represented by a specific element in the Events profile. It isimplemented using the
dataflow part of the Business Process profile.

A notification is a triggered dataflow between two roles, or between two components.
The trigger that causes the notification can be ‘manual’, or timed, or it can be due to
the fact that an event has happened. When triggered by an event, it is called an event
notification. Event notification, too, is just a concept, and not modeled explicitly.

The notification is always one-way only. The source of the notification is usually an
Entity, but can also be an EventBasedProcess. The destination is usually an
EventBasedProcess.

A notification can be thought of as the delivery of a set of data from a publisher to a
subscriber. The data delivered is a PubSubNotice. A PubSubNoticeis just a set of data,
it isimmutable, and it does not have any behavior of its own. There is no implication
in the PubSubNotice as to what the recipient is going to do when it receives the
PubSubNotice. An EventNotice is a special kind of PubSubNotice.

UML Profilefor EDOC: Rationale 3-183

All business events are associated with an EventNotice and the corresponding
notification will be take place whenever the business event happens successfully.

Similarly, when a business event is supposed to have happened but didn’t, ‘failure’
notifications will be take place.

An EventNotice always conveys the following information:

® the EventBasedProcess or entity the event happened against,
® thetrigger that caused it,

® theidentification of the before state,

® the after state,

¢ the change between the two states.

3.12.4.5 Publisher

This is a concept introduced by this ECA events profile.

A publisher is a component that provides PubSubNotices.

3.12.4.6 Subscriber

This is concept introduced by this ECA Events profile.

A subscriber is a role or component that holds subscriptions to one or more
PubSubNotices.

3.12.4.7 Subscription

This is a concept introduced by this ECA Events profile.

A subscription establishes a flow of PubSubNotices to the subscriber. A subscription
identifies the type of EventNotice, e.g. the kind of event you want to be notified about.
A subscription may additionally have a SubscriptionClause associated. The
SubscriptionClause functions as a filter much like awhere-clause on the content of the
notification.

3.12.4.8 NotificationRule

This is a concept introduced by this ECA Events profile.

NotificationRules are rules that govern the execution of (part of) an
EventBasedProcess. A NotificationRule is a mapping from a BusinessNotification to
an activity, optionally guarded by a EventCondition. An EventCondition is a
dependency on the receipt of additional, related PubSubNotices.

3-184 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.12.5 Event and Notification based Interaction Models

So the basic building blocks are the EventBasedProcess and the Entity, as shown in
Figure 3-37. The two are ‘wired together’ by a flow of actions from process to entity,
and by a flow of EventNotices from entity to process. In a component framework,
therefore, EventBasedProcesses have EventNotices inflow and action outflow, and
Entities have action inflow and EventNotice outflow. A messaging infrastructure
manages the delivery of EventNotices from entities to processes. The actions too,
incidentally, can be implemented via a messaging infrastructure, but the corresponding
messages are usually point-to-point.

This means that we can create CCA EventBasedProcess components and CCA event-
based Entity components if we can model:

* A EventBasedProcess as a set of Notification Rules of the type
notification/condition/activity (This is the event-driven equivalent of the commonly
known even/condition/action rule).

® An event-based Entity as set of action/state/event causalities.

The connection from EventBasedProcess to Entity is governed by a configurable
mapping of notification to action, namely the notification rule.

The connection from Entity to EventBasedProcess is governed by a configurable set of
subscriptions.

With these building blocks we can model a number of event-based interactions. And by
reconfiguring the Notification Rules and/or the Subscriptions, we can easily re-
engineer the business process and its execution in the system.

The very simplest model is a single process affecting a single entity, but thisis not very
interesting.

The simplest model of interest is a single process affecting multiple entities.

A slightly more complex interaction is process-to-process notifications. This model is
used in supply chain models, ak.a. business signal.

Another flavor of interaction is the delegation of the responsibility to dea with
notifications. This model is used in EAIl integration where legacy applications can be
“wrapped” behind publishers and subscribers of notifications.

These three flavors map to three kinds of interaction in the component model:
Interaction between a master and slave component, interaction between two peer
components, and interaction between the boundary of a component and its
subcomponents.

Yet another kind of interaction that can also be based on events and notifications is a
collaboration between processes. This model is used often in b2b interactions. Even
web services can be implemented using event concepts and loosely coupled messaging.

UML Profilefor EDOC: Rationale 3-185

3-186

3.12.5.1 IntraProcess Event Notification

The ssimplest model a single process affecting multiple entities. This can be modeled
pictorially something like this:

Subserphion

Motificatio Condition | Activity |
Hotification Condition | Activity |
plotificatio Condition | Ativity |

Event-
Notices

Fublication

Figure 3-37 Intra Process Event Notification

This corresponds to interaction between a master and a set of slave components. The
process has the logic to evaluate notifications and invokes actions on the entities.

3.12.5.2 Cross Process Event Notification

A picture of loosely coupled cross process notification:

UML Profilefor Enterprise Distributed Object Computing February 2002

Jotification_Condition | Activity
onificatio]_ Condition | Activity)

.

Figure 3-38 Cross Process Event Notification

This corresponds to interaction between two peer components.

3.12.5.3 Delegation

Delegation is passing on of a responsibility. Relative to the event driven model,
delegation is the passing of the business notification to another process, for it to
resolve, typically a sub process. There is a distinct expectation that the business
activity will happen, but it will happen as part of the sub process, not in the main
process. However, to the outside processes it will appear as if the main process
performed the business activity, and any event will ook like they happened in the main
process and any notifications will come from the main process.

February 2002 UML Profilefor EDOC: Rationale 3-187

Figure 3-39 Delegation

In the component model this the interaction between the boundary of a component and
its subcomponents.

3.12.6 Leveraging event based models

3.12.6.1 BusinessEvent Types

A variety of standard event types enable arich set of event-based scenarios.

Success events

A success event is the ‘normal’ event. It reflects the successful execution of an action
on an entity or the successful initiation or completion of an activity within the process.

Failureevents

A failure event is atype of ‘exception’ event. It reflects that an action on an entity was
attempted but failed, or that the initiation of an activity failed, or that an activity was
forced to terminate unsuccessfully. In programming languages this is the equivalent of
‘raising an exception.’

3-188 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.12.6.2

TimeOut-Events

This is one of the most useful events for management. A TimeOut-event is an abstract
event that reflects that something should have happened within a certain time period,

but didn’t. Typically this would be something like * shipment was scheduled but did not
happen’ within the allotted time. This can be generated based on an overdue condition
relative to a scheduled time

Mutual exclusion events

This type of event signifies that a given event that might be expected according to the
business process, did not happen, due to another alternative event happening. This may
be due to the process calling for a mutually exclusive choice between two parallel
events, or based on the occurrence of an event that normally happens after the event in
question, indicating that an event was ‘ skipped.

Data change events

These are useful for replication of datafrom one place to another. Whenever the source
data changes, events are generated, even if the change in data is not considered an
event in an entity life cycle sense.

Timed notifications

Thisisin some sense the simplest kind of notification; it is simply an alarm clock or
planning calendar. You can schedule notifications based on a schedule of trigger times.
The event, in some sense, is the clock reaching the scheduled time. The notification is
usually about the state of something as per that time, or in some cases it could be the
timed release of a number of accumulated event notifications.

Event Algebra
Events may be ANDed/ ORed, included, excluded, to create new event types.

For instance creditApproved event, and shipmentReady event may be ANDed to
releaseApproved event.

For instance orderApproved event and NOT licenseDenied event may be ANDed to
shipmentReleased event.

For instance orderShipped event, and NOT shipmentinvoiced event may be ANDed to
invoice exception event.

For instance orderShipped event and orderCanceled event may be ORed to produce an
orderClosed event.

Such event algebra is performed by value-added event agents. They take event
notifications as their input and produce value added event notifications as their output.

Such an agent could also be turning event notifications into time-released notifications.

UML Profilefor EDOC: Rationale 3-189

3.12.6.3 Management by Exception

3.13 Metamodel

One of the most important ways to leverage event driven computing is to manage by
exception notifications. If the business model defines all the events that should occur in
the normal course of business, then intelligent agents can be set up to track the
progress of each process instance and issue notifications whenever something
happened too late or didn’t happen at all. These agents would issue timeout-event
notifications, mutual exclusion event notifications, and other exception notifications.

Event notifications can also be used to monitor workloads and to give input for
rebalancing of loads within a process.

This is a meta-model for event-driven business computing, specifying the concepts
described above. The model consists of two packages:

® Publish and Subscribe Package
® Event Package

These two packages are described in detail below, but first we show two views across
the packages:

® Process View (showing how a Business Process produces and reacts to events)

® Entity View (showing how Business Entities produce and react to events)

We also show both packages and both views together in a full overview diagram of the
metamodel for the Events profile.

3.13.1 Business Process View

3-190

Thisis an overview of the business process aspect of event-driven business computing.
The yellow (shaded) elements are directly part of the business process view. The white
elements belong to other views and provide the context for this view (see Figure 3-40).

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Business Process View of Event Model _ EventCondition
+requiredBy = -
condition : Expression
0.n NotificationRule
+requires 0..n governs entry into
..n +guards or exit from
+ dedB
Subscription guardecBy — Mdtss
0..n -
NotificationRule +governs
condition : Expression
0.1
‘ EventbasedProcess Choreography
- (from Event) — (from CCA)
PubSubNotice Subscriber e
- +governedBy ‘
+annaunces - Node /1/2 ﬂ
Publisher
(from CCA)|- — —
lifeQ
on ifeCycle ‘
cedBy | +offers
EventNotice +offere... 1.2 ‘
0..n
0..n 0..n Publication ‘
+triggeredBy +describes ‘
*trigge +desgfibedBy 0..n ects ProcessEvents
0..1 0..n reflect successful
BusinessEvent ProcessEvent or failed entry into
< (from Event) — — — and/or successful
or failed exit from

]

DataEvent

Nodes

Figure 3-40 Business Process View of metamodel

An EventBasedProcess is a specialized choreography. A choreography (from the CCA
Profile) is a set of Nodes (States and PortUsages) and the Connections between them.
An EventBasedProcess generates ProcessEvents upon successful or failed entry into or
exit from its Nodes. A ProcessEvent is a kind of BusinessEvent. An
EventBasedProcess is a Publisher and will publish EventNotices for each of its
ProcessEvents. An EventBasedProcess is also a Subscriber and will hold subscriptions
to PubSubNotices, specifically EventNotices from other processes and from entities.

The NotificationRule is the loose coupling between the receipt of a EventNotice and
entry into or exit from a Node. One or more EventConditions may guard the
NoatitificationRule. An EventCondition requires the receipt of an additional
EventNotice, governed by another subscription.

UML Profile for EDOC: Metamodel 3-191

3-192

3.13.2 Entity View

Thisis an overview of the entity aspect of event-driven business computing. The
yellow (shaded) elements are directly part of the entity view. The white elements
belong to other views and provide the context for this view.

Entity View of Event Model

Subscription

1..n EventbasedProcess

S 2

+subscribesTo

PubSubNotice Subscriber

1.n EventbasedDataManager DataManager
+announces (from Entity)
Publisher ’ 1
EventNotice 0.n
+offers
0..n edB Entity
Y +offeredBy (rom Entity)

0..n lifeCycle

+triggeredBy

Publication

0..n

BusinessEvent D ataEve nt

Figure 3-41 Entity View of metamodel

In the Entities profile Entity is a kind of DataManager. Further, a DataManager is a
kind of Choreography. An EventBasedDataM anager is a special DataM anager that
generates DataEvents each time its data changes. DataEvents are a kind of
BusinessEvent. Since a DataManager is also a kind of Choreography, it can aso
generate ProcessEvents about its own internal choreography.

3.13.3 Whole Event Model

The following is a diagram of the whole metamodel for the Events profile. The yellow
(shaded) elements are directly part of the metamodel, and will be described in detail
below, divided into two packages: Publish and Subscribe, and Event. The white
elements belong to other profiles and provide the context for this view.

UML Profilefor Enterprise Distributed Object Computing February 2002

EventCondition

condition : Expression

0..n

+guardedBy

a

CompositeData
(from CCA)

O

+requiredBy

+guards

+requires
0..n

0..n

Subscription

subscriptionClause : expression
domain : String

NotificationRule

<@ condition : Expression

0..1
+governs

EventbasedProcess

(from CCA)

+subscribed

+subscribesTo
1.n

'

Subscriber

+governedBy
’ .2

Choreography

Node
(from CCA)

+reflectedIn

PubS ubNotice 1..2
Publisher EventbasedDat
1..n aManager
+announcedBy
0..n T
+offers *
}offered By
0..n i
. lifeCycle
- Publication lifeCycle
EventNotice —— -
(rom! Event) publlc_atlonC_Iause : expression
domain : String 0..n
+describes triggeredBy DamEvent
0..n 0..n
+reflects
1 0..n 0.n
9.1 +triggers
+describedBy 99 ProcessEvent

February 2002

BusinessEvent

entry : Boolean

success : Boolean

Figure 3-42 Complete Metamodel for Event Modeling

UML Profile for EDOC: Metamodel

DataManager
(from Entity)

3-193

3-194

3.13.4 Publish and Subscribe Package

Thisis an overview of the publish and subscribe aspect of event-driven business
computing. The yellow (shaded) elements are directly part of the publish and subscribe
package. Each of them will be described in detail below. The white elements belong to
other views and provide the context for this view.

Publish and Subscribe (PubSub) Package

Subscription

subscriptionClause : expression
domain : String

+subscribesTo " 1. p i

Subscriber
+subscribedBy FlowPort
1..n (from CCA)
PubSubNotice
Publisher
0..n
+offers
+announces offeredBy
1..n 0..n
CompositeData Publication
(from CCA) publicationClause : expression
domain : String

Figure 3-43 Metamodel of event notification view

A publisher is a component that offers a list of publications, and produces (publishes)
PubSubNotices accordingly. Publication is the commitment to send PubSubNotice.
PubSubNotice is the data structure in which the PubSubNotice instances will be
published.

EventNotice is a kind of PubSubNotice.

A subscriber is a component that holds Subscriptions, and receives PubSubNotices
accordingly. Subscription is the loose coupling between the sending of the notice and
the receipt of the notice. A subscriptionClause determines whether the subscriber gets
notified or not.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3.134.1

3.13.4.2

Notification is the sending of an PubSubNotice from the Publisher to the Subscriber
when an event happens within the Publisher. Thisis usually handled by middleware,
and publisher and subscriber are loosely coupled and anonymous relative to each other.

Publisher

Semantics

A publisher is a component that exposes a list of publications, and produces
PubSubNotices accordingly.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::CCA::Event:: Publisher

Owned By

None

Properties

None

Related elements
Publication

Publisher offers one or more Publications

Constraints

None

Publication

Semantics
A Publication is a declaration of capability and intent to produce a PubSubNotice.

UML baseelement(s) in the Profile

Inherits from FlowPort in CCA Profile

Fully Scoped Name
EDOC::CCA::Event:: Publication

UML Profile for EDOC: Metamodel 3-195

3-196

3.13.4.3

Owned By
Publisher
Properties

publicationClause

Expression based on attributes of PubSubNotice, describing the instance subset that
will be produced according to this publication.

domain
A domain in which the PubSubNotices for this publication will be produced.

Related Elements

Publisher
A Publication is offeredBy exactly one Publisher.

PubSubNotice
A Publication announces one or more PubSubNotices.

FlowPort
A Publication Inherits from FlowPort as per the Component Profile.

Constraints

PublicationClause Expression is constrained to the values of the attributes of the
associated EventNotice.

Subscriber

Semantics

A subscriber is a role or component that exposes a list of subscriptions, and consumes
PubSubNotices accordingly.

UML baseelement(s) in the Profile

Class

Fully Scoped Name
EDOC::CCA::Event:: Subscriber

Owned By

None

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.13.4.4

Properties
None
Related elements

Subscription
A Subscriber holds one or more Subscriptions.

Constraints

None

Subscription

Semantics

Subscription is the expression of interest in receiving and capability to receive a
PubSubNotice.

UML baseelement(s) in the Profile

Inherits from FlowPort in Component Profile.

Fully Scoped Name
EDOC::CCA::Event:: Subscription

Owned By
Subscriber
Properties

subscriptionClause

Expression based on attributes of PubSubNotice, describing the instance subset of
interest to this subscription.

domain
A domain of interest. Only PubSubNotices produced within this domain are of interest.

Related Elements

Subscriber
A Subscription is heldBy exactly one Subscriber.

EventNotice
A Subscription subscribesTo one or more EventNotices.

UML Profile for EDOC: Metamodel 3-197

FlowPort
A Subscription Inherits from FlowPort as per Component Profile.

Constraints

SubscriptionClause Expression is constrained to the values of the attributes of the
associated EventNotice. If the subscription is for more than one event notice, the
expression is constrained to attributes that are common to all the event notices of
interest.

3.13.4.5 PubSubNotice

Semantics

A PubSubNotice is any data structure that is announcedBy a publication and/or
subscribedTo by a subscription. Instances of PubSubNotice are communicated as
DataFlows from publishers to subscribers based on the subscriptions.

UML baseelement(s) in the Profile

Inherits from CompositeData as per Entities profile.

Fully Scoped Name
EDOC::CCA::Event:: PubSubNotice

Owned By

None

Properties

None

Related Elements

Subscription
A PubSubNotice is subscribedBy one or more Subscriptions.

Publication
A PubSubNotice announcedBy one or more Publications.

CompositeData
A PubSubNotice Inherits from CompositeData as per Entities profile.

Constraints

None

3-198 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.13.5 Event Package

Thisis an overview of event aspect of event-driven business computing. The yellow
(shaded) elements are directly part of the event package. Each of them will be
described in detail below. The white elements belong to other views and provide the
context for this view.

Event Package

o +guards +guardedBy ———
EventCondition on o.n NotificationRule +governs
condition : Expression <@ |condition : Expression o1
+requiredBy :

0..n . 0/
on Subscription

+requires (from PubSub)

p— i Choreography
i ventbasedProcess
+subscribedBy L (from CCA)
1..n
’ +governedBy
Subscriber 1.2 ?7
+subscrifesTo (from PubSub) Node
L (from CCA)
PubSubNotice
fi PubSub
(from PubSub) Publisher —— ey +reﬂected/n DataManager
ventbasedDataManager)
(from PubSub) g 1.2 (from Entity)
1
lifeCycle lifeCycle
EventNotice
0..n
+describes o.n
0..n +triggers DataEvent
+reflects
) 0..n
+describe triggeredBy 0.
1 ProcessEvent
BusinessEvent entry : Boolean
— success : Boolean

Figure 3-44 Diagram of Event Package

3.13.5.1 BusinessEvent

Semantics

A business event is any event of business interest that happens within an enterprise.
BusinessEvents are either ProcessEvents or DataEvents.

UML baseelement(s) in the Profile

Class

UML Profile for EDOC: Metamodel 3-199

Fully Scoped Name
EDOC::CCA::Event:: BusinessEvent

Owned By

None

Properties

None

Related Elements

EventNotice
A business event triggers one or more event notices.

A business event is describedBy one or more event notices.

ProcessEvent
Business event is the Abstract supertype of ProcessEvent.

DataEvent
Business event is the Abstract supertype of DataEvent.

Constraints

None

3.13.5.2 ProcessEvent

Semantics

A process event is any business event that reflects a state change within a process, i.e.
entry into or exit from Nodes in a Choreography.

UML baseelement(s) in the Profile

Inherits from BusinessEvent

Fully Scoped Name
EDOC::CCA::Event:: ProcessEvent

Owned By
EventBasedProcess

3-200 UML Profilefor Enterprise Distributed Object Computing February 2002

Properties

None

Related Elements

Node

A ProcessEvent reflects the entry into or exit from one Node (or the exit from one and
entry into another, i.e., two Nodes).

BusinessEvent
ProcessEvent Inherits from BusinessEvent.

Constraints

Any Node referenced must belongs to the EventBasedProcess that also owns this
ProcessEvent.

3.13.5.3 DataEvent

Semantics

A data event is any business event that reflects a changes in data managed by a
DataM anager.

UML baseelement(s) in the Profile

Inherits from BusinessEvent

Fully Scoped Name
EDOC::CCA::Event:: DataEvent

Owned By
EventBasedDataM anager

Properties

None

Related Elements

BusinessEvent

ProcessEvent Inherits from BusinessEvent.

Constraints

None

February 2002 UML Profilefor EDOC: Metamodel 3-201

3.13.5.4 EventNotice

Semantics

An event notice is any PubSubNotice that is triggered by a business event.

UML baseelement(s) in the Profile

Inherits from PubSubNotice

Fully Scoped Name
EDOC::CCA::Event:: EventNotice

Owned By

None

Properties

None

Related Elements
BusinessEvent
An event notice is triggeredBy exactly one Business Event.

An event notice may describe at most one Business Events.

PubSubNotice
An event notice Inherits from PubSubNotice.

Constraints

None

3.13.5.5 EventBasedProcess

Semantics

An EventBasedProcess is a subtype of Choreography (CCA profile). It is a Subscriber
and has NotificationRules associated with its Subscriptions. It is a Publisher and
publishes ProcessEvents. ProcessEvents describe the life cycle of the
EventBasedProcess.

UML baseelement(s) in the Profile

Inherits from Choreography (from CCA profile).

3-202 UML Profilefor Enterprise Distributed Object Computing February 2002

Fully Scoped Name
EDOC::CCA::Event:: EventBasedProcess

Owned By

None

Properties

None

Related Elements

ProcessEvent

An EventBasedProcess owns a set of ProcessEvents which together describes the life
cycle of the EventBasedProcess.

Choreography
An EventBasedProcess Inherits from Choreography (from CCA profile).

Publisher
An EventBasedProcess Inherits from Publisher.

Subscriber
An EventBasedProcess Inherits from Subscriber.

EventBasedDataManager
An EventBasedProcess is the supertype of EventBasedDataM anager.

Constraints

None

3.13.5.6 EventBasedDataManager

Semantics

An EventBasedDataM anager is a DataManager. It is also a Publisher and publishes
DataEvents when its data changes. It may also be a subscriber, typically subscribing to
PubSubNotices relating to the maintenance of its data, e.g., replication.

UML baseelement(s) in the Profile

Inherits from DataManager (from Entities profile).

February 2002 UML Profilefor EDOC: Metamodel 3-203

Fully Scoped Name
EDOC::CCA::Event:: EventBasedDataManager

Owned By

None

Properties

None

Related Elements

DataEvent

An EventBasedDataM anager owns a set of DataEvents which together describes
possible changes to the data owned by the EventBasedDataM anager.

DataManager
An EventBasedDataM anager Inherits from DataManager (from Entities profile).

Publisher
An EventBasedDataM anager Inherits from Publisher.

Subscriber
An EventBasedDataM anager Inherits from Subscriber.

EventBasedDataManager
An EventBasedDataM anager inherits from EventBasedProcess.

Constraints

None

3.13.5.7 NotificationRule

Semantics

An NotificationRule is a rule associated with a subscription which determines what
should happen within the EventBasedProcess holding the subscription when a
qualifying PubSubNotice is delivered. Optionally the NotificationRule can be further
guarded by an EventCondition that requires the delivery of additional events.

3-204 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.13.5.8

UML baseelement(s) in the Profile
Class

Fully Scoped Name
EDOC::CCA::Event:: NotificationRule

Owned By
EventBasedProcess

Properties

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will cause the change in the EventBasedProcess indicated by
this NotificationRule

Related Elements

Subscription

A NotificationRule is associated with a Subscription and ‘fires' upon receipt of the
PubSubNotice associated with the Subscription.

EventCondition

A NotificationRule may be guardedBy one or more EventConditions calling for the
receipt of additional events before this NotificationRule will ‘fire’ successfully.

Node

A NotificationRule governs the entry into or exit from one Node (or the exit from one
and entry into another, i.e., two Nodes).

Constraints

Any EventConditions must reference Subscriptions belonging to the same
EventBasedProcess as the NotificationRule.

EventCondition
Semantics

An EventCondition identifies a subscription and specifies a PubSubNotice instance
subset of which one must have been received to satisfy this condition.

UML Profile for EDOC: Metamodel 3-205

3.14 UML Profile

UML baseelement(s) in the Profile

Class

Fully Scoped Name

EDOC::CCA::Event:: EventCondition

Owned By

NotificationRule

Properties

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will satisfy the guard constituted by this EventCondition.

Related Elements

Subscription

An EventCondition is requires a Subscription and ‘fires’ upon receipt of a
PubSubNotice associated with the Subscription. If the received PubSubNotice satisfies
the condition expression, then the EventCondition has been satisfied.

Constraints

None

3.14.1 Table mapping concepts to profile e ements

3-206

Table 3-20 Mapping Events Concepts to Profile Elements

M etamodel element Profile element UML base element
Publisher Publisher Class

Publication Publication FlowPort/Class
Subscriber Subscriber Class

Subscription Subscription FlowPort/Class
PubSubNotice PubSubNotice CompositeData/Class
BusinessEvent BusinessEvent Class

ProcessEvent ProcessEvent Class

DataEvent DataEvent Class

EventNotice EventNotice CompositeData/Class
EventBasedProcess EventBasedProcess Choreography/Classifier

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

Table 3-20 Mapping Events Concepts to Profile Elements

EventBasedDataM anager EventBasedDataM anager Choreography/Classifier
NotificationRule NotificationRule Class
EventCondition EventCondition Class

3.14.2 Introduction

The following lists, divided into two packages, the elements in the Events profile.

3.14.3 Publish and Subscribe Package

3.14.3.1

3.14.3.2

Publisher

Inheritance
Class

Publisher

I nstantiation in a model

Concrete

Semantics

A publisher is a component that exposes a list of publications, and produces

PubSubNotices accordingly.

Tagged Values

offers

Reference: Publisher offers one or more Publications.

Constraints

None

Publication

Inheritance
Class
ProtoPort
Port

Flowport

UML Profilefor EDOC: UML Profile

3-207

3-208

3.14.3.3

Publication

I nstantiation in a model

Concrete

Semantics
A Publication is a declaration of capability and intent to produce a PubSubNotice.

Tagged Values

publicationClause

Expression based on attributes of PubSubNotice, describing the instance subset that
will be produced according to this publication.

domain
A domain in which the PubSubNotices for this publication will be produced.

Publisher
Reference: A Publication is offeredBy exactly one Publisher.

announces
Reference: A Publication announces one or more PubSubNotices.

Constraints

PublicationClause Expression is constrained to the values of the attributes of the
associated EventNotice.

Subscriber

Inheritance
Class

Subscriber

I nstantiation in a model

Concrete

Semantics

A subscriber is a role or component that exposes a list of subscriptions, and consumes
PubSubNotices accordingly.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.14.34

Tagged Values

holds
Reference: A Subscriber holds one or more Subscriptions.

Constraints

None

Subscription

Inheritance
Class
ProtoPort
Port
Flowport

Subscription

I nstantiation in a model

Concrete

Semantics

Subscription is the expression of interest in receiving and capability to receive a
PubSubNotice.

Tagged Values

subscriptionClause

Expression based on attributes of PubSubNotice, describing the instance subset of
interest to this subscription.

domain
A domain of interest. Only PubSubNotices produced within this domain are of interest.

heldBy
Reference: A Subscription is heldBy exactly one Subscriber.

subscribesTo
Reference: A Subscription subscribesTo one or more EventNotices.

UML Profilefor EDOC: UML Profile 3-209

Constraints

SubscriptionClause Expression is constrained to the values of the attributes of the
associated EventNotice. If the subscription is for more than one event notice, the
expression is constrained to attributes that are common to all the event notices of
interest.

3.14.3.5 PubSubNotice

Inheritance
Class
CompositeData
PubSubNotice

I nstantiation in a model

Concrete

Semantics

A PubSubNotice is any data structure that is announcedBy a publication and/or
subscribedTo by a subscription. Instances of PubSubNotice are communicated as
dataflows from publishers to subscribers based on the subscriptions.

Tagged Values

subscribedBy
Reference: A PubSubNotice is subscribedBy one or more Subscriptions.

announcedBy
Reference: A PubSubNotice announcedBy one or more Publications.

Constraints

None

3.14.4 Event Package 2

3.14.4.1 BusinessEvent

Inheritance

Class

BusinessEvent

3-210 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.14.4.2

I nstantiation in a model
Abstract

Semantics

A business event is any event of business interest that happens within an enterprise.
BusinessEvents are either ProcessEvents or DataEvents.

Tagged Values

triggers
Reference: A business event triggers one or more event notices.

describedBy
Reference: A business event is describedBy one or more event notices.

Constraints

None

ProcessEvent

Inheritance
Class
BusinessEvent

ProcessEvent

I nstantiation in a model

Concrete

Semantics
A process event is any business event that reflects a state change within a process, i.e.
entry into or exit from Nodes in a Choreography.

Tagged Values

reflects

Reference: A ProcessEvent reflects the entry into or exit from one Node (or the exit
from one and entry into another, i.e. two Nodes).

Constraints

Any Node referenced must belong to the EventBasedProcess that also owns this
ProcessEvent.

UML Profilefor EDOC: UML Profile 3-211

3.14.4.3 DataEvent

Inheritance

Class

BusinessEvent
DataEvent

I nstantiation in a model

Concrete

Semantics

A data event is any business event that reflects a changes in data managed by a
DataM anager.

Tagged Values

None

Constraints

None

3.14.4.4 EventNotice

Inheritance
Class
CompositeData
PubSubNotice

EventNotice

I nstantiation in a model

Concrete

Semantics

An event notice is any PubSubNotice that is triggered by a business event.

Tagged Values

triggeredBy
Reference: An event notice is triggeredBy exactly one Business Event

3-212 UML Profilefor Enterprise Distributed Object Computing February 2002

An event notice may describe at most one Business Events.

Constraints

None

3.14.4.5 EventBasedProcess

Inheritance
Choreography
EventBasedProcess

I nstantiation in a model

Concrete

Semantics

An EventBasedProcess is a subtype of Choreography. It is a Subscriber and has
NotificationRules associated with its Subscriptions. It is a Publisher and publishes
ProcessEvents. ProcessEvents describe the life cycle of the EventBasedProcess.

Tagged Values

None

Constraints

None

3.14.4.6 EventBasedDataManager

Inheritance
Choreography
ProcessComponent
DataM anager
EventBasedDataM anager

I nstantiation in a model

Concrete

February 2002 UML Profilefor EDOC: UML Profile 3-213

3-214

3.14.4.7

Semantics

An EventBasedDataM anager is a DataManager. It is also a Publisher and publishes
DataEvents when its data changes. It may also be a subscriber, typically subscribing to
PubSubNotices relating to the maintenance of its data, e.g., replication.

Tagged Values

None

Constraints

None

NotificationRule

Inheritance

Class

NotificationRule

I nstantiation in a model

Concrete

Semantics

A NotificationRule is arule associated with a subscription which determines what
should happen within the EventBasedProcess holding the subscription when a
qualifying PubSubNotice is delivered. Optionally the NotificationRule can be further
guarded by an EventCondition that requires the delivery of additional events.

Tagged Values

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will cause the change in the EventBasedProcess indicated by
this NotificationRule.

subscription

Reference: A NotificationRule is associated with a Subscription and ‘fires’ upon
receipt of the PubSubNotice associated with the Subscription.

guardedBy

Reference: A NotificationRule may beguardedBy one or more EventConditions calling
for the receipt of additional events before this NotificationRule will ‘fire’ successfully.

UML Profilefor Enterprise Distributed Object Computing February 2002

Node

A NotificationRule governs the entry into or exit from one Node (or the exit from one
and entry into another, i.e., two Nodes).

Constraints

Any EventConditions must reference Subscriptions belonging to the same
EventBasedProcess as the NotificationRule.

3.14.4.8 EventCondition

Inheritance

Class

EventCondition

I nstantiation in a model

Concrete

Semantics

An EventCondition identifies a subscription and specifies a PubSubNotice instance
subset of which one must have been received to satisfy this condition.

Tagged Values

Condition

An Expression based on attributes of PubSubNotice, describing the instance subset of
the PubSubNotice that will satisfy the guard constituted by this EventCondition.

requires
Reference: An EventCondition is requires a Subscription and ‘fires' upon receipt of a

PubSubNotice associated with the Subscription. If the received PubSubNotice satisfies
the condition expression, then the EventCondition has been satisfied.

Constraints

None

3.15 Relationshipto other ECA profiles

3.15.1 Relationship to Business Process profile and Entities profile

The ECA Business Process profile describes a process as a set of activities.

February 2002 UML Profilefor EDOC: Relationship to other ECA profiles 3-215

3-216

Activities are defined in terms of responsible party, performers, artifacts, and pre and
post conditions.

Activity diagrams may be used to show roles and flow between activities.
Collaboration diagrams may be used to show roles and message flow between roles.

