

Date: June 2009

Reference Metamodel for the EXPRESS Information
Modeling Language Specification

Updated Beta 2
with change bars

OMG Document Number: dtc/2009-06-15
Standard document URL: http://www.omg.org/spec/EXPRESS/1.0
Associated Files*:

http://www.omg.org/spec/EXPRESS/20090501
http://www.omg.org/spec/EXPRESS/20090502

* Original files: dtc/09-06-19 (cmof.xmi), dtc/09-05-17 (uml2 xmi)

Copyright © 2008, JBIC (Japan Biological Informatics Consortium)
Copyright © 2009, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , IMM™, MOF™, OMG Interface Definition Language (IDL)™, and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

1 Introduction ... 1

2 Scope and Purpose ... 3

3 Normative References ... 3

4 Conformance ... 3
4.1 Conformance of an exchange document .. 3
4.2 Conformance as a producer (pre-processor) .. 4
4.3 Conformance as a (post-)processor .. 4
4.4 Compliance points ... 4

 4.4.1 Compliance point: Instances ... 4
 4.4.2 Compliance point: Algorithms ... 4
 4.4.3 Compliance point: Rules ... 4
 4.4.4 Compliance point: Expressions ... 5
 4.4.5 Compliance point: Statements .. 5
 4.4.6 Compliance point: Express2 ... 5

5 Terms and Definitions ... 5
5.1 Unified Modeling Language (UML) terms ... 5
5.2 EXPRESS terms ... 6
5.3 Terms for model elements .. 6
5.4 Additional terms introduced in this specification ... 7

6 Document Conventions ... 7

7 Overview of the EXPRESS Metamodel ... 9

8 Package :: Core .. 11
8.1 Dependencies ... 11
8.2 MOF Metamodel Datatypes .. 11

 8.2.1 Datatype: Boolean .. 11
 8.2.2 Datatype: Integer .. 11
 8.2.3 Datatype: String .. 11

8.3 EXPRESS Language Datatypes ... 11
 8.3.1 Datatype: ExpressText .. 11
 8.3.2 Datatype: Identifier .. 12
 8.3.3 Datatype: Keyword .. 12

8.4 Schemas, Scopes and Naming ... 12
 8.4.1 Class: AlgorithmScope .. 14
 8.4.2 Class: CommonElement ... 15
 8.4.3 Class: Interface ... 16
 8.4.4 Class: InterfacedElement .. 18
 8.4.5 Class: LocalElement ... 19
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 i

 8.4.6 Class: LocalScope .. 20
 8.4.7 Class: NamedElement .. 20
 8.4.8 Class: Schema .. 21
 8.4.9 Class: SchemaElement ... 23
 8.4.10 Class: Scope ... 25
 8.4.11 Datatype: ScopedId ... 25
 8.4.12 Class: TypeElement .. 26
 8.4.13 Association: common-element-has-local-scope .. 27
 8.4.14 Association: element-defined-in-scope ... 28
 8.4.15 Association: interface-includes-elements ... 29
 8.4.16 Association: local-element-has-local-scope .. 29
 8.4.17 Association: schema-defines-elements ... 30
 8.4.18 Association: schema-element-is-interfaced-element ... 31
 8.4.19 Association: schema-interfaces-elements ... 31
 8.4.20 Association: schema-has-interface ... 32
 8.4.21 Association: type-element-has-scope ... 33

8.5 Remarks .. 33
 8.5.1 Class: Remark ... 34
 8.5.2 Association: remark-appears-in-scope .. 36
 8.5.3 Association: remark-describes-element .. 36
 8.5.4 Association: remark-describes-schema .. 37

8.6 Overview of Types ... 37
 8.6.1 Class: ActualType ... 39
 8.6.2 Class: AnonymousType .. 40
 8.6.3 Class: ConcreteType... 41
 8.6.4 Class: DataType .. 41
 8.6.5 Class: DefinedType... 42
 8.6.6 Class: EnumerationType ... 42
 8.6.7 Class: InstantiableType ... 44
 8.6.8 Class: NamedType .. 45
 8.6.9 Class: ParameterType .. 47
 8.6.10 Class: SelectType ... 48
 8.6.11 Class: SpecializedType ... 49
 8.6.12 Class: VariableType .. 50
 8.6.13 Association: enumeration-extends-enumeration ... 50
 8.6.14 Association: select-type-extends-select-type .. 51
 8.6.15 Association: type-instantiates-select-type ... 51

8.7 Type Constraints ... 52
 8.7.1 Class: DomainConstraint .. 53
 8.7.2 Class: DomainRule ... 54
 8.7.3 Association: NamedType-has-DomainRule .. 55
 8.7.4 Association: type-has-constraints ... 56

8.8 Simple Types ... 56
 8.8.1 Class: BinaryType ... 57
 8.8.2 Class: LengthConstraint .. 58
 8.8.3 Class: LogicType ... 59
 8.8.4 Class: NumericType .. 59
 8.8.5 Class: RealType .. 60
 8.8.6 Class: SimpleType .. 60
 8.8.7 Class: StringType .. 61
ii Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.9 Aggregation Types .. 62
 8.9.1 Class: AggregationType .. 63
 8.9.2 Class: ArrayBound .. 64
 8.9.3 Class: ARRAYType ... 65
 8.9.4 Class: BAGType .. 66
 8.9.5 Class: ConcreteAggregationType ... 67
 8.9.6 Class: LISTType .. 67
 8.9.7 Datatype: OrderingKind ... 68
 8.9.8 Class: SETType .. 69
 8.9.9 Class: SizeConstraint .. 69

8.10 Generalized Types .. 70
 8.10.1 Class: AGGREGATEType .. 71
 8.10.2 Class: GeneralAggregationType ... 73
 8.10.3 Class: GeneralARRAYType .. 73
 8.10.4 Class: GeneralBAGType ... 74
 8.10.5 Class: GeneralizedType .. 75
 8.10.6 Class: GeneralLISTType ... 76
 8.10.7 Class: GeneralSETType ... 76
 8.10.8 Class: GenericType ... 77

8.11 Entities and Attributes ... 77
 8.11.1 Class: Attribute .. 79
 8.11.2 Class: DerivedAttribute ... 81
 8.11.3 Class: EntityType .. 82
 8.11.4 Class: ExplicitAttribute .. 85
 8.11.5 Class: InverseAttribute .. 86
 8.11.6 Class: InvertibleAttribute ... 87
 8.11.7 Class: PartialEntityType .. 88
 8.11.8 Class: SingleEntityType .. 89
 8.11.9 Class: UniqueRule .. 90
 8.11.10 Association: attribute-declared-in-entity .. 91
 8.11.11 Association: attribute-has-data-type .. 92
 8.11.12 Association: entity-has-attributes .. 92
 8.11.13 Association: EntityType-has-Attribute ... 93
 8.11.14 Association: EntityType-has-UniqueRule .. 94
 8.11.15 Association: InverseAttribute-inverts-ExplicitAttribute....................................... 95
 8.11.16 Association: single-entity-declared-in-entity .. 95

8.12 Relationships ... 96
 8.12.1 Class: DomainRole ... 96
 8.12.2 Class: RangeRole ... 98
 8.12.3 Class: Relationship ... 99
 8.12.4 Class: Role .. 100
 8.12.5 Association: DomainRole-in-Relationship ... 101
 8.12.6 Association: entity-plays-domain-role ... 101
 8.12.7 Association: entity-plays-range-role .. 102
 8.12.8 Association: entity-used-in-attribute .. 103
 8.12.9 Association: InverseAttribute-models-role ... 104
 8.12.10 Association: InvertibleAttribute-creates-relationship 104
 8.12.11 Association: InvertibleAttribute-models-role .. 104
 8.12.12 Association: RangeRole-in-Relationship ... 105

8.13 Redeclarations .. 105
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 iii

 8.13.1 Class: Redeclaration ... 106
 8.13.2 Association: scope-of-redeclaration-is-EntityType .. 109

8.14 Expressions and Instances .. 110
 8.14.1 Class: Expression ... 110
 8.14.2 Class: Instance .. 113

8.15 Instance Package: BuiltInTypes .. 114
 8.15.1 Dependencies ... 114
 8.15.2 Instance: BINARY ... 114
 8.15.3 Instance: BOOLEAN ... 115
 8.15.4 Instance: INTEGER ... 115
 8.15.5 Instance: LOGICAL ... 115
 8.15.6 Instance: NUMBER ... 115
 8.15.7 Instance: REAL ... 115
 8.15.8 Instance: ROLE ... 115
 8.15.9 Instance: STRING ... 116
 8.15.10 Instance: TYPE ... 116
 8.15.11 Association: instance-of-type .. 116

8.16 Instance Package: GenericTypes ... 117
 8.16.1 Dependencies ... 117
 8.16.2 Instance: GENERIC .. 117
 8.16.3 Instance: GENERIC_ENTITY ... 117

9 Package : Instances .. 119
9.1 Dependencies ... 119
9.2 Overview of Instances ... 119

 9.2.1 Class Core::Instance ... 120
 9.2.2 Class: ConcreteValue ... 120
 9.2.3 Class: EnumerationItem .. 121
 9.2.4 Class: Indeterminate ... 123
 9.2.5 Class: SpecializedValue .. 124
 9.2.6 Class: TypedInstance .. 125
 9.2.7 Association: enumeration-declares-items ... 126
 9.2.8 Association: value-of-EnumerationType ... 126

9.3 Simple Values ... 128
 9.3.1 Class: BinaryValue .. 128
 9.3.2 Class: BooleanValue ... 129
 9.3.3 Class: IntegerValue ... 130
 9.3.4 Class: LogicalValue ... 130
 9.3.5 Class: NumberValue ... 131
 9.3.6 Class: RealValue ... 131
 9.3.7 Class: RoleName .. 132
 9.3.8 Class: SimpleValue ... 132
 9.3.9 Class: StringValue ... 133
 9.3.10 Class: TypeName .. 134

9.4 Aggregate Values .. 134
 9.4.1 Class: AggregateValue ... 135
 9.4.2 Class: ArrayMember ... 136
 9.4.3 Class: ARRAYValue .. 136
 9.4.4 Class: BagMember.. 137
 9.4.5 Class: BAGValue .. 137
iv Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

 9.4.6 Class: GenericAggregate .. 138
 9.4.7 Class: ListMember .. 139
 9.4.8 Class: LISTValue .. 139
 9.4.9 Class: SETValue ... 140

9.5 Entity Instances and Values .. 141
 9.5.1 Class: AttributeValue ... 142
 9.5.2 Class: EntityInstance ... 143
 9.5.3 Datatype: EntityName ... 144
 9.5.4 Class: EntityValue ... 144
 9.5.5 Class: MultiLeafInstance ... 145
 9.5.6 Class: PartialEntityValue ... 145
 9.5.7 Class: SingleEntityValue ... 146
 9.5.8 Class: SingleLeafInstance ... 147
 9.5.9 Association: entity-value-describes-state .. 148
 9.5.10 Association: instance-of-EntityType .. 148

9.6 Constants .. 149
 9.6.1 Class: Constant ... 149

9.7 Populations ... 150
 9.7.1 Class: Extent ... 151
 9.7.2 Class: Population .. 152
 9.7.3 Association: extent-of-EntityType .. 153
 9.7.4 Association: extent-within-population .. 154
 9.7.5 Association: population-includes-instance .. 154

9.8 Instance Package: NamedValues ... 154
 9.8.1 Dependencies ... 155
 9.8.2 Instance: E .. 155
 9.8.3 Instance: FALSE ... 155
 9.8.4 Instance: PI ... 156
 9.8.5 Instance: TRUE ... 156
 9.8.6 Instance: UNKNOWN .. 156

10 Package : Algorithms .. 157
10.1 Dependencies ... 157
10.2 Functions and Procedures .. 157

 10.2.1 Class: Algorithm .. 158
 10.2.2 Class: Function ... 159
 10.2.3 Class: FunctionResult ... 160
 10.2.4 Class: InParameter ... 161
 10.2.5 Class: Parameter .. 161
 10.2.6 Class: Procedure ... 164
 10.2.7 Class: Statement ... 164
 10.2.8 Class: VARParameter ... 166
 10.2.9 Association: algorithm-has-body ... 166
 10.2.10 Association: algorithm-has-parameters ... 167
 10.2.11 Association: function-has-result .. 168

10.3 Variables ... 168
 10.3.1 Class: LocalVariable ... 169
 10.3.2 Class: NamedVariable .. 170
 10.3.3 Class: VARVariable ... 171
 10.3.4 Class: Variable .. 171
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 v

 10.3.5 Association: variable-defined-in-scope ... 172
10.4 Actual Types .. 173

 10.4.1 Class: Core::ActualType ... 174
 10.4.2 Class: ActualAGGREGATEType .. 174
 10.4.3 Class: ActualAggregationType .. 176
 10.4.4 Class: ActualARRAYType ... 177
 10.4.5 Class: ActualBAGType .. 177
 10.4.6 Class: ActualDataType .. 178
 10.4.7 Class: ActualGenericType ... 178
 10.4.8 Class: ActualLISTType .. 179
 10.4.9 Class: ActualSETType .. 180
 10.4.10 Class: ActualStructure ... 180
 10.4.11 Class: GenericElement ... 181
 10.4.12 Association: element-has-source .. 182
 10.4.13 Association: element-scope-is-algorithm .. 183
 10.4.14 Association: scope-of-actual-type ... 183

10.5 Actual Type Constraints .. 184
 10.5.1 Class: ActualStructureConstraint .. 185
 10.5.2 Class: ActualTypeConstraint ... 186
 10.5.3 Association: aggregate-has-constraint .. 187
 10.5.4 Association: generic-has-constraint .. 187

11 Package : Rules .. 189
11.1 Dependencies ... 189
11.2 Global Rules .. 189

 11.2.1 Class: GlobalRule ... 190
 11.2.2 Class: NamedRule .. 191
 11.2.3 Association: GlobalRule-contains-NamedRule ... 192
 11.2.4 Association: rule-constrains-extents ... 193

11.3 SupertypeRules and SubtypeConstraints ... 193
 11.3.1 Class: ANDConstraint ... 194
 11.3.2 Class: ONEOFConstraint .. 195
 11.3.3 Class: SubtypeConstraint .. 195
 11.3.4 Class: SupertypeRule ... 196
 11.3.5 Class: TOTAL_OVERConstraint ... 197
 11.3.6 Association: rule-constrains-subtypes ... 198
 11.3.7 Association: rule-includes-SubtypeConstraints ... 198

12 Package : Expressions .. 199
12.1 Dependencies ... 199
12.2 Overview of Expressions ... 199

 12.2.1 Class Core::Expression ... 200
 12.2.2 Class: IndexOperation ... 200
 12.2.3 Class: Operation ... 201
 12.2.4 Class: Primary ... 201
 12.2.5 Class: Selector .. 202

12.3 Primaries ... 203
 12.3.1 Class: ConstantRef ... 203
 12.3.2 Class: EnumItemRef ... 204
vi Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

 12.3.3 Class: ExtentRef ... 205
 12.3.4 Class: IndeterminateRef .. 206
 12.3.5 Class: Literal ... 207
 12.3.6 Class: ParameterRef ... 207
 12.3.7 Class: SELFRef ... 209
 12.3.8 Class: VariableRef .. 209

12.4 Indexing ... 210
 12.4.1 Class: AggregateIndex .. 211
 12.4.2 Class: BinaryIndex .. 212
 12.4.3 Class: StringIndex ... 212

12.5 Selection ... 213
 12.5.1 Class: AttributeRef .. 214
 12.5.2 Class: GroupRef .. 215
 12.5.3 Class: UsedInRef .. 216

12.6 Operations ... 216
 12.6.1 Class: BinaryOperation ... 217
 12.6.2 Datatype: BinaryOperator ... 218
 12.6.3 Class: Coercion ... 222
 12.6.4 Class: UnaryOperation .. 223
 12.6.5 Datatype: UnaryOperator .. 224

12.7 Function Calls ... 226
 12.7.1 Class: ActualParameter .. 227
 12.7.2 Class: FunctionCall ... 229
 12.7.3 Association: call-provides-actual-parameters ... 230

12.8 Query Expressions .. 231
 12.8.1 Class: QueryExpression .. 232
 12.8.2 Class: QueryVariable .. 233
 12.8.3 Association: scope-of-variable-is-query .. 233

12.9 Aggregate Initializers ... 234
 12.9.1 Class: AggregateInitializer .. 235
 12.9.2 Class: MemberBinding .. 236
 12.9.3 Class: RepeatCount .. 237

12.10 Partial Entity Constructors ... 238
 12.10.1 Class: AttributeBinding .. 238
 12.10.2 Class: PartialEntityConstructor ... 239

12.11 Instance Package: BuiltInConstants ... 241
 12.11.1 Dependencies ... 242
 12.11.2 Instance: E .. 242
 12.11.3 Instance: FALSE ... 242
 12.11.4 Instance: PI ... 242
 12.11.5 Instance: TRUE ... 243
 12.11.6 Instance: UNKNOWN .. 243

13 Package : Statements ... 245
13.1 Dependencies ... 245
13.2 Overview of Statements .. 245

 13.2.1 Class: Algorithms::Statement .. 246
 13.2.2 Class: ControlStatement ... 246
 13.2.3 Class: NullStatement ... 247
 13.2.4 Class: StatementBlock .. 247
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 vii

 13.2.5 Association: block-sequences-statements .. 248
13.3 ALIAS Statements ... 249

 13.3.1 Class: AliasStatement ... 249
 13.3.2 Class: AliasVariable .. 251
 13.3.3 Association: alias-binds-variable ... 252

13.4 Assignment Statements .. 252
 13.4.1 Class: Assignment .. 252

13.5 CASE Statements ... 253
 13.5.1 Class: CaseAction ... 254
 13.5.2 Class: CaseStatement .. 255

13.6 IF Statements .. 256
 13.6.1 Class: IfStatement ... 256

13.7 Procedure Calls ... 257
 13.7.1 Class: ProcedureCall .. 258
 13.7.2 Association: procedure-call-provides-actual-parameters 259

13.8 REPEAT Statements ... 259
 13.8.1 Class: ControlVariable .. 260
 13.8.2 Class: EscapeStatement ... 261
 13.8.3 Class: RepeatStatement ... 262
 13.8.4 Class: SkipStatement .. 263
 13.8.5 Association: repeat-has-body .. 264
 13.8.6 Association: repeat-has-increment-control .. 264

13.9 RETURN Statements .. 265
 13.9.1 Class: ReturnStatement .. 265

13.10 VAR Expressions .. 266
 13.10.1 Class: AttributeCell .. 267
 13.10.2 Class: GroupCell ... 268
 13.10.3 Class: MemberCell .. 269
 13.10.4 Class: AliasRef .. 270
 13.10.5 Class: VARExpression .. 271
 13.10.6 Class: VariableCell .. 272

14 Package : Express2 .. 273
14.1 Dependencies ... 274
14.2 Classes and Associations ... 274
viii Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

List of Figures

Figure 1 - EXRESS Metamodel Packages 9
Figure 2 - Scopes and Schemas 13
Figure 3 - EXPRESS Scope and Named Element Concepts 14
Figure 4 - Conceptual Model of ScopedId 26
Figure 5 - Remarks 34
Figure 6 - Overview of EXPRESS Type concepts 38
Figure 7 - NamedTypes and Instantiable Types 39
Figure 8 - Type Constraints 52
Figure 9 - Simple Types 57
Figure 10 - Aggregation Types 63
Figure 11 - Generalized Types 71
Figure 12 - Entity Types 78
Figure 13 - Attributes 79
Figure 14 - Relationships 96
Figure 15 - Redeclarations 106
Figure 16 - Basic Expression Concepts 110
Figure 17 - Instance Model for Built-In Types 114
Figure 18 - Instance Model for Generic Types 117
Figure 19 - Overview of Instances 120
Figure 20 - Enumeration Items 121
Figure 21 - Specialized Values 124
Figure 22 - TypedInstances 125
Figure 23 - Simple Values 128
Figure 24 - Aggregate Values 135
Figure 25 - Entity Instances 141
Figure 26 - PartialEntityValues 142
Figure 27 - Constants 149
Figure 28 - Populations and Instances 150
Figure 29 - Named Values 155
Figure 30 - Algorithms 157
Figure 31 - Variables 169
Figure 32 - Actual Types 173
Figure 33 - ActualType References to Elements of GeneralizedTypes 174
Figure 34 - Actual Type Constraints 185
Figure 35 - Global Rules 189
Figure 36 - Supertype Rules and Subtype Constraints 194
Figure 37 - Expressions 200
Figure 38 - Primaries 203
Figure 39 - Indexing Operations 211
Figure 40 - Attribute and Attribute-Group Selectors 214
Figure 41 - Operations and Built-in Functions 217
Figure 42 - Function Calls 227
Figure 43 - Query Expressions 231
Figure 44 - Aggregate Initializers 234
Figure 45 - Partial Entity Value Constructors 238
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 ix

Figure 46 - Built-in Constants 242
Figure 47 - Statements 246
Figure 48 - ALIAS Statements 249
Figure 49 - Assignment Statements 252
Figure 50 - CASE Statements 254
Figure 51 - IF Statements 256
Figure 52 - Procedure Calls 258
Figure 53 - REPEAT, SKIP, and ESCAPE Statements 260
Figure 54 - RETURN Statements 265
Figure 55 - VAR Expressions 267
Figure 56 - Integrated Overview of Scopes 273
Figure 57 - Overview of Named Elements 274
x Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 xi

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xii Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

1 Introduction

Background – the origins of EXPRESS

In 1984, the Standards for Exchange of Product Data (STEP) project was officially created in the International Standards
Organization (ISO) as an outgrowth of standardization projects in the United States and France. The objective of the
STEP project was to develop standards for the exchange of product information among software tools that supported
product engineering. It rapidly came to include support for construction engineering and manufacturing systems
engineering as well.

An objective of this project was to specify the information content of a product description in a way that was independent
of the form of exchange, so that more than one specific exchange form could be specified, while the semantic
equivalences would be retained by reference to the common model. In particular, the project members envisaged the need
for both database representations and sequential file structures.

At that time, there were no standard information modeling languages, and the languages in common use were purely
graphical. In order to specify the relationships between the information model (what we would now call a “platform
independent model”) and the data implementation model (a “platform specific model”), it was perceived to be a
requirement that the information model have a formal text form. Such a form would enable an information model to be
processed by a software tool that could generate the corresponding PSM. There being no usable standard, nor any
common language, with these characteristics, the STEP project developed and standardized its own information modeling
language: EXPRESS.

The information modeling language EXPRESS was standardized in 1994 as Part 11 of the ISO 10303 Standards for the
Exchange of Product Data. It was revised in 1999 and in 2004. It was used for every information model in the STEP
series, and in 3 other standards series in ISO TC184 (Industrial Data), and for information models in standards developed
by other ISO Technical Committees. As of 2005, there were over 300 major information models for manufacturing and
construction information that are formally specified in EXPRESS and standardized by ISO. These models, and the
EXPRESS language are in wide use in the manufacturing industry, and the exchange models are supported by dozens of
software tools.

In the more recent past, in order to make these models useful to an industry in which programmers and modelers are not
commonly taught EXPRESS, further ISO projects have been undertaken to produce mappings from EXPRESS to XML
Schema (ISO 10303-28) and UML (ISO 10303-25). But each of these mappings was specified entirely in text and
targeted version 1 of XML Schema and UML respectively.

The MEXICO project

In 2005, the MEXICO project was created with the objective of applying OMG Model-Driven Architecture (MDA)
technologies to the “EXPRESS problem.” The project has three components:

• development of a MOF metamodel for the EXPRESS language

• development of a formal (MOF/QVT) mapping from the EXPRESS metamodel to the UML v2 metamodel (thus
replacing ISO 10303-25 with a formal and machine-processable specification)

• development of a formal (MOF/QVT) mapping from the EXPRESS metamodel to the metamodel of OWL specified in
the OMG Ontology Definition Metamodel

This specification represents the final deliverable of the first project component: the MOF metamodel of EXPRESS.
Results of the other project components will be published separately.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 1

Taken together, these elements will permit automatic generation of UML models that faithfully represent the content of
any ISO standard model formulated in EXPRESS. Similarly, these elements will permit automatic generation of faithful
renditions of those models in OWL, which will enable them to be used as draft ontologies and tested for logical
consistency (and consistency with other models) using Semantic Web tooling. In this way, the knowledge captured in the
many standard EXPRESS models can be made available and usable for 21st century technologies and practitioners.

Development of the EXPRESS metamodel

The MEXICO project has developed a complete metamodel of the EXPRESS language and tooling to support it.

NIST developed an EXPRESS compiler that accepts an EXPRESS schema (model) and produces XMI (v1.1) that
corresponds to the metamodel. NIST is currently reworking that compiler to produce M1 instances of the complete
CMOF model herein specified in the XMI 2.1.x form.

Fraunhofer IPK developed a MOF implementation of the metamodel and used the output of the NIST tool to populate the
MOF database for a set of EXPRESS schemas.

Fraunhofer developed additional tooling to implement a mapping from the MOF population to UML (v1.4) following the
guidance in ISO 10303-25. This was a first step toward the goals of the second MEXICO project component.

Eurostep developed tooling to map a subset of the metamodel to OWL. This was a first step toward the goals of the third
MEXICO project component. Further work in this area is continuing with Eurostep and other partners.

At the same time, a number of other tool vendors who support the EXPRESS modeling community have developed
independent internal models of EXPRESS and mappings to various languages, including UML, OWL, and XML Schema.
(Many of them are listed as “supporters” of this specification.) We all agree that the time has come to standardize an
XMI representation of EXPRESS, so as to permit these tools to interoperate around a common representation.

This specification is the metamodel of the semantics of the EXPRESS language that was developed and tested in the
MEXICO project. It represents completion of the first subproject in the MEXICO trilogy. And it has value in its own
right to other EXPRESS tool developers. For this reason, we are bringing it to OMG for standardization.

Participants in the metamodel development activity include four “technical experts” who participated in the development
of the EXPRESS language itself. It also includes technical experts who were principal developers of the Part 25
(mapping to UML) and Part 28 (mapping to XML Schema) standards. This expertise gives us confidence that the
metamodel is faithful to the semantic intent of the EXPRESS standard.

To be clear about what has been “tested”: For the MEXICO proof-of-concept tooling, all the tools were built to a version
of the metamodel known as version 060615f. Only the NIST tool dealt with the concepts “internal to” Algorithms:
Variables, Statements, and ActualTypes. Parallel work at the New University of Lisbon (UNINOVA) developed tooling
for an elaborate model of Statements. The major change in this specification is the integration of the UNINOVA model,
and related changes and repairs to the Algorithms Package.

Further, to satisfy the current level of technical expectations in OMG, the MOF 1.4 version has been modified to a CMOF
version in this version. Several errors have been discovered and they are corrected in this version.

Acknowledgements

This specification is derived in part from early work on the development of a metamodel of EXPRESS (that was itself
specified in EXPRESS) by Prof. Donald Sanderson of East Tennessee State University, Dr. Philip Spiby of Eurostep , Dr.
Markus Maier of PDTEC, and Dr. Peter Wilson of Boeing Corporation (now retired).

Every organization listed as a submitter or supporter has made some technical contribution to this specification.
2 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

2 Scope and Purpose

This specification is a metamodel for the EXPRESS information modeling language, as defined by ISO 10303-11.2:2004,
Product data exchange – EXPRESS Language Reference Manual. It includes all elements of the language.

The metamodel conforms to the OMG Complete Meta-Object Facility (CMOF) specification, version 2.0.

The metamodel captures the meaning of the EXPRESS syntactic constructs, not the syntactic constructs themselves. It
differs from an abstract syntactic model of the language when either:

• the same syntax is used with different semantics in different contexts, or

• the syntax is more complex than the semantic content it expresses.

Some attributes of concepts in the metamodel serve only to permit the EXPRESS syntactic form to be recreated from the
metamodel instance. Such attributes are so described.

The purpose of this specification is to provide a common basis for communication among tools that create or compile
EXPRESS models, analyze them, and/or map them to various forms of implementation specifications.

It is also intended to serve as a basis for the definition of formal standard mappings to other modeling and implementation
languages.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Subsequent amendments to, or revisions of, any of these publications do not necessarily apply. However,
users and implementors of this specification are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. ISO and OMG maintain registers of currently valid specifications.

ISO 10303, Industrial data – Product data exchange – Part 11: EXPRESS Language Reference Manual, ed. 2, 2004.

OMG Meta-Object Facility (MOF) Core Specification, v2.0, January, 2006, (formal/06-01-01)

OMG XML Metadata Interchange (XMI) Specification, v2.1.1, December, 2007, (formal/07-12-01)

4 Conformance
An exchange document can conform to this specification as specified in Conformance of an exchange document. A tool
can conform as a producer, as specified in Conformance as a producer (pre-processor), or as a processor, as specified in
Conformance as a (post-)processor, or both. In addition, it is possible for a tool to conform to one or more of the
compliance points specified in Compliance points, as a part of conformance as a producer or a processor.

4.1 Conformance of an exchange document

An exchange document conforms to this specification if

• it is a valid XMI exchange document and represents a MOF M1 model that is consistent with the M2 metamodel
defined in clauses 6-12 of this specification; and
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 3

• the M1 model represents a valid EXPRESS schema as defined by ISO 10303-11.2:2004.

Representation of an EXPRESS schema need not include representation of all elements of the schema. It shall include all
elements of the schema that can be represented by elements of the Core Package, as defined in clause 7.

4.2 Conformance as a producer (pre-processor)

A software tool conforms to this specification as a producer if it produces conforming exchange documents as specified
in Conformance of an exchange document.

A software tool may claim conformance to a given compliance point as a producer if the exchange document it produces
for any given EXPRESS schema contains representations of all the EXPRESS model elements that correspond to that
compliance point.

4.3 Conformance as a (post-)processor

A software tool conforms to this specification as a processor if

• it can accept any and all exchange documents that conform as specified in Conformance of an exchange document; and

• it can interpret all EXPRESS concepts modeled by elements in the Core Package.

The nature of the process performed on the EXPRESS schema that is represented by a document that it accepts is not
specified by this standard, but the interpretation of the EXPRESS schema in that process shall be consistent with the
interpretation given by ISO 10303-11.

A software tool may claim conformance to a given compliance point as a processor if it can also interpret all the
EXPRESS model elements that correspond to that compliance point.

4.4 Compliance points

In addition to support of the elements in the Core Package, a tool may support any of the additional compliance points
defined below.

4.4.1 Compliance point: Instances

A tool conforms to the Instances compliance point by producing or interpreting model elements defined in the Instances
Package.

4.4.2 Compliance point: Algorithms

A tool conforms to the Algorithms compliance point by producing or interpreting model elements defined in the
Algorithms and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.

4.4.3 Compliance point: Rules

A tool conforms to the Rules compliance point by producing or interpreting model elements defined in the Rules,
Algorithms and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.
4 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

4.4.4 Compliance point: Expressions

A tool conforms to the Expressions compliance point by producing or interpreting model elements defined in the
Expressions, Algorithms and Instances Packages.

A tool that conforms as a producer to this compliance point shall not represent any Expression solely as text. That is, it
shall represent every EXPRESS expression properly as the subtype of Expression that models it. Conformance to this
compliance point requires Statements to be produced as text, if the Statements compliance point is not supported. It
makes no requirements for the interpretation of Statements.

4.4.5 Compliance point: Statements

A tool that conforms to the Statements compliance point shall conform to the Expressions compliance point, and shall
produce or interpret model elements defined in the Statements Package as well.

A tool that conforms as a producer to this compliance point shall not represent any Statement solely as text. That is, it
shall represent every EXPRESS statement properly as the subtype of Statement that models it.

4.4.6 Compliance point: Express2

A tool conforms to the Express2 compliance point shall conform to the Statements compliance point and to the Rules
compliance point. A tool that conforms to the Express2 compliance point shall fully support all elements of the
EXPRESS language.

5 Terms and Definitions

5.1 Unified Modeling Language (UML) terms

The following terms are taken from the Unified Modeling Language (UML) Specification, and are used with the
definitions given in that specification:

• abstract

• association

• association end

• attribute

• class

• constraint

• dependency

• derived

• enumeration

• multiplicity

• navigable

• package

• stereotype

• tagged value
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 5

5.2 EXPRESS terms

The following terms are taken from the EXPRESS Language Reference Manual, and are used with the definitions given
in that specification:

• aggregate, and aggregation

• algorithm

• constant

• domain

• entity, and entity type

• function

• identifier

• instance

• inverse

• keyword

• member

• parameter

• population

• rule

• schema

• scope

• statement

• subtype

• supertype

• type

Some of these terms have the same orthography as certain UML terms that are not used in this specification. The
following terms are used in this specification with their UML interpretation and are prefixed by “EXPRESS” whenever
they are used with their EXPRESS interpretation:

• abstract

• attribute

• data type

• derived

• enumeration

5.3 Terms for model elements

This specification defines a number of metaclasses, associations, attributes and association end names. Each of those
becomes a term that may be used in other definitions and requirements.

When a term is capitalized in the text, e.g., Schema, it refers to the metaclass with that identifier, and by extension, to the
semantic concept that it represents.
6 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

In the text, a term beginning with a period (.) and set in Courier font, e.g., .namespace, refers to the attribute or
association end with that name that is owned by the class being described.

Note – Other than these conventions, some terms that refer to model elements have the same spelling as terms used in UML
and EXPRESS. The convention denotes the intended distinction. In most cases, however, when the EXPRESS term and the
model element identifier have the same spelling, the model element models the concept designated by the EXPRESS term.

5.4 Additional terms introduced in this specification

The following additional terms are introduced in this specification:

instance package

A UML Package that comprises only declarations of individual objects that represent fixed instances of metaclasses
defined in the parent package.

namespace

the domain of interpretation of a body of EXPRESS text in which a given identifier is associated with a given model
element.

6 Document Conventions
This specification is a Complete Meta-Object Facility (CMOF) specification of the EXPRESS metamodel, conforming to
the OMG Meta-Object Facility Core specification v2.0, as an M2 model.

The only CMOF features (beyond those of EMOF) that are used in this specification are:

• Specialization of primitive types

• Generalization of associations

• Subsetting of properties

The stereotype «implicit» is used only as a drawing convention to show relationships that exist as more complex
paths than are actually depicted. These associations do not exist in this form in the metamodel itself. These are used only
to show important conceptual relationships on the diagrams.

The stereotype «metaclass» appears on some of the diagrams and not on others. Some of the class diagrams in this
specification were created by the original UML tool for the project, and some by a later tool that supported the CMOF
features. Only the latter tool understood the concept “metaclass.” All of the classes specified in this metamodel are
meta-classes, and all of the data types are meta-datatypes, regardless of notational convention. The notation will be made
consistent in the published form of this specification.

MOF 2.0 requires that every association be named, even those that are navigable in only one direction. In this
specification, all the association names are shown, but the names of unidirectional associations are shown in small type,
and the documentation describes only the owned association end.

Similarly, MOF 2.0 requires that every association end be named, even those that are not navigable. In this specification,
the names of non-navigable association ends are not shown and not documented. They do appear in the UML and CMOF
XMI files for the metamodel (see below).
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 7

For derived attributes and associations, the derivation is shown as the tagged-value derivation.

The model specified in this document is available in two XMI forms as well:

• OMG document mantis/2008-02-03 is the UML2 model

• OMG document mantis/2008-02-04 is the CMOF model.
8 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

7 Overview of the EXPRESS Metamodel

This specification is a metamodel for the EXPRESS information modeling language, as defined by ISO 10303-11. The
Metamodel is composed of 7 packages, which are related as shown in Figure 1.

Issue 13917 - Replace figure

Figure 1 - EXRESS Metamodel Packages

The Core Package contains all of the generally required modeling elements of EXPRESS, along with some basic
metamodel artifacts. It is the foundation on which all of the other packages are built. The Core Package is the minimal
implementation of the EXPRESS Metamodel.

The Instances Package contains the model of instances that conform to the EXPRESS types. This package is needed to
support many of the concepts in EXPRESS rules.

The Algorithms Package contains the model of function and procedure definitions. This model is needed to support
Expressions, and some of its features are used in Global Rules.

The Rules Package contains the models of RULEs and SUBTYPE_CONSTRAINTS, which rely on the notion of extents
of types with populations.

The Expressions Package contains a model of expressions that includes all details of value manipulation that are
described in Clause 12 of ISO 10303-11.

The Statements Package contains a model of the executable statements that may be contained in the body of functions and
procedures. It contains all of the concepts in Clause 13 of ISO 10303-11.

The Express2 Package contains nothing in its own right. It imports everything defined in the metamodel, and thus serves
as the package that models the entire EXPRESS language.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 9

10 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8 Package :: Core

The Core package contains all of the generally required modeling elements of EXPRESS, including:

• Scopes and Naming concepts

• Schemas

• (Data) Types

• Entities, Attributes and Relationships

• Domain Constraints

The Core package also includes the abstract classes Expression and Instance, which serve as linking points for detailed
models contained in other packages.

8.1 Dependencies

none.

8.2 MOF Metamodel Datatypes

The following basic data types from the MOF metamodel are used in this package with the interpretation given in the
MOF specification.

8.2.1 Datatype: Boolean

Definition: MOF metatype for logical values.

8.2.2 Datatype: Integer

Definition: MOF metatype for numeric information.

Note – All integer values used in this metamodel are non-negative.

8.2.3 Datatype: String

Definition: MOF Metatype for arbitrary character (code) representation.

8.3 EXPRESS Language Datatypes

8.3.1 Datatype: ExpressText

Definition: Represents any EXPRESS language text, including both unparsed text and specific syntactic elements..

Note – See clause 7 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 11

8.3.1.1 Supertypes

Realization type is . MOF::String

The realization relationship is modeled as a generalization.

8.3.1.2 Members

none.

8.3.2 Datatype: Identifier

Definition: EXPRESS language element used for naming NamedElements.

Note – See 7.4 of ISO 10303-11:2004.

8.3.2.1 Supertypes

ExpressText .

8.3.2.2 Members

none.

8.3.3 Datatype: Keyword

Definition: EXPRESS language element used for names of built-in data types.

Note – See 7.2.1 of ISO 10303-11:2004.

8.3.3.1 Supertypes

ExpressText .

8.3.3.2 Members

none.

8.4 Schemas, Scopes and Naming

This section of the Core model introduces the naming and namespace concepts of the EXPRESS language.

An EXPRESS model consists primarily of a set of NamedElements – model elements that have (or may have) identifiers.
Per Clause 10 of ISO 10303-11, every NamedElement has a Scope in which it is “visible,” that is, a collection of model
contexts in which the identifier refers to that NamedElement. Such identifiers are modeled here as ScopedIds – the
combination of an Identifier and the namespace (Scope) in which it is defined (see Datatype: ScopedId).

The primary Scope/namespace of an EXPRESS model is a Schema. All model elements, except those that are predefined
in the EXPRESS language, are defined in some Schema. Interfacing is the mechanism by which an EXPRESS Schema
includes model elements defined in other Schemas. Figure 2 - Scopes and Schemas shows the basic Scope, Schema, and
Interfacing concepts of EXPRESS.
12 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13447 - replace figure

Figure 2 - Scopes and Schemas

There are three general subclasses of Scope: Schemas, Local Scopes, and Type Scopes. These Scope concepts are shown
in Figure 3. All of these concepts are defined in detail below, except for NamedType – the scope of TypeElements –
which is defined in 8.6.

Issue 13669 - Replace figure
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 13

Figure 3 - EXPRESS Scope and Named Element Concepts

8.4.1 Class: AlgorithmScope

Definition: A LocalScope that can be the namespace of CommonElements.

Properties: abstract

8.4.1.1 Supertypes

LocalScope

8.4.1.2 Attributes

none.
14 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

8.4.1.3 Associations

AssociationEnd: common-elements To: CommonElement

via: common-element-has-local-scope

Subsets: Scope.named-elements

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. This
is a refinement of the (abstract) Scope.named-elements relationship.

Note – See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: variables To: Algorithms::LocalVariable

via: Algorithms::variable-defined-in-scope

Subsets: LocalScope.local-elements

Definition: represents the relationship between the AlgorithmScope and the set of LocalVariables that are defined within
it.

Multiplicity: 0..* unordered

Properties: composite

8.4.1.4 Other Roles

none.

8.4.2 Class: CommonElement

Definition: a SchemaElement that can be defined in either a Schema or a LocalScope, and has (or may have) a unique
identifier within that Scope. This is an artifact of the declaration and namespace rules for the EXPRESS language.
NamedTypes, Algorithms, Constants, and SupertypeRules can be defined at the Schema level or within Algorithms and
GlobalRules (AlgorithmScopes).

Every CommonElement has a Scope. The Scope is either a SchemaScope or an AlgorithmScope.

Properties: abstract

8.4.2.1 Supertypes

SchemaElement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 15

8.4.2.2 Attributes

none.

8.4.2.3 Associations

Note – The AssociationEnd: defined-in to Schema is inherited from SchemaElement.

AssociationEnd: local-scope To: AlgorithmScope

via: common-element-has-local-scope

Subsets: NamedElement.namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scope in
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note – See Clause 10 of ISO 10303-11:2004.

Multiplicity: 0..1

8.4.2.4 Other Roles

none.

8.4.2.5 Rules

Constraint has-scope (OCL)
exists(self->defined-in) XOR exists(self->local-scope)

A CommonElement has exactly one scope, either a Schema (via defined-in), or a LocalScope.

Issue 13447 - insert new text

8.4.3 Class: Interface

Definition: represents the EXPRESS “interface” relationship between two Schemas that is created by a USE or
REFERENCE statement.

Each interface statement explicitly or implicitly includes zero or more SchemaElements from the interfaced Schema in the
interfacing Schema. Each SchemaElement that is explicitly interfaced by the statement shall be represented by exactly
one InterfacedElement that is included in the Interface. Each SchemaElement that is implicitly interfaced by the
statement shall be represented by at least one InterfacedElement that is included in some Interface between the interfacing
Schema and the interfaced Schema.

Note – See clause 11 of ISO 10303-11:2004. Interface models the USE and REFERENCE statements, but follows the inter-
pretation rules given in that clause. In particular, a statement of the form

REFERENCE FROM <schema>;
explicitly interfaces every SchemaElement defined in the interfaced schema, and a statement of the form

USE FROM <schema>;
16 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

explicitly interfaces every NamedType defined in the interfaced schema.

Note – Per ISO 10303-11, a SchemaElement can be implicitly interfaced to define the terms used in defining explicitly inter-
faced SchemaElements in one USE or REFERENCE statement. The same SchemaElement can also be explicitly interfaced in
another USE or REFERENCE statement. This specification does not require a SchemaElement that is explicitly interfaced to
be modeled as implicitly interfaced at all. But SchemaElements that are implicitly interfaced at least once and are not explic-
itly interfaced at all must be modeled by InterfacedElements that are included in at least one appropriate Interface.

8.4.3.1 Supertypes

none.

8.4.3.2 Attributes

Attribute: isUSE To: MOF::Boolean

Definition: True if the EXPRESS interfacing statement is USE; False otherwise.

The interpretation of USE is that Instances of every NamedType that is explicitly interfaced by the statement are
permitted to be "independent entities" in a Population governed by the interfacing Schema. When the interfacing
statement is REFERENCE, Instances of interfaced NamedTypes exist in a Population only to fulfill some Attribute of an
entity that is ultimately dependent on an "independent entity".

Note – See clause 11.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.4.3.3 Associations

AssociationEnd: interfaced-elements To: InterfacedElement

via: interface-includes-elements

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the
Interface.

Properties: composite

Multiplicity: 0..* unordered

AssociationEnd: interfaced-schema To: Schema

Definition: represents the relationship between the Interface and the Schema whose SchemaElements are being interfaced
into the .interfacing-schema.

Multiplicity: 1..1

AssociationEnd: interfacing-schema To: Schema

via: schema-has-interface

Definition: represents the relationship between the Interface and the Schema in which it appears.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 17

Multiplicity: 1..1

8.4.3.4 Other Roles

none.

8.4.4 Class: InterfacedElement

Definition: represents the EXPRESS “interface” relationship (USE, REFERENCE) between an interfacing Schema and
one SchemaElement that is defined in some other Schema. It can be viewed as a “role” of the .refers-to SchemaElement
in the interfacing schema. Because a given schema can only interface a given SchemaElement once, the combination
(.interfacing-schema, .refers-to) uniquely identifies an InterfacedElement relationship.

Note – See clause 11 of ISO 10303-11:2004.

8.4.4.1 Supertypes

none.

8.4.4.2 Attributes

Attribute: interfacedId To: ScopedId

Definition: the new Identifier for the .refers-to SchemaElement in the interfacing schema.

Note – See clause 11 of ISO 10303-11:2004.

Multiplicity: 0..1

Attribute: isImplicit To: MOF::Boolean

Definition: True if the InterfacedElement represents an implicit interface of the SchemaElement it refers-to, that is, no
identifier for the SchemaElement is introduced into the namespace of the interfacing Schema; and False otherwise.

Note – See clause 11.4 of ISO 10303-11:2004. Note that if a SchemaElement is interfaced by an InterfaceElement in which
isImplicit = TRUE, no InterfaceElement of the .interfacing-schema in which isImplicit = FALSE .
refers-to the same SchemaElement.

Multiplicity: 1..1

8.4.4.3 Associations

AssociationEnd: included-in To: Interface

via: interface-includes-elements

Definition: the Interface that includes the InterfacedElement.

Multiplicity: 1..1
18 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: interfacing-schema To: Schema

via: schema-interfaces-elements

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedId.

Multiplicity: 1..1

Properties: derived.

TaggedValues

derivation = self->included-in->interfacing-schema

AssociationEnd: refers-to To: SchemaElement

via: schema-element-is-interfaced-element

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the
InterfacedElement.

