Event Service Specification

Version1.1
March 2001

Copyright 1993, DEC

Copyright 1993, Groupe Bull
Copyright 1993, Hewlett-Packard
Copyright 1993, HyperDesk
Copyright 1993, Itasca
Copyright 1993, Novell
Copyright 1993, O2

Copyright 1993, Object Design
Copyright 2000, Object Management Group, Inc.
Copyright 1993, Objectivity
Copyright 1993, Ontos
Copyright 1993, Oracle
Copyright 1993, Servio
Copyright 1993, SunSoft
Copyright 1993, Tivoli

Copyright 1993, Versant

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, raliaaice or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listec
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t}
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form ¢
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (i) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028m@MG

Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface ii
1. Service Description i 1-1
1.1 OVeIVIEW .ot 1-1
1.2 Event Communication 1-2
1.3 Example Scenario.c.0 i 1-3
1.4 DesignPrinciples. i 1-4
1.5 Resolution of Technical Issues. 1-5
1.6 QualityofService i 1-6
1.7 Generic Event Communication 1-7
1.7.1 PushModel............... 1-7
1.72 PullModel 1-7
2. Modulesand Interfaces. 2-1
2.1 The CosEventComm Module....................... 2-1
2.1.1 The PushConsumer Interface 2-2
2.1.2 The PushSupplier Interface. 2-2
2.1.3 The PullSupplier Interface 2-3
2.1.4 The PullConsumer Interface............... 2-3
2.1.5 Disconnection Behavior 2-4
2.2 EventChannels. i 2-4
2.2.1 Push-Style Communication with an
EventChannel 2-4
2.2.2 Pull-Style Communication with an
EventChannel 2-5

Event Service, v1.1 March 2001 i

Contents

2.2.3 Mixed Style Communication with an

EventChannel 2-5
2.2.4 Multiple Consumers and Multiple Suppliers .. 2-6
2.2.5 Event Channel Administration 2-6
2.3 The CosEventChannelAdmin Module 2-8
2.3.1 The EventChannel Interface 2-9
2.3.2 The ConsumerAdmin Interface 2-10
2.3.3 The SupplierAdmin Interface. 2-10
2.3.4 The ProxyPushConsumer Interface 2-10
2.3.5 The ProxyPullSupplier Interface 2-11
2.3.6 The ProxyPullConsumer Interface 2-11
2.3.7 The ProxyPushSupplier Interface. 2-12
2.4 Typed Event Communication. 2-12
2.4.1 TypedPushModel 2-12
2.4.2 Typed PullModel....................... 2-13
2.5 The CosTypedEventComm Module 2-14
2.5.1 The TypedPushConsumer Interface 2-15
2.5.2 The TypedPullSupplier Interface 2-15
2.6 TypedEventChannels 2-16
2.7 The CosTypedEventChannelAdmin Module 2-16
2.7.1 The TypedEventChannel Interface 2-17
2.7.2 The TypedConsumerAdmin Interface. 2-18
2.7.3 The TypedSupplierAdmin Interface 2-19
2.7.4 The TypedProxyPushConsumer Interface. 2-19
2.7.5 The TypedProxyPullSupplier Interface. 2-20
2.8 Composing Event Channels and Filtering 2-20
2.9 Policies for Finding Event Channels 2-20
Appendix A - Implementing Typed Event Channels A-1
Appendix B - An Event Channel Use Example.......... B-1

ii Event Service, v1.1 March 2001

About This Document

Preface

Under the terms of the collaboration between OMG and X/Open Co Ltd, this document
is a candidate for endorsement by X/Open, initially as a Preliminary Specification and
later as a full CAE Specification. The collaboration between OMG and X/Open Co Ltd

ensures joint review and cohesive support for emerging object-based specifications.

X/Open Preliminary Specifications undergo close scrutiny through a review process at
X/Open before publication and are inherently stable specifications. Upgrade to full
CAE Specification, after a reasonable interval, takes place following further review by
X/Open. This further review considers the implementation experience of members and
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Event Service, v1.1 March 2001 iii

What is CORBA?

X/Open

Intended Audience

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly

proliferating number of hardware and software products available today. Simply stated,

CORBA allows applications to communicate with one another no matter where they

are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object

Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object

interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

X/Open is an independent, worldwide, open systems organization supported by most of

the world's largest information system suppliers, user organizations and software

companies. Its mission is to bring to users greater value from computing, through the

practical implementation of open systems.

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for

object services; the benefits of compliance are outlined in the following section, “Need

for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is helpful

to understand their context within OMG’s vision of object management. The key to

understanding the structure of the architecture is the Reference Model, which consists

of the following components:

« Object Request Broker which enables objects to transparently make and receive
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are describ@DRBA: Common
Object Request Broker Architecture and Specification.

« Object Services a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains.

« Common Facilities a collection of services that many applications may share,

but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.

Event Service, v1.1 March 2001

The Object Request Broker, then, is the core of the Reference Model. Nevertheless, an
Object Request Broker alone cannot enable interoperability at the application semantic
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication between
subscribers. Meaningful, productive communication depends on additional interfaces,
protocols, and policies that are agreed upon outside the telephone system, such as
telephones, modems and directory services. This is equivalent to the role of Object
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is the
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services's behavior are, in general, expressed in terms of the OMG Object Model. The
OMG Object Model is based on objects, operations, types, and subtyping. It provides a
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

®* Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA Platform Technologies

« CORBA: Common Object Request Broker Architecture and Specificadidains
the architecture and specifications for the Object Request Broker.

« CORBA Languages collection of language mapping specifications. See the
individual language mapping specifications.

« CORBA Services collection of specifications for OMG’s Object Services. See
the individual service specifications.

« CORBA Facilitiesa collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

® CORBA Domain Technologies

* CORBA Manufacturinga collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized object-
oriented interfaces between related services and functions.