The Business Process profile does not specify which performers act on what artifacts,
and how.

It does not specify directly the relationship between states of artifacts and the pre and
post conditions of activities.

It does not show directly what triggers each activity.

(Above three statements are qualified: other than as annotated in activity diagram as
control flow and object flow.)

The Business Process profile, relies on components to implement the choreography.
The states and transitions of choreography implement the control flows of the activity
diagram.

The messages implement the information flows from the collaboration diagram.

The Events profile (this profile) describes events that happen to artifacts (entities). It
describes business events as changes from one state to another. The Events profile
describes how activities result in state changes, i.e. events.

It describes how these BusinessEvents map to EventNotices, and how subscriptions can
channel notifications to processes, and how delivery of a EventNotice can be mapped
by NotificationRules to activities.

The Events profile does not describe who or what within the process establishes the
subscription, or who or what within the process reacts to receipts of notifications.

3.15.2 Relationship to ECA CCA profile

3.15.2.1 Modeling Eventswith Components

Events are changes in state to either entities or processes.

Just about anything that happens in a business, has interest to someone else, and so
every event (to an entity or to a process) has the potential for causing notification.

At the system level this means that any process or entity has to offer notification (i.e.
allow subscription) to any of its state change notifications.

Most event notifications also trigger rules of some kind. If state of inventory changes
to 'bel ow-minimum-stock-level' some re-order rule kicks in. If state of the order-
process changes to 'over-due' then some expediting rule kicks in.

At the system level this means that NotificationRules and BusinessConditions must be
able to refer to events.

All activities result in a new state, or in failure.

UML Profilefor Enterprise Distributed Object Computing February 2002

At the system level this means that definitions of activities and operations include
postconditions. These postconditions could be either expressions of events (i.e. state
change), or more likely expression of state (where the state change, or event, is
implicit.).

The Events profile relies on the CCA profile to implement the outgoing event
notification flows from an entity component, and the incoming event notification flows
to a process component. Event notification flows happen from flow port to flow port.

The Events profile relies on the CCA profile to implement the linkage between (the
completion of) an action on an entity and (an instance of) an event . The event model
specifies which activity causes which event.

3.16 Relationship other paradigms

February 2002

In general the central idea of event driven computing is that event notifications trigger
action and/or communication, and that very little action or communication is not
triggered by event notifications.

There are four main kinds of communication:

® Business notification: A one-way, information-only, notification. A specia subtype
is event-notification that informs that an event just happened. Thisis the main form
of communication in event-driven computing.

® Query: A two-way, request, response, with the response being the query result set.
This is amore tightly coupled model. However a query could be triggered by the
loosely coupled receipt of a business notification. Also the gathering of data for a
business notification could require one or more tightly coupled queries.

® Collaboration: A two-way, negotiation-style, communication that may or may not
result in a new state between the parties. An atomic style subtype is the ebXML
business transaction. This could be implemented in many ways. One way is to
consider the requests and responses in the collaboration to simply be business
notifications. Regardless how the collaboration itself is implemented, it could
certainly be triggered by the loosely coupled receipt of a business notification. For
instance notification of an event within the enterprise might trigger the collaboration
to order more inventory.

® Method invocation: A one-way, with optional return parameters, communication
that usually causes the state at the remote end to change in a predefined way. Again,
amethod invocation could be triggered by the loosely coupled receipt of a business
notification. Also under event driven computing entity operations, which are often
implemented as method invocations, will trigger the sending of one or more loosely
coupled event natifications. A cousin of method invocation, web service invocation,
is usually likely to be implemented as one way transfer of messages over standard
internet protocols. As such you could easily have web services react directly to
event notifications.

So again, event notifications can trigger many kinds of communication, and based on
business rules and or subscriptions, the kind of communication may be another
notification, a collaboration, a method invocation or a query.

UML Profilefor EDOC: Relationship other paradigms 3-217

Many times a tightly coupled systems model can be replaced with an event based
model to create more flexibility in business and systems re-engineering. Generically,
replacing state machines with event-driven computing always adds loose coupling. In a
state machine, the event is both the thing that happened and the stimulus for something
else to happen. The two cannot be separated. In event driven computing the event, the
sending of a notification, the receipt of the notification, and the reaction to the
notification are all separate, and can be much more easily reconfigured upon demand.

The above is true both at a generic business level and at a system level.

3.16.1 ebXML

3.17 Example

3-218

ebXML is alarge initiative to model and implement business collaborations based on
XML message exchanges between the parties.

There are several relationships of the event model to ebXML.

First, event driven computing within the enterprise is the best way to determine when
to initiate business collaborations.

Second, the XML message exchanges could themselves be treated as business
notifications.

Thirdly, the ebXML business model is based in part on a model for exchange of
economic resources, where each such exchange is called an economic event. The
capture of such economic events is similar to the capture of normal business events,
and the communication of the notifications can be the same for both.

Fourth, the model for economic resources deals also with future commitments, which
can be thought of as promises to execute economic events in the future. This extends
the event model into prediction of events and executions against those predictions.

ebXML, phase one, was approved in May of 2001. In this phase, the ebXML business
process choreography is already near identical to the ECA choreography. It is predicted
that ebXML phase two will bring further alignment to ECA, and to the evolving web
services standards.

In the engineering of EventBasedProcesses you identify the business entities to be
affected and examine their available business events and ‘communicated’ business
notifications. Activities for the EventBasedProcess are then constructed to contain
NotificationRules that ‘listen’ for the appropriate business notifications, and business
activities that cause the appropriate business events to happen. The process can easily
be re-engineered by changing the subscriptions, or the NotificationRules, thus causing
different business activities to happen in response to a given business notification.

A basic EventBasedProcess, and its relationships to business entities can be depicted
on a diagram such as that below

UML Profilefor Enterprise Distributed Object Computing February 2002

| Business Frocess: Order-to-ship | | Business Entity: Order |

Start (2

I

Ll
Ll
L
O

Done

e

| Business Process: CreditCthk\l\

Start (O

Done O

| Business Entity: Irnventory |
LN N S
! <Rl
2 _ < Shigped >
3 Business Entity: Customer |
SN

F]

Figure 3-45 Business process/entity/event diagram

Processes and entities are depicted as large boxes. Activities within a process are ovals.
Events are ‘dog-eared’ boxes. Entity operations are fat arrows. Entity states are

hexagons. Business notifications are arrows from event boxes to the left side of process
boxes. Invocations of entity operations are arrows from activity ovals to the fat arrows.

This diagram contains notational elements that can (almost) all be mapped directly to
an Activity Diagram for the EventBasedProcess, a State Chart for the Entity, and a
Sequence Diagram for the interaction between the two.

Section V - The Business Process Profile

February 2002

The Business Process profile specializes the CCA, and describes a set of UML
extensions that may be used on their own, or in combination with the other EDOC
elements, to model system behavior in the context of the business it supports.

UML Profilefor EDOC: Example 3-219

3

3.18 Introduction

3.19 Metamodel

3-220

The Business Process profile provides modeling concepts that allow the description of
business processes in terms of a composition of business activities, selection criteria
for the entities that carry out these activities, and their communication and
coordination. In particular, the Business Process profile provides the ability to express:

® Complex dependencies between individual business tasks (i.e., logical units of
work) congtituting a business process, as well as rich concurrency semantics.

® Representation of severa business tasks at one level of abstraction as a single
business task at a higher level of abstraction and precisely defining relationships
between such tasks, covering activation and termination semantics for these tasks.

® Representation of iteration in business tasks.

® Various time expressions, such as duration of a task and support for expression of
deadlines.

® Support for the detection of unexpected occurrences while performing business
tasks that need to be acted upon, i.e., exceptional situations.

® Associations between the specifications of business tasks and business roles that
perform these tasks and also those roles that are needed for task execution.

® |nitiation of specific tasks in response to the occurrence of business events.

® The exposure of actions that take place during a business process as business events.

This model is organized with three main model elements to describe a business
process: BusinessProcess, CompoundTask and Activity as shown in Figure 3-46 in
which the derivation from the CCA is shown. BusinessProcess is the outermost layer of
composition representing a complete process specification. It is a ProcessComponent
for the purpose of its usage inside other CCA Compositions, but its Composition is
constrained in the same way as a CompoundTask.In other words, BusinessProcesses
are the entry point from CCA to a process definition. CompoundTasks are also
specializations of CCA ProcessComponents, but their Ports are constrained
specializations of CCA Ports which represent the data required to initiate an enactment
of its Composition, which defines how it executes. The only ComponentUsages
CompoundTasks and BusinessProcesses may contain are Activities, which are
specializations of CCA ComponentUsages. Activities are the pieces of work required
to complete a Process, and CompoundTasks are the containers for alogical set of
Activities and the DataFlows that define the temporal and data dependencies between
them. DataFlows are specializations of CCA Flows that connect the PortConnectors on
the Activities. Activities are always usages of a CompoundTask definition, which
defines the Port types and their correlation semantics. CompoundTasks defining an
Activity either compose additional Activities and DataFlows to show how this Activity
is performed, or the Activity also refers to a Performer ProcessRole via the
performedBy association, which is a binding to a ProcessComponent that fulfils the
requirements of the ProcessRole. Performer ProcessRoles are the exit point from a
process definition which allows it to invoke ProcessComponents (and their

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

specializations, such as Entities). Many Activities may be usages of the same
CompoundTask definition, and many activities in the sasme CompoundTask may be
performed by the same ProcessRole.

(See Section 3.23 for the combined Process Model)

Composition
(fromccA) | 1
>

+owner

n

+uses
Enti ProcessComponent
ntity (from CCA) ComponentUsage
(from Entity) B, larity : Stri "p .| _fuses (from CCA)
. granularity : String = "Program” = -
®Managed : Boolean isPersistent : Boolean = false 1 n | E&hame : String
EprimitiveKind : String
EprimitiveSpec : String
BusinessProcess
‘ | Activity

BusinessProcessEntity CompoundTask

Figure 3-46 Composition of Process M odel Elements.

DataFlows (constrained Flows) allow the connection of the ProcessPortConnectors
representing the ProcessFlowPorts of a CompoundTask to the ProcessPortConnectors
of its contained Activities and vice versa. We will call the ProcessPortConnectors
representing usage of a ProcessFlowPort in an InputGroup input
ProcessPortConnectors. Likewise the ProcessPortConnectors representing usage of a
ProcessFHlowPort in an OutputGroup or ExceptionGroup are called output and
exception ProcessPortConnectors, respectively.

The flow of data typically goes from input ProcessPortConnectors of the
CompoundTask to the input ProcessPortConnectors of an Activity contained by the
CompoundTask, and then from the output ProcessPortConnectors of the Activity to
either the input ProcessPortConnectors of another contained Activity or to the output
or exception ProcessPortConnectors of the CompoundTask.

ProcessFlowPorts are the formal types of inputs to and outputs from a CompoundT ask.
They have a multiplicity, given by the attribute pair multiplicity_lb, and
multiplicity_ub, which indicates the lower bound on the number of values that needs
to be received or transmitted by the PortConnector instantiating this port type at
runtime, as well as the upper bound on the number of values that the PortConnector
can hold before it begins discarding them.

UML Profile for EDOC: Metamodel 3-221

3-222

Multiports are used to aggregate FlowPorts. The MultiPort specializations, InputGroup,
OutputGroup and ExceptionGroup, indicate that a set of ProcessFH owPorts, when used
in some Composition, must all receive values from DataFlows before any of the values
are received or transmitted by the CompoundTask which owns them. The can be

considered to be correlators. A ProcessMultiPort may be synchronous or

asynchronous, as indicated by its synchronous attribute inherited from Port. Usages of
Synchronous ProcessM ultiPorts indicate the initiation or termination of the execution

of some Activity owning the PortUsage, whereas usages of asynchronous

ProcessMultiPorts may only have the values in their contained ProcessFlowPorts
transmitted into or out of an already executing Activity.

Node [tsource +0Utgoing - AbstractTransition
(fromCCA) |1 n (from CCA)
Bhame : String tHarget +incoming
1 n
ZF LA
<<boundary>>
Port
(from CCA) +represents PortUsage
[- Sting (from CCA)
Bsynchronous : Boolean | 1 n
[transactional : Boolean
[direction : DirectionType
EBpostCondition: Status
Z> PortConnector -
(from CCA) - comrects - - | Connection
(from CCA)
<<boundary>>
MultiPort FlowPort
(from CCA) (fom CCA)
7
L‘A
. ProcessFlowPort DataFlow
BrocessMiiRo ProcessPortConnector

\

muttiplicity_|b : short
muttiplicity_ub : short

Lﬁ

InputGroup

OutputGroup

i

ExceptionGroup

Figure 3-47 Inputs and Outputs of Process Model Elements.

In addition:

® An Activity may specify required Artifact(s) that select information entities to be
used or produced.

UML Profilefor Enterprise Distributed Object Computing

February 2002

3

February 2002

® An Activity may specify ResponsibleParty(s) that select people, company, or other
group roles that are responsible for the Activity .

® FEach Activity may have ActivityPreCondition(s) and ActivityPostCondition(s) that
further constrain when it starts and how it completes (see Process Model Patterns,
Section 3.22).

Composition
(from CCA) +owner +uses| ComponentUsage

name : String

1 n

£ N
+yses

ProcessComponent

(from CCA) 1

&g ranularity : String = "Program"
BisPersistent : Boolean = false
W rimitiveKind : String

B8 rimitiveSpec : String

|

BusinessProcess

:

+usesArtifact Activity

ProcessRole 0..n

C ATask selectionRule : string | tresponsibleFor
ompoundras creationRule : string | 0..n
0..n
+performedBy
0.1 0..n
REfommer Artifact ResponsibleParty

Figure 3-48 Diagram of the Roles aspect of the Process Model.

The model in Figure 3-48 shows the ownership of ProcessRoles by CompoundTasks
(via their ProcessComponent base class). ProcessRoles have three kinds of
relationships with Activities. An Activity may be performedBy a ProcessRole, or it is
possible that an Activity has a usesArtifact association with a ProcessRole, or a
ProcessRole may be responsible for an Activity, as indicated by a responsibleFor
association end role. The same ProcessRole may have several associations with
different Activities, for example to be the performer for one activity, while also being
an artifact for another, or to be both the responsible party and performer for an
Activity. The specific ProcessRoles of Performer, Artifact and ResponsibleParty are
constrained to be associated with Activities only by the performedBy, usesArtifact and
responsibleFor associations respectively, and are useful in many cases where
ProcessRoles do not need to be re-used.

UML Profile for EDOC: Metamodel 3-223

3-224

At run time a ProcessRole represents the binding of a state variable in its owner
CompoundTask to a concrete ProcessComponent instance that meets the requirements
of the selectionRule or creationRule attributes of the ProcessRole. Typically the
performer roles of an Activity will have atype from which the defining
CompoundTask of that Activity have been derived. The OperationPorts of the
ProcessComponent identified by the ProcessRole will be represented as a pair of an
InputGroup and an OutputGroup that contain ProcessFlowPorts that represent the input
and output parameters of the OperationPort. Exceptions are represented by additional
ExceptionGroups.

In addition to the basic set of model elements given above, there are a number of other
important concepts required in the modeling of Processes that can be expressed as
patterns of use of these basic elements:

® ActivityPreCondition
® ActivityPostCondition
® Timeout

® Terminate

® Loops
e Simple Loop
* While and Repeat/Until Loop
* For Loop

® Multitask
These are explained in Section 3.22, “Process Model Patterns,” on page 3-270.

An example of a CompoundTask containing Activities is shown in Figure 3-49.

UML Profilefor Enterprise Distributed Object Computing February 2002

input ProcessPortConnector «.__

InputGroup

February 2002

CompoundTask DataFlow exception ProcessPortConnector

Get Best Suppliers | Excepuonerou;i

Activity ~.__

Rank Suppliers 8 Check Suppliers 8

i

! . i
Y \ 1
. i

i

|

p Novalid
sources

~b > sources _|>Q‘
" o

Freight

Sources »07

Freight
Sources

Sources & Novalid
‘ sources

Ranked and Ranked and
. Ranked Ranked prioritised source; prioritised source;
----------- H} Sources sources sources Discarded SOUICEs... Discarded Sourc:
yl ‘ with reasion cods~" with reasion cod
Maintain Suppliers
HZSOWC&S
Checked [T Checked
O] sources PO sources

OutputGroup
Request RequestGrp olutput ProcessPortConnector
. T
~]

" ProcessRole

Figure 3-49 A labeled CompoundTask Diagram

3.19.1 Business Process metamodel

3.19.1.1

The metamodel for the Business Process profile is contained in a single package,
BusinessProcess.

CompoundTask

Semantics

A CompoundTask defines how to coordinate a set of related Activities that, in
combination, perform some larger scale activity, ultimately in the context of a Business
Process. It represents the formal type and Correlation Protocol Contract of Ports
available on Activities that use the CompoundTask. It is aso a container (Composition)
of Activities that use other CompoundTasks (or, when describing recursion, that re-use
this CompoundTask), a container of the DataFlows between these Activities, and the
ProcessRoles which model bindings to Objects required by these Activities.

UML Profile for EDOC: Metamodel 3-225

UML baseelement(s) in the Profileand Stereotype

Classifier stereotyped as <<CompoundTask>>, Collaboration stereotyped as
<<ProcessComposition>>

Fully Scoped hame

ECA::BusinessProcess:: CompoundTask

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess
CompoundTask

Properties
Associated elements

Constraints
[1] All Ports owned by a CompoundTask must be ProcessM ultiPorts.

[2] All ComponentUsages contained by a CompoundTask must be Activities.

[3] All PortUsages directly contained by a CompoundTask must represent
ProcessMultiPorts owned by the CompoundTask.

3.19.1.2 Activity

Semantics

Activity represents the execution of a part of a Business Process using one of two
mechanisms (but not both). The mechanisms are:

® The creation of a Composition of nested Activities, ProcessRoles and DataF ows
described by the CompoundTask that the Activity references through its uses
association.

® The execution of some feature of an Object bound to a ProcessRole instance
referred to via the Activity’s performedBy association. (See Section 3.19.1.12,
“ProcessRole,” on page 3-241.)

Hence an Activity represents an action that is either described by a further
decomposition in the form of a CompoundTask or it represents and action that is
performed by objects bound to ProcessRoles either staticaly, or at runtime as the
Activity enters the Running state.

An Activity may also be associated via the usesArtifact and responsibleFor
associations to one or more ProcessRoles. These ProcessRoles will be bound to
Objects at run time as the Activity enters the Running state.

3-226 UML Profilefor Enterprise Distributed Object Computing February 2002

3

An Activity’s PortUsages representing | nputGroups (input PortUsages), which contain
ProcessPortConnectors representing ProcessFHlowPorts (input ProcessPortConnectors),
are the alternative means by which the Activity may supply data to these mechanisms
to initiate some action.

PortUsages representing synchronous InputGroups owned by an Activity instance
represent different initializations, and only one of these will ever be enabled, at which
time the Activity instance will begin its execution.

An Activity instance must be in the Running state before it can use any data in input
PortUsages (synchronous or asynchronous) from its containing Activity instance.

If no Synchronous input PortUsages are present, then the Activity will beinitialized as
part of the initialization of its container Activity. This will alow it to receive
asynchronous inputs as soon as they propagate into the container Activity.

When an Activity is performedBy a ProcessRole which has not yet been bound, the
ProcessRole will be bound to an appropriate Object during the initialization of the
Activity. The binding for the Role will last at least for the duration of the life time of
the Activity, but the Object it binds to may exist before the binding is created, and may
live longer than the binding. Once bound, the Role will persist until all other Activities
to which it is associated have completed.

Asynchronous input PortUsages owned by an Activity represent the means by which
the Activity may accept input values during its active life time. When an Activity isin
the NotStarted state (none of its synchronous input PortUsages is enabled) all data
values that arrive at a ProcessPortConnector in an asynchronous PortUsage will be kept
in that Port Connector only up to its multiplicity’s upper bound. Additiona values will
cause discarding. However, once the Activity enters the Running state the sets of
correlated Inputs will be consumed by the Activity.

Note — This behavior trades off the resource savings of keeping asynchronous values
only up to and including the slots defined by an Input’ s multiplicities against the ability
to queue al asynchronous flows on behalf of Activities yet to be enabled. The problem
is that in many process definitions, choices are made about which path a process will
take, leaving many Activities input PortUsages only partially satisfied and unable to
ever become enabled. In along-lived Process this may mean that large numbers of data
values arriving at asynchronous Inputs will be queued, never to be consumed by that
Activity.

February 2002 UML Profilefor EDOC: Metamodel 3-227

3-228

P— _— —— .,
r s il] " Ik ' ! Koy
.—m:- Mol Slaried |;n—-| Aunning 1L—.-| Coimpleded —m'!l-:.
L. , e L b o

desinoy

-
- - -
L o

-~

abort” Slopped d
’ A oesihay

. -
‘=| Aborted |

Figure 3-50 State Machine describing execution of Activities and CompoundTasks.

Runtime Semantics: Figure 3-50 shows the state machine for an Activity instance.
When an Activity is created, only the resources required to enact the PortUsage
behavior of the Activity are created. The Activity then enters the NotStarted state. In
this state the Activity may accept Flows at its input ProcessPortConnectors.

Once one of its synchronous input PortUsages is enabled (or it has no synchronous
input PortUsages), ProcessRole binding is performed (as specified for ProcessRole in
Section 3.19.1.12, “ProcessRole,” on page 3-241).

Then, if the Activity uses a CompoundTask that is a non-empty Composition, all the
resources to represent the contained DataFlows, Bindings and nested Activities are
allocated and all nested Activities are created. The Activity now enters the Running
state.

An Activity instance enters the Completed state when none of its contained Activity
instances that have synchronous output PortUsages containing values (that are not also
exception PortUsages) are in the Running state and there are no DataFlows that are in
the process of delivering their data (which could then trigger the running of another
Activity). Note, this means that not all contained Activities need to have executed, only
that none (that have synchronous output ProcessMultiPorts) are running. Thisresultsin
a quiescent model for completion.

Alternatively, if an Activity instance has an exception PortUsage that is satisfied, then
all Activity instances that are contained by this Activity instance and are in the
Running state are aborted. The Activity will then satisfy the quiescent model
completion criteria just outlined.

An Activity instance enters the Completed state, if a satisfied synchronous output
PortUsage is enabled. If there is more than one satisfied synchronous output
PortUsage, then the choice of which one to enable is arbitrary. If there is no
synchronous output PortUsage that is satisfied, then the Activity instance’s system
ExceptionGroup is enabled.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

If a nested Activity instance contained by an Activity enters the Completed state with
an exception PortUsage enabled and the exception is unhandled (see Section 3.19.1.11,
“ExceptionGroup,” on page 3-240 for the definition of handled and unhandled
ExceptionGroups), then the containing Activity instance’'s system ExceptionGroup is
enabled.

If an Activity instance is aborted, it terminates all of its contained Activity instances
and enters the Aborted state.

If the Activity uses an empty Composition it must have a performedBy link to a
ProcessRole, which will now be bound, and the Activity instance enters the Running
state. While in the Running state, values from enabled input ProcessPortConnector
instances may be consumed. In most cases this will mean that the PortUsage that was
enabled has a collection of input Parameters for a method on the Object bound to the
performer ProcessRole, which will be invoked. The return of the method will place
values into an output PortUsage (representing an OutputGroup or ExceptionGroup),
which will enable that PortUsage.

The Activity instance enters the Stopped state when one of its synchronous
OutputGroup instances is enabled. If thisis an ExceptionGroup instance, then it enters
the Aborted state, otherwise it enters the Completed state.

UML base element(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<Activity>>

Fully Scoped name

ECA::BusinessProcess::Activity

Owned by

CompoundTask

Inheritance
ECA::CCA:: ComponentUsage

Activity
Properties
Associated elements

uses (from ComponentUsage)
An Activity is always associated with a CompoundTask via the uses association

performedBy

An Activity with an empty CompoundTask Composition must be linked to a single
ProcessRole via the performedBy association.

UML Profile for EDOC: Metamodel 3-229

3-230

3.19.1.3

usesArtifact

An Activity may require access to Objects via a ProcessRole to use as a passive
resource. Its usesArtifact association indicates the Roles it uses for this purpose.

responsibleFor

An Activity in a BusinessProcess may be performedBy a ProcessRole that does so on
behalf of another Role or Roles that are responsible for the Activity. The
responsibleFor association allows these Roles to identify Object representing
responsible parties.

Constraints

[1] An Activity that uses a CompoundTask definition with no internal Composition
must have a performedBy link.

BusinessProcess

Semantics

A BusinessProcess defines the ProcessComponent view of a process definition that
coordinates a set of related Activities. It defines acomplete business process which can
be invoked from another CCA Composition, usually using OperationPorts which are
connected via DataFlows (a subtype of CCA Flow) to the ProcessPortConnectors of
the Activities which it contains. In other words a BusinessProcess is an ordinary
ProcessComponent on the outside, and a CompoundTask on the inside.

UML base element(s) in the Profileand Stereotype

Classifier stereotyped as <<BusinessProcess>>

Fully Scoped name

ECA ::BusinessProcess::BusinessProcess

Owned by

Inheritance
ECA::CCA::ComponentDefintion::ProcessComponent

BusinessProcess

Properties
Associated elements

Constraints

All ComponentUsages contained by a BusinessProcess must be Activities.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.19.1.4

3.19.1.5

All Connectors contained by a BusinessProcess must be DataFlows.

BusinessProcessEntity

Semantics

A BusinessProcessEntity is a BusinessProcess that is also an Entity with identity. It is
used to model long-lived processes that may require management and or interaction
during their lifetime.

UML base element(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<BusinessProcessEntity>>

Fully Scoped name
ECA::BusinessProcess::BusinessProcessEntity

Owned by

Inheritance

ECA::BusinessProcess::BusinessProcess
BusinessProcessEntity

ECA::Entity::Entity
BusinessProcessEntity

Properties
Associated elements

Constraints
N/A

ProcessFlowPort

Semantics

ProcessFlowPort represents data used in CompoundTask input/output.

Runtime Semantics: A ProcessFlowPort instance (represented by a
ProcessPortConnector on an Activity) is satisfied when it has at least multiplicity Ib
values, otherwise it is unsatisfied. It may not have more than multiplicity_ub values.

If a ProcessFlowPort instance is the sink of more than one DataFlow, then data values
for that instance can be supplied by any one of those DataFlows up to the upper bound
its multiplicity. In the default case of a multiplicity of {1,1} this implies OR semantics.

UML Profile for EDOC: Metamodel 3-231

3-232

If more values are supplied than the multiplicity’s upper bound, the ProcessFlowPort
instance’s collection remains at the size of the upper bound, and some arbitrary set of
values are discarded.

When a ProcessFlowPort instance is enabled and its containing CompoundTask
instance (represented by an Activity) is in the Running state, it transmits its values
using all the associated DataFlows (AND semantics) as appropriate. If the
ProcessFlowPort instance is contained by an asynchronous InputGroup instance, it then
discards its values and resets its state to unsatisfied or satisfied according to its
multiplicity.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <<ProcessFlowPort>>

Fully Scoped name

ECA ::BusinessProcess:: ProcessFlowPort

Owned by
ProcessMultiPort

Inheritance
ECA::CCA::FlowPort

ProcessFl owPort

Properties
multiplicity_Ib : short
multiplicity_ub : short

The multiplicity of a ProcessFlowPort instance allows it to act as a collection of data
values of the same type. A multiplicity is expressed as a lower-bound, upper-bound
pair {multiplicity_Ib, multiplicity_ub}, where -1 is used in the upper bound to indicate
infinity. The default multiplicity is {1,1} which represents a singleton collection.

Associated elements
ECA::CCA::DocumentModel: : DataElement

A ProcessFlowPort is optionally associated with a DataElement by the type
association, which is inherited from FlowPort. A ProcessFHowPort that does not have
an associated type can be thought of as a control point. That is, the values handled by
these ProcessFlowPorts are like objects that have identity but no attributes. They can
be used, in conjunction with DataFlows, to describe control flow constraintsthat do not
involve data values.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.19.1.6

Constraints
[1] A ProcessFlowPort must be owned by a ProcessM ultiPort.

ProcessPortConnector

Semantics

A ProcessPortConnector represents the usage of a ProcessFlowPort in the context of a
CompoundTask.

UML base element(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<ProcessPortConnector>>

Fully Scoped hame

ECA ::BusinessProcess:: ProcessPortConnector

Owned by

CompoundTask

Inheritance
ECA::CCA::ComponentDefinition::PortConnector

ProcessPortConnector

Properties

Associated elements

represents (from PortUsage)

A ProcessPortConnector is always associated with a ProcessFlowPort via the
represents association.

outgoing (from Node)

A ProcessPortConnector may be associated with zero or more DataFlows via the
outgoing association.

incoming (from Node)

A ProcessPortConnector may be associated with zero or more DataFlows via the
incoming association.

Constraints

[1] All Ports associated with a ProcessPortConnector by the represents association
must be ProcessFlowPorts.

UML Profile for EDOC: Metamodel 3-233

3-234

3.19.1.7

[2] All ProcessPortConnectors must be owned by CompoundTasks.

DataFlow

Semantics

A DataFlow represents a causal relationship in a business process. The source of the
DataFlow must “happen” before the sink of the DataFlow. DataFlows also propagate
data values between causally related ProcessPortConnectors. In the case that a
DataFlow connects two ProcessPortConnectors in synchronous ProcessMultiPorts, the
implication is that the Activities occur in strict temporal sequence.

Runtime Semantics: A DataFlow instance is created when its containing
CompoundTask instance is created.

The enabling of the source of a DataFlow causes the enabling of the DataFlow, which
then propagates the values from the source ProcessPortConnector to the sink
ProcessPortConnector. The sink ProcessPortConnector may then discard values as
necessary if its multiplicity upper bound is reached.

UML base element(s) in the Profileand Stereotype

AssociationRole stereotyped as <<DataFlow>>

Fully Scoped hame
ECA::BusinessProcess::DataFlow

Owned by

CompoundTask

Inheritance
ECA::CCA:: Connection

DataFlow

Properties
Associated elements

Constraints

[1] A ProcessPortConnector is a source of a DataFlow. A DataFlow has exactly one
source ProcessPortConnector, but a ProcessPortConnector can be the source of zero or
more DataFlows.

[2] A ProcessPortConnector is a sink of a DataFlow. A ProcessPortConnector has
exactly one sink ProcessPortConnector, but a ProcessPortConnector can be the sink of
zero or more DataFlows.

UML Profilefor Enterprise Distributed Object Computing February 2002

CT1

[3] The ProcessPortConnector that is the source of a DataFlow must be contained
(indirectly) by the same CompoundTask as the DataFlow, and must be either:
* a ProcessPortConnector representing a ProcessFlowPort of an InputGroup of the
CompoundTask; or
« a ProcessPortConnector representing a ProcessFlowPort owned by a PortUsage
representing an OutputGroup of a CompoundTask used by an Activity directly
contained by the DataFlow’s containing CompoundTask.

[4] A ProcessPortConnector that is the sink of a DataFlow must be contained
(indirectly) by the same CompoundTask as the DataFlow, and must be either:
* aProcessPortConnector representing a ProcessFlowPort of an OutputGroup of the
CompoundTask; or
« a ProcessPortConnector representing a ProcessFlowPort owned by a PortUsage
representing an InputGroup of a CompoundTask used by an Activity directly
contained by the DataFlow's containing CompoundTask.

The well-formed-ness rules above can be considered as reading “DataFlows cannot
cross the boundaries of CompoundTasks.” Figure 3-51 shows three illegal DataFlows
(Note how the illegal DataFlows cross Task boundaries).

CT2 m

oD

S I T = G

February 2002

Figure 3-51 lllegal DataFlows crossing Task boundaries.

[5] The type of the ProcessFlowPort represented by the source ProcessPortConnector
of a DataFlow must be the same as (or coerce-able to) the type of the ProcessFlowPort
represented by the sink ProcessPortConnector of a DataFlow. Coercible includes
converting a value of type T to a member of type collection<T> and vice versa.

[6] DataFlows between ProcessPortConnectors owned by PortUsage representing
synchronous ProcessMultiPorts within a CompoundTask should be acyclic; that is,
things cannot happen in a circular order. (However, see Business Process Patterns in
Section 3.22, “Process Model Patterns,” on page 3-270 for how to specify processes
involving looping.)

UML Profile for EDOC: Metamodel 3-235

3-236

3.19.1.8 ProcessMultiPort

Semantics

ProcessM ultiPort represents a set of related ProcessFlowPorts used to describe the
inputs and outputs of CompoundTasks. They act as a form of correlator for DataFlows.

