
Event Service Specification

Version 1.1
March 2001

 paid up,
fied
 copyright
ving

ire use
 be

at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
 form or
nd
Copyright 1993, DEC
Copyright 1993, Groupe Bull
Copyright 1993, Hewlett-Packard
Copyright 1993, HyperDesk
Copyright 1993, Itasca
Copyright 1993, Novell
Copyright 1993, O2
Copyright 1993, Object Design
Copyright 2000, Object Management Group, Inc.
Copyright 1993, Objectivity
Copyright 1993, Ontos
Copyright 1993, Oracle
Copyright 1993, Servio
Copyright 1993, SunSoft
Copyright 1993, Tivoli
Copyright 1993, Versant

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

 in

IDL,
, Inc.

ers to
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

1-1

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-7
-7

-1

2-1
2-2

2-2
-3

-3
-4

2-4

-4

-5
Preface .

1. Service Description .

1.1 Overview .

1.2 Event Communication .

1.3 Example Scenario. .

1.4 Design Principles .

1.5 Resolution of Technical Issues .

1.6 Quality of Service .

1.7 Generic Event Communication .

1.7.1 Push Model. .
1.7.2 Pull Model . 1

2. Modules and Interfaces. 2

2.1 The CosEventComm Module .
2.1.1 The PushConsumer Interface

2.1.2 The PushSupplier Interface.
2.1.3 The PullSupplier Interface 2

2.1.4 The PullConsumer Interface 2
2.1.5 Disconnection Behavior 2

2.2 Event Channels. .

2.2.1 Push-Style Communication with an
Event Channel . 2

2.2.2 Pull-Style Communication with an
Event Channel . 2
Event Service, v1.1 March 2001 i

Contents

-5

-6
-6

2-8
2-9

10
10

-10
11

11
-12

-12

-12
13

-14

-15
15

2-16

-16
-17

18
19

-19
20

-20

-20
2.2.3 Mixed Style Communication with an
Event Channel . 2

2.2.4 Multiple Consumers and Multiple Suppliers . . 2
2.2.5 Event Channel Administration 2

2.3 The CosEventChannelAdmin Module
2.3.1 The EventChannel Interface

2.3.2 The ConsumerAdmin Interface 2-
2.3.3 The SupplierAdmin Interface 2-

2.3.4 The ProxyPushConsumer Interface 2
2.3.5 The ProxyPullSupplier Interface 2-

2.3.6 The ProxyPullConsumer Interface 2-
2.3.7 The ProxyPushSupplier Interface 2

2.4 Typed Event Communication . 2

2.4.1 Typed Push Model . 2
2.4.2 Typed Pull Model . 2-

2.5 The CosTypedEventComm Module 2

2.5.1 The TypedPushConsumer Interface 2
2.5.2 The TypedPullSupplier Interface 2-

2.6 Typed Event Channels .

2.7 The CosTypedEventChannelAdmin Module 2
2.7.1 The TypedEventChannel Interface 2

2.7.2 The TypedConsumerAdmin Interface. 2-
2.7.3 The TypedSupplierAdmin Interface 2-

2.7.4 The TypedProxyPushConsumer Interface. 2
2.7.5 The TypedProxyPullSupplier Interface. 2-

2.8 Composing Event Channels and Filtering 2

2.9 Policies for Finding Event Channels 2

Appendix A - Implementing Typed Event Channels A-1

Appendix B - An Event Channel Use Example B-1
ii Event Service, v1.1 March 2001

Preface
ent
and
Ltd
s.

s at
ll
 by
 and

rted
 and
nted

ide a
,
ous
p a

ed.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification
later as a full CAE Specification. The collaboration between OMG and X/Open Co
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to fu
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas
Event Service, v1.1 March 2001 iii

ted,
ey
bject
nd

ing

st of

 the

r
eed

lpful
o
sists

ive

d

o
on

,
stem
ity.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards fo
object services; the benefits of compliance are outlined in the following section, “N
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key t
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicati
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facil
iv Event Service, v1.1 March 2001

s, an
antic

en
ces,
as
ct

the

 The
es a

 are
ides
 are

ect-

s.
The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfa
protocols, and policies that are agreed upon outside the telephone system, such
telephones, modems and directory services. This is equivalent to the role of Obje
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obj
oriented interfaces between related services and functions.

• CORBA Healthcare, a collection of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end user
Event Service, v1.1 Associated OMG Documents March 2001 v

n
y

nt

d,
dards

 (The

ons,

 of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetar
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complia
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Event Service, v1.1 March 2001

ey
y

erful

may
real

 client
vent
ically

 that
erver
ion

hes
ple,

aces
 rules

nts.

rent
is
Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and pow
ways.

For example, the event and life cycle services, plus a future relationship service,
play together to support graphs of objects. Object graphs commonly occur in the
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynam
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote s
styles of implementations. This allows considerable flexibility as regards the locat
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approac
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interf
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other compone

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
Event Service, v1.1 Service Design Principles March 2001 vii

ngle

 to
ects

ents

faces

ng
ith an

quest
e
event
annel

a

to a

n

text.

 within
A particular service implementation can support the constituent interfaces as a si
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obj
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service inter
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usi
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then re
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
channel can keep track of and manage multiple simultaneous clients. An event ch
as a collection of objects conspiring to manage multiple simultaneous consumer
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some con
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Event Service, v1.1 March 2001

vices

as
h
 to be

l
t
tion

meter

de

nts

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These ser
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured
objects there does not need to be a special way of finding objects associated wit
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a para
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of the Event Service specification:

• DEC

• Groupe Bull

• Hewlett-Packard Company

• HyperDesk

• Itasca

• Novell

• O2

• Object Design

• Objectivity

• Ontos
Event Service, v1.1 Interface Style Consistency March 2001 ix

• Oracle

• Servio

• SunSoft

• Tivoli

• Versant
x Event Service, v1.1 March 2001

Service Description 1
y an
d
 the
quest
 take
Contents

This chapter contains the following topics.

1.1 Overview

A standard CORBA request results in the synchronous execution of an operation b
object. If the operation defines parameters or return values, data is communicate
between the client and the server. A request is directed to a particular object. For
request to be successful, both the client and the server must be available. If a re
fails because the server is unavailable, the client receives an exception and must
some appropriate action.

In some scenarios, a more decoupled communication model between objects is
required. For example:

Topic Page

“Overview 1-1

“Event Communication 1-2

“Example Scenario 1-3

“Design Principles 1-4

“Resolution of Technical Issues 1-5

“Quality of Service 1-6

“Generic Event Communication 1-7
Event Service, v1.1 March 2001 1-1

1

e.

sk
user

t is
 be

he
to

 of

 in

.
ted

rvice

d

d
an

of
st the
 in

via
s,
• A system administration tool is interested in knowing if a disk runs out of spac
The software managing a disk is unaware of the existence of the system
administration tool. The software simply reports that the disk is full. When a di
runs out of space, the system administration tool opens a window to inform the
which disk has run out of space.

• A property list object is associated with an application object. The property list
object is physically separate from the application object. The application objec
interested in the changes made to its properties by a user. The properties can
changed without involving the application object. That is, in order to have
reasonable response time for the user, changing a property does not activate t
application object. However, when the application object is activated, it needs
know about the changes to its properties.