« CORBA Healthcarea collection of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

Event Service, v1.1 Associated OMG Documents March 2001 v

« CORBA Financgea collection of specifications that target a vitally important
vertical market: financial services and accounting. These important application
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

« CORBA Telecoms collection of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i@iject Management
Architecture Guide

To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Service Design Principles

Vi

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:
« Separation of interface and implementation
* Object references are typed by interfaces

Clients depend on interfaces, not implementations

« Use of multiple inheritance of interfaces

« Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

« Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

« Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).

Event Service, v1.1 March 2001

Basic, Flexible Services

Generic

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applicatign$unctionally-rich Folder

compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfaces
to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components.

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed oPushConsumeiPullSupplierandEventChannelnterfaces. This

simplifies the way in which a particular client uses a service.

Event Service, v1.1 Service Design Principles March 2001 Vii

viii

A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspireto provide the complete service.

As an example, in the Event Service an event channel can provid®lstiConsumer

and EventChanneinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either thePushConsumeandEventChanneinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supportBut8upplierinterface. An

object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the event
channel can keep track of and manage multiple simultaneous clients. An event channel
as a collection of objects conspiring to manage multiple simultaneous consumer
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a serviaalicdbackto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:
® They clearly define how a client object participates in a service.

® They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of hames is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique withir
its scope but should not make any other assumption.

Event Service, v1.1 March 2001

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a parameter
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of #ent Servicepecification:
« DEC
* Groupe Bull
* Hewlett-Packard Company
¢ HyperDesk
* Itasca
* Novell
e 02
¢ Object Design
¢ Objectivity
¢ Ontos

Event Service, v1.1 Interface Style Consistency March 2001 ix

¢ Oracle
¢ Servio
¢ SunSoft
e Tivoli

e Versant

Event Service, v1.1 March 2001

1.1 Overview

Service Description 1

Contents

This chapter contains the following topics.

Topic Page
“Overview 1-1
“Event Communication 1-2
“Example Scenario 1-3
“Design Principles 1-4
“Resolution of Technical Issues 1-5
“Quality of Service 1-6
“Generic Event Communication 1-7

A standard CORBA request results in the synchronous execution of an operation by an
object. If the operation defines parameters or return values, data is communicated
between the client and the server. A request is directed to a particular object. For the
request to be successful, both the client and the server must be available. If a request
fails because the server is unavailable, the client receives an exception and must take
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

Event Service, v1.1 March 2001 1-1

1-2

® A system administration tool is interested in knowing if a disk runs out of space.
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a disk
runs out of space, the system administration tool opens a window to inform the user
which disk has run out of space.

® A property list object is associated with an application object. The property list
object is physically separate from the application object. The application object is
interested in the changes made to its properties by a user. The properties can be
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate the
application object. However, when the application object is activated, it needs to
know about the changes to its properties.

® A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware of
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.

® Several documents are linked to a spreadsheet. The documents are interested in
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet.
Furthermore, if a document is unavailable because of a failure, it is still interested
in any changes to the cells and wants to be notified of those changes when it
recovers.

1.2 Event Communication

The Event Service decouples the communication between objects. The Event Service
defines two roles for objects: the supplier role and the consumerSgpgpliers

produce event data amnsumerprocess event data. Event data are communicated
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers and
consumers, and two orthogonal approaches to the form that the communication can
take.

The two approaches to initiating event communication are callepgugiemodeland

the pull mode] The push model allows a supplier of events to initiate the transfer of

the event data to consumers. The pull model allows a consumer of events to request the
event data from a supplier. In the push model, the supplier is taking the initiative; in
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is via
operations defined in OMG IDL. Event data is passed by means of the parameters,
which can be defined in any manner desired.

Event Service, v1.1 March 2001

An event channek an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both a
consumer and a supplier of events. Event channels are standard CORBA objects and
communication with an event channel is accomplished using standard CORBA
requests.

1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service can be
used.

The Event Service can be used to provide “change natification.” When an object is
changed (its state is modified), an event can be generated that is propagated to all
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified (so
the document can redisplay the referenced cell, or recalculate values that depend on the
cell). Similarly, when an engineering specification object is modified, all engineers

who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested in
receiving notifications of changes act as consumers, and one or more event channel
objects are used as intermediaries between consumers and supilenrsthe push or

the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued. Use the
EventChannel , the SupplierAdmin , and theProxyPushConsumer interfaces to
register as suppliers of events, and usePitmxyPushConsumer interface to push
events to event channels.

When a change occurs to an object, a changeable object invokes a push operation on
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or as
complex as is necessary. For example, the event information might identify the object
reference of the object that has been changed, it might identify the kind of change that
has occurred, it might provide a new displayable image of the changed object or it
might identify one or more additional objects that describe the change that has been
made.

If the pull model is used by consumers, all client objects that want to be notified of
changes support tHeullConsumer interface so communication can be discontinued,
using theEventChannel , ConsumerAdmin , andProxyPullSupplier interfaces to
register as consumers of events, and usingPtiogyPullSupplier interface to pull
events from event channels.

The consumer may use either a blocking or non-blocking mechanism for receiving
notification of changes. Using they_pull operation, the consumer can periodically

poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by some
supplier.

Event Service, v1.1 Example Scenario March 2001 1-3

1-4

Event channels act as the intermediaries between the objects being changed and objects
interested in knowing about changes. The channels that provide change notification
can be general purpose, well-known objects (e.g., “persistent server-based objects” that
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created when
needed). Objects that use event channels may locate the channels by looking for them
in a persistently available server (e.g., by looking for them in a naming service) or they
may be given references to these objects as part of a specific-to-task object protocol
(e.g., when an “open” operation is invoked on an object, the object may return the
reference to an event channel which the caller should use until the object is closed).

Event channels determine how changes are propagated between suppliers and
consumers (i.e., the qualities of service). For example, an event channel determines
the persistence of an event. The channel may keep an event for a specified period of
time, passing it along to any consumer who registers with the channel during that
period of time (e.g., it may keep event notifications about changes to engineering
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications of
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basic
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have been
used.

1.4 Design Principles

The Event Service design satisfies the following principles:

» Events work in a distributed environment. The design does not depend on any
global, critical, or centralized service.

» Event services allow multiple consumers of an event and multiple event suppliers.

