

Date: November 2007

Enhanced View of Time, Beta 2
Version 2.0

ptc/2007-11-05

Copyright © 2006 SELEX Sistemi Integrati, S.R.L.
Copyright © 1999 Objective Interface Systems, Inc.
Copyright © 2001 Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS

OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER
DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ... v
1 Scope .. 1
2 Conformance ... 1

2.1 Clock Service and Periodic Execution Service ...1

2.2 Federation ...1

3 Normative References .. 1
4 Terms and Definitions ... 1
5 Symbols .. 1
6 Additional Information ... 2

6.1 Acknowledgements ...2

7 Overview ... 3

7.1 Clocks ...3
 7.1.1 Definition ... 3
 7.1.2 Characteristics .. 4
 7.1.3 Cataloging and Bootstrapping ... 5

7.2 CosTime Service Reprised ...5

7.3 Federation ...5

7.4 Synchronization ..6

7.5 Controllable Clocks ...7

7.6 Delayed Execution ..7

7.7 Periodic Execution ..7

8 Clock Service .. 9

8.1 Introduction ...9
 8.1.1 Representation of Time ... 9
 8.1.2 Sources of Time .. 9
 8.1.3 General Object Model ... 10

8.2 TimeBase Module ... 10
 8.2.1 Data Types .. 10

 8.2.1.1 Type TimeT .. 11
 8.2.1.2 Type InaccuracyT ... 11
 8.2.1.3 Type TdfT .. 11
 8.2.1.4 Type UtcT .. 11
 8.2.1.5 Type IntervalT .. 11

8.3 CosClockService Module .. 12
Enhanched View of Time, v2.0 i

8.4 Clocks ...12
 8.4.1 Properties of Clocks .. 12
 8.4.2 The Clock Interface ... 13

 8.4.2.1 Exception TimeUnavailable ...13
 8.4.2.2 Readonly attribute properties ...14
 8.4.2.3 Operation current_time ..14

8.5 UTC TimeService ..14
 8.5.1 Object Model ... 14
 8.5.2 Data Types .. 14

 8.5.2.1 Enum ComparisonType ...15
 8.5.2.2 Enum TimeComparison ...15
 8.5.2.3 Enum OverlapType ..15

 8.5.3 Universal Time Coordinated (UTC) .. 15
 8.5.3.1 Factory init ...16
 8.5.3.2 Factory compose ...16
 8.5.3.3 Public state member time ..16
 8.5.3.4 Public state member inacclo ..16
 8.5.3.5 Public state member inacchi ..16
 8.5.3.6 Public state member tdf ...16
 8.5.3.7 Operation inaccuracy ...16
 8.5.3.8 Operation utc_time ...16
 8.5.3.9 Operation compare_time ...16
 8.5.3.10 Operation interval ...16

 8.5.4 TimeSpan Value .. 17
 8.5.4.1 Factory init ...17
 8.5.4.2 Factory compose ...17
 8.5.4.3 Public state member lower_bound ...17
 8.5.4.4 Public state member upper_bound ..17
 8.5.4.5 Operation time_interval ..17
 8.5.4.6 Operation spans ...18
 8.5.4.7 Operation overlaps ...18
 8.5.4.8 Operation time ...18

 8.5.5 UTC Time Service ... 18
 8.5.5.1 Operation universal_time ...18
 8.5.5.2 Operation secure_universal_time ..18
 8.5.5.3 Operation absolute_time ..18

8.6 The Clock Catalog Interface ..19
 8.6.1 Struct ClockEntry .. 19
 8.6.2 Exception UnknownEntry .. 19
 8.6.3 Operation get_entry .. 19
 8.6.4 Operation available_entries .. 19
 8.6.5 Operation register ... 19
 8.6.6 Operation delete_entry .. 19

8.7 Mission Time ...20
 8.7.1 Exception NotSupported ... 20
 8.7.2 Operation set ... 20
 8.7.3 Operation set_rate .. 20
 8.7.4 Operation get_rate .. 20
 8.7.5 Operation pause .. 20
 8.7.6 Operation resume ... 20
ii Enhanched View of Time, v2.0

 8.7.7 Operation terminate .. 21

8.8 Federation ... 21

8.9 Synchronization .. 22
 8.9.1 SynchronizeBase Interface ... 22

 8.9.1.1 Struct SyncReading ...22
 8.9.1.2 Operation synchronize_poll ... 22

 8.9.2 Synchronizable Interface .. 23
 8.9.2.1 Exception UnableToSynchronize ... 23
 8.9.2.2 Operation new_slave ... 24

 8.9.3 SynchronizedClock Interface .. 24
 8.9.3.1 Operation resynch_now ... 24

8.10 Bootstrapping .. 24

8.11 PeriodExecution Service ... 25
 8.11.1 The Periodic Interface ... 26

 8.11.1.1 Operation do_work .. 27
 8.11.2 Controller Interface ... 27

 8.11.2.1 Exception time_past .. 27
 8.11.2.2 Operation start ... 27
 8.11.2.3 Operation start_at .. 27
 8.11.2.4 Operation pause .. 27
 8.11.2.5 Operation resume ..27
 8.11.2.6 Operation resume_at ... 27
 8.11.2.7 Operation stop ... 27
 8.11.2.8 Operation terminate ...27
 8.11.2.9 Operation executions ... 28
 8.11.2.10 set_update_strategy .. 28
 8.11.2.11 get_update_strategy .. 28

 8.11.3 Interface Executor ... 28
 8.11.3.1 Operation enable_periodic_execution ... 28

 8.11.4 Interface ControlledExecutor .. 28
 8.11.4.1 Operation enable_periodic_execution_with_strategy .. 28
 8.11.4.2 Operation set_controller_update_strategy ... 28
 8.11.4.3 Operation get_controller_update_strategy .. 28

 8.11.5 Interface ControllerUpdateHandler ... 28
 8.11.5.1 Operation on_set ... 28
 8.11.5.2 Operation on_set_rate .. 28
 8.11.5.3 Operation on_pause ... 29
 8.11.5.4 Operation on_stop ...29
 8.11.5.5 Operation on_terminate .. 29
 8.11.5.6 Operation on_resume ... 29

 8.11.6 Interface ControllerUpdateStrategyRegistry ... 29
 8.11.6.1 Operation register .. 29
 8.11.6.2 Operation unregister ..29
 8.11.6.3 Operation get_strategy .. 29

9 Lightweight Time Service .. 31

9.1 Platform Independent Model ... 31
 9.1.1 Overview ... 31
 9.1.2 Minor Conformance Points ... 31
 9.1.3 The LightweightTime Package .. 31

 9.1.3.1 Clock .. 32
 9.1.3.2 ControlledClock ... 33
 9.1.3.3 ClockCatalog ... 34
 9.1.3.4 ClockEntries ... 35
 9.1.3.5 ClockEntry ... 35
 9.1.3.6 TimeUnavailable .. 37
Enhanched View of Time, v2.0 iii

 9.1.3.7 UnknownEntry ..37
 9.1.3.8 NotSupported ...38
 9.1.3.9 TimePast ..38
 9.1.3.10 The ClockProperty Package ..38
 9.1.3.11 Resolution ..39
 9.1.3.12 Precision ..39
 9.1.3.13 Width ..40
 9.1.3.14 Stability_Description ..40
 9.1.3.15 Coordination ...41
 9.1.3.16 TimeScale ..42
 9.1.3.17 Comments ..43

 9.1.4 The PeriodicExecution Package 43
 9.1.4.1 Controller ...43
 9.1.4.2 Executor ...45
 9.1.4.3 Periodic ..46

9.2 Platform Specific Model: CORBA Service ...46
 9.2.1 Overview ... 46
 9.2.2 Minor Conformance Points .. 47
 9.2.3 LightweightTime Module ... 47

 9.2.3.1 ClockProperty Module ..47
 9.2.3.2 Clock Interface ...48
 9.2.3.3 ClockCatalog Interface ...48
 9.2.3.4 ControllableClock Interface ..48

 9.2.4 PeriodicExecution Module ... 49
 9.2.4.1 Periodic Interface ... 49
 9.2.4.2 Controller Interface .. 49
 9.2.4.3 Executor Interface.. 49

A - Consolidated OMG IDL .. 51
B - Implementation Guidelines .. 61
iv Enhanched View of Time, v2.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
Enhanced View of Time, v2.0 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Suite 300 Building A
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Enhanced View of Time, v2.0

1 Scope

This is a revised and upgraded version of the Enhanced View of Time (EVoT) v1.2. This specification fixes some issues
of the previous specification and introduces new features. The changes introduced were motivated by the experience
matured in several projects which relied on the EVoT v1.2 for delivering high performance and highly available time
services in application domains such as Air Traffic Control (ATC) Systems and Command/Control Systems. As it
predecessors, this specification leaves the specification of Time Service unchanged.

2 Conformance

There are two conformance points for this service.

2.1 Clock Service and Periodic Execution Service
This set of services provide for multiple clocks, access to UTC and mission clocks, and clock synchronization.

This conformance point requires the implementation of all types, valuetypes, and interfaces in the CosClockService and
CosClockService::PeriodicExecution module. The latter module supports repeated execution of a method on an
object.

2.2 Federation
This conformance point requires the support for federated clock. It requires that at least a synchronized real-time clock is
available on all nodes (for instance NTP time) and that support for federated controlled clocks is provided.

3 Normative References

This specification does not use any specific normative references.

4 Terms and Definitions

This specification does not use any specific terms and definitions.

5 Symbols

This specification does not use any specific symbols/abbreviations.
Enhanced View of Time, v2.0 1

6 Additional Information

6.1 Acknowledgements
The following companies submitted and/or supported parts of the Enhanced View of Time specification:

• Altair Aerospace Corporation

• General Dynamics Information Systems

• Objective Interface Systems, Inc.

• THALES
2 Enhanced View of Time, v2.0

7 Overview

7.1 Clocks

7.1.1 Definition
The term “clock,” as used in this document, is a logical entity that can yield a “time reading.” It is assumed that this
reading in some way measures the passage of time. The relationship of the readings of a clock to physical time, if known,
is characterized by a set of “clock characteristics.” Unless differently stated, clocks are CORBA local Objects as this
allows for minimal overhead as well as for promoting a style of application design which avoids centralized clocks which
are read remotely. It is worth noticing that having clocks as local objects does not forbid different application to read the
same clock; instead it means that different applications will have their copy of the object representing the shared clock
An underlying mechanism will be used in order to synchronize the different instances.

The existing CORBA Services: Time Service Specification recognized only one clock, one presumed to represent UTC
(Universal Time Coordinated). While this clock is of primary importance for most applications, other applications require
clocks with different characteristics. For example, applications may require clocks that:

• are strictly monotonic, constant rate. While UTC is constant rate, it is subject to the insertion of leap seconds. In some
applications, a one second difference can cause an unacceptable error. For example, in satellite navigation, a one
second error causes a seven kilometer error in position for a low-earth orbiting satellite.

• can be paused, continued, or reset. The countdown clock for the launch of the Space Shuttle may be the most well-
known of this class of clocks.

• are relative to a certain event. “Mission time clocks” are of this flavor.

• logically unique but locally accessible to every application which needs it.

• highly efficient and available.

In addition, there are a set of clocks that are not coordinated with an external time source. These clocks, usually
associated with some sort of local hardware oscillator, are often used because of the low latency of access to a local
device, because a network is isolated from external sources, or because cost or size constraints prevent incorporation of
software or hardware synchronization with external time sources.

In addition to the need for clocks with characteristics other than that provided by the existing Time Service, there is a
need to recognize that multiple time sources are becoming available on many networks. Any network connected to the
internet, given sufficient firewall support, has access to multiple external time sources. The presence of multiple external
time sources on private networks is also becoming more common.

Conversely, there are often needs to access a time source that is not local. There are a number of embedded single-board
computers where the only on-board clock has a resolution of 20 or 16 milliseconds (derived from a 50Hz or 60Hz power
input). A CORBA call to a remote time source with a round-trip time of 500 microseconds can obviously increase the
precision of any time or interval measurement.

This specification introduces a generalized Clock interface to represent clocks with differing characteristics. Each clock
is capable of providing a readout of time and is characterized by a set of properties.
Enhanced View of Time, v2.0 3

7.1.2 Characteristics
Clocks have a set of characteristics that may render them useful or useless in any particular application. Several of the
characteristics that are applicable to any clock include:

• resolution: the granularity of readout of a clock. Also, the time interval during which the readout of a clock will not
change. The resolution is usually the inverse of the oscillator driving the clock device.