• A CASE tool is interested in being notified when a source program has been
modified. The source program simply reports when it is modified. It is unaware
the existence of the CASE tool. In response to the notification, the CASE tool
invokes a compiler.

• Several documents are linked to a spreadsheet. The documents are interested
knowing when the value of certain cells have changed. When the cell value
changes, the documents update their presentations based on the spreadsheet
Furthermore, if a document is unavailable because of a failure, it is still interes
in any changes to the cells and wants to be notified of those changes when it
recovers.

1.2 Event Communication

The Event Service decouples the communication between objects. The Event Se
defines two roles for objects: the supplier role and the consumer role. Suppliers
produce event data and consumers process event data. Event data are communicate
between suppliers and consumers by issuing standard CORBA requests.

There are two approaches to initiating event communication between suppliers an
consumers, and two orthogonal approaches to the form that the communication c
take.

The two approaches to initiating event communication are called the push model and
the pull model. The push model allows a supplier of events to initiate the transfer
the event data to consumers. The pull model allows a consumer of events to reque
event data from a supplier. In the push model, the supplier is taking the initiative;
the pull model, the consumer is taking the initiative.

The communication itself can be either generic or typed. In the generic case, all
communication is by means of generic push or pull operations that take a single
parameter that packages all the event data. In the typed case, communication is
operations defined in OMG IDL. Event data is passed by means of the parameter
which can be defined in any manner desired.
1-2 Event Service, v1.1 March 2001

1

a
 and

n be

is
ll

 (so
on the

 in
nel

e

n on

as
ject
 that
it
en

f
,

g

ome
An event channel is an intervening object that allows multiple suppliers to
communicate with multiple consumers asynchronously. An event channel is both
consumer and a supplier of events. Event channels are standard CORBA objects
communication with an event channel is accomplished using standard CORBA
requests.

1.3 Example Scenario

This section provides a general scenario that illustrates how the Event Service ca
used.

The Event Service can be used to provide “change notification.” When an object
changed (its state is modified), an event can be generated that is propagated to a
interested parties. For example, when a spreadsheet cell object is modified, all
compound documents which contain a reference (link) to that cell can be notified
the document can redisplay the referenced cell, or recalculate values that depend
cell). Similarly, when an engineering specification object is modified, all engineers
who have registered an interest in the specification can be notified that the
specification has changed.

In this scenario, objects that can be “changed” act as suppliers, parties interested
receiving notifications of changes act as consumers, and one or more event chan
objects are used as intermediaries between consumers and suppliers. Either the push or
the pull model can be used at either end.

If the push model is used by suppliers, objects that can be changed support the
PushSupplier interface so that event communication can be discontinued. Use th
EventChannel , the SupplierAdmin , and the ProxyPushConsumer interfaces to
register as suppliers of events, and use the ProxyPushConsumer interface to push
events to event channels.

When a change occurs to an object, a changeable object invokes a push operatio
the channel. It provides as an argument to the push operation information that
describes the event. This information is of data type any - it can be as simple or
complex as is necessary. For example, the event information might identify the ob
reference of the object that has been changed, it might identify the kind of change
has occurred, it might provide a new displayable image of the changed object or
might identify one or more additional objects that describe the change that has be
made.

If the pull model is used by consumers, all client objects that want to be notified o
changes support the PullConsumer interface so communication can be discontinued
using the EventChannel , ConsumerAdmin , and ProxyPullSupplier interfaces to
register as consumers of events, and using the ProxyPullSupplier interface to pull
events from event channels.

The consumer may use either a blocking or non-blocking mechanism for receivin
notification of changes. Using the try_pull operation, the consumer can periodically
poll the channel for events. Alternatively, the consumer can use the pull operation
which will block the consumer’s execution thread until an event is generated by s
supplier.
Event Service, v1.1 Example Scenario March 2001 1-3

1

bjects
on
” that

n
 them
they
col

e
d).

ines
d of

t

 of

c

 been

y

iers.

ore

o

 all

rs.
the

for
 as
Event channels act as the intermediaries between the objects being changed and o
interested in knowing about changes. The channels that provide change notificati
can be general purpose, well-known objects (e.g., “persistent server-based objects
are run as part of a workgroup-wide framework of objects that provide “desktop
services”) or specific-to-task objects (e.g., temporary objects that are created whe
needed). Objects that use event channels may locate the channels by looking for
in a persistently available server (e.g., by looking for them in a naming service) or
may be given references to these objects as part of a specific-to-task object proto
(e.g., when an “open” operation is invoked on an object, the object may return th
reference to an event channel which the caller should use until the object is close

Event channels determine how changes are propagated between suppliers and
consumers (i.e., the qualities of service). For example, an event channel determ
the persistence of an event. The channel may keep an event for a specified perio
time, passing it along to any consumer who registers with the channel during tha
period of time (e.g., it may keep event notifications about changes to engineering
specifications for a week). Alternatively, the channel may only pass on events to
consumers who are currently waiting for notification of changes (e.g., notifications
changes to a spreadsheet cell may only be sent to consumers who are currently
displaying that cell).

This scenario exemplifies one way the event service described here forms a basi
building block used in providing higher-level services specific to an application or
common facilities framework of objects.

Instead of using the generic event channel, a typed event channel could also have
used.

1.4 Design Principles

The Event Service design satisfies the following principles:

• Events work in a distributed environment. The design does not depend on an
global, critical, or centralized service.

• Event services allow multiple consumers of an event and multiple event suppl

• Consumers can either request events or be notified of events, whichever is m
appropriate for application design and performance.

• Consumers and suppliers of events support standard OMG IDL interfaces; n
extensions to CORBA are necessary to define these interfaces.

• A supplier can issue a single standard request to communicate event data to
consumers at once.

• Suppliers can generate events without knowing the identities of the consume
Conversely, consumers can receive events without knowing the identities of
suppliers.

• The Event Service interfaces allow multiple qualities of service, for example,
different levels of reliability. It also allows for future interface extensions, such
for additional functionality.
1-4 Event Service, v1.1 March 2001

1

t be

ered
oes

 a
ific
icate

 of

at is,
ls can

t
n that

e
• The Event Service interfaces are capable of being implemented and used in
different operating environments, for example, in environments that support
threading and those that do not.

1.5 Resolution of Technical Issues

This specification addresses the issues identified for event services in the OMG Object
Services Architecture1 document as follows:

• Distributed environment: The interfaces are designed to allow consumers and
suppliers of events to be disconnected from time to time, and do not require
centralized event identification, processing, routing, or other services that migh
a bottleneck or a single point of failure.

Events themselves are not objects because the CORBA distributed object model
does not support passing objects by value.

Event generation: The specification describes how events are generated and deliv
in a very general fashion, with event channels as intermediate routing points. It d
not require (or preclude) polling, nor does it require that an event supplier directly
notify every interested party.

Events involving multiple objects: Complex events may be handled by constructing
notification tree of event consumer/suppliers checking for successively more spec
event predicates. The specification does not require a general or global event pred
evaluation service as this may not be sufficiently reliable, efficient, or secure in a
distributed, heterogeneous (potentially decoupled) environment.