» Consumers can either request events or be notified of events, whichever is more
appropriate for application design and performance.

» Consumers and suppliers of events support standard OMG IDL interfaces; no
extensions to CORBA are necessary to define these interfaces.

» A supplier can issue a single standard request to communicate event data to all
consumers at once.

» Suppliers can generate events without knowing the identities of the consumers.
Conversely, consumers can receive events without knowing the identities of the
suppliers.

» The Event Service interfaces allow multiple qualities of service, for example, for
different levels of reliability. It also allows for future interface extensions, such as
for additional functionality.

Event Service, v1.1 March 2001

1

» The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in theOD}G
Services Architectufedocument as follows:

® Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that might be
a bottleneck or a single point of failure.

Events themselves ar®t objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and delivered
in a very general fashion, with event channels as intermediate routing points. It does
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multiple objects: Complex events may be handled by constructing a
notification tree of event consumer/suppliers checking for successively more specific
event predicates. The specification does not require a general or global event predicate
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filtering events:The specification takes advantage of

CORBA's distributed scoping and grouping mechanisms for the identifier and type of
events. Event filtering is easily achieved through event channels that selectively

deliver events from suppliers to consumers. Event channels can be composed; that is,
one event channel can consume events supplied by another. Typed event channels can
provide filtering based on event type.

Registration and generation of eventsConsumers and suppliers register with event
channels themselves. Event channels are objects and they are found by any fashion that
objects can be found. A global registration service is not required; any object that
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can be
delivered with an event, used for application-specific data.

Forgery and secure eventsBecause event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

1.0bject Services Architectay Document Number 92-8-4, Object Management Group,
Framingham, MA, 1992.

Event Service, v1.1 Resolution of Technical Issues March 2001 1-5

Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all ORB
objects, the service directly benefits from a Library Object Adapter or any other ORB
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining a
typed structure for this information. Depending on the needs of the environment, the
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the event
consumer or might also be interpreted by particular event channel implementations.

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can be
supported effectively using a “reverse” event channel through which consumers send
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and all
consumers requires additional interfaces.

1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requirements.

Clearly no single implementation of the Event Service can optimize such a diverse
range of technical requirements. Hence, multiple implementations of event services are
to be expected, with different services targeted toward different environments. As such,
the event interfaces do not dictapealities of serviceDifferent implementations of the
Event Service interfaces can support different qualities of service to meet different
application needs.

For example, an implementation that trades at most once delivery to a single consumer
in favor of performance is useful for some applications; an implementation that favors
performance but cannot preclude duplicate delivery is useful for other applications.
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all evermsasiseful
implementation. Useful implementations will at least support “best-effort” delivery of
events.

Note that the interfaces defined in this chapter are incomplete for implementations that
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none of the
consumers receive an event; and that all events are received in the same order by all
consumers.

Event Service, v1.1 March 2001

1.7 Generic Event Communication

There are two basic models for communicating event data between suppliers and
consumers: thpush modehnd thepull mode]

1.7.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations oRtiseConsumer
interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer andPushSupplier object references. Event communication can be
broken by invoking alisconnect_push_consumer operation on the
PushConsumer interface or by invoking disconnect_push_supplier operation

on thePushSupplier interface. If thePushSupplier object reference is nil, the
connection cannot be broken via the supplier.

Figure 1-1 illustrates push-style communication between a supplier and a consumer.

PushSupplier |
consumer) I supplier

|
! PushConsumer

Figure 1-1 Push-style Communication Between a Supplier and a Consumer

1.7.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invokimpgll operations on th@ullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer andPullSupplier object references. Event communication can be
broken by invoking alisconnect_pull_consumer operation on the

PullConsumer interface or by invoking disconnect_pull_supplier operation on
the PullSupplier interface. If thePullConsumer object reference is nil, the
connection cannot be broken via the consumer.

Figure 1-2 illustrates pull-style communication between a supplier and a consumer.

Event Service, v1.1 Generic Event Communication March 2001 1-7

1-8

\ PullConsumer
- l

|
PullSupplier \

Figure 1-2 Pull-style Communication Between a Supplier and a Consumer

consumer supplier

Event Service, v1.1 March 2001

Modules and Interfaces 2

Contents

This chapter contains the following topics.

Topic Page
“The CosEventComm Module” 2-1
“Event Channels” 2-4
“The CosEventChannelAdmin Module” 2-8
“Typed Event Communication” 2-12
“The CosTypedEventComm Module” 2-14
“Typed Event Channels” 2-16
“The CosTypedEventChannelAdmin Module” 2-16
“Composing Event Channels and Filtering” 2-20
“Policies for Finding Event Channels” 2-20

2.1 The CosEventComm Module

The communication styles shown in Chapter 1 are both supported by four simple
interfacesPushConsumer , PushSupplier , andPullSupplier andPullConsumer .
These interfaces are defined in an OMG IDL module na@esEventComm , as
shown below.

module CosEventComm {

exception Disconnected{};

Event Service, v1.1 March 2001 2-1

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

h

interface PushSupplier {
void disconnect_push_supplier();

I3

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

h

interface PullConsumer {
void disconnect_pull_consumer();

J3

2.1.1 The PushConsumer Interface

A push-style consumer supports theshConsumer interface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();
h
A supplier communicates event data to the consumer by invokingutite operation

and passing the event data as a parameter.

Thedisconnect_push_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication. The
PushConsumeobject reference is disposed. Callidigconnect_push_consumer
causes the implementation to call tieconnect_push_supplier operation on the
correspondindPushSupplier interface (if that interface is known).

2.1.2 The PushSupplier Interface

A push-style supplier supports tReishSupplier interface.
interface PushSupplier {

void disconnect_push_supplier();

h

2-2 Event Service, v1.1 March 2001

2

The disconnect_push_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PushSupplieobject reference is disposed. Callidigconnect_push_supplier

causes the implementation to call tisconnect_push_consumer operation on

the correspondinfushConsumer interface (if that interface is known).