Multiplicity: 1..1

8.4.4.4 Other Roles

none.

8.4.5 Class: LocalElement

Definition: An abstract class, representing NamedElements whose scope is a LocalScope. No LocalElement is defined in
the Core package.

Properties: abstract

8.4.5.1 Supertypes

NamedElement

8.4.5.2 Attributes

none.

8.4.5.3 Associations

AssociationEnd: namespace To: LocalScope

Subsets: NamedElement.namespace

Definition: the Scope in which the LocalElement is defined. Unlike SchemaElements, a LocalElement is instantiated only
in the context of a particular “use” or “invocation” of the Scope in which it is defined. As a consequence, a LocalElement
can be instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a
“lifetime” corresponding to that use/invocation.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 19

Properties: abstract

8.4.5.4 Other Roles

none.

8.4.6 Class: LocalScope

Definition: A Scope that is neither a Schema nor a NamedType. Terms defined in a LocalScope are not visible at the
Schema level.

Note – See Clause 10 of ISO 10303-11:2004.

Properties: abstract

8.4.6.1 Supertypes

Scope

8.4.6.2 Attributes

none.

Issue 13669 - replace text

8.4.6.3 Associations

AssociationEnd: local-elements To: LocalElement

Subsets: Scope.named-elements

Definition: the LocalElements that are defined in the LocalScope. (A LocalScope that is an AlgorithmScope may also be
the scope of CommonElements.)

Multiplicity: 0..* unordered

Properties: composite, derived union

8.4.6.4 Other Roles

none.

8.4.7 Class: NamedElement

Definition: An abstract class representing a principal modeling concept of the EXPRESS language: an object that is
defined in a model, has a notion of “lifetime,” and has an identifier that refers to it in Schemas or in some nested Scope
in a Schema.

Note – Every NamedElement has an .id attribute whose value is a ScopedId. Some NamedElements are not required to have
identifiers, and some NamedElements can have additional identifiers. The scope of each such identifier is the Scope in which
the NamedElement is defined.
20 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Properties: abstract

8.4.7.1 Supertypes

none.

8.4.7.2 Attributes

Attribute: id To: ScopedId

Definition: Represents the identifier that uniquely identifies the NamedElement within the Scope that is the .namespace.
Not all NamedElements are required to have identifiers.

Note – See Clause 10 of ISO 10303-11:2004.

Multiplicity: 0..1

8.4.7.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-element

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of
the NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note – See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: namespace To: Scope

Definition: represents the abstract relationship between a NamedElement and the “scope” in which it is defined, i.e., the
set of model elements for which that name refers to that NamedElement.

Note – See clause 10 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: abstract

8.4.7.4 Other Roles

none.

8.4.8 Class: Schema

Definition: a Scope that represents an EXPRESS SCHEMA, i.e., a collection of SchemaElement declarations and
interface declarations.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 21

Note – “Schema” is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.3 of ISO 10303-11:2004.

8.4.8.1 Supertypes

Scope

8.4.8.2 Attributes

Attribute: name To: Identifier

Definition: the name of the EXPRESS schema.

Note – See clause 9.3 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: version To: Identifier

Definition: the version identifier for the EXPRESS schema, if any.

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..1

8.4.8.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-
interfaced.

Note – See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

Issue 13447 - Replace text

AssociationEnd: interfaced-elements To: InterfacedElement

via: schema-interfaces-elements

Definition: represents the relationship between a Schema and the InterfacedElements it contains, that is, the
SchemaElements that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties: derived.

Multiplicity: 0..* unordered
22 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

TaggedValues

derivation = self->interfaces->interfaced-elements;

AssociationEnd: interfaces To: Interface

via: schema-has-interface

Definition: the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface into
the Schema.

Properties: composite

Multiplicity: 0..* unordered

Issue 13669 - add text

AssociationEnd: schema-elements To: SchemaElement

via: schema-defines-elements

Subsets: Scope.named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined in it, as distinct from
those that are interfaced into it.

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

Issue 13447 - Add text

8.4.8.4 Other Roles

From: Interface as interfaced-schema

From: Instances::Population as governing-schema

8.4.9 Class: SchemaElement

Definition: a NamedElement whose scope can be a Schema. This includes all CommonElements and GlobalRule. The
scope of CommonElements can be a Schema, but is not required to be a Schema.

Properties: abstract

8.4.9.1 Supertypes

NamedElement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 23

8.4.9.2 Attributes

none.

8.4.9.3 Associations

AssociationEnd: defined-in To: Schema

via: schema-defines-elements

Subsets: NamedElement.namespace

Definition: represents the relationship between the SchemaElement and the Schema in which it is (originally) defined.

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: referenced-as To: InterfacedElement

via: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered

Issue 13447 - Delete text

AssociationEnd: referenced-in To: Schema

via: schema-interfaces-elements

Definition: represents the relationship between a SchemaElement and the Schemas, if any, it is interfaced into.

Properties: derived

Multiplicity: 0..* unordered

TaggedValues

derivation = self->referenced-as->interfacing-schema

8.4.9.4 Other Roles

none.

8.4.9.5 Rules

Constraint (OCL)
exists(self->defined-in) OR NOT exists(self->referenced-as)

Only a SchemaElement that is defined-in a Schema can be referenced-as an InterfacedElement.
24 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.4.10 Class: Scope

Definition: any EXPRESS object that defines a namespace for the interpretation of identifiers.

Note – See clause 10 of ISO 10303-11:2004.

Properties: abstract

8.4.10.1 Supertypes

none.

8.4.10.2 Attributes

none.

8.4.10.3 Associations

AssociationEnd: includes-remarks To: Remark

via: remark-appears-in-scope

Definition: represents the relationship between a Schema and the Remarks that appear in it.

Note – See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13669 - replace text

AssociationEnd: named-elements To: NamedElement

Definition: represents the abstract relationship between a Scope and the NamedElements that are defined in it.

Note – This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See Clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite, derived union

8.4.10.4 Other Roles

From: Expression as interpretation-context

8.4.11 Datatype: ScopedId

Stereotypes: structure
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 25

Definition: The combination of an Identifier and its namespace, which together constitute a well-defined symbol for an
EXPRESS ModelElement. Figure 4 shows the conceptual model of a ScopedId. A ScopedId whose Scope is a Schema is
visible throughout the Schema, and possibly to other Schemas that interface the NamedElement. A ScopedId whose Scope
is a LocalScope is visible only in that LocalScope. A ScopedId whose Scope is a NamedType is visible only in the
declaration of that NamedType and in Expressions involving references to elements whose data type is that NamedType.

Issue 13669 - Replace figure

Figure 4 - Conceptual Model of ScopedId

8.4.11.1 Supertypes

none.

8.4.11.2 Members

Member: definingScope To: Scope

Definition: Represents the relationship between the ScopedId and the Scope in which it is defined.

Note – See Clause 10 of ISO 10303-11:2004.

Multiplicity: 1..1

Member: localName To: Identifier

Definition: Represents the EXPRESS identifier that uniquely identifies the NamedElement within the namespace that is
the Scope.

Multiplicity: 1..1

8.4.12 Class: TypeElement

Definition: A NamedElement whose namespace is a data type (NamedType).

Note – See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

Properties: abstract
26 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.4.12.1 Supertypes

NamedElement

8.4.12.2 Attributes

none.

8.4.12.3 Associations

AssociationEnd: namespace To: NamedType

via: type-element-has-scope

Subsets: NamedElement.namespace

Definition: represents the relationship between the TypeElement and the NamedType in which it is defined. This is a
refinement of the NamedElement.namespace and an abstraction of the specific relationships of TypeElements to their
owner NamedTypes.

Multiplicity: 1..1

8.4.12.4 Other Roles

none.

8.4.13 Association: common-element-has-local-scope

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. This
is a refinement of the (abstract) element-defined-in-scope relationship.

Note – See clause 10 of ISO 10303-11:2004.

8.4.13.1 Supertypes

element-defined-in-scope

8.4.13.2 Association Ends

Issue 13669 - add text

AssociationEnd: common-elements To: CommonElement

Definition: the CommonElements that are defined in the AlgorithmScope.

Note – See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 27

AssociationEnd: local-scope To: AlgorithmScope

Subsets: NamedElement.namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scope in
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note – See Clause 10 of ISO 10303-11:2004.

Multiplicity: 0..1

8.4.14 Association: element-defined-in-scope

Definition: represents the generic relationship between a NamedElement and the Scope in which it is defined. Every
NamedElement is defined in exactly one Scope. It may be interfaced into other Scopes, and it may be visible in Scopes
nested inside the Scope in which it defined and the Scopes into which it is interfaced.

Note – See clause 10 of ISO 10303-11:2004.

Note – This is an abstract relationship. Each separate form of this relationship is separately modeled.

Properties: abstract

8.4.14.1 Association Ends

Issue 13669 - replace text

AssociationEnd: named-elements To: NamedElement

Definition: represents the relationship between a Scope and the NamedElements that are defined in it.

Note – This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See clause 10 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite, derived union

AssociationEnd: namespace To: Scope

Definition: represents the relationship between a NamedElement and the “scope” in which it is defined, i.e., the set of
model elements for which that name refers to that NamedElement.

Note – See clause 10 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: abstract
28 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13447 - Replace text

8.4.15 Association: interface-includes-elements

Definition: represents the relationship between an Interface and the InterfacedElements it contains, that is the relationship
between an interface statement (USE or REFERENCE) and the SchemaElements it implicitly and explicitly interfaces.

Note – See clause 11 of ISO 10303-11:2004.

8.4.15.1 Association Ends

AssociationEnd: included-in To: Interface

Definition: the Interface that includes the InterfacedElement.

Multiplicity: 1..1

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the
Interface.

Properties: composite

Multiplicity: 0..* unordered

8.4.16 Association: local-element-has-local-scope

Definition: represents the abstract relationship between a LocalScope and the LocalElements that are defined in it. (A
LocalScope that is an AlgorithmScope may also be the scope of CommonElements.)

Note – This relationship is an abstraction of the actual relationships between LocalElements and Scopes. Each separate form
of this relationship is separately modeled. Not every kind of LocalElement can be defined in every LocalScope. In fact, only
Variables can be defined in every LocalScope.

Note – See Clause 10.3 of ISO 10303-11:2004.

Properties: abstract

8.4.16.1 Supertypes

element-defined-in-scope
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 29

8.4.16.2 Association Ends

Issue 13669 - replace text

AssociationEnd: local-elements To: LocalElement

Definition: the LocalElements that are defined in the LocalScope. (A LocalScope that is an AlgorithmScope may also be
the scope of CommonElements.)

Multiplicity: 0..* unordered

Properties: composite, derived union

AssociationEnd: namespace To: LocalScope

Subsets: NamedElement.namespace

Definition: the Scope in which the LocalElement is defined. Unlike SchemaElements, a LocalElement is instantiated only
in the context of a particular “use” or “invocation” of the Scope in which it is defined. As a consequence, a LocalElement
can be instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a
“lifetime” corresponding to that use/invocation.

Multiplicity: 1..1

Properties: abstract

8.4.17 Association: schema-defines-elements

Definition: represents the relationship between a Schema and the SchemaElements that are defined in it.

8.4.17.1 Supertypes

element-defined-in-scope

8.4.17.2 Association Ends

AssociationEnd: defined-in To: Schema

Subsets: NamedElement.namespace

Definition: represents the relationship between the SchemaElement and the Schema in which it is (originally) defined.
refines the (abstract) NamedElement.namespace relationship

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..1
30 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

AssociationEnd: schema-elements To: SchemaElement

Definition: represents the relationship between the Schema and the SchemaElements that are defined in it, as distinct from
those that are interfaced into it. refines the (abstract) Scope.named-elements relationship.

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

8.4.18 Association: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

8.4.18.1 Association Ends

AssociationEnd: referenced-as To: InterfacedElement

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered

AssociationEnd: refers-to To: SchemaElement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the
InterfacedElement.

Multiplicity: 1..1

Issue 13447 - Replace text, add text

8.4.19 Association: schema-interfaces-elements

Definition: represents the EXPRESS “interface” relationships (USE, REFERENCE) between an interfacing Schema and the
InterfacedElements that represent the SchemaElements that are interfaced from other Schemas.

Note – See clause 11 of ISO 10303-11:2004.

Properties: derived.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 31

8.4.19.1 Association Ends

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: represents the relationship between a Schema and the InterfacedElements it contains, that is, the
SchemaElements that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties: derived.

Multiplicity: 0..* unordered

TaggedValues

derivation = self->interfaces->interfaced-elements;

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedId.

Properties: derived.

Multiplicity: 1..1

Tagged Values

 derivation = self->included-in->interfacing-schema;

8.4.20 Association: schema-has-interface

Definition: represents the relationship between a Schema and the Interfaces it contains, and indirectly, the Schemas that it
imports/interfaces.

Note – See clause 11 of ISO 10303-11:2004.

8.4.20.1 Association Ends

AssociationEnd: interfaces To: Interface

Definition: the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface
into the Schema.

Properties: composite

Multiplicity: 0..* unordered

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the Interface and the Schema in which it appears.

Multiplicity: 1..1
32 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.4.21 Association: type-element-has-scope

Definition: represents the abstract relationship between a TypeElement and the NamedType in which it is defined. This is
a refinement of the entity-defined-in-scope relationship and an abstraction of the specific relationships of TypeElements
to their owner NamedTypes.

Properties: abstract.

8.4.21.1 Supertypes

element-defined-in-scope

8.4.21.2 Association Ends

Issue 13669 - add text

AssociationEnd: type-elements To: TypeElement

Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.

Multiplicity: 0..* unordered

Properties: composite, derived union

AssociationEnd: namespace To: NamedType

Definition: represents the relationship between the TypeElement and the NamedType in which it is defined. This is a
refinement of the NamedElement.namespace and an abstraction of the specific relationships of TypeElements to their
owner NamedTypes.

Multiplicity: 1..1

8.5 Remarks

This section of the Core model introduces the Remark constructs that serve to document Schemas and NamedElements.
Figure 5 depicts the Remark concept and its properties.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 33

Issue 13917 - Replace figure

Figure 5 - Remarks

8.5.1 Class: Remark

Definition: A comment or or other documentation element that provides additional information about a model element.

8.5.1.1 Supertypes

none.

8.5.1.2 Attributes

Attribute: isTagged To: MOF::Boolean

Definition: Is TRUE if the Remark is “tagged” to refer to one or more NamedElements, and FALSE if the remark is not
explicitly tagged.

If .isTagged is TRUE, the Remark should have the .describes-element or .describes-schema property.

Note – See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: isTail To: MOF::Boolean

Definition: is True if the Remark is lexically a tail_remark; and False if the Remark is lexically an
embedded_remark. This distinction describes only the representation and placement of the remark in the EXPRESS
syntax.

Note – See 7.1.6 of ISO 10303-11:2004.
34 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..1

Attribute: text To: ExpressText

Definition: Represents the actual text of the remark.

Note – Part 11 requires that the character set of the remark be the EXPRESS character set, but in practice a larger subset of
ISO 10646-1 Basic Multilingual Plane is often used.

Note – See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 1..1

8.5.1.3 Associations

AssociationEnd: appears-in To: Scope

via: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schema that lexically contains it.

Multiplicity: 1..1

AssociationEnd: describes-element To: NamedElement

via: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While a tagged remark is
formally associated with one or more NamedElement(s), a processor may also ascribe a given un-tagged Remark to a
given NamedElement, based on its lexical position.

Note – See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: describes-schema To: Schema

via: remark-describes-schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The
Remark may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In
particular, a Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note – See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

8.5.1.4 Other Roles

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 35

8.5.2 Association: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schema that lexically contains it.

8.5.2.1 Association Ends

AssociationEnd: appears-in To: Scope

Definition: the Schema that lexically contains the Remark.

Note – This may be the only cue as to the subject of the Remark. The first edition of EXPRESS did not specify a means for
binding Remarks to model elements.

Multiplicity: 1..1

AssociationEnd: includes-remarks To: Remark

Definition: represents the relationship between a Schema and the Remarks that appear in it.

Note – See 7.1.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.5.3 Association: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While a tagged remark is
formally associated with one or more NamedElements, a processor may also ascribe a given un-tagged Remark to a given
NamedElement, based on its lexical position.

Note – See 7.1.6.3 of ISO 10303-11:2004.

8.5.3.1 Association Ends

AssociationEnd: describes-element To: NamedElement

Definition: the NamedElement(s) described by the Remark.

Note – See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of
the NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note – See 7.1.6.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered
36 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.5.4 Association: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-
interfaced.

Note – See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

8.5.4.1 Association Ends

AssociationEnd: describes-schema To: Schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The
Remark may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In
particular, a Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note – See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-
interfaced.

Note – See 7.1.6.3 of ISO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

8.6 Overview of Types

This section of the Core model introduces the data type modeling concepts of the EXPRESS language, including the
built-in types.

As is shown in Figure 6, the EXPRESS data type model consists of several dichotomies. Each of the high-level abstract
types represents a group of EXPRESS data types that can play a given role in the metamodel.

DataType is the general class of types of results of Expressions. This includes all VariableTypes, together with “partial
complex entity data types” (PartialEntityTypes), which can only occur as the result of an (intermediate) Expression.

VariableType is the general class of types that Variables can be declared to have. This includes all InstantiableTypes and
ActualTypes, which are formal types that resolve to InstantiableTypes at the time the Variable is created.

ParameterType is the most general class of types that a model element, and in particular, Attributes and Parameters, can
be declared to have. This includes all VariableTypes and GeneralizedTypes, which represent generalized requirements on
the type of the element that must be specialized in actual uses.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 37

Issue 13901 - replace text

Instantiable Types represent all the data type notions that characterize objects and properties in EXPRESS. Instantiable
Types also represent all the data types that have Instances, except for PartialEntityTypes.They are subdivided into
EntityTypes, which largely represent non-data objects, and ConcreteTypes, which represent data elements. They are also
subdivided into NamedTypes, which are defined by declarations in the Schema, and AnonymousTypes, which are defined
in the EXPRESS language and have specific syntactic designations instead of “identifiers.”

Any given object representing an EXPRESS data type is an instance of exactly one of InstantiableType, ActualType,
GeneralizedType, and PartialEntityType, and in fact, it is an instance of exactly one specific instantiable subclass.

All of these concepts are defined below.

Issue 13917 - Replace figure

Figure 6 - Overview of EXPRESS Type concepts

Figure 6 also shows, using “implicit” subclass relationships for EntityTypes and AnonymousTypes, that there are two
dichotomies for InstantiableTypes. Every InstantiableType is either an EntityType or a ConcreteType, and every
InstantiableType is either a NamedType or an AnonymousType.

Figure 7 shows the model of Instantiable Types in detail. SimpleTypes, (Concrete)AggregationTypes and EntityTypes are
defined in separate sections. The other classes and associations are defined below.
38 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13929 - Replace figure

Figure 7 - NamedTypes and Instantiable Types

8.6.1 Class: ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Each subtype of ActualType refers to a GenericElement that is defined among the formal Parameters of the Algorithm.
The GenericElement denotes the corresponding component of the data type of the corresponding actual parameter in any
given invocation. The GenericElement is named by an EXPRESS type_label, and the ActualType refers to that
GenericElement via the type_label.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Properties: abstract

Note – The details of ActualTypes are specified in the Algorithms Package (Clause 10.4).

8.6.1.1 Supertypes

VariableType , LocalElement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 39

8.6.1.2 Attributes

none.

8.6.1.3 Associations

AssociationEnd: scope To: Algorithms::Algorithm

Via: Algorithms::scope-of-actual-type

Subsets: Core::LocalElement.namespace

Definition: The Algorithm in which the ActualType is specified.

The ActualType must be the data type of a Variable or Attribute whose scope is contained in the Algorithm, and the
GenericElement that defines the type_label to which the ActualType refers must be defined among the formal
parameters of the Algorithm.

Note – An ActualType does not really have a namespace; the GenericElement to which it refers is a LocalElement whose
namespace is the Algorithm. The .scope of the ActualType does, however, represent the ownership of the ActualType as a
LocalElement and the lifetime of the ActualType.

Multiplicity: 1..1

8.6.1.4 Other Roles

From: Algorithms::ActualAggregationType as member-type

8.6.2 Class: AnonymousType

Definition: represents any InstantiableType that is not a NamedType.

Properties: abstract

8.6.2.1 Supertypes

InstantiableType , ConcreteType

8.6.2.2 Attributes

none.

8.6.2.3 Associations

AssociationEnd: specializes To: AnonymousType

Definition: represents the relationship of an AnonymousType to an AnonymousType of which it is a “specialization,” as
specified in Part 11 clause 9.2.7. Unlike the specialization for defined data types, these relationships are true subtypes: the
domain of the "specialization" is a subset of the domain of AnonymousType and has the same interpretation.

Multiplicity: 0..* unordered
40 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.6.2.4 Other Roles

From: AnonymousType as specializes

8.6.3 Class: ConcreteType

Definition: represents any InstantiableType that is not an EntityType.

Note – See 9.1 of ISO 10303-11:2004.

Properties: abstract

8.6.3.1 Supertypes

InstantiableType

8.6.3.2 Attributes

none.

8.6.3.3 Associations

none.

8.6.3.4 Other Roles

From: SpecializedType as underlying-type

8.6.4 Class: DataType

Definition: an ExpressionType that represents all the data type notions that can be declared for objects and properties in
EXPRESS. Syntactically called parameter_type, it includes InstantiableTypes and GeneralizedTypes (which represent
conformance rules for InstantiableTypes). It excludes PartialEntityTypes, which are only classifiers for intermediate
results.

Note – See clause 8 of ISO 10303-11:2004.

Properties: abstract

8.6.4.1 Supertypes

none.

8.6.4.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 41

Issue 13679 - add text

8.6.4.3 Associations

AssociationEnd: instances To: Instance

Definition: the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless
they appear directly in a Schema.

Note – For most DataTypes, navigating the association in this direction is not a required feature of the model.

Multiplicity: 0..* unordered.

8.6.4.4 Other Roles

From: Expression as data-type

8.6.5 Class: DefinedType

Definition: a NamedType representing an EXPRESS defined data type, a type declared by a type_declaration.

Note – See 8.3.2 and 9.1 of ISO 10303-11:2004.

Properties: abstract

8.6.5.1 Supertypes

ConcreteType , NamedType

8.6.5.2 Attributes

none.

8.6.5.3 Associations

none.

8.6.5.4 Other Roles

none.

8.6.6 Class: EnumerationType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying_type is a ENUMERATION
data type.

Note – See 8.4.1 of ISO 10303-11:2004.
42 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.6.6.1 Supertypes

DefinedType

8.6.6.2 Attributes

Attribute: isExtensible To: MOF::Boolean

Definition: True if the EnumerationType can have additional values in a schema that interfaces it; False if not.

In the context schema for a population, the final set of possible values is known. But the set given in the defining schema
may be incomplete and be extended by other EnumerationTypes for which this is the base.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.6.6.3 Associations

Issue 13669 - add text

AssociationEnd: base To: EnumerationType

via: enumeration-extends-enumeration

Definition: represents the relationship of an extended EnumerationType to the EnumerationType it is BASED ON. The
domain of the extended type includes all of the values of the base type and all the values defined in the extension.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: declared-items To: Instances::EnumerationItem

via: Instances:enumeration-declares-items

Subsets: NamedType.type-elements

Definition: represents the relationship of an EnumerationType to the EnumerationItems that are declared in its
type_declaration. For extended enumeration types, this is distinct from the .values relationship, which captures all of the
valid values of the type.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: extension To: EnumerationType

via: enumeration-extends-enumeration
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 43

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it. Each extension type may add additional values to the domain, and these are considered to be values of the base
type for all uses within the schema containing the extension.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13671 - replace text

AssociationEnd: values To: Instances::EnumerationItem

via: Instances::value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the EnumerationItems that are valid values of the
type. An EnumerationItem is a value of every EnumerationType that is related by extension to the type that declares it.
This relationship can be derived recursively as the union of the values of the .declared-items attribute for the
EnumerationType, for each EnumerationType in the sequence of .base relationships from the EnumerationType, and from
all the extensions of the EnumerationType.

Note – See clause 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: derived

Note – The derivation of the entire list of values is a recursive operation, described in the Definition above.

8.6.6.4 Other Roles

none.

8.6.7 Class: InstantiableType

Issue 13901 - replace text

Definition: an abstract classifier, encompassing all the data type notions that characterize objects and properties in
EXPRESS. InstantiableType is a proper subtype of DataType, which includes all the data types that have Instances.

Note – See 8.6.1 of ISO 10303-11:2004.

Properties: abstract

8.6.7.1 Supertypes

VariableType

8.6.7.2 Attributes

none.
44 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.6.7.3 Associations

Issue 13929 - Replace text, insert text

AssociationEnd: fundamental-type To: InstantiableType

Definition: represents the relationship between the InstantiableType and the data type used to represent its values. The
fundamental-type of a SpecializedType is the fundamental-type of its underlying-type; the fundamental-type of any other
InstantiableType is the InstantiableType itself.

Note – ISO 10303-11 is not clear about the fundamental-type of a SelectType. The values of a SelectType are necessarily also
values of one of the types in the select-list, and each value is represented according to the fundamental-type of its narrowest
data type.

Note – See 13.3.2 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: derived

The derivation is a recursive operation as stated in the Definition above:

if self is a SpecializedType then
self->fundamental-type = self->underlying-type->fundamental-type

else
self->fundamental-type = self

8.6.7.4 Other Roles

From: InstantiableType as fundamental-type

From: InstantiableAggregationType as member-type

From: Instances::Constant as data-type

8.6.8 Class: NamedType

Definition: a CommonElement that defines a new InstantiableType.

Note – See 8.3 of ISO 10303-11:2004.

Properties: abstract

8.6.8.1 Supertypes

CommonElement , Scope, InstantiableType

8.6.8.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 45

8.6.8.3 Associations

Issue 13669 - add text

AssociationEnd: domain-rules To: DomainRule

via: NamedType-has-DomainRule

Subsets: Core::NamedType.type-elements

Definition: a refinement of InstantiableType.constraints, represents the association of DomainRules that restrict the
domain of valid values of the NamedType.

Note – See 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: instantiates To: SelectType

via: type-instantiates-select-type

Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13669 - add text

AssociationEnd: type-elements To: TypeElement

via: type-element-has-scope

Subsets: Scope.named-elements

Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.

Multiplicity: 0..* unordered

Properties: composite, derived union
46 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.6.8.4 Other Roles

From: SelectType as select-list

From: Instances::TypeName as refers-to

From: Expressions::ExtentRef as refers-to

8.6.8.5 Rules

Constraint (OCL)
exists(self->id);

Every NamedType shall have an identifier

8.6.9 Class: ParameterType

Definition: An abstract classification of Types that includes the InstantiableTypes, ActualTypes and GeneralizedTypes.
That is, a ParameterType is any Type that is admissible as the declared type of a Parameter or an (abstract)
ExplicitAttribute.

Note – See ISO 10303-11:2004 clause 8.6.2

Note – The lexical parameter_type in EXPRESS may represent an ActualType rather than a ParameterType, and it may
include labeled GenericComponents that are used in ActualTypes and ActualTypeConstraints. All of these concepts are
described in the Algorithms Package.

Properties: abstract

8.6.9.1 Supertypes

none.

8.6.9.2 Attributes

none.

Issue 13669 - add text

8.6.9.3 Associations

AssociationEnd: constraints To: DomainConstraint

via: type-has-constraints

Definition: represents the association of DomainConstraints that restrict the value domain of the ParameterType

Note – See 8.1.6, 8.1.7, 8.2, and 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite, derived union
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 47

AssociationEnd: role To: Attribute

via: attribute-has-data-type

Definition: represents the relationship between the ParameterType and the roles (attributes of entities) that its admissible
values may play.

Note – See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.9.4 Other Roles

From: AGGREGATEType as member-type

From: Redeclaration as restricted-type

From: Algorithms::Parameter as formal-parameter-type

8.6.10 Class: SelectType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying_type is a SELECT data type.

Note – See 8.4.2 of ISO 10303-11:2004.

8.6.10.1 Supertypes

DefinedType

8.6.10.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: represents a constraint on the extensions of an Extensible SelectType: True if every NamedType in the
extension must be an EntityType; otherwise False..

Multiplicity: 1..1

Attribute: isExtensible To: MOF::Boolean

Definition: True if the SelectType is EXTENSIBLE, i.e., if it can have additional NamedTypes in the select-list when it is
interfaced into another Schema; False otherwise.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1

8.6.10.3 Associations

AssociationEnd: allowed-types To: NamedType

via: type-instantiates-select-type
48 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: base To: SelectType

via: select-type-extends-select-type

Definition: represents the relationship of an extended select type to the (extensible) select type it is BASED ON.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType

via: select-type-extends-select-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: select-list To: NamedType

Definition: represents the appearance of the NamedType in the select list in the declaration of the SelectType. For
extended and extensible SelectTypes, the NamedType should appear in exactly one of the select-lists in any set of
SelectTypes related by extension. This is distinct from .allowed-types, which represents all of the NamedTypes that can
validly instantiate the SelectType, including any related by extension. The select-list is said to be “ordered,” to convey the
syntactic ordering. The ordering has no semantic significance.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* ordered

8.6.10.4 Other Roles

From: Instances::TypedInstance as satisfies-type

8.6.11 Class: SpecializedType

Note – Definition: See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

8.6.11.1 Supertypes

DefinedType
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 49

8.6.11.2 Attributes

none.

8.6.11.3 Associations

AssociationEnd: underlying-type To: ConcreteType

Definition: represents the EXPRESS “specialization” relationship between a defined data type and the “underlying type”
used to represent it.

Note – See 9.1 and 9.7 of ISO 10303-11:2004.

Multiplicity: 1..1

8.6.11.4 Other Roles

From: Instances::SpecializedValue as of-type

8.6.12 Class: VariableType

Definition: An abstract class representing the permissible data types of a variable: InstantiableTypes and ActualTypes.

Properties: abstract

8.6.12.1 Supertypes

ParameterType , DataType

8.6.12.2 Attributes

none.

8.6.12.3 Associations

none.

8.6.12.4 Other Roles

From: Algorithms::NamedVariable as variable-type

From: Expressions::Coercion as target-type

From: Algorithms::ActualAGGREGATEType as member-type

8.6.13 Association: enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it.

See 8.4.1 of ISO 10303-11:2004.
50 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.6.13.1 Association Ends

AssociationEnd: base To: EnumerationType

Definition: represents the relationship of an extended EnumerationType to the EnumerationType it is BASED ON. The
domain of the extended type includes all of the values of the base type and all the values defined in the extension.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: EnumerationType

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED
ON it. Each extension type may add additional values to the domain, and these are considered to be values of the base
type for all uses within the schema containing the extension.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.14 Association: select-type-extends-select-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

Note – See 8.4.2 of ISO 10303-11:2004.

8.6.14.1 Association Ends

AssociationEnd: base To: SelectType

Definition: represents the relationship of an extended select type to the (extensible) select type it is BASED ON.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.15 Association: type-instantiates-select-type

Definition: represents the appearance of the "generalizes" NamedType in the select list of the "instantiates" SelectType.

Note – See 8.4.2 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 51

8.6.15.1 Association Ends

AssociationEnd: allowed-types To: NamedType

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: instantiates To: SelectType

Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.

Note – See 8.4.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.7 Type Constraints

InstantiableTypes can have local constraints on the admissible values of their “domain.” The basic concept is shown in
Figure 8. All NamedTypes can have DomainRules. AnonymousTypes have specialized constraints, which are shown in the
sections for those types.

Issue 13669 - replace figure

Figure 8 - Type Constraints
52 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.7.1 Class: DomainConstraint

Definition: represents a constraint on the allowable values of an EXPRESS data type. This concept does not appear
explicitly in the EXPRESS language. Some DomainConstraints are explicit DomainRules (WHERE rules); others, such as
SizeConstraints and LengthConstraints, are stated in the EXPRESS syntax for the data type. In this model, a
DomainConstraint is always formulated as a (boolean) Expression, regardless of the EXPRESS syntax used to specify it.

Properties: abstract

8.7.1.1 Supertypes

none.

8.7.1.2 Attributes

none.

8.7.1.3 Associations

AssociationEnd: domain To: ParameterType

Definition: a dependency – represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

AssociationEnd: asserts To: Expression

Definition: represents the relationship between the domain constraint and a Boolean expression that can be evaluated to
determine if it holds.

While all DomainConstraints can be represented by Boolean expressions, some DomainConstraints have representations
that do not require the Expression to be explicitly modeled. For this reason, .asserts has multiplicity 0..1. When the
DomainConstraint has a simple representation (such as a fixed size that is an integer), .asserts may, but need not,
have a value. When the DomainConstraint cannot be simply represented, .asserts shall have a value that is a Boolean
expression that conveys the constraint.

Note – The asserts expression that formulates the DomainConstraint is wholly owned by the DomainConstraint. It is not
treated as reusable.

Multiplicity: 0..1

EXAMPLE

For the EXPRESS text:
ENTITY roster;
 max_team: INTEGER;
 members: LIST [1:max_team+1] OF entry;
END_ENTITY;

The DomainConstraint representing the maximum size of the members list is a SizeConstraint that has no .bound value and
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 53

has a value for .asserts that is an Expression of the form:
SizeOf(SELF.members) <= SELF.max_team + 1

The DomainConstraint representing the minimum size of the members list is a SizeConstraint that has .bound = 1. It is
not required to have any value for .asserts. But, if present, the value of .asserts should be an Expression of the form:

SizeOf(SELF.members) >= 1

8.7.1.4 Other Roles

none.

8.7.2 Class: DomainRule

Definition: represents a DomainConstraint that is stated as an EXPRESS domain rule in a WHERE clause in the
type_declaration or the entity declaration. In a type_declaration, it is a Boolean expression in terms of SELF that limits
the allowable values in the domain of the data type. In an entity_declaration, it is a Boolean expression that constrains the
values of one or more attributes (or other relationships) of the entity data type.

Note – See clauses 9.1 and 9.2.2.2 of ISO 10303-11:2004.

Note – Part 11 permits a DomainRule to evaluate to indeterminate ("?") and requires a rule with that evaluation to be treated as
satisfied. The most common case is the evaluation of an expression involving an OPTIONAL attribute. Languages like OCL
and OWL require the possibly indeterminate values to be protected by an EXISTS operation.

EXAMPLE

For the EXPRESS text:
ENTITY time_interval;
 begin_time: date_time;
 end_time: OPTIONAL date_time;
WHERE
 wr1: begin_time <= end_time;
END_ENTITY;

The EXPRESS domain rule wr1 is represented by a DomainRule with .id="wr1" and .position = 1, and .asserts
linked to an Expression of the form:

SELF.begin_time <= SELF.end_time

The proper translation of the EXPRESS DomainRule wr1, however, may require the rule to be represented as:
NOT EXISTS(SELF.end_time) OR (SELF.begin_time <= SELF.end_time)

8.7.2.1 Supertypes

TypeElement , DomainConstraint

8.7.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Domain Rule in the list of rules following the WHERE keyword in the entity/
type declaration.
54 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..1

8.7.2.3 Associations

Issue 13916 - Replace text

AssociationEnd: domain To: NamedType

via: NamedType-has-DomainRule

Subsets: Core::TypeElement.namespace, Core::DomainConstraint:domain

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it
applies.

Multiplicity: 1..1

8.7.2.4 Other Roles

none.

8.7.3 Association: NamedType-has-DomainRule

Definition: a refinement of type-has-constraints, representing the relationship of a NamedType to a DomainRule that
restrict the domain of valid values of the NamedType.

Note – See 9.1 of ISO 10303-11:2004.

8.7.3.1 Supertypes

type-element-has-scope , type-has-constraints

8.7.3.2 Association Ends

Issue 13669 - add text

AssociationEnd: domain To: NamedType

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it
applies

Multiplicity: 1..1

AssociationEnd: domain-rules To: DomainRule

Definition: a refinement of InstantiableType.constraints, represents the association of DomainRules that restrict the
domain of valid values of the NamedType

Note – See 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 55

Properties: composite

8.7.4 Association: type-has-constraints

Definition: an abstract relationship, represents the association between a ParameterType and a DomainConstraint that
restricts the value domain of the ParameterType

Note – See 8.1.6, 8.1.7, 8.2, and 9.1 of ISO 10303-11:2004.

Properties: abstract

Note – This is an abstract relationship. Each separate form of this relationship is separately modeled.

8.7.4.1 Association Ends

Issue 13669 - replace text

AssociationEnd: constraints To: DomainConstraint

Definition: represents the association of DomainConstraints that restrict the value domain of the ParameterType

Note – See 8.1.6, 8.1.7, 8.2, and 9.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite, derived union

AssociationEnd: domain To: ParameterType

Definition: a dependency – represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

8.8 Simple Types

The EXPRESS language defines “simple types” as those that carry a single conceptual information unit. Each simple type
is denoted by a keyword, rather than an identifier. The simple types are BOOLEAN, INTEGER, LOGICAL, NUMBER,
all BINARY types, all REAL types, and all STRING types. They are shown in Figure 9 and described below.
56 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13904 - replace figure

Figure 9 - Simple Types

8.8.1 Class: BinaryType

Definition: a SimpleType representing all EXPRESS BINARY data types, which are distinguished by different
LengthConstraints.

By definition, every EXPRESS BINARY type with a LengthConstraint is different from every other BINARY data type.
(They may be compatible with others, but not the same.) The only instance of BINARYType with no LengthConstraint is
the EXPRESS data type BINARY.

Note – See 8.1.7 of ISO 10303-11:2004.

8.8.1.1 Supertypes

SimpleType

8.8.1.2 Attributes

none.

Issue 13904 - add text, delete text

8.8.1.3 Associations

AssociationEnd: binary-length-constraint To: LengthConstraint

Subsets: ParameterType:constraints
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 57

Definition: represents a constraint on the length (in bits) of the values in the domain of the BINARY data type. Refines
InstantiableType.constraints.

Note – See 8.1.7 of ISO 10303-11:2004.

Multiplicity: 0..1

Issue 13682 - replace text

8.8.1.4 Other Roles

From Instances:BinaryValue as of-type

8.8.2 Class: LengthConstraint

Definition: represents any maximum-length or fixed-length constraint on the length of the values of a STRING or
BINARY type. A LengthConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using
the built-in Length() function.

Note – See 8.1.6 and 8.1.7 of ISO 10303-11:2004.

8.8.2.1 Supertypes

DomainConstraint

8.8.2.2 Attributes

Attribute: isFixed To: MOF::Boolean

Definition: True if all values of the SimpleType are required to be of the same length; False if the constraint specifies only
the maximum length of the values.

Note – See 8.1.6 and 8.1.8 of ISO 10303-11:2004.

Multiplicity: 1..1

Attribute: maxLength To: MOF::Integer

Definition: represents a constant value specifying the required maximum/fixed length of the STRING or BINARY value.
This attribute is present when the constraint expression is a "constant."

Note – See 8.1.6 and 8.1.9 of ISO 10303-11:2004.

Multiplicity: 0..1

8.8.2.3 Associations

none.
58 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.8.2.4 Other Roles

From: StringType as string-length-constraint

From: BinaryType as binary-length-constraint

8.8.2.5 Rules

Constraint ()

Every LengthConstraint is either a string-length-constraint or a binary-length-constraint for exactly one SimpleType.

Constraint ()

A LengthConstraint is unique to the STRINGType or BINARYType it constrains.

8.8.3 Class: LogicType

Definition: a SimpleType representing the EXPRESS data types BOOLEAN and LOGICAL, which are the only instances
of LOGICALType.

Note – See 8.1.4 of ISO 10303-11:2004.

8.8.3.1 Supertypes

SimpleType

8.8.3.2 Attributes

none.

8.8.3.3 Associations

none.

Issue 13682 - replace text

8.8.3.4 Other Roles

From Instances:LogicalValue as of-type

8.8.4 Class: NumericType

Definition: a SimpleType representing the EXPRESS data types NUMBER, INTEGER, and all REAL data types.
NUMBER and INTEGER are instances of NUMBERType.

Note – See 8.1.1 of ISO 10303-11:2004.

8.8.4.1 Supertypes

SimpleType
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 59

8.8.4.2 Attributes

none.

8.8.4.3 Associations

none.

Issue 13682 - replace text

8.8.4.4 Other Roles

From Instances:NumberValue as of-type

8.8.5 Class: RealType

Definition: represents all EXPRESS REAL data types, which are distinguished from one another by different values of
“precision.” Type REAL (with no “precision” value) is one instance of REALType.

Note – See 8.1.2 of ISO 10303-11:2004.

8.8.5.1 Supertypes

NumericType

8.8.5.2 Attributes

Attribute: precision To: MOF::Integer

Definition: represents the number of significant figures in the values of the RealType, as specified in its syntactic
designation. Although the value of “precision” is specified in EXPRESS to be an expression, it is assumed in this model
that the value will in practice be a “constant.” The only REALType for which “precision” is not present is the EXPRESS
type REAL (with no precision specification).

Note – See 8.1.3 of ISO 10303-11:2004.

Multiplicity: 0..1

8.8.5.3 Associations

none.

8.8.5.4 Other Roles

none.

8.8.6 Class: SimpleType

Definition: an AnonymousType representing those EXPRESS data types defined in the language as “simple types”:
BINARY types, BOOLEAN, INTEGER, LOGICAL, NUMBER, REAL types, and STRING types.
60 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 8.1 of ISO 10303-11:2004.

Properties: abstract

8.8.6.1 Supertypes

AnonymousType

8.8.6.2 Attributes

Attribute: id To: Keyword

Definition: represents the EXPRESS keyword denoting the SimpleType, one of: BINARY, BOOLEAN, INTEGER,
LOGICAL, NUMBER, REAL, STRING.

Note – See 8.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.8.6.3 Associations

none.

Issue 13682 - replace text

8.8.6.4 Other Roles

none.

8.8.7 Class: StringType

Definition: a SimpleType representing all EXPRESS STRING data types, which are distinguished by different
LengthConstraints. By definition, every EXPRESS STRING type with a LengthConstraint is different from every other
STRING data type. (They may be compatible with others, but not the same.) The only instance of STRINGType with no
LengthConstraint is the EXPRESS data type STRING.

Note – See 8.1.6 of ISO 10303-11:2004.

8.8.7.1 Supertypes

SimpleType

8.8.7.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 61

Issue 13904 - delete text, add text

8.8.7.3 Associations

AssociationEnd: string-length-constraint To: LengthConstraint

Definition: represents a constraint on the length (in characters) of the values in the domain of the STRING data type.
Refines InstantiableType.constraints.

Subsets: ParameterType:constraints

Note – See 8.1.6 of ISO 10303-11:2004.

Multiplicity: 0..1

Issue 13682 - replace text

8.8.7.4 Other Roles

From Instances:StringValue as of-type

8.9 Aggregation Types

EXPRESS “aggregation types” are types whose instances are collections of instances of a “member type.” There are four
kinds of aggregation types, which represent different structures for the collections: ARRAY, BAG, LIST, SET. Figure 10
shows the overview of Aggregation types. The model elements are defined below.
62 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13904 - replace figure

Figure 10 - Aggregation Types

8.9.1 Class: AggregationType

Definition: an AnonymousType representing an EXPRESS “aggregation type,” whose instances are collections of
instances of a “member type”: ARRAY, BAG, LIST, SET.

Note – See 8.2 of ISO 10303-11:2004.

Properties: abstract

8.9.1.1 Supertypes

none.

8.9.1.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: True if the members of a given instance of the type are required to be distinct; else False. isUnique is always
True for a SET type, always False for a BAG type, and True for LIST and ARRAY types if and only if the UNIQUE
keyword is present in the type designation.

Note – See 8.2 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 63

Attribute: ordering To: OrderingKind

Definition: Specifies the structure of the AggregationType: indexed (ARRAY), ordered (LIST), unordered (BAG, SET).

Multiplicity: 1..1

Issue 13904 - add text

8.9.1.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Subsets: ParameterType:constraints

Definition: represents the appearance of a lower-bound constraint in syntactic designation for the aggregation type.
Refines InstantiableType.constraints. For this purpose the appearance of an explicit zero ("0") value may be considered to
represent no lower-bound constraint; and the lower-bound relationship need not appear. (The appearance of a lower-bound
expression that may evaluate to zero shall always be represented by a lower-bound relationship.)

Note – See 8.2.x of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Subsets: ParameterType:constraints

Definition: represents the appearance of an upper-bound constraint in the syntactic designation for the aggregation type.
Refines InstantiableType.constraints. For this purpose the appearance of an explicit indeterminate value ("?") is
considered to represent no upper-bound constraint, and shall not be represented by an upper-bound relationship. (The
appearance of an upper-bound expression that may evaluate to "?" shall be represented by an upper-bound relationship.)

Note – See 8.2.x of ISO 10303-11:2004.

Multiplicity: 0..1

8.9.1.4 Other Roles

none.

8.9.2 Class: ArrayBound

Definition: represents a bound on the index domain of an ARRAY data type.

Note – See 8.2.1 of ISO 10303-11:2004.

8.9.2.1 Supertypes

none.
64 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.9.2.2 Attributes

Attribute: bound To: MOF::Integer

Definition: the integer value of the bound, when it can be determined “by inspection” of the bound expression.

Note – See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 0..1

8.9.2.3 Associations

AssociationEnd: bound-expression To: Expression

Definition: the Expression that defines the ArrayBound.

Note – See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.9.2.4 Other Roles

From: ARRAYType as hi-index

From: ARRAYType as lo-index

From: GeneralARRAYType as lo-index

From: GeneralARRAYType as hi-index

From: Algorithms::ActualARRAYType as lo-index

From: Algorithms::ActualARRAYType as hi-index

8.9.2.5 Rules

Constraint ()

Every ArrayBound is either a hi-index or lo-index for exactly one ARRAYType, ActualARRAYType, or
GeneralARRAYType.