Run-Time Semantics: As this section describes the semantics of ProcessMultiPorts,
owned by CompoundTasks, we use the terminology ProcessM ultiPort instance to
mean a PortUsage representing a ProcessMultiport owned by an Activity, which we
call aCompoundTask instance. In the same way the term ProcessFlowPort instance
is used to mean a ProcessPortConnector contained by the PortUsage representing the
ProcessMultiport.

A ProcessM ultiPort instance is satisfied when all of its contained ProcessFlowPort
instances are satisfied (AND semantics), otherwise it is unsatisfied.

If a ProcessM ultiPort instance is satisfied then it may be enabled. However, at most
one synchronous InputGroup instance of a CompoundTask instance and one
synchronous OutputGroup instance of a CompoundTask instance may be enabled and,
once enabled, must remain in that state. An asynchronous ProcessMultiPort instance
does not have these constraints. It will enable its ProcessFlowPort instances whenever
it becomes enabled allowing them to transfer their contents and reset their state to
unsatisfied (or satisfied if their multiplicity_|b is zero). This semantics is described
formally using the Protocol in Figure 3-52 .

See the definitions of InputGroup in Section 3.19.1.9, “InputGroup,” on page 3-238
and OutputGroup in Section 3.19.1.10, “OutputGroup,” on page 3-239 for more
specific behavioral specifications.

UML Profilefor Enterprise Distributed Object Computing February 2002

A S
= ECAC nt
: ompona
B o= *
C=_|
G_
“(c}

n {]

Protocol Contract TR

caacureri winiers of the ersien pos’
fd Lk i s ol e gring lee e

s,

h s rachine cas i ‘_

empiae an Tepen s Mol podisy

Figure 3-52 Example Protocol describing the behavior of ProcessM ultiPorts.

February 2002 UML Profilefor EDOC: Metamodel 3-237

3-238

3.19.1.9

UML base element(s) in the Profileand Stereotype
Class stereotyped as <<ProcessM ultiPort>>

Fully Scoped hame

ECA ::BusinessProcess::ProcessM ultiPort

Owned by

CompoundTask

Inheritance
ECA::CCA::MultiPort

ProcessMultiPort

Properties
synchronous : boolean (from Port)

A value of TRUE indicates that this ProcessMultiPort represents either parameters that
may be used to trigger a CompoundTask instance to enter the Running state, or results
that are available when the instance enters the Stopped state.

A value of FALSE indicates that while the CompoundTask instance is in the Running
state, the ProcessM ultiPort may either asynchronously consume one or more sets of
data, or asynchronously emit one or more sets of data.

Associated elements

ProcessFlowPort
A ProcessM ultiPort provides a correlation framework for a number of
ProcessH owPorts.

Constraints

[1] The Composition owning a ProcessMultiPort must be a CompoundTask.

InputGroup

Semantics

InputGroup is a specialization of ProcessMultiPort. It is a container for a number of
ProcessFlowPorts which are the inputs to a CompoundTask.

Runtime Semantics: The InputGroup implies special semantics for the lifecycle of an
Activity using the CompoundTask definition that owns it when its synchronous
attributeis TRUE. In this case the InputGroup must be enabled before the Activity may
enter its Running state.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.19.1.10

UML baseelement(s) in the Profileand Stereotype

Class stereotyped as <<InputGroup>>

Fully Scoped hame

ECA::BusinessProcess:: I nputGroup

Owned by

CompoundTask (via its base class Composition)

Inheritance
ECA::CCA::ComponentSpecification::ProcessMulti Port

InputGroup

Properties
Associated elements

Constraints
OutputGroup

Semantics

OutputGroup represents a possible outcome of a CompoundTask; it provides data
values associated with that outcome. In the case of a synchronous OutputGroup it also
serves as an indication that an Activity using the CompoundTask definition to which
the OutputGroup belongs has entered the Stopped state.

OutputGroup models a collection of data values produced by a CompoundTask.

Runtime Semantics: The OutputGroup implies special semantics for the lifecycle of an
Activity using the CompoundTask definition which owns it when its synchronous
attribute is TRUE. In this case the Activity must be in its Stopped state before the
OutputGroup may be enabled.

UML base element(s) in the Profileand Stereotype

Class stereotyped as <<OutputGroup>>

Fully Scoped hame
ECA::BusinessProcess:: OutputGroup

Owned by

CompoundTask

UML Profile for EDOC: Metamodel 3-239

3-240

3.19.1.11

Properties
Associated element

Constraints
ExceptionGroup

Semantics

ExceptionGroup represents the outcome of a CompoundTask that failed to complete
its function. In a CompoundTask, an Activity’s ProcessPortConnectors representing the
ProcessFH owPorts of ExceptionGroup can be handled either by an exception handler
(an Activity) to which the Port Connectors have DataFlows, or by an ExceptionGroup
of the containing CompoundTask to which it has DataFlows. If, at runtime, an
Activity's ExceptionGroup is not handled and the Exception is enabled, then it will be
propagated. That is, the containing CompoundTask instance’s system Exception will
be enabled (which consequently causes the CompoundTask instance to abort its
contained Activities and terminate in the Aborted state).

Activity
[Exception o
Handler O

o)

unhandled ExceptionGroup

Figure 3-53 An ExceptionGroup that is handled by and Activity

CompoundTask |

<

Figure 3-54 An unhandled ExceptionGroup that will be propagated if it is enabled at runtime.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.19.1.12

UML baseelement(s) in the Profileand Stereotype

Class stereotyped as <<ExceptionGroup>>

Fully Scoped hame

ECA::BusinessProcess::ExceptionGroup

Owned by

CompoundTask

Properties
Associated elements

Constraints
ProcessRole

Semantics

ProcessRol e defines a placeholder for concrete ProcessComponents that perform an
Activity or that are used in the performing of an Activity. It defines a placeholder for
behavior in a context. ProcessRole is a subtype of ComponentUsage with some
qualifying attributes. The owner of a ProcessRole is a CompoundTask and the behavior
of the ProcessRole becomes part of the behavior of Activities to which it is associated.
The uses association of a ProcessRole (inherited from ComponentUsage) defines the
type of ProcessComponent that is required to be bound to the placeholder.

Runtime Semantics: When an Activity is enabled, binding of any associated unbound
ProcessRole instances ensues based on the values of the selectionRule and
creationRule expressions. Note that some ProcessRole instances may have been bound
previously due to an association with another Activity that has already been enabled so
no further binding is needed.

If both the selectionRule and creationRule expressions are empty, then it is left up to
the Activity itself to perform binding. Otherwise, binding takes place as follows:

Binding of an unbound ProcessRole begins by determining the candidate instances.
These are the set of ProcessComponent instances with a compatible type and that
satisfy the selectionRule. The selectionRule may refer to the values of the input
ProcessPortConnectors of any of the ProcessRole's associated Activities. It is
incumbent on the modeler to ensure that the selectionRule is well-formed in the face of
attributes that may not yet have values.

If there are no candidate instances, and the creationRule expression is non-empty, it
will be used to generate anew candidate instance (or instances if the expression returns
multiples).

UML Profile for EDOC: Metamodel 3-241

3-242

One of the candidate instances will then be bound to the ProcessRole. If there are no
candidate instances, the containing Activity instance will have its system
ExceptionGroup enabled.

We note that something akin to the OMG Trader service can be used for this binding
process. Also, the bound entity may be a proxy for a person such as a worklist in a
workflow execution environment.

Inheritance
ECA::CCA::ComponentUsage

ProcessRole

UML baseelement(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<ProcessRole>>

Fully Scoped hame

ECA ::BusinessProcess::ProcessRole

Owned by

CompoundTask

Properties

selectionRule
An expression describing the set of entities that may be bound to this ProcessRole.

creationRule

An expression describing how to create a new entity that may be bound to this
ProcessRole.

Associated elements

ProcessComponent: the uses association, inherited from ComponentUsage, indicates a
type of ProcessComponent (an abstract ProcessComponent). A concrete instance of
this type must be bound to the ProcessRole at runtime.

Activity: these may be associated with ProcessRoles by one or more of the following:
performedBy and/or usesArtifact and/or responsibleFor.

Constraints

[1] The ProcessComponent at the opposite end of the uses association must be abstract.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.19.1.13

3.19.1.14

Performer

Semantics

A Performer ProcessRole is specifically for identifying an Entity that can perform the
Activity to which it is associated.

Inheritance
ECA::CCA::ComponentUsage
ProcessRole
Performer
UML baseelement(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<Performer>>

Fully Scoped name

ECA::BusinessProcess::Performer

Owned by

CompoundTask

Properties

Associated elements

Activity: these may be associated with Performers by a performedBy association.

Constraints

[1] A Performer may only be associated with Activities using the performedBy
associ ation.

Artifact

Semantics

A Performer ProcessRole is specifically for identifying an Entity that is needed by an
Activity as aresource.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole
Artifact

UML Profile for EDOC: Metamodel 3-243

3-244

3.19.1.15

UML baseelement(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<Artifact>>

Fully Scoped hame

ECA ::BusinessProcess::Artifact

Owned by

CompoundTask

Properties

Associated elements

Activity: these may be associated with Artifact by a usesArtifact association.

Constraints

[1] An Artifact may only be associated with Activities using the usesArtifact
associ ation.

ResponsibleParty

Semantics

A ResponsibleParty ProcessRole is specifically for identifying an Entity that has
responsibility for the Activity to which it is associated.

Inheritance

ECA::CCA::ComponentUsage
ProcessRole
ResponsibleParty

UML base element(s) in the Profileand Stereotype

ClassifierRole stereotyped as <<ResponsibleParty>>

Fully Scoped name
ECA::BusinessProcess::ResponsibleParty

Owned by

CompoundTask

UML Profilefor Enterprise Distributed Object Computing February 2002

Associated elements

Activity: these may be associated with ResponsibleParties by a responsibleFor

association.

Constraints

[1] A ResponsibleParty may only be associated with Activities using the
responsibleFor association.

3.20 UML Profile

3.20.1 Table mapping concepts to profile e ements

3.20.1.1 BusinessProcess «profile» Package : Stereotypes

Table 3-21 BusinessProcess «profile» Package : Stereotypes

M etamodel element Stereotype name UML base Class |Parent Tags Constraints
name

CompoundTask CompoundTask Classifier Process-Component

Activity Activity ClassifierRole Component-Usage

BusinessProcess BusinessProcess Classifier Process-Component
BusinessProcessEntity BusinessProcess-Entity Classifier Entity

BusinessProcess
ProcessFlowPort ProcessFlowPort Class FlowPort multiplicity_Ib
multiplicity_ub

ProcessPortConnector ProcessPortConnector ClassifierRole PortConnector

DataFlow DataF ow AssociationRole Connection

ProcessMultiPort ProcessMultiPort Class Multi Port

InputGroup InputGroup Class ProcessMulti Port

OutputGroup OutputGroup Class ProcessMulti Port

ExceptionGroup ExceptionGroup Class OutputGroup

ProcessRole ProcessRole ClassifierRole Component-Usage | selectionRule

creationRule

Performer Performer ClassifierRole ProcessRole

Artifact Artifact ClassifierRole ProcessRole

Responsibl eParty Responsibl eParty ClassifierRole ProcessRole

Performance Performance AssociationRole

ArtifactUse ArtifactUse AssociationRole

Responsibility Responsibility AssociationRole
February 2002 UML Profilefor EDOC: UML Profile 3-245

3.20.1.2 BusinessProcess «profile» Package : Taggedvalues

Table 3-22 BusinessProcess «profile» Package : TaggedValues

M etamodel attribute Tag Stereotype Type Multiplicity Description

name

multiplicity_Ib multiplicity_Ib ProcessFlowPort short 1 default=1
multiplicity_ub multiplicity_ub ProcessFlowPort short 1 default=1

selectionRule selectionRule ProcessRole string 0.1

creationRule creationRule ProcessRole string 0.1

3-246 UML Profilefor Enterprise Distributed Object Computing February 2002

<<metaclass>>
Classifier
(from Core)

<<metaclass>>
Collaboration
(from Core)

A
|
i
<<stereotype>> <<stereotype>>|
]
ProcessComponent Entity Composition
(from Core) e (from CCA) (from Entity) (from CCA)
<<stereotype>> /i\ --.S<stereotype>>
<<stereotype>> <<stereotype>>
ComponentUsage PortConnector <<stereotype>>
(from CCA) (from CCA) BusinessProcess
<<stereotype>> <<stereotype>> <<stereotype>>
CompoundTask BusinessProcessEntity ProcessComposition
<<stereotype>> <<stereotype>> <<stereotype>>
ProcessRole Activity ProcessPortConnector
<<taggedValue>> + selectionRule : string
<<taggedValue>> + creationRule : string
<<metaclass>>
Class
<<stereotype>> <<stereotype>> <<stereotype>> rom C
Performer Artifact ResponsibleParty (irom Core)
<<stereotype>> <<stereotype>> <<stereotype>>
<<stereotype>>
<<metaclass>> <<stereotype>> | <cstereotype>> Port
AssociationRole | _ Performance (from CCA)
(from Core)
“..__<<stereotype>>
<<stereotype>> <<stereotype>>
ArtifactUse
<<stereotype>> “ 4
Connection “<<stereotype>>
(from CCA) <<stereotype>>
Responsibility <<stereotype>> <<stereotype>>
MultiPort FlowPort
<<stereotype>>
DataFlow
<<stereotype>> <<stereotype>>
ProcessMultiPort ProcessFlowPort
<<taggedValue>> + multiplicity_Ib : short
<<taggedValue>> + multiplicity_ub : short
<<stereotype>> <<stereotype>>
InputGroup OutputGroup
<<stereotype>>
ExceptionGroup
Figure 3-55 BusinessProcess «profile» Package
3.20.1.3 Applicable Subset of UML
Classifier, Class, Attribute, Collaboration, ClassifierRole, AssociationRole
February 2002 UML Profilefor EDOC: UML Profile 3-247

3.20.1.4 «ProcessComposition»

Inheritance

Behavioral _Elements::Collaborations::Collaboration
ECA::CCA:: «Composition»
«ProcessComposition»

I nstantiation in a model

Concrete

Semantics

A Collaboration that represents the composition of Classifiers which are stereotyped
«CompoundTask», «BusinessProcess» or «BusinessProcessEntity».

Relationships
Relationship Role(s)
Generalization parent, child {only with «ProcessComposition»}
Activities owner
ProcessRoles owner
DataFlows _connections
Tagged Values
N/A

Constraints expressed generically
The supertype of a «ProcessComposition» must be a «ProcessCompositions.

All owned ClassifierRoles must be stereotyped «ProcessRole» (or one of its
specializations) or «Activity».

All owned AssociationRoles must be stereotyped «Performance», «ArtifactUse»,
«Responsibility» or «DataFlow».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext ProcessConposition

i nv:
supertype->i senpty() or
supertype. i sStereoKi nded(" ProcessConposition")

inv:
ownedCl assifierRoles->forAll (aCRole : ClassifierRole |

aCRol e. i sSt er eoKi nded("Activity") or
aCRol e. i sSt er eoKi nded(" ProcessRol e"))

3-248 UML Profilefor Enterprise Distributed Object Computing February 2002

i nv:
ownedAssocRol es->forAll (anARole : Associati onRol e |
aCRol e. i sSt er eoKi nded(" Performance ") or
aCRol e. i sSt ereoKi nded("ArtifactUse ") or
aCRol e. i sSt er eoKi nded("Responsibility ") or
aCRol e. i sSt er eoKi nded(" Dat aFl ow "))

def :
| et ownedCl assifierRoles: Set (ClassifierRole) = nanespace-
>select(aClassifierRole : ClassifierRole)

def:
| et ownedAssocRol es: Set (AssociationRole) = nanespace- >sel ect (

anAssocRol e : AssociationRol e)
Diagram Notation
N/A

3.20.1.5 «Activity»

Inheritance

This stereotype has the following inheritances:
Behavioral _Elements::Collaborations::ClassifierRole
CCA ::ComponentDefinition:: «ComponentUsage»
«Activity»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

Relationship Role(s)
Performance _performedBy
ArtifactUse _usesArtifact
Responsibility _responsibleFor

Correspondence of metamodel attributes with UML attributes

N/A

Tagged Values
N/A

February 2002 UML Profilefor EDOC: UML Profile 3-249

Constraints expressed generically

Any AssociationRole in which an «Activity» participates must be stereotyped
«Performance», «ArtifactUse» or «Responsibility».

Formal Constraints Expressed in Terms of the UML Metamodel

context Activity
i nv:
partici pAssocRol es->forAll (anARol e : Associati onRole |
aCRol e. i sSt er eoKi nded(" Performance ") or
aCRol e. i sSt ereoKi nded("ArtifactUse ") or

aCRol e. i sSt er eoKi nded("Responsibility ") or
aCRol e. i sSt er eoKi nded(" Dat aFl ow "))

def :
| et participAssocRol es: Set (AssociationRole) =
Diagram Notation
N/A

3.20.1.6 «CompoundTask»

Inheritance

This stereotype has the following inheritances:
Foundation::Core::Classifier
ECA::CCA:: «ProcessComponent»
ECA::BusinessProcess:: «BusinessProcess»
«CompoundTask»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

None

3-250 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Constraints expressed generically

Only InputGroups, OutputGroups and ExceptionGroups may be directly owned by a
CompoundTask.

Formal Constraints Expressed in Terms of the UML Metamodel
cont ext ConpoundTask

inv: (ownedEl enent
- select(aClassifier : Classifier]|
anEl enent . i sSt er eoKi nded(«I nput Group»))
- select(aClassifier : Classifier|
anEl ement . i sSt er eoKi nded(«Qut put G oup»))
- select(aClassifier : Classifier]|
anEl ement . i sSt er eoKi nded(«Excepti onG oup»))

) ->i sEnpty()

Diagram Notation
N/A

3.20.1.7 «BusinessProcess»

Inheritance

Foundation::Core::Classifier
ECA::CCA:: «ProcessComponent»
«Busi nessProcess»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

None

Constraints expressed generically
N/A

UML Profilefor EDOC: UML Profile 3-251

3-252

3.20.1.8

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

«BusinessProcessEntity»

Inheritance

This stereotype has the following inheritances:

Foundation::Core::Classifier
ECA::CCA:: «ProcessComponent»
«BusinessProcessEntity»
ECA::Entity:: «Entity»
«BusinessProcessEntity»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

None

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

Diagram Notation
N/A

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.20.1.9

«ProcessFlowPort»

Inheritance

This stereotype has the following inheritances:

Foundation::Core::Class
ECA::CCA::«Port»
ECA::CCA:: «FlowPort»
«ProcessFlowPort»
I nstantiation in amodel

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values
Table 3-23 «ProcessFlowPort» Tagged Values
Tagged Value
name Stereotype Type |Multiplicity |Description
multiplicity_Ib | ProcessFlowPort | short |1 the lower bound of values
needed to enable this port
multiplicity_ub | ProcessFlowPort | short |1 the upper bound of values
that can be stored by the port
before discarding

Constraints expressed generically

The ProcessFlowPort must be contained within a ProcessM ultiPort.

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext ProcessFl owPort

inv:

owner . i sSt er eoKi nded(«ProcessMil ti Port »)

Diagram Notation
N/A

UML Profilefor EDOC: UML Profile

3-253

3.20.1.10 «ProcessPortConnector»

Inheritance

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::ComponentDefinition:: «PortConnector»
«ProcessPortConnector»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

A «ProcessPortConnector» must be owned by an «Activity» as Namespace.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically

All AssociationRoles in which a «ProcessPortConnector» participates must be
stereotyped «DataF|ows.

The owning Collaboration of a «ProcessPortConnector» must be stereotyped
«ProcessComposition».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext ProcesPort Connect or
i nv:

participate->forAll(anAssocEndRol e : Associ ati onEndRol e |
anAssocEndRol e. associ ati onRol e. i sSt er eoKi nded(«Dat aFl ow»))

inv:

owner . i sSt er eoKi nded(«ProcessConposi ti on»)

3-254 UML Profilefor Enterprise Distributed Object Computing February 2002

Diagram Notation
N/A

3.20.1.11 «DataFlow»

Inheritance

This stereotype has the following inheritances:

Behavioral _Elements::Collaborations::AssociationRole
ECA::CCA:: Connection
«DataFlow»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of named "DataFlow" in the metamodel.

«DataFlow» stereotyped AssociationRoles will be connected to the source and target
«PortConnector» ClassifierRole through AssociationEndRole. A DataFlow may either
connect a generic ProcessComponent PortConnector on a BusinessProcess to a
ProcessPortConnector of one of its Activities or it may connect two
ProcessPortConnectors when owned by a CompoundTask.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically

At least one AssociationEndRole of a DataFlow must be a ProcessFlowPort.

A DataFlow may only connect the following kinds of ProcessFlowPorts. "CT" is short
for CompoundTask, and indicates ProcessPortConnectors representing the

ProcessFl owPorts contained by its three kinds of ProcessMultiPorts. The other three
labels refer to any ProcessPortConnectors on an Activity in the CompoundTask's
Composition.

February 2002 UML Profilefor EDOC: UML Profile 3-255

target CT Input CT Output | CT Exception | Activity Input | Activity Output |Activity
Group Group Group Group Group Exception
source Group
CT InputGroup N Y Y Y N N
CT OutputGroup | N N N N N N
CT Exception N N N N N N
Group
Activity N N N N N N
InputGroup
Activity N Y Y Y N N
OutputGroup
Activity Exception | N Y Y Y N N
Group
These connection constraints can also be expressed as follows:
A ProcessPortConnector representing a ProcessFlowPort owned by an InputGroup of
the CompoundTask which is represented by the Collaboration may not be the target of
any DataFlows.
A ProcessPortConnector representing a ProcessFlowPort owned by an OuputGroup
(including ExceptionGroups) of the CompoundTask which is represented by the
Collaboration may not be the source of any DataFlows.
A ProcessPortConnector owned by any Activity in the Collaboration which represents
a ProcessFlowPort owned by an OuputGroup (including ExceptionGroups) may not be
the target of any DataFlows.
A ProcessPortConnector owned by any Activity in the Collaboration which represents
a ProcessFlowPort owned by an InputGroup may not be the source of any DataFlows.
Formal Constraints Expressed in Terms of the UML Metamodel
cont ext ConpositionFl ow
Diagram Notation
N/A
3.20.1.12 «ProcessMultiPort»
Inheritance
This stereotype has the following inheritances:
Foundation::Core::Class
ECA::CCA:: «Port»
ECA::CCA::«MultiPort»
«ProcessM ultiPort»
3-256 UML Profilefor Enterprise Distributed Object Computing February 2002

I nstantiation in a model
Abstract

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically

All the «Port» owned by or aggregated by the «ProcessMultiPort», must be
«ProcessFlowPort».

Formal Constraints Expressed in Terms of the UML Metamodel
context Multi Port

inv:
all Ports->forAll (aClass : Cass |

aCl ass. i sSt ereoKi nded(" ProcessFl owPort"))
def :

-- the Ports in the Protocol
-- the Ports in the nanespace of the Protocol
-- plus the ones aggregated or conposed in the Protocol

let allPorts: Set(Class) = ownedPorts->uni on(aggregat edPorts)

-- the Ports in the nanespace of the Protocol
| et ownedPorts : Set(Cass) =
ownedEl ement - >sel ect (anEl enent : Mbdel El enent |
anEl ement . i sSt er eoKi nded(«Port »))

-- the Ports aggregated or conposed in the Protocol
| et aggregatedPorts: Set(Class) =

(associ ati on->sel ect (anAssoci ati onEnd : Associ ati onEnd |
anAssoci at i onEnd. aggr egati onKi nd = ak_aggregate or
anAssoci at i onEnd. aggr egati onKi nd = ak_conposite)

->associ ati on->connection — associ ation)

->partici pant

->select(aClassifier : Classifier |
aCl assifier.isStereoKi nded(«Port»))

February 2002 UML Profilefor EDOC: UML Profile 3-257

3-258

3.20.1.13

3.20.1.14

Diagram Notation
N/A

«InputGroup»

Inheritance

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification:: «Port»
ECA::CCA::«MultiPort»
ECA ::BusinessProcess:: «ProcessM ulti Port>
«InputGroup»
I nstantiation in amodel

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel
N/A

«OutputGroup»

Inheritance

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification:: «Port»
ECA::CCA::«MultiPort»
ECA ::BusinessProcess:: «ProcessM ulti Port>
«OutputGroup»

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.20.1.15

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically
N/A

Formal Constraints Expressed in Terms of the UML Metamodel

N.A

«ExceptionGroup»

Inheritance

This stereotype has the following inheritances:

Foundation::Core::Class
CCA::ComponentSpecification:: «Port»
CCA::ComponentSpecification:: «Multi Port»
CCA ::BusinessProcess:: «ProcessM ulti Port»
CCA ::BusinessProcess::«OutputGroup»
«ExceptionGroup»
I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

UML Profilefor EDOC: UML Profile

3-259

Tagged Values
N/A

Constraints expressed generically

All the «Port» owned by or aggregated by the «ProcessMultiPort», must be

«ProcessFlowPort>».

Formal Constraints Expressed in Terms of the UML Metamodel

3.20.1.16 «ProcessRole»
Inheritance
This stereotype has the following inheritances:
Behavioral_Elements::Collaborations::ClassifierRole
«ProcessRole»
I nstantiation in a model
Concrete
Semantics
Corresponds to the element of same name in the metamodel.
Relationships
Relationship Role(s)
Performance performedBy
ArtifactUse usesArtifact
Responsibility responsi bl eFor
Tagged Values
Table 3-24 «ProcessRole» Tagged Values
Tagged Value name | Stereotype Type Multiplicity Description
selectionRule ProcessRole string 0.1 an expression indicating an object or objects to be bound
to the Role
creationRule ProcessRole short 0.1 an expression giving sufficient arguments to a
constructor for a new object instance to be created

3-260

UML Profilefor Enterprise Distributed Object Computing

February 2002

Constraints expressed generically

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessRol e

Diagram Notation
N/A

3.20.1.17 «Performer»

Inheritance

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»
«Performer»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles
stereotyped «Performance».

Formal Constraints Expressed in Terms of the UML Metamodel

context ProcessRol e

inv:
partici pates->forAl |l (anAssocEndRol e : Associ ati onEndRol e |
anAssocEndRol e. associ ati onRol e. i sSt er eoKi nded(«Per f or mance»))

February 2002 UML Profilefor EDOC: UML Profile 3-261

Diagram Notation
N/A

3.20.1.18 «Artifact»

Inheritance

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»
«Artifact»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles
stereotyped «ArtifactUse».

Formal Constraints Expressed in Terms of the UML Metamodel

context Artifact

inv:
partici pates->forAl |l (anAssocEndRol e : Associ ati onEndRol e |
anAssocEndRol e. associ ati onRol e. i sSt er eoKi nded(«Artifact Use»))

Diagram Notation
N/A

3-262 UML Profilefor Enterprise Distributed Object Computing February 2002

3.20.1.19 «ResponsibleParty»

Inheritance

This stereotype has the following inheritances:

Behavioral_Elements::Collaborations::ClassifierRole
CCA::BusinessProcess:: «ProcessRole»
«ResponsibleParty»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

Constraints expressed generically

This specialization of «ProcessRole» may only participate in AssociationRoles
stereotyped «Responsibility».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Responsi bl eParty

i nv:
partici pates->forAl |l (anAssocEndRol e : Associ ati onEndRol e |

anAssocEndRol e. associ ati onRol e. i sSt er eoKi nded(«Responsi bi lity»

))
Diagram Notation
N/A

3.20.1.20 «Performance»

Inheritance

This stereotype has the following inheritances:

Behavioral _Elements::Collaborations::AssociationRole
«Performance»

February 2002 UML Profilefor EDOC: UML Profile 3-263

3-264

3.20.1.21

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named performedBy, which

must have stereotype kind «ProcessRole».

The AssociationRole must have an AssociationRoleEnd named _performedBy,

which must have stereotype kind «Activity».

Formal Constraints Expressed in Terms of the UML Metamodel

cont ext Perfornmance:

Diagram Notation
N/A

«ArtifactUse»

Inheritance

This stereotype has the following inheritances:

Behavioral _Elements::Collaborations::AssociationRole
«ArtifactUse»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

3.20.1.22

Tagged Values

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named usesArtifact, which
must have stereotype kind «ProcessRole».

The AssociationRole must have an AssociationRoleEnd named _usesArtifact, which
must have stereotype kind «Activity».

Formal Constraints Expressed in Terms of the UML Metamodel

context ArtifactUse:

Diagram Notation
N/A

«Responsibility»

Inheritance

This stereotype has the following inheritances:

Behavioral _Elements::Collaborations::AssociationRole
«Responsibility»

I nstantiation in a model

Concrete

Semantics

Corresponds to the element of same name in the metamodel.

Relationships

As per base stereotypes

Tagged Values
N/A

Constraints expressed generically

The AssociationRole must have an AssociationRoleEnd named responsibleFor, which
must have stereotype kind «ProcessRole».

The AssociationRole must have an A ssociationRoleEnd named _responsibleFor, which
must have stereotype kind «Activity».

UML Profilefor EDOC: UML Profile 3-265

Formal Constraints Expressed in Terms of the UML Metamodel

context Responsibility:

Diagram Notation

N/A

3.20.2 Relationships

This section specifies the correspondence between associations defined in the Business

Process meta-model and associations defined in the UML meta-model. The
relationship name is the same as that found in the Full Business Process metamodel
diagram (Figure 3-74).

The format of the following tables is explained in detail in Section 3.6.8,
“Relationships,” on page 3-115.

3.20.2.1 CompoundTask own ProcessMultiPort subtypes
Table 3-25 CompoundTask own ProcessM ultiPort subtypes
MOFor |LeftHandSide LeftHandSide | LeftHandSide | RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF CompoundTask PortOwner owner ports Port InputGroup
OutputGroup
ExceptionGroup
UML «CompoundTask» Namespace owner ownedElement M odel Element «InputGroup»
«OutputGroup»
«ExceptionGroup»
3-266 UML Profilefor Enterprise Distributed Object Computing February 2002

3.20.2.2 ProcessMultiPort Subtypes own ProcessFlowPorts

Table 3-26 ProcessMultiPort Subtypes own ProcessFlowPorts

MOF or |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide|RightHandSide
UML related role name role name related
MOF InputGroup or PortOwner owner ports Port ProcessFlowPort
ouputGroup or
ExceptionGroup
UML «InputGroup» or | Classifier owner feature Feature «ProcessFlowPort»
«OutputGroup» or
«ExceptionGroup»
3.20.2.3 Activitiesand ProcessPortConnectors owned by CompoundTasks
and BusinessProcesses
Table 3-27 Activities and ProcessPortConnectors owned by CompoundTasks and BusinessProcesses
MOF |LeftHandSide LeftHandSide |LeftHandSide RightHandSide |RightHandSide |RightHandSide
or related role name role name related
UML
MOF | CompoundTask or UsageContext extent portsUsed PortUsage ProcessPortConnector
BusinessProcess or
BusinessProcess
Entity
UML | «CompoundTask» or Classifier indirectly through | indirectly through | ClassifierRole «ProcessPortConnector»
«BusinessProcess» or indirectly through | _represented owner. represented | indirectly through | indirectly through
«BusinessProcessEntity» | Collaboration Classifier. Classifier or Collaboration «Composition»
indirectly through ownedElements owner.owner
«Composition»
MOF | Activity UsageContext extent portsUsed PortUsage ProcessPortConnector
UML | «Activity» ClassifierRole association. association. ClassifierRole «ProcessPortConnector»
(indirectly thru association. association. (indirectly thru
AssociationEnd connection. connection. AssociationEnd
Role and participant participant Role and
AssociationRole) AssociationRole)
3.20.2.4 CompoundTask owns Activity and DataFlow
Table 3-28 CompoundTask owns Activity and DataFlow
MOF or LeftHandSide LeftHandSide |LeftHandSide RightHandSide | RightHandSide RightHandSide
UML related role name role name related
MOF CompoundTask or Composition owner uses ComponentUsage Activity
BusinessProcess or
BusinessProcess
Entity
UML «Process Namespace owner ownedElement ModelElement «Activity»
Composition»
MOF CompoundTask or Composition owner uses Connection DataFlow
BusinessProcess or
BusinessProcessEntity
UML «Process Namespace owner ownedElement ModelElement «DataFlow»
Composition»

February 2002

UML Profile for EDOC

. UML Profile

3-267

3.20.2.5 Activity uses CompoundTask
Table 3-29 Activity uses CompoundTask

MOF or |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide | RightHandSide |RightHandSide
UML related role name role name related
MOF Activity Component- _uses uses ProcessComponent | CompoundTask
Usage
UML «Activity» ClassifierRole _base base Classifier «CompoundTask»
3.20.2.6 Representsin CompoundTask and BusinessProcess
The metamodel element Composition (the "inside" of a CompoundTask or
BusinessProcess) is represented by a UML Collaboration.
A ProcessPortConnector is mapped to a ClassifierRole.
The "Represents’ relationship linking a ProcessPortConnector with a ProcessFlowPort,
isrepresented in UML as a the UML relationship between a ClassifierRole and its
base Classifier.
Table 3-30 Represents in CompoundTask and BusinessProcess
MOF or |LeftHandSide |LeftHandSide |LeftHandSide |RightHandSide |RightHandSide | RightHandSide
UML related role name role name related
MOF ProcessFlowPort Port represents _represents PortUsage ProcessPort
Connector
UML «ProcessFlowPort» | Classifier base _base ClassifierRole «ProcessPort
Connector»

3.21 Notationfor Activity and ProcessRole

Asshown in Figure 3-56, an Activity isrepresented similarly to a ProcessComponent. If the Activ-
ity uses a CompoundTask that is not primitive (i.e., the Composition is non-empty and the isPrim-
itiveattributeisfalse), then the ProcessComponent rectangl e has adrop-shadow as shownin Figure
3-57.