• precision: the number of bits provided in the clock readout and their scaling. Usually, this is more bits than that
required by the resolution of the clock. Therefore, the resolution of a clock is more often of significance to an
application. However, all clocks will roll-over; that is, transition from a large number to zero. In some applications,
such as using time stamps to ensure uniqueness the time between roll-overs is important. This is determined by the
resolution and precision of the clock.

• stability: the ability of a clock to report consistent intervals of time; that is, to “tick” at a constant rate. Stability is
measured by some (small) number of derivatives of the clock rate, either overall (for example, aging of a crystal
oscillator) or against environmental factors (for example, temperature).

While these characteristics are inherent in any clock, they can only be determined by measurement against an accepted
standard time source. For many systems, the characterization of clocks will be limited to off-line, static measurements, or
manufacturers specifications. In this specification, these clocks are termed uncoordinated.

When more than one clock is present in a system, a number of time-dependent pair-wise characteristics are relevant1:

• offset: the difference between two clocks at a particular instant in time. To allow direct support of clocks supporting
local or mission time, offset will be subdivided into deliberate offset and unsynchronized offset.

• skew: the rate of change (first derivative) of the offset between two clocks (at a particular instant of time. Also, the
difference in frequency of two clocks. To allow characterization of clocks that are rate adjusted to compensate for
synchronization errors and to support clocks for certain types of simulation, this parameter will be subdivided into
deliberate skew and accidental skew. To allow support of clocks that may pause and or reset during an interval, a
special indication will be reported when a clock is or has been paused or has been reset during a measurement interval.

• drift: the rate of change of skew (second derivative of offset) between two clocks. A special indication will be defined
if the deliberate skew has changed in a measurement interval.

When a clock can be compared against a clock that is accepted as a standard, or is accepted as synchronized with a
standard, the accuracy of a clock can be characterized.

A number of network protocols have been included to allow physical clock sources to be adjusted, so that the resulting
logical clocks appear synchronized with other clocks. In particular, NTP allows synchronization with primary, externally-
driven time servers through hierarchically organized strata of secondary and peer time servers.

Clocks that are synchronized through NTP, other software protocols, or hardware means to another clock will be termed
coordinated clocks in this specification. Coordinated clocks have additional characteristics that identify and characterize
the synchronization source. Unfortunately, these characteristics tend to be specific to the synchronization protocol. This
specification includes the following clock characteristics for all coordinated clocks:

• coordination time scale: the time scale directly (through an external time source) or indirectly coordinated with.
Usually UTC, but other members of the Universal Time family, and local time (for example, UTC offset for time zone
and daylight time) are also used.

1. As characterized in RFC 1305, “Network Time Protocol (Version 3) Specification, Implementation, and Analysis”, IETF
4 Enhanced View of Time, v2.0

• coordination strata: an indication of “directness” of the coordination with the ultimate time source, usually an external
hardware time source.

• coordination source: the source of coordination.

This specification includes a set of data structures for these characteristics and means to query for the characteristics of a
clock. Querying is supported by the ClockCatalog interface.

7.1.3 Cataloging and Bootstrapping
The present Time Service recognizes only one time scale, UTC, and is silent on bootstrapping. In particular, there is no
portable method to obtain a TimeService object reference.

This specification includes the provision for multiple clocks registered in a catalog and includes reserving additional
ObjectIds for use in the resolve_initial_references call to allow portable bootstrapping.

The ClockCatalog is a specialized repository, it holds registrations for clocks and the known characteristics of those
clocks. The catalog may be queried for the known characteristics of a clock. The ClockCatalog also supports
registration and querying by name. This allows an application with full knowledge of its system context to almost directly
obtain a known clock, while allowing other applications to select a clock based on the desired characteristics of a clock.

This specification includes the reservation of two additional ObjectIds for use in the resolve_initial_references
operation. “ClockService” would return a reference to the ClockCatalog. “LocalClock” would return a reference to a
clock object that reads the (coordinated or uncoordinated) local system clock, if any.

7.2 CosTime Service Reprised
The features of the present CosTime service are provided in a more usable manner by two value types (UTC and
TimeSpan) and a specialized clock interface (TimeService) that yields readouts in the TimeBase::UtcT type. The
UTC valuetype roughly replaces the UTO interface from CosTime, while the TimeSpan value type replaces the TIO
interface. Neither of these interfaces in CosTime were meant to be used remotely. Indeed there is an admonition in the
present specification that users should use instances of UtcT instead of instances of UTO in operation parameter lists.

The UTO and TIO interfaces were created to provide standard operations on TimeBase::UtcT and
TimeBase::IntervalT. With the adoption of value types in the CORBA/IIOP Specification, these operations can now be
defined on a construct that will be passed by value across the network.

The TimeService is very similar to that defined in CosTime. However, instead of returning references to instances of
the UTO and TIO interfaces, the new value types are returned.

This specification presents cleaner, lighter weight interfaces to achieve the function of CosTime. However, this
specification does not deprecate or otherwise change CosTime.

7.3 Federation
The specification introduce a new kind of clocks which, while providing the illusion of coping with a single clock,
autonomously replicate and synchronize the state of a set of autonomous replicas. Replicas automatically discovered and are
accessed locally by the different processes while having the illusion of coping with a single clock. This specification poses the
minumum set of requirements on the semantics of federated clocks which allow for application portability, while at the same
time make it possible for having high performance and highly available applications. Specifically,

• different replicas state should be managed so to be eventually consistent, and
Enhanced View of Time, v2.0 5

• monotonicity violation should be detected and notified to the application by means of a proper standard callback API.

7.4 Synchronization
This specification includes interfaces to synchronize a Clock with a “master clock.” Synchronization can be seen as a
special case of federation which leaves to the application developer the full control on the algorithms and techniques used
to synchronize clocks. The interaction model provided by the synchronization API as suitable for pull like algorithms.
The federation API on the other hand does not expose an API for neither pushing or pulling updates and leaves the choice
to the middleware developer. The synchronization API assumes a master clock whose readings are “trusted” to be
accurate enough for use in the application, either because the inherent accuracy and stability of the hardware source of
time or because the master is itself synchronized to another master clock. Pairwise synchronization with a master clock is
referred to as “external clock synchronization” in the literature2.

Synchronization of a clock with a master clock requires two steps:

1. Determine the difference between the clocks. Note that while this can be as simple a process as reading the master
clock, it may have to be repeated several times to minimize errors, ensure success, or build an adequate history to
determine skew and drift.

2. Apply a correction to the raw output of the slaved clock source before presenting the clock reading to an
application.

This process might best be done semi-autonomously since it is relatively long-running and must be periodically repeated
to preserve application-specified or default bounds on errors.3 However, this may require the dedication of a thread, and
could introduce uncertainty into a real-time system. For this reason, the interfaces allow explicit control of
“synchronization episodes” as well as transparent, semi-autonomous synchronization.

Inclusion of the synchronization requirements in the RFP was not without controversy. Note two things, however:

1. The ability to perform the functions in step 1 are separately and independently required by the RFP.

2. No special interoperability interfaces are required; the requirements on the master clock interface is limited to
reading the remote clock.

This specification discusses coupling the synchronization requirements with the requirements to characterize the
differences in the clocks. In particular, the derivatives of offset between two clocks will only be available for clocks that
are coordinated and for which active synchronization has been requested.

Three interfaces support clock synchronization.

2. If master/slave synchronization is not sufficient, both the interaction protocol and the algorithms employed are more complex.
See, Christian, F. and Christof Fetzer, “Probabilistic Internal Clock Synchronization”, Proceedings of the Thirteenth Symposium
on Reliable Distributed Systems, Oct 1994, Dana Point, CA.

3. See, for example, Lamport, L. and P. M. Melliar-Smith, “Synchronizing Clocks in the Presence of Faults,” Journal of the ACM,
Vol. 32, No. 1, January 1985, pp. 52-78 and Christian, F., “Probabilistic Clock Synchronization,” Distributed Computing, No. 3,
1989, pp. 146-158.
6 Enhanced View of Time, v2.0

The SynchronizeBase adds one operation to the Clock interface. It requires a clock to be able to measure the interval
in which it takes to obtain the time from a remote (presumably a master) clock. The length of this interval determines the
accuracy to which a clock can be synchronized to the master. This interface is mainly provided as a building block for
applications that implement a specialized synchronization algorithm.

Two additional interfaces are provided for synchronization: the Synchronizable interface is a factory interface that
creates instances of the SynchronizedClock interface. The new_slave operation initiates active determination of the
difference between a slave clock and its master and application of a correction to the slave. These clocks smoothly
converge a clock with another; that is, its master. The operation parameters include setting error bounds and retry limits
that can be used to control the periodicity of synchronization polling with the designated master.

The SynchronizedClock interface supports periodic updates of the synchronization information. It also provides for
synchronization to be controlled through explicit requests to resynchronize a previously synchronized clock.

7.5 Controllable Clocks
Certain clocks can be paused and resumed, reset, or otherwise controlled. Examples include “mission clocks” and the
clock controlling (American) football games. This specialized class of clocks is provided by the ControlledClock
interface. This interface provides user controls to start, stop, set, or vary the rate of a clock.

Controlled Clocks can be federated, and in this case the state of the replicas is identified as the time origin and the slope
used to compute the time.

7.6 Delayed Execution
No special interfaces are proposed for delayed execution. Delayed execution can be done by:

1. Converting the desired time in the specified view of time to UTC and using the RequestStartTime policy or
ReplyStartTime policy as specified in the CORBA Messaging Specification. This may not account for
discontinuity the time kept by a particular clock, especially for clocks that may be paused and/or reset.
or

2. Using the period invocation interface, described below, and specifying an execution count of 1.

7.7 Periodic Execution
Certain operations, especially in Real-Time systems, will be executed periodically. While it is possible for users to
perform periodic processing using operating system or language-supplied threading capabilities, it is not always possible
to tie periodic processing to a particular clock, especially a remote one. This specification includes a PeriodicExecution
interface. A PeriodicExecution::Controller reference can be obtained from an instance of the
PeriodicExecution::Executor interface, a specialized Clock interface, by providing a reference to an instance of an
object derived from the conceptually abstract Periodic interface. The Controller interface provides controls on periodic
execution. An execution limit, a single type any data parameter, and time offsets may be provided when the
PeriodicExecution is initiated. Other operations on the PeriodicExecution allow suspension, resuming, and
termination of the periodic execution.

When enabled, the Controller will invoke the do_work operation on the specified object. This specification makes no
provision for detecting or handling overruns.
Enhanced View of Time, v2.0 7

8 Enhanced View of Time, v2.0

8 Clock Service

This chapter defines the CORBA Clock Service. The Clock Service includes much of the functionality of the Time
Service, along with enhancements to deal with multiple clocks, synchronization, and periodic execution. As a result, the
requirements of the RFP for the Time Service were considered in addition to the requirements of the RFP for the
Enhanced View of Time.

8.1 Introduction

8.1.1 Representation of Time
Time is represented many ways in programs. For example the X/Open DCE Time Service [1] defines three binary
representations of absolute time, while the UNIX SVID defines a different representation of time. Other systems use time
represented in myriads of different ways.

In order to remain compatible with the Time Service, the Clock Service generalizes the representation of time in a
compatible way and offers facilities that use the single representation of time used by the Time Service (and in aspects of
the CORBA/IIOP Specification, such as CORBA Messaging.)

The Clock Service uses the TimeBase::TimeT type as the readout type for all clocks. It also retains the time scale
definition for the TimeT type:

Time units 100 nanoseconds (10-7 seconds)

Base time 15 October 1582 00:00:00.

Approximate range AD 30,000

The corresponding binary representations of relative time is the same one as for absolute time, and hence with similar
characteristics:

Time units 100 nanoseconds (10-7 seconds)

Approximate range +/- 30,000 years

8.1.2 Sources of Time
The Clock Service depends only on sources of time that provide a signal or readout that corresponds, in some statistically
characterizable way, to the passage of time. Each source of time is assumed to have some, possibly indirect, hardware
support for the marking of the passage of time. This is true of clocks that are direct readouts of hardware time sources or
clocks that are based on software smoothing, adjustment or other manipulation of a hardware signal.

Some sources are trusted1 to be accurate so that they can be used as master clocks to which the inaccuracy of other clocks
may be measured. Such “external clocks” are usually synchronized to some hardware source (GPS, WWV, etc.) of an
accepted time base, such as UTC. In contrast, “internal clocks” are supported by some hardware, typically a non-
temperature-compensated oscillator, and are not known to be accurate.

