February 2009

Reference Metamodel for the EXPRESS
Information Modeling Language

Specification

Beta 1

OMG Document Number: ptc/2009-02-05

Standard document URL: http://www.omg.org/spec/EXPRESS/1.0

Associated File(s)*: http://www.omg.org/spec/EXPRESS/20080201
http://www.omg.org/spec/EXPRESS/20080202

» original files: mantis2008-02-03 (uml2 xmi), mantis/2008-02-04 (cmof xmi)

This OMG document replaces the submission document (mantis/2008-02-05, Alpha 1). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of
this document are welcome, and should be directed to issues@omg.org by February 27, 2009.

You may view the pending issues for this specification from the OMG revision issues web page
http:.//www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on June 26, 2009. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

http://www.omg.org/spec/ALMAS/2008-02-01
http://www.omg.org/spec/PAGE-OM/20080102

Copyright © 2008, JBIC (Japan Biological Informatics Consortium)
Copyright © 2008, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED
ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS,
REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE
FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, [IOP™ , MOF™ | OMG Interface Definition Language (IDL)™ , and OMG SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

Table of Contents

1 IO OAUCHION . ettt ee e 12
2 SCOPE ANA PUIPOSE. c.iiiiiiiiiii ettt ettt e e 14
3 NOrMAative REFEI@NCES. .uieuuiiuiiiiiiiiiiii ittt 14
4 CONPOITANCE .ttt ettt ettt ettt ettt ettt e et et e eeeeenns 14
4.1 Conformance of an exchange dOCUMENT ...ouuiiieuiiiiiiiiiiiiiiiiiiiiieeei e, 14

4.2 Conformance as a producer (Pre-PrOCESSOT) .. .uuuiiuureiiuitieiiieiiteeeei ettt eeeeeeee et eieeeeeeeeeeeeeeeeeeinnns 14

4.3 Conformance as a8 (DOSt=)DIOCESSOT . uuuiurriiriiieieitiiitieeeeeetis et eeteeieeeeee e et eeteeeteeeteeeeeeeeeeeteeiteeeseeeeseeeeenns 15

4.4 COMPLIANCE POINES. ..veiieeriiiieeeeieeee ettt ettt ettt e et e e e et e e et e eeeee et eeeeeeeennnns 15
4.4.1 Compliance point: INStANCES. . oeoureeiiiitiiiiiiiiiiiiiii ittt eeee e 15

4.4.2 Compliance point: AIGOTItNMS.....ccueeeiiiiiiiiiiiiiiiiiiiiiiie it 15

4.4.3 Compliance point: RUIES.......eeeuiieiiiiiiiiiiiiiiiiii et eeeeeeennns 15

4.4.4 Compliance point: EXPreSSIONS.eeuiieuiieiiiitiiiiiiiiiiiiiiiieiiei et et eeeieeeeenas 15

4.4.5 Compliance point: StateMENtS.oouueiieiieiiiiiiiieiiieieeeii ettt 15

4.4.6 Compliance point: EXPreSS2....cc.uiiieuriiiiiiiiiiiiiiiiiieii et eeeeeeee e 16

5 Terms and DefiNitiONS. ...ueieueeiiieieieiie ittt 16
5.1 Unified Modeling Language (UML) teITNS . ..c.vioviiiiieiiiiiiiiiieiieiieiieee i ieieeeieeeeieeeeeieiieeieeeiaenn 16

5.2 EXPRESS $0IMNS. ..eiieutiiiiiiitiititieiie ettt ettt 16

5.3 Terms for model eleMENtS. . ..eeiuuiieiiiiiiiiiiiiiiiiit ettt 17

5.4 Additional terms introduced in this SPeCIfiCatioN. . ccuuieeuiiiiiieeiieiiiiiieiieiiieiieiieeeieee e 17

6 DOCUMENT CONVENMTIONS. 1euttieutiiietiiitieitt sttt ettt ettt ettt et et ee ettt et e e eee e e eeaeeeeeeaeeenniss 18
7 Overview of the EXPRESS Metamodel....cuueeieeeiiiiiiiiiiiiiiiiiiiiiiieiiieeie et 20
8 PACKAGE: COTC i iuuiiiiiiiiii ittt ettt et eeeeeeians 21
8.1 DEPCNACNCICS. teevieieeiieeeie ittt e eeeeeeaenn 21

8.2 MOF Metamodel DatatyPeS. . o.ueeiieueiiiieieiiiiii ittt 21

8.2.1 Datatype: BOOICAN. ...uviieuiiieiiitiiiiiiiii ittt 21

8.2.2 Datatype: INt@EET ...ccciuiiiiiiiiiiiiiiiiie ittt 21

8.2.3 Datatype: SIING ..ooeeiiiiiiiiiiiiiiiiii ettt 21

8.3 EXPRESS Language DatatyPesS....o.ueeeeuiiiiiiiiiiiiiiiiiiiiiii i ettt 21

8.3.1 Datatype: EXPreSSTeXt . e uiiieiiiiiieiiiiiiiii ittt 21

8.3.2 Datatype: Identifier. . ..ooueiiiuiiiiiiiiiiiii i 22

8.3.3 Datatype: KeYWOrd.....oooveiieeiiiiiiiiieiiiieiieieeeeeeeeeeee e 22

8.4 Schemas, Scopes and NaAMING...ooiieeuuiiiiiiiiiiiiiiiiiiii et 22

8.4.1 Class: AlgOrithmMSCOPE. c.uviiueiiuiiiiiieiiiiiiii ettt 24

8.4.2 Class: COMMONEICMENT. ...eeuiiiiiiiiiiiiiiiiiiiiiiieiieii ittt 25

8.4.3 Class: InterfacedBEIeMENt. . .c.uiiiuiiieiiiiiiiiiiiiiiiieieeieee et 26

8.4.4 Class: LOCAIEICMENTeeuiiiiiiiiiitiiiiieii ettt 27

8.4.5 Class: L.0CAISCOPEC. .euiiueiiiiiiiiieeie e 28

8.4.6 Class: NamMedEICIMCNE. . .eeuriiiieiiiiiiiiiiiii ettt 28

8.4.7 Class: SCR@MA ..oooooueiiieiiiiieieeeieeeeeeeeeeee e 29

8.4.8 Class: SChemMaAEIEMENt . .uuviiiiiiiiiiiiiiiieiiiiiiiiiiiiiiieeeiiieeeeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 30

8.4.9 ClaSS: SCOPE tiuiiiiiiiiiii it 31

8.4.10 Datatype: ScOPedId......ccueiiuiiiuiiiiiiiiiiiiiiiiiiiiii e 32

8.4.11 Class: TYPCEICMENE . ..eeeuuiiiiiiiiiiiiiiiiii ittt 33

8.4.12 Association: common-element-has-10Cal-SCOPE....uiuuiiiuiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeieeenn 34

8.4.13 Association: element-defined-1N-SCOPEC.....ceouureiiiuiiiiiiiiiiiiiiiiiiiiiieiiieieieiieeeeeieeeen 34

8.4.14 Association: element-interfaced-into-SChema.........coovvieeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeiin 35

8.4.15 Association: local-element-has-10Cal-SCOPE. .cuuvviirreiieriiiieiieiiiieeeiieeeeeeieeeeeeeeee e 35

8.4.16 Association: schema-defines-elemMentS.eouuuiiiiiiieeiiiiiiiiiiiiiiiiiiiiieeiieieeeeeeeeeeeeeeeeeeeeeeeee 36

8.4.17 Association: schema-element-is-interfaced-element........o..oveeeeevieeeiiieiiiiiiiiiiiiieiieeeeeennn 37

8.4.18 Association: schema-interfaces-elements..........ceveiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeieeee 37

8.4.19 Association: type-element-has-SCOPE. ...uiiuiiiuiiiiiiiiiiiiiii e 37

8.5 Remarks 38

EXPRESS Metamodel, Beta 1

8.5.1 Class: REMATK ..oiiioiiiieueiiiiiiiiieieieeeeeeeee ettt 39

8.5.2 Association: remark-apPearS-iN-SCOPEC. . uuueeurintiiitiiitiiiiteitt it eette it eee ettt ees e eieee e 40
8.5.3 Association: remark-describes-elemMeNnt. ... ueueeeriiiiiiiiiiiiiiiiiiiiiiieeeeeee e 41
8.5.4 Association: remark-describes-SChema. . .o.ueeuviieiieiiiiiiiiiiiiiiiieiieiiiieee e 41
8.6 OVEIVIEW OF T VP8, ettt 42
8.6.1 Class: ACtUAITYPC. .ueeiueiiiieiiiiiee ittt 45
8.6.2 Class: ANONYMOUSTYPC. .uvviieueeiiiteiiieeeiiieeie ettt 46
8.6.3 Class: CONCIEtETYPC . ceeueiiieeeeiieieeeeee ettt 46
8.6.4 Class: DataTVPE tecueiieuiiiiiiiiiiiiiiiiiii ittt 47
8.6.5 Class: DefiNedTYP@..uueieuiiiiiiiiiiiiiiii ittt 47
8.6.6 Class: ENUMEratioN TYP€. ..eeuiieuiiiuiiiiiiitiiiii ittt eeieeeeenene, 48
8.6.7 Class: InStantiable T VD@, cuueeuiieuiiiiiiiiiiiiiiii ettt 49
8.6.8 Class: NamMEd T YPC.ccuuuiiieueiiiiiiiiiiieiii ettt 50
8.6.9 Class: ParameterTVP@. ceeueeeieueiiiiiiiiiie ittt 51
8.6.10 Class: SeleCt TYPC . uueeiuriiieeiieeeieieeeeeeeeeee ettt 52
8.6.11 Class: SpecializedT VP, cieueeiieiiiiiiiiiiiiiiiiiiiiieee e 53
8.6.12 Class: VariableTVPe..couueeuiieiiiiiiiiiiiiiiieeeii ettt 53
8.6.13 Association: enumeration-extends-enuUmeration...........oeeeevieeieeieieiiiiiiiiiiiiieieeiieiiieeeeenne 54
8.6.14 Association: select-type-extends-SeleCt-tyPe..couueeuiieiiiiiiiiiiiiiiiiiiiiiiiiiieiieeieeeieeeeean 54
8.6.15 Association: type-instantiateS-SeleCt-tyPe..couiurueieiiiiiiiriiiiiiiiieiiiiiiiieieiieeeeieeeeeen 55
8.7 TYPC CONSIAINES. ..eeiutieiitiie ittt ettt ettt ettt ettt e et e eeeieeeeeeeeeeenns 55
8.7.1 Class: DOMAINCONSIAINE . c...eeeusiieiitiieieeiiieie ettt 56
8.7.2 Class: DOMAINRULC.vviiueeiiieeiiiieiiieeiiieeeeeeeeeee et 57
8.7.3 Association: NamedType-has-DomainRule.....cccoeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeiee 58
8.7.4 Association: type-has-CONStraINtS. . ooueeerieiiieiiiiiiiiiiiii ittt 59
8.8 STMIPIE T Y POS ettt ettt ettt ettt ee e 59
8.8.1 Class: BiNAry T VD@, couueeieuiiiiiuiiiiiiiiiiiii ettt 60
8.8.2 Class: LengthCONSIrAINT. .euuieiuiiitiieiiiiieiiei ittt e 61
8.8.3 Class: LOGICTYPE .eeeeeerreneiiiiiiiiiiiiiiiiiiiiiiiiieie i 62
8.8.4 Class: NUMCTICTYPC.cuueiiiuiiiiiiiiiiiieiiiie ettt eeeeenn 62
8.8.5 Class: REAITYPC .uvviieueiiieiiiiieieeeeeeeeeeeeeeee ettt 62
8.8.6 Class: SIMPLET YD, ueiiueiiiieiiiiiieiiee ettt 63
8.8.7 Class: SN TYPC teueiiriiiiiiiiitii ittt 64
8.9 AGEregation TYPES. .ueeuiiiuiiiieiit ittt 64
8.9.1 Class: AggregatioNTVPC. .cuueeeeiiiiiiiiiiiiiiiiiii ittt 65
8.9.2 Class: ArrayBOUN......ccuviiiiiiuiiiiiiiii i 66
8.9.3 Class: ARRAY T YPC.cuuiiiiiiiieiiieeiiee ettt 67
8.9.4 Class: BAGTYPC .uoiiiiiiiiiiiiiiieeeeie ettt 68
8.9.5 Class: ConcreteAggregationTVPC..oouueeieeeeiieeiiiieiieieieieeeeeeie e 68
8.9.6 Class: LIST T VP .uviiiieiiiieiiiiiieieee ettt 69
8.9.7 Datatype: OrderingKind.........ceeuveiiiiiiiiiiiiiiiiiiiiiiiiiei et 69
8.9.8 ClaSS: SETTYPE teouiiiuiiiiiiiiiiii ittt e 70
8.9.9 Class: SiZ@CONSIIAINT . c...eueiisiiitiiiieiiiieti et eee ettt eee e e e 70
8.10 GeNETaliZE@d TYP@S. .eeueiiuriiitiiiei ettt ettt ettt 71
8.10.1 Class: AGGREGATETYPC.cciiuuiiiiiueiiiiieiiiiiiiieeeeeeeee ettt 72
8.10.2 Class: General AggregatioNT VP, ..ueeeueeieeiiiiiiieiiiii e 73
8.10.3 Class: GeNETalARRA Y TYPC.uuueiiuiiiiieiiieeieieeeeeeeeeeeeeeeeeeeee et 74
8.10.4 Class: GeNeralBAGTYPC. cuueeiiueiiiiiiiiiieiiie ettt 75
8.10.5 Class: GeneralizedTyPe. . cceuueeueiiiiiiiiiiiiiiiiiiieeiei ettt 75
8.10.6 Class: Generall IS T T Y P, .eeuiieiiitiiiiiiiiieieee ettt 76
8.10.7 Class: GeNeralSE T TYP@.ccouuiiiiuiiiiiiiiiiiii ittt 76
8.10.8 Class: GENETTCTYPC.ceuuiiuiiisiietiiite ittt ettt eeiaeeeeeaees 77
8.11 Entitics and AtrIDULES. . .eieuiiiiiiiiiiiie it 78
8.11.1 Class: AtITDULE ..oooeoviiiiiiiiiiiiiiiiie ittt 80
8.11.2 Class: DeriVedAIIDULE. ..ouveeieeiiieeiieeiieeeieeeie et 81
8.11.3 Class: BNty T YD uueeieueiiiieiii ittt 82

EXPRESS Metamodel, Beta 1

8.11.4 Class: EXPlICTLAITDULE. .eveuviiieeiiiiiiieeeiiieeiieeeiieeeieeeeeeeeee e, 84

8.11.5 Class: INVerseAttrTDULE. ...eeueietieiiiitiieiiiiieieei et 85
8.11.6 Class: INVertible AtrIDULE. .ouveeeeiieieeiiiiieieeiieeeieee et 86
8.11.7 Class: Partial ENtity TVP@.ccueeeuiiieiieiiiiiiiiiiiieie ettt 87
8.11.8 Class: SiNGleENtItY TYP@..uueeeeuiiiiieiiiiiieiiiie ettt 87
8.11.9 Class: UnNiqUERUIC. ...ouuiiiiiiiiiiiiiiiiiiiiiiiiieiieeiieeeeeeee e 89
8.11.10 Association: attribute-declared-1n-entity.......cccvvieveeieiueiieiiiiiiieiiiiieeeieeieeeieieeeeeeeeen 90
8.11.11 Association: attribute-has-data-tyPe.......oeeeeveeeveeiieeiiiiiiiieieieieeeeieeeeeeeeeeeeeeee 90
8.11.12 Association: EntityType-has-UniqUeRUIE.cceeeeuiiiiiiiiiiiiiiiiiiiiiiiiieeiieiiieeieeenn 90
8.11.13 Association: InverseAttribute-inverts-EXplicit Attribute.coveeeieeiiiiiiiiiiiiiiiiiiiiiiieeeeenn 91
8.11.14 Association: single-entity-declared-in-€ntity.......oooveeeivieeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeenn, 91
812 REIAtIONSNIDS. 1ottt e 92
8.12.1 Class: DOMAINROIC. ...oocuueiiiiuiiiiiiiiiiiiiiiie e 93
8.12.2 Class: RANGEROIC. c.uvviiiuiiiiiiiiiiiiieeiiieeii ettt 94
8.12.3 Class: RelatioNSNiPveiieeiiieeeiiieeiiieieeeeee e 95
8.12.4 Class: ROIE ooiiiiiiiiiiiiiiii i 96
8.12.5 Association: DomainRole-in-RelationShip........ceveeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieiieeeen 97
8.12.6 Association: entity-plays-domain-rol€..........ceuevruiieiiiiiiiiiiiiiiiiiiiiiiiieeiieii e 98
8.12.7 Association: entity-playS-rang@e-rol€........coeeeiiiruiiiiiiiiiiiiiieiiiieiiiiieieieeeeeeeieeeeieeeeenn 98
8.12.8 Association: entity-used-in-attribute.ooueeeuiiiieiiiiiiiiiiiiiiiiiiieiieeiieieeiei e 99
8.12.9 Association: InverseAttribute-modelS-T0l€.......ueiiuiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieeeeeeen 99
8.12.10 Association: InvertibleAttribute-creates-relationShip.........eeeveeeeeiiiiiieiiiiiiiiiiiiiiiiiiiieen. 100
8.12.11 Association: Invertible Attribute-modelS-1ole. .. .oouueiiereiiieiiiieiiiiiiieiiieeeeieeeeeeeeeeeen 100
8.12.12 Association: RangeRole-in-RelationShip......oveeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiieieee 101
8.13 ReAECIATAtIONS. .uieutiiiuiiitiiiieeie ittt 101
8.13.1 Class: RedeClaration.......ueeueeeuieiiiiiiiiiiiiiieiieiieee ettt ee e 102
8.13.2 Association: scope-of-redeclaration-iS-Entity TVPe...couiiieeiiiieiiiiiiiiiiiiiiiiieiiiieiieeeeeeennn 105
8.14 Expressions and INStANCES. . eouuieeuiiiiiiitiieiiiiiiiie ettt 105
8.14.1 Class: EXPICSSTON. c.uuuiiiueiiiiie e ittt ettt ettt 106
8.14.2 Class: INSTANCE ...oecoueiiiiiiiiiiiiiiiteie ettt eee e 108
8.15 Instance Package: BUiltINTYPES. .uvviieuvieiieiiiiiiiiieiieeeiieeeeeee e 109
8.15.1 DePENAENCIES .uoiiiiueiiiieiiiiiiiiieie it 109
8.15.2 Instance: BINARY ..oiiuuiiiiiiiiiiiiiiiii ettt 109
8.15.3 Instance: BOOLEAN.ciiiiuitiiiiiiiiiiieii ettt 109
8.15.4 Instance: INTEGERc..oiiiiuiiiiiiiiiiiiiiiiii ittt 110
8.15.5 Instance: LOGICALoeiouiiiiiiiiiiiiiiiiiieieiiii it 110
8.15.6 Instance: NUMBERooiiiiiiiiiiiiiiiiiiii ittt 110
8.15.7 Instance: REALL ...ocoooiiiiiiiiiiiiiiiiii it 110
8.15.8 Instance: ROLE ...iiiouiiiiiiiiiiiiiiiiiiiiieei ettt et 110
8.15.9 Instance: STRING .. .ouiiiiiiuiiiiiiiiiiiiiiiiiiieii ettt eeiieeeeeeeeeeeeees 110
8.15.10 Instance: TYPE......ocouiiiiiiiiiiiiiiiiiiiiiieiieieee ettt 110
8.16 Instance Package: GeneriCTYPES. .ouuueuiiuiiiiiiiiiiii ittt 111
8.16.1 DEPENAENCIES 1eveiiueiiiuiiieiiitieiieeii ittt 111
8.16.2 Instance: GENERICcicuiiiiiiiiiiiiiiiiiiiiiieiiieiiieeeeee et 111
8.16.3 Instance: GENERIC ENTITY .ooooeeiieriiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiciee 111
9 PaCKA@E: TNStANCES. tueiiuiiiiitii ittt ettt eeeeeeennn 112
9.1 DEPCNACNICICS. 1ttt e et 112
9.2 Overview Of INStANCES. . cuuiiiiiiiiiiiii it 112
9.2.1 Class COre::INStANCE. .euviiiuiiiiiiiiiieeeis ettt et et eee e 113
9.2.2 Class: CoNCreteValte. . .ouueiueiiiiiiiiiiiiiiiiiiiiieieie ettt 113
9.2.3 Class: ENumMerationTt@M.......eiueieeiiiiiiiiiiiiiiiiiei e 114
9.2.4 Class: INAEterMINALE. ..e.veiieiieiiitiietiieii et eet et ee et e eee e e 115
9.2.5 Class: SpecializedValue.ouueeiieiiiiiiiiiiiiiiiiiiiiiiiiii e 115
9.2.6 Class: TypedINStaNCe. .c.uueieuuieieiiiiiiiiiiiii ittt 116
9.2.7 Association: enumeration-declaresS-1temS. .. .o.uuieeueeeieeeiieiiiiiiieeeeeeeeeeeeeeeieeeeeeeeeeean 116
9.2.8 Association: value-of-EnumerationTyPe.oeeeeeiieieiiiiiiiiiiiiiiiiiiiiieiiieiieeieiieeeeeeeeein 117

EXPRESS Metamodel, Beta 1

9.3 SIMPLE VAIUCS. .oiiieiiiiieiiiieeeiiiie ettt eeeaeen 118

9.3.1 Class: BiNaryValUe......ceeuuiiuiiiiiiiiiiiiiiiiiieiieieee ettt 119

9.3.2 Class: BOOI€aN VAU,ecueiiuiiiiiiiiiiiiieieieiiee et 119

9.3.3 Class: INte@EIVAlUC. ...ccuveiuiiiiiiitiiiii ittt eeieee e 120

9.3.4 Class: Lo@icalValue.ccoueiiiuiiiiiiiiiiiiiiiiieeii et 120

9.3.5 Class: NUMBEIrValU....couuveiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeie et 121

9.3.6 Class: REAIVAIUC ...vviioueiiiiuiiiiiiiiieeeeieeeeeeeee e 121

9.3.7 Class: ROIENAMEooieueiiiiuiiiieiiieeeeeeieeeeeeeeeeee e 121

9.3.8 Class: SimMPIeValU@....ccuuieeuiiiiiiiiiiiiiiiiiiieeieeeei et 122

9.3.9 Class: StrNGVaAlUC. ..cueiiueiiiiiiiiiiiiii ittt 122

9.3.10 Class: TYPENAMIC. .eeuuuiiiiuuiiiiiieiiii ittt ettt ettt ettt eee ettt eeieeaeeenn 123

9.4 A@Eregate VaAlUES. . oouuiieiiiiiiiiiii ittt 123
9.4.1 Class: AggregateValle.oouuiieuiiiiiiiiiiiiiiii i 124

9.4.2 Class: ArTaYMEMDOT . c.uueiiiiiiiiiiiiiiii ettt 125

9.4.3 Class: ARRAYVAIUC. .cuuvviioueiiiiiieieieeeee oo 125

9.4.4 Class: BagMeEMDCT.....ooiiuiiiiiiiiiiiiiiiii i 126

9.4.5 Class: BAGVAIUC ..c.veieuiiiiiiiiiiiiiiiiieiei et 126

9.4.6 Class: GENErTICA ZEIEEALE. .euveiuiiiitiiiiiiitiieti ettt ettt ettt 127

9.4.7 Class: LAStIMEMDET . ..ecuuiiiuiiiiiiiiiitieeii ittt 127

9.4.8 Class: LISTVAIUC ..cveieueiiuiiiiiiiiiiii ittt 128

9.4.9 Class: SETVAIUC ...oooiiuiiiiiiiiiiiiiiiii it 128

9.5 Entity Instances and ValU@S.........eeieveiiiiuiiiiiiiiiiiiiiiiiiiiieiie et 129
9.5.1 Class: AtTIDUtEVAIUC. ..cuvviieeeeieiiieeeiieeeeeeeeeeeeeeeeeeeeeeeee et 132

9.5.2 Class: ENtityINStANCE. ...eeieuuiiiieiiiiieiiii e 133

9.5.3 Datatype: ENtityINAMC. ..eoueeiriiiiiiiiiitiiiii ittt 134

9.5.4 Class: ENtitYValU. . coueeiuiiiiiiiiiiiiiiiiiiiieii ettt 134

9.5.5 Class: MultileafTnStaNCe. ..eeuuiiuiiiiiiieiieniiiitiieii ettt 135

9.5.6 Class: Partial ENtityValue. ..oo.eeeeiieriieiiiiiiiiiiiiiiiieiiiiieieee et 135

9.5.7 Class: SingleEntityValue.cooviiieiiiiiiiiiiiiiiiiiiiiiiiieeiiiiee et 136

9.5.8 Class: SingleleafInStanCe.ouueeieuiiiiiiiiiiiiiiiiiiiiieieieei et 136

9.5.9 Association: entity-value-deScribes-State.........ocuvvieeeeeiieeiiiiiiiieiiiiieeeeiieeeeeeeeeeeean 137

9.5.10 Association: instance-0f-EntityTVPe...coouviieiueeiiiiiiiiiiiiiiiiiiiieiiiiiieeieeeieieeeeeee 137

9.0 CONSTANES . c.teeiitiieettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e e 138
9.6.1 Class: CONSTANT ..eoviieiieitiiiiiiiiiiii ittt ettt ettt ee e e e 138

9.7 POPUIATIONS . .ttt ettt e e 139
9.7.1 Class: EXTENt oiiiviiiiiiiiiiiiiiiieii ettt 141

9.7.2 Class: POPUIAION ...vviieueiiiiiiiiiiiiiiiieeiii et 142

9.7.3 Association: extent-0f-EntityTVPC..co.ueieeuiiiiiiiiiiiiiiiiiiiiiieiiiiiiieeeeeeee e 143

9.7.4 Association: extent-within-pOpPUlation.c..eveeeeeieeeiiiieiieeeieieieeeeeeeee e 143

9.7.5 Association: population-includes-INStanCe.eiiueeeiieiiiiiiiiiiiiiiiiiiiieieiieiieieeeiieeeeeee 144

10 Package: ALGOTTENMIS. .o.vieiuiiiiiiiiiiieiii ettt 145
10.1 DePENAENICICS. teuiiiutiitiiietiieee ettt ettt et ettt ettt e e ee e e e 145
10.2 Functions and ProCedUIES. .. .couuieiiiiiieiiiiiiiiiii it 145
10.2.1 Class: AlGOTTtNIM. ..eueiiriiiiiiiiiiii ittt 146

10.2.2 Class: FUNCHON ...eiiiuiiiiiiiiiiiieiiiii ettt 147

10.2.3 Class: FUNCHONRESUIt.....vviiiiiiiiiiiiiiiiiieiiiiiieeeii et 147

10.2.4 Class: INPAramEter. . uueeeeueiiieeieiiiieeeiee et 148

10.2.5 Class: PaAramEter . ..eiiueeiieeiiieeieiiieeiiie ettt 148

10.2.6 Class: ProCedUIe . ..uuueueiiiiiiiiiiiiiiiiiiiiii ettt 150

10.2.7 Class: StAtEMENT ..cuveeeuiiitiiiiiitieiie ettt ettt ee e 151

10.2.8 Class: VARPAIAMCICT . ..eeeuiiiiiuiiiiiiiiiiiiiieiiie ettt eeeeeeaeeenn 152

10.2.9 Association: algorithm-has-body.......ccceeeeeiieiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieieieeeeeeeeeee 152

10.2.10 Association: algorithm-has-parameters...........o.eeeeeeeiiiiiiiiiiiieiiiiiiieeeiiie e 153

10.2.11 Association: function-has-reSult...........ccoeieiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeeeieeeeee 153

10.3 VaAriableS . . oueiiiieeiiieiieieeeieeeeee ettt 154
10.3.1 Class: LocalVariable.......ooeeieeiiiiiiiiiiiiiiiiii i 156

4 EXPRESS Metamodel, Beta 1

10.3.2 Class: NamedVariable.....ooouiiieeeiiiiiiiiiiiiiiiiieiiiieieeeeiieeieeeee e 157

10.3.3 Class: VARVAIIADI@. ...ecoueieiiiiiiiiiiiiiiiiiiiii ettt 158

10.3.4 Class: Variable cccccoooiiiiiiiiiiiiiiiiiiieei e 158

10.3.5 Association: variable-defined-1n-SCOPE.....couiieeiiiuiiiiiiiiiiiiiiiiiiiiiieieeiieeeieeeeeeeee 159

10.4 ACHUAL TYPCS. 1ottt ittt 159
10.4.1 Class: Core::ACtUAITYPC. cuueeeeuiiiiiiiiiiie ettt 161

10.4.2 Class: ACtUAlAGGREGATETYPEC. cuvviiieiiiiiiiieeeeeeeeeeeeeeeeee e 161

10.4.3 Class: ActualAggregationTVPC. .oeeueeeieeeeeeeeiiiieieiiieeeeieeeeeeeeeeeeee et 163

10.4.4 Class: ACtUAIARRA Y TYPC.ueiiuuiiiuiiiitiiiiiiiiieiiei ettt 163

10.4.5 Class: ACtUAIBAGTYPC.ccuuiiiuiiiiiiiuiiiiiiiii ittt 164

10.4.6 Class: ActualDataTyP€....ceuuiiuiieniiiiiiiiitiieie ettt 164

10.4.7 Class: ActualGeneriCTVPC. .ueeuiiiueiiriiiiiiitiieiiie et 165

10.4.8 Class: ACtUAILIS T T YD, eieueiiiuiieiiiieiiie ittt 165

10.4.9 Class: ACtUAIS ET TYPC.uuiiiiuuieiiiiieitiieiiiee ettt 166

10.4.10 Class: ACtUalStIUCUIE. ..oeuueeeieiieeeiieeiee e 166

10.4.11 Class: GeneriCEIeMENt . .uuiuiiiieeiiiiiiiiiiiiiiiiiiiiiiiieieiiee e eeeeieeeeeeeieeeeeees 166

10.4.12 Association: SCOPe-0f-aCtual-tYPe...couriiuiieiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeieeeeeeee e 167

10.5 Actual TyPe CONSLIAINTS...eeuviiitiiiiiiitiiitieite ittt ettt ettt ettt et e et e e et e e e eee e 168
10.5.1 Class: Actual StructureCONSTIAINT.eveeeeeiieieeiiiiieieiieeieeie e eeeeeeeeeeeeieeeeeeaae 170

10.5.2 Class: Actual TYPECONSTIAINT. c..eeueeeriieiiitiieiiiitieeieeie ettt 171

10.5.3 Association: aggregate-has-CONSraiNt. . .o..veeeueeeiiiiiiiiiiiiiiiieii e 172

10.5.4 Association: generic-has-CONSIAINE.eeeveieiiueeiiiiiieiiii i eeeeeeeiaen 172

11 Packag@e: RULES. ...veiiueiiiieeiiieieeeeeeeeeeee oottt et e ettt e et e e 174
111 DePENACNCICS. oottt 174
11.2 GIODAI RUIES. ..ttt ettt e eee e eeenann 174
11.2.1 Class: GIODAIRUIC. ..c.ueieuriiieiiiiiiiiieiiieii ettt 175

11.2.2 Class: NamedRUIC.eeeuuiiiiiiiiiiiiiiiieii et 176

11.2.3 Association: GlobalRule-contains-NamedRUI€.cooeeeuieiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeee 177

11.2.4 Association: 1ule-coNStrainS-eXteNtS. . .o..uiieueeiiriiiiiiiiiiiie ettt 177

11.3 SupertypeRules and SubtypeCONSIrAINES. ...oeeueiiiieieiiiiiiiiiiiiiiieeiee ittt 178
11.3.1 Class: ANDCONSIAINE. ...eeeuueiiieeiieieiieieeieeieieeeeee et eeeeeeeeeenen 179

11.3.2 Class: ONEOFCONSIAINTeeiiriiiiieieiiiiieieieeiiie i 180

11.3.3 Class: SubtypeCONSTIAINT. c...eeueiisiieiiiitiiiiiiiiiiteii ettt eeeee e eeeae 180

11.3.4 Class: SUPErtyPeRUIC.veeuiiiuiiitiiiii ittt 181

11.3.5 Class: TOTAL _OVERCONStAIMN . c.0e.veiieiieiiiiieiiiiiiiiiiiiiieiiiieiieieiieiiieeieeiiieeiieeeene 182

11.3.6 Association: rule-constrainS-SUDtYPES. ..ouueiuiieiiiiiiiiiiiiiiiiiiiiieeiiiiieeeeeeeeeeieeeeeee 182

11.3.7 Association: rule-includes-SubtypeConStraints.eeveeeeeeeieiiieiiiiiiiiiiiiiieiiiiieeeeeeeeeiaenn 183

12 Package: EXPIeSSIONS . c..uiiiseieiiesie ittt ettt ettt ettt ettt ettt eeenas 184
12.1 DEPENACNCICS. oottt ettt e ettt et e e aeeeeen 184
12.2 OVerview Of EXPIreSSIONS. .ouieuuiiiiueiiieeieiiie ittt eiee et eeeieeeeenne 184
12.2.1 Class Core:: EXPIreSSION. .euuiiusiiitiiitieitiiite ettt ettt ettt et ee i e eeieeeeeeanen 185

12.2.2 Class: INndeXOPeration.ce.ueeeuieieiiesiiiiiiitieiie it ettt ee ettt et e e 185

12.2.3 ClasS: OPEIAtiON .ocuveeeueiisiiieiietiiitieeie ettt ee ettt e eeteeeeeetee e, 186

12.2.4 Class: PriMATY_ ..occooooiiiiiiiiiiiiiiiiiiiii ettt 186

12.2.5 Class: SEIECIOT ..veiiiuiiiiiiiiiiie ittt 187

12.3 PrIMATICS e ouiiiitiie ittt ettt ettt ettt e e 187
12.3.1 Class: ConstantRef. .. couvvieeieiiiiieiieieeeeeieeee e 188

12.3.2 Class: EnumItemBRef.......ooooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 189

12.3.3 Class: EXteNtREf .. .eeeiiiiiiiiiiiiiiiiiiiiiii et 190

12.3.4 Class: IndeterminateRef..........coeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeee e 190

12.3.5 Class: LAteral .iicecooviiiiiiiiiiiiiiiiiiieie et 191

12.3.6 Class: ParameterRef.oouiieuiiiiiiiiiiiiiiiiiiiei et 191

12.3.7 Class: SELFRET ...oiiiuiiiiiiiiiiiii it 192

12.3.8 Class: VariableReooouiiiiiiiiiiiiiiiiiiiiiiiiiiiieii e 193

12,4 TNA@XANG. oottt ettt et ettt et ettt ettt et et ettt e et e eeteeeneees 194
12.4.1 Class: AggregateINd@X.ceeueeiiieiiiiiiiiiiiiiiiii e 194

EXPRESS Metamodel, Beta 1

12.4.2 Class: BinaryINAeXcouuiieuieiieiiieeeiiiieiiiiiiieeiieeeieeeeie e 195

12.4.3 Class: StrNGINAEX .. .ccuiiiiiiiiiiiiiiiiiiieii ittt 196

12,5 S@lECHION. ettt e e e 196
12.5.1 Class: AtribUteReeieiiiiiiiiiiiiiiiieeiiei e 197

12.5.2 Class: GroupRef.....oeuieeiiiiiiiiiiiiiiiiiiiiiciiiiei 198

12.5.3 Class: UsedINR eoooiuuiiiiiiiiiiiiiiiiii it 198

12.6 OPEIAtIONS, 1oeeeeeeiieiieeeeeieeeeee ettt ettt e ettt ettt et e et e et e e e e eareeeeen 199
12.6.1 Class: BinaryOperation.eee.eeeeeeeeeieeeeeieeie it eeeeeeeeene 200

12.6.2 Datatype: BinaryOpPerator. .. .ce.ueeueieiieiiiiiieiiiiiiiiiiiieiie et eeeeee e, 201

12.6.3 Class: COCTCION icuviiiuiiiiiiiiietieitie ettt ettt ettt ettt e e et e e eetee e 205

12.6.4 Class: UNaryOPeIratioN. .. .eeuueeeesiieeieiiiiiieeitieeeiie ittt eeie ettt ettt ettt e et e e e 206

12.6.5 Datatype: UnaryOPerator. u.uee s eiieieiiiiiiiiiiiieeiiiieiiie ettt ettt eeee et 207

12.7 FUNCHON CallS...uuiiiiiiiiiiiii ittt 209
12.7.1 Class: ActualParamEter. . o.ueeeeieiiiiiiiiieiiiii ittt 211

12.7.2 Class: FUNCHONCAILvviiiuiiiieiiieiie e 212

12.7.3 Association: call-provides-actual-parameters...........eeeuevieeeeeieieiiiiiiiieiieiiiiieiiieeeieeiaeenn. 214

12.8 QUETY EXPIESSIONS. 1euutieutiiitiiittiitie ittt ettt ettt ettt ettt ettt ettt et e e eeeeeeeennes 214
12.8.1 Class: QUETYEXPIeSSION. .euuiiuiiisiieiiiitiiiieie ettt i ettt ettt et eee e e eeieeeeeenaen 215

12.8.2 Class: QUEryVariable.ceuviiuiieuiieiiiiiiiiiiiieieei e 216

12.8.3 Association: Scope-0f-variable-1S-QUETY........covieuiiiriiiiiiiiiiiiiiiiiiiiiiiieei e 217

12.9 Aggregate INIHANZETS. .oouuueiiiiiiiiiiiiii it 217
12.9.1 Class: AggregatelINitialiZer. .. .ueeeueiiiiieeiiiiiiiiieiiiii e 218

12.9.2 Class: MemberBinding.......cooueeieueiiieiiiiiiiieiieieiieeeeeeeeeeeeeeeeeeeee e 219

12.9.3 Class: RePEAtCOUNT . ..uueiiueiiiiiiiiiie ittt 220

12.10 Partial Entity CONSIIUCTONS. ..uuiiuiiitiiitiietiiitiiiiiii ettt ettt eeee e 221
12.10.1 Class: AttributeBinding.........ceveeiiieiiiiiiiiiiiiieiiiiiiiieiiieeeei ettt 222

12.10.2 Class: Partial ENtityCONStIUCTOT . oeuuieeuiiisiietiiitiieiiiii et 223

12.11 Instance Package: BUuiltINCONSTANTS. . e..viiuiiiiiiiiiiiiiiiiiiieieetie ittt 224
12.11.1 DEPENACNCICS .eveiiiuriiiiiiiiiiie ittt 225

12.11.2 InStance: B ittt 225

12.11.3 Instance: FALSE . oottt 225

12.11.4 Instance: PI oiiiiiiiiiiiiiiiiiiii it 225

12.11.5 Instance: TRUE . ..ouuiiiiiiiiiiiiiiiiiiieiie ittt 225

12.11.6 Instance: UNKNOWN...eeeiuiiiiiiiiiiiiiiiiei ittt ettt ettt ettt 225

13 Package: State@MENtS. . o.uieuiieiiiiiiiii ittt 226
13.1 DEPENAENICICS. teutiitiitiiietiieee ettt e e ee e 226
13.2 Overview Of StatemMeNtS. . .couueeieuiiiiiiiiiiii it 226
13.2.1 Class: Algorithms::StatemMent. . .o..eeeeeiiieiiiiiiieiiiii it 228

13.2.2 Class: ControlStatemMent.ce.veeeeeeeeieiiiiiiieeeeeeeeeeeeeeeie et 228

13.2.3 Class: NUllStatement. .. e eeieiiiiieiiiiiiiiiiiiiiieeeiiie e eeeiiiieieeeeeeees 229

13.2.4 Class: StatementBIOCK.cuiieuiiiiiiiiiiii it 229

13.2.5 Association: block-sequences-StatemMENtS.....o.ueeuieeieeiiiiiiiiiiiiiiiieeieeii e 230

13.3 ALIAS StAtCIMENES. c.veiiiusiiiiiiiiiitiieiie ettt ettt ettt e e 230
13.3.1 Class: AliaSStatemMeNt.eeuuiieeiieiiiitiiiiiei ettt 231

13.3.2 Class: AliaSVariable.......oouieieiiiiiiiiiiiiiiiiiiiii e 232

13.3.3 Association: alias-binds-variable..........ceeveieeiiiiiiiiiiiiiiiiiiiiiieieiee e 233

13.4 ASSigNmMent StAtEIMENTS. ..oveueeeieiieieeiiieeee ettt 233
13.4.1 Class: ASSIGNMICNE.ueieriiiiieeiiii ittt 233

13.5 CASE StatemeNtS. .oeeuueeeiiiieitieiiiiie ettt 234
13.5.1 Class: CaSEACHION. c.uueiuriiieiietieitis ettt ettt ettt e e e e e e 234

13.5.2 Class: CaseStateMENt. . e .ueeeuriiieiiiiiieeieiii ettt ettt e e 235

13.6 TF StatemMENES. oeeuiiiiiuiiiiitiieiiie ettt ettt ettt ettt 236
13.6.1 Class: IfStaAt@MENT. ..eeiueeeiiiieieeiii ittt ettt 236

13.7 Procedure CallS......cceuuiiiiieiiiiiiiiiiii it 237
13.7.1 Class: ProcedureCall.......oueeieeiiiieeiiieiiiiieii e 238

13.7.2 Association: procedure-call-provides-actual-parameters............eeeevveeeeeeiiiieeeiiiieiiieeiiiinnnenn.. 239

6 EXPRESS Metamodel, Beta 1

13.8 REPEAT StatemMENtS. . ccuueeiiiiieuiieiiiiiiiiiiiieeeieee oottt ettt eeeeeeeeeeiieeeeeeeeeeeeeeeeeeeees 239

13.8.1 Class: ControlVariable........ceuueeiiiiiiiiiieiiiiiiiiiiiiiieie et 240

13.8.2 Class: ESCApeStateMENt. . eeuueeeuiieeiuiiiiiiiiiiieieeiei ettt 241

13.8.3 Class: RepeatStatemMENt.eeueeeeeiisiieiietieeie it 242

13.8.4 Class: SKipStatemMenteueiieeiieiiiiiieiieiiii e 243

13.8.5 Association: repeat-has-body........coceeiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 244

13.8.6 Association: repeat-has-increment-Control.......ouvveevveieeeeeiiieiieiiieeiieeeieeeeieeeeeeeeeeean 244

13.9 RETURN Stat@m@NES. ..ueeieeeiuiiiiiiiiiitiiiiieieieieeeeeeeie ettt ettt ettt ettt e eeeiieeeeeeeeeeeeeeeeeeeeeeees 244
13.9.1 Class: ReturnStatemMent.e.ueeeueeeiiiiieeiiiiiieieeii ettt 245

13.10 VAR EXPIESSTONS. 1eeutiiutiiiteietteitts it ettt ettt ettt et et et ettt et ettt ettt e et et ettt et e e e eieeeeenees 245
13.10.1 Class: AtrIbUtECEl e uuiiiuiiiiiiiiiiiiieii et 246

13.10.2 Class: GroUPCell. . eeueiiuiiiiiiiiiiiiieieeie ettt e 247

13.10.3 Class: MembBEICell. . oeieuuiiiieiiiiieiiiieiiiiiiieei et 248

13.10.4 Class: ANASRETiiuiiiiiiiiiiiiiiiiiiieiiieiie i 249

13.10.5 Class: VAREXPICSSION. .vvviiutiiiiiteieieiiieeeieeete et eeee e 249

13.10.6 Class: VariableCell. .. ouuuiieeiiiiiiiiiiiiiiiiieieieieeeee et 250

14 PacKag@e: EXPIOSS2 . uuiiitiiiuiiitiiitit ettt ettt ettt e e ee e e e 252
14.1 DePENAENICICS. teueiiutiitiiitieee ettt ettt ettt ettt e e e e e e e 253
14.2 Classes and ASSOCTATIONScuuiiuiieuiiiitiiei e et ee ettt ettt ettt ettt ee e e eeneeenne, 253

EXPRESS Metamodel, Beta 1

List of Figures

Figure 1 — EXPRESS Metamodel PaCKages..........ccueoveiririiiniiiiieesteteteteeteit ettt sttt ettt esbe e 19
Figure 2 — Scopes and SCREIMAS.........c.occiiruiiieiiieie ettt et et ettt eae e esbesteebessaeseesseseessesseesseeseensesseessesssessenssenseeans 22
Figure 3 — EXPRESS Scope and Named Element CONCEPLS.........uecuirieriieieriieieniieteeieeiestesaessessesesessesssesseessenssessesseenseens 23
Figure 4 — Conceptual Model 0f SCOPEIA........ociiiiiiiiieieciceee ettt ettt ettt beere b e e e e saeessesbeessessseeesnneens 32
FIUIE 5 = REIMATKS. .. .ctieiiiiieiietici ettt ettt ettt et e et et e e te e be e st e aeessesseessesseessesssesseessassaessenseessesseesseeensseeensseensseeans 37
Figure 6 — Overview of EXPRESS TYPE CONCEPLS.....ueeruiiiiitiiieitieieetieteet ettt sttt st et st e beeseesbeeneesaeeneeeneeneeens 41
Figure 7 — NamedTypes and INStantiable TYPES.......c.ceueruieiirieriieieit ettt ettt ettt et sb et saeesae st e saeseeeneas 42
FIUIE 8 — TYPE CONSLIAINES. c..c.veutiurenteiieiieiieiteitetente sttt et ettt et ettt e bt ebe et e bt sb e et e b e s e st et et et e st esteseebeebeebesbeebesbesaestenbeaensenee 53
FIUIE O — SIMPLE TYPES...euiiuiruiriirtiitietintertertet et ettt ettt ettt st ettt et ettt et et eue e bt e bt e bt b e e bt sa et et e st et estenteneeueeueenneenbeenne 57
Figure 10 — AGEIE@atiOn TYPES......ccuieieerieriieierieetesteeitesteetesteessesseessessaesseassesseassesseassesseassesssessesssessenssensesssesseessseessseennsseens 62
FIigure 11 — GeNEIaliZEA TYPES....cuiecveruieieiiieieeiieieeieteetesteeste st estesstessesseessesssesseasseseessenseensesseensesssesseessessesssessennsessseennssenns 69
FIGUIE 12 — ENEIEY TYPCS. e iutieutietieiieteeteeiteiteette it eet e vt esbeste et e eteesbeeseesbeassesseassesseessesssessesssenseessasseassanseessesseessaeessseeessseessseeans 75
FIGUIE 13 — ALIIIDULES ..viviiiiieiiciiciiete ettt ettt et et e e tb et e esb e et e esseeseesseeseesseessesseessasseessaseesseassanseessesseaneesnsseensneaans 76
Figure 14 — ReIAtiONSIIPS ...o..eoiiieiiiieiee ettt ettt et e bt et e bt et e s bt e teebe et e eb e et e es e e et eneenseennteeemneeeenneeans 89
Figure 15 — REAECIATATIONScuueeuiiiieiiitieie ettt ettt ettt e et e et e bt e et e s bt e te s bt et e eb e et e eb e et e eseenseenbteeembeeeenneeens 98
Figure 16 — Basic EXPIression CONCEPLScceceruiriertirirtintenienteteteteitetteteetestesiesee st teseestebesseeentesteseeneenseenseesbneseneeseensee 102
Figure 17 — Instance Model for Built-In TYPESeeeeriieieriieiei ettt ettt e st ee st e ennees 105
Figure 18 — Instance Model fOr GENETIC TYPES ...ccveeveriieieriieieiieieseete sttt et ete st e e ssaeseessesseesaesseessesseesssaesnsseesnses 107
Figure 19 - OVErview Of INSEANCES cveviiiieriiiieieeiesie ettt ettt ettt et e s te e aeseaessesssesseesaesseessesseessesseensenseensesssansennses 109
FIUIE 20 — SIMPIE VIEWS ..oiviiiieeiiiicitieieete ettt sttt tt e te st et e et ebeeesesbeessesseesseeseessesseessesseesseessesseessenseessaesaseeesssaeensseesnses 114
Figure 21 — AGEIEate VALUESccueeieiiieiieiieieite ettt sttt ettt e st eb e e st esbe e st e beestesseesaesseessesasessesssessesssessansseesssaeensseesnses 119
Figure 22 — ENtity INSTANCESoouieiiiiieieitieie ettt ettt ettt ettt et e et e b et es e et e eete bt emeeeaeemeeeseeneesmneeeenteeeneeesnnees 125
Figure 23 — Partial ENGIEYVAIUESoouiiiiiieieiieeee ettt ettt b et b et e b et e e bt e et et e naeeneesaneee 126
FIGUIE 24 — COMSLANTSeuvintintiieteiteiteiteiceteete ettt ettt ettt ettt b e bbbt e b e s bt sa ettt et et et e st eateaeebeebeebesbesbeesbeesaneembeetee 132
Figure 25 — Populations and INSTANCEScceeriiiieieiieieeiee ettt ettt ettt e ste st e te e st et e e st e bt enseesmseeeenseeenseesnnees 134
FAgUIE 26 — ALGOTITIMSeviiiiiiieieciecieeteeie ettt ettt ettt et e et e st e e st e b e esbesseesse et e esseesaesseessesseesaesseessesseansesseansenseensessnsns 138
FAGUIE 27 — VAITADIES ...eeuvieiieiieiieciieieettee ettt ettt ettt e e st e e st e et e ess e sseesseestesseessesseessesseessenseessenseensenseensennsansennsns 147
FIUIE 28 — ACHUAL TYPES .vivieniiitiiiieiieieet ettt ettt et ettt e et e ae s e e s beesa e beess e beessebeesseeseesbeeseesseeseesseessesseessesseessensaessesnas 151
Figure 29 — ActyalType References to Elements of GeneralizedTyPesccceevveveevieiiieieiieiicieieeeere et 152
Figure 30 — Actual TYPe CONSIIAINEScoruiiiiieiiieitieie sttt ettt ettt ettt et e s bt et e sbe et e et e eneeeseenteeseeneeeseesseeneesaeenneeesnnees 159
FAigure 31 — GLODAL RULESoviiiiiiieieet ettt et ettt ettt e s bt et e s bt et e sb e et e e bt e teeb e et eeeneeesmnees 163
Figure 32 — Supertype Rules and Subtype CONSLIAINEScceouerieieiiieieiinenieeiesieste ettt ettt et see b e e 167
FAUIE 33 — EXPIESSIONS ..veueeutieiietieieetieteeetestestteteeetesteeste bt este st ease s st enseeseenseeseenseemeeseemeenseemsesseensaaseenseeseenseeneenseeneenseennees 173
FAUIE 34 — PIIMATICS ...uvevieiiiiieiieeiieteettete et esteetetestesteesaesbesssesseessesseessesseensesssensesssesseassesseessesseessanseessenssensenssensenssensennsss 176
Figure 35 — INAEXING OPETALIONSecuverviereriieteritetestestesttestesseessesssesseesaesseessesseassesssassesssessesssessesssessesssessessssssssessssseesnsees 182
Figure 36 — Attribute and Attribute-Group SEIECLOTSccviiiiiiieiiiieie ittt ettt ettt reeaesaeesebaeeeseeenenas 185
Figure 37 — Operations and Built-in FUNCHIONSccueviiiiiiiieiiciieieceeeett ettt ve et sb e e e sreeeesbaeesseeenenas 188
Figure 38 — FUNCHION CAllSeouiiiiiiiieiieee ettt ettt ettt et et e et e s et e eae e bt eae e et e st e sbeemeesbeenseebeentennees 198
Figure 39 — QUETY EXPIESSIONScuuieuiiitiiiiitieie ettt ettt ettt ettt et e b e bt e e e te e st e s bt e seesbeemee b e emteebeenteebeenteeneeneeennees 201
Figure 40 — AgEregate INTHAIIZETSccotiiriiiriintiiertet ettt ettt ettt ettt be bt bt se e sba e st eeeennee 204
Figure 41 — Partial Entity Value CONSLITUCTOTScc.ecueuiriririiniirieriinienientetet ettt ettt ete e sttt ettt et et eveeeeenne 207
Figure 42 — BUilt-10 CONSEANESveeviriieiesiieieetieteeteesteetestestessestessesssesseessesseessaeseesseaseessesssessesssessesssessesssessesssensesssessnsees 210
FAUIE 43 — STALCIMEIISeevviiiieiieiietieieeteete et e et e et e e st e e eet e seesseteesse et e esseeseansesseessesssenseassenseessenseanseesnsaeennsaesnsseesnses 213
Figure 44 — ALTAS SEAtCIMENLSc.eccvieuieriiiieitieterteetesteetesteesesteeseeseesseeseesseeseessesstesseessesseessesseessasseessesssessesssessesssessesnssns 216
Figure 45 — ASSIZNMENt SALCIMIENLSecuveriiieieriieieitieiesteeteeteetesteetesreessesseessesssesseessesseessesseessesseessesssessesssssesssesssssessnsees 218
Figure 46 — CASE STATEIMENLSccueiuieiieiietieieeie ettt sttt e te et et et e et es e et e eaee et e eaeesaeeneesaeemeesse e seeseenteeneeeenteeeneeesnnees 219
FAUIE 47 — IF STATEIMIENILSeetieeieiieiieiieite ettt ettt ettt et e et e bt e e e st e et e sbe et e sbeem b e ebeemteebeembeeseenteeaee et emeesbeesneesanees 221
Figure 48 — Procedure Callscccoiiiiiiiiiiiiirienetestes ettt ettt ettt sttt ettt et bt et e bttt ebe b st be bt e 223
Figure 49 — REPEAT, SKIP, and ESCAPE Statementsccceccrirtirerinienienieieieieteeeeneseeeesie et seessesneseneeeeenee 225
Figure 50 — RETURN SEAtEIMENLSccveotieiiiiertiieesieitesiestesieetesteeetesteessesseessesseessesssessesssessesssessesssessesssesssssssssesssssesssses 229
Figure 51 — VAR EXPIESSIONSvevieiieiieieniieterttetesttestesttessessaesesssessesssesseassaseassessesssesssessesssensesssesesssensesssessssessnsseesnsees 231
Figure 52 — Integrated OVEIrVIEW O SCOPES ...cuviiviiiiiiieiiitieiieteete ettt ettt st este e et e esb e beessesbeesbesseesseeseessesnseeesssaeesseeensns 237
Figure 53 — Overview of Named EISIMENTSccceoiiiiiiiiiiiiieieieeteete ettt sttt teesa e beesseessbaeesssaeensseeenenas 238

8 EXPRESS Metamodel, Beta 1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications for
interoperable, portable, and reusable enterprise applications in distributed, heterogeneous environments.
Membership includes Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments. OMG’s specifications
include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture);
CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp./www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
UML
MOF
XMI
CWM
Profile specifications.