3-268

UML Profilefor Enterprise Distributed Object Computing

February 2002

ProcessRole

performedBy

usesArtifact

Activity %

Synch Synch
InputGroup OutputGroup

output ProcessPortConnector

O
input ProcessPortConnector
p o

Asynch InputGroup/—@Z; ExceptionGroup {P
= 8
Performer Artifact

Activity with synchronous and asynchronous I nputGroups, an OutputGroup and an
ExceptionGroup.

R

ResponsibleParty

Figure 3-56

Figure 3-57 Activity that is involves creation of a Composition of nested Activities, etc.

February 2002 UML Profilefor EDOC: Notation for Activity and ProcessRole 3-269

DataFlow._

CompoundTask

?

//"
ControlPoint (degenerate DataElement)

Figure 3-58 A CompoundTask showing its composed Activities.

The lollipops represent ProcessFlowPorts and the boxes surrounding them represent
ProcessMultiPorts. InputGroups appear on the left-hand side of the Activity and
OutputGroups appear on the right-hand side. Rectangular tabs are used to indicate
synchronous ProcessM ultiPorts, rounded tabs are used to indicate asynchronous
ProcessMultiPorts. Triangular or bevel-edged tabs are used to indicate
ExceptionGroups, which are a kind of OutputGroup, and hence always appear on the
right.

ProcessRoles are drawn as octagons and are associated with Activities by either the
performedBy association for Performer roles, the usesArtifact association for Artifact
roles, or the responsibleFor association for ResponsibleParty roles. These associations
are drawn as a solid line annotated with the association name. See Section 3.19.1.12,
“ProcessRole,” on page 3-241 for more detail on the definition and usage of
ProcessRoles. It should be noted that a single ProcessRole may be an artifact role in
one association and a performer role in another association at the same time.
Additionally, an Activity that has a uses association to a CompoundTask with
composed Activities, DataFlows and ProcessRoles, may not have a performedBy
association to a ProcessRole.

3.22 ProcessModel Patterns

3-270

The rest of this section describes various patterns of common usage and associated
special notation that may be useful when using the ECA Process Model. We first
describe the pattern in terms of its normal notation, possibly with parameterized parts,
and in some cases then provide alternative shorthand notations.

We begin with some simple patterns then move on to more complex patterns involving
looping. In general, arbitrary loops in a business process specification can be quite
subtle in their behavior, especially in conjunction with concurrent threads. It is for this

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

reason that we restrict an Activity with synchronous DataGroups to executing once
only. The looping patterns presented here avoid these problems since they are always
defined in terms of an underlying recursive invocation structure.

It should be noted that the UML template notation, and the Patterns Framework
introduced in Chapter 4, are not sufficient to express the complexity required by these
patterns, since they usually consist of a CompoundTask parameterized by an Activity
that will have some unknown number of ProcessMultiPorts and ProcessFlowPorts.
When instantiating such a template with respect to a particular Activity, the
CompoundTask needs to have corresponding ProcessMultiPorts and ProcessHlowPorts
connected by Flows to the equivalent ports on the Activity argument to the template.

3.22.1 Timeout

Timeout e

activity %

. 4

o

Figure 3-59 Timeout Pattern

Often we will want to have an Activity timeout after some period. The pattern shown
in Figure 3-59 illustrates how we might do this. The Activity and timer are started at
the same time. If the timer finishes and sends a message on its asynchronous
OutputGroup before the Activity finishes, then the ExceptionGroup will be enabled
and the CompoundTask will terminate, thus terminating all contained Activities. On
the other hand, if the Activity finishes first, the CompoundTask will terminate without
waiting for the timer (since it has no synchronous OutputGroups).

A shorthand notation for this pattern is given in Figure 3-60. This notation may also
include a duration parameter, or absolute time parameter, which would be provided as
input to the underlying timer activity.

UML Profilefor EDOC: Process Model Patterns 3-271

activity

2pm,

activity @gmin activity @March 20, 2000

Figure 3-60 Timer pattern notation

Note we do not mandate any particular implementation for the timer task, we merely
posit its existence. It would be up to the modeler to have an appropriate performedBy
association, or for particular mappings to provide a suitable implementation.

3.22.2 Terminate

3-272

Terminate| [P{] [

Figure 3-61 Templated activity supporting a terminate message.

We may wish to be able to terminate an Activity before it has completed of its own
accord. The pattern shown in Figure 3-61 illustrates how an Activity can be wrapped to
support an additional asynchronous InputGroup that, on reception of a message, will
result in the activity being terminated and an exception being thrown.

That is, if amessage is sent to the asynchronous InputGroup of the CompoundTask,
then it will immediately flow to the CompoundTask’s ExceptionGroup causing the
CompoundTask to terminate, thus terminating the contained Activity.

There is no suggested shorthand notation for this pattern. However, tools may wish to
support the implicit inclusion of an appropriately labeled asynchronous I nputGroup
and corresponding ExceptionGroup on any arbitrary Activity.

UML Profilefor Enterprise Distributed Object Computing February 2002

3.22.3 Activity Preconditions and Activity Postconditions

P 8 (s<x<sy |A 8

{y< 9}

ol

Figure 3-62 Preconditions on an InputGroup and an OutputGroup.

Sometimes it may be desirable to add a precondition to the InputGroup of an Activity,
or the OutputGroup of a CompoundTask, to further constrain the enabling of the
InputGroup/ OutputGroup. For example, there may be multiple DataFlows to an input,
but we wish to ignore any values that fall outside agiven range. Figure 3-62 illustrates
how one might attach such a guard constraint where x and y are attributes of the
DataGroup (or perhaps even attributes of their contained DataElements).

February 2002

Figure 3-63 An equivalent model to that of , using condition tasks.

Figure 3-63 shows an equivalent CompoundTask to that of Figure 3-62 but using
explicit filter Activities.

If afilter Activity does not produce enough outputs to satisfy the multiplicity
requirements of the Activity it is guarding, then the Activity will not start. As can be
seen from Figure 3-63, if neither filter is satisfied, then Activity ‘A" will never run, so

UML Profilefor EDOC: Process Model Patterns 3-273

the CompoundTask instance will satisfy its completion criteria (quiescence) without
either OutputGroup being satisfied which causes its system ExceptionGroup to be
enabled.

In a similar way, we may also attach a post-condition to an Activity’'s OutputGroup to
ensure that the result of the Activity satisfies some condition. Thisis shown in Figure
3-64.

P 8 {-5<x<5} 8

{y<o}

o ol

Figure 3-64 Post-conditions on OutputGroups of Activities.

Figure 3-65 shows an equivalent CompoundTask to that of but using explicit filter
Activities that have a ‘success' OutputGroup and a ‘fail’ ExceptionGroup. Thus, if the
postcondition does not hold, the CompoundTask's system ExceptionGroup will be
enabled.

P % {-5<x<5}% A 8
1

Q 8 {y<0}%
IES]

Figure 3-65 An equivalent model to that of , using condition tasks.

3-274 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.22.4 Smple Loop

I Loop lﬁ'

oD

om

~ | The results of
the activity and
the recursive call
will be merged.

Figure 3-66 Simple Loop Pattern

The pattern shown in Figure 3-66 shows how we might repeatedly invoke an Activity
until a particular OutputGroup is enabled. If the cardinality of the Output in the loop

CompoundTask is 0..*, then all the results of the Activity will be collected. If itis0..m
for some finite m, then some subset of those results will be collected.

In this case, we assume that the exit condition and the loop action are combined into a
single Activity, possibly via a CompoundTask. Normally this will not be the case,
however, and the more general patterns described in Section 3.22.5, “While and
Repeat-Until Loops,” on page 3-276 through Section 3.22.7, “Multi-Task,” on

page 3-278 will be used.

A special-case shorthand notation for such aloop is shown in Figure 3-67. The looping
flow indicates that simple recursion is taking place. Any OutputGroup containing a
ProcessPortConnector that is the source of alooping flow may only be the source of
flows to a single InputGroup.

activity%
e T

Bl

Figure 3-67 Simple Loop Notation

UML Profilefor EDOC: Process Model Patterns 3-275

3.22.5 While and Repeat-Until Loops
| Loop I “while,

while% 7777777
oD e | el e

activity% Loop 8
> | e oD | o]

Figure 3-68 While Loop Pattern

In Figure 3-68 we see a more general ‘while’ loop pattern with separate exit test and
loop body, and Figure 3-69 shows a dlightly different pattern that resultsin a ‘repeat-
until’ loop. The ‘while’ and ‘until’ Activities represent some kind of boolean
expression evaluation engine.

I Loop m‘ -
activity8 until 8

done
‘ O+ > 0.m

Figure 3-69 Repeat/Until Loop Pattern

3-276 UML Profilefor Enterprise Distributed Object Computing February 2002

Asfor the Simple Loop, these loops could be drawn as shown in Figure 3-70 and Figure 3-71
respectively.

while %
—eb | o o
‘ ‘Oﬁ activity 8

|l
]

\

Figure 3-70 While Loop Notation

activityg until - 2
ol b

\

‘ 0_{ ‘ done
| -

Figure 3-71 Repeat-Until Notation

3.22.6 For Loop

| Forboop [[PIf|
[[030] Ly

D e | D D | [

EE ﬂ f
D] o
L 7

I

L 7

Figure 3-72 For Loop Pattern

The pattern in Figure 3-72 shows how to do afor-loop with a generalized initialization
step, loop test, and loop body as popularized by the C, C++, and Java languages. Note
that the inner loop is the while-loop pattern and hence the special-case notation for
while-loops can be used.

February 2002 UML Profilefor EDOC: Process Model Patterns 3-277

3.22.7 Multi-Task

I Loop m

split 8

******* 1
1

activity 8

oD el |

?

b o LR

o] T — 3

3-278

Figure 3-73 Pattern for a multi-task

The pattern in Figure 3-73 shows how to process a collection of items in parallel and
collect the results. The split activity takes a collection of items and splits them into a
head and a tail. The head is passed to the activity for processing, while a concurrent
recursive invocation of the loop is initiated to process the tail. If, however, the
collection is empty, then the split’s other OutputGroup is enabled and the loop
CompoundTask finishes. No explicit flow from this OutputGroup to the
CompoundTask’s OutputGroup is required since all it's Outputs will be satisfied with a
zero cardinality.

Intuitively, what happens when this pattern executes is as follows. When a collection of
items is passed in to the multi-task pattern, a set of concurrent loops and activities is
spawned, one pair for each item in the collection. The activity processes an item, and
the concurrent loop recursively handles the other n-1 items.

Note that if an Activity processing an item throws an exception, it is caught and passed
to asecond Output in the OutputGroup. This means that a single failed Activity doesn’'t
cause al the other Activities to be terminated and the completed activities to throw
away their results. This is especially useful in the case where we might wish to apply
the timer pattern to the Activity.

No shorthand notation for multitask is suggested.

UML Profilefor Enterprise Distributed Object Computing February 2002

3.23 Full Modd

The diagram below represents the full metamodel for the Business Process profile.

UsageContext 1
(from CCA)

P

— ComponentUsage
Conposition | +owner (from CCA)
(fromCCA) @——
1
Z} +u$s/
= ProcesComponent 1
(from Entity) (from)

EEgranularity : String = "Program”
BisPersistent : Boolean = fake ‘
BEprimitiveKind : String

EBManaged : Boolean

BBprimitiveSpec : String ProcessRole :)pe]-ﬁormedBy o Activity
seleqionRule: sﬁng +L‘J‘$5Anifact N
creationRule : string "5] n
+responsbleFor
0.n 0.n
BusinessProcess 4

‘ Artifact ‘ ‘ Performer ‘ ‘ ResponsibleParty ‘

[i il 1

[|1 | [|

BusinessProces<Entity CompoundTask +outgoing e
AbstractTransition |1 1 Node
. . : St
(from CCA) +incoming +arget name rg
n 1
<<boundary>>
Port
(from CCA)
BEhame : String
ESsynchronous : Boolean +Hepresents PortUsage
[@transactional : Boolean (fomCCA)
irection : DirectionType | 1 n ——
EbosCondition : Status
<<boundary>>
Multi Port FlowPort
(from CCA) (from CCA) Connection —
(from CCA) PortConnector PortActivity
% - -connects - > (from CCA) (from CCA)
ProcessMultiPort ProcessFlowPort

multiplicity_lb : short

?\ multiplicity_ub : short

‘ InputGroup ‘ ‘ OutputGroup ‘
] [
] L

I | DataFlow ProcessPortConnector

ExceptionGroup

Figure 3-74 Combined MOF model of Process

February 2002 UML Profilefor EDOC: Full Model 3-279

3

Section VI - The Relationships Profile

3.24 Requirements

3-280

The Relationships profile describes the extensions to the UML core facilities to meet
the need for rigorous relationship specification in general and in business modeling and
software modeling in particular.

3.24.1 Introduction

This section describes extensions to the UML core facilities that support the need for
rigorous relationship specification in general and in business modeling and software
modeling in particular. In this context, the most important and most interesting aspects
of behavior are in the relationships between participants rather than in the behavior of
participants®. Therefore clear, concise and rigorous specification of relationship
semantics is of utmost importance.

Note that multiplicities are not the most important or most interesting properties of
relationships®. Property determinations are much more important for the semantics of a
relationship, and distinguish among different kinds of relationships. The fragments of
relationship invariants about property determination represent an essential fragment of
those elusive “business rules’ that are the backbone of a good specification and that
should never be only “in the code.”

At the same time, it is very desirable to discover and specify — rather than reinvent —
those kinds of relationships that are encountered in al specifications, so that reuse at
the specification level becomes possible. Such generic relationships extend the set of
reusable constructs that already exist in UML.

This section includes somewhat simplified examples that demonstrate the practical
usage of these relationships.

The section also provides advice for choosing and using a subset of UML for business
modeling such athat the business models represented in terms of this subset will be
readable and understandable by all stakeholders, specifically, business subject matter
experts, analysts, and developers (as well as managers). The generic relationships
described here are among the most important constructs of this subset.

The UML extensions described in this document were not invented from scratch; they
were reused from existing international standards and based on existing modeling
practice. The material about generic relationships presented here is based on long-term

4.“Behavior must be described at the system level, not the object level: all interesting behavior
is in the relati onships between objects, and it isimpossible to understand behavior of the
system by looking only at the behavior of its parts.” (From the keynote of Anthony Hall at
Requirements Engineering’ 97)

5. In most cases, the multiplicities follow from the generic relationship invariant and therefore
do not need to be explicitly shown in the diagram: the Stereotype tekes care of that. Such
diagrams are less cluttered.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

experience in modeling in various areas (telecommunications, finance, insurance,
document management, business process change, etc.) described in [12], [10], [14],
[17] (Appendix A) and elsewhere.

Similarly to UML, we use invariants to specify the semantics of various kinds of
relationships. UML 1.4 Section 2.3.2 states, “The static semantics ... are defined as a
set of invariants of an instance of the [association].... These invariants have to be
satisfied for the construct to be meaningful..”

The approach presented here is extensible, and if it appears that in a particular business
(or a set of applications) additional generic relationships are needed and useful, then
they may be precisely and explicitly defined and added in a manner similar to the
definitions provided here.

Generic relationships provide concepts and constructs that permit UML to be used for
specification of businesses and systems in a more rigorous manner than (and without
restrictions currently imposed by) the base UML 1.4. Generic relationships provide for
explicit specification of relationship semanticsin class diagrams, so that aline between
boxes — even a named line! — will not be considered an adequate relationship
specification. Names by themselves do not determine semantics; if a name is used then
it has to be precisely defined in the same manner that generic relationship stereotype
names like “Assembly” are defined in this document’.

The semantics of a class diagram is in its structure — the collections of “lines” —and so
it has to be appropriately defined and represented graphically. Fortunately, UML
provides adequate extension facilities to satisfy this goal.

3.24.2 Non-Binary Relationships

In many cases, a relationship — such as subtyping or UML aggregation — is defined
between more than two participants. This happens because the invariant that defines
the relationship refers to al its participants rather than just to two of them. Therefore,
several binary relationships are not equivalent to one non-binary. The joint properties
of these binary relationships (formalized in the invariant referring to all of them) would
not be specified in the former case. More specifically, such invariants often describe
how the properties of one relationship participant — such as the “whole” — are
determined on the basis of the (joint) properties of the other relationship participants —
such asits “parts.”

6. A combination of twointerrelated linesrequired by the currently existing UM L metamodel
isan exception; specifically, an association linethat simply mandates alink isacceptable,
but only if it is paired with a<<Reference>> dependency line. <<Reference>> isdefined
|ater in this document.

7. After aprecisely defined relationship was named, the name may be used again and again
without repeating the semantics. Such a name may be used instead of the semantics (and
vice versa).

UML Profilefor EDOC: Requirements 3-281

3-282

Based on substantial modeling experience — see al so the examples below — we consider
most relationships to be asymmetric, and more specifically, we state that an
asymmetric relationship rel ates® a source type to a non-empty set of target types. Asa
familiar example, in a generic Aggregation relationship (which corresponds to the RM-
ODP composition®), the “whole” is related to a “collection of parts,” and the specific
invariant determines the kind of this relationship. In other words, only a collection of
all AssociationEnds jointly realizes an Association.

As amore specific consequence, visible in Figure 3-75, we must clearly and explicitly
distinguish between two or more aggregations for the same whole (which are not
interrelated by any invariant) and a non-binary aggregation defined by a specific
(property determination) invariant.

Since UML version 1.4 requires an Aggregation to be binary only, we have to remove
thisrestriction (e.g., from UML 1.4, Section 2.5.3, Rule 3; also, UML 1.4, Sections 3.3
and 3.43.3 are affected since an “aggregation tree” may have its own semantics and is
not just a presentation option; etc.). After that, we can apply the “Aggregation”
Stereotype and its subtypes to Associ ation™® (note that the property determination
invariant is explicitly used to define this Stereotype)

Appropriate icons — that can represent directionality — are essential for a better
graphical representation. Clearly, there is no need to have an icon for every conceivable
modeling element, but the already existing (asymmetric!) UML icons representing a
relationship (e.g., diamond for aggregation or triangle for subtyping), together with a
Stereotype abbreviating the invariant of the relationship type, solve the problem, as
seen from the examples.

3.24.3 Example: Mutually Orthogonal Non-Binary Aggregations

Figure 3-75 demonstrates the need for non-binary aggregations, for different (mutually
orthogonal) aggregations for the same whole, and for an asymmetric representation of
non-binary relationships in general.

Currently, UML 1.4 restricts aggregations to being binary; this restriction does not
permit clear representation of business requirements, specifically the invariants, like
the ones shown in the example. Similarly, UML treats all parts for the same aggregate
in an equal manner; this restriction does not permit grouping only those parts that
“belong together” because those parts are referred to in the same aggregation invariant
for property determination.

8. Thisisbased on the mathematical concept of arelation used in formal specifications; see,
for example, [PST91].

9. RM-ODP [RM-ODP] defines acomposition of objects asfollows: “A combination of two or
more objectsyielding anew object, at adifferent level of abstraction. The characteristics of
the new object are determined by the objects being combined and by the way they are com-
bined.” Similarly, other <X>s (such as behaviors) can be composed.

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

aso does not currently specify how to show mutually orthogona (independent)

UML

aggregations on a diagram. Such aggregations appear quite often, in particular when
different viewpoints have to be considered!’. Finally, the current UML represents non-
binary associations in a way that does not clearly distinguish between association
source and target. Such distinction is needed for non-binary Aggregation Associations.

The example shows how UML is extended to deal with these issues by using the
generic relationships described in this document. The diagram below (see Figure 3-75)
demonstrates two aggregations— a content-based and a logical layout-based
decomposition of an OMG DomainTask Force (DTF) specification document.

prose

<<Assembly>>

DTF ment
spec docume P

<<Assembly>> .
ram
content-based diagrams

/
CORBA-specific

general

domain-specific

Figure 3-75 UML Extensions Representing Multiple Viewpoints

The two decompositions in Figure 3-75 show two different viewpoints used to better
understand different aspects of such a document. Clearly, concerns used in these
viewpoints are different and therefore ought to be distinguished explicitly.

On the one hand, a DTF specification document, from the content-based viewpoint, is
decomposed into fragments of general nature, fragments that deal with domain-specific
issues, and fragments that deal with CORBA-specific issues. In accordance with OMG
requirements, these fragments have to be present in a document in order for it to be a
DTF specification; this explains the <<Assembly>> Stereotype (defined below).

10. Thistraditionally has been represented graphically asa“diamond” attached to the
“whole” . Other representationsare certainly possible.

11. Presenting (abstractions of) the different aggregations of the same whole in the same dia-
gram provides aroadmap that enhances understanding of complex specifications. Asamore
specific example, four different ways to decompose a Trade were deemed necessary by the

business experts in an exotic option environment.

UML Profilefor EDOC: Requirements 3-283

Further, the fragments may exist independently of the existence of the DTF
specification document, as often happens when the specification authors reuse some of
their aready existing document fragments. Therefore the diamond is white rather than
black; this aggregation is shared.

On the other hand, the same document is decomposed from the logical layout-based
viewpoint into fragments that represent text and fragments that represent diagrams.
Again, the <<Assembly>> Stereotypeis used since OM G requires that such documents
contain both text and (UML) diagrams. And again, these fragments may exist
independently of the existence of the document itself.

There is no 1:1 relationship between a fragment of the content-based decomposition
and a fragment of the logical layout-based decomposition. Moreover, in a more
detailed specification it is possible to define reference relationships (see below)
between some content-based fragments and some logical layout-based fragments. And
for a specific DTF OMG document, it is possible to be more detailed about the nature
of the content-based fragments, and also about the nature of their types.

From the above description it can be seen that this specification presents two
<<Aggregations>> rather than five. The invariants that define these two aggregations
clearly demonstrate this: for example, the value of the document property? named
“abstract” is determined jointly by the values of the content properties of the partsin
the content-based aggregation, while the value of the document property named
“number of pages’ is determined jointly by the values of the properties “number of
pages” of the partsin the logical layout-based aggregation. (It is possible to be more
detailed and consider physical layout-based aggregation as well, but for simplicity the
logical and physical layout-based aggregations were merged.)

Finally, observe that each relationship shown in the diagram above has an indication of
its Stereotype (a “type name”) and its own name. The former may be sufficient if the
modeler and the client believe that non-unique names are appropriate for the context
and will not (ever!) lead to misunderstandings. However, the use of identifiers (i.e.,
names that uniquely distinguish a thing (in this case, a relationship) from another
thing) is recommended. Of course, the stereotype is essential since it abbreviates the
invariant for the particular kind of relationship.

12. Propertiesare, for simplicity, not shown in the diagram. At the sametime, the designation
of arelationship asan Aggregation requires, at an appropriate level of detail, to specify the
property determination invariant of that specific relationship (e.g., of content-based). This
invariant refers to the appropriate properties, and usually isnot represented graphically.

3-284 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

3.24.4 Example: Multiple Subtyping

The simple example shown in demonstrates the need to be able to specify multiple
subtyping hierarchies for the same supertype. As for any relationship, each subtyping
hierarchy (with its subtypes) is defined by its invariant; and the invariant of one
subtyping hierarchy isindependent of the invariant of the other subtyping hierarchy (or
hierarchies).

"Exhaustive”, or "complete"
is a default and therefore we

don't show it
Male
gender-related
[Our employee
Female function-related

{overlapping}

| |

Figure 3-76 Multiple Subtyping Hierarchies for the Same Supertype

In this example, an employee satisfies exactly one subtype in the gender-related
subtyping hierarchy and at least one subtype in the function-related subtyping
hierarchy. Thus, the function-related subtyping is overlapping: the employee may
satisfy either one or both subtypes in this hierarchy at the same time. Clearly, the two
subtyping hierarchies presented above are mutually independent. It means that the four
subtypes shown in the diagram cannot be merged into one subtyping hierarchy: such
merge would destroy the semantics represented there.

3.24.5 Other Relationship Requirements

The following additional important generic relationships (and their subtypes) have
been defined in and elsewhere:

* Reference: A binary, asymmetric relationship in which the properties of instances of
one type determine the properties of instances of another type.

UML Profilefor EDOC: Requirements 3-285

3

3.25 Using UML to Addressthe Requirements: An Overview

Some of the required relationships can be represented in UML in a straightforward
manner. UML 1.4 permits specification of multiple mutually independent (mutually
orthogonal) subtyping hierarchies of the same supertype, as well as the specification of
multiple subtypes of the same supertype in the same subtyping hierarchy!3. This was
demonstrated in the example above. In addition, some of the generic subtypes of
composition may be presented using existing UML constructs (see below).

In UML a subtype hierarchy is called a partition'*. A sub/supertype relationship is
called a Generalization, which has one element in the role of parent and onein the role
of child. A Generalization has a property called the discriminator. If two
Generalizations have the same parent and the same discriminator, then they are part of
the same partition.

A Generalization partition can be constrained to be complete or incomplete and,
separately, to be disjoint or overlapping. If a partition isincomplete it means that there
could conceivably be instances of the supertype that are not instances of any of the
subtypes. Complete is the default. If a subtype hierarchy is disjoint it means that no
instance of the supertype can be an instance of more than one of the subtypes. Disjoint
is the default.

Therefore, in what follows, the generic subtyping relationship will not be discussed
further (although its UML representation will be used in examples). The generic
relationships for which UML extensions are presented include only aggregation,
reference, and symmetric relationships. The representation of these generic
relationships will be accomplished by extending the UML core elements” Association”
and “Dependency.”

3.26 Formal Virtual Metamodel of the UML Extensions

3-286

A virtual metamodel (VMM) is aformal model of a package of extensions to the UML
metamodel using UML's own built-in extension mechanisms. UML'’s primary
extension mechanisms are Stereotypes and Tagged\Values.

This VMM defines only Stereotypes. It does not define any TaggedVv alues. Figure 3-77
is a class diagram of the VMM. Stereotypes defined by the VMM are denoted by
Classes boxes with the <<stereotype>> keyword. The fact that a Stereotype extends a

13. In thismanner, it ispossibleto support the specification of dynamictyping, i.e., of athing
acquiring and losing type(s). A thing acquiresatype when it acquires the properties
(satisfiestheinvariant) of that type; and athing loses atype when it losesthe properties (no
longer satisfiesthe invariant of) that type. As an example, consider a person acquiring and
losing such types as employee, homeowner, stockholder, and so on.

14. Not to be confused with a“swim lane” partition in an activity graph

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

particular element of the UML metamodel is shown via a Dependency stereotyped
<<baseElement>> that points from the Class box representing the Stereotype to a Class
box representing the UML metamodel element.

Relationship
(from UMLCore)

/
/

Dependency
(from UMLCore)

Association
(from UMLCore)

<<stereqtype>>
<<stereotype>>
<<stereotype>> <<stereotype>>
Aggregation AbstractReference
{overlapping} Zﬁ
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
Packet Assembly Subordination Reference ReferenceForCreate

T

! T
|
| |

{incomplete} {incoyhplete}

<<stereotype>>
List

Figure 3-77 Class Diagram of the Virtual Metamodel

3.26.1 Aggregations

3.26.1.1 Sereotype: Aggregation

Inheritance
Association
Aggregation
I nstantiation in amodel

Concrete

UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-287

3-288

Semantics

For an Aggregation, the properties of one of the participants (of the source type) — also
called the “whole’ — are determined, in part, by the properties of the other participants
— also called the “parts.”

The Aggregation properties captured by the Packet, Assembly, Subordination, and List
Stereotypes described below are orthogonal to whether the aggregate's
AggregationKind is shared (corresponding to shared Aggregation) or composite
(corresponding to hierarchical Aggregation).

Tagged Values

None

Constraints

Constraints Expressed Generically

Invariant - An aggregate (“whole”) type corresponds to one or more part types, and an
aggregate instance corresponds to zero or more instances of each part type. There
exists at least one property of an aggregate instance determined by the properties of its
part instances. There exists also at least one property of an aggregate instance
independent of the properties of its part instances.

Note — It is not possible to express all the semantics of Aggregation specified in the
Invariant above — including the property determination semantics — in a way that can
be rendered in OCL nor in a structured English that maps to OCL°. The OCL
constraints for Aggregation merely pin down the relationship of the Aggregation
Stereotype to previously existing concepts about aggregation in the UML metamodel.
On the other hand, the formal constraints for the sub-Stereotypes of Aggregation
(Assembly, Subordination, etc.) in subsequent sections really do express the essential
semantic distinctions that these more specific Stereotypes convey.

Formal Constraints Expressed in Terms of the UML Metamodel
English

Invariant: For exactly one of the participants in the Association, AggregationKind =
shared or AggregationKind = composite.

OCL

i nv OneAggr egat e:
sel f. connections->sel ect (end | end.aggregati on <> #none)
->size =1

15. The UML specification makesno claim that all the semanticsare expressed in OCL; it
|abelsthe OCL assertionsonly aswell-formednessrules.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

OCL

UML Constraint Relaxed

The following UML 1.4 constraint!® is relaxed, i.e. is not in force in this UML profile

English

Invariant: If an Association has three or more AssociationEnds, then no
AssociationEnd may be an aggregation or composition. [RELAXED]

sel f.all Connecti ons->size >=3 inplies self.all Connections
->foral | (aggregati on = #none) --RELAXED

Diagram Notation'’

An Aggregation uses the traditional UML aggregation diamond notation. When the

Aggregation is non-binary, we do not use the standard UML notation for non-binary
associations; instead, the line extending away from the aggregate and away from the
diamond divides into branches, with each branch extending to one of the parts, 18 as
shown in Figure 3-78 and Figure 3-79.

Multiplicities may be shown in the normal UML fashion and must be specified in the
model for the model to be well formed. However, in most cases the specific sub-
Stereotype of Aggregation (e.g., Assembly, Subordination, etc.) is sufficient for
presentation to humans, and showing the multiplicities on the diagram produces
needless clutter. A tool vendor could choose to set default multiplicity values in the
models based on the specific Aggregation sub-Stereotype.

aggregate

<<Aggregation>

—

\
\

part of one type part of another type

Figure 3-78 Notation for Shared, Non-Binary Aggregation

16. UML 1.4 specification, http://cgi.omg.org/cgi-bin/doc?ad/01-02-13, section 2.5.3, well-
formednessrule[3] for Association.

17. This diagram notation, aswell as notations for subtypes of Aggregation and for Symmetric
Rel ationshi ps, show — as an example! —two target types. Except for Reference relationships,
there may be any strictly positive number of target types.

UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-289

3-290

aggregate

<<Aggregation>

part of one type

Figure 3-79 Notation for Composite, Non-Binary Aggregation

part of another type

Note — At some abstraction level it may be unknown or unimportant whether the

diamond is white or black, i.e., whether the Aggregation is hierarchical or not. In this
case, the choice is to be less restrictive: the Aggregation is, by default, non-hierarchical
(the diamond is white). The explicit specification of the <<Aggregation>> Stereotype

may not be needed since the diamond takes care of that.

Observe also that in some cases the modeler does not want to make certain choices
because such choices — at that particular specification stage — may be unimportant or
irrelevant. This is an example of using abstraction to suppress irrelevant details.

Thus it may well be possible that the modeler will choose <<Aggregation>> without
making any further decisions as to the specific subtype of this <<Aggregation>>, and
therefore this Stereotype is not abstract.

At the same time, the invariant of <<Aggregation>> includes a substantial amount of
important semantic information, specifically, information about property values of the
aggregate determined by property values of its parts; this is a very important
consideration in choosing an <<Aggregation>> as opposed to other relationships.