The Clock Service makes no assumption about the accuracy of underlying time sources. It provides, however, means for
characterizing the properties of each available time source, so that applications may select among them. It also provides
facilities for requesting the creation of a new clock, tied to a designated internal clock for real-time timing information,
but synchronized to a designated external clock within some accuracy and probability bounds.

1. Not necessarily in the security sense.
Enhanced View of Time, v2.0 9

8.1.3 General Object Model
The object model for the Clock Service supports multiple time sources. The source of time measurements is a Clock
interface. The base Clock interface has an attribute that lets the applications examine the properties of the clock and
select among different time sources in that way. The selection of clocks is further supported by a ClockCatalog interface
that serves as a registry for clocks.

Specializations of the Clock interface include:

• TimeService interface - supports readouts of the Timebase::UtcT type supported by the Time Service. However,
the readout is returned in a new UTC value type, instead of the “wrapper object” used by the Time Service.

• SynchronizeBase interface - a building block interface useful for building developer-defined conversion or
synchronization facilities.

• Synchronizable interface - allows the creation of a virtual clock, an instance of the SychronizedClock interface,
that presents a view of the clock corrected to synchronize with a designated master within a prescribed error bounds.

• SychronizedClock interface - a view of clock that is corrected to synchronize with a designated master clock.

• ControlledClock interface - a clock with operations that allow it to be paused, reset, etc.

• PeriodicExecution::Executor interface - supports active periodic execution of a specified method of an object.
This interface returns an instance of the PeriodicExecution::Controller interface when an object derived from the
PeriodExecution::Periodic interface is registered. The Controller object allows control over the periodic
execution.

8.2 TimeBase Module
The Clock Service reuses the data structures in the TimeBase module. The TimeBase module was defined separately
so that other services can make use of these data structures without requiring the interface definitions from either the
Time Service or the Clock Service. The definitions of the TimeBase module are repeated here for completeness. They
are not a normative part of this specification, since they are defined elsewhere.

8.2.1 Data Types
A number of types and interfaces are defined and used by this service. Most definitions of data structures are placed in the
TimeBase module. All interfaces, and associated enum and exception declarations are placed in the CosClockService
module. This separation of basic data type definitions from interface-related definitions allows other services to use the
time data types without explicitly incorporating the interfaces, while allowing clients of those services to use the
interfaces provided by the Clock Service to manipulate the data used by those services.

// IDL
module TimeBase {

typedef unsigned long long TimeT;
typedef TimeT InaccuracyT;
typedef short TdfT;
struct UtcT {

TimeT time; // 8 octets
unsigned long inacclo; // 4 octets
unsigned short inacchi; // 2 octets
TdfT tdf; // 2 octets

// total 16 octets.
};
10 Enhanced View of Time, v2.0

struct IntervalT {
TimeT lower_bound;
TimeT upper_bound;

};
};

8.2.1.1 Type TimeT

TimeT represents a single time value, which is 64 bits in size, and holds the number of 100 nanoseconds that have passed
since the base time. For absolute time the base is 15 October 1582 00:00 of the Gregorian Calendar. All absolute time
shall be computed using dates from the Gregorian Calendar.

8.2.1.2 Type InaccuracyT

InaccuracyT represents the value of inaccuracy in time in units of 100 nanoseconds. As per the definition of the
inaccuracy field in the X/Open DCE Time Service [1], 48 bits is sufficient to hold this value.

8.2.1.3 Type TdfT

TdfT is of size 16 bits short type and holds the time displacement factor in the form of minutes of displacement from the
Greenwich Meridian. Displacements East of the meridian are positive, while those to the West are negative.

8.2.1.4 Type UtcT

UtcT defines the structure of the time value that is used universally in this service. The basic value of time is of type
TimeT that is held in the time field. Whether a UtcT structure is holding a relative time (that is, a duration) or an absolute
time is determined by context; there is no explicit flag within the object holding that state information. (Note that, if a
UtcT structure is used to hold a duration, its tdf must be set to zero.)

The iacclo and inacchi fields together hold a 48-bit estimate of inaccuracy in the time field. These two fields together
hold a value of type InaccuracyT packed into 48 bits. The tdf field holds time zone information. Implementations must
place the time displacement factor for the local time zone in this field whenever they create a UTO that expresses
absolute time.

The time field of a UtcT used to express absolute time holds UTC time, irrespective of the local time zone. For example,
to express the time 3:00pm in Germany (which is one hour east of the Universal Time Zone), the time field must be set
to 2:00pm on the given date, and the tdf field must be set to 60. This means that, for any given UtcT value 'utc', the local
time can be computed as

utc.time + utc.tdf * 600,000,000

Note that it is possible to produce correct UtcT values by always setting the tdf field to zero and only setting the time
field to UTC time; however, implementations are encouraged to include the local time zone information for the UtcT
values they produce.

8.2.1.5 Type IntervalT

This type holds a time interval represented as two TimeT values corresponding to the lower and upper bound of the
interval. An IntervalT structure containing a lower bound greater than the upper bound is invalid. For the interval to be
meaningful, the time base used for the lower and upper bound must be the same, and the time base itself must not be
spanned by the interval.
Enhanced View of Time, v2.0 11

8.3 CosClockService Module
The remaining IDL definitions are contained in the new CosClockService module.

8.4 Clocks

8.4.1 Properties of Clocks
The following module supports the characterization of clocks:

// IDL
module CosClockService
{

interface Clock;

module ClockProperty
{ // the minimum set of properties to be supported for a clock

typedef unsigned long Resolution; // units = nanoseconds
typedef short Precision; // ceiling of log_2(seconds signified by least

// significant bit of time readout)
typedef unsigned short Width; // no. of bits in readout - usually <= 64
typedef string Stability_Description;

typedef short Coordination;
const Coordination Uncoordinated = 0; // only static characterization

// is available
const Coordination Coordinated = 1; // measured against another

// source
const Coordination Faulty= 2; // e.g., there is a bit stuck

// the following are only applicable for coordinated clocks
struct Offset
{

long long measured; // units = 100 nanoseconds
long long deliberate; // units = 100 nanoseconds

};

typedef short Measurement;
const Measurement Not_Determined = 0; // has not been measured
const Measurement Discontinuous = 1; // e.g., one clock is paused
const Measurement Available= 2; // has been measured

typedef float Hz;
struct Skew
{

Measurement available;
Hz measured; // only meaningful if available = Available - in Hz
Hz deliberate; // in Hz

};
typedef float HzPerSec;
struct Drift
12 Enhanced View of Time, v2.0

{
Measurement available;
HzPerSec measured; // meaningful if available = Available

// in Hz/sec
 HzPerSec deliberate; // in Hz/sec

};

typedef short TimeScale;
const TimeScale Unknown = -1;
const TimeScale TAI = 0; // International Atomic Time
const TimeScale UT0 = 1; // diurnal day
const TimeScale UT1 = 2; // + polar wander
const TimeScale UTC = 3; // TAI + leap seconds
const TimeScale TT = 4; // terrestrial time
const TimeScale TDB = 5; // Barycentric Dynamical Time
const TimeScale TCG = 6; // Geocentric Coordinate Time
const TimeScale TCB = 7; // Barycentric Coordinate Time
const TimeScale Sidereal = 8; // hour angle of vernal equinox
const TimeScale _Local = 9; // UTC + time zone
const TimeScale GPS = 10; // Global Positioning System
const TimeScale Other = 0x7fff; // e.g. mission

typedef short Stratum;
const Stratum unspecified = 0;
const Stratum primary_reference = 1;
const Stratum secondary_reference_base = 2;

typedef Clock CoordinationSource; // what clock is coordinating with
typedef string Comments;

};

These properties may be measured or set at configuration time for the known clocks. Note that they are cataloged as
properties, thus they may be suitable for use in a Trader Service.

8.4.2 The Clock Interface
The Clock interface is the base interface for all clocks. It has the following definition:

// IDL
module CosClockService
{
 exception TimeUnavailable {};

 // the basic clock interface
 interface Clock // a source of time readings
 {

readonly attribute CosPropertyService::PropertySet properties;
TimeBase::TimeT current_time() raises(TimeUnavailable);

 };

8.4.2.1 Exception TimeUnavailable

This exception is raised whenever the underlying clock fails, or is unable to provide time that meets the required security
assurance.
Enhanced View of Time, v2.0 13

8.4.2.2 Readonly attribute properties

The known properties of the clock.

8.4.2.3 Operation current_time

Provides a measure of the current time. The time unit is 100 nanosecond i.e. 10e-7 seconds.

8.5 UTC TimeService
This service replaces the CORBA Time Service.

8.5.1 Object Model
The UTC value type provides operations on the TimeBase::UtcT structure. These operations include comparisons with
other instances, with and without consideration of the accuracy of the times being compared. The UTC value type
replaces the UTO interface from the Time Service.

The TimeSpan value type provides operations on the TimeBase::IntervalT structure. These operations include
determination of spans and overlaps between TimeSpans and UtcTs. The TimeSpan value type replaces the TIO
interface from the Time Service.

The UtcTimeService interface creates UTC value types that represent the time at which they were created. This
interface replaces the TimeService interface from the Time Service.

8.5.2 Data Types

// IDL
module CosClockService
{

enum TimeComparison
{

TCEqualTo,
TCLessThan,
TCGreaterThan,
TCIndeterminate

};

enum ComparisonType
{

IntervalC,
MidC

};

enum OverlapType
{

OTContainer,
OTContained,
OTOverlap,
OTNoOverlap

};
14 Enhanced View of Time, v2.0

8.5.2.1 Enum ComparisonType

ComparisonType defines the two types of time comparison that are supported. IntervalC comparison does the
comparison taking into account the error envelope. MidC comparison just compares the base times. A MidC comparison
can never return TCIndeterminate.

8.5.2.2 Enum TimeComparison

TimeComparison defines the possible values that can be returned as a result of comparing two UTCs. The values are
self-explanatory. In an IntervalC comparison, TCIndeterminate value is returned if the error envelopes around the two
times being compared overlap. For this purpose the error envelope is assumed to be symmetrically placed around the base
time covering time-inaccuracy to time+inaccuracy. For IntervalC comparison, two UTCs are deemed to contain the same
time only if the Time attribute of the two objects are equal and the Inaccuracy attributes of both the objects are zero.

8.5.2.3 Enum OverlapType

OverlapType specifies the type of overlap between two time intervals. Figure 8.1 depicts the meaning of the four values
of this enum. When interval A wholly contains interval B, then it is an OTContainer of interval B and the overlap interval
is the same as the interval B. When interval B wholly contains interval A, then interval A is OTContained in interval B
and the overlap region is the same as interval A. When neither interval is wholly contained in the other but they overlap,
then the OTOverlap case applies and the overlap region is the length of interval that overlaps. Finally, when the two
intervals do not overlap, the OTNoOverlap case applies.

Figure 8.1 - Illustration of Interval Overlap

8.5.3 Universal Time Coordinated (UTC)
The UTC value type provides various operations on basic time. These include the following groups of operations:

• Construction of a UTC from piece parts, and extraction of piece parts from a UTC (as read only attributes).

• Comparison of time.

• Conversion from relative to absolute time, and conversion to an interval.

// IDL
module CosClockService {

valuetype TimeSpan;

// replaces UTO from CosTime
valuetype UTC
{

factory init(in TimeBase::UtcT from);
factory compose(in TimeBase::TimeT time,

in unsigned long inacclo,
in unsigned short inacchi,

Interval A

Interval B
OTContainer OTContained OTOverlap OTNoOverlap
Enhanced View of Time, v2.0 15

in TimeBase::TdfT tdf);
public TimeBase::TimeT time;
public unsigned long inacclo;
public unsigned short inacchi;
public TimeBase::TdfT tdf;
TimeBase::InaccuracyT inaccuracy();
TimeBase::UtcT utc_time();
TimeComparison compare_time(in ComparisonType comparison_type,

 in UTC with_utc);
TimeSpan interval();

};

8.5.3.1 Factory init

Creates a UTC from a TimeBase::UtcT.

8.5.3.2 Factory compose

Composes a UTC from its piece parts.

8.5.3.3 Public state member time

Corresponds to the time member of the UtcT struct.

8.5.3.4 Public state member inacclo

Corresponds to the inacclo member of the UtcT struct.

8.5.3.5 Public state member inacchi

Corresponds to the inacchi member of the UtcT struct.

8.5.3.6 Public state member tdf

Corresponds to the tdf member of the UtcT struct.

8.5.3.7 Operation inaccuracy

This is the inaccuracy attribute of a UTO represented as a value of type InaccuracyT.

8.5.3.8 Operation utc_time

This is the time expressed as a TimeBase::UtcT type.