Scoping, grouping, and filtering events: The specification takes advantage of
CORBA’s distributed scoping and grouping mechanisms for the identifier and type
events. Event filtering is easily achieved through event channels that selectively
deliver events from suppliers to consumers. Event channels can be composed; th
one event channel can consume events supplied by another. Typed event channe
provide filtering based on event type.

Registration and generation of events: Consumers and suppliers register with even
channels themselves. Event channels are objects and they are found by any fashio
objects can be found. A global registration service is not required; any object that
conforms to the IDL interface may consume an event.

Event parameters: The specification supports a parameter of type any that can b
delivered with an event, used for application-specific data.

Forgery and secure events: Because event suppliers are objects, the specification
leverages any ORB work on security for object references and communication.

1.Object Services Architecture, Document Number 92-8-4, Object Management Group,
Framingham, MA, 1992.
Event Service, v1.1 Resolution of Technical Issues March 2001 1-5

1

RB
RB

a
the

t
s.

e
end

 all

s.

e
s are
uch,

t

umer
ors

s.

of

 that

f the
y all
Performance: The design is a minimalist one, and requires only one ORB call per
event received. It supports both push-style and pull-style notification to avoid
inefficient event polling. Since event suppliers, consumers, and channels are all O
objects, the service directly benefits from a Library Object Adapter or any other O
optimizations.

Formalized Event Information: For specific application environments and
frameworks it may be beneficial to formalize the data associated with an event
(defined in this specification as type any). This can be accomplished by defining
typed structure for this information. Depending on the needs of the environment,
kinds of information included might be a priority, timestamp, origin string, and
confirmation indicator. This information might be solely for the benefit of the even
consumer or might also be interpreted by particular event channel implementation

Confirmation of Reception: Some applications may require that consumers of an
event provide an explicit confirmation of reception back to the supplier. This can b
supported effectively using a “reverse” event channel through which consumers s
back confirmations as normal events. This obviates the need for any special
confirmation mechanism. However, strict atomic delivery between all suppliers and
consumers requires additional interfaces.

1.6 Quality of Service

Application domains requiring event-style communication have diverse reliability
requirements, from “at-most-once” semantics (best effort) to guaranteed “exactly-
once” semantics, availability requirements, throughput requirements, performance
requirements (i.e., how fast events are disseminated), and scalability requirement

Clearly no single implementation of the Event Service can optimize such a divers
range of technical requirements. Hence, multiple implementations of event service
to be expected, with different services targeted toward different environments. As s
the event interfaces do not dictate qualities of service. Different implementations of the
Event Service interfaces can support different qualities of service to meet differen
application needs.

For example, an implementation that trades at most once delivery to a single cons
in favor of performance is useful for some applications; an implementation that fav
performance but cannot preclude duplicate delivery is useful for other application
Both are acceptable implementations of the interfaces described in this chapter.

Clearly, an implementation of an event channel that discards all events is not a useful
implementation. Useful implementations will at least support “best-effort” delivery
events.

Note that the interfaces defined in this chapter are incomplete for implementations
support strict notions of atomicity. That is, additional interfaces are needed by an
implementation to guarantee that either all consumers receive an event or none o
consumers receive an event; and that all events are received in the same order b
consumers.
1-6 Event Service, v1.1 March 2001

1

e

er.

r.
1.7 Generic Event Communication

There are two basic models for communicating event data between suppliers and
consumers: the push model and the pull model.

1.7.1 Push Model

In the push model, suppliers “push” event data to consumers; that is, suppliers
communicate event data by invoking push operations on the PushConsumer
interface.

To set up a push-style communication, consumers and suppliers exchange
PushConsumer and PushSupplier object references. Event communication can b
broken by invoking a disconnect_push_consumer operation on the
PushConsumer interface or by invoking a disconnect_push_supplier operation
on the PushSupplier interface. If the PushSupplier object reference is nil, the
connection cannot be broken via the supplier.

Figure 1-1 illustrates push-style communication between a supplier and a consum

Figure 1-1 Push-style Communication Between a Supplier and a Consumer

1.7.2 Pull Model

In the pull model, consumers “pull” event data from suppliers; that is, consumers
request event data by invoking pull operations on the PullSupplier interface.

To set up a pull-style communication, consumers and suppliers must exchange
PullConsumer and PullSupplier object references. Event communication can be
broken by invoking a disconnect_pull_consumer operation on the
PullConsumer interface or by invoking a disconnect_pull_supplier operation on
the PullSupplier interface. If the PullConsumer object reference is nil, the
connection cannot be broken via the consumer.

Figure 1-2 illustrates pull-style communication between a supplier and a consume

PushSupplier

PushConsumer

supplierconsumer
Event Service, v1.1 Generic Event Communication March 2001 1-7

1

Figure 1-2 Pull-style Communication Between a Supplier and a Consumer

PullConsumer

PullSupplier

supplierconsumer
1-8 Event Service, v1.1 March 2001

Modules and Interfaces 2

Contents

This chapter contains the following topics.

2.1 The CosEventComm Module

The communication styles shown in Chapter 1 are both supported by four simple
interfaces: PushConsumer , PushSupplier , and PullSupplier and PullConsumer .
These interfaces are defined in an OMG IDL module named CosEventComm , as
shown below.

module CosEventComm {

exception Disconnected{};

Topic Page

“The CosEventComm Module” 2-1

“Event Channels” 2-4

“The CosEventChannelAdmin Module” 2-8

“Typed Event Communication” 2-12

“The CosTypedEventComm Module” 2-14

“Typed Event Channels” 2-16

“The CosTypedEventChannelAdmin Module” 2-16

“Composing Event Channels and Filtering” 2-20

“Policies for Finding Event Channels” 2-20
Event Service, v1.1 March 2001 2-1

2

it
e
interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

};

2.1.1 The PushConsumer Interface

A push-style consumer supports the PushConsumer interface to receive event data.

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

A supplier communicates event data to the consumer by invoking the push operation
and passing the event data as a parameter.

The disconnect_push_consumer operation terminates the event communication;
releases resources used at the consumer to support the event communication. Th
PushConsumer object reference is disposed. Calling disconnect_push_consumer
causes the implementation to call the disconnect_push_supplier operation on the
corresponding PushSupplier interface (if that interface is known).

2.1.2 The PushSupplier Interface

A push-style supplier supports the PushSupplier interface.

interface PushSupplier {
void disconnect_push_supplier();

};
2-2 Event Service, v1.1 March 2001

2

ed.

he

n

it
The disconnect_push_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PushSupplier object reference is disposed. Calling disconnect_push_supplier
causes the implementation to call the disconnect_push_consumer operation on
the corresponding PushConsumer interface (if that interface is known).

2.1.3 The PullSupplier Interface

A pull-style supplier supports the PullSupplier interface to transmit event data.

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

A consumer requests event data from the supplier by invoking either the pull operation
or the try_pull operation on the supplier.

• The pull operation blocks until the event data is available or an exception is rais1
It returns the event data to the consumer.

• The try_pull operation does not block: if the event data is available, it returns t
event data and sets the has_event parameter to true; if the event is not available, it
sets the has_event parameter to false and the event data is returned as long with a
undefined value.