OMG Middleware Specifications
CORBA/IIOP
IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
CORBAservices

EXPRESS Metamodel, Beta 1 9

CORBAfacilities

OMG Domain specifications

OMG Embedded Intelligence specifications
OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting
the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp.//www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is
necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bol d: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

10 EXPRESS Metamodel, Beta 1

http://www.iso.org/

1 Introduction

Background - the origins of EXPRESS

In 1984, the Standards for Exchange of Product Data (STEP) project was officially created in the International Standards
Organization (ISO) as an outgrowth of standardization projects in the United States and France. The objective of the
STEP project was to develop standards for the exchange of product information among software tools that supported
product engineering. It rapidly came to include support for construction engineering and manufacturing systems
engineering as well.

An objective of this project was to specify the information content of a product description in a way that was independent
of the form of exchange, so that more than one specific exchange form could be specified, while the semantic
equivalences would be retained by reference to the common model. In particular, the project members envisaged the
need for both database representations and sequential file structures.

At that time, there were no standard information modeling languages, and the languages in common use were purely
graphical. In order to specify the relationships between the information model (what we would now call a "platform
independent model") and the data implementation model (a "platform specific model"), it was perceived to be a
requirement that the information model have a formal text form. Such a form would enable an information model to be
processed by a software tool that could generate the corresponding PSM. There being no usable standard, nor any
common language, with these characteristics, the STEP project developed and standardized its own information
modeling language: EXPRESS.

The information modeling language EXPRESS was standardized in 1994 as Part 11 of the ISO 10303 Standards for the
Exchange of Product Data. It was revised in 1999 and in 2004. It was used for every information model in the STEP
series, and in 3 other standards series in ISO TC184 (Industrial Data), and for information models in standards developed
by other ISO Technical Committees. As of 2005, there were over 300 major information models for manufacturing and
construction information that are formally specified in EXPRESS and standardized by ISO. These models, and the
EXPRESS language are in wide use in the manufacturing industry, and the exchange models are supported by dozens of
software tools.

In the more recent past, in order to make these models useful to an industry in which programmers and modelers are not
commonly taught EXPRESS, further ISO projects have been undertaken to produce mappings from EXPRESS to XML
Schema (ISO 10303-28) and UML (ISO 10303-25). But each of these mappings was specified entirely in text and
targeted version 1 of XML Schema and UML respectively.

The MEXICO project

In 2005, the MEXICO project was created with the objective of applying OMG Model-Driven Architecture (MDA)
technologies to the "EXPRESS problem". The project has three components:
— development of a MOF metamodel for the EXPRESS language
— development of a formal (MOF/QVT) mapping from the EXPRESS metamodel to the UML v2 metamodel (thus
replacing ISO 10303-25 with a formal and machine-processable specification)
— development of a formal (MOF/QVT) mapping from the EXPRESS metamodel to the metamodel of OWL
specified in the OMG Ontology Definition Metamodel

This specification represents the final deliverable of the first project component: the MOF metamodel of EXPRESS.
Results of the other project components will be published separately.

Taken together, these elements will permit automatic generation of UML models that faithfully represent the content of
any ISO standard model formulated in EXPRESS. Similarly, these elements will permit automatic generation of faithful
renditions of those models in OWL, which will enable them to be used as draft ontologies and tested for logical
consistency (and consistency with other models) using Semantic Web tooling. In this way, the knowledge captured in
the many standard EXPRESS models can be made available and usable for 21* century technologies and practitioners.

EXPRESS Metamodel, Beta 1 11

Development of the EXPRESS metamodel
The MEXICO project has developed a complete metamodel of the EXPRESS language and tooling to support it.

NIST developed an EXPRESS compiler that accepts an EXPRESS schema (model) and produces XMI (v1.1) that
corresponds to the metamodel. NIST is currently reworking that compiler to produce M1 instances of the complete
CMOF model herein specified in the XMI 2.1.x form.

Fraunhofer IPK developed a MOF implementation of the metamodel and used the output of the NIST tool to populate the
MOF database for a set of EXPRESS schemas.

Fraunhofer developed additional tooling to implement a mapping from the MOF population to UML (v1.4) following the
guidance in ISO 10303-25. This was a first step toward the goals of the second MEXICO project component.

Eurostep developed tooling to map a subset of the metamodel to OWL. This was a first step toward the goals of the third
MEXICO project component. Further work in this area is continuing with Eurostep and other partners.

At the same time, a number of other tool vendors who support the EXPRESS modeling community have developed
independent internal models of EXPRESS and mappings to various languages, including UML, OWL, and XML
Schema. (Many of them are listed as "supporters" of this specification.) We all agree that the time has come to
standardize an XMI representation of EXPRESS, so as to permit these tools to interoperate around a common
representation.

This specification is the metamodel of the semantics of the EXPRESS language that was developed and tested in the
MEXICO project. It represents completion of the first subproject in the MEXICO trilogy. And it has value in its own
right to other EXPRESS tool developers. For this reason, we are bringing it to OMG for standardization.

Participants in the metamodel development activity include four "technical experts" who participated in the development
of the EXPRESS language itself. It also includes technical experts who were principal developers of the Part 25
(mapping to UML) and Part 28 (mapping to XML Schema) standards. This expertise gives us confidence that the
metamodel is faithful to the semantic intent of the EXPRESS standard.

To be clear about what has been “tested”: For the MEXICO proof-of-concept tooling, all the tools were built to a version
of the metamodel known as version 060615f. Only the NIST tool dealt with the concepts “internal to” Algorithms:
Variables, Statements, and ActualTypes. Parallel work at the New University of Lisbon (UNINOVA) developed tooling
for an elaborate model of Statements. The major change in this specification is the integration of the UNINOV A model,
and related changes and repairs to the Algorithms Package.

Further, to satisfy the current level of technical expectations in OMG, the MOF 1.4 version has been modified to a
CMOF version in this version. Several errors have been discovered and they are corrected in this version.

Acknowledgements

This specification is derived in part from early work on the development of a metamodel of EXPRESS (that was itself
specified in EXPRESS) by Prof. Donald Sanderson of East Tennessee State University, Dr. Philip Spiby of Eurostep ,
Dr. Markus Maier of PDTEC, and Dr. Peter Wilson of Boeing Corporation (now retired).

Every organization listed as a submitter or supporter has made some technical contribution to this specification.

12 EXPRESS Metamodel, Beta 1

2 Scope and Purpose

This specification is a metamodel for the EXPRESS information modeling language, as defined by
ISO 10303-11.2:2004, Product data exchange — EXPRESS Language Reference Manual. It includes all elements of the
language.

The metamodel conforms to the OMG Complete Meta-Object Facility (CMOF) specification, version 2.0.

The metamodel captures the meaning of the EXPRESS syntactic constructs, not the syntactic constructs themselves. It
differs from an abstract syntactic model of the language when either:

— the same syntax is used with different semantics in different contexts, or

— the syntax is more complex than the semantic content it expresses.

Some attributes of concepts in the metamodel serve only to permit the EXPRESS syntactic form to be recreated from the
metamodel instance. Such attributes are so described.

The purpose of this specification is to provide a common basis for communication among tools that create or compile
EXPRESS models, analyze them, and/or map them to various forms of implementation specifications.

It is also intended to serve as a basis for the definition of formal standard mappings to other modeling and
implementation languages.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Subsequent amendments to, or revisions of, any of these publications do not necessarily apply. However,
users and implementors of this specification are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. ISO and OMG maintain registers of currently valid specifications.

ISO 10303, Industrial data — Product data exchange — Part 11: EXPRESS Language Reference Manual, ed. 2, 2004.
OMG Meta-Object Facility (MOF) Core Specification, v2.0, January, 2006, (formal/06-01-01)
OMG XML Metadata Interchange (XMI) Specification, v2.1.1, December, 2007, (formal/07-12-01)

4 Conformance

An exchange document can conform to this specification as specified in 4.1. A tool can conform as a producer, as
specified in 4.2, or as a processor, as specified in 4.3, or both. In addition, it is possible for a tool to conform to one or
more of the compliance points specified in 4.4, as a part of conformance as a producer or a processor.

4.1 Conformance of an exchange document

An exchange document conforms to this specification if
— it is a valid XMI exchange document and represents a MOF M1 model that is consistent with the M2 metamodel
defined in clauses 6-12 of this specification; and
— the M1 model represents a valid EXPRESS schema as defined by ISO 10303-11.2:2004.

Representation of an EXPRESS schema need not include representation of all elements of the schema. It shall include all
elements of the schema that can be represented by elements of the Core Package, as defined in clause 7.

4.2 Conformance as a producer (pre-processor)

A software tool conforms to this specification as a producer if it produces conforming exchange documents as specified
in4.1.

EXPRESS Metamodel, Beta 1 13

A software tool may claim conformance to a given compliance point as a producer if the exchange document it produces
for any given EXPRESS schema contains representations of all the EXPRESS model elements that correspond to that
compliance point.

4.3 Conformance as a (post-)processor

A software tool conforms to this specification as a processor if
— it can accept any and all exchange documents that conform as specified in 4.1; and
— it can interpret all EXPRESS concepts modeled by elements in the Core Package.

The nature of the process performed on the EXPRESS schema that is represented by a document that it accepts is not
specified by this standard, but the interpretation of the EXPRESS schema in that process shall be consistent with the
interpretation given by ISO 10303-11.

A software tool may claim conformance to a given compliance point as a processor if it can also interpret all the
EXPRESS model elements that correspond to that compliance point.

4.4 Compliance points

In addition to support of the elements in the Core Package, a tool may support any of the additional compliance points
defined below.

441 Compliance point: Instances

A tool conforms to the Instances compliance point by producing or interpreting model elements defined in the Instances
Package.

44.2 Compliance point: Algorithms

A tool conforms to the Algorithms compliance point by producing or interpreting model elements defined in the
Algorithms and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.

44.3 Compliance point: Rules

A tool conforms to the Rules compliance point by producing or interpreting model elements defined in the Rules,
Algorithms and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.

444 Compliance point: Expressions

A tool conforms to the Expressions compliance point by producing or interpreting model elements defined in the
Expressions, Algorithms and Instances Packages.

A tool that conforms as a producer to this compliance point shall not represent any Expression solely as text. That is, it
shall represent every EXPRESS expression properly as the subtype of Expression that models it.

Conformance to this compliance point requires Statements to be produced as text, if the Statements compliance point is
not supported. It makes no requirements for the interpretation of Statements.

445 Compliance point: Statements

A tool that conforms to the Statements compliance point shall conform to the Expressions compliance point, and shall
produce or interpret model elements defined in the Statements Package as well.

14 EXPRESS Metamodel, Beta 1

A tool that conforms as a producer to this compliance point shall not represent any Statement solely as text. That is, it
shall represent every EXPRESS statement properly as the subtype of Statement that models it.

446 Compliance point: Express2

A tool conforms to the Express2 compliance point shall conform to the Statements compliance point and to the Rules
compliance point. A tool that conforms to the Express2 compliance point shall fully support all elements of the
EXPRESS language.

5 Terms and Definitions

5.1 Unified Modeling Language (UML) terms

The following terms are taken from the Unified Modeling Language (UML) Specification, and are used with the
definitions given in that specification:

— abstract

— association

— association end

— attribute

— class

— constraint

— dependency

— derived

— enumeration

— multiplicity

— navigable

— package

— stereotype

— tagged value

5.2 EXPRESS terms

The following terms are taken from the EXPRESS Language Reference Manual, and are used with the definitions given
in that specification:

— aggregate, and aggregation

— algorithm

— constant

— domain

— entity, and entity type

— function

— identifier

— instance

— inverse

— keyword

— member

— parameter

— population

— rule

— schema

— scope

— statement

— subtype

— supertype

— type

EXPRESS Metamodel, Beta 1 15

Some of these terms have the same orthography as certain UML terms that are not used in this specification. The
following terms are used in this specification with their UML interpretation and are prefixed by "EXPRESS" whenever
they are used with their EXPRESS interpretation:

— abstract

— attribute

— data type

— derived

— enumeration

5.3 Terms for model elements

This specification defines a number of metaclasses, associations, attributes and association end names. Each of those
becomes a term that may be used in other definitions and requirements.

When a term is capitalized in the text, e.g., Schema, it refers to the metaclass with that identifier, and by extension, to the
semantic concept that it represents.

In the text, a term beginning with a period (.) and set in Courier font, e.g., . nanmespace, refers to the attribute or
association end with that name that is owned by the class being described.

Note:Other than these conventions, some terms that refer to model elements have the same spelling as terms used in
UML and EXPRESS. The convention denotes the intended distinction. In most cases, however, when the EXPRESS
term and the model element identifier have the same spelling, the model element models the concept designated by the
EXPRESS term.

5.4 Additional terms introduced in this specification
The following additional terms are introduced in this specification:
instance package

A UML Package that comprises only declarations of individual objects that represent fixed instances of metaclasses
defined in the parent package.

namespace

the domain of interpretation of a body of EXPRESS text in which a given identifier is associated with a given model
element.

16 EXPRESS Metamodel, Beta 1

6 Document Conventions

This specification is a Complete Meta-Object Facility (CMOF) specification of the EXPRESS metamodel, conforming to
the OMG Meta-Object Facility Core specification v2.0, as an M2 model.

The only CMOF features (beyond those of EMOF) that are used in this specification are:
— Specialization of primitive types
— Generalization of associations
— Subsetting of properties

The stereotype «i npl i ci t » is used only as a drawing convention to show relationships that exist as more complex
paths than are actually depicted. These associations do not exist in this form in the metamodel itself. These are used
only to show important conceptual relationships on the diagrams.

The stereotype «nmet acl ass» appears on some of the diagrams and not on others. Some of the class diagrams in this
specification were created by the original UML tool for the project, and some by a later tool that supported the CMOF
features. Only the latter tool understood the concept “metaclass”. All of the classes specified in this metamodel are
meta-classes, and all of the data types are meta-datatypes, regardless of notational convention. The notation will be made
consistent in the published form of this specification.

MOF 2.0 requires that every association be named, even those that are navigable in only one direction. In this
specification, all the association names are shown, but the names of unidirectional associations are shown in small type,
and the documentation describes only the owned association end.

Similarly, MOF 2.0 requires that every association end be named, even those that are not navigable. In this specification,
the names of non-navigable association ends are not shown and not documented. They do appear in the UML and
CMOF XMI files for the metamodel (see below).

For derived attributes and associations, the derivation is shown as the tagged-value deri vati on.

The model specified in this document is available in two XMI forms as well:
— OMG document mantis/2008-02-03 is the UML2 model
— OMG document mantis/2008-02-04 is the CMOF model.

EXPRESS Metamodel, Beta 1 17

18

EXPRESS Metamodel, Beta 1

7 Overview of the EXPRESS Metamodel

This specification is a metamodel for the EXPRESS information modeling language, as defined by ISO 10303-11.

The Metamodel is composed of 7 packages, which are related as shown in 7.

Instances

<< import>>

------ >Cord]

/N << import>> Rules
<< import>> : -
. << import >>
Expressionsy = _ _ - - = 7N
y <<import>> e /N

-’

_ 7 <<import >>

1
1 I
- s<import>> _ |Algorithms L’ ' <<import >>
]
1

<<import>>
1

Statements << import>> 2 Express?2

<< import >>

Figure 1 - EXPRESS Metamodel Packages

The Core Package contains all of the generally required modeling elements of EXPRESS, along with some basic
metamodel artifacts. It is the foundation on which all of the other packages are built. The Core Package is the minimal
implementation of the EXPRESS Metamodel.

The Instances Package contains the model of instances that conform to the EXPRESS types. This package is needed to
support many of the concepts in EXPRESS rules.

The Algorithms Package contains the model of function and procedure definitions. This model is needed to support
Expressions, and some of its features are used in Global Rules.

The Rules Package contains the models of RULEs and SUBTYPE CONSTRAINTS, which rely on the notion of extents
of types with populations.

The Expressions Package contains a model of expressions that includes all details of value manipulation that are
described in Clause 12 of ISO 10303-11.

The Statements Package contains a model of the executable statements that may be contained in the body of functions
and procedures. It contains all of the concepts in Clause 13 of ISO 10303-11.

The Express2 Package contains nothing in its own right. It imports everything defined in the metamodel, and thus serves
as the package that models the entire EXPRESS language.

EXPRESS Metamodel, Beta 1 19

8

Package: Core

The Core package contains all of the generally required modeling elements of EXPRESS, including:

Scopes and Naming concepts
Schemas

(Data) Types

Entities, Attributes and Relationships
Domain Constraints

The Core package also includes the abstract classes Expression and Instance, which serve as linking points for detailed
models contained in other packages.

8.1

none.

8.2

The following basic data types from the MOF metamodel are used in this package with the interpretation given in the
MOF specification.

8.2.1

Dependencies

MOF Metamodel Datatypes

Datatype: Boolean

Definition: MOF metatype for logical values.

8.2.2

Datatype: Integer

Definition: MOF metatype for numeric information.

Note:All integer values used in this metamodel are non-negative.

8.2.3

Datatype: String

Definition: MOF Metatype for arbitrary character (code) representation.

8.3

8.3.1

EXPRESS Language Datatypes
Datatype: ExpressText

Definition: Represents any EXPRESS language text, including both unparsed text and specific syntactic elements..

Note:See clause 7 of ISO 10303-11:2004.

8.3.1.1

Supertypes

Realization type is . MOF::String

The realization relationship is modeled as a generalization.

8.3.1.2 Members

none.

20

EXPRESS Metamodel, Beta 1

8.3.2 Datatype: Identifier

Definition: EXPRESS language element used for naming NamedElements.

Note:See 7.4 of ISO 10303-11:2004.

8.3.2.1 Supertypes
ExpressText.

8.3.2.2 Members

none.

8.3.3 Datatype: Keyword
Definition: EXPRESS language element used for names of built-in data types.
Note:See 7.2.1 of ISO 10303-11:2004.

8.3.3.1 Supertypes

ExpressText.

8.3.3.2 Members

none.

8.4 Schemas, Scopes and Naming

This section of the Core model introduces the naming and namespace concepts of the EXPRESS language.

An EXPRESS model consists primarily of a set of NamedElements — model elements that have (or may have) identifiers.
Per Clause 10 of ISO 10303-11, every NamedElement has a Scope in which it is "visible", that is, a collection of model
contexts in which the identifier refers to that NamedElement. Such identifiers are modeled here as Scopedlds — the
combination of an Identifier and the namespace (Scope) in which it is defined (see 8.4.10).

The primary Scope/namespace of an EXPRESS model is a Schema. All model elements, except those that are predefined
in the EXPRESS language, are defined in some Schema. Interfacing is the mechanism by which an EXPRESS Schema
includes model elements defined in other Schemas. 8.4 shows the basic Scope, Schema and Interfacing concepts of
EXPRESS.

EXPRESS Metamodel, Beta 1 21

<<metaclass>>
NamedElement

element-defined-in-scope

+named-elements

+namespace

<<metaclass>>
Scope

+id : Scopedid [0..1|] 0.*

[

<<metaclass>>
SchemaElement | 0--"

+schema-elements
{subsets named-elements}

{subsets namespace}

1

+defined-in

[

+/interfaced-elements

schema-defines-elements

+/referenced-in

0..1

<<metaclass>>
Schema

+version : String [0..1]
+name : Identifier [1]

0..*

+refers-to
schema-element-ig

1
-interfaced-element

+referenced-as

/schema-interfaces-elements

<<metaclass>>
InterfacedElement

0..*

[N

+interfacing-schema

element-interfa¢ed-into-schema

+interfaces

0"*

Figure 2 - Scopes and Schemas

+isUSE : Boolean [1]
+interfacedld : Scopedid [0..1|]

0..*

There are three general subclasses of Scope: Schemas, Local Scopes, and Type Scopes. These Scope concepts are shown
in 8.4. All of these concepts are defined in detail below, except for NamedType — the scope of TypeElements — which is

defined in 8.5.1.

22

EXPRESS Metamodel, Beta 1

<<metaclass>>
NamedElement

+named-elements +namespace Scope

. . << >>
element-defined-in-scope metaclass

*

+id : Scopedld [0..1|] 0
|

AN

1

I

<<metaclass>> <<metaclass>> <<metaclass>>
Schema LocalScope NamedType

+wversion : String [0..1

<<metaclass>>
SchemaElement

{subsets namespace}

schema-defines-elements

+name : Identifier [1]
T 1 | +namespace
e {subsets namespace}
<<metaclass>> +namespace
AlgorithmScope !

{subsets namespace}

+local-scope| 0..1

0.. {subsets namespace}

[

+schema-elements
{subsets named-elements}

+common-elements

<<metaclass>>
CommonElement

{subsets named-elements}

0..* common-element-has-local-scope

LocalElement | {Subsets

<<metaclass>> *local-elements

named-elements}

0“*

<<metaclass>3 *type-elements
TypeElement

{subsets named-elements}

local-element-has-local-scope

0.”

type-element-has-scope

Figure 3 - EXPRESS Scope and Named Element Concepts

8.41 Class: AlgorithmScope

Definition: A LocalScope that can be the namespace of CommonElements.

Properties: abstract
8.4.11 Supertypes
LocalScope

8.4.1.2 Attributes

none.

EXPRESS Metamodel, Beta 1

23

8.4.1.3 Associations

AssociationEnd: common-elements To: CommonElement

via: common-element-has-local-scope

Subsets: Scope.named-elements

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. This
is a refinement of the (abstract) Scope.named-elements relationship.

Note:See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: variables To: Algorithms::LocalVariable

via: Algorithms::variable-defined-in-scope

Subsets: LocalScope.local-elements

Definition: represents the relationship between the AlgorithmScope and the set of LocalVariables that are defined within
it.

Multiplicity: 0..* unordered

8.41.4 Other Roles

none.

8.4.2 Class: CommonElement

Definition: a SchemaElement that can be defined in either a Schema or a LocalScope, and has (or may have) a unique
identifier within that Scope. This is an artifact of the declaration and namespace rules for the EXPRESS language.
NamedTypes, Algorithms, Constants, and SupertypeRules can be defined at the Schema level or within Algorithms and
GlobalRules (AlgorithmScopes).

Every CommonElement has a Scope. The Scope is either a SchemaScope or an AlgorithmScope.

Properties: abstract

8.4.21 Supertypes

SchemaFlement

8.4.2.2 Attributes

none.

8.4.2.3 Associations

Note:The AssociationEnd: defined-in to Schema is inherited from SchemaElement.

AssociationEnd: local-scope To: AlgorithmScope

via: common-element-has-local-scope

Subsets: NamedElement.namespace

24 EXPRESS Metamodel, Beta 1

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scope in
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note:See Clause 10 of ISO 10303-11:2004.
Multiplicity: 0..1

8.4.2.4 Other Roles

none.

8.4.2.5 Rules

Constraint has-scope (OCL)

exi sts(sel f->defined-in) XOR exists(self->local-scope)
A CommonElement has exactly one scope, either a Schema (via defined-in), or a LocalScope.

8.4.3 Class: InterfacedElement

Definition: represents the EXPRESS "interface" relationship (USE, REFERENCE) between an interfacing Schema and
one SchemaElement that is defined in some other Schema. It can be viewed as a "role" of the .refers-to SchemaElement
in the interfacing schema. Because a given schema can only interface a given SchemaElement once, the combination
(.interfacing-schema, .refers-to) uniquely identifies an InterfacedElement relationship.

Note: See clause 11 of ISO 10303-11:2004.

8.4.3.1 Supertypes

none.

8.4.3.2 Attributes

Attribute: interfacedld To: Scopedid

Definition: the new Identifier for the .refers-to SchemaElement in the interfacing schema.
Note:See clause 11 of ISO 10303-11:2004.

Multiplicity: 0..1

Attribute: isUSE To: MOF::Boolean

Definition: True if the interfacing statement is USE; False otherwise. isUSE can only be True if the interfaced (.refers-to)
SchemaElement is a NamedType. The interpretation of USE is that Instances of the interfaced NamedType are permitted
to be "independent entities" in a Population governed by the interfacing Schema. When the interfacing statement is
REFERENCE, Instances of that NamedType exist only to fulfill some Attribute of an entity that is ultimately dependent
on an "independent entity".

Note: See clause 11.1 of ISO 10303-11:2004.
Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 25

8.4.3.3 Associations

AssociationEnd: interfacing-schema To: Schema

via: element-interfaced-into-schema

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedlId.

Multiplicity: 1..1

AssociationEnd: refers-to To: SchemaElement

via: schema-element-is-interfaced-element

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the
InterfacedElement.

Multiplicity: 1..1
8.4.3.4 Other Roles

none.

8.4.4 Class: LocalElement

Definition: An abstract class, representing NamedElements whose scope is a LocalScope. No LocalElement is defined in
the Core package.

Properties: abstract

8.4.41 Supertypes

NamedElement

8.4.4.2 Attributes

none.
8.44.3 Associations
AssociationEnd: namespace To: LocalScope

Subsets: NamedElement.namespace

Definition: the Scope in which the LocalElement is defined. Unlike SchemaElements, a LocalElement is instantiated only
in the context of a particular "use" or "invocation" of the Scope in which it is defined. As a consequence, a LocalElement
can be instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a
"lifetime" corresponding to that use/invocation

Multiplicity: 1..1

Properties: abstract

8.4.4.4 Other Roles

none.

26 EXPRESS Metamodel, Beta 1

8.4.5 Class: LocalScope

Definition: A Scope that is neither a Schema nor a NamedType. Terms defined in a LocalScope are not visible at the
Schema level.

Note: See Clause 10 of ISO 10303-11:2004.

Properties: abstract
8.4.5.1 Supertypes
Scope

8.4.5.2 Attributes

none.
8.4.5.3 Associations
AssociationEnd: local-elements To: LocalElement

Subsets: Scope.named-elements

Definition: the LocalElements that are defined in the LocalScope. (A LocalScope that is an AlgorithmScope may also be
the scope of CommonElements.)

Multiplicity: 0..* unordered

Properties: abstract

8.4.54 Other Roles

none.

8.4.6 Class: NamedElement

Definition: An abstract class representing a principal modeling concept of the EXPRESS language: an object that is
defined in a model, has a notion of "lifetime", and has an identifier that refers to it in Schemas or in some nested Scope in
a Schema.

Note: Every NamedElement has an .id attribute whose value is a Scopedld. Some NamedElements are not required to
have identifiers, and some NamedElements can have additional identifiers. The scope of each such identifier is the Scope
in which the NamedElement is defined.

Properties: abstract

8.4.6.1 Supertypes

none.

8.4.6.2 Attributes

Attribute: id To: Scopedld

Definition: Represents the identifier that uniquely identifies the NamedElement within the Scope that is the .namespace.
Not all NamedElements are required to have identifiers.

Note: See Clause 10 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 27

Multiplicity: 0..1
8.4.6.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-element

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of
the NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note: See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: namespace To: Scope

Definition: represents the abstract relationship between a NamedElement and the "scope" in which it is defined, i.e. the
set of model elements for which that name refers to that NamedElement

Note: See clause 10 of ISO 10303-11:2004.
Multiplicity: 1..1

Properties: abstract

8.4.6.4 Other Roles

none.

8.4.7 Class: Schema

Definition: a Scope that represents an EXPRESS SCHEMA, i.e. a collection of SchemaElement declarations and
interface declarations.

Note: "Schema" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be
renamed. See 9.3 of ISO 10303-11:2004.

8.4.71 Supertypes

Scope

8.4.7.2 Attributes

Attribute: name To: Identifier
Definition: the name of the EXPRESS schema.

Note: See clause 9.3 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: version To: Identifier
Definition: the version identifier for the EXPRESS schema, if any.
Note: See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..1

28 EXPRESS Metamodel, Beta 1

8.4.7.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema
as-interfaced.

Note: See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it
has no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: interfaced-elements To: SchemaElement

via: schema-interfaces-elements

Definition: represents relationship between a Schema and the SchemaElements it interfaces from other Schemas.
.interfaced-elements = .interfaces.refers-to

Multiplicity: 0..* unordered
TaggedValues
derivation = self->interfaces->refers-to

AssociationEnd: interfaces To: InterfacedElement

via: element-interfaced-into-schema

Definition: represents the relationship between a Schema and the InterfacedElements it contains, that is, the
SchemaElements that it imports/interfaces from other Schemas.

Note: See clause 11 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: schema-elements To: SchemaElement

via: schema-defines-elements

Subsets: Scope.named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined in it, as distinct
from those that are interfaced into it.

Note: See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.4.7.4 Other Roles

From: Instances::Population as governing-schema

8.4.8 Class: SchemaElement

Definition: a NamedElement whose scope can be a Schema. This includes all CommonElements and GlobalRule. The
scope of CommonElements can be a Schema, but is not required to be a Schema.

Properties: abstract

EXPRESS Metamodel, Beta 1 29

8.4.8.1 Supertypes

NamedElement

8.4.8.2 Attributes

none.
8.4.8.3 Associations
AssociationEnd: defined-in To: Schema

via: schema-defines-elements

Subsets: NamedElement.namespace

Definition: represents the relationship between the SchemaElement and the Schema in which it is (originally) defined.
Note: See 9.3 of ISO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: referenced-as To: InterfacedElement

via: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered

AssociationEnd: referenced-in To: Schema

via: schema-interfaces-elements

Definition: represents the relationship between a SchemaElement and the Schemas, if any, it is interfaced into.
Properties: derived

Multiplicity: 0..* unordered
TaggedValues
derivation = self->referenced-as->interfaci ng-schema

8.4.84 Other Roles

none.

8.4.8.5 Rules

Constraint (OCL)

exi sts(sel f->defined-in) OR NOT exists(self->referenced-as)
Only a SchemaElement that is defined-in a Schema can be referenced-as an InterfacedElement.

8.4.9 Class: Scope

Definition: any EXPRESS object that defines a namespace for the interpretation of identifiers.

Note: See clause 10 of ISO 10303-11:2004.

30 EXPRESS Metamodel, Beta 1

Properties: abstract

8.4.91 Supertypes

none.

8.4.9.2 Attributes

none.
8.4.9.3 Associations
AssociationEnd: includes-remarks To: Remark

via: remark-appears-in-scope
Definition: represents the relationship between a Schema and the Remarks that appear in it.

Note: See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: named-elements To: NamedElement

Definition: represents the abstract relationship between a Scope and the NamedElements that are defined in it.

Note: This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of
Scope. See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: abstract

8.4.9.4 Other Roles

From: Expression as interpretation-context

8.4.10 Datatype: Scopedid

Stereotypes: st ruct ure

Definition: The combination of an Identifier and its namespace, which together constitute a well-defined symbol for an
EXPRESS ModelElement. 8.4.10 shows the conceptual model of a Scopedld. A Scopedld whose Scope is a Schema is
visible throughout the Schema, and possibly to other Schemas that interface the NamedElement. A Scopedld whose
Scope is a LocalScope is visible only in that LocalScope. A Scopedld whose Scope is a NamedType is visible only in the
declaration of that NamedType and in Expressions involving references to elements whose data type is that NamedType.

EXPRESS Metamodel, Beta 1 31

<< implicit >>

*

element-defined-in-scope 1

NamedElement Scope
+named-elements +namespace
+identifies | 1 +definingScope | 1
+id << structure >> *
Scopedid -
id-uniquely-identifies-element 0.1 —| *terms name-defined-in-scope
L +localName:Identifier
<< implicit >>

Figure 4 - Conceptual Model of Scopedid

8.4.101 Supertypes

none.

8.4.10.2 Members

Member: definingScope To: Scope

Definition: Represents the relationship between the Scopedld and the Scope in which it is defined.
Note: See Clause 10 of ISO 10303-11:2004.

Multiplicity: 1..1

Member: localName To: Identifier

Definition: Represents the EXPRESS identifier that uniquely identifies the NamedElement within the namespace that is
the Scope.

Multiplicity: 1..1

8.4.11 Class: TypeElement
Definition: A NamedElement whose namespace is a data type (NamedType).
Note: See 8.2.2,8.2.3, and 8.2.4 of ISO 10303-11:2004.

Properties: abstract

8.4.111 Supertypes

NamedElement

8.4.11.2 Attributes

none.

32 EXPRESS Metamodel, Beta 1

8.4.11.3 Associations

AssociationEnd: nhamespace To: NamedType

via: type-element-has-scope

Subsets: NamedElement.namespace

Definition: represents the relationship between the TypeElement and the NamedType in which it is defined. This is a
refinement of the NamedElement.namespace and an abstraction of the specific relationships of TypeElements to their
owner NamedTypes.

Multiplicity: 1..1
8.4.11.4 Other Roles

none.

8.4.12 Association: common-element-has-local-scope

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. This
is a refinement of the (abstract) element-defined-in-scope relationship.

Note: See clause 10 of ISO 10303-11:2004.

8.4.121 Supertypes

element-defined-in-scope

8.4.12.2 Association Ends

AssociationEnd: common-elements To: CommonElement
Definition: the CommonElements that are defined in the AlgorithmScope.
Note: See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: local-scope To: AlgorithmScope
Subsets: NamedElement.namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scope in
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note: See Clause 10 of ISO 10303-11:2004.
Multiplicity: 0..1

8.4.13 Association: element-defined-in-scope

Definition: represents the generic relationship between a NamedElement and the Scope in which it is defined. Every
NamedElement is defined in exactly one Scope. It may be interfaced into other Scopes, and it may be visible in Scopes
nested inside the Scope in which it defined and the Scopes into which it is interfaced.

Note: See clause 10 of ISO 10303-11:2004.

Note: This is an abstract relationship. Each separate form of this relationship is separately modeled.

EXPRESS Metamodel, Beta 1 33

Properties: abstract

8.4.13.1 Association Ends

AssociationEnd: named-elements To: NamedElement
Definition: represents the relationship between a Scope and the NamedElements that are defined in it.

Note: This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of
Scope. See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: abstract

AssociationEnd: namespace To: Scope

Definition: represents the relationship between a NamedElement and the "scope" in which it is defined, i.e. the set of
model elements for which that name refers to that NamedElement

Note: See clause 10 of ISO 10303-11:2004.
Multiplicity: 1..1

Properties: abstract

8.4.14 Association: element-interfaced-into-schema

Definition: represents the relationship between a Schema and the InterfacedElements it contains, that is, the
SchemaElements that it imports/interfaces from other Schemas.

Note: See clause 11 of ISO 10303-11:2004.
8.4.14.1 Association Ends

AssociationEnd: interfaces To: InterfacedElement

Definition: the InterfacedElements that the SchemaElements that the Schema imports/interfaces from other Schemas.
Note: See clause 11 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedId.

Multiplicity: 1..1

8.4.15 Association: local-element-has-local-scope

Definition: represents the abstract relationship between a LocalScope and the LocalElements that are defined in it. (A
LocalScope that is an AlgorithmScope may also be the scope of CommonElements.)

Note: This relationship is an abstraction of the actual relationships between LocalElements and Scopes. Each separate
form of this relationship is separately modeled. Not every kind of LocalElement can be defined in every LocalScope. In
fact, only Variables can be defined in every LocalScope.

Note: See Clause 10.3 of ISO 10303-11:2004.

34 EXPRESS Metamodel, Beta 1

Properties: abstract

8.4.151 Supertypes

element-defined-in-scope

8.4.15.2 Association Ends

AssociationEnd: local-elements To: LocalElement

Definition: the LocalElements that are defined in the LocalScope. (A LocalScope that is an AlgorithmScope may also be
the scope of CommonElements.)

Multiplicity: 0..* unordered

Properties: abstract

AssociationEnd: nhamespace To: LocalScope

Subsets: NamedElement.namespace

Definition: the Scope in which the LocalElement is defined. Unlike SchemaElements, a LocalElement is instantiated only
in the context of a particular "use" or "invocation" of the Scope in which it is defined. As a consequence, a LocalElement
can be instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a
"lifetime" corresponding to that use/invocation

Multiplicity: 1..1

Properties: abstract

8.4.16 Association: schema-defines-elements

Definition: represents the relationship between a Schema and the SchemaElements that are defined in it.

8.4.16.1 Supertypes

element-defined-in-scope

8.4.16.2 Association Ends

AssociationEnd: defined-in To: Schema

Subsets: NamedElement.namespace

Definition: represents the relationship between the SchemaElement and the Schema in which it is (originally) defined.
refines the (abstract) NamedElement.namespace relationship

Note: See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: schema-elements To: SchemaElement

Definition: represents the relationship between the Schema and the SchemaElements that are defined in it, as distinct
from those that are interfaced into it. refines the (abstract) Scope.named-elements relationship.

Note: See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1 35

8.4.17 Association: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

8.4171 Association Ends

AssociationEnd: referenced-as To: InterfacedElement

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered

AssociationEnd: refers-to To: SchemaElement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the
InterfacedElement.

Multiplicity: 1..1

8.4.18 Association: schema-interfaces-elements

Definition: represents the EXPRESS "interface" relationships (USE, REFERENCE) between an interfacing Schema and
the SchemaElements that it interfaces from the Schema in which they are defined.

Note: See clause 11 of ISO 10303-11:2004.

Properties: derived.

8.4.18.1 Association Ends

AssociationEnd: interfaced-elements To: SchemaElement

Definition: represents relationship between a Schema and the SchemaElements it interfaces from other Schemas.
.nterfaced-elements = .interfaces.refers-to

Multiplicity: 0..* unordered
TaggedValues
derivation = self->interfaces->refers-to

AssociationEnd: referenced-in To: Schema

Definition: p>represents the relationship between a SchemaElement and the Schemas, if any, it is interfaced into.
.referenced-in = .referenced-as.interfacing-schema

Multiplicity: 0..* unordered
TaggedValues
derivation = self->referenced-as->interfaci ng-schem

8.4.19 Association: type-element-has-scope
Definition: represents the abstract relationship between a TypeElement and the NamedType in which it is defined. This is

a refinement of the entity-defined-in-scope relationship and an abstraction of the specific relationships of TypeElements
to their owner NamedTypes.

36 EXPRESS Metamodel, Beta 1

Properties: abstract.

8.4.191 Supertypes

element-defined-in-scope

8.4.19.2 Association Ends

AssociationEnd: type-elements To: TypeElement
Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.

Multiplicity: 0..* unordered

AssociationEnd: namespace To: NamedType

Definition: represents the relationship between the TypeElement and the NamedType in which it is defined. This is a
refinement of the NamedElement.namespace and an abstraction of the specific relationships of TypeElements to their
owner NamedTypes.

Multiplicity: 1..1

8.5 Remarks

This section of the Core model introduces the Remark constructs that serve to document Schemas and NamedElements.
8.5 depicts the Remark concept and its properties.

+namespace element-defined-in-scope

Scope

1

+appears-in 1
remark-appears-in-scope

+includes-remarks « | +named-elements
Remark remark-describes-element
T 4Bool * +describes-element | NamedElement
+isTaggedBoolean —
+isTailBoolean +documentation « | tid:Scopedld[0..1]

+text:ExpressText

* | +documentation

+describes-schema Schema

+name:ldentifier

remark-describes-schema * . .
+version:ldentifier0..1]

Figure 5 - Remarks

8.5.1 Class: Remark

Definition: A comment or or other documentation element that provides additional information about a model element.

8.5.1.1 Supertypes

none.

EXPRESS Metamodel, Beta 1 37

8.5.1.2 Attributes

Attribute: isTagged To: MOF::Boolean

Definition: Is TRUE if the Remark is "tagged" to refer to one or more NamedElements, and FALSE if the remark is not
explicitly tagged.

If . i sTagged is TRUE, the Remark should have the . descri bes- el enent or. descri bes- schema property.
Note: See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: isTail To: MOF::Boolean

Definition: is True if the Remark is lexically at ai | _r emar k; and False if the Remark is lexically an
enbedded_r emar k. This distinction describes only the representation and placement of the remark in the EXPRESS
syntax.

Note: See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: text To: ExpressText
Definition: Represents the actual text of the remark.

Note: Part 11 requires that the character set of the remark be the EXPRESS character set, but in practice a larger subset
of ISO 10646-1 Basic Multilingual Plane is often used.

Note: See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 1..1
8.5.1.3 Associations

AssociationEnd: appears-in To: Scope

via: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schema that lexically contains it.
Multiplicity: 1..1

AssociationEnd: describes-element To: NamedElement

via: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While a tagged remark
is formally associated with one or more NamedElement(s), a processor may also ascribe a given un-tagged Remark to a
given NamedElement, based on its lexical position.

Note: See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: describes-schema To: Schema

via: remark-describes-schema

38 EXPRESS Metamodel, Beta 1

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The
Remark may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In
particular, a Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note: See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it
has no defined Scope.

Multiplicity: 0..* unordered

8.5.14 Other Roles

none.

8.5.2 Association: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schema that lexically contains it.

8.5.2.1 Association Ends

AssociationEnd: appears-in To: Scope
Definition: the Schema that lexically contains the Remark.

Note: This may be the only cue as to the subject of the Remark. The first edition of EXPRESS did not specify a means
for binding Remarks to model elements.

Multiplicity: 1..1

AssociationEnd: includes-remarks To: Remark
Definition: represents the relationship between a Schema and the Remarks that appear in it.
Note: See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.5.3 Association: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While a tagged remark
is formally associated with one or more NamedElements, a processor may also ascribe a given un-tagged Remark to a
given NamedElement, based on its lexical position.

Note: See 7.1.6.3 of ISO 10303-11:2004.
8.5.3.1 Association Ends

AssociationEnd: describes-element To: NamedElement
Definition: the NamedElement(s) described by the Remark.
Note: See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of
the NamedElement, the Remark only applies to the NamedElement as-interfaced.

EXPRESS Metamodel, Beta 1 39

Note: See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.54 Association: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema
as-interfaced.

Note: See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it

has no defined Scope.

8.5.4.1 Association Ends

AssociationEnd: describes-schema To: Schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The
Remark may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In
particular, a Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note: See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it
has no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema
as-interfaced.

Note: See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it
has no defined Scope.

Multiplicity: 0..* unordered

8.6 Overview of Types

This section of the Core model introduces the data type modeling concepts of the EXPRESS language, including the
built-in types.

As is shown in 8.6, the EXPRESS data type model consists of several dichotomies. Each of the high-level abstract types
represents a group of EXPRESS data types that can play a given role in the metamodel.

DataType is the general class of types of results of Expressions. This includes all VariableTypes, together with "partial
complex entity data types" (PartialEntityTypes), which can only occur as the result of an (intermediate) Expression.

VariableType is the general class of types that Variables can be declared to have. This includes all InstantiableTypes and
ActualTypes, which are formal types that resolve to InstantiableTypes at the time the Variable is created.

ParameterType is the most general class of types that a model element, and in particular, Attributes and Parameters, can
be declared to have. This includes all VariableTypes and GeneralizedTypes, which represent generalized requirements
on the type of the element that must be specialized in actual uses.

Instantiable Types represent all of the data types that have actual Instances. They are subdivided into EntityTypes, which
largely represent non-data objects, and ConcreteTypes, which represent data elements. They are also subdivided into
NamedTypes, which are defined by declarations in the Schema, and AnonymousTypes, which are defined in the
EXPRESS language and have specific syntactic designations instead of "identifiers."

40 EXPRESS Metamodel, Beta 1

Any given object representing an EXPRESS data type is an instance of exactly one of InstantiableType, ActualType,
GeneralizedType, and PartialEntityType, and in fact, it is an instance of exactly one specific instantiable subclass.

All of these concepts are defined below.

DataType ParameterType
{disjoint, total} %‘ {disjoint, total} %‘
VlriableTy}Le
{disjoint, total} %
PartialEntityType Actua|IType InstaLtiabIe Type GeneralizedType

{disjoint, total} % % {disjoint, total}

| << implicit >> |

ConcreteType _ AnonymousType

<< implicit >>

EntityType N NamedType

+isAbstractBoolean

Figure 6 - Overview of EXPRESS Type concepts

Figure 6 also shows, using “implicit” subclass relationships for EntityTypes and AnonymousTypes, that there are two
dichotomies for InstantiableTypes. Every InstantiableType is either an EntityType or a ConcreteType, and every
InstantiableType is either a NamedType or an AnonymousType.

8.6 shows the model of Instantiable Types in detail. SimpleTypes, (Concrete)AggregationTypes and EntityTypes are
defined in separate sections. The other classes and associations are defined below.

EXPRESS Metamodel, Beta 1

*
type-has-fundamental-type

CommonElement InstantiableType !

+fundamental-type

SelectType-has-select-list % % % specialized-type-has-underlying-type
+ select-list +underlying-type

{ordered) » NamedType ConcreteType
+allowed-types 1 type-specializes-type
. [ﬁ +specializes
type-instantiates-select-type Zﬁ | .
| | AnonymousType | _*

EntityType DefinedType

+isAbstractBoolean

+instantiates Zﬁ ’L

*

- - SimpleT,
SelectType EnumerationType SpecializedType pleType
- - - - +id:Keyword
+isEntity:Boolean +isExtensible:Boolean
+isExtensible:Boolean B
+ |+extension 1 |+base * ConcreteAggregationType
» [+extension 1 |+base

enumeration-extends-enumeration

select-type-extends-select-type

Figure 7 - NamedTypes and Instantiable Types

8.6.1 Class: ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Each subtype of ActualType refers to a GenericElement that is defined among the formal Parameters of the Algorithm.
The GenericElement denotes the corresponding component of the data type of the corresponding actual parameter in any
given invocation. The GenericElement is named by an EXPRESS t ype_| abel , and the ActualType refers to that

GenericElement via the t ype_| abel .
Note: See 9.5.3.4 of ISO 10303-11:2004.
Properties: abstract

Note: The details of ActualTypes are specified in the Algorithms Package (Clause 10.4).

8.6.1.1 Supertypes
VariableType, LocalElement

8.6.1.2 Attributes

none.

42 EXPRESS Metamodel, Beta 1

8.6.1.3 Associations

AssociationEnd: scope To: Algorithms::Algorithm

Via: Algorithms::scope-of-actual-type

Subsets: Core::LocalElement.namespace
Definition: The Algorithm in which the ActualType is specified.

The ActualType must be the data type of a Variable or Attribute whose scope is contained in the Algorithm, and the
GenericElement that defines the t ype_| abel to which the ActualType refers must be defined among the formal
parameters of the Algorithm.

Note: An ActualType does not really have a namespace; the GenericElement to which it refers is a LocalElement whose
namespace is the Algorithm. The . scope of the ActualType does, however, represent the ownership of the ActualType
as a LocalElement and the lifetime of the ActualType.

Multiplicity: 1..1
8.6.1.4 Other Roles
From: Algorithms::ActualAggregationType as member-type

8.6.2 Class: AnonymousType
Definition: represents any InstantiableType that is not a NamedType.

Properties: abstract

8.6.2.1 Supertypes

InstantiableType, ConcreteType

8.6.2.2 Attributes

none.
8.6.2.3 Associations
AssociationEnd: specializes To: AnonymousType

Definition: represents the relationship of an AnonymousType to an AnonymousType of which it is a "specialization", as
specified in Part 11 clause 9.2.7. Unlike the specialization for defined data types, these relationships are true subtypes:
the domain of the "specialization" is a subset of the domain of AnonymousType and has the same interpretation.

Multiplicity: 0..* unordered

8.6.24 Other Roles

From: AnonymousType as specializes

8.6.3 Class: ConcreteType
Definition: represents any InstantiableType that is not an EntityType
Note: See 9.1 of ISO 10303-11:2004.

Properties: abstract

EXPRESS Metamodel, Beta 1 43

8.6.3.1 Supertypes
InstantiableType

8.6.3.2 Attributes

none.

8.6.3.3 Associations

none.

8.6.3.4 Other Roles
From: SpecializedType as underlying-type

8.6.4 Class: DataType

Definition: an ExpressionType that represents all the data type notions that can be declared for objects and properties in
EXPRESS. Syntactically called parameter_type, it includes InstantiableTypes and GeneralizedTypes (which represent
conformance rules for InstantiableTypes). It excludes PartialEntityTypes, which are only classifiers for intermediate
results.

Note: See clause 8 of ISO 10303-11:2004.

Properties: abstract

8.6.4.1 Supertypes

none.

8.6.4.2 Attributes

none.

8.6.4.3 Associations

none.

8.6.4.4 Other Roles
From: Expression as data-type

8.6.5 Class: DefinedType

Definition: a NamedType representing an EXPRESS defined data type, a type declared by a type declaration.
Note: See 8.3.2 and 9.1 of ISO 10303-11:2004.

Properties: abstract

8.6.5.1 Supertypes

ConcreteType, NamedType

8.6.5.2 Attributes

none.

44 EXPRESS Metamodel, Beta 1

8.6.5.3 Associations

none.

8.6.5.4 Other Roles

none.

8.6.6 Class: EnumerationType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type is a ENUMERATION
data type.

Note: See 8.4.1 of ISO 10303-11:2004.

8.6.6.1 Supertypes
DefinedType

8.6.6.2 Attributes

Attribute: isExtensible To: MOF::Boolean

Definition: True if the EnumerationType can have additional values in a schema that interfaces it; False if not.

In the context schema for a population, the final set of possible values is known. But the set given in the defining schema
may be incomplete and be extended by other EnumerationTypes for which this is the base.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..1
8.6.6.3 Associations

AssociationEnd: base To: EnumerationType
via: enumeration-extends-enumeration

Definition: represents the relationship of an extended EnumerationType to the EnumerationType it is BASED ON. The
domain of the extended type includes all of the values of the base type and all the values defined in the extension.

Note: See 8.4.1 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: declared-items To: Instances::Enumerationltem

via: Instances:enumeration-declares-items

Subsets: NamedType.type-elements

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type_declaration. For extended enumeration types, this is distinct from the .values relationship, which captures all of the
valid values of the type.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1 45

AssociationEnd: extension To: EnumerationType

via: enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it. Each extension type may add additional values to the domain, and these are considered to be values of the base
type for all uses within the schema containing the extension.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: values To: Instances::Enumerationltem

via: Instances::value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of
the type. An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declares
it. This relationship can be derived recursively as the union of the values of the .declared-items attribute for the
EnumerationType, for each EnumerationType in the sequence of .base relationships from the EnumerationType, and
from all the extensions of the EnumerationType.

Note: See clause 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered
TaggedValues

derivation = ".declared-itens + .base.declared-itens + extensions.declared-
i tens"

8.6.6.4 Other Roles

none.

8.6.7 Class: InstantiableType

Definition: an abstract classifier, encompassing all the data type notions that characterize objects and properties in
EXPRESS. InstantiableType is a proper subtype of DataType (which includes classifiers that represent conformance
rules for InstantiableTypes).

Note: See 8.6.1 of ISO 10303-11:2004.

Properties: abstract
8.6.7.1 Supertypes
VariableType

8.6.7.2 Attributes

none.
8.6.7.3 Associations
AssociationEnd: fundamental-type To: InstantiableType

Definition: represents the relationship between the DefinedType and the data type used to represent its values. The
fundamental-type of a DefinedType is the fundamental-type of its underlying-type; the fundamental-type of any other
InstantiableType is the type itself.

46 EXPRESS Metamodel, Beta 1

Note: See 13.3.2 of ISO 10303-11:2004.

Multiplicity: 1..1

8.6.7.4 Other Roles

From: InstantiableType as fundamental-type

From: InstantiableAggregationType as member-type

From: Instances::Constant as data-type

8.6.8 Class: NamedType
Definition: a CommonFElement that defines a new InstantiableType.
Note: See 8.3 of ISO 10303-11:2004.

Properties: abstract

8.6.8.1 Supertypes
CommonElement, Scope, InstantiableType

8.6.8.2 Attributes

none.
8.6.8.3 Associations
AssociationEnd: domain-rules To: DomainRule

via: NamedType-has-DomainRule
Subsets: Core::NamedType.type-elements

Definition: a refinement of InstantiableType.constraints, represents the association of DomainRules that restrict the
domain of valid values of the NamedType

Note: See 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: instantiates To: SelectType

via: type-instantiates-select-type

Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-elements To: TypeElement

via: type-element-has-scope

Subsets: Scope.named-elements

Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.

EXPRESS Metamodel, Beta 1 47

Multiplicity: 0..* unordered

8.6.8.4 Other Roles
From: SelectType as select-list
From: Instances::TypeName as refers-to

From: Expressions::ExtentRef as refers-to

8.6.8.5 Rules

Constraint (OCL)

exi sts(sel f->id);

Every NamedType shall have an identifier
8.6.9 Class: ParameterType

Definition: An abstract classification of Types that includes the InstantiableTypes, ActualTypes and GeneralizedTypes.
That is, a ParameterType is any Type that is admissible as the declared type of a Parameter or an (abstract)
ExplicitAttribute.

Note: See ISO 10303-11:2004 clause 8.6.2

Note: The lexical par anet er _t ype in EXPRESS may represent an ActualType rather than a ParameterType, and it
may include labeled GenericComponents that are used in ActualTypes and ActualTypeConstraints. All of these concepts
are described in the Algorithms Package.

Properties: abstract

8.6.9.1 Supertypes

none.

8.6.9.2 Attributes

none.
8.6.9.3 Associations
AssociationEnd: role To: Attribute

via: attribute-has-data-type

Definition: represents the relationship between the ParameterType and the roles (attributes of entities) that its admissible
values may play.

Note: See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.9.4 Other Roles
From: AGGREGATEType as member-type
From: Redeclaration as restricted-type

From: Algorithms::Parameter as formal-parameter-type

48 EXPRESS Metamodel, Beta 1

8.6.10 Class: SelectType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying_type is a SELECT data type.
Note: See 8.4.2 of ISO 10303-11:2004.

8.6.10.1 Supertypes
DefinedType

8.6.10.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: represents a constraint on the extensions of an Extensible SelectType: True if every NamedType in the
extension must be an EntityType; otherwise False..

Multiplicity: 1..1

Attribute: isExtensible To: MOF::Boolean

Definition: True if the SelectType is EXTENSIBLE, i.e., if it can have additional NamedTypes in the select-list when it
is interfaced into another Schema; False otherwise.

Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1
8.6.10.3 Associations

AssociationEnd: allowed-types To: NamedType

via: type-instantiates-select-type

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: base To: SelectType

via: select-type-extends-select-type

Definition: represents the relationship of an extended select type to the (extensible) select type it is BASED ON.
Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType

via: select-type-extends-select-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1 49

AssociationEnd: select-list To: NamedType

Definition: represents the appearance of the NamedType in the select list in the declaration of the SelectType. For
extended and extensible SelectTypes, the NamedType should appear in exactly one of the select-lists in any set of
SelectTypes related by extension. This is distinct from .allowed-types, which represents all of the NamedTypes that can
validly instantiate the SelectType, including any related by extension. The select-list is said to be "ordered," to convey
the syntactic ordering. The ordering has no semantic significance.

Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* ordered

8.6.10.4 Other Roles

From: Instances::Typedinstance as satisfies-type

8.6.11 Class: SpecializedType
Note:Definition: See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

8.6.11.1 Supertypes
DefinedType

8.6.11.2 Attributes
none.

8.6.11.3 Associations

AssociationEnd: underlying-type To: ConcreteType

Definition: represents the EXPRESS "specialization" relationship between a defined data type and the "underlying type"
used to represent it.