3.26.1.2 Sereotype: Assembly

Inheritance

Association

Aggregation

Assembly

18. This approach is quite intuitive and has a certain consistency with the notation used for
depicting Generalization partitions (i.e. subtype hierarchies).

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

I nstantiation in a model

Concrete

Semantics

An Assembly is an Aggregation for which the aggregate (whole) cannot exist without
its parts.

Tagged Values

None

Constraints

Constraints Expressed Generically
Invariant: The existence of an aggregate instance implies the existence of at least one

corresponding part instance.
Formal Constraints Expressed in Terms of the UML Metamodel
English

Invariant: The multiplicity of the part ends of the association must have alower bound
of at least 1.

OCL

inv PartMultiplicity:
| et parts= sel f.connections->select (end | end.aggregation =
#none) in parts->forAll (nultiplicity.range->forAll (lower >=1)

Note — The sub-Stereotypes of Aggregation (Assembly, Subordination, etc.) essentially
specify a set of multiplicity constraints. At first glance the UML-aware reader may
conclude that these Stereotypes merely duplicate the ability to express multiplicity that
UML dready has and are therefore unnecessary. In order to understand the added
value, one must consider non-binary Aggregations.

For example, the invariant of Assembly constrains the multiplicities on all of the part
AssociationEnds in a non-binary Aggregation, and thus adds another level of validation
that can be conducted as to whether a model iswell formed. In addition, multiplicities
in this context are realizations of the semantics specified in the appropriate invariants
at a (somewhat) higher abstraction level preferable for human readers.

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the
Stereotype keyword is <<Assembly>>. Therefore the specific diagrams are not
provided here.

UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-291

3.26.1.3 Sereotype: Subordination

Inheritance

Association
Aggregation
Subordination
I nstantiation in amodel

Concrete

Semantics

A Subordination is an Aggregation for which the parts cannot exist without their
aggregate (whole).

Tagged Values

None

Constraints

Constraints Expressed Generically

Invariant: The existence of a part instance implies the existence of at least one
corresponding aggregate instance.

Formal Constraints Expressed in Terms of the UML Metamodel
English

Invariant: The multiplicity of the aggregate end of the association must have a lower
bound of at least 1.

OCL
inv AggregateMultiplicity:
| et aggregate = self.connections->select (end | end. aggregation
<> #none) in aggregate.nultiplicity.range
->forAll (lower >= 1)
Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the
Stereotype keyword is <<Subordination>>. Therefore the specific diagrams are not
provided here.

3.26.1.4 Sereotype: Packet

Inheritance

Association

3-292 UML Profilefor Enterprise Distributed Object Computing February 2002

Aggregation
Packet
I nstantiation in amodel

Concrete

Semantics

A Packet is an Aggregation for which the parts can exist without their aggregate, and
the aggregate can exist without its parts. This is the default for Aggregation.

Tagged Values

None

Constraints
No additional Constraints beyond those inherited from Aggregation.

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the
Stereotype keyword is <<Packet>>. Therefore the specific diagrams are not provided
here.

3.26.1.5 Sereotype: List

Inheritance

Association
Aggregation
Assembly
List
Association
Aggregation
Subordination
List

I nstantiation in a model

Concrete

Semantics

A List is an Aggregation for which the parts cannot exist without their aggregate, and
the aggregate cannot exist without its parts. Thus, a List is a subtype of both Assembly
and Subordination; both subtypings are incomplete.

Tagged Values

None

February 2002 UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-293

3-294

3.26.1.6

3.26.2.1

Constraints

No additional Constraints beyond those inherited from Assembly and Subordination.

Diagram Notation

The notation for Aggregation is used (see Figure 3-78 and Figure 3-79), except that the
Stereotype keyword is <<Packet>>. Therefore the specific diagrams are not provided
here.

Soecial Notes on Shared and Composite Aggregations

As mentioned above, any of the forms of Aggregation defined here can be used with
either shared or composite aggregation (also known as weak and strong aggregation,
respectively). Sometimes it is helpful to think of shared and composite aggregations as
non-hierarchical and hierarchical aggregations, respectively.

In UML the aggregate in a composite aggregation is allowed to have multiplicity of
either 1..1 or 0..1, although many modelers are under the misconception that composite
aggregation implies a multiplicity of 1..1 for the aggregate.

A composite aggregation stereotyped as a <<Subordination>> constrains the
aggregate's multiplicity to 1..1. Similarly, in UML the aggregate in a shared
aggregation is allowed to have multiplicity of either 1..* or 0..*. A shared aggregation
stereotyped as a <<Subordination>> constrains the aggregate’s multiplicity to 1..*.

3.26.2 Reference Relationships

Sereotype: AbstractReference

Inheritance

Dependency
AbstractReference

I nstantiation in amodel

Abstract

Semantics

The property values of one participant — the maintained — are determined, in part, by
the property values of the other participant — the referenced. The maintained and
referenced participants are the client and supplier, respectively, in the UML
Dependency relationship. AbstractReference is specialized into Reference and
ReferenceForCreate, as shown below.

Tagged Values

None

UML Profilefor Enterprise Distributed Object Computing February 2002

Constraints

Constraints Expressed Generically

Invariant: The existence of a maintained instance implies that if a corresponding
instance of the reference type exists, then some property values of the instance of the
maintained element are determined by some property values of the corresponding
instance of the referenced element.

Formal Constraints Expressed in Terms of the UML Metamodel
It is not possible to express the constraints formally in terms of the UML metamodel 19

Diagram Notation

Since AbstractReference is abstract, no notation is defined for it. However, notation is
defined for its sub-Stereotypes.

3.26.2.2 Sereotype: Reference

Inheritance
Dependency
Reference
I nstantiation in amodel

Concrete

Semantics

A Reference is the most common form of AbstractReference for which the property
values of the maintained instance are determined, in part, by the current property
values of the referenced instance.

Tagged Values

None

19. However, it is possible to define an impl ementation mapping. See notesin the sectionson
Reference and ReferenceForCreate bel ow.

February 2002 UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-295

Constraints

Constraints Expressed Generically

Invariant: The property values of the maintained instance are determined, in part, by

the current property values of the referenced instance. The property values of the client
must be reviewed and possibly changed whenever any of the properties of the supplier
changes.

Formal Constraints Expressed in Terms of the UML Metamodel
It is not possible to express the constraints formally in terms of the UML metamodel.

Diagram Notation

The notation is the standard UML Dependency notation with the <<Reference>>
Stereotype, as shown in Figure 3-80. Note that <<Reference>> can be abbreviated as
<<Ref>>.

referenced

\
\

\
<<Reference>>
\

\

\

maintained

Figure 3-80 Notation for Reference

3.26.2.3 Sereotype: ReferenceForCreate

Inheritance

Dependency
AbstractReference

I nstantiation in a model

Concrete

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Semantics

A ReferenceForCreate is an AbstractReference for which the property values of the
maintained instance are determined, in part, by the property values of the referenced
instance at the time that the maintained instance is created. Once the maintained
instance is created, its properties are not affected by changes to the referenced instance.

Tagged Values

None

Constraints

Constraints Expressed Generically

The property values of the maintained instance are determined, in part, by the property
values of the referenced instance at the time that the maintained instance is created.
The properties of the referenced element must be examined whenever an instance of
the maintained element is created.

Constraints Expressed in Terms of the UML Metamodel
It is not possible to express the constraints formally in terms of the UML metamodel.

The notation is standard UML Dependency notation with the <<ReferenceForCreate>>
Stereotype, as shown in Figure 3-81.

Referenced

\

<< ReferenceﬁorCreate»

\
Maintained

Figure 3-81 Notation for ReferencefForCreate

UML Profilefor EDOC: Formal Virtual Metamodel of the UML Extensions 3-297

3

3.27 Mapping the Relationshipsto Technical Platforms

3-298

This non-normative subsection addresses the mapping of the relationships defined in
this document to technical platforms such as CORBA IDL, XML, Java, etc.

A mapping to a technical platform can use one of two basic approaches:

Type 1. It can describe how to transform a model to a set of declarations expressed in
the native declarative language of the chosen technical platform. This kind of
transformation targeted to the CORBA platform generates declarations expressed in
CORBA IDL, i.e. CORBA interfaces, valuetypes, etc. If targeted to the Java platform,
it generates declarative Java code, i.e. Java interfaces and abstract classes. |f targeted
to XML, it generates an XML DTD or XML Schema, both of which are essentially
declarative code.

Type 2. It can describe how transform a model to another UML model expressed in
terms of a UML profile targeted to the chosen technical platform, such as the UML
Profile for CORBAZ or the UML Profile for EJBZL. Such UML profiles support
expression via UML of declarative semantics in terms of the concepts native to the
chosen technical platform.

Within the scope of this mapping section, we refer to these two types of mappings as
Type 1 and Type 2 mappings.

3.27.1 Aggregations

3.27.1.1 Decomposing Non-Binary Aggregations

Any Type 1 or Type 2 mapping algorithm that covers the transformation of UML 1.4
binary aggregation associations can be applied in a straightforward manner to the
transformation of non-binary aggregations. Prior to executing the transformation, all
non-binary aggregations should be decomposed into binary aggregations. The rules for
decomposition are as follows:

® The participant classifier (i.e., the type) of the aggregate end of the non-binary
aggregation becomes the participant classifier on the aggregate end of all of the
binary aggregations resulting from the decomposition.

« The properties (such as name and multiplicity) of the aggregate end of each of the
resulting binary aggregations are the same as the properties of the aggregate end
of the non-binary aggregation. There is one exception to this rule:

» Typically the name of the aggregate end of each of the binary aggregationsis the
same as the name of the aggregate end of the non-binary aggregation, as
illustrated by Figure 3-82. The exception case is where more than one of the

20. [UML-CORBA]
21. [JSR-40]

UML Profilefor Enterprise Distributed Object Computing February 2002

3

February 2002

3.27.1.2

3.27.1.3

aggregee ends of the non-binary aggregation have the same participant classifier,
as in Figure 3-83, where Z is the participant classifier for two aggregee ends of
the non-binary aggregation. In that case, there would be a name conflict if the
aggregate end of both of the resulting non-binary aggregations had the same name
(e.g. if both of the aggregate ends opposite Z in Figure 3-83 were named “a").
The rule for disambiguating the aggregate end names is to prepend the name with
the name of the aggregee end. Thusin Figure 3-83, “z2” and “Z" are prepended
to the names of the respective aggregate ends of the binary aggregations.

® The participant classifier of the aggregee ends of the non-binary aggregation
become the respective participant classifiers of the aggregee ends of the resulting
binary aggregations.
* The properties of the aggregee end of each of the resulting binary aggregations
are the same as the properties of the corresponding aggregee ends of the non-
binary aggregation.

Ignoring Aggregation Sub(stereo)types

Type 1 and Type 2 mapping algorithms should ignore al of the specific aggregation
stereotypes defined in this profile that modify the a binary or non-binary aggregation
(Assembly, Subordination, List, and Packet). These specific stereotypes are merely
constraints on the multiplicities of the association ends. Any mapping of standard
UML 1.4 aggregation associations would have to have rules for how the transformation
is affected by these multiplicities. The presence of the stereotypes does not mean that
these multiplicities are missing. Therefore the multiplicities can drive the
transformation and the stereotypes are redundant.

Leveraging General Mappings

With these rules in hand, well-defined mappings such as the MOF-| DL?%, MOF-XML
(i.e. XM1)%3, and M OF-Java®* mappings can be readily applied to the kind of binary
and non-binary aggregations associations supported by this relationship profile. Since
these well-defined mappings specify how to transform M OF models, some slight
adjustments are necessary to apply them to UML models. The adjustments are quite
minor and are necessitated by the slight degree to which the MOF and UML are out of
sync with each other, a misalignment that is slated to be fixed by the UML 2.0
Infrastructure RFP process.

22.[MOF 1.3]
23. [XMI 1.1]
24. [JSR-40]

UML Profilefor EDOC: Mapping the Relationshipsto Technical Platforms 3-299

As an alternative to using M OF technology mappings, UML technology mappings can
be leveraged as well. There are currently no standardized UML technology mappings,
but a number of tools have defined their own proprietary mappings. Again, by applying
the rules for decomposing non-binary aggregations it is straightforward to leverage

such mappings.

A

+a®
+X ty +z
X Y Z
A
+a gy +a
+X +y +z
X Y Z

Figure 3-82 Association End Names Resulting from Decomposing a Non-Binary Aggregation
(General Case)

3-300 UML Profilefor Enterprise Distributed Object Computing February 2002

ra®

+X +y +z

X Y Tz
+z2
A
+a
) //// N +za
X X_— +z2a

Ty +z

Y — Z
+z2

Figure 3-83 Association End Names Resulting from Decomposing a Non-Binary Aggregation
(Specia Case)

3.27.2 Reference Relationships

Reference dependencies are not used to drive Type 1 or Type 2 transformations.
Mapping a gorithms ignore them, treating them essentially as documentation.
References are most typically used in conceptual models that are not used as input for
transformations.

February 2002 UML Profilefor EDOC: Mapping the Relationshipsto Technical Platforms 3-301

3

3.28 ExamplesUsing the UML Extensions

3.28.1 Example: List and Subordination

This example [15] (see Appendix A) demonstrates a fragment of an accounting
specification in which it was essential to show and to distinguish between specific
Stereotypes of Aggregation?®.

A reconciliation in accounting compares one collection of accounts having a particular
account representation with another collection of accounts having a different, but
related, account representation. As a result of a reconciliation comparison, pair-offs
and breaks are found.

Each pair-off results in two sets of account items. One set, drawn from one collection
of accounts, corresponds (in accordance with “matching criteria’ chosen by the user)
to another set drawn from the other collection of accounts. (Although each account
item is apart of exactly one account, the account items in the set that participates in a
pair-off may be drawn from more than one account.) A pair-off happens because
corresponding sets of account items were found, and:

® either these lists are representations of the same transaction and their (monetary
values for) account items pair-off (match) within tolerance, or

® it isnot important whether these sets are representations of the same transaction(s),
but the sum of (monetary values for) account items in one representation is equal,
within a specified tolerance, to the sum of (monetary values for) account itemsin
the other representation.

Account items from either collection that do not participate in a pair-off represent
breaks. Account items that are parts of breaks participate, together with the collections
of accounts mentioned above, in subsequent reconciliation activities. A break will
disappear as a result of a subsequent, possibly manual, pair-off. Figure 3-84 shows a
fragment of this specification.)

25. If it were necessary to apply the currently existing UML 1.3 then some fragments of this
specification would be shown using the (partial!) realization of these Stereotypes by means
of multiplicities, and in some cases the problemswould |ook very severe because of the need
to show anon-binary aggregation. However, the excessive amount of multiplicitieswould
overload the diagram, and its understanding by users would be much more difficult sincethe
diagram would show the realization of aconstruct rather than the (abbreviation of the)
construct itself.

3-302 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

OneAccountCollection

AnotherAccountCollection

<<Subordination>> PairOffOrBreak <<Subordination>>
<<Ljst>>
OneAccountSet AnotherAccountSet
AnAccountSet

<<Assembly>>

Accountltem

Figure 3-84 Fragment of Reconciliation Specification

Figure 3-84 shows that AnAccountSet is an Assembly of Accountltems, so that in
order for AnAccounSet to exist, its Accountltems have to exist. Further, AnAccountSet
is specialized into OneAccountSet and AnotherAccountSet for reconciliation purposes,
as described above.

Each AccountSet is drawn, when a reconciliation (attempt) is accomplished, from its
AccountCollection, so that the AccountCollection has to exist first. And finally, a
PairOff OrBreak is a List since it results in establishing a reconciled (or non-
reconcilable) correspondence between OneAccountSet and AnotherA ccountSet.
Therefore all three participants of the Aggregation are essential for the existence of this
Aggregation.

UML Profilefor EDOC: ExamplesUsing the UML Extensions 3-303

3.28.2 Example: Reference Relationships

This example demonstrates the semantics of property determination for information
input and its syntactic and semantic validation. Asthis and other examples show,
multiplicities are not the most important fragment of relationship semantics;
specifically, the purpose of the specification shown here is to demonstrate relationships
used for property determination.

Without the <<Reference>> Stereotype it would be necessary to use Notes in a class
diagram or informal prose to represent the semantics. As shown in the class diagram
below, the essential structure of the specification becomes clear only by means of the
<<reference>> generic relationship Stereotype.

InformationForSyntaxCheck

N
<<Refereerce>>

\

\

SyntaxCheck
_ A
—

— \

<<Refereﬂce>>> <<Referen‘ce>>
—
—
— \

—
. |
EntryW indowForABusinessEntity

ValidatedBusinessEntity

— \
~
~

- \

<<Reference>> <<Reference>>
~
. T
~
— ‘
~

SemanticValidation

\

|
<<Rbference>>

|

|

Inform ationForSe mantic Validation

Figure 3-85 <<Reference>> Stereotype Used To Show Structure of Specification

3-304 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Figure 3-85 shows a typical (and recommended!) approach to a common situation
during information input and validation [11] (see Appendix A). The proposed values
for the business entity are to be entered from a screen and checked for correctness.
These screen-entered values by themselves do not determine the values of the
ValidatedBusinessEntity. Rather, there are both syntax checks (for example, that the
value is of the appropriate base type such as “integer”) and semantic checks (for
example, that the value belongs to the set of permissible values such as “ state name;”
or that the customer that claims to be known is actually known).

Business rules are specified for the SyntaxCheck and for the SemanticValidation. Each
business rule, as a maintained entity, has two reference relationships — pointing to the
EntryWindowForABusinessEntity and to the InformationForValidation — since the
properties of the business rule will be determined, in part, by the properties of two of
its reference entities. Similarly, the ValidatedBusinessEntity has two reference

rel ationships pointing to these two business rules since the properties of the
ValidatedBusinessEntity will be determined, in part, by the properties of these rules.

Clearly, the specific property determination invariants will have to be provided
explicitly in the specification of each of these reference relationships. The diagram
indicates that these relationships exist and that such invariants are to be provided —
otherwise the specification is incomplete. If these invariants are simple enough, then
they may also be represented as Notes in the diagram.

UML Profilefor EDOC: ExamplesUsing the UML Extensions 3-305

3-306 UML Profilefor Enterprise Distributed Object Computing February 2002

ThePatternsProfile

Contents

This chapter includes the following topics.

Section/Topic Page
Section | - Rationale 4-2
“Introduction” 4-2
“Pattern Principle” 4-3
“Notation for Patterns’ 4-4
“Simple Pattern” 4-6
“Pattern Inheritance” 4-6
“Pattern Composition” 4-7
“Summary of Pattern Formats’ 4-8
“Applying Patterns’ 4-8
Section Il - Patterns Metamodel 4-10
“EDOC::Pattern Package’ 4-11
Section 111 - UML Profile 4-14
“Table mapping concepts to profile elements’ 4-14
“Introduction” 4-14
“Pattern Package” 4-15

February 2002 UML Profilefor Enterprise Distributed Object Computing

4

Section | - Rationale

4-2

4.1

I ntroduction

The UML Profile for EDOC specification is designed to provide standard means,
Business Function Object Patterns (BFOP), for expressing object models using UML
package notation together with the mechanisms for applying patterns that are required
to describe models.

Successful implementation of an enterprise computing system reguires that the system
operation to be directly related to the business processes it supports. Reusable standard
models are required in order to build good object models for EDOC systems.

Standard models have Business Entities Objects, Business Processes Objects, Business
Event Objects and Business Rules Objects of ECA. They also include a set of common
and reusable patterns of relationship properties that occur in business modeling. BFOP
is being developed to achieve this objective.

BFOP is a set of object patterns laid out in a hierarchical multi-layer structure, the
Basic, Unit, Basic Model, Product (application systems), and Option layers.

Figure 4-1 on page 4-3 illustrates how “ Sales/Purchase Pattern” is composed from
“Sales Order & Purchase Order Pattern,” “Closing Pattern,” and so on. The UML
parameterized collaboration mechanism is used to materialize the pattern integration.

One of the magjor benefits for using this multi-layered structure is that it enables reuse
(inheritance) of the constraints that have been defined and encapsulated in patterns in
the layers. It provides a normalized way to define constraints and is effective in
maintaining consistency within the object model.

The proposed notion of Business Pattern Package (BP Package) defining a pattern and
Business Pattern Binding (BP Binding) applying a pattern has the features of pattern
inheritance and pattern composition. This capability is useful for expressing patterns
that include the objects constructed by recursive component composition of ECA.

UML Profilefor Enterprise Distributed Object Computing February 2002

— —
Basic Layer Master & Detail Assodiation Common
patterns
1 .
Unit Layer Clasing Industrial
K components
]
Sdles Orde & Purchase
Order
DN Zi
Basic Model Layer Frameworks
Sales/Purchase
System/. Subsystem Products

Figure 4-1 An Example of BFOP Pattern Hierarchy

4.2 PatternPrinciple

February 2002

A pattern is something used to represent modeling know-how or techniques that help
developers to maintain efficiency and consistency in products.

In the world of object modeling, many approaches to the use of patterns have been
proposed, for example, “Design Pattern” proposed by E. Gamma et al [Gamma 95],
“Analysis Patterns” proposed by M. Fowler [Fowler 97], or “Catalysis Approach”
proposed by D. D’ Souza [D’ Souza 99]. In its use of patterns this submission focuses
more on improving sharability and reusability of object models than on assisting
modeling efforts by illustrating good modeling techniques.

To improve sharability and reusability of object models, patterns must support the
following features:

® The model must offer predefined normative modeling constructs, not just modeling
conventions and notations.

* Predefined modeling constructs should include the common atomic objects, such as,
Date, Currency, Country-code, which can then be used without explanation.

® Common aggregated objects, such as Customer, Company, or Order, which
represent business entities, also should be predefined as normative modeling
constructs, using the normative atomic objects.

® Business concept, such as, Trade, Invoice, or Settlement, which are typically
represented as relationship among objects, should be defined as aggregations of the
common elementary aggregated objects or simple objects. They also have to be
predefined as normative modeling constructs.

UML Profilefor EDOC: Pattern Principle 4-3

4-4

® Those aggregations that can be predefined using more basic and elementary patterns
as a base, may be defined as object patterns.

® Patterns can represent a business concept where they provide for aggregation of
more elementary patterns. Therefore, the aggregation or composition mechanism is
an essential element of patterns.

4.3 Notation for Patterns

Business rules that govern a business concept can be represented with a pattern with
constraints encapsulated in it. Thus, the mechanism for constraint inheritance among
patterns must be provided.

In this section, the concept and format of patterns are discussed from the viewpoint of
pattern notation, relationships among patterns and pattern types and their instances.

We considered that there are three basic forms on expressing patterns. First, the simple
pattern which is a pattern consisting of minimal elements needed to form a pattern.
Second, the inherited pattern which is a pattern defined by inheriting from another
pattern. And the third is the composite pattern which is a pattern defined as a result of
combining more than two patterns. The composite pattern concept is an extension of
the inherited pattern. Using the above three basic pattern forms as the base, we
propose the following notations for expressing patterns and their metamodel.

It is important to consider the issue of type and its instantiation from the metamodel
viewpoint. A pattern isa set of typesthat can beinstantiated to create object models. A
pattern for a set of object models is created by identifying and defining the common
types among those object models, using a metamodel such as in the ECA profiles.
Identifying and specifying many reusable business object patterns is useful for quick
and high quality model development that can be attained by selecting appropriate
patterns among various ones to use in the project as a template.

The instantiation of a composite pattern in a hierarchical structure becomes possible by
resolving pattern inheritance and collaboration by "unfolding". When a composite
pattern is granular enough to include implementation details, and it is possible to useit
to describe a component concept such as CCA, each pattern package can be
implemented with real componentsinstead of unfolding it into a component pattern. In
short, the proposed pattern concept and mechanism can be applied to the components
based development that is required in EDOC.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

BUWHn Name
\<<Bp Package>> Required generalization
Pattern Diam
'S

Composition
Pattern Pararpeter

¥ <Component>

< .
<L eaf> <Composite>

Pattern Constraints

y
Pattern Operations

Figure4-2 Defining the “Composition” Pattern

Actual classesin model
Business Pattern Binding

T Compoasite

Pettern parameter binding with renaming

Figure 4-3 Applying the “Composition” Pattern

UML Profilefor EDOC: Notation for Patterns 4-5

4-6

Gereralization condgent with pattern

Pattern

Sinple Composite |

.-

Figure 4-4 Unfolded “Composition” Pattern

4.4 SmplePattern

A simple pattern consists of minimal elements and does not involve another pattern. In
BFOP, type (i.e., an abstract class) and relationship among types are significant
elementsfor specifying the static structure of a simple pattern. In addition to the static
structure, operations are defined to characterize the pattern's behaviors. Constraints for
the operation can be specified as the pre/post conditions described in OCL. Figure 4-5
illustrates the notation for a simple pattern.

]

<A>

constraints

operations

Figure 4-5 The format of Simple Pattern

4.5 PatternInheritance

The pattern inheritance mechanism is provided to describe a pattern that is defined in
conjunction with another already existing pattern. The names of types and attributesin
the inherited pattern can be renamed as appropriate for the inheriting pattern. This
provides the way to build various patterns for specific usage.

UML Profilefor Enterprise Distributed Object Computing February 2002

4

For instance, the pattern <header>-<detail> can be used to generate many patterns that
share the common characteristics of the header-detail. Typically, patterns inherited
from the <header>-<detail> need stricter constraints than the original pattern. If the
pattern <A'>-<B'> is created from the pattern <A>-, the types A and B are
replaced with subtype A' and B' respectively. Figure 4-6 shows the notation and
mechanism of the inherited pattern.

—

<A>

constraint

operations

o — -

constraints

operations

Figure 4-6 The Format of Pattern Inheritance

4.6 Pattern Composition

February 2002

The third form of pattern, composite pattern, provides a way to build more complex
patterns. When combining two patterns to describe a composite pattern, a new type
(i.e., logical class) is created which shares the common characteristics of the original
patterns. The new combining type is expressed using the parameterized collaboration
in UML 1.4. The pattern composition is useful for building hierarchica structure of
patterns. Figure 4-7 is a simple diagram illustrating the notation of composite pattern.

UML Profilefor EDOC: Pattern Composition 4-7

Tl Tl

<A>
| <A> C
v, 7
P3 ’I
// \ A
J—iY :\-\' -~
P10y v P2)

Figure4-7 The Format of Pattern Composition

4.7 Summary of Pattern Formats

The pattern formats described above can be explained using package diagram in UML
notation as in Figure 4-8.

1 1 1
Simple Pattern Pattern Inheritance Pattern Composition

Figure4-8 The Summary of Pattern Formats

4.8 Applying Patterns
The upper diagrams of illustrate how the “Organization Pattern” is composed from

“Employee Assignment Pattern” and “Organization Structure Pattern” in the BFOP
hierarchy structure. The UML parameterized collaboration mechanism is used to

4-8 UML Profilefor Enterprise Distributed Object Computing February 2002

4

February 2002

materialize the pattern integration. The lower diagrams of Figure 4-9 show the steps

of unfolding. The right and down arrows show the generated “Organization

(Subsystem).”

Tganization
Structure
<Organization>
1 1

* #

| OrganizationStructure |

BFOP: Structure

\\—l

Organization
Structure

// Organization

5 ’
/
I,
Period I 4 <EnterpriseOrg> <Employee>
Organization Al N il
, . " N 1
) | Orgamza}}on N Emplyee
AY
Em pl oyee) /! Department /
Assignment \ / S /
N \ it PRt ~<
. : - . . Y (Orgamzatlon N l/’Employee \
epartmen . y Structure _.’ “ Assignment ¢
i N L EE Te—ee-- -
* . Employee \
Assignment Assignment \
’
* 7/
U
<Employee>
U
’

OurEnterprise

OurEmployees

Figure 4-9

Unfold

®

Al N\ N\
. " ’
Organlzalt)on \\ Emplyee
/ Departrhent ’
’ \ ’

ST TN
‘/'Orgamzanon N
sStructure __« \\/;\ssgnment//

S——--

1
]
'
'
]
]
'
'
]
'
'
]
]
1 '
'
]
'
'
'
]
'
'
]
]
'
'
]
'

OurEnterprise l*_* OurEmployee
1 1

* *

Organization
Structure

Assignment

*

1

Period

An Example of BFOP Structure and Unfolding

UML Profilefor EDOC: Applying Patterns

4

Section Il - Patterns Metamodel

Figure 4-10 depicts the elements to be considered; those that are part of this profile
specification are highlighted. This metamodel is organized with three main model
elements to describe a Business Pattern: Business Pattern Name, Business Pattern
Package and Business Pattern Binding. Business Pattern Names are to identify patterns
defined with Business Pattern Packages and also are used to invoke patterns with those
pattern names.

Namespace
(from core)

Business Pattern Name

Busi nessPatternName: string

A A\

Package
(from Core)

JAN

Business Pattern Package K>

Collaboration
(from Core)

Business Pattern Binding

1 *
S

0.1 owns -
S Congtraint
(from Core)
*
owns Operation
K>——— (from Core)
0.1 N
owns
Template Parameter

(from Model Element)

+ replaces with renaming

Figure4-10 Metamodel for Business Pattern Package

4-10 UML Profilefor Enterprise Distributed Object Computing

February 2002

4.9 EDOC::Pattern Package

February 2002

49.1 Busness Pattern Name

Semantics

Business Pattern Name is the name of business patterns defined by Business Pattern
Package.

UML baseelement(s) in the Profile

Class

Fully Scoped name
EDOC::Pattern::Business Pattern Name

Owned by
Package

Properties

Business Pattern Name
Business Pattern Name is the name of pattern defined in Business Pattern Package.

Related elements

Namespace

Business Pattern Name inherits from Namespace and adds the Business Pattern Name
of Business Pattern Package.

Business Patter n Package

Business Pattern Package specializes Business Pattern Name for defining Business
Pattern Package associating Business Pattern Name.

Business Pattern Binding

Business Pattern Binding specializes Business Pattern Name for invoking Business
Pattern Package with associated Business Pattern Name.

Constraints

None

UML Profilefor EDOC: EDOC::Pattern Package 4-11

4-12

4.9.2 Business Pattern Package

Semantics

Business Pattern Package is used to specify patterns and handle them as design
elements.

UML baseelement(s) in the Profile

class

Fully Scoped hame
EDOC::Pattern::Business Pattern Package

Owned by
Package

Properties
N/A

Related elements

Business Pattern Name

Business Pattern Package inherits from Business Pattern Name and adds elements for
defining a pattern.

Package

Business Pattern Package inherits from package and adds elements for defining a
pattern.

Templ ate Parameter

Template Parameter represents formal parameters of defined pattern, which are class
names to be replaced with actual class names at unfolding pattern.

Constraint

Constraint declares the semantics of defined pattern. A Business Pattern Package can
be specified more precisely.

Operation

Operation is the set of method definitions and extends the functions of patterns. A
Business Pattern Package can be handled like a component or a class.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

Oowns

Business Pattern Package owns a template in a parameterized collaboration diagram
with constraints and operations.

Constraints

None

4.9.3 Business Pattern Binding

Business Pattern Binding indicates applying patterns and also represents a
parameterized collaboration.

UML baseelement(s) in the Profile
Collaboration

Fully Scoped hame
EDOC::Pattern::Business Pattern Binding

Owned by
Package

Properties
N/A

Related elements

Business Pattern Name

Business Pattern Binding inherits from Business Pattern Name and add elements for
invoking a pattern.

Collaboration

Business Pattern Binding inherits from Collaboration and adds elements for invoking a
pattern.

Templ ate Parameter

Template Parameter represents to replace the elements of patterns such as class names
or attributes when patterns are unfolded in another pattern or class diagram.

Replaceswith renaming

The element names such as class name, attribute name or method name used in
patterns are replaced when patterns are unfolded.

UML Profilefor EDOC: EDOC::Pattern Package 4-13

Constraints

None
Section Il - UML Profile

4.10 Table mapping conceptsto profile elements

Table 4-1 provides a mapping of metamodel elements to UML profile elements.

Table 4-1 Element Mappings

M etamodel Element UML Profile Element UML Base Class
Business Pattern Name BP Name Class
Business Pattern Package BP Package Class
Business Pattern Binding BP Binding Class

4.11 Introduction

Figure 4-11 illustrates the extensions required for the pattern model and the
relationships of these extensions to elements in UML 1.4. The extensions shown in
this diagram are discussed in the paragraphs that follow.

The BP Package is a stereotype which inherits BP Name and Package for defining a
new pattern, the BP Binding is a stereotype which inherits BP Name and Collaboration
for pattern invocation with renaming, and the BP Name is a stereotype which inherits
Namespace for identifying and sharing a pattern name between a BP Package's stuff
and a BP Binding's stuff.