Constraint ()

An ArrayBound is unique to the A RRAYType (or GeneralARRAYType) and the role (hi-index/lo-index) it plays with respect
to that type.

8.9.3 Class: ARRAYType

Definition: an AggregationType representing all EXPRESS ARRAY data types.

8.9.3.1 Supertypes

InstantiableAggregationType
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 65

8.9.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAYType; False
otherwise. When isOptional is True, any instance of the ARRAYType is permitted to have members whose value is
unspecified ("?").

Note – See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.9.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: represents the relationship between the ARRAYType and the upper bound on the Integer index-range of each
value of the ARRAYType.

Note – See 8.2.1 and 15.11 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: lo-index To: ArrayBound

Definition: represents the relationship between the ARRAYType and the lower bound on the Integer index-range of each
value of the ARRAYType.

Note – See 8.2.1 and 15.17 of ISO 10303-11:2004.

Multiplicity: 1..1

8.9.3.4 Other Roles

From: Instances::ARRAYValue as of-type

8.9.3.5 Rules

Constraint (OCL)
self->ordering = Indexed

8.9.4 Class: BAGType

Definition: an AggregationType representing all EXPRESS BAG data types.

Note – See 8.2.3 of ISO 10303-11:2004.

8.9.4.1 Supertypes

InstantiableAggregationType
66 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.9.4.2 Attributes

none.

8.9.4.3 Associations

none.

8.9.4.4 Other Roles

From: Instances::BAGValue as of-type

8.9.4.5 Rules

Constraint (OCL)
NOT self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.9.5 Class: ConcreteAggregationType

Definition: an anonymous InstantiableType that is an AggregationType whose member-type is itself an InstantiableType.

Properties: abstract

8.9.5.1 Supertypes

AggregationType , AnonymousType

8.9.5.2 Attributes

none.

8.9.5.3 Associations

AssociationEnd: member-type To: InstantiableType

Definition: represents data type of its components (members) of the InstantiableAggregationType.

Multiplicity: 1..1

8.9.5.4 Other Roles

none.

8.9.6 Class: LISTType

Definition: an AggregationType representing all EXPRESS LIST data types.

Note – See 8.2.2 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 67

8.9.6.1 Supertypes

InstantiableAggregationType

8.9.6.2 Attributes

none.

8.9.6.3 Associations

none.

8.9.6.4 Other Roles

From: Instances::LISTValue as of-type

8.9.6.5 Rules

Constraint (OCL)
self->ordering = Ordered

8.9.7 Datatype: OrderingKind

Stereotypes: enumeration

Definition: Values that characterize the logical structure of the collections represented by an AggregationType (or a
GeneralAggregationType).

8.9.7.1 Supertypes

none.

8.9.7.2 Values

Value: indexed

Definition: Specifies that the structure of the AggregateValues is an ARRAY. That is, the positions in the sequence are
associated with specific (consecutive) INTEGER index values.

Value: ordered

Definition: Specifies that the structure of the AggregateValues is a LIST. That is, the position of each member-value in the
sequence is significant in interpreting the AggregateValue.

Value: unordered

Definition: Specifies that the structure of the AggregateValues is a BAG or SET. That is, the position of each member-value in
the sequence has no significance in interpreting the AggregateValue.
68 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.9.8 Class: SETType

Definition: an AggregationType representing all EXPRESS SET data types.

Note – See 8.2.4 of ISO 10303-11:2004.

8.9.8.1 Supertypes

InstantiableAggregationType

8.9.8.2 Attributes

none.

8.9.8.3 Associations

none.

8.9.8.4 Other Roles

From: Instances::SETValue as of-type

8.9.8.5 Rules

Constraint (OCL)
self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.9.9 Class: SizeConstraint

Definition: A SizeConstraint represents a constraint on the number of members in each value of an EXPRESS aggregation
type, stated as a bound in the syntactic designation for the type. A SizeConstraint represents either an upper-bound or a
lower-bound. In the case of an ARRAY type, the value (hi-index - lo-index + 1) is both the lower-bound value and the
upper-bound value. A SizeConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using
the built-in SizeOf() function.

Note – See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

8.9.9.1 Supertypes

DomainConstraint

8.9.9.2 Attributes

Attribute: bound To: MOF::Integer

Definition: represents a constant value specifying the (upper or lower) bound on the number of members in a valid
instance of the aggregation type. This attribute is present when the bound expression is a “constant.”
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 69

Note – See 8.2.2, 8.2.3, and 8.2.4 of ISO 10303-11:2004.

Multiplicity: 0..1

8.9.9.3 Associations

none.

8.9.9.4 Other Roles

From: AGGREGATEType as upper-bound

From: AGGREGATEType as lower-bound

From: AggregationType as upper-bound

From: AggregationType as lower-bound

From: Redeclaration as upper-bound

From: Redeclaration as lower-bound

From: Role as lower-bound

From: Role as upper-bound

From: Algorithms::ActualAGGREGATEType as lower-bound

From: Algorithms::ActualAGGREGATEType as upper-bound

8.9.9.5 Rules

Constraint ()

Every SizeConstraint is either an upper-bound or a lower-bound for exactly one AggregationType or
GeneralAggregationType.

Constraint ()

A SizeConstraint is unique to the AggregationType (or GeneralAggregationType) it describes and the role (upper-bound/
lower-bound) it plays with respect to that AggregationType.

8.10 Generalized Types

Generalized types are those EXPRESS data types that are “abstract,” in the sense that every actual instance is an instance
of some InstantiableType(s). These types are only permitted as the data type of formal parameters and the data type of
“abstract” Attributes of ABSTRACT EntityTypes. They are shown in Figure 11.
70 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13904 - replace figure

Figure 11 - Generalized Types

8.10.1 Class: AGGREGATEType

Definition: a GeneralizedType that is an abstraction of all AggregationTypes and all GeneralAggregationTypes. That is,
any ARRAY, BAG, LIST, or SET Instance that satisfies the SizeConstraints (if any), whose members are of the specified
member type or some specialization of it, is an instance of the AGGREGATEType. It follows that any ARRAY, BAG,
LIST, or SET type whose instances are necessarily instances of the AGGREGATEType is a specialization.

Note – See 9.5.3.1 of ISO 10303-11:2004.

8.10.1.1 Supertypes

GeneralizedType

8.10.1.2 Attributes

none.

8.10.1.3 Associations

Issue 13904 - add text

AssociationEnd: constraint To: Algorithms::ActualStructureConstraint

via: Algorithms::aggregate-has-constraint
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 71

Definition: the ActualStructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note – Only an AGGREGATEType that appears in the specification of the data type of a Parameter can have an ActualStruc-
tureConstraint. The AGGREGATEType has an ActualStructureConstraint only if it has a syntactic type_label and does not
itself define that type_label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Subsets: ParameterType:constraints

Definition: represents a lower-bound constraint on aggregate values conforming to the AGGREGATE type. If the lower-
bound constraint is present, the number of members of the aggregate value shall be greater than or equal to this value. If
the lower-bound is not present or evaluates to zero, there is no constraint. Unless the lower-bound specified for the
AGGREGATIONType is an explicit “0,” this constraint shall appear.

Note – See 9.5.3.2 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: member-type To: ParameterType

Definition: represents the relationship between an AGGREGATE Type and the specification for the data type of the
members of its instances. If the specification is an InstantiableType, the member-type of conforming aggregation types is
required to be exactly that data type. If the specification is a GeneralizedType, the member-type of the conforming
aggregation types must conform to it.

Note – See 9.5.3.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Subsets: ParameterType:constraints

Definition: represents an upper-bound constraint on aggregate values conforming to the AGGREGATE type. If the upper-
bound constraint is present and does not evaluate to indeterminate ("?"), the number of members of the aggregate value
shall be less than or equal to this value. If the upper-bound is not present or evaluates to indeterminate, there is no
constraint. Unless the upper-bound specified for the AGGREGATE type is an explicit "?", this constraint shall appear.

Note – See 9.5.3.3 of ISO 10303-11:2004.

Multiplicity: 0..1

8.10.1.4 Other Roles

none.
72 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.10.2 Class: GeneralAggregationType

Definition: represents a GeneralizedType whose instances are AggregateValues with a specific structure (ARRAY, BAG,
LIST, or SET), but whose member-types are specializations of some specified GeneralizedType. That is, a
GeneralAggregationType is an aggregation data type whose member-type is specified to be a GeneralizedType; while an
(Instantiable) AggregationType is an aggregation data type whose member-type is specified to be an InstantiableType.

Any instance of a GeneralAggregationType is required to be an AggregateValue that has the specified structure and has
members that are instances of some InstantiableType that conforms to the specified member-type. In addition,the instance
must satisfy any DomainConstraints associated with the GeneralAggregationType.

Note – See 9.5.3.5 of ISO 10303-11:2004.

Properties: abstract

8.10.2.1 Supertypes

AggregationType , GeneralizedType

8.10.2.2 Attributes

none.

8.10.2.3 Associations

AssociationEnd: member-type To: GeneralizedType

Definition: represents the relationship between a GeneralAggregationType and the conformance specification for the
member-type.

Note – See 9.5.3.5 of ISO 10303-11:2004.

Multiplicity: 1..1

8.10.2.4 Other Roles

none.

8.10.3 Class: GeneralARRAYType

Definition: represents a GeneralAggregationType whose structure is an ARRAY. The hi-index and lo-index values of a
conforming ARRAYInstance are required to be equal to the values given for the GeneralARRAYType.

When the GeneralARRAYType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be an ARRAYType or a GeneralARRAYType whose hi-index and lo-index values are equal to
the values given for the GeneralARRAYType. In addition, the .isOptional property of the redeclaration shall be as
specified below.

Note – See 9.5.3.5 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 73

8.10.3.1 Supertypes

GeneralAggregationType

8.10.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: When isOptional is True, any conforming ARRAYInstance is permitted to have members whose value is
indeterminate ("?"). When isOptional is False, no member of a conforming ARRAYInstance is permitted to have an
unspecified value.

If isOptional is True for an abstract attribute, the member type of any attribute that redeclares the abstract attribute may
be declared to be OPTIONAL; if False, the member type of an attribute that redeclares the abstract attribute shall not be
declared to be OPTIONAL.

Note – See 9.5.3.5 of ISO 10303-11:2004.

Multiplicity: 1..1

8.10.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: The hi-index value of a conforming ARRAY data type is required to be equal to the hi-index value, if any, for
the GeneralARRAYType.

Note – See 9.5.3.5 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: lo-index To: ArrayBound

Definition: The lo-index value of a conforming ARRAY data type is required to be equal to the lo-index value, if any, for
the GeneralARRAYType.

Note – See 9.5.3.5 of ISO 10303-11:2004.

Multiplicity: 0..1

8.10.3.4 Other Roles

none.

8.10.4 Class: GeneralBAGType

Definition: represents a GeneralAggregationType whose structure is a BAG.

When the GeneralBAGType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a BAGType or a GeneralBAGType that includes or refines any DomainConstraint
associated with the GeneralBAGType.
74 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 9.5.3.5 of ISO 10303-11:2004.

8.10.4.1 Supertypes

GeneralAggregationType

8.10.4.2 Attributes

none.

8.10.4.3 Associations

none.

8.10.4.4 Other Roles

none.

8.10.5 Class: GeneralizedType

Definition: an abstract classifier, representing those EXPRESS data types that are “abstract,” in the sense that every actual
instance is an instance of some InstantiableType(s). These types are only permitted as the data type of formal parameters
and the data type of “abstract” Attributes of ABSTRACT EntityTypes. GeneralizedType is a proper subclass of
ParameterType that is disjoint with InstantiableType.

Note – The syntactic occurrences of EXPRESS generalized_type do not always denote GeneralizedTypes per se. In par-
ticular, a generalized_type that appears with a type_label may denote an ActualType or a constraint. When used as the type of
a LocalVariable or FunctionResult, it denotes an ActualType (q.v.). When used as the type of a Parameter, it may be a
GenericElement that defines a reference to the data type of the corresponding actual parameter (in addition to being a General-
izedType specification for the allowable data types of the actual parameter), or it may represent a constraint on the data type of
the corresponding actual parameter that relates to the data type of another actual parameter. See 9.5.3.4 of ISO 10303-11:2004.

Properties: abstract

8.10.5.1 Supertypes

ParameterType

8.10.5.2 Attributes

none.

8.10.5.3 Associations

none.

8.10.5.4 Other Roles

From: GeneralAggregationType as member-type
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 75

8.10.6 Class: GeneralLISTType

Definition: represents a GeneralAggregationType whose structure is a LIST.

When the GeneralLISTType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a LISTType or a GeneralLISTType that includes or refines any DomainConstraint
associated with the GeneralLISTType.

Note – See 9.5.3.5 of ISO 10303-11:2004.

8.10.6.1 Supertypes

GeneralAggregationType

8.10.6.2 Attributes

none.

8.10.6.3 Associations

none.

8.10.6.4 Other Roles

none.

8.10.7 Class: GeneralSETType

Definition: represents a GeneralAggregationType whose structure is a SET.

When the GeneralSETType is the data type of an abstract attribute (see 1.10.3.2), the datatype of every conforming
redeclaration is required to be a SETType or a GeneralSETType that includes or refines any DomainConstraint associated
with the GeneralSETType.

Note – See 9.5.3.5 of ISO 10303-11:2004.

8.10.7.1 Supertypes

GeneralAggregationType

8.10.7.2 Attributes

none.

8.10.7.3 Associations

none.

8.10.7.4 Other Roles

none.
76 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.10.8 Class: GenericType

Definition: represents the EXPRESS generalized types GENERIC and GENERIC_ENTITY, and some labeled instances
of them. Every data type is a specialization of the GenericType GENERIC, and every Instance is an Instance of
GENERIC. Every entity data type is a specialization of the GenericType GENERIC_ENTITY. Every EntityInstance is an
instance of GENERIC_ENTITY and every instance of GENERIC_ENTITY is an EntityInstance.

Note – See 9.5.3.2 and 9.5.3.3 of ISO 10303-11:2004.

8.10.8.1 Supertypes

GeneralizedType

8.10.8.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: True if the corresponding data type is required to be an Entity data type; False otherwise.

• .isEntity is True if the EXPRESS keyword was GENERIC_ENTITY.

• .isEntity is False if the EXPRESS keyword was GENERIC.

Multiplicity: 1..1

8.10.8.3 Associations

AssociationEnd: constraint To: Algorithms::ActualTypeConstraint

via: Algorithms::generic-has-constraint

Definition: the ActualTypeConstraint, if any, that applies to this component of the GeneralizedType specification.

Note – Only a GenericType that appears in the specification of the data type of a Parameter can have an ActualTypeConstraint.
The GenericType has an ActualTypeConstraint only if it has a syntactic type_label and does not itself define that type_label.
See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

8.10.8.4 Other Roles

none.

8.11 Entities and Attributes

This section of the Core model introduces the entity and attribute concepts of the EXPRESS language.

Figure 12 shows the primary concepts associated with EXPRESS entities: EntityTypes, Attributes, UNIQUE rules, and
DomainRules (WHERE rules). The SingleEntityType represents the group of attributes declared explicitly in the entity
declaration (as distinct from those inherited), and is used in PartialEntityValues (see 9.5.6) that represent states of entities.
PartialEntityType is a special data type that characterizes such values when they are produced in Expressions. All of
these concepts are described in detail below.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 77

DomainRules are a kind of TypeConstraint that applies to NamedTypes in general. They are described in 8.7.2. In the
particular case of EntityTypes, they are used to capture constraints on the relationships among Attributes of the entity data
type.

Issue 13673 - replace figure

Figure 12 - Entity Types

Figure 13 depicts the concepts associated with Attributes in EXPRESS. Attributes are of three kinds: explicit, INVERSE,
and DERIVEd. To facilitate modeling INVERSE attributes and relationships, this model adds the concept
InvertibleAttribute. All of these concepts are described below.
78 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13672 - replace figure

Figure 13 - Attributes

8.11.1 Class: Attribute

Definition: represents an EXPRESS attribute, i.e., a model of a property of an entity instance.

Note – See 9.2.1 of ISO 10303-11:2004.

Properties: abstract

8.11.1.1 Supertypes

TypeElement

8.11.1.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: True if .isAbstract is True for the owning EntityType (see .of-entity) and the attribute-type of the EXPRESS
attribute is a GeneralizedType; False in all other cases. When .isAbstract is True, this Attribute must be redeclared to have
an attribute-type that is an InstantiableType in any subtype of the owning EntityType that is not itself ABSTRACT.

Multiplicity: 1..1

Attribute: position To: MOF::Integer

Definition: Represents the position of the attribute declaration in the sequence of attribute declarations in the entity
declaration.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 79

Issue 13899 - replace text

8.11.1.3 Associations

AssociationEnd: attribute-type To: ParameterType

via: attribute-has-data-type

Definition: represents the required data type for all values of that Attribute in all instances of the EntityType. When
EntityType that declares the Attribute is “abstract”, the attribute-type can be a GeneralizedType. When the Attribute is
defined within the scope of an Algorithm, the attribute-type can be an ActualType. In these cases, the attribute-type can also
be an InstantiableType, and in any other case, the attribute-type is required to be an InstantiableType.

Note – See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

Issue 13673 - add text

AssociationEnd: namespace To: EntityType

via: EntityType_has_Attribute

subsets: TypeElement::namespace

Definition: the nominal scope/namespace of the Attribute. It is included in the scopes of all subtypes of the EntityType.

Multiplicity: 1..1

Properties: derived

Tagged Values

 derivation = self->of-entity->declared-in

AssociationEnd: of-entity To: SingleEntityType

via: attribute-declared-in-entity

Definition: represents the relationship of an Attribute to the SingleEntityType for which it was originally declared.

Multiplicity: 1..1

Note – The derived relationship .of-entity.declared-in is the specialization of TypeElement.namespace for
Attributes. The EntityType is the namespace for the Attribute, not the SingleEntityType.

Issue 13672 - add text

AssociationEnd: owning-entity To: EntityType

via: entity-has-attributes
80 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Definition: the EntityTypes that have or inherit the Attribute, that is, the EntityType in which the Attribute is declared and
all subtypes of that EntityType.

Multiplicity: 1..* unordered

Properties: derived

Note – The derivation of this relationship begins with self->namespace (i.e., self->of-entity->declared-in) and recursively adds
all EntityTypes reached by supertype-of.

8.11.1.4 Other Roles

From: UniqueRule as key-component

From: EntityType as attributes

From: Redeclaration as original-attribute

From: Instances::RoleName as refers-to

From: Expressions::AttributeRef as refers-to

From: Expressions::UsedInRef as inverse-of

8.11.1.5 Rules

Constraint (OCL)
exists(self->id);

Every Attribute shall have an Identifier.

8.11.2 Class: DerivedAttribute

Definition: represents an EXPRESS DERIVE attribute = a property whose value can be determined from other attributes
and relationships of the entity instance.

Note – See 9.2.1.2 of ISO 10303-11:2004.

8.11.2.1 Supertypes

Attribute

8.11.2.2 Attributes

none.

8.11.2.3 Associations

AssociationEnd: derivation To: Expression

Definition: the Expression that specifies how to determine the value of the DerivedAttribute from the values of other
Attributes.

Note – See 9.2.1.2 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 81

Multiplicity: 1..1

8.11.2.4 Other Roles

none.

8.11.3 Class: EntityType

Definition: a NamedType representing an EXPRESS entity data type, a type declared by an entity_declaration.

Note – See 9.2 of ISO 10303-11:2004.

8.11.3.1 Supertypes

InstantiableType , NamedType

8.11.3.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: True if the EXPRESS entity data type is declared ABSTRACT in its original declaration, either as
ABSTRACT entity or as ABSTRACT SUPERTYPE; False otherwise. The entity data type can also/later be declared
“abstract” in a SUBTYPE_CONSTRAINT, e.g., in an interfacing Schema, but that is taken as a constraint on the usage of
the EntityType in that context.

Note – See 9.2.4 and 9.2.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1

8.11.3.3 Associations

Issue 13672 - add text

AssociationEnd: attributes To: Attribute

via: entity-has-attributes

Definition: represents the relationship between an EntityType and the declared Attributes of that EntityType, including
those in the entity declaration and those inherited from supertypes.

Note – See 9.2 of ISO 10303-11:2004.

Properties: derived

Multiplicity: 0..* unordered

TaggedValues

derivation = declares.declares + subtype-of.declares.declares
82 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: declares To: SingleEntityType

via: single-entity-declared-in-entity

Definition: the SingleEntityType that is declared in the declaration for the EntityType, i.e., the group of Attributes that is
named for the EntityType.

Multiplicity: 1..1

Issue 13669 - add text

Properties: composite

AssociationEnd: extension To: Instances::Extent

via: Instances::extent-of-EntityType

Definition: represents the relationship between an EntityType and its extent (the set of corresponding EntityInstances) in
a given Population.

Multiplicity: 0..* unordered

Issue 13673 - add text

AssociationEnd: local-attributes To: Attribute

via: EntityType_has_Attribute

Definition: the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntityType.

Subsets: NamedType:type-elements

Multiplicity: 0..* unordered

Properties: derived

Tagged Values

 derivation = self->declares->declares

AssociationEnd: instances To: Instances::EntityInstance

via: Instances::instance-of-EntityType

Definition: represents the relationship between an EntityType (classifier) and the EntityInstances that satisfy it.

Multiplicity: 0..* unordered

AssociationEnd: plays-domain-role To: DomainRole

via: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 83

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An EntityInstance is
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an
AggregationType..

Properties: derived.

Multiplicity: 0..* unordered

Issue 13674 - replace text

Note – The derivation of this property is complex. For each InvertibleAttribute x in self->attributes, the EntityType plays-the-
domain-role that is x->creates-relationship->domain, i.e., the DomainRole in the Relationship that is created by
the InvertibleAttribute x.

Issue 13675 - replace text

AssociationEnd: plays-range-role To: RangeRole

via: entity-plays-range-role

Definition: represents the relationship between an entity type and the range roles that its instances play. For each
occurrence of the EntityType in/as the attribute-type of an InvertibleAttribute, the EntityType plays the corresponding
RangeRole.

Properties: derived.

Multiplicity: 0..* unordered

Note – The derivation of plays-range-role is complex. For each InvertibleAttribute that is an instance of self->used-in, a given
EntityType plays the RangeRole that is InvertibleAttribute::models-role.

AssociationEnd: redeclarations To: Redeclaration

via: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the EntityType and any attribute Redeclarations that appear in its
declaration.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: subtype-of To: EntityType

Definition: represents the relationship of an entity data type to its immediate supertypes – those entity data types from
whose common domain the instances of the EntityType are drawn. For compatibility with the interpretation of other
features of EXPRESS, this relationship extends only to those EntityTypes that are “immediate supertypes,” i.e., those
explicitly declared in the SUBTYPE OF clause for this EntityType.

Note – See 9.2.3 of ISO 10303-11:2004.
84 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 0..* unordered

AssociationEnd: unique-rules To: UniqueRule

via: EntityType-has-UniqueRule

Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the values of
attributes of that EntityType

Note – See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: used-in To: InvertibleAttribute

via: entity-used-in-attribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

Multiplicity: 0..* unordered

8.11.3.4 Other Roles

From: Rules::SupertypeRule as named-supertype

From: EntityType as subtype-of

From: Instances::EntityValue as corresponds to

From: Instances::SingleLeafInstance as characterizing-type

8.11.4 Class: ExplicitAttribute

Definition: represents an EXPRESS “explicit” attribute, a model of a property of an entity instance that is not, in general,
derived from other properties of that instance or other entity instances.

Note – See 9.2.1.1 of ISO 10303-11:2004.

8.11.4.1 Supertypes

Attribute

8.11.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the entity instance is permitted to have no specified value for this attribute; False if a value for this
attribute is required.

Note – See 9.2.1.1 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 85

Multiplicity: 1..1

8.11.4.3 Associations

none.

8.11.4.4 Other Roles

From: Expressions::AttributeBinding as attribute

From: Instances::AttributeValue as attribute

From: Statements::AttributeObject as refers-to

8.11.5 Class: InverseAttribute

Definition: represents an EXPRESS INVERSE attribute = a property of each instance of this entity data type that
represents a relationship between it and instances of some other entity data type, created by an InvertibleAttribute of that
entity data type.

Note – See 9.2.1.3 of ISO 10303-11:2004.

8.11.5.1 Supertypes

Attribute

8.11.5.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: True if the designated relationship between this instance and any given instance can occur at most once; False
if it can occur more than once. (True if the INVERSE attribute is described as a SET; False if it is described as a BAG.)

Note – See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1

8.11.5.3 Associations

AssociationEnd: explicit To: InvertibleAttribute

via: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an inverse attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of another entity data type that models the Relationship from which the inverse attribute is derived.

Note – See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1
86 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: models-role To: DomainRole

via: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models-
role.in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

8.11.5.4 Other Roles

none.

8.11.6 Class: InvertibleAttribute

Definition: An ExplicitAttribute whose attribute type is one of:

• an EntityType

• a SelectType whose select-list consists of EntityTypes

• an AggregationType whose member-type is either of the above

An InvertibleAttribute models a Relationship between two EntityTypes – the EntityType that declares the
InvertibleAttribute, and the EntityType that appears in its attribute-type.

An InvertibleAttribute whose attribute-type (or its member-type) is a SelectType defines one Relationship for each
EntityType in the select-list.

Note – See ISO 10303-11.2:2004 clause 9.2.1.3

8.11.6.1 Supertypes

ExplicitAttribute

8.11.6.2 Attributes

none.

8.11.6.3 Associations

AssociationEnd: creates-relationship To: Relationship

via: InvertibleAttribute-creates-relationship

Definition: represents the relationship between an InvertibleAttribute and the Relationship between EntityTypes that it
models.

Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

via: InverseAttribute-inverts-ExplicitAttribute
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 87

Definition: represents the relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range
entity data type that models the same Relationship. While the inverse is conceptually unique, EXPRESS allows it to be
declared differently in different subtypes of the original range entity.

Note – See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: models-role To: RangeRole

via: InvertibleAttribute-models-role

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note – An explicit attribute defines a RangeRole (and thus a Relationship) if and only if it is an InvertibleAttribute.

Multiplicity: 0..1

AssociationEnd: range-type To: EntityType

via: entity-used-in-attribute

Definition: models the relationship between the InvertibleAttribute and the EntityTypes that are, or are members of, its
attribute-type. These EntityTypes are the “range” of the Relationship with the “referencing” entity that is created by the
InvertibleAttribute.

Multiplicity: 1..* unordered

8.11.6.4 Other Roles

none.

8.11.7 Class: PartialEntityType

Definition: a-DataType representing a collection of SingleEntityTypes. A PartialEntityType is the data type of a
PartialEntityValue.

Note – See 9.2.6 of ISO 10303-11:2004.

8.11.7.1 Supertypes

DataType

8.11.7.2 Attributes

none.

8.11.7.3 Associations

AssociationEnd: components To: SingleEntityType

Definition: represents the relationship between the PartialEntityValue and the SingleEntityValues that make it up.
88 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

8.11.7.4 Other Roles

From: SingleEntityType as equivalent

From: Instances::PartialEntityValue as of-type

8.11.8 Class: SingleEntityType

Definition: the group of Attributes of a given EntityType that appear directly in the entity_declaration for that EntityType,
i.e., excluding “inherited” attributes. A SingleEntityType corresponds to, and has the same id as, the EntityType whose
declaration defines it.

Note – A SingleEntityType is not a DataType; it cannot be the type of an Expression result or of any other EXPRESS concept.
It is only the “type” of SingleEntityValues, and they are not Instances. See 3.3.9 of ISO 10303-11:2004 (should be corrected by
TC#1).

8.11.8.1 Supertypes

none.

8.11.8.2 Attributes

Attribute: id To: ScopedId

Definition: Represents the EXPRESS Identifier for the SingleEntityType, which is the same as the Identifier for the
corresponding EntityType.

Properties: derived.

Multiplicity: 1..1

TaggedValues

derivation = self->derived-from->id

8.11.8.3 Associations

Issue 13669 - add text

AssociationEnd: declares To: Attribute

via: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration for
the corresponding EntityType..

Multiplicity: 0..* unordered

Properties: composite
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 89

AssociationEnd: derived-from To: EntityType

via: single-entity-declared-in-entity

Definition: represents the derivation of the SingleEntityType from the entity_declaration for the EntityType.

Multiplicity: 1..1

Issue 13916 - Revise text

AssociationEnd: equivalent To: PartialEntityType

Definition: represents the relationship between the SingleEntityType and the “equivalent” PartialEntityType, namely, the
PartialEntityType that consists of exactly that one SingleEntityType. For those PartialEntityTypes that are equivalent to
SingleEntityTypes, the PartialEntityType:includes relationship is the inverse of this relationship.

Multiplicity: 1..1

8.11.8.4 Other Roles

From: PartialEntityType as components

From: Instances::SingleEntityValue as of-type

From: Expressions::GroupRef as refers-to

From: Expressions::PartialEntityConstructor as attribute-group

From: Statements::GroupObject as refers-to

8.11.8.5 Rules

Constraint (OCL)
sizeof(self->equivalent->includes) = 1

Constraint (OCL)
self->equivalent->includes[1] = self

8.11.9 Class: UniqueRule

Definition: represents an EXPRESS UNIQUE rule = a requirement that the combination of values of the specified "key"
attributes be unique over all instances of the entity data type in a given Population.

Note – See 9.2.2.1 of ISO 10303-11:2004.

8.11.9.1 Supertypes

TypeElement
90 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.11.9.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Unique Rule in the list of rules following the UNIQUE keyword in the entity/
type declaration.

Multiplicity: 1..1

8.11.9.3 Associations

AssociationEnd: domain To: EntityType

via: EntityType-has-UniqueRule

Subsets: Core::TypeElement.namespace

Definition: represents the relationship of the UniqueRule to the EntityType whose Extent is the domain of values to which
it applies.

Multiplicity: 1..1

AssociationEnd: key-component To: Attribute

Definition: represents the relationship between the UniqueRule and the "key" attributes of the (possibly joint) key for the
instances of the EntityType

Note – See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

8.11.9.4 Other Roles

none.

8.11.10 Association: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration for
the corresponding EntityType.

8.11.10.1 Association Ends

Issue 13669 - add text

AssociationEnd: declares To: Attribute

Definition: represents the relationship between a SingleEntityType and the Attributes declared in the entity declaration for
the corresponding EntityType..

Multiplicity: 0..* unordered

Properties: composite
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 91

AssociationEnd: of-entity To: SingleEntityType

Definition: represents the relationship of an Attribute to the SingleEntityType for which it was originally declared.

Multiplicity: 1..1

8.11.11 Association: attribute-has-data-type

Definition: represents the relationship between an Attribute and the ParameterType that characterizes all values of the
Attribute.

Note – See 9.2.1 of ISO 10303-11:2004.

8.11.11.1 Association Ends

AssociationEnd: attribute-type To: ParameterType

Definition: represents the required data type for all values of that Attribute in all instances of the EntityType. The
attribute-type is required to be an InstantiableType unless either:

• isAbstract is True for the EntityType, in which case the attribute-type may be a GeneralizedType, or

• the EntityType is defined in an AlgorithmScope (instead of a Schema), in which case the attribute-type may be an
ActualType.

Note – See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: role To: Attribute

Definition: represents the relationship between the ParameterType and the roles (attributes of entities) that its admissible
values may play.

Note – See 9.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13672 - add text

8.11.12 Association: entity-has-attributes

Definition: represents the relationship between an EntityType and all of the Attributes that are associated with every
instance of the EntityType, including instances of any of its subtypes. That is, this association relates an EntityType to the
Attributes declared in the corresponding SingleEntityType and to all the Attributes declared in the SingleEntityTypes that
correspond to its supertypes.

Properties: derived
92 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.11.12.1 Association Ends

AssociationEnd: attributes To: Attribute

Definition: represents the relationship between an EntityType and the declared Attributes of that EntityType, including
those in the entity declaration and those inherited from supertypes.

Note – See 9.2 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: derived

Note – The derivation of this relationship is recursive, using e->subtype-of, beginning with e = self and adding the attributes of
e->declares->declares for each e.

AssociationEnd: owning-entity To: EntityType

Definition: the EntityTypes that have or inherit the Attribute, that is, the EntityType in which the Attribute is declared and
all subtypes of that EntityType.

Multiplicity: 1..* unordered

Properties: derived

Note – The derivation of this relationship begins with self->namespace (i.e., self->of-entity->declared-in) and recursively adds
all EntityTypes reached by supertype-of.

Issue 13673 - add text

8.11.13 Association: EntityType-has-Attribute

Definition: represents the relationship between an EntityType and the Attributes that are declared within the entity
declaration, that is, the attributes that are declared in the corresponding SingleEntityType.

Note – This is a derived association that refines the type-element-has-scope relationship for Attribute.

8.11.13.1 Supertypes

type-element-has-scope

8.11.13.2 Association Ends

AssociationEnd: local-attributes To: Attribute

Definition: the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntityType.

Subsets: NamedType:type-elements

Multiplicity: 0..* unordered
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 93

Properties: derived

Tagged Values

derivation = self->declares->declares

AssociationEnd: namespace To: EntityType

Definition: the nominal scope/namespace of the Attribute. It is included in the scopes of all subtypes of the EntityType.

Subsets: TypeElement:namespace

Multiplicity: 1..1

Properties: derived

Tagged Values

 derivation = self->of-entity->declared-in

8.11.14 Association: EntityType-has-UniqueRule

Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the values of
attributes of that EntityType.

8.11.14.1 Supertypes

type-element-has-scope

8.11.14.2 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the relationship of the UniqueRule to the EntityType whose Extent is the domain of values to which
it applies.

Multiplicity: 1..1

Issue 13669 - add text

AssociationEnd: unique-rules To: UniqueRule

Definition: represents the relationship between an EntityType and the local uniqueness rules that constrain the values of
attributes of that EntityType.

Note – See 9.2.2.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite
94 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.11.15 Association: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an INVERSE attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of the entity data type that models the Relationship from which the inverse attribute is derived.

8.11.15.1 Association Ends

AssociationEnd: explicit To: InvertibleAttribute

Definition: the explicit attribute (InvertibleAttribute) of the associated entity data type that models the Relationship from
which the inverse attribute is derived.

Note – The attribute-type of the InverseAttribute may be a subtype of the entity data type that defines the InvertibleAttribute.

Note – See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

Definition: represents the relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range
entity data type that models the same Relationship. While the inverse is conceptually unique, EXPRESS allows it to be
declared differently in different subtypes of the original range entity.

Note – See 9.2.1.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.16 Association: single-entity-declared-in-entity

Definition: represents the relationship between the EntityType and the SingleEntityType that is implicitly declared in the
entity_declaration for the EntityType.

8.11.16.1 Association Ends

AssociationEnd: declares To: SingleEntityType

Definition: the SingleEntityType that is declared in the declaration for the EntityType, i.e., the group of Attributes that is
named for the EntityType.

Multiplicity: 1..1

AssociationEnd: declared-in To: EntityType

Definition: represents the derivation of the SingleEntityType from the entity_declaration for the EntityType.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 95

8.12 Relationships

According to ISO 10303-11, a “distributive relationship” between entity data types is modeled by an attribute whose data
type is either an entity type or an aggregation type whose member type is an entity type. This section models the
“distributive relationship” concepts.

Note – The primary purpose of this subclause is to facilitate mappings to languages in which relationships, also called “associ-
ations” or “properties,” are first-class concepts from which the associated “attributes” are derived.

In EXPRESS, all relationships are directed. The entity type that is the “domain” of the relationship has an explicit
attribute – an InvertibleAttribute – that denotes the relationship; the entity type that is the “range” of the relationship may
have an inverse attribute that denotes the relationship, but EXPRESS always supports an implicit inverse attribute via the
UsedIn function (see 12.5.3).

Figure 14 shows these concepts, and their relationship to the Attribute concepts. They are described in detail below.

Note – In Figure 14, the «implicit» relationship entity-has-attributes represents the derived association entity-has-
attributes defined in 8.12.3.3, but restricted to InvertibleAttribute, which is a subclass of Attribute.

Figure 14 - Relationships

8.12.1 Class: DomainRole

Definition: a role representing the behavior of the entity instances that is designated the “domain” of the relationship.

+isAbstract : Boolean [1]

<<metaclass>>
EntityType

<<metaclass>>
InverseAttribute

+isUnique : Boolean [1]

<<metaclass>>
SizeConstra int

+bound : Integer [0..1]

<<metaclass>>
InvertibleAttribute

<<metaclass>>
DomainRole

+/id : ScopedId [0..1]

<<metaclass>>
RangeRole

+/id : ScopedId [1]

<<metaclass>>
Role

<<metaclass>>
Relationship

/InvertibleAttribute-creates-relationship

+/creates-relationship

1

+/based-on

1

RangeRole-in-Relationship

+range1

+in-relationship

1DomainRole-in-Relationship

+in-relationship

1

+domain 1

InvertibleAttribute-models-role

+models-role 1

+domain-view
1

/role-has-lower-bound
+/lower-bound

0..10..1

/role-has-upper-bound

+/upper-bound

0..10..1

/entity-plays-range-role

+/plays-range-role

0..*+/range

1

/entity-plays-domain-role

+/plays-domain-role

0..* +/domain

1

InverseAttribute-inverts-ExplicitAttribute

+explicit

1

+inverse

0..*

/entity-has-attributes
<<implicit>>

+/attributes 0..*

+/owning-entity 1..*

entity-used-in-attribute

+range-type1..*

+used-in0..*

InverseAttribute-models-role

+models-role1

+range-view0..1
96 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.12.1.1 Supertypes

Role

8.12.1.2 Attributes

Attribute: id To: ScopedId

Definition: Represents the "complete" identifier for the Role. The identifier for the DomainRole is derived from the
identifier for the InverseAttribute, when present, including the Identifier value and the associated EntityType identifier.
When there is no InverseAttribute, .id has no proper value, but the DomainRole may be identified by the pseudo-
identifier: UsedIn.<RangeRole.id>, where <RangeRole.id> is the identifier for the RangeRole in the Relationship.

Properties: derived.

Multiplicity: 0..1

TaggedValues

derivation = self->range-view->id

8.12.1.3 Associations

AssociationEnd: domain To: EntityType

via: entity-plays-domain-role

Definition: represents the (single) entity data type common to all instances that play the Domain Role. Derivation:
.domain = .in-relationship.range.domain-view.of-entity.

Properties: derived.

Multiplicity: 1..1

TaggedValues

derivation = self->in-relationship->range->domain-view->of-entity

AssociationEnd: in-relationship To: Relationship

via: DomainRole-in-Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

via: InverseAttribute-models-role

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain
role. The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 97

8.12.1.4 Other Roles

none.

8.12.2 Class: RangeRole

Definition: a role representing the behavior of the entity instances that is designated the “range” of the relationship.

8.12.2.1 Supertypes

Role

8.12.2.2 Attributes

Attribute: id To: ScopedId

Definition: Represents the “complete” identifier for the Role. The identifier for a RangeRole is derived from the identifier
for the ExplicitAttribute that creates the relationship, including the Identifier value and the associated EntityType
identifier.

Properties: derived.

Multiplicity: 1..1

TaggedValues

derivation = self->domain-view->id

8.12.2.3 Associations

AssociationEnd: domain-view To: InvertibleAttribute

via: InvertibleAttribute-models-role

Definition: represents the relationship between a RangeRole and the InvertibleAttribute of the domain/referencing entity
that models it.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship

via: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1

Issue 13900 - delete text

AssociationEnd: range To: EntityType

via: entity-plays-range-role
98 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Definition: represents the (single) entity data type common to all instances that play the Range Role. Derivation: .range =
domain-view.attribute-type.

Properties: derived.

Multiplicity: 1..1

TaggedValues

derivation = self->domain-view->attribute-type

8.12.2.4 Other Roles

none.

8.12.3 Class: Relationship

Definition: a “distributive relationship” between entity data types.

Every InvertibleAttribute creates a Relationship between two EntityTypes and creates two Roles -- one for each
participating EntityType. All relationships are directed. The InvertibleAttribute is an explicit attribute of the EntityType
that plays the DomainRole; the range-type of the InvertibleAttribute is the EntityType that plays the RangeRole.

The range-type may have an inverse attribute denoting the DomainRole; or the DomainRole may be referred to by the
UsedIn function (see 12.5.3).

8.12.3.1 Supertypes

none.

8.12.3.2 Attributes

none.

8.12.3.3 Associations

AssociationEnd: based-on To: InvertibleAttribute

via: InvertibleAttribute-creates-relationship

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1

AssociationEnd: domain To: DomainRole

via: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 99

AssociationEnd: range To: RangeRole

via: RangeRole-in-Relationship

Definition: represents the relationship between the Relationship and its “range” role.

Multiplicity: 1..1

8.12.3.4 Other Roles

none.

8.12.4 Class: Role

Definition: a “slot” in a relationship, denoting the behavior of one of the Instances involved in the relationship. Since all
relationships in EXPRESS are directed, the two slots are nominally designated domain and range.

Properties: abstract

8.12.4.1 Supertypes

none.

8.12.4.2 Attributes

none.

8.12.4.3 Associations

Issue 13676 - revise text, delete text

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents a lower-bound on the number of Relationship instances in which a given EntityInstance can play
this Role. An explicit zero ("0") value may be considered to represent no lower-bound constraint; and the lower-bound
relationship need not appear. A lower-bound expression that may evaluate to zero shall always be represented by a lower-
bound relationship.

Note – The lower-bound on the Domain role is specified by the Explicit Attribute that models the RangeRole. The lower-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a Domain-
Rule on the “range” EntityType involving UsedIn(SELF,).

Note – Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, a given pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs. See 9.2.1.3 of ISO 10303-11:2004.

Properties: derived.

Multiplicity: 0..1

TaggedValues

derivation =
100 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents an upper-bound on the number of Relationship instances in which a given EntityInstance can play
the Role. An explicit indeterminate value ("?") is considered to represent no upper-bound constraint, and shall not be
represented by an upper-bound relationship. (An upper-bound expression that may evaluate to "?" shall be represented by
an upper-bound relationship.)

Issue 13676 - make this paragraph normative, delete text

Note – The upper-bound on the Domain role is specified by the Explicit Attribute that models the RangeRole. The upper-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a Domain-
Rule on the “range” EntityType involving UsedIn(SELF,).

Note – Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, a given pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs. See 9.2.1.3 of ISO 10303-11:2004.

Properties: derived.

Multiplicity: 0..1

TaggedValues

derivation =

8.12.4.4 Other Roles

From: Redeclaration as refined-role

8.12.5 Association: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

8.12.5.1 Association Ends

AssociationEnd: domain To: DomainRole

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined

Multiplicity: 1..1

8.12.6 Association: entity-plays-domain-role

Issue 13677 - Delete text

Definition: represents the relationship between an entity type and the domain roles that its instances play.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 101

Properties: derived

8.11.6.1 Dependencies

Dependency on Association: entity-has-attributes

Stereotypes: derivedFrom

Derivation: An EntityType plays a DomainRole by having the InvertibleAttribute that creates the Relationship and
denotes the RangeRole. This relationship may be inherited, and InverseAttributes may distinguish "subtypes" of the
DomainRole.

8.12.6.1 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the (single) entity data type common to all instances that play the Domain Role.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->in-relationship->range->domain-view->of-entity

AssociationEnd: plays-domain-role To: DomainRole

Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An EntityInstance is
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an
AggregationType..

Multiplicity: 0..* unordered

Properties: derived

TaggedValues

derivation = ((self->attributes) * extent(InvertibleAttribute))->
creates-relationship->domain

8.12.7 Association: entity-plays-range-role

Issue 13677 - delete text

Definition: represents the relationship between an entity type and the range roles that its instances play.

Properties: derived
102 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.11.7.1 Dependencies

Dependency on Association: entity-used-in-attribute

Stereotypes: derivedFrom

Derivation: an EntityType plays a RangeRole by being the range-type of the InvertibleAttribute that models the
Relationship.

8.12.7.1 Association Ends

Issue 13675 - replace text

AssociationEnd: plays-range-role To: RangeRole

Definition: represents the relationship between an entity type and the range roles that its instances play.

For each occurrence of the EntityType as the attribute-type, or a member of the attribute-type, of an explicit attribute
(InvertibleAttribute), the EntityType plays the corresponding RangeRole (.models-role).

Multiplicity: 0..* unordered

Properties: derived.

Note – The derivation of plays-range-role is complex. For each InvertibleAttribute that is an instance of self->used-in,
a given EntityType plays the RangeRole that is InvertibleAttribute::models-role.

AssociationEnd: range To: EntityType

Definition: represents the (single) entity data type common to all instances that play the Range Role. Derivation: .range =
.domain-view.attribute-type.

Multiplicity: 1..1

Properties: derived.

TaggedValues

derivation = self->domain-view->attribute-type

8.12.8 Association: entity-used-in-attribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

8.12.8.1 Association Ends

AssociationEnd: range-type To: EntityType

Definition: models the relationship between the InvertibleAttribute and the EntityTypes that are, or are members of, its
attribute-type. These EntityTypes are the “range” of the Relationship with the “referencing” entity that is created by the
InvertibleAttribute.

Multiplicity: 1..* unordered
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 103

AssociationEnd: used-in To: InvertibleAttribute

Definition: represents the relationship between the EntityType and the InvertibleAttributes (of other EntityTypes) that
establish relationships to it.

Multiplicity: 0..* unordered

8.12.9 Association: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it refers to.

8.12.9.1 Association Ends

AssociationEnd: models-role To: DomainRole

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models-
role.in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain
role. The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1

8.12.10 Association: InvertibleAttribute-creates-relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between EntityTypes that it
models.