The disconnect_pull_supplier operation terminates the event communication; it
releases resources used at the supplier to support the event communication. The
PullSupplier object reference is disposed. Calling disconnect_pull_supplier
causes the implementation to call the disconnect_pull_consumer operation on the
corresponding PullConsumer interface (if that interface is known).

2.1.4 The PullConsumer Interface

A pull-style consumer supports the PullConsumer interface.

interface PullConsumer {
void disconnect_pull_consumer();

};

The disconnect_pull_consumer operation terminates the event communication;
releases resources used at the consumer to support the event communication.

1.This, of course, may be a standard CORBA exception.
Event Service, v1.1 The CosEventComm Module March 2001 2-3

2

all to

ct
ently

s
 event

n
he
 to
 its

ushes
ween
The PullConsumer object reference is disposed. Calling
disconnect_pull_consumer causes the implementation to call the
disconnect_pull_supplier operation on the corresponding PullSupplier interface
(if that interface is known).

2.1.5 Disconnection Behavior

Calling a disconnect operation on a consumer or supplier interface may cause a c
the corresponding disconnect operation on the connected supplier or consumer.
Implementations must take care to avoid infinite recursive calls to these disconne
operations. If a consumer or supplier has received a disconnect call and subsequ
receives another disconnect call, it shall raise a CORBA::OBJECT_NOT_EXIST
exception.

2.2 Event Channels

The event channel is a service that decouples the communication between supplier
and consumers. The event channel is itself both a consumer and a supplier of the
data.

An event channel can provide asynchronous communication of event data betwee
suppliers and consumers. Although consumers and suppliers communicate with t
event channel using standard CORBA requests, the event channel does not need
supply the event data to its consumer at the same time it consumes the data from
supplier.

2.2.1 Push-Style Communication with an Event Channel

The supplier pushes event data to the event channel; the event channel, in turn, p
event data to the consumer. Figure 2-1 illustrates a push-style communication bet
a supplier and the event channel, and a consumer and the event channel.

Figure 2-1 Push-style Communication Between a Supplier and an Event Channel, and a
Consumer and an Event Channel

event channel

supplierconsumer

PushConsumerPushConsumer

PushSupplier PushSupplier
2-4 Event Service, v1.1 March 2001

2

 pulls
een

umer

tion,

t
nel.

nnel.

ll-
2.2.2 Pull-Style Communication with an Event Channel

The consumer pulls event data from the event channel; the event channel, in turn,
event data from the supplier. Figure 2-2 illustrates a pull-style communication betw
a supplier and the event channel, and a consumer and the event channel.

Figure 2-2 Pull-style communication between a supplier and an event channel and a cons
and the event channel

2.2.3 Mixed Style Communication with an Event Channel

An event channel can communicate with a supplier using one style of communica
and communicate with a consumer using a different style of communication.

Figure 2-3 illustrates a push-style communication between a supplier and an even
channel, and a pull-style communication between a consumer and the event chan
The consumer pulls the event data that the supplier has pushed to the event cha

Figure 2-3 Push-style Communication Between a Supplier and an Event Channel, and Pu
style Communication Between a Consumer and an Event Channel

event channel

supplierconsumer

PullConsumerPullConsumer

PullSupplier PullSupplier

event channel

supplierconsumer

PushSupplier

PushConsumer

PullConsumer

PullSupplier
Event Service, v1.1 Event Channels March 2001 2-5

2

lier

ation

rs,

o

2.2.4 Multiple Consumers and Multiple Suppliers

Figure 2-1, Figure 2-2, and Figure 2-3 illustrate event channels with a single supp
and a single consumer. An event channel can also provide many-to-many
communication. The channel consumes events from one or more suppliers, and
supplies events to one or more consumers. Subject to the quality of service of a
particular implementation, an event channel provides an event to all consumers.

Figure 2-4 illustrates an event channel with multiple push-style consumers and
multiple push-style suppliers.

Figure 2-4 An Event Channel with Multiple Suppliers and Multiple Consumers

An event channel can support consumers and suppliers using different communic
models.

If an event channel has pull suppliers, it continues to pull events from the supplie
regardless of whether any consumers are connected to the channel.

2.2.5 Event Channel Administration

The event channel is built up incrementally. When an event channel is created, n
suppliers or consumers are connected to the event channel. Upon creation of the
channel, the factory returns an object reference that supports the EventChannel
interface, as illustrated in Figure 2-5.

event channel

supplier

consumer

PushSupplier

PushConsumer

PushSupplier

PushConsumer

consumer

PushSupplier

PushConsumer

supplier

PushSupplier

PushConsumer
2-6 Event Service, v1.1 March 2001

2

 a

des

g

oxy

nnels
proxy
m a

Figure 2-5 A newly created event channel. The channel has no suppliers or consumers.

The EventChannel interface defines three administrative operations: an operation
returning a ConsumerAdmin object for adding consumers, an operation returning
SupplierAdmin object for adding suppliers, and an operation for destroying the
channel.

The operations for adding consumers return proxy suppliers. A proxy supplier is
similar to a normal supplier (in fact, it inherits the interface of a supplier), but inclu
an additional method for connecting a consumer to the proxy supplier.

The operations for adding suppliers return proxy consumers. A proxy consumer is
similar to a normal consumer (in fact, it inherits the interface of a consumer), but
includes an additional method for connecting a supplier to the proxy consumer.

Registration of a producer or consumer is a two step process. An event-generatin
application first obtains a proxy consumer from a channel, then “connects” to the
proxy consumer by providing it with a supplier. Similarly, an event-receiving
application first obtains a proxy supplier from a channel, then “connects” to the pr
supplier by providing it with a consumer.

The reason for the two-step registration process is to support composing event cha
by an external agent. Such an agent would compose two channels by obtaining a
supplier from one and a proxy consumer from the other, and passing each of the
reference to the other as part of their connect operation.

event channel

EventChannel
Event Service, v1.1 Event Channels March 2001 2-7

2

 edges

s
Proxies are in one of three states: disconnected, connected, or destroyed. Figure 2-6
gives a state diagram for a proxy. The nodes of the diagram are the states and the
are labelled with the operations that change the state of the proxy. Push/pull
operations are only valid in the connected state.

Figure 2-6 State diagram of a proxy.

2.3 The CosEventChannelAdmin Module

The CosEventChannelAdmin module defines the interfaces for making connection
between suppliers and consumers. The CosEventChannelAdmin module is defined
below.

#include “CosEventComm.idl”

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {

disconnected connected destroyed
obtain connect disconnect

event
communication
2-8 Event Service, v1.1 March 2001

2

t
s

the

l

void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)

raises(AlreadyConnected, TypeError);
};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

2.3.1 The EventChannel Interface

The EventChannel interface defines three administrative operations: adding
consumers, adding suppliers, and destroying the channel.

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

Any object that possesses an object reference that supports the EventChannel
interface can perform these operations:

• The ConsumerAdmin interface allows consumers to be connected to the even
channel. The for_consumers operation returns an object reference that support
the ConsumerAdmin interface.

• The SupplierAdmin interface allows suppliers to be connected to the event
channel. The for_suppliers operation returns an object reference that supports
SupplierAdmin interface.