8.5.3.9 Operation compare_time

Compares the time contained in the value with the time given in the input parameter with_utc using the comparison type
specified in the in parameter comparison_type, and returns the result. See the description of TimeComparison in
Section 8.5.2, “Data Types,” on page -14, for an explanation of the result. See the explanation of ComparisonType in
Section 8.5.2, “Data Types for an explanation of comparison types. Note that the time in the value is always used as the
first parameter in the comparison. The time in the with_utc parameter is used as the second parameter in the comparison.

8.5.3.10 Operation interval

Returns a TimeSpan value representing the error interval around the time value in the UTC as a time interval.
16 Enhanced View of Time, v2.0

TimeSpan.upper_bound = UTC.time + UTC.inaccuracy.
TimeSpan.lower_bound = UTC.time - UTC.inaccuracy.

8.5.4 TimeSpan Value
A TimeSpan value represents a time interval and contains operations relevant to time intervals.

// IDL
module CosClockService
{

// replaces TIO from CosTime
valuetype TimeSpan
{

factory init (in TimeBase::IntervalT from);
factory compose(in TimeBase::TimeT lower_bound,

 in TimeBase::TimeT upper_bound);

public TimeBase::TimeT lower_bound;
public TimeBase::TimeT upper_bound;
TimeBase::IntervalT time_interval();
OverlapType spans (

 in UTC time,
 out TimeSpan overlap);

OverlapType overlaps (
in TimeSpan other,
out TimeSpan overlap);

UTC time ();
};

8.5.4.1 Factory init

Creates a TimeSpan from a TimeBase::IntervalT.

8.5.4.2 Factory compose

Composes a TimeSpan from an upper and lower bound.

8.5.4.3 Public state member lower_bound

The lower bound of the time span.

8.5.4.4 Public state member upper_bound

The upper bound of the time span.

8.5.4.5 Operation time_interval

This attribute returns an IntervalT structure with the values of its fields filled in with the corresponding values from the
TimeSpan.
Enhanced View of Time, v2.0 17

8.5.4.6 Operation spans

This operation returns a value of type OverlapType depending on how the interval in the object and the time range
represented by the parameter time overlap. See the definition of OverlapType in Section 8.5.2, “Data Types,” on
page -14. The interval in the object is interval A and the interval in the parameter UTC is interval B. If OverlapType is
not OTNoOverlap, then the out parameter overlap contains the overlap interval; otherwise, the out parameter contains
the gap between the two intervals. The exception CORBA::BAD_PARAM is raised if the UTC passed in is invalid.

8.5.4.7 Operation overlaps

This operation returns a value of type OverlapType depending on how the interval in the object and interval in the
parameter other overlap. See the definition of OverlapType in Section 8.5.2, “Data Types.” The interval in the object is
interval A and the interval in the parameter other is interval B. If OverlapType is not OTNoOverlap, then the out
parameter overlap contains the overlap interval; otherwise, the out parameter contains the gap between the two intervals.
The exception CORBA::BAD_PARAM is raised if the TimeSpan passed in is invalid.

8.5.4.8 Operation time

Returns a UTC in which the inaccuracy interval is equal to the time interval in the TimeSpan and time value is the
midpoint of the interval.

8.5.5 UTC Time Service
The UtcTimeService interface provides operations for obtaining the current time.

// IDL
module CosClockService
{

local interface UtcTimeService : Clock
{

UTC universal_time() raises(TimeUnavailable);
UTC secure_universal_time() raises(TimeUnavailable);
UTC absolute_time(in UTC with_offset) raises(TimeUnavailable);

};

8.5.5.1 Operation universal_time

The universal_time operation returns the current time and an estimate of inaccuracy in a UTC. It raises
TimeUnavailable exceptions to indicate failure of an underlying time provider. The time returned in the UTC by this
operation is not guaranteed to be secure or trusted. If any time is available at all, that time is returned by this operation.

8.5.5.2 Operation secure_universal_time

The secure_universal_time operation returns the current time in a UTC only if the time can be guaranteed to have
been obtained securely. In order to make such a guarantee, the underlying Time Service must meet the criteria to be
followed for secure time, presented in “Appendix B, Implementation Guidelines.” If there is any uncertainty at all about
meeting any aspect of these criteria, then this operation must return the TimeUnavailable exception. Thus, time
obtained through this operation can always be trusted.

8.5.5.3 Operation absolute_time

The absolute_time operation returns a new UTC containing the absolute time corresponding to the present time offset
by the parameter with_offset. Raises a CORBA::DATA_CONVERSION exception if the attempt to obtain an
absolute time causes an overflow.
18 Enhanced View of Time, v2.0

8.6 The Clock Catalog Interface
The ClockCatalog interface allows applications to discover and select a clock for use. It is intended to be a light-weight
alternative to the use of the Trading Service (for example, in embedded systems). It has the following definition:

// IDL
module CosClockService
{

interface ClockCatalog {

struct ClockEntry {
Clock subject;
string name;

};
 typedef sequence<ClockEntry> ClockEntries;

exception UnknownEntry {};

 ClockEntry get_entry(in string with_name) raises (UnknownEntry);
ClockEntries available_entries();

void register(in ClockEntry entry);
void delete_entry(in string with_name) raises (UnknownEntry);

 };

8.6.1 Struct ClockEntry
This structure holds the known information about a clock: its registered name and its object reference.

8.6.2 Exception UnknownEntry
Indicates that the catalog contains no entry with the given name.

8.6.3 Operation get_entry
Retrieve the information know about a clock, given its registered name.

8.6.4 Operation available_entries
Retrieve the entire catalog so that the client may select a clock based on its known properties.

8.6.5 Operation register
Register a new clock with the catalog.

8.6.6 Operation delete_entry
Remove an entry from the registry.
Enhanced View of Time, v2.0 19

8.7 Mission Time
Certain clocks, such as those used to time an (American) football game, may track the elapsed time from an event, and
may need to be paused and resumed, and may need to be occasionally reset. The ControlledClock interface provides a
specialization of the Clock interface with these controls. It has the following definition:

// IDL
module CosClockService
{

// a controllable clock
 local interface ControlledClock: Clock
 {
 exception NotSupported {};
 void set(in TimeBase::TimeT to) raises (NotSupported);
 void set_rate(in float ratio) raises (NotSupported);
 float get_rate() raises(NotSupported);
 void pause() raises (NotSupported);
 void resume() raises (NotSupported);
 void terminate() raises (NotSupported);
 };

8.7.1 Exception NotSupported
The NotSupported exception may be raised if the operation is not supported for the instance of the ControlledClock,
or if its characteristics disallow the operation. For example, the rate of a “mission clock” may not be settable. Other
clocks may not be allowed to run “backwards.”

8.7.2 Operation set
Sets the current time maintained by the clock to the value specified.

8.7.3 Operation set_rate
Allows a clock to be speeded up or slowed down (or run backwards). The parameter indicates the ratio of the elapse of
the clock’s readout to the real passage of time.

8.7.4 Operation get_rate
Provides access to the current value of the clock rate.

8.7.5 Operation pause
Pause the apparent elapse of time. If the operation is invoked on an alredy paused clock a CORBA::BAD_INV_ORDER
should be raised.

8.7.6 Operation resume
Resume the elapse of time. If the operation is invoked on an running clock a CORBA::BAD_INV_ORDER should be
raised.
20 Enhanced View of Time, v2.0

8.7.7 Operation terminate
Stop the clock, and releases all the resources associated with the clock.

8.8 Federation
Federation does not require specific interfaces for clocks other than those specified so far. Federated clock are identified and
resolved by a stringified name. Available federated clocks, discovered and locally instantiated, have to be available through
the ClockCatalog.

// IDL
module CosClockService
{

module Monotonicity
{

enum RecoveryStrategy {
IGNORE, // Ignore violation
SLOW_DOWN, // Slow down the clock so to recover monotonicity
STALL // Stall the clock up to when the violation condition has been risolved

};

struct Violation {
long min_interval; // minimum time interval (in nsec) to be considered as a violation
long max_interval; // max time interval (in nsec) to be considered as a violation. Greate interval
// will be regarded as clock failure
RecoveryStrategy strategy;

};

local interface ViolationHandler;
local interface ViolationRegistry {

// Register an handler for a given clock providing the monotonicity recovering strategy.
// By default the monotonicity violation are ignored.
void register_handler(in Clock aClock,

in Violation aViolation,
in ViolationHandler aHandler);
void unregister_handler(in ViolationHandler aHandler);

};

local interface ViolationHandler {
//
void handle_violation(in Clock aClock, in Violation aViolation);

};

};

};
Enhanced View of Time, v2.0 21

Compliant implementation should provide two default federated clock, one which measures the real time and whose
replicas are synchronized using a network time protocol such as NTP, and another that is built upon the previous to
provide a federated controlled clock. These clock should be available in the clock catalog under the name of
“FederatedClock” and “FederatedControlledClock”.

8.9 Synchronization
Three interfaces are defined to support synchronization of a clock with a master.

8.9.1 SynchronizeBase Interface
The SynchronizeBase interface adds a primitive operation to the Clock interface that allows the determination of an
offset between two clocks and the error in that determination. It has the following definition:

// IDL
module CosClockService
{

interface SynchronizeBase : Clock
{

 struct SyncReading
{

 TimeBase::TimeT local_send;
 TimeBase::TimeT local_receive;
 TimeBase::TimeT remote_reading;

 };
 SyncReading synchronize_poll(in Clock with_master);
 };

8.9.1.1 Struct SyncReading

A structure with three time components representing the local start and stop time of a query on another clock, and the
reading corresponding that query.

8.9.1.2 Operation synchronize_poll

Instructs the clock to perform the following sequence of steps and return the result:

1. Place the clock’s current reading into local_send.

2. Obtain the with_master clock’s time; that is, invoke readout on it. Save it in remote_reading.

3. Place the clock’s current reading into local_receive.

These steps should be performed with as little latency as possible. For example, possibly storage of values in the output
structure should be delayed until all readings have been obtained. The goal is to decrease the interval between
local_send and local_receive, since it represents twice the maximum error in an estimate of the offset between the
clock and the designated master clock.

Clients of a clock can repeat this synchronization polling over time to obtain, for example, the frequency skew and drift
between a clock and its master.

This operation times the round trip to read the current_time attribute of another clock. This bounds the offset between
two clocks, and provides the primitive samples for external synchronization algorithms. For example, a single polling can
yield an estimate of the clock offset as follows:
22 Enhanced View of Time, v2.0

(EQ 1)

8.9.2 Synchronizable Interface
An instance of the Synchronizable interface allows the creation of new logical clock that relies on the synchronizable
clock for a perception of the passage of time, but is adjusted to stay within a certain error bounds of another, presumably
more accurate, “master” clock. This new clock is said to be synchronized, or slaved, to the master. The interface has the
following definition:

// IDL
module CosClockService
{
 interface SynchronizedClock;

 exception UnableToSynchronize
 {
 TimeBase::InaccuracyT minimum_error;
 };

 interface Synchronizable : SynchronizeBase
 {
 const TimeBase::TimeT Forever = 0x7FFFFFFFFFFFFFFF;

 SynchronizedClock new_slave
 (in Clock to_master,
 in TimeBase::InaccuracyT to_within,

 in short retry_limit,
 in TimeBase::TimeT minimum_delay_between_syncs,

 in CosPropertyService::Properties properties
) raises (UnableToSynchronize);
 };

 interface SynchronizedClock : Clock
 {
 void resynch_now() raises (UnableToSynchronize);
 };

8.9.2.1 Exception UnableToSynchronize

This exception will be raised by the new_slave operation if the requested accuracy cannot be obtained after the
prescribed number of retries. The exception will report the accuracy that was obtained.

offset remotereading localsend localreceive+()
2

--–
 localreceive localsend–()

2
---±

 =
Enhanced View of Time, v2.0 23

8.9.2.2 Operation new_slave

Creates a new “slave” clock, an instance of the SynchronizedClock interface, that attempts to adjust the readings of the
source clock to synchronize it to_within the specified error bounds. The retry_limit specifies the number of attempts to
achieve the specified accuracy before an UnableToSynchronize exception can be raised. Once synchronized, the
resulting SynchronizedClock instance must periodically re-read the master clock and resynchronize in order to
maintain the specified level of accuracy. A conforming implementation must be able to do this autonomously. The
minimum_delay_between_syncs parameters specify a minimum period between these resynchronization episodes,
thus allowing the number of remote readings of the master clock to be limited. Setting the
minimum_delay_between_syncs parameter to the constant value Forever precludes the SynchronizedClock from
autonomously resynching.