2.1.3 The PullSupplier Interface

A pull-style supplier supports tHeullSupplier interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)
raises(Disconnected);
void disconnect_pull_supplier();

h

A consumer requests event data from the supplier by invoking eithpultheperation
or thetry pull operation on the supplier.

® Thepull operation blocks until the event data is available or an exception is faised.
It returns the event data to the consumer.

® Thetry_pull operation does not block: if the event data is available, it returns the
event data and sets thas_event parameter tdrue; if the event is not available, it
sets thehas_event parameter tdalseand the event data is returned as long with an
undefined value.

Thedisconnect_pull_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PullSupplier object reference is disposed. Callidigconnect_pull_supplier

causes the implementation to call tisconnect_pull_consumer operation on the
correspondindPullConsumer interface (if that interface is known).

2.1.4 The PullConsumer Interface

A pull-style consumer supports tfRllConsumer interface.

interface PullConsumer {
void disconnect_pull_consumer();

J3

The disconnect_pull_consumer operation terminates the event communication; it
releases resources used at the consumer to support the event communication.

1.This, of course, may be a standard CORBA exception.

Event Service, v1.1 The CosEventComm Module March 2001 2-3

The PullConsumer object reference is disposed. Calling
disconnect_pull_consumer causes the implementation to call the
disconnect_pull_supplier operation on the correspondiRgillSupplier interface
(if that interface is known).

2.1.5 Disconnection Behavior

Calling a disconnect operation on a consumer or supplier interface may cause a call to
the corresponding disconnect operation on the connected supplier or consumer.
Implementations must take care to avoid infinite recursive calls to these disconnect
operations. If a consumer or supplier has received a disconnect call and subsequently
receives another disconnect call, it shall rai<e@QRBA::OBJECT_NOT_EXIST
exception.

2.2 Event Channels

The event channeis a service that decouples the communication between suppliers
and consumers. The event channel is itself both a consumer and a supplier of the event
data.

An event channel can provide asynchronous communication of event data between
suppliers and consumers. Although consumers and suppliers communicate with the
event channel using standard CORBA requests, the event channel does not need to
supply the event data to its consumer at the same time it consumes the data from its
supplier.

2.2.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, pushe:
event data to the consumer. Figure 2-1 illustrates a push-style communication between
a supplier and the event channel, and a consumer and the event channel.

PushSupplier [PushSupplier |
consumer| |(-)I | (’supplier
1 - |
PushConsume

PushConsumer\ event channel

Figure 2-1 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

Event Service, v1.1 March 2001

2.2.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn, pulls
event data from the supplier. Figure 2-2 illustrates a pull-style communication between
a supplier and the event channel, and a consumer and the event channel.

;

PullSupplier
>) } >

' supplier

PullSupplier

consumer 1 |

—

|

| |
PullConsumer event channel PullConsumer

Figure 2-2 Pull-style communication between a supplier and an event channel and a consumer
and the event channel

2.2.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communication,
and communicate with a consumer using a different style of communication.

Figure 2-3 illustrates a push-style communication between a supplier and an event
channel, and a pull-style communication between a consumer and the event channel.
The consumer pulls the event data that the supplier has pushed to the event channel.

PullConsumer PushSupplier |
|
consumer "\ I)I |{ supplier
. |
PullSupplier event channel PushConsumer

"V

Figure 2-3 Push-style Communication Between a Supplier and an Event Channel, and Pull-
style Communication Between a Consumer and an Event Channel

Event Service, v1.1 Event Channels March 2001 2-5

2.2.4 Multiple Consumers and Multiple Suppliers

Figure 2-1, Figure 2-2, and Figure 2-3 illustrate event channels with a single supplier
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

Figure 2-4 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

\PushSupplier pushSupplier
|
consumer) I/ - , |
-~ \I suppliel
| L
PushConsurer IPushConsumer
event channel .
PushSupplier PushSupplier /
|
| >
consumer | V ' '\ supplier
1
/'PushConsumer PushConsumer\

Figure 2-4 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communication
models.

If an event channel has pull suppliers, it continues to pull events from the suppliers,
regardless of whether any consumers are connected to the channel.

2.2.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, no
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supporksémChannel
interface, as illustrated in Figure 2-5.

Event Service, v1.1 March 2001

event channel

EventChannel

Figure 2-5 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning aConsumerAdmin object for adding consumers, an operation returning a
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers retpiroxy suppliers A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but includes
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers retpmxy consumersA proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generating
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the proxy
supplier by providing it with a consumer.

The reason for the two-step registration process is to support composing event channels
by an external agent. Such an agent would compose two channels by obtaining a proxy
supplier from one and a proxy consumer from the other, and passing each of them a
reference to the other as part of their connect operation.

Event Service, v1.1 Event Channels March 2001 2-7

Proxies are in one of three statdisconnectedconnectedor destroyed Figure 2-6

gives a state diagram for a proxy. The nodes of the diagram are the states and the edge
are labelled with the operations that change the state of the Fasiy/pull

operations are only valid in thennectedstate.

event
communication

obtain] connect
disconnecte(

Figure 2-6 State diagram of a proxy.

2.3 The CosEventChannelAdmin Module

2-8

The CosEventChannelAdmin module defines the interfaces for making connections
between suppliers and consumers. TosEventChannelAdmin module is defined
below.

#include “CosEventComm.idl”
module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

J3

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

h

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

3

interface ProxyPushSupplier: CosEventComm::PushSupplier {

Event Service, v1.1 March 2001

void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

h

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

3

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

h

2.3.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding
consumers, adding suppliers, and destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

h

Any object that possesses an object reference that suppoEsdhtChannel
interface can perform these operations:

® The ConsumerAdmin interface allows consumers to be connected to the event
channel. Thdor_consumers operation returns an object reference that supports
the ConsumerAdmin interface.

® The SupplierAdmin interface allows suppliers to be connected to the event
channel. Thdor_suppliers operation returns an object reference that supports the
SupplierAdmin interface.

® Thedestroy operation destroys the event channel. Destroying an event channel
destroys allConsumerAdmin andSupplierAdmin objects that were created via
that channel. Destruction of@GonsumerAdmin or SupplierAdmin object causes
the implementation to invoke the disconnect operation on all proxies that were
created via thaConsumerAdmin or SupplierAdmin object.