Namespace
(from core)
Package <<gereotype>> Collaboration
(from Core) BPName (from Core)
<<stereotype>> <<stereotype>>
BP Package BPBinding

Figure 4-11 Patterns <<profile>> Package

4-14 UML Profilefor Enterprise Distributed Object Computing February 2002

4.12 Pattern Package

4.12.1 BP Name

Inheritance
This stereotype has the following inheritances:
Package (from UMLCore)

BP Package

I nstantiation in a model

Abstract

Semantics

The BP Name is a stereotype that inherits Namespace for identifying and sharing a
pattern name between a BP Package's stuff and a BP Binding's stuff.

Tagged Values
N/A

Constraints
N/A

Diagram Notation
N/A

4.12.2 BP Package

Inheritance
This stereotype has the following inheritances:

Package (from UMLCore)
BP Package

BP Name
BP Package

I nstantiation in a model

Concrete

February 2002 UML Profilefor EDOC: Pattern Package 4-15

Semantics

The BP Package is a stereotype that inherits BP Name and Package for defining a new
pattern. A pattern definition consists of a BP Name and a collaboration diagram as a
pattern body. A collaboration diagram may have some BP binding which invocate
patterns with renaming. The notion of renaming is not included in collaboration of
UML 1.4. However, the collaboration diagram created by unfolding pattern is a
collaboration diagram in UML 1.4.

One of the major benefits for using this multi-layered structure is that it enables reuse
(inheritance) of the constraints which have been defined and encapsulated in patterns
in the layers. It provides a normalized way to define constraints and is effective in
maintaining consistency within the object model.

The Operations of the BP Package are provided to treat the BP Package as a class or
component. It can be used to draw a pattern of component relations and refinement
relations between lower and upper of abstraction model level.

Tagged Values
N/A

Constraints
N/A

Diagram Notation

<<BPPackage>> .**"*s,

.

* Ol

T <<BPNanje>>

Template Parameter]

AN

\ Congtrai nt Description
Operation Definition

Figure 4-12 Notation for Business Pattern Package

4-16 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

4.12.3 BP Binding

Inheritance
This stereotype has the following inheritances:

Package (from UMLCore)
BP Binding

BP Name
BP Package

I nstantiation in a model

Concrete

Semantics

The BP Binding is a stereotype that inherits BP Name and Collaboration for pattern
invocation with renaming.

The renaming for model elements of pattern body may be allowed in pattern
invocation.

Here, instead of UML'’s graphical notation, lets use symbolic expressions for
explaining the meaning of pattern framework concerning renaming as follows.

Formal Parameter ::<.>
Pattern definition::
def pattern “pattern name” = “pattern body”
Pattern invocation ::
“pattern nane” (“Actual parameter List”) [“Renam ng List”]
Renam ng List::
[“Name”/” New Nane”, .., " Nane”/” New Nane”]

Example of pattern definition::
<a > + +c¢c +d

A(al,bl)[c/cl] + e + f
A(<a>, b2)

def pattern A
def pattern B
def pattern C

Example of pattern invocation and unfolded result:

B() (al +bl +cl+d+e+f
B()[cl/c2, elel] (al + bl +c2 +d + el +f
C(a3) (a3 +b2+c+d

Here, the symbol “a’, “b", “c”,.. is supposed to be a model element such aclass name,
attribute name and so no. The symbol “+” is supposed to be a model element like an
association. The pattern A has two parameters “<a>" and “". Also, it has two
model elements“c” and “d”. The “c” isrenamed into “c1” in the pattern B. In thisway,
more general hame like “c” is used in the pattern definition, but more specific name
like “cl” is preferable in a concrete model.

UML Profilefor EDOC: Pattern Package 4-17

4-18

Tagged Values
N/A

Constraints

If a corresponding actual parameter is not specified on BP Binding, formal parameter

is used as a default element.

Diagram Notation

e —_———-——
- ~-~o

.~ <<BPBinding>> >+
s«_ NNNNNN .7

_____ ~

~
SS

“Original ClassName™[*~]. _ “New Class Name’

~

<BP Name>>

<Template Parameter>

Figure 4-13 Notation for Business Pattern Binding

UML Profilefor Enterprise Distributed Object Computing

February 2002

Technol ogy Specific Models 5

Contents

This chapter includes the following topics.

Topic Page
Section | - The EJB and Java Metamodels 51

“Introduction” 5-1

“The Java M etamodel” 5-2

“The Enterprise JavaBeans Metamodel” 5-12
“UML Profile” 5-31
Section Il - Flow Composition Model 5-32
“Introduction” 5-32
“FCM Core Package’ 5-33
“FCM Package” 5-38
“FCM Profile” 5-41
“Example” 5-42

Section | - The EJB and Java Metamodels

5.1 Introduction

February 2002

This section describes the Enterprise JavaBeans © metamodel abstracted for the
purpose of design and deployment of application components to the Enterprise
JavaBeans architecture. This metamodel describes the EJB 1.1 specification,

UML Profilefor Enterprise Distributed Object Computing 5-1

specifically the content of the “Public Release” version of the 1.1 specification. The
metamodel is included to demonstrate the generality of the proposed analysis profile
by showing that it can be mapped to more than one implementation architecture. The
submitters believe this generality should be provided to maximize the utility of the
profile.

The metamodel is intended to define sufficient structure to support the EJB
development life cycle, i.e., the creation, assembly and deployment of Enterprise
JavaBeans. As the Java language is the foundation to the Enterprise JavaBeans
architecture, a Java metamodel has been developed as a foundation to the Enterprise
JavaBeans metamodel. The intent of the Java metamodel is to capture sufficient detail
to support the Enterprise JavaBeans metamodel. It is not a complete metamodel of the
Java language. The Java metamodel describes the Java language specification used by
EJB 1.1, i.e, Java language specification version 1.3.

The following pages will describe the two metamodels. Each metamodel is presented
as a series of class diagrams. Each class diagram is followed by a description of the
important features of the diagram. Each metamodel element can also be mapped to a
profile representation using the patterns described in the UML Profile for MOF that is
included in this document. As the metamodel is completed with the constraints spelled
out in the Enterprise JavaBeans architecture, those can also be projected into the
profile. The submitters intend the metamodel to be used as input for the UML Profile
for EIJB now in public draft within the Java Community Process under JSR-000026
(see http://jcp.orgljsr/detail /26.jsp) through such a mapping.

5.2 TheJava Metamodel

The Java metamodel is described using the following 5 diagrams:
Figure 5-1 on page 5-3, Class Contents describes Java Classes/Interfaces/Exceptions.
Figure 5-2 on page 5-8, Polymorphism describes Java polymorphism.

Figure 5-3 on page 5-9, JavaType describes how Java typed elements are related to
their types.

Figure 5-5 on page 5-11, Data Types describes the basic Java data types.

Figure 5-6 on page 5-12, Names factors the name attribute into a superclass.

UML Profilefor Enterprise Distributed Object Computing February 2002

5.2.1 Class Contents

JawaPackage

+javaPac kage 0.1

+declaredClasses

+javaClasses
0..* 0..*

JavaClass
+declaringClass |ispublic : Boolean |1..1 0.*
isAbstract : Boolean

Field

isFinal : Boolean
is Static : Boolean

»
-

0..1|isFinal : Boolean 0..* +fields
—
1.1
+methods

Method
isAbstract : Boolean
0..* isNative : Boolean
isSynchronized : Boolean
isFinal : Boolean
isConstructor : Boolean

ArrayType . -

yilyp isStatic : Boolean

+javaExceptions

arrayDimensions : Integer

0.190.1
+inputToMethod | *+returnedFromMethod

{ordered} 0..* | 0..1 {ordered}
+inputParameters \|; +returnParameter

JavaP arameter
isFinal : Boolean

Figure5-1 Class Contents

5.2.1.1 JavaPackage

Semantics
A Java package, as defined in the Java Language Specification.

Fully Scoped nhame
EDOC::Java::JavaPackage

Owned by
Package

February 2002 UML Profilefor EDOC: The Java Metamodel 5-3

5-4

5212

Properties

Related elements

JavaClass
The Java classes contained in the package.

Constraints
N/A

JavaClass

Semantics

A Java class, as defined in the Java Language Specification.

Fully Scoped name
EDOC::Java::JavaClass

Owned by
JavaPackage
Properties

isPublic
Boolean vaue indicating whether the class is public.

iSAbstract
Boolean value indicating whether the class is abstract.

IsFinal
Boolean vaue indicating whether the class is final.

Related elements

JavaPackage
The Java package the classisin.

JavaClass
Declared/Declaring classes.

Field
The fields in the class.

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

52.13

Method
The methods on the class.

The methods that throw this exception.

JavaParameter
The parameter type.

ArrayType
Subclasses JavaClass, adding array dimensions.

The type of the components in the array.

Constraints
N/A

Field

Semantics
A Javafield, as defined in the Java Language Specification.

Fully Scoped hame

EDOC::Java::Field

Owned by

JavaClass

Properties

isFinal

Boolean vaue indicating whether the field is final.

IsStatic
Boolean vaue indicating whether the field is static.

Related elements

JavaClass
The class containing the field.

Constraints
N/A

UML Profilefor EDOC: TheJava Metamodel 5-5

5-6

5.2.1.4 Method

Semantics
A Java method, as defined in the Java Language Specification.

Fully Scoped hame
EDOC::Java::M ethod

Owned by
JavaClass
Properties

isAbstract
Boolean vaue indicating whether the method is abstract.

isNative
Boolean vaue indicating whether the method is native.

isSynchronized
Boolean value indicating whether the method is synchronized.

isFinal
Boolean vaue indicating whether the method is final.

IsConstructor
Boolean vaue indicating whether the method s a constructor.

IsStatic
Boolean vaue indicating whether the method is static.

Related Elements

JavaClass
The class the method belongs to.

The exceptions the method throws.

JavaParameter
The input and return parameters on the method.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

52.15

52.16

JavaParameter

Semantics

A Java parameter, as defined in the Java Language Specification.

Fully Scoped hame
EDOC::Java::Parameter

Owned by

Method

Properties

isFinal

Boolean value indicating whether the parameter is final.
Related elements

Method
The method the parameter is an input or return parameter for.

Constraints
N/A

ArrayType

Semantics
A Java array type, as defined in the Java Language Specification.

Fully Scoped hame
EDOC::Java:Array Type

Owned by
Package

Properties

arrayDimensions
Integer value giving the dimensions of the array type.

UML Profilefor EDOC: TheJava Metamodel 5-7

5-8

Related elements

JavaClass
Subclasses JavaClass and adds array dimensions.

ArrayType uses JavaClass to identify the type of its components.

Constraints
N/A

5.2.2 Polymorphism

+extendsClass

1

0..*

JavaClass | +implementingClass 0..* +extendsInterface

JavaClass

+extendingClass

0..* +implementsinterface

5221

0..*

0.*

+extendinginterface

Figure5-2 Polymorphism

JavaClass
See Section 5.2.3.1, “JavaType,” on page 5-10 for Semantics, Fully Scoped name,
Owned by, and Properties.

Related elements

JavaClass

The relationships in Figure 5-2 represent:

Super/sub-classing of classes and interfaces

The relationship between interfaces and implementing classes.

The JavaClass on the left represents an implementing class. The one on the right

represents an interface.

Constraints
N/A

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

5.2.3 JavaTlype

TypedElement

/\

Field

JavaParameter Array Type

Figure 5-3 JavaType

+type | JavaType
0..1
/\
LA\
JavaClass

Field, JavaParameter, ArrayType, and JavaClass are described in TypedElement.

Semantics

Abstract class that identifies subclasses as having a type as part of their definition.

Fully Scoped hame
EDOC::Java:: TypedElement

Owned by
Package

Properties

Related elements

JavaType
The associated type.

Field, JavaParameter, ArrayType
Concrete subclasses.

Constraints
N/A

UML Profilefor EDOC: TheJava Metamodel

5-9

5-10

5.2.3.1 JavaType

Semantics

Abstract class whose subclasses are the Java types.

Fully Scoped hame
EDOC::Java::JavaType

Owned by
Package
Properties
Related elements

JavaType
The elements that are of this type.

ArrayType, JavaClass, JavaDataType
Concrete subclasses.

Constraints
N/A

5.2.4 TypeDescriptor

TDLangClassifier
(fromTDLang)

<<derived>>

+tdLangSharedType

+tdLangTypedElement

JavaType

1.

Figure5-4 TypeDescriptor

UML Profilefor Enterprise Distributed Object Computing

1 0..

*

TDLangElement
(fromTDLang)

TypedElement

February 2002

February 2002

5241

5242

TDLangClassifier

TDLangElement is aclassin the Common Application Metamodel, which is part of the
Enterprise Application Integration submission due to finalize in August. It isused in
the model to tie TypedElements (via TDLangElement) into the data typing and type
composition structure that this metamodel provides, as well as to JavaTypes.

TDLangElement

TDLangElement, also a class in the Common Application Metamodel, provides the
linkage to TDLangClassifiers.

5.2.5 Data Types

<<datatype>> | <<datatype>>| <<datatype>>
Integer Boolean String
JavaClass +typeKind | TypeKind
0.1
/7 /‘\ V\
/ AN
/ | N
TypeClass Typelnterface TypeException
Visible +uisibilityKind VisibilityKind
11
/\ (NN
T / / \ N
/ AN
JavaClass Method Field Public Private Protected Package
Figure5-5 Data Types

This diagram describes the primitive data types and other types used within this
metamodel, and is included for completeness.

UML Profilefor EDOC: TheJava Metamodel 5-11

5.2.6 Names

NamedElement

gname : String

JavaClass

JavaPackage

Field

Method

JavaParameter

Figure5-6 Names

This diagram shows the factoring of the name attribute into an abstract superclass
called NamedElement. It isincluded for completeness.

5.3 TheEnterprise JavaBeans Metamodel

5-12

This metamodel is dependent on the Java metamodel described above. It captures the
concepts that will be used to design an Enterprise JavaBean-based application down to

the Java implementation classes.

UML Profilefor Enterprise Distributed Object Computing

February 2002

5.3.1 Main
EJBJar . Assembly
wdescription : String +assemblyDescriptor |
wdisplayName : String | +ejpJar ~~~——
wssmalllcon : String L o 0.1

wdlargelcon : String 1.1
wejbClientJar : String

1”*
EnterpriseBean

description : String
displayName : String
smalllcon : String
largelcon : String

1

Session Entity

transactionType : TransactionType isReentrant : Boolean
sessionType : SessionType

+enterpriseBeans

Figure5-7 Main

Session and Entity are the two main object types for components implemented using
the Enterprise JavaBeans architecture. Entity and Session derive from an abstract
parent class, EnterpriseBean.

5.3.1.1 EJBJar

Semantics

The EJBJar element is the root element of the EJB deployment descriptor.

Fully Scoped name
EDOC::EJB::EJBJar

Owned by
Package

February 2002 UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-13

5-14

53.1.2

Properties

description

The description element is used by the gjb-jar file producer to provide text describing
the parent element. The description element should include any information that the
ejb-jar file producer wants to provide to the consumer of the gjb-jar file (i.e. to the
Deployer). Typically, the tools used by the ejb-jar file consumer will display the
description when processing the parent element.

displayName

The display-name element contains a short name that isintended to be display by tools.
Example: <display-name>Employee Self Service</display-name>.

Smalllcon
Optional small icon file name.

Largelcon
Optional small icon file name.

EjbClientJar
Optional name of an ejb-client-jar file for the gb-jar.

Related elements

Assembly
Assembly descriptor.

EnterpriseBean
Included EnterpriseBeans.

Constraints
N/A

Assembly

Semantics

The assembly-descriptor element contains application-assembly information. The
application-assembly information consists of the following parts: the definition of
security roles, the definition of method permissions, and the definition of transaction
attributes for enterprise beans with container-managed transaction demarcation. All
the parts are optional in the sense that they are omitted if the lists represented by them
are empty. Providing an assembly-descriptor in the deployment descriptor is optional
for the gjb-jar file producer.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

5.3.1.3

Fully Scoped name
EDOC::EJB::Assembly

Owned by
EJBJar

Properties

Related elements

EJBJar
Identifies the deployment descriptor it belongs to.

Constraints
N/A

EnterpriseBean

Semantics

EnterpriseBean is a class. It can have attributes, operations, and associations. These
are actually derived/filtered from its implementation classes and interfaces. For
mapping and browsing purposes, though, you would like the EnterpriseBean to appear
as aclass.

In this light, even Session Beans can have associations and properties implemented by
their bean. For example, it would be meaningful to describe associations from a
Session to the Entities that it uses to perform its work.

Fully Scoped name
EDOC::EJB::EnterpriseBean

Owned by
EJBJar

Properties

Description

The description element is used by the gjb-jar file producer to provide text describing
the parent element. The description element should include any information that the
ejb-jar file producer wants to provide to the consumer of the gjb-jar file (i.e., to the
Deployer). Typically, the tools used by the ejb-jar file consumer will display the
description when processing the parent element.

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-15

5-16

5314

displayName
The display-name element contains a short name that isintended to be display by tools.

Smalllcon
Optional small icon file name.

Largelcon
Optional small icon file name.

Related elements

EJBJar
Identifies the deployment descriptor it belongs to.

Session, Entity
The concrete subclasses of EnterpriseBean

Constraints
N/A

Session

Semantics

A transient object which provides more behavior than state. It maps to session bean in
the Enterprise JavaBean specification.

Fully Scoped nhame
EDOC::EJB::Session
Owned by

Package

Properties

transactionType

The transaction-type element specifies an enterprise bean's transaction management
type.

sessionType
Whether the session bean is stateful or stateless.

UML Profilefor Enterprise Distributed Object Computing February 2002

Related elements

EnterpriseBean
Abstract superclass.

Constraints
N/A

5.3.1.5 Entity

Semantics

A persistent object which that is more state-oriented than behavior-oriented. It maps to
entity bean in the Enterprise JavaBean specification.

Fully Scoped name
EDOC::EJB::Entity

Owned by
Package
Properties

isReentrant
Boolean vaue indicating whether the entity bean is reentrant.

Related elements

EnterpriseBean
Abstract superclass.

Constraints
N/A

February 2002 UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-17

5-18

5.3.2 EJB

SecurityRoleRef EnlterlprlseBe.an
@hame : String 0.+ EjbToRoles 1 dgscrlptlon :S-trmg
description : String = d'SP|aYNafTIE : String
&link: String +securityRoleRefs ISmalllcon ; String

+er argelcon : String
1
EjbToEjb Refs 1

+eJ
/ +ejb
EjbRef +erRefs

whame : String
widype : EjbRefType
whome : String
diemote : String
wdink: String
wdescription : String

53.2.1

EjbToResources EjbToEnvironmentProperties
+environmentProperties
0..*
+resourceRefs
EnvEntry
wdescription : String
ResourceRef wname : String
wdescription : String wvalue : String
whame : String wtype : EnvEntryType
wtype : String
wauth : ResAuthTypeBase
wdink : String

Figure5-8 EJB

This diagram shows how EnterpriseBean is associated with objects that enable binding
the deployed Enterprise Bean into the runtime environment and managing access to the
bean.

EnterpriseBean

Semantics, Fully Scoped name, Owned by, and Properties are described in
Section 5.3.1.3, “EnterpriseBean,” on page 5-15.

Related elements

SecurityRol eRef
Security role references by the enterprise bean.

EJBRef
References to the homes of other enterprise beans using “logical” names.

ResourceRef
References to external resources.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

5.3.2.2

5.3.2.3

EnvEntry
Environment entries access by the enterprise bean.

Constraint
N/A

SecurityRoleRef

Semantics

Security role references by an enterprise bean

Fully Scoped name
EDOC::EJB::SecurityRol eRef

Owned by
EnterpriseBean
Properties

name
Name of the security role reference.

Description
Optional description text.

link

Used to link a security role reference to a defined security role. link must contain the
name of a defined security role.

Related elements

EnterpriseBean
Enterprise bean that contains the reference.

Constraints
N/A

EJBRef

Semantics

The declaration of a reference to an enterprise bean’s home.

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-19

5-20

5.3.24

Fully Scoped name
EDOC::EJB::EJBRef

Owned by

EnterpriseBean

Properties

name
Name of the reference.

type
The expected type of the referenced enterprise bean.

home
The fully-qualified name of the enterprise bean’s home interface.

remote
The fully-qualified name of the enterprise bean’s remote interface.

link
Links an EJB reference to a target enterprise bean.

Description
Optional description text.

Related elements

EnterpriseBean
Enterprise bean that contains the reference.

Constraints
N/A

ResourceRef

Semantics

Declaration of an enterprise bean’s reference to an external resource.

Fully Scoped name
EDOC::EJB::ResourceRef

UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

5.3.2.5

Owned by
EnterpriseBean
Properties

Description
Optional description text.

Name
Name of the environment entry used in the enterprise bean.

type
Type of the resource manager connection factory that the enterprise bean expects.

auth

Specifies whether the enterprise bean signs on programmatically to the resource
manager, or whether the Container will sign on to the resource manager on behalf of
the bean.

link

Link to a resource manager connection factory that exists in the operational
environment.

Related elements

EnterpriseBean
Enterprise bean that contains the reference.

Constraints

EnvEntry

Semantics

Declaration of an environment entry for an enterprise bean.

Fully Scoped name
EDOC::EJB::EnvEntry

Owned by

EnterpriseBean

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-21

Properties

name
Name of the environment entry.

Description
Optional description text.

value
Value of the environment entry.

Type
Expected type of the environment entry’s value

Related elements

EnterpriseBean
Enterprise bean that contains the reference.

Constraints
N/A

5-22 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

5.3.3 Entity Bean

Entity

7

ContainerManagedEntity ~ [+/keyFor +/keyFields Figld
from java)
0..* 1..*
0..1 +/persistentFields 0..*
1.1 l..l‘ CmpToP ersistentFields
+keyFor
T +keyAttributes
0.+ CMP Attribute
+persistentAttributes
0..*
The keyFeatures relationship also We have switched from explicitly
determines the primkey-field setting. referring from an Entity to its Java
If there is a single key feature, we will Fields to deriving thatfrom its
deploy that using primkey-field. attributes and association ends. The
Conversely, if a descriptor uses implementation should still support
primkey-field, we will set a single listing the key fields and persistent
keyFeature. fields, but not adding or removing

5.3.3.1

Figure5-9 Entity Bean

Because Entities are persistent and state-oriented, they have additional associations
compared to Sessions. This diagram shows how an Entity is associated with the Java
fields which are its persistent and key fields. A ContainerM anagedEntity’s persistent
fields are a subset of the fields of its implementing EJB class.

(ContainerM anagedEntity is reified specifically to support this association.) The
relationship of key fields is more complex, but when there is a complex key the key
fields are a subset of the EJB class fields. These fields then correspond by name to
fields of the Entity’s Primary Key Class.

Entity is described in Section 5.3.1.5, “Entity,” on page 5-17. Field is described in
Section 5.2.1.3, “Field,” on page 5-5.

Container ManagedEntity

Semantics

An Entity which delegates responsibility for persistence to the EJB container. Maps to
an Entity Bean with Container-managed Persistence in the Enterprise.

Fully Scoped name
EDOC::EJB::ContainerM anagedEntity

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-23

5-24

Owned by
Package

Properties

Related elements

Entity

ContainerManagedEntity adds the relationships shown in the diagram to it' s superclass

Entity.

CMPAttribute

The key and persistent attributes of the Container-managed entity.

Field

The key and persistent Java fields of the Container-managed entity, derived from its
CMPAttributes.

Constraints

N/A

5.3.4 Assembly

+assemblyDescriptor

+method Pemissons

0.*

AsmblyDescriptor

+assemblyDescriptor

+securityRoles

0.*

SecurityRole

ﬁjes:ription : String
wioleName : String

+roles

EnterpriseBean

MethodPemission

MethodElement

widescription : String

+methodElements

+elementOf 1.*

1.1

hame : Stiing
wharms @ String
wiype :MethodEle meniind
wHescription : Sting

+methodElements

0.*

+methodTransactions

MethodTransaction

+/methods

Method

+/methods

gatransactionAttribute : TransactionAttribute Type
sadescription : String

1.* 1..‘1
+transactionContainer

0.*

(fromjave) L

Figure 5-10 Assembly

UML Profilefor Enterprise Distributed Object Computing

February 2002

5

February 2002

5341

5.3.4.2

5.3.4.3

When the components of an Enterprise JavaBean application are ready to be used, the
assembly step adds permission and transaction structure to the components based on
their usage in the application. Roles are authorized to methods based on the
application’s needs. (AlIMethodPermission captures the case where arole is authorized
to all the methods of a class without having to enumerate those methods.) Based on the
flow of control and the units of work defined in an application, the transaction
requirements of methods can be declared. The method permissions and method
transaction declarations are bundled into an Assembly Descriptor that is then realized
in the deployed application artifacts.

AssemblyDescriptor

Semantics, Properties, Related elements map to the assembly-descriptor element in the
Enterprise JavaBean specification.

Fully Scoped name
EDOC::EJB:AssemblyDescriptor

Owned by
Package

SecurityRole

Semantics, Properties, Related elements map to the security-role element in the
Enterprise JavaBean specification.

Fully Scoped name
EDOC::EJB:SecurityRole

Owned by

AssemblyDescriptor

MethodElement

Semantics, Properties, Related elements map to the method element in the Enterprise
JavaBean specification.

Fully Scoped name
EDOC::EJB::MethodPermission

Owned by

MethodTransaction

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-25

5-26

5.3.4.4 MethodPermission

Semantics, Properties, Related elements map to the method-permission element in the
Enterprise JavaBean specification.

Fully Scoped name

EDOC::EJB::MethodPermission

Owned by
MethodElement

5.3.4.5 MethodTransaction

Semantics, Properties, Related elements map to the container-transaction element in
the Enterprise JavaBean specification.

Fully Scoped hame

EDOC::EJB::MethodTransaction

Owned by

AssemblyDescriptor

5.3.5 EJB Implementation

EJBMethodCategory

JawacClass
(from java)

ejbClass

remotelnterface

wisPublic : Boolean

wisAbstract : Boolean
wisFinal : Boolean

1 1
homelnterface

EnterpriseBean

Q

primaryKey

Session

Figure5-11 EJB Implementation

UML Profilefor Enterprise Distributed Object Computing

Entity

February 2002

5

February 2002

535.1

5.3.5.2

While users may think of an Enterprise Java Bean at the level of Entity and Session,
the implementation of one of these constructs is actually a complex collaboration
among several Java classes and interfaces. The metamodel defines associations which
relate the more abstract Enterprise Bean constructs to the more concrete
implementation types. When modeling an application, users should work with the
home and remote interfaces exposed by the abstract constructs for interactions external
to the bean, and with the implementation class for interactions interna to the bean.
This dichotomy is necessary because of the differences between the remote and local
interfaces to the bean required by the EJB architecture. The home and remote
interfaces are remote, and contain methods inherited from the predefined interfaces
EJBHome and EJBODbject, respectively, that are not visible to the EJBBeanClass. The
signatures of the methods defined by the EJBBeanClass are similar but not identical to
the signatures of the methods defined by the home and remote interfaces. In addition,
the EJBBeanClass contains methods that are seen only by the container. These are
inherited from the predefined EntityBean or SessionBean interface, depending on the
type of the bean.

Remotelnterface is included here to denote that there is a kind of remote interface
which is more generic than the EJB usage, but which has a known meaning and
applicability in other domains, such as RMI or CORBA modeling

EJBMethodCategory

Semantics

EJBM ethodCategoryJava defines a mechanism which allows the modeler to group
EJB-specific method types such as create methods, finder methods, remote methods,
and home methods.

Fully Scoped name
EDOC::EJB::EJBM ethodCategory

Owned by
Package

Properties
Related elements

Constraints

EnterpriseBean

EnterpriseBean is described in Section 5.3.1.3, “EnterpriseBean,” on page 5-15.

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-27

5-28

5.3.5.3

Related elements

JavaClass
The EjbClass relationship maps to the gjb-class element of the Enterprise JavaBean
specification.

The remotelnterface relationship points to a Java interface that represents the remotely
visible interface to an Enterprise Bean. Maps to the remote element in the Enterprise
JavaBean specification.

The homelnterface relationship pointsto a Java interface which includes the factory
and finder behavior of an Enterprise Bean. Maps to the home element in the Enterprise
JavaBean specification.

Entity
Entity is described in Section 5.3.1.5, “Entity,” on page 5-17.

Related elements

JavaClass

The primaryKey points to a Java class which implements the key of the Enterprise
Bean. Maps to an Entity” primary key class in the Enterprise JavaBean specification.

5.3.6 References to Resources

EjbRef delegates its
duplicate properties to
the EnterpriseBean if it
is linked to one.

EjbRef +/linkedE JB EnterpriseBean
0..*

SecurityRoleRef +/linkedSecurityRole SecurityRole

0..1
ResourceRef +/link edResource J J2EERes ourceFactory

I

0..1

EnvEntry

Figure 5-12 References to Resources
The EjbRef is used for the declaration of a reference to an enterprise bean’s home. The

declaration consists of an optional description; the EJB reference name used in the
code of the referencing application client; the expected type of the referenced

UML Profilefor Enterprise Distributed Object Computing February 2002

5

February 2002

5.3.6.1

5.3.6.2

enterprise bean; the expected home and remote interfaces of the referenced enterprise
bean; and an optiona ejb link information. The optional link is used to specify the
referenced enterprise bean. The resource-ref element contains a declaration of the
enterprise bean’s reference to an external resource. It consists of an optional
description, the resource factory reference name, the indication of the resource factory
type expected by the enterprise bean, and the type of authentication (bean or
container). EnvEntry contains the declaration of an enterprise bean’s entries. The
declaration consists of an optional description, the name of the environment entry, and
an optional value.

SecurityRole

Semantics, Properties, Related elements map to the security-role element in the
Enterprise JavaBean specification.

Fully Scoped name
EDOC::EJB::SecurityRole

Owned by
Package

J2EEResourceFactory

Semantics

A resource manager connection factory that exists in the operational environment.

Fully Scoped nhame
EDOC::EJB::J2EEResourceFactory

Owned by
Package
Properties
Related elements

ResourceRef

A resource reference bound to this actual resource factory configured in the target
operational environment.

UML Profilefor EDOC: The Enterprise JavaBeans Metamodel 5-29

5.3.7 Data Types

SessionType MethodElementKind

TransactionType

aoh 1N TR

Stateful Stateless Bean Container Home Remote Unspecified

TransactionAttributeType

-7 7 AN S~
- / \ ~ o~

NotSupported Supports Required RequiresNew | | Mandatory Never

_—

EnvEntryType
EnvEntryString | = > ~ __ __ | EnvEntryFloat

7 N —

EnvEntrylnteger AN EnvEntryShort

EnvEntryBoolean / \ EnvEntryByte

/ \

EnEntryDouble EnvEntryLong

EjbRefType

ZAN

EjbRefSession EjbRefEntity

Figure 5-13 Data Types

This diagram describes the types used within this metamodel, and is included for
compl eteness.

5-30 UML Profilefor Enterprise Distributed Object Computing February 2002

5.4 UML Profile

Each metamodel element can be mapped to a profile representation using the patterns
described in the UML Profile for MOF (see Chapter 6). As the metamodel is
completed with the constraints spelled out in the Enterprise JavaBeans architecture,
those can also be projected into the profile. The submitters intend to align the
metamodel with the UML Profile for EJB now in public draft within the Java
Community Process under JSR-000026 (see http://jcp.org/jsr/detail/26.jsp) through
such a mapping.

5.4.1 Java Profile

The convention used in this profile is that the classes from the Java metamodel are
expressed as stereotypes in a Java model for use primarily in UML class diagrams.
The attributes of the Java metamodel classes are tags to be applied on elements bearing
the class stereotypes. The tag names are qualified by the stereotype they are applied
with, since it is possible for a UML element to bear more than one stereotype.

The UML name of the element serves as the Java name unless the
NamedElement.name tag is applied to override the name with a Java-specific name.
This can be useful in cases where the UML name is not a valid Java name.

Table 5-1 Mapping Java Metamodel concepts to profile elements

M etamodel element name Stereotype name UML base | Tags Constraints
Class

JavaClass << JavaClass >> Class JavaClass.isPublic boolean None
JavaClass.isAbstract boolean
JavaClass.isFinal boolean

JavaPackage << JavaPackage >> Class None

ArrayType << ArrayType >> Class Array Type.arrayDimensions None
Integer

Field << Field > Class Field.isFinal type Boolean None
Field.isStatic,type Boolean

JavaParameter << JavaParameter >> Class JavaParameter.isFina Boolean None

Method << Method >> Class Method.isAbstract Boolean None

Method.isNative Boolean
Method.isSynchronized Boolean
Method.isFinal Boolean

M ethod.isConstructor Boolean
M ethod.isStatic Boolean

NamedElement

<<NamedElement>> Class NamedElement.name String

{public, private, protected, package},
type Enumeration

<<Visihility.kind>>

February 2002

UML Profilefor EDOC: UML Profile 5-31

5.4.2 EJB Profile

This is provided by the UML Profile for EJB now in public draft within the Java
Community Process under JSR-000026 (see http://jcp.org/jsr/detail/26.jsp).