• The destroy operation destroys the event channel. Destroying an event channe
destroys all ConsumerAdmin and SupplierAdmin objects that were created via
that channel. Destruction of a ConsumerAdmin or SupplierAdmin object causes
the implementation to invoke the disconnect operation on all proxies that were
created via that ConsumerAdmin or SupplierAdmin object.
Event Service, v1.1 The CosEventChannelAdmin Module March 2001 2-9

2

cts so
. For
y
ply

the

Consumer administration and supplier administration are defined as separate obje
that the creator of the channel can control the addition of suppliers and consumers
example, a creator might wish to be the sole supplier of event data but allow man
consumers to be connected to the channel. In such a case, the creator would sim
export the ConsumerAdmin object.

2.3.2 The ConsumerAdmin Interface

The ConsumerAdmin interface defines the first step for connecting consumers to
event channel; clients use it to obtain proxy suppliers.

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

The obtain_push_supplier operation returns a ProxyPushSupplier object. The
ProxyPushSupplier object is then used to connect a push-style consumer.

The obtain_pull_supplier operation returns a ProxyPullSupplier object. The
ProxyPullSupplier object is then used to connect a pull-style consumer.

2.3.3 The SupplierAdmin Interface

The SupplierAdmin interface defines the first step for connecting suppliers to the
event channel; clients use it to obtain proxy consumers.

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

The obtain_push_consumer operation returns a ProxyPushConsumer object.
The ProxyPushConsumer object is then used to connect a push-style supplier.

The obtain_pull_consumer operation returns a ProxyPullConsumer object. The
ProxyPullConsumer object is then used to connect a pull-style supplier.

2.3.4 The ProxyPushConsumer Interface

The ProxyPushConsumer interface defines the second step for connecting push
suppliers to the event channel.

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};
2-10 Event Service, v1.1 March 2001

2

on-
A nil object reference may be passed to the connect_push_supplier operation; if so
a channel cannot invoke the disconnect_push_supplier operation on the supplier;
the supplier may be disconnected from the channel without being informed. If a n
nil reference is passed to connect_push_supplier , the implementation calls
disconnect_push_supplier via that reference when the ProxyPushConsumer is
destroyed.

If the ProxyPushConsumer is already connected to a PushSupplier , then the
AlreadyConnected exception is raised.

2.3.5 The ProxyPullSupplier Interface

The ProxyPullSupplier interface defines the second step for connecting pull
consumers to the event channel.

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

A nil object reference may be passed to the connect_pull_consumer operation; if
so a channel cannot invoke a disconnect_pull_consumer operation on the
consumer; the consumer may be disconnected from the channel without being
informed. If a non-nil reference is passed to connect_pull_consumer , the
implementation calls disconnect_pull_consumer via that reference when the
ProxyPullSupplier is destroyed.

If the ProxyPullSupplier is already connected to a PullConsumer , then the
AlreadyConnected exception is raised.

2.3.6 The ProxyPullConsumer Interface

The ProxyPullConsumer interface defines the second step for connecting pull
suppliers to the event channel.

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_pull_supplier on the reference passed to
connect_pull_supplier when the ProxyPullConsumer is destroyed.

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to the connect_pull_supplier operation.

If the ProxyPullConsumer is already connected to a PullSupplier , then the
AlreadyConnected exception is raised.
Event Service, v1.1 The CosEventChannelAdmin Module March 2001 2-11

2

hose

.)

t

 can

tually

ort
An implementation of a ProxyPullConsumer may put additional requirements on the
interface supported by the pull supplier. If the pull supplier does not meet those
requirements, the ProxyPullConsumer raises the TypeError exception. (See
Section 2.5.2, “The TypedPullSupplier Interface,” on page 2-15 for an example.)

2.3.7 The ProxyPushSupplier Interface

The ProxyPushSupplier interface defines the second step for connecting push
consumers to the event channel.

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

The implementation calls disconnect_push_consumer on the reference passed to
connect_push_consumer when the ProsyPushSupplier is destroyed.

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil
object reference is passed to the connect_push_consumer operation.

If the ProxyPushSupplier is already connected to a PushConsumer , then the
AlreadyConnected exception is raised.

An implementation of a ProxyPushSupplier may put additional requirements on the
interface supported by the push consumer. If the push consumer does not meet t
requirements, the ProxyPushSupplier raises the TypeError exception. (See
Section 2.5.1, “The TypedPushConsumer Interface,” on page 2-15 for an example

2.4 Typed Event Communication

Section 1.7, “Generic Event Communication,” on page 1-7 discusses generic even
communication using push and pull operations. The next few sections describe how
event communication can be described in OMG IDL and how typed event channels
support such typed event communication.

2.4.1 Typed Push Model

In the typed push model, suppliers call operations on consumers using some mu
agreed interface I. The interface I is defined in IDL, and may contain any operations
subject to the following restrictions:

• All parameters must be in parameters only.
• No return values are permitted

These are the same restrictions as CORBA imposes on oneway operations, and for
similar reasons: event communication is unidirectional, and does not directly supp
responses. The operations can be declared oneway , but need not be. (Note that, if a
2-12 Event Service, v1.1 March 2001

2

r

he

mer.

12,
consumer operation is declared oneway , there is no way for the caller to find out if the
consumer is in the disconnected state because, for oneway calls, the servant cannot
raise exceptions.

To set up typed push-style communication, consumers and suppliers exchange
TypedPushConsumer and PushSupplier object references. (Note that the supplie
interface is the same as the untyped case.) The supplier then invokes the
get_typed_consumer operation of the TypedPushConsumer interface, which
returns an object reference supporting the typed interface, I, referred to as an I-
reference . The particular interface, I, that the reference supports is dependent on t
particular TypedPushConsumer , and must be mutually agreed by supplier and
consumer. Once the supplier has obtained the I-reference , it can call operations in
interface I on the consumer.

As in the case of the generic push-style, event communication can be broken by
invoking a disconnect_push_consumer operation on the TypedPushConsumer
interface or by invoking a disconnect_push_supplier operation on the
PushSupplier interface. If the PushSupplier object reference is nil, the connection
cannot be broken via the supplier.

Figure 2-7 illustrates typed push-style communication between supplier and consu

Figure 2-7 Typed Push-style Communication Between a Supplier and a Consumer

2.4.2 Typed Pull Model

In the typed pull model, consumers call operations on suppliers, requesting event
information, using some mutually agreed interface Pull<I> 2. For every interface I
having the properties described in Section 2.4.1, “Typed Push Model,” on page 2-
an interface Pull<I> is defined as follows:

2.Pull<I> is used as notation for a computed interface from interface I. Thus, if I is an
interface DocumentEvents , Pull<I> is an interface PullDocumentEvents .

PushSupplier

TypedPushConsumer

supplierconsumer

I

Event Service, v1.1 Typed Event Communication March 2001 2-13

2

ed,

an

r

mer.

 were
• For every operation o in I, Pull<I> contains two operations:

• pull_o , with all in parameters changed to out parameters. When called, this
operation will return with the event data in the out parameters. If no o-event is
currently available, it will block.

• boolean try_o , with all in parameters changed to out parameters. When call
this operation will check whether an o-event is currently available. If so, it will
return true, with the event data in the out parameters. If not, it will return false,
with the out parameters undefined

The interface Pull<I> is designed to allow pulling of exactly the same events that c
be pushed using interface I.