Note: See 9.1 and 9.7 of ISO 10303-11:2004.
Multiplicity: 1..1

8.6.11.4 Other Roles

From: Instances::SpecializedValue as of-type

8.6.12 Class: VariableType

Definition: An abstract class representing the permissible data types of a variable: InstantiableTypes and ActualTypes.

Properties: abstract

8.6.12.1 Supertypes

ParameterType, DataType

8.6.12.2 Attributes

none.

50 EXPRESS Metamodel, Beta 1

8.6.12.3 Associations

none.

8.6.12.4 Other Roles

From: Algorithms::NamedVariable as variable-type
From: Expressions::Coercion as target-type

From: Algorithms::ActualAGGREGATEType as member-type

8.6.13 Association: enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it.

Note: See 8.4.1 of ISO 10303-11:2004.
8.6.13.1 Association Ends

AssociationEnd: base To: EnumerationType

Definition: represents the relationship of an extended EnumerationType to the EnumerationType it is BASED ON. The
domain of the extended type includes all of the values of the base type and all the values defined in the extension.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: EnumerationType

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it. Each extension type may add additional values to the domain, and these are considered to be values of the base
type for all uses within the schema containing the extension.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.14 Association: select-type-extends-select-type
Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note: See 8.4.2 of ISO 10303-11:2004.

8.6.14.1 Association Ends

AssociationEnd: base To: SelectType

Definition: represents the relationship of an extended select type to the (extensible) select type it is BASED ON.
Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

EXPRESS Metamodel, Beta 1 51

Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.15 Association: type-instantiates-select-type
Definition: represents the appearance of the "generalizes" NamedType in the select list of the "instantiates" SelectType.

Note: See 8.4.2 of ISO 10303-11:2004.
8.6.15.1 Association Ends

AssociationEnd: allowed-types To: NamedType

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: instantiates To: SelectType
Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note: See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.7 Type Constraints

InstantiableTypes can have local constraints on the admissible values of their "domain." The basic concept is shown in
8.7. All NamedTypes can have DomainRules. AnonymousTypes have specialized constraints, which are shown in the
sections for those types.

52 EXPRESS Metamodel, Beta 1

type-has-constraints
<<metaclass>> || 4 +constraints <<metaclass>>
ParameterType _ DomainConstraint
+domain A 0.* 0..1
lr constraint-asserfs-expression
<<metaclass>> <<metaclass>> +asserts | 0..1

InstantiableType > VariableType =<metaclass>>

Expression

<<metaclass>> +text : ExpressText [0..1]
NamedType-has-DomainRule DomainRule
+domain-rules

1 {subsets type-elements,subsets constraints}*Position : Integer [1|]

<<metaclass>3 - |
NamedType | +domain 0.*
{subsets namespace,subsets domain}
1 +type-elements
yp <<metaclass>>
zr +namespace type-element-has-scope 0.* TypeElement
<<metaclass>> <<metaclass>>
DefinedType EntityType

+isAbstract : Boolean [1|]
|

Figure 8 - Type Constraints

8.71 Class: DomainConstraint

Definition: represents a constraint on the allowable values of an EXPRESS data type. This concept does not appear
explicitly in the EXPRESS language. Some DomainConstraints are explicit DomainRules (WHERE rules); others, such
as SizeConstraints and LengthConstraints, are stated in the EXPRESS syntax for the data type. In this model, a
DomainConstraint is always formulated as a (boolean) Expression, regardless of the EXPRESS syntax used to specify it.

Properties: abstract

8.7.1.1 Supertypes

none.

8.7.1.2 Attributes

none.
8.71.3 Associations
AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

EXPRESS Metamodel, Beta 1 53

AssociationEnd: asserts To: Expression

Definition: represents the relationship between the domain constraint and a Boolean expression that can be evaluated to
determine if it holds.

While all DomainConstraints can be represented by Boolean expressions, some DomainConstraints have representations
that do not require the Expression to be explicitly modeled. For this reason, . assert s has multiplicity 0..1. When the
DomainConstraint has a simple representation (such as a fixed size that is an integer), . asser t s may, but need not,
have a value. When the DomainConstraint cannot be simply represented, . asser t s shall have a value that is a
Boolean expression that conveys the constraint.

Note:The asserts expression that formulates the DomainConstraint is wholly owned by the DomainConstraint. It is not
treated as reusable.

Multiplicity: 0..1
EXAMPLE

For the EXPRESS text:
ENTI TY roster;
mex_t eam | NTEGER,
menbers: LIST [1: max_team+l] OF entry;
END_ENTI TY;

The DomainConstraint representing the maximum size of the menber s list is a SizeConstraint that has no . bound
value and has a value for . asser t s that is an Expression of the form:
Si zeOX (SELF. menbers) <= SELF. max_team + 1

The DomainConstraint representing the minimum size of the menber s list is a SizeConstraint that has . bound = 1.
It is not required to have any value for . assert s. But, if present, the value of . asser t s should be an Expression of
the form:

Si zeOf (SELF. menbers) >= 1

8.7.1.4 Other Roles

none.

8.7.2 Class: DomainRule

Definition: represents a DomainConstraint that is stated as an EXPRESS domain rule in a WHERE clause in the
type_declaration or the entity declaration. In a type declaration, it is a Boolean expression in terms of SELF that limits
the allowable values in the domain of the data type. In an entity declaration, it is a Boolean expression that constrains the
values of one or more attributes (or other relationships) of the entity data type.

Note: See clauses 9.1 and 9.2.2.2 of ISO 10303-11:2004.

Note:Part 11 permits a DomainRule to evaluate to indeterminate ("?") and requires a rule with that evaluation to be
treated as satisfied. The most common case is the evaluation of an expression involving an OPTIONAL attribute.
Languages like OCL and OWL require the possibly indeterminate values to be protected by an EXISTS operation.

EXAMPLE

For the EXPRESS text:
ENTITY tinme_interval;
begin_ time: date_tine;
end_tinme: OPTIONAL date tine;
VWHERE
wl: begin_tinme <= end_tine;

54 EXPRESS Metamodel, Beta 1

END_ENTI TY;

The EXPRESS domain rule wr 1 is represented by a DomainRule with . i d="wr 1" and . position = 1, and
. assert s linked to an Expression of the form:
SELF. begin_tine <= SELF.end_tine

The proper translation of the EXPRESS DomainRule wr 1, however, may require the rule to be represented as:
NOT EXI STS(SELF. end_tinme) OR (SELF.begin_time <= SELF.end_tine)

8.7.21 Supertypes
TypeElement, DomainConstraint

8.7.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Domain Rule in the list of rules following the WHERE keyword in the
entity/type declaration.

Multiplicity: 1..1
8.7.2.3 Associations

AssociationEnd: domain To: NamedType

via: NamedType-has-DomainRule

Subsets: Core:: TypeElement.namespace, Core::DomainConstraint.domain

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it
applies.

Multiplicity: 1..1

8.7.2.4 Other Roles

none.

8.7.3 Association: NamedType-has-DomainRule

Definition: a refinement of type-has-constraints, representing the relationship of a NamedType to a DomainRule that
restrict the domain of valid values of the NamedType.

Note: See 9.1 of ISO 10303-11:2004.
8.7.3.1 Supertypes

type-element-has-scope, type-has-constraints
8.7.3.2 Association Ends

AssociationEnd: domain To: NamedType

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it
applies

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1

AssociationEnd: domain-rules To: DomainRule

Definition: a refinement of InstantiableType.constraints, represents the association of DomainRules that restrict the
domain of valid values of the NamedType

Note: See 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.7.4 Association: type-has-constraints

Definition: an abstract relationship, represents the association between a ParameterType and a DomainConstraint that
restricts the value domain of the ParameterType

Note: See 8.1.6, 8.1.7, 8.2, and 9.1 of ISO 10303-11:2004.
Properties: abstract

Note: This is an abstract relationship. Each separate form of this relationship is separately modeled.

8.7.4.1 Association Ends

AssociationEnd: constraints To: DomainConstraint

Definition: represents the association of DomainConstraints that restrict the value domain of the ParameterType
Note: See 8.1.6, 8.1.7, 8.2, and 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: abstract

AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

8.8 Simple Types

The EXPRESS language defines "simple types" as those that carry a single conceptual information unit. Each simple
type is denoted by a keyword, rather than an identifier. The simple types are BOOLEAN, INTEGER, LOGICAL,
NUMBER, all BINARY types, all REAL types, and all STRING types. They are shown in 8.8 and described below.

56 EXPRESS Metamodel, Beta 1

SimpleType BuiltinTypes

+id:Keyword K- - - - - - -
<< instantiates >>

NumericType LogicType StringType BinaryType
0.1 0.1
StringType-has-LengthConstraint BinaryType-has-LengthConstraini
+string-length-constraint |, 0--1 0..1,|* binary-length-constraint
RealType LengthConstraint
+precision:Iinteger{0..1] +maxLength:Integer[0..1]
+isFixed:Boolean

constraint-asserts-expression ;L

DomainConstraint

Expression !

+text:ExpressText[0..1] | +asserts 0..1

Figure 9 - Simple Types

8.8.1 Class: BinaryType

Definition: a SimpleType representing all EXPRESS BINARY data types, which are distinguished by different
LengthConstraints.

By definition, every EXPRESS BINARY type with a LengthConstraint is different from every other BINARY data type.
(They may be compatible with others, but not the same.) The only instance of BINARY Type with no LengthConstraint is
the EXPRESS data type BINARY.

Note: See 8.1.7 of ISO 10303-11:2004.

8.8.1.1 Supertypes

SimpleType

8.8.1.2 Attributes

none.

8.8.1.3 Associations

AssociationEnd: binary-length-constraint To: LengthConstraint

Definition: represents a constraint on the length (in bits) of the values in the domain of the BINARY data type. Refines
InstantiableType.constraints.

Note: See 8.1.7 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 57

Multiplicity: 0..1

8.8.1.4 Other Roles

none.

8.8.2 Class: LengthConstraint

Definition: represents any maximum-length or fixed-length constraint on the length of the values of a STRING or
BINARY type. A LengthConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using
the built-in Length() function.

Note: See 8.1.6 and 8.1.7 of ISO 10303-11:2004.

8.8.2.1 Supertypes

DomainConstraint

8.8.2.2 Attributes

Attribute: isFixed To: MOF::Boolean

Definition: True if all values of the SimpleType are required to be of the same length; False if the constraint specifies
only the maximum length of the values.

Note: See 8.1.6 and 8.1.8 of ISO 10303-11:2004.
Multiplicity: 1..1

Attribute: maxLength To: MOF::Integer

Definition: represents a constant value specifying the required maximum/fixed length of the STRING or BINARY value.
This attribute is present when the constraint expression is a "constant."

Note: See 8.1.6 and 8.1.9 of ISO 10303-11:2004.
Multiplicity: 0..1

8.8.2.3 Associations

none.

8.8.24 Other Roles
From: StringType as string-length-constraint
From: BinaryType as binary-length-constraint

8.8.2.5 Rules

Constraint ()

Every LengthConstraint is either a string-length-constraint or a binary-length-constraint for exactly one SimpleType.

Constraint ()

A LengthConstraint is unique to the STRINGType or BINARY Type it constrains.

58 EXPRESS Metamodel, Beta 1

8.8.3 Class: LogicType

Definition: a SimpleType representing the EXPRESS data types BOOLEAN and LOGICAL, which are the only
instances of LOGICALType.

Note: See 8.1.4 of ISO 10303-11:2004.

8.8.3.1 Supertypes

SimpleType

8.8.3.2 Attributes
none.

8.8.3.3 Associations

none.

8.8.3.4 Other Roles

none.

8.8.4 Class: NumericType

Definition: a SimpleType representing the EXPRESS data types NUMBER, INTEGER and all REAL data types.
NUMBER and INTEGER are instances of NUMBERType.

Note: See 8.1.1 of ISO 10303-11:2004.
8.8.4.1 Supertypes
SimpleType

8.8.4.2 Attributes

none.

8.8.4.3 Associations

none.

8.8.4.4 Other Roles

none.

8.8.5 Class: RealType

Definition: represents all EXPRESS REAL data types, which are distinguished from one another by different values of
"precision." Type REAL (with no "precision" value) is one instance of REALType.

Note: See 8.1.2 of ISO 10303-11:2004.

8.8.5.1 Supertypes

NumericType

EXPRESS Metamodel, Beta 1 59

8.8.5.2 Attributes

Attribute: precision To: MOF::Integer

Definition: represents the number of significant figures in the values of the RealType, as specified in its syntactic
designation. Although the value of "precision” is specified in EXPRESS to be an expression, it is assumed in this model
that the value will in practice be a "constant." The only REALType for which "precision" is not present is the EXPRESS
type REAL (with no precision specification).

Note: See 8.1.3 of ISO 10303-11:2004.
Multiplicity: 0..1

8.8.5.3 Associations

none.

8.8.5.4 Other Roles

none.

8.8.6 Class: SimpleType

Definition: an AnonymousType representing those EXPRESS data types defined in the language as "simple types":
BINARY types, BOOLEAN, INTEGER, LOGICAL, NUMBER, REAL types, and STRING types.

Note: See 8.1 of ISO 10303-11:2004.

Properties: abstract

8.8.6.1 Supertypes

AnonymousType

8.8.6.2 Attributes

Attribute: id To: Keyword

Definition: represents the EXPRESS keyword denoting the SimpleType, one of: BINARY, BOOLEAN, INTEGER,
LOGICAL, NUMBER, REAL, STRING.

Note: See 8.1 of ISO 10303-11:2004.
Multiplicity: 1..1
8.8.6.3 Associations

none.

8.8.6.4 Other Roles

From: Instances::SimpleValue as of-type

8.8.7 Class: StringType

Definition: a SimpleType representing all EXPRESS STRING data types, which are distinguished by different
LengthConstraints. By definition, every EXPRESS STRING type with a LengthConstraint is different from every other

60 EXPRESS Metamodel, Beta 1

STRING data type. (They may be compatible with others, but not the same.) The only instance of STRINGType with no
LengthConstraint is the EXPRESS data type STRING.

Note: See 8.1.6 of ISO 10303-11:2004.

8.8.7.1 Supertypes

SimpleType

8.8.7.2 Attributes

none.
8.8.7.3 Associations

AssociationEnd: string-length-constraint To: LengthConstraint

Definition: represents a constraint on the length (in characters) of the values in the domain of the STRING data type.
Refines InstantiableType.constraints.

Note: See 8.1.6 of ISO 10303-11:2004.
Multiplicity: 0..1

8.8.7.4 Other Roles

none.

8.9 Aggregation Types

EXPRESS "aggregation types" are types whose instances are collections of instances of a "member type." There are four
kinds of aggregation types, which represent different structures for the collections: ARRAY, BAG, LIST, SET. 8.9
shows the overview of Aggregation types. The model elements are defined below.

EXPRESS Metamodel, Beta 1 61

aggregation-has-upper-bound

0.1 +upper-bound

AggregationType [@ 5 7~| SizeConstraint
InstantiableType +isUnique:Boolean - 0.1 _ | *boundinteger[0..1]
+orderingOrderingKind 0.1 +lower-bound
% aggregation-has-lower-bound J7
1 +member-type
ConcreteAggregationType DomainConstraint
aggregation-has-member-type *
3 ¥
ARRAYType BAGType LISTType SETType
+isOptionaltBoolean
0.1 0.1 constraint-asserts-expression
array-has-hi-index array-has-lo-index
+hi-index | 1 1 [+lo-index +asserts 1
ArrayBound *+ bound-expression Expression
+boundinteger(0..1] | * bound-is-expression 1 |+textExpressText[0..1]

Figure 10 - Aggregation Types

8.9.1 Class: AggregationType

Definition: an AnonymousType representing an EXPRESS "aggregation type," whose instances are collections of
instances of a "member type": ARRAY, BAG, LIST, SET.

Note: See 8.2 of ISO 10303-11:2004.

Properties: abstract

8.9.11 Supertypes

none.

8.9.1.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: True if the members of a given instance of the type are required to be distinct; else False. isUnique is always
True for a SET type, always False for a BAG type, and True for LIST and ARRAY types if and only if the UNIQUE
keyword is present in the type designation

Note: See 8.2 of ISO 10303-11:2004.
Multiplicity: 1..1

62 EXPRESS Metamodel, Beta 1

Attribute: ordering To: OrderingKind
Definition: Specifies the structure of the AggregationType: indexed (ARRAY), ordered (LIST), unordered (BAG, SET).

Multiplicity: 1..1
8.9.1.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents the appearance of a lower-bound constraint in syntactic designation for the aggregation type.
Refines InstantiableType.constraints. For this purpose the appearance of an explicit zero ("0") value may be considered
to represent no lower-bound constraint; and the lower-bound relationship need not appear. (The appearance of a lower-
bound expression that may evaluate to zero shall always be represented by a lower-bound relationship.)

Note: See 8.2.x of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents the appearance of an upper-bound constraint in the syntactic designation for the aggregation type.
Refines InstantiableType.constraints. For this purpose the appearance of an explicit indeterminate value ("?") is
considered to represent no upper-bound constraint, and shall not be represented by an upper-bound relationship. (The
appearance of an upper-bound expression that may evaluate to "?" shall be represented by an upper-bound relationship.)

Note: See 8.2.x of ISO 10303-11:2004.
Multiplicity: 0..1
89.14 Other Roles

none.

8.9.2 Class: ArrayBound

Definition: represents a bound on the index domain of an ARRAY data type .

Note: See 8.2.1 of ISO 10303-11:2004.

8.9.21 Supertypes

none.

8.9.2.2 Attributes

Attribute: bound To: MOF::Integer

Definition: the integer value of the bound, when it can be determined "by inspection” of the bound expression.
Note: See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 0..1

8.9.2.3 Associations
AssociationEnd: bound-expression To: Expression

Definition: the Expression that defines the ArrayBound.

EXPRESS Metamodel, Beta 1 63

Note: See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.9.24 Other Roles

From: ARRAYType as hi-index

From: ARRAYType as lo-index

From: GeneralARRAYType as lo-index

From: GeneralARRAYType as hi-index

From: Algorithms::ActualARRAYType as lo-index
From: Algorithms::ActualARRAYType as hi-index

8.9.2.5 Rules

Constraint ()

Every ArrayBound is either a hi-index or lo-index for exactly one ARRAYType, ActualARRAY Type or
General ARRAY Type.

Constraint ()

An ArrayBound is unique to the ARRAY Type (or GeneralARRAY Type) and the role (hi-index/lo-index) it plays with
respect to that type.

8.9.3 Class: ARRAYType

Definition: an AggregationType representing all EXPRESS ARRAY data types.

8.9.3.1 Supertypes
InstantiableAggregationType

8.9.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAY Type;
False otherwise. When isOptional is True, any instance of the ARRAYType is permitted to have members whose value is
unspecified ("?").

Note: See 8.2.1 of ISO 10303-11:2004.
Multiplicity: 1..1

8.9.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: represents the relationship between the ARRAY Type and the upper bound on the Integer index-range of each
value of the ARRAY Type.

Note: See 8.2.1 and 15.11 of ISO 10303-11:2004.

Multiplicity: 1..1

64 EXPRESS Metamodel, Beta 1

AssociationEnd: lo-index To: ArrayBound

Definition: represents the relationship between the ARRAYType and the lower bound on the Integer index-range of each
value of the ARRAY Type.

Note: See 8.2.1 and 15.17 of ISO 10303-11:2004.

Multiplicity: 1..1

8.9.34 Other Roles
From: Instances::ARRAYValue as of-type

8.9.3.5 Rules

Constraint (OCL)
sel f->ordering = I ndexed

8.9.4 Class: BAGType

Definition: an AggregationType representing all EXPRESS BAG data types
Note: See 8.2.3 of ISO 10303-11:2004.

8.9.4.1 Supertypes

Instantiable AggregationType

8.9.4.2 Attributes

none.

8.9.4.3 Associations

none.

8.9.44 Other Roles

From: Instances::BAGValue as of-type

8.9.4.5 Rules

Constraint (OCL)
NOT sel f - >i sUni que

Constraint (OCL)

sel f->ordering = Unordered

8.9.5 Class: ConcreteAggregationType
Definition: an anonymous InstantiableType that is an AggregationType whose member-type is itself an InstantiableType.

Properties: abstract

EXPRESS Metamodel, Beta 1 65

8.9.51 Supertypes

AggregationType, AnonymousType

8.9.5.2 Attributes

none.
8.9.5.3 Associations
AssociationEnd: member-type To: InstantiableType

Definition: represents data type of its components (members) of the InstantiableAggregationType.
Multiplicity: 1..1
8.9.54 Other Roles

none.

8.9.6 Class: LISTType

Definition: an AggregationType representing all EXPRESS LIST data types
Note: See 8.2.2 of ISO 10303-11:2004.

8.9.6.1 Supertypes

Instantiable AggregationType

8.9.6.2 Attributes

none.

8.9.6.3 Associations

none.

8.9.6.4 Other Roles

From: Instances::LISTValue as of-type

8.9.6.5 Rules

Constraint (OCL)
sel f->ordering = Ordered

8.9.7 Datatype: OrderingKind
Stereotypes: enuner ati on

Definition: Values that characterize the logical structure of the collections represented by an AggregationType (or a
GeneralAggregationType).

8.9.71 Supertypes

none.

66 EXPRESS Metamodel, Beta 1

8.9.7.2 Values

Value: indexed

Definition: Specifies that the structure of the AggregateValues is an ARRAY. That is, the positions in the sequence are
associated with specific (consecutive) INTEGER index values.

Value: ordered

Definition: Specifies that the structure of the AggregateValues is a LIST. That is, the position of each member-value in
the sequence is significant in interpreting the AggregateValue.

Value: unordered

Definition: Specifies that the structure of the AggregateValues is a BAG or SET. That is, the position of each member-
value in the sequence has no significance in interpreting the AggregateValue.

8.9.8 Class: SETType

Definition: an AggregationType representing all EXPRESS SET data types.
Note: See 8.2.4 of ISO 10303-11:2004.

8.9.8.1 Supertypes
InstantiableAggregationType

8.9.8.2 Attributes

none.

8.9.8.3 Associations

none.

8.9.8.4 Other Roles

From: Instances::SETValue as of-type
8.9.8.5 Rules

Constraint (OCL)
sel f->i sUni que

Constraint (OCL)
sel f->ordering = Unordered

8.9.9 Class: SizeConstraint

Definition: A SizeConstraint represents a constraint on the number of members in each value of an EXPRESS
aggregation type, stated as a bound in the syntactic designation for the type. A SizeConstraint represents either an upper-
bound or a lower-bound. In the case of an ARRAY type, the value (hi-index - lo-index + 1) is both the lower-bound value
and the upper-bound value. A SizeConstraint is a DomainConstraint, considered to have an equivalent Boolean
expression using the built-in SizeOf() function.

Note: See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 67

8.9.91 Supertypes

DomainConstraint

8.9.9.2 Attributes

Attribute: bound To: MOF::Integer

Definition: represents a constant value specifying the (upper or lower) bound on the number of members in a valid
instance of the aggregation type. This attribute is present when the bound expression is a "constant."

Note: See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.
Multiplicity: 0..1

8.9.9.3 Associations

none.

8.9.94 Other Roles
From: AGGREGATEType as upper-bound
From: AGGREGATEType as lower-bound

From: AggregationType as upper-bound
From: AggregationType as lower-bound

From: Redeclaration as upper-bound

From: Redeclaration as lower-bound

From: Role as lower-bound

From: Role as upper-bound

From: Algorithms::ActualAGGREGATEType as lower-bound
From: Algorithms::ActualAGGREGATEType as upper-bound

8.9.9.5 Rules

Constraint ()

Every SizeConstraint is either an upper-bound or a lower-bound for exactly one AggregationType or
General AggregationType.

Constraint ()

A SizeConstraint is unique to the AggregationType (or GeneralAggregationType) it describes and the role (upper-bound/
lower-bound) it plays with respect to that AggregationType.

8.10 Generalized Types

Generalized types are those EXPRESS data types that are "abstract," in the sense that every actual instance is an instance
of some InstantiableType(s). These types are only permitted as the data type of formal parameters and the data type of
"abstract”" Attributes of ABSTRACT EntityTypes. They are shown in 8.10.

68 EXPRESS Metamodel, Beta 1

ParameterType | 1 GeneralizedType | | 9enera-agaregation has-member-typel A g oreation Type
+member-type +isUnique:Boolean
+member-t 1 +orderingOrderingKind
emoer-type aggregate-has-member-type {disjoint, total} Zﬁ
AGGREGATEType GenericType GeneralAggregationType
+isEntity:Boolean
Y8 e
1 1 , <<instantiates>> {disjoint, total}
|
GenericTypes |
GeneralBAGType GeneralSETType
aggregate-has-upper-bound

aggregate-has-lower-bound

GeneralARRAYType GeneralLISTType

+isOptionatBoolean

+upper-bound | 0..1 0..1 | +lower-bound

SizeConstraint 0.1 0.1 0.1

ArrayBound

+boundinteger(0..1] general-array-has-lo-index +lo-index
0.1 +bound:Integer[0..1]

general-array-has-hi-index +hi-index
Figure 11 - Generalized Types

8.10.1 Class: AGGREGATEType

Definition: a GeneralizedType that is an abstraction of all AggregationTypes and all General AggregationTypes. That is,
any ARRAY, BAG, LIST, or SET Instance that satisfies the SizeConstraints (if any), whose members are of the specified
member type or some specialization of it, is an instance of the AGGREGATEType. It follows that any ARRAY, BAG,
LIST, or SET type whose instances are necessarily instances of the AGGREGATEType is a specialization.

Note: See 9.5.3.1 of ISO 10303-11:2004.

8.10.1.1 Supertypes

GeneralizedType

8.10.1.2 Attributes

none.
8.10.1.3 Associations

AssociationEnd: constraint To: Algorithms::ActualStructureConstraint

via: Algorithms::aggregate-has-constraint

Definition: the ActualStructureConstraint, if any, that applies to this component of the GeneralizedType specification.

EXPRESS Metamodel, Beta 1 69

Note:Only an AGGREGATEType that appears in the specification of the data type of a Parameter can have an
ActualStructureConstraint. The AGGREGATEType has an ActualStructureConstraint only if it has a syntactic type label
and does not itself define that type label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents a lower-bound constraint on aggregate values conforming to the AGGREGATE type. If the lower-
bound constraint is present, the number of members of the aggregate value shall be greater than or equal to this value. If
the lower-bound is not present or evaluates to zero, there is no constraint. Unless the lower-bound specified for the
AGGREGATIONTYype is an explicit "0," this constraint shall appear.

Note: See 9.5.3.2 of ISO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: member-type To: ParameterType

Definition: represents the relationship between an AGGREGATE Type and the specification for the data type of the
members of its instances. If the specification is an InstantiableType, the member-type of conforming aggregation types is
required to be exactly that data type. If the specification is a GeneralizedType, the member-type of the conforming
aggregation types must conform to it.

Note: See 9.5.3.1 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents an upper-bound constraint on aggregate values conforming to the AGGREGATE type. If the
upper-bound constraint is present and does not evaluate to indeterminate ("'?"), the number of members of the aggregate
value shall be less than or equal to this value. If the upper-bound is not present or evaluates to indeterminate, there is no
constraint. Unless the upper-bound specified for the AGGREGATE type is an explicit "?", this constraint shall appear.

Note: See 9.5.3.3 of ISO 10303-11:2004.
Multiplicity: 0..1

8.10.1.4 Other Roles

none.

8.10.2 Class: GeneralAggregationType

Definition: represents a GeneralizedType whose instances are AggregateValues with a specific structure (ARRAY, BAG,
LIST or SET), but whose member-types are specializations of some specified GeneralizedType. That is, a

General AggregationType is an aggregation data type whose member-type is specified to be a GeneralizedType; while an
(Instantiable) AggregationType is an aggregation data type whose member-type is specified to be an InstantiableType.

Any instance of a GeneralAggregationType is required to be an AggregateValue that has the specified structure and has
members that are instances of some InstantiableType that conforms to the specified member-type. In addition,the
instance must satisfy any DomainConstraints associated with the General AggregationType.

Note: See 9.5.3.5 of ISO 10303-11:2004.

Properties: abstract

70 EXPRESS Metamodel, Beta 1

8.10.2.1 Supertypes

AggregationType, GeneralizedType

8.10.2.2 Attributes

none.
8.10.2.3 Associations

AssociationEnd: member-type To: GeneralizedType

Definition: represents the relationship between a General AggregationType and the conformance specification for the
member-type.

Note: See 9.5.3.5 of ISO 10303-11:2004.
Multiplicity: 1..1

8.10.2.4 Other Roles

none.

8.10.3 Class: GeneralARRAYType

Definition: represents a General AggregationType whose structure is an ARRAY. The hi-index and lo-index values of a
conforming ARRAY Instance are required to be equal to the values given for the General ARRAY Type.

When the General ARRAY Type is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be an ARRAYType or a General ARRAY Type whose hi-index and lo-index values are equal
to the values given for the General ARRAY Type. In addition, the .isOptional property of the redeclaration shall be as
specified below.

Note: See 9.5.3.5 of ISO 10303-11:2004.

8.10.3.1 Supertypes

GeneralAggregationType

8.10.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: When isOptional is True, any conforming ARRAY Instance is permitted to have members whose value is
indeterminate ("?"). When isOptional is False, no member of a conforming ARRAYInstance is permitted to have an
unspecified value.

If isOptional is True for an abstract attribute, the member type of any attribute that redeclares the abstract attribute may
be declared to be OPTIONAL; if False, the member type of an attribute that redeclares the abstract attribute shall not be
declared to be OPTIONAL.

Note: See 9.5.3.5 of ISO 10303-11:2004.
Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 71

8.10.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: The hi-index value of a conforming ARRAY data type is required to be equal to the hi-index value, if any, for
the General ARRAYType.

Note: See 9.5.3.5 of ISO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: lo-index To: ArrayBound

Definition: The lo-index value of a conforming ARRAY data type is required to be equal to the lo-index value, if any, for
the General ARRAYType.

Note: See 9.5.3.5 of ISO 10303-11:2004.
Multiplicity: 0..1

8.10.34 Other Roles

none.

8.10.4 Class: GeneralBAGType

Definition: represents a General AggregationType whose structure is a BAG.

When the GeneralBAGType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a BAGType or a GeneralBAGType that includes or refines any DomainConstraint
associated with the GeneralBAGType.

Note: See 9.5.3.5 of ISO 10303-11:2004.
8.10.4.1 Supertypes
GeneralAggregationType

8.10.4.2 Attributes

none.

8.10.4.3 Associations

none.

8.10.4.4 Other Roles

none.

8.10.5 Class: GeneralizedType

Definition: an abstract classifier, representing those EXPRESS data types that are "abstract", in the sense that every
actual instance is an instance of some InstantiableType(s). These types are only permitted as the data type of formal
parameters and the data type of "abstract" Attributes of ABSTRACT EntityTypes. GeneralizedType is a proper subclass
of ParameterType that is disjoint with InstantiableType.

Note: The syntactic occurrences of EXPRESS gener al i zed_t ype do not always denote GeneralizedTypes per se. In
particular, a generalized type that appears with a type label may denote an ActualType or a constraint. When used as the

72 EXPRESS Metamodel, Beta 1

type of a LocalVariable or FunctionResult, it denotes an ActualType (q.v.). When used as the type of a Parameter, it may
be a GenericElement that defines a reference to the data type of the corresponding actual parameter (in addition to being
a GeneralizedType specification for the allowable data types of the actual parameter), or it may represent a constraint on
the data type of the corresponding actual parameter that relates to the data type of another actual parameter. See 9.5.3.4
of ISO 10303-11:2004.

Properties: abstract

8.10.5.1 Supertypes
ParameterType

8.10.5.2 Attributes

none.

8.10.5.3 Associations

none.

8.10.5.4 Other Roles
From: GeneralAggregationType as member-type

8.10.6 Class: GeneralLISTType

Definition: represents a GeneralAggregationType whose structure is a LIST.

When the GeneralLIST Type is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a LISTType or a General LIST Type that includes or refines any DomainConstraint
associated with the General LIST Type.

Note: See 9.5.3.5 of ISO 10303-11:2004.
8.10.6.1 Supertypes
GeneralAggregationType

8.10.6.2 Attributes

none.

8.10.6.3 Associations

none.

8.10.6.4 Other Roles

none.

8.10.7 Class: GeneralSETType

Definition: represents a General AggregationType whose structure is a SET.

When the GeneralSETType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a SETType or a General SET Type that includes or refines any DomainConstraint
associated with the GeneralSETType.

EXPRESS Metamodel, Beta 1 73

Note: See 9.5.3.5 of ISO 10303-11:2004.

8.10.71 Supertypes

GeneralAggregationType

8.10.7.2 Attributes

none.

8.10.7.3 Associations

none.

8.10.7.4 Other Roles

none.

8.10.8 Class: GenericType

Definition: represents the EXPRESS generalized types GENERIC and GENERIC ENTITY, and some labeled instances
of them. Every data type is a specialization of the GenericType GENERIC, and every Instance is an Instance of
GENERIC. Every entity data type is a specialization of the GenericType GENERIC ENTITY. Every EntityInstance is an
instance of GENERIC ENTITY and every instance of GENERIC ENTITY is an EntityInstance.

Note: See 9.5.3.2 and 9.5.3.3 of ISO 10303-11:2004.

8.10.8.1 Supertypes
GeneralizedType

8.10.8.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: True if the corresponding data type is required to be an Entity data type; False otherwise. .isEntity is True if
the EXPRESS keyword was GENERIC ENTITY. .isEntity is False if the EXPRESS keyword was GENERIC.

Multiplicity: 1..1
8.10.8.3 Associations

AssociationEnd: constraint To: Algorithms::ActualTypeConstraint

via: Algorithms::generic-has-constraint

Definition: the ActualTypeConstraint, if any, that applies to this component of the GeneralizedType specification.

Note: Only an GenericType that appears in the specification of the data type of a Parameter can have an
ActualTypeConstraint. The GenericType has an ActualTypeConstraint only if it has a syntactic type label and does not
itself define that type label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

8.10.8.4 Other Roles

none.

74 EXPRESS Metamodel, Beta 1

8.1

Entities and Attributes

This section of the Core model introduces the entity and attribute concepts of the EXPRESS language.

8.11 shows the primary concepts associated with EXPRESS entities: EntityTypes, Attributes, UNIQUE rules, and
DomainRules (WHERE rules). The SingleEntityType represents the group of attributes declared explicitly in the entity
declaration (as distinct from those inherited), and is used in PartialEntityValues (see 9.5.6) that represent states of
entities. PartialEntityType is a special data type that characterizes such values when they are produced in Expressions.
All of these concepts are described in detail below.

DomainRules are a kind of TypeConstraint that applies to NamedTypes in general. They are described in 8.7.2. In the
particular case of EntityTypes, they are used to capture constraints on the relationships among Attributes of the entity

data type.

<<metaclass>>

PartialEntityType

1.* 1 | +equivalent
entity-is-subtype-of-entity PartialEntity Type-has-cpmponents
SingleEntity Type-has-equivalent
0..* | +subtype-of))) 1. | +components| 0..1
single-entity-declared-in-entity,
<<metaclass>> 0.* <<metaclass>> , <<metaclass>>
NamedType EntityType *declared-in *declares SingleEntityType
1 1
< +isAbstract : Boolean [1|] +/id : Scopedld [1]
| +/owning-entity
+namespace| 1 1| +domain +domain | 1 1. +of-entity | 1
{subsets namespace} as-attributes
NamedTypg¢-has-DomainRule Entity Type-has-UniqueRule attribute-declared-in-entity
. | unique-rules . N
0..* | +domain-rules 0.. {subsets type-elements} {attributes 0.7 +declares
<<metaclass>> <<metaclass>> UniqueRule-uses-key-attribute <<met.aclass>>
DomainRule UniqueRule 1.* Attribute

+position : Integer [1|]

+position : Integer [1] . *

+key-component

+isAbstract : Boolean [1]
+position : Integer [1]

<<metaclass>3
TypeElement

+type-elements
0. .*

type-element-has-scope

Figure 12 - Entity Types

8.11 depicts the concepts associated with Attributes in EXPRESS. Attributes are of three kinds: explicit, INVERSE, and
DERIVEd. To facilitate modeling INVERSE attributes and relationships, this model adds the concept
InvertibleAttribute. All of these concepts are described below.

EXPRESS Metamodel, Beta 1 75

entity-is-subtype-of-entity

* | +subtype-of,|, * /entity-has-attributes attribute-has-data-type
EntityType 1.x +attributes Attribute * +attribute-type | ParameterType
+isAbstractBoolean . | tpositioninteger +rol 1
+isAbstractBoolean | 10"

1.* | +range-type

ExplicitAttribute InverseAttribute DerivedAttribute
+isOptionatBoolean +isUnique:Boolean
+inverse ’ D;rivedAttribute—has—derivation
+derivation 1
* | InvertibleAttribute | *&*lict Expression
+used-in 1 +text:ExpressText[0..1]
entity-used-in-attribute InverseAttribute-inverts-ExplicitAttribute

Figure 13 - Attributes

8.11.1 Class: Attribute

Definition: represents an EXPRESS attribute, i.e., a model of a property of an entity instance.
Note: See 9.2.1 of ISO 10303-11:2004.

Properties: abstract

8.11.11 Supertypes

TypeElement

8.11.1.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: True if .isAbstract is True for the owning EntityType (see .of-entity) and the attribute-type of the EXPRESS
attribute is a GeneralizedType; False in all other cases. When .isAbstract is True, this Attribute must be redeclared to
have an attribute-type that is an InstantiableType in any subtype of the owning EntityType that is not itself ABSTRACT.

Multiplicity: 1..1
Attribute: position To: MOF::Integer

Definition: Represents the position of the attribute declaration in the sequence of attribute declarations in the entity
declaration.

Multiplicity: 1..1

76 EXPRESS Metamodel, Beta 1

8.11.1.3 Associations

AssociationEnd: attribute-type To: ParameterType

via: attribute-has-data-type

Definition: represents the required DataType for all values of that Attribute in all instances of the EntityType. The
DataType is required to be an InstantiableType unless isAbstract is True for the EntityType, or the EntityType is defined
in an AlgorithmScope (instead of a Schema).

Note: See 9.2.1 of ISO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: of-entity To: SingleEntityType

via: attribute-declared-in-entity

Definition: represents the relationship of an Attribute to the SingleEntityType for which it was originally declared.
Multiplicity: 1..1

Note: The derived relationship . of - enti ty. decl ar ed- i n is the specialization of TypeElement.namespace for
Attributes. The EntityType is the namespace for the Attribute, not the SingleEntityType.

8.11.1.4 Other Roles
From: UniqueRule as key-component
From: EntityType as attributes

From: Redeclaration as original-attribute

From: Instances::RoleName as refers-to
From: Expressions::AttributeRef as refers-to
From: Expressions::UsedInRef as inverse-of

8.11.1.5 Rules

Constraint (OCL)
exi sts(sel f->id);
Every Attribute shall have an Identifier.

8.11.2 Class: DerivedAttribute

Definition: represents an EXPRESS DERIVE attribute = a property whose value can be determined from other attributes
and relationships of the entity instance.

Note: See 9.2.1.2 of ISO 10303-11:2004.

8.11.21 Supertypes

Attribute

8.11.2.2 Attributes

none.

EXPRESS Metamodel, Beta 1 77

8.11.2.3 Associations

AssociationEnd: derivation To: Expression

Definition: the Expression that specifies how to determine the value of the DerivedAttribute from the values of other
Attributes.

Note: See 9.2.1.2 of ISO 10303-11:2004.
Multiplicity: 1..1

8.11.2.4 Other Roles

none.

8.11.3 Class: EntityType

Definition: a NamedType representing an EXPRESS entity data type, a type declared by an entity declaration.
Note: See 9.2 of ISO 10303-11:2004.
8.11.3.1 Supertypes

InstantiableType, NamedType

8.11.3.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: True if the EXPRESS entity data type is declared ABSTRACT in its original declaration, either as
ABSTRACT entity or as ABSTRACT SUPERTYPE; False otherwise. The entity data type can also/later be declared
"abstract" in a SUBTYPE_CONSTRAINT, e.g., in an interfacing Schema, but that is taken as a constraint on the usage
of the EntityType in that context.

Note: See 9.2.4 and 9.2.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1
8.11.3.3 Associations

AssociationEnd: attributes To: Attribute

Definition: represents the relationship between an EntityType and the declared Attributes of that EntityType, including
those in the entity declaration and those inherited from supertypes.

Note: See 9.2 of ISO 10303-11:2004.
Properties: derived

Multiplicity: 0..* unordered
TaggedValues
derivation = decl ares. decl ares + subtype-of. decl ares. decl ares

AssociationEnd: declares To: SingleEntityType

via: single-entity-declared-in-entity

78 EXPRESS Metamodel, Beta 1

Definition: the SingleEntityType that is declared in the declaration for the EntityType, i.e., the group of Attributes that is
named for the EntityType.

Multiplicity: 1..1

AssociationEnd: extension To: Instances::Extent

via: Instances::extent-of-EntityType

Definition: represents the relationship between an EntityType and its extent (the set of corresponding Entitylnstances) in
a given Population.

Multiplicity: 0..* unordered

AssociationEnd: instances To: Instances::Entitylnstance

via: Instances::instance-of-EntityType

Definition: represents the relationship between an EntityType (classifier) and the Entitylnstances that satisfy it.

Multiplicity: 0..* unordered

AssociationEnd: plays-domain-role To: DomainRole
via: entity-plays-domain-role
Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An EntityInstance is
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an
AggregationType..

Properties: derived.

Multiplicity: 0..* unordered
TaggedValues

derivation = ((self->attributes) * extent(lnvertibleAttribute))->
creates-rel ati onshi p- >domai n

AssociationEnd: plays-range-role To: RangeRole

via: entity-plays-range-role

Definition: represents the relationship between an entity type and the range roles that its instances play. For each
occurrence of the EntityType in/as the attribute-type of an InvertibleAttribute, the EntityType plays the corresponding
RangeRole.

Properties: derived.

Multiplicity: 0..* unordered
TaggedValues
derivation = ParaneterType::self->explicit-rol e->nodel s-rol e

AssociationEnd: redeclarations To: Redeclaration

via: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the EntityType and any attribute Redeclarations that appear in its
declaration.

EXPRESS Metamodel, Beta 1 79

Note: See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: subtype-of To: EntityType

Definition: represents the relationship of an entity data type to its immediate supertypes — those entity data types from
whose common domain the instances of the EntityType are drawn. For compatibility with the interpretation of other
features of EXPRESS, this relationship extends only to those EntityTypes that are "immediate supertypes", i.e., those
explicitly declared in the SUBTYPE OF clause for this EntityType.

Note: See 9.2.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: unique-rules To: UniqueRule

via: EntityType-has-UniqueRule

Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the values of
attributes of that EntityType

Note: See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: used-in To: InvertibleAttribute

via: entity-used-in-attribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

Multiplicity: 0..* unordered

8.11.3.4 Other Roles

From: Rules::SupertypeRule as named-supertype
From: EntityType as subtype-of

From: Instances::EntityValue as corresponds to

From: Instances::SingleLeaflnstance as characterizing-type
8.11.4 Class: ExplicitAttribute

Definition: represents an EXPRESS "explicit" attribute, a model of a property of an entity instance that is not, in general,
derived from other properties of that instance or other entity instances.

Note: See 9.2.1.1 of ISO 10303-11:2004.

8.11.41 Supertypes

Attribute

80 EXPRESS Metamodel, Beta 1

8.11.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the entity instance is permitted to have no specified value for this attribute; False if a value for this
attribute is required.

Note: See 9.2.1.1 of ISO 10303-11:2004.
Multiplicity: 1..1

8.11.4.3 Associations

none.

8.11.4.4 Other Roles

From: Expressions::AttributeBinding as attribute

From: Instances::AttributeValue as attribute

From: Statements:: AttributeObject as refers-to

8.11.5 Class: InverseAttribute

Definition: represents an EXPRESS INVERSE attribute = a property of each instance of this entity data type that
represents a relationship between it and instances of some other entity data type, created by an InvertibleAttribute of that
entity data type.

Note: See 9.2.1.3 of ISO 10303-11:2004.

8.11.51 Supertypes

Attribute
8.11.5.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: True if the designated relationship between this instance and any given instance can occur at most once; False
if it can occur more than once. (True if the INVERSE attribute is described as a SET; False if it is described as a BAG.)

Note: See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1
8.11.5.3 Associations

AssociationEnd: explicit To: InvertibleAttribute

via: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an inverse attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of another entity data type that models the Relationship from which the inverse attribute is derived.

Note: See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 81

AssociationEnd: models-role To: DomainRole

via: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension
(models-role.in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

8.11.54 Other Roles

none.

8.11.6 Class: InvertibleAttribute

Definition: An ExplicitAttribute whose attribute type is one of:
— an EntityType
— a SelectType whose select-list consists of EntityTypes
— an AggregationType whose member-type is either of the above

An InvertibleAttribute models a Relationship between two EntityTypes — the EntityType that declares the
InvertibleAttribute, and the EntityType that appears in its attribute-type.

An InvertibleAttribute whose attribute-type (or its member-type) is a SelectType defines one Relationship for each
EntityType in the select-list.

Note: See ISO 10303-11.2:2004 clause 9.2.1.3
8.11.6.1 Supertypes
ExplicitAttribute

8.11.6.2 Attributes

none.
8.11.6.3 Associations

AssociationEnd: creates-relationship To: Relationship

via: InvertibleAttribute-creates-relationship

Definition: represents the relationship between an InvertibleAttribute and the Relationship between EntityTypes that it
models.

Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

via: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range
entity data type that models the same Relationship. While the inverse is conceptually unique, EXPRESS allows it to be
declared differently in different subtypes of the original range entity.

Note: See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

82 EXPRESS Metamodel, Beta 1

AssociationEnd: models-role To: RangeRole

via: InvertibleAttribute-models-role

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note: An explicit attribute defines a RangeRole (and thus a Relationship) if and only if it is an InvertibleAttribute.
Multiplicity: 0..1

AssociationEnd: range-type To: EntityType

via: entity-used-in-attribute

Definition: models the relationship between the InvertibleAttribute and the EntityTypes that are, or are members of, its
attribute-type. These EntityTypes are the "range" of the Relationship with the "referencing" entity that is created by the
InvertibleAttribute.

Multiplicity: 1..* unordered

8.11.6.4 Other Roles

none.

8.11.7 Class: PartialEntityType

Definition: a-DataType representing a collection of SingleEntityTypes. A PartialEntityType is the data type of a
PartialEntityValue.

Note: See 9.2.6 of ISO 10303-11:2004.
8.11.71 Supertypes
DataType

8.11.7.2 Attributes

none.
8.11.7.3 Associations

AssociationEnd: components To: SingleEntityType
Definition: represents the relationship between the PartialEntityValue and the SingleEntityValues that make it up.
Note: See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered
8.11.7.4 Other Roles
From: SingleEntityType as equivalent

From: Instances::PartialEntityValue as of-type

8.11.8 Class: SingleEntityType
Definition: the group of Attributes of a given EntityType that appear directly in the entity declaration for that

EntityType, i.e., excluding "inherited" attributes. A SingleEntityType corresponds to, and has the same id as, the
EntityType whose declaration defines it.

EXPRESS Metamodel, Beta 1 83

Note: A SingleEntityType is not a DataType; it cannot be the type of an Expression result or of any other EXPRESS
concept. It is only the "type" of SingleEntityValues, and they are not Instances. See 3.3.9 of ISO 10303-11:2004 (should
be corrected by TC#1).

8.11.8.1 Supertypes

none.

8.11.8.2 Attributes

Attribute: id To: Scopedlid

Definition: Represents the EXPRESS Identifier for the SingleEntityType, which is the same as the Identifier for the
corresponding EntityType

Properties: derived.
Multiplicity: 1..1
TaggedValues

derivation = sel f->derived-from>id
8.11.8.3 Associations

AssociationEnd: declares To: Attribute

via: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration
for the corresponding EntityType..

Multiplicity: 0..* unordered

AssociationEnd: derived-from To: EntityType

via: single-entity-declared-in-entity
Definition: represents the derivation of the SingleEntityType from the entity declaration for the EntityType.

Multiplicity: 1..1

AssociationEnd: equivalent To: PartialEntityType

Definition: represents the relationship between the SingleEntityType and the "equivalent" PartialEntityType, namely, the
PartialEntityType that consists of exactly that one SingleEntityType. For those PartialEntityTypes that are equivalent to
SingleEntityTypes, the PartialEntityType.includes relationship is the inverse of this relationship.

Multiplicity: 1..1

8.11.8.4 Other Roles
From: PartialEntityType as components
From: Instances::SingleEntityValue as of-type

From: Expressions::GroupRef as refers-to

From: Expressions::PartialEntityConstructor as attribute-group
From: Statements::GroupObject as refers-to

84 EXPRESS Metamodel, Beta 1

8.11.8.5 Rules

Constraint (OCL)

si zeof (sel f - >equi val ent->i ncludes) =1

Constraint (OCL)

sel f->equi val ent - >i ncl udes[1] = self

8.11.9 Class: UniqueRule

Definition: represents an EXPRESS UNIQUE rule = a requirement that the combination of values of the specified "key"
attributes be unique over all instances of the entity data type in a given Population.

Note: See 9.2.2.1 of ISO 10303-11:2004.
8.11.91 Supertypes
TypeElement

8.11.9.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Unique Rule in the list of rules following the UNIQUE keyword in the
entity/type declaration.

Multiplicity: 1..1
8.11.9.3 Associations

AssociationEnd: domain To: EntityType

via: EntityType-has-UniqueRule

Subsets: Core:: TypeElement.namespace

Definition: represents the relationship of the UniqueRule to the EntityType whose Extent is the domain of values to
which it applies.

Multiplicity: 1..1

AssociationEnd: key-component To: Attribute

Definition: represents the relationship between the UniqueRule and the "key" attributes of the (possibly joint) key for the
instances of the EntityType

Note: See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

8.11.94 Other Roles

none.

EXPRESS Metamodel, Beta 1 85

8.11.10 Association: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration
for the corresponding EntityType.

8.11.10.1 Association Ends

AssociationEnd: declares To: Attribute

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration
for the corresponding EntityType..

Multiplicity: 0..* unordered

AssociationEnd: of-entity To: SingleEntityType
Definition: represents the relationship of an Attribute to the SingleEntityType for which it was originally declared.

Multiplicity: 1..1

8.11.11 Association: attribute-has-data-type

Definition: represents the relationship between an Attribute and the ParameterType that characterizes all values of the
Attribute.

Note: See 9.2.1 of ISO 10303-11:2004.

8.11.11.1 Association Ends

AssociationEnd: attribute-type To: ParameterType

Definition: represents the required data type for all values of that Attribute in all instances of the EntityType. The
attribute-type is required to be an InstantiableType unless either:
— isAbstract is True for the EntityType, in which case the attribute-type may be a GeneralizedType, or
— the EntityType is defined in an AlgorithmScope (instead of a Schema), in which case the attribute-type may be
an ActualType.

Note: See 9.2.1 of ISO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: role To: Attribute

Definition: represents the relationship between the ParameterType and the roles (attributes of entities) that its admissible
values may play.

Note: See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.12 Association: EntityType-has-UniqueRule

Definition: Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the
values of attributes of that EntityType.

8.11.12.1 Supertypes

type-element-has-scope

86 EXPRESS Metamodel, Beta 1

8.11.12.2 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the relationship of the UniqueRule to the EntityType whose Extent is the domain of values to
which it applies.

Multiplicity: 1..1

AssociationEnd: unique-rules To: UniqueRule

Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the values of
attributes of that EntityType.

Note: See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.13 Association: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an INVERSE attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of the entity data type that models the Relationship from which the inverse attribute is derived.

8.11.13.1 Association Ends

AssociationEnd: explicit To: InvertibleAttribute

Definition: the explicit attribute (InvertibleAttribute) of the associated entity data type that models the Relationship from
which the inverse attribute is derived.

Note: The attribute-type of the InverseAttribute may be a subtype of the entity data type that defines the
InvertibleAttribute.

Note: See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

Definition: represents the relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range
entity data type that models the same Relationship. While the inverse is conceptually unique, EXPRESS allows it to be
declared differently in different subtypes of the original range entity.

Note: See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.14 Association: single-entity-declared-in-entity

Definition: represents the relationship between the EntityType and the SingleEntityType that is implicitly declared in the
entity declaration for the EntityType.

8.11.14.1 Association Ends

AssociationEnd: declares To: SingleEntityType

Definition: the SingleEntityType that is declared in the declaration for the EntityType, i.e., the group of Attributes that is
named for the EntityType.

EXPRESS Metamodel, Beta 1 87

Multiplicity: 1..1

AssociationEnd: declared-in To: EntityType
Definition: represents the derivation of the SingleEntityType from the entity declaration for the EntityType.

Multiplicity: 1..1

8.12 Relationships

According to ISO 10303-11, a "distributive relationship" between entity data types is modeled by an attribute whose data
type is either an entity type or an aggregation type whose member type is an entity type. This section models the
"distributive relationship" concepts.

Note: The primary purpose of this subclause is to facilitate mappings to languages in which relationships, also called
"associations" or "properties," are first-class concepts from which the associated "attributes" are derived.

In EXPRESS, all relationships are directed. The entity type that is the "domain" of the relationship has an explicit
attribute — an InvertibleAttribute — that denotes the relationship; the entity type that is the "range" of the relationship may
have an inverse attribute that denotes the relationship, but EXPRESS always supports an implicit inverse attribute via the
UsedlIn function (see 12.5.3).

8.12 shows these concepts, and their relationship to the Attribute concepts. They are described in detail below.

Note: In Figure 14, the «i npl i ci t » relationship entity-has-attributes represents the derived association entity-has-
attributes defined in 8.11.3.3, but restricted to InvertibleAttribute, which is a subclass of Attribute.