8.12.10.1 Association Ends

AssociationEnd: based-on To: InvertibleAttribute

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1

AssociationEnd: creates-relationship To: Relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between EntityTypes that it
models.

Multiplicity: 1..1

8.12.11 Association: InvertibleAttribute-models-role

Definition: represents the relationship between an Invertible Attribute and the RangeRole it defines.
104 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.12.11.1 Association Ends

AssociationEnd: domain-view To: InvertibleAttribute

Definition: represents the relationship between a RangeRole and the InvertibleAttribute of the domain/referencing entity
that models it.

Multiplicity: 1..1

AssociationEnd: models-role To: RangeRole

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note – An explicit attribute defines a RangeRole (and thus a Relationship) if and only if it is an InvertibleAttribute.

Multiplicity: 0..1

8.12.12 Association: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

8.12.12.1 Association Ends

AssociationEnd: in-relationship To: Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1

AssociationEnd: range To: RangeRole

Definition: represents the relationship between the Relationship and its “range” role.

Multiplicity: 1..1

8.13 Redeclarations

Redeclaration is an EXPRESS mechanism that permits a subtype to “redeclare” an inherited attribute in order to constrain
its possible values in instances of the subtype. Figure 15 shows the model of this concept, and this section defines the
related metamodel elements.

Note – The “implicit” association entity-plays-role in Figure 15 is used to represent the two associations entity-plays-domain-
role (see 8.12.6) and entity-plays-range-role (see 8.12.7) without further cluttering the diagram. It is not a part of the model.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 105

Figure 15 - Redeclarations

8.13.1 Class: Redeclaration

Definition: represents the “redeclaration” of an EXPRESS attribute in a subtype of the entity data type for which that
attribute was originally declared. A redeclaration represents a refinement of the original attribute concept in the subtype,
and it states corresponding constraints on the possible values of that attribute in the subtype. It may also rename the
attribute for the subtype. When the attribute-type of the original-attribute is an EntityType, the Redeclaration may be seen
as refining the RangeRole represented by the original-attribute for the domain restricted to the subtype.

Note – See 9.2.3.4 of ISO 10303-11:2004.

8.13.1.1 Supertypes

none.

8.13.1.2 Attributes

Attribute: alias To: ScopedId

Definition: an additional EXPRESS identifier that may be used to identify the original attribute in this subtype.

Note – See 9.2.2.2 of ISO 10303-11:2004.

Multiplicity: 0..1

<<metaclass>>
Redeclaration

+position : Integer [1]
+isMandatory : Boolean [0..1]
+alias : ScopedId [0..1]

+text : ExpressText [0..1]

<<metaclass>>
Expression

<<metaclass>>
Attribute

+isAbstract : Boolean [1]
+position : Integer [1]+isAbstract : Boolean [1]

<<metaclass>>
EntityType

<<metaclass>>
SizeConstra int

+bound : Integer [0..1]

<<metaclass>>
ParameterType

<<metaclass>>
Role

scope-of-redeclaration-is-EntityType

+scope1

+redeclarations

0..*

redeclaration-refines-attribute

+original-attribute1

0..*

/entity-has-attributes
+/owning-entity
1..*

+/attributes

0..*

/redeclaration-refines-role

+/refined-role

0..1

0..*

/redeclaration-specifies-lower-bound

+/lower-bound 0..1

1

redeclaration-specifies-type

+restricted-type

1

0..*/redeclaration-specifies-upper-bound

+/upper-bound0..1

1

redeclaration-refines-redeclaration

+refines

0..1

0..*

attribute-has-data-type

+attribute-type 1

+role

0..*

/role-has-upper-bound

+/upper-bound 0..1

0..1

entity-is-subtype-of-entity

+subtype-of0..*0..*

redeclaration-specifies-derivation

+derivation0..1

0..*

/role-has-lower-bound

+/lower-bound0..1

0..1
106 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Attribute: isMandatory To: MOF::Boolean

Definition: True if the entity instance is required to have a value for this attribute in this subtype; False if it is permitted
to have no specified value. This attribute is only present if isOptional is True for the original attribute.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

Attribute: position To: MOF::Integer

Definition: Represents the position of the redeclaration in the sequence of attribute declarations in the entity declaration.
By convention these follow all the new attribute declarations of each kind.

Multiplicity: 1..1

8.13.1.3 Associations

AssociationEnd: derivation To: Expression

Definition: When specified, represents a Redeclaration that redeclares an ExplicitAttribute to be “derived” in the .scope
subtype. That is, it declares an Expression that can be used to derive (or validate) the value of the redeclared Attribute in
this subtype.

Multiplicity: 0..1

Issue 13902 - delete text

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents a restriction on the minimum cardinality of the role that is stated by the Redeclaration. This is the
case when the Redeclaration redeclares the ParameterType to restrict the minimum size of the aggregate values.

Issue 13678 - add text

When the restricted-type is an AggregationType, the lower-bound SizeConstraint is the lower-bound of that
AggregationType.

Multiplicity: 0..1

Properties: derived.

Issue 13678 - delete text

TaggedValues

derivation =

AssociationEnd: original-attribute To: Attribute

Definition: identifies the original Attribute being redeclared by the Redeclaration. If the Redeclaration redeclares another
redeclared-attribute (see .refines), the .original-attribute is determined transitively. Every Redeclaration ultimately
constrains an original attribute in some supertype.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 107

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1

Issue 13680 - delete text

AssociationEnd: refined-role To: Role

Definition: represents the relationship between a Redeclaration and the Role represented by the .original-attribute.

If the Redeclaration redeclares an InvertibleAttribute, it refines the corresponding RangeRole by restricting the allowable
participants in the RangeRole for the domain that is the .scope of the Redeclaration. If the Redeclaration redeclares an
InverseAttribute, it refines the corresponding DomainRole by restricting the allowable participants in the DomainRole for
the range that is the .scope of the Redeclaration.

Multiplicity: 0..1

Properties: derived.

TaggedValues

derivation =

AssociationEnd: refines To: Redeclaration

Definition: This relationship is present only when a Redeclaration is stated as a refinement of an attribute of a subtype
that itself redeclares that attribute. .refines refers to the Redeclaration that represents that redeclared attribute.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: restricted-type To: ParameterType

Definition: when specified, specifies the subtype or specialization of the data type of the original attribute to which all
values of the original attribute in instances of the "scope" EntityType must conform.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: scope To: EntityType

via: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration
applies. Values for the original attribute are constrained by the Redeclaration for instances of the .scope EntityType and
all of its subtypes. The .scope EntityType is the namespace of the .alias identifier, if present.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1
108 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13902 - delete text

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents a restriction on the maximum cardinality of the role that is stated by the Redeclaration. This is the
case when the Redeclaration redeclares the ParameterType to restrict the maximum size of the aggregate values.

Issue 13678 - add text, delete text

When the restricted-type is an AggregationType, the upper-bound SizeConstraint is the upper-bound of that
AggregationType.

Multiplicity: 0..1

Properties: derived.

TaggedValues

Derivation =

8.13.1.4 Other Roles

From: Redeclaration as refines

8.13.2 Association: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration
applies.

8.13.2.1 Association Ends

AssociationEnd: redeclarations To: Redeclaration

Definition: represents the relationship between the EntityType and any attribute Redeclarations that appear in its
declaration.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: scope To: EntityType

Definition: the entity data type to which the redeclaration applies.

Values for the original attribute are constrained by the Redeclaration for instances of the .scope EntityType and all of its
subtypes. The .scope EntityType is the namespace of the .alias identifier, if present.

Note – See 9.2.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 109

8.14 Expressions and Instances

This section of the Core model introduces the basic concepts for Expression and Instance, which are expanded in other
packages. They are provided here so that implementations need not support the Expressions and Instances Packages in
order to support all features of the Core model.

For Expressions, the Core package contains only the class Expression. The optional .text attribute allows an
Expression to be represented as verbatim EXPRESS language text. The Expressions package (see clause 12) models the
subclasses of Expression that represent the semantic interpretation of the parsed language text. Support for the
Expressions Package is a compliance point (see 4.4.4).

The class Instance is abstract. The Core package contains the Instance concept solely in order to model the semantics of
Expressions. The Instances Package (see clause 9) models the detailed expansion of the Instance concept, including all of
the instantiable subclasses. Support for the Instances package is a compliance point (see 4.4.1). Implementations that do
not support the Instances package do not, in general, need to provide any implementation of the Instances class, and may
provide any simple implementation where needed.

Figure 16 shows the base Expression and Instance concepts, and they are described below.

Figure 16 - Basic Expression Concepts

8.14.1 Class: Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the Instances denoted by the model elements (e.g., Variables, Attributes, etc.) that appear
in the Expression. This context is explicit in the model element that contains the Expression being evaluated, but it
implicitly includes the Population under study. The Instance produced by the same Expression may vary from context to
context. The Instance produced is said to be the value, or the evaluation, of the Expression.

Note – In general, Expressions are treated as reusable. It is recommended, however, that, except for literals and local varia-
bles, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable, specifi-
cally those that are the definitions of Rules.

+text : ExpressText [0..1]

<<metaclass>>
Expression

<<metaclass>>
Instance

<<metaclass>>
DataType

<<metaclass>>
Scope

expression-evaluates-to-Instance

+evaluation

0..1

0..*

Expression-has-DataType

+data-type

0..10..*

Instance-of-type

+of-type1..*

+instances0..*

expression-text-has-context

+interpretation-context 0..1

0..*
110 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.14.1.1 Supertypes

none.

8.14.1.2 Attributes

Attribute: text To: ExpressText

Definition: represents the actual EXPRESS language text denoting the Expression. The text is required if the Expressions
Package is not implemented. It is optional in most cases when the Expressions Package is implemented. Certain forms of
Expression (in the Expressions Package) specialize the text attribute.

Multiplicity: 0..1

8.14.1.3 Associations

AssociationEnd: data-type To: DataType

Definition: represents the DataType of the evaluation of the Expression. While the result of an Expression always has a
DataType, it is not always possible to determine at model-analysis time what that data type is. And in many cases, even
when it is known, it is not necessary to specify it.

Multiplicity: 0..1

AssociationEnd: evaluation To: Instance

Definition: represents the Instance (value) that results from evaluating the Expression. Since the same Expression can be
evaluated in more than one “situation,” i.e., different values for the operands, the result in each situation may be a
different Instance. The evaluation is included in a model, however, only when it is “constant” and can be computed at
“compile time.”

Multiplicity: 0..1

AssociationEnd: interpretation-context To: Scope

Definition: An Expression is always evaluated in a context which determines the assignment of specific instances of
model elements to symbols (e.g.,Variables, Attributes, etc.). When the Expression is represented by text only, this
relationship is usually required, but in many cases it may be implicit. When the Expression is represented by the detailed
model elements in the Expressions Package, the interpretation of the Text has been done, and this association is purely
documentary and not required. Certain permissible EXPRESS constructs, however, only permit interpretation of certain
keyword symbols to Operations in the presence of actual operand Instances.

Multiplicity: 0..1

8.14.1.4 Other Roles

From: ArrayBound as bound-expression

From: DerivedAttribute as derivation

From: DomainConstraint as asserts

From: Redeclaration as derivation

From: Algorithms::LocalVariable as initial-value
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 111

From: Expressions::ActualParameter as actual-value

From: Expressions::AggregateIndex as index-value

From: Expressions::AttributeBinding as attribute-value

From: Expressions::BinaryIndex as first-bit

From: Expressions::BinaryIndex as last-bit

From: Expressions::BinaryOperation as right-operand

From: Expressions::BinaryOperation as left-operand

From: Expressions::Coercion as operand

From: Expressions::IndexOperation as base-value

From: Expressions::MemberBinding as member-value

From: Expressions::QueryExpression as aggregate-operand

From: Expressions::QueryExpression as select-condition

From: Expressions::RepeatCount as derivation

From: Expressions::Selector as entity-instance

From: Expressions::StringIndex as first-code

From: Expressions::StringIndex as last-code

From: Expressions::UnaryOperation as unary-operand

From: Instances::Constant as value-expression

From: Rules::NamedRule as asserts-expression

From: Rules::SubtypeConstraint as equivalent-rule

From: Statements::Assignment as assigned-value

From: Statements::CaseAction as label-value

From: Statements::CaseStatement as selection-expression

From: Statements::ControlVariable as bound-value

From: Statements::ControlVariable as increment

From: Statements::ControlVariable as initial-value

From: Statements::IfStatement as if-condition

From: Statements::MemberCell as index-value

From: Statements::RepeatStatement as while-expression

From: Statements::RepeatStatement as until-expression

From: Statements::ReturnStatement as return-value
112 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.14.1.5 Rules

Constraint ()

An Expression can only exist to fulfill a role.

8.14.2 Class: Instance

Definition: represents any real or conceptual object, information unit or data item.

Properties: abstract

8.14.2.1 Supertypes

none.

8.14.2.2 Attributes

none.

8.14.2.3 Associations

AssociationEnd: appears-in-population To: Instances::Population

via: Instances::instance-appears-in-population

Definition: represents the relationship between an Instance and the Populations in which it appears.

Multiplicity: 0..* unordered

Issue 13679 - add text

AssociationEnd: of-type To: DataType

Definition: the DataType(s) that are instantiated in the Instance. Every modeled Instance instantiates at least one modeled
DataType; an Instance may instantiate more than one.

A modeled Instance should be modeled as an Instance of its “declared type.” It may, but need not, be modeled as an
Instance of all the supertypes or SelectTypes that it instantiates.

Multiplicity: 1..* unordered.

8.14.2.4 Other Roles

From: Expression as evaluation

From: Instances::ArrayMember as member-value

From: Instances::ListMember as member-value

From: Instances::BagMember as member-value

From: Instances::SETValue as member-value

From: Instances::AttributeValue as actual-value
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 113

From: Instances::Constant as actual-value

8.15 Instance Package: BuiltInTypes

This Package is a part of the Core Package. It contains required instances of subclasses of SimpleType. All of the other
instances of SimpleType appear in a Schema as a SimpleType with a constraint or a precision.

Note – The purpose of making this a Package is to separate the class model from the “ground facts.”

Issue 13917 - Replace figure

Figure 17 - Instance Model for Built-In Types

8.15.1 Dependencies

Dependency on Class: Core::SimpleType

Stereotypes: instantiates

This Package provides base individuals that are always instances of SimpleType (that is, instances of its subtypes).

8.15.2 Instance: BINARY

Type: Core::BinaryType

Definition: represents the EXPRESS type BINARY without length constraints.

Note – The class BinaryType also includes instances of EXPRESS BINARY that have declared length constraints.
114 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.15.3 Instance: BOOLEAN

Type: Core::LogicType

Definition: represents the EXPRESS type BOOLEAN

Note – BOOLEAN and LOGICAL are the only instances of LogicType.

8.15.4 Instance: INTEGER

Type: Core::NumericType

Definition: represents the EXPRESS type INTEGER

Note – INTEGER and NUMBER are the only instances of NumericType that are not RealTypes.

8.15.5 Instance: LOGICAL

Type: Core::LogicType

Definition: represents the EXPRESS type LOGICAL

Note – BOOLEAN and LOGICAL are the only instances of LogicType.

8.15.6 Instance: NUMBER

Type: Core::NumericType

Definition: represents the EXPRESS type NUMBER

Note – INTEGER and NUMBER are the only instances of NumericType that are not RealTypes.

8.15.7 Instance: REAL

Type: Core::RealType

Definition: represents the EXPRESS type REAL without a precision specification.

Note – The class RealType also includes instances of EXPRESS REAL that have precision specifications.

8.15.8 Instance: ROLE

Type: Core::StringType

Definition: ROLE is the StringType whose instances are the names of Attributes, i.e. the result of RolesOf and the formal
second operand of UsedIn. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/
from STRING where necessary.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 115

Note – See Clause 15.20 of ISO 10303-11:2004.

8.15.9 Instance: STRING

Type: Core::StringType

Definition: represents the EXPRESS type STRING without constraints

Note – The class StringType also includes TYPE, ROLE and instances of EXPRESS STRING that have declared length con-
straints.

8.15.10 Instance: TYPE

Type: Core::StringType

Definition: TYPE is the StringType whose instances are the names of DataTypes (TypeNames), i.e., the result of TypeOf
and related operands. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/
from STRING where necessary.

Note – See Clause 15.25 of ISO 10303-11:2004.

Issue 13679 - add text

8.15.11 Association: instance-of-type

Definition: represents the abstract relationship between an Instance (a value) and the DataTypes that it instantiates.

8.15.11.1 Association Ends

AssociationEnd: instances To: Instance

Definition: the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless
they appear directly in a Schema.

Note – For most DataTypes, navigating the association in this direction is not a required feature of the model.

Multiplicity: 0..* unordered.

AssociationEnd: of-type To: DataType

Definition: the DataType(s) that are instantiated in the Instance. Every modeled Instance instantiates at least one modeled
DataType; an Instance may instantiate more than one.

Multiplicity: 1..* unordered.
116 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

8.16 Instance Package: GenericTypes

This Package is a part of the Core Package. It contains the required instances of the class GenericType. There are no
other instances of the class GenericType.

Note – The purpose of making this a Package is to separate the class model from the “ground facts.”

Issue 13917 - Replace figure

Figure 18 - Instance Model for Generic Types

8.16.1 Dependencies

Dependency on Class: Core::GenericType

Stereotypes: instantiates

This Package provides base individuals that are always the only instances of class GenericType.

8.16.2 Instance: GENERIC

Type: Core::GenericType

Definition: represents the EXPRESS generalized type GENERIC. Every data type is a specialization of the GenericType
GENERIC, and every Instance is an Instance of GENERIC.

Note – See 9.5.3.2 of ISO 10303-11:2004.

8.16.3 Instance: GENERIC_ENTITY

Type: Core::GenericType
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 117

Definition: represents the EXPRESS generalized type GENERIC_ENTITY. Every entity data type is a specialization of
GENERIC_ENTITY. Every EntityInstance is an instance of GENERIC_ENTITY and every instance of
GENERIC_ENTITY is an EntityInstance.

Note – See 9.5.3.3 of ISO 10303-11:2004.
118 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9 Package : Instances

The Instances Package contains all of the Instance concepts that go with the Type concepts in the Core Package.

The purpose of the Instances Package is to provide a model representation for specific Instances that are explicitly
referred to in a Schema. A tool that supports the Expressions Package may also use Instances to represent the values of
expressions that can be statically evaluated.

Note – It is possible to represent an actual Population as an instance of this package, but such a representation is “unexpected.”
In MOF terminology, the EXPRESS metamodel defined in this specification is an M2 model. An EXPRESS Schema and its
contents constitute an M1 population that conforms to this metamodel. A Population (in the EXPRESS sense) should be rep-
resented as an M0 population that conforms to the M1 model of the governing-schema. Representing that Population as an
instance of this package would make it an M1 population that carries direct M1 links to the M1 objects representing the model
elements of the EXPRESS Schema. While such a representation is (accidentally) enabled by this Package, that is not the pur-
pose of this package, and it is not to be considered a required part of any compliance point.

9.1 Dependencies

Dependency on Package: Core

Stereotypes: import

The Instances Package depends on the Core Package for the InstantiableType concepts that are the data types of the
individuals (Instances).

9.2 Overview of Instances

Figure 19 shows the overall model of Instances of EXPRESS data types. Instances are divided into TypedInstances,
ConcreteValues, and two special categories – PartialEntityValue and Indeterminate.

TypedInstances represent instances of NamedTypes. There are three subcategories – EntityInstances, SpecializedValues
and EnumerationItems. TypedInstances are the instances that can be values of SelectTypes. Each of the subcategories
corresponds to one of the other subtypes of NamedType.

ConcreteValues are Instances that can be the fundamental values of SpecializedValues – the values of
SpecializationTypes. There are three subcategories – SimpleValues, AggregateValues and EnumerationItems.
SimpleValues correspond to the SimpleTypes. AggregateValues correspond to the ConcreteAggregationTypes.
EnumerationItems correspond to EnumerationTypes, and because EnumerationTypes are NamedTypes, EnumerationItems
are also TypedInstances.

Indeterminate is the class that corresponds to the EXPRESS constant "?", which can be considered to be an instance of all
EXPRESS data types, or of none of them.

PartialEntityValues only arise as the results of Expressions. They are described in detail in 9.5, which deals with values
of EntityTypes.

This section defines the Instance concepts associated with EXPRESS defined data types — Select types, Enumeration
types, and Specializations — in detail. SimpleValues, AggregateValues, values of EntityTypes are described in
subsequent sections.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 119

While the domains of EXPRESS data types are often unbounded, only those Instances that actually occur in, or as a result
of an Expression in, a Schema need to be materialized in a metamodel population that represents the Schema. Similarly,
in a Population that is realized as an instance of this package, only the Instances actually occurring in that Population
need to be represented.

Issue 13679 - replace figure

Figure 19 - Overview of Instances

9.2.1 Class Core::Instance

Definition: represents any real or conceptual object, information unit or data item.

Properties: abstract

Note – The Instance concept, and all its properties, is defined in the Core Package, so that it may be referenced in other Pack-
ages without creating interdependencies. There is no real requirement for support of Instances in the Core Package. This
entry serves to define the Instance concept in the context of the Instances Package, and to provide a link to the complete spec-
ification in 8.15.2.

9.2.2 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Properties: abstract

9.2.2.1 Supertypes

Core::Instance
120 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.2.2.2 Attributes

none.

9.2.2.3 Associations

none.

9.2.2.4 Other Roles

From: SpecializedValue as fundamental-value

9.2.3 Class: EnumerationItem

Definition: a ConcreteValue representing a named value of an EnumerationType. An EnumerationItem is also a
TypedInstance, because the corresponding EnumerationType has an Identifier. An EnumerationItem is also a
TypeElement, in that the scope of its identifier is the EnumerationType.

Note – See 8.4.1 of ISO 10303-11:2004.

Issue 13679 - add figure

Figure 20 - Enumeration Items
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 121

9.2.3.1 Supertypes

ConcreteValue , TypedInstance, Core::TypeElement

9.2.3.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Enumeration Item in the list of items in the type_declaration that defines the
EnumerationItem. That is, .position relates to the .declared-in EnumerationType. When the number of values of
.of-type (the types of which this EnumerationItem is a value) is exactly 1, the position defines an ordering on the
values of the EnumerationType.

Multiplicity: 1..1

9.2.3.3 Associations

Issue 13679 - add text

AssociationEnd: declared-in To: Core::EnumerationType

via: enumeration-declares-items

Subsets: Core::TypeElement.namespace

Definition: represents the relationship between an EnumerationItem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::EnumerationType

via: value-of-EnumerationType

subsets: Core::Instance:of-type

Definition: represents the relationship between an EnumerationItem and the EnumerationTypes of which it is a value.

Issue 13681 - delete text, add text

An EnumerationItem is a value of every EnumerationType that is related by extension to the type that declares it. This
relationship can be derived recursively from the sequence of .base relationships beginning with the .declared-
in EnumerationType, and from the sequence of .extension relationships of that EnumerationType.

With respect to a given “governing schema” and all of the SchemaElements it defines and interfaces, each declared
EnumerationItem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

(a) the EnumerationType self->declared-in;

(b) the EnumerationType that is the .base of that EnumerationType, if any, and recursively of all
 EnumerationTypes related by .base, and
122 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

(c) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b)
 above, and recursively of all EnumerationTypes related to them by .extension.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

Properties: derived.

TaggedValues

derivation = ".declared-in + .declared-in.base + .declared-in.extensions"

9.2.3.4 Other Roles

From Expressions::EnumItemRef as refers-to

9.2.3.5 Rules

Constraint (OCL)
exists(self->id);

Every EnumerationItem shall have an Identifier.

9.2.4 Class: Indeterminate

Stereotypes: Singleton

Definition: Represents the class containing only the “indeterminate” value (?), which represents “no value” or no
meaningful value. This value arises primarily as the evaluation of an Expression in which one of the operations “fails.”
Indeterminate is not clearly an instance of any data type, or of all data types.

Note – See 14.2 of ISO 10303-11:2004.

9.2.4.1 Supertypes

Core::Instance

9.2.4.2 Attributes

none.

9.2.4.3 Associations

none.

9.2.4.4 Other Roles

From Expressions::IndeterminateRef as refers-to
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 123

9.2.5 Class: SpecializedValue

Definition: a TypedInstance that is a value of a SpecializedType. Every SpecializedValue is represented by some
ConcreteValue, called its fundamental-value.

Issue 13679 - add figure

Figure 21 - Specialized Values

9.2.5.1 Supertypes

TypedInstance

9.2.5.2 Attributes

none.

Issue 13679 - add text

9.2.5.3 Associations

AssociationEnd: fundamental-value To: ConcreteValue

Definition: represents the relationship between a SpecializedInstance and the “fundamental” ConcreteValue that is used to
represent that Instance.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SpecializedType

subsets: Core::Instance:of-type

Definition: represents the relationship between a SpecializedValue and its data type.

Multiplicity: 1..1
124 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.2.5.4 Other Roles

none.

9.2.6 Class: TypedInstance

Definition: an abstract classifier, a subtype of Instance comprising those Instances that are instances of a NamedType.
Only a TypedInstance can instantiate a SelectType.

Properties: abstract

Issue 13679 - add figure

Figure 22 - TypedInstances

9.2.6.1 Supertypes

Core::Instance

9.2.6.2 Attributes

none.

9.2.6.3 Associations

Issue 13679 - add text

AssociationEnd: satisfies-type To: Core::SelectType

via: value-satisfies-SelectType

subsets: Core::Instance:of-type

Definition: represents the relationship between a TaggedInstance and the SelectTypes of which it is an allowable instance.

Multiplicity: 0..* unordered
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 125

9.2.6.4 Other Roles

none.

9.2.7 Association: enumeration-declares-items

Definition: represents the relationship between an EnumerationItem and the EnumerationType whose declaration defines
the item.

This can be different from value-of-EnumerationType (see below) only when the EnumerationType is EXTENSIBLE, or
is itself the extension of another EnumerationType.

9.2.7.1 Supertypes

Core::type-element-has-scope

9.2.7.2 Association Ends

Issue 13669 - add text

AssociationEnd: declared-in To: Core::EnumerationType

Definition: represents the relationship between an EnumerationItem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1

AssociationEnd: declared-items To: EnumerationItem

Definition: represents the relationship of an EnumerationType to the EnumerationItems that are declared in its
type_declaration. For extended enumeration types, this is distinct from the .values relationship, which captures all of the
valid values of the type.

Note – See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

9.2.8 Association: value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the EnumerationItems that are valid values of the
type.

Properties: derived
126 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.2.8.1 Association Ends

Issue 13681 - add text, delete text

AssociationEnd: of-type To: Core::EnumerationType

Definition: represents the relationship between an EnumerationItem and the EnumerationTypes of which it is a value.

An EnumerationItem is a value of every EnumerationType that is related by extension to the type that declares it. This
relationship can be derived recursively from the sequence of .base relationships beginning with the .declared-in
EnumerationType, and from the sequence of .extension relationships of that EnumerationType.

With respect to a given “governing schema” and all of the SchemaElements it defines and interfaces, each declared
EnumerationItem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

(a) the EnumerationType self->declared-in;

(b) the EnumerationType that is the .base of that EnumerationType, if any, and recursively of all
 EnumerationTypes related by .base, and

(c) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b)
 above, and recursively of all EnumerationTypes related to them by .extension.

See 8.4.1 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

Properties: derived.

TaggedValues

derivation =

The mechanism for derivation of the values of .of-type requires a procedure/function.

AssociationEnd: values To: EnumerationItem

Definition: represents the relationship between an EnumerationType and the EnumerationItems that are valid values of the
type. An EnumerationItem is a value of every EnumerationType that is related by extension to the type that declares it.
This relationship can be derived recursively as the union of the values of the .declared-items attribute for the
EnumerationType, for each EnumerationType in the sequence of .base relationships from the EnumerationType, and from
all the extensions of the EnumerationType.

Note – See clause 8.4.1 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: derived.

TaggedValues

derivation =

The mechanism for derivation of the values of .values requires a procedure/function.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 127

9.3 Simple Values

Issue 13918 - Revise text

This section specifies the model of SimpleValues – Instances that correspond to the simple data types defined in the
EXPRESS language: BINARY, BOOLEAN, LOGICAL, INTEGER, NUMBER, REAL, STRING. The model is shown
in Figure 23.

It also includes two specialized classes of STRING value that have specific syntax requirements in the EXPRESS
language: TypeName and RoleName. There are no EXPRESS data types for these, but certain values in Expressions are
required to be instances of these classes.

Issue 13683 - add text

There are exactly three distinct LogicalValues – FALSE, TRUE, and UNKNOWN. These are explicitly modeled as
individual objects in the NamedValues package.

Issue 13683 - replace figure

Figure 23 - Simple Values

9.3.1 Class: BinaryValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

128 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.3.1.1 Supertypes

SimpleValue

9.3.1.2 Attributes

none.

Issue 13682 - replace text

9.3.1.3 Associations

AssociationEnd: of-type To: Core::BinaryType

subsets: Core::Instance:of-type

Definition: the BinaryType(s) that are instantiated in the BinaryValue.

Multiplicity: 1..* unordered.

9.3.1.4 Other Roles

none.

9.3.2 Class: BooleanValue

Definition: a SimpleValue, a value of the EXPRESS data type BOOLEAN: TRUE, FALSE

9.3.2.1 Supertypes

LogicalValue

9.3.2.2 Attributes

none.

9.3.2.3 Associations

none.

9.3.2.4 Other Roles

none.

Issue 13683 - add text

9.3.2.5 Rules

Constraint
(self == NamedValues::TRUE) or (self == NamedValues::FALSE);

Every BooleanValue must be either TRUE or FALSE.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 129

9.3.3 Class: IntegerValue

Definition: a SimpleValue, a value of the EXPRESS data type INTEGER: any mathematical integer value.

9.3.3.1 Supertypes

RealValue

9.3.3.2 Attributes

none.

9.3.3.3 Associations

none.

9.3.3.4 Other Roles

none.

9.3.4 Class: LogicalValue

Definition: a SimpleValue, a value of the EXPRESS data type LOGICAL: TRUE, UNKNOWN, FALSE.

9.3.4.1 Supertypes

SimpleValue

9.3.4.2 Attributes

none.

Issue 13682 - replace text

9.3.4.3 Associations

AssociationEnd: of-type To: Core::LogicType

subsets: Core::Instance:of-type

Definition: the LogicType(s) that are instantiated in the LogicalValue.

Note – The of-type relationships of the LogicalValues are explicitly modeled in the NamedValues Package.

Multiplicity: 1..* unordered.

9.3.4.4 Other Roles

none.
130 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13683 - add text

9.3.4.5 Rules

Constraint

(self == NamedValues::TRUE) or (self == NamedValues::FALSE)
or (self == NamedValues::UNKNOWN);

Every LogicalValue must be one of: TRUE or FALSE or UNKNOWN.

9.3.5 Class: NumberValue

Definition: a SimpleValue, a value of the EXPRESS data type NUMBER: any numeric value with its mathematical
interpretation.

9.3.5.1 Supertypes

SimpleValue

9.3.5.2 Attributes

none.

Issue 13682 - replace text

9.3.5.3 Associations

AssociationEnd: of-type To: Core::NumericType

subsets: Core::Instance:of-type

Definition: the NumericType(s) that are instantiated in the NumberValue.

Multiplicity: 1..* unordered.

9.3.5.4 Other Roles

none.

9.3.6 Class: RealValue

Definition: a SimpleValue, a value of the EXPRESS data type REAL: supposedly a mathematical “real” value, but
properly a computational fixed or floating-point value.

9.3.6.1 Supertypes

NumberValue

9.3.6.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 131

9.3.6.3 Associations

none.

9.3.6.4 Other Roles

none.

9.3.7 Class: RoleName

Definition: A RoleName is a reference to an Attribute that has the form of a StringValue. It is an instance of StringType
ROLE. RoleNames are produced as the result-type of the UnaryOperator RolesOf, and used as the formal parameter type
for UsedIn. They have reserved syntax and reserved interpretation.

Note – The result of RolesOf is only well-defined for Attributes of EntityTypes defined in the Schema. Some problems arise
with interfaced EntityTypes, renamed Attributes, and attributes of EntityTypes defined in AlgorithmScopes. See Clause 15.25
of ISO 10303-11:2004.

9.3.7.1 Supertypes

StringValue

9.3.7.2 Attributes

Attribute: represents To: Core::ScopedId

Definition: represents the relationship between the RoleName – a StringValue – and the (structured) TypeScopedId for the
Attribute, of which it is a representation.

Multiplicity: 1..1

9.3.7.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between a RoleName and the Attribute to which it refers.

Multiplicity: 1..1

9.3.7.4 Other Roles

none.

9.3.8 Class: SimpleValue

Definition: a ConcreteValue that consists of a single atomic information unit of a data type defined in the EXPRESS
language itself.

Properties: abstract

9.3.8.1 Supertypes

ConcreteValue
132 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.3.8.2 Attributes

Attribute: name To: MOF::String

Definition: the representation of the value, assumed to be a character string.

Multiplicity: 1..1

Issue 13682 - delete text, add text

9.3.8.3 Associations

AssociationEnd: of-type To: Core::SimpleType

Definition: represents the relationship between a SimpleValue and the data types of which it is an instance.

Multiplicity: 1..* unordered

Properties: abstract

none

9.3.8.4 Other Roles

From Expressions::Literal as refers-to

9.3.9 Class: StringValue

Definition: a SimpleValue, a value of the EXPRESS data type STRING: a sequence of character codes from the ISO
10646-1 Basic Multilanguage Plane.

9.3.9.1 Supertypes

SimpleValue

9.3.9.2 Attributes

none.

Issue 13682 - replace text

9.3.9.3 Associations

AssociationEnd: of-type To: Core::StringType

subsets: Core::Instance:of-type

Definition: the BinaryType(s) that are instantiated in the BinaryValue.

Multiplicity: 1..* unordered.

9.3.9.4 Other Roles

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 133

9.3.10 Class: TypeName

Definition: A TypeName is a reference to a DataType that has the form of a StringValue. It is an instance of StringType
TYPE. TypeNames are produced as the result-type of the UnaryOperator TypeOf. They have reserved syntax and reserved
interpretation.

Note – The result of TypeOf is only well-defined for NamedTypes defined in the Schema, although it can also produce
EXPRESS keywords. Some problems arise with interfaced NamedTypes, and NamedTypes defined in AlgorithmScopes. See
Clause 15.25 of ISO 10303-11:2004.

9.3.10.1 Supertypes

StringValue

9.3.10.2 Attributes

Attribute: represents To: Core::ScopedId

Definition: the (structured) ScopedId for the NamedType, of which the TypeName is a String representation.

Multiplicity: 1..1

9.3.10.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between a TypeName and the NamedType to which it refers.

Multiplicity: 1..1

9.3.10.4 Other Roles

none.

9.4 Aggregate Values

This section specifies the model of AggregateValues – Instances that correspond to EXPRESS aggregation types:
ARRAY, BAG, LIST, SET.
134 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13679 - replace figure

Figure 24 - Aggregate Values

9.4.1 Class: AggregateValue

Definition: a ConcreteValue that is composite, consisting of a collection of Instances from a given member DataType.

Properties: abstract

9.4.1.1 Supertypes

ConcreteValue

9.4.1.2 Attributes

none.

9.4.1.3 Associations

none.

9.4.1.4 Other Roles

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 135

9.4.2 Class: ArrayMember

Definition: Represents a single element of an ARRAYValue seen as a relation. It maps one index-value to one value of the
base data type (the “member” value). In the case of an ARRAY OF OPTIONAL, the member-value need not be present.

9.4.2.1 Supertypes

none.

9.4.2.2 Attributes

Attribute: index To: MOF::Integer

Definition: represents the index value to which the ArrayMember corresponds. In a given ARRAYValue, there is exactly
one ArrayMember that corresponds to each index value.

Multiplicity: 1..1

9.4.2.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: for a given ARRAYValue, represents the relationship between an index value (represented by an
ArrayMember) and the Instance value that is the image of that index value in the base type.

Multiplicity: 0..1

9.4.2.4 Other Roles

From: ARRAYValue as member-slot

9.4.3 Class: ARRAYValue

Definition: an AggregateValue, representing a value of an EXPRESS ARRAY data type: a set of pairs of the form (index
value, domain value) where the index value is selected from a finite range of integers, and each such value occurs in
exactly one pair, and the domain value is an instance of the member-type of the ARRAY.

9.4.3.1 Supertypes

AggregateValue

9.4.3.2 Attributes

none.

Issue 13669 - add text

9.4.3.3 Associations

AssociationEnd: member-slot To: ArrayMember

Definition: represents the relationship between an ArrayValue and each of its distinct slots for member values.
136 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..* unordered

Properties: composite

Issue 13679 - add text

AssociationEnd: of-type To: Core::ARRAYType

subsets: Core::Instance:of-type

Definition: represents the relationship between the ARRAYValue and the ARRAYTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.3.4 Other Roles

none.

9.4.4 Class: BagMember

Definition: Represents the relationship between a BAGValue and one value of the base data type (the “member” value). It
has a “count” attribute that represents the number of times the given member-value occurs in the BAGValue.

9.4.4.1 Supertypes

none.

9.4.4.2 Attributes

Attribute: count To: MOF::Integer

Definition: represents the relationship between a BagMember and the number of occurrences of the member-value that it
represents, i.e., the number of occurrences of that member-value in the bag.

Multiplicity: 1..1

9.4.4.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a BagMember and the Instance that it includes, one or more times, in the
BAGValue.

Multiplicity: 1..1

9.4.4.4 Other Roles

From: BAGValue as member-slot

9.4.5 Class: BAGValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 137

9.4.5.1 Supertypes

AggregateValue

9.4.5.2 Attributes

none.

Issue 13669 - add text

9.4.5.3 Associations

AssociationEnd: member-slot To: BagMember

Definition: represents the relationship between a BagValue and each of its distinct member values. Each distinct member
value is represented by a BagMember (slot) that counts its occurrences in the bag.

Multiplicity: 0..* unordered

Properties: composite

Issue 13679 - add text

AssociationEnd: of-type To: Core::BAGType

subsets: Core::Instance:of-type

Definition: represents the relationship between the BAGValue and the BAGTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.5.4 Other Roles

none.

9.4.6 Class: GenericAggregate

Definition: An AggregateValue representing the output of an AggregateInitializer. It is interpreted as a LIST value whose
member-type is GENERIC, but actually constrained to the common DataType of all the Expressions in the Initializer. It
can be coerced to an ARRAY, BAG, SET, or LIST value of the appropriate member-type, according to the context of its
use.

Note – Certain GenericAggregate values have a syntactic parse as a LIST of instances, but no clear semantics as to data type;
this is a defect in Part 11. See 12.9 of ISO 10303-11:2004.

9.4.6.1 Supertypes

LISTValue

9.4.6.2 Attributes

none.
138 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.4.6.3 Associations

none.

9.4.6.4 Other Roles

From Expressions::AggregateInitializer as result-value

9.4.7 Class: ListMember

Definition: represents one position in a ListValue and the instance of the member-type in that position.

9.4.7.1 Supertypes

none.

9.4.7.2 Attributes

Attribute: position To: MOF::Integer

Definition: the ordinal identifier for the position in the sequence.

Multiplicity: 1..1

9.4.7.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a position in a LISTValue (represented by a ListMember) and the Instance
that appears in that position.

Multiplicity: 1..1

9.4.7.4 Other Roles

Issue 13703 - delete text

From: LISTValue as member-slot

From: Expressions::MemberBinding as to-slot

9.4.8 Class: LISTValue

Definition: an AggregateValue, representing a value of an EXPRESS LIST data type: a sequence of instances of the
member-type of the LIST.

9.4.8.1 Supertypes

AggregateValue

9.4.8.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 139

Issue 13669 - add text

9.4.8.3 Associations

AssociationEnd: member-slot To: ListMember

Definition: represents the relationship between a ListValue and each of its distinct slots for member values. Each member-
slot represents a position in the ListValue.

Multiplicity: 0..* unordered

Properties: composite

Issue 13679 - add text

AssociationEnd: of-type To: Core::LISTType

subsets: Core::Instance:of-type

Definition: represents the relationship between the LISTValue and the LISTTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.8.4 Other Roles

none.

9.4.9 Class: SETValue

Definition: an AggregateValue representing a value of a SET data type.

Note – A SETValue can be viewed as a specialization of a BAGValue in which the “count” value for each BagMember is 1.
But technically, the conversion of the SETValue to the corresponding BAGValue is a coercion, because the behavior of the
resulting BAGValue is different. For example, the union of two SETValues is different from the union of the corresponding
BAGValues.

9.4.9.1 Supertypes

AggregateValue

9.4.9.2 Attributes

none.

Issue 13679 - add text

9.4.9.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a SETValue and the Instances that appear in it. Any given Instance can
take this role at most once for any given SetValue.
140 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 0..* unordered

AssociationEnd: of-type To: Core::SETType

subsets: Core::Instance:of-type

Definition: represents the relationship between the SETValue and the SETTypes of which it is an instance.

Multiplicity: 1..* unordered

9.4.9.4 Other Roles

none.

9.5 Entity Instances and Values

This section specifies the model of EntityInstances – instances that correspond to entity data types. It also specifies the
model of PartialEntityValues, which are aggregates of entity attribute values that are constructed and manipulated by
some Expressions.

Figure 25 depicts the model of entity instances. In general, entity instances represent real-world objects being described
by the EXPRESS schema. What is captured in the information base is an EntityValue which is a representation of the
current state of the real-world object. A SingleLeafInstance is an EntityInstance that has a model as a single EntityType.
A MultiLeafInstance is an EntityInstance that has a model as an allowable collection of overlapping subtypes of modeled
EntityTypes.

Issue 13679 - replace figures

Figure 25 - Entity Instances

Figure 26 depicts the model of PartialEntityValues. A PartialEntityValue is a collection of information – assignments of
values to named Attributes. Some PartialEntityValues are EntityValues, that is, they describe the state of an
EntityInstance.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 141

Figure 26 - PartialEntityValues

9.5.1 Class: AttributeValue

Definition: represents the assignment of a value to a given Attribute of the EntityType corresponding to the
SingleEntityValue.

9.5.1.1 Supertypes

none.

9.5.1.2 Attributes

none.

9.5.1.3 Associations

AssociationEnd: actual-value To: Core::Instance

Definition: represents the value assigned to the Attribute by the AttributeValue. If the Attribute is declared OPTIONAL,
it is possible that no value is assigned.

Multiplicity: 0..1

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the relationship between the AttributeValue assignment and the ExplicitAttribute to which it assigns
a value.

Multiplicity: 1..1
142 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

9.5.1.4 Other Roles

From: SingleEntityValue as properties

Multiplicity: 1..1 composite

9.5.2 Class: EntityInstance

Definition: a TaggedInstance that represents an EXPRESS entity instance – an instance of an entity data type, a view of
an object that incorporates those properties and relationships that are significant to some particular purpose(s). The
EntityInstance is distinct from the EntityValue – a collection of information about the object that represents those
properties and relationships.

Note – See clause 5 of ISO 10303-11:2004.

9.5.2.1 Supertypes

TypedInstance

9.5.2.2 Attributes

Attribute: id To: EntityName

Definition: represents a nominal identifier for an EntityInstance that distinguishes it from other EntityInstances. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note – See clause 5 of ISO 10303-11:2004.

Multiplicity: 1..1

Issue 13679 - replace text, add text

9.5.2.3 Associations

AssociationEnd: of-type To: Core::EntityType

via: instance-of-EntityType

subsets: Core::Instance:of-type

Definition: represents the relationship between an EntityInstance and each of the EntityType classifiers it satisfies.

Multiplicity: 1..* unordered

AssociationEnd: state To: EntityValue

via: entity-value-describes-state

Definition: represents the relationship between the EntityInstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 143

Multiplicity: 1..1

9.5.2.4 Other Roles

From: Rules::Extent as content

9.5.3 Datatype: EntityName

Definition: represents the unique underlying identity of an entity instance, expressed as some kind of identifier. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note – See clause 5 of ISO 10303-11:2004.

9.5.3.1 Supertypes

Realization type is . MOF::String

The realization relationship is modeled as a generalization.

9.5.3.2 Members

none.

9.5.4 Class: EntityValue

Definition: A PartialEntityValue that completely describes an Instance of some EntityType(s).

9.5.4.1 Supertypes

PartialEntityValue

9.5.4.2 Attributes

none.

9.5.4.3 Associations

AssociationEnd: corresponds to To: Core::EntityType

Definition: represents the EntityType(s) whose complete modeled description comprises a set of Attributes that is
contained in the EntityValue. The complete modeled description of an EntityType is a set of SingleEntityTypes, and the
EntityValue contains SingleEntityValues corresponding to each of them.

Multiplicity: 1..* unordered

AssociationEnd: describes To: EntityInstance

via: entity-value-describes-state

Definition: represents the EntityInstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular EntityInstance.
144 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 0..* unordered

9.5.4.4 Other Roles

none.

9.5.5 Class: MultiLeafInstance

Definition: A (complex) EntityInstance that is a valid instance of more than one EntityType and whose state includes
more SingleEntityValues than are declared for, or inherited by, any named EntityType defined in the governing Schema.
The subtype/supertype graph corresponding to such an EntityInstance has multiple “leaf” nodes.

Note – This concept appears in Part 11 only in 3.3.12, but it appears in ISO 10303-21:2002 as an “uncharacterized instance”
whose representation requires the “external mapping.”

9.5.5.1 Supertypes

EntityInstance

9.5.5.2 Attributes

none.

9.5.5.3 Associations

none.

9.5.5.4 Other Roles

none.

9.5.6 Class: PartialEntityValue

Definition: an Instance that is a collection of Attributes (of SingleEntityTypes) with associated values.

9.5.6.1 Supertypes

Core::Instance

9.5.6.2 Attributes

none.