Event Service, v1.1 The CosEventChannelAdmin Module March 2001 2-9

Consumer administration and supplier administration are defined as separate objects so
that the creator of the channel can control the addition of suppliers and consumers. For
example, a creator might wish to be the sole supplier of event data but allow many
consumers to be connected to the channel. In such a case, the creator would simply
export theConsumerAdmin object.

2.3.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to the
event channel; clients use it to obtain proxy suppliers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();
h
The obtain_push_supplier operation returns BroxyPushSupplier object. The

ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns RroxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

2.3.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the
event channel; clients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

h

The obtain_push_consumer operation returns BroxyPushConsumer object.
The ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns BroxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

2.3.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

2-10 Event Service, v1.1 March 2001

2

A nil object reference may be passed to¢benect_push_supplier operation; if so

a channel cannot invoke tliisconnect_push_supplier operation on the supplier;

the supplier may be disconnected from the channel without being informed. If a non-
nil reference is passed tmnnect_push_supplier , the implementation calls
disconnect_push_supplier via that reference when tiroxyPushConsumer is
destroyed.

If the ProxyPushConsumer is already connected toRushSupplier , then the
AlreadyConnected exception is raised.

2.3.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull
consumers to the event channel.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

h

A nil object reference may be passed to ¢banect_pull_consumer operation; if
so a channel cannot invokedessconnect_pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed. If a non-nil reference is passecctmnect_pull_consumer , the
implementation callslisconnect_pull_consumer via that reference when the
ProxyPullSupplier is destroyed.

If the ProxyPullSupplier is already connected toRullConsumer , then the
AlreadyConnected exception is raised.

2.3.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull
suppliers to the event channel.

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

h

The implementation calldisconnect_pull_supplier on the reference passed to
connect_pull_supplier when theProxyPullConsumer is destroyed.

Implementations shall raise the CORBA standdAD_PARAM exception if a nil
object reference is passed to ttumnect_pull_supplier operation.

If the ProxyPullConsumer is already connected toRullSupplier , then the
AlreadyConnected exception is raised.

Event Service, v1.1 The CosEventChannelAdmin Module March 2001 2-11

An implementation of @&roxyPullConsumer may put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements, th@roxyPullConsumer raises thelypeError exception. (See
Section 2.5.2, “The TypedPullSupplier Interface,” on page 2-15 for an example.)

2.3.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

h

The implementation calldisconnect_push_consumer on the reference passed to
connect_push_consumer when theProsyPushSupplier is destroyed.

Implementations shall raise the CORBA standdAD_PARAM exception if a nil
object reference is passed to ttumnect_push_consumer operation.

If the ProxyPushSupplier is already connected toRushConsumer , then the
AlreadyConnected exception is raised.

An implementation of @roxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet those
requirements, th@roxyPushSupplier raises thelypeError exception. (See

Section 2.5.1, “The TypedPushConsumer Interface,” on page 2-15 for an example.)

2.4 Typed Event Communication

2-12

Section 1.7, “Generic Event Communication,” on page 1-7 discusses generic event
communication usingush andpull operations. The next few sections describe how
event communication can be described in OMG IDL and how typed event channels can
support such typed event communication.

2.4.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mutually
agreed interfacé The interfacd is defined in IDL, and may contain any operations
subject to the following restrictions:

® All parameters must be in parameters only.
® No return values are permitted

These are the same restrictions as CORBA imposeseway operations, and for
similar reasons: event communication is unidirectional, and does not directly support
responses. The operations can be declaredvay, but need not be. (Note that, if a

Event Service, v1.1 March 2001

2

consumer operation is declaredeway, there is no way for the caller to find out if the
consumer is in the disconnected state becausenieway calls, the servant cannot
raise exceptions.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer andPushSupplier object references. (Note that the supplier
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of théflypedPushConsumer interface, which
returns an object reference supporting the typed interfaceferred to as ah

reference . The particular interfacd, that the reference supports is dependent on the
particularTypedPushConsumer , and must be mutually agreed by supplier and
consumer. Once the supplier has obtained-teference , it can call operations in
interfacel on the consumer.

As in the case of the generic push-style, event communication can be broken by
invoking adisconnect_push_consumer operation on th@ypedPushConsumer
interface or by invoking adisconnect_push_supplier operation on the
PushSupplier interface. If thePushSupplier object reference is nil, the connection
cannot be broken via the supplier.

Figure 2-7 illustrates typed push-style communication between supplier and consumer.

PushSupplier

]
consumer) | K’ supplier

TypedPushConsumer

Figure 2-7 Typed Push-style Communication Between a Supplier and a Consumer

2.4.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interf@esi<I>2. For every interfacé

having the properties described in Section 2.4.1, “Typed Push Model,” on page 2-12,
an interfacePull<I> is defined as follows:

2.Pull<l> is used as notation for a computed interface from intetfadeus, ifl is an
interfaceDocumentEvents |, Pull<I> is an interfac®ullDocumentEvents .

Event Service, v1.1 Typed Event Communication March 2001 2-13

® For every operation in |, Pull<I> contains two operations:

e pull_o, with allin parameters changed ¢ait parameters. When called, this
operation will return with the event data in thet parameters. If no-event is
currently available, it will block.

« boolean try_o , with all in parameters changed to out parameters. When called,
this operation will check whether arevent is currently available. If so, it will
returntrue, with the event data in theut parameters. If not, it will returfalse
with the out parameters undefined

The interfacdaPull<I> is designed to allow pulling of exactly the same events that can
be pushed using interfate

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer andTypedPullSupplier object references. (Note that the consumer
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of th&ypedPullSupplier , which returns an object
reference supporting the typed interfaPell<I>, referred to as Bull<I>-reference .
The particular interfaceRull<I>, that the reference supports is dependent on the
particularTypedPullSupplier , and must be mutually agreed by supplier and
consumer. Once the consumer has obtainedthiel>-reference , it can call
operations in interfacBull<I> on the supplier.