88 EXPRESS Metamodel, Beta 1

+in-relationship

<<metaclass>>

+/creates-relationship

Relationship

1

1 +in-relationship
DgmainRole-in-Relationship 1 RangeRole-in-Reldtionship
+/lower-bound <<metaclass>>
<<metaclass>3 0.1 /role-has-lower-bound o 17| sjzeConstraint
Role
+/upper-bound +bound : Integer [0..1
T 0.1 role-has-upper-bound 0.1
+domain|_1 /entity-plays-domain-role /entity-plays-range-role 1| +range
ity- - in- ity- - -
<<metaclass>> ypiay . <<metaclass>> y-piay g <<metaclass>>
DomainRole | */Plays-domain-role 1 EntityType 1 +/plays-range-role RangeRole
+/id : Scopedid [0..1] 0..* +/domain | 4is Abstract : Boolean [1] +/range 0.." |+/id : Scopedld [1]
|
1 | +models-role +/owning-entity [1..* 1..*| +range-type +models-role| 1

InverseAttribute-models-role

<<implicit>>
/entity-has-at

ributes entity-psed-in-attribute

InvertibleAttribute-mpdels-role

; +/attributes | 0..* 0..*| +used-in
0..1| +range-view o
<<metaclass>> <<metaclass>> +1d0maln-V|ew
InverseAttribute | +inverse +explicit|InvertibleAttribute Ibased
+/based-on
+isUnique : Boolean [1] 0.." 1 1

InverseAttribute-inverts-ExplicitAttribute

Figure 14 - Relationships

8.12.1 Class: Doma

inRole

/InvertibleAttribute-creates-relationship

Definition: a role representing the behavior of the entity instances that is designated the "domain" of the relationship

8.12.1.1 Supertypes

Role

8.12.1.2 Attributes

Attribute: id To: Scopedid

Definition: Represents the "complete" identifier for the Role. The identifier for the DomainRole is derived from the

identifier for the InverseAttribute, when present, including the Identifier value and the associated EntityType identifier.

When there is no InverseAttribute, .id has no proper value, but the DomainRole may be identified by the pseudo-
identifier: UsedIn.<RangeRole.id>, where <RangeRole.id> is the identifier for the RangeRole in the Relationship.

Properties: derived.

Multiplicity: 0..1

EXPRESS Metamodel, Beta 1

TaggedValues
derivation = self->range-view >id

8.12.1.3 Associations

AssociationEnd: domain To: EntityType

via: entity-plays-domain-role

Definition: represents the (single) entity data type common to all instances that play the Domain Role. Derivation:
.domain = .in-relationship.range.domain-view.of-entity.

Properties: derived.
Multiplicity: 1..1
TaggedValues
derivation = self->in-rel ationshi p->range->donmai n-vi ew >of -entity

AssociationEnd: in-relationship To: Relationship

via: DomainRole-in-Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

via: InverseAttribute-models-role

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary "range" entity data type can define different views of (and constraints on) the domain
role. The "range" entity has an inverse attribute that defines the "domain" role (the role of the other entity).

Multiplicity: 0..1
8.12.1.4 Other Roles

none.

8.12.2 Class: RangeRole

Definition: a role representing the behavior of the entity instances that is designated the "range" of the relationship

8.12.21 Supertypes
Role

8.12.2.2 Attributes

Attribute: id To: Scopedid

Definition: Represents the "complete" identifier for the Role. The identifier for a RangeRole is derived from the identifier
for the ExplicitAttribute that creates the relationship, including the Identifier value and the associated EntityType
identifier.

Properties: derived.

90 EXPRESS Metamodel, Beta 1

Multiplicity: 1..1
TaggedValues

derivation = sel f->donai n-vi ew>i d
8.12.2.3 Associations

AssociationEnd: domain-view To: InvertibleAttribute

via: InvertibleAttribute-models-role

Definition: represents the relationship between a RangeRole and the InvertibleAttribute of the domain/referencing entity
that models it.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship

via: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1

AssociationEnd: range To: EntityType

via: entity-plays-range-role

Definition: represents the (single) entity data type common to all instances that play the Range Role. Derivation: .range =
.domain-view.attribute-type

Properties: derived.
Multiplicity: 1..1
TaggedValues
derivation = sel f->domai n-view >attribute-type

8.12.2.4 Other Roles

none.

8.12.3 Class: Relationship

Definition: a "distributive relationship" between entity data types.

Every InvertibleAttribute creates a Relationship between two EntityTypes and creates two Roles -- one for each
participating EntityType. All relationships are directed. The InvertibleAttribute is an explicit attribute of the EntityType
that plays the DomainRole; the range-type of the InvertibleAttribute is the EntityType that plays the RangeRole.

The range-type may have an inverse attribute denoting the DomainRole; or the DomainRole may be referred to by the
UsedIn function (see 12.5.3).

8.12.3.1 Supertypes

none.

EXPRESS Metamodel, Beta 1 91

8.12.3.2 Attributes

none.

8.12.3.3 Associations

AssociationEnd: based-on To: InvertibleAttribute

via: InvertibleAttribute-creates-relationship

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1
AssociationEnd: domain To: DomainRole

via: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.
Multiplicity: 1..1
AssociationEnd: range To: RangeRole

via: RangeRole-in-Relationship

Definition: represents the relationship between the Relationship and its "range" role.
Multiplicity: 1..1
8.12.3.4 Other Roles

none.

8.12.4 Class: Role

Definition: a "slot" in a relationship, denoting the behavior of one of the Instances involved in the relationship. Since all
relationships in EXPRESS are directed, the two slots are nominally designated domain and range.

Properties: abstract

8.12.41 Supertypes

none.

8.12.4.2 Attributes

none.

92 EXPRESS Metamodel, Beta 1

8.12.4.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents a lower-bound on the number of Relationship instances in which a given Entitylnstance can play
this Role. An explicit zero ("0") value may be considered to represent no lower-bound constraint; and the lower-bound
relationship need not appear. (A lower-bound expression that may evaluate to zero shall always be represented by a
lower-bound relationship.) The lower-bound on the Domain role is specified by the Explicit Attribute that models the
RangeRole. The lower-bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if
any, or possibly by a DomainRule on the "range" EntityType involving UsedIn(SELF,).

Note: Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique
does not hold, a given pair of participating entity instances may occur more than once as an instance of the Relationship.
The Size constraint is on the count of pairs, not the count of distinct pairs. See 9.2.1.3 of ISO 10303-11:2004.

Properties: derived.

Multiplicity: 0..1

TaggedValues
derivation =

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents an upper-bound on the number of Relationship instances in which a given Entitylnstance can play
the Role. An explicit indeterminate value ("?") is considered to represent no upper-bound constraint, and shall not be
represented by an upper-bound relationship. (An upper-bound expression that may evaluate to "?" shall be represented by
an upper-bound relationship.)

Note: The upper-bound on the Domain role is specified by the Explicit Attribute that models the RangeRole. The upper-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a
DomainRule on the "range" EntityType involving UsedIn(SELF,).

Note: Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique
does not hold, a given pair of participating entity instances may occur more than once as an instance of the Relationship.
The Size constraint is on the count of pairs, not the count of distinct pairs. See 9.2.1.3 of ISO 10303-11:2004.

Properties: derived.
Multiplicity: 0..1
TaggedValues

derivation =

8.12.4.4 Other Roles

From: Redeclaration as refined-role

8.12.5 Association: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

8.12.5.1 Association Ends

AssociationEnd: domain To: DomainRole
Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 93

AssociationEnd: in-relationship To: Relationship
Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined

Multiplicity: 1..1

8.12.6 Association: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.

Properties: derived
8.12.6.1 Dependencies

Dependency on Association: entity-has-attributes

Stereotypes: der i vedFrom

Derivation: An EntityType plays a DomainRole by having the InvertibleAttribute that creates the Relationship and
denotes the RangeRole. This relationship may be inherited, and InverseAttributes may distinguish "subtypes" of the
DomainRole.

8.12.6.2 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the (single) entity data type common to all instances that play the Domain Role.
Multiplicity: 1..1

Properties: derived

TaggedValues
derivation = self->in-rel ati onshi p->range->domai n-vi ew >of -entity

AssociationEnd: plays-domain-role To: DomainRole
Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An EntityInstance is
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an
AggregationType..

Multiplicity: 0..* unordered

Properties: derived
TaggedValues

derivation = ((self->attributes) * extent(lnvertibleAttribute))->
creates-rel ati onshi p->domai n

8.12.7 Association: entity-plays-range-role
Definition: represents the relationship between an entity type and the range roles that its instances play.

Properties: derived

94 EXPRESS Metamodel, Beta 1

8.12.71 Dependencies

Dependency on Association: entity-used-in-attribute

Stereotypes: der i vedFr om

Derivation: an EntityType plays a RangeRole by being the range-type of the InvertibleAttribute that models the
Relationship.

8.12.7.2 Association Ends

AssociationEnd: plays-range-role To: RangeRole
Definition: represents the relationship between an entity type and the range roles that its instances play.

For each occurrence of the EntityType as the attribute-type, or a member of the attribute-type, of an explicit attribute
(InvertibleAttribute), the EntityType plays the corresponding RangeRole (.models-role).

Multiplicity: 0..* unordered

Properties: derived.
TaggedValues
derivation = ParaneterType::self->explicit-rol e->nodel s-rol e

AssociationEnd: range To: EntityType

Definition: represents the (single) entity data type common to all instances that play the Range Role. Derivation: .range =
.domain-view.attribute-type

Multiplicity: 1..1
Properties: derived.

TaggedValues
derivation = sel f->donmi n-view >attribute-type

8.12.8 Association: entity-used-in-attribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

8.12.8.1 Association Ends

AssociationEnd: range-type To: EntityType

Definition: models the relationship between the InvertibleAttribute and the EntityTypes that are, or are members of; its
attribute-type. These EntityTypes are the "range" of the Relationship with the "referencing" entity that is created by the
InvertibleAttribute.

Multiplicity: 1..* unordered

AssociationEnd: used-in To: InvertibleAttribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1 95

8.12.9 Association: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it refers to.

8.12.9.1 Association Ends

AssociationEnd: models-role To: DomainRole

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension
(models-role.in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary "range" entity data type can define different views of (and constraints on) the domain
role. The "range" entity has an inverse attribute that defines the "domain" role (the role of the other entity).

Multiplicity: 0..1

8.12.10 Association: InvertibleAttribute-creates-relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between EntityTypes that it
models.

8.12.10.1 Association Ends

AssociationEnd: based-on To: InvertibleAttribute

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1

AssociationEnd: creates-relationship To: Relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between EntityTypes that it
models.

Multiplicity: 1..1

8.12.11 Association: InvertibleAttribute-models-role

Definition: represents the relationship between an Invertible Attribute and the RangeRole it defines.

8.12.11.1 Association Ends

AssociationEnd: domain-view To: InvertibleAttribute

Definition: represents the relationship between a RangeRole and the InvertibleAttribute of the domain/referencing entity
that models it.

Multiplicity: 1..1

AssociationEnd: models-role To: RangeRole

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

96 EXPRESS Metamodel, Beta 1

Note: An explicit attribute defines a RangeRole (and thus a Relationship) if and only if it is an InvertibleAttribute.

Multiplicity: 0..1

8.12.12 Association: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

8.12.12.1 Association Ends

AssociationEnd: in-relationship To: Relationship
Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined

Multiplicity: 1..1

AssociationEnd: range To: RangeRole
Definition: represents the relationship between the Relationship and its "range" role.

Multiplicity: 1..1

8.13 Redeclarations

Redeclaration is an EXPRESS mechanism that permits a subtype to "redeclare" an inherited attribute in order to constrain
its possible values in instances of the subtype. 8.13 shows the model of this concept, and this section defines the related
metamodel elements.

Note: The “implicit” association entity-plays-role in 8.13 is used to represent the two associations entity-plays-domain-
role (see 8.12.6) and entity-plays-range-role (see 8.12.7) without further cluttering the diagram. It is not a part of the
model.

Note:

EXPRESS Metamodel, Beta 1 97

entity-is-subtype-of-entity

0.* 0..* | +subtype-of
e /entity-has-attributes <<metaclass>> +rol
EntityType +/owning-entity +/attributes Attribute role
: 1.7 0. |+isAbstract : Boolean [1] O-"
+isAbstract : Boolean [1P +position : Integer [1]
| attribute-has-gata-type

1 +scope 1| +original-attribute
0..1 redeclaration-refines-attribute
<<m:’taldass>) +/refined-role +attribute-type| 1
ole
0.1 +restricted-type SRS Bl
Irole-has-upper-bound 0.1 yp ParamsterType
1
/role-has-lower-bound
redeclaration-specifies-type
+/upper-bound| 0..1 0..1 | +/lower-bound P yp
<<metaclass>> <<metaclass>>
SizeConstraint Expression
+bound : Integer [0..1 /redeclaration-refines-fole +text : ExpressText [0..1]
+/lower-bound | 9..1 0..1 | +/upper-bound 0..1 |+derivation
/redeclaration-specifies-upper-bound 04 0.+ o~ redeclaration-gpecifies-derivation
1 <<metaclass>>
. 0.*
/redeclaration-specifies-lower-bound 1 Redeclaration
+position : Integer [1]
0.* +isMandatory : Boolean [0..1] +refines

+alias : Scopedld [0..1]

0..1

+redeclarations

scope-of-redeclaration-is-Entity Ty pe

0..*

redeclaration-refines-redeclaration

Figure 15 - Redeclarations

8.13.1 Class: Redeclaration

Definition: represents the "redeclaration" of an EXPRESS attribute in a subtype of the entity data type for which that
attribute was originally declared. A redeclaration represents a refinement of the original attribute concept in the subtype,
and it states corresponding constraints on the possible values of that attribute in the subtype. It may also rename the
attribute for the subtype. When the attribute-type of the original-attribute is an EntityType, the Redeclaration may be seen
as refining the RangeRole represented by the original-attribute for the domain restricted to the subtype.

Note: See 9.2.3.4 of ISO 10303-11:2004.

8.13.11 Supertypes

none.

98 EXPRESS Metamodel, Beta 1

8.13.1.2 Attributes

Attribute: alias To: Scopedid
Definition: an additional EXPRESS identifier that may be used to identify the original attribute in this subtype.
Note: See 9.2.2.2 of ISO 10303-11:2004.

Multiplicity: 0..1

Attribute: isMandatory To: MOF::Boolean

Definition: True if the entity instance is required to have a value for this attribute in this subtype; False if it is permitted
to have no specified value. This attribute is only present if isOptional is True for the original attribute.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 0..1

Attribute: position To: MOF::Integer

Definition: Represents the position of the redeclaration in the sequence of attribute declarations in the entity declaration.
By convention these follow all the new attribute declarations of each kind.

Multiplicity: 1..1
8.13.1.3 Associations

AssociationEnd: derivation To: Expression

Definition: When specified, represents a Redeclaration that redeclares an ExplicitAttribute to be "derived" in the .scope
subtype. That is, it declares an Expression that can be used to derive (or validate) the value of the redeclared Attribute in
this subtype.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents a restriction on the minimum cardinality of the role that is stated by the Redeclaration. This is the
case when the Redeclaration redeclares the ParameterType to restrict the minimum size of the aggregate values.

Multiplicity: 0..1
Properties: derived.

TaggedValues

derivation =

AssociationEnd: original-attribute To: Attribute

Definition: identifies the original Attribute being redeclared by the Redeclaration. If the Redeclaration redeclares another
redeclared-attribute (see .refines), the .original-attribute is determined transitively. Every Redeclaration ultimately
constrains an original attribute in some supertype.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 99

AssociationEnd: refined-role To: Role
Definition: represents the relationship between a Redeclaration and the Role represented by the .original-attribute.

If the Redeclaration redeclares an InvertibleAttribute, it refines the corresponding RangeRole by restricting the allowable
participants in the RangeRole for the domain that is the . scope of the Redeclaration. If the Redeclaration redeclares an
InverseAttribute, it refines the corresponding DomainRole by restricting the allowable participants in the DomainRole for
the range that is the . Scope of the Redeclaration.

Multiplicity: 0..1
Properties: derived.

TaggedValues
derivation =

AssociationEnd: refines To: Redeclaration

Definition: This relationship is present only when a Redeclaration is stated as a refinement of an attribute of a subtype
that itself redeclares that attribute. . r ef i nes refers to the Redeclaration that represents that redeclared attribute.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: restricted-type To: ParameterType

Definition: when specified, specifies the subtype or specialization of the data type of the original attribute to which all
values of the original attribute in instances of the "scope" EntityType must conform.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: scope To: EntityType

via: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration
applies. Values for the original attribute are constrained by the Redeclaration for instances of the .scope EntityType and
all of its subtypes. The .scope EntityType is the namespace of the .alias identifier, if present.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents a restriction on the maximum cardinality of the role that is stated by the Redeclaration. This is the
case when the Redeclaration redeclares the ParameterType to restrict the maximum size of the aggregate values.

Multiplicity: 0..1
Properties: derived.

TaggedValues
Derivation =

8.13.14 Other Roles

From: Redeclaration as refines

100 EXPRESS Metamodel, Beta 1

8.13.2 Association: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration
applies.

8.13.21 Association Ends

AssociationEnd: redeclarations To: Redeclaration

Definition: represents the relationship between the EntityType and any attribute Redeclarations that appear in its
declaration.

Note: See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: scope To: EntityType
Definition: the entity data type to which the redeclaration applies.

Values for the original attribute are constrained by the Redeclaration for instances of the .scope EntityType and all of its
subtypes. The .scope EntityType is the namespace of the .alias identifier, if present.

Note: See 9.2.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

8.14 Expressions and Instances

This section of the Core model introduces the basic concepts for Expression and Instance, which are expanded in other
packages. They are provided here so that implementations need not support the Expressions and Instances Packages in
order to support all features of the Core model.

For Expressions, the Core package contains only the class Expression. The optional . t ext attribute allows an
Expression to be represented as verbatim EXPRESS language text. The Expressions package (see clause 12) models the
subclasses of Expression that represent the semantic interpretation of the parsed language text. Support for the
Expressions Package is a compliance point (see 4.4.4).

The class Instance is abstract. The Core package contains the Instance concept solely in order to model the semantics of
Expressions. The Instances Package (see Clause 9) models the detailed expansion of the Instance concept, including all
of the instantiable subclasses. Support for the Instances package is a compliance point (see 4.4.1). Implementations that
do not support the Instances package do not, in general, need to provide any implementation of the Instances class, and
may provide any simple implementation where needed.

8.14 shows the base Expression and Instance concepts, and they are described below.

EXPRESS Metamodel, Beta 1 101

Expression-has-DataType

<<metaclass>> <<metaclass>>
Expression +data-type| pataType
+text : ExpressText [0..10-." 0..1
0.* 0.* 1.% | +oftype

expression-text-has-context Instance-of-type

expregsion-evaluates-to-Instance 0.* .
- +instances

+interpretation-context 0..1

<<metaclass>> <<metaclass>>

Scope +evaluatio Instance
0..1

V

Figure 16 - Basic Expression Concepts

8.14.1 Class: Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the Instances denoted by the model elements (e.g., Variables, Attributes, etc.) that appear
in the Expression. This context is explicit in the model element that contains the Expression being evaluated, but it
implicitly includes the Population under study. The Instance produced by the same Expression may vary from context to
context. The Instance produced is said to be the value, or the evaluation, of the Expression.

Note:In general, Expressions are treated as reusable. It is recommended, however, that, except for literals and local
variables, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable,
specifically those that are the definitions of Rules.

8.14.1.1 Supertypes

none.

8.14.1.2 Attributes

Attribute: text To: ExpressText

Definition: represents the actual EXPRESS language text denoting the Expression. The text is required if the Expressions
Package is not implemented. It is optional in most cases when the Expressions Package is implemented. Certain forms of
Expression (in the Expressions Package) specialize the text attribute.

Multiplicity: 0..1
8.14.1.3 Associations

AssociationEnd: data-type To: DataType

Definition: represents the DataType of the evaluation of the Expression. While the result of an Expression always has a
DataType, it is not always possible to determine at model-analysis time what that data type is. And in many cases, even
when it is known, it is not necessary to specify it.

Multiplicity: 0..1

102 EXPRESS Metamodel, Beta 1

AssociationEnd: evaluation To: Instance

Definition: represents the Instance (value) that results from evaluating the Expression. Since the same Expression can be
evaluated in more than one "situation", i.e. different values for the operands, the result in each situation may be a
different Instance. The evaluation is included in a model, however, only when it is "constant" and can be computed at
"compile time."

Multiplicity: 0..1

AssociationEnd: interpretation-context To: Scope

Definition: An Expression is always evaluated in a context which determines the assignment of specific instances of
model elements to symbols (e.g.,Variables, Attributes, etc.). When the Expression is represented by text only, this
relationship is usually required, but in many cases it may be implicit. When the Expression is represented by the detailed
model elements in the Expressions Package, the interpretation of the Text has been done, and this association is purely
documentary and not required. Certain permissible EXPRESS constructs, however, only permit interpretation of certain
keyword symbols to Operations in the presence of actual operand Instances.

Multiplicity: 0..1

8.14.1.4 Other Roles
From: ArrayBound as bound-expression
From: DerivedAttribute as derivation

From: DomainConstraint as asserts

From: Redeclaration as derivation

From: Algorithms::LocalVariable as initial-value

From: Expressions::ActualParameter as actual-value

From: Expressions::Aggregatelndex as index-value

From: Expressions::AttributeBinding as attribute-value
From: Expressions::Binarylndex as first-bit

From: Expressions::Binarylndex as last-bit

From: Expressions::BinaryOperation as right-operand

From: Expressions::BinaryOperation as left-operand
From: Expressions::Coercion as operand

From: Expressions::IndexOperation as base-value

From: Expressions::MemberBinding as member-value
From: Expressions::QueryExpression as aggregate-operand

From: Expressions::QueryExpression as select-condition

From: Expressions::RepeatCount as derivation

From: Expressions::Selector as entity-instance

From: Expressions::Stringlndex as first-code

From: Expressions::Stringlndex as last-code
From: Expressions::UnaryOperation as unary-operand

EXPRESS Metamodel, Beta 1 103

From: Instances::Constant as value-expression
From: Rules::NamedRule as asserts-expression

From: Rules::SubtypeConstraint as equivalent-rule

From: Statements::Assignment as assigned-value

From: Statements::CaseAction as label-value
From: Statements::CaseStatement as selection-expression

From: Statements::ControlVariable as bound-value

From: Statements::ControlVariable as increment

From: Statements::ControlVariable as initial-value

From: Statements::IfStatement as if-condition

From: Statements::MemberCell as index-value

From: Statements::RepeatStatement as while-expression

From: Statements::RepeatStatement as until-expression

From: Statements::ReturnStatement as return-value

8.14.1.5 Rules

Constraint ()

An Expression can only exist to fulfill a role.

8.14.2 Class: Instance

Definition: represents any real or conceptual object, information unit or data item.

Properties: abstract

8.14.2.1 Supertypes

none.

8.14.2.2 Attributes

none.

8.14.2.3 Associations

AssociationEnd: appears-in-population To: Instances::Population

via: Instances::instance-appears-in-population

Definition: represents the relationship between an Instance and the Populations in which it appears.

Multiplicity: 0..* unordered

8.14.2.4 Other Roles
From: Expression as evaluation

From: Instances::ArrayMember as member-value

104 EXPRESS Metamodel, Beta 1

From: Instances::ListMember as member-value

From: Instances::BagMember as member-value
From: Instances::SETValue as member-value

From: Instances::AttributeValue as actual-value

From: Instances::Constant as actual-value

8.15 Instance Package: BuiltinTypes

This Package is a part of the Core Package. It contains required instances of subclasses of SimpleType. All of the other
instances of SimpleType appear in a Schema as a SimpleType with a constraint or a precision.

Note: The purpose of making this a Package is to separate the class model from the "ground facts."

NUMBER :NumericType LOGICAL:LogicType STRING:StringType

- specializes iali iali
specializes p specializes specializes

BOOLEAN:LogicType

REAL:RealType

ROLE:StringType TYPE:StringType

specializes

INTEGER:NumericType BINARY :BinaryType

Figure 17 - Instance Model for Built-In Types

8.15.1 Dependencies

Dependency on Class: Core::SimpleType

Stereotypes: i nst anti at es

This Package provides base individuals that are always instances of SimpleType (that is, instances of its subtypes).

8.15.2 Instance: BINARY

Type: Core::BinaryType

Definition: represents the EXPRESS type BINARY without length constraints.

Note: The class BinaryType also includes instances of EXPRESS BINARY that have declared length constraints.

8.15.3 Instance: BOOLEAN

Type: Core::LogicType
Definition: represents the EXPRESS type BOOLEAN

EXPRESS Metamodel, Beta 1 105

Note: BOOLEAN and LOGICAL are the only instances of LogicType.

8.15.4 Instance: INTEGER

Type: Core::NumericType

Definition: represents the EXPRESS type INTEGER
Note: INTEGER and NUMBER are the only instances of NumericType that are not RealTypes.
8.15.5 Instance: LOGICAL

Type: Core::LogicType
Definition: represents the EXPRESS type LOGICAL
Note: BOOLEAN and LOGICAL are the only instances of LogicType.

8.15.6 Instance: NUMBER

Type: Core::NumericType

Definition: represents the EXPRESS type NUMBER

Note: INTEGER and NUMBER are the only instances of NumericType that are not RealTypes.

8.15.7 Instance: REAL

Type: Core::RealType
Definition: represents the EXPRESS type REAL without a precision specification.

Note: The class RealType also includes instances of EXPRESS REAL that have precision specifications.

8.15.8 Instance: ROLE

Type: Core::StringType

Definition: ROLE is the StringType whose instances are the names of Attributes, i.e. the result of RolesOf and the formal
second operand of UsedIn. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/
from STRING where necessary.

Note: See Clause 15.20 of ISO 10303-11:2004.

8.15.9 Instance: STRING

Type: Core::StringType
Definition: represents the EXPRESS type STRING without constraints

Note: The class StringType also includes TYPE, ROLE and instances of EXPRESS STRING that have declared length
constraints.

8.15.10 Instance: TYPE

Type: Core::StringType

106 EXPRESS Metamodel, Beta 1

Definition: TYPE is the StringType whose instances are the names of DataTypes (TypeNames), i.e. the result of TypeOf
and related operands. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/
from STRING where necessary.

Note: See Clause 15.25 of ISO 10303-11:2004.

8.16 Instance Package: GenericTypes

This Package is a part of the Core Package. It contains the required instances of the class GenericType. There are no
other instances of the class GenericType.

Note: The purpose of making this a Package is to separate the class model from the "ground facts."

GENERIC:GenericType

GENERIC _ENTITY :GenericType

Figure 18 - Instance Model for Generic Types

8.16.1 Dependencies

Dependency on Class: Core::GenericType

Stereotypes: i nst anti at es

This Package provides base individuals that are always the only instances of class GenericType.

8.16.2 Instance: GENERIC

Type: Core::GenericType

Definition: represents the EXPRESS generalized type GENERIC. Every data type is a specialization of the GenericType
GENERIC, and every Instance is an Instance of GENERIC.

Note: See 9.5.3.2 of ISO 10303-11:2004.

8.16.3 Instance: GENERIC_ENTITY

Type: Core::GenericType

Definition: represents the EXPRESS generalized type GENERIC ENTITY. Every entity data type is a specialization of
GENERIC_ENTITY. Every EntityInstance is an instance of GENERIC_ENTITY and every instance of
GENERIC ENTITY is an EntityInstance.

Note: See 9.5.3.3 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 107

9 Package: Instances

The Instances Package contains all of the Instance concepts that go with the Type concepts in the Core Package.

The purpose of the Instances Package is to provide a model representation for specific Instances that are explicitly
referred to in a Schema. A tool that supports the Expressions Package may also use Instances to represent the values of
expressions that can be statically evaluated.

Note:It is possible to represent an actual Population as an instance of this package, but such a representation is
“unexpected”. In MOF terminology, the EXPRESS metamodel defined in this specification is an M2 model. An
EXPRESS Schema and its contents constitute an M1 population that conforms to this metamodel. A Population (in the
EXPRESS sense) should be represented as an MO population that conforms to the M1 model of the governing-schema.
Representing that Population as an instance of this package would make it an M1 population that carries direct M1 links
to the M1 objects representing the model elements of the EXPRESS Schema. While such a representation is
(accidentally) enabled by this Package, that is not the purpose of this package, and it is not to be considered a required
part of any compliance point.

9.1 Dependencies

Dependency on Package: Core
Stereotypes: i mpor t

The Instances Package depends on the Core Package for the InstantiableType concepts that are the data types of the
individuals (Instances).

9.2 Overview of Instances

9.2 shows the overall model of Instances of EXPRESS data types. Instances are divided into TypedInstances,
ConcreteValues, and two special categories — PartialEntityValue and Indeterminate.

TypedInstances represent instances of NamedTypes. There are three subcategories — Entitylnstances, SpecializedValues
and Enumerationltems. TypedInstances are the instances that can be values of SelectTypes. Each of the subcategories
corresponds to one of the other subtypes of NamedType.

ConcreteValues are Instances that can be the fundamental values of SpecializedValues — the values of
SpecializationTypes. There are three subcategories — SimpleValues, AggregateValues and Enumerationltems.
SimpleValues correspond to the SimpleTypes. AggregateValues correspond to the ConcreteAggregationTypes.
Enumerationltems correspond to EnumerationTypes, and because EnumerationTypes are NamedTypes,
Enumerationltems are also TypedInstances.

Indeterminate is the class that corresponds to the EXPRESS constant "?", which can be considered to be an instance of all
EXPRESS data types, or of none of them.

PartialEntityValues only arise as the results of Expressions. They are described in detail in 9.5, which deals with values
of EntityTypes.

This section defines the Instance concepts associated with EXPRESS defined data types — Select types, Enumeration
types, and Specializations — in detail. SimpleValues, AggregateValues, values of EntityTypes are described in
subsequent sections.

While the domains of EXPRESS data types are often unbounded, only those Instances that actually occur in, or as a
result of an Expression in, a Schema need to be materialized in a metamodel population that represents the Schema.
Similarly, in a Population that is realized as an instance of this package, only the Instances actually occurring in that
Population need to be represented.

108 EXPRESS Metamodel, Beta 1

Instance
(from Core)

i

ConcreteValue SelectType | *~ +allowed-value | Typedinstance PartialEntityValue
(from Core) | +satisfies-type *
A value-satisfies-SelectType
1 | +fundamental-value % value-of-PartialEntity Typ *
<< Singleton >> | | +of-type [, 1
Indeterminate " | SpecializedValue Entitylnstance PartialEntityType
value-specializes-value +id:EntityName (fmm Core)
SpecializedType +of-type * + [+instances

EntityType
(from Core)

(from Core)

+instance-of

1 value-of-SpecializedType

instance-of-Entity Type 1..*

SimpleValue AggregateValue Enumerationltem
P 99eg > TypeElement
+name:String +position:Integer (from Core)
" . +values | « « |+declared-items
value-of-SimpleType value-of-AggregationType Ivalue-of-EnumerationType enumeration-declares-item
+of-type | 1+ 1.% |, +of-type +of-type | 1.* 1 @+declared-in
- - - +extension
SimpleType AggregationType EnumerationType |, . _
enumeration-extends-enumeration
(from Core) (from Core) (from Core) 1

+base

Figure 19 - Overview of Instances

9.21 Class Core::Instance
Definition: represents any real or conceptual object, information unit or data item.
Properties: abstract

Note: The Instance concept, and all its properties, is defined in the Core Package, so that it may be referenced in other
Packages without creating interdependencies. There is no real requirement for support of Instances in the Core Package.
This entry serves to define the Instance concept in the context of the Instances Package, and to provide a link to the
complete specification in 8.14.2.

9.2.2 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Properties: abstract

EXPRESS Metamodel, Beta 1 109

9.2.21 Supertypes

Core::Instance

9.2.2.2 Attributes

none.

9.2.2.3 Associations

none.

9.2.24 Other Roles
From: SpecializedValue as fundamental-value

9.2.3 Class: Enumerationltem

Definition: a ConcreteValue representing a named value of an EnumerationType. An Enumerationltem is also a
TypedInstance, because the corresponding EnumerationType has an Identifier. An Enumerationltem is also a
TypeElement, in that the scope of its identifier is the EnumerationType.

Note: See 8.4.1 of ISO 10303-11:2004.

9.2.3.1 Supertypes

ConcreteValue, TypedInstance, Core::TypeElement

9.2.3.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Enumeration Item in the list of items in the type declaration that defines the
Enumerationltem. That is, . posi t i on relates to the . decl ar ed- i n EnumerationType. When the number of values
of . of - t ype (the types of which this Enumerationltem is a value) is exactly 1, the position defines an ordering on the
values of the EnumerationType.

Multiplicity: 1..1
9.2.3.3 Associations

AssociationEnd: declared-in To: Core::EnumerationType

via: enumeration-declares-items

Subsets: Core:: TypeElement.namespace

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1
AssociationEnd: of-type To: Core::EnumerationType

via: value-of-EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationTypes of which it is a value. An
EnumerationItem is a value of every EnumerationType that is related by extension to the type that declares it. This

110 EXPRESS Metamodel, Beta 1

relationship can be derived recursively from the sequence of . base relationships beginning with the . decl ared-in
EnumerationType, and from the sequence of . ext ensi on relationships of that EnumerationType.

Note: See 8.4.1 of ISO 10303-11:2004.
Multiplicity: 1..* unordered

Properties: derived.

TaggedValues
derivation = ".declared-in + .declared-in.base + .decl ared-in. extensi ons"

9.2.34 Other Roles

From Expressions::EnumltemRef as refers-to

9.2.3.5 Rules

Constraint (OCL)

exi sts(sel f->id);

Every Enumerationltem shall have an Identifier.
9.24 Class: Indeterminate
Stereotypes: Si ngl et on

Definition: Represents the class containing only the "indeterminate" value (?), which represents "no value" or no
meaningful value. This value arises primarily as the evaluation of an Expression in which one of the operations "fails".
Indeterminate is not clearly an instance of any data type, or of all data types.

Note: See 14.2 of ISO 10303-11:2004.

9.2.41 Supertypes

Core::Instance

9.2.4.2 Attributes

none.

9.24.3 Associations

none.

9.244 Other Roles

From Expressions::IndeterminateRef as refers-to

9.2.5 Class: SpecializedValue

Definition: a TypedInstance that is a value of a SpecializedType. Every SpecializedValue is represented by some
ConcreteValue, called its fundamental-value.

9.2.5.1 Supertypes

TypedInstance

EXPRESS Metamodel, Beta 1 111

9.2.5.2 Attributes

none.
9.2.5.3 Associations
AssociationEnd: fundamental-value To: ConcreteValue

Definition: represents the relationship between a SpecializedInstance and the "fundamental" ConcreteValue that is used
to represent that Instance.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SpecializedType

Definition: represents the relationship between a SpecializedValue and its data type.
Multiplicity: 1..1
9.254 Other Roles

none.

9.2.6 Class: Typedinstance

Definition: an abstract classifier, a subtype of Instance comprising those Instances that are instances of a NamedType.
Only a TypedInstance can instantiate a SelectType.

Properties: abstract

9.2.6.1 Supertypes

Core::Instance

9.2.6.2 Attributes

none.
9.2.6.3 Associations
AssociationEnd: satisfies-type To: Core::SelectType

Definition: represents the relationship between a TaggedInstance and the SelectTypes of which it is an allowable
instance.

Multiplicity: 0..* unordered

9.2.6.4 Other Roles

none.

9.2.7 Association: enumeration-declares-items

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

This can be different from value-of-EnumerationType (see below) only when the EnumerationType is EXTENSIBLE, or
is itself the extension of another EnumerationType.

112 EXPRESS Metamodel, Beta 1

9.2.71 Supertypes

Core::type-element-has-scope

9.2.7.2 Association Ends

AssociationEnd: declared-in To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1

AssociationEnd: declared-items To: Enumerationitem

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type_declaration. For extended enumeration types, this is distinct from the .values relationship, which captures all of the
valid values of the type.

Note: See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

9.2.8 Association: value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of
the type.

Properties: derived

9.2.8.1 Association Ends

AssociationEnd: of-type To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationTypes of which it is a value. An
Enumerationltem is a value of every EnumerationType that is related by extension to the type that declares it. This
relationship can be derived recursively from the sequence of . base relationships beginning with the . decl ared-in
EnumerationType, and from the sequence of . ext ensi on relationships of that EnumerationType.

Note: See 8.4.1 of ISO 10303-11:2004.
Multiplicity: 1..* unordered

Properties: derived.
TaggedValues

derivation =
The mechanism for derivation of the values of .of-type requires a procedure/function.

AssociationEnd: values To: Enumerationltem

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of
the type. An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declares
it. This relationship can be derived recursively as the union of the values of the .declared-items attribute for the
EnumerationType, for each EnumerationType in the sequence of .base relationships from the EnumerationType, and
from all the extensions of the EnumerationType.

Note: See clause 8.4.1 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 113

Multiplicity: 0..* unordered

Properties: derived.

TaggedValues

derivation =
The mechanism for derivation of the values of .values requires a procedure/function.

9.3 Simple Values

This section specifies the model of SimpleValues — Instances that correspond to the simple data types defined in the
EXPRESS language: BINARY, BOOLEAN, INTEGER, LOGICAL, INTEGER, NUMBER, REAL, STRING.

It also includes two specialized classes of STRING value that have specific syntax requirements in the EXPRESS
language: TypeName and RoleName. There are no EXPRESS data types for these, but certain values in Expressions are
required to be instances of these classes.

SimpleValue +of-type _ | SimpleType
* 1. (from Core)
LogicalValue NumberValue StringValue BinaryValue
? ? T f‘
BooleanValue RealValue TypeName
+representsScopedld
Zr RoleName
IntegerValue +represents Scopedld
+refers-to +refers-to
Attribute NamedType

Figure 20 - Simple Values

9.31

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the

Class: BinaryValue

(from Core)

(from Core)

member-type of the BAG, in which a given instance can appear more than once.

9.3.1.1

SimpleValue

114

Supertypes

EXPRESS Metamodel, Beta 1

9.3.1.2 Attributes

none.

9.3.1.3 Associations

none.

9.3.1.4 Other Roles

none.

9.3.2 Class: BooleanValue

Definition: a SimpleValue, a value of the EXPRESS data type BOOLEAN: TRUE, FALSE
9.3.21 Supertypes
LogicalValue

9.3.2.2 Attributes

none.

9.3.2.3 Associations

none.

9.3.24 Other Roles

none.

9.3.3 Class: IntegerValue

Definition: a SimpleValue, a value of the EXPRESS data type INTEGER: any mathematical integer value.

9.3.3.1 Supertypes
RealValue

9.3.3.2 Attributes

none.

9.3.3.3 Associations

none.

9.3.34 Other Roles

none.

9.3.4 Class: LogicalValue
Definition: a SimpleValue, a value of the EXPRESS data type LOGICAL: TRUE, UNKNOWN, FALSE.

EXPRESS Metamodel, Beta 1 115

9.3.4.1 Supertypes
SimpleValue
9.3.4.2 Attributes

none.

9.3.4.3 Associations

none.

9.344 Other Roles

none.

9.3.5 Class: NumberValue

Definition: a SimpleValue, a value of the EXPRESS data type NUMBER: any numeric value with its mathematical
interpretation.

9.3.5.1 Supertypes
SimpleValue

9.3.5.2 Attributes

none.

9.3.5.3 Associations

none.

9.3.54 Other Roles

none.

9.3.6 Class: RealValue

Definition: a SimpleValue, a value of the EXPRESS data type REAL: supposedly a mathematical "real" value, but
properly a computational fixed or floating-point value.

9.3.6.1 Supertypes

NumberValue

9.3.6.2 Attributes

none.

9.3.6.3 Associations

none.

9.3.6.4 Other Roles

none.

116 EXPRESS Metamodel, Beta 1

9.3.7 Class: RoleName

Definition: A RoleName is a reference to an Attribute that has the form of a StringValue. It is an instance of StringType
ROLE. RoleNames are produced as the result-type of the UnaryOperator RolesOf, and used as the formal parameter type
for UsedIn. They have reserved syntax and reserved interpretation.

Note: The result of RolesOf is only well-defined for Attributes of EntityTypes defined in the Schema. Some problems
arise with interfaced EntityTypes, renamed Attributes, and attributes of EntityTypes defined in AlgorithmScopes. See
Clause 15.25 of ISO 10303-11:2004.

9.3.71 Supertypes

StringValue

9.3.7.2 Attributes

Attribute: represents To: Core::Scopedld

Definition: represents the relationship between the RoleName — a StringValue — and the (structured) TypeScopedld for
the Attribute, of which it is a representation.

Multiplicity: 1..1
9.3.7.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between a RoleName and the Attribute to which it refers.
Multiplicity: 1..1
9.3.7.4 Other Roles

none.

9.3.8 Class: SimpleValue

Definition: a ConcreteValue that consists of a single atomic information unit of a data type defined in the EXPRESS
language itself.

Properties: abstract

9.3.8.1 Supertypes

ConcreteValue

9.3.8.2 Attributes

Attribute: name To: MOF::String
Definition: the representation of the value, assumed to be a character string.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 117

9.3.8.3 Associations

AssociationEnd: of-type To: Core::SimpleType
Definition: represents the relationship between a SimpleValue and the data types of which it is an instance.
Multiplicity: 1..* unordered

Properties: abstract

9.3.84 Other Roles

From Expressions::Literal as refers-to

9.3.9 Class: StringValue

Definition: a SimpleValue, a value of the EXPRESS data type STRING: a sequence of character codes from the ISO
10646-1 Basic Multilanguage Plane.

9.3.91 Supertypes
SimpleValue

9.3.9.2 Attributes

none.

9.3.9.3 Associations

none.

9.3.94 Other Roles

none.

9.3.10 Class: TypeName

Definition: A TypeName is a reference to a DataType that has the form of a StringValue. It is an instance of StringType
TYPE. TypeNames are produced as the result-type of the UnaryOperator TypeOf. They have reserved syntax and
reserved interpretation.

Note: The result of TypeOf is only well-defined for NamedTypes defined in the Schema, although it can also produce
EXPRESS keywords. Some problems arise with interfaced NamedTypes, and NamedTypes defined in AlgorithmScopes.
See Clause 15.25 of ISO 10303-11:2004.

9.3.10.1 Supertypes
StringValue

9.3.10.2 Attributes

Attribute: represents To: Core::Scopedid
Definition: the (structured) ScopedId for the NamedType, of which the TypeName is a String representation.

Multiplicity: 1..1

118 EXPRESS Metamodel, Beta 1

9.3.10.3

Associations

AssociationEnd: refers-to

To: Core::NamedType

Definition: represents the relationship between a TypeName and the NamedType to which it refers.

Multiplicity: 1..1

9.3.10.4

none.

9.4

Other Roles

Aggregate Values

This section specifies the model of AggregateValues — Instances that correspond to EXPRESS aggregation types:
ARRAY, BAG, LIST, SET.

AggregateValue GenericAggregate
ARRAYValue BAGValue SETValue LISTValue
* 1 * 1 * *
value-of-ArrayType ’ value-of-BagType value-of-SetType value-of-ListType ’ !
+of-type 1.7 +of-type 1.* +of-type 1.* +of-type 1.*
ARRAYType BAGType SETType LISTType

(from Core)

value-has-slot

+member-slot

1.7

(from Core)

value-has-slot
+member-slot

ArrayMember

(from Core)

+indexInteger

BagMember

member-has-value

*

+countinteger

member-is-value

member-has-value

+member-value

*

1 +member-value

0.1

+member-value

Instance
(from Core)

(from Core)

value-has-slot
+member-slot

ListMember

+position:integer

member-has-value

+member-value

*

Figure 21 - Aggregate Values

9.4.1

Class: AggregateValue

Definition: a ConcreteValue that is composite, consisting of a collection of Instances from a given member DataType.

Properties: abstract

EXPRESS Metamodel, Beta 1

119

9411 Supertypes

ConcreteValue

9.4.1.2 Attributes

none.

9.4.1.3 Associations

none.

9414 Other Roles

none.

9.4.2 Class: ArrayMember

Definition: Represents a single element of an ARRAY Value seen as a relation. It maps one index-value to one value of
the base data type (the "member" value). In the case of an ARRAY OF OPTIONAL, the member-value need not be
present.

9.4.21 Supertypes

none.

9.4.2.2 Attributes

Attribute: index To: MOF::Integer

Definition: represents the index value to which the ArrayMember corresponds. In a given ARRAY Value, there is exactly
one ArrayMember that corresponds to each index value.

Multiplicity: 1..1
9.4.2.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: for a given ARRAY Value, represents the relationship between an index value (represented by an
ArrayMember) and the Instance value that is the image of that index value in the base type.

Multiplicity: 0..1
94.2.4 Other Roles

From: ARRAYValue as member-slot

9.4.3 Class: ARRAYValue

Definition: an AggregateValue, representing a value of an EXPRESS ARRAY data type: a set of pairs of the form (index
value, domain value) where the index value is selected from a finite range of integers, and each such value occurs in
exactly one pair, and the domain value is an instance of the member-type of the ARRAY.

9.4.3.1 Supertypes

AggregateValue

120 EXPRESS Metamodel, Beta 1

9.4.3.2 Attributes

none.
9.4.3.3 Associations
AssociationEnd: member-slot To: ArrayMember

Definition: represents the relationship between an ArrayValue and each of its distinct slots for member values.

Multiplicity: 1..* unordered

AssociationEnd: of-type To: Core::ARRAYType

Definition: represents the relationship between the ARRAY Value and the ARRAY Types of which it is an instance.

Multiplicity: 1..* unordered

9.4.34 Other Roles

none.

9.4.4 Class: BagMember

Definition: Represents the relationship between a BAGValue and one value of the base data type (the "member" value).
It has a "count" attribute that represents the number of times the given member-value occurs in the BAGValue.

9.4.41 Supertypes

none.

9.4.4.2 Attributes

Attribute: count To: MOF::Integer

Definition: represents the relationship between a BagMember and the number of occurrences of the member-value that it
represents, i.e., the number of occurrences of that member-value in the bag.

Multiplicity: 1..1
9.4.4.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a BagMember and the Instance that it includes, one or more times, in the
BAGValue.

Multiplicity: 1..1

9444 Other Roles

From: BAGValue as member-slot

9.4.5 Class: BAGValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

EXPRESS Metamodel, Beta 1 121

9.4.51 Supertypes

AggregateValue

9.4.5.2 Attributes

none.
9.4.5.3 Associations
AssociationEnd: member-siot To: BagMember

Definition: represents the relationship between a BagValue and each of its distinct member values. Each distinct member
value is represented by a BagMember (slot) that counts its occurrences in the bag.

Multiplicity: 0..* unordered

AssociationEnd: of-type To: Core::BAGType

Definition: represents the relationship between the BAGValue and the BAGTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.54 Other Roles

none.

9.4.6 Class: GenericAggregate

Definition: An AggregateValue representing the output of an Aggregatelnitializer. It is interpreted as a LIST value whose
member-type is GENERIC, but actually constrained to the common DataType of all the Expressions in the Initializer. It
can be coerced to an ARRAY, BAG, SET, or LIST value of the appropriate member-type, according to the context of its
use.

Note: Certain GenericAggregate values have a syntactic parse as a LIST of instances, but no clear semantics as to data
type; this is a defect in Part 11. See 12.9 of ISO 10303-11:2004.

9.4.6.1 Supertypes
LISTValue

9.4.6.2 Attributes

none.

9.4.6.3 Associations

none.

9.4.64 Other Roles
From Expressions::Aggregatelnitializer as result-value

947 Class: ListMember

Definition: represents one position in a ListValue and the instance of the member-type in that position.

122 EXPRESS Metamodel, Beta 1

9.4.71 Supertypes

none.

9.4.7.2 Attributes

Attribute: position To: MOF::Integer
Definition: the ordinal identifier for the position in the sequence.

Multiplicity: 1..1
9.4.7.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a position in a LISTValue (represented by a ListMember) and the
Instance that appears in that position.

Multiplicity: 1..1

9.4.7.4 Other Roles

From: LISTValue as member-slot

From: Expressions::MemberBinding as to-slot
9.4.8 Class: LISTValue

Definition: an AggregateValue, representing a value of an EXPRESS LIST data type: a sequence of instances of the
member-type of the LIST.

9.4.8.1 Supertypes
AggregateValue

9.4.8.2 Attributes

none.
9.4.8.3 Associations
AssociationEnd: member-siot To: ListMember

Definition: represents the relationship between a ListValue and each of its distinct slots for member values. Each
member-slot represents a position in the ListValue.

Multiplicity: 0..* unordered

AssociationEnd: of-type To: Core::LISTType

Definition: represents the relationship between the LISTValue and the LISTTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.84 Other Roles

none.

EXPRESS Metamodel, Beta 1 123

9.4.9 Class: SETValue

Definition: an AggregateValue representing a value of a SET data type.

Note: A SETValue can be viewed as a specialization of a BAGValue in which the "count" value for each BagMember is
1. But technically, the conversion of the SET Value to the corresponding BAGValue is a coercion, because the behavior
of the resulting BAGValue is different. For example, the union of two SETValues is different from the union of the
corresponding BAGValues.

9.4.91 Supertypes
AggregateValue

9.4.9.2 Attributes

none.
9.4.9.3 Associations
AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a SETValue and the Instances that appear in it. Any given Instance can
take this role at most once for any given SetValue.

Multiplicity: 0..* unordered

AssociationEnd: of-type To: Core::SETType
Definition: represents the relationship between the SET Value and the SETTypes of which it is an instance.

Multiplicity: 1..* unordered

9.49.4 Other Roles

none.

9.5 Entity Instances and Values

This section specifies the model of Entitylnstances — instances that correspond to entity data types. It also specifies the
model of PartialEntityValues, which are aggregates of entity attribute values that are constructed and manipulated by
some Expressions.

9.5 depicts the model of entity instances. In general, entity instances represent real-world objects being described by the
EXPRESS schema. What is captured in the information base is an EntityValue which is a representation of the current
state of the real-world object. A SingleLeafInstance is an EntityInstance that has a model as a single EntityType. A
MultiLeafInstance is an EntityInstance that has a model as an allowable collection of overlapping subtypes of modeled
EntityTypes.

124 EXPRESS Metamodel, Beta 1

Entitylnstance

» entity-value-describes-state
+ state

+id:EntityName

T

{disjoint/total}

MultiLeaflnstance

+describes 1

*

+instances

EntityValue-corresponds-to-Entity Typpe

instance-of-EntityType

+instance-of

SingleLeaflnstance | * +characterizing-type

EntityValue

1..* | +corresponds to

EntityType

Instance-has-characterizing-type 1

Figure 22 - Entity Instances

(from Core)

+ subtype-of *

entity-is-subtype-of-entity

9.5 depicts the model of PartialEntityValues. A PartialEntityValue is a collection of information — assignments of values
to named Attributes. Some PartialEntityValues are EntityValues, that is, they describe the state of an Entitylnstance.

EXPRESS Metamodel, Beta 1

125

entity-is-subtype-of-entity

+subtype-of , * *

EntityValue | + corresponds fo EntityType
EntityValue-corresponds-to-EntityType (from Core)
+declared-in 1
value-of-PartialE ntity Type single-entity-declared-in-entity
PartialEntityValue | ~ +of-type _ | partialEntityType
1 (from Core)
+equivalent 1 1 PartialEntity Type-has-components| 1 *
SingleEntityValue-has-equivalen SingleEntityValue-in-Partial EntityValue
0.1 1.7 +components 1.* | +components
. . * + of-type . . 1
SingleEntityValue vP SingleEntityType

value-of-SingleE ntity Ty peq (from Core) +declares

1 + of-entity 1 << implicit >>

SingleEntityValue-includes-AttributeValu . . .
attribute-declared-in-entity

* + properties +declares
. ; 1 . . .
AttributeValue value-for-Attribute ExplicitAttribute
+attribute (from Core)
+actual-value Instance
Attribute-has-value 0.1 (from Core)

Figure 23 - PartialEntityValues

9.5.1 Class: AttributeValue

Definition: represents the assignment of a value to a given Attribute of the EntityType corresponding to the
SingleEntityValue.

9.5.1.1 Supertypes
none.

9.5.1.2 Attributes
none.

9.5.1.3 Associations

AssociationEnd: actual-value To: Core::Instance

Definition: represents the value assigned to the Attribute by the AttributeValue. If the Attribute is declared OPTIONAL,
it is possible that no value is assigned.

Multiplicity: 0..1

126 EXPRESS Metamodel, Beta 1

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the relationship between the AttributeValue assignment and the ExplicitAttribute to which it
assigns a value.

Multiplicity: 1..1
9514 Other Roles

From: SingleEntityValue as properties

Multiplicity: 1..1 composite

9.5.2 Class: Entitylnstance

Definition: a TaggedInstance that represents an EXPRESS entity instance — an instance of an entity data type, a view of
an object that incorporates those properties and relationships that are significant to some particular purpose(s). The
EntityInstance is distinct from the EntityValue — a collection of information about the object that represents those
properties and relationships.

Note: See clause 5 of ISO 10303-11:2004.

9.5.2.1 Supertypes

TypedInstance

9.5.2.2 Attributes

Attribute: id To: EntityName

Definition: represents a nominal identifier for an EntityInstance that distinguishes it from other EntityInstances. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note: See clause 5 of ISO 10303-11:2004.
Multiplicity: 1..1

9.5.2.3 Associations

AssociationEnd: instance-of To: Core::EntityType

via: instance-of-EntityType

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.

Multiplicity: 1..* unordered

AssociationEnd: state To: EntityValue

via: entity-value-describes-state

Definition: represents the relationship between the Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 127

9.5.24 Other Roles

From: Rules::Extent as content

9.5.3 Datatype: EntityName

Definition: represents the unique underlying identity of an entity instance, expressed as some kind of identifier. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note: See clause 5 of ISO 10303-11:2004.

9.5.3.1 Supertypes
Realization type is . MOF::String

The realization relationship is modeled as a generalization.

9.5.3.2 Members

none.

9.5.4 Class: EntityValue

Definition: A PartialEntityValue that completely describes an Instance of some EntityType(s).

9.5.4.1 Supertypes

PartialEntityValue

9.5.4.2 Attributes

none.
9.54.3 Associations
AssociationEnd: corresponds to To: Core::EntityType

Definition: represents the EntityType(s) whose complete modeled description comprises a set of Attributes that is
contained in the EntityValue. The complete modeled description of an EntityType is a set of SingleEntityTypes, and the
EntityValue contains SingleEntityValues corresponding to each of them.

Multiplicity: 1..* unordered

AssociationEnd: describes To: Entitylnstance

via: entity-value-describes-state

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of
the association is only significant when the EntityValue is used as the means of identification of a particular
EntityInstance.

Multiplicity: 0..* unordered

9.544 Other Roles

none.

128 EXPRESS Metamodel, Beta 1

9.5.5 Class: MultiLeaflnstance

Definition: A (complex) Entitylnstance that is a valid instance of more than one EntityType and whose state includes

more SingleEntityValues than are declared for, or inherited by, any named EntityType defined in the governing Schema.

The subtype/supertype graph corresponding to such an Entitylnstance has multiple "leaf" nodes.

Note: This concept appears in Part 11 only in 3.3.12, but it appears in ISO 10303-21:2002 as an "uncharacterized
instance" whose representation requires the "external mapping."

9.5.5.1 Supertypes
EntityInstance

9.5.5.2 Attributes

none.

9.5.5.3 Associations

none.