Section Il - Flow Composition Model

5.5

5-32

I ntroduction

The FCM is a Flow Composition Model (FCM) that can describe the interactions and
flows of information between application components in a way that:

Enables complex actions to be broken down into simple 'flow components' or,
alternatively, enables simple entities to be composed into higher level 'flow models.

Can be deployed into a variety of runtime environments; in other words, the model
treats its components as functional entities which are independent of any specific
attributes of a particular deployment, whether that be a workflow, messaging service,
etc.

Business applications are commonly made up of interrelated programs. These often run
in multiple and different environments. The problem is: how to enable these disparate
entities (which may not be directly connected nor running concurrently) to
communicate with one another. It can be addressed through the concept of 'messaging'
using, for example, MQSeries products. This method of Application Integration
enables two (or several) programs to communicate in a relatively simple, static way.
The programs, while isolated from each other in a 'time-independent’ (asynchronous)
fashion, mostly still need to know how to 'speak’ to each other.

Each program needs to understand the other's message format; they need to speak the
same 'language’. But with a little more sophistication, this need can be removed. A
scenario can be created, usually known as Enterprise Application Integration (EAI),
whereby messages are transformed into different formats so that programs need know
nothing about the eventual recipient of a message. The added sophistication is a
mediator between the programs provided by a message 'repository' and a message
'broker' to enable such transforms. Of course, there are other capabilities in brokers
beyond transformation but this is probably the most important function.

As the applications become more isolated, the idea of 'routing' can be introduced. Now,
another application can observe the content being shared through the broker and
choose to modify the information flow. The process handling the information may be
relatively long lived - typically the case where human intervention is involved. Also,
the information being processed may be stateful (in other words, it persists beyond the
scope of the process handling it). Workflow applications provide this sort of
functionality and introduces the facility of 'multi-step sequencing'. By using various
connectors, these different technologies can, and often are, used together.

UML Profilefor Enterprise Distributed Object Computing February 2002

5

The Flow Composition Model is a metamodel for composing complex flows based on
invoking operations on components. It is alow-level metamodel focused on the
middleware machinery for executing message flows. Higher levels of abstraction can
be built upon the FCM for integrating a whole range of technologies and runtime
environments:

® Messaging and Message Brokering provide for transformation and routing of
information.

® Workflows provide application structuring and resource co-ordination.
® Connectors provide inter-operability with existing applications.

® Application Servers, Business Components, Databases and all the other programs
which the flow model is there to drive but which, strictly speaking, are not actually
part of the model.

Section 5.9, “Example,” on page 5-42 provides an example to illustrate the use of
FCM.

5.6 FCMCorePackage

The FCMCore package is described using two diagrams:

® Figure5-14 — Main diagram gives an overall view of the classes required to define
flow compositions.

® Figure 5-15 on page 5-34 — FCM Component diagram provides more detail about
FCMComponents, including how they can be used for hierarchical composition.

+annotations FCMAnnotation

FCMComposition

namelnComposition : String

+outbound
L

+sourceNode 1

FCMTerminalToNodeLink

L

. FCM Function FCM Source +source +sinl%’zCMSink
<<derived>> i
1 i] I
+source +|nterface\L0..* 1 0..*
FCMTerminal +implements
FCMOperation
EEname : String
+targlet +invokes
FCMTerminalToTerminalLink

February 2002

FCMCommand

0.*
0..* 1\/ +annotates
FCMConnection |+connections +components FCMConponent
0.*
+inbound +performedBy 1
+nodes| g *
+argetNode 1 FCMNode

Figure 5-14 FCM Core Package, Main Diagram

UML Profilefor EDOC: FCMCore Package

5-33

5-34

FCMComposition

0.1 +composition

FCMCompositionBinding

TDLangElement

(from TDLang)

1 +type
FCMType @

+language Element 1

. +inputs 0..*
+operations

FCMOperation

0.1 +instanceOf

FCMComponent

+outputs 0..* FCMP ammeter

0..* |name: String
+faults 0.

(XX

Figure5-15 FCMCore Package, FCM Component Diagram

5.6.1 FCMComposition

An FCM Composition defines the following:

A set of FCMComponents that define the objects of the FCM Composition.

A set of FCM Nodes and FCM Connections that together define the implementations
of the behaviors of the FCM Composition.

® A set of objects that define the public interface that can be derived from the

An

FCMComposition. Specifically, the FCM Sources and FCM Sinks of an
FCMComposition define the external operations that are derived from the
FCM Composition.

FCM Composition can be thought of as being analogous to the definition of the

implementation of a Java or C++ class, in the sense that it defines interface, state and
behaviors.

5.6.2 FCMComponent

The purpose of FCMComponents is to define the objects that hold the state of the
FCM Composition, and which provide primitive behaviors that can be invoked within

the

UM

implementations of behaviors defined by the FCM Composition.

L Profile for Enterprise Distributed Object Computing February 2002

5.6.3 FCMNode

An FCMNode represents a fragment of flow logic. It can be thought of as being

analogous to a statement or contiguous sequence of statements in a programming
language. FCMNodes are used to define the implementations of behaviors of the
FCM Composition. FCM Nodes are connected together in a graph using

FCM Connections to build up more complex behaviors of the FCM Composition.

FCMNodes are represented as “nodes” or iconsin flow diagrams.

5.6.4 FCMConnection

An FCM Connection is an object that specifies a relationship between two FCMNodes.
Examples of FCM Connections are FCM ControlLinks and FCM DataL inks (see the
FCM Package, FCM Connections diagram). FCM Connections provide directed links
between FCMNodes in a graph to specify more complex behaviors. The number and
type of FCM Connections is extensible — the Flow Composition Model puts no
constraints on this.

FCM Connections are represented in flow diagrams as lines that connect the icons
representing FCMNodes.

5.6.5 FCMOperation

An FCM Operation defines the interface to an FCMNode, including its signature. An
example specialization of FCM Operation is a WSDL (Web Services Definition
Language) Operation, which defines an optional input message, an optional output
message and optional fault messages.

5.6.6 FCMParameter

FCM Parameters identify the signature of an FCM Operation, which can include inputs,
outputs and faults. For a WSDL Operation, an FCM Parameter provides the abstract
definition of a message. FCM Parameter has an association to TDLangElement, which

provides the linkage to the language specific and physical representations of the data
that an FCMParameter represents.

5.6.7 FCMCommand

An FCMCommand is a specia kind of FCMNode that represents the invocation of a
particular FCM Operation on an FCM Component. An FCM Command can be thought of

as being analogous to a programming language statement that invokes a method on an
object.

February 2002 UML Profilefor EDOC: FCMCore Package 5-35

5-36

5.6.8 FCMFunction

An FCMFunction is a specia kind of FCMNode. It's similar to an FCMCommand in
that it represents the invocation of a particular FCM Operation. However, in this case
the FCMOperation does not have an FCM Component associated with it. An
FCMFunction can be thought of as being analogous to a programming language
statement that makes a procedura call or invokes a transaction.

5.6.9 FCMTerminal

FCMTerminals provide a mechanism for identifying the interfaces to an FCMNode.
They are derived, with the derivation based on the type of FCMNode they are
associated with. For example, an FCMNode that represents the invocation of a WSDL
operation will have FCMTerminals that are derived one for one from the parameters of
the operation. An FCMMappingNode (in the FCM package) will have one input
terminal for each piece of input data, and one output terminal for each output (typically
one, formed by combining the inputs in some way). FCM JoinNodes and
FCMBranchNodes (in the FCM package) have no terminals.

5.6.10 FCMTerminal ToNodeLink and FCMTerminal ToTer minal Link

These are abstract specializations of FCM Connection.

An FCMTermina ToNodeLink represents an FCM Connection from a particular
outcome of a source FCMNode to a target FCMNode. The “source” association
identifies which outcome to use as the source of the FCM Terminal ToNodeL ink.
FCMControlLinks (in the FCM package) are concrete examples of
FCMTerminal ToNodeL inks.

FCMTerminal ToTerminalLink is a specialization of FCM Terminal ToNodeLink that in
addition specifies the particular input of the target FCMNode to connect to. Thisis
indentified by the “target” association. FCMDataLinks (in the FCM package) are
concrete examples of FCM Terminal ToTerminalLinks.

5.6.11 FCMAnnotation

An important design goal of the Flow Composition Model is the ability to be able to
work with FCM Components of pre-defined types that were not designed with the
specific needs of the Flow Composition Model in mind. This means that the Flow
Composition Model cannot require FCM Components to support special attributes or
behaviors in order to participate in Flow Compositions. In order to satisfy this
requirement, the Flow Composition Model allows an FCMAnnotation object to be
associated with each FCM Component. An FCM Annotation is an object that is used to
carry information about an FCM Component that is useful or necessary in the context
of a Flow, but which is not a property of the FCM Component itself. A common
example is that every FCM Component must have a name associated with it to identify
it within the FCM Composition, even though not all FCM Components have a name
property.

UML Profilefor Enterprise Distributed Object Computing February 2002

5.6.12 FCMSource and FCMSnk

FCM Sources and FCM Sinks are special FCMNodes that are used to define the

FCM Operations available on the public interface that can be derived from an

FCM Composition. An FCM Source represents an entry point into the behaviors defined
by an FCM Composition. An FCM Source within an FCM Composition correspondsto a
One-way or Request-Response operation defined on the external interface defined by
the FCM Composition. An FCM Source can act only as a sourceNode for an
FCMConnection. The source FCMTerminal for the FCM Connection is derived from
the input FCM Parameter of the FCM Operation that the FCM Source implements.

An FCM Source may have associated with it a corresponding FCM Sink. An FCM Sink
isan FCMNode that defines the output and fault FCM Parameters of the FCM Operation
associated with an FCM Source. An FCMSink can act only as a targetNode for an
FCM Connection; the target FCMTerminal for the FCM Connection is derived from the
output or fault FCMParameters of the FCM Operation.

5.6.13 FCMCompositionBinding

An FCM Component can be implemented as an FCM Composition. In this case, the
FCM Sources and FCM Sinks of the FCM Composition define the external operations
that are derived from the FCM Composition. FCM CompositionBinding provides the
mechanism for linking an FCM Component to its implementation as an
FCMComposition. Thisis how hierarchical composition — the ability to use flow
compositions to create new flow compositions — is achieved.

5.6.14 TDLangElement

TDLangElement is aclassin the Common Application Metamodel, which is part of the
Enterprise Application Integration submission due to finalize in August. It isused in
the model to tie FCMParameter into the data typing and type composition structure
that the metamodel provides.

5.6.15 FCMType

An FCMType can be thought of as analogous to the definition of a Java or C++ class,
in the sense that it defines the interface (operations and their inputs, outputs, and
faults) for atype that can be instantiated. An FCM Component is an instance of an
FCMType. FCMTypes can be created based on FCM Compositions; in this case, the
FCM Composition defines the implementation of the FCMType. FCM Types can also
be types created outside of the flow composition domain, enabling instances of outside
types to be incorporated as FCM Components in compositions.

February 2002 UML Profilefor EDOC: FCMCore Package 5-37

5.7 FCM Package

The FCM package provides a set of specializations of the FCM Core package. The
FCM package consists largely of definitions of particular subtypes of FCM Node and
FCM Connection that are designed to provide a common set of design abstractions
across a variety of flow model types used in, e.g., message brokering, workflow or
application component scripting.

The FCM package is described using two diagrams:

® Figure 5-16 — FCM Connections diagram.

® Figure 5-17 on page 5-39 — FCMNodes diagram.

FCMConnection
(from FCMCore)

:
/\

FCMTerminal ToNodeLink

(from FCMCore)

(from FCMCore)

FCMTerminalToTerminalLink

T

FCMDataLink

i

FCMControlLink

)
\
\
/\

A

FCMMappingDataLink FCMConditionalControlLink

+mapping .\, 1

+condition |, 1

FCMMapping

FCMCondition

Figure 5-16

FCM Package, FCMConnections Diagram

5-38 UML Profilefor Enterprise Distributed Object Computing

February 2002

FCMN ode
(fromFCMCore)

February 2002

FCMCommand FCMFunction
(from FCMCore)
T /
FCMJoinCommand . .

— — - FCMDecisionNode FCMMappingNode FCMBranchNode FCMJoinNode

joinCondition : String
+condition 1. 0..*

FCMCondition FCMMapping

Figure 5-17 FCM Package, FCMNodes Diagram

5.7.1 FCMControlLink

An FCMControlLink is an FCMConnection between FCMNodes that controls the
sequencing of execution of the FCMNodes. An FCM ControlLink is activated when its
source FCMNode is completed and it defines a trigger for activation of the target
FCMNode of the link.

5.7.2 FCMDataLink

An FCMDatal ink is an FCMConnection that specifies the flow of data between
FCMNodes.

5.7.3 FCMDecisionNode

An FCMDecisionNode is an FCM Node used to determine control flow based on a set
of Boolean expressions; essentially it represents a ‘switch’ in the control flow. A
DecisionNode has one input and two or more outputs that represent the ‘cases’ of the
switch. Each output is associated with a Boolean expression. The representation of a
decision node in a flow diagram is shown below.

UML Profilefor EDOC: FCM Package 5-39

O

The little diamond on its side represents an FCMDecisionNode and a control

connection from the output of the icon on the left to the input of the
FCMDecisionNode.

5.7.4 FCMConditional ControlLink

An FCM Conditional ControlLink offers an alternative design to the use of an
FCMDecisionNode. In this design, a Boolean expression is associated with the
FCM Conditional ControlLink, removing the need for a separate FCM DecisionNode.

5.7.5 FCMJoinNode

An FCMJoinNode is a specialized FCMNode used to force the synchronization of
control flow. An FCMJoinNode has two inputs and one output. Because the usage of a
decision node is very common, there is a specidized visual representation for an
FCMJoinNode, as shown below. In flow diagram notation, the little T on its side
represents an FCM JoinNode and a control connection from the output of the
FCMJoinNode to the input of the FCM DecisionNode on the right.

5.7.6 FCMJoinCommand

An FCM JoinCommand is an alternative to an FCMJoinNode. It has a Boolean
expression associated with it, removing the need for a separate FCM JoinNode.

5.7.7 FCMMappingNode

|

X

[1

5-40 UML Profilefor Enterprise Distributed Object Computing February 2002

5

An FCMMappingNode is a specialized FCMNode used to specify a transformation of
input message formats to an output message format. Because the usage of a
FCMMappingNode is very common, FCMMappingNodes have a special graphical
representation, as shown. In flow diagram notation, the circle with the cross represents
the FCMM appingNode.

5.7.8 FCMMappingDataLink

An FCMMappingDataLink is an alternative design to the use of an
FCMMappingNode. In this design, a mapping is associated with the link removing the
need for a separate FCMMappingNode.

5.7.9 FCMMapping

An FCMMapping is an object that specifies a transformation of one message format
into another.

5.7.10 FCMCondition

FCM Conditions are the boolean expressions used by FCM DecisionNodes and
FCM Conditional ControlLinks to determine control flow.

5.7.11 FCMBranchNode

5.8 FCM Profile

An FCMBranchNode provides a way to branch control flow in one or more directions.
An FCMBranchNode can specify that all of its outbound connections are given control,
or only one (based on a condition) is given control.

Table 5-2 summarizes the UML Profile for the FCM.

Table 5-2 Mapping Flow Composition Model concepts to profile elements

M etamodel element Stereotype name UML |Tags Constraints
name base
Class

FCMComposition << FCMComposition >> Class None
FCMNode << FCMNode >> Class None
FCMAnNnotation <<FCMAnnotation >> Class | FCMAnnotation.namelnComposition | None

String
FCMTerminal << FCMTerminal>> Class | FCMTerminal.terminaKind None

TerminalKind
FCMFunction << FCMFunction >> Class |JavaParameter.isFinal Boolean None
FCMCommand << FCM Command>> Class None
FCM Source <<FCM Source>> Class

February 2002 UML Profilefor EDOC: FCM Profile 5-41

Table 5-2 Mapping Flow Composition Model concepts to profile elements

FCMSink <<FCMSink>> Class None
FCMOperation <<FCM Operation>> Class None
FCMType <<FCMType>> Class None
FCMCompositionBinding <<FCM CompositionBinding>> Class None
FCM Parameter <<FCM Parameter>> Class None
FCMJoinCommand <<FCM JoinCommand>> Class | FCMJoinCommand.joinCondition None
String
FCMDecisionNode <<FCM DecisionNode>> Class None
FCMCondition <<FCM Condition>> Class None
FCMM appingNode <<FCM M appingNode>> Class None
FCMMapping <<FCMM apping>> Class None
FCMBranchNode <<FCMBranchNode>> Class None
FCMJoinNode <<FCM JoinNode>> Class None
FCMDataLink <<FCMDataLink>> Class None
FCMM appingDatalink <<FCMM appingDatalL ink>> Class None
FCMControlLink <<FCM_ControlLink>> Class None
FCMConditionalControlLink | <<FCM Conditional ControlLink>> | Class None

5.9 Example

5-42

Figure 5-18 is the graphical representation of an FCM Composition to transfer and

refund money.

UML Profilefor Enterprise Distributed Object Computing

February 2002

Transfer
Source

CheckAccount

“D Debit

Refund
Source

Account '.
» Send

Transfer
QOutput

AssessRisk

checkingAccount .
. riskAssessor

Account
 getBalance()

* removeMoney()
* addMoney()

Risk Assessor
e do
Assessment

ReturnMoney

:‘r Credit

February 2002

4D Account
Refund

Sink

Figure 5-18 Transfer/Refund Money FCM Composition

The FCM Components that define the objects within the FCM Composition are
checkingAccount and risk Assessor. checkingAccount is an instance of Account;
riskAssessor is an instance of RiskAssessor.

The FCMComposition has two points of entry into it: Transfer Source and
RefundSour ce, each providing a different behavior. To an external user, the

FCM Composition simply provides the two operations of transferring or refunding
money. The internal composition of the flow isimplementation detail that the external
user does not need to be aware of.

An FCM Composition defines the flow of control (FCM ControlLinks) and the flow of
data (FCMDatal inks) between FCMNodes. The solid lines in the flow diagram
represent FCM ControlLinks, and the dot-dash lines represent FCM Datal inks. Both
are specialized FCM Connections.

The dotted lines in the flow diagram identify the “performedBy” relationship between
FCMCommands and FCM Components.

UML Profilefor EDOC: Example 5-43

The rest of this example looks at the transfer money path through the flow.

Transfer]\ \: Transfer

Source Sink

A A

* int AccountNO * int AccountNO

e int PIN .
. * int balance
* int amount
TransferMoneyData TransferMoneyEndBalanceData

void transferMoney(TransferMoneyData input, TransferMoneyEndBalanceData output)

Figure5-19 FCMSource and FCMSink for the Transfer Money FCM Flow

Transfer Source, an FCM Source, acts as a public entry point into the composition. It
defines the input for the operation of transferring money from an account, such as an
account number and the amount to be transferred. Transfer Sink is the corresponding
FCMSink and defines the results of the operation. A composition can have more than
one FCM Source, each acting as another public entry point into it.

FCM Sources and FCM Sinks are specialized FCMNodes.

Transfer |-~ &[]

Source [

CheckAccount :|

e int AccountNO
e int PIN
e int amount

TransferMoneyData

Figure5-20 FCMControlLink and FCMDataLink from TransferSource to CheckAccount
SendM oney and ReturnM oney are both FCM Functions — FCM Nodes that do not have

associated FCM Components. They represent procedural or transaction logic that does
not involve interacting with any FCM Components in the composition.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

An FCMControlLink (solid line) connects the TransferSource node to the
CheckAccount node. TransferSource is the sourceNode for the connection and
CheckAccount is the targetNode. This connection triggers the activation of
CheckA ccount.

An FCMDatalLink (dotted arrow) also connects the TransferSource node to the
CheckAccount node. This indicates that data, as well as execution control, flow
between these two nodes. The data that flows is TransferMoneyData. Thisis the
signature (input FCM Parameter) of the operation that TransferSource implements. The
interface defined by the source FCM Terminal for the connection is derived from it.

CheckAccount, AssessRisk, and DebitAccount, are all FCMCommands, a kind of
specialized FCMNode. Each represents the invocation of a particular FCM Operation
on an FCM Component. For example, CheckAccount represents the invocation of
checkingAccount’s getBalance operation.

checkingAccount

Account
e int getBalance(int AccountNO, int PIN)
e int removeMoney(in AccountNO, int
PIN, int amount)

e -E] CheckAccount

Y

® int AccountNO .
. e int balance
e int PIN :
. * int amount
® int amount
TransferMoneyData AmountAndBalanceData

Figure5-21 FCMCommand with associated FCM Connections and FCM Component

CheckAccount has an FCMTerminal for the inbound FCM DataL ink. The data flowing
across the FCMDataL ink is TransferMoneyData. This FCM Terminal defines the input
interface to CheckAccount and is derived from getBalance's input FCM Parameter.
CheckA ccount also has an FCMTerminal representing a successful outcome from its
execution. This FCMTerminal acts as the source for the FCM ControlLink to the
FCMDecisionNode that follows it. It is also the source for the FCM DataLink that
connects to FCM Command DebitA ccount.

UML Profilefor EDOC: Example 5-45

5-46

The diamond in the flow diagram represents an FCMDecisionNode. In this example,
the FCMDecisionNode has a single Boolean expression associated with it (if balance
> amount). The value of the expression determines whether control flows to
DebitAccount or to AssessRisk. FCMDecisionNodes can have a more complex case
structure with control flowing to a different FCMNode for each case.

Other kinds of FCMNodes can have multiple outbound control flows as well.
FCMCommand AssessRisk has one inbound and two outbound FCMTerminals:

® Theinbound FCMTerminal represents the input to the associated doAssessment
operation.

® The white outbound FCM Terminal represents a successful result, and transfers
control to DebitAccount.

® The dark outbound FCMTerminal represents an exception (“bad risk”), and transfers
control to TransferSink to end the flow.

If doAssessment had other types of exceptions (for instance “credit history not
found”), AssessRisk would have other outbound FCM Terminals to support them.

Hierarchical composition — the ability to use flow compositions to create new flow
compositions — is a key feature of the Flow Composition Model. In this example,
FCM Component riskAssessor could be bound to a previously defined
FCMComposition as its implementation. Similarly, through the same binding
mechanism, the entire TransferMoney FCM Composition could be bound as the
implementation of an FCM Component in a more complex Billing flow.

UML Profilefor Enterprise Distributed Object Computing February 2002

UML Profilefor MOF

Contents

This chapter includes the following topics.

Topic Page
Section | - Introduction 6-2
Section Il - UML to MOF Mapping Table 6-2
Section |11 - Mapping Details 6-3
“Model Element” 6-4
“Package’” 6-4
“I'mport” 6-6
“Class” 6-6
“Attribute” 6-7
“Reference” 6-8
“Operation” 6-10
“Parameter” 6-11
“Exception” 6-11
“Exception Parameter” 6-12
“Association” 6-13
“AssociationEnd” 6-13
“Datalype” 6-14
“Constant” 6-16

February 2002 UML Profilefor Enterprise Distributed Object Computing

Topic Page
“Constraint” 6-16
“Generalizes’ 6-17
“Tag” 6-17
Section 1V - Guidelines 6-19
“Modularity” 6-19
“Associations’ 6-19
“References” 6-20
“DataTypes’ 6-20
“Names’ 6-20

Section | - Introduction

6-2

This chapter describes a mapping between the Unified Modeling Language (UML) and
the Metaobject Facility (MOF). The two-way mapping supports both designing
metamodels with UML (UML to MOF) and viewing metamodels with UML (MOF to
UML). The sections in this chapter provide a table showing the mapping of element
types, detailed mapping descriptions for individua element types, and guidelines for

designing metamodels using UML.

The mapping is a UML profile. Per the definition of a UML profile, this chapter

contains the following information.

UML Profile Requirements

Where Requirements are Satisfied
in this Chapter

UML metamodel elements supported
by the profile

All metamodel elements are listed in the UML-to-
MOF Mapping Table below

Features defined by the profile as new
metamodel elements

This profile defines no new metamodel elements

Common model elements predefined
by the profile

Stereotypes are listed in the UML-to-MOF Mapping
Table below. There are no other predefined elements

Features defined by the profile using
standard extension mechanisms

UML stereotypes are listed in the UML-to-MOF
Mapping Table below. A mapping section for each
element type includes a subsection identifying UML
tags used by the profile.

Natural language prose that informally
defines the semantics of the profile

The body of this chapter explains the UML-to-MOF
mapping — separate sections explain each element

type

Well-formedness rules that formally
define the semantics of the profile

A mapping section for each element type below
includes a subsection expressing precisely how
properties are mapped and a subsection listing
constraints

UML Profilefor Enterprise Distributed Object Computing February 2002

6

The profile has limitations. Some MOF details cannot be rendered in UML using this
profile. The mapping section for each element type includes a subsection listing
specific limitations.

Section Il - UML-to-MOF Mapping Table

The following UML elements and stereotypes are supported by the profile. Each maps
to a specific MOF element as shown in the table below

UML Element Stereotype MOF Element
M odel <<metamodel>> Package
ElementI mport Import

Class Class

Attribute Attribute
Attribute <<reference>> Reference
Operation Operation
Parameter Parameter
Exception Exception
Attribute (within an Exception) Parameter
Association Association
AssociationEnd AssociationEnd
DataType DataType
DataValue Constant
Constraint Constraint
Generalization Generalizes
TaggedValue Tag

Section Il - Mapping Details

February 2002

The profile applies to an entire UML Model stereotyped as a <<metamodel>>. The
profile applies to all elements contained directly or indirectly by the Model through
composite associations. Hence, stereotypes are not generally needed for contained
elements. All contained elements must be supported by the profile.

Separate sections below explain the mappings for each element type. Each section
contains subsections covering these topics: tags, mapping properties, constraints, and
limitations.

Tags are used for MOF properties not directly supported by UML. Except for the
standard UML tag “documentation,” all tags used by the profile are prefixed with
“org.omg.uml2mof” to mark them as belonging to this profile. All tags are optiona
unless specified as required.

UML Profile for EDOC: 6-3

6.1 Modda Element

6-4

In both UML and MOF, ModelElement is an abstract class. General tags and
constraints on Model Elements are described below. The property map described below
applies to the general cases where a UML Model Element maps to a MOF
ModelElement. In some cases the general map for a property is overridden for specific
subclasses of MOF M odel Element.

6.1.1 Tags on UML Model Element

Tag Value
documentation an annotation for the Model Element

6.1.2 ModelElement Property Map

MOF Property |UML Property or Value

name name

annotation value of taggedValue with tag = “documentation”; otherwise “”
container namespace

constraints constraint

6.1.3 ModelElement Constraints

All constraints imposed by the MOF Specification are implicitly imposed based on the
mapping to MOF defined herein.

Every UML ModelElement that maps to an MOF Model Element must have a name.

6.1.4 ModelElement Limitations

None.

6.2 Package

A UML Model stereotyped as a <<metamodel>> maps to a MOF Package. Within a
UML Model that maps to a MOF Package, any nested Model also maps to a MOF
Package.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

6.2.1 Tags on UML Model with Stereotype << metamodel > >

Tag

Value

org.omg.uml2mof.clusteredl mport Comma-separated list of names of MOF Import

objects that are clustered.

org.omg.uml2mof.haslmplicitReferences | “false” to prevent MOF References from being

implied by AssociationEnds; “true” or no tag to
imply a MOF Reference for each navigable
AssociationEnd whose association and opposite
end’s type are owned by the same package.

6.2.2 Model-to-Package Property Map

MOF Property |UML Property or Value

container If namespace isa UML Model that is mapped to a MOF Package by this
profile, then the package. If namespace is null or is not mapped to a MOF
Package, then null.

contents ownedElement, taggedValue*

isAbstract isAbstract

isRoot isRoot

isL eaf isL eaf

supertypes generalization.parent

* See section on M OF Tag about which tags are mapped to MOF Package contents

6.2.3 Model-to-Package Constraints

All UML elements contained by the Model through composite associations transitively
are limited to the types and stereotypes named in this profile.

All constraintsimposed by the MOF Specification are implicitly imposed, based on the
mapping to MOF defined herein, on the UML Model and all of its contents.

All names listed for a tag of “org.omg.uml2mof.clusteredlmport” must match names of
MOF Import objects in the contents of the MOF Package.

A UML Model representing a nested MOF Package must not have a tag of
“org.omg.uml2mof.hasImplicitReferences”.

UML ownedElement must be ordered.

UML taggedValue must be ordered.

6.2.4 Model-to-Package Limitations

The order of MOF Package.contents are not fully preserved when rendered using the
profile because UML has separate associations for ownedElement and taggedValue.

UML Profilefor EDOC: Package 6-5

6.3 Import

6-6

A UML Elementimport maps directly to a MOF Import.

6.3.1 Tags on UML Elementimport

None. Tags are not supported because UML Elementimport is not a Model Element.

6.3.2 Elementlmport-to-lmport Property Map

MOF Property |UML Property or Value

name diasif given, otherwise importedElement.name

annotation none

container package

visibility visibility

isClustered If package has a taggedValue with tag =
“org.omg.uml2mof.clusteredimport” and the value includes the name of
the MOF Import, then true; otherwise false

imported importedElement

6.3.3 Elementlmport-to-Ilmport Constraints

The importedElement must be either a UML Model stereotyped as a <<metamodel>>
or a Class owned directly or indirectly within such a Model.

6.3.4 Elementlmport-to-Import Limitations

The profile does not support annotation of an Import.

6.4 Class

A UML Class maps directly to a MOF Class.

6.4.1 Tags on UML Class

Tag

Value

org.omg.uml2mof.isSingleton “true” or “false” indicating a value for isSingleton

UML Profilefor Enterprise Distributed Object Computing February 2002

6.4.2 Class Property Map

MOF Property |UML Property or Value

contents ownedElement followed by feature (in order)

visibility visibility

isAbstract isAbstract

isRoot isRoot

isL eaf isL eaf

supertypes generalization.parent

isSingleton value of taggedValue with tag = “org.omg.uml2mof.isSingleton”;
otherwise false

6.4.3 Class Constraints

UML ownedElement must be ordered.

6.4.4 Class Limitations

The order of MOF Class.contents are not fully preserved when rendered using the
profile because UML has separate associations for ownedElement and feature.

6.5 Attribute

A UML Attribute with no stereotype maps to a MOF Attribute.

6.5.1 Tags on UML Attribute with No Sereotype

Tag Value

org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique
org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered
org.omg.uml2mof.isDerived “true” or “false” indicating a value for isDerived

February 2002 UML Profilefor EDOC: Attribute 6-7

6.5.2 Attribute Property Map

MOF Property |UML Property or Value

container owner

visibility visibility

scope ownerScope

type type

multiplicity multiplicty.range; isUnique and isOrdered are false unless specified with

tags shown above
isChangeable changeability = changeable

isDerived value of taggedValue with tag = “org.omg.uml2mof.isDerived”; otherwise
false

6.5.3 Attribute Constraints

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

6.5.4 Attribute Limitations

None.

6.6 Reference

A UML Attribute stereotyped as a <<reference>> maps to a M OF Reference.

Also, if the UML Model representing the outermost containing M OF Package does not
have atag of “org.omg.uml2mof.hasl mplicitReferences’ with a value of “false”, then a
MOF Reference is implied by each eligible UML AssociationEnd. An end is
considered eligible if it is navigable, there is no explicit MOF Reference for that end
within the same outermost M OF Package, and the end's association is owned by the
same package that owns its opposite end's type (so as to not create circular package
dependencies)..