Figure 2-8 illustrates typed pull-style communication between supplier and consumer.

PullConsumer

supplier

< |
consumer / |

.K
— >
TypedPullSupplier
[l
|

PullI>

Figure 2-8 Typed Pull-style Communication Between a Supplier and a Consumer

2.5 The CosTypedEventComm Module

The typed communication styles shown in Figure 2-7 and Figure 2-8 are both
supported by two new interfaceBjpedPushConsumer andTypedPullSupplier

and two existing interface®ushSupplier andPullConsumer . The first two

interfaces are defined in an OMG IDL module nanGadTypedEventComm , as

shown below. The last two are the same as for untyped event communication, and were
defined in theCosEventComm module.

#include “CosEventComm.idl”

module CosTypedEventComm {

2-14 Event Service, v1.1 March 2001

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();
h

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
h

2.5.1 The TypedPushConsumer Interface

A typed push-style consumer supports TlypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();
h

The TypedPushConsumer can behave just like an untypBdishConsumer ,

described in Section 2.1.1, “The PushConsumer Interface,” on page 2-2. In addition, if
the supplier wishes to communicate event data to the consumer in typed rather than
generic form, it first invokes thget_typed_consumer operation. This returns dn
reference supporting an interfack The particular interfacethat the reference

supports is dependent on the particdigpedPushConsumer . The return type of the
operation iObject, because differentypedPushConsumer s will return references

of different types, so the actual type cannot be specified in a general definition. Once
the supplier has obtained theeference , it can narrow it td, and then call operations

in interfacel on the consumer. Mutual agreement albastneeded between the

supplier and consumer. If they do not agree, the narrow operation will fail.

As noted above, @ypedPushConsumer must support thpush operation, inherited
from CosEventComm::PushConsumer . Implementingpush fully is an

unnecessary burden if the consumer is intended for typed use only. It is therefore
permissible to implement BypedPushConsumer with a null implementation of

push that merely raises the standard CORBA excepiéh IMPLEMENT. Clearly,
suppliers must know this and confine themselves to typed communication with such
consumers.

If a TypedPushConsumer is in the disconnected state and a supplier attempts to
deliver a typed event, the consumer shall rai&A®D INV_ORDER exception.

2.5.2 The TypedPullSupplier Interface

A typed pull-style supplier supports tiigpedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific typed
interface through which they can pull it in typed form.

Event Service, v1.1 The CosTypedEventComm Module March 2001 2-15

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();
h

The TypedPullSupplier can behave just like an untyp@dllSupplier , described in
Section 2.1.3, “The PullSupplier Interface,” on page 2-3. In addition, if the consumer
wishes to pull event data from the supplier in typed rather than generic form, it first
invokes theget_typed_supplier operation. This returns Rull<|>-reference

supporting an interfacBull<l>. The particular interfac&?ull<I>, that the reference
supports is dependent on the particdigpedPullSupplier . The return type of the
operation iObject, because differentypedPullSupplier s will return references of
different types, so the actual type cannot be specified in a general definition. Once the
consumer has obtained tRall<I>-reference , it can narrow it tdPull<l>, and then

call operations in interfadeull<l> on the supplier. Mutual agreement abButl<I> is
needed between the supplier and consumer. If they do not agreeyttve operation

will fail.

As noted above, @ypedPullSupplier must support thpull andtry_pull operations,
inherited fromCosEventComm::PullSupplier . Implementing these operations fully

is an unnecessary burden if the supplier is intended for typed use only. It is therefore
permissible to implement BypedPullSupplier with null implementations opull
andtry_pull that merely raise the standard CORBA excephiid_IMPLEMENT.

Clearly, consumers must know this and confine themselves to typed communication
with such suppliers.

If a TypedPullSupplier is in the disconnected state and a consumer attempts to
retrieve a typed event, the supplier shall rai#AD INV_ORDER exception.

2.6 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support both
typed and generic event communication. These forms can be mixed at will. A single
channel can handle events supplied and consumed in any combination of the forms
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.

2.7 The CosTypedEventChannelAdmin Module

2-16

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. Most of its interfaces are specializations of the corresponding
interfaces in th&CosEventChannel module.

3.Doing this does require an understanding on the part of the generic suppliers and consumers
of how the channel packages parameters of typed calls when converting them to generic
form. Details of this packaging are dependent on the implementation of the channel.

Event Service, v1.1 March 2001

#include “CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchlmplementation {};
typedef string Key; /I Repository ID

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

h

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

h

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

2.7.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

Event Service, v1.1 The CosTypedEventChannelAdmin Module March 2001 2-17

2-18

h

This interface is analogous @osEventChannelAdmin::EventChannel . However,
it returns typed versions of the consumer and supplier administration interfaces, which
are capable of providing proxies for either generic or typed communication.

2.7.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting
consumers to typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {
TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)
raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(
in Key uses_interface)
raises(NoSuchlmplementation);

3

Theobtain_typed_pull_supplier operation takes ey parameter that identifies an
interface,Pull<l>. The key specifies the repository ID of the supported interface. The
scope of the key is the typed event channel. It retuifygpadProxyPullSupplier for
interfacePull<I>. The TypedProxyPullSupplier will allow an attached pull

consumer to pull events either in generic form or using operations in int&fitied> .

It is up to the implementation abtain_typed_pull_supplier to create or find an
appropriateTypedProxyPullSupplier . If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_push_supplier — operation takes Hey parameter that identifies

an interface). The key specifies the repository ID of the interface used. The scope of
the key is the typed event channel. It returi®r@xyPushSupplier that calls

operations in interfack rather tharpush operations. It is up to the implementation of
obtain_typed_push_supplier to create or find an appropriate

ProxyPushSupplier . If it cannot, it raises the exception

NoSuchlmplementation.

Such aProxyPushSupplier is guaranteed only to invoke operations defined in
interfacel. Any event on the channel that does not correspond to an operation defined
in interfacel is not passed on to the consumer. SuéhraxyPushSupplier is

therefore an event filter based on type.

4.See Appendix A forimplementation considerations.