To set up typed pull-style communication, consumers and suppliers exchange
PullConsumer and TypedPullSupplier object references. (Note that the consume
interface is the same as the untyped case.) The consumer then invokes the
get_typed_supplier operation of the TypedPullSupplier , which returns an object
reference supporting the typed interface, Pull<I> , referred to as a Pull<I>-reference .
The particular interface, Pull<I> , that the reference supports is dependent on the
particular TypedPullSupplier , and must be mutually agreed by supplier and
consumer. Once the consumer has obtained the Pull<I>-reference , it can call
operations in interface Pull<I> on the supplier.

Figure 2-8 illustrates typed pull-style communication between supplier and consu

Figure 2-8 Typed Pull-style Communication Between a Supplier and a Consumer

2.5 The CosTypedEventComm Module

The typed communication styles shown in Figure 2-7 and Figure 2-8 are both
supported by two new interfaces, TypedPushConsumer and TypedPullSupplier
and two existing interfaces, PushSupplier and PullConsumer . The first two
interfaces are defined in an OMG IDL module named CosTypedEventComm , as
shown below. The last two are the same as for untyped event communication, and
defined in the CosEventComm module.

#include “CosEventComm.idl”

module CosTypedEventComm {

PullConsumer

TypedPullSupplier

supplierconsumer

Pull<I>
2-14 Event Service, v1.1 March 2001

2

n, if
an

nce

ch

d
interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

2.5.1 The TypedPushConsumer Interface

A typed push-style consumer supports the TypedPushConsumer interface both to
receive event data in the generic manner, and to supply a specific typed interface
through which to receive it in typed form.

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

The TypedPushConsumer can behave just like an untyped PushConsumer ,
described in Section 2.1.1, “The PushConsumer Interface,” on page 2-2. In additio
the supplier wishes to communicate event data to the consumer in typed rather th
generic form, it first invokes the get_typed_consumer operation. This returns an I-
reference supporting an interface I. The particular interface I that the reference
supports is dependent on the particular TypedPushConsumer . The return type of the
operation is Object , because different TypedPushConsumer s will return references
of different types, so the actual type cannot be specified in a general definition. O
the supplier has obtained the I-reference , it can narrow it to I, and then call operations
in interface I on the consumer. Mutual agreement about I is needed between the
supplier and consumer. If they do not agree, the narrow operation will fail.

As noted above, a TypedPushConsumer must support the push operation, inherited
from CosEventComm::PushConsumer . Implementing push fully is an
unnecessary burden if the consumer is intended for typed use only. It is therefore
permissible to implement a TypedPushConsumer with a null implementation of
push that merely raises the standard CORBA exception NO_IMPLEMENT. Clearly,
suppliers must know this and confine themselves to typed communication with su
consumers.

If a TypedPushConsumer is in the disconnected state and a supplier attempts to
deliver a typed event, the consumer shall raise a BAD_INV_ORDER exception.

2.5.2 The TypedPullSupplier Interface

A typed pull-style supplier supports the TypedPullSupplier interface both to allow
consumers to pull event data in the generic manner, and to supply a specific type
interface through which they can pull it in typed form.
Event Service, v1.1 The CosTypedEventComm Module March 2001 2-15

2

er
st

e the

fore

on

both
gle

s

rs
interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

The TypedPullSupplier can behave just like an untyped PullSupplier , described in
Section 2.1.3, “The PullSupplier Interface,” on page 2-3. In addition, if the consum
wishes to pull event data from the supplier in typed rather than generic form, it fir
invokes the get_typed_supplier operation. This returns a Pull<I>-reference
supporting an interface Pull<I> . The particular interface, Pull<I> , that the reference
supports is dependent on the particular TypedPullSupplier . The return type of the
operation is Object , because different TypedPullSupplier s will return references of
different types, so the actual type cannot be specified in a general definition. Onc
consumer has obtained the Pull<I>-reference , it can narrow it to Pull<I> , and then
call operations in interface Pull<I> on the supplier. Mutual agreement about Pull<I> is
needed between the supplier and consumer. If they do not agree, the narrow operation
will fail.

As noted above, a TypedPullSupplier must support the pull and try_pull operations,
inherited from CosEventComm::PullSupplier . Implementing these operations fully
is an unnecessary burden if the supplier is intended for typed use only. It is there
permissible to implement a TypedPullSupplier with null implementations of pull
and try_pull that merely raise the standard CORBA exception NO_IMPLEMENT.
Clearly, consumers must know this and confine themselves to typed communicati
with such suppliers.

If a TypedPullSupplier is in the disconnected state and a consumer attempts to
retrieve a typed event, the supplier shall raise a BAD_INV_ORDER exception.

2.6 Typed Event Channels

Typed event channels are analogous to generic event channels, but they support
typed and generic event communication. These forms can be mixed at will. A sin
channel can handle events supplied and consumed in any combination of the form
defined earlier (push/pull, generic/typed). An event supplied in typed form can be
consumed in generic form, or vice versa.3

2.7 The CosTypedEventChannelAdmin Module

The CosTypedEventChannelAdmin module defines the interfaces for making
connections between suppliers and consumers that use either generic or typed
communication. Most of its interfaces are specializations of the corresponding
interfaces in the CosEventChannel module.

3.Doing this does require an understanding on the part of the generic suppliers and consume
of how the channel packages parameters of typed calls when converting them to generic
form. Details of this packaging are dependent on the implementation of the channel.
2-16 Event Service, v1.1 March 2001

2

#include “CosEventChannel.idl”
#include “CosTypedEventComm.idl”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key; // Repository ID

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};

2.7.1 The TypedEventChannel Interface

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();
Event Service, v1.1 The CosTypedEventChannelAdmin Module March 2001 2-17

2

hich

he

 of

f

fined
};

This interface is analogous to CosEventChannelAdmin::EventChannel . However,
it returns typed versions of the consumer and supplier administration interfaces, w
are capable of providing proxies for either generic or typed communication.

2.7.2 The TypedConsumerAdmin Interface

The TypedConsumerAdmin interface defines the first step for connecting
consumers to typed event channel; clients use it to obtain proxy suppliers.

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)
raises(NoSuchImplementation);

};

The obtain_typed_pull_supplier operation takes a Key parameter that identifies an
interface, Pull<I> . The key specifies the repository ID of the supported interface. T
scope of the key is the typed event channel. It returns a TypedProxyPullSupplier for
interface Pull<I> . The TypedProxyPullSupplier will allow an attached pull
consumer to pull events either in generic form or using operations in interface Pull<I> .
It is up to the implementation of obtain_typed_pull_supplier to create or find an
appropriate TypedProxyPullSupplier . If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_push_supplier operation takes a Key parameter that identifies
an interface, I. The key specifies the repository ID of the interface used. The scope
the key is the typed event channel. It returns a ProxyPushSupplier that calls
operations in interface I, rather than push operations. It is up to the implementation o
obtain_typed_push_supplier to create or find an appropriate
ProxyPushSupplier 4. If it cannot, it raises the exception
NoSuchImplementation.

Such a ProxyPushSupplier is guaranteed only to invoke operations defined in
interface I. Any event on the channel that does not correspond to an operation de
in interface I is not passed on to the consumer. Such a ProxyPushSupplier is
therefore an event filter based on type.