9.5.54 Other Roles

none.
9.5.6 Class: PartialEntityValue
Definition: an Instance that is a collection of Attributes (of SingleEntityTypes) with associated values.

9.5.6.1 Supertypes

Core::Instance

9.5.6.2 Attributes

none.
9.5.6.3 Associations
AssociationEnd: components To: SingleEntityValue

Definition: the SingleEntityValues that make up the PartialEntityValue.

Multiplicity: 1..* unordered

AssociationEnd: of-type To: Core::PartialEntityType

Definition: represents the relationship between a PartialEntityValue and the PartialEntityType that identifies the
collection of SingleEntityTypes for which the PartialEntityValue provides values.

Multiplicity: 1..1

9.5.6.4 Other Roles

From: SingleEntityValue as equivalent

Multiplicity: 0..1

EXPRESS Metamodel, Beta 1

129

From: Expressions::PartialEntityConstructor as result-value

9.5.7 Class: SingleEntityValue

Definition: A collection of values for the explicit Attributes of exactly one SingleEntityType.

Note: A SingleEntityValue is not an Instance; it is a part of a PartialEntityValue. It cannot be the result of an Expression,
nor can it be the value of any EXPRESS concept. The result of a PartialEntityConstructor is the .equivalent
PartialEntityValue.

9.5.71 Supertypes

none.

9.5.7.2 Attributes

none.
9.5.7.3 Associations
AssociationEnd: equivalent To: PartialEntityValue

Definition: represents the relationship between a SingleEntityValue and the PartialEntityValue that consists of exactly
that one SingleEntityValue.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SingleEntityType

Definition: represents the relationship between a SingleEntityValue and the SingleEntityType that declares the Attributes
whose values are contained in the SingleEntityValue.

Note: While the relationship between a SingleEntityValue and a SingleEntityType appears to be an Instance-to-Type
relationship, it is not treated as such in the metamodel, because SingleEntityValues are not Instances 4€* they can only
appear as components of a PartialEntityValue.

Multiplicity: 1..1

AssociationEnd: properties To: AttributeValue

Definition: represents the relationship of the SingleEntityValue to the AttributeValue assignments it comprises.

Multiplicity: 0..* unordered

9.5.74 Other Roles
From: PartialEntityValue as components

Multiplicity: 1..1 composite

9.5.8 Class: SingleLeaflnstance

Definition: An Entitylnstance that is completely characterized by a single EntityType (and all its supertypes) that is
declared in the governing Schema

Note: This concept does not appear in Part 11, but is the "characterized instance" that is the basis for the "internal
mapping" in ISO 10303-21:2002.

130 EXPRESS Metamodel, Beta 1

9.5.8.1 Supertypes

EntityInstance

9.5.8.2 Attributes

none.
9.5.8.3 Associations
AssociationEnd: characterizing-type To: Core::EntityType

Definition: represents the unique EntityType classifier that has (defines or inherits) exactly all of the Attributes present in
the representation of the Entitylnstance. Not every Entitylnstance has a characterizing-type — it may be an "instance-of"
two or more EntityTypes for which the intersection is not explicitly modeled, but permitted by the model to be non-
empty.

Multiplicity: 1..1
9.5.84 Other Roles

none.

9.5.9 Association: entity-value-describes-state

Definition: represents the relationship between an Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

9.5.9.1 Association Ends

AssociationEnd: describes To: Entitylnstance

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of
the association is only significant when the EntityValue is used as the means of identification of a particular
EntityInstance.

Multiplicity: 0..* unordered

AssociationEnd: state To: EntityValue

Definition: represents the relationship between the EntityInstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1

9.5.10 Association: instance-of-EntityType

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.

9.5.10.1 Association Ends

AssociationEnd: instance-of To: Core::EntityType

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.

Multiplicity: 1..* unordered

EXPRESS Metamodel, Beta 1 131

AssociationEnd: instances

To: Entitylnstance

Definition: represents the relationship between an EntityType (classifier) and the Entitylnstances that satisfy it.

Multiplicity: 0..* unordered

9.6

Constants

This section defines the Constant concept. A Constant is a named instance that is explicitly declared in the schema. 9.6
depicts the model of Constants. The Constant class and its properties are described below.

CommonElement
(from Core)

i

Constant

+data-type

constant-has-type

1

+value-expression

Instantiable Type
(from Core)

Expression

expression-specifies-constant-value

1

expression-evaluates-to-Instance

+actual-value

(from Core)

*

+ evaluation

0..1
Instance

constant-has-value

Figure 24 - Constants

9.6.1

Class: Constant

0..1

(from Core)

Definition: a CommonElement denoting a single instance value throughout each of its life cycles.

Note: "Constant" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be
renamed. See clause 9.4 of ISO 10303-11:2004.

9.6.1.1

Supertypes

Core::CommonElement

9.6.1.2

none.

132

Attributes

EXPRESS Metamodel, Beta 1

9.6.1.3 Associations

AssociationEnd: actual-value To: Core::Instance

Definition: represents the value resulting from evaluating the value-expression. This value may only be computable for a
given population, or it may require computational capabilities a given agent does not have.

Multiplicity: 0..1

AssociationEnd: data-type To: Core::InstantiableType

Definition: represents the relationship between the Constant and the DataType of the Instance denoted by the Constant.

Multiplicity: 1..1

AssociationEnd: value-expression To: Core::Expression

Definition: represents the Expression that specifies the value of the Constant for a given lifetime.

Multiplicity: 1..1

9.6.14 Other Roles

From: Expressions::ConstantRef as refers-to

9.6.1.5 Rules

Constraint (OCL)
exi sts(sel f->id);
Every Constant shall have an Identifier.

9.7 Populations

This section defines the Population concept and its relationship to Schemas and Instances. A population represents an
information base that corresponds to a Schema. 9.7 depicts the model of Population. The class Population and its
associations are described below.

EXPRESS Metamodel, Beta 1 133

population-includes-instance

0..* +composition| Q..*
member-is-value
<<metaclass>> <<metaclass>> g « . b | <<metaclass>>
Population SETValue Amem ervalue Instance
0..* (Core)
0..* 1| +within-population
extent-within-population extent-includes-instances
<<metaclass>> 0. 0.* <<metaclass>>
+extents Extent - " | Entitylnstance
0. |+/id : Scopedid [1 *+content 4iq . EntityName
P 1 {subsets member-value} y [

schema-describes-population . .
pop 0..* [+extension +instances | 0..*

| . {subsets instances}
extent-of-Entity Type

0..*| +governing-schema

1| +for-type
<<metaclass>> P .
Schema <<metaclass>3 +instance-of
(Core) EntityType | {Subsets oftype}

(Core) 1.7 instance-of-Entity Type

Figure 25 - Populations and Instances

9.7.1 Class: Extent

Definition: the collection of all Instances in a given Population that satisfy the specified EntityType. That is, Extent is the
SetValue that is the intersection of EntityType.instances and Population.composition

Note: See 9.6 of ISO 10303-11:2004.

9.711 Supertypes
SETValue

9.7.1.2 Attributes

Attribute: id To: Core::Scopedid
Definition: the identifier for the EntityType, used as a name for the Extent.
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: derived.

TaggedValues
derivation = self->for-type->id

134 EXPRESS Metamodel, Beta 1

9.7.1.3 Associations

AssociationEnd: content To: Entitylnstance

Definition: represents the relationship between the Extent (within a Population) and the EntityInstances it contains.
Extent is a SetValue and Extent.content is just the relationship between that SetValue and its members.

Multiplicity: 0..* unordered

Properties: derived.
TaggedValues
derivation = SETVal ue: : sel f - >nenber - val ues

AssociationEnd: for-type To: Core::EntityType

via: extent-of-EntityType

Definition: the EntityType to which the Extent corresponds.
Note: See 9.6 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: within-population To: Population

via: extent-within-population

Definition: the Population from which the Set of instances is drawn.
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

9.71.4 Other Roles

none.

9.7.2 Class: Population

Definition: represents the collection of all entity instances over which the LocalRules and GlobalRules of a schema are to
be evaluated.

The EXPRESS interpretation of Population is the complete closed collection of entity instances that is used for a
particular purpose, such as the content of a database or an exchange document. Many distinct Populations may have the
same governing-schema. The presumption is that the Population will be realized when the EntityInstances are realized,
but it is not necessary that that realization will itself be represented as instance of this Package.

Note: See clause 5 of ISO 10303-11:2004.

9.7.21 Supertypes

none.

9.7.2.2 Attributes

none.

EXPRESS Metamodel, Beta 1 135

9.7.2.3 Associations

AssociationEnd: composition To: Core::Instance

via: instance-appears-in-population

Definition: represents the relationship between a Population and the Instances that make it up.

Multiplicity: 0..* unordered

AssociationEnd: governing-schema To: Core::Schema

Definition: represents the relationship between a Population and a Schema that governs (models, describes) it.
Note: See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

9.7.24 Other Roles

From: Rules::Extent as within-population

9.7.3 Association: extent-of-EntityType

Definition: represents the relationship between an EntityType and its Extent (the set of corresponding Entitylnstances) in
a given Population.

9.7.3.1 Association Ends

AssociationEnd: extension To: Extent

Definition: represents the relationship between an EntityType and its extension (the set of corresponding Entitylnstances)
in a given Population.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType

Definition: represents the relationship between an Extent and the EntityType to which it corresponds.
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

9.7.4 Association: extent-within-population

Definition: represents the relationship between an Extent and the Population from which it is drawn.

9.7.41 Association Ends

AssociationEnd: extents To: Extent
Definition: the collection of Extents of EntityTypes that make up the Population.

Multiplicity: 0..* unordered

AssociationEnd: within-population To: Population

Definition: the Population from which the Set of instances constituting the Extent is drawn.

136 EXPRESS Metamodel, Beta 1

Note: See 9.6 of ISO 10303-11:2004.
Properties: composite.

Multiplicity: 1..1

9.7.5 Association: population-includes-instance

Definition: represents the relationship between an Instance and the Populations in which it appears.

9.7.5.1 Association Ends

AssociationEnd: appears-in-population To: Population

Definition: represents the relationship between an Instance and the Populations in which it appears.

Multiplicity: 0..* unordered

AssociationEnd: composition To: Core::Instance

Definition: represents the relationship between a Population and the Instances the make it up.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1

137

10 Package: Algorithms

The Algorithms Package contains the concepts related to definitions of Algorithms and Functions in EXPRESS.

10.1 Dependencies

Dependency on Package: Core
Stereotypes: i npor t

The Algorithms Package depends on the Core Package for the NamedElement and Scope concepts, for data type
concepts, and for the basic Expression concept.

10.2 Functions and Procedures

This section defines all the major concepts in EXPRESS Algorithm definitions, except for Variables and their data types.
Those concepts are described in subsequent clauses below. 10.2 depicts the concepts described in this section.

local-element-has-local-scope

<<metaclass>> <<metaclass>>
LocalScope 1 A+Ioca|-e|ements LocalElement
(Core) +namespace 0..* (Core)
T <<metaclass>>
<<metaclass>> <<metaclass>> ParameterType
AlgorithmScope | | CommonElement (Core)
(Core) (Core) 1 | +formal-parameter-type

parametef-has-type
algorithm-has-parameters ..

<<metaclass>> +namespace <<metaclass>>
+implements Algorithm {subsets namespace} 0.* Parameter
0..1 1 +formal-parameters |*Position : Integer [1]
algorithmthas-body zr {subsets local-elements} ‘ﬁ
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
Procedure Function InParameter VARParameter
+namespace | 1
0..1] +body {subsets namespace}
<<metaclass>>
1 | <<metaclass>>
Statement

FunctionResult

+text : ExpressText [0..1] function-has-result +result

{subsets local-elements}

Figure 26 - Algorithms

138 EXPRESS Metamodel, Beta 1

10.2.1 Class: Algorithm

Definition: a CommonFElement that represents an operation or process that transforms information. Every Algorithm is
either a Procedure or a Function. Every Algorithm is also an AlgorithmScope, in that it may define CommonElements
and local ModelElements.

Note: See 9.5 of ISO 10303-11:2004.

Properties: abstract

10.2.1.1 Supertypes

Core::CommonElement, Core::AlgorithmScope

10.2.1.2 Attributes

none.
10.2.1.3 Associations

AssociationEnd: actual-types To: Core::ActualType

via: scope-of-actual-type

Subsets: Core::LocalScope.local-elements

Definition: the ActualTypes that are defined in the Algorithm.

Multiplicity: 0..* unordered

AssociationEnd: body To: Statement

via: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
Statement. In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the
Algorithm is modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note: See 9.5 of ISO 10303-11:2004.
Multiplicity: 0..1
AssociationEnd: formal-parameters To: Parameter

via: algorithm-has-parameters

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between the Algorithm and its formal parameters.

Multiplicity: 0..* unordered

10.2.1.4 Other Roles

From: Core::ActualType as scope

From: GenericElement as namespace

EXPRESS Metamodel, Beta 1 139

10.2.1.5 Rules

Constraint (OCL)
exi sts(sel f->id);
Every Algorithm has an identifier

10.2.2 Class: Function

Definition: an Algorithm that returns a single Instance and can appear in an Expression.

Note:"Function" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be
renamed. See 9.5.1 of ISO 10303-11:2004.

10.2.2.1 Supertypes
Algorithm

10.2.2.2 Attributes

none.

10.2.2.3 Associations

AssociationEnd: result To: FunctionResult

via: function-has-result

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between a Function and its FunctionResult.
Note: See 9.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1

10.2.24 Other Roles

From: Expressions::FunctionCall as invokes-function

10.2.3 Class: FunctionResult

Definition: the formal parameter representing the result Instance that is returned by the invocation of a Function. Within
the body of the Function, the FunctionResult is a Variable that is denoted by the Algorithm identifier. Upon termination
of the execution of the function-body, the (current) value of that Variable is returned.

Note: See 9.5.1 of ISO 10303-11:2004.

10.2.3.1 Supertypes

Variable

10.2.3.2 Attributes

none.

140 EXPRESS Metamodel, Beta 1

10.2.3.3 Associations

AssociationEnd: nhamespace To: Function

via: function-has-result

Subsets: Core::LocalElement.namespace

Definition: the Function that is the Scope in which the Function name refers to the FunctionResult.

Multiplicity: 1..1

10.2.3.4 Other Roles
From: Expressions::FunctionCall as returns-result

10.2.3.5 Rules

Constraint (OCL)
sel f->id = sel f->nanespace->i d;
The identifier for the function result is the identifier for the function.

10.2.4 Class: InParameter

Definition: a formal parameter to a Procedure or Function to which the ActualParameter is passed "by value."

During an invocation of the Algorithm, the InParameter is a Variable that is initially set to the value of the corresponding
ActualParameter. The value of the InParameter can be changed during the execution of the Algorithm.

An InParameter has a formal-parameter-type, which is the type specification to which the corresponding
ActualParameters are required to conform. The InParameter also has a variable-type, which is the type specification for
the Variable created to hold the value during invocation of the Algorithm.

Note: See 9.5.3 of ISO 10303-11:2004.

10.2.41 Supertypes

Parameter, Variable

10.2.4.2 Attributes

none.

10.2.4.3 Associations

none.

10.2.4.4 Other Roles

none.

10.2.5 Class: Parameter

Definition: a formal parameter — the formal description of an operand — of a Procedure or Function.

Parameters are of two kinds:
— InParameter, to which the values of the corresponding ActualParameters are passed by value
— VarParameter, to which the corresponding ActualParameters are passed by reference

EXPRESS Metamodel, Beta 1 141

A Parameter is actually a NamedVariable whose scope is the Algorithm, and in each invocation of the Algorithm its
(initial) value is set from the value or reference provided as the actual parameter. The formal-parameter-type of the
Parameter constrains the types/values of the corresponding actual parameters. As a NamedVariable, it also has a
variable-type, which is its data type for the purpose of operations within the body of the Algorithm. If the formal-
paramater-type is an InstantiableType or an ActualType, the variable-type is the same type. If the formal-parameter-type
is a GeneralizedType, the variable-type is the corresponding ActualType.

Note: See 9.5.3 of ISO 10303-11:2004.

Properties: abstract

10.2.5.1 Supertypes
none.

Note: Parameter is an abstract classifier. The two instantiable subclasses of Parameter — InParameter and VARParameter
-- are subclasses of NamedVariable. So Parameter is an implicit subclass of NamedVariable.

10.2.5.2 Attributes

Attribute: position To: MOF::Integer

Definition: A positive integer value designating the ordinal position of the Parameter in the formal-parameter-list for the
Algorithm that is its .namespace. The position is used to associate ActualParameters with the formal Parameter.

Note: See 9.5.3 of ISO 10303-11:2004.
Multiplicity: 1..1

10.2.5.3 Associations

AssociationEnd: formal-parameter-type To: Core::ParameterType

Definition: the specification for the required data type of the actual parameters (see 12.7.1) that correspond to the formal
Parameter; the data type that represents the allowable values of the Parameter.

Multiplicity: 1..1

Note: The lexical par amet er _t ype in EXPRESS may refer to an InstantiableType, an ActualType (if the Algorithm
is defined within an outer AlgorithmScope) or a GeneralizedType, and when it is syntactically a gener al i zed_t ype,
it may include ActualTypeConstraints (see 10.5).

AssociationEnd: nhamespace To: Algorithm

via: algorithm-has-parameters
Subsets: Core::LocalElement.namespace

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its .id.

Multiplicity: 1..1

AssociationEnd: structure-constraints To: ActualStructureConstraint

Definition: the ActualStructureConstraints, if any, that constrain the allowable data types of the corresponding actual
parameter.

Note: See 9.5.3.4 of ISO 10303-11:2004.

142 EXPRESS Metamodel, Beta 1

Multiplicity: 0..* unordered

AssociationEnd: type-constraints To: ActualTypeConstraint

Definition: the ActualTypeConstraints, if any, that constrain the allowable data types of the corresponding actual
parameter.

Note: See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: variable To: InVariable

via: variable-for-parameter

Definition: the InVariable that corresponds to the InParameter during each evaluation of the Algorithm.

During an evaluation of the Algorithm that defines the InParameter, the value of the InVariable may change. The
corresponding actual parameter value does not change.

Note: See 9.5.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1
10.2.5.4 Other Roles

From: Expressions::ParameterRef as refers-to

From: Expressions::ActualParameter as formal-parameter

From: GenericElement as source

10.2.5.5 Rules

Constraint (OCL)
exi sts(sel f->id);
Every Parameter has an identifier

Constraint (OCL)

| F typeof (sel f->nanmespace) = 'Function' THEN NOT sel f->i nout;
No parameter to a Function shall be a VAR parameter.

10.2.6 Class: Procedure

Definition: an Algorithm that is executed as an action in a FunctionBody.
Note: See 9.5.2 of ISO 10303-11:2004.

Note: "Procedure" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be
renamed.

10.2.6.1 Supertypes
Algorithm

10.2.6.2 Attributes

none.

EXPRESS Metamodel, Beta 1

143

10.2.6.3 Associations

none.

10.2.6.4 Other Roles

From: Statements::ProcedureCall as invokes

10.2.7 Class: Statement

Definition: An EXPRESS Statement, a directive to perform a certain set of operations.
Note: See Clause 13 of ISO 10303-11:2004.

Note: Even though Statement is technically an abstract classifier, it is represented by direct instances with text
representations when the Statements compliance point is not supported.

10.2.71 Supertypes

none.

10.2.7.2 Attributes

Attribute: text To: Core::ExpressText

Definition: Represents the EXPRESS statement verbatim.

Multiplicity: 0..1
10.2.7.3 Associations

AssociationEnd: controlled-by To: Statements::RepeatStatement

via: Statements::repeat-has-body

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

AssociationEnd: implements To: Algorithm

via: algorithm-has-body

Definition: represents the relationship between a Statement and the Algorithm for which it specifies an implementation.

Multiplicity: 0..1

AssociationEnd: in-block To: Statements::StatementBlock

via: Statements::block-sequences-statements

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note: This relationship is needed for ESCAPE statements and SKIP statements, whose interpretation requires a path back
to the REPEAT statement that controls them (see 13.8.3). It may also be needed to associate a RETURN statement with
the Algorithm that whose implementation contains it.

Multiplicity: 0..1

144 EXPRESS Metamodel, Beta 1

10.2.7.4 Other Roles
From: Rules::GlobalRule as supporting-body

Multiplicity: 0..1

From: Statements::AliasStatement as body
Multiplicity: 0..1

From: Statements::CaseAction as action
Multiplicity: 0..1

From: Statements::IfStatement as then-action

Multiplicity: 0..1
From: Statements::IfStatement as else-action

Multiplicity: 0..1

10.2.8 Class: VARParameter

Definition: A formal parameter to a Procedure that is used as a reference to the object that is the ActualParameter in a
given invocation. That is, a VARParameter represents a parameter that is "passed by reference." A VARParameter is not
a separate object; it is rather a temporary name for an existing object — the ActualParameter. Alternatively, it may be
thought of as an object that holds a pointer to another object. All references to a VARParameter (in Statements and
Expressions) refer to the object that the VARParameter refers to.

Note: See 9.5.3 of ISO 10303-11:2004.

10.2.8.1 Supertypes

Parameter, VAR Variable

10.2.8.2 Attributes

none.

10.2.8.3 Associations

none.

10.2.8.4 Other Roles

none.

10.2.8.5 Rules

Constraint (OCL)

t ypeof (sel f - >nanespace) = Procedure';
Only a Procedure can have a VAR Parameter.

10.2.9 Association: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
StatementBlock — a sequence of actions to be performed.

EXPRESS Metamodel, Beta 1 145

Note: See 9.5 of ISO 10303-11:2004.
10.2.9.1 Association Ends

AssociationEnd: body To: Statement

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
Statement. In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the
Algorithm is modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note: See 9.5 of ISO 10303-11:2004.
Multiplicity: 0..1
AssociationEnd: implements To: Algorithm

Definition: represents the relationship between a FunctionBody and the Algorithm for which it specifies an
implementation.

Multiplicity: 0..1
10.2.10 Association: algorithm-has-parameters

Definition: represents the relationship between an Algorithm and its formal parameters.

10.2.10.1 Supertypes

Core::local-element-has-local-scope

10.2.10.2 Association Ends

AssociationEnd: formal-parameters To: Parameter
Definition: represents the relationship between the Algorithm and its formal parameters.

Multiplicity: 0..* unordered

AssociationEnd: namespace To: Algorithm

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its .id.

Multiplicity: 1..1

10.2.11 Association: function-has-result
Definition: represents the relationship between a Function and its FunctionResult.

Note: See 9.5.1 of ISO 10303-11:2004.

10.2.11.1 Supertypes

Core::local-element-has-local-scope

146 EXPRESS Metamodel, Beta 1

10.2.11.2 Association Ends

AssociationEnd: nhamespace To: Function

Definition: the Function that is the AlgorithmScope in which the Function name refers to the FunctionResult.
Multiplicity: 1..1

AssociationEnd: result To: FunctionResult

Definition: represents the relationship between a Function and its FunctionResult.

Note: See 9.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1

10.3 Variables

This section describes the concepts associated with Variables in EXPRESS. Variables are introduced in Algorithms and
GlobalRules. 10.3 depicts the concepts described in this section.

local-element-has-local-scope

N <<metaclass>>
<<metaclass>> 0.* | ocalEl ¢
+ - ocalElemen
LocalScope namespace

(Core) 1 +local-elements (Core)

I

T variable-has-type

<<metaclass>> <<metaclass>> || 0. 1 | <<metaclass>>
AlgorithmScope NamedVariable +variable-type | VariableType
(Core) (Core)
+namespace | 1 f V\
{subsets namespace}
<<metaclass>> <<metaclass>>
Variable VARVariable
variable-defined{in-scope
VAN
+variables | 0..*
{subsets local-elements} |
<<metac|ass>T <<metaclass>>| |<<metaclass>> <<metaclass>>
LocalVariable, |FunctionResult InParameter VARParameter

0.~*

<<metaclass>>
Expression
0.1 (Core)

variable-has-inifial-value .
+initial-value

Figure 27 - Variables

10.3.1 Class: LocalVariable

Definition: a Variable that is declared as LOCAL to an Algorithm or GlobalRule and given an Identifier, and possibly an
initial value, in the declaration.

Note: See 9.5.4 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 147

10.3.1.1 Supertypes

Variable

10.3.1.2 Attributes

none.
10.3.1.3 Associations

AssociationEnd: initial-value To: Core::Expression

Definition: represents the relationship between the Local Variable and the Expression that specifies its initial-value on
entry to the body of the Algorithm or GlobalRule that defines it.

Multiplicity: 0..1

AssociationEnd: namespace To: Core::AlgorithmScope

via: variable-defined-in-scope

Subsets: Core::LocalElement.namespace

Definition: represents the relationship between the Local Variable and the AlgorithmScope in which it is defined. This is
a refinement of the NamedElement.namespace relationship. The lifetime of a LocalVariable is exactly equal to the
lifetime of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1

10.3.14 Other Roles

none.

10.3.2 Class: NamedVariable

Definition: Any EXPRESS syntactic variable: A LocalVariable, a QueryVariable, an increment ControlVariable, an
AliasVariable, or a Parameter or FunctionResult. A NamedVariable is a NamedElement and always has a
name/identifier. Each kind of NamedVariable has a different scope, but the scopes of every NamedVariable is a
LocalScope.

Every NamedVariable has a declared variable-type, which may be an InstantiableType or an ActualType.

Properties: abstract

10.3.2.1 Supertypes

Core::LocalElement

10.3.2.2 Attributes

none.

10.3.2.3 Associations

AssociationEnd: variable-type To: Core::VariableType

Definition: the actual data type of the Variable. In any given invocation, the data type of the Variable is an
InstantiableType. If the data type of the Variable is specified as an InstantiableType, it is fixed for all invocations. If the

148 EXPRESS Metamodel, Beta 1

data type of the Variable is specified as an ActualType, the actual data type varies from invocation to invocation,
according to the data type of an actual parameter. If the Variable is a Parameter and its formal parameter type is a
GeneralizedType, the variable-type is the corresponding ActualType.

Note: See 9.5.4 of ISO 10303-11:2004.

Multiplicity: 1..1

10.3.2.4 Other Roles

From: Expressions::VariableRef as refers-to

10.3.2.5 Rules

Constraint (OCL)
exi sts(sel f->id);
Every NamedVariable has an identifier

10.3.3 Class: VARVariable

Definition: A VARVariable represents a "reference" or "pointer" that functions as a reference to a Variable (or part of a
Variable) during the execution of an Algorithm.

A VARVariable is a NamedVariable (it has an identifier and a nominal variable-type), but it is not a Variable. Unlike a
Variable, it does not itself hold an Instance. Instead, it points to an object (place) that holds an Instance. The object to
which a VARVariable refers is called its referent. The referent of a VAR Variable can be anything to which a
VARExpression (see 13.10.5) can refer. The referent of a VARVariable is fixed at the time the instance of the
VARVariable is created.

There are two kinds of VAR Variables: VARParameter and AliasVariable.

Properties: abstract

10.3.3.1 Supertypes
NamedVariable

10.3.3.2 Attributes

none.

10.3.3.3 Associations

none.

10.3.34 Other Roles

From: Statements::AliasRef as refers-to

10.3.4 Class: Variable

Definition: a NamedVariable that exists during an invocation of an Algorithm or the evaluation of a GlobalRule and
contains an Instance of a specified data type. (In essence, the type of a Variable specifies the structure of the object that
contains the value.) During execution of an Algorithm, the Instance contained in a Variable can change. The values
contained in other NamedVariables can change, but only Variables can be the objects of assignments or the referents of
VARExpessions (see 13.10). Playing the role Var i abl eCel | . r ef er ent characterizes Variables.

EXPRESS Metamodel, Beta 1 149

Note: See 9.5.4 of ISO 10303-11:2004. Part 11 uses the term "variable" to denote any of several kinds of objects that
hold values, including Local Variables, FunctionResults, Parameters, aggregate members, and ExplicitAttributes in
EntityValues. The term Variable here only refers to LocalVariables, FunctionResults, and InParameters.

Properties: abstract

10.3.4.1 Supertypes
NamedVariable

10.3.4.2 Attributes

none.

10.3.4.3 Associations

none.

10.3.44 Other Roles

From: Statements::VariableCell as refers-to

10.3.5 Association: variable-defined-in-scope

Definition: represents the relationship between a LocalVariable and the AlgorithmScope in which it is defined. This is a
refinement of the element-defined-in-scope relationship.

10.3.5.1 Supertypes

Core::local-element-has-local-scope

10.3.5.2 Association Ends

AssociationEnd: namespace To: Core::AlgorithmScope

Definition: represents the relationship between the LocalVariable and the AlgorithmScope in which it is defined. This is
a refinement of the NamedElement.namespace relationship. The lifetime of a LocalVariable is exactly equal to the
lifetime of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1

AssociationEnd: variables To: LocalVariable
Definition: represents the relationship between the LocalScope and the set of LocalVariables that are defined within it.

Multiplicity: 0..* unordered

10.4 Actual Types

In the simplest case, return values, variables, and other elements whose lifetime is the evaluation of the Algorithm are
declared to have InstantiableTypes. But they can also be declared to be derivatives of the data types of the actual
parameters in a given invocation. 10.4 depicts the model of data types that have such declarations, herein called
ActualTypes.

EXPRESS permits the generalized type specifications for formal parameters to contain labeled generic components that
refer to specific elements of the data type of the corresponding actual parameters. These elements can then be referred to
in the specifications of data types that are ActualTypes. 10.4 depicts the binding of ActualTypes to the components of
the data types of the formal parameters of the Algorithm.

150 EXPRESS Metamodel, Beta 1

All of these concepts are described in detail in this section.

<<metaclass>>|' |ocal-element-has-local-scope
LocalElement |.|ocal-elements

+namespace

0..”

<<metaclass>> <<metaclass>>
LocalScope <t AlgorithmScope

1

{subsets namespace}

[P

+/namespace

<<metaclass>>
Algorithm

<<metaclass>>

GenericElement 0.

Telement-scope-is-algorithm

+label : Scopedld [1] element-has-source

1

0..*
0..*|+/contains

+source

<<metaclass>>

Parameter

0..”

1 +namespace

algorithm-hgs-parameters

+position : Integer [1]

+formal-parameters

/element-occurs-in-parameter-type

0.* parameter-has-type

1 +formal-parameter-type

+/occurs-in <<metaclass>>

<<metaclass>>
ActualStructure

ActualAggregate-refers-to-generic

+refers-to

1 *| ParameterType

(Core)

<<metaclass>> J

0." |Actual AGGREGATETyp

<<metaclass>>

ActualDataType +refers-to

1

ActualGenericType-refers-to-Generic

+label : Identifier [1]

1

Figure 28 - Actual Types

EXPRESS Metamodel, Beta 1

<<metaclass>>
ActualGenericType

+label : Identifier [1]
+isEntity : Boolean [1

—

151

<<metaclass>>|' |ocal-element-has-local-scope <<metaclass>> <<metaclass>>
LocalElement |, |,cal-clements +namespace| LocalScope | AlgorithmScope

0..* 1

[ﬁ

<<metaclass>>

+/namespace Algorithm
{subsets namespace}
<<metaclass>> 0 - Telement-scope-is-algornthm y
GenericElement . 1 | +namespace
algorithm-hgs-parameters
+label : Scopedld [1] element-has-source <<metaclass>> 0.* 9 P
1 Parameter

+formal-parameters

0..” +source o
+position : Integer [1]
0..*|+/contains 0..* parameter-has-type
1 +formal-parameter-type
/element-occurs-in-parameter-type +/ocours-in <<metaclass>>
1 "| ParameterType
(Core)
<<metaclass>>|1 ActualAggregate-refers-to-generic <<metaclass>> J
ActualStructure | +refers-to 0." |Actual AGGREGATETyp
1 +label : Identifier [1]

ActualGenericType-refers-to-Generic

<<metaclass>>
ActualDataType

<<metaclass>>
ActualGenericType

+label : Identifier [1]
+isEntity : Boolean [1

+refers-to

1 0..x

—

Figure 29 - ActualType References to Elements of GeneralizedTypes

10.4.1 Class: Core::ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Each subtype of ActualType refers to a GenericElement that is defined among the formal Parameters of the Algorithm.
The GenericElement denotes the corresponding component of the data type of the corresponding actual parameter in any
given invocation. The GenericElement is named by an EXPRESS t ype_| abel , and the ActualType refers to that
GenericElement via the t ype_| abel .

Note: The class ActualType is defined in the Core package (see 8.6.1).

10.4.2 Class: ActualAGGREGATEType

Definition: an ActualType that is an aggregation type whose structure is specified by an ActualStructure, which refers to
the structure of a (component of) an actual parameter. The .label attribute is used to determine the ActualStructure to
which it refers. The member-type of the Actual AGGREGATEType can be any VariableType (Instantiable or Actual) and
need not have any relationship to the member type of the corresponding actual parameter.

Note: See 9.5.3.4 of ISO 10303-11:2004.

152 EXPRESS Metamodel, Beta 1

10.4.2.1 Supertypes

Core::ActualType

10.4.2.2 Attributes

Attribute: label To: Core::ldentifier

Definition: Represents the "type label" on the AGGREGATE type, which is used to associate it with the
ActualStructure.

Multiplicity: 1..1
10.4.2.3 Associations

AssociationEnd: lower-bound To: Core::SizeConstraint

Definition: represents a lower-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the lower-bound constraint is present, the number of members of the
aggregate value shall be greater than or equal to this value. If the lower-bound is not present or evaluates to zero, there is
no constraint. Unless the lower-bound specified for the AGGREGATE type is an explicit "0," this constraint shall appear.

Note: See 9.5.3.2 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: member-type To: Core::VariableType

Definition: represents the type of the components of the actual aggregation type that has the structure that corresponds to
the AGGREGATE type. The type of the members may be an InstantiableType or an ActualType derived from a
ParameterType.

Note: See 9.5.3.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: refers-to To: ActualStructure

Definition: the AGGREGATEType to which the Actual AGGREGATEType corresponds. When instantiated, the
ActualType will use the aggregate structure of the ActualParameter that corresponds to this AGGREGATEType
(element).

Multiplicity: 1..1

AssociationEnd: upper-bound To: Core::SizeConstraint

Definition: represents an upper-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the upper-bound constraint is present and does not evaluate to indeterminate
("?"), the number of members of the aggregate value shall be less than or equal to this value. If the upper-bound is not
present or evaluates to indeterminate, there is no constraint. Unless the upper-bound specified for the AGGREGATE type
is an explicit "?", this constraint shall appear.

Note: See 9.5.3.3 of ISO 10303-11:2004.
Multiplicity: 0..1

10.4.24 Other Roles

none.

EXPRESS Metamodel, Beta 1 153

10.4.3 Class: ActualAggregationType

Definition: An aggregation type whose member-type is an ActualType. An ActualAggregationType differs from an
InstantiableAggregationType in that the data type of its components is dynamically specified.

Properties: abstract

10.4.3.1 Supertypes

Core::AggregationType, Core::ActualType

10.4.3.2 Attributes

none.

10.4.3.3 Associations

AssociationEnd: member-type To: Core::ActualType
Definition: represents the ActualType that is the the type of the component elements of the ActualAggregationType.

Note: If the member-type were not itself an ActualType, the ActualAggregationType would be an Instantiable
AggregationType.

Multiplicity: 1..1
10.4.34 Other Roles

none.

10.4.4 Class: ActualARRAYType

Definition: An ActualAggregationType whose structure is an ARRAY with defined lower and upper bounds on the
index.

10.4.4.1 Supertypes

ActualAggregationType
10.4.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAY Type;
False otherwise. When isOptional is True, any instance of the ARRAYType is permitted to have members whose value is
unspecified ("?").

Note: See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1
10.4.4.3 Associations

AssociationEnd: hi-index To: Core::ArrayBound
Definition: represents the upper bound on the Integer index-range of each value of the ActualARRAY Type.
Note: See 8.2.1 and 15.11 of ISO 10303-11:2004.

154 EXPRESS Metamodel, Beta 1

Multiplicity: 1..1

AssociationEnd: lo-index To: Core::ArrayBound

Definition: represents the lower bound on the Integer index-range of each value of the ActualARRAY Type.
Note: See 8.2.1 and 15.11 of ISO 10303-11:2004.

Multiplicity: 1..1

10.4.4.4 Other Roles

none.

10.4.5 Class: ActualBAGType

Definition: An ActualAggregationType whose structure is a BAG. (See 8.9.4)

10.4.5.1 Supertypes
ActualAggregationType

10.4.5.2 Attributes

none.

10.4.5.3 Associations

none.

10.4.54 Other Roles

none.

10.4.6 Class: ActualDataType

Definition: A GENERIC or GENERIC ENTITY type that defines a type label to refer to the data type of the
corresponding component of the .source ActualParameter. That is, a GenericType (component) that is also a
GenericElement.

The ActualDataType is the first occurrence of the label among the Parameters of the Algorithm. Later occurrences in
Parameters are ActualTypeConstraints (see 10.5).

10.4.6.1 Supertypes

GenericElement, Core::GenericType

10.4.6.2 Attributes

none.

10.4.6.3 Associations

none.

10.4.6.4 Other Roles

From: ActualGenericType as refers-to

EXPRESS Metamodel, Beta 1 155

From: ActualTypeConstraint as required-type

10.4.7 Class: ActualGenericType

Definition: an ActualType that refers to an ActualDataType — the data type of an actual parameter or component of an
actual parameter. The .label attribute is used to determine the ActualStructure to which it refers. If the .isEntity attribute
is FALSE (the EXPRESS keyword is GENERIC), the actual data type can be any Instantiable data type. If the .isEntity
attribute is TRUE (the EXPRESS keyword is GENERIC ENTITY), the actual data type must be an EntityType.

Note: See 9.5.3.4 of ISO 10303-11:2004.

10.4.71 Supertypes

Core::ActualType

10.4.7.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: True if the ActualType is required to be an EntityType; False otherwise.

Multiplicity: 1..1

Attribute: label To: Core::ldentifier

Definition: Represents the "type label" on the GENERIC or GENERIC ENTITY type, which is used to associate it with
the ActualDataType.

Multiplicity: 1..1
10.4.7.3 Associations

AssociationEnd: refers-to To: ActualDataType

Definition: the GenericType to which the ActualGenericType corresponds. When instantiated, the actual type will be the
data type of the ActualParameter that corresponds to this GenericType (element).

Multiplicity: 1..1
10.4.7.4 Other Roles

none.

10.4.8 Class: ActualLISTType

Definition: An ActualAggregationType whose structure is a LIST. (See 8.9.6)
10.4.8.1 Supertypes
ActualAggregationType

10.4.8.2 Attributes

none.

10.4.8.3 Associations

none.

156 EXPRESS Metamodel, Beta 1

10.4.8.4 Other Roles

none.

10.4.9 Class: ActualSETType

Definition: An ActualAggregationType whose structure is a SET. (See 8.9.8)

10.4.9.1 Supertypes
ActualAggregationType

10.4.9.2 Attributes

none.

10.4.9.3 Associations

none.

10.4.9.4 Other Roles

none.

10.4.10 Class: ActualStructure

Definition: An AGGREGATE type that defines a type label to refer to the structure (ARRAY, BAG, LIST, SET) of the
corresponding component of the corresponding ActualParameter. That is, an AGGREGATEType (component) that is
also a GenericElement.

The ActualStructure is the first occurrence of the label among the Parameters of the Algorithm. Later occurrences in
Parameters of the same Algorithm are ActualStructureConstraints (see 10.5).

10.4.10.1 Supertypes

Core::AGGREGATEType, GenericElement

10.4.10.2 Attributes

none.

10.4.10.3 Associations

none.

10.4.10.4 Other Roles
From: ActualAGGREGATEType as refers-to

From: ActualStructureConstraint as required-structure

10.4.11 Class: GenericElement

Definition: a LocalElement representing a component of the type description for a formal Parameter that refers to the
corresponding type component of the corresponding actual parameter. The GenericElement is denoted by a type label
(the .l1abel attribute) that is unique within the scope of the Algorithm. The first occurrence of the type label in the formal
parameter list defines the GenericElement. Any later occurrence of the same type label in the formal parameter list (even

EXPRESS Metamodel, Beta 1 157

in the same Parameter) specifies an ActualStructureConstraint or an ActualTypeConstraint that is based on the
GenericElement.

Properties: abstract

10.4.11.1 Supertypes

Core::LocalElement

10.4.11.2 Attributes

Attribute: label To: Core::Scopedid

Definition: represents the "type label" on the GENERIC, GENERIC ENTITY or AGGREGATE type component,
treated as a Scopedld whose namespace is the Algorithm in which it is defined.

Multiplicity: 1..1
10.4.11.3 Associations

AssociationEnd: namespace To: Algorithm

Subsets: Core::LocalElement.namespace

Definition: the Algorithm that is the namespace of the ScopedId that is the label. This relationship is derived — the
namespace of a GenericElement is the same as the namespace of its .source Parameter.

Multiplicity: 1..1
Properties: derived

TaggedValues
derivation = sel f->source->nanespace;
AssociationEnd: source To: Parameter

Definition: the Parameter whose formal parameter type is or includes the GenericElement and defines its label. The first
(by .position) Parameter whose formal parameter type contains the label defines the label. The corresponding component
of the data type of the actual parameter is used to define the actual data type or structure that corresponds to the
GenericElement.

Note: See 9.5.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

Properties: composite

10.4.11.4 Other Roles

none.

10.4.12 Association: scope-of-actual-type

Definition: represents the relationship between an ActualType and the Algorithm that is its scope.

10.4.12.1 Supertypes

Core::local-element-has-local-scope

158 EXPRESS Metamodel, Beta 1

10.4.12.2 Association Ends

AssociationEnd: scope To: Algorithm

Definition: The Algorithm in which the ActualType is specified. The ActualType must be the data type of a Variable or
Attribute whose scope is contained in the Algorithm.

Multiplicity: 1..1

AssociationEnd: actual-types To: ActualType
Definition: the set of ActualTypes that are defined in the Algorithm.

Multiplicity: 0..* unordered

10.5 Actual Type Constraints

EXPRESS permits the generalized type specifications for formal parameters to contain labeled generic components that
refer to specific elements of the data type of the corresponding actual parameters. These elements can be referred to in
the specifications for the data types of other formal parameters. The effect of such a reference is to state a constraint on
the data types of the actual parameters that correspond to the formal parameter that contains the reference to the labeled
component. This section provides a model for the capture of such constraints, herein called ActualTypeConstraints. The
associated concepts are depicted in 10.4 (above) and yyy.

According to clause 9.5.3.4 of ISO 10303-11, the first occurrence of a labeled component in a parameter type is the
defining occurrence and subsequent occurrences are constraining references.

* parameter-has-type 1

parameter-has-structure-constraints Parameter ParameterType
Py +formal-parameter-type
1 +position:integer (from Core)
parameter-has-type-constraint:
1 +occurs-in | 1..*
+source 1
¥ + structure-constraints Element-has-source * +type-constraints
ActualStructureConstraint) ActualTypeConstraint
GenericElement
+labelldentifier +labelldentifier
+label:Scopedld
0..1 | +constraint * * +constraint | 0..1
constraint-requires-structurg constraint-requires-type
+required-structure | 1 1 | +required-type
ActualStructure ActualDataType
aggregate-has-constraint é +contains | * é generic-has-constraint
1 ; 1
AGGREGATEType GenericType
+matching-structure (from Core) (from Core) |+ matching-type
/element-occurs-in-ParameterType

Figure 30 - Actual Type Constraints

EXPRESS Metamodel, Beta 1 159

10.5.1 Class: ActualStructureConstraint

Definition: A constraint on the aggregation structure of the data type of the actual parameter that corresponds to the
formal parameter. The constraint is declared in EXPRESS by a type label on an AGGREGATE type that occurs in the
specification of the data type of a formal parameter, but is not the definition of that type label (cf. ActualStructure). The
requirement declared by the constraint is that the structure of the corresponding component of the data type of the
corresponding actual parameter (the .matching-structure) must be the same as the structure referred to by the
ActualStructure that is denoted by the (.label) type label.

Note: See 9.5.3.4 of ISO 10303-11:2004.

10.5.1.1 Supertypes

none.

10.5.1.2 Attributes

Attribute: label To: Core::ldentifier

Definition: the type label value on the syntactic AGGREGATE type that denotes the constraint. Any occurrence of the
same type label after the first denotes a constraint.

Multiplicity: 1..1

10.5.1.3 Associations

AssociationEnd: matching-structure To: Core::AGGREGATEType

via: aggregate-has-constraint

Definition: the AGGREGATE component in the specification of the data type of the formal parameter to which the
constraint applies.

Multiplicity: 1..1

AssociationEnd: required-structure To: ActualStructure

Definition: the ActualStructure that defines the .label type label that is used to establish the constraint. The
ActualStructure defines the required structure (ARRAY, BAG, LIST, SET) of the corresponding component of the data
type of the actual parameter.

Multiplicity: 1..1

10.5.14 Other Roles

From: Parameter as structure-constraints

10.5.2 Class: ActualTypeConstraint

Definition: a constraint that requires type compatibility between the .required-type ActualDataType and the (component
of the) actual data type of the actual parameter that corresponds to the occurrence of the .matching-type in the formal-
parameter-type of the Parameter that has the constraint. The constraint is declared in EXPRESS by a type label on a
GENERIC or GENERIC OBIJECT type that occurs in the specification of the data type of a formal parameter, but is not
the definition of that type label (cf. ActualDataType). The ActualTypeConstraint relates one Parameter and its formal-
parameter-type to the ActualDataType that defines the .label type label. If the formal parameter types of additional
Parameters contain the same type label, each such occurrence constitutes a distinct ActualTypeConstraint.

160 EXPRESS Metamodel, Beta 1

Note: See 9.5.3.4 of ISO 10303-11:2004.

10.5.2.1 Supertypes

none.

10.5.2.2 Attributes

Attribute: label To: Core::ldentifier

Definition: the type_label value on the syntactic AGGREGATE type that denotes the constraint. Any occurrence of the
same type_label after the first denotes a constraint.

Note: See 9.5.3.4 of ISO 10303-11:2004.
Multiplicity: 1..1

10.5.2.3 Associations

AssociationEnd: matching-type To: Core::GenericType

via: generic-has-constraint

Definition: the GENERIC or GENERIC _ENTITY component in the specification of the data type of the formal
parameter to which the constraint applies.

Multiplicity: 1..1

AssociationEnd: required-type To: ActualDataType

Definition: the ActualDatatType that defines the .label type label that is used to establish the constraint. The
ActualDataType defines the data type with which the corresponding component of the data type of the actual parameter
(the .matching-type) must be compatible.

Multiplicity: 1..1

10.5.2.4 Other Roles

From: Parameter as type-constraints

10.5.3 Association: aggregate-has-constraint

Definition: the relationship between an AGGREGATE type specification and its ActualStructureConstraint, if any.

10.5.3.1 Association Ends

AssociationEnd: constraint To: ActualStructureConstraint

Definition: the ActualStructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note: Only an AGGREGATEType that appears in the specification of the data type of a Parameter can have an
ActualStructureConstraint. The AGGREGATEType has an ActualStructureConstraint only if it has a syntactic type label
and does not itself define that type label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

EXPRESS Metamodel, Beta 1 161

AssociationEnd: matching-structure To: Core::AGGREGATEType

Definition: the AGGREGATE component in the specification of the data type of the formal parameter to which the
constraint applies.

Multiplicity: 1..1

10.5.4 Association: generic-has-constraint

Definition: the relationship between a GENERIC or GENERIC ENTITY type specification and its
ActualTypeConstraint, if any.

10.5.4.1 Association Ends

AssociationEnd: constraint To: ActualTypeConstraint
Definition: the ActualTypeConstraint, if any, that applies to this component of the GeneralizedType specification.

Note: Only a GenericType that appears in the specification of the data type of a Parameter can have an
ActualTypeConstraint. The GenericType has an ActualTypeConstraint only if it has a syntactic type label and does not
itself define that type label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: matching-type To: Core::GenericType

Definition: the GENERIC or GENERIC ENTITY component in the specification of the data type of the formal
parameter to which the constraint applies.

Multiplicity: 1..1

162 EXPRESS Metamodel, Beta 1

1 Package: Rules

The Rules Package contains the models of RULEs and SUBTYPE CONSTRAINTS, which rely on the notion of extents
of types with populations (see 9.7).

111 Dependencies

Dependency on Package: Core
Stereotypes: i mpor t

The Rules Package depends on the Core Package for the NamedElement and Scope concepts, for the EntityType concept,
and for the basic Expression concept.

Dependency on Package: Algorithms
Stereotypes: i npor t

The Rules Package depends on the Algorithms Package for the Variable and Statement concepts.

11.2 Global Rules

This section models the concepts used in EXPRESS RULE declarations. 11.2 depicts the principal concepts.

<<metaclass>> <<metaclass>>
AlgorithmScope SchemaElement
(Core) (Core)
+namespace | 4
rule-constrains-extents
variable-definedtin-scope | <<metaclass>> +constraint-rules 1 - <<metaclass>>
GlobalRule EntityType
+variables | 0..* 0. +constrained-extents (Core)
<<metaclass>
LocalVariable 0..1 1 | +namespace
(Algorithms) rule-has-body {subsets namespace}

GlobalRule-contains-NamedRule

+supporting-body | 0..1

<<metaclass>> <<metaclass>>)
Statement 1..* NamedRule NamedRule-asserts-Expression
gariinms) +contains-rules | Tposition : Integer [1] 0..1
{subgets local-elements}
v J7 +asserts-expression | 1
<<metaclass>7 <<metaclass>>| <<metaclass>>
LocalScope || +namespace V4 +local-elements| | ocalElement Expression
(Core) *
1 Jocal-element-has-local-scope O+ (Core) (Core)

Figure 31 - Global Rules

EXPRESS Metamodel, Beta 1 163

11.2.1 Class: GlobalRule

Definition: a SchemaElement denoting a collection of NamedRules for the interaction of the Extents of one or more
EntityTypes. It corresponds to the RULE declaration in EXPRESS. Every GlobalRule is also an AlgorithmScope and
may define CommonElements and Variables.

Note: See 9.6 of ISO 10303-11:2004.

11.211 Supertypes

Core::AlgorithmScope, Core::SchemaElement

11.2.1.2 Attributes

none.
11.2.1.3 Associations

AssociationEnd: constrained-extents To: Core::EntityType
via: rule-constrains-extents

Definition: the EntityTypes whose Extents are constrained by the GlobalRule
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: contains-rules To: NamedRule

via: GlobalRule-contains-NamedRule

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains. Since the
GlobalRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope.named-elements relationship.

Multiplicity: 1..* unordered

AssociationEnd: supporting-body To: Algorithms::Statement

Definition: represents the Statement, usually a StatementBlock, that provides values for Local Variables used in the
NamedRules that are contained in the GlobalRule.

The supporting-body of the GlobalRule can only appear if one or more LocalVariables are introduced for use in the
NamedRules, and even then, the supporting-body is not required if the value of each LocalVariable is completely defined
by an initializing expression.

If an implementation of the metamodel does not support the Statements compliance point, the supporting body should be
captured as text when it is present.

Note:See 9.6 of ISO 10303-11:2004.
Multiplicity: 0..1

11.214 Other Roles

none.

164 EXPRESS Metamodel, Beta 1

11.21.5 Rules

Constraint (OCL)
exi sts(sel f->defined-in);
Every GlobalRule shall be defined-in a Schema.

Constraint (OCL)
exi sts(sel f->id);
Every GlobalRule shall have an identifier

Constraint (OCL)

i f exists(self->supporting-body) then exists(self->variables);
A GlobalRule cannot have a supporting body unless it defines Local Variables.

11.2.2 Class: NamedRule

Definition: a constraint requiring a given Boolean Expression involving the Extents of one or more EntityTypes to
evaluate to True. It corresponds to a domain rule contained in a Rule declaration in EXPRESS.

Note: See 9.6 of ISO 10303-11:2004.

11.2.21 Supertypes

Core::LocalElement

11.2.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the lexical position of the NamedRule in the sequence of NamedRules contained in the
GlobalRule.

Multiplicity: 1..1
11.2.2.3 Associations

AssociationEnd: asserts-expression To: Core::Expression

Definition: represents the fact that every NamedRule states a Boolean expression that is required to be True for the
Extents in a given Population.

Note: See 9.6 of ISO 10303-11:2004. The asserts-expression that formulates the NamedRule is wholly owned by the
NamedRule. It is not treated as reusable.

Multiplicity: 1..1

AssociationEnd: namespace To: GlobalRule
via: GlobalRule-contains-NamedRule

Subsets: Core::LLocalElement.namespace

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement.namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,

EXPRESS Metamodel, Beta 1 165

the GlobalRule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

11.2.24 Other Roles

None.

11.2.3 Association: GlobalRule-contains-NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains.

11.2.31 Supertypes

Core::local-element-has-local-scope

11.2.3.2 Association Ends

AssociationEnd: contains-rules To: NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains. Since the
GlobalRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope.named-elements relationship.

Multiplicity: 1..* unordered

AssociationEnd: nhamespace To: GlobalRule

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement.namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the GlobalRule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

11.2.4 Association: rule-constrains-extents
Definition: represents the relationship between a GlobalRule and the EntityTypes whose Extents it constrains.

Note: See 9.6 of ISO 10303-11:2004.
11.2.4.1 Association Ends

AssociationEnd: constrained-extents To: Core::EntityType

Definition: represents the relationship between a GlobalRule and the Extents of the EntityTypes that it constrains
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

166 EXPRESS Metamodel, Beta 1

AssociationEnd: constraint-rules To: GlobalRule

Definition: represents the relationship between an EntityType and the GlobalRules that constrain it.
Note: See 9.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

11.3 SupertypeRules and SubtypeConstraints

This section models the concepts used in EXPRESS supertype clauses and SUBTYPE CONSTRAINT declarations.

CommonElement
(from Core)

% rule-scoped-to-supertype
SupertypeRule + +named-supertype | EntityType
+assertsAbstractBoolean 1 (from Core)
1 + collection

+constrained-subtypes 1.*
rule-includes-SubtypeConstraints

* + constraints

SubtypeConstraint—has—equivalento"1 SubtypeConstraint +subtype-constraints
N .

rule-constrains-subtypes

1 | +equivalent-rule

Expression
(from Core)

ANDConstraint ONEOFConstraint

TOTAL_OVERConstraint

Figure 32 - Supertype Rules and Subtype Constraints

11.3.1 Class: ANDConstraint

Definition: a constraint requiring its two operands to be equal as sets. Each operand can be a single Extent or a union of

Extents.

Note: See 9.2.5.4 of ISO 10303-11:2004.

11.3.1.1 Supertypes

SubtypeConstraint

EXPRESS Metamodel, Beta 1

167

11.3.1.2 Attributes

none.

11.3.1.3 Associations

none.

11.3.1.4 Other Roles

none.