Issue 13669 - add text

9.5.6.3 Associations

AssociationEnd: components To: SingleEntityValue

Definition: the SingleEntityValues that make up the PartialEntityValue.

Multiplicity: 1..* unordered
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 145

Properties: composite

AssociationEnd: of-type To: Core::PartialEntityType

Definition: represents the relationship between a PartialEntityValue and the PartialEntityType that identifies the collection
of SingleEntityTypes for which the PartialEntityValue provides values.

Multiplicity: 1..1

9.5.6.4 Other Roles

From: SingleEntityValue as equivalent

Multiplicity: 0..1

From: Expressions::PartialEntityConstructor as result-value

9.5.7 Class: SingleEntityValue

Definition: A collection of values for the explicit Attributes of exactly one SingleEntityType.

Note – A SingleEntityValue is not an Instance; it is a part of a PartialEntityValue. It cannot be the result of an Expression, nor
can it be the value of any EXPRESS concept. The result of a PartialEntityConstructor is the .equivalent PartialEntityValue.

9.5.7.1 Supertypes

none.

9.5.7.2 Attributes

none.

9.5.7.3 Associations

AssociationEnd: equivalent To: PartialEntityValue

Definition: represents the relationship between a SingleEntityValue and the PartialEntityValue that consists of exactly that
one SingleEntityValue.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SingleEntityType

Definition: represents the relationship between a SingleEntityValue and the SingleEntityType that declares the Attributes
whose values are contained in the SingleEntityValue.

Note – While the relationship between a SingleEntityValue and a SingleEntityType appears to be an Instance-to-Type relation-
ship, it is not treated as such in the metamodel, because SingleEntityValues are not Instances â_“ they can only appear as com-
ponents of a PartialEntityValue.

Multiplicity: 1..1
146 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

AssociationEnd: properties To: AttributeValue

Definition: represents the relationship of the SingleEntityValue to the AttributeValue assignments it comprises.

Multiplicity: 0..* unordered

Properties: composite

9.5.7.4 Other Roles

From: PartialEntityValue as components

Multiplicity: 1..1 composite

9.5.8 Class: SingleLeafInstance

Definition: An EntityInstance that is completely characterized by a single EntityType (and all its supertypes) that is
declared in the governing Schema

Note – This concept does not appear in Part 11, but is the “characterized instance” that is the basis for the “internal mapping”
in ISO 10303-21:2002.

9.5.8.1 Supertypes

EntityInstance

9.5.8.2 Attributes

none.

9.5.8.3 Associations

AssociationEnd: characterizing-type To: Core::EntityType

Definition: represents the unique EntityType classifier that has (defines or inherits) exactly all of the Attributes present in
the representation of the EntityInstance. Not every EntityInstance has a characterizing-type – it may be an “instance-of”
two or more EntityTypes for which the intersection is not explicitly modeled, but permitted by the model to be non-empty.

Multiplicity: 1..1

9.5.8.4 Other Roles

none.

9.5.9 Association: entity-value-describes-state

Definition: represents the relationship between an EntityInstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 147

9.5.9.1 Association Ends

AssociationEnd: describes To: EntityInstance

Definition: represents the EntityInstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular EntityInstance.

Multiplicity: 0..* unordered

AssociationEnd: state To: EntityValue

Definition: represents the relationship between the EntityInstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1

9.5.10 Association: instance-of-EntityType

Definition: represents the relationship between an EntityInstance and each of the EntityType classifiers it satisfies.

Issue 13679 - replace text, add text

9.5.10.1 Association Ends

AssociationEnd: of-type To: Core::EntityType

subsets: Core::Instance:of-type

Definition: represents the relationship between an EntityInstance and each of the EntityType classifiers it satisfies.

Multiplicity: 1..* unordered

AssociationEnd: instances To: EntityInstance

subsets: Core::DataType:instances

Definition: represents the relationship between an EntityType (classifier) and the EntityInstances that satisfy it.

Multiplicity: 0..* unordered

9.6 Constants

This section defines the Constant concept. A Constant is a named instance that is explicitly declared in the schema. 9.6
depicts the model of Constants. The Constant class and its properties are described below.
148 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13917 - Replace figure

Figure 27 Constants

9.6.1 Class: Constant

Definition: a CommonElement denoting a single instance value throughout each of its life cycles.

Note – “Constant” is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See clause 9.4 of ISO 10303-11:2004.

9.6.1.1 Supertypes

Core::CommonElement

9.6.1.2 Attributes

none.

9.6.1.3 Associations

AssociationEnd: actual-value To: Core::Instance

Definition: represents the value resulting from evaluating the value-expression. This value may only be computable for a
given population, or it may require computational capabilities a given agent does not have.

Multiplicity: 0..1

AssociationEnd: data-type To: Core::InstantiableType

Definition: represents the relationship between the Constant and the DataType of the Instance denoted by the Constant.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 149

AssociationEnd: value-expression To: Core::Expression

Definition: represents the Expression that specifies the value of the Constant for a given lifetime.

Multiplicity: 1..1

9.6.1.4 Other Roles

From: Expressions::ConstantRef as refers-to

9.6.1.5 Rules

Constraint (OCL)
exists(self->id);

Every Constant shall have an Identifier.

9.7 Populations

This section defines the Population concept and its relationship to Schemas and Instances. A population represents an
information base that corresponds to a Schema. Figure 28 depicts the model of Population. The class Population and its
associations are described below.

Issue 13685 - replace figure

Figure 28 Populations and Instances

Issue 13916 - Replace text

9.7.1 Class: Extent

Definition: the collection of all Instances in a given Population that satisfy the specified EntityType. That is, Extent is the
SetValue that is the intersection of EntityType:instances and Population:composition.
150 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 9.6 of ISO 10303-11:2004.

9.7.1.1 Supertypes

SETValue

9.7.1.2 Attributes

Attribute: id To: Core::ScopedId

Definition: the identifier for the EntityType, used as a name for the Extent.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: derived.

TaggedValues

derivation = self->for-type->id

Issue 13684 - add text

9.7.1.3 Associations

AssociationEnd: content To: EntityInstance

Subsets: SETValue:member-values

Issue 13916 - Replace text

Definition: represents the relationship between the Extent (within a Population) and the EntityInstances it contains. Extent
is a SetValue and Extent:content is just the relationship between that SetValue and its members.

Multiplicity: 0..* unordered

Issue 13684 - delete text

Properties: derived.

TaggedValues

derivation = SETValue::self->member-values

AssociationEnd: for-type To: Core::EntityType

via: extent-of-EntityType

Definition: the EntityType to which the Extent corresponds.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 151

AssociationEnd: within-population To: Population

via: extent-within-population

Definition: the Population from which the Set of instances is drawn.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

9.7.1.4 Other Roles

none.

9.7.2 Class: Population

Definition: represents the collection of all entity instances over which the LocalRules and GlobalRules of a schema are to
be evaluated.

The EXPRESS interpretation of Population is the complete closed collection of entity instances that is used for a
particular purpose, such as the content of a database or an exchange document. Many distinct Populations may have the
same governing-schema. The presumption is that the Population will be realized when the EntityInstances are realized,
but it is not necessary that that realization will itself be represented as instance of this Package.

Note – See clause 5 of ISO 10303-11:2004.

9.7.2.1 Supertypes

none.

9.7.2.2 Attributes

none.

9.7.2.3 Associations

AssociationEnd: composition To: Core::Instance

via: instance-appears-in-population

Definition: represents the relationship between a Population and the Instances that make it up.

Multiplicity: 0..* unordered

Issue 13685 - add text

AssociationEnd: extents To: Extent

via: extent-within-population

Definition: the collection of Extents of EntityTypes that make up the Population.

Multiplicity: 0..* unordered
152 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Properties: composite

AssociationEnd: governing-schema To: Core::Schema

Definition: represents the relationship between a Population and a Schema that governs (models, describes) it.

Note – See 9.3 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13685 - revise text

9.7.2.4 Other Roles

From: Rules::Extent as within-population

none.

9.7.3 Association: extent-of-EntityType

Definition: represents the relationship between an EntityType and its Extent (the set of corresponding EntityInstances) in
a given Population.

9.7.3.1 Association Ends

AssociationEnd: extension To: Extent

Definition: represents the relationship between an EntityType and its extension (the set of corresponding EntityInstances)
in a given Population.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType

Definition: represents the relationship between an Extent and the EntityType to which it corresponds.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..1

9.7.4 Association: extent-within-population

Definition: represents the relationship between an Extent and the Population from which it is drawn.

Issue 13685 - add text, delete text

9.7.4.1 Association Ends

AssociationEnd: extents To: Extent

Definition: the collection of Extents of EntityTypes that make up the Population.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 153

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: within-population To: Population

Definition: the Population from which the Set of instances constituting the Extent is drawn.

Note – See 9.6 of ISO 10303-11:2004.

Properties: composite.

Multiplicity: 1..1

9.7.5 Association: population-includes-instance

Definition: represents the relationship between an Instance and the Populations in which it appears.

9.7.5.1 Association Ends

AssociationEnd: appears-in-population To: Population

Definition: represents the relationship between an Instance and the Populations in which it appears.

Multiplicity: 0..* unordered

AssociationEnd: composition To: Core::Instance

Definition: represents the relationship between a Population and the Instances the make it up.

Multiplicity: 0..* unordered

Issue 13683 - add text

9.8 Instance Package: NamedValues

This Package represents the values of the “built-in constants” of the EXPRESS language. They are here modeled as
individual objects that are instances of subtypes of SimpleValue.

Note – See clause 14 of ISO 10303-11:2004.

Note – The built-in constants are also modeled as Literals in Clause 12.11, i.e., as the Expressions that refer to these values.
154 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Figure 29 - Named Values

9.8.1 Dependencies

Dependency on Class: Instances::SimpleValue

Stereotypes: instantiates

This Package provides base individuals that are always instances of class SimpleValue.

9.8.2 Instance: E

Type: Instances::RealValue

Definition: Represents the REAL value that is the image of 1 under the Napierian exponential function.

Note – See clause 14.1 of ISO 10303-11:2004.

9.8.2.1 Slots

Attribute: name Value: “E”

Attribute: of-type Values: Core::BuiltInTypes::REAL

9.8.3 Instance: FALSE

Type: Instances::LogicalValue

Definition: Represents the LOGICAL value that is the evaluation of a proposition whose negation is asserted.

Note – See clause 14.3 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 155

9.8.3.1 Slots

Attribute: name Value: “FALSE”

Attribute: of-type Values: Core::BuiltInTypes::LOGICAL

9.8.4 Instance: PI

Type: Instances::RealValue

Definition: Represents the REAL value that is the ratio of the circumference of a circle to its diameter.

Note – See clause 14.4 of ISO 10303-11:2004.

9.8.4.1 Slots

Attribute: name Value: “PI”

Attribute: of-type Values: Core::BuiltInTypes::REAL

9.8.5 Instance: TRUE

Type: Instances::LogicalValue

Definition: Represents the LOGICAL value that is the evaluation of a proposition that is asserted.

Note – See clause 14.6 of ISO 10303-11:2004.

9.8.5.1 Slots

Attribute: name Value: “TRUE”

Attribute: of-type Values: Core::BuiltInTypes::LOGICAL

9.8.6 Instance: UNKNOWN

Type: Instances::LogicalValue

Definition: Represents the LOGICAL value that is the evaluation of an Expression that involves Indeterminate values.

UNKNOWN is a specialization of the Indeterminate value that is treated only as a value of data type LOGICAL.

Note – See clause 14.7 of ISO 10303-11:2004.

9.8.6.1 Slots

Attribute: name Value: “UNKNOWN”

Attribute: of-type Values: Core::BuiltInTypes::LOGICAL
156 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10 Package : Algorithms

The Algorithms Package contains the concepts related to definitions of Algorithms and Functions in EXPRESS.

10.1 Dependencies

Dependency on Package: Core

Stereotypes: import

The Algorithms Package depends on the Core Package for the NamedElement and Scope concepts, for data type concepts,
and for the basic Expression concept.

10.2 Functions and Procedures

This section defines all the major concepts in EXPRESS Algorithm definitions, except for Variables and their data types.
Those concepts are described in subsequent clauses below. Figure 30 depicts the concepts described in this section.

Issue 13669 - Replace figure

Figure 30 - Algorithms
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 157

10.2.1 Class: Algorithm

Definition: a CommonElement that represents an operation or process that transforms information. Every Algorithm is
either a Procedure or a Function. Every Algorithm is also an AlgorithmScope, in that it may define CommonElements and
local ModelElements.

Note – See 9.5 of ISO 10303-11:2004.

Properties: abstract

10.2.1.1 Supertypes

Core::CommonElement , Core::AlgorithmScope

10.2.1.2 Attributes

none.

10.2.1.3 Associations

Issue 13669 - add text

AssociationEnd: actual-types To: Core::ActualType

via: scope-of-actual-type

Subsets: Core::LocalScope.local-elements

Definition: the ActualTypes that are defined in the Algorithm.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: body To: Statement

via: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock – a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note – See 9.5 of ISO 10303-11:2004.

Multiplicity: 0..1

Properties: composite

AssociationEnd: formal-parameters To: Parameter

via: algorithm-has-parameters
158 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between the Algorithm and its formal parameters.

Multiplicity: 0..* unordered

Properties: composite

Issue 13688 - add text, delete text

AssociationEnd: type-parameters To: GenericElement

via: element-scope-is-algorithm

subsets: Core::LocalScope:local-elements

Definition: The GenericElements that represent formal parametric types – type designations that may appear in
ActualTypes and ActualTypeConstraints and to which ActualDataTypes and ActualStructures will be assigned on each
invocation of the Algorithm.

Multiplicity: 0..* unordered.

Properties: derived

Tagged Values

derivation = self->formal-parameters->type-parameters;

10.2.1.4 Other Roles

From: Core::ActualType as scope

From: GenericElement as namespace

10.2.1.5 Rules

Constraint (OCL)
exists(self->id);

Every Algorithm has an identifier

10.2.2 Class: Function

Definition: an Algorithm that returns a single Instance and can appear in an Expression.

Note – "Function" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.5.1 of ISO 10303-11:2004.

10.2.2.1 Supertypes

Algorithm
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 159

10.2.2.2 Attributes

none.

10.2.2.3 Associations

Issue 13669 - add text

AssociationEnd: result To: FunctionResult

via: function-has-result

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between a Function and its FunctionResult.

See 9.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: composite

10.2.2.4 Other Roles

From: Expressions::FunctionCall as invokes-function

10.2.3 Class: FunctionResult

Definition: the formal parameter representing the result Instance that is returned by the invocation of a Function. Within
the body of the Function, the FunctionResult is a Variable that is denoted by the Algorithm identifier. Upon termination
of the execution of the function-body, the (current) value of that Variable is returned.

Note – See 9.5.1 of ISO 10303-11:2004.

10.2.3.1 Supertypes

Variable

10.2.3.2 Attributes

none.

10.2.3.3 Associations

AssociationEnd: namespace To: Function

via: function-has-result

Subsets: Core::LocalElement.namespace

Definition: the Function that is the Scope in which the Function name refers to the FunctionResult.
160 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..1

10.2.3.4 Other Roles

From: Expressions::FunctionCall as returns-result

10.2.3.5 Rules

Constraint (OCL)

self->id = self->namespace->id;

The identifier for the function result is the identifier for the function.

10.2.4 Class: InParameter

Definition: a formal parameter to a Procedure or Function to which the ActualParameter is passed "by value."

During an invocation of the Algorithm, the InParameter is a Variable that is initially set to the value of the corresponding
ActualParameter. The value of the InParameter can be changed during the execution of the Algorithm.

An InParameter has a formal-parameter-type, which is the type specification to which the corresponding
ActualParameters are required to conform. The InParameter also has a variable-type, which is the type specification for
the Variable created to hold the value during invocation of the Algorithm.

Note – See 9.5.3 of ISO 10303-11:2004.

10.2.4.1 Supertypes

Parameter , Variable

10.2.4.2 Attributes

none.

10.2.4.3 Associations

none.

10.2.4.4 Other Roles

none.

10.2.5 Class: Parameter

Definition: a formal parameter – the formal description of an operand – of a Procedure or Function.

Parameters are of two kinds:

• InParameter, to which the values of the corresponding ActualParameters are passed by value

• VarParameter, to which the corresponding ActualParameters are passed by reference
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 161

A Parameter is actually a NamedVariable whose scope is the Algorithm, and in each invocation of the Algorithm its
(initial) value is set from the value or reference provided as the actual parameter. The formal-parameter-type of the
Parameter constrains the types/values of the corresponding actual parameters. As a NamedVariable, it also has a variable-
type, which is its data type for the purpose of operations within the body of the Algorithm. If the formal-paramater-type
is an InstantiableType or an ActualType, the variable-type is the same type. If the formal-parameter-type is a
GeneralizedType, the variable-type is the corresponding ActualType.

Note – See 9.5.3 of ISO 10303-11:2004.

Properties: abstract

10.2.5.1 Supertypes

none.

Note – Parameter is an abstract classifier. The two instantiable subclasses of Parameter – InParameter and VARParameter --
are subclasses of NamedVariable. So Parameter is an implicit subclass of NamedVariable.

10.2.5.2 Attributes

Attribute: position To: MOF::Integer

Definition: A positive integer value designating the ordinal position of the Parameter in the formal-parameter-list for the
Algorithm that is its .namespace. The position is used to associate ActualParameters with the formal Parameter.

Note – See 9.5.3 of ISO 10303-11:2004.

Multiplicity: 1..1

10.2.5.3 Associations

AssociationEnd: formal-parameter-type To: Core::ParameterType

Definition: the specification for the required data type of the actual parameters (see 12.7.1) that correspond to the formal
Parameter; the data type that represents the allowable values of the Parameter.

Multiplicity: 1..1

Note – The lexical parameter_type in EXPRESS may refer to an InstantiableType, an ActualType (if the Algorithm is
defined within an outer AlgorithmScope) or a GeneralizedType, and when it is syntactically a generalized_type, it may
include ActualTypeConstraints (10.5).

AssociationEnd: namespace To: Algorithm

via: algorithm-has-parameters

Subsets: Core::LocalElement.namespace

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its .id.
162 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..1

Issue 13688 - add text

AssociationEnd: type-parameters To: GenericElement

via: element-has-source

Definition: The GenericElements that are contained in the formal-parameter-type of the Parameter and represent
formal parametric types – type designations that may appear in ActualTypes and ActualTypeConstraints and to which
ActualDataTypes and ActualStructures will be assigned on each invocation of the Algorithm.

Multiplicity: 0..* unordered.

Properties: composite

AssociationEnd: structure-constraints To: ActualStructureConstraint

Definition: the ActualStructureConstraints, if any, that constrain the allowable data types of the corresponding actual
parameter.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Issue 13669 - add text

Properties: composite

AssociationEnd: type-constraints To: ActualTypeConstraint

Definition: the ActualTypeConstraints, if any, that constrain the allowable data types of the corresponding actual
parameter.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: variable To: InVariable

via: variable-for-parameter

Definition: the InVariable that corresponds to the InParameter during each evaluation of the Algorithm.

During an evaluation of the Algorithm that defines the InParameter, the value of the InVariable may change. The
corresponding actual parameter value does not change.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 163

Issue 13688 - delete text

10.2.5.4 Other Roles

From: Expressions::ParameterRef as refers-to

From: Expressions::ActualParameter as formal-parameter

From: GenericElement as source

10.2.5.5 Rules

Constraint (OCL)
exists(self->id);

Every Parameter has an identifier

Constraint (OCL)
IF typeof(self->namespace) = 'Function' THEN NOT self->inout;

No parameter to a Function shall be a VAR parameter.

10.2.6 Class: Procedure

Definition: an Algorithm that is executed as an action in a FunctionBody.

Note – See 9.5.2 of ISO 10303-11:2004.

Note – "Procedure" is a reserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.

10.2.6.1 Supertypes

Algorithm

10.2.6.2 Attributes

none.

10.2.6.3 Associations

none.

10.2.6.4 Other Roles

From: Statements::ProcedureCall as invokes

10.2.7 Class: Statement

Definition: An EXPRESS Statement, a directive to perform a certain set of operations.
164 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See Clause 13 of ISO 10303-11:2004.

Note – Even though Statement is technically an abstract classifier, it is represented by direct instances with text representations
when the Statements compliance point is not supported.

10.2.7.1 Supertypes

none.

10.2.7.2 Attributes

Attribute: text To: Core::ExpressText

Definition: Represents the EXPRESS statement verbatim.

Multiplicity: 0..1

10.2.7.3 Associations

AssociationEnd: controlled-by To: Statements::RepeatStatement

via: Statements::repeat-has-body

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

AssociationEnd: implements To: Algorithm

via: algorithm-has-body

Definition: represents the relationship between a Statement and the Algorithm for which it specifies an implementation.

Multiplicity: 0..1

AssociationEnd: in-block To: Statements::StatementBlock

via: Statements::block-sequences-statements

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note – This relationship is needed for ESCAPE statements and SKIP statements, whose interpretation requires a path back to
the REPEAT statement that controls them (see 13.8.3). It may also be needed to associate a RETURN statement with the
Algorithm that whose implementation contains it.

Multiplicity: 0..1

10.2.7.4 Other Roles

From: Rules::GlobalRule as supporting-body

Multiplicity: 0..1

From: Statements::AliasStatement as body
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 165

Multiplicity: 0..1

From: Statements::CaseAction as action

Multiplicity: 0..1

From: Statements::IfStatement as then-action

Multiplicity: 0..1

From: Statements::IfStatement as else-action

Multiplicity: 0..1

10.2.8 Class: VARParameter

Definition: A formal parameter to a Procedure that is used as a reference to the object that is the ActualParameter in a
given invocation. That is, a VARParameter represents a parameter that is “passed by reference.” A VARParameter is not
a separate object; it is rather a temporary name for an existing object – the ActualParameter. Alternatively, it may be
thought of as an object that holds a pointer to another object. All references to a VARParameter (in Statements and
Expressions) refer to the object that the VARParameter refers to.

Note – See 9.5.3 of ISO 10303-11:2004.

10.2.8.1 Supertypes

Parameter , VARVariable

10.2.8.2 Attributes

none.

10.2.8.3 Associations

none.

10.2.8.4 Other Roles

none.

10.2.8.5 Rules

Constraint (OCL)
typeof(self->namespace)='Procedure';

Only a Procedure can have a VAR Parameter.

10.2.9 Association: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
StatementBlock – a sequence of actions to be performed.
166 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 9.5 of ISO 10303-11:2004.

10.2.9.1 Association Ends

Issue 13669 - add text

AssociationEnd: body To: Statement

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock – a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note – See 9.5 of ISO 10303-11:2004.

Multiplicity: 0..1

Properties: composite

AssociationEnd: implements To: Algorithm

Definition: represents the relationship between a FunctionBody and the Algorithm for which it specifies an
implementation.

Multiplicity: 0..1

10.2.10 Association: algorithm-has-parameters

Definition: represents the relationship between an Algorithm and its formal parameters.

10.2.10.1 Supertypes

Core::local-element-has-local-scope

10.2.10.2 Association Ends

AssociationEnd: formal-parameters To: Parameter

Definition: represents the relationship between the Algorithm and its formal parameters.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: namespace To: Algorithm

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its .id.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 167

10.2.11 Association: function-has-result

Definition: represents the relationship between a Function and its FunctionResult.

Note – See 9.5.1 of ISO 10303-11:2004.

10.2.11.1 Supertypes

Core::local-element-has-local-scope

10.2.11.2 Association Ends

Issue 13669 - add text

AssociationEnd: namespace To: Function

Definition: the Function that is the AlgorithmScope in which the Function name refers to the FunctionResult.

Multiplicity: 1..1

AssociationEnd: result To: FunctionResult

Definition: represents the relationship between a Function and its FunctionResult.

Note – See 9.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: composite

10.3 Variables

This section describes the concepts associated with Variables in EXPRESS. Variables are introduced in Algorithms and
GlobalRules. Figure 31 depicts the concepts described in this section.
168 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - replace figure

Figure 31 - Variables

10.3.1 Class: LocalVariable

Definition: a Variable that is declared as LOCAL to an Algorithm or GlobalRule and given an Identifier, and possibly an
initial value, in the declaration.

Note – See 9.5.4 of ISO 10303-11:2004.

10.3.1.1 Supertypes

Variable

10.3.1.2 Attributes

none.

10.3.1.3 Associations

AssociationEnd: initial-value To: Core::Expression

Definition: represents the relationship between the LocalVariable and the Expression that specifies its initial-value on
entry to the body of the Algorithm or GlobalRule that defines it.

Multiplicity: 0..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 169

AssociationEnd: namespace To: Core::AlgorithmScope

via: variable-defined-in-scope

Subsets: Core::LocalElement.namespace

Definition: represents the relationship between the LocalVariable and the AlgorithmScope in which it is defined. This is a
refinement of the NamedElement.namespace relationship. The lifetime of a LocalVariable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1

10.3.1.4 Other Roles

none.

10.3.2 Class: NamedVariable

Definition: Any EXPRESS syntactic variable: A LocalVariable, a QueryVariable, an increment ControlVariable, an
AliasVariable, or a Parameter or FunctionResult. A NamedVariable is a NamedElement and always has a name/identifier.
Each kind of NamedVariable has a different scope, but the scopes of every NamedVariable is a LocalScope.

Every NamedVariable has a declared variable-type, which may be an InstantiableType or an ActualType.

Properties: abstract

10.3.2.1 Supertypes

Core::LocalElement

10.3.2.2 Attributes

none.

10.3.2.3 Associations

AssociationEnd: variable-type To: Core::VariableType

Definition: the actual data type of the Variable. In any given invocation, the data type of the Variable is an
InstantiableType. If the data type of the Variable is specified as an InstantiableType, it is fixed for all invocations. If the
data type of the Variable is specified as an ActualType, the actual data type varies from invocation to invocation,
according to the data type of an actual parameter. If the Variable is a Parameter and its formal parameter type is a
GeneralizedType, the variable-type is the corresponding ActualType.

Note – See 9.5.4 of ISO 10303-11:2004.

Multiplicity: 1..1

10.3.2.4 Other Roles

From: Expressions::VariableRef as refers-to
170 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.3.2.5 Rules

Constraint (OCL)
exists(self->id);

Every NamedVariable has an identifier

10.3.3 Class: VARVariable

Definition: A VARVariable represents a “reference” or “pointer” that functions as a reference to a Variable (or part of a
Variable) during the execution of an Algorithm.

A VARVariable is a NamedVariable (it has an identifier and a nominal variable-type), but it is not a Variable. Unlike a
Variable, it does not itself hold an Instance. Instead, it points to an object (place) that holds an Instance. The object to
which a VARVariable refers is called its referent. The referent of a VARVariable can be anything to which a
VARExpression (see 13.10.5) can refer. The referent of a VARVariable is fixed at the time the instance of the
VARVariable is created.

There are two kinds of VARVariables: VARParameter and AliasVariable.

Properties: abstract

10.3.3.1 Supertypes

NamedVariable

10.3.3.2 Attributes

none.

10.3.3.3 Associations

none.

10.3.3.4 Other Roles

From: Statements::AliasRef as refers-to

10.3.4 Class: Variable

Definition: a NamedVariable that exists during an invocation of an Algorithm or the evaluation of a GlobalRule and
contains an Instance of a specified data type. (In essence, the type of a Variable specifies the structure of the object that
contains the value.) During execution of an Algorithm, the Instance contained in a Variable can change. The values
contained in other NamedVariables can change, but only Variables can be the objects of assignments or the referents of
VARExpessions (see 13.10). Playing the role VariableCell.referent characterizes Variables.

Note – See 9.5.4 of ISO 10303-11:2004. Part 11 uses the term “variable” to denote any of several kinds of objects that hold
values, including LocalVariables, FunctionResults, Parameters, aggregate members, and ExplicitAttributes in EntityValues.
The term Variable here only refers to LocalVariables, FunctionResults, and InParameters.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 171

Properties: abstract

10.3.4.1 Supertypes

NamedVariable

10.3.4.2 Attributes

none.

10.3.4.3 Associations

none.

10.3.4.4 Other Roles

From: Statements::VariableCell as refers-to

10.3.5 Association: variable-defined-in-scope

Definition: represents the relationship between a LocalVariable and the AlgorithmScope in which it is defined. This is a
refinement of the element-defined-in-scope relationship.

10.3.5.1 Supertypes

Core::local-element-has-local-scope

10.3.5.2 Association Ends

Issue 13669 - add text

AssociationEnd: namespace To: Core::AlgorithmScope

Definition: represents the relationship between the LocalVariable and the AlgorithmScope in which it is defined. This is a
refinement of the NamedElement.namespace relationship. The lifetime of a LocalVariable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1

AssociationEnd: variables To: LocalVariable

Definition: represents the relationship between the LocalScope and the set of LocalVariables that are defined within it.

Multiplicity: 0..* unordered

Properties: composite
172 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4 Actual Types

In the simplest case, return values, variables, and other elements whose lifetime is the evaluation of the Algorithm are
declared to have InstantiableTypes. But they can also be declared to be derivatives of the data types of the actual
parameters in a given invocation. Figure 32 depicts the model of data types that have such declarations, herein called
ActualTypes.

EXPRESS permits the generalized_type specifications for formal parameters to contain labeled generic components that
refer to specific elements of the data type of the corresponding actual parameters. These elements can then be referred to
in the specifications of data types that are ActualTypes. Figure 32 depicts the binding of ActualTypes to the components
of the data types of the formal parameters of the Algorithm.

All of these concepts are described in detail in this section.

Issue 13880 - replace figure

Figure 32 - Actual Types

Issue 13688 - replace figure
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 173

Figure 33 - ActualType References to Elements of GeneralizedTypes

10.4.1 Class: Core::ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Each subtype of ActualType refers to a GenericElement that is defined among the formal Parameters of the Algorithm.
The GenericElement denotes the corresponding component of the data type of the corresponding actual parameter in any
given invocation. The GenericElement is named by an EXPRESS type_label, and the ActualType refers to that
GenericElement via the type_label.

Note – The class ActualType is defined in the Core package (8.6.1).

10.4.2 Class: ActualAGGREGATEType

Definition: an ActualType that is an aggregation type whose structure is specified by an ActualStructure, which refers to
the structure of a (component of) an actual parameter. The .label attribute is used to determine the ActualStructure to
which it refers. The member-type of the ActualAGGREGATEType can be any VariableType (Instantiable or Actual) and
need not have any relationship to the member type of the corresponding actual parameter.

Note – See 9.5.3.4 of ISO 10303-11:2004.

10.4.2.1 Supertypes

Core::ActualType
174 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4.2.2 Attributes

Issue 13670 - add text

Attribute: label To: Core::Identifier

Definition: Represents the "type_label" on the AGGREGATE type, which is used to associate it with the ActualStructure.

Note – The label on the ActualAGGREGATEType is not a definition of that symbol; it is a reference to the occurrence of that
symbol as a label on a component of a formal parameter type that defines the label in the Algorithm namespace and defines
what the ActualStructure is. More than one ActualAGGREGATEType can have the same label and refer to the same structure.

Multiplicity: 1..1

10.4.2.3 Associations

Issue 13904 - add text

AssociationEnd: lower-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents a lower-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the lower-bound constraint is present, the number of members of the
aggregate value shall be greater than or equal to this value. If the lower-bound is not present or evaluates to zero, there is
no constraint. Unless the lower-bound specified for the AGGREGATE type is an explicit “0,” this constraint shall appear.

Note – See 9.5.3.2 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: member-type To: Core::VariableType

Definition: represents the type of the components of the actual aggregation type that has the structure that corresponds to
the AGGREGATE type. The type of the members may be an InstantiableType or an ActualType derived from a
ParameterType.

Note – See 9.5.3.1 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: refers-to To: ActualStructure

Definition: the AGGREGATEType to which the ActualAGGREGATEType corresponds. When instantiated, the
ActualType will use the aggregate structure of the ActualParameter that corresponds to this AGGREGATEType (element).

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 175

Issue 13904 - add text

AssociationEnd: upper-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents an upper-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the upper-bound constraint is present and does not evaluate to indeterminate
("?"), the number of members of the aggregate value shall be less than or equal to this value. If the upper-bound is not
present or evaluates to indeterminate, there is no constraint. Unless the upper-bound specified for the AGGREGATE type
is an explicit "?", this constraint shall appear.

Note – See 9.5.3.3 of ISO 10303-11:2004.

Multiplicity: 0..1

10.4.2.4 Other Roles

none.

10.4.3 Class: ActualAggregationType

Definition: An aggregation type whose member-type is an ActualType. An ActualAggregationType differs from an
InstantiableAggregationType in that the data type of its components is dynamically specified.

Properties: abstract

10.4.3.1 Supertypes

Core::AggregationType , Core::ActualType

10.4.3.2 Attributes

none.

10.4.3.3 Associations

AssociationEnd: member-type To: Core::ActualType

Definition: represents the ActualType that is the the type of the component elements of the ActualAggregationType.

Note – If the member-type were not itself an ActualType, the ActualAggregationType would be an Instantiable Aggregation-
Type.

Multiplicity: 1..1

10.4.3.4 Other Roles

none.
176 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4.4 Class: ActualARRAYType

Definition: An ActualAggregationType whose structure is an ARRAY with defined lower and upper bounds on the index.

10.4.4.1 Supertypes

ActualAggregationType

10.4.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAYType; False
otherwise. When isOptional is True, any instance of the ARRAYType is permitted to have members whose value is
unspecified ("?").

Note – See 8.2.1 of ISO 10303-11:2004.

Multiplicity: 1..1

10.4.4.3 Associations

AssociationEnd: hi-index To: Core::ArrayBound

Definition: represents the upper bound on the Integer index-range of each value of the ActualARRAYType.

Note – See 8.2.1 and 15.11 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: lo-index To: Core::ArrayBound

Definition: represents the lower bound on the Integer index-range of each value of the ActualARRAYType.

Note – See 8.2.1 and 15.11 of ISO 10303-11:2004.

Multiplicity: 1..1

10.4.4.4 Other Roles

none.

10.4.5 Class: ActualBAGType

Definition: An ActualAggregationType whose structure is a BAG (see 8.10.4).

10.4.5.1 Supertypes

ActualAggregationType
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 177

10.4.5.2 Attributes

none.

10.4.5.3 Associations

none.

10.4.5.4 Other Roles

none.

10.4.6 Class: ActualDataType

Definition: A GENERIC or GENERIC_ENTITY type that defines a type_label to refer to the data type of the
corresponding component of the .source ActualParameter. That is, a GenericType (component) that is also a
GenericElement.

The ActualDataType is the first occurrence of the label among the Parameters of the Algorithm. Later occurrences in
Parameters are ActualTypeConstraints (see 10.5).

10.4.6.1 Supertypes

GenericElement , Core::GenericType

10.4.6.2 Attributes

none.

10.4.6.3 Associations

none.

10.4.6.4 Other Roles

From: ActualGenericType as refers-to

From: ActualTypeConstraint as required-type

10.4.7 Class: ActualGenericType

Definition: an ActualType that refers to an ActualDataType – the data type of an actual parameter or component of an
actual parameter. The .label attribute is used to determine the ActualStructure to which it refers. If the .isEntity attribute
is FALSE (the EXPRESS keyword is GENERIC), the actual data type can be any Instantiable data type. If the .isEntity
attribute is TRUE (the EXPRESS keyword is GENERIC_ENTITY), the actual data type must be an EntityType.

Note – See 9.5.3.4 of ISO 10303-11:2004.
178 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4.7.1 Supertypes

Core::ActualType

10.4.7.2 Attributes

Issue 13670 - add text

Attribute: isEntity To: MOF::Boolean

Definition: True if the ActualType is required to be an EntityType; False otherwise.

Multiplicity: 1..1

Attribute: label To: Core::Identifier

Definition: Represents the “type_label” on the GENERIC or GENERIC_ENTITY type, which is used to associate it with
the ActualDataType.

Note – The label on the ActualGenericType is not a definition of that symbol; it is a reference to the occurrence of that symbol
as a label on a component of a formal parameter type that defines the label in the Algorithm namespace and defines what the
ActualDataType is.

Multiplicity: 1..1

10.4.7.3 Associations

AssociationEnd: refers-to To: ActualDataType

Definition: the GenericType to which the ActualGenericType corresponds. When instantiated, the actual type will be the
data type of the ActualParameter that corresponds to this GenericType (element).

Multiplicity: 1..1

10.4.7.4 Other Roles

none.

10.4.8 Class: ActualLISTType

Definition: An ActualAggregationType whose structure is a LIST. (See 8.10.6)

10.4.8.1 Supertypes

ActualAggregationType

10.4.8.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 179

10.4.8.3 Associations

none.

10.4.8.4 Other Roles

none.

10.4.9 Class: ActualSETType

Definition: An ActualAggregationType whose structure is a SET. (See 8.10.8)

10.4.9.1 Supertypes

ActualAggregationType

10.4.9.2 Attributes

none.

10.4.9.3 Associations

none.

10.4.9.4 Other Roles

none.

10.4.10 Class: ActualStructure

Definition: An AGGREGATE type that defines a type_label to refer to the structure (ARRAY, BAG, LIST, SET) of the
corresponding component of the corresponding ActualParameter. That is, an AGGREGATEType (component) that is also
a GenericElement.

The ActualStructure is the first occurrence of the label among the Parameters of the Algorithm. Later occurrences in
Parameters of the same Algorithm are ActualStructureConstraints (see 10.5).

10.4.10.1 Supertypes

Core::AGGREGATEType , GenericElement

10.4.10.2 Attributes

none.

10.4.10.3 Associations

none.
180 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4.10.4 Other Roles

From: ActualAGGREGATEType as refers-to

From: ActualStructureConstraint as required-structure

10.4.11 Class: GenericElement

Definition: a LocalElement representing a component of the type description for a formal Parameter that refers to the
corresponding type component of the corresponding actual parameter. The GenericElement is denoted by a type_label (the
.label attribute) that is unique within the scope of the Algorithm. The first occurrence of the type_label in the formal
parameter list defines the GenericElement. Any later occurrence of the same type_label in the formal parameter list (even
in the same Parameter) specifies an ActualStructureConstraint or an ActualTypeConstraint that is based on the
GenericElement.

Properties: abstract

10.4.11.1 Supertypes

Core::LocalElement

10.4.11.2 Attributes

Attribute: label To: Core::ScopedId

Definition: represents the “type_label” on the GENERIC, GENERIC_ENTITY or AGGREGATE type component, treated
as a ScopedId whose namespace is the Algorithm in which it is defined.

Multiplicity: 1..1

10.4.11.3 Associations

Issue 13688 - add text, delete text

AssociationEnd: namespace To: Algorithm

via: element-scope-is-algorithm

Subsets: Core::LocalElement.namespace

Definition: the Algorithm that is the namespace of the ScopedId that is the label. This relationship is derived – the
namespace of a GenericElement is the same as the namespace of its .source Parameter.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->source->namespace;
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 181

AssociationEnd: source To: Parameter

via: element-has-source

Definition: the Parameter whose formal parameter type is or includes the GenericElement and defines its label. The first
(by .position) Parameter whose formal parameter type contains the label defines the label. The corresponding component
of the data type of the actual parameter is used to define the actual data type or structure that corresponds to the
GenericElement.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: composite

10.4.11.4 Other Roles

none.

10.4.12 Association: element-has-source

Issue 13688 - add text

Definition: represents the relationship between a GenericElement representing a parametric type and the Parameter whose
formal-parameter-type contains the GenericElement.

Properties: derived

10.4.12.1 Association Ends

AssociationEnd: type-parameters To: GenericElement

Definition: The GenericElements that are contained in the formal-parameter-type of the Parameter and represent
formal parametric types – type designations that may appear in ActualTypes and ActualTypeConstraints and to which
ActualDataTypes and ActualStructures will be assigned on each invocation of the Algorithm.

Multiplicity: 0..* unordered.

Properties: composite

AssociationEnd: source To: Parameter

Definition: the Parameter whose formal parameter type is or includes the GenericElement and defines its label. The first
(by position) Parameter whose formal parameter type contains the label defines the label. The corresponding component
of the data type of the actual parameter is used to define the actual data type or structure that corresponds to the
GenericElement.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1
182 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.4.13 Association: element-scope-is-algorithm

Definition: represents the relationship between a GenericElement representing a parametric type and the Algorithm that is
the scope in which the label on that GenericElement refers to the GenericElement and to the corresponding
ActualDataType or ActualStructure.

Properties: derived

10.4.13.1 Supertypes

Core::local-element-has-local-scope

10.4.13.2 Association Ends

AssociationEnd: namespace To: Algorithm

Subsets: Core::LocalElement:namespace

Definition: the Algorithm that is the namespace of the ScopedId that is the label. This relationship is derived – the
namespace of a GenericElement is the same as the namespace of its .source Parameter.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->source->namespace;

AssociationEnd: type-parameters To: GenericElement

subsets: Core::LocalScope:local-elements

Definition: The GenericElements that represent formal parametric types – type designations that may appear in
ActualTypes and ActualTypeConstraints and to which ActualDataTypes and ActualStructures will be assigned on each
invocation of the Algorithm.

Multiplicity: 0..* unordered.

Properties: derived

Tagged Values

 derivation = self->formal-parameters->type-parameters;

10.4.14 Association: scope-of-actual-type

Definition: represents the relationship between an ActualType and the Algorithm that is its scope.

10.4.14.1 Supertypes

Core::local-element-has-local-scope
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 183

10.4.14.2 Association Ends

Issue 13669 - add text

AssociationEnd: scope To: Algorithm

Definition: The Algorithm in which the ActualType is specified. The ActualType must be the data type of a Variable or
Attribute whose scope is contained in the Algorithm.

Multiplicity: 1..1

AssociationEnd: actual-types To: ActualType

Definition: the set of ActualTypes that are defined in the Algorithm.

Multiplicity: 0..* unordered

Properties: composite

10.5 Actual Type Constraints

Issue 13918 - Revise text

EXPRESS permits the generalized_type specifications for formal parameters to contain labeled generic components that
refer to specific elements of the data type of the corresponding actual parameters. These elements can be referred to in
the specifications for the data types of other formal parameters. The effect of such a reference is to state a constraint on
the data types of the actual parameters that correspond to the formal parameter that contains the reference to the labeled
component. This section provides a model for the capture of such constraints, herein called ActualTypeConstraints. The
associated concepts are depicted in Figure 32 (in clause 10.4) and Figure 34 (below).

According to clause 9.5.3.4 of ISO 10303-11, the first occurrence of a labeled component in a parameter type is the
defining occurrence and subsequent occurrences are constraining references.
184 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13688 - Replace figure

Figure 34 - Actual Type Constraints

10.5.1 Class: ActualStructureConstraint

Definition: A constraint on the aggregation structure of the data type of the actual parameter that corresponds to the
formal parameter. The constraint is declared in EXPRESS by a type_label on an AGGREGATE type that occurs in the
specification of the data type of a formal parameter, but is not the definition of that type_label (cf. ActualStructure). The
requirement declared by the constraint is that the structure of the corresponding component of the data type of the
corresponding actual parameter (the .matching-structure) must be the same as the structure referred to by the
ActualStructure that is denoted by the (.label) type_label.

Note – See 9.5.3.4 of ISO 10303-11:2004.

10.5.1.1 Supertypes

none.

10.5.1.2 Attributes

Attribute: label To: Core::Identifier

Definition: the type_label value on the syntactic AGGREGATE type that denotes the constraint. Any occurrence of the
same type_label after the first denotes a constraint.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 185

10.5.1.3 Associations

AssociationEnd: matching-structure To: Core::AGGREGATEType

via: aggregate-has-constraint

Definition: the AGGREGATE component in the specification of the data type of the formal parameter to which the
constraint applies.

Multiplicity: 1..1

AssociationEnd: required-structure To: ActualStructure

Definition: the ActualStructure that defines the .label type_label that is used to establish the constraint. The
ActualStructure defines the required structure (ARRAY, BAG, LIST, SET) of the corresponding component of the data
type of the actual parameter.

Multiplicity: 1..1

10.5.1.4 Other Roles

From: Parameter as structure-constraints

10.5.2 Class: ActualTypeConstraint

Definition: a constraint that requires type compatibility between the .required-type ActualDataType and the (component
of the) actual data type of the actual parameter that corresponds to the occurrence of the .matching-type in the formal-
parameter-type of the Parameter that has the constraint. The constraint is declared in EXPRESS by a type_label on a
GENERIC or GENERIC_OBJECT type that occurs in the specification of the data type of a formal parameter, but is not
the definition of that type_label (cf. ActualDataType). The ActualTypeConstraint relates one Parameter and its formal-
parameter-type to the ActualDataType that defines the .label type_label. If the formal parameter types of additional
Parameters contain the same type_label, each such occurrence constitutes a distinct ActualTypeConstraint.

Note – See 9.5.3.4 of ISO 10303-11:2004.

10.5.2.1 Supertypes

none.

10.5.2.2 Attributes

Attribute: label To: Core::Identifier

Definition: the type_label value on the syntactic AGGREGATE type that denotes the constraint. Any occurrence of the
same type_label after the first denotes a constraint.

Note – See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 1..1
186 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

10.5.2.3 Associations

AssociationEnd: matching-type To: Core::GenericType

via: generic-has-constraint

Definition: the GENERIC or GENERIC_ENTITY component in the specification of the data type of the formal parameter
to which the constraint applies.

Multiplicity: 1..1

AssociationEnd: required-type To: ActualDataType

Definition: the ActualDatatType that defines the .label type_label that is used to establish the constraint. The
ActualDataType defines the data type with which the corresponding component of the data type of the actual parameter
(the .matching-type) must be compatible.

Multiplicity: 1..1

10.5.2.4 Other Roles

From: Parameter as type-constraints

10.5.3 Association: aggregate-has-constraint

Definition: the relationship between an AGGREGATE type specification and its ActualStructureConstraint, if any.