4.See Appendix A for implementation considerations.
2-18 Event Service, v1.1 March 2001

2

to

ned

t
2.7.3 The TypedSupplierAdmin Interface

The TypedSupplierAdmin interface defines the first step for connecting suppliers
the typed event channel; clients use it to obtain proxy consumers.

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
 in Key supported_interface)

raises(InterfaceNotSupported);
ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
 raises(NoSuchImplementation);

};

The obtain_typed_push_consumer operation takes a Key parameter that identifies
an interface, I. The key specifies the repository ID of the supported interface. The
scope of the key is the typed event channel. It returns a TypedProxyPushConsumer
for I. An attached supplier can provide events by using operations in interface I. It is up
to the implementation of obtain_typed_push_consumer to create or find an
appropriate TypedProxyPushConsumer . If it cannot, it raises the exception
InterfaceNotSupported.

The obtain_typed_pull_consumer operation takes a Key parameter that identifies
an interface, Pull<I> . The key specifies the repository ID of the interface used. The
scope of the key is the typed event channel. It returns a ProxyPullConsumer that
calls operations in interface Pull<I> , rather than pull operations. It is up to the
implementation of obtain_typed_pull_consumer to create or find an appropriate
ProxyPullConsumer . If it cannot, it raises the exception NoSuchImplementation.

Such a ProxyPullConsumer is guaranteed only to invoke operations defined in
interface Pull<I> . Any event request that does not correspond to an operation defi
in interface Pull<I> is not pulled from the supplier. Such a ProxyPullConsumer is
therefore an event filter based on type.

2.7.4 The TypedProxyPushConsumer Interface

The TypedProxyPushConsumer interface defines the second step for connecting
push suppliers to the typed event channel.

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

By inheriting from both CosEventChannelAdmin::ProxyPushConsumer and
CosTypedEventComm::TypedPushConsumer , this interface supports:

• connection and disconnection of push suppliers, exactly as in the generic even
channel,

• generic push operation, and
Event Service, v1.1 The CosTypedEventChannelAdmin Module March 2001 2-19

2

on.

ll

nt

ion.

his

s

 a

l
el are
ies
• obtaining the typed view, so that the supplier can use typed push communicati
The reference returned by get_typed_consumer has the interface identified by
the Key used when this TypedProxyPushConsumer was obtained. (See
Section 2.7.3, “The TypedSupplierAdmin Interface,” on page 2-19.)

2.7.5 The TypedProxyPullSupplier Interface

The TypedProxyPullSupplier interface defines the second step for connecting pu
consumers to the typed event channel.

interface TypedProxyPullSupplier :
 CosEventChannelAdmin::ProxyPullSupplier,

CosTypedEventComm::TypedPullSupplier { };

By inheriting from both CosEventChannelAdmin::ProxyPullSupplier and
CosTypedEventComm::TypedPullSupplier , this interface supports:

• Connection and disconnection of pull consumers, exactly as in the generic eve
channel,

• generic pull and try_pull operations, and

• obtaining the typed view, so that the consumer can use typed pull communicat
The reference returned by get_typed_supplier supports the interface identified by
the Key used when this TypedProxyPullSupplier was obtained. (See
Section 2.7.2, “The TypedConsumerAdmin Interface,” on page 2-18.)

2.8 Composing Event Channels and Filtering

The event channel administration operations defined in Section 2.3, “The
CosEventChannelAdmin Module,” on page 2-8 support the composition of event
channels. That is, one event channel can consume events supplied by another. T
architecture allows the implementation of an event channel that filters the events
supplied by another.

Since the ProxyPushSupplier for interface I of a typed event channel only pushes
events that correspond to I, it acts as a filter based on type. Similarly, the
ProxyPullConsumer for interface Pull<I> of a typed event channel only pulls event
that correspond to Pull<I> , it also acts as a filter based on type.

2.9 Policies for Finding Event Channels

The Event Service does not establish a policy for finding event channels. Finding
service is orthogonal to using the service. Higher levels of software (such as the
desktop) can make policies for using the event channel. That is, higher layers wil
dictate when an event channel is created and how references to the event chann
obtained. By representing the event channel as an object, it has all of the propert
that apply to objects, including support by finding mechanisms.
2-20 Event Service, v1.1 March 2001

2

e
For example, when a user performs a drag-and-drop or cut-and-paste operation, an
event channel could be created and identified to suppliers and consumers.
Alternatively, the event channel could be named in a naming context, or it could b
exported through an operation on an object.
Event Service, v1.1 Policies for Finding Event Channels March 2001 2-21

2

2-22 Event Service, v1.1 March 2001

Implementing Typed Event Channels A
ld
 be

els

is
tyle
A.1 Introduction

Note – Implementation details do not form part of an OMG specification, and shou
not be standardized. On the other hand, it is not obvious that typed channels can
implemented without extensions to CORBA. This section indicates one strategy for
implementing typed event channels. It is included to show that typed event chann
can be implemented; it is not intended in any way to constrain implementations.
Optimized implementations are certainly possible.

Figure A-1 demonstrates a possible implementation of a typed event channel. Th
appendix concentrates on push style communication. The implementation of pull-s
communication is analogous.

The implementation interposes an encoder between typed-style suppliers and the
channel and a decoder between the channel and typed-style consumers.

Figure A-1 A possible implementation of a typed event channel.

At the supplier end, an encoder converts operation calls to push calls.

event

typedtyped
supplierconsumer

I
channel

PCPCI

PC = PushConsumer

encoderdecoder

 I = interface I
Event Service, v1.1 March 2001 A-1

ly
rse,

 all

anner

e

 the
 is

ting
 to the
At the consumer end, a decoder converts push calls back to operation calls.

The effect of such a communication is thus that the original operation is eventual
called on the consumer, but the communication is routed via the channel. Of cou
there can be multiple suppliers and multiple consumers on the same channel.
Whenever one of the suppliers calls an operation, it is delivered by the channel to
consumers.

The encoder must package the operation identification and the parameters in a m
that the decoder can unpack them correctly.

Given the OMG IDL definition of an interface, I, an encoder generator could generat
an implementation that supports the interface I and converts all calls on this interface to
push calls on an event channel.

Similarly, it is possible to generate an I-decoder from the OMG IDL definition of I.

The typed event channel is responsible for finding, creating, or implementing the
appropriate encoders. An appropriate encoder is found or created in response to
obtain_typed_push_consumer request on the typed event channel. The encoder
returned in response to the get_typed_consumer request.

Similarly, the typed event channel is responsible for finding, creating, or implemen
the appropriate decoders. An appropriate decoder is found or created in response
connect_push_consumer request on the typed event channel.
A-2 Event Service, v1.1 March 2001

An Event Channel Use Example B
ng:

its

This section illustrates an example use of the event channel, including the followi

• Creating an event channel

• Consumers and/or suppliers finding the channel

• Suppliers using the event channel

• In this example, the document object creates event channels and defines
operations in its interface to allow consumers to be added.

• The Document interface defines two operations to return event channels:

The title_changed operation causes the document to generate an event when
title is changed; the new_section operation causes the document to generate an
event when a new section is added. Both operations return ConsumerAdmin
object references. This allows consumers to be added to the event channel.

interface Document {

ConsumerAdmin title_changed();

ConsumerAdmin new_section();

:

};
Event Service, v1.1 March 2001 B-1

nnel
• The title_changed implementation contains instance variables for using and
administering the event channels.