8.9.3 SynchronizedClock Interface
The SynchronizedClock interface provides a virtual clock that adjusts the readings of an underlying clock to be
synchronized with a master. Instances are capable of determining the offset from a master by polling the time of the
master and applying a synchronization algorithm to attain a specified accuracy with the master clock. Conforming
implementations must be able to maintain the specified accuracy, usually by autonomously redetermining the offset from
the master clock periodically. Instances of the SynchronizedClock interface are created by invoking the new_slave
operation on an instance of the Synchronizable interface.

The interface is defined as follows:

// IDL
module CosClockService
{
 interface SynchronizedClock : Clock
 {
 void resynch_now() raises (UnableToSynchronize);
 };

8.9.3.1 Operation resynch_now

Instances of the SynchronizedClock interface may be precluded from autonomously initiating a series of readings of
the master clock by specifying a minimum_delay_between_syncs of Forever. In this case, or if the application
wishes maximum accuracy of the synchronization at a particular instant, the resynch_now operation will immediately
resynchronize with the master clock.

8.10 Bootstrapping
To allow bootstrapping of applications, the following two ObjectIds are reserved for use in the
resolve_initial_references operation:

1. Specifying “TimeService” yields a reference to a ClockCatalog object.

2. Specifying “LocalClock” yields a reference to the local system clock, if any.
24 Enhanced View of Time, v2.0

8.11 PeriodExecution Service
Certain operations, especially in Real-Time systems, will be executed periodically. While it is possible for users to
perform periodic processing using native or language-supplied threading capabilities, it is not always possible to tie
periodic processing to a particular clock, especially a remote one. This service provides a useful and portable way to
perform certain operations periodically. Three interfaces are defined in the CosClockService::PeriodicExecution
module:

// IDL
module CosClockService
{
 module PeriodicExecution
 {

typedef short ControllerUpdateStrategy;
const ControllerUpdateStrategy UNDEFINED =-1;
const ControllerUpdateStrategy CANCEL_ALL = 0;
const ControllerUpdateStrategy ENFORCE_INTERVAL = 1;
const ControllerUpdateStrategy ENFORCE_DEADLINE = 2;
const ControllerUpdateStrategy USER_DEFINED_0 = 3;
const ControllerUpdateStrategy USER_DEFINED_1 = 4;
const ControllerUpdateStrategy USER_DEFINED_2 = 5;

local interface ControllerUpdateHandler
{

void on_set(in Controller aController);
void on_set_rate(in Controller aController);
void on_pause(in Controller aController);
void on_terminate(in Controller aController);
void on_resume(in Controller aController);

};

local interface ControllerUpdateStrategyRegistry
{

exception StrategyAlreadyExist {};
exception UnknownStrategy {};
exception OperationNotAllowed {};
void register(in ControllerUpdateStrategy, in ControllerUpdateHandler handler)

raises (StrategyAlreadyExist, OperationNotAllowed);

void unregister(in ControllerUpdateStrategy id)
raises (UnknownStrategy, OperationNotAllowed);

ControllerUpdateHandler get_strategy(in ControllerUpdateStrategy id)
raises (UnknownStrategy);

};

 interface Periodic
 {
 boolean do_work(in any params);
 };

 interface Controller
 {
 exception TimePast {};
Enhanced View of Time, v2.0 25

 void start
 (in TimeBase::TimeT period,

 in TimeBase::TimeT with_offset,
 in unsigned long execution_limit, // 0 = no limit
 in any params);

 void start_at
 (in TimeBase::TimeT period,

 in TimeBase::TimeT at_time,
 in unsigned long execution_limit, // 0 = no limit
 in any params) raises (TimePast);

 void pause();
 void resume();
 void resume_at(in TimeBase::TimeT at_time) raises(TimePast);

void stop();
 void terminate();
 unsigned long executions();

void set_update_strategy(in ControllerUpdateStrategy id)
raises (ControllerUpdateStrategyRegistry::UnknownStrategy);

ControllerUpdateStrategy get_update_strategy();
 };

 local interface Executor : Clock
 {

 Controller enable_periodic_execution(in Periodic on);
 };

local interface ControlledExecutor :
Executor,
ControlledClock

{
Controller
enable_periodic_execution_with_strategy(in CosClockService::PeriodicExecution::Periodic on,

 in ControllerUpdateStrategy id)
raises (ControllerUpdateStrategyRegistry::UnknownStrategy);

void set_controller_update_strategy(in ControllerUpdateStrategy id)
raises (ControllerUpdateStrategyRegistry::UnknownStrategy);

ControllerUpdateStrategy get_controller_update_strategy();
};

};
};

8.11.1 The Periodic Interface
Instances of objects that are to be periodically executed must be derived from the Periodic interface, implement a
do_work operation, and have been activated on a POA.
26 Enhanced View of Time, v2.0

8.11.1.1 Operation do_work

The do_work operation will be periodically invoked by this service. Each invocation will be passed the type any value
registered by the start or start_at operations on the Controller instance. The user implementation of the do_work
operation should return a value of TRUE to continue periodic invocation; a value of FALSE will terminate periodic
invocation.

8.11.2 Controller Interface
Allows control of periodic execution after the appropriate object has been registered with the clock.

8.11.2.1 Exception time_past

Raised by the start_at or resume_at operations if the requested time is in the past.

8.11.2.2 Operation start

Initiates periodic execution with a specified period for a specified count of executions. Specifying an execution limit of 0
is interpreted as an unbounded number of executions. The with_offset parameter may be used to delay the start of the
first execution. The value of the type any parameter params will be passed to each invocation. The <start> operation
can only be legally invoked on a newly created, not yet started, and on a stopped controller. Invocations performed on any
other state will raise a CORBA::BAD_INV_ORDER exception.

8.11.2.3 Operation start_at

Identical to the start operation except that the at_time parameter specifies an absolute time for the start of the first
execution. The operation <start_at> can only be legally invoked on a newly created, not yet started, and on a stopped
controller. Invocations performed on any other state will raise a CORBA::BAD_INV_ORDER exception.

8.11.2.4 Operation pause

Pauses periodic execution. This operation can be safely invoked only on a running clock, invocations performed on any
other state will raise a CORBA::BAD_INV_ORDER exception.

8.11.2.5 Operation resume

Resumes periodic execution. This operation can be legally invoked only on a paused controller, if the operation is
invoked on an running controller a CORBA::BAD_INV_ORDER should be raised.

8.11.2.6 Operation resume_at

Resumes periodic execution at a particular time. This operation can be legally invoked only on a paused controller, if the
operation is invoked on an running clock a CORBA::BAD_INV_ORDER should be raised.

8.11.2.7 Operation stop

Stops the periodic execution. After invoking this operation the controller can be reprogrammed by invoking again either the
<start> or <start_at> operation. If the stop operation is invoked on an already stopped controller a
CORBA::BAD_INV_ORDER should be raised

8.11.2.8 Operation terminate

Terminates periodic execution, and releases all the resources associated with the controller.
Enhanced View of Time, v2.0 27

8.11.2.9 Operation executions

Reports the number of executions that have already been initiated.

8.11.2.10set_update_strategy

Sets the strategy (e.g. enforce deadline, or enforce interval, etc.) which should be used when the characteristics of the
clock on which the Controller measure time change. Notice that a Controller inherits the update strategy from the clock
on which it was created. This method provides a mean to override this inherited strategy.

8.11.2.11get_update_strategy

Gets the update strategy (e.g. enforce deadline, or enforce interval, etc.) which is currently associated with the controller.

8.11.3 Interface Executor
Allows registration of an object reference with a clock capable of performing periodic execution.

8.11.3.1 Operation enable_periodic_execution

Register an instance of the Periodic interface for periodic execution.

8.11.4 Interface ControlledExecutor
Allows registration of an object reference with a clock capable of performing periodic execution.

8.11.4.1 Operation enable_periodic_execution_with_strategy

Register an instance of the Periodic interface for periodic execution and provides a strategy to be used for updating the
Controller which will control the Periodic execution.

8.11.4.2 Operation set_controller_update_strategy

Sets the strategy which should be used by default for updating the Controller created on this clock.

8.11.4.3 Operation get_controller_update_strategy

Gets the strategy currently used by default for updating the Controller created on this clock.

8.11.5 Interface ControllerUpdateHandler
Defines the callback interface which can be used to implement user-defined update strategies. It is worth noticing that a
specific implementation might define additional APIs on which this handler will rely for updating the Controller state.

8.11.5.1 Operation on_set

This method is called whenever on the controlled clock on which the controller was created a new time is set.

8.11.5.2 Operation on_set_rate

This method is called whenever on the controlled clock on which the controller was created a new rate is set.
28 Enhanced View of Time, v2.0

8.11.5.3 Operation on_pause

This method is called whenever the controlled clock on which the controller was created is paused.

8.11.5.4 Operation on_stop

This method is called whenever the controlled clock on which the controller was created is paused.

8.11.5.5 Operation on_terminate

This method is called whenever the controlled clock on which the controller was created is terminated.

8.11.5.6 Operation on_resume

This method is called whenever the controlled clock on which the controller was created is resumed.

8.11.6 Interface ControllerUpdateStrategyRegistry
This interface defines a registry in which update strategy can be registered.

8.11.6.1 Operation register

Registers a handler for a specific update strategy.

8.11.6.2 Operation unregister

Unregisters a handler for a specific update strategy.

8.11.6.3 Operation get_strategy

Returns the which implements the specific update strategy.
Enhanced View of Time, v2.0 29

30 Enhanced View of Time, v2.0

9 Lightweight Time Service

This chapter is based on the Lightweight Services specification (ptc/04-07-03).

9.1 Platform Independent Model

9.1.1 Overview
This section defines the Platform Independent Model (PIM) for the Lightweight Time Service. The Lightweight Time
Service is intended to be a subset of the full CORBA Enhanced View of Time Service. The packages, interfaces, and
classes appearing in this chapter are intended to model this subset and should map to the IDL for their counterparts in the
CORBA Enhanced View of Time Service Specification (Version 1.1, May 2002). The descriptions of the interfaces,
operations and their semantics are also intended to be identical to those defined by the CORBA Enhanced View of Time
Service Specification (Version 1.1, May 2002) over this same subset.

9.1.2 Minor Conformance Points
The platform independent model of the Lightweight Time Service supports two optional minor conformance points:
Support of Multiple Clocks and Support of Periodic Execution Control.

Support of Multiple Clocks

This conformance point controls the presence or absense of an optional model section. If the conformance point evaluates
to true, the ClockCatalog interface and the ClockEntry structure are included in the model, providing support for
multiple clocks.

Support of Periodic Execution Control

This conformance point controls the presence or absense of an optional model section. If the conformance point evaluates
to true, the PeriodicExecution package is included in the model, thus providing support for clock-controlled periodic
execution.

Figure 8.1 - Lightweight Time Service Package Structure

9.1.3 The LightweightTime Package
The LightweightTime package defines interfaces for finding a clock reading, a time source, controlling a clock and
support for periodic execution. Synchronization of clocks is not supported in the LightweightTime package.

LightweightTime
<<CORBAModule>>

ClockProperty
<<CORBAModule>>

(from LightweightTime)

PeriodicExecution
<<CORBAModule>>

(from LightweightTime)
Enhanced View of Time, v2.0 31

9.1.3.1 Clock

Description

Base interface for all clocks.

Attributes

No attributes.

Operations

No operations.

Associations

properties: PropertySet [1]

Points to a PropertySet holding the specific properties of the clock.

current_time: TimeT [1]

Points to a data element holding the current time as a 64-bit value with a resolution of 100 nanoseconds.

Constraints

No constraints.
32 Enhanced View of Time, v2.0

Semantics

This is the base interface for all clocks defined in the Lightweight Time Service. It provides configurability for the clock
via properties (name-value pairs) and access to a time base.

9.1.3.2 ControlledClock

Description

A user-controllable specialization of the Clock interface.

Attributes

No attributes.

Operations

set(in t0: TimeT)

This operation sets the controllable clock to the specified specific time.

set_rate(in ratio: Float)

This operation allows a clock to be speeded up or slowed down (or run backwards). The parameter indicates the ratio of
the elapse of the clock’s readout to the real passage of time.

Float get_rate()

This operation returns the rate of the clock.

pause()

This operation pauses the apparent elapse of time.

resume()

This operation resumes the apparent elapse of time.

terminate()

This operation stops the controlled clock permanently.

Associations

No additional associations.

Constraints

No Constraints.