10.5.3.1 Association Ends

AssociationEnd: constraint To: ActualStructureConstraint

Definition: the ActualStructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note – Only an AGGREGATEType that appears in the specification of the data type of a Parameter can have an ActualStruc-
tureConstraint. The AGGREGATEType has an ActualStructureConstraint only if it has a syntactic type_label and does not
itself define that type_label. See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: matching-structure To: Core::AGGREGATEType

Definition: the AGGREGATE component in the specification of the data type of the formal parameter to which the
constraint applies.

Multiplicity: 1..1

10.5.4 Association: generic-has-constraint

Definition: the relationship between a GENERIC or GENERIC_ENTITY type specification and its ActualTypeConstraint,
if any.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 187

10.5.4.1 Association Ends

AssociationEnd: constraint To: ActualTypeConstraint

Definition: the ActualTypeConstraint, if any, that applies to this component of the GeneralizedType specification.

Note – Only a GenericType that appears in the specification of the data type of a Parameter can have an ActualTypeConstraint.
The GenericType has an ActualTypeConstraint only if it has a syntactic type_label and does not itself define that type_label.
See 9.5.3.4 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: matching-type To: Core::GenericType

Definition: the GENERIC or GENERIC_ENTITY component in the specification of the data type of the formal parameter
to which the constraint applies.

Multiplicity: 1..1
188 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

11 Package : Rules

The Rules Package contains the models of RULEs and SUBTYPE_CONSTRAINTS, which rely on the notion of extents of
types with populations (see 9.7).

11.1 Dependencies

Dependency on Package: Core

Stereotypes: import

The Rules Package depends on the Core Package for the NamedElement and Scope concepts, for the EntityType concept,
and for the basic Expression concept.

Dependency on Package: Algorithms

Stereotypes: import

The Rules Package depends on the Algorithms Package for the Variable and Statement concepts.

11.2 Global Rules

This section models the concepts used in EXPRESS RULE declarations. Figure 35 depicts the principal concepts.

Issue 13669 - replace figure

Figure 35 - Global Rules
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 189

11.2.1 Class: GlobalRule

Definition: a SchemaElement denoting a collection of NamedRules for the interaction of the Extents of one or more
EntityTypes. It corresponds to the RULE declaration in EXPRESS. Every GlobalRule is also an AlgorithmScope and may
define CommonElements and Variables.

Note – See 9.6 of ISO 10303-11:2004.

11.2.1.1 Supertypes

Core::AlgorithmScope , Core::SchemaElement

11.2.1.2 Attributes

none.

11.2.1.3 Associations

Issue 13669 - add text

AssociationEnd: constrained-extents To: Core::EntityType

via: rule-constrains-extents

Definition: the EntityTypes whose Extents are constrained by the GlobalRule

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: contains-rules To: NamedRule

via: GlobalRule-contains-NamedRule

Subsets: Core::LocalScope.local-elements

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains. Since the
GlobalRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope.named-elements relationship.

Multiplicity: 1..* unordered

Properties: composite

AssociationEnd: supporting-body To: Algorithms::Statement

Definition: represents the Statement, usually a StatementBlock, that provides values for LocalVariables used in the
NamedRules that are contained in the GlobalRule.

The supporting-body of the GlobalRule can only appear if one or more LocalVariables are introduced for use in the
NamedRules, and even then, the supporting-body is not required if the value of each LocalVariable is completely defined
by an initializing expression.
190 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

If an implementation of the metamodel does not support the Statements compliance point, the supporting body should be
captured as text when it is present.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 0..1

Properties: composite

11.2.1.4 Other Roles

none.

11.2.1.5 Rules

Constraint (OCL)
exists(self->defined-in);

Every GlobalRule shall be defined-in a Schema.

Constraint (OCL)
exists(self->id);

Every GlobalRule shall have an identifier

Constraint (OCL)
if exists(self->supporting-body) then exists(self->variables);

A GlobalRule cannot have a supporting body unless it defines LocalVariables.

11.2.2 Class: NamedRule

Definition: a constraint requiring a given Boolean Expression involving the Extents of one or more EntityTypes to
evaluate to True. It corresponds to a domain rule contained in a Rule declaration in EXPRESS.

Note – See 9.6 of ISO 10303-11:2004.

11.2.2.1 Supertypes

Core::LocalElement

11.2.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the lexical position of the NamedRule in the sequence of NamedRules contained in the
GlobalRule.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 191

11.2.2.3 Associations

AssociationEnd: asserts-expression To: Core::Expression

Definition: represents the fact that every NamedRule states a Boolean expression that is required to be True for the
Extents in a given Population.

Note – See 9.6 of ISO 10303-11:2004. The asserts-expression that formulates the NamedRule is wholly owned by the Name-
dRule. It is not treated as reusable.

Multiplicity: 1..1

AssociationEnd: namespace To: GlobalRule

via: GlobalRule-contains-NamedRule

Subsets: Core::LocalElement.namespace

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement.namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the GlobalRule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

11.2.2.4 Other Roles

None.

11.2.3 Association: GlobalRule-contains-NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains.

11.2.3.1 Supertypes

Core::local-element-has-local-scope

11.2.3.2 Association Ends

Issue 13669 - add text

AssociationEnd: contains-rules To: NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains. Since the
GlobalRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope.named-elements relationship.

Multiplicity: 1..* unordered

Properties: composite
192 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: namespace To: GlobalRule

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement.namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the GlobalRule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

11.2.4 Association: rule-constrains-extents

Definition: represents the relationship between a GlobalRule and the EntityTypes whose Extents it constrains.

Note – See 9.6 of ISO 10303-11:2004.

11.2.4.1 Association Ends

AssociationEnd: constrained-extents To: Core::EntityType

Definition: represents the relationship between a GlobalRule and the Extents of the EntityTypes that it constrains

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: constraint-rules To: GlobalRule

Definition: represents the relationship between an EntityType and the GlobalRules that constrain it.

Note – See 9.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

11.3 SupertypeRules and SubtypeConstraints

This section models the concepts used in EXPRESS supertype clauses and SUBTYPE_CONSTRAINT declarations.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 193

Issue 13669 - replace figure

Figure 36 - Supertype Rules and Subtype Constraints

11.3.1 Class: ANDConstraint

Definition: a constraint requiring its two operands to be equal as sets. Each operand can be a single Extent or a union of
Extents.

Note – See 9.2.5.4 of ISO 10303-11:2004.

11.3.1.1 Supertypes

SubtypeConstraint

11.3.1.2 Attributes

none.

11.3.1.3 Associations

none.

11.3.1.4 Other Roles

none.
194 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

11.3.2 Class: ONEOFConstraint

Definition: a constraint requiring all of its operands to be mutually exclusive. Each operand can be a single Extent or a
union of Extents.

Note – See 9.2.5.2 of ISO 10303-11:2004.

11.3.2.1 Supertypes

SubtypeConstraint

11.3.2.2 Attributes

none.

11.3.2.3 Associations

none.

11.3.2.4 Other Roles

none.

11.3.3 Class: SubtypeConstraint

Definition: a Rule requiring a specific relationship among the Extents of two or more subtypes of a given supertype
EntityType. The constraint can be stated as a relationship among the Extents as Sets of entity instances, and is equivalent
to a NamedRule.

Note – See 9.2.5 of ISO 10303-11:2004.

11.3.3.1 Supertypes

none.

11.3.3.2 Attributes

none.

11.3.3.3 Associations

AssociationEnd: collection To: SupertypeRule

via: rule-includes-SubtypeConstraints

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 195

AssociationEnd: constrained-subtypes To: Core::EntityType

via: rule-constrains-subtypes

Definition: the EntityTypes whose Extents are constrained by the SubtypeConstraint..

Note – See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: equivalent-rule To: Core::Expression

Definition: represents the fact that every SubtypeConstraint is equivalent to a BooleanExpression involving the Extents of
the EntityTypes named in the SubtypeConstraint. The Expression is required to evaluate to True. The effect is that the
SubtypeConstraint is equivalent to a NamedRule.

Note – The equivalent-rule that formulates the SubtypeConstraint is wholly owned by the SubtypeConstraint. It is not treated
as reusable.

Multiplicity: 1..1

11.3.3.4 Other Roles

None.

11.3.4 Class: SupertypeRule

Definition: a CommonElement representing a collection of rules requiring specific relationships among the Extents of two
or more subtypes of a given supertype EntityType. The interpretation of a SupertypeRule is that all of the contained
constraints shall hold. SupertypeRule corresponds to a SUBTYPE_CONSTRAINT declaration, or to the EXPRESS
supertype-clause attached to an entity declaration. A supertype-clause cannot have a ScopedId; a
SUBTYPE_CONSTRAINT can have a ScopedId, but is not required to.

Note – See 9.2.5 and 9.7 of ISO 10303-11:2004.

11.3.4.1 Supertypes

Core::CommonElement

11.3.4.2 Attributes

Attribute: assertsAbstract To: MOF::Boolean

Definition: Represents a declaration in a SUBTYPE_CONSTRAINT that the .supertype EntityType is to be treated as
ABSTRACT in this context, which is usually an interfacing schema.

Note – See clause 9.2.5.1 of ISO 10303-11:2004.

Multiplicity: 1..1
196 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

11.3.4.3 Associations

Issue 13669 - add text

AssociationEnd: constraints To: SubtypeConstraint

via: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: named-supertype To: Core::EntityType

Definition: represents the relationship between a SupertypeRule and the EntityType that is the supertype of all the
EntityTypes that appear in the SupertypeRule. This relationship is nominal for ANDConstraints and ONEOFConstraints,
but significant for ABSTRACT and TOTAL_OVERConstraints.

Note – See 9.2.5 and 9.7 of ISO 10303-11:2004.

Multiplicity: 1..1

11.3.4.4 Other Roles

None.

11.3.5 Class: TOTAL_OVERConstraint

Definition: a constraint requiring the union of all of its operands to be equal to the Extent of the supertype.

Note – See 9.7.2 of ISO 10303-11:2004.

Note – The proper model of a TOTAL_OVER constraint requires that the supertype be one of the operands of the equivalent-
expression and that the supertype be included among the constrained-subtypes.

11.3.5.1 Supertypes

SubtypeConstraint

11.3.5.2 Attributes

none.

11.3.5.3 Associations

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 197

11.3.5.4 Other Roles

none.

11.3.6 Association: rule-constrains-subtypes

Definition: represents the relationship between a SubtypeConstraint and the Extents of the EntityTypes to which it refers.

Note – See 9.2.5 of ISO 10303-11:2004.

11.3.6.1 Association Ends

AssociationEnd: constrained-subtypes To: Core::EntityType

Definition: represents the relationship between a SubtypeConstraint and the EntityTypes whose Extents it constrains.

Note – See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between an EntityType and the SubtypeConstraints that involve it.

Note – See 9.2.5 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

11.3.7 Association: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Issue 13669 - add text

11.3.7.1 Association Ends

AssociationEnd: collection To: SupertypeRule

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1

AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Multiplicity: 0..* unordered

Properties: composite
198 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12 Package : Expressions

The Expressions Package contains the detailed modeling concepts for Expressions. The basic Expression model in the
Core Package is permitted to be a syntactic string. This package provides the elements that support the operational
semantics of the expression.

12.1 Dependencies

Dependency on Package: Core

Stereotypes: import

The Expressions Package depends on the Core Package for the basic Expression concept, for the basic Instance concept
for Expression results, and for references to InstantiableTypes, SingleEntityTypes and Attributes.

Dependency on Package: Instances

Stereotypes: import

The Expressions Package depends on the Instances Package for the Instance concepts that correspond to Literals and
other references to Constants.

Dependency on Package: Algorithms

Stereotypes: import

The Expressions Package depends on the Algorithms Package for the Variable concept, and for the Function and
Parameter concepts used in FunctionCalls.

12.2 Overview of Expressions

Figure 37 provides the overview of Expression types. Expression and TextExpression are described in the Core package.
FullExpression is the abstract class that represents the semantic model of an EXPRESS expression. It is described in this
section. Each of its subclasses is described in a separate section below.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 199

Issue 13704 - replace figure

Figure 37 - Expressions

12.2.1 Class Core::Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the assignment of Instances to model elements (e.g., Variables, Attributes, etc.) that appear
in the Expression. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note – In general, Expressions are treated as reusable. It is recommended, however, that, except for literals and local varia-
bles, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable, specifi-
cally those that are the definitions of Rules.

Note – Class Expression, and all of its properties, are defined in the Core Package, so that it can be used by other Packages,
including Core, as necessary. This entry serves only to provide the Definition and a link to the complete specification in
8.15.1.

12.2.2 Class: IndexOperation

Definition: an Expression that returns a value “extracted from” a given base value.

Properties: abstract

12.2.2.1 Supertypes

Core::Expression

12.2.2.2 Attributes

none.
200 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.2.2.3 Associations

AssociationEnd: base-value To: Core::Expression

Definition: represents the base value from which the result value is to be extracted. For an AggregateIndex, the base-value
Expression must evaluate to an AggregateValue. For a BinaryIndex, the base-value Expression must evaluate to a
BINARY value. For a StringIndex, the base-value Expression must evaluate to a STRING Value.

Multiplicity: 1..1

12.2.2.4 Other Roles

none.

12.2.3 Class: Operation

Definition: an abstract subclass of Expression; represents the result of a well-defined mathematical operation or character
manipulation.

Note – See clause 12 of ISO 10303-11:2004.

Properties: abstract

12.2.3.1 Supertypes

Core::Expression

12.2.3.2 Attributes

none.

12.2.3.3 Associations

none.

12.2.3.4 Other Roles

none.

12.2.4 Class: Primary

Definition: an abstract subclass of Expression representing a specific Instance, or the current value of an object that has a
simple lexical designation.

Note – See 12.7 of ISO 10303-11:2004.

Properties: abstract
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 201

12.2.4.1 Supertypes

Core::Expression

12.2.4.2 Attributes

none.

12.2.4.3 Associations

none.

12.2.4.4 Other Roles

none.

12.2.5 Class: Selector

Definition: A FullExpression that returns the value of one or more Attributes of an EntityInstance.

Note – This concept does not appear in Part 11 per se, but the three subclasses all appear in Part 11 and have this property.

Properties: abstract

12.2.5.1 Supertypes

Core::Expression

12.2.5.2 Attributes

none.

12.2.5.3 Associations

AssociationEnd: entity-instance To: Core::Expression

Definition: represents the entity instance from which the Selector extracts the value of the named Attribute(s).

Note – See 12.7.3 of ISO 10303-11:2004.

Multiplicity: 1..1

12.2.5.4 Other Roles

none.
202 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.3 Primaries

This section describes the EXPRESS operations that return the values of named independent elements – Constants,
Enumeration items, Extents, Variables, Parameters. It also includes SELF, which is a reference to the current instance of
a data type, and Literals, which are specialized syntactic notations that refer to values of simple types.

Figure 38 - Primaries

12.3.1 Class: ConstantRef

Definition: a Primary Expression that returns the (current) value of a given Constant. The .id attribute refers to an
identifier for a Constant defined in, or interfaced into, the schema.

Note – See 12.7.1 of ISO 10303-11:2004.

Note – A reference to an EXPRESS “Built-in Constant” is considered to be a Literal, not a ConstantRef.

12.3.1.1 Supertypes

Primary

<<metaclass>>
EnumItemRef

+id : Identifier [1]{subsets text}

<<metaclass>>
ExtentRef

+id : Identifier [1]{subsets text}

<<metaclass>>
VariableRef

+id : Identifier [1]{subsets text}

<<metaclass>>
ConstantRef

+id : Identifier [1]{subsets text}

<<metaclass>>
Expression

(Core)

+text : ExpressText [0..1]

BuiltInConstants

<<metaclass>>
IndeterminateRef

<<metaclass>>
EnumerationItem

(Instances)

<<metaclass>>
NamedVariable

(Algorithms)

<<metaclass>>
ParameterRef

<<Singleton>>
Indeterminate

(Instances)

<<metaclass>>
Instance

(Core)

<<metaclass>>
Constant
(Instances)

<<metaclass>>
Primary

<<metaclass>>
Literal

<<metaclass>>
NamedType

(Core)

<<metaclass>>
Parameter
(Algorithms)

<<metaclass>>
SELFRef

<<metaclass>>
SimpleValue

(Instances)

expression-evaluates-to-Instance

+evaluation

0..10..*

<<instantiate>>

pq

{subsets evaluation}
+refers-to

1

0..*

pl

{subsets evaluation}

+refers-to
1

0..*pp

{subsets refers-to}
+refers-to

1

0..*

pc

+refers-to1

0..*
pv

+refers-to1

0..*

pe

{subsets evaluation}
+refers-to

1

0..*

px

+refers-to1

0..*
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 203

12.3.1.2 Attributes

Issue 13689 - add text, delete text

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the Reference.

Multiplicity: 1..1

Properties: derived.

TaggedValues

derivation = = self->text;

12.3.1.3 Associations

AssociationEnd: refers-to To: Instances::Constant

Definition: represents the Constant referred to by a ConstantRef.

Note – See 12.7.1 of ISO 10303-11:2004.

Multiplicity: 1..1

12.3.1.4 Other Roles

none.

12.3.2 Class: EnumItemRef

Definition: a Primary Expression that returns an EnumerationItem (value)

Note – See 12.7.1 of ISO 10303-11:2004.

12.3.2.1 Supertypes

Primary

12.3.2.2 Attributes

Issue 13689 - add text, delete text

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
204 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Multiplicity: 1..1

Properties: derived.

TaggedValues

derivation = = self->text;

12.3.2.3 Associations

Issue 13903 - add text, delete text

AssociationEnd: refers-to To: Instances::EnumerationItem

Subsets: Core::Expression:evaluation

Definition: represents the EnumerationItem value referred to by the EnumItemRef. This relationship specializes
Expression.evaluation.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = = self->evaluation;

12.3.2.4 Other Roles

none.

12.3.3 Class: ExtentRef

Definition: a Primary Expression denoting the extent of a NamedType (almost always an entity data type), that is, the set
of instances of that data type that appear in the population. This type of Primary is only permitted in an Expression that
states a Rule.

Note – See 9.6 of ISO 10303-11:2004.

12.3.3.1 Supertypes

Primary

Issue 13689 - add text, delete text

12.3.3.2 Attributes

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 205

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = = self->text;

12.3.3.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between the Extent Reference and the NamedType to which the .id value refers.
The value returned is the Extent of that NamedType within the (current) Population.

Multiplicity: 1..1

12.3.3.4 Other Roles

none.

Issue 13706 - add text

12.3.4 Class: IndeterminateRef

Definition: a Primary Expression consisting of the symbol ("?") that denotes the Indeterminate value.

Note – See 14.2 of ISO 10303-11:2004.

Although the Indeterminate (“?”) symbol is described as a built-in constant in ISO 10303-11, it is treated here as a distinct
kind of Primary, because it refers-to (evaluates-to) an instance that is not a value of any DataType.

12.3.4.1 Supertypes

Primary

12.3.4.2 Attributes

none.

12.3.4.3 Associations

Issue 13903 - add text, delete text

AssociationEnd: refers-to To: Instances::Indeterminate

Subsets: Core::Expression:evaluation

Definition: represents the fact that the IndeterminateRef refers to the single Indeterminate value. This relationship
specializes Expression.evaluation.

Properties: derived
206 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

TaggedValues

derivation = = self->evaluation;

12.3.4.4 Other Roles

none.

12.3.5 Class: Literal

Definition: a Primary Expression consisting of a symbol that denotes a specific value of a SimpleType. The .text attribute
of Expression is the representation of the value.

Note – See 7.5 of ISO 10303-11:2004.

12.3.5.1 Supertypes

Primary

12.3.5.2 Attributes

none.

12.3.5.3 Associations

Issue 13690/13903 - add text, delete text

AssociationEnd: refers-to To: Instances::SimpleValue

subsets: Core::Expression:evaluation

Definition: represents the SimpleValue value referred to by the Literal. This relationship specializes
Expression.evaluation.

Properties: derived, abstract

TaggedValues

derivation = = self->evaluation;

12.3.5.4 Other Roles

none.

12.3.6 Class: ParameterRef

Definition: a Primary Expression that returns the current value associated with a given Parameter.

A ParameterRef is only permitted within the body of an Algorithm.

For an InParameter, the associated value is the current value of the InParameter..
For a VarParameter, the associated value is the current value in the referent of the VarParameter.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 207

A ParameterRef is a subclass of VariableRef, because every Parameter is a NamedVariable, and a ParameterRef is a
reference to the value of the Parameter seen as a variable in the body of the Algorithm.

Note – See 12.7.1 of ISO 10303-11:2004.

12.3.6.1 Supertypes

VariableRef

Issue 13691 - revise text

12.3.6.2 Attributes

Attribute: id To: Core::Identifier

Definition: Represents the identifier that is the content of the reference.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->text;

none.

Issue 13916 - Replace text

12.3.6.3 Associations

AssociationEnd: refers-to To: Algorithms::Parameter

Subsets: VariableRef:refers-to

Definition: the formal Parameter to which the ParameterRef refers. If the formal Parameter is an InParameter, the
ParameterRef refers to its current value. If the formal Parameter is a VarParameter, the ParameterRef refers to the current
value of its referent..

Note – See 12.7.1 of ISO 10303-11:2004.

Multiplicity: 1..1

12.3.6.4 Other Roles

none.
208 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.3.7 Class: SELFRef

Definition: A Primary Expression consisting of the symbol SELF. It refers to the value of each instance (in any
Population) of the data type being defined by the declaration in which it appears. SELF is only a valid Symbol in a
DomainRule.

Note – See clause 14.5 of ISO 10303-11:2004.

12.3.7.1 Supertypes

Primary

12.3.7.2 Attributes

none.

12.3.7.3 Associations

none.

12.3.7.4 Other Roles

none.

12.3.8 Class: VariableRef

Definition: a Primary Expression that returns the value currently associated with a given NamedVariable.
NamedVariables include LocalVariables, QueryVariables, ControlVariables, and AliasVariables. They also include
Parameters and FunctionResults seen as variables within the body of the Algorithm.

A VariableRef that refers-to a QueryVariable may occur anywhere within expressions in the owning Query.

A VariableRef that refers-to a ControlVariable may occur anywhere within the RepeatStatement that defines the
ControlVariable.

A VariableRef that refers-to an AliasVariable may occur anywhere within the AliasStatement.

A VariableRef that refers-to a LocalVariable may occur anywhere within the AlgorithmScope in which it is defined:

• for a GlobalRule, it may occur anywhere within the body of the GlobalRule, or within the NamedRules contained in the
GlobalRule;

• for an Algorithm, it may occur within the body of an Algorithm or within initial-value expressions for other
LocalVariables.

A VariableRef that refers to a Parameter may occur anywhere within the body of the Algorithm, or within initial-value
expressions for LocalVariables.

A VariableRef that refers to a FunctionResult may occur anywhere within the body of the Algorithm,

The value associated with a VariableRef that refers to aVARVariable (an AliasVariable or a VARParameter) is the current
value in the referent of the VARVariable.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 209

The value associated with any other VariableRef is the current value in the Variable to which the VariableRef refers.

Note – See 12.7.1 of ISO 10303-11:2004.

12.3.8.1 Supertypes

Primary

12.3.8.2 Attributes

Issue 13689 - add text, delete text

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = = self->text;

12.3.8.3 Associations

AssociationEnd: refers-to To: Algorithms::NamedVariable

Definition: represents the relationship between the VariableReference and the local Variable to which it refers.

Multiplicity: 1..1

12.3.8.4 Other Roles

none.

12.4 Indexing

Issue 13919 - Delete text, add text

This section describes the EXPRESS operations that select values that are part of, or linked to, Instances. Indexing
operations – aggregate indexing, string indexing and binary indexing – extract component values by their numbered
positions in the Instance. Selector operations extract values related to entity instances by the name of the component or
relationship – attributes, implicit inverse attributes (UsedIn), and attribute-groups. These concepts are shown in Figure
39.
210 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13917 - Replace figure

Figure 39 - Indexing Operations

12.4.1 Class: AggregateIndex

Definition: an IndexOperation that returns the value of a specified member of a given AggregateValue. .base-value
evaluates to the AggregateValue. .index-value evaluates to the “position” of the member to be extracted. The
interpretation of the .index-value depends on the kind of AggregateValue (Indexed, Ordered, Unordered).

Note – See 12.6.1 of ISO 10303-11:2004.

12.4.1.1 Supertypes

IndexOperation

12.4.1.2 Attributes

none.

12.4.1.3 Associations

AssociationEnd: index-value To: Core::Expression

Definition: represents the (Integer) index value designating the member whose value is to be extracted. The interpretation
of the index value depends on the kind of AggregateValue.

Note – See 12.6.1 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 211

12.4.1.4 Other Roles

none.

12.4.2 Class: BinaryIndex

Definition: An IndexOperation that returns a substring of one or more bits from a BINARY value. .base-value is the
BINARY value. .first-bit designates the position of the first bit to be extracted. .last-bit designates the position of the last
bit to be extracted. .last-bit has no value if only one bit is to be extracted.

Note – See clause 12.3.1. of ISO 10303-11:2004.

12.4.2.1 Supertypes

IndexOperation

12.4.2.2 Attributes

none.

12.4.2.3 Associations

AssociationEnd: first-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first bit to be extracted.

Multiplicity: 1..1

AssociationEnd: last-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last bit to be extracted. .last-bit has no
value if only one bit is to be extracted.

Multiplicity: 0..1

12.4.2.4 Other Roles

none.

12.4.3 Class: StringIndex

Definition: An IndexOperation that returns a substring of one or more characters (codes) from a STRING value. .base-
value is the STRING value. .first-code designates the position of the first character (code) to be extracted. .last-code
designates the position of the last character (code) to be extracted. .last-code has no value if only one character is to be
extracted.

Note – See clause 12.5.1. of ISO 10303-11:2004.
212 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.4.3.1 Supertypes

IndexOperation

12.4.3.2 Attributes

none.

12.4.3.3 Associations

AssociationEnd: first-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first character (code) to be extracted.

Multiplicity: 1..1

AssociationEnd: last-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last character (code) to be extracted.
.last-code has no value if only one character (code) is to be extracted.

Multiplicity: 0..1

12.4.3.4 Other Roles

none.

12.5 Selection

Issue 13919 - Replace text

This section describes the EXPRESS operations that select values that are related to EntityInstances, or are components of
PartialEntityValues. Selector operations extract values related to entity instances by the name of the relationship – attributes,
implicit inverse attributes (UsedIn), and attribute-groups. In a similar way, they can be used to extract the values of
attributes and attribute-groups from PartialEntityValues. The Selector operations are shown in Figure 40.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 213

Issue 13689 - replace figure

Figure 40 - Attribute and Attribute-Group Selectors

12.5.1 Class: AttributeRef

Definition: a Selector expression that returns the value of a given Attribute of a given entity instance

Note – See 12.7.3 of ISO 10303-11:2004.

12.5.1.1 Supertypes

Selector

12.5.1.2 Attributes

Attribute: id To: Core::Identifier

Issue 13689 - add text, delete text

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->text;

214 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.5.1.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between the AttributeReference and the Attribute to which it refers.

Multiplicity: 1..1

12.5.1.4 Other Roles

none.

12.5.2 Class: GroupRef

Definition: a Selector that returns a PartialEntityValue consisting of the values of the Attributes of a given entity instance
that constitute a given SingleEntityType.

Note – See 12.7.4 of ISO 10303-11:2004.

12.5.2.1 Supertypes

Selector

12.5.2.2 Attributes

Issue 13689 - add text, delete text

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = = self->text;

12.5.2.3 Associations

AssociationEnd: refers-to To: Core::SingleEntityType

Definition: represents the relationship between the GroupReference and the SingleEntityType (group of Attributes) to
which it refers.

Multiplicity: 1..1

12.5.2.4 Other Roles

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 215

12.5.3 Class: UsedInRef

Definition: a Selector expression that returns the Set of EntityInstances for which the given entity instance is in the range
of the specified Attribute. In effect, it returns the value of the corresponding inverse attribute for the given entity instance.

Note – See clause 15.26 of ISO 10303-11:2004.

12.5.3.1 Supertypes

Selector

12.5.3.2 Attributes

none.

12.5.3.3 Associations

AssociationEnd: inverse-of To: Core::Attribute

Definition: represents the relationship between the UsedIn Reference and the Attribute designated by the .id value. The
UsedIn Reference effectively produces the “inverse” of this Attribute.

Multiplicity: 1..1

12.5.3.4 Other Roles

none.

12.6 Operations

Issue 13697 - revise text

This section describes the Expressions that are conceptually “operations” with one operand (UnaryOperation) or two
operands (BinaryOperation).

The EXPRESS syntax for Operations takes several forms. Some of the operations are denoted by infix or prefix
operation symbols, such as “+” or “NOT.” Others are denoted by “built-in functions” that take one or two arguments that
are the operands. In this metamodel, they are all treated as Operations. Each built-in function is represented by a
corresponding BinaryOperator or UnaryOperator. There is not a one-to-one correspondence between Operations and
EXPRESS operation symbols and built-in functions, because some of the symbols are “overloaded,” in that they denote
different operations for operands of different data types.

This section also includes the Coercion operation, which is a special case. It has only one operand, but it also has a
“meta-operand” – the data type to which the operand is to be logically or physically converted. Each EXPRESS data
type, including all user-defined types, implicitly defines a Coercion operation whose target is that data type. And in that
sense, the data type simply distinguishes one coercion operations from another. There is no explicit EXPRESS syntax for
Coercion operations; they are inserted as part of the semantic interpretation of Expressions, when it is necessary to treat a
literal or result as representing a value of a different datatype.
216 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13917 - Replace figure

Figure 41 - Operations and Built-in Functions

12.6.1 Class: BinaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation or character manipulation on
two Expression operands, which are distinguished. An instance of BinaryOperation represents a usage of a value of
BinaryOperator with a specific left and right operand.

Note – See clause 12 of ISO 10303-11:2004.

12.6.1.1 Supertypes

Operation

12.6.1.2 Attributes

Attribute: operator To: BinaryOperator

Definition: Represents the conceptual operation that is actually being performed by the BinaryOperation.

Note – See ISO 10303-11.2:2004, clause 12.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 217

12.6.1.3 Associations

AssociationEnd: left-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “left” operand in the definition of the operation.

Note – See clause 12 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: right-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “right” operand in the definition of the operation.

Note – See clause 12 of ISO 10303-11:2004.

Multiplicity: 1..1

12.6.1.4 Other Roles

none.

12.6.2 Datatype: BinaryOperator

Stereotypes: enumeration

Definition: Conceptual EXPRESS language element representing the interpretation of a binary operation symbol in the
context of the operand datatypes. Instances of this class are distinct operations, such as number-addition, set-union, string-
compare-equal, etc. Some BinaryOperators are denoted by “built-in functions” in EXPRESS syntax.

Note – See ISO 10303-11.2:2004 clause 12 and some elements of clause 15.

12.6.2.1 Supertypes

none.

12.6.2.2 Values

Value: AND

Definition: Returns true if both operands are true, unknown if both are unknown, and false if either is false.

Value: Add

Definition: Returns the arithmetic sum of two NUMBER operands.

Value: BagAdd

Definition: Returns the BagValue resulting from adding one to the count of occurrences of the value of the second
operand in the first operand, which must be a BagValue.
218 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Value: BagRemove

Definition: Returns the BagValue resulting from subtracting one from the count of occurrences of the value of the second
operand in the first operand, which must be a BagValue. If the first operand contains no occurrences of the value of the
second operand, returns the value of the first operand.

Value: BagUnion

Definition: For two BAG operands with a common member type, returns the BAG value in which the number of
occurrences of each value of the member type is the sum of the number of its occurrences in the two operands.

Value: BinaryAppend

Definition: Returns the BinaryValue whose bits are the bits of the value of the first operand, which must be a
BinaryValue, in that order, followed by the bits of the value of the second operand, which must be a BinaryValue, in that
order.

Value: DIV

Definition: For two INTEGER operands, returns the integral part of the quotient of dividing the value of the first by the
value of the second.

Value: Difference

Definition: For two SET operands with a common member type, returns the SET value containing all members of the first
operand except for those that are also members of the second operand. For two BAG operands with a common member
type, returns the BAG value in which the number of occurrences of each value of the member type is the number of its
occurrences in the first operand minus the number of its occurrences in the second operand, but not less than zero.

Value: Divide

Definition: For two NUMBER operands, returns the quotient of dividing the value of the first by the value of the second.

Value: EntityConstructor

Definition: For two operands that are PartialEntityValues, returns the PartialEntityValue that contains all of the
SingleEntityValues that were present in either operand. This operation is referred to in EXPRESS as the “complex entity
constructor” (||).

Note – See ISO 10303-11:2004 clause 12.10

Value: EntityValueEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns false if the value
of any attribute of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that attribute of the second
operand, else true. If both operands are of a common data type and that data type is an aggregation type whose members
are entity instances, returns false if the operands are of different sizes, or if for any of the corresponding members of the
two operands, the value of any attribute of the member of the first operand is NotEqual to (or EntityValueNotEqual to) the
value of that attribute of the member of the second operand, else true. If the common data type is anything else, this
operator is equivalent to Equal.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 219

Value: EntityValueNotEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if the value
of any attribute of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that attribute of the second
operand, else false. If both operands are of a common data type and that data type is an aggregation type whose members
are entity instances, returns true if the operands are of different sizes, or if for any of the corresponding members of the
two operands, the value of any attribute of the member of the first operand is NotEqual to (or EntityValueNotEqual to) the
value of that attribute of the member of the second operand, else false. If the common data type is anything else, this
operator is equivalent to NotEqual.

Value: Equal

Definition: Returns true if both operands are of a common data type and equal in value, as defined for that type, else
false. For the definition of “equal in value,” see ISO 10303-11:2004 clause 12.2.1.

Value: Exponent

Definition: For two NUMBER operands, returns the the value of the first raised to the power specified by the value of the
second.

Value: Greater

Definition: Returns true if both operands are of a common data type and the value of the first operand is greater than the
value of the second operand, as defined for that type, else false. For the definition of “is greater than,” see ISO 10303-
11:2004 clause 12.2.1.

Value: IN

Definition: Returns true if the value of the first operand is Equal to the value of any member of the second operand
(which must be an AggregateValue); else false. If the first operand is an EntityInstance, “is Equal to” is interpreted as “is
InstanceEqual to.”

Value: InstanceEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if both
operands refer to the same individual, else false. If both operands are of a common data type and that data type is an
aggregation type whose members are entity instances, returns false if the operands are of different sizes, or if any of the
corresponding members of the two operands refer to different individuals, else true. If the common data type is anything
else, this operator is equivalent to Equal.

Value: InstanceNotEqual

Definition: If both operands are of a common data type and that data type is an entity data type, returns true if the
operands refer to distinct individuals, else false. If both operands are of a common data type and that data type is an
aggregation type whose members are entity instances, returns true if the operands are of different sizes, or if any of the
corresponding members of the two operands refer to different individuals, else false. If the common data type is anything
else, this operator is equivalent to NotEqual.

Value: Intersection

Definition: For two SET operands with a common member type, returns the mathematical intersection of the two sets. For
two BAG operands with a common member type, returns the BAG value in which the number of occurrences of each
value of the member type is the smaller of the number of its occurrences in the two operands.
220 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Value: LIKE

Definition: Returns true if both operands are StringValues and the value of the first operand is a match for the pattern that
is the value of the second operand. For the interpretation of the pattern, see ISO 10303-11:2004 clause 12.2.5.

Value: Less

Definition: Returns true if both operands are of a common data type and the value of the first operand is less than the
value of the second operand, as defined for that type, else false. For the definition of “is less than,” see ISO 10303-
11:2004 clause 12.2.1.

Value: ListAddFirst

Definition: Returns the ListValue whose first member is the value of the second operand and whose subsequent members
are the members of the value of the first operand, which must be a ListValue, in that order.

Value: ListAddLast

Definition: Returns the ListValue whose members are the members of the value of the first operand, which must be a
ListValue, in that order, followed by the value of the second operand.

Value: ListAppend

Definition: Returns the ListValue whose members are the members of the value of the first operand, which must be a
ListValue, in that order, followed by the members of the value of the second operand, which must be a ListValue, in that
order.

Value: MOD

Definition: For two INTEGER operands, returns the remainder of dividing the value of the first by the value of the
second.

Value: Multiply

Definition: Returns the arithmetic product of two NUMBER operands.

Value: NVL

Definition: If the value of the first operand is Indeterminate (?), returns the value of the second operand; else returns the
value of the first operand.

Note – See ISO 10303-11:2004 clause 15.18.

Value: NotEqual

Definition: Returns true if both operands are of a common data type and unequal in value, as defined for that type, else
false. For the definition of “equal in value,” see ISO 10303-11:2004 clause 12.2.1.

Value: NotGreater

Definition: Returns true if both operands are of a common data type and the value of the first operand is less than or equal
to the value of the second operand, as defined for that type, else false. For the definition of “is less than or equal to,” see
ISO 10303-11:2004 clause 12.2.1.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 221

Value: NotLess

Definition: Returns true if both operands are of a common data type and the value of the first operand is greater than or
equal to the value of the second operand, as defined for that type, else false. For the definition of “is greater than or equal
to,” see ISO 10303-11:2004 clause 12.2.1.

Value: OR

Definition: Returns true if either operand is true, unknown if both are unknown, and false if both are false.

Value: SetAdd

Definition: Returns the SetValue that is the union of the value of the first operand, which must be a SetValue, with the
SetValue comprising exactly one member equal (or InstanceEqual) to the value of the second operand.

Value: SetUnion

Definition: For two SET operands with a common member type, returns the mathematical union of the two sets.

Value: StringAppend

Definition: Returns the StringValue whose characters are the characters of the value of the first operand, which must be a
StringValue, in that order, followed by the characters of the value of the second operand, which must be a StringValue, in
that order.

Value: Subset

Definition: Returns true if every member of the value of the first operand (which must be an AggregateValue) is IN the
value of the second operand (which must be an AggregateValue); else false.

Value: Subtract

Definition: For two NUMBER operands, returns the result of subtracting the value of the second from the value of the
first.

Value: ValueIn

Definition: Returns true if the value of the first operand is Equal to the value of any member of the second operand
(which must be an AggregateValue); else false. If the first operand is an EntityInstance, “is Equal to” is interpreted as “is
EntityValueEqual to.”

Note – See ISO 10303-11:2004 clause 15.28.

Value: XOR

Definition: Returns true if one operand is true and one is false, unknown if either is unknown, and false otherwise.

12.6.3 Class: Coercion

Definition: an Operation representing the conversion of the operand to a specific data type (InstantiableType). This
operation is implicit in a number of EXPRESS expressions, notably:

• in converting between a defined data type and its fundamental type (on which the operations are defined), and
222 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

• in converting an EntityValue to an EntityInstance of the corresponding EntityType.

In most cases, the Coercion does not change the “value” of the operand; rather the Coercion maps the value to the
corresponding value of the related data type.

Note – See clause 12 of ISO 10303-11:2004, and the proposed revision to clause 12.10.

12.6.3.1 Supertypes

Operation

12.6.3.2 Attributes

None.

12.6.3.3 Associations

AssociationEnd: operand To: Core::Expression

Definition: represents the Expression whose result is to be converted to the target-type by the Coercion operation.

Multiplicity: 1..1

AssociationEnd: target-type To: Core::VariableType

Definition: represents the data type to which the operand of the Coercion is to be converted.

Multiplicity: 1..1

12.6.3.4 Other Roles

none.

12.6.4 Class: UnaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation on a single Expression operand.
A UnaryOperation models a use of a UnaryOperator with a particular operand.

Note – See clause 12 of ISO 10303-11:2004.

12.6.4.1 Supertypes

Operation

12.6.4.2 Attributes

Attribute: operator To: UnaryOperator

Definition: Represents the conceptual operation that is actually being performed by the UnaryOperation.

Note – See ISO 10303-11.2:2004, clause 12.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 223

Multiplicity: 1..1

12.6.4.3 Associations

AssociationEnd: unary-operand To: Core::Expression

Definition: represents the operand Expression that produces the input to a UnaryOperation.

Note – See clause 12 of ISO 10303-11:2004.

Multiplicity: 1..1

12.6.4.4 Other Roles

None.

12.6.5 Datatype: UnaryOperator

Stereotypes: enumeration

Definition: Conceptual EXPRESS language element representing the interpretation of a unary operation symbol in the
context of the operand datatype. Instances of this class are distinct operations, such as numeric-negation, boolean-
negation, real-square-root, absolute-value, etc. Some UnaryOperators are denoted by “built-in functions” in EXPRESS
syntax.

Note – See ISO 10303-11.2:2004 clause 12 and some elements of clause 15.

12.6.5.1 Supertypes

none.

12.6.5.2 Values

Value: ABS

Definition: For a NUMBER operand, returns the magnitude (absolute value) of the value of the operand.

Value: ACOS

Definition: For a NUMBER operand, returns the mathematical arc cosine of the value of the operand.

Value: ASIN

Definition: For a NUMBER operand, returns the mathematical arcsine of the value of the operand.

Value: ATAN

Definition: For a NUMBER operand, returns the mathematical arctangent of the value of the operand.

Value: BinaryLength

Definition: For an operand that is a BinaryValue, returns the number of bits in the value.
224 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Value: COS

Definition: For a NUMBER operand, returns the mathematical cosine of the value of the operand.

Value: EXISTS

Definition: Returns false if the operand is Indeterminate (?), else true.

Value: EXP

Definition: For a NUMBER operand, returns the mathematical exponential function of the value of the operand.

Value: HiBound

Definition: For an operand whose data type is an aggregation type, returns the declared upper-bound value for the size of
the values, or for an ARRAY, the declared maximum index-value.

Value: HiIndex

Definition: For an operand that is an AggregateValue, returns the largest valid index-value for the value.

Value: Identity

Definition: Returns the value of the operand.

Value: LOG

Definition: For a NUMBER operand, returns the Napierian logarithm of the value of the operand.

Value: LOG10

Definition: For a NUMBER operand, returns the logarithm to the base 10 of the value of the operand, which for an
INTEGER value is the number of decimal digit characters required to represent it.

Value: LOG2

Definition: For a NUMBER operand, returns the logarithm to the base 2 of the value of the operand, which for an
INTEGER value is the number of bits required to represent it.

Value: LoBound

Definition: For an operand whose data type is an aggregation type, returns the declared lower-bound value for the size of
the values, or for an ARRAY, the declared minimum index-value.

Value: LoIndex

Definition: For an operand that is an AggregateValue, returns the smallest valid index-value for the value.

Value: NOT

Definition: For an operand that is a LogicalValue, returns true if the value is false, unknown if the value is unknown, and
false if the value is true.

Value: Negate

Definition: For a NUMBER operand, returns the additive inverse of the value of the operand.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 225

Value: ODD

Definition: For an operand that is an INTEGERValue, returns false if the value is exactly divisible by 2 and true
otherwise.

Value: RolesOf

Definition: For an EntityInstance operand, returns a set of RoleName values representing all the distinct Attributes
(RangeRoles) which the operand plays in the Population.

Value: SIN

Definition: For a NUMBER operand, returns the mathematical sine of the value of the operand.

Value: SQRT

Definition: For a NUMBER operand, returns the mathematical square root of the value of the operand, or Indeterminate
if it is negative.

Value: SizeOf

Definition: For an operand that is an AggregateValue, returns the number of members in the value.

Value: StringLength

Definition: For an operand that is a StringValue, returns the number of characters in the value.

Value: TAN

Definition: For a NUMBER operand, returns the mathematical tangent of the value of the operand.

Value: TypeOf

Definition: Returns a Set of TypeName values representing the data types of which the operand is an instance.

Value: VALUE

Definition: For a STRING operand, returns the NUMBER value resulting from interpreting the operand as the
representation of a numeric value, or Indeterminate, if no such interpretation can be made.

Value: ValueUnique

Definition: For an operand that is an AggregateValue, returns true if no two members of the operand are Equal or
EntityValueEqual.

12.7 Function Calls

Issue 13697 - revise text

This section describes the Expressions that represent invocations of schema-defined FUNCTIONs, each of which returns a
FunctionResult that is the evaluation of the Expression.
226 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - replace figure

Figure 42 - Function Calls

Issue 13699 - revise text

12.7.1 Class: ActualParameter

Definition: represents the substitution of the actual parameter instance for the formal parameter and, where required, the
substitution of the data type of the actual parameter for the GeneralizedType of the formal parameter and any derivatives.
When the corresponding formal Parameter is an InParameter (always in a FunctionCall), the actual-value is present –
either an instance of an InstantiableType or Indeterminate. When the corresponding formal Parameter is a VARParameter
(only in a ProcedureCall), the actual-value is not present, the actual-reference is present instead.

In a FunctionCall, the corresponding formal parameter is always an InParameter; a ProcedureCall can have formal
parameters of either kind.

Note – See 12.8 of ISO 10303-11:2004.

12.7.1.1 Supertypes

none.

12.7.1.2 Attributes

Attribute: position To: MOF::Integer

Definition: represents the position in which the ActualParameter occurs in the sequence associated with the FunctionCall
(used to associate the ActualParameter with a formal parameter).
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 227

Note – See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

Issue 13700 - add text

12.7.1.3 Associations

AssociationEnd: actual-referent To: Statements::VARExpression

Definition: the VARExpression that denotes the referent object to be associated with the formal (VAR) Parameter during
the invocation.

Multiplicity: 0..1

Note – The actual-referent association is shown in Figure 48.

AssociationEnd: actual-value To: Core::Expression

Definition: the Expression that specifies the value to be passed for the ActualParameter. When the corresponding formal
Parameter is an InParameter (always in a FunctionCall), the actual-value is present. When the corresponding formal
Parameter is a VARParameter (only in a ProcedureCall), the actual-value is not present.