• At some point, the document implementation creates the event channel, gets
supplier and consumer administrative references, and adds itself as a supplier1.

• The title_changed operation returns the ConsumerAdmin object reference.

Clients of this operation can add consumers.

• When the title changes, the document implementation pushes the event to the
channel.

The document implementation similarly initializes, exports, and uses the event cha
for reporting new sections.

/* Factory for creating event channels. */
EventChannelFactoryRef ecf;

/* For title changed event channel */
EventChannelRef event_channel;

ConsumerAdminRef consum_admin;
SupplierAdminRef supplier_admin;

ProxyPushConsumerRef proxy_push_consumer;
PushSupplierRef doc_side_connection;

event_channel = ecf->create_eventchannel(env);

supplier_admin = event_channel->for_suppliers(env);
consumer_admin = event_channel->for_consumers(env);
proxy_push_consumer = supplier_admin->obtain_push_consumer(env);

proxy_push_consumer->connect_push_supplier(env,
doc_side_connection)

1.For readability, exception handling is omitted from these code fragments.

return consumer_admin;

proxy_push_consumer->push(env,data);
B-2 Event Service, v1.1 March 2001

Index
A
application object 1-2

C
callback interface

described viii
common facilities iv
compound object vii
concepts of vi
connect 2-11
Consolidated OMG IDL A-1, B-1
consumer 1-2
ConsumerAdmin interface 2-9, 2-10, 2-18

for_consumers operation 2-9
obtain_pull_supplier operation 2-10
obtain_push_supplier operation 2-10

CORBA vi
contributors ix
documentation set v
standard requests 1-1

CORBA OMG IDL based Specification of the Trading
Function A-1, B-1

CosEventChannelAdmin module
OMG IDL 2-8–2-9

CosEventComm module
OMG IDL 2-1

CosTypedEventComm module
OMG IDL 2-14

E
event channel vii, viii, 1-5, 2-6

adding consumers 2-9
adding consumers to 2-10
adding consumers to typed 2-18
adding pull consumer to typed 2-20
adding pull consumers to 2-11
adding pull suppliers to 2-11
adding push consumers to 2-12
adding push suppliers to 2-10
adding push suppliers to typed 2-19
adding suppliers 2-9
adding suppliers to 2-10
adding suppliers to typed 2-19
and CORBA requests 2-4
decoders A-2
defined 1-3, 2-4
encoders A-2
filtering 2-20–2-21
implementing typed A-1–A-2
sample use B-1–B-2

event communication
mixed 2-5
multiple 2-6
pull model 1-2, 1-7, 2-5
push model 1-2, 1-7, 2-4
typed pull model 2-13
typed push model 2-12

event consumer 1-2, 1-7, 2-4
proxy 2-7

event service
and CORBA scoping 1-5

overview 1-1
event supplier 1-2, 1-7, 2-4

proxy 2-7
EventChannel interface vii, 2-6, 2-7, 2-9
exception 2-19
exceptions

described ix

G
global identifier viii

I
interface inheritance.see subtyping

O
Object Management Group iii

address of vi
object model v
object request broker iv, v
object service

context iv
specification defined v

OMG IDL v, vii

P
property list 1-2
ProxyPullConsumer interface 2-11

connect_pull_supplier operation 2-11
ProxyPullSupplier 2-11
ProxyPullSupplier interface 1-3, 2-11

connect_pull_consumer operation 2-11
ProxyPushConsumer interface 1-3, 2-10

connect_push_supplier operation 2-11
disconnect_push_supplier operation 2-11

ProxyPushSupplier interface 2-12
connect_push_consumer operation 2-12

PullConsumer interface 1-3, 2-3, 2-14
disconnect_pull_consumer operation 1-7

PullSupplier interface vii, 1-7, 2-3
disconnect_pull_supplier operation 1-7, 2-3
pull operation 2-3
try_pull operation 2-3

PushConsumer interface vii, 1-7, 2-2
disconnect_push_consumer operation 2-2
push operation 2-2

PushSupplier interface 1-3, 2-2
disconnect_push_supplier operation 1-7, 2-3

Q
quality of service vii, 1-4, 1-6, 2-6

R
reference model iv

S
subtyping vi, ix
supplier 1-2
SupplierAdmin interface 1-3, 2-9, 2-10

for_suppliers operation 2-9
obtain_pull_consumer operation 2-10
obtain_push_consumer operation 2-10
Event Service, v1.1 March 2001 Index-1

Index
T
TypedConsumerAdmin interface

obtain_typed_pull_supplier operation 2-18
obtain_typed_push_supplier operation 2-18

TypedProxyPullSupplier interface 2-20
TypedProxyPushConsumer interface 2-19
TypedPullSupplier interface 2-14

TypedPushConsumer interface 2-13
TypedSupplierAdmin interface 2-19

obtain_typed_pull_consumer operation 2-19
obtain_typed_push_consumer operation 2-19

X
X/Open iv
Index-2 Event Service, v1.1 March 2001

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Event Communication
	1.3 Example Scenario
	1.4 Design Principles
	1.5 Resolution of Technical Issues
	1.6 Quality of Service
	1.7 Generic Event Communication
	1.7.1 Push Model
	1.7.2 Pull Model

	2. Modules and Interfaces
	2.1 The CosEventComm Module
	2.1.1 The PushConsumer Interface
	2.1.2 The PushSupplier Interface
	2.1.3 The PullSupplier Interface
	2.1.4 The PullConsumer Interface
	2.1.5 Disconnection Behavior

	2.2 Event Channels
	2.2.1 Push-Style Communication with an Event Channel
	2.2.2 Pull-Style Communication with an Event Channel
	2.2.3 Mixed Style Communication with an Event Channel
	2.2.4 Multiple Consumers and Multiple Suppliers
	2.2.5 Event Channel Administration

	2.3 The CosEventChannelAdmin Module
	2.3.1 The EventChannel Interface
	2.3.2 The ConsumerAdmin Interface
	2.3.3 The SupplierAdmin Interface
	2.3.4 The ProxyPushConsumer Interface
	2.3.5 The ProxyPullSupplier Interface
	2.3.6 The ProxyPullConsumer Interface
	2.3.7 The ProxyPushSupplier Interface

	2.4 Typed Event Communication
	2.4.1 Typed Push Model
	2.4.2 Typed Pull Model

	2.5 The CosTypedEventComm Module
	2.5.1 The TypedPushConsumer Interface
	2.5.2 The TypedPullSupplier Interface

	2.6 Typed Event Channels
	2.7 The CosTypedEventChannelAdmin Module
	2.7.1 The TypedEventChannel Interface
	2.7.2 The TypedConsumerAdmin Interface
	2.7.3 The TypedSupplierAdmin Interface
	2.7.4 The TypedProxyPushConsumer Interface
	2.7.5 The TypedProxyPullSupplier Interface

	2.8 Composing Event Channels and Filtering
	2.9 Policies for Finding Event Channels

	Appendix A - Implementing Typed Event Channels
	Appendix B - An Event Channel Use Example
	Index