11.3.2 Class: ONEOFConstraint

Definition: a constraint requiring all of its operands to be mutually exclusive. Each operand can be a single Extent or a
union of Extents.

Note: See 9.2.5.2 of ISO 10303-11:2004.

11.3.21 Supertypes

SubtypeConstraint

11.3.2.2 Attributes

none.

11.3.2.3 Associations

none.

11.3.24 Other Roles

none.

11.3.3 Class: SubtypeConstraint

Definition: a Rule requiring a specific relationship among the Extents of two or more subtypes of a given supertype
EntityType. The constraint can be stated as a relationship among the Extents as Sets of entity instances, and is equivalent
to a NamedRule.

Note: See 9.2.5 of ISO 10303-11:2004.

11.3.3.1 Supertypes

none.

11.3.3.2 Attributes

none.
11.3.3.3 Associations

AssociationEnd: collection To: SupertypeRule

via: rule-includes-SubtypeConstraints

168 EXPRESS Metamodel, Beta 1

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1

AssociationEnd: constrained-subtypes To: Core::EntityType

via: rule-constrains-subtypes

Definition: the EntityTypes whose Extents are constrained by the SubtypeConstraint..
Note: See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: equivalent-rule To: Core::Expression

Definition: represents the fact that every SubtypeConstraint is equivalent to a BooleanExpression involving the Extents
of the EntityTypes named in the SubtypeConstraint. The Expression is required to evaluate to True. The effect is that the
SubtypeConstraint is equivalent to a NamedRule.

Note: The equivalent-rule that formulates the SubtypeConstraint is wholly owned by the SubtypeConstraint. It is not
treated as reusable.

Multiplicity: 1..1

11.3.34 Other Roles

None.

11.3.4 Class: SupertypeRule

Definition: a CommonElement representing a collection of rules requiring specific relationships among the Extents of
two or more subtypes of a given supertype EntityType. The interpretation of a SupertypeRule is that all of the contained
constraints shall hold. SupertypeRule corresponds to a SUBTYPE CONSTRAINT declaration, or to the EXPRESS
supertype-clause attached to an entity declaration. A supertype-clause cannot have a Scopedld; a
SUBTYPE_CONSTRAINT can have a Scopedld, but is not required to.

Note: See 9.2.5 and 9.7 of ISO 10303-11:2004.

11.3.41 Supertypes

Core::CommonElement

11.3.4.2 Attributes

Attribute: assertsAbstract To: MOF::Boolean

Definition: Represents a declaration in a SUBTYPE CONSTRAINT that the .supertype EntityType is to be treated as
ABSTRACT in this context, which is usually an interfacing schema.

Note: See clause 9.2.5.1 of ISO 10303-11:2004.
Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 169

11.3.4.3 Associations

AssociationEnd: constraints To: SubtypeConstraint

via: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE CONSTRAINT) and
the individual subtype constraints it contains.

Multiplicity: 0..* unordered

AssociationEnd: named-supertype To: Core::EntityType

Definition: represents the relationship between a SupertypeRule and the EntityType that is the supertype of all the
EntityTypes that appear in the SupertypeRule. This relationship is nominal for ANDConstraints and ONEOFConstraints,
but significant for ABSTRACT and TOTAL OVERConstraints.

Note: See 9.2.5 and 9.7 of ISO 10303-11:2004.

Multiplicity: 1..1

11.3.4.4 Other Roles

None.

11.3.5 Class: TOTAL_OVERConstraint

Definition: a constraint requiring the union of all of its operands to be equal to the Extent of the supertype.
Note: See 9.7.2 of ISO 10303-11:2004.

Note: The proper model of a TOTAL OVER constraint requires that the supertype be one of the operands of the
equivalent-expression and that the supertype be included among the constrained-subtypes.

11.3.51 Supertypes
SubtypeConstraint

11.3.5.2 Attributes

none.

11.3.5.3 Associations

none.

11.3.54 Other Roles

none.

11.3.6 Association: rule-constrains-subtypes
Definition: represents the relationship between a SubtypeConstraint and the Extents of the EntityTypes to which it refers.

Note: See 9.2.5 of ISO 10303-11:2004.

170 EXPRESS Metamodel, Beta 1

11.3.6.1 Association Ends

AssociationEnd: constrained-subtypes To: Core::EntityType
Definition: represents the relationship between a SubtypeConstraint and the EntityTypes whose Extents it constrains.
Note: See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: constraints To: SubtypeConstraint
Definition: represents the relationship between an EntityType and the SubtypeConstraints that involve it.
Note: See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

11.3.7 Association: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE CONSTRAINT) and
the individual subtype constraints it contains.

11.3.7.1 Association Ends

AssociationEnd: collection To: SupertypeRule

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1

AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE CONSTRAINT) and
the individual subtype constraints it contains.

Multiplicity: 0..* unordered

EXPRESS Metamodel, Beta 1 171

12 Package: Expressions

The Expressions Package contains the detailed modeling concepts for Expressions. The basic Expression model in the
Core Package is permitted to be a syntactic string. This package provides the elements that support the operational
semantics of the expression.

121 Dependencies

Dependency on Package: Core
Stereotypes: i hpor t

The Expressions Package depends on the Core Package for the basic Expression concept, for the basic Instance concept
for Expression results, and for references to InstantiableTypes, SingleEntityTypes and Attributes.

Dependency on Package: Instances
Stereotypes: i hpor t

The Expressions Package depends on the Instances Package for the Instance concepts that correspond to Literals and
other references to Constants.

Dependency on Package: Algorithms
Stereotypes: i hpor t

The Expressions Package depends on the Algorithms Package for the Variable concept, and for the Function and
Parameter concepts used in FunctionCalls.

12.2 Overview of Expressions

12.2 provides the overview of Expression types. Expression and TextExpression are described in the Core package.
FullExpression is the abstract class that represents the semantic model of an EXPRESS expression. It is described in this
section. Each of its subclasses is described in a separate section below.

172 EXPRESS Metamodel, Beta 1

expression-evaluates-to-Instance

Expression +evaluation Instance
(from Core) | * (from Core)
Primary Selector Operation FunctionCall

IndexOperation QueryExpression| |PartialEntityConstructor Aggregatelnitializer

+/id:Identifier

Figure 33 - Expressions

12.2.1 Class Core::Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the assignment of Instances to model elements (e.g., Variables, Attributes, etc.) that appear
in the Expression. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note: In general, Expressions are treated as reusable. It is recommended, however, that, except for literals and local
variables, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable,
specifically those that are the definitions of Rules.

Note: Class Expression, and all of its properties, are defined in the Core Package, so that it can be used by other
Packages, including Core, as necessary. This entry serves only to provide the Definition and a link to the complete
specification in 8.14.1.

12.2.2 Class: IndexOperation
Definition: an Expression that returns a value "extracted from" a given base value.

Properties: abstract
12.2.21 Supertypes
Core::Expression

12.2.2.2 Attributes

none.

EXPRESS Metamodel, Beta 1 173

12.2.2.3 Associations

AssociationEnd: base-value To: Core::Expression

Definition: represents the base value from which the result value is to be extracted. For an AggregateIndex, the base-
value Expression must evaluate to an AggregateValue. For a Binarylndex, the base-value Expression must evaluate to a
BINARY value. For a StringIndex, the base-value Expression must evaluate to a STRING Value.

Multiplicity: 1..1

12.2.2.4 Other Roles

none.

12.2.3 Class: Operation

Definition: an abstract subclass of Expression; represents the result of a well-defined mathematical operation or character
manipulation.

Note: See clause 12 of ISO 10303-11:2004.
Properties: abstract

12.2.31 Supertypes
Core::Expression

12.2.3.2 Attributes

none.

12.2.3.3 Associations

none.

12.2.34 Other Roles

none.

12.2.4 Class: Primary

Definition: an abstract subclass of Expression representing a specific Instance, or the current value of an object that has a
simple lexical designation.

Note: See 12.7 of ISO 10303-11:2004.
Properties: abstract
12.2.41 Supertypes

Core::Expression

12.2.4.2 Attributes

none.

174 EXPRESS Metamodel, Beta 1

12.2.4.3 Associations

none.

12.2.44 Other Roles

none.

12.2.5 Class: Selector

Definition: A FullExpression that returns the value of one or more Attributes of an EntityInstance.
Note: This concept does not appear in Part 11 per se, but the three subclasses all appear in Part 11 and have this property.

Properties: abstract
12.2.51 Supertypes

12.2.5.2 Attributes

none.

12.2.5.3 Associations

AssociationEnd: entity-instance To: Core::Expression

Definition: represents the entity instance from which the Selector extracts the value of the named Attribute(s).
Note: See 12.7.3 of ISO 10303-11:2004.

Multiplicity: 1..1

12.2.5.4 Other Roles

none.

12.3 Primaries

This section describes the EXPRESS operations that return the values of named independent elements — Constants,
Enumeration items, Extents, Variables, Parameters. It also includes SELF, which is a reference to the current instance of
a data type, and Literals, which are specialized syntactic notations that refer to values of simple types.

EXPRESS Metamodel, Beta 1 175

<<metaclass>> expression-evaluates-to-Instance

Expression revaluation |<<metaclass>>
(Core) Instance
+text : ExpressText [0..1] 0.. 0.1 (Core)

T

<<metaclass>>
Primary
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
VariableRef ExtentRef ConstantRef IndeterminateRef
+id : Identifier [1]{subsets text +id : Identifier [1]{subsets text +id : Identifier [1]{subsets text
N 0.*
0.* 0.* 0.*
v X c
> P P P b +refers-to
1 |, +refers-to 1 |, +refers-to 1 |, +refers-to 1|, {subsets evaluation}
<<metaclass>> <<metaclass>> <<metaclass>> <<Singleton>>
NamedVariable NamedType Constant Indeterminate
(Algorithms) (Core) (Instances) (Instances)
<<metaclass>> <<metaclass>> <<metaclass>> <<metaclass>>
ParameterRef SELFRef Literal EnumitemRef
+id : Identifier [1]{subsets text
7
0.” s *
op <<instantiate>> " 0.7 | 0.*
- pe
1 +refers-to 'd +refers-to 1 +refers-to
{subsets refers-to} —| ll {subsets evaluation} {subsets evaluation} | 1
<<metaclass>> &
Paramsfer BuiltinConstants | | metaclass> <<metaclass>>
. SimpleValue Enumerationltem
(Algonthms) (|nStanceS) (|nstances)

Figure 34 - Primaries

12.3.1 Class: ConstantRef

Definition: a Primary Expression that returns the (current) value of a given Constant. The .id attribute refers to an
identifier for a Constant defined in, or interfaced into, the schema.

Note: See 12.7.1 of ISO 10303-11:2004.

Note: A reference to an EXPRESS "Built-in Constant" is considered to be a Literal, not a ConstantRef.

12.3.1.1 Supertypes
Primary

176 EXPRESS Metamodel, Beta 1

12.3.1.2 Attributes

Attribute: id To: Core::ldentifier

Definition: Represents the identifier that is the content of the Reference.
Multiplicity: 1..1
Properties: derived.

TaggedValues
derivation = = sel f->text;

12.3.1.3 Associations

AssociationEnd: refers-to To: Instances::Constant

Definition: represents the Constant referred to by a ConstantRef.
Note:See 12.7.1 of ISO 10303-11:2004.
Multiplicity: 1..1

12.3.14 Other Roles

none.

12.3.2 Class: EnumltemRef

Definition: a Primary Expression that returns an Enumerationltem (value)

Note: See 12.7.1 of ISO 10303-11:2004.

12.3.21 Supertypes
Primary
12.3.2.2 Attributes

Attribute: id To: Core::ldentifier

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
Properties: derived.

TaggedValues
derivation = = sel f->text;

12.3.2.3 Associations

AssociationEnd: refers-to To: Instances::Enumerationltem

Definition: represents the Enumerationltem value referred to by the EnumItemRef. This relationship specializes
Expression.evaluation.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1

177

Properties: derived
TaggedValues

derivation = = sel f->eval uati on;

12.3.2.4 Other Roles

none.

12.3.3 Class: ExtentRef

Definition: a Primary Expression denoting the extent of a NamedType (almost always an entity data type), that is, the set
of instances of that data type that appear in the population. This type of Primary is only permitted in an Expression that
states a Rule.

Note: See 9.6 of ISO 10303-11:2004.

12.3.31 Supertypes
Primary
12.3.3.2 Attributes

Attribute: id To: Core::ldentifier

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
Properties: derived

TaggedValues
derivation = = sel f->text;

12.3.3.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between the Extent Reference and the NamedType to which the .id value refers.
The value returned is the Extent of that NamedType within the (current) Population.

Multiplicity: 1..1

12.3.34 Other Roles

none.

12.3.4 Class: IndeterminateRef

Definition: a Primary Expression consisting of the symbol ("?") that denotes the Indeterminate value.

Note: See 14.2 of ISO 10303-11:2004.

12.3.41 Supertypes

Primary

178 EXPRESS Metamodel, Beta 1

12.3.4.2 Attributes

none.

12.3.4.3 Associations

AssociationEnd: refers-to To: Instances::Indeterminate

Definition: represents the fact that the IndeterminateRef refers to the single Indeterminate value. This relationship
specializes Expression.evaluation.

Properties: derived
TaggedValues

derivation = = sel f->eval uati on;

12.3.44 Other Roles

none.

12.3.5 Class: Literal

Definition: a Primary Expression consisting of a symbol that denotes a specific value of a SimpleType. The .text attribute
of Expression is the representation of the value.

Note: See 7.5 of ISO 10303-11:2004.
12.3.51 Supertypes
Primary

12.3.5.2 Attributes

none.

12.3.5.3 Associations

AssociationEnd: refers-to To: Instances::SimpleValue

Definition: represents the SimpleValue value referred to by the Lieteral. This relationship specializes
Expression.evaluation.

Properties: derived, abstract
TaggedValues
derivation = = sel f->eval uati on;

12.3.5.4 Other Roles

none.

12.3.6 Class: ParameterRef

Definition: a Primary Expression that returns the current value associated with a given Parameter.

A ParameterRef is only permitted within the body of an Algorithm.

EXPRESS Metamodel, Beta 1 179

For an InParameter, the associated value is the current value of the InParameter..
For a VarParameter, the associated value is the current value in the referent of the VarParameter.

A ParameterRef is a subclass of VariableRef, because every Parameter is a NamedVariable, and a ParameterRef is a
reference to the value of the Parameter seen as a variable in the body of the Algorithm.

Note: See 12.7.1 of ISO 10303-11:2004.

12.3.6.1 Supertypes

VariableRef
12.3.6.2 Attributes

Attribute: id To: Core::ldentifier
Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1

Properties: derived

TaggedValues
derivation = self->text;

12.3.6.3 Associations

AssociationEnd: refers-to To: Algorithms::Parameter
Subsets: VariableRef refers-to

Definition: the formal Parameter to which the ParameterRef refers. If the formal Parameter is an InParameter, the
ParameterRef refers to its current value. If the formal Parameter is a VarParameter, the ParameterRef refers to the
current value of its referent..

Note: See 12.7.1 of ISO 10303-11:2004.
Multiplicity: 1..1

12.3.6.4 Other Roles

none.

12.3.7 Class: SELFRef

Definition: A Primary Expression consisting of the symbol SELF. It refers to the value of each instance (in any
Population) of the data type being defined by the declaration in which it appears. SELF is only a valid Symbol in a
DomainRule.

Note: See clause 14.5 of ISO 10303-11:2004.

12.3.71 Supertypes
Primary
12.3.7.2 Attributes

none.

180 EXPRESS Metamodel, Beta 1

12.3.7.3 Associations

none.

12.3.74 Other Roles

none.

12.3.8 Class: VariableRef

Definition: a Primary Expression that returns the value currently associated with a given NamedVariable.
NamedVariables include LocalVariables, QueryVariables, ControlVariables, and AliasVariables. They also include
Parameters and FunctionResults seen as variables within the body of the Algorithm.

A VariableRef that refers-to a QueryVariable may occur anywhere within expressions in the owning Query.

A VariableRef that refers-to a ControlVariable may occur anywhere within the RepeatStatement that defines the
ControlVariable.

A VariableRef that refers-to an AliasVariable may occur anywhere within the AliasStatement.

A VariableRef that refers-to a LocalVariable may occur anywhere within the AlgorithmScope in which it is defined:
— for a GlobalRule, it may occur anywhere within the body of the GlobalRule, or within the NamedRules
contained in the GlobalRule;
— for an Algorithm, it may occur within the body of an Algorithm or within initial-value expressions for other
LocalVariables.

A VariableRef that refers to a Parameter may occur anywhere within the body of the Algorithm, or within initial-value
expressions for LocalVariables.

A VariableRef that refers to a FunctionResult may occur anywhere within the body of the Algorithm,

The value associated with a VariableRef that refers to aVARVariable (an AliasVariable or a VARParameter) is the
current value in the referent of the VAR Variable.

The value associated with any other VariableRef is the current value in the Variable to which the VariableRef refers.

Note: See 12.7.1 of ISO 10303-11:2004.

12.3.8.1 Supertypes
Primary
12.3.8.2 Attributes

Attribute: id To: Core::ldentifier

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
Properties: derived

TaggedValues
derivation = = sel f->text;

EXPRESS Metamodel, Beta 1 181

12.3.8.3 Associations

AssociationEnd: refers-to To: Algorithms::NamedVariable

Definition: represents the relationship between the VariableReference and the local Variable to which it refers.

Multiplicity: 1..1

12.3.8.4 Other Roles

none.

12.4 Indexing

This section describes the EXPRESS operations that select values that are part of, or linked to, Instances. Indexing
operations — aggregate indexing, string indexing and binary indexing — extract component values by their numbered
positions in the Instance. Selector operations extract values related to entity instances by the name of the component or
relationship — attributes, implicit inverse attributes (UsedIn), and attribute-groups.

StringIndex-has-first-code .
+index-value

+ fi - -
first-code Expression 1
Binarylndex-has-first-bit
1 (from Core) + first-bit
StringIndex-has-last-codq
+last-code
Binarylndex-has-last-bjit
0.1 +last-bit
0..1
+base-value | 1
IndexOp-has-base-valug
IndexOperation
Stringindex Binarylndex
0..1
Aggregatelndex P

Aggregatelndex-has-index-value

Figure 35 - Indexing Operations

12.4.1 Class: Aggregatelndex

Definition: an IndexOperation that returns the value of a specified member of a given AggregateValue. .base-value
evaluates to the AggregateValue. .index-value evaluates to the "position" of the member to be extracted. The
interpretation of the .index-value depends on the kind of AggregateValue (Indexed, Ordered, Unordered).

Note: See 12.6.1 of ISO 10303-11:2004.

182 EXPRESS Metamodel, Beta 1

12411 Supertypes

IndexOperation

12.41.2 Attributes

none.
12.4.1.3 Associations

AssociationEnd: index-value To: Core::Expression

Definition: represents the (Integer) index value designating the member whose value is to be extracted. The interpretation
of the index value depends on the kind of AggregateValue.

Note: See 12.6.1 of ISO 10303-11:2004.
Multiplicity: 1..1

12414 Other Roles

none.

12.4.2 Class: Binarylndex

Definition: An IndexOperation that returns a substring of one or more bits from a BINARY value. .base-value is the
BINARY value. .first-bit designates the position of the first bit to be extracted. .last-bit designates the position of the last
bit to be extracted. .last-bit has no value if only one bit is to be extracted.

Note: See clause 12.3.1. of ISO 10303-11:2004.
12.4.21 Supertypes

IndexOperation

12.4.2.2 Attributes

none.

12.4.2.3 Associations

AssociationEnd: first-bit To: Core::Expression
Definition: represents the (positive integer) value that designates the position of the first bit to be extracted.

Multiplicity: 1..1

AssociationEnd: last-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last bit to be extracted. .last-bit has
no value if only one bit is to be extracted.

Multiplicity: 0..1

12.4.24 Other Roles

none.

EXPRESS Metamodel, Beta 1 183

12.4.3 Class: Stringindex

Definition: An IndexOperation that returns a substring of one or more characters (codes) from a STRING value. .base-
value is the STRING value. .first-code designates the position of the first character (code) to be extracted. .last-code
designates the position of the last character (code) to be extracted. .last-code has no value if only one character is to be
extracted.

Note: See clause 12.5.1. of ISO 10303-11:2004.
12.4.3.1 Supertypes
IndexOperation

12.4.3.2 Attributes

none.

12.4.3.3 Associations

AssociationEnd: first-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first character (code) to be extracted.

Multiplicity: 1..1

AssociationEnd: last-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last character (code) to be
extracted. .last-code has no value if only one character (code) is to be extracted.

Multiplicity: 0..1

12.4.3.4 Other Roles

none.

12.5 Selection

This section describes the EXPRESS operations that select values that are part of, or linked to, Instances. Indexing
operations — aggregate indexing, string indexing and binary indexing — extract component values by their numbered
positions in the Instance. Selector operations extract values related to entity instances by the name of the component or
relationship — attributes, implicit inverse attributes (UsedIn), and attribute-groups.

184 EXPRESS Metamodel, Beta 1

+ entity-instance Expression

) (from Core)
Selector-extracts-from-Entity
Selector
AttributeRef UsedInRef GroupRef
+/id:Identifier +/id:Identifier
AttributeRef-refers-to-Attribute UsedInRef-inverts-Attribute GroupRef-refers-to-SingleE ntity Type
+refers-to 1 1 +inverse-of 1 | +refers-to

*

Attribute +°f'e”tity‘ SingleEntityType
(from Core) +declares 1 (from Core)

attribute-declared-in-entity

Figure 36 - Attribute and Attribute-Group Selectors

12.5.1 Class: AttributeRef

Definition: a Selector expression that returns the value of a given Attribute of a given entity instance

Note: See 12.7.3 of ISO 10303-11:2004.

12.5.1.1 Supertypes

Selector

12.5.1.2 Attributes

Attribute: id To: Core::ldentifier
Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1

Properties: derived

TaggedValues
derivation = sel f->text;

EXPRESS Metamodel, Beta 1

185

12.5.1.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between the AttributeReference and the Attribute to which it refers.

Multiplicity: 1..1

12.51.4 Other Roles

none.

12.5.2 Class: GroupRef

Definition: a Selector that returns a PartialEntityValue consisting of the values of the Attributes of a given entity instance
that constitute a given SingleEntityType.

Note: See 12.7.4 of ISO 10303-11:2004.

12.5.2.1 Supertypes

Selector

12.5.2.2 Attributes

Attribute: id To: Core::ldentifier
Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1

Properties: derived

TaggedValues
derivation = = sel f->text;

12.5.2.3 Associations

AssociationEnd: refers-to To: Core::SingleEntityType

Definition: represents the relationship between the GroupReference and the SingleEntityType (group of Attributes) to
which it refers.

Multiplicity: 1..1

12.5.24 Other Roles

none.

12.5.3 Class: UsedInRef

Definition: a Selector expression that returns the Set of Entitylnstances for which the given entity instance is in the range
of the specified Attribute. In effect, it returns the value of the corresponding inverse attribute for the given entity
instance.

Note: See clause 15.26 of ISO 10303-11:2004.

186 EXPRESS Metamodel, Beta 1

12.5.3.1 Supertypes

Selector

12.5.3.2 Attributes

none.
12.5.3.3 Associations

AssociationEnd: inverse-of To: Core::Attribute

Definition: represents the relationship between the UsedIn Reference and the Attribute designated by the .id value. The
UsedIn Reference effectively produces the "inverse" of this Attribute.

Multiplicity: 1..1

12.5.3.4 Other Roles

none.

12.6 Operations

This section describes Operations, QueryExpressions and Function Calls. These are grouped together, because the
distinction made in EXPRESS is syntactic, while the distinction made in this model is between schema-defined Functions
and language-defined "functions" and "operations."

FunctionCalls represent invocations/applications of schema-defined FUNCTIONs. QueryExpressions represent
invocations of the special EXPRESS function QUERY. Operations represent all EXPRESS operations represented by
symbols or by "built-in functions" whose names are keywords. There is not a one-to-one correspondence between
Operations and EXPRESS operation symbols, because some of the symbols are "overloaded," in that they denote
different operations for operands of different data types. In addition, Coercion operations (which convert a value from
one data type to another) usually do not have EXPRESS syntax, but are required by the interpretation of the expression.

EXPRESS Metamodel, Beta 1 187

BinaryOperation-has-right-operand Coercion-has-operand

+right-operand - +operand
] Expression 1
BinaryOperation-has-left-operan UnaryOperation-has-operand
+ left-operand (from Core) +unary-operand
1 % 1
Operation
BinaryOperation UnaryOperation
+operatorBinaryOperator +operatorUnaryOperator
Coercion *

*

Coercion-has-target-type

+target-type 1

VariableType
(from Core)

Figure 37 - Operations and Built-in Functions

12.6.1 Class: BinaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation or character manipulation on
two Expression operands, which are distinguished. An instance of BinaryOperation represents a usage of a value of
BinaryOperator with a specific left and right operand.

Note: See clause 12 of ISO 10303-11:2004.

12.6.1.1 Supertypes
Operation

12.6.1.2 Attributes

Attribute: operator To: BinaryOperator

Definition: Represents the conceptual operation that is actually being performed by the BinaryOperation.
Note: See ISO 10303-11.2:2004, clause 12.

Multiplicity: 1..1

188 EXPRESS Metamodel, Beta 1

12.6.1.3 Associations

AssociationEnd: left-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the "left" operand in the definition of the operation

Note: See clause 12 of ISO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: right-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the "right" operand in the definition of the operation.

Note: See clause 12 of ISO 10303-11:2004.
Multiplicity: 1..1
12.6.1.4 Other Roles

none.

12.6.2 Datatype: BinaryOperator
Stereotypes: enuner ati on

Definition: Conceptual EXPRESS language element representing the interpretation of a binary operation symbol in the
context of the operand datatypes. Instances of this class are distinct operations, such as number-addition, set-union,
string-compare-equal, etc. Some BinaryOperators are denoted by "built-in functions" in EXPRESS syntax.

Note: See ISO 10303-11.2:2004 clause 12 and some elements of clause 15.

12.6.2.1 Supertypes

none.

12.6.2.2 Values

Value: AND

Definition: Returns true if both operands are true, unknown if both are unknown, and false if either is false.

Value: Add

Definition: Returns the arithmetic sum of two NUMBER operands.

Value: BagAdd

Definition: Returns the BagValue resulting from adding one to the count of occurrences of the value of the second
operand in the first operand, which must be a BagValue.

Value: BagRemove

Definition: Returns the BagValue resulting from subtracting one from the count of occurrences of the value of the second
operand in the first operand, which must be a BagValue. If the first operand contains no occurrences of the value of the
second operand, returns the value of the first operand.

EXPRESS Metamodel, Beta 1 189

Value: BagUnion

Definition: For two BAG operands with a common member type, returns the BAG value in which the number of
occurrences of each value of the member type is the sum of the number of its occurrences in the two operands.

Value: BinaryAppend

Definition: Returns the BinaryValue whose bits are the bits of the value of the first operand, which must be a
BinaryValue, in that order, followed by the bits of the value of the second operand, which must be a BinaryValue, in that
order.

Value: DIV

Definition: For two INTEGER operands, returns the integral part of the quotient of dividing the value of the first by the
value of the second.

Value: Difference

Definition: For two SET operands with a common member type, returns the SET value containing all members of the
first operand except for those that are also members of the second operand. For two BAG operands with a common
member type, returns the BAG value in which the number of occurrences of each value of the member type is the number
of its occurrences in the first operand minus the number of its occurrences in the second operand, but not less than zero.

Value: Divide

Definition: For two NUMBER operands, returns the quotient of dividing the value of the first by the value of the second.

Value: EntityConstructor

Definition: For two operands that are PartialEntityValues, returns the PartialEntityValue that contains all of the
SingleEntityValues that were present in either operand. This operation is referred to in EXPRESS as the "complex entity
constructor” (|]).

Note: See ISO 10303-11:2004 clause 12.10

Value: EntityValueEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns false if the value
of any attribute of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that attribute of the second
operand, else true. If both operands are of a common data type and that data type is an aggregation type whose members
are entity instances, returns false if the operands are of different sizes, or if for any of the corresponding members of the
two operands, the value of any attribute of the member of the first operand is NotEqual to (or EntityValueNotEqual to)
the value of that attribute of the member of the second operand, else true. If the common data type is anything else, this
operator is equivalent to Equal.

Value: EntityValueNotEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if the value
of any attribute of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that attribute of the second
operand, else false. If both operands are of a common data type and that data type is an aggregation type whose members
are entity instances, returns true if the operands are of different sizes, or if for any of the corresponding members of the
two operands, the value of any attribute of the member of the first operand is NotEqual to (or EntityValueNotEqual to)
the value of that attribute of the member of the second operand, else false. If the common data type is anything else, this
operator is equivalent to NotEqual.

190 EXPRESS Metamodel, Beta 1

Value: Equal

Definition: Definition: Returns true if both operands are of a common data type and equal in value, as defined for that
type, else false. For the definition of "equal in value," see ISO 10303-11:2004 clause 12.2.1. .

Value: Exponent

Definition: For two NUMBER operands, returns the the value of the first raised to the power specified by the value of the
second.

Value: Greater

Definition: Returns true if both operands are of a common data type and the value of the first operand is greater than the
value of the second operand, as defined for that type, else false. For the definition of "is greater than," see ISO
10303-11:2004 clause 12.2.1.

Value: IN

Definition: Returns true if the value of the first operand is Equal to the value of any member of the second operand
(which must be an AggregateValue); else false. If the first operand is an Entitylnstance, "is Equal to" is interpreted as "is
InstanceEqual to."

Value: InstanceEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if both
operands refer to the same individual, else false. If both operands are of a common data type and that data type is an
aggregation type whose members are entity instances, returns false if the operands are of different sizes, or if any of the
corresponding members of the two operands refer to different individuals, else true. If the common data type is anything
else, this operator is equivalent to Equal.

Value: InstanceNotEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if the
operands refer to distinct individuals, else false. If both operands are of a common data type and that data type is an
aggregation type whose members are entity instances, returns true if the operands are of different sizes, or if any of the
corresponding members of the two operands refer to different individuals, else false. If the common data type is anything
else, this operator is equivalent to NotEqual.

Value: Intersection

Definition: For two SET operands with a common member type, returns the mathematical intersection of the two sets.
For two BAG operands with a common member type, returns the BAG value in which the number of occurrences of each
value of the member type is the smaller of the number of its occurrences in the two operands.

Value: LIKE

Definition: Returns true if both operands are StringValues and the value of the first operand is a match for the pattern that
is the value of the second operand. For the interpretation of the pattern, see ISO 10303-11:2004 clause 12.2.5.

Value: Less

Definition: Returns true if both operands are of a common data type and the value of the first operand is less than the
value of the second operand, as defined for that type, else false. For the definition of "is less than," see ISO
10303-11:2004 clause 12.2.1.

EXPRESS Metamodel, Beta 1 191

Value: ListAddFirst

Definition: Returns the ListValue whose first member is the value of the second operand and whose subsequent members
are the members of the value of the first operand, which must be a ListValue, in that order.

Value: ListAddLast

Definition: Returns the ListValue whose members are the members of the value of the first operand, which must be a
ListValue, in that order, followed by the value of the second operand.

Value: ListAppend

Definition: Returns the ListValue whose members are the members of the value of the first operand, which must be a
ListValue, in that order, followed by the members of the value of the second operand, which must be a ListValue, in that
order.

Value: MOD

Definition: For two INTEGER operands, returns the remainder of dividing the value of the first by the value of the
second.

Value: Multiply

Definition: Returns the arithmetic product of two NUMBER operands.

Value: NVL

Definition: If the value of the first operand is Indeterminate (?), returns the value of the second operand; else returns the
value of the first operand.

Note:See ISO 10303-11:2004 clause 15.18.

Value: NotEqual

Definition: Returns true if both operands are of a common data type and unequal in value, as defined for that type, else
false. For the definition of "equal in value," see ISO 10303-11:2004 clause 12.2.1.

Value: NotGreater

Definition: Returns true if both operands are of a common data type and the value of the first operand is less than or
equal to the value of the second operand, as defined for that type, else false. For the definition of "is less than or equal
to," see ISO 10303-11:2004 clause 12.2.1.

Value: NotLess

Definition: Returns true if both operands are of a common data type and the value of the first operand is greater than or
equal to the value of the second operand, as defined for that type, else false. For the definition of "is greater than or equal
to," see ISO 10303-11:2004 clause 12.2.1.

Value: OR

Definition: Returns true if either operand is true, unknown if both are unknown, and false if both are false.

Value: SetAdd

Definition: Returns the SetValue that is the union of the value of the first operand, which must be a SetValue, with the
SetValue comprising exactly one member equal (or InstanceEqual) to the value of the second operand.

192 EXPRESS Metamodel, Beta 1

Value: SetUnion

Definition: For two SET operands with a common member type, returns the mathematical union of the two sets.

Value: StringAppend

Definition: Returns the StringValue whose characters are the characters of the value of the first operand, which must be a
StringValue, in that order, followed by the characters of the value of the second operand, which must be a StringValue, in
that order.

Value: Subset

Definition: Returns true if every member of the value of the first operand (which must be an AggregateValue) is IN the
value of the second operand (which must be an AggregateValue); else false.

Value: Subtract

Definition: For two NUMBER operands, returns the result of subtracting the value of the second from the value of the
first.

Value: Valueln

Definition: Returns true if the value of the first operand is Equal to the value of any member of the second operand
(which must be an AggregateValue); else false. If the first operand is an Entitylnstance, "is Equal to" is interpreted as "is
EntityValueEqual to."

Note: See ISO 10303-11:2004 clause 15.28.

Value: XOR

Definition: Returns true if one operand is true and one is false, unknown if either is unknown, and false otherwise.

12.6.3 Class: Coercion

Definition: an Operation representing the conversion of the operand to a specific data type (InstantiableType). This
operation is implicit in a number of EXPRESS expressions, notably:
— in converting between a defined data type and its fundamental type (on which the operations are defined), and
— in converting an EntityValue to an Entitylnstance of the corresponding EntityType.

In most cases, the Coercion does not change the “value” of the operand; rather the Coercion maps the value to the
corresponding value of the related data type.

Note: See clause 12 of ISO 10303-11:2004, and the proposed revision to clause 12.10.
12.6.3.1 Supertypes
Operation

12.6.3.2 Attributes

None.

EXPRESS Metamodel, Beta 1 193

12.6.3.3 Associations

AssociationEnd: operand To: Core::Expression
Definition: represents the Expression whose result is to be converted to the target-type by the Coercion operation.

Multiplicity: 1..1

AssociationEnd: target-type To: Core::VariableType

Definition: represents the data type to which the operand of the Coercion is to be converted.

Multiplicity: 1..1

12.6.34 Other Roles

none.

12.6.4 Class: UnaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation on a single Expression operand.
A UnaryOperation models a use of a UnaryOperator with a particular operand.

Note: See clause 12 of ISO 10303-11:2004.
12.6.4.1 Supertypes

Operation

12.6.4.2 Attributes

Attribute: operator To: UnaryOperator
Definition: Represents the conceptual operation that is actually being performed by the UnaryOperation.
Note: See ISO 10303-11.2:2004, clause 12.

Multiplicity: 1..1

12.6.4.3 Associations

AssociationEnd: unary-operand To: Core::Expression
Definition: represents the operand Expression that produces the input to a UnaryOperation.
Note: See clause 12 of ISO 10303-11:2004.

Multiplicity: 1..1

12.6.44 Other Roles

None.

194 EXPRESS Metamodel, Beta 1

12.6.5 Datatype: UnaryOperator
Stereotypes: enuner at i on

Definition: Conceptual EXPRESS language element representing the interpretation of a unary operation symbol in the
context of the operand datatype. Instances of this class are distinct operations, such as numeric-negation, boolean-
negation, real-square-root, absolute-value, etc. Some UnaryOperators are denoted by "built-in functions" in EXPRESS
syntax.

Note: See ISO 10303-11.2:2004 clause 12 and some elements of clause 15.

12.6.5.1 Supertypes

none.

12.6.5.2 Values

Value: ABS

Definition: For a NUMBER operand, returns the magnitude (absolute value) of the value of the operand.

Value: ACOS

Definition: For a NUMBER operand, returns the mathematical arc cosine of the value of the operand.

Value: ASIN

Definition: For a NUMBER operand, returns the mathematical arcsine of the value of the operand.

Value: ATAN

Definition: For a NUMBER operand, returns the mathematical arctangent of the value of the operand.

Value: BinaryLength

Definition: For an operand that is a BinaryValue, returns the number of bits in the value.

Value: COS

Definition: For a NUMBER operand, returns the mathematical cosine of the value of the operand.

Value: EXISTS

Definition: Returns false if the operand is Indeterminate (?), else true.

Value: EXP

Definition: For a NUMBER operand, returns the mathematical exponential function of the value of the operand.

Value: HiBound

Definition: For an operand whose data type is an aggregation type, returns the declared upper-bound value for the size of
the values, or for an ARRAY, the declared maximum index-value.

Value: Hilndex

Definition: For an operand that is an AggregateValue, returns the largest valid index-value for the value.

EXPRESS Metamodel, Beta 1 195

Value: ldentity

Definition: Returns the value of the operand.

Value: LOG

Definition: For a NUMBER operand, returns the Napierian logarithm of the value of the operand.

Value: LOG10

Definition: For a NUMBER operand, returns the logarithm to the base 10 of the value of the operand, which for an
INTEGER value is the number of decimal digit characters required to represent it.

Value: LOG2

Definition: For a NUMBER operand, returns the logarithm to the base 2 of the value of the operand, which for an
INTEGER value is the number of bits required to represent it.

Value: LoBound

Definition: For an operand whose data type is an aggregation type, returns the declared lower-bound value for the size of
the values, or for an ARRAY, the declared minimum index-value.

Value: Lolndex

Definition: For an operand that is an AggregateValue, returns the smallest valid index-value for the value.

Value: NOT

Definition: For an operand that is a LogicalValue, returns true if the value is false, unknown if the value is unknown, and
false if the value is true.

Value: Negate

Definition: For a NUMBER operand, returns the additive inverse of the value of the operand.

Value: ODD

Definition: For an operand that is an INTEGER Value, returns false if the value is exactly divisible by 2 and true
otherwise.

Value: RolesOf

Definition: For an Entitylnstance operand, returns a set of RoleName values representing all the distinct Attributes
(RangeRoles) which the operand plays in the Population.

Value: SIN

Definition: For a NUMBER operand, returns the mathematical sine of the value of the operand.

Value: SQRT

Definition: For a NUMBER operand, returns the mathematical square root of the value of the operand, or Indeterminate
if it is negative.

Value: SizeOf

Definition: For an operand that is an AggregateValue, returns the number of members in the value.

196 EXPRESS Metamodel, Beta 1

Value: StringLength

Definition: For an operand that is a StringValue, returns the number of characters in the value.

Value: TAN

Definition: For a NUMBER operand, returns the mathematical tangent of the value of the operand.

Value: TypeOf

Definition: Returns a Set of TypeName values representing the data types of which the operand is an instance.

Value: VALUE

Definition: For a STRING operand, returns the NUMBER value resulting from interpreting the operand as the
representation of a numeric value, or Indeterminate, if no such interpretation can be made.

Value: ValueUnique

Definition: For an operand that is an AggregateValue, returns true if no two members of the operand are Equal or
EntityValueEqual.

12.7 Function Calls

This section describes Operations, QueryExpressions and Function Calls. These are grouped together, because the
distinction made in EXPRESS is syntactic, while the distinction made in this model is between schema-defined Functions
and language-defined "functions" and "operations."

FunctionCalls represent invocations/applications of schema-defined FUNCTIONs. QueryExpressions represent
invocations of the special EXPRESS function QUERY. Operations represent all EXPRESS operations represented by
symbols or by "built-in functions" whose names are keywords. There is not a one-to-one correspondence between
Operations and EXPRESS operation symbols, because some of the symbols are "overloaded," in that they denote
different operations for operands of different data types. In addition, Coercion operations (which convert a value from
one data type to another) usually do not have EXPRESS syntax, but are required by the interpretation of the expression.

EXPRESS Metamodel, Beta 1 197

ActualParameter-has-value +actual-value Expression
(from Core)
0..1
* call-provides-actual-parameters Zr
ActualParameter | +in'Fun°ti°ncaq‘ FunctionCall | FunctionCall-returns-resul
+positioninteger +actual-parameters 01
’ actual-parameter-corresponds-to-formal-parameter ’ FunctionCall-invokes-function
+invokes-function 1 +returns-result | !
Function ‘1_ +result FunctionResult
(from Algorithms) | +namespace 1 | (from Algorithms)
1|, +formal-parameter function-has-result
Parameter algorithm-has-parameters \V/
(from Algorithms) ’ +namespace‘ Algorithm
+position:integer +formal-parameters 4 | (from Algorithms)

Figure 38 - Function Calls

12.7.1 Class: ActualParameter

Definition: represents the substitution of the actual parameter instance for the formal parameter and, where required, the
substitution of the data type of the actual parameter for the GeneralizedType of the formal parameter and any derivatives.
When the corresponding formal Parameter is an InParameter (always in a FunctionCall), the actual-value is present —
either an instance of an InstantiableType or Indeterminate. When the corresponding formal Parameter is a VARParameter
(only in a ProcedureCall), the actual-value is not present, the actual-reference is present instead.

Note: See 12.8 of ISO 10303-11:2004.

12.711 Supertypes

none.

12.71.2 Attributes

Attribute: position To: MOF::Integer

Definition: represents the position in which the ActualParameter occurs in the sequence associated with the FunctionCall
(used to associate the ActualParameter with a formal parameter).

Note: See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

198 EXPRESS Metamodel, Beta 1

12.7.1.3 Associations

AssociationEnd: actual-referent To: Statements::VAREXxpression

Definition: the VARExpression that denotes the referent object to be associated with the formal (VAR) Parameter during
the invocation.

Multiplicity: 0..1

AssociationEnd: actual-value To: Core::Expression

Definition: the Expression that specifies the value to be passed for the ActualParameter. When the corresponding formal
Parameter is an InParameter (always in a FunctionCall), the actual-value is present. When the corresponding formal
Parameter is a VARParameter (only in a ProcedureCall), the actual-value is not present.

Note: See 12.8 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: formal-parameter To: Algorithms::Parameter

Definition: represents the formal parameter to which the ParameterBinding applies.
Note: See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: in-FunctionCall To: FunctionCall

via: call-provides-actual-parameters

Definition: the FunctionCall, if any, that contains the ActualParameter.
Multiplicity: 0..1
AssociationEnd: in-ProcedureCall To: Statements::ProcedureCall

via: Statements::procedure-call-provides-actual-parameters

Definition: the ProcedureCall, if any, in which the ActualParameter appears.
Multiplicity: 0..1
12.7.1.4 Other Roles

none.

12.7.2 Class: FunctionCall

Definition: an Expression that represents the instance resulting from the invocation of a Function with zero or more
Expression operands called "actual parameters."

Note: See 12.8 of ISO 10303-11:2004.

12.7.21 Supertypes

Core::Expression

EXPRESS Metamodel, Beta 1 199

12.7.2.2 Attributes

none.

12.7.2.3 Associations

AssociationEnd: actual-parameters To: ActualParameter

via: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

AssociationEnd: invokes-function To: Algorithms::Function

Definition: represents the relationship between the FunctionCall and the formal definition of the Function invoked.
Note: See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: returns-result To: Algorithms::FunctionResult

Definition: represents the relationship between the FunctionCall and the formal definition of the FunctionResult, which
describes the instance that results from the FunctionCall.

Note: See 12.8 of ISO 10303-11:2004.
Multiplicity: 1..1
Properties: derived

TaggedValues

derivation = sel f->i nvokes-functi on->result

12.7.2.4 Other Roles

none.

12.7.2.5 Rules

Constraint

exi sts(sel f->actual -val ue) XOR exists(sel f->actual -referent);
An ActualParameter is either a value (expression) or a reference (expression)

Constraint

exi sts(sel f->i nFunctionCall) XOR exists(self->inProcedureCall);
Every ActualParameter appears in either a FunctionCall or a ProcedureCall

Constraint

| F sel f->formal - paranet er->i nout THEN exi sts(sel f->actual -referent);

If the corresponding formal-parameter is an VAR parameter, the ActualParameter must be a Reference; if the formal
parameter is an InParameter, it must be a value..

200 EXPRESS Metamodel, Beta 1

Constraint
| F NOT (sel f->fornal -paraneter->i nout) THEN exi sts(sel f->actual -val ue);

12.7.3 Association: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

12.7.3.1 Association Ends

AssociationEnd: actual-parameters To: ActualParameter

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

AssociationEnd: in-FunctionCall To: FunctionCall
Definition: the FunctionCall, if any, that contains the ActualParameter.

Multiplicity: 0..1

12.8 Query Expressions

This section describes the QueryExpression. depicts the concepts.

+aggregate-operand
<<metaclass>> 99reg P

Expression 1
(G +select-condition
1
T query-has-seglect-condition
0..1
<<metaclass>> <<metaclass>>
LocalScope K———QueryExpression
(Core) 0..* query-has-aggregate-operand
1 | *namespace 1 | +namespace
local-element-has-local-scope {subsets namespace}
< scope-of-variable-is-query
0.* 1 +query-variable
. *local-elements {subsets local-elements}
<<metaclass>> <<metaclass>>
LocalElement QueryVariable
(Core)

]

<<metaclass>>
NamedVariable
(Algorithms)

Figure 39 - Query Expressions

EXPRESS Metamodel, Beta 1

201

12.8.1 Class: QueryExpression

Definition: an Expression representing the (aggregate) instance that results from extracting from the value of the
aggregate-operand (an Expression yielding an aggregate value) the corresponding collection of member instances that
satisfy a given select-condition. Every QueryExpression is also the LocalScope for the QueryVariable that designates
members of the aggregate value in the select-condition.

Note: See 12.6.7 of ISO 10303-11:2004.

12.8.1.1 Supertypes

Core::Expression, Core::LocalScope

12.8.1.2 Attributes

none.
12.8.1.3 Associations

AssociationEnd: aggregate-operand To: Core::Expression

Definition: represents the operand Expression whose result is the aggregate value from which members will be extracted
by the Query operation.

Note: See 12.6.7 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: query-variable To: QueryVariable

via: scope-of-variable-is-query

Subsets: Core::LocalScope.local-elements

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member
elements of the aggregate-operand.

Multiplicity: 1..1

AssociationEnd: select-condition To: Core::Expression

Definition: represents the relationship between a Query expression and the Logical Expression that defines admissibility
of members in the Query result. This Expression is treated as a kind of "function definition" having a single Parameter
which is the Query variable. The .select-condition "function" is invoked once for each member value of the .aggregate-
value.

Note: See Clause 12.6.7 of ISO 10303-11:2004. The Expression that formulates the select-condition is owned by the
QueryExpression. It is not treated as reusable.

Multiplicity: 1..1

12.8.1.4 Other Roles

none.

12.8.2 Class: QueryVariable

Definition: a Variable that ranges over the member elements of the aggregate-operand in evaluating a the
QueryExpression. The scope of a QueryVariable is the QueryExpression, that is, all references to it occur in the select-

202 EXPRESS Metamodel, Beta 1

condition of the QueryExpression. The data-type of a QueryVariable is implicitly the data type of the member-element of
the aggregate operand.

Note: See 12.6.7 of ISO 10303-11:2004.

12.8.2.1 Supertypes

Algorithms::NamedVariable, Algorithms::Variable

12.8.2.2 Attributes

none.

12.8.2.3 Associations

AssociationEnd: namespace To: QueryExpression

via: scope-of-variable-is-query

Subsets: Core::LocalElement.namespace
Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1
12.8.24 Other Roles

none.

12.8.3 Association: scope-of-variable-is-query

Definition: represents the (1-to-1) relationship between the QueryVariable and the QueryExpression in which it is
defined.

12.8.3.1 Supertypes

Core::local-element-has-local-scope

12.8.3.2 Association Ends

AssociationEnd: nhamespace To: QueryExpression

Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1

AssociationEnd: query-variable To: QueryVariable

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member
elements of the aggregate-operand.

Multiplicity: 1..1

12.9 Aggregate Initializers

This section describes the EXPRESS operations that construct AggregateValues from component values.

EXPRESS Metamodel, Beta 1 203

expression-evaluates-to-Instance

pm———— . <<metaclass>3 +member-value MemberBinding-has-value
metaciass>= 4 aygluation 0.* Expression p
Instance
(Core) 0..1 AN (Core) +derivation RepeatCount-has-derivation
0..1
T 0.*
<<metaclass>>
<<metaclass>> RepeatCount

Aggregatelnitializer +count : Integer [0..1]

0.+ 1 0..1 | +repetition
MemberBinding-has-repetition
initializer-includes-binding 1 0.”
initializer-prodyices-result +bindings <<metaclass>>
. MemberBinding
+result-value 0.. —
0..1 | {subsets evaluation} +position : Integer [1]
<<metaclass>> o+
GenericAggregate o
(Instances) MemberBinding-binds-to-slot
J7 0..* | +to-slot
value-has-slot <<metaclass>>
<<metaclass>> +member-slot ListMember
LISTValue 1 0.* (Instances)
) +position : Integer [1]

Figure 40 - Aggregate Initializers

12.9.1 Class: Aggregatelnitializer

Definition: represents the EXPRESS "aggregate initializer." It produces a value of type AGGREGATE OF GENERIC,
by binding a sequence of member values to positions in the generic aggregate value.

Note: See 12.9 of ISO 10303-11:2004.
12.9.1.1 Supertypes
Core::Expression

12.9.1.2 Attributes

None.

204 EXPRESS Metamodel, Beta 1

12.9.1.3 Associations

AssociationEnd: bindings To: MemberBinding

Definition: represents the relationship between the Aggregatelnitializer and the set of MemberBindings it comprises.
Note: See 12.9 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: result-value To: Instances::GenericAggregate

Definition: represents the aggregate value that results from the aggregate initializer. This is a refinement of
Expression.evaluation.

If the Aggregatelnitializer expression can be evaluated without regard to any actual population ("compile time"), this
value shall be present, but not otherwise.

Note: See 12.9 of ISO 10303-11:2004.
Multiplicity: 0..1
Properties: derived

TaggedValues
derivation = = sel f->eval uati on;

12.9.1.4 Other Roles

none.

12.9.2 Class: MemberBinding

Definition: represents the placement of a member value in a particular position in the GenericAggregate value resulting
from the aggregate initializer. Unless the member value has a repetition count, the member binding associates the
.member-value with one .to-slot ListMember in the GenericAggregate. If the member value has a repetition count (that is
not a literal "1"), the MemberBinding associates the .member-value with one or more consecutive ListMembers in the
GenericAggregate. If the member value has a repetition count that cannot be evaluated without a given population (i.e., at
"compile time"), the relationship between the MemberBinding and ListMembers is not specified. When the
Aggregatelnitializer contains any MemberBinding with such a repetition, the relationship between subsequent
MemberBindings and ListMembers cannot be determined without a given population.

Note: See 12.9 of ISO 10303-11:2004.

12.9.2.1 Supertypes

none.

12.9.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the ordinal position of the MemberBinding specification in the Aggregatelnitializer. When no
MemberBinding in the Aggregatelnitializer has a represented .repetition value, MemberBinding.position and .to-
slot.position will coincide. Otherwise, the relationship between the two .position values will depend on the .repetition
values, and may not be determinable without a given Population.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 205

12.9.2.3 Associations

AssociationEnd: member-value To: Core::Expression

Definition: represents the member value to be assigned to the MemberBinding position in the aggregate value, as the
result of the Expression.

Note: See 12.9 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: repetition To: RepeatCount

Definition: represents the relationship between the MemberBinding and an associated RepeatCount, if any. If the
repetition count for the .member-value is implicitly 1, or explicitly a literal "1," this relationship shall not appear. In all
other cases, this relationship shall appear.

Multiplicity: 0..1

AssociationEnd: to-slot To: Instances::ListMember

Definition: represents the slot in the GenericAggregate value to which the MemberBinding assigns the member-value.
ListMember.position is used to identify the slot. A MemberBinding with a repetition count can assign the same value to
more than one slot. Each time the Aggregatelnitializer (expression) is evaluated, the resulting GenericAggregate can be
different, and the ListMember is a part of that result. If the (entire) Aggregatelnitializer expression can be evaluated
without regard to any actual population ("compile time"), this relationship and the ListMember shall be present, but not
otherwise.

Note: See 12.9 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

12.9.2.4 Other Roles

From: Aggregatelnitializer as bindings

12.9.3 Class: RepeatCount

Definition: A specification for repeating a given initial value into n consecutive ListMember slots, where n is the .count
value. The repetition value is specified by the .derivation expression. If that expression is, or evaluates to, a constant
(without regard to a Population), the value of .count is that constant.

Note: See 12.9 of ISO 10303-11:2004.

12.9.31 Supertypes

none.

12.9.3.2 Attributes

Attribute: count To: (none)

Definition: The number of actual ListMembers that are to be filled with the member-value. If the .derivation expression
evaluates to a constant, without regard to population, .count has a value; otherwise not.

Multiplicity: 0..1

206 EXPRESS Metamodel, Beta 1

12.9.3.3 Associations

AssociationEnd: derivation To: Core::Expression

Definition: represents the relationship between the RepeatCount and the Expression that denotes the value of the
RepeatCount. This relationship shall be present whenever the specification for the RepeatCount is not an integer literal.

Multiplicity: 0..1

12.9.3.4 Other Roles
From: MemberBinding as repetition

12.10 Partial Entity Constructors

This section describes the EXPRESS operations that construct PartialEntityValues from component values.

Note: The so-called "entity constructor” is a binary operation (See 12.6.2 Value: EntityConstructor) that produces
PartialEntityValues from other PartialEntityValues. The actual operation that produces entity instances is a special case
of Coercion (see 12.6.3).

expression-evaluates-to-Instance <Emetaclz.ass>>
3 xpression) C
<<metaclass>3 +evaluation F()Core) vattributeralue iributeBinding-has-value
Instance " 1
(Core) 0.1 0. |itext : ExpressText [0..1]
T constructorlproduces-result T constructor-includes-bindings 0.*
<<metaclass>> 0.1 <<metaclass>> o <<metaclass>>
PartialEntityValue, 0.. PartialEntityConstructor *bindings | AtributeBinding
+result-value * >
(Instances) . +id : Identifier [1]{subsets text} 1 0.." |+position : Integer [1|]
{subsets evaluation}
1| +equivalent 0 |
i - i p 0.* 0.*
SingleEntityValue-has-equivalent constructor-refers-fo-SingleEntityType b teBinding-for-Atfribute
1 | +attribute-group +attribute 1
<<metaclass>> attribute-declared-in-entity <<metaclass>> <<metaclass>>
SingleEntityType . Attribute ExplicitAttribute
. +of-entity +declares (Core) — (Core)
+/id : Scopedld [1] 1 0.*
+isAbstract : Boolean [1] 1 | +attribute
+position : Integer [1]
1 | +of-type value-for-Attribute
value-of-SingleEntity Type /binding-creates-value
0..1 0.* 0.7
<<metaclass>> SingleEntityValue-includes-AttributeValue ~ +properties | <<metaclass>> 0..1
SingleEntityValue - AttributeValue +tovalue
(Instances) 1 0.. (Instances)

Figure 41 - Partial Entity Value Constructors

EXPRESS Metamodel, Beta 1 207

12.10.1 Class: AttributeBinding

Definition: represents the assignment of a specific value to one Attribute in the group that comprises the
PartialEntityType.