Event Service, v1.1 March 2001

2.7.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers to
the typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {
TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)
raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (
in Key uses_interface)
raises(NoSuchimplementation);

3

Theobtain_typed_push_consumer operation takes Hey parameter that identifies
an interface). The key specifies the repository ID of the supported interface. The
scope of the key is the typed event channel. It retuiiiypadProxyPushConsumer

for I. An attached supplier can provide events by using operations in interfaceup
to the implementation adbtain_typed_push_consumer to create or find an
appropriateTypedProxyPushConsumer . If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_pull_consumer operation takes ey parameter that identifies
an interfacePull<I>. The key specifies the repository ID of the interface used. The
scope of the key is the typed event channel. It retuffioayPullConsumer that
calls operations in interfadeull<l>, rather tharpull operations. It is up to the
implementation obbtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumer . If it cannot, it raises the exceptiloSuchlmplementation.

Such aProxyPullConsumer is guaranteed only to invoke operations defined in
interfacePull<I>. Any event request that does not correspond to an operation defined
in interfacePull<I> is not pulled from the supplier. SuchPaoxyPullConsumer is
therefore an event filter based on type.

2.7.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting
push suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer {};

By inheriting from bothCosEventChannelAdmin::ProxyPushConsumer and
CosTypedEventComm::TypedPushConsumer , this interface supports:

® connection and disconnection of push suppliers, exactly as in the generic event
channel,

® genericpush operation, and

Event Service, v1.1 The CosTypedEventChannelAdmin Module March 2001 2-19

® obtaining the typed view, so that the supplier can use typed push communication.
The reference returned lget_typed_consumer has the interface identified by
theKey used when thiFypedProxyPushConsumer was obtained. (See
Section 2.7.3, “The TypedSupplierAdmin Interface,” on page 2-19.)

2.7.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pull
consumers to the typed event channel.

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

By inheriting from bothCosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:

® Connection and disconnection of pull consumers, exactly as in the generic event
channel,

® genericpull andtry_pull operations, and

® obtaining the typed view, so that the consumer can use typed pull communication.
The reference returned loet_typed_supplier supports the interface identified by
theKey used when thidypedProxyPullSupplier was obtained. (See
Section 2.7.2, “The TypedConsumerAdmin Interface,” on page 2-18.)

2.8 Composing Event Channels and Filtering

The event channel administration operations defined in Section 2.3, “The
CosEventChannelAdmin Module,” on page 2-8 support the composition of event
channels. That is, one event channel can consume events supplied by another. This
architecture allows the implementation of an event channel that filters the events
supplied by another.

Since theProxyPushSupplier for interfacel of a typed event channel only pushes
events that correspond Lpit acts as a filter based on type. Similarly, the
ProxyPullConsumer for interfacePull<I> of a typed event channel only pulls events
that correspond teull<l>, it also acts as a filter based on type.

2.9 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding a
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers will
dictate when an event channel is created and how references to the event channel are
obtained. By representing the event channel as an object, it has all of the properties
that apply to objects, including support by finding mechanisms.

2-20 Event Service, v1.1 March 2001

2

For example, when a user performdrag-and-drop or cut-and-paste operation, an
event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could be
exported through an operation on an object.

Event Service, v1.1 Policies for Finding Event Channels March 2001 2-21

2-22 Event Service, v1.1 March 2001

Implementing Typed Event Channels A

A.1 Introduction

Note —Implementation details do not form part of an OMG specification, and should
not be standardized. On the other hand, it is not obvious that typed channels can be
implemented without extensions to CORBA. This section indicatestrategy for
implementing typed event channels. It is included to show that typed event channels
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure A-1 demonstrates a possible implementation of a typed event channel. This
appendix concentrates on push style communication. The implementation of pull-style
communication is analogous.

The implementation interposes ancoderbetween typed-style suppliers and the
channel and @ecoderbetween the channel and typed-style consumers.

l |
| |
[PC encode§ | yped

consume supplier

event
channe

PC = PushConsumer
| = interface |

Figure A-1 A possible implementation of a typed event channel.

At the supplier end, aancoderconverts operation calls fush calls.

Event Service, v1.1 March 2001 A-1

A-2

At the consumer end, decoderconvertspush calls back to operation calls.

The effect of such a communication is thus that the original operation is eventually
called on the consumer, but the communication is routed via the channel. Of course,
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel to all
consumers.

The encoder must package the operation identification and the parameters in a manner
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interfacg, an encoder generator could generate
an implementation that supports the interfaaad converts all calls on this interface to
push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

The typed event channel is responsible for finding, creating, or implementing the
appropriate encoders. An appropriate encoder is found or created in response to the
obtain_typed_push_consumer request on the typed event channel. The encoder is
returned in response to tiget typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating, or implementing
the appropriate decoders. An appropriate decoder is found or created in response to the
connect_push_consumer request on the typed event channel.

Event Service, v1.1 March 2001

An Event Channel Use Example B

This section illustrates an example use of the event channel, including the following:
¢ Creating an event channel
e Consumers and/or suppliers finding the channel
¢ Suppliers using the event channel

« In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

« The Document interface defines two operations to return event channels:

interface Document {
ConsumerAdmin title_changed();

ConsumerAdmin new_section();

Thetitle_changed operation causes the document to generate an event when its
title is changed; theew_section operation causes the document to generate an
event when a new section is added. Both operations r€omsumerAdmin

object references. This allows consumers to be added to the event channel.

Event Service, v1.1 March 2001 B-1

B-2

® Thetitle_changed implementation contains instance variables for using and
administering the event channels.

[* Factory for creating event channels. */
EventChannelFactoryRef ecf;

[* For title changed event channel */

EventChannelRef event_channel;
ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy push_consumer;
PushSupplierRef doc_side_connection;

* At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a Supplier

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

® Thetitle_changed operation returns thEonsumerAdmin object reference.

return consumer_admin;

Clients of this operation can add consumers.

® When the title changes, the document implementation pushes the event to the
channel.

proxy_push_consumer->push(env,data);

The document implementation similarly initializes, exports, and uses the event channel
for reporting new sections.