6-8 UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

6.6.1 Tags on UML Attribute with Stereotype <<reference>>

Tag

Value

org.omg.uml2mof.referencedEnd

the name of an opposite AssociationEnd which is the
referencedEnd

6.6.2 Explicit Reference Property Map

M OF Property

UML Property or Value

container owner

visibility visibility

scope ownerScope

type type

multiplicity multiplicty.range; isUnique and isOrdered are taken from the
referencedEnd

isChangeable changeability = changeable

referencedEnd the one AssociationEnd of owner.allOppositeAssociationEnds which is

identified by a taggedValue on the UML Attribute with tag =
“org.omg.uml2mof.referencedEnd”, or lacking a taggedValue, the UML
Attribute’s name

6.6.3 Implicit Reference Property Map

M OF Property

UML Property or Value

name referencedEnd’s name

annotation

container the type of the AssociationEnd opposite to the referencedEnd
constraints none

visibility referencedEnd’s visibility

scope instance_level

type referencedEnd’s type

multiplicity referencedEnd’s multiplicity

isChangeable referencedEnd’s isChangeable

referencedEnd the AssociationEnd that implies the Reference

6.6.4 Reference Constraints

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

UML Profilefor EDOC: Reference

6-9

For aUML Attribute with a <<reference>> stereotype, if there isa UML taggedValue
with tag = “org.omg.uml2mof.referencedEnd”, it must identify a visible
AssociationEnd from among the Attribute’s owner.allOppositeAssociationEnds. If no
such taggedValue is present, the UML Attribute name must identify a visible
AssociationEnd from among the Attribute’s owner.all OppositeA ssociationEnds.

For a UML Attribute with a <<reference>> stereotype, if the Attribute’s name is also
the name of an AssociationEnd from among the Attribute’'s

owner.all OppositeAssociationEnds, then the Attribute makes explicit the pseudo-
attribute implied by the name of the AssociationEnd. The Attribute’s name does not
conflict with the pseudo-attribute name. Rather, the Attribute makes the pseudo-
attribute explicit in the class. In this case, the Attribute must not have a taggedvalue
identifying a different AssociationEnd than the one identified by the Attribute’s name.

6.6.5 Reference Limitations

6.7 Operation

None.

A UML Operation maps to a MOF Operation.

6.7.1 Tags on UML Operation

None.

6.7.2 Operation Property Map

MOF Property |UML Property or Value
container owner

contents parameter

visibility visibility

scope ownerScope

isQuery isQuery

exceptions raisedSignal

6.7.3 Operation Constraints

UML raisedSignal must be ordered.
Each UML raisedSignal must be an Exception mapped by the profile.

6.7.4 Operation Limitations

6-10

Unlike a M OF Operation, a UML Operation cannot contain a Constraint. Therefore
the profile does not support an Operation containing a Constraint.

UML Profilefor Enterprise Distributed Object Computing February 2002

6.8 Parameter

A UML Parameter maps to a MOF Parameter.

6.8.1 Tags on UML Parameter

Tag Value

org.omg.uml2mof.multiplicity a multiplicity range such as “0..1", “*” or “1..*”
org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered
org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique

6.8.2 Parameter Property Map

M OF Property

UML Property or Value

container behavioral Feature

type type

direction kind

multiplicity lower and upper are 1, and isOrdered and isUnique are false, unless

specified with tags shown above

6.8.3 Parameter Constraints

UML changeability must be either changeable or frozen.

A multiplicity specified by a taggedValue with tag = “org.omg.uml2mof.multiplicity”
must represent a single valid multiplicity range.

6.8.4 Parameter Limitations

None.

6.9 Exception

A UML Exception maps to a MOF Exception. A UML Exception is a Signal, which is

a Classifier, whereas MOF Exception is BehavioralFeature. For this reason, UML

Attributes of an Exception, rather than UML Parameters, represent MOF Exception
Parameters in the profile.

6.9.1 Tags on UML Exception

None.

February 2002 UML Profilefor EDOC: Parameter

6-11

6.9.2 Exception Property Map
MOF Property |UML Property or Value

contents feature
visibility visibility
scope classifier

6.9.3 Exception Constraints

Each feature of the UML Exception must be an Attribute.

6.9.4 Exception Limitations

The profile does not support an Exception having instance-level scope.

6.10 Exception Parameter

An Attribute of a UML Exception maps to a Parameter of a MOF Exception.

6.10.1 Tags on Attribute of UML Exception

Tag Value
org.omg.uml2mof.isOrdered “true” or “false” indicating a value for isOrdered
org.omg.uml2mof.isUnique “true” or “false” indicating a value for isUnique

6.10.2 Attribute-to-Parameter Property Map
MOF Property |UML Property or Value

container owner

type type

direction out

multiplicity multiplicty.range; isOrdered and isUnique are false unless specified with

tags shown above

6.10.3 Attribute-to-Parameter Constraints

None.

6.10.4 Attribute-to-Parameter Limitations

None.

6-12 UML Profilefor Enterprise Distributed Object Computing February 2002

6.11 Association

A UML Association maps directly to a MOF Association.

A UML Association stereotyped as <<implicit>> isignored by the profile and is not
mapped to a MOF Association.

6.11.1 Tags on UML Association

None.

6.11.2 Association Property Map

MOF Property |UML Property or Value
contents ownedElement, connection
visibility visibility

isAbstract isAbstract

isRoot isRoot

isLeaf isLeaf

supertypes generalization.parent

6.11.3 Association Constraints

An Association must have exactly two ends.

6.11.4 Association Limitations

The order of MOF Class.contents are not fully preserved when rendered using the
profile because UML has separate associations for ownedElement and connection.

6.12 AssociationEnd

A UML AssociationEnd maps directly to a MOF AssociationEnd.

6.12.1 Tags on UML AssociationEnd

None.

February 2002 UML Profilefor EDOC: Association

6-13

6.12.2 AssociationEnd Property Map

MOF Property |UML Property or Value

container association

type type

multiplicity multiplicty.range, isUnique maps to upper > 1,
isOrdered maps to ordering = ordered

aggregation aggregation (UML aggregate matches MOF shared)

isNavigable isNavigable

isChangeable changeability = changeable

6.12.3 AssociationEnd Constraints

An Association must have exactly two ends.

UML changeability must be either changeable or frozen.

UML multiplicity must have a single range.

6.12.4 AssociationEnd Limitations

None.

6.13 Datalype

A UML DataType maps directly to a MOF DataType.

6-14 UML Profilefor Enterprise Distributed Object Computing

February 2002

February 2002

6.13.1 Tags on UML DataType

Tag Value

org.omg.uml 2mof.corbaType CORBA IDL type name or type declaration

org.omg.uml2mof.repositoryld A repository id applicable within a typeCode
constructed from a CORBA IDL type declaration

6.13.2 DataType Property Map

MOF Property |UML Property or Value

contents TypeAlias objects as required by taggedValue with tag =
“org.omg.uml2mof.corbaType’*

visibility visibility

isAbstract isAbstract

isRoot isRoot

isLeaf isL eaf

supertypes generalization.parent

typeCode value of taggedValue with tag = “org.omg.uml2mof.corbaType”*;
otherwise, a typeCode based on name**

* |f aTaggedVal ue specifiesa CORBA type, the valueisparsed to determine the typeCode. If
the value s mply namesatype, thenit must namea CORBA primitivetype. Otherwise, the
value must bean IDL typedeclaration. Wherever the declarationrefers by nametoaClassifier
contained in or imported into the metamodel, aM OF TypeAliasisconstructed to reference the
named Classifier. If thereisataggedValue with tag = “ org.omg.uml2mof.repositoryld”, then
itsvalueisused wherever arepository id can be specified within the typeCode.

** |f aTaggedValue does not specify aCORBA type, then aCORBA typeisdetermined from the
name. The name matching iscase-insensitive. If the name matches the name of astandard
CORBA type, then that typeisused. All other namesrevert to atypedef for the CORBA string

type.

6.13.3 DataType Constraints

The value of a taggedValue with tag = “org.omg.uml2mof.corbaType” must identify a

valid CORBA type.

UML ownedElement must be ordered.

6.13.4 DataType Limitations

A CORBA typecode contains information which is not revealed in an IDL rendering of

atype. Such information is not handled by the profile.

The order of MOF DataType.contents are not fully preserved when rendered using the
profile because TypeAlias objects are listed via a taggedValue separately from UML

ownedElement.

UML Profilefor EDOC: DataType

6

6.14 Constant

A UML DataValue maps to a MOF Constant.

6.14.1 Tags on UML DataValue

Tag Value

org.omg.uml2mof.constantValue the value of the constant

6.14.2 DataValue-to-Constant Property Map

MOF Property |UML Property or Value

type classifier

value value of taggedValue with tag = “org.omg.uml2mof.constantVal ue’

6.14.3 DataValue-to-Constant Constraints

A taggedValue is reguired to provide the Constant value. The value of the taggedValue
must be a string representation of a valid value for the Constant’s type.

6.14.4 DataValue-to-Constant Limitations

None.

6.15 Constraint

A UML Constraint maps directly to a MOF Constraint.

6.15.1 Tags on UML Constraint

Tag Value
org.omg.uml 2mof.eval uationPolicy “immediate” or “deferred” indicating a value for
evaluationPolicy

6-16 UML Profilefor Enterprise Distributed Object Computing February 2002

6.15.2 Constraint Property Map

M OF Property UML Property or Value
expression body.body
language body.language
evaluationPolicy value from taggedValue with tag =
“org.omg.uml 2mof.evaluationPolicy”; otherwise deferred
constrainedElement constrainedElement

6.15.3 Constraint Constraints

None.

6.15.4 Constraint Limitations

A MOF Consgtraint’s expression has any type, but a UML Constraint’s expression body
has string type. Therefore, the profile can support only an expression rendered as a
string.

6.16 Generalizes

A UML Generalization maps to a MOF Generalizes link.

6.16.1 Tags on UML Generalization

None.

6.16.2 Generalization-to-Generalizes Property Map

None. Generalizes is an association, not a class.

6.16.3 Generalization-to-Generalizes Constraints

Each UML Generalization within a Model mapped to a MOF Package must connect
GeneralizableElements that are also mapped to M OF elements.

6.16.4 Generalization-to-Generalizes Limitations

None.

6.17 Tag

A UML TaggedValue maps to a MOF Tag, except that any UML TaggedValue whose
tag is used by this profile is not preserved as a MOF Tag.

February 2002 UML Profilefor EDOC: Generalizes 6-17

6-18

6.17.1 Tags on UML TaggedValue

None. A UML TaggedValue cannot be tagged.

6.17.2 TaggedValue-to-Tag Property Map

MOF Property |UML Property or Value

name model Element.name* + “.” + tag

annotation

container If modelElement is a Model then that Model, otherwise the Model that
most immediately owns model Element

constraints none

tagld tag

values value

elements model Element

* if themodel Element isnot aM odel, then the nameis qualified up to but not including the
Model that most immediately owns the model Element — each nameis separated by aperiod
(*.") character.

6.17.3 TaggedValue-to-Tag Constraints

None.

6.17.4 TaggedValue-to-Tag Limitations

MOF allows a Tag to be contained by an object other than the one it tags. UML
requires a tag to be contained by the object it tags. Therefore, when a MOF Tag is
rendered in UML, the profile does not retain the relationship to the Tag's container.

UML does not give a name to a TaggedValue other than itstag. Therefore, a M OF Tag
name is not preserved when rendered in UML using the profile.

MOF supports any type of value for a Tag. UML supports only a string vaue.
Therefore, the profile supports only string values.

MOF supports having multiple values with a single tag. UML supports only one.
Therefore, the profile supports only a single value.

A single MOF tag can be attached to multiple model elements. A UML TaggedValue
can be attached to only one. Therefore, the profile supports only a single
Model Element attached to a tag.

The profile does not support annotations, constraints or tags on tags.

UML Profilefor Enterprise Distributed Object Computing February 2002

Section IV - Guidelines

6.18 Modularity

6.19 Associations

February 2002

This section gives guidelines for designing metamodels using the UML profile for
MOF. These guidelines are drawn from severa experiences of using UML to design
and extend metamodels deployed using MOF.

Refer to the MOF Specification for a comprehensive explanation of MOF.

Separate different modeling areas into different metamodels. Minimize dependencies
between metamodels. Make no circular dependencies between them — otherwise valid
CORBA IDL interfaces cannot be generated.

The outermost package of a deployed metamodel can thought of as atype. It isthe
type of each MOF package extent defined by the metamodel. Avoid nesting
metamodels as owned elements so that the metamodels can be deployed in various
combinations rather than only as one enormous metamodel. A metamodel can import
rather than own other metamodels. Importing gives the same organizational advantage
as nesting without imposing strong composition. M etamodels can be imported in two
ways: clustered and unclustered. If clustered, an imported metamodel isfully deployed
within an extent of the importing metamodel, just as if the imported metamodel had
been nested.

Use package inheritance to achieve polymorphism of package extents. If a MOF
package inherits from a base package, then an extent of the package can be used
wherever an extent of the base package can be used.

Give meaningful names to associations, even if you do not display the namesin
diagrams. The association name is used to define interfaces to access and manage
links.

Generally, put an association in the same package as one of its connected classes. |If
the connected classes are in separate packages, put the association in the most specific
package.

When extending an existing model from the outside, feel free to make associations to
classes in the existing model. But use existing associations wherever they are
appropriate. If you want to draw an association between specific classes for the
purpose of showing an existing association between superclasses, then stereotype the
association as <<implicit>> so that it is ignored in the mapping to MOF.

MOF does not support association classes or associations having more than two
connections. In any case where you would use such an association, model the
conceptual association as a class using separate associations for each connection.

UML Profilefor EDOC: Modularity 6-19

6

6.20 References

6.21 DataTypes

6.22 Names

6-20

A MOF reference is like a derived attribute whose derivation is tied to an association.
The values of areference for an object are the objects linked to that object. Modifying
reference values causes links to be added and/or deleted.

When designing a metamodel that extends another from the outside, define references
only in the extending metamodel, not in the metamodel it extends.

The definition of a MOF reference affects how package extents contain links. In
general, an association link and the objects it connects can all belong to different
package extents. However, the M OF Specification defines the Reference Closure Rule
which requires any link tied to areference to be contained by the same package extent
as the object having the reference. If an association has references on both ends, both
linked objects and the link must all be contained in the same package extent. Before
defining a reference, give thought to the Reference Closure Rule so that you do not
mistakenly prevent links from interrelating objects across different package extents.
Conversely, use a reference where you want to force links to be in the same package
extent as the linked objects.

Here is an example. Suppose a metamodel has a class called GE and an association
from GE to GE called Generalizes. One end is called supertype and the other is called
subtype. Both ends are navigable. If areferenceis on both ends, then a link can only
connect GE objects within the same package extent. If areference is only on the
subtype end (referring to supertype) then alink must be in the same package extent as
its subtype, but it can link to a supertype in the same or a different package extent.

Avoid defining a complex data type where a class can be used.

Avoid defining enumerations because they limit extensibility. There is no way to
extend an enumeration type from an outside metamodel.

Form multiword names by concatenating words with no intervening spaces, hyphens or
underscores. For names of packages, classifiers, and associations upcase the first letter
of each word. For names of features and association ends upcase the first letter of each
word except for the first word in the name. Do not prefix all of the namesin a package
with the package name — the package name is already part of the fully qualified name.

Using spaces, punctuation or leading numerals in names can cause problems for
middleware, programming language, and XML bindings.

UML Profilefor Enterprise Distributed Object Computing February 2002

February 2002

References A

[1] ISO/IEC & ITU-T: Information technology — Open Distributed Processing —Part 1 — Over-
view — |SO/IEC 10746-1 | ITU-T Recommendation X.901

[2] ISO/IEC & ITU-T: Information technology — Open Distributed Processing — Part 2 — Foun-
dations— |SO/IEC 10746-2 | ITU-T Recommendation X.902

[3] ISO/IEC & ITU-T: Information technology — Open Distributed Processing — Part 3 — Ar-
chitecture — ISO/IEC 10746-3 | ITU-T Recommendation X.903

[4] ISO/IEC & ITU-T: Information technology — Open Distributed Processing — Enterprise
Viewpoint — ITU-T Recommendation X.911 | ISO/IEC 15414

[5] DISGIS Web site: http://www.disgis.com

[6] COMPASS Web site: http://www.compassgl.org

[7] OBOE Web site: http://www.dbis.informatik.uni-frankfurt.de/~oboe/

[8] SO TC211 Web site: http://www.statkart.no/isotc211/

[9] Open Geodata Consortium Web site: http://www.opengis.org

[10] ISO/IEC JTC1/SC21, Information Technology. Open Systems Interconnection - Manage-
ment Information Services - Structure of Management Information - Part 7: General Relationship
Model, 1995. |SO/IEC 10165-7.

[11] T.Gilb, G.Weinberg. Humanized Input. Winthrop Publ., 1977.

[12] H.Kilov, J.Ross. Information modeling. Prentice-Hall, 1994.

[13] H.Kilov, L.Cuthbert. A model for document management. Computer Communications,
Vol. 18, No. 6 (June 1995), pp. 408-417

[14] H.Kilov. Business specifications. Prentice-Hall, 1999.

UML Profilefor Enterprise Distributed Object Computing A-1

A-2

[15] H.Kilov, A.Ash. How to ask questions: Handling complexity in a business specification.
In: Proceedings of the OOPSLA'97 Workshop on object-oriented behavioral semantics (Atlanta,
October 6th, 1997), ed. by H.Kilov, B.Rumpe, |.Simmonds, Munich University of Technology,
TUM-19737, pp. 99-114.

[16] H.Kilov, A.Ash. Aninformation management project: what to do when your business spec-
ification isready. In: Proceedings of the Second ECOOP Workshop on Precise Behavioral Seman-
tics, Brussels, July 24, 1998 (ed. by H.Kilov and B.Rumpe). Technical University of Munich,
TUM-19813, pp. 95-104.

[17] H.Kilov, B.Rumpe, |.Simmonds (Eds.). Behavioral specifications of businesses and sys-
tems. Kluwer Academic Publishers, 1999.

[18] B.Potter, J.Sinclair, D.Till. An introduction to formal specification and Z. Prentice-Hall,
1991.

[19] Sun Java Community Process JSR-26 currently under public review, http://jcp.org/jsr/de-
tail/26.jsp

[20] Sun Java Community Process JSR-40 not yet released for public review, ht-
tp:/ljcp.org/jsr/detail /40.jsp

[21] MOF 1.3 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-09-05

[22] UML Profilefor CORBA 1.1 specification, OMG document http://cgi.omg.org/cgi-
bin/doc? ptc/01-01-06

[23] Unified Modeling Language Specification, Version 1.4, OMG document ht-
tp://cgi.omg.org/cgi-bin/doc?ad/01-02-13

[24] XMI 1.1 Specification, OMG document http://cgi.omg.org/cgi-bin/doc?ad/99-10-02

[25] Unified Modeling Language Specification, Version 1.3, June, 1999 http://cgi.omg.org/cgi-
bin/doc?ad/99-06-08

[26] Desmond F. D’ Souza, Alan Cameron Wills. Objects, Components, and frameworks with
UML: The Catalysis Approach. Reading, Mass., Addison-Wesley, 1999.

[27] Martin Fowler. M. Analysis Patterns: Reusable Object Models. Reading, Mass., Addison-
Wesley, 1997.

[28] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[29] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development Pro-
cess. Addison-Wesley, Reading, Mass., 1999.

[30] OMG, Model Driven Architecture —under development

[31] TrygveReenskaugh, Per Wold and Odd Arild L ehne. Working with Objects: the OORAM
Software Engineering Method 1996 Manning Publications Co. 1996

[32] BranSdlic, Garth Gullekson and Paul T. Ward Real-Time Object-Oriented Modeling. John
Willey & Sons, Inc. 1994

UML Profilefor Enterprise Distributed Object Computing February 2002

Glossary

The Glossary definesthe specialist terms used in this specification.

Term Explanation

b2b Business to Business

b2c Business to Customer

BFOP Business Function Object Pattern

CBOP Common Business Object Patterns Consortium

CCA Component Collaboration Architecture — a profile for specifying components at
multiple levels of granularity

EAI Enterprise Application Integration

ebXML XML for Electronic Business

ECA Enterprise Collaboration Architecture — a set of profiles for making technology
independent models of EDOC systems

EDOC Enterprise Distributed Object Computing — what the submission is all about.

EJB Enterprise JavaBeans

FCM Flow Composition Model

RM-ODP Reference Model of Open Distributed Processing

UML Unified Modeling Language

VMM Virtual metamodel: a formal model of a package of extensions to the UML metamodel

using UML's own built-in extension mechanisms

February 2002 UML Profilefor Enterprise Distributed Object Computing

UML Profilefor Enterprise Distributed Object Computing February 2002

	Contents
	Preface
	About the Object Management Group
	Intended Audience and Use
	Context of OMG Modeling
	Acknowledgments

	Introduction
	1.1 Guide to the Specification
	1.1.1 Overall Structure of the Specification

	1.2 Conformance Issues
	1.2.1 Summary of optional versus mandatory interfaces
	1.2.2 Compliance Points
	1.2.3 Optional Compliance Points

	1.3 Proof of Concept
	1.3.1 CBOP
	1.3.2 Data Access Technologies
	1.3.3 DSTC
	1.3.4 EDS
	1.3.5 Fujitsu
	1.3.6 IBM
	1.3.7 Iona
	1.3.8 Open-IT and SINTEF
	1.3.9 Sun Microsystems
	1.3.10 Unisys
	1.3.11 ebXML

	EDOC Profile: Rationale and Application
	2.1 Overview
	2.2 The Enterprise Collaboration Architecture
	2.2.1 Component Collaboration Architecture
	2.2.2 Entities profile
	2.2.3 Events Profile
	2.2.4 Business Process profile
	2.2.5 Relationships profile

	2.3 Patterns
	2.4 Technology Specific Models and Technology Mappings
	2.5 Separation of Concerns and Viewpoint Specifications
	2.6 Enterprise Specification
	2.6.1 Concepts
	2.6.2 EDOC Enterprise Subprofile

	2.7 Computational Specification
	2.7.1 Concepts
	2.7.2 EDOC Computational Specifications
	2.7.3 Levels of ProcessComponent in a Computational Specification

	2.8 Information Specification
	2.8.1 Concepts
	2.8.2 EDOC Information Specifications

	2.9 Engineering Specification
	2.9.1 Concepts
	2.9.2 EDOC Engineering Specifications

	2.10 Technology Specification
	2.11 Specification Integrity - Interviewpoint Correspondences
	2.11.1 Computational-Enterprise Interrelationships
	2.11.2 Computational-Information Interrelationships
	2.11.3 Computational-Engineering Interrelationships
	2.11.4 Engineering-Technology Interrelationships

	The Enterprise Collaboration Architecture
	3.1 Key Design Features
	3.1.1 Recursive component composition
	3.1.2 Process Specification
	3.1.3 Specification of Event Driven Systems
	3.1.4 Integration of Process and Information Models
	3.1.5 Rigorous relationship specification
	3.1.6 Mappings to Technology - Platform Independence

	3.2 ECA Elements
	3.3 Rationale
	3.3.1 Problems to be solved
	3.3.2 Approach
	3.3.3 Concepts
	3.3.4 Conceptual Framework

	3.4 CCA Metamodel
	3.4.1 Structural Specification
	3.4.2 Choreography
	3.4.3 Composition
	3.4.4 Document Model
	3.4.5 Model Management

	3.5 CCA Notation
	3.5.1 CCA Specification Notation
	3.5.2 Composite Component Notation
	3.5.3 Community Process Notation

	3.6 UML Profile
	3.6.1 Tables mapping concepts to profile elements
	3.6.2 Introduction
	3.6.3 Stereotypes for Structural Specification\
	3.6.4 Stereotypes for Choreography
	3.6.5 Stereotypes for Composition
	3.6.6 DocumentModel «profile» Package
	3.6.7 UML Model_Management Package
	3.6.8 Relationships
	3.6.9 General OCL Definition Constraints

	3.7 Diagramming CCA
	3.7.1 Types of Diagram
	3.7.2 The Buy/Sell Example
	3.7.3 Collaboration diagram shows community process
	3.7.4 Class diagram for protocol structure
	3.7.5 Activity Diagram (Choreography) for a Protocol
	3.7.6 Class Diagram for Component Structure
	3.7.7 Class Diagram for Interface
	3.7.8 Class Diagram for Process Components with multiple ports
	3.7.9 Activity Diagram showing the Choreography of a Process Component
	3.7.10 Collaboration Diagram for Process Component Composition
	3.7.11 Model Management
	3.7.12 Using the CCA Notation for Component & Protocol Structure

	3.8 Introduction
	3.8.1 Normative sections
	3.8.2 Relationship to other parts of ECA
	3.8.3 Design Concepts
	3.8.4 Standard UML Facilities

	3.9 Entity Viewpoints
	3.9.1 Information Viewpoint
	3.9.2 Composition viewpoint

	3.10 Entity Metamodel
	3.10.1 Overview
	3.10.2 Entity Package

	3.11 Entity UML Profile
	3.11.1 Metamodel Mapping to Profile
	3.11.2 Entity Package

	3.12 Rationale
	3.12.1 Introduction
	3.12.2 Overall design rationale
	3.12.3 Concepts
	3.12.4 Key Concepts of event driven business and system models
	3.12.5 Event and Notification based Interaction Models
	3.12.6 Leveraging event based models

	3.13 Metamodel
	3.13.1 Business Process View
	3.13.2 Entity View
	3.13.3 Whole Event Model
	3.13.4 Publish and Subscribe Package
	3.13.5 Event Package

	3.14 UML Profile
	3.14.1 Table mapping concepts to profile elements
	3.14.2 Introduction
	3.14.3 Publish and Subscribe Package
	3.14.4 Event Package 2

	3.15 Relationship to other ECA profiles
	3.15.1 Relationship to Business Process profile and Entities profile
	3.15.2 Relationship to ECA CCA profile

	3.16 Relationship other paradigms
	3.16.1 ebXML

	3.17 Example
	3.18 Introduction
	3.19 Metamodel
	3.19.1 Business Process metamodel

	3.20 UML Profile
	3.20.1 Table mapping concepts to profile elements
	3.20.2 Relationships

	3.21 Notation for Activity and ProcessRole
	3.22 Process Model Patterns
	3.22.1 Timeout
	3.22.2 Terminate
	3.22.3 Activity Preconditions and Activity Postconditions
	3.22.4 Simple Loop
	3.22.5 While and Repeat-Until Loops
	3.22.6 For Loop
	3.22.7 Multi-Task

	3.23 Full Model
	3.24 Requirements
	3.24.1 Introduction
	3.24.2 Non-Binary Relationships
	3.24.3 Example: Mutually Orthogonal Non-Binary Aggregations
	3.24.4 Example: Multiple Subtyping
	3.24.5 Other Relationship Requirements

	3.25 Using UML to Address the Requirements: An Overview
	3.26 Formal Virtual Metamodel of the UML Extensions
	3.26.1 Aggregations
	3.26.2 Reference Relationships

	3.27 Mapping the Relationships to Technical Platforms
	3.27.1 Aggregations
	3.27.2 Reference Relationships

	3.28 Examples Using the UML Extensions
	3.28.1 Example: List and Subordination
	3.28.2 Example: Reference Relationships

	The Patterns Profile
	4.1 Introduction
	4.2 Pattern Principle
	4.3 Notation for Patterns
	4.4 Simple Pattern
	4.5 Pattern Inheritance
	4.6 Pattern Composition
	4.7 Summary of Pattern Formats
	4.8 Applying Patterns
	4.9 EDOC::Pattern Package
	4.9.1 Business Pattern Name
	4.9.2 Business Pattern Package
	4.9.3 Business Pattern Binding

	4.10 Table mapping concepts to profile elements
	4.11 Introduction
	4.12 Pattern Package
	4.12.1 BP Name
	4.12.2 BP Package
	4.12.3 BP Binding

	Technology Specific Models
	5.1 Introduction
	5.2 The Java Metamodel
	5.2.1 Class Contents
	5.2.2 Polymorphism
	5.2.3 JavaType
	5.2.4 TypeDescriptor
	5.2.5 Data Types
	5.2.6 Names

	5.3 The Enterprise JavaBeans Metamodel
	5.3.1 Main
	5.3.2 EJB
	5.3.3 Entity Bean
	5.3.4 Assembly
	5.3.5 EJB Implementation
	5.3.6 References to Resources
	5.3.7 Data Types

	5.4 UML Profile
	5.4.1 Java Profile
	5.4.2 EJB Profile

	5.5 Introduction
	5.6 FCMCore Package
	5.6.1 FCMComposition
	5.6.2 FCMComponent
	5.6.3 FCMNode
	5.6.4 FCMConnection
	5.6.5 FCMOperation
	5.6.6 FCMParameter
	5.6.7 FCMCommand
	5.6.8 FCMFunction
	5.6.9 FCMTerminal
	5.6.10 FCMTerminalToNodeLink and FCMTerminalToTerminalLink
	5.6.11 FCMAnnotation
	5.6.12 FCMSource and FCMSink
	5.6.13 FCMCompositionBinding
	5.6.14 TDLangElement
	5.6.15 FCMType

	5.7 FCM Package
	5.7.1 FCMControlLink
	5.7.2 FCMDataLink
	5.7.3 FCMDecisionNode
	5.7.4 FCMConditionalControlLink
	5.7.5 FCMJoinNode
	5.7.6 FCMJoinCommand
	5.7.7 FCMMappingNode
	5.7.8 FCMMappingDataLink
	5.7.9 FCMMapping
	5.7.10 FCMCondition
	5.7.11 FCMBranchNode

	5.8 FCM Profile
	5.9 Example

	UML Profile for MOF
	6.1 ModelElement
	6.1.1 Tags on UML ModelElement
	6.1.2 ModelElement Property Map
	6.1.3 ModelElement Constraints
	6.1.4 ModelElement Limitations

	6.2 Package
	6.2.1 Tags on UML Model with Stereotype <<metamodel>>
	6.2.2 Model-to-Package Property Map
	6.2.3 Model-to-Package Constraints
	6.2.4 Model-to-Package Limitations

	6.3 Import
	6.3.1 Tags on UML ElementImport
	6.3.2 ElementImport-to-Import Property Map
	6.3.3 ElementImport-to-Import Constraints
	6.3.4 ElementImport-to-Import Limitations

	6.4 Class
	6.4.1 Tags on UML Class
	6.4.2 Class Property Map
	6.4.3 Class Constraints
	6.4.4 Class Limitations

	6.5 Attribute
	6.5.1 Tags on UML Attribute with No Stereotype
	6.5.2 Attribute Property Map
	6.5.3 Attribute Constraints
	6.5.4 Attribute Limitations

	6.6 Reference
	6.6.1 Tags on UML Attribute with Stereotype <<reference>>
	6.6.2 Explicit Reference Property Map
	6.6.3 Implicit Reference Property Map
	6.6.4 Reference Constraints
	6.6.5 Reference Limitations

	6.7 Operation
	6.7.1 Tags on UML Operation
	6.7.2 Operation Property Map
	6.7.3 Operation Constraints
	6.7.4 Operation Limitations

	6.8 Parameter
	6.8.1 Tags on UML Parameter
	6.8.2 Parameter Property Map
	6.8.3 Parameter Constraints
	6.8.4 Parameter Limitations

	6.9 Exception
	6.9.1 Tags on UML Exception
	6.9.2 Exception Property Map
	6.9.3 Exception Constraints
	6.9.4 Exception Limitations

	6.10 Exception Parameter
	6.10.1 Tags on Attribute of UML Exception
	6.10.2 Attribute-to-Parameter Property Map
	6.10.3 Attribute-to-Parameter Constraints
	6.10.4 Attribute-to-Parameter Limitations

	6.11 Association
	6.11.1 Tags on UML Association
	6.11.2 Association Property Map
	6.11.3 Association Constraints
	6.11.4 Association Limitations

	6.12 AssociationEnd
	6.12.1 Tags on UML AssociationEnd
	6.12.2 AssociationEnd Property Map
	6.12.3 AssociationEnd Constraints
	6.12.4 AssociationEnd Limitations

	6.13 DataType
	6.13.1 Tags on UML DataType
	6.13.2 DataType Property Map
	6.13.3 DataType Constraints
	6.13.4 DataType Limitations

	6.14 Constant
	6.14.1 Tags on UML DataValue
	6.14.2 DataValue-to-Constant Property Map
	6.14.3 DataValue-to-Constant Constraints
	6.14.4 DataValue-to-Constant Limitations

	6.15 Constraint
	6.15.1 Tags on UML Constraint
	6.15.2 Constraint Property Map
	6.15.3 Constraint Constraints
	6.15.4 Constraint Limitations

	6.16 Generalizes
	6.16.1 Tags on UML Generalization
	6.16.2 Generalization-to-Generalizes Property Map
	6.16.3 Generalization-to-Generalizes Constraints
	6.16.4 Generalization-to-Generalizes Limitations

	6.17 Tag
	6.17.1 Tags on UML TaggedValue
	6.17.2 TaggedValue-to-Tag Property Map
	6.17.3 TaggedValue-to-Tag Constraints
	6.17.4 TaggedValue-to-Tag Limitations

	6.18 Modularity
	6.19 Associations
	6.20 References
	6.21 DataTypes
	6.22 Names

	References
	Glossary