Note: See 9.2.6 of ISO 10303-11:2004.

12.10.1.1 Supertypes

none.

12.10.1.2 Attributes

Attribute: position To: MOF::Integer

Definition: represents the position of the AttributeBinding in the constructor (and thus the association with the explicit
attribute).

Note: See 9.2.6 of ISO 10303-11:2004.
Multiplicity: 1..1

12.10.1.3 Associations

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the explicit attribute to which the AttributeBinding assigns a value. Position is used to identify the
attribute.

Note: See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: attribute-value To: Core::Expression

Definition: represents the value to be assigned to the explicit attribute by the AttributeBinding, as the result of the
Expression.

Note: See 9.2.6 of ISO 10303-11:2004.
Multiplicity: 1..1
12.10.1.4 Other Roles

From: PartialEntityConstructor as bindings

12.10.2 Class: PartialEntityConstructor

Definition: represents the EXPRESS "partial entity constructor" named for a "single entity data type." It takes one actual
parameter (AttributeBinding) for each ExplicitAttribute in the group of Attributes identified by the SingleEntityType, and
binds the values to the ExplicitAttributes in order of their occurrence in the entity declaration. The result is a
PartialEntityValue of the partial entity data type that consists of exactly that one single entity data type.

Note: See 9.2.6 of ISO 10303-11:2004 (revised by TC#1).

12.10.2.1 Supertypes

Core::Expression

208 EXPRESS Metamodel, Beta 1

12.10.2.2 Attributes

Attribute: id To: Core::ldentifier

Definition: Represents the identifier for the PartialEntityConstructor, which is the identifier for the SingleEntityType to
which it refers.

Multiplicity: 1..1
Properties: derived

TaggedValues
derivation = = sel f->text;

12.10.2.3 Associations

AssociationEnd: attribute-group To: Core::SingleEntityType

Definition: represents the relationship between the PartialEntityConstructor and the SingleEntityType that defines it, i.e.,
the list of explicit attributes..

Note: See 9.2.6 of ISO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: bindings To: AttributeBinding
Definition: represents the relationship between the PartialEntityConstructor and the set of AttributeBindings it comprises.
Note: See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: result-value To: Instances::PartialEntityValue

Definition: represents the instance that results from the partial entity constructor. This is a refinement of
Expression.evaluation.

If the expression can be evaluated without regard to any actual population ("compile time"), this value shall be present,
but not otherwise.

Note: See 9.2.6 of ISO 10303-11:2004.
Multiplicity: 0..1
Properties: derived

TaggedValues
derivation = = sel f->eval uati on;

12.10.2.4 Other Roles

none.

12.11 Instance Package: BuiltinConstants

This Package represents the set of "built-in constants" of the EXPRESS language. They are here modeled as individual
objects that are instances of the class Literal.

Note: See clause 14 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 209

Note: All of these are instances of Literal, rather than Constant, because their syntactic designation is an EXPRESS
keyword, not an identifier.

Note: SELF is not included in this Package, because it is a variable, not a constant.

TRUE.Literal PlLiteral Indeterminate:Literal

FALSE:Literal E:Literal

UNKNOWN :Literal

Figure 42 - Built-in Constants

12.11.1 Dependencies

Dependency on Class: Expressions::Literal

Stereotypes: i nst ant i at es

This Package provides base individuals that are always instances of class Literal.

12.11.2 Instance: E

Type: Expressions::Literal

Definition: Represents the REAL value that is the image of 1 under the Napierian exponential function.

Note: See clause 14.1 of ISO 10303-11:2004.

12.11.3 Instance: FALSE

Type: Expressions::Literal
Definition: Represents the LOGICAL value that is the evaluation of a proposition whose negation is asserted.

Note: See clause 14.3 of ISO 10303-11:2004.

12.11.4 Instance: PI

Type: Expressions::Literal

Definition: Represents the REAL value that is the ratio of the circumference of a circle to its diameter.

Note: See clause 14.4 of ISO 10303-11:2004.

12.11.5 Instance: TRUE

Type: Expressions::Literal

Definition: Represents the LOGICAL value that is the evaluation of a proposition that is asserted.

210 EXPRESS Metamodel, Beta 1

Note: See clause 14.6 of ISO 10303-11:2004.

12.11.6 Instance: UNKNOWN

Type: Expressions::Literal

Definition: Represents the LOGICAL value that is the evaluation of an Expression that involves Indeterminate values.
(UNKNOWN is a specialization of the Indeterminate value that is treated only as a value of data type LOGICAL.)

Note: See clause 14.7 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1 211

13 Package: Statements

The Statements Package contains the detailed modeling concepts for the Statements in the EXPRESS language. The
basic Statement model in the Algorithms Package is permitted to be a syntactic string. This package provides the
elements that support the operational semantics of each kind of Statement.

The Statements Package depends on the Expressions Package. It is a requirement for the Statements compliance point
that a complete semantic model of Expressions be supported.

13.1 Dependencies

Dependency on Package: Core
Stereotypes: i mpor t

The Statements Package depends on the Core Package for the basic Expression concept and for the LocalScope and
LocalElement concepts.

Dependency on Package: Algorithms
Stereotypes: i mpor t

The Statements Package depends on the Algorithms Package for the basic Statement concept, the Variable concept, and
the Procedure concept.

Dependency on Package: Expressions
Stereotypes: i npor t

The Statements Package depends on the Expression Package for ActualParameter, and in most implementations, for the
detailed semantic models of Expressions.

13.2 Overview of Statements

This section provides the overview of all of the EXPRESS Statement types. They are depicted in 13.2.

The concept StatementBlock and ControlStatement are described in detail in this section. Each of the other statement
types is described in its own section.

212 EXPRESS Metamodel, Beta 1

block-sequences-statements +pody-statements Statement
(from Algorithms)

{ordered} «

+text:ExpressText[0..1]

0..1 | +in-block

StatementBlock Assignment IfStatement CaseStatement

+delimited:Boolean

ProcedureCall RepeatStatement ControlStatement AliasStatement
NullStatement SkipStatement EscapeStatement ReturnStatement

Figure 43 - Statements

13.2.1 Class: Algorithms::Statement
Definition: An EXPRESS Statement, a directive to perform a certain set of operations.
Note: See Clause 13 of ISO 10303-11:2004.

Note: Even though Statement is technically an abstract classifier, it is represented by direct instances with text
representations when the Statements compliance point is not supported.

Note: The class Statement, and all its properties, is specified in the Algorithms Package, which provides the primary use
of Statements. This entry serves only to define the Statement class in context and provide a link to its specification in
10.2.7.

13.2.2 Class: ControlStatement

Definition: an abstract class representing EXPRESS statements whose action is "transfer of control", i.e., a change in the
sequence of execution.. This class was introduced primarily to simplify the metamodel diagram.

Properties: abstract

13.2.21 Supertypes

Algorithms::Statement

13.2.2.2 Attributes

none.

EXPRESS Metamodel, Beta 1 213

13.2.2.3 Associations

none.

13.2.24 Other Roles

none.

13.2.3 Class: NullStatement

Definition: Represents an EXPRESS Null statement. A NullStatement is just a syntactic placeholder, made necessary by
grammar rules that require the presence of at least 1 statement. It has the semantics: Take no action. It is modeled here,
solely to permit reconstruction of the Express Text.

Note: See Clause 13.1 of ISO 10303-11:2004.

13.2.31 Supertypes

ControlStatement

13.2.3.2 Attributes

none.

13.2.3.3 Associations

none.

13.2.3.4 Other Roles

none.

13.2.4 Class: StatementBlock

Definition: represents a sequence of Statements to be executed in the given order.

In EXPRESS syntax, a number of constructs contain a statement or sequence of statements, and a "compound statement"
is a statement that begins with BEGIN and ends with END and contains a sequence of statements. All such sequences
have the semantics of the StatementBlock. The BEGIN/END case is here modeled as .delimited = True.

Note: See Clause 13.5 of ISO 10303-11:2004.

13.2.41 Supertypes

Algorithms::Statement

13.2.4.2 Attributes

Attribute: delimited To: MOF::Boolean

Definition: Is true if the StatementBlock was delimited by BEGIN and END tokens, false if it is implicit in the body of
some other Statement.

Note: The sole purpose of this attribute is to be able to reconstruct the source EXPRESS text properly.

Multiplicity: 1..1

214 EXPRESS Metamodel, Beta 1

13.2.4.3 Associations

AssociationEnd: body-statements To: Algorithms::Statement

via: block-sequences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note: Every EXPRESS syntax whose semantics is a StatementBlock requires the body to consist of at least 1 statement,
but it may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null
statement need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement
in this case.

Multiplicity: 0..* ordered

13.2.44 Other Roles

none.

13.2.5 Association: block-sequences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

13.2.5.1 Association Ends

AssociationEnd: body-statements To: Algorithms::Statement

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note: Every EXPRESS syntax whose semantics is a StatementBlock requires the body to consist of at least 1 statement,
but it may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null
statement need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement
in this case.

Multiplicity: 0..* ordered

AssociationEnd: in-block To: StatementBlock

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note: Every Statement that is not a StatementBlock occurs in a StatementBlock. StatementBlocks may, but need not,
occur directly in other StatementBlocks.

Multiplicity: 0..1

13.3 ALIAS Statements

This section describes the ALIAS statement. 13.3 depicts the associated concepts.

EXPRESS Metamodel, Beta 1 215

<<metaclass>> +body
Statement

(Algorithms)

|

alias-hgs-body

<<metaclass>> <<metaclass>> g 1
LocalScope AliasStatement
(Core)
1 | +namespace 1 +namespace

local-element-has-local-scope {subsets namespace}

K1 alias-binds-variable

1 +alias-variable

0..* + -
local-elements {subsets local-elements}

<<metaclass>>
LocalElement
(Core)

<<metaclass>>
NamedVariable
(Algorithms)

<<metaclass>>

VARVariable
(Algorithms)

<<metaclass>>
AliasVariable

Figure 44 - ALIAS Statements

13.3.1

Definition: Represents an EXPRESS ALIAS statement. An ALIAS statement introduces a NamedVariable (the alias-
variable) to represent the result of a VARExpression (the referent). But the AliasVariable is not a Variable, and the
semantics is not assignment; it is rather creation of a VAR Variable that is persistently associated with the Variable
specified by the VARExpression, over changes in value of that Variable. Within the body of the ALIAS statement, any
assignment to the AliasVariable assigns the value to the referent Variable, and any VariableRef that refers to the
AliasVariable refers to the current value of that Variable.

Class: AliasStatement

Note: See Clause 13.2 of ISO 10303-11:2004.

13.3.1.1 Supertypes

Core::LocalScope, Algorithms::Statement

13.3.1.2 Attributes
none.
13.3.1.3 Associations

AssociationEnd: alias-variable To: AliasVariable

via: alias-binds-variable

Subsets: Core::LocalScope.local-elements

Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.

Multiplicity: 1..1

216 EXPRESS Metamodel, Beta 1

AssociationEnd: body To: Algorithms::Statement
Definition: the Statement (or StatementBlock) specifying the action to be taken by the AliasStatement.

Note: The AliasStatement has the effect of "fixing" the referent of the alias-variable, in the case in which the Statement is
a StatementBlock that includes actions that alter the values of elements of the VARExpression.

Multiplicity: 1..1
13.3.14 Other Roles

none.

13.3.1.5 Rules

Constraint (OCL)

sel f->al i as-vari abl e- >nanespace = self;

13.3.2 Class: AliasVariable

Definition: a NamedVariable that is created by an ALIAS statement, and whose scope is the body of the ALIAS
statement. An Alias Variable is a VAR Variable: it does not hold an Instance; it refers to (a part of) a Variable that holds
an Instance. The referent of the AliasVariable is specified by the value of the VARExpression assigned to it by the
ALIAS statement.

Note: See Clause 13.2 of ISO 10303-11:2004.

13.3.21 Supertypes
Algorithms::VARVariable

13.3.2.2 Attributes

none.

13.3.2.3 Associations

AssociationEnd: nhamespace To: AliasStatement
via: alias-binds-variable

Subsets: Core::LocalElement.namespace

Definition: the AliasStatement that is the scope of the AliasVariable.
Properties: Composite.

Multiplicity: 1..1

AssociationEnd: referent To: VAREXxpression

Definition: the VARExpression that specifies the referent of the AliasVariable — the (member or component of the)
Variable to which the AliasVariable refers during execution of the body of the ALIAS statement.

Multiplicity: 1..1

EXPRESS Metamodel, Beta 1 217

13.3.2.4 Other Roles

none.

13.3.3 Association: alias-binds-variable

Definition: represents the relationship between the AliasStatement and the AliasVariable it defines.

13.3.31 Supertypes

Core::local-element-has-local-scope

13.3.3.2 Association Ends

AssociationEnd: alias-variable To: AliasVariable

Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.
Multiplicity: 1..1

AssociationEnd: nhamespace To: AliasStatement

Definition: the AliasStatement that is the scope of the AliasVariable.

Properties: Composite.

Multiplicity: 1..1

13.4 Assignment Statements

This section describes assignment statements. 13.3 depicts the associated concepts.

Statement
(from Algorithms)
assignment-to-variable ZF assignment-of-value
- 1 Assignment + assigned-value -
VAREXxpression 9 9 Expression
+text:ExpressText[0..1] [*Vvariable * * 1 (from Core)

Figure 45 - Assignment Statements

13.4.1 Class: Assignment

Definition: Represents an EXPRESS assignment statement. An Assignment causes the value of the Variable that is
specified by the . var i abl e VARExpression to become equal to the result of the . assi gned- val ue Expression.

Note: See Clause 13.3 of ISO 10303-11:2004.

13.41.1 Supertypes

Algorithms::Statement

218 EXPRESS Metamodel, Beta 1

13.4.1.2 Attributes

none.

13.4.1.3 Associations

AssociationEnd: assigned-value

To: Core::Expression

Definition: the Expression whose result is the value to be assigned.

Multiplicity: 1..1

AssociationEnd: variable

Definition: the VARExpression that designates the object whose value is to be replaced.

To: VAREXxpression

Note: The VARExpression must not refer to an object that is part of the state of an EntityInstance in the Population. It

may, however, refer to an object that holds (a reference to) an Entitylnstance, or to an object (other than an

EntityInstance) that holds an EntityValue.

Multiplicity: 1..1

13.414 Other Roles

none.

13.5 CASE Statements

This section describes CASE statements. 13.5 depicts the associated concepts.

case-selected-by-expression

Statement 0.1 action-in-case
(from Algorithms) | +action
CaseStatement statement-has-case

1 + selection-expression

Expression
(from Core)

*

*

>
1

case-labeled-by-value

1.* 0..
{ordered} | cases ‘

CaseAction

+label-value

Figure 46 - CASE Statements

13.5.1 Class: CaseAction

Definition: represents a possible action to be taken, together with the .label-values that identify the case and enable it to
be selected. Among the cases for a given CaseStatement, one CaseAction may be designated the "default" action, which
is taken if no other action meets the selection criteria.

EXPRESS Metamodel, Beta 1

+isDefaultBoolean

1

219

13.5.1.1 Supertypes

none.

13.5.1.2 Attributes

Attribute: isDefault To: MOF::Boolean

Definition: True if this CaseAction represents the default action to be taken if no other case label matches the value of the
selection-expression; otherwise False.

Multiplicity: 1..1
13.5.1.3 Associations

AssociationEnd: action To: Algorithms::Statement
Definition: the Statement (or StatementBlock) that defines the actions, if any, to be executed if that case is selected.

Multiplicity: 0..1

AssociationEnd: label-value To: Core::Expression

Definition: an Expression whose result is a case label. When the value of the .selection-expression matches the value of
the Expression (which is often a Literal), the associated CaseAction defines the action to be taken by the CaseStatement.

Multiplicity: 0..* unordered

13.5.14 Other Roles
From: CaseStatement as cases

Multiplicity: 1..1
13.5.1.5 Rules

Constraint labels-unless-default (OCL)
if NOT (self->isDefault) THEN Si zeOf (sel f->| abel -val ue) > 0;

Only the default CaseAction can have no label-values.

Constraint one-default (EXPRESS)

SizeOF (Query(c <* self.cases : c.isDefault)) <= 1;
At most 1 CaseAction in the list of cases for a given CaseStatement can have .isDefault = True.

13.5.2 Class: CaseStatement

Definition: represents an EXPRESS CASE statement. The CASE statement selects and executes a single CaseAction
(from the list of CaseActions), based on the value of a selection-expression. The .cases are considered in order, and the
first CaseAction whose label-value matches the value of the .selection-expression is the action that is taken. If no
CaseAction has a label-value that matches the value of the .selection-expression, the CaseAction for which .isDefault is
true, if any, is taken; otherwise, no action is taken.

Note: See Clause 13.4 of ISO 10303-11:2004.

220 EXPRESS Metamodel, Beta 1

13.5.2.1 Supertypes

Algorithms::Statement

13.5.2.2 Attributes

none.
13.5.2.3 Associations

AssociationEnd: cases To: CaseAction

Definition: represents the possible actions to be taken, in order of consideration, each labeled by one or more values.

Multiplicity: 1..* ordered

AssociationEnd: selection-expression To: Core::Expression
Definition: the Expression that is used to choose the CaseAction to be taken
Multiplicity: 1..1

13.5.2.4 Other Roles

none.

13.6 IF Statements

This section describes IF... THEN...ELSE statements. 13.6 depicts the associated concepts.

+then-actions +else-actions

Statement
1 | (from Algorithms) | ¢ 1

if-then-actions ? if-else-actions

IfStatement 0..1

0..1

0..1

if-has-decision-condition

1 + if-condition

Expression
(from Core)

Figure 47 - IF Statements

13.6.1 Class: IfStatement

Definition: represents an EXPRESS IF...THEN...ELSE statement.
Note: See Clause 13.7 of ISO 10303-11:2004.

EXPRESS Metamodel, Beta 1

221

13.6.1.1 Supertypes

Algorithms::Statement

13.6.1.2 Attributes

none.
13.6.1.3 Associations

AssociationEnd: else-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is False.

Multiplicity: 0..1

AssociationEnd: if-condition To: Core::Expression

Definition: an Expression that defines the condition used to determine whether to perform the "then-actions" or the "else-
actions."

Note: The if-condition is wholly owned by the IfStatement. It is not treated as reusable.

Multiplicity: 1..1

AssociationEnd: then-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is True.

Multiplicity: 1..1

13.6.14 Other Roles

none.

13.7 Procedure Calls

This section describes procedure call statements. 13.7 depicts the associated concepts.

222 EXPRESS Metamodel, Beta 1

Expression VAREXxpression
(from Core) +text:ExpressText[0..1]

+actual-value 0.1 0.1 | +actual-referent

ActualParameter-has-value ActualParameter-is-referent

procedure-call-provides-actual-parameters

ProcedureCall 0..1 +actual-parameters | ActualParameter
“_ (from Expressions)
+in-ProcedureCall *
+position:Integer
* call-invokes-procedure .
+invokes 1
actual-parameter-corresponds-to-formal-paramete
Procedure
from Algorithm
(fro gorithms) 1 +formal-parameter
algorithm-has-parameters
47 ; gorithm-has-par r Parameter
. +formal-parameters ,
Algorithm P (from Algorithms)
(from Algorithms) |* hamespace * | +positioninteger

Figure 48 - Procedure Calls

13.7.1 Class: ProcedureCall

Definition: Represents an EXPRESS procedure call statement. A procedure call causes an instance of a defined
Procedure to be created, and the actual parameter values to be passed to the corresponding formal parameters. The

.actual-value Expression corresponding to each InParameter is evaluated and the result is copied into the corresponding
InVariable. Each VARParameter is set to refer to the Variable that is the result of the VARExpression that appears as the

corresponding actual parameter. Then the declared LocalVariables are instantiated, according to their declared types

(which may be ActualTypes), with initial values if specified. Finally, the StatementBlock that is the algorithm body is

executed.

Note: See Clause 13.8 of ISO 10303-11:2004.

13.7.11 Supertypes
Algorithms::Statement

13.7.1.2 Attributes

None.

EXPRESS Metamodel, Beta 1

223

13.7.1.3 Associations

AssociationEnd: actual-parameters To: Expressions::ActualParameter

via: procedure-call-provides-actual-parameters

Definition: the ActualParameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

AssociationEnd: invokes To: Algorithms::Procedure

Definition: the Procedure that is invoked by the ProcedureCall.

Multiplicity: 1..1
13.7.1.4 Other Roles

none.

13.7.2 Association: procedure-call-provides-actual-parameters

Definition: represents the relationship between the ProcedureCall statement and the ActualParameters to be passed at the
time of invocation.

13.7.2.1 Association Ends

AssociationEnd: actual-parameters To: Expressions::ActualParameter

Definition: the ActualParameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

AssociationEnd: in-ProcedureCall To: ProcedureCall

Definition: the ProcedureCall, if any, in which the ActualParameter appears.

Multiplicity: 0..1

13.8 REPEAT Statements

This section describes REPEAT statements, and the associated ESCAPE and SKIP statements. 13.8 depicts the
associated concepts.

224 EXPRESS Metamodel, Beta 1

block-sequences-statements

local-element-has-local-scope +body-statements
<<metaclass>> <<metaclass>> <<metaclass>> *
local-el 1 0..* {ordered}
LocalElement | *'0cal-€ ementZ LocalScope Statement +in-blockl| 0..1
* + 3
(Core) 0.. namespace (Core) (Algorithms) T
S A StatementBlock
+body|1
+delimited : Boolean [1]
<<metaclass>> repeat-hias-bod
NamedVariable P y
(Algorithms)
<<metaclass>>
T ControlStatement
+namespace
<<metaclass>> <<metaclass>> | o 4
. 0..1 {subsets namespace} -
ControlVariable RepeatStatement X
+control-variable 1 +controlled-by
{subsets local-elements}
0*lo* |o.x repeat-has-increment-control 0.* 0.* <<metaclass>>
repeat-hastuntil-control SkipStatement
repeat-has-while-control
+while-expression | 0-.1 0..1 | +until-expression
A <<metaclass>>
ol *initialvalug[™ <<metaclass>> EscapeStatement
control-initial-value +bound-\jalue Expression
control-bound-value 1 (Core)
+increment
control-increment-value 1

Figure 49 - REPEAT, SKIP and ESCAPE Statements

13.8.1 Class: ControlVariable

Definition: the specification for the control variable, if any, for the Repeat statement. If the REPEAT statement has an
"increment control", it introduces the control variable, whose scope is the RepeatStatement, and specifies the initial value
for the control variable, a bound-value, and the increment value.

Note: In EXPRESS, the initial value, increment value and bound value are properties of the "increment control". Here
the "increment control" properties are assigned to the ControlVariable. See ISO 10303-11:2004 clause 13.9.1.

13.8.1.1 Supertypes
Algorithms::NamedVariable

13.8.1.2 Attributes

None.

EXPRESS Metamodel, Beta 1 225

13.8.1.3 Associations

AssociationEnd: bound-value To: Core::Expression

Definition: the Expression whose value, taken together with the initial-value, specifies the bounds of a set of real
numbers. Iteration of the repeated-body of the RepeatStatement terminates when the value of the control-variable lies
outside that set.

Multiplicity: 1..1

AssociationEnd: increment To: Core::Expression

Definition: the Expression whose value is added to the value of the control-variable at the end of each iteration.
Multiplicity: 1..1

Note: When the EXPRESS syntax does not specify an increment value, the Expression is a Literal referring to the Integer
value 1. See ISO 10303-11:2004 clause 13.9.1.

AssociationEnd: initial-value To: Core::Expression
Definition: the Expression that specifies the value to be assigned to the control-variable before the first iteration.

Multiplicity: 1..1

AssociationEnd: namespace To: RepeatStatement

via: repeat-has-increment-control

Subsets: Core::LocalElement.namespace

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.
Multiplicity: 1..1
13.8.1.4 Other Roles

none.

13.8.1.5 Rules

Constraint
sel f->control -vari abl e- >nanmespace = sel f->for-Ioop;

13.8.2 Class: EscapeStatement

Definition: Represents an EXPRESS ESCAPE statement. An ESCAPE statement is always contained within the body of
a RepeatStatement. Execution of an ESCAPE statement results in terminating the repetitiion of the repeated-body and
continuing the control flow with the statement following the RepeatStatement,.

Note: See Clause 13.11 of ISO 10303-11:2004.

13.8.2.1 Supertypes

ControlStatement

226 EXPRESS Metamodel, Beta 1

13.8.2.2 Attributes

none.

13.8.2.3 Associations

none.

13.8.2.4 Other Roles

none.

13.8.2.5 Rules

Constraint

exi st s(sel f->i n-bl ock->controll ed-by);
An EscapeStatement shall only appear in the repeated-body of a RepeatStatement.

13.8.3 Class: RepeatStatement

Definition: Represents an EXPRESS REPEAT statement. The RepeatStatement defines an iteration. The execution of the
repeated-body occurs zero or more times depending on the associated controls, which may be any combination of

— aincrement-control (see ControlVariable)

— a while-expression

— an until-expression

If no control is specified, the iteration continues until an EscapeStatement is executed.

Note: See Clause 13.9 of ISO 10303-11:2004.
13.8.3.1 Supertypes
Core::LocalScope, Algorithms::Statement

13.8.3.2 Attributes

none.

13.8.3.3 Associations

AssociationEnd: body To: Algorithms::Statement

via: repeat-has-body

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes
multiple statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

AssociationEnd: control-variable To: ControlVariable

via: repeat-has-increment-control

Subsets: Core::LocalScope.local-elements

Definition: the specification for the increment control, if any. The increment control defines a control variable, its initial
and final values, and the value by which it is incremented on each iteration.

EXPRESS Metamodel, Beta 1 227

Note:See ISO 10303-11:2004 clause 13.9.1.
Multiplicity: 0..1
AssociationEnd: until-expression To: Core::Expression

Definition: the Boolean Expression that specifies a condition for terminating the iteration. If the value returned by the
while-expression is True, the iteration is terminated.

Note: See ISO 10303-11:2004 clause 13.9.3.
Multiplicity: 0..1

AssociationEnd: while-expression To: Core::Expression

Definition: the Boolean Expression that specifies the condition for reiterating the repeated-body. If the value returned by
the while-expression is False, the iteration is terminated.

Note: See ISO 10303-11:2004 clause 13.9.2.
Multiplicity: 0..1

13.8.3.4 Other Roles

none.

13.8.4 Class: SkipStatement

Definition: Represents an EXPRESS SKIP statement. A SKIP statement is always contained within the body of a
RepeatStatement. Execution of a SKIP statement results in continuing the control flow with the "increment and test"
operations of the RepeatStatement, skipping any intervening actions.

Note: See Clause 13.11 of ISO 10303-11:2004.

13.8.4.1 Supertypes

ControlStatement

13.8.4.2 Attributes

none.

13.8.4.3 Associations

none.

13.8.4.4 Other Roles

none.

13.8.4.5 Rules

Constraint

exi sts(sel f->i n-bl ock->controll ed-by);
A SkipStatement shall only appear in the repeated-body of a RepeatStatement.

228 EXPRESS Metamodel, Beta 1

13.8.5 Association: repeat-has-body

Definition: represents the relationship between a RepeatStatement and the Statement (or StatementBlock) that specifies
the actions to be iterated.

13.8.5.1 Association Ends

AssociationEnd: body To: Algorithms::Statement

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes
multiple statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

AssociationEnd: controlled-by To: RepeatStatement
Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

13.8.6 Association: repeat-has-increment-control

Definition: represents the relationship between the RepeatStatement and its IncrementControl, if any.

13.8.6.1 Supertypes

Core::local-element-has-local-scope

13.8.6.2 Association Ends

AssociationEnd: control-variable To: ControlVariable
Definition: the specification for the control variable, if any, and its initial and final values.

Multiplicity: 0..1

AssociationEnd: namespace To: RepeatStatement
Definition: the RepeatStatement whose execution is controlled by the IncrementControl.

Multiplicity: 1..1

13.9 RETURN Statements

This section describes RETURN statements. 13.9 depicts the associated concepts.

return-returns-value

ReturnStatement | * +return-value Expression
(from Core)

0..1

Figure 50 - RETURN Statements

EXPRESS Metamodel, Beta 1 229

13.9.1 Class: ReturnStatement

Definition: Represents an EXPRESS RETURN statement. A RETURN statement terminates the execution of a
ProcedureCall or FunctionCall. In the case of a FunctionCall, the RepeatStatement may also specify the value that is to
be the actual result of the FunctionCall.

Note: See Clause 13.9 of ISO 10303-11:2004.

13.9.1.1 Supertypes

ControlStatement

13.9.1.2 Attributes

none.
13.9.1.3 Associations

AssociationEnd: return-value To: Core::Expression

Definition: An Expression that specifies the value to be returned as the Function result. If this is not provided on a Return
from a FunctionCall, the value of the FunctionResult variable is returned.

Multiplicity: 0..1

13.9.14 Other Roles

none.

13.10 VAR Expressions

This section defines the concepts associated with references to (what ISO 10303-11 calls) "variables" that may change in
value during the execution of an invocation of an Algorithm or the evaluation of a GlobalRule. In general, such
"variables" may be simple Variables, or more complex expressions denoting a part of a Variable. The general form of a
"variable," therefore, is modeled as a VAR Expression — an Expression that refers to an object that contains a value.
13.10 depicts the concepts associated with VAR Expressions.

230 EXPRESS Metamodel, Beta 1

<<metaclass>> +base-entity

+base-aggregate VARExpression 1
1 |+text : ExpressText [0..1I.} +base-entity
-has- - 1
MemberCell-has-base-aggregate zr | AttributeCell-has-base-entity
0..1 0.1
<<metaclass>> <<metaclass>> <<metaclass>>
MemberCell VariableCell AttributeCell
+id : Identifier [1]{subsets text} +id : Identifier [1]{subsets text}
0..* 0.* 0..*
MemberCefl-has-index VariableCell-referent AttributeCelltreferent
+index-value | 1 1 +referent 1 | +referent
<<metaclass>> <<metaclass>> <<metaclass>>
Expression Variable ExplicitAttribute
(Core) (Algorithms) (Core)
GroupCell-has-bage-entity
<<metaclass>> <<metaclass>>
AliasRef GroupCell 0..1
+id : Identifier [1]{subsets text +id : Identifier [1]{subsets text
0.* 0..*
AliasRefrefers-to GroupCell-referent
1| *refers-to 1|, +referent
<<metaclass>> <<metaclass>>
VARVariable . -
SingleEntityType
(Algorithms) s Lt

(Core)

Figure 51 - VAR Expressions

VAR Expressions appear in assignment statements, in ALIAS statements and as ActualParameters that correspond to
formal parameters that are VARParameters (which are permitted only in Procedure definitions).

Note: Primary Expressions, Index Expressions and Selector Expressions are similar in structure (and use the same syntax
in EXPRESS), but they refer to the Instance that is the current value of the "variable" — the value currently held by that
object. A VARExpression formally refers to the object (place) that holds an Instance, rather than to the Instance it
contains. That is, for example, the meaning of the VariableRef is different from the meaning of the VariableCell, even
though the EXPRESS syntax is the same. Because the meanings are different, they have different metamodels.

Note:A VAR Expression can never refer to an Instance in the modeled population. Instances in the Population cannot be
created or modified by an EXPRESS Schema. For this reason, EXPRESS restricts the syntax for VAR Expressions to
beginning with a par amet er _ref oravari abl e_ref. This is reflected in the model.

13.10.1 Class: AttributeCell

Definition: A VARExpression whose referent is an "attribute object" containing the value of one ExplicitAttribute in an
EntityValue.

EXPRESS Metamodel, Beta 1 231

The . r ef er ent attribute of the AttributeCell identifies the ExplicitAttribute that characterizes the attribute object. The
referent of the . base- ent i t y VARExpression must be an object that holds an EntityValue that has a "slot" for that
ExplicitAttribute. That object/slot in the referent of the base-entity is the referent of the AttributeCell VARExpression.

Note:An Entitylnstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
EntityInstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
EntityInstance in the Population.

Note:An “entity-valued object” -- a Variable, Attribute, or aggregation member whose data type is an EntityType (or a
SelectType whose select-list contains EntityTypes) -- may contain Entitylnstances from the Population, or contain
EntityValues that correspond to the EntityType, without reference to Instances in the Population. When the base-entity
of an AttributeCell is an entity-valued object, it is not always clear whether it contains an EntityInstance, which is then
the referent, or an EntityValue, which makes the entity-valued object the referent.

13.10.1.1 Supertypes

VARExpression

13.10.1.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: VARExpression.text
Definition: the lexical text of the identifier for the Attribute

Multiplicity: 1..1
13.10.1.3 Associations

AssociationEnd: base-entity To: VAREXxpression

Definition: the Expression that identifies the object that contains the EntityValue that contains an object representing the
ExplicitAttribute that is the referent of the AttributeCell.

Multiplicity: 1..1

AssociationEnd: referent To: Core::ExplicitAttribute

Definition: the ExplicitAttribute that designates the slot that is the referent of the AttributeCell.

Multiplicity: 1..1

13.10.1.4 Other Roles

none.

13.10.2 Class: GroupCell

Definition: A VARExpression whose referent is the group of objects/slots for the ExplicitAttributes that constitute a
SingleEntityType in an object that holds an EntityValue.

The . r ef er ent attribute of the GroupCell identifies the SingleEntityType that characterizes the attribute group. The
referent of the . base- ent i t y VARExpression must be an object that holds an EntityValue that has "slots" for the

ExplicitAttributes constituting that SingleEntityType. Those slots in the referent of the base-entity constitute the referent
of the GroupCell VARExpression.

232 EXPRESS Metamodel, Beta 1

Note:An EntityInstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
Entitylnstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
EntityInstance in the Population.

Note:An “entity-valued object” -- a Variable, Attribute, or aggregation member whose data type is an EntityType (or a
SelectType whose select-list contains EntityTypes) -- may contain EntityInstances from the Population, or contain
EntityValues that correspond to the EntityType, without reference to Instances in the Population. When the base-entity
of an GroupCell is an entity-valued object, it is not always clear whether it contains an EntityInstance, which is then the
referent, or an EntityValue, which makes the entity-valued object the referent.

13.10.2.1 Supertypes

VAREXxpression

13.10.2.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: VARExpression.text
Definition: the lexical text of the identifier for the SingleEntityType
Multiplicity: 1..1

13.10.2.3 Associations

AssociationEnd: base-entity To: VAREXxpression

Definition: the Expression that identifies the object that contains the Entitylnstance or EntityValue that contains a
collection of ExplicitAttribute objects representing the SingleEntityType to which the GroupCell refers.

Multiplicity: 1..1

AssociationEnd: referent To: Core::SingleEntityType

Definition: the SingleEntityType that designates the group of ExplicitAttribute slots that constitute the referent of the
GroupCell.

Multiplicity: 1..1

13.10.2.4 Other Roles

none.

13.10.3 Class: MemberCell

Definition: A VARExpression that represents a reference to a member (object) of an object whose datatype is an
aggregation data type. The aggregate object is the referent of the . base- aggr egat e VARExpression. The referent of
the MemberCell VARExpression is the member object that is designated by the index or position value that is the result
of the . i ndex- val ue Expression.

13.10.3.1 Supertypes
VARExpression
13.10.3.2 Attributes

none.

EXPRESS Metamodel, Beta 1 233

13.10.3.3 Associations

AssociationEnd: base-aggregate To: VARExpression
Definition: the Expression that identifies the aggregate object in which the referenced member object appears.

Multiplicity: 1..1

AssociationEnd: index-value To: Core::Expression

Definition: the index or position value used to identify the member object within the aggregate object.
Multiplicity: 1..1

13.10.3.4 Other Roles

none.

13.10.4 Class: AliasRef

Definition: A VARExpression consisting only of the identifier for a VARVariable, i.e. an AliasVariable, or a
VARParameter. The referent of the AliasRef VARExpression is the referent of the VAR Variable designated by the
. ref er s- t o relationship.

13.10.4.1 Supertypes

VAREXxpression

13.10.4.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: VARExpression.text
Definition: the lexical text of the identifier for the Parameter or the AliasVariable

Multiplicity: 1..1
13.10.4.3 Associations

AssociationEnd: refers-to To: Algorithms::VARVariable

Definition: the formal InParameter that is the referent object, or the formal VARParameter whose referent is the referent
object.

Multiplicity: 1..1

13.10.4.4 Other Roles

none.

13.10.5 Class: VAREXxpression

Definition: an Expression that refers to an object that contains a value. Unlike Primary Expressions, Index Expressions
and Selector Expressions, which are similar in structure, a VARExpression formally refers to the object (place) that holds
an Instance, rather than the Instance itself. The object to which a VARExpression refers is called its referent. Every
referent object has a data type, but the type of the VARExpression that refers to it is "reference to object with" that data
type. The referent object can be:

234 EXPRESS Metamodel, Beta 1

— aLocalVariable

— an InParameter or FunctionResult

— amember of an AggregationType that is, or is part of, the content model of another object

— an ExplicitAttribute of an EntityType that is the content model of another object

— a SingleEntityType that is part of the content model of another object

— an ExplicitAttribute of an Entitylnstance that is the value of another object

— a SingleEntityType that represents a set of ExplicitAttributes of an EntityInstance that is the value of another
object.

— the object that is the referent of an AliasVariable or a VARParameter.

Properties: abstract

13.10.5.1 Supertypes

none.

13.10.5.2 Attributes

Attribute: text To: Core::ExpressText

Definition: the lexical representation of the VARExpression.
Multiplicity: 0..1
13.10.5.3 Associations

none.

13.10.5.4 Other Roles

From: Expressions::ActualParameter as actual-referent

From: Assignment as recipient

From: MemberCell as base-aggregate
From: AttributeCell as base-entity
From: GroupCell as base-entity
From: AliasVariable as referent

13.10.6 Class: VariableCell

Definition: A VARExpression that consists only of the identifier for a Variable. The referent of the VariableCell
VARExpression is the object that instantiates that Variable (as distinct from the value of that Variable). The Variable is
designated by the . r ef er ent relationship.

Note: A VARExpression that consists of the identifier for an AliasVariable or a VARParameter is an AliasRef, not a
VariableCell. A VariableCell differs from a VariableRef in that it refers to the place, not the value.

13.10.6.1 Supertypes

VARExpression

EXPRESS Metamodel, Beta 1 235

13.10.6.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: VARExpression.text
Definition: the lexical text of the identifier for the NamedVariable

Multiplicity: 1..1
13.10.6.3 Associations

AssociationEnd: referent To: Algorithms::Variable

Definition: the Variable whose instantiation is the referent object of the VariableCell VARExpression.

Multiplicity: 1..1

13.10.6.4 Other Roles

none.

236 EXPRESS Metamodel, Beta 1

14 Package: Express2

The Express2 Package has no immediate content. It simply combines the Rules Package with the full Statements
Package, and thus contains all of the model elements for the language.

14 shows the complete view of the scope concepts in EXPRESS version 2. Note that the LocalScopes arise only when
the Algorithms, Rules, Expressions and Statements Packages are supported.

element-defined-in-scope

Scope +named-elements NamedElement
(from Core) |+namespace * (from Core)

{disjoint, total}

Schema LocalScope NamedType
(from Core) (from Core) (from Core)
Zﬁ {disjoint, total}
QueryExpression AlgorithmScope AliasStatement RepeatStatement
(from Expressions) (from Core) (from Statements) (from Statements)
Zﬁ {disjoint, total}
Algorithm GlobalRule
(from Algorithms) (from Rules)

Figure 52 - Integrated Overview of Scopes

In a similar way, 14 depicts the complete view of the NamedElement concepts in EXPRESS version 2, which are drawn
from several packages.

EXPRESS Metamodel, Beta 1 237

(from Core)

NamedElement | -«

element-defined-in-scope

+namespace

Scope
(from Core)

+named-elements 1
{disjoint, total} %
LocalElement SchemaElement TypeElement
(from Core) (from Core) (from Core)
lﬁ N Z% - I\ {disjoint, total}
{disjoint, total} {disjoint, total}
| | | | Attribute
NamedRule NamedVariable GlobalRule CommonElement (from Core)
(from Rules) (from Algorithms) (from Rules) (from Core)
DomainRule
{disjoint, total} Zﬁ —
GenericElement | | (from Core)
(from Algorithms)
Constant NamedT
(f olnstan | (fameC Y p)e || UniqueRule
rom Instances rom Core
ActualType (from Core)
(from Core)]
Algorith S Rul

G ‘:7” Z: ufperty:el ue Enumerationitem
(from Algorithins) (fom Rules (from Instances)

Figure 53 - Overview of Named Elements

14.1

Dependencies

Dependency on Package: Statements

Stereotypes: i npor t

The Express2 Package depends on the Statements Package for complete modeling of EXPRESS Functions and
Procedures. By way of the Statements Package, Express2 implicitly depends on the Expressions Package, for complete
modeling of Expressions and thereby on the Algorithms, Core and Instances Packages.

Dependency on Package: Rules

Stereotypes: i mpor t

The Express2 Package depends on the Rules Package in order to complete the support of all elements of the EXPRESS

language. The Rules Package is the only package that is not required for the support of the Statements compliance point.

14.2

None.

238

Classes and Associations

EXPRESS Metamodel, Beta 1

	1 Introduction
	2 Scope and Purpose
	3 Normative References
	4 Conformance
	4.1Conformance of an exchange document
	4.2Conformance as a producer (pre-processor)
	4.3Conformance as a (post-)processor
	4.4Compliance points
	4.4.1Compliance point: Instances
	4.4.2Compliance point: Algorithms
	4.4.3Compliance point: Rules
	4.4.4Compliance point: Expressions
	4.4.5Compliance point: Statements
	4.4.6Compliance point: Express2

	5 Terms and Definitions
	5.1Unified Modeling Language (UML) terms
	5.2EXPRESS terms
	5.3Terms for model elements
	5.4Additional terms introduced in this specification

	6 Document Conventions
	7 Overview of the EXPRESS Metamodel
	8 Package: Core
	8.1Dependencies
	8.2MOF Metamodel Datatypes
	8.2.1Datatype: Boolean
	8.2.2Datatype: Integer
	8.2.3Datatype: String

	8.3EXPRESS Language Datatypes
	8.3.1Datatype: ExpressText
	8.3.1.1Supertypes
	8.3.1.2Members

	8.3.2Datatype: Identifier
	8.3.2.1Supertypes
	8.3.2.2Members

	8.3.3Datatype: Keyword
	8.3.3.1Supertypes
	8.3.3.2Members

	8.4Schemas, Scopes and Naming
	8.4.1Class: AlgorithmScope
	8.4.1.1Supertypes
	8.4.1.2Attributes
	8.4.1.3Associations
	AssociationEnd: common-elements	To: CommonElement
	AssociationEnd: variables	To: Algorithms::LocalVariable

	8.4.1.4Other Roles

	8.4.2Class: CommonElement
	8.4.2.1Supertypes
	8.4.2.2Attributes
	8.4.2.3Associations
	AssociationEnd: local-scope	To: AlgorithmScope

	8.4.2.4Other Roles
	8.4.2.5Rules
	Constraint has-scope (OCL)

	8.4.3Class: InterfacedElement
	8.4.3.1Supertypes
	8.4.3.2Attributes
	Attribute: interfacedId	To: ScopedId
	Attribute: isUSE	To: MOF::Boolean

	8.4.3.3Associations
	AssociationEnd: interfacing-schema	To: Schema
	AssociationEnd: refers-to	To: SchemaElement

	8.4.3.4Other Roles

	8.4.4Class: LocalElement
	8.4.4.1Supertypes
	8.4.4.2Attributes
	8.4.4.3Associations
	AssociationEnd: namespace	To: LocalScope

	8.4.4.4Other Roles

	8.4.5Class: LocalScope
	8.4.5.1Supertypes
	8.4.5.2Attributes
	8.4.5.3Associations
	AssociationEnd: local-elements	To: LocalElement

	8.4.5.4Other Roles

	8.4.6Class: NamedElement
	8.4.6.1Supertypes
	8.4.6.2Attributes
	Attribute: id	To: ScopedId

	8.4.6.3Associations
	AssociationEnd: documentation	To: Remark
	AssociationEnd: namespace	To: Scope

	8.4.6.4Other Roles

	8.4.7Class: Schema
	8.4.7.1Supertypes
	8.4.7.2Attributes
	Attribute: name	To: Identifier
	Attribute: version	To: Identifier

	8.4.7.3Associations
	AssociationEnd: documentation	To: Remark
	AssociationEnd: interfaced-elements	To: SchemaElement
	TaggedValues

	AssociationEnd: interfaces	To: InterfacedElement
	AssociationEnd: schema-elements	To: SchemaElement

	8.4.7.4Other Roles

	8.4.8Class: SchemaElement
	8.4.8.1Supertypes
	8.4.8.2Attributes
	8.4.8.3Associations
	AssociationEnd: defined-in	To: Schema
	AssociationEnd: referenced-as	To: InterfacedElement
	AssociationEnd: referenced-in	To: Schema
	TaggedValues

	8.4.8.4Other Roles
	8.4.8.5Rules
	Constraint (OCL)

	8.4.9Class: Scope
	8.4.9.1Supertypes
	8.4.9.2Attributes
	8.4.9.3Associations
	AssociationEnd: includes-remarks	To: Remark
	AssociationEnd: named-elements	To: NamedElement

	8.4.9.4Other Roles

	8.4.10Datatype: ScopedId
	8.4.10.1Supertypes
	8.4.10.2Members
	Member: definingScope	To: Scope
	Member: localName	To: Identifier

	8.4.11Class: TypeElement
	8.4.11.1Supertypes
	8.4.11.2Attributes
	8.4.11.3Associations
	AssociationEnd: namespace	To: NamedType

	8.4.11.4Other Roles

	8.4.12Association: common-element-has-local-scope
	8.4.12.1Supertypes
	8.4.12.2Association Ends
	AssociationEnd: common-elements	To: CommonElement
	AssociationEnd: local-scope	To: AlgorithmScope

	8.4.13Association: element-defined-in-scope
	8.4.13.1Association Ends
	AssociationEnd: named-elements	To: NamedElement
	AssociationEnd: namespace	To: Scope

	8.4.14Association: element-interfaced-into-schema
	8.4.14.1Association Ends
	AssociationEnd: interfaces	To: InterfacedElement
	AssociationEnd: interfacing-schema	To: Schema

	8.4.15Association: local-element-has-local-scope
	8.4.15.1Supertypes
	8.4.15.2Association Ends
	AssociationEnd: local-elements	To: LocalElement
	AssociationEnd: namespace	To: LocalScope

	8.4.16Association: schema-defines-elements
	8.4.16.1Supertypes
	8.4.16.2Association Ends
	AssociationEnd: defined-in	To: Schema
	AssociationEnd: schema-elements	To: SchemaElement

	8.4.17Association: schema-element-is-interfaced-element
	8.4.17.1Association Ends
	AssociationEnd: referenced-as	To: InterfacedElement
	AssociationEnd: refers-to	To: SchemaElement

	8.4.18Association: schema-interfaces-elements
	8.4.18.1Association Ends
	AssociationEnd: interfaced-elements	To: SchemaElement
	TaggedValues

	AssociationEnd: referenced-in	To: Schema
	TaggedValues

	8.4.19Association: type-element-has-scope
	8.4.19.1Supertypes
	8.4.19.2Association Ends
	AssociationEnd: type-elements	To: TypeElement
	AssociationEnd: namespace	To: NamedType

	8.5Remarks
	8.5.1Class: Remark
	8.5.1.1Supertypes
	8.5.1.2Attributes
	Attribute: isTagged	To: MOF::Boolean
	Attribute: isTail	To: MOF::Boolean
	Attribute: text	To: ExpressText

	8.5.1.3Associations
	AssociationEnd: appears-in	To: Scope
	AssociationEnd: describes-element	To: NamedElement
	AssociationEnd: describes-schema	To: Schema

	8.5.1.4Other Roles

	8.5.2Association: remark-appears-in-scope
	8.5.2.1Association Ends
	AssociationEnd: appears-in	To: Scope
	AssociationEnd: includes-remarks	To: Remark

	8.5.3Association: remark-describes-element
	8.5.3.1Association Ends
	AssociationEnd: describes-element	To: NamedElement
	AssociationEnd: documentation	To: Remark

	8.5.4Association: remark-describes-schema
	8.5.4.1Association Ends
	AssociationEnd: describes-schema	To: Schema
	AssociationEnd: documentation	To: Remark

	8.6Overview of Types
	8.6.1Class: ActualType
	8.6.1.1Supertypes
	8.6.1.2Attributes
	8.6.1.3Associations
	AssociationEnd: scope	To: Algorithms::Algorithm

	8.6.1.4Other Roles

	8.6.2Class: AnonymousType
	8.6.2.1Supertypes
	8.6.2.2Attributes
	8.6.2.3Associations
	AssociationEnd: specializes	To: AnonymousType

	8.6.2.4Other Roles

	8.6.3Class: ConcreteType
	8.6.3.1Supertypes
	8.6.3.2Attributes
	8.6.3.3Associations
	8.6.3.4Other Roles

	8.6.4Class: DataType
	8.6.4.1Supertypes
	8.6.4.2Attributes
	8.6.4.3Associations
	8.6.4.4Other Roles

	8.6.5Class: DefinedType
	8.6.5.1Supertypes
	8.6.5.2Attributes
	8.6.5.3Associations
	8.6.5.4Other Roles

	8.6.6Class: EnumerationType
	8.6.6.1Supertypes
	8.6.6.2Attributes
	Attribute: isExtensible	To: MOF::Boolean

	8.6.6.3Associations
	AssociationEnd: base	To: EnumerationType
	AssociationEnd: declared-items	To: Instances::EnumerationItem
	AssociationEnd: extension	To: EnumerationType
	AssociationEnd: values	To: Instances::EnumerationItem
	TaggedValues

	8.6.6.4Other Roles

	8.6.7Class: InstantiableType
	8.6.7.1Supertypes
	8.6.7.2Attributes
	8.6.7.3Associations
	AssociationEnd: fundamental-type	To: InstantiableType

	8.6.7.4Other Roles

	8.6.8Class: NamedType
	8.6.8.1Supertypes
	8.6.8.2Attributes
	8.6.8.3Associations
	AssociationEnd: domain-rules	To: DomainRule
	AssociationEnd: instantiates	To: SelectType
	AssociationEnd: type-elements	To: TypeElement

	8.6.8.4Other Roles
	8.6.8.5Rules
	Constraint (OCL)

	8.6.9Class: ParameterType
	8.6.9.1Supertypes
	8.6.9.2Attributes
	8.6.9.3Associations
	AssociationEnd: role	To: Attribute

	8.6.9.4Other Roles

	8.6.10Class: SelectType
	8.6.10.1Supertypes
	8.6.10.2Attributes
	Attribute: isEntity	To: MOF::Boolean
	Attribute: isExtensible	To: MOF::Boolean

	8.6.10.3Associations
	AssociationEnd: allowed-types	To: NamedType
	AssociationEnd: base	To: SelectType
	AssociationEnd: extension	To: SelectType
	AssociationEnd: select-list	To: NamedType

	8.6.10.4Other Roles

	8.6.11Class: SpecializedType
	8.6.11.1Supertypes
	8.6.11.2Attributes
	8.6.11.3Associations
	AssociationEnd: underlying-type	To: ConcreteType

	8.6.11.4Other Roles

	8.6.12Class: VariableType
	8.6.12.1Supertypes
	8.6.12.2Attributes
	8.6.12.3Associations
	8.6.12.4Other Roles

	8.6.13Association: enumeration-extends-enumeration
	8.6.13.1Association Ends
	AssociationEnd: base	To: EnumerationType
	AssociationEnd: extension	To: EnumerationType

	8.6.14Association: select-type-extends-select-type
	8.6.14.1Association Ends
	AssociationEnd: base	To: SelectType
	AssociationEnd: extension	To: SelectType

	8.6.15Association: type-instantiates-select-type
	8.6.15.1Association Ends
	AssociationEnd: allowed-types	To: NamedType
	AssociationEnd: instantiates	To: SelectType

	8.7Type Constraints
	8.7.1Class: DomainConstraint
	8.7.1.1Supertypes
	8.7.1.2Attributes
	8.7.1.3Associations
	AssociationEnd: domain	To: ParameterType
	AssociationEnd: asserts	To: Expression

	8.7.1.4Other Roles

	8.7.2Class: DomainRule
	8.7.2.1Supertypes
	8.7.2.2Attributes
	Attribute: position	To: MOF::Integer

	8.7.2.3Associations
	AssociationEnd: domain	To: NamedType

	8.7.2.4Other Roles

	8.7.3Association: NamedType-has-DomainRule
	8.7.3.1Supertypes
	8.7.3.2Association Ends
	AssociationEnd: domain	To: NamedType
	AssociationEnd: domain-rules	To: DomainRule

	8.7.4Association: type-has-constraints
	8.7.4.1Association Ends
	AssociationEnd: constraints	To: DomainConstraint
	AssociationEnd: domain	To: ParameterType

	8.8Simple Types
	8.8.1Class: BinaryType
	8.8.1.1Supertypes
	8.8.1.2Attributes
	8.8.1.3Associations
	AssociationEnd: binary-length-constraint	To: LengthConstraint

	8.8.1.4Other Roles

	8.8.2Class: LengthConstraint
	8.8.2.1Supertypes
	8.8.2.2Attributes
	Attribute: isFixed	To: MOF::Boolean
	Attribute: maxLength	To: MOF::Integer

	8.8.2.3Associations
	8.8.2.4Other Roles
	8.8.2.5Rules
	Constraint ()
	Constraint ()

	8.8.3Class: LogicType
	8.8.3.1Supertypes
	8.8.3.2Attributes
	8.8.3.3Associations
	8.8.3.4Other Roles

	8.8.4Class: NumericType
	8.8.4.1Supertypes
	8.8.4.2Attributes
	8.8.4.3Associations
	8.8.4.4Other Roles

	8.8.5Class: RealType
	8.8.5.1Supertypes
	8.8.5.2Attributes
	Attribute: precision	To: MOF::Integer

	8.8.5.3Associations
	8.8.5.4Other Roles

	8.8.6Class: SimpleType
	8.8.6.1Supertypes
	8.8.6.2Attributes
	Attribute: id	To: Keyword