1.For readability, exception handling is omitted from these code fragments.

Event Service, v1.1 March 2001

Index

A
application object 1-2

C
callback interface
described Vviii
common facilities iv
compound object vii
concepts of vi
connect 2-11
Consolidated OMG IDL A-1, B-1
consumer 1-2
ConsumerAdmin interface 2-9, 2-10, 2-18
for_consumers operation 2-9
obtain_pull_supplier operation 2-10
obtain_push_supplier operation 2-10
CORBA vi
contributors ix
documentation set v
standard requests 1-1

CORBA OMG IDL based Specification of the Trading

Function A-1, B-1
CosEventChannelAdmin module
OMG IDL 2-8-2-9
CosEventComm module
OMG IDL 2-1
CosTypedEventComm module
OMG IDL 2-14

E

event channel vii, viii, 1-5, 2-6
adding consumers 2-9
adding consumers to 2-10
adding consumers to typed 2-18
adding pull consumer to typed 2-20
adding pull consumers to 2-11
adding pull suppliers to 2-11
adding push consumers to 2-12
adding push suppliers to 2-10
adding push suppliers to typed 2-19
adding suppliers 2-9
adding suppliers to 2-10
adding suppliers to typed 2-19
and CORBA requests 2-4
decoders A-2
defined 1-3, 2-4
encoders A-2
filtering 2-20-2-21
implementing typed A-1-A-2
sample use B-1-B-2

event communication
mixed 2-5
multiple 2-6
pull model 1-2, 1-7, 2-5
push model 1-2, 1-7, 2-4
typed pull model 2-13
typed push model 2-12

event consumer 1-2, 1-7, 2-4
proxy 2-7

event service
and CORBA scoping 1-5

Event Service, v1.1

overview 1-1
event supplier 1-2, 1-7, 2-4
proxy 2-7
EventChannel interface vii, 2-6, 2-7, 2-9
exception 2-19
exceptions
described ix

G
global identifier viii

|
interface inheritance.see subtyping

o
Object Management Group iii
address of vi
object model v
object request broker iv, v
object service
context iv
specification defined v
OMG IDL v, vii

P

property list 1-2

ProxyPullConsumer interface 2-11
connect_pull_supplier operation 2-11

ProxyPullSupplier 2-11

ProxyPullSupplier interface 1-3, 2-11
connect_pull_consumer operation 2-11

ProxyPushConsumer interface 1-3, 2-10
connect_push_supplier operation 2-11
disconnect_push_supplier operation 2-11

ProxyPushSupplier interface 2-12
connect_push_consumer operation 2-12

PullConsumer interface 1-3, 2-3, 2-14
disconnect_pull_consumer operation 1-7

PullSupplier interface vii, 1-7, 2-3
disconnect_pull_supplier operation 1-7, 2-3
pull operation 2-3
try_pull operation 2-3

PushConsumer interface vii, 1-7, 2-2
disconnect_push_consumer operation 2-2
push operation 2-2

PushSupplier interface 1-3, 2-2
disconnect_push_supplier operation 1-7, 2-3

Q
quality of service vii, 1-4, 1-6, 2-6

R
reference model iv

S

subtyping vi, ix

supplier 1-2

SupplierAdmin interface 1-3, 2-9, 2-10
for_suppliers operation 2-9
obtain_pull_consumer operation 2-10
obtain_push_consumer operation 2-10

March 2001

Index-1

Index

T TypedPushConsumer interface 2-13

TypedConsumerAdmin interface TypedSupplierAdmin interface 2-19
obtain_typed_pull_supplier operation 2-18 obtain_typed_pull_consumer operation 2-19
obtain_typed_push_supplier operation 2-18 obtain_typed_push_consumer operation 2-19

TypedProxyPullSupplier interface 2-20

TypedProxyPushConsumer interface 2-19 X

TypedPullSupplier interface 2-14 X/Open iv

Index-2 Event Service, v1.1 March 2001

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Event Communication
	1.3 Example Scenario
	1.4 Design Principles
	1.5 Resolution of Technical Issues
	1.6 Quality of Service
	1.7 Generic Event Communication
	1.7.1 Push Model
	1.7.2 Pull Model

	2. Modules and Interfaces
	2.1 The CosEventComm Module
	2.1.1 The PushConsumer Interface
	2.1.2 The PushSupplier Interface
	2.1.3 The PullSupplier Interface
	2.1.4 The PullConsumer Interface
	2.1.5 Disconnection Behavior

	2.2 Event Channels
	2.2.1 Push-Style Communication with an Event Channel
	2.2.2 Pull-Style Communication with an Event Channel
	2.2.3 Mixed Style Communication with an Event Channel
	2.2.4 Multiple Consumers and Multiple Suppliers
	2.2.5 Event Channel Administration

	2.3 The CosEventChannelAdmin Module
	2.3.1 The EventChannel Interface
	2.3.2 The ConsumerAdmin Interface
	2.3.3 The SupplierAdmin Interface
	2.3.4 The ProxyPushConsumer Interface
	2.3.5 The ProxyPullSupplier Interface
	2.3.6 The ProxyPullConsumer Interface
	2.3.7 The ProxyPushSupplier Interface

	2.4 Typed Event Communication
	2.4.1 Typed Push Model
	2.4.2 Typed Pull Model

	2.5 The CosTypedEventComm Module
	2.5.1 The TypedPushConsumer Interface
	2.5.2 The TypedPullSupplier Interface

	2.6 Typed Event Channels
	2.7 The CosTypedEventChannelAdmin Module
	2.7.1 The TypedEventChannel Interface
	2.7.2 The TypedConsumerAdmin Interface
	2.7.3 The TypedSupplierAdmin Interface
	2.7.4 The TypedProxyPushConsumer Interface
	2.7.5 The TypedProxyPullSupplier Interface

	2.8 Composing Event Channels and Filtering
	2.9 Policies for Finding Event Channels

	Appendix A - Implementing Typed Event Channels
	Appendix B - An Event Channel Use Example
	Index