Semantics

The ControlledClock is a specialization of the Clock interface. It provides the ability to set the clock to certain value,
control the apparent “speed” (time elapse rate), and to pause and resume the clock under user control.
Enhanced View of Time, v2.0 33

9.1.3.3 ClockCatalog

This interface is part of the optional minor conformance point “Support of Multiple Clocks.”

Description

A lightweight catalog of available clocks.

Attributes

No attributes.

Operations

get_entry(in name: String): ClockEntry

Returns a single clock entry holding the information about a particular clock. The clock entry is selected via the clock
entry name.

available_entries(): ClockEntries

Returns the whole catalog to allow the client the application of a more specific selection mechaism, as for example by a
specific property.

register(in entry: ClockEntry)

Register a new clock entry in the catalog.

delete_entry()

Permanently removes a clock entry from the clock catalog.

ClockEntry
(from ClockCatalog)

<<CORBAStruct>>ClockEntries
(from ClockCatalog)

<<CORBASequence>>

1
index : long {0..*}

0..1
1

0..1

index : long {0..*}

ClockCatalog

get_entry()
available_entries()
register()
delete_entry()

(from LightweightTime)

<<CORBAInterface>>

1-clockEntries 1
34 Enhanced View of Time, v2.0

Associations

clockEntries: ClockEntries[1]

The encapsulation of the clock entry catalog content.

Constraints

No constraints.

Semantics

The ClockCatalog is the user-visible interface to a single-level lightweight trader service equivalent, holding
information about available clock definitions.

9.1.3.4 ClockEntries

This set is part of the optional minor conformance point “Support of Multiple Clocks.”

Description

The set holding the individual clock entries.

Attributes

No attributes.

Operations

No operations.

Associations

clockEntry: ClockEntry[*]

The actual set holding the individual entries in the clock catalog.

Constraints

No constraints.

Semantics

Provides an encapsulation for the set of individual clock information entries.

9.1.3.5 ClockEntry

This interface is part of the optional minor conformance point “Support of Multiple Clocks.”
Enhanced View of Time, v2.0 35

Description

An individual entry in the clock catalog.

Attributes

name: String [1]

The ClockEntry name.

Operations

No operations.

Associations

clockl: Clock [1]

The clock definition represented by this catalog entry.

Constraints

No constraints.

Semantics

A ClockEntry consists of a name (unique within the catalog) and a reference to a particular clock definition.

Figure 8.2 - Lightweight Time Service Exceptions

Clock
(from LightweightTime)

<<CORBAInterface>>

ClockEntry

name : string
(from ClockCatalog)

<<CORBAStruct>>

+subject

UserException
(from CORBA)

<<CORBAException>>

TimeUnavailable
<<CORBAExcepti on>>

UnknownEntry
(from ClockCatalog)

<<CORBAExcepti on>>
NotSupported

(from ControlledClock)

<<CORBAException>>
TimePast

(from Controller)

<<CORBAException>>
36 Enhanced View of Time, v2.0

9.1.3.6 TimeUnavailable

Description

TimeUnavailable exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

This exception is raised whenever the underlying clock fails, or is unable to provide time that meets the required security
assurance.

9.1.3.7 UnknownEntry

Description

UnknownEntry exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

Indicates that the catalog contains no entry with the given name.
Enhanced View of Time, v2.0 37

9.1.3.8 NotSupported

Description

NotSupported exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

The NotSupported exception may be raised if the operation is not supported for the instance of the ControlledClock,
or if its characteristics disallow the operation. For example, the rate of a ControlledClock may not be settable. Other
clocks may not be allowed to run “backwards.”

9.1.3.9 TimePast

Description

TimePast exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

Raised by the start_at or resume_at operations if the requested time is in the past.

9.1.3.10 The ClockProperty Package

This package contains only data definitions. They constitute the minimum set of properties required for any clock.
38 Enhanced View of Time, v2.0

9.1.3.11 Resolution

Description

Defines the apparent clock resolution.

Constraints

Must be specified in units of nanoseconds.

Semantics

No special semantics.

9.1.3.12 Precision

Description

Defines the apparent clock precision.

Constraints

No constraints.

Re so lu ti o n
(from C lockProper ty)

<<CO RBA T y p e de f >>

u n si gn e d lo n g
(from C OR BA)

<<CO RB A P rim i ti ve >>

P re ci si o n
(from C lockProper ty)

<<CO RB A T yp e De f>>

sh o rt
(from C OR BA)

<<CO RB A P rim i ti ve >>
Enhanced View of Time, v2.0 39

Semantics

Raised by the start_at or resume_at operations if the requested time is in the past.

9.1.3.13 Width

Description

Number of bits in clock readout.

Constraints

No constraints.

Semantics

Commonly used readout widths are less or equal 64 bits.

9.1.3.14 Stability_Description

Description

Describes the clock stability.

W i dt h
(fr om C loc kPr oper ty)

< < C O R BA T y p e de f >>

u n si g n e d sh o rt
(fr om C O R BA)

< < C O R B A P ri m i t i ve > >

S ta b i l i ty_ De scri p ti o n
(from C lockProper ty)

<<CO RB A T y pe d e f>>

stri n g
(from C OR BA)

<<CO RB A p ri m i ti ve >>
40 Enhanced View of Time, v2.0

Constraints

No constraints.

Semantics

No special semantics.

9.1.3.15 Coordination

Description

Defines the clock coordination method.

Constraints

Under the Lightweight Time Service, Coordination is restricted to the following set of values:

Semantics

No special semantics.

Name Value Meaning

Uncoordinated 0 only static characterization is available

Coo rdination
(from ClockProperty)

<<CORBATy pedef >>

short
(from CORBA)

<<CORBAPrim itive>>
Enhanced View of Time, v2.0 41

9.1.3.16 TimeScale

Description

Defines the time scale used by the clock.

Constraints

Under the Lightweight Time Service, TimeScale is restricted to the following set of values:

Semantics

No special semantics.

Name Value Meaning

Unknown -1

TAI 0 International Atomic Time

UT0 1 diurnal day

UT1 2 + polar wander

UTC 3 TAI + leap second

TT 4 terrestrial time

TDB 5 Barycentric Dynamical Time

TCG 6 Geocentric Coordinated Time

TCB 7 Barycentric Coordinated Time

Sidereal 8 hour angle of veneral equinox

Local 9 UTC + time zone

GPS 10 Global Positioning System

Other 0x7fff e.g., mission

TimeScale
(from ClockProperty)

<<CORBATypeDef>>

short
(from CORBA)

<<CORBAPrimitive>>
42 Enhanced View of Time, v2.0

9.1.3.17 Comments

Description

For supplemental comments.

Constraints

No constraints.

Semantics

No special semantics.

9.1.4 The PeriodicExecution Package
This package is part of the optional minor conformance point “Support of Periodic Execution Control.”

9.1.4.1 Controller

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Controls periodic execution.

Com m ents
(from ClockProperty)

<<CORBAT ypeDef>>

stri ng
(from CORBA)

<<CORBAprim i tive>>
Enhanced View of Time, v2.0 43

Attributes

No attributes.

Operations

start(in period: TimeT, in with_offset: TimeT, in execution_limit: unsigned long, in
params: Any)

Initiates periodic execution with a specified period for a specified count of executions. Specifying an execution limit of 0
is interpreted as an unbounded number of executions. The with_offset parameter may be used to delay the start of the
first execution. The value of the type any parameter params will be passed to each invocation. When starting a clock, the
number of executions is always reset to zero.

start_at(in period: TimeT, in at_time: TimeT, in execution_limit: unsigned long, in
params: Any)

Identical to the start operation except that the at_time parameter specifies an absolute time for the start of the first
execution. When starting a clock, the number of executions is always reset to zero.

pause()

Pauses periodic execution.

resume()

Resumes periodic execution immediately.

resume_at(in at_time: TimeT)

Resumes periodic execution at a particular time.

terminate()

Terminates periodic execution.

stop()

Stops the periodic execution. After having stopped the clock it is possible to start it again.

executions(): unsigned long

Reports the number of periodic executions that have already been initiated. A stopped clock always has an executions
count equal to the total number of executions performed.

Associations

No associations.

Constraints

No constraints.
44 Enhanced View of Time, v2.0

Semantics

This interface provides control over periodic execution. The appropriate object has been registered with the clock and
must specialize the Periodic interface.

9.1.4.2 Executor

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Register an object for periodic execution.

Attributes

No attributes.

Operations

enable_periodic(in on: Periodic): Controller

Registers an object that specializes the Periodic interface for periodic execution. The operation returns a reference to the
associated Controller interface.

Associations

No associations.

Constraints

No constraints.

Semantics

The Executor is an interface for a factory that associates the specified object with a clock capable of supporting periodic
execution. The registered object must specialize the Periodic interface. The Executor interface returns a reference to the
Controller interface associated with this periodic execution.

Executor

enab le_ periodic_execu ti on(in o n : Perio dic) : Control ler

<<CORBAInterface>>

Clock
(from LightweightTime)

<<CORBAInterface>>
Enhanced View of Time, v2.0 45

9.1.4.3 Periodic

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Make an object capable for periodic execution.

Attributes

No attributes.

Operations

do_work(in params: Any): boolean

The do_work operation will be periodically invoked by this service. Each invocation will be passed the type any value
registered by the start or start_at operations on the Controller instance. The user implementation of the do_work
operation should return a value of TRUE to continue periodic invocation; a value of FALSE will terminate periodic
invocation.

Associations

No associations.

Constraints

No constraints.

Semantics

Instances of objects that are to be periodically executed must specialize and implement the Periodic interface. This
means they must provide a do_work operation, and a means to enter a “ready to execute” state prior to registration with
a clock.

9.2 Platform Specific Model: CORBA Service

9.2.1 Overview
The following sections specify a platform specific mapping of the Lightweight Time Service onto the CORBA platform.
The resulting CORBA service is specified in CORBA IDL and represents a fully compatible subset of the Enhanced View
of Time service, version 1.1

Periodic

do_work(params : Any) : boolean

<<CORBAInterface>>
46 Enhanced View of Time, v2.0

9.2.2 Minor Conformance Points
The platform specific model of the Lightweight Time Service supports the two minor conformance points of the platform
independent model: Support of Multiple Clocks and Support of Periodic Execution Control. The selection of the
corresponding features in the IDL definition is controlled by two preprocessor symbols controlling sets of conditional
compilation preprocessor directives.

LW_TIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS

If this preprocessor symbol is defined, support for multiple clocks is activated by including the ClockCatalog interface
and the ClockEntry structure.

LW_TIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

If this preprocessor symbol is defined, the PeriodicExecution module is enabled, which contains support for clock-
controlled periodic execution.

9.2.3 LightweightTime Module

9.2.3.1 ClockProperty Module

module ClockProperty
{

// the minimum set of properties to be supported for a clock
typedef unsigned long Resolution; // units = nanoseconds
typedef short Precision; // ceiling of log_2(seconds

// signified by least significant
// bit of time readout)

typedef unsigned short Width; // no. of bits in readout -
// usually <= 64

typedef string Stability_Description;
typedef short Coordination;
const Coordination Uncoordinated = 0; // only static characterization

 // is available

typedef short TimeScale;
// possible values for TimeScale (“pseudo-enumeration”)

const TimeScale Unknown = -1;
const TimeScale TAI = 0; // International Atomic Time
const TimeScale UT0 = 1; // diurnal day
const TimeScale UT1 = 2; // + polar wander
const TimeScale UTC = 3; // TAI + leap seconds
const TimeScale TT = 4; // terrestrial time
const TimeScale TDB = 5; // Barycentric Dynamical Time
const TimeScale TCG = 6; // Geocentric Coordinate Time
const TimeScale TCB = 7; // Barycentric Coordinate Time
const TimeScale Sidereal = 8; // hour angle of vernal equinox
const TimeScale _Local = 9; // UTC + time zone
const TimeScale GPS = 10; // Global Positioning System
const TimeScale Other = 0x7fff; // e.g. mission

// end of pseudo-enumeration
Enhanced View of Time, v2.0 47

typedef string Comments;

}; // end of module ClockProperty

exception TimeUnavailable {};

9.2.3.2 Clock Interface

// the basic clock interface
interface Clock // a source of time readings
{

readonly attribute CosPropertyService::PropertySet properties;
TimeBase::TimeT current_time raises(TimeUnavailable);

};

9.2.3.3 ClockCatalog Interface

// alternative to Trader service (e.g., for embedded systems)
// Optional for system support of multiple clocks.
interface ClockCatalog
{

struct ClockEntry
{

Clock subject;
string name;