Note – See 12.8 of ISO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: formal-parameter To: Algorithms::Parameter

Definition: represents the formal parameter to which the ParameterBinding applies.

Note – See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: in-FunctionCall To: FunctionCall

via: call-provides-actual-parameters

Definition: the FunctionCall, if any, that contains the ActualParameter.

Multiplicity: 0..1

AssociationEnd: in-ProcedureCall To: Statements::ProcedureCall

via: Statements::procedure-call-provides-actual-parameters

Definition: the ProcedureCall, if any, in which the ActualParameter appears.

Multiplicity: 0..1
228 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.7.1.4 Other Roles

none.

Issue 13699 - add text

12.7.1.5 Rules

Constraint

exists(self->in-FunctionCall) xor exists(self->in-ProcedureCall);

 A given ActualParameter must occur in either a FunctionCall or a ProcedureCall.

12.7.2 Class: FunctionCall

Definition: an Expression that represents the instance resulting from the invocation of a Function with zero or more
Expression operands called “actual parameters.”

Note – See 12.8 of ISO 10303-11:2004.

12.7.2.1 Supertypes

Core::Expression

12.7.2.2 Attributes

none.

12.7.2.3 Associations

AssociationEnd: actual-parameters To: ActualParameter

via: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: invokes-function To: Algorithms::Function

Definition: represents the relationship between the FunctionCall and the formal definition of the Function invoked.

Note – See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 229

AssociationEnd: returns-result To: Algorithms::FunctionResult

Definition: represents the relationship between the FunctionCall and the formal definition of the FunctionResult, which
describes the instance that results from the FunctionCall.

Note – See 12.8 of ISO 10303-11:2004.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->invokes-function->result

12.7.2.4 Other Roles

none.

12.7.2.5 Rules

Constraint
exists(self->actual-value) XOR exists(self->actual-referent);

An ActualParameter is either a value (expression) or a reference (expression)

Constraint
exists(self->inFunctionCall) XOR exists(self->inProcedureCall);

Every ActualParameter appears in either a FunctionCall or a ProcedureCall

Constraint
IF self->formal-parameter->inout THEN exists(self->actual-referent);

If the corresponding formal-parameter is an VAR parameter, the ActualParameter must be a Reference; if the formal
parameter is an InParameter, it must be a value..

Constraint
IF NOT (self->formal-parameter->inout) THEN exists(self->actual-value);

12.7.3 Association: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.
230 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.7.3.1 Association Ends

Issue 13669 - add text

AssociationEnd: actual-parameters To: ActualParameter

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: in-FunctionCall To: FunctionCall

Definition: the FunctionCall, if any, that contains the ActualParameter.

Multiplicity: 0..1

12.8 Query Expressions

Issue 13701 - revise text

This section describes the QueryExpression, which models invocations of the EXPRESS built-in QUERY function, specified
in section 12.6.7 of ISO 10303-11. The concepts are depicted in Figure 43.

Issue 13669 - replace figure

Figure 43 Query Expressions
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 231

12.8.1 Class: QueryExpression

Definition: an Expression representing the (aggregate) instance that results from extracting from the value of the
aggregate-operand (an Expression yielding an aggregate value) the corresponding collection of member instances that
satisfy a given select-condition. Every QueryExpression is also the LocalScope for the QueryVariable that designates
members of the aggregate value in the select-condition.

Note – See 12.6.7 of ISO 10303-11:2004.

12.8.1.1 Supertypes

Core::Expression , Core::LocalScope

12.8.1.2 Attributes

none.

12.8.1.3 Associations

AssociationEnd: aggregate-operand To: Core::Expression

Definition: represents the operand Expression whose result is the aggregate value from which members will be extracted
by the Query operation.

Note – See 12.6.7 of ISO 10303-11:2004.

Multiplicity: 1..1

Issue 13669 - add text

AssociationEnd: query-variable To: QueryVariable

via: scope-of-variable-is-query

Subsets: Core::LocalScope.local-elements

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1

Properties: composite

AssociationEnd: select-condition To: Core::Expression

Definition: represents the relationship between a Query expression and the Logical Expression that defines admissibility
of members in the Query result. This Expression is treated as a kind of "function definition" having a single Parameter
which is the Query variable. The .select-condition "function" is invoked once for each member value of the .aggregate-
value.

Note – See Clause 12.6.7 of ISO 10303-11:2004. The Expression that formulates the select-condition is owned by the
232 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

QueryExpression. It is not treated as reusable.

Multiplicity: 1..1

12.8.1.4 Other Roles

none.

12.8.2 Class: QueryVariable

Definition: a Variable that ranges over the member elements of the aggregate-operand in evaluating a the
QueryExpression. The scope of a QueryVariable is the QueryExpression, that is, all references to it occur in the select-
condition of the QueryExpression. The data-type of a QueryVariable is implicitly the data type of the member-element of
the aggregate operand.

Note – See 12.6.7 of ISO 10303-11:2004.

12.8.2.1 Supertypes

Algorithms::NamedVariable , Algorithms::Variable

12.8.2.2 Attributes

none.

12.8.2.3 Associations

AssociationEnd: namespace To: QueryExpression

via: scope-of-variable-is-query

Subsets: Core::LocalElement.namespace

Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1

12.8.2.4 Other Roles

none.

12.8.3 Association: scope-of-variable-is-query

Definition: represents the (1-to-1) relationship between the QueryVariable and the QueryExpression in which it is defined.

12.8.3.1 Supertypes

Core::local-element-has-local-scope
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 233

Issue 13669 - add text

12.8.3.2 Association Ends

AssociationEnd: namespace To: QueryExpression

Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1

AssociationEnd: query-variable To: QueryVariable

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1

Properties: composite

12.9 Aggregate Initializers

This section describes the EXPRESS operations that construct AggregateValues from component values.

Issue 13703 - replace figure

Figure 44 - Aggregate Initializers
234 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

12.9.1 Class: AggregateInitializer

Definition: represents the EXPRESS “aggregate initializer.” It produces a value of type AGGREGATE OF GENERIC, by
binding a sequence of member values to positions in the generic aggregate value.

Note – See 12.9 of ISO 10303-11:2004.

12.9.1.1 Supertypes

Core::Expression

12.9.1.2 Attributes

None.

12.9.1.3 Associations

Issue 13669 - add text
13703 - revise text

AssociationEnd: bindings To: MemberBinding

Definition: represents the relationship between the AggregateInitializer and the set of MemberBindings it comprises.

Note – See 12.9 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

Issue 13702 - add text, delete text

AssociationEnd: result-value To: Instances::GenericAggregate

subsets: Core::Expression:evaluation

Definition: represents the aggregate value that results from the aggregate initializer. This is a refinement of
Expression.evaluation.

If the AggregateInitializer expression can be evaluated without regard to any actual population (“compile time”), this
value shall be present, but not otherwise.

Note – See 12.9 of ISO 10303-11:2004.

Multiplicity: 0..1

Properties: derived

TaggedValues

derivation = = self->evaluation;
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 235

12.9.1.4 Other Roles

none.

12.9.2 Class: MemberBinding

Issue 13703 - revise text

Definition: represents the placement of a member value in one or more positions (ListMembers) in the GenericAggregate
value resulting from the aggregate initializer. If the member binding has no repetition count, the MemberBinding
associates the .member-value with one ListMember in the GenericAggregate. If the member value has a repetition count,
the MemberBinding associates the .member-value with one or more consecutive ListMembers in the GenericAggregate.
The member-values are assigned to ListMembers in the order of the MemberBindings. The .position of the
MemberBinding conveys the ordering of the MemberBindings (but not necessarily the position of the corresponding
ListMembers).

Note – The MemberBinding may have a repetition count that depends on values in the population or the actual parameters of
an Algorithm invocation, with the consequence that the relationship between the MemberBinding and ListMembers can only
be determined when the AggregateInitializer is evaluated.

Note – See 12.9 of ISO 10303-11:2004.

12.9.2.1 Supertypes

none.

Issue 13703 - replace text

12.9.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the ordinal position of the MemberBinding specification in the AggregateInitializer.

Note – When no MemberBinding in the AggregateInitializer has a .repetition value, the MemberBinding:position will
be the position of the member-value in the resulting GenericAggregate. Otherwise, the relationship between the positions will
depend on the .repetition values.

Multiplicity: 1..1

Issue 13669 - add text

12.9.2.3 Associations

AssociationEnd: member-value To: Core::Expression

Definition: represents the member value to be assigned to the MemberBinding position in the aggregate value, as the
result of the Expression.
236 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 12.9 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: repetition To: RepeatCount

Definition: represents the relationship between the MemberBinding and an associated RepeatCount, if any. If the
repetition count for the .member-value is implicitly 1, or explicitly a literal “1,” this relationship shall not appear. In all
other cases, this relationship shall appear.

Multiplicity: 0..1

Properties: composite

Issue 13703 - delete text

AssociationEnd: to-slot To: Instances::ListMember

Definition: represents the slot in the GenericAggregate value to which the MemberBinding assigns the member-value.
ListMember.position is used to identify the slot. A MemberBinding with a repetition count can assign the same value to
more than one slot. Each time the AggregateInitializer (expression) is evaluated, the resulting GenericAggregate can be
different, and the ListMember is a part of that result. If the (entire) AggregateInitializer expression can be evaluated
without regard to any actual population ("compile time"), this relationship and the ListMember shall be present, but not
otherwise.

 See 12.9 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

12.9.2.4 Other Roles

From: AggregateInitializer as bindings

12.9.3 Class: RepeatCount

Definition: A specification for repeating a given initial value into n consecutive ListMember slots, where n is the .count
value. The repetition value is specified by the .derivation expression. If that expression is, or evaluates to, a constant
(without regard to a Population), the value of .count is that constant.

Note – See 12.9 of ISO 10303-11:2004.

12.9.3.1 Supertypes

none.

12.9.3.2 Attributes

Attribute: count To: (none)

Definition: The number of actual ListMembers that are to be filled with the member-value. If the .derivation expression
evaluates to a constant, without regard to population, .count has a value; otherwise not.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 237

Multiplicity: 0..1

12.9.3.3 Associations

AssociationEnd: derivation To: Core::Expression

Definition: represents the relationship between the RepeatCount and the Expression that denotes the value of the
RepeatCount. This relationship shall be present whenever the specification for the RepeatCount is not an integer literal.

Multiplicity: 0..1

12.9.3.4 Other Roles

From: MemberBinding as repetition

12.10 Partial Entity Constructors

This section describes the EXPRESS operations that construct PartialEntityValues from component values.

Note – The so-called “entity constructor” is a binary operation (See 12.6.2 Value: EntityConstructor) that produces PartialEn-
tityValues from other PartialEntityValues. The actual operation that produces entity instances is a special case of Coercion
(see 12.6.3).

Issue 13705 - replace figure

Figure 45 - Partial Entity Value Constructors

12.10.1 Class: AttributeBinding

Definition: represents the assignment of a specific value to one Attribute in the group that comprises the
PartialEntityType.
238 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See 9.2.6 of ISO 10303-11:2004.

12.10.1.1 Supertypes

none.

12.10.1.2 Attributes

Attribute: position To: MOF::Integer

Definition: represents the position of the AttributeBinding in the constructor (and thus the association with the explicit
attribute).

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..1

12.10.1.3 Associations

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the explicit attribute to which the AttributeBinding assigns a value. Position is used to identify the
attribute.

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: attribute-value To: Core::Expression

Definition: represents the value to be assigned to the explicit attribute by the AttributeBinding, as the result of the
Expression.

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..1

12.10.1.4 Other Roles

From: PartialEntityConstructor as bindings

12.10.2 Class: PartialEntityConstructor

Definition: represents the EXPRESS “partial entity constructor” named for a “single entity data type.” It takes one actual
parameter (AttributeBinding) for each ExplicitAttribute in the group of Attributes identified by the SingleEntityType, and
binds the values to the ExplicitAttributes in order of their occurrence in the entity_declaration. The result is a
PartialEntityValue of the partial entity data type that consists of exactly that one single entity data type.

Note – See 9.2.6 of ISO 10303-11:2004 (revised by TC#1).
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 239

12.10.2.1 Supertypes

Core::Expression

12.10.2.2 Attributes

Issue 13704 - add text, delete text

Attribute: id To: Core::Identifier

Subsets: Core::Expression:text

Definition: Represents the identifier for the PartialEntityConstructor, which is the identifier for the SingleEntityType to
which it refers.

Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = = self->text;

12.10.2.3 Associations

Issue 13669 - add text

AssociationEnd: attribute-group To: Core::SingleEntityType

Definition: represents the relationship between the PartialEntityConstructor and the SingleEntityType that defines it, i.e.,
the list of explicit attributes..

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: bindings To: AttributeBinding

Definition: represents the relationship between the PartialEntityConstructor and the set of AttributeBindings it comprises.

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

Issue 13704 - add text, delete text

AssociationEnd: result-value To: Instances::PartialEntityValue

Subsets: Core::Expression:evaluation
240 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Definition: represents the instance that results from the partial entity constructor. This is a refinement of
Expression.evaluation.

If the expression can be evaluated without regard to any actual population (“compile time”), this value shall be present,
but not otherwise.

Note – See 9.2.6 of ISO 10303-11:2004.

Multiplicity: 0..1

Properties: derived

TaggedValues

derivation = = self->evaluation;

12.10.2.4 Other Roles

none.

12.11 Instance Package: BuiltInConstants

This Package represents the set of “built-in constants” of the EXPRESS language. They are here modeled as individual
objects that are instances of the class Literal.

Note – See clause 14 of ISO 10303-11:2004.

Note – All of these are instances of Literal, rather than Constant, because their syntactic designation is an EXPRESS keyword,
not an identifier.

Note – SELF is not included in this Package, because it is a variable, not a constant.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 241

Issue 13707 - replace figure

Figure 46 - Built-in Constants

12.11.1 Dependencies

Dependency on Class: Expressions::Literal

Stereotypes: instantiates

This Package provides base individuals that are always instances of class Literal.

12.11.2 Instance: E

Type: Expressions::Literal

Definition: Represents the REAL value that is the image of 1 under the Napierian exponential function.

Note – See clause 14.1 of ISO 10303-11:2004.

12.11.3 Instance: FALSE

Type: Expressions::Literal

Definition: Represents the LOGICAL value that is the evaluation of a proposition whose negation is asserted.

Note – See clause 14.3 of ISO 10303-11:2004.

12.11.4 Instance: PI

Type: Expressions::Literal
242 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Definition: Represents the REAL value that is the ratio of the circumference of a circle to its diameter.

Note – See clause 14.4 of ISO 10303-11:2004.

12.11.5 Instance: TRUE

Type: Expressions::Literal

Definition: Represents the LOGICAL value that is the evaluation of a proposition that is asserted.

Note – See clause 14.6 of ISO 10303-11:2004.

12.11.6 Instance: UNKNOWN

Type: Expressions::Literal

Definition: Represents the LOGICAL value that is the evaluation of an Expression that involves Indeterminate values.
(UNKNOWN is a specialization of the Indeterminate value that is treated only as a value of data type LOGICAL.)

Note – See clause 14.7 of ISO 10303-11:2004.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 243

244 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

13 Package : Statements

The Statements Package contains the detailed modeling concepts for the Statements in the EXPRESS language. The basic
Statement model in the Algorithms Package is permitted to be a syntactic string. This package provides the elements that
support the operational semantics of each kind of Statement.

The Statements Package depends on the Expressions Package. It is a requirement for the Statements compliance point
that a complete semantic model of Expressions be supported.

13.1 Dependencies

Dependency on Package: Core

Stereotypes: import

The Statements Package depends on the Core Package for the basic Expression concept and for the LocalScope and
LocalElement concepts.

Dependency on Package: Algorithms

Stereotypes: import

The Statements Package depends on the Algorithms Package for the basic Statement concept, the Variable concept, and
the Procedure concept.

Dependency on Package: Expressions

Stereotypes: import

The Statements Package depends on the Expression Package for ActualParameter, and in most implementations, for the
detailed semantic models of Expressions.

13.2 Overview of Statements

This section provides the overview of all of the EXPRESS Statement types. They are depicted in Figure 47.

The concept StatementBlock and ControlStatement are described in detail in this section. Each of the other statement
types is described in its own section.

Issue 13917 - Replace figure
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 245

Figure 47- Statements

13.2.1 Class: Algorithms::Statement

Definition: An EXPRESS Statement, a directive to perform a certain set of operations.

Note – See Clause 13 of ISO 10303-11:2004.

Note – Even though Statement is technically an abstract classifier, it is represented by direct instances with text representations
when the Statements compliance point is not supported.

Note – The class Statement, and all its properties, is specified in the Algorithms Package, which provides the primary use of
Statements. This entry serves only to define the Statement class in context and provide a link to its specification in 10.2.7.

13.2.2 Class: ControlStatement

Definition: an abstract class representing EXPRESS statements whose action is “transfer of control,” i.e., a change in the
sequence of execution.. This class was introduced primarily to simplify the metamodel diagram.

Properties: abstract

13.2.2.1 Supertypes

Algorithms::Statement

13.2.2.2 Attributes

none.
246 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

13.2.2.3 Associations

none.

13.2.2.4 Other Roles

none.

13.2.3 Class: NullStatement

Definition: Represents an EXPRESS Null statement. A NullStatement is just a syntactic placeholder, made necessary by
grammar rules that require the presence of at least 1 statement. It has the semantics: Take no action. It is modeled here,
solely to permit reconstruction of the Express Text.

Note – See Clause 13.1 of ISO 10303-11:2004.

13.2.3.1 Supertypes

ControlStatement

13.2.3.2 Attributes

none.

13.2.3.3 Associations

none.

13.2.3.4 Other Roles

none.

13.2.4 Class: StatementBlock

Definition: represents a sequence of Statements to be executed in the given order.

In EXPRESS syntax, a number of constructs contain a statement or sequence of statements, and a “compound statement”
is a statement that begins with BEGIN and ends with END and contains a sequence of statements. All such sequences
have the semantics of the StatementBlock. The BEGIN/END case is here modeled as .delimited = True.

Note – See Clause 13.5 of ISO 10303-11:2004.

13.2.4.1 Supertypes

Algorithms::Statement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 247

13.2.4.2 Attributes

Attribute: delimited To: MOF::Boolean

Definition: Is true if the StatementBlock was delimited by BEGIN and END tokens, false if it is implicit in the body of
some other Statement.

Note – The sole purpose of this attribute is to be able to reconstruct the source EXPRESS text properly.

Multiplicity: 1..1

Issue 13669 - add text

13.2.4.3 Associations

AssociationEnd: body-statements To: Algorithms::Statement

via: block-sequences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note – Every EXPRESS syntax whose semantics is a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty – the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement in this case.

Multiplicity: 0..* ordered

Properties: composite

13.2.4.4 Other Roles

none.

13.2.5 Association: block-sequences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

13.2.5.1 Association Ends

AssociationEnd: body-statements To: Algorithms::Statement

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note – Every EXPRESS syntax whose semantics is a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty – the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement in this case.

Multiplicity: 0..* ordered
248 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13708 - delete text

AssociationEnd: in-block To: StatementBlock

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note – Every Statement that is not a StatementBlock occurs in a StatementBlock. StatementBlocks may, but need not, occur
directly in other StatementBlocks.

Multiplicity: 0..1

13.3 ALIAS Statements

This section describes the ALIAS statement. Figure 48 depicts the associated concepts.

Issue 13709 - replace figure

Figure 48 - ALIAS Statements

13.3.1 Class: AliasStatement

Definition: Represents an EXPRESS ALIAS statement. An ALIAS statement introduces a NamedVariable (the alias-
variable) to represent the result of a VARExpression (the referent). But the AliasVariable is not a Variable, and the
semantics is not assignment; it is rather creation of a VARVariable that is persistently associated with the Variable
specified by the VARExpression, over changes in value of that Variable. Within the body of the ALIAS statement, any
assignment to the AliasVariable assigns the value to the referent Variable, and any VariableRef that refers to the
AliasVariable refers to the current value of that Variable.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 249

Note – See Clause 13.2 of ISO 10303-11:2004.

13.3.1.1 Supertypes

Core::LocalScope , Algorithms::Statement

13.3.1.2 Attributes

none.

Issue 13710 - add text

13.3.1.3 Associations

AssociationEnd: alias-variable To: AliasVariable

via: alias-binds-variable

Subsets: Core::LocalScope.local-elements

Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.

Multiplicity: 1..1

Properties: composite

AssociationEnd: body To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the action to be taken by the AliasStatement.

Note – The AliasStatement has the effect of "fixing" the referent of the alias-variable, in the case in which the Statement is a
StatementBlock that includes actions that alter the values of elements of the VARExpression.

Multiplicity: 1..1

Properties: composite

Issue 13709 - add text

AssociationEnd: referent To: VARExpression

Definition: the VARExpression that specifies the referent of the AliasVariable – the (member or component of the)
Variable to which the AliasVariable refers during execution of the body of the ALIAS statement.

Multiplicity: 1..1

13.3.1.4 Other Roles

none.
250 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

13.3.1.5 Rules

Constraint (OCL)
self->alias-variable->namespace = self;

13.3.2 Class: AliasVariable

Definition: a NamedVariable that is created by an ALIAS statement, and whose scope is the body of the ALIAS
statement. An Alias Variable is a VARVariable: it does not hold an Instance; it refers to (a part of) a Variable that holds
an Instance. The referent of the AliasVariable is specified by the value of the VARExpression assigned to it by the ALIAS
statement.

Note – See Clause 13.2 of ISO 10303-11:2004.

13.3.2.1 Supertypes

Algorithms::VARVariable

13.3.2.2 Attributes

none.

Issue 13710 - delete text

13.3.2.3 Associations

AssociationEnd: namespace To: AliasStatement

via: alias-binds-variable

Subsets: Core::LocalElement.namespace

Definition: the AliasStatement that is the scope of the AliasVariable.

Properties: Composite.

Multiplicity: 1..1

Issue 13709 - delete text

AssociationEnd: referent To: VARExpression

Definition: the VARExpression that specifies the referent of the AliasVariable – the (member or component of the)
Variable to which the AliasVariable refers during execution of the body of the ALIAS statement.

Multiplicity: 1..1

13.3.2.4 Other Roles

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 251

13.3.3 Association: alias-binds-variable

Definition: represents the relationship between the AliasStatement and the AliasVariable it defines.

13.3.3.1 Supertypes

Core::local-element-has-local-scope

13.3.3.2 Association Ends

Issue 13710 - add text, delete text

AssociationEnd: alias-variable To: AliasVariable

Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.

Multiplicity: 1..1

Properties: composite

AssociationEnd: namespace To: AliasStatement

Definition: the AliasStatement that is the scope of the AliasVariable.

Properties: Composite.

Multiplicity: 1..1

13.4 Assignment Statements

This section describes assignment statements. Figure 49 depicts the associated concepts.

Issue 13917 - Replace figure

Figure 49 - Assignment Statements

13.4.1 Class: Assignment

Definition: Represents an EXPRESS assignment statement. An Assignment causes the value of the Variable that is
specified by the .variable VARExpression to become equal to the result of the .assigned-value Expression.
252 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – See Clause 13.3 of ISO 10303-11:2004.

13.4.1.1 Supertypes

Algorithms::Statement

13.4.1.2 Attributes

none.

13.4.1.3 Associations

AssociationEnd: assigned-value To: Core::Expression

Definition: the Expression whose result is the value to be assigned.

Multiplicity: 1..1

AssociationEnd: variable To: VARExpression

Definition: the VARExpression that designates the object whose value is to be replaced.

Note – The VARExpression must not refer to an object that is part of the state of an EntityInstance in the Population. It may,
however, refer to an object that holds (a reference to) an EntityInstance, or to an object (other than an EntityInstance) that
holds an EntityValue.

Multiplicity: 1..1

13.4.1.4 Other Roles

none.

13.5 CASE Statements

This section describes CASE statements. Figure 50 depicts the associated concepts.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 253

Issue 13917 - Replace figure

Figure 50 - CASE Statements

13.5.1 Class: CaseAction

Definition: represents a possible action to be taken, together with the .label-values that identify the case and enable it to
be selected. Among the cases for a given CaseStatement, one CaseAction may be designated the “default” action, which
is taken if no other action meets the selection criteria.

13.5.1.1 Supertypes

none.

13.5.1.2 Attributes

Attribute: isDefault To: MOF::Boolean

Definition: True if this CaseAction represents the default action to be taken if no other case label matches the value of the
selection-expression; otherwise False.

Multiplicity: 1..1

Issue 13669 - add text

13.5.1.3 Associations

AssociationEnd: action To: Algorithms::Statement

Definition: the Statement (or StatementBlock) that defines the actions, if any, to be executed if that case is selected.

Multiplicity: 0..1

Properties: composite
254 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: label-value To: Core::Expression

Definition: an Expression whose result is a case label. When the value of the .selection-expression matches the value of
the Expression (which is often a Literal), the associated CaseAction defines the action to be taken by the CaseStatement.

Multiplicity: 0..* unordered

13.5.1.4 Other Roles

From: CaseStatement as cases

Multiplicity: 1..1

13.5.1.5 Rules

Constraint labels-unless-default (OCL)
if NOT (self->isDefault) THEN SizeOf(self->label-value) > 0;

Only the default CaseAction can have no label-values.

Constraint one-default (EXPRESS)
SizeOf(Query(c <* self.cases : c.isDefault)) <= 1;

At most 1 CaseAction in the list of cases for a given CaseStatement can have .isDefault = True.

13.5.2 Class: CaseStatement

Definition: represents an EXPRESS CASE statement. The CASE statement selects and executes a single CaseAction
(from the list of CaseActions), based on the value of a selection-expression. The .cases are considered in order, and the
first CaseAction whose label-value matches the value of the .selection-expression is the action that is taken. If no
CaseAction has a label-value that matches the value of the .selection-expression, the CaseAction for which .isDefault is
true, if any, is taken; otherwise, no action is taken.

Note – See Clause 13.4 of ISO 10303-11:2004.

13.5.2.1 Supertypes

Algorithms::Statement

13.5.2.2 Attributes

none.

Issue 13669 - add text

13.5.2.3 Associations

AssociationEnd: cases To: CaseAction

Definition: represents the possible actions to be taken, in order of consideration, each labeled by one or more values.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 255

Multiplicity: 1..* ordered

Properties: composite

AssociationEnd: selection-expression To: Core::Expression

Definition: the Expression that is used to choose the CaseAction to be taken

Multiplicity: 1..1

13.5.2.4 Other Roles

none.

13.6 IF Statements

This section describes IF...THEN...ELSE statements. Figure 51 depicts the associated concepts.

Issue 13917 - Replace figure

Figure 51 - IF Statements

13.6.1 Class: IfStatement

Definition: represents an EXPRESS IF...THEN...ELSE statement.

Note – See Clause 13.7 of ISO 10303-11:2004.

13.6.1.1 Supertypes

Algorithms::Statement

13.6.1.2 Attributes

none.
256 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

13.6.1.3 Associations

AssociationEnd: else-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is False.

Multiplicity: 0..1

Properties: composite

AssociationEnd: if-condition To: Core::Expression

Definition: an Expression that defines the condition used to determine whether to perform the “then-actions” or the “else-
actions.”

Note – The if-condition is wholly owned by the IfStatement. It is not treated as reusable.

Multiplicity: 1..1

AssociationEnd: then-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is True.

Multiplicity: 1..1

Properties: composite

13.6.1.4 Other Roles

none.

13.7 Procedure Calls

This section describes procedure call statements. Figure 52 depicts the associated concepts.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 257

Issue 13917 - Replace figure

Figure 52 - Procedure Calls

13.7.1 Class: ProcedureCall

Definition: Represents an EXPRESS procedure call statement. A procedure call causes an instance of a defined
Procedure to be created, and the actual parameter values to be passed to the corresponding formal parameters. The
.actual-value Expression corresponding to each InParameter is evaluated and the result is copied into the corresponding
InVariable. Each VARParameter is set to refer to the Variable that is the result of the VARExpression that appears as the
corresponding actual parameter. Then the declared LocalVariables are instantiated, according to their declared types
(which may be ActualTypes), with initial values if specified. Finally, the StatementBlock that is the algorithm body is
executed.

Note – See Clause 13.8 of ISO 10303-11:2004.

13.7.1.1 Supertypes

Algorithms::Statement

13.7.1.2 Attributes

None.
258 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

13.7.1.3 Associations

AssociationEnd: actual-parameters To: Expressions::ActualParameter

via: procedure-call-provides-actual-parameters

Definition: the ActualParameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: invokes To: Algorithms::Procedure

Definition: the Procedure that is invoked by the ProcedureCall.

Multiplicity: 1..1

13.7.1.4 Other Roles

none.

13.7.2 Association: procedure-call-provides-actual-parameters

Definition: represents the relationship between the ProcedureCall statement and the ActualParameters to be passed at the
time of invocation.

13.7.2.1 Association Ends

AssociationEnd: actual-parameters To: Expressions::ActualParameter

Definition: the ActualParameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: in-ProcedureCall To: ProcedureCall

Definition: the ProcedureCall, if any, in which the ActualParameter appears.

Multiplicity: 0..1

13.8 REPEAT Statements

This section describes REPEAT statements, and the associated ESCAPE and SKIP statements. Figure 53 depicts the
associated concepts.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 259

Issue 13669 - replace figure

Figure 53 - REPEAT, SKIP, and ESCAPE Statements

13.8.1 Class: ControlVariable

Definition: the specification for the control variable, if any, for the Repeat statement. If the REPEAT statement has an
“increment control,” it introduces the control variable, whose scope is the RepeatStatement, and specifies the initial value
for the control variable, a bound-value, and the increment value.

Note – In EXPRESS, the initial value, increment value and bound value are properties of the “increment control.” Here the
“increment control” properties are assigned to the ControlVariable. See ISO 10303-11:2004 clause 13.9.1.

13.8.1.1 Supertypes

Algorithms::NamedVariable

13.8.1.2 Attributes

None.

13.8.1.3 Associations

AssociationEnd: bound-value To: Core::Expression

Definition: the Expression whose value, taken together with the initial-value, specifies the bounds of a set of real
numbers. Iteration of the repeated-body of the RepeatStatement terminates when the value of the control-variable lies
outside that set.

Multiplicity: 1..1
260 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: increment To: Core::Expression

Definition: the Expression whose value is added to the value of the control-variable at the end of each iteration.

Multiplicity: 1..1

Note – When the EXPRESS syntax does not specify an increment value, the Expression is a Literal referring to the Integer
value 1. See ISO 10303-11:2004 clause 13.9.1.

AssociationEnd: initial-value To: Core::Expression

Definition: the Expression that specifies the value to be assigned to the control-variable before the first iteration.

Multiplicity: 1..1

AssociationEnd: namespace To: RepeatStatement

via: repeat-has-increment-control

Subsets: Core::LocalElement.namespace

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.

Multiplicity: 1..1

13.8.1.4 Other Roles

none.

13.8.1.5 Rules

Constraint
self->control-variable->namespace = self->for-loop;

13.8.2 Class: EscapeStatement

Definition: Represents an EXPRESS ESCAPE statement. An ESCAPE statement is always contained within the body of
a RepeatStatement. Execution of an ESCAPE statement results in terminating the repetitiion of the repeated-body and
continuing the control flow with the statement following the RepeatStatement.

Note – See Clause 13.11 of ISO 10303-11:2004.

13.8.2.1 Supertypes

ControlStatement

13.8.2.2 Attributes

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 261

13.8.2.3 Associations

none.

13.8.2.4 Other Roles

none.

13.8.2.5 Rules

Constraint
exists(self->in-block->controlled-by);

An EscapeStatement shall only appear in the repeated-body of a RepeatStatement.

13.8.3 Class: RepeatStatement

Definition: Represents an EXPRESS REPEAT statement. The RepeatStatement defines an iteration. The execution of the
repeated-body occurs zero or more times depending on the associated controls, which may be any combination of

• a increment-control (see ControlVariable)

• a while-expression

• an until-expression

If no control is specified, the iteration continues until an EscapeStatement is executed.

Note – See Clause 13.9 of ISO 10303-11:2004.

13.8.3.1 Supertypes

Core::LocalScope , Algorithms::Statement

13.8.3.2 Attributes

none.

Issue 13669 - add text

13.8.3.3 Associations

AssociationEnd: body To: Algorithms::Statement

via: repeat-has-body

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

Properties: composite
262 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

AssociationEnd: control-variable To: ControlVariable

via: repeat-has-increment-control

Subsets: Core::LocalScope.local-elements

Definition: the specification for the increment control, if any. The increment control defines a control variable, its initial
and final values, and the value by which it is incremented on each iteration.

Note – See ISO 10303-11:2004 clause 13.9.1.

Multiplicity: 0..1

Properties: composite

AssociationEnd: until-expression To: Core::Expression

Definition: the Boolean Expression that specifies a condition for terminating the iteration. If the value returned by the
while-expression is True, the iteration is terminated.

Note – See ISO 10303-11:2004 clause 13.9.3.

Multiplicity: 0..1

AssociationEnd: while-expression To: Core::Expression

Definition: the Boolean Expression that specifies the condition for reiterating the repeated-body. If the value returned by
the while-expression is False, the iteration is terminated.

Note – See ISO 10303-11:2004 clause 13.9.2.

Multiplicity: 0..1

13.8.3.4 Other Roles

none.

13.8.4 Class: SkipStatement

Definition: Represents an EXPRESS SKIP statement. A SKIP statement is always contained within the body of a
RepeatStatement. Execution of a SKIP statement results in continuing the control flow with the “increment and test”
operations of the RepeatStatement, skipping any intervening actions.

Note – See Clause 13.11 of ISO 10303-11:2004.

13.8.4.1 Supertypes

ControlStatement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 263

Attributes

none.

13.8.4.2 Associations

none.

13.8.4.3 Other Roles

none.

13.8.4.4 Rules

Constraint
exists(self->in-block->controlled-by);

A SkipStatement shall only appear in the repeated-body of a RepeatStatement.

13.8.5 Association: repeat-has-body

Definition: represents the relationship between a RepeatStatement and the Statement (or StatementBlock) that specifies
the actions to be iterated.

Issue 13669 - add text

13.8.5.1 Association Ends

AssociationEnd: body To: Algorithms::Statement

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

Properties: composite

AssociationEnd: controlled-by To: RepeatStatement

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

13.8.6 Association: repeat-has-increment-control

Definition: represents the relationship between the RepeatStatement and its IncrementControl, if any.

13.8.6.1 Supertypes

Core::local-element-has-local-scope
264 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Issue 13669 - add text

13.8.6.2 Association Ends

AssociationEnd: control-variable To: ControlVariable

Definition: the specification for the control variable, if any, and its initial and final values.

Multiplicity: 0..1

Properties: composite

AssociationEnd: namespace To: RepeatStatement

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.

Multiplicity: 1..1

13.9 RETURN Statements

This section describes RETURN statements. Figure 54 depicts the associated concepts.

Issue 13917 - Replace figure

Figure 54 - RETURN Statements

13.9.1 Class: ReturnStatement

Issue 13711 - replace text

Definition: Represents an EXPRESS RETURN statement. A RETURN statement terminates the execution of a
ProcedureCall or FunctionCall.

A RETURN statement that appears in the body of a Function may also specify an expression for the FunctionResult, that is,
the value which is to be returned as the evaluation of a FunctionCall in which the RETURN statement is executed.

Note – See Clause 13.9 of ISO 10303-11:2004.

13.9.1.1 Supertypes

ControlStatement
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 265

13.9.1.2 Attributes

none.

13.9.1.3 Associations

Issue 13711 - replace text

AssociationEnd: return-value To: Core::Expression

Definition: An Expression that specifies the value to be returned as the Function result.

The result-value shall not exist for a RETURN statement that appears in the body of a Procedure. A RETURN statement
that appears in the body of a Function and does not specify a result-value Expression implicitly specifies that the value of the
FunctionResult variable is to be returned as the evaluation of a FunctionCall in which the RETURN statement is executed.

Multiplicity: 0..1

13.9.1.4 Other Roles

none.

13.10 VAR Expressions

This section defines the concepts associated with references to (what ISO 10303-11 calls) “variables” that may change in
value during the execution of an invocation of an Algorithm or the evaluation of a GlobalRule. In general, such
“variables” may be simple Variables, or more complex expressions denoting a part of a Variable. The general form of a
“variable,” therefore, is modeled as a VAR Expression – an Expression that refers to an object that contains a value.
Figure 55.depicts the concepts associated with VAR Expressions.
266 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Figure 55 - VAR Expressions

VAR Expressions appear in assignment statements, in ALIAS statements and as ActualParameters that correspond to
formal parameters that are VARParameters (which are permitted only in Procedure definitions).

Note – Primary Expressions, Index Expressions and Selector Expressions are similar in structure (and use the same syntax in
EXPRESS), but they refer to the Instance that is the current value of the “variable” – the value currently held by that object. A
VARExpression formally refers to the object (place) that holds an Instance, rather than to the Instance it contains. That is, for
example, the meaning of the VariableRef is different from the meaning of the VariableCell, even though the EXPRESS syntax
is the same. Because the meanings are different, they have different metamodels.

Note – A VAR Expression can never refer to an Instance in the modeled population. Instances in the Population cannot be cre-
ated or modified by an EXPRESS Schema. For this reason, EXPRESS restricts the syntax for VAR Expressions to beginning
with a parameter_ref or a variable_ref. This is reflected in the model.

13.10.1 Class: AttributeCell

Definition: A VARExpression whose referent is an “attribute object” containing the value of one ExplicitAttribute in an
EntityValue.

The .referent attribute of the AttributeCell identifies the ExplicitAttribute that characterizes the attribute object. The
referent of the .base-entity VARExpression must be an object that holds an EntityValue that has a “slot” for that
ExplicitAttribute. That object/slot in the referent of the base-entity is the referent of the AttributeCell VARExpression.

Note – An EntityInstance in the Population is considered to be an object that holds an EntityValue. And therefore, an EntityIn-
stance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an EntityInstance in
the Population.

<<metaclass>>
AliasRef

+id : Identifier [1]{subsets text}

<<metaclass>>
VariableCell

+id : Identifier [1]{subsets text}

<<metaclass>>
AttributeCell

+id : Identifier [1]{subsets text}

<<metaclass>>
GroupCell

+id : Identifier [1]{subsets text}

+text : ExpressText [0..1]

<<metaclass>>
VARExpression

<<metaclass>>
ExplicitAttribute

(Core)

<<metaclass>>
SingleEntityType

(Core)

<<metaclass>>
VARVariable
(Algorithms)

<<metaclass>>
Expression

(Core)

<<metaclass>>
Variable

(Algorithms)

<<metaclass>>
MemberCell

GroupCell-has-base-entity

+base-entity

1

0..1

MemberCell-has-base-aggregate

+base-aggregate

1

0..1

AttributeCell-has-base-entity

+base-entity

1

0..1

MemberCell-has-index

+index-value 1

0..*

VariableCell-referent

+referent1

0..*

GroupCell-referent

+referent1

0..*

AttributeCell-referent

+referent1

0..*

AliasRef-refers-to

+refers-to1

0..*
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 267

Note – An “entity-valued object” -- a Variable, Attribute, or aggregation member whose data type is an EntityType (or a
SelectType whose select-list contains EntityTypes) -- may contain EntityInstances from the Population, or contain EntityVal-
ues that correspond to the EntityType, without reference to Instances in the Population. When the base-entity of an Attribute-
Cell is an entity-valued object, it is not always clear whether it contains an EntityInstance, which is then the referent, or an
EntityValue, which makes the entity-valued object the referent.

13.10.1.1 Supertypes

VARExpression

13.10.1.2 Attributes

Attribute: id To: Core::Identifier

Subsets: VARExpression.text

Definition: the lexical text of the identifier for the Attribute

Multiplicity: 1..1

13.10.1.3 Associations

AssociationEnd: base-entity To: VARExpression

Definition: the Expression that identifies the object that contains the EntityValue that contains an object representing the
ExplicitAttribute that is the referent of the AttributeCell.

Multiplicity: 1..1

AssociationEnd: referent To: Core::ExplicitAttribute

Definition: the ExplicitAttribute that designates the slot that is the referent of the AttributeCell.

Multiplicity: 1..1

13.10.1.4 Other Roles

none.

13.10.2 Class: GroupCell

Definition: A VARExpression whose referent is the group of objects/slots for the ExplicitAttributes that constitute a
SingleEntityType in an object that holds an EntityValue.

The .referent attribute of the GroupCell identifies the SingleEntityType that characterizes the attribute group. The
referent of the .base-entity VARExpression must be an object that holds an EntityValue that has “slots” for the
ExplicitAttributes constituting that SingleEntityType. Those slots in the referent of the base-entity constitute the referent
of the GroupCell VARExpression.

Note – An EntityInstance in the Population is considered to be an object that holds an EntityValue. And therefore, an EntityIn-
stance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an EntityInstance in
the Population.
268 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

Note – An “entity-valued object” -- a Variable, Attribute, or aggregation member whose data type is an EntityType (or a
SelectType whose select-list contains EntityTypes) -- may contain EntityInstances from the Population, or contain EntityVal-
ues that correspond to the EntityType, without reference to Instances in the Population. When the base-entity of an GroupCell
is an entity-valued object, it is not always clear whether it contains an EntityInstance, which is then the referent, or an Entity-
Value, which makes the entity-valued object the referent.

13.10.2.1 Supertypes

VARExpression

13.10.2.2 Attributes

Attribute: id To: Core::Identifier

Subsets: VARExpression.text

Definition: the lexical text of the identifier for the SingleEntityType

Multiplicity: 1..1

13.10.2.3 Associations

AssociationEnd: base-entity To: VARExpression

Definition: the Expression that identifies the object that contains the EntityInstance or EntityValue that contains a
collection of ExplicitAttribute objects representing the SingleEntityType to which the GroupCell refers.

Multiplicity: 1..1

AssociationEnd: referent To: Core::SingleEntityType

Definition: the SingleEntityType that designates the group of ExplicitAttribute slots that constitute the referent of the
GroupCell.

Multiplicity: 1..1

13.10.2.4 Other Roles

none.

13.10.3 Class: MemberCell

Definition: A VARExpression that represents a reference to a member (object) of an object whose datatype is an
aggregation data type. The aggregate object is the referent of the .base-aggregate VARExpression. The referent of
the MemberCell VARExpression is the member object that is designated by the index or position value that is the result
of the .index-value Expression.

13.10.3.1 Supertypes

VARExpression
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 269

13.10.3.2 Attributes

none.

13.10.3.3 Associations

AssociationEnd: base-aggregate To: VARExpression

Definition: the Expression that identifies the aggregate object in which the referenced member object appears.

Multiplicity: 1..1

AssociationEnd: index-value To: Core::Expression

Definition: the index or position value used to identify the member object within the aggregate object.

Multiplicity: 1..1

13.10.3.4 Other Roles

none.

13.10.4 Class: AliasRef

Issue 13713 - add text

Definition: A VARExpression consisting only of the identifier for a VARVariable, i.e., an AliasVariable, or a
VARParameter. The referent of the AliasRef VARExpression is the referent of the VARVariable designated by the
.refers-to relationship.

Note – An AliasRef to a VARVariable produces a different result from a VariableRef to the same VARVariable. The AliasRef
produces the referent of the VARVariable – the place that holds the value; the VariableRef produces the value that is currently
in that place. In computer science terminology, the VariableRef “de-references” the VARVariable.

13.10.4.1 Supertypes

VARExpression

13.10.4.2 Attributes

Attribute: id To: Core::Identifier

Subsets: VARExpression.text

Definition: the lexical text of the identifier for the Parameter or the AliasVariable

Multiplicity: 1..1
270 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

13.10.4.3 Associations

AssociationEnd: refers-to To: Algorithms::VARVariable

Definition: the formal InParameter that is the referent object, or the formal VARParameter whose referent is the referent
object.

Multiplicity: 1..1

13.10.4.4 Other Roles

none.

13.10.5 Class: VARExpression

Definition: an Expression that refers to an object that contains a value. Unlike Primary Expressions, Index Expressions
and Selector Expressions, which are similar in structure, a VARExpression formally refers to the object (place) that holds
an Instance, rather than the Instance itself. The object to which a VARExpression refers is called its referent. Every
referent object has a data type, but the type of the VARExpression that refers to it is “reference to object with” that data
type. The referent object can be:

• a LocalVariable

• an InParameter or FunctionResult

• a member of an AggregationType that is, or is part of, the content model of another object

• an ExplicitAttribute of an EntityType that is the content model of another object

• a SingleEntityType that is part of the content model of another object

• an ExplicitAttribute of an EntityInstance that is the value of another object

• a SingleEntityType that represents a set of ExplicitAttributes of an EntityInstance that is the value of another object.

• the object that is the referent of an AliasVariable or a VARParameter.

Properties: abstract

13.10.5.1 Supertypes

none.

13.10.5.2 Attributes

Attribute: text To: Core::ExpressText

Definition: the lexical representation of the VARExpression.

Multiplicity: 0..1

13.10.5.3 Associations

none.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 271

13.10.5.4 Other Roles

From: Expressions::ActualParameter as actual-referent

From: Assignment as recipient

From: MemberCell as base-aggregate

From: AttributeCell as base-entity

From: GroupCell as base-entity

From: AliasVariable as referent

13.10.6 Class: VariableCell

Definition: A VARExpression that consists only of the identifier for a Variable. The referent of the VariableCell
VARExpression is the object that instantiates that Variable (as distinct from the value of that Variable). The Variable is
designated by the .referent relationship.

Note – A VARExpression that consists of the identifier for an AliasVariable or a VARParameter is an AliasRef, not a Variable-
Cell. A VariableCell differs from a VariableRef in that it refers to the place, not the value.