	8.8.6.3Associations
	8.8.6.4Other Roles

	8.8.7Class: StringType
	8.8.7.1Supertypes
	8.8.7.2Attributes
	8.8.7.3Associations
	AssociationEnd: string-length-constraint	To: LengthConstraint

	8.8.7.4Other Roles

	8.9Aggregation Types
	8.9.1Class: AggregationType
	8.9.1.1Supertypes
	8.9.1.2Attributes
	Attribute: isUnique	To: MOF::Boolean
	Attribute: ordering	To: OrderingKind

	8.9.1.3Associations
	AssociationEnd: lower-bound	To: SizeConstraint
	AssociationEnd: upper-bound	To: SizeConstraint

	8.9.1.4Other Roles

	8.9.2Class: ArrayBound
	8.9.2.1Supertypes
	8.9.2.2Attributes
	Attribute: bound	To: MOF::Integer

	8.9.2.3Associations
	AssociationEnd: bound-expression	To: Expression

	8.9.2.4Other Roles
	8.9.2.5Rules
	Constraint ()
	Constraint ()

	8.9.3Class: ARRAYType
	8.9.3.1Supertypes
	8.9.3.2Attributes
	Attribute: isOptional	To: MOF::Boolean

	8.9.3.3Associations
	AssociationEnd: hi-index	To: ArrayBound
	AssociationEnd: lo-index	To: ArrayBound

	8.9.3.4Other Roles
	8.9.3.5Rules
	Constraint (OCL)

	8.9.4Class: BAGType
	8.9.4.1Supertypes
	8.9.4.2Attributes
	8.9.4.3Associations
	8.9.4.4Other Roles
	8.9.4.5Rules
	Constraint (OCL)
	Constraint (OCL)

	8.9.5Class: ConcreteAggregationType
	8.9.5.1Supertypes
	8.9.5.2Attributes
	8.9.5.3Associations
	AssociationEnd: member-type	To: InstantiableType

	8.9.5.4Other Roles

	8.9.6Class: LISTType
	8.9.6.1Supertypes
	8.9.6.2Attributes
	8.9.6.3Associations
	8.9.6.4Other Roles
	8.9.6.5Rules
	Constraint (OCL)

	8.9.7Datatype: OrderingKind
	8.9.7.1Supertypes
	8.9.7.2Values
	Value: indexed
	Value: ordered
	Value: unordered

	8.9.8Class: SETType
	8.9.8.1Supertypes
	8.9.8.2Attributes
	8.9.8.3Associations
	8.9.8.4Other Roles
	8.9.8.5Rules
	Constraint (OCL)
	Constraint (OCL)

	8.9.9Class: SizeConstraint
	8.9.9.1Supertypes
	8.9.9.2Attributes
	Attribute: bound	To: MOF::Integer

	8.9.9.3Associations
	8.9.9.4Other Roles
	8.9.9.5Rules
	Constraint ()
	Constraint ()

	8.10Generalized Types
	8.10.1Class: AGGREGATEType
	8.10.1.1Supertypes
	8.10.1.2Attributes
	8.10.1.3Associations
	AssociationEnd: constraint	To: Algorithms::ActualStructureConstraint
	AssociationEnd: lower-bound	To: SizeConstraint
	AssociationEnd: member-type	To: ParameterType
	AssociationEnd: upper-bound	To: SizeConstraint

	8.10.1.4Other Roles

	8.10.2Class: GeneralAggregationType
	8.10.2.1Supertypes
	8.10.2.2Attributes
	8.10.2.3Associations
	AssociationEnd: member-type	To: GeneralizedType

	8.10.2.4Other Roles

	8.10.3Class: GeneralARRAYType
	8.10.3.1Supertypes
	8.10.3.2Attributes
	Attribute: isOptional	To: MOF::Boolean

	8.10.3.3Associations
	AssociationEnd: hi-index	To: ArrayBound
	AssociationEnd: lo-index	To: ArrayBound

	8.10.3.4Other Roles

	8.10.4Class: GeneralBAGType
	8.10.4.1Supertypes
	8.10.4.2Attributes
	8.10.4.3Associations
	8.10.4.4Other Roles

	8.10.5Class: GeneralizedType
	8.10.5.1Supertypes
	8.10.5.2Attributes
	8.10.5.3Associations
	8.10.5.4Other Roles

	8.10.6Class: GeneralLISTType
	8.10.6.1Supertypes
	8.10.6.2Attributes
	8.10.6.3Associations
	8.10.6.4Other Roles

	8.10.7Class: GeneralSETType
	8.10.7.1Supertypes
	8.10.7.2Attributes
	8.10.7.3Associations
	8.10.7.4Other Roles

	8.10.8Class: GenericType
	8.10.8.1Supertypes
	8.10.8.2Attributes
	Attribute: isEntity	To: MOF::Boolean

	8.10.8.3Associations
	AssociationEnd: constraint	To: Algorithms::ActualTypeConstraint

	8.10.8.4Other Roles

	8.11Entities and Attributes
	8.11.1Class: Attribute
	8.11.1.1Supertypes
	8.11.1.2Attributes
	Attribute: isAbstract	To: MOF::Boolean
	Attribute: position	To: MOF::Integer

	8.11.1.3Associations
	AssociationEnd: attribute-type	To: ParameterType
	AssociationEnd: of-entity	To: SingleEntityType

	8.11.1.4Other Roles
	8.11.1.5Rules
	Constraint (OCL)

	8.11.2Class: DerivedAttribute
	8.11.2.1Supertypes
	8.11.2.2Attributes
	8.11.2.3Associations
	AssociationEnd: derivation	To: Expression

	8.11.2.4Other Roles

	8.11.3Class: EntityType
	8.11.3.1Supertypes
	8.11.3.2Attributes
	Attribute: isAbstract	To: MOF::Boolean

	8.11.3.3Associations
	AssociationEnd: attributes	To: Attribute
	TaggedValues

	AssociationEnd: declares	To: SingleEntityType
	AssociationEnd: extension	To: Instances::Extent
	AssociationEnd: instances	To: Instances::EntityInstance
	AssociationEnd: plays-domain-role	To: DomainRole
	TaggedValues

	AssociationEnd: plays-range-role	To: RangeRole
	TaggedValues

	AssociationEnd: redeclarations	To: Redeclaration
	AssociationEnd: subtype-of	To: EntityType
	AssociationEnd: unique-rules	To: UniqueRule
	AssociationEnd: used-in	To: InvertibleAttribute

	8.11.3.4Other Roles

	8.11.4Class: ExplicitAttribute
	8.11.4.1Supertypes
	8.11.4.2Attributes
	Attribute: isOptional	To: MOF::Boolean

	8.11.4.3Associations
	8.11.4.4Other Roles

	8.11.5Class: InverseAttribute
	8.11.5.1Supertypes
	8.11.5.2Attributes
	Attribute: isUnique	To: MOF::Boolean

	8.11.5.3Associations
	AssociationEnd: explicit	To: InvertibleAttribute
	AssociationEnd: models-role	To: DomainRole

	8.11.5.4Other Roles

	8.11.6Class: InvertibleAttribute
	8.11.6.1Supertypes
	8.11.6.2Attributes
	8.11.6.3Associations
	AssociationEnd: creates-relationship	To: Relationship
	AssociationEnd: inverse	To: InverseAttribute
	AssociationEnd: models-role	To: RangeRole
	AssociationEnd: range-type	To: EntityType

	8.11.6.4Other Roles

	8.11.7Class: PartialEntityType
	8.11.7.1Supertypes
	8.11.7.2Attributes
	8.11.7.3Associations
	AssociationEnd: components	To: SingleEntityType

	8.11.7.4Other Roles

	8.11.8Class: SingleEntityType
	8.11.8.1Supertypes
	8.11.8.2Attributes
	Attribute: id	To: ScopedId
	TaggedValues

	8.11.8.3Associations
	AssociationEnd: declares	To: Attribute
	AssociationEnd: derived-from	To: EntityType
	AssociationEnd: equivalent	To: PartialEntityType

	8.11.8.4Other Roles
	8.11.8.5Rules
	Constraint (OCL)
	Constraint (OCL)

	8.11.9Class: UniqueRule
	8.11.9.1Supertypes
	8.11.9.2Attributes
	Attribute: position	To: MOF::Integer

	8.11.9.3Associations
	AssociationEnd: domain	To: EntityType
	AssociationEnd: key-component	To: Attribute

	8.11.9.4Other Roles

	8.11.10Association: attribute-declared-in-entity
	8.11.10.1Association Ends
	AssociationEnd: declares	To: Attribute
	AssociationEnd: of-entity	To: SingleEntityType

	8.11.11Association: attribute-has-data-type
	8.11.11.1Association Ends
	AssociationEnd: attribute-type	To: ParameterType
	AssociationEnd: role	To: Attribute

	8.11.12Association: EntityType-has-UniqueRule
	8.11.12.1Supertypes
	8.11.12.2Association Ends
	AssociationEnd: domain	To: EntityType
	AssociationEnd: unique-rules	To: UniqueRule

	8.11.13Association: InverseAttribute-inverts-ExplicitAttribute
	8.11.13.1Association Ends
	AssociationEnd: explicit	To: InvertibleAttribute
	AssociationEnd: inverse	To: InverseAttribute

	8.11.14Association: single-entity-declared-in-entity
	8.11.14.1Association Ends
	AssociationEnd: declares	To: SingleEntityType
	AssociationEnd: declared-in	To: EntityType

	8.12Relationships
	8.12.1Class: DomainRole
	8.12.1.1Supertypes
	8.12.1.2Attributes
	Attribute: id	To: ScopedId
	TaggedValues

	8.12.1.3Associations
	AssociationEnd: domain	To: EntityType
	TaggedValues

	AssociationEnd: in-relationship	To: Relationship
	AssociationEnd: range-view	To: InverseAttribute

	8.12.1.4Other Roles

	8.12.2Class: RangeRole
	8.12.2.1Supertypes
	8.12.2.2Attributes
	Attribute: id	To: ScopedId
	TaggedValues

	8.12.2.3Associations
	AssociationEnd: domain-view	To: InvertibleAttribute
	AssociationEnd: in-relationship	To: Relationship
	AssociationEnd: range	To: EntityType
	TaggedValues

	8.12.2.4Other Roles

	8.12.3Class: Relationship
	8.12.3.1Supertypes
	8.12.3.2Attributes
	8.12.3.3Associations
	AssociationEnd: based-on	To: InvertibleAttribute
	AssociationEnd: domain	To: DomainRole
	AssociationEnd: range	To: RangeRole

	8.12.3.4Other Roles

	8.12.4Class: Role
	8.12.4.1Supertypes
	8.12.4.2Attributes
	8.12.4.3Associations
	AssociationEnd: lower-bound	To: SizeConstraint
	TaggedValues

	AssociationEnd: upper-bound	To: SizeConstraint
	TaggedValues

	8.12.4.4Other Roles

	8.12.5Association: DomainRole-in-Relationship
	8.12.5.1Association Ends
	AssociationEnd: domain	To: DomainRole
	AssociationEnd: in-relationship	To: Relationship

	8.12.6Association: entity-plays-domain-role
	8.12.6.1Dependencies
	Dependency on Association: entity-has-attributes

	8.12.6.2Association Ends
	AssociationEnd: domain	To: EntityType
	TaggedValues

	AssociationEnd: plays-domain-role	To: DomainRole
	TaggedValues

	8.12.7Association: entity-plays-range-role
	8.12.7.1Dependencies
	Dependency on Association: entity-used-in-attribute

	8.12.7.2Association Ends
	AssociationEnd: plays-range-role	To: RangeRole
	TaggedValues

	AssociationEnd: range	To: EntityType
	TaggedValues

	8.12.8Association: entity-used-in-attribute
	8.12.8.1Association Ends
	AssociationEnd: range-type	To: EntityType
	AssociationEnd: used-in	To: InvertibleAttribute

	8.12.9Association: InverseAttribute-models-role
	8.12.9.1Association Ends
	AssociationEnd: models-role	To: DomainRole
	AssociationEnd: range-view	To: InverseAttribute

	8.12.10Association: InvertibleAttribute-creates-relationship
	8.12.10.1Association Ends
	AssociationEnd: based-on	To: InvertibleAttribute
	AssociationEnd: creates-relationship	To: Relationship

	8.12.11Association: InvertibleAttribute-models-role
	8.12.11.1Association Ends
	AssociationEnd: domain-view	To: InvertibleAttribute
	AssociationEnd: models-role	To: RangeRole

	8.12.12Association: RangeRole-in-Relationship
	8.12.12.1Association Ends
	AssociationEnd: in-relationship	To: Relationship
	AssociationEnd: range	To: RangeRole

	8.13Redeclarations
	8.13.1Class: Redeclaration
	8.13.1.1Supertypes
	8.13.1.2Attributes
	Attribute: alias	To: ScopedId
	Attribute: isMandatory	To: MOF::Boolean
	Attribute: position	To: MOF::Integer

	8.13.1.3Associations
	AssociationEnd: derivation	To: Expression
	AssociationEnd: lower-bound	To: SizeConstraint
	TaggedValues

	AssociationEnd: original-attribute	To: Attribute
	AssociationEnd: refined-role	To: Role
	TaggedValues

	AssociationEnd: refines	To: Redeclaration
	AssociationEnd: restricted-type	To: ParameterType
	AssociationEnd: scope	To: EntityType
	AssociationEnd: upper-bound	To: SizeConstraint
	TaggedValues

	8.13.1.4Other Roles

	8.13.2Association: scope-of-redeclaration-is-EntityType
	8.13.2.1Association Ends
	AssociationEnd: redeclarations	To: Redeclaration
	AssociationEnd: scope	To: EntityType

	8.14Expressions and Instances
	8.14.1Class: Expression
	8.14.1.1Supertypes
	8.14.1.2Attributes
	Attribute: text	To: ExpressText

	8.14.1.3Associations
	AssociationEnd: data-type	To: DataType
	AssociationEnd: evaluation	To: Instance
	AssociationEnd: interpretation-context	To: Scope

	8.14.1.4Other Roles
	8.14.1.5Rules
	Constraint ()

	8.14.2Class: Instance
	8.14.2.1Supertypes
	8.14.2.2Attributes
	8.14.2.3Associations
	AssociationEnd: appears-in-population	To: Instances::Population

	8.14.2.4Other Roles

	8.15Instance Package: BuiltInTypes
	8.15.1Dependencies
	Dependency on Class: Core::SimpleType

	8.15.2Instance: BINARY
	8.15.3Instance: BOOLEAN
	8.15.4Instance: INTEGER
	8.15.5Instance: LOGICAL
	8.15.6Instance: NUMBER
	8.15.7Instance: REAL
	8.15.8Instance: ROLE
	8.15.9Instance: STRING
	8.15.10Instance: TYPE

	8.16Instance Package: GenericTypes
	8.16.1Dependencies
	Dependency on Class: Core::GenericType

	8.16.2Instance: GENERIC
	8.16.3Instance: GENERIC_ENTITY

	9 Package: Instances
	9.1Dependencies
	Dependency on Package: Core

	9.2Overview of Instances
	9.2.1Class Core::Instance
	9.2.2Class: ConcreteValue
	9.2.2.1Supertypes
	9.2.2.2Attributes
	9.2.2.3Associations
	9.2.2.4Other Roles

	9.2.3Class: EnumerationItem
	9.2.3.1Supertypes
	9.2.3.2Attributes
	Attribute: position	To: MOF::Integer

	9.2.3.3Associations
	AssociationEnd: declared-in	To: Core::EnumerationType
	AssociationEnd: of-type	To: Core::EnumerationType
	TaggedValues

	9.2.3.4Other Roles
	9.2.3.5Rules
	Constraint (OCL)

	9.2.4Class: Indeterminate
	9.2.4.1Supertypes
	9.2.4.2Attributes
	9.2.4.3Associations
	9.2.4.4Other Roles

	9.2.5Class: SpecializedValue
	9.2.5.1Supertypes
	9.2.5.2Attributes
	9.2.5.3Associations
	AssociationEnd: fundamental-value	To: ConcreteValue
	AssociationEnd: of-type	To: Core::SpecializedType

	9.2.5.4Other Roles

	9.2.6Class: TypedInstance
	9.2.6.1Supertypes
	9.2.6.2Attributes
	9.2.6.3Associations
	AssociationEnd: satisfies-type	To: Core::SelectType

	9.2.6.4Other Roles

	9.2.7Association: enumeration-declares-items
	9.2.7.1Supertypes
	9.2.7.2Association Ends
	AssociationEnd: declared-in	To: Core::EnumerationType
	AssociationEnd: declared-items	To: EnumerationItem

	9.2.8Association: value-of-EnumerationType
	9.2.8.1Association Ends
	AssociationEnd: of-type	To: Core::EnumerationType
	TaggedValues

	AssociationEnd: values	To: EnumerationItem
	TaggedValues

	9.3Simple Values
	9.3.1Class: BinaryValue
	9.3.1.1Supertypes
	9.3.1.2Attributes
	9.3.1.3Associations
	9.3.1.4Other Roles

	9.3.2Class: BooleanValue
	9.3.2.1Supertypes
	9.3.2.2Attributes
	9.3.2.3Associations
	9.3.2.4Other Roles

	9.3.3Class: IntegerValue
	9.3.3.1Supertypes
	9.3.3.2Attributes
	9.3.3.3Associations
	9.3.3.4Other Roles

	9.3.4Class: LogicalValue
	9.3.4.1Supertypes
	9.3.4.2Attributes
	9.3.4.3Associations
	9.3.4.4Other Roles

	9.3.5Class: NumberValue
	9.3.5.1Supertypes
	9.3.5.2Attributes
	9.3.5.3Associations
	9.3.5.4Other Roles

	9.3.6Class: RealValue
	9.3.6.1Supertypes
	9.3.6.2Attributes
	9.3.6.3Associations
	9.3.6.4Other Roles

	9.3.7Class: RoleName
	9.3.7.1Supertypes
	9.3.7.2Attributes
	Attribute: represents	To: Core::ScopedId

	9.3.7.3Associations
	AssociationEnd: refers-to	To: Core::Attribute

	9.3.7.4Other Roles

	9.3.8Class: SimpleValue
	9.3.8.1Supertypes
	9.3.8.2Attributes
	Attribute: name	To: MOF::String

	9.3.8.3Associations
	AssociationEnd: of-type	To: Core::SimpleType

	9.3.8.4Other Roles

	9.3.9Class: StringValue
	9.3.9.1Supertypes
	9.3.9.2Attributes
	9.3.9.3Associations
	9.3.9.4Other Roles

	9.3.10Class: TypeName
	9.3.10.1Supertypes
	9.3.10.2Attributes
	Attribute: represents	To: Core::ScopedId

	9.3.10.3Associations
	AssociationEnd: refers-to	To: Core::NamedType

	9.3.10.4Other Roles

	9.4Aggregate Values
	9.4.1Class: AggregateValue
	9.4.1.1Supertypes
	9.4.1.2Attributes
	9.4.1.3Associations
	9.4.1.4Other Roles

	9.4.2Class: ArrayMember
	9.4.2.1Supertypes
	9.4.2.2Attributes
	Attribute: index	To: MOF::Integer

	9.4.2.3Associations
	AssociationEnd: member-value	To: Core::Instance

	9.4.2.4Other Roles

	9.4.3Class: ARRAYValue
	9.4.3.1Supertypes
	9.4.3.2Attributes
	9.4.3.3Associations
	AssociationEnd: member-slot	To: ArrayMember
	AssociationEnd: of-type	To: Core::ARRAYType

	9.4.3.4Other Roles

	9.4.4Class: BagMember
	9.4.4.1Supertypes
	9.4.4.2Attributes
	Attribute: count	To: MOF::Integer

	9.4.4.3Associations
	AssociationEnd: member-value	To: Core::Instance

	9.4.4.4Other Roles

	9.4.5Class: BAGValue
	9.4.5.1Supertypes
	9.4.5.2Attributes
	9.4.5.3Associations
	AssociationEnd: member-slot	To: BagMember
	AssociationEnd: of-type	To: Core::BAGType

	9.4.5.4Other Roles

	9.4.6Class: GenericAggregate
	9.4.6.1Supertypes
	9.4.6.2Attributes
	9.4.6.3Associations
	9.4.6.4Other Roles

	9.4.7Class: ListMember
	9.4.7.1Supertypes
	9.4.7.2Attributes
	Attribute: position	To: MOF::Integer

	9.4.7.3Associations
	AssociationEnd: member-value	To: Core::Instance

	9.4.7.4Other Roles

	9.4.8Class: LISTValue
	9.4.8.1Supertypes
	9.4.8.2Attributes
	9.4.8.3Associations
	AssociationEnd: member-slot	To: ListMember
	AssociationEnd: of-type	To: Core::LISTType

	9.4.8.4Other Roles

	9.4.9Class: SETValue
	9.4.9.1Supertypes
	9.4.9.2Attributes
	9.4.9.3Associations
	AssociationEnd: member-value	To: Core::Instance
	AssociationEnd: of-type	To: Core::SETType

	9.4.9.4Other Roles

	9.5Entity Instances and Values
	9.5.1Class: AttributeValue
	9.5.1.1Supertypes
	9.5.1.2Attributes
	9.5.1.3Associations
	AssociationEnd: actual-value	To: Core::Instance
	AssociationEnd: attribute	To: Core::ExplicitAttribute

	9.5.1.4Other Roles
	From: SingleEntityValue as properties

	9.5.2Class: EntityInstance
	9.5.2.1Supertypes
	9.5.2.2Attributes
	Attribute: id	To: EntityName

	9.5.2.3Associations
	AssociationEnd: instance-of	To: Core::EntityType
	AssociationEnd: state	To: EntityValue

	9.5.2.4Other Roles

	9.5.3Datatype: EntityName
	9.5.3.1Supertypes
	9.5.3.2Members

	9.5.4Class: EntityValue
	9.5.4.1Supertypes
	9.5.4.2Attributes
	9.5.4.3Associations
	AssociationEnd: corresponds to	To: Core::EntityType
	AssociationEnd: describes	To: EntityInstance

	9.5.4.4Other Roles

	9.5.5Class: MultiLeafInstance
	9.5.5.1Supertypes
	9.5.5.2Attributes
	9.5.5.3Associations
	9.5.5.4Other Roles

	9.5.6Class: PartialEntityValue
	9.5.6.1Supertypes
	9.5.6.2Attributes
	9.5.6.3Associations
	AssociationEnd: components	To: SingleEntityValue
	AssociationEnd: of-type	To: Core::PartialEntityType

	9.5.6.4Other Roles

	9.5.7Class: SingleEntityValue
	9.5.7.1Supertypes
	9.5.7.2Attributes
	9.5.7.3Associations
	AssociationEnd: equivalent	To: PartialEntityValue
	AssociationEnd: of-type	To: Core::SingleEntityType
	AssociationEnd: properties	To: AttributeValue

	9.5.7.4Other Roles

	9.5.8Class: SingleLeafInstance
	9.5.8.1Supertypes
	9.5.8.2Attributes
	9.5.8.3Associations
	AssociationEnd: characterizing-type	To: Core::EntityType

	9.5.8.4Other Roles

	9.5.9Association: entity-value-describes-state
	9.5.9.1Association Ends
	AssociationEnd: describes	To: EntityInstance
	AssociationEnd: state	To: EntityValue

	9.5.10Association: instance-of-EntityType
	9.5.10.1Association Ends
	AssociationEnd: instance-of	To: Core::EntityType
	AssociationEnd: instances	To: EntityInstance

	9.6Constants
	9.6.1Class: Constant
	9.6.1.1Supertypes
	9.6.1.2Attributes
	9.6.1.3Associations
	AssociationEnd: actual-value	To: Core::Instance
	AssociationEnd: data-type	To: Core::InstantiableType
	AssociationEnd: value-expression	To: Core::Expression

	9.6.1.4Other Roles
	9.6.1.5Rules
	Constraint (OCL)

	9.7Populations
	9.7.1Class: Extent
	9.7.1.1Supertypes
	9.7.1.2Attributes
	Attribute: id	To: Core::ScopedId
	TaggedValues

	9.7.1.3Associations
	AssociationEnd: content	To: EntityInstance
	TaggedValues

	AssociationEnd: for-type	To: Core::EntityType
	AssociationEnd: within-population	To: Population

	9.7.1.4Other Roles

	9.7.2Class: Population
	9.7.2.1Supertypes
	9.7.2.2Attributes
	9.7.2.3Associations
	AssociationEnd: composition	To: Core::Instance
	AssociationEnd: governing-schema	To: Core::Schema

	9.7.2.4Other Roles

	9.7.3Association: extent-of-EntityType
	9.7.3.1Association Ends
	AssociationEnd: extension	To: Extent
	AssociationEnd: for-type	To: Core::EntityType

	9.7.4Association: extent-within-population
	9.7.4.1Association Ends
	AssociationEnd: extents	To: Extent
	AssociationEnd: within-population	To: Population

	9.7.5Association: population-includes-instance
	9.7.5.1Association Ends
	AssociationEnd: appears-in-population	To: Population
	AssociationEnd: composition	To: Core::Instance

	10 Package: Algorithms
	10.1Dependencies
	Dependency on Package: Core

	10.2Functions and Procedures
	10.2.1Class: Algorithm
	10.2.1.1Supertypes
	10.2.1.2Attributes
	10.2.1.3Associations
	AssociationEnd: actual-types	To: Core::ActualType
	AssociationEnd: body	To: Statement
	AssociationEnd: formal-parameters	To: Parameter

	10.2.1.4Other Roles
	10.2.1.5Rules
	Constraint (OCL)

	10.2.2Class: Function
	10.2.2.1Supertypes
	10.2.2.2Attributes
	10.2.2.3Associations
	AssociationEnd: result	To: FunctionResult

	10.2.2.4Other Roles

	10.2.3Class: FunctionResult
	10.2.3.1Supertypes
	10.2.3.2Attributes
	10.2.3.3Associations
	AssociationEnd: namespace	To: Function

	10.2.3.4Other Roles
	10.2.3.5Rules
	Constraint (OCL)

	10.2.4Class: InParameter
	10.2.4.1Supertypes
	10.2.4.2Attributes
	10.2.4.3Associations
	10.2.4.4Other Roles

	10.2.5Class: Parameter
	10.2.5.1Supertypes
	10.2.5.2Attributes
	Attribute: position	To: MOF::Integer

	10.2.5.3Associations
	AssociationEnd: formal-parameter-type	To: Core::ParameterType
	AssociationEnd: namespace	To: Algorithm
	AssociationEnd: structure-constraints	To: ActualStructureConstraint
	AssociationEnd: type-constraints	To: ActualTypeConstraint
	AssociationEnd: variable	To: InVariable

	10.2.5.4Other Roles
	10.2.5.5Rules
	Constraint (OCL)
	Constraint (OCL)

	10.2.6Class: Procedure
	10.2.6.1Supertypes
	10.2.6.2Attributes
	10.2.6.3Associations
	10.2.6.4Other Roles

	10.2.7Class: Statement
	10.2.7.1Supertypes
	10.2.7.2Attributes
	Attribute: text	To: Core::ExpressText

	10.2.7.3Associations
	AssociationEnd: controlled-by	To: Statements::RepeatStatement
	AssociationEnd: implements	To: Algorithm
	AssociationEnd: in-block	To: Statements::StatementBlock

	10.2.7.4Other Roles

	10.2.8Class: VARParameter
	10.2.8.1Supertypes
	10.2.8.2Attributes
	10.2.8.3Associations
	10.2.8.4Other Roles
	10.2.8.5Rules
	Constraint (OCL)

	10.2.9Association: algorithm-has-body
	10.2.9.1Association Ends
	AssociationEnd: body	To: Statement
	AssociationEnd: implements	To: Algorithm

	10.2.10Association: algorithm-has-parameters
	10.2.10.1Supertypes
	10.2.10.2Association Ends
	AssociationEnd: formal-parameters	To: Parameter
	AssociationEnd: namespace	To: Algorithm

	10.2.11Association: function-has-result
	10.2.11.1Supertypes
	10.2.11.2Association Ends
	AssociationEnd: namespace	To: Function
	AssociationEnd: result	To: FunctionResult

	10.3Variables
	10.3.1Class: LocalVariable
	10.3.1.1Supertypes
	10.3.1.2Attributes
	10.3.1.3Associations
	AssociationEnd: initial-value	To: Core::Expression
	AssociationEnd: namespace	To: Core::AlgorithmScope

	10.3.1.4Other Roles

	10.3.2Class: NamedVariable
	10.3.2.1Supertypes
	10.3.2.2Attributes
	10.3.2.3Associations
	AssociationEnd: variable-type	To: Core::VariableType

	10.3.2.4Other Roles
	10.3.2.5Rules
	Constraint (OCL)

	10.3.3Class: VARVariable
	10.3.3.1Supertypes
	10.3.3.2Attributes
	10.3.3.3Associations
	10.3.3.4Other Roles

	10.3.4Class: Variable
	10.3.4.1Supertypes
	10.3.4.2Attributes
	10.3.4.3Associations
	10.3.4.4Other Roles

	10.3.5Association: variable-defined-in-scope
	10.3.5.1Supertypes
	10.3.5.2Association Ends
	AssociationEnd: namespace	To: Core::AlgorithmScope
	AssociationEnd: variables	To: LocalVariable

	10.4Actual Types
	10.4.1Class: Core::ActualType
	10.4.2Class: ActualAGGREGATEType
	10.4.2.1Supertypes
	10.4.2.2Attributes
	Attribute: label	To: Core::Identifier

	10.4.2.3Associations
	AssociationEnd: lower-bound	To: Core::SizeConstraint
	AssociationEnd: member-type	To: Core::VariableType
	AssociationEnd: refers-to	To: ActualStructure
	AssociationEnd: upper-bound	To: Core::SizeConstraint

	10.4.2.4Other Roles

	10.4.3Class: ActualAggregationType
	10.4.3.1Supertypes
	10.4.3.2Attributes
	10.4.3.3Associations
	AssociationEnd: member-type	To: Core::ActualType

	10.4.3.4Other Roles

	10.4.4Class: ActualARRAYType
	10.4.4.1Supertypes
	10.4.4.2Attributes
	Attribute: isOptional	To: MOF::Boolean

	10.4.4.3Associations
	AssociationEnd: hi-index	To: Core::ArrayBound
	AssociationEnd: lo-index	To: Core::ArrayBound

	10.4.4.4Other Roles

	10.4.5Class: ActualBAGType
	10.4.5.1Supertypes
	10.4.5.2Attributes
	10.4.5.3Associations
	10.4.5.4Other Roles

	10.4.6Class: ActualDataType
	10.4.6.1Supertypes
	10.4.6.2Attributes
	10.4.6.3Associations
	10.4.6.4Other Roles

	10.4.7Class: ActualGenericType
	10.4.7.1Supertypes
	10.4.7.2Attributes
	Attribute: isEntity	To: MOF::Boolean
	Attribute: label	To: Core::Identifier

	10.4.7.3Associations
	AssociationEnd: refers-to	To: ActualDataType

	10.4.7.4Other Roles

	10.4.8Class: ActualLISTType
	10.4.8.1Supertypes
	10.4.8.2Attributes
	10.4.8.3Associations
	10.4.8.4Other Roles

	10.4.9Class: ActualSETType
	10.4.9.1Supertypes
	10.4.9.2Attributes
	10.4.9.3Associations
	10.4.9.4Other Roles

	10.4.10Class: ActualStructure
	10.4.10.1Supertypes
	10.4.10.2Attributes
	10.4.10.3Associations
	10.4.10.4Other Roles

	10.4.11Class: GenericElement
	10.4.11.1Supertypes
	10.4.11.2Attributes
	Attribute: label	To: Core::ScopedId

	10.4.11.3Associations
	AssociationEnd: namespace	To: Algorithm
	TaggedValues

	AssociationEnd: source	To: Parameter

	10.4.11.4Other Roles

	10.4.12Association: scope-of-actual-type
	10.4.12.1Supertypes
	10.4.12.2Association Ends
	AssociationEnd: scope	To: Algorithm
	AssociationEnd: actual-types	To: ActualType

	10.5Actual Type Constraints
	10.5.1Class: ActualStructureConstraint
	10.5.1.1Supertypes
	10.5.1.2Attributes
	Attribute: label	To: Core::Identifier

	10.5.1.3Associations
	AssociationEnd: matching-structure	To: Core::AGGREGATEType
	AssociationEnd: required-structure	To: ActualStructure

	10.5.1.4Other Roles

	10.5.2Class: ActualTypeConstraint
	10.5.2.1Supertypes
	10.5.2.2Attributes
	Attribute: label	To: Core::Identifier

	10.5.2.3Associations
	AssociationEnd: matching-type	To: Core::GenericType
	AssociationEnd: required-type	To: ActualDataType

	10.5.2.4Other Roles

	10.5.3Association: aggregate-has-constraint
	10.5.3.1Association Ends
	AssociationEnd: constraint	To: ActualStructureConstraint
	AssociationEnd: matching-structure	To: Core::AGGREGATEType

	10.5.4Association: generic-has-constraint
	10.5.4.1Association Ends
	AssociationEnd: constraint	To: ActualTypeConstraint
	AssociationEnd: matching-type	To: Core::GenericType

	11 Package: Rules
	11.1Dependencies
	Dependency on Package: Core
	Dependency on Package: Algorithms

	11.2Global Rules
	11.2.1Class: GlobalRule
	11.2.1.1Supertypes
	11.2.1.2Attributes
	11.2.1.3Associations
	AssociationEnd: constrained-extents	To: Core::EntityType
	AssociationEnd: contains-rules	To: NamedRule
	AssociationEnd: supporting-body	To: Algorithms::Statement

	11.2.1.4Other Roles
	11.2.1.5Rules
	Constraint (OCL)
	Constraint (OCL)
	Constraint (OCL)

	11.2.2Class: NamedRule
	11.2.2.1Supertypes
	11.2.2.2Attributes
	Attribute: position	To: MOF::Integer

	11.2.2.3Associations
	AssociationEnd: asserts-expression	To: Core::Expression
	AssociationEnd: namespace	To: GlobalRule

	11.2.2.4Other Roles

	11.2.3Association: GlobalRule-contains-NamedRule
	11.2.3.1Supertypes
	11.2.3.2Association Ends
	AssociationEnd: contains-rules	To: NamedRule
	AssociationEnd: namespace	To: GlobalRule

	11.2.4Association: rule-constrains-extents
	11.2.4.1Association Ends
	AssociationEnd: constrained-extents	To: Core::EntityType
	AssociationEnd: constraint-rules	To: GlobalRule

	11.3SupertypeRules and SubtypeConstraints
	11.3.1Class: ANDConstraint
	11.3.1.1Supertypes
	11.3.1.2Attributes
	11.3.1.3Associations
	11.3.1.4Other Roles

	11.3.2Class: ONEOFConstraint
	11.3.2.1Supertypes
	11.3.2.2Attributes
	11.3.2.3Associations
	11.3.2.4Other Roles

	11.3.3Class: SubtypeConstraint
	11.3.3.1Supertypes
	11.3.3.2Attributes
	11.3.3.3Associations
	AssociationEnd: collection	To: SupertypeRule
	AssociationEnd: constrained-subtypes	To: Core::EntityType
	AssociationEnd: equivalent-rule	To: Core::Expression

	11.3.3.4Other Roles

	11.3.4Class: SupertypeRule
	11.3.4.1Supertypes
	11.3.4.2Attributes
	Attribute: assertsAbstract	To: MOF::Boolean

	11.3.4.3Associations
	AssociationEnd: constraints	To: SubtypeConstraint
	AssociationEnd: named-supertype	To: Core::EntityType

	11.3.4.4Other Roles

	11.3.5Class: TOTAL_OVERConstraint
	11.3.5.1Supertypes
	11.3.5.2Attributes
	11.3.5.3Associations
	11.3.5.4Other Roles

	11.3.6Association: rule-constrains-subtypes
	11.3.6.1Association Ends
	AssociationEnd: constrained-subtypes	To: Core::EntityType
	AssociationEnd: constraints	To: SubtypeConstraint

	11.3.7Association: rule-includes-SubtypeConstraints
	11.3.7.1Association Ends
	AssociationEnd: collection	To: SupertypeRule
	AssociationEnd: constraints	To: SubtypeConstraint

	12 Package: Expressions
	12.1Dependencies
	Dependency on Package: Core
	Dependency on Package: Instances
	Dependency on Package: Algorithms

	12.2Overview of Expressions
	12.2.1Class Core::Expression
	12.2.2Class: IndexOperation
	12.2.2.1Supertypes
	12.2.2.2Attributes
	12.2.2.3Associations
	AssociationEnd: base-value	To: Core::Expression

	12.2.2.4Other Roles

	12.2.3Class: Operation
	12.2.3.1Supertypes
	12.2.3.2Attributes
	12.2.3.3Associations
	12.2.3.4Other Roles

	12.2.4Class: Primary
	12.2.4.1Supertypes
	12.2.4.2Attributes
	12.2.4.3Associations
	12.2.4.4Other Roles

	12.2.5Class: Selector
	12.2.5.1Supertypes
	12.2.5.2Attributes
	12.2.5.3Associations
	AssociationEnd: entity-instance	To: Core::Expression

	12.2.5.4Other Roles

	12.3Primaries
	12.3.1Class: ConstantRef
	12.3.1.1Supertypes
	12.3.1.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.3.1.3Associations
	AssociationEnd: refers-to	To: Instances::Constant

	12.3.1.4Other Roles

	12.3.2Class: EnumItemRef
	12.3.2.1Supertypes
	12.3.2.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.3.2.3Associations
	AssociationEnd: refers-to	To: Instances::EnumerationItem
	TaggedValues

	12.3.2.4Other Roles

	12.3.3Class: ExtentRef
	12.3.3.1Supertypes
	12.3.3.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.3.3.3Associations
	AssociationEnd: refers-to	To: Core::NamedType

	12.3.3.4Other Roles

	12.3.4Class: IndeterminateRef
	12.3.4.1Supertypes
	12.3.4.2Attributes
	12.3.4.3Associations
	AssociationEnd: refers-to	To: Instances::Indeterminate
	TaggedValues

	12.3.4.4Other Roles

	12.3.5Class: Literal
	12.3.5.1Supertypes
	12.3.5.2Attributes
	12.3.5.3Associations
	AssociationEnd: refers-to	To: Instances::SimpleValue
	TaggedValues

	12.3.5.4Other Roles

	12.3.6Class: ParameterRef
	12.3.6.1Supertypes
	12.3.6.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.3.6.3Associations
	AssociationEnd: refers-to	To: Algorithms::Parameter

	12.3.6.4Other Roles

	12.3.7Class: SELFRef
	12.3.7.1Supertypes
	12.3.7.2Attributes
	12.3.7.3Associations
	12.3.7.4Other Roles

	12.3.8Class: VariableRef
	12.3.8.1Supertypes
	12.3.8.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.3.8.3Associations
	AssociationEnd: refers-to	To: Algorithms::NamedVariable

	12.3.8.4Other Roles

	12.4Indexing
	12.4.1Class: AggregateIndex
	12.4.1.1Supertypes
	12.4.1.2Attributes
	12.4.1.3Associations
	AssociationEnd: index-value	To: Core::Expression

	12.4.1.4Other Roles

	12.4.2Class: BinaryIndex
	12.4.2.1Supertypes
	12.4.2.2Attributes
	12.4.2.3Associations
	AssociationEnd: first-bit	To: Core::Expression
	AssociationEnd: last-bit	To: Core::Expression

	12.4.2.4Other Roles

	12.4.3Class: StringIndex
	12.4.3.1Supertypes
	12.4.3.2Attributes
	12.4.3.3Associations
	AssociationEnd: first-code	To: Core::Expression
	AssociationEnd: last-code	To: Core::Expression

	12.4.3.4Other Roles

	12.5Selection
	12.5.1Class: AttributeRef
	12.5.1.1Supertypes
	12.5.1.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.5.1.3Associations
	AssociationEnd: refers-to	To: Core::Attribute

	12.5.1.4Other Roles

	12.5.2Class: GroupRef
	12.5.2.1Supertypes
	12.5.2.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.5.2.3Associations
	AssociationEnd: refers-to	To: Core::SingleEntityType

	12.5.2.4Other Roles

	12.5.3Class: UsedInRef
	12.5.3.1Supertypes
	12.5.3.2Attributes
	12.5.3.3Associations
	AssociationEnd: inverse-of	To: Core::Attribute

	12.5.3.4Other Roles

	12.6Operations
	12.6.1Class: BinaryOperation
	12.6.1.1Supertypes
	12.6.1.2Attributes
	Attribute: operator	To: BinaryOperator

	12.6.1.3Associations
	AssociationEnd: left-operand	To: Core::Expression
	AssociationEnd: right-operand	To: Core::Expression

	12.6.1.4Other Roles

	12.6.2Datatype: BinaryOperator
	12.6.2.1Supertypes
	12.6.2.2Values
	Value: AND
	Value: Add
	Value: BagAdd
	Value: BagRemove
	Value: BagUnion
	Value: BinaryAppend
	Value: DIV
	Value: Difference
	Value: Divide
	Value: EntityConstructor
	Value: EntityValueEqual
	Value: EntityValueNotEqual
	Value: Equal
	Value: Exponent
	Value: Greater
	Value: IN
	Value: InstanceEqual
	Value: InstanceNotEqual
	Value: Intersection
	Value: LIKE
	Value: Less
	Value: ListAddFirst
	Value: ListAddLast
	Value: ListAppend
	Value: MOD
	Value: Multiply
	Value: NVL
	Value: NotEqual
	Value: NotGreater
	Value: NotLess
	Value: OR
	Value: SetAdd
	Value: SetUnion
	Value: StringAppend
	Value: Subset
	Value: Subtract
	Value: ValueIn
	Value: XOR

	12.6.3Class: Coercion
	12.6.3.1Supertypes
	12.6.3.2Attributes
	12.6.3.3Associations
	AssociationEnd: operand	To: Core::Expression
	AssociationEnd: target-type	To: Core::VariableType

	12.6.3.4Other Roles

	12.6.4Class: UnaryOperation
	12.6.4.1Supertypes
	12.6.4.2Attributes
	Attribute: operator	To: UnaryOperator

	12.6.4.3Associations
	AssociationEnd: unary-operand	To: Core::Expression

	12.6.4.4Other Roles

	12.6.5Datatype: UnaryOperator
	12.6.5.1Supertypes
	12.6.5.2Values
	Value: ABS
	Value: ACOS
	Value: ASIN
	Value: ATAN
	Value: BinaryLength
	Value: COS
	Value: EXISTS
	Value: EXP
	Value: HiBound
	Value: HiIndex
	Value: Identity
	Value: LOG
	Value: LOG10
	Value: LOG2
	Value: LoBound
	Value: LoIndex
	Value: NOT
	Value: Negate
	Value: ODD
	Value: RolesOf
	Value: SIN
	Value: SQRT
	Value: SizeOf
	Value: StringLength
	Value: TAN
	Value: TypeOf
	Value: VALUE
	Value: ValueUnique

	12.7Function Calls
	12.7.1Class: ActualParameter
	12.7.1.1Supertypes
	12.7.1.2Attributes
	Attribute: position	To: MOF::Integer

	12.7.1.3Associations
	AssociationEnd: actual-referent	To: Statements::VARExpression
	AssociationEnd: actual-value	To: Core::Expression
	AssociationEnd: formal-parameter	To: Algorithms::Parameter
	AssociationEnd: in-FunctionCall	To: FunctionCall
	AssociationEnd: in-ProcedureCall	To: Statements::ProcedureCall

	12.7.1.4Other Roles

	12.7.2Class: FunctionCall
	12.7.2.1Supertypes
	12.7.2.2Attributes
	12.7.2.3Associations
	AssociationEnd: actual-parameters	To: ActualParameter
	AssociationEnd: invokes-function	To: Algorithms::Function
	AssociationEnd: returns-result	To: Algorithms::FunctionResult
	TaggedValues

	12.7.2.4Other Roles
	12.7.2.5Rules
	Constraint
	Constraint
	Constraint
	Constraint

	12.7.3Association: call-provides-actual-parameters
	12.7.3.1Association Ends
	AssociationEnd: actual-parameters	To: ActualParameter
	AssociationEnd: in-FunctionCall	To: FunctionCall

	12.8Query Expressions
	12.8.1Class: QueryExpression
	12.8.1.1Supertypes
	12.8.1.2Attributes
	12.8.1.3Associations
	AssociationEnd: aggregate-operand	To: Core::Expression
	AssociationEnd: query-variable	To: QueryVariable
	AssociationEnd: select-condition	To: Core::Expression

	12.8.1.4Other Roles

	12.8.2Class: QueryVariable
	12.8.2.1Supertypes
	12.8.2.2Attributes
	12.8.2.3Associations
	AssociationEnd: namespace	To: QueryExpression

	12.8.2.4Other Roles

	12.8.3Association: scope-of-variable-is-query
	12.8.3.1Supertypes
	12.8.3.2Association Ends
	AssociationEnd: namespace	To: QueryExpression
	AssociationEnd: query-variable	To: QueryVariable

	12.9Aggregate Initializers
	12.9.1Class: AggregateInitializer
	12.9.1.1Supertypes
	12.9.1.2Attributes
	12.9.1.3Associations
	AssociationEnd: bindings	To: MemberBinding
	AssociationEnd: result-value	To: Instances::GenericAggregate
	TaggedValues

	12.9.1.4Other Roles

	12.9.2Class: MemberBinding
	12.9.2.1Supertypes
	12.9.2.2Attributes
	Attribute: position	To: MOF::Integer

	12.9.2.3Associations
	AssociationEnd: member-value	To: Core::Expression
	AssociationEnd: repetition	To: RepeatCount
	AssociationEnd: to-slot	To: Instances::ListMember

	12.9.2.4Other Roles

	12.9.3Class: RepeatCount
	12.9.3.1Supertypes
	12.9.3.2Attributes
	Attribute: count	To: (none)

	12.9.3.3Associations
	AssociationEnd: derivation	To: Core::Expression

	12.9.3.4Other Roles

	12.10Partial Entity Constructors
	12.10.1Class: AttributeBinding
	12.10.1.1Supertypes
	12.10.1.2Attributes
	Attribute: position	To: MOF::Integer

	12.10.1.3Associations
	AssociationEnd: attribute	To: Core::ExplicitAttribute
	AssociationEnd: attribute-value	To: Core::Expression

	12.10.1.4Other Roles

	12.10.2Class: PartialEntityConstructor
	12.10.2.1Supertypes
	12.10.2.2Attributes
	Attribute: id	To: Core::Identifier
	TaggedValues

	12.10.2.3Associations
	AssociationEnd: attribute-group	To: Core::SingleEntityType
	AssociationEnd: bindings	To: AttributeBinding
	AssociationEnd: result-value	To: Instances::PartialEntityValue
	TaggedValues

	12.10.2.4Other Roles

	12.11Instance Package: BuiltInConstants
	12.11.1Dependencies
	Dependency on Class: Expressions::Literal

	12.11.2Instance: E
	12.11.3Instance: FALSE
	12.11.4Instance: PI
	12.11.5Instance: TRUE
	12.11.6Instance: UNKNOWN

	13 Package: Statements
	13.1Dependencies
	Dependency on Package: Core
	Dependency on Package: Algorithms
	Dependency on Package: Expressions

	13.2Overview of Statements
	13.2.1Class: Algorithms::Statement
	13.2.2Class: ControlStatement
	13.2.2.1Supertypes
	13.2.2.2Attributes
	13.2.2.3Associations
	13.2.2.4Other Roles

	13.2.3Class: NullStatement
	13.2.3.1Supertypes
	13.2.3.2Attributes
	13.2.3.3Associations
	13.2.3.4Other Roles

	13.2.4Class: StatementBlock
	13.2.4.1Supertypes
	13.2.4.2Attributes
	Attribute: delimited	To: MOF::Boolean

	13.2.4.3Associations
	AssociationEnd: body-statements	To: Algorithms::Statement

	13.2.4.4Other Roles

	13.2.5Association: block-sequences-statements
	13.2.5.1Association Ends
	AssociationEnd: body-statements	To: Algorithms::Statement
	AssociationEnd: in-block	To: StatementBlock

	13.3ALIAS Statements
	13.3.1Class: AliasStatement
	13.3.1.1Supertypes
	13.3.1.2Attributes
	13.3.1.3Associations
	AssociationEnd: alias-variable	To: AliasVariable
	AssociationEnd: body	To: Algorithms::Statement

	13.3.1.4Other Roles
	13.3.1.5Rules
	Constraint (OCL)

	13.3.2Class: AliasVariable
	13.3.2.1Supertypes
	13.3.2.2Attributes
	13.3.2.3Associations
	AssociationEnd: namespace	To: AliasStatement
	AssociationEnd: referent	To: VARExpression

	13.3.2.4Other Roles

	13.3.3Association: alias-binds-variable
	13.3.3.1Supertypes
	13.3.3.2Association Ends
	AssociationEnd: alias-variable	To: AliasVariable
	AssociationEnd: namespace	To: AliasStatement

	13.4Assignment Statements
	13.4.1Class: Assignment
	13.4.1.1Supertypes
	13.4.1.2Attributes
	13.4.1.3Associations
	AssociationEnd: assigned-value	To: Core::Expression
	AssociationEnd: variable	To: VARExpression

	13.4.1.4Other Roles

	13.5CASE Statements
	13.5.1Class: CaseAction
	13.5.1.1Supertypes
	13.5.1.2Attributes
	Attribute: isDefault	To: MOF::Boolean

	13.5.1.3Associations
	AssociationEnd: action	To: Algorithms::Statement
	AssociationEnd: label-value	To: Core::Expression

	13.5.1.4Other Roles
	13.5.1.5Rules
	Constraint labels-unless-default (OCL)
	Constraint one-default (EXPRESS)

	13.5.2Class: CaseStatement
	13.5.2.1Supertypes
	13.5.2.2Attributes
	13.5.2.3Associations
	AssociationEnd: cases	To: CaseAction
	AssociationEnd: selection-expression	To: Core::Expression

	13.5.2.4Other Roles

	13.6IF Statements
	13.6.1Class: IfStatement
	13.6.1.1Supertypes
	13.6.1.2Attributes
	13.6.1.3Associations
	AssociationEnd: else-actions	To: Algorithms::Statement
	AssociationEnd: if-condition	To: Core::Expression
	AssociationEnd: then-actions	To: Algorithms::Statement

	13.6.1.4Other Roles

	13.7Procedure Calls
	13.7.1Class: ProcedureCall
	13.7.1.1Supertypes
	13.7.1.2Attributes
	13.7.1.3Associations
	AssociationEnd: actual-parameters	To: Expressions::ActualParameter
	AssociationEnd: invokes	To: Algorithms::Procedure

	13.7.1.4Other Roles

	13.7.2Association: procedure-call-provides-actual-parameters
	13.7.2.1Association Ends
	AssociationEnd: actual-parameters	To: Expressions::ActualParameter
	AssociationEnd: in-ProcedureCall	To: ProcedureCall

	13.8REPEAT Statements
	13.8.1Class: ControlVariable
	13.8.1.1Supertypes
	13.8.1.2Attributes
	13.8.1.3Associations
	AssociationEnd: bound-value	To: Core::Expression
	AssociationEnd: increment	To: Core::Expression
	AssociationEnd: initial-value	To: Core::Expression
	AssociationEnd: namespace	To: RepeatStatement

	13.8.1.4Other Roles
	13.8.1.5Rules
	Constraint

	13.8.2Class: EscapeStatement
	13.8.2.1Supertypes
	13.8.2.2Attributes
	13.8.2.3Associations
	13.8.2.4Other Roles
	13.8.2.5Rules
	Constraint

	13.8.3Class: RepeatStatement
	13.8.3.1Supertypes
	13.8.3.2Attributes
	13.8.3.3Associations
	AssociationEnd: body	To: Algorithms::Statement
	AssociationEnd: control-variable	To: ControlVariable
	AssociationEnd: until-expression	To: Core::Expression
	AssociationEnd: while-expression	To: Core::Expression

	13.8.3.4Other Roles

	13.8.4Class: SkipStatement
	13.8.4.1Supertypes
	13.8.4.2Attributes
	13.8.4.3Associations
	13.8.4.4Other Roles
	13.8.4.5Rules
	Constraint

	13.8.5Association: repeat-has-body
	13.8.5.1Association Ends
	AssociationEnd: body	To: Algorithms::Statement
	AssociationEnd: controlled-by	To: RepeatStatement

	13.8.6Association: repeat-has-increment-control
	13.8.6.1Supertypes
	13.8.6.2Association Ends
	AssociationEnd: control-variable	To: ControlVariable
	AssociationEnd: namespace	To: RepeatStatement

	13.9RETURN Statements
	13.9.1Class: ReturnStatement
	13.9.1.1Supertypes
	13.9.1.2Attributes
	13.9.1.3Associations
	AssociationEnd: return-value	To: Core::Expression

	13.9.1.4Other Roles

	13.10VAR Expressions
	13.10.1Class: AttributeCell
	13.10.1.1Supertypes
	13.10.1.2Attributes
	Attribute: id	To: Core::Identifier

	13.10.1.3Associations
	AssociationEnd: base-entity	To: VARExpression
	AssociationEnd: referent	To: Core::ExplicitAttribute

	13.10.1.4Other Roles

	13.10.2Class: GroupCell
	13.10.2.1Supertypes
	13.10.2.2Attributes
	Attribute: id	To: Core::Identifier

	13.10.2.3Associations
	AssociationEnd: base-entity	To: VARExpression
	AssociationEnd: referent	To: Core::SingleEntityType

	13.10.2.4Other Roles

	13.10.3Class: MemberCell
	13.10.3.1Supertypes
	13.10.3.2Attributes
	13.10.3.3Associations
	AssociationEnd: base-aggregate	To: VARExpression
	AssociationEnd: index-value	To: Core::Expression

	13.10.3.4Other Roles

	13.10.4Class: AliasRef
	13.10.4.1Supertypes
	13.10.4.2Attributes
	Attribute: id	To: Core::Identifier

	13.10.4.3Associations
	AssociationEnd: refers-to	To: Algorithms::VARVariable

	13.10.4.4Other Roles

	13.10.5Class: VARExpression
	13.10.5.1Supertypes
	13.10.5.2Attributes
	Attribute: text	To: Core::ExpressText

	13.10.5.3Associations
	13.10.5.4Other Roles

	13.10.6Class: VariableCell
	13.10.6.1Supertypes
	13.10.6.2Attributes
	Attribute: id	To: Core::Identifier

	13.10.6.3Associations
	AssociationEnd: referent	To: Algorithms::Variable

	13.10.6.4Other Roles

	14 Package: Express2
	14.1Dependencies
	Dependency on Package: Statements
	Dependency on Package: Rules

	14.2Classes and Associations