};

typedef sequence<ClockEntry> ClockEntries;
exception UnknownEntry {};
ClockEntry get_entry(in string with_name) raises (UnknownEntry);
ClockEntries available_entries();
void register(in ClockEntry entry);
void delete_entry(in string with_name) raises (UnknownEntry);

};

9.2.3.4 ControllableClock Interface

// a controllable clock
local interface ControlledClock: Clock
{

exception NotSupported {};
void set(in TimeBase::TimeT to) raises (NotSupported);
void set_rate(in float ratio) raises (NotSupported);
float get_rate() raises(NotSupported);
void pause() raises (NotSupported);
void resume() raises (NotSupported);
void terminate() raises (NotSupported);

};
48 Enhanced View of Time, v2.0

9.2.4 PeriodicExecution Module

// Optional for Lightweight Time.

module PeriodicExecution
{

9.2.4.1 Periodic Interface

// (conceptually abstract) base for objects that can be
// invoked periodically
interface Periodic
{

boolean do_work(in any params); // return FALSE terminates
// periodic execution

};

9.2.4.2 Controller Interface

// control object for periodic execution
interface Controller
{

exception TimePast {};
void start(in TimeBase::TimeT period,

 in TimeBase::TimeT with_offset,
 in unsigned long execution_limit, // 0 = no limit
 in any params);

void start_at(in TimeBase::TimeT period,
 in TimeBase::TimeT at_time,
 in unsigned long execution_limit, // 0 = no limit
 in any params) raises (TimePast);

void pause();
void resume();
void resume_at(in TimeBase::TimeT at_time) raises(TimePast);
void stop();
void terminate();
unsigned long executions();

#ifndef LIGHTWEIGHT_SERVICE
void set_update_strategy(in ControllerUpdateStrategy id)

raises(ControllerUpdateStrategyRegistry::UnknownStrategy);
#endif

};

9.2.4.3 Executor Interface

// factory clock for periodic execution
local interface Executor : Clock
{

Controller enable_periodic_execution(in Periodic on);
};

}; // end of module PeriodicExecution
Enhanced View of Time, v2.0 49

50 Enhanced View of Time, v2.0

Annex A
(informative)

Consolidated OMG IDL

#ifndef _CosClockService_IDL_
#define _CosClockService_IDL_

//Enhanced View of Time Service Specification, v2.0 - OMG IDL Summary File
//Object Management Group, Inc.
//Copyright © 1999, Objective Interface Systems
//Copyright © 2007, Selex Sistemi Integrati
//The companies listed above have granted to the Object Management Group, Inc.
//(OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and
//distribute this document and to modify this document and distribute copies of
//the modified version. Each of the copyright holders listed above has agreed
//that no person shall be deemed to have infringed the copyright in the included
//material of any such copyright holder by reason of having used the
//specification set forth herein or having conformed any computer software to
//the specification.
//
//This file contains OMG IDL from the Naming Service Specification, v1.2.
//OMG regularly publishes a summary file that contains all the "code" parts of
//an OMG formal document. Every formal document line that is IDL, PIDL, or
//language code is included in the summary file. The reason for such a listing
//is to give readers an electronic version of the "code" so that they can
//extract pieces of it. Readers might want to test an example, include it in
//their own code, or use it for documentation purposes. Having the code lines
//available electronically means there is less likelihood of a transcription
//error.

//File: CosClockService.idl

// This module comprises the COS Clock service

#include <TimeBase.idl>
#include <CosPropertyService.idl>

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#endif

//! CosClockService module maintains all EVoT interfaces.
module CosClockService
{

#ifndef _PRE_3_0_COMPILER_
 typeprefix CosClockService "omg.org";
#endif
Enhanced View of Time, v2.0 51

 //! The minimum set of properties to be supported for a clock
 module ClockProperty
 {
 typedef unsigned long Resolution; //! units = nanoseconds
 typedef short Precision; /*! ceiling of log_2(seconds signified by least
 * significant bit of time readout)
 */
 typedef unsigned short Width; //! no. of bits in readout - usually <= 64
 typedef string Stability_Description;

 typedef short Coordination;
 const Coordination Uncoordinated = 0; //! only static characterization is available

#ifndef LIGHTWEIGHT_SERVICE

 const Coordination Coordinated = 1; //! measured against another source
 const Coordination Faulty = 2; //! e.g., there is a bit stuck

 //! The following are only applicable for coordinated clocks
 struct Offset
 {
 long long measured; //! units = 100 nanoseconds
 long long deliberate; //! units = 100 nanoseconds
 };

 typedef short Measurement;
 const Measurement Not_Determined = 0; //! has not been measured
 const Measurement Discontinuous = 1; //! e.g., one clock is paused
 const Measurement Available = 2; //! has been measured

 typedef float Hz;
 struct Skew
 {
 Measurement available;
 Hz measured; //! only meaningful if available = Available - in Hz
 Hz deliberate; //! in Hz
 };
 typedef float HzPerSec;
 struct Drift
 {
 Measurement available;
 HzPerSec measured; /*! meaningful if available = Available
 * in Hz/sec
 */
 HzPerSec deliberate; // in Hz/sec
 };

#endif // LIGHTWEIGHT_SERVICE

 typedef short TimeScale;
 const TimeScale Unknown = -1;
 const TimeScale TAI = 0; //! International Atomic Time
 const TimeScale UT0 = 1; //! diurnal day
 const TimeScale UT1 = 2; //! + polar wander
52 Enhanced View of Time, v2.0

 const TimeScale UTC = 3; //! TAI + leap seconds
 const TimeScale TT = 4; //! terrestrial time
 const TimeScale TDB = 5; //! Barycentric Dynamical Time
 const TimeScale TCG = 6; //! Geocentric Coordinate Time
 const TimeScale TCB = 7; //! Barycentric Coordinate Time
 const TimeScale Sidereal = 8; //! hour angle of vernal equinox
 const TimeScale _Local = 9; //! UTC + time zone
 const TimeScale GPS = 10; //! Global Positioning System
 const TimeScale Other = 0x7fff; //! e.g. mission

#ifndef LIGHTWEIGHT_SERVICE

 typedef short Stratum;
 const Stratum unspecified = 0;
 const Stratum primary_reference = 1;
 const Stratum secondary_reference_base = 2;

 typedef Clock CoordinationSource; //! what clock is coordinating with

#endif // LIGHTWEIGHT_SERVICE

 typedef string Comments;
 };

 /**
 * This exception is raised whenever the underlying clock fails, or is unable to provide
 * time that meets the required security assurance.
 */
 exception TimeUnavailable
 {
 };

 /**
 * The basic clock interface, a source of time readings
 */
 interface Clock
 {
 /**
 * @brief The known properties of the clock.
 * @return reference to clock's properties.
 * @exception CORBA::SystemException if error occurs in setting properties
 */
 readonly attribute CosPropertyService::PropertySet properties;

 /**
 * @brief Provides a measure of the current time. The time unit is 100
 * nanosecond i.e. 10e-7 seconds.
 *
 * @return TimeT with current time
 * @exception CosClockService::TimeUnavailable if time is not available
 * with required security assurance.
 *
 * @note current_time is not a <code>readonly</code> attribute because
 * some idl compiler fault compiling it.
 */
Enhanced View of Time, v2.0 53

 TimeBase::TimeT current_time() raises(TimeUnavailable);
 };

#ifndef LIGHTWEIGHT_SERVICE

 enum TimeComparison
 {
 TCEqualTo,
 TCLessThan,
 TCGreaterThan,
 TCIndeterminate
 };

 enum ComparisonType
 {
 IntervalC,
 MidC
 };

 enum OverlapType
 {
 OTContainer,
 OTContained,
 OTOverlap,
 OTNoOverlap
 };

 valuetype TimeSpan;

 // replaces UTO from CosTime
 valuetype UTC
 {
 factory init (in TimeBase::UtcT from);
 factory compose (in TimeBase::TimeT time,
 in unsigned long inacclo,
 in unsigned short inacchi, in TimeBase::TdfT tdf);
 public TimeBase::TimeT time;
 public unsigned long inacclo;
 public unsigned short inacchi;
 public TimeBase::TdfT tdf;

 TimeBase::InaccuracyT inaccuracy ();
 TimeBase::UtcT utc_time ();

 TimeComparison compare_time (in ComparisonType comparison_type,
 in UTC with_utc);
 TimeSpan interval ();
 };

 // replaces TIO from CosTime
 valuetype TimeSpan
 {
 factory init (in TimeBase::IntervalT from);
 factory compose (in TimeBase::TimeT lower_bound,
 in TimeBase::TimeT upper_bound);
54 Enhanced View of Time, v2.0

 public TimeBase::TimeT lower_bound;
 public TimeBase::TimeT upper_bound;
 TimeBase::IntervalT time_interval ();
 OverlapType spans (in UTC time, out TimeSpan overlap);
 OverlapType overlaps (in TimeSpan other, out TimeSpan overlap);
 UTC time ();
 };

 // replaces TimeService from CosTime
 interface UtcTimeService:Clock
 {
 UTC universal_time () raises (TimeUnavailable);
 UTC secure_universal_time () raises (TimeUnavailable);
 UTC absolute_time (in UTC with_offset) raises (TimeUnavailable);
 };

#endif // LIGHTWEIGHT_SERVICE

#if !defined(LIGHTWEIGHT_SERVICE) || defined(LWTIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS)

 /**
 * @brief The ClockCatalog interface allows applications to discover and select a clock for use.
 *
 * It is intended to be a light-weight alternative to the use of the Trading Service (for
 * example, in embedded systems).
 */
 interface ClockCatalog
 {

 /**
 * @brief This structure holds the known information about a clock: its registered name and its$
 * object reference
 */
 struct ClockEntry
 {
 Clock subject;
 string name;
 };
 typedef sequence < ClockEntry > ClockEntries;

 //! Indicates that the catalog contains no entry with the given name.
 exception UnknownEntry {};

 ClockEntry get_entry(in string with_name) raises (UnknownEntry);
 ClockEntries available_entries();
 void register(in ClockEntry entry);
 void delete_entry(in string with_name) raises (UnknownEntry);
 };

#endif // LIGHTWEIGHT_SERVICE

 // a controllable clock
 local interface ControlledClock: Clock
 {
Enhanced View of Time, v2.0 55

 exception NotSupported {};
 void set(in TimeBase::TimeT to) raises (NotSupported);
 void set_rate(in float ratio) raises (NotSupported);
 float get_rate() raises(NotSupported);
 void pause() raises (NotSupported);
 void resume() raises (NotSupported);
 void terminate() raises (NotSupported);
 };

#ifndef LIGHTWEIGHT_SERVICE

 // useful for building user synchronized clocks
 interface SynchronizeBase : Clock
 {
 struct SyncReading
 {
 TimeBase::TimeT local_send;
 TimeBase::TimeT local_receive;
 TimeBase::TimeT remote_reading;
 };
 SyncReading synchronize_poll(in Clock with_master);
 };
 interface SynchronizedClock;

 exception UnableToSynchronize
 {
 TimeBase::InaccuracyT minimum_error;
 };
 // allows definition of a new clock that uses the underlying hardware source
 // of the existing clock but adjusts to synchronize with a master clock
 interface Synchronizable : SynchronizeBase
 {
 const TimeBase::TimeT Forever = 0x7FFFFFFFFFFFFFFF;
 SynchronizedClock new_slave (in Clock to_master,
 in TimeBase::InaccuracyT to_within,
 // synchronization envelope
 in short retry_limit,
 // if unable to attain accuracy
 in TimeBase::TimeT minimum_delay_between_syncs,
 // limits network traffic,
 // Forever precludes auto resync
 in CosPropertyService::Properties properties
 // if null list, then inherit
 // properties of self
) raises (UnableToSynchronize);
 };
 // able to explicitly control synchronization
 interface SynchronizedClock : Clock
 {
 void resynch_now()
 raises (UnableToSynchronize);
 };

#endif // LIGHTWEIGHT_SERVICE
56 Enhanced View of Time, v2.0

#if !defined(LIGHTWEIGHT_SERVICE) || defined(LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL)

 module PeriodicExecution
 {
 local interface Controller;