13.10.6.1 Supertypes

VARExpression

13.10.6.2 Attributes

Attribute: id To: Core::Identifier

Subsets: VARExpression.text

Definition: the lexical text of the identifier for the NamedVariable

Multiplicity: 1..1

13.10.6.3 Associations

AssociationEnd: referent To: Algorithms::Variable

Definition: the Variable whose instantiation is the referent object of the VariableCell VARExpression.

Multiplicity: 1..1

13.10.6.4 Other Roles

none.
272 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

14 Package : Express2

The Express2 Package has no immediate content. It simply combines the Rules Package with the full Statements
Package, and thus contains all of the model elements for the language.

Figure 56 shows the complete view of the scope concepts in EXPRESS version 2. Note that the LocalScopes arise only
when the Algorithms, Rules, Expressions and Statements Packages are supported.

Issue 13669 - replace figures

Figure 56 - Integrated Overview of Scopes

In a similar way, Figure 57 depicts the complete view of the NamedElement concepts in EXPRESS version 2, which are
drawn from several packages.
Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2 273

Figure 57 - Overview of Named Elements

14.1 Dependencies

Dependency on Package: Statements

Stereotypes: import

The Express2 Package depends on the Statements Package for complete modeling of EXPRESS Functions and
Procedures. By way of the Statements Package, Express2 implicitly depends on the Expressions Package, for complete
modeling of Expressions and thereby on the Algorithms, Core and Instances Packages.

Dependency on Package: Rules

Stereotypes: import

The Express2 Package depends on the Rules Package in order to complete the support of all elements of the EXPRESS
language. The Rules Package is the only package that is not required for the support of the Statements compliance point.

14.2 Classes and Associations

None.
274 Reference Metamodel for the EXPRESS Information Modeling Language, Beta 2

	1 Introduction
	2 Scope and Purpose
	3 Normative References
	4 Conformance
	4.1 Conformance of an exchange document
	4.2 Conformance as a producer (pre-processor)
	4.3 Conformance as a (post-)processor
	4.4 Compliance points
	4.4.1 Compliance point: Instances
	4.4.2 Compliance point: Algorithms
	4.4.3 Compliance point: Rules
	4.4.4 Compliance point: Expressions
	4.4.5 Compliance point: Statements
	4.4.6 Compliance point: Express2

	5 Terms and Definitions
	5.1 Unified Modeling Language (UML) terms
	5.2 EXPRESS terms
	5.3 Terms for model elements
	5.4 Additional terms introduced in this specification

	6 Document Conventions
	7 Overview of the EXPRESS Metamodel
	8 Package :: Core
	8.1 Dependencies
	8.2 MOF Metamodel Datatypes
	8.2.1 Datatype: Boolean
	8.2.2 Datatype: Integer
	8.2.3 Datatype: String

	8.3 EXPRESS Language Datatypes
	8.3.1 Datatype: ExpressText
	8.3.1.1 Supertypes
	8.3.1.2 Members

	8.3.2 Datatype: Identifier
	8.3.2.1 Supertypes
	8.3.2.2 Members

	8.3.3 Datatype: Keyword
	8.3.3.1 Supertypes
	8.3.3.2 Members

	8.4 Schemas, Scopes and Naming
	8.4.1 Class: AlgorithmScope
	8.4.1.1 Supertypes
	8.4.1.2 Attributes
	8.4.1.3 Associations
	8.4.1.4 Other Roles

	8.4.2 Class: CommonElement
	8.4.2.1 Supertypes
	8.4.2.2 Attributes
	8.4.2.3 Associations
	8.4.2.4 Other Roles
	8.4.2.5 Rules

	8.4.3 Class: Interface
	8.4.3.1 Supertypes
	8.4.3.2 Attributes
	8.4.3.3 Associations
	8.4.3.4 Other Roles

	8.4.4 Class: InterfacedElement
	8.4.4.1 Supertypes
	8.4.4.2 Attributes
	8.4.4.3 Associations
	8.4.4.4 Other Roles

	8.4.5 Class: LocalElement
	8.4.5.1 Supertypes
	8.4.5.2 Attributes
	8.4.5.3 Associations
	8.4.5.4 Other Roles

	8.4.6 Class: LocalScope
	8.4.6.1 Supertypes
	8.4.6.2 Attributes
	8.4.6.3 Associations
	8.4.6.4 Other Roles

	8.4.7 Class: NamedElement
	8.4.7.1 Supertypes
	8.4.7.2 Attributes
	8.4.7.3 Associations
	8.4.7.4 Other Roles

	8.4.8 Class: Schema
	8.4.8.1 Supertypes
	8.4.8.2 Attributes
	8.4.8.3 Associations
	8.4.8.4 Other Roles

	8.4.9 Class: SchemaElement
	8.4.9.1 Supertypes
	8.4.9.2 Attributes
	8.4.9.3 Associations
	8.4.9.4 Other Roles
	8.4.9.5 Rules

	8.4.10 Class: Scope
	8.4.10.1 Supertypes
	8.4.10.2 Attributes
	8.4.10.3 Associations
	8.4.10.4 Other Roles

	8.4.11 Datatype: ScopedId
	8.4.11.1 Supertypes
	8.4.11.2 Members

	8.4.12 Class: TypeElement
	8.4.12.1 Supertypes
	8.4.12.2 Attributes
	8.4.12.3 Associations
	8.4.12.4 Other Roles

	8.4.13 Association: common-element-has-local-scope
	8.4.13.1 Supertypes
	8.4.13.2 Association Ends

	8.4.14 Association: element-defined-in-scope
	8.4.14.1 Association Ends

	8.4.15 Association: interface-includes-elements
	8.4.15.1 Association Ends

	8.4.16 Association: local-element-has-local-scope
	8.4.16.1 Supertypes
	8.4.16.2 Association Ends

	8.4.17 Association: schema-defines-elements
	8.4.17.1 Supertypes
	8.4.17.2 Association Ends

	8.4.18 Association: schema-element-is-interfaced-element
	8.4.18.1 Association Ends

	8.4.19 Association: schema-interfaces-elements
	8.4.19.1 Association Ends

	8.4.20 Association: schema-has-interface
	8.4.20.1 Association Ends

	8.4.21 Association: type-element-has-scope
	8.4.21.1 Supertypes
	8.4.21.2 Association Ends

	8.5 Remarks
	8.5.1 Class: Remark
	8.5.1.1 Supertypes
	8.5.1.2 Attributes
	8.5.1.3 Associations
	8.5.1.4 Other Roles

	8.5.2 Association: remark-appears-in-scope
	8.5.2.1 Association Ends

	8.5.3 Association: remark-describes-element
	8.5.3.1 Association Ends

	8.5.4 Association: remark-describes-schema
	8.5.4.1 Association Ends

	8.6 Overview of Types
	8.6.1 Class: ActualType
	8.6.1.1 Supertypes
	8.6.1.2 Attributes
	8.6.1.3 Associations
	8.6.1.4 Other Roles

	8.6.2 Class: AnonymousType
	8.6.2.1 Supertypes
	8.6.2.2 Attributes
	8.6.2.3 Associations
	8.6.2.4 Other Roles

	8.6.3 Class: ConcreteType
	8.6.3.1 Supertypes
	8.6.3.2 Attributes
	8.6.3.3 Associations
	8.6.3.4 Other Roles

	8.6.4 Class: DataType
	8.6.4.1 Supertypes
	8.6.4.2 Attributes
	8.6.4.3 Associations
	8.6.4.4 Other Roles

	8.6.5 Class: DefinedType
	8.6.5.1 Supertypes
	8.6.5.2 Attributes
	8.6.5.3 Associations
	8.6.5.4 Other Roles

	8.6.6 Class: EnumerationType
	8.6.6.1 Supertypes
	8.6.6.2 Attributes
	8.6.6.3 Associations
	8.6.6.4 Other Roles

	8.6.7 Class: InstantiableType
	8.6.7.1 Supertypes
	8.6.7.2 Attributes
	8.6.7.3 Associations
	8.6.7.4 Other Roles

	8.6.8 Class: NamedType
	8.6.8.1 Supertypes
	8.6.8.2 Attributes
	8.6.8.3 Associations
	8.6.8.4 Other Roles
	8.6.8.5 Rules

	8.6.9 Class: ParameterType
	8.6.9.1 Supertypes
	8.6.9.2 Attributes
	8.6.9.3 Associations
	8.6.9.4 Other Roles

	8.6.10 Class: SelectType
	8.6.10.1 Supertypes
	8.6.10.2 Attributes
	8.6.10.3 Associations
	8.6.10.4 Other Roles

	8.6.11 Class: SpecializedType
	8.6.11.1 Supertypes
	8.6.11.2 Attributes
	8.6.11.3 Associations
	8.6.11.4 Other Roles

	8.6.12 Class: VariableType
	8.6.12.1 Supertypes
	8.6.12.2 Attributes
	8.6.12.3 Associations
	8.6.12.4 Other Roles

	8.6.13 Association: enumeration-extends-enumeration
	8.6.13.1 Association Ends

	8.6.14 Association: select-type-extends-select-type
	8.6.14.1 Association Ends

	8.6.15 Association: type-instantiates-select-type
	8.6.15.1 Association Ends

	8.7 Type Constraints
	8.7.1 Class: DomainConstraint
	8.7.1.1 Supertypes
	8.7.1.2 Attributes
	8.7.1.3 Associations
	8.7.1.4 Other Roles

	8.7.2 Class: DomainRule
	8.7.2.1 Supertypes
	8.7.2.2 Attributes
	8.7.2.3 Associations
	8.7.2.4 Other Roles

	8.7.3 Association: NamedType-has-DomainRule
	8.7.3.1 Supertypes
	8.7.3.2 Association Ends

	8.7.4 Association: type-has-constraints
	8.7.4.1 Association Ends

	8.8 Simple Types
	8.8.1 Class: BinaryType
	8.8.1.1 Supertypes
	8.8.1.2 Attributes
	8.8.1.3 Associations
	8.8.1.4 Other Roles

	8.8.2 Class: LengthConstraint
	8.8.2.1 Supertypes
	8.8.2.2 Attributes
	8.8.2.3 Associations
	8.8.2.4 Other Roles
	8.8.2.5 Rules

	8.8.3 Class: LogicType
	8.8.3.1 Supertypes
	8.8.3.2 Attributes
	8.8.3.3 Associations
	8.8.3.4 Other Roles

	8.8.4 Class: NumericType
	8.8.4.1 Supertypes
	8.8.4.2 Attributes
	8.8.4.3 Associations
	8.8.4.4 Other Roles

	8.8.5 Class: RealType
	8.8.5.1 Supertypes
	8.8.5.2 Attributes
	8.8.5.3 Associations
	8.8.5.4 Other Roles

	8.8.6 Class: SimpleType
	8.8.6.1 Supertypes
	8.8.6.2 Attributes
	8.8.6.3 Associations
	8.8.6.4 Other Roles

	8.8.7 Class: StringType
	8.8.7.1 Supertypes
	8.8.7.2 Attributes
	8.8.7.3 Associations
	8.8.7.4 Other Roles

	8.9 Aggregation Types
	8.9.1 Class: AggregationType
	8.9.1.1 Supertypes
	8.9.1.2 Attributes
	8.9.1.3 Associations
	8.9.1.4 Other Roles

	8.9.2 Class: ArrayBound
	8.9.2.1 Supertypes
	8.9.2.2 Attributes
	8.9.2.3 Associations
	8.9.2.4 Other Roles
	8.9.2.5 Rules

	8.9.3 Class: ARRAYType
	8.9.3.1 Supertypes
	8.9.3.2 Attributes
	8.9.3.3 Associations
	8.9.3.4 Other Roles
	8.9.3.5 Rules

	8.9.4 Class: BAGType
	8.9.4.1 Supertypes
	8.9.4.2 Attributes
	8.9.4.3 Associations
	8.9.4.4 Other Roles
	8.9.4.5 Rules

	8.9.5 Class: ConcreteAggregationType
	8.9.5.1 Supertypes
	8.9.5.2 Attributes
	8.9.5.3 Associations
	8.9.5.4 Other Roles

	8.9.6 Class: LISTType
	8.9.6.1 Supertypes
	8.9.6.2 Attributes
	8.9.6.3 Associations
	8.9.6.4 Other Roles
	8.9.6.5 Rules

	8.9.7 Datatype: OrderingKind
	8.9.7.1 Supertypes
	8.9.7.2 Values

	8.9.8 Class: SETType
	8.9.8.1 Supertypes
	8.9.8.2 Attributes
	8.9.8.3 Associations
	8.9.8.4 Other Roles
	8.9.8.5 Rules

	8.9.9 Class: SizeConstraint
	8.9.9.1 Supertypes
	8.9.9.2 Attributes
	8.9.9.3 Associations
	8.9.9.4 Other Roles
	8.9.9.5 Rules

	8.10 Generalized Types
	8.10.1 Class: AGGREGATEType
	8.10.1.1 Supertypes
	8.10.1.2 Attributes
	8.10.1.3 Associations
	8.10.1.4 Other Roles

	8.10.2 Class: GeneralAggregationType
	8.10.2.1 Supertypes
	8.10.2.2 Attributes
	8.10.2.3 Associations
	8.10.2.4 Other Roles

	8.10.3 Class: GeneralARRAYType
	8.10.3.1 Supertypes
	8.10.3.2 Attributes
	8.10.3.3 Associations
	8.10.3.4 Other Roles

	8.10.4 Class: GeneralBAGType
	8.10.4.1 Supertypes
	8.10.4.2 Attributes
	8.10.4.3 Associations
	8.10.4.4 Other Roles

	8.10.5 Class: GeneralizedType
	8.10.5.1 Supertypes
	8.10.5.2 Attributes
	8.10.5.3 Associations
	8.10.5.4 Other Roles

	8.10.6 Class: GeneralLISTType
	8.10.6.1 Supertypes
	8.10.6.2 Attributes
	8.10.6.3 Associations
	8.10.6.4 Other Roles

	8.10.7 Class: GeneralSETType
	8.10.7.1 Supertypes
	8.10.7.2 Attributes
	8.10.7.3 Associations
	8.10.7.4 Other Roles

	8.10.8 Class: GenericType
	8.10.8.1 Supertypes
	8.10.8.2 Attributes
	8.10.8.3 Associations
	8.10.8.4 Other Roles

	8.11 Entities and Attributes
	8.11.1 Class: Attribute
	8.11.1.1 Supertypes
	8.11.1.2 Attributes
	8.11.1.3 Associations
	8.11.1.4 Other Roles
	8.11.1.5 Rules

	8.11.2 Class: DerivedAttribute
	8.11.2.1 Supertypes
	8.11.2.2 Attributes
	8.11.2.3 Associations
	8.11.2.4 Other Roles

	8.11.3 Class: EntityType
	8.11.3.1 Supertypes
	8.11.3.2 Attributes
	8.11.3.3 Associations
	8.11.3.4 Other Roles

	8.11.4 Class: ExplicitAttribute
	8.11.4.1 Supertypes
	8.11.4.2 Attributes
	8.11.4.3 Associations
	8.11.4.4 Other Roles

	8.11.5 Class: InverseAttribute
	8.11.5.1 Supertypes
	8.11.5.2 Attributes
	8.11.5.3 Associations
	8.11.5.4 Other Roles

	8.11.6 Class: InvertibleAttribute
	8.11.6.1 Supertypes
	8.11.6.2 Attributes
	8.11.6.3 Associations
	8.11.6.4 Other Roles

	8.11.7 Class: PartialEntityType
	8.11.7.1 Supertypes
	8.11.7.2 Attributes
	8.11.7.3 Associations
	8.11.7.4 Other Roles

	8.11.8 Class: SingleEntityType
	8.11.8.1 Supertypes
	8.11.8.2 Attributes
	8.11.8.3 Associations
	8.11.8.4 Other Roles
	8.11.8.5 Rules

	8.11.9 Class: UniqueRule
	8.11.9.1 Supertypes
	8.11.9.2 Attributes
	8.11.9.3 Associations
	8.11.9.4 Other Roles

	8.11.10 Association: attribute-declared-in-entity
	8.11.10.1 Association Ends

	8.11.11 Association: attribute-has-data-type
	8.11.11.1 Association Ends

	8.11.12 Association: entity-has-attributes
	8.11.12.1 Association Ends

	8.11.13 Association: EntityType-has-Attribute
	8.11.13.1 Supertypes
	8.11.13.2 Association Ends

	8.11.14 Association: EntityType-has-UniqueRule
	8.11.14.1 Supertypes
	8.11.14.2 Association Ends

	8.11.15 Association: InverseAttribute-inverts-ExplicitAttribute
	8.11.15.1 Association Ends

	8.11.16 Association: single-entity-declared-in-entity
	8.11.16.1 Association Ends

	8.12 Relationships
	8.12.1 Class: DomainRole
	8.12.1.1 Supertypes
	8.12.1.2 Attributes
	8.12.1.3 Associations
	8.12.1.4 Other Roles

	8.12.2 Class: RangeRole
	8.12.2.1 Supertypes
	8.12.2.2 Attributes
	8.12.2.3 Associations
	8.12.2.4 Other Roles

	8.12.3 Class: Relationship
	8.12.3.1 Supertypes
	8.12.3.2 Attributes
	8.12.3.3 Associations
	8.12.3.4 Other Roles

	8.12.4 Class: Role
	8.12.4.1 Supertypes
	8.12.4.2 Attributes
	8.12.4.3 Associations
	8.12.4.4 Other Roles

	8.12.5 Association: DomainRole-in-Relationship
	8.12.5.1 Association Ends

	8.12.6 Association: entity-plays-domain-role
	8.12.6.1 Association Ends

	8.12.7 Association: entity-plays-range-role
	8.12.7.1 Association Ends

	8.12.8 Association: entity-used-in-attribute
	8.12.8.1 Association Ends

	8.12.9 Association: InverseAttribute-models-role
	8.12.9.1 Association Ends

	8.12.10 Association: InvertibleAttribute-creates-relationship
	8.12.10.1 Association Ends

	8.12.11 Association: InvertibleAttribute-models-role
	8.12.11.1 Association Ends

	8.12.12 Association: RangeRole-in-Relationship
	8.12.12.1 Association Ends

	8.13 Redeclarations
	8.13.1 Class: Redeclaration
	8.13.1.1 Supertypes
	8.13.1.2 Attributes
	8.13.1.3 Associations
	8.13.1.4 Other Roles

	8.13.2 Association: scope-of-redeclaration-is-EntityType
	8.13.2.1 Association Ends

	8.14 Expressions and Instances
	8.14.1 Class: Expression
	8.14.1.1 Supertypes
	8.14.1.2 Attributes
	8.14.1.3 Associations
	8.14.1.4 Other Roles
	8.14.1.5 Rules

	8.14.2 Class: Instance
	8.14.2.1 Supertypes
	8.14.2.2 Attributes
	8.14.2.3 Associations
	8.14.2.4 Other Roles

	8.15 Instance Package: BuiltInTypes
	8.15.1 Dependencies
	8.15.2 Instance: BINARY
	8.15.3 Instance: BOOLEAN
	8.15.4 Instance: INTEGER
	8.15.5 Instance: LOGICAL
	8.15.6 Instance: NUMBER
	8.15.7 Instance: REAL
	8.15.8 Instance: ROLE
	8.15.9 Instance: STRING
	8.15.10 Instance: TYPE
	8.15.11 Association: instance-of-type
	8.15.11.1 Association Ends

	8.16 Instance Package: GenericTypes
	8.16.1 Dependencies
	8.16.2 Instance: GENERIC
	8.16.3 Instance: GENERIC_ENTITY

	9 Package : Instances
	9.1 Dependencies
	9.2 Overview of Instances
	9.2.1 Class Core::Instance
	9.2.2 Class: ConcreteValue
	9.2.2.1 Supertypes
	9.2.2.2 Attributes
	9.2.2.3 Associations
	9.2.2.4 Other Roles

	9.2.3 Class: EnumerationItem
	9.2.3.1 Supertypes
	9.2.3.2 Attributes
	9.2.3.3 Associations
	9.2.3.4 Other Roles
	9.2.3.5 Rules

	9.2.4 Class: Indeterminate
	9.2.4.1 Supertypes
	9.2.4.2 Attributes
	9.2.4.3 Associations
	9.2.4.4 Other Roles

	9.2.5 Class: SpecializedValue
	9.2.5.1 Supertypes
	9.2.5.2 Attributes
	9.2.5.3 Associations
	9.2.5.4 Other Roles

	9.2.6 Class: TypedInstance
	9.2.6.1 Supertypes
	9.2.6.2 Attributes
	9.2.6.3 Associations
	9.2.6.4 Other Roles

	9.2.7 Association: enumeration-declares-items
	9.2.7.1 Supertypes
	9.2.7.2 Association Ends

	9.2.8 Association: value-of-EnumerationType
	9.2.8.1 Association Ends

	9.3 Simple Values
	9.3.1 Class: BinaryValue
	9.3.1.1 Supertypes
	9.3.1.2 Attributes
	9.3.1.3 Associations
	9.3.1.4 Other Roles

	9.3.2 Class: BooleanValue
	9.3.2.1 Supertypes
	9.3.2.2 Attributes
	9.3.2.3 Associations
	9.3.2.4 Other Roles
	9.3.2.5 Rules

	9.3.3 Class: IntegerValue
	9.3.3.1 Supertypes
	9.3.3.2 Attributes
	9.3.3.3 Associations
	9.3.3.4 Other Roles

	9.3.4 Class: LogicalValue
	9.3.4.1 Supertypes
	9.3.4.2 Attributes
	9.3.4.3 Associations
	9.3.4.4 Other Roles
	9.3.4.5 Rules

	9.3.5 Class: NumberValue
	9.3.5.1 Supertypes
	9.3.5.2 Attributes
	9.3.5.3 Associations
	9.3.5.4 Other Roles

	9.3.6 Class: RealValue
	9.3.6.1 Supertypes
	9.3.6.2 Attributes
	9.3.6.3 Associations
	9.3.6.4 Other Roles

	9.3.7 Class: RoleName
	9.3.7.1 Supertypes
	9.3.7.2 Attributes
	9.3.7.3 Associations
	9.3.7.4 Other Roles

	9.3.8 Class: SimpleValue
	9.3.8.1 Supertypes
	9.3.8.2 Attributes
	9.3.8.3 Associations
	9.3.8.4 Other Roles

	9.3.9 Class: StringValue
	9.3.9.1 Supertypes
	9.3.9.2 Attributes
	9.3.9.3 Associations
	9.3.9.4 Other Roles

	9.3.10 Class: TypeName
	9.3.10.1 Supertypes
	9.3.10.2 Attributes
	9.3.10.3 Associations
	9.3.10.4 Other Roles

	9.4 Aggregate Values
	9.4.1 Class: AggregateValue
	9.4.1.1 Supertypes
	9.4.1.2 Attributes
	9.4.1.3 Associations
	9.4.1.4 Other Roles

	9.4.2 Class: ArrayMember
	9.4.2.1 Supertypes
	9.4.2.2 Attributes
	9.4.2.3 Associations
	9.4.2.4 Other Roles

	9.4.3 Class: ARRAYValue
	9.4.3.1 Supertypes
	9.4.3.2 Attributes
	9.4.3.3 Associations
	9.4.3.4 Other Roles

	9.4.4 Class: BagMember
	9.4.4.1 Supertypes
	9.4.4.2 Attributes
	9.4.4.3 Associations
	9.4.4.4 Other Roles

	9.4.5 Class: BAGValue
	9.4.5.1 Supertypes
	9.4.5.2 Attributes
	9.4.5.3 Associations
	9.4.5.4 Other Roles

	9.4.6 Class: GenericAggregate
	9.4.6.1 Supertypes
	9.4.6.2 Attributes
	9.4.6.3 Associations
	9.4.6.4 Other Roles

	9.4.7 Class: ListMember
	9.4.7.1 Supertypes
	9.4.7.2 Attributes
	9.4.7.3 Associations
	9.4.7.4 Other Roles

	9.4.8 Class: LISTValue
	9.4.8.1 Supertypes
	9.4.8.2 Attributes
	9.4.8.3 Associations
	9.4.8.4 Other Roles

	9.4.9 Class: SETValue
	9.4.9.1 Supertypes
	9.4.9.2 Attributes
	9.4.9.3 Associations
	9.4.9.4 Other Roles

	9.5 Entity Instances and Values
	9.5.1 Class: AttributeValue
	9.5.1.1 Supertypes
	9.5.1.2 Attributes
	9.5.1.3 Associations
	9.5.1.4 Other Roles

	9.5.2 Class: EntityInstance
	9.5.2.1 Supertypes
	9.5.2.2 Attributes
	9.5.2.3 Associations
	9.5.2.4 Other Roles

	9.5.3 Datatype: EntityName
	9.5.3.1 Supertypes
	9.5.3.2 Members

	9.5.4 Class: EntityValue
	9.5.4.1 Supertypes
	9.5.4.2 Attributes
	9.5.4.3 Associations
	9.5.4.4 Other Roles

	9.5.5 Class: MultiLeafInstance
	9.5.5.1 Supertypes
	9.5.5.2 Attributes
	9.5.5.3 Associations
	9.5.5.4 Other Roles

	9.5.6 Class: PartialEntityValue
	9.5.6.1 Supertypes
	9.5.6.2 Attributes
	9.5.6.3 Associations
	9.5.6.4 Other Roles

	9.5.7 Class: SingleEntityValue
	9.5.7.1 Supertypes
	9.5.7.2 Attributes
	9.5.7.3 Associations
	9.5.7.4 Other Roles

	9.5.8 Class: SingleLeafInstance
	9.5.8.1 Supertypes
	9.5.8.2 Attributes
	9.5.8.3 Associations
	9.5.8.4 Other Roles

	9.5.9 Association: entity-value-describes-state
	9.5.9.1 Association Ends

	9.5.10 Association: instance-of-EntityType
	9.5.10.1 Association Ends

	9.6 Constants
	9.6.1 Class: Constant
	9.6.1.1 Supertypes
	9.6.1.2 Attributes
	9.6.1.3 Associations
	9.6.1.4 Other Roles
	9.6.1.5 Rules

	9.7 Populations
	9.7.1 Class: Extent
	9.7.1.1 Supertypes
	9.7.1.2 Attributes
	9.7.1.3 Associations
	9.7.1.4 Other Roles

	9.7.2 Class: Population
	9.7.2.1 Supertypes
	9.7.2.2 Attributes
	9.7.2.3 Associations
	9.7.2.4 Other Roles

	9.7.3 Association: extent-of-EntityType
	9.7.3.1 Association Ends

	9.7.4 Association: extent-within-population
	9.7.4.1 Association Ends

	9.7.5 Association: population-includes-instance
	9.7.5.1 Association Ends

	9.8 Instance Package: NamedValues
	9.8.1 Dependencies
	9.8.2 Instance: E
	9.8.2.1 Slots

	9.8.3 Instance: FALSE
	9.8.3.1 Slots

	9.8.4 Instance: PI
	9.8.4.1 Slots

	9.8.5 Instance: TRUE
	9.8.5.1 Slots

	9.8.6 Instance: UNKNOWN
	9.8.6.1 Slots

	10 Package : Algorithms
	10.1 Dependencies
	10.2 Functions and Procedures
	10.2.1 Class: Algorithm
	10.2.1.1 Supertypes
	10.2.1.2 Attributes
	10.2.1.3 Associations
	10.2.1.4 Other Roles
	10.2.1.5 Rules

	10.2.2 Class: Function
	10.2.2.1 Supertypes
	10.2.2.2 Attributes
	10.2.2.3 Associations
	10.2.2.4 Other Roles

	10.2.3 Class: FunctionResult
	10.2.3.1 Supertypes
	10.2.3.2 Attributes
	10.2.3.3 Associations
	10.2.3.4 Other Roles
	10.2.3.5 Rules

	10.2.4 Class: InParameter
	10.2.4.1 Supertypes
	10.2.4.2 Attributes
	10.2.4.3 Associations
	10.2.4.4 Other Roles

	10.2.5 Class: Parameter
	10.2.5.1 Supertypes
	10.2.5.2 Attributes
	10.2.5.3 Associations
	10.2.5.4 Other Roles
	10.2.5.5 Rules

	10.2.6 Class: Procedure
	10.2.6.1 Supertypes
	10.2.6.2 Attributes
	10.2.6.3 Associations
	10.2.6.4 Other Roles

	10.2.7 Class: Statement
	10.2.7.1 Supertypes
	10.2.7.2 Attributes
	10.2.7.3 Associations
	10.2.7.4 Other Roles

	10.2.8 Class: VARParameter
	10.2.8.1 Supertypes
	10.2.8.2 Attributes
	10.2.8.3 Associations
	10.2.8.4 Other Roles
	10.2.8.5 Rules

	10.2.9 Association: algorithm-has-body
	10.2.9.1 Association Ends

	10.2.10 Association: algorithm-has-parameters
	10.2.10.1 Supertypes
	10.2.10.2 Association Ends

	10.2.11 Association: function-has-result
	10.2.11.1 Supertypes
	10.2.11.2 Association Ends

	10.3 Variables
	10.3.1 Class: LocalVariable
	10.3.1.1 Supertypes
	10.3.1.2 Attributes
	10.3.1.3 Associations
	10.3.1.4 Other Roles

	10.3.2 Class: NamedVariable
	10.3.2.1 Supertypes
	10.3.2.2 Attributes
	10.3.2.3 Associations
	10.3.2.4 Other Roles
	10.3.2.5 Rules

	10.3.3 Class: VARVariable
	10.3.3.1 Supertypes
	10.3.3.2 Attributes
	10.3.3.3 Associations
	10.3.3.4 Other Roles

	10.3.4 Class: Variable
	10.3.4.1 Supertypes
	10.3.4.2 Attributes
	10.3.4.3 Associations
	10.3.4.4 Other Roles

	10.3.5 Association: variable-defined-in-scope
	10.3.5.1 Supertypes
	10.3.5.2 Association Ends

	10.4 Actual Types
	10.4.1 Class: Core::ActualType
	10.4.2 Class: ActualAGGREGATEType
	10.4.2.1 Supertypes
	10.4.2.2 Attributes
	10.4.2.3 Associations
	10.4.2.4 Other Roles

	10.4.3 Class: ActualAggregationType
	10.4.3.1 Supertypes
	10.4.3.2 Attributes
	10.4.3.3 Associations
	10.4.3.4 Other Roles

	10.4.4 Class: ActualARRAYType
	10.4.4.1 Supertypes
	10.4.4.2 Attributes
	10.4.4.3 Associations
	10.4.4.4 Other Roles

	10.4.5 Class: ActualBAGType
	10.4.5.1 Supertypes
	10.4.5.2 Attributes
	10.4.5.3 Associations
	10.4.5.4 Other Roles

	10.4.6 Class: ActualDataType
	10.4.6.1 Supertypes
	10.4.6.2 Attributes
	10.4.6.3 Associations
	10.4.6.4 Other Roles

	10.4.7 Class: ActualGenericType
	10.4.7.1 Supertypes
	10.4.7.2 Attributes
	10.4.7.3 Associations
	10.4.7.4 Other Roles

	10.4.8 Class: ActualLISTType
	10.4.8.1 Supertypes
	10.4.8.2 Attributes
	10.4.8.3 Associations
	10.4.8.4 Other Roles

	10.4.9 Class: ActualSETType
	10.4.9.1 Supertypes
	10.4.9.2 Attributes
	10.4.9.3 Associations
	10.4.9.4 Other Roles

	10.4.10 Class: ActualStructure
	10.4.10.1 Supertypes
	10.4.10.2 Attributes
	10.4.10.3 Associations
	10.4.10.4 Other Roles

	10.4.11 Class: GenericElement
	10.4.11.1 Supertypes
	10.4.11.2 Attributes
	10.4.11.3 Associations
	10.4.11.4 Other Roles

	10.4.12 Association: element-has-source
	10.4.12.1 Association Ends

	10.4.13 Association: element-scope-is-algorithm
	10.4.13.1 Supertypes
	10.4.13.2 Association Ends

	10.4.14 Association: scope-of-actual-type
	10.4.14.1 Supertypes
	10.4.14.2 Association Ends

	10.5 Actual Type Constraints
	10.5.1 Class: ActualStructureConstraint
	10.5.1.1 Supertypes
	10.5.1.2 Attributes
	10.5.1.3 Associations
	10.5.1.4 Other Roles

	10.5.2 Class: ActualTypeConstraint
	10.5.2.1 Supertypes
	10.5.2.2 Attributes
	10.5.2.3 Associations
	10.5.2.4 Other Roles

	10.5.3 Association: aggregate-has-constraint
	10.5.3.1 Association Ends

	10.5.4 Association: generic-has-constraint
	10.5.4.1 Association Ends

	11 Package : Rules
	11.1 Dependencies
	11.2 Global Rules
	11.2.1 Class: GlobalRule
	11.2.1.1 Supertypes
	11.2.1.2 Attributes
	11.2.1.3 Associations
	11.2.1.4 Other Roles
	11.2.1.5 Rules

	11.2.2 Class: NamedRule
	11.2.2.1 Supertypes
	11.2.2.2 Attributes
	11.2.2.3 Associations
	11.2.2.4 Other Roles

	11.2.3 Association: GlobalRule-contains-NamedRule
	11.2.3.1 Supertypes
	11.2.3.2 Association Ends

	11.2.4 Association: rule-constrains-extents
	11.2.4.1 Association Ends

	11.3 SupertypeRules and SubtypeConstraints
	11.3.1 Class: ANDConstraint
	11.3.1.1 Supertypes
	11.3.1.2 Attributes
	11.3.1.3 Associations
	11.3.1.4 Other Roles

	11.3.2 Class: ONEOFConstraint
	11.3.2.1 Supertypes
	11.3.2.2 Attributes
	11.3.2.3 Associations
	11.3.2.4 Other Roles

	11.3.3 Class: SubtypeConstraint
	11.3.3.1 Supertypes
	11.3.3.2 Attributes
	11.3.3.3 Associations
	11.3.3.4 Other Roles

	11.3.4 Class: SupertypeRule
	11.3.4.1 Supertypes
	11.3.4.2 Attributes
	11.3.4.3 Associations
	11.3.4.4 Other Roles

	11.3.5 Class: TOTAL_OVERConstraint
	11.3.5.1 Supertypes
	11.3.5.2 Attributes
	11.3.5.3 Associations
	11.3.5.4 Other Roles

	11.3.6 Association: rule-constrains-subtypes
	11.3.6.1 Association Ends

	11.3.7 Association: rule-includes-SubtypeConstraints
	11.3.7.1 Association Ends

	12 Package : Expressions
	12.1 Dependencies
	12.2 Overview of Expressions
	12.2.1 Class Core::Expression
	12.2.2 Class: IndexOperation
	12.2.2.1 Supertypes
	12.2.2.2 Attributes
	12.2.2.3 Associations
	12.2.2.4 Other Roles

	12.2.3 Class: Operation
	12.2.3.1 Supertypes
	12.2.3.2 Attributes
	12.2.3.3 Associations
	12.2.3.4 Other Roles

	12.2.4 Class: Primary
	12.2.4.1 Supertypes
	12.2.4.2 Attributes
	12.2.4.3 Associations
	12.2.4.4 Other Roles

	12.2.5 Class: Selector
	12.2.5.1 Supertypes
	12.2.5.2 Attributes
	12.2.5.3 Associations
	12.2.5.4 Other Roles

	12.3 Primaries
	12.3.1 Class: ConstantRef
	12.3.1.1 Supertypes
	12.3.1.2 Attributes
	12.3.1.3 Associations
	12.3.1.4 Other Roles

	12.3.2 Class: EnumItemRef
	12.3.2.1 Supertypes
	12.3.2.2 Attributes
	12.3.2.3 Associations
	12.3.2.4 Other Roles

	12.3.3 Class: ExtentRef
	12.3.3.1 Supertypes
	12.3.3.2 Attributes
	12.3.3.3 Associations
	12.3.3.4 Other Roles

	12.3.4 Class: IndeterminateRef
	12.3.4.1 Supertypes
	12.3.4.2 Attributes
	12.3.4.3 Associations
	12.3.4.4 Other Roles

	12.3.5 Class: Literal
	12.3.5.1 Supertypes
	12.3.5.2 Attributes
	12.3.5.3 Associations
	12.3.5.4 Other Roles

	12.3.6 Class: ParameterRef
	12.3.6.1 Supertypes
	12.3.6.2 Attributes
	12.3.6.3 Associations
	12.3.6.4 Other Roles

	12.3.7 Class: SELFRef
	12.3.7.1 Supertypes
	12.3.7.2 Attributes
	12.3.7.3 Associations
	12.3.7.4 Other Roles

	12.3.8 Class: VariableRef
	12.3.8.1 Supertypes
	12.3.8.2 Attributes
	12.3.8.3 Associations
	12.3.8.4 Other Roles

	12.4 Indexing
	12.4.1 Class: AggregateIndex
	12.4.1.1 Supertypes
	12.4.1.2 Attributes
	12.4.1.3 Associations
	12.4.1.4 Other Roles

	12.4.2 Class: BinaryIndex
	12.4.2.1 Supertypes
	12.4.2.2 Attributes
	12.4.2.3 Associations
	12.4.2.4 Other Roles

	12.4.3 Class: StringIndex
	12.4.3.1 Supertypes
	12.4.3.2 Attributes
	12.4.3.3 Associations
	12.4.3.4 Other Roles

	12.5 Selection
	12.5.1 Class: AttributeRef
	12.5.1.1 Supertypes
	12.5.1.2 Attributes
	12.5.1.3 Associations
	12.5.1.4 Other Roles

	12.5.2 Class: GroupRef
	12.5.2.1 Supertypes
	12.5.2.2 Attributes
	12.5.2.3 Associations
	12.5.2.4 Other Roles

	12.5.3 Class: UsedInRef
	12.5.3.1 Supertypes
	12.5.3.2 Attributes
	12.5.3.3 Associations
	12.5.3.4 Other Roles

	12.6 Operations
	12.6.1 Class: BinaryOperation
	12.6.1.1 Supertypes
	12.6.1.2 Attributes
	12.6.1.3 Associations
	12.6.1.4 Other Roles

	12.6.2 Datatype: BinaryOperator
	12.6.2.1 Supertypes
	12.6.2.2 Values

	12.6.3 Class: Coercion
	12.6.3.1 Supertypes
	12.6.3.2 Attributes
	12.6.3.3 Associations
	12.6.3.4 Other Roles

	12.6.4 Class: UnaryOperation
	12.6.4.1 Supertypes
	12.6.4.2 Attributes
	12.6.4.3 Associations
	12.6.4.4 Other Roles

	12.6.5 Datatype: UnaryOperator
	12.6.5.1 Supertypes
	12.6.5.2 Values

	12.7 Function Calls
	12.7.1 Class: ActualParameter
	12.7.1.1 Supertypes
	12.7.1.2 Attributes
	12.7.1.3 Associations
	12.7.1.4 Other Roles
	12.7.1.5 Rules

	12.7.2 Class: FunctionCall
	12.7.2.1 Supertypes
	12.7.2.2 Attributes
	12.7.2.3 Associations
	12.7.2.4 Other Roles
	12.7.2.5 Rules

	12.7.3 Association: call-provides-actual-parameters
	12.7.3.1 Association Ends

	12.8 Query Expressions
	12.8.1 Class: QueryExpression
	12.8.1.1 Supertypes
	12.8.1.2 Attributes
	12.8.1.3 Associations
	12.8.1.4 Other Roles

	12.8.2 Class: QueryVariable
	12.8.2.1 Supertypes
	12.8.2.2 Attributes
	12.8.2.3 Associations
	12.8.2.4 Other Roles

	12.8.3 Association: scope-of-variable-is-query
	12.8.3.1 Supertypes
	12.8.3.2 Association Ends

	12.9 Aggregate Initializers
	12.9.1 Class: AggregateInitializer
	12.9.1.1 Supertypes
	12.9.1.2 Attributes
	12.9.1.3 Associations
	12.9.1.4 Other Roles

	12.9.2 Class: MemberBinding
	12.9.2.1 Supertypes
	12.9.2.2 Attributes
	12.9.2.3 Associations
	12.9.2.4 Other Roles

	12.9.3 Class: RepeatCount
	12.9.3.1 Supertypes
	12.9.3.2 Attributes
	12.9.3.3 Associations
	12.9.3.4 Other Roles

	12.10 Partial Entity Constructors
	12.10.1 Class: AttributeBinding
	12.10.1.1 Supertypes
	12.10.1.2 Attributes
	12.10.1.3 Associations
	12.10.1.4 Other Roles

	12.10.2 Class: PartialEntityConstructor
	12.10.2.1 Supertypes
	12.10.2.2 Attributes
	12.10.2.3 Associations
	12.10.2.4 Other Roles

	12.11 Instance Package: BuiltInConstants
	12.11.1 Dependencies
	12.11.2 Instance: E
	12.11.3 Instance: FALSE
	12.11.4 Instance: PI
	12.11.5 Instance: TRUE
	12.11.6 Instance: UNKNOWN

	13 Package : Statements
	13.1 Dependencies
	13.2 Overview of Statements
	13.2.1 Class: Algorithms::Statement
	13.2.2 Class: ControlStatement
	13.2.2.1 Supertypes
	13.2.2.2 Attributes
	13.2.2.3 Associations
	13.2.2.4 Other Roles

	13.2.3 Class: NullStatement
	13.2.3.1 Supertypes
	13.2.3.2 Attributes
	13.2.3.3 Associations
	13.2.3.4 Other Roles

	13.2.4 Class: StatementBlock
	13.2.4.1 Supertypes
	13.2.4.2 Attributes
	13.2.4.3 Associations
	13.2.4.4 Other Roles

	13.2.5 Association: block-sequences-statements
	13.2.5.1 Association Ends

	13.3 ALIAS Statements
	13.3.1 Class: AliasStatement
	13.3.1.1 Supertypes
	13.3.1.2 Attributes
	13.3.1.3 Associations
	13.3.1.4 Other Roles
	13.3.1.5 Rules

	13.3.2 Class: AliasVariable
	13.3.2.1 Supertypes
	13.3.2.2 Attributes
	13.3.2.3 Associations
	13.3.2.4 Other Roles

	13.3.3 Association: alias-binds-variable
	13.3.3.1 Supertypes
	13.3.3.2 Association Ends

	13.4 Assignment Statements
	13.4.1 Class: Assignment
	13.4.1.1 Supertypes
	13.4.1.2 Attributes
	13.4.1.3 Associations
	13.4.1.4 Other Roles

	13.5 CASE Statements
	13.5.1 Class: CaseAction
	13.5.1.1 Supertypes
	13.5.1.2 Attributes
	13.5.1.3 Associations
	13.5.1.4 Other Roles
	13.5.1.5 Rules

	13.5.2 Class: CaseStatement
	13.5.2.1 Supertypes
	13.5.2.2 Attributes
	13.5.2.3 Associations
	13.5.2.4 Other Roles

	13.6 IF Statements
	13.6.1 Class: IfStatement
	13.6.1.1 Supertypes
	13.6.1.2 Attributes
	13.6.1.3 Associations
	13.6.1.4 Other Roles

	13.7 Procedure Calls
	13.7.1 Class: ProcedureCall
	13.7.1.1 Supertypes
	13.7.1.2 Attributes
	13.7.1.3 Associations
	13.7.1.4 Other Roles

	13.7.2 Association: procedure-call-provides-actual-parameters
	13.7.2.1 Association Ends

	13.8 REPEAT Statements
	13.8.1 Class: ControlVariable
	13.8.1.1 Supertypes
	13.8.1.2 Attributes
	13.8.1.3 Associations
	13.8.1.4 Other Roles
	13.8.1.5 Rules

	13.8.2 Class: EscapeStatement
	13.8.2.1 Supertypes
	13.8.2.2 Attributes
	13.8.2.3 Associations
	13.8.2.4 Other Roles
	13.8.2.5 Rules

	13.8.3 Class: RepeatStatement
	13.8.3.1 Supertypes
	13.8.3.2 Attributes
	13.8.3.3 Associations
	13.8.3.4 Other Roles

	13.8.4 Class: SkipStatement
	13.8.4.1 Supertypes
	13.8.4.2 Associations
	13.8.4.3 Other Roles
	13.8.4.4 Rules

	13.8.5 Association: repeat-has-body
	13.8.5.1 Association Ends

	13.8.6 Association: repeat-has-increment-control
	13.8.6.1 Supertypes
	13.8.6.2 Association Ends

	13.9 RETURN Statements
	13.9.1 Class: ReturnStatement
	13.9.1.1 Supertypes
	13.9.1.2 Attributes
	13.9.1.3 Associations
	13.9.1.4 Other Roles

	13.10 VAR Expressions
	13.10.1 Class: AttributeCell
	13.10.1.1 Supertypes
	13.10.1.2 Attributes
	13.10.1.3 Associations
	13.10.1.4 Other Roles

	13.10.2 Class: GroupCell
	13.10.2.1 Supertypes
	13.10.2.2 Attributes
	13.10.2.3 Associations
	13.10.2.4 Other Roles

	13.10.3 Class: MemberCell
	13.10.3.1 Supertypes
	13.10.3.2 Attributes
	13.10.3.3 Associations
	13.10.3.4 Other Roles

	13.10.4 Class: AliasRef
	13.10.4.1 Supertypes
	13.10.4.2 Attributes
	13.10.4.3 Associations
	13.10.4.4 Other Roles

	13.10.5 Class: VARExpression
	13.10.5.1 Supertypes
	13.10.5.2 Attributes
	13.10.5.3 Associations
	13.10.5.4 Other Roles

	13.10.6 Class: VariableCell
	13.10.6.1 Supertypes
	13.10.6.2 Attributes
	13.10.6.3 Associations
	13.10.6.4 Other Roles

	14 Package : Express2
	14.1 Dependencies
	14.2 Classes and Associations