#ifndef LIGHTWEIGHT_SERVICE

 typedef short ControllerUpdateStrategy;
 const ControllerUpdateStrategy UNDEFINED =-1;
 const ControllerUpdateStrategy CANCEL_ALL = 0;
 const ControllerUpdateStrategy ENFORCE_INTERVAL = 1;
 const ControllerUpdateStrategy ENFORCE_DEADLINE = 2;
 const ControllerUpdateStrategy USER_DEFINED_0 = 3;
 const ControllerUpdateStrategy USER_DEFINED_1 = 4;
 const ControllerUpdateStrategy USER_DEFINED_2 = 5;

 local interface ControllerUpdateHandler
 {
 void on_set(in Controller aController);
 void on_set_rate(in Controller aController);
 void on_pause(in Controller aController);
 void on_terminate(in Controller aCntroller);
 void on_resume(in Controller aController);
 };

 local interface ControllerUpdateStrategyRegistry
 {
 exception StrategyAlreadyExist {};
 exception UnknownStrategy {};
 exception OperationNotAllowed {};
 void register(in ControllerUpdateStrategy aStrategy,
 in ControllerUpdateHandler handler)
 raises (StrategyAlreadyExist, OperationNotAllowed);
 void unregister(in ControllerUpdateStrategy id)
 raises (UnknownStrategy, OperationNotAllowed);
 ControllerUpdateHandler get_strategy(in ControllerUpdateStrategy id)
 raises (UnknownStrategy);
 };

#endif // LIGHTWEIGHT_SERVICE

 // (conceptually abstract) base for objects that can be invoked periodically
 interface Periodic
 {
 boolean do_work(in any params);
 // return FALSE terminates periodic execution
 };

 // control object for periodic execution
 local interface Controller
 {
 exception TimePast {};
 void start(in TimeBase::TimeT period,
Enhanced View of Time, v2.0 57

 in TimeBase::TimeT with_offset,
 in unsigned long execution_limit, // 0 = no limit
 in any params);
 void start_at(in TimeBase::TimeT period,
 in TimeBase::TimeT at_time,
 in unsigned long execution_limit, // 0 = no limit
 in any params)
 raises (TimePast);
 void pause();
 void resume();
 void resume_at(in TimeBase::TimeT at_time)
 raises(TimePast);
 unsigned long executions();
 void stop();
 void terminate();

#ifndef LIGHTWEIGHT_SERVICE

 void set_update_strategy(in ControllerUpdateStrategy id)
 raises (ControllerUpdateStrategyRegistry::UnknownStrategy);
 ControllerUpdateStrategy get_update_strategy();

#endif // LIGHTWEIGHT_SERVICE

 };

 // factory clock for periodic execution
 local interface Executor : Clock
 {
 Controller enable_periodic_execution(in Periodic on);
 };

 local interface ControlledExecutor
 :Executor
 ,ControlledClock
 {

#ifndef LIGHTWEIGHT_SERVICE

 Controller
 enable_periodic_execution_with_strategy(in CosClockService::PeriodicExecution::Periodic on,
 in ControllerUpdateStrategy id)
 raises (ControllerUpdateStrategyRegistry::UnknownStrategy);
 void set_controller_update_strategy(in ControllerUpdateStrategy id)
 raises (ControllerUpdateStrategyRegistry::UnknownStrategy);
 ControllerUpdateStrategy get_controller_update_strategy();

#endif // LIGHTWEIGHT_SERVICE

 };
 };
#endif // LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

#ifndef LIGHTWEIGHT_SERVICE
58 Enhanced View of Time, v2.0

 module Monotonicity
 {
 enum RecoveryStrategy
 {
 IGNORE, // Ignore violation
 SLOW_DOWN, // Slow down the clock so to recover monotonicity
 STALL // Stall the clock up to when the violation condition has been risolved
 };

 struct Violation
 {
 long min_interval; // minimum time interval (in nsec) to be considered as a violation
 long max_interval; // max time interval (in nsec) to be considered as a violation. Greate interval
 // will be regarded as clock failure
 RecoveryStrategy strategy;
 };

 local interface ViolationHandler;
 local interface ViolationRegistry
 {
 // Register an handler for a given clock providing the monotonicity recovering strategy.
 // By default the monotonicity violation are ignored.
 void register_handler(in Clock aClock,
 in Violation aViolation,
 in ViolationHandler aHandler);
 void unregister_handler(in ViolationHandler aHandler);
 };

 local interface ViolationHandler
 {
 //
 void handle_violation(in Clock aClock, in Violation aViolation);
 };

 };

#endif // LIGHTWEIGHT_SERVICE

};
#endif // _CosClockService_IDL_
Enhanced View of Time, v2.0 59

60 Enhanced View of Time, v2.0

Annex B
(informative)

Implementation Guidelines

B.1 Introduction
This annex contains advice to implementors. Appropriate documented handling of the criteria presented here is mandatory
for conformance to the Basic Time Service conformance point.

B.2 Criteria to Be Followed for Secure Time
The following criteria must be followed in order to assure that the time returned by the secure_universal_time
operation is in fact secure time. If these criteria are not satisfactorily addressed in an ORB, then it must return the
TimeUnavailable exception upon invocation of the secure_universal_time operation of the UtcTimeService
interface.

Administration of Time

Only administrators authorized by the system security policy may set the time and specify the source of time for time
synchronization purposes.

Protection of Operations and Mandatory Audits

The following types of operations must be protected against unauthorized invocation. They must also be mandatorily
audited:

• Operations that set or reset the current time.

• Operations that designate a time source as authoritative.

• Operations that modify the accuracy of the time service or the uncertainty interval of generated timestamps.

Synchronization of Time

Synchronization of time must be transmitted over the network. This presents an opportunity for unauthorized tampering
with time, which must be adequately guarded against. Clock Service implementors must state how time values used for
time synchronization are protected while they are in transit over the network.

Clock Service implementors must state whether or not their implementation is secure. Implementors of secure time
services must state how their system is secured against threats documented in the Security Service Specification. They
must also document how the issues mentioned in this section are addressed adequately.
Enhanced View of Time, v2.0 61

62 Enhanced View of Time, v2.0

	Preface
	About the Object Management Group
	OMG

	OMG Specifications
	OMG Modeling Specifications
	OMG Middleware Specifications
	Platform Specific Model and Interface Specifications

	Typographical Conventions
	Issues

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	7 Overview
	2. Apply a correction to the raw output of the slaved clock source before presenting the clock reading to an application.
	2. No special interoperability interfaces are required; the requirements on the master clock interface is limited to reading the remote clock.
	2. Using the period invocation interface, described below, and specifying an execution count of 1.

	8 Clock Service
	8.2.1.1 Type TimeT
	8.2.1.2 Type InaccuracyT
	8.2.1.3 Type TdfT
	8.2.1.4 Type UtcT
	8.2.1.5 Type IntervalT
	8.4.2.1 Exception TimeUnavailable
	8.4.2.2 Readonly attribute properties
	8.4.2.3 Operation current_time
	8.5.2.1 Enum ComparisonType
	8.5.2.2 Enum TimeComparison
	8.5.2.3 Enum OverlapType
	Figure 8.1 - Illustration of Interval Overlap

	8.5.3.1 Factory init
	8.5.3.2 Factory compose
	8.5.3.3 Public state member time
	8.5.3.4 Public state member inacclo
	8.5.3.5 Public state member inacchi
	8.5.3.6 Public state member tdf
	8.5.3.7 Operation inaccuracy
	8.5.3.8 Operation utc_time
	8.5.3.9 Operation compare_time
	8.5.3.10 Operation interval
	8.5.4.1 Factory init
	8.5.4.2 Factory compose
	8.5.4.3 Public state member lower_bound
	8.5.4.4 Public state member upper_bound
	8.5.4.5 Operation time_interval
	8.5.4.6 Operation spans
	8.5.4.7 Operation overlaps
	8.5.4.8 Operation time
	8.5.5.1 Operation universal_time
	8.5.5.2 Operation secure_universal_time
	8.5.5.3 Operation absolute_time
	8.9.1.1 Struct SyncReading
	8.9.1.2 Operation synchronize_poll
	2. Obtain the with_master clock’s time; that is, invoke readout on it. Save it in remote_reading.
	3. Place the clock’s current reading into local_receive.

	8.9.2.1 Exception UnableToSynchronize
	8.9.2.2 Operation new_slave
	8.9.3.1 Operation resynch_now
	2. Specifying “LocalClock” yields a reference to the local system clock, if any.

	8.11.1.1 Operation do_work
	8.11.2.1 Exception time_past
	8.11.2.2 Operation start
	8.11.2.3 Operation start_at
	8.11.2.4 Operation pause
	8.11.2.5 Operation resume
	8.11.2.6 Operation resume_at
	8.11.2.7 Operation stop
	8.11.2.8 Operation terminate
	8.11.2.9 Operation executions
	8.11.2.10 set_update_strategy
	8.11.2.11 get_update_strategy
	8.11.3.1 Operation enable_periodic_execution
	8.11.4.1 Operation enable_periodic_execution_with_strategy
	8.11.4.2 Operation set_controller_update_strategy
	8.11.4.3 Operation get_controller_update_strategy
	8.11.5.1 Operation on_set
	8.11.5.2 Operation on_set_rate
	8.11.5.3 Operation on_pause
	8.11.5.4 Operation on_stop
	8.11.5.5 Operation on_terminate
	8.11.5.6 Operation on_resume
	8.11.6.1 Operation register
	8.11.6.2 Operation unregister
	8.11.6.3 Operation get_strategy

	9 Lightweight Time Service
	Support of Multiple Clocks
	Support of Periodic Execution Control
	Figure 8.1 - Lightweight Time Service Package Structure

	9.1.3.1 Clock
	Description
	Attributes
	Operations
	Associations
	properties: PropertySet [1]
	current_time: TimeT [1]

	Constraints
	Semantics

	9.1.3.2 ControlledClock
	Description
	Attributes
	Operations
	set(in t0: TimeT)
	set_rate(in ratio: Float)
	Float get_rate()
	pause()
	resume()
	terminate()

	Associations
	Constraints
	Semantics

	9.1.3.3 ClockCatalog
	Description
	Attributes
	Operations
	get_entry(in name: String): ClockEntry
	available_entries(): ClockEntries
	register(in entry: ClockEntry)
	delete_entry()

	Associations
	clockEntries: ClockEntries[1]

	Constraints
	Semantics

	9.1.3.4 ClockEntries
	Description
	Attributes
	Operations
	Associations
	clockEntry: ClockEntry[*]

	Constraints
	Semantics

	9.1.3.5 ClockEntry
	Description
	Attributes
	name: String [1]

	Operations
	Associations
	clockl: Clock [1]

	Constraints
	Semantics
	Figure 8.2 - Lightweight Time Service Exceptions

	9.1.3.6 TimeUnavailable
	Description
	Attributes
	Operations
	Associations
	Constraints
	Semantics

	9.1.3.7 UnknownEntry
	Description
	Attributes
	Operations
	Associations
	Constraints
	Semantics

	9.1.3.8 NotSupported
	Description
	Attributes
	Operations
	Associations
	Constraints
	Semantics

	9.1.3.9 TimePast
	Description
	Attributes
	Operations
	Associations
	Constraints
	Semantics

	9.1.3.10 The ClockProperty Package
	9.1.3.11 Resolution
	Description
	Constraints
	Semantics

	9.1.3.12 Precision
	Description
	Constraints
	Semantics

	9.1.3.13 Width
	Description
	Constraints
	Semantics

	9.1.3.14 Stability_Description
	Description
	Constraints
	Semantics

	9.1.3.15 Coordination
	Description
	Constraints
	Semantics

	9.1.3.16 TimeScale
	Description
	Constraints
	Semantics

	9.1.3.17 Comments
	Description
	Constraints
	Semantics

	9.1.4.1 Controller
	Description
	Attributes
	Operations
	start(in period: TimeT, in with_offset: TimeT, in execution_limit: unsigned long, in params: Any)
	start_at(in period: TimeT, in at_time: TimeT, in execution_limit: unsigned long, in params: Any)
	pause()
	resume()
	resume_at(in at_time: TimeT)
	terminate()
	stop()
	executions(): unsigned long

	Associations
	Constraints
	Semantics

	9.1.4.2 Executor
	Description
	Attributes
	Operations
	enable_periodic(in on: Periodic): Controller

	Associations
	Constraints
	Semantics

	9.1.4.3 Periodic
	Description
	Attributes
	Operations
	do_work(in params: Any): boolean

	Associations
	Constraints
	Semantics
	LW_TIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS
	LW_TIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

	9.2.3.1 ClockProperty Module
	9.2.3.2 Clock Interface
	9.2.3.3 ClockCatalog Interface
	9.2.3.4 ControllableClock Interface
	9.2.4.1 Periodic Interface
	9.2.4.2 Controller Interface
	9.2.4.3 Executor Interface

	Annex A (informative)
	Consolidated OMG IDL
	Annex B (informative)
	Implementation Guidelines
	Administration of Time
	Protection of Operations and Mandatory Audits
	Synchronization of Time

