Reference Metamodel for the EXPRESS Information
Modeling Language Specification

Version 1.0 - October 2010

OMG Document Number: formal/2010-10-01
Standard document URL: http://www.omg.org/spec/EXPRESS/1.0

Associated Files*:
http://www.omg.org/spec/EXPRESS/20091201

* Qriginal files: dtc/09-12-09 (cmof.xmi)

Copyright © 2008, JBIC (Japan Biological Informatics Consortium)
Copyright © 2010, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company’s products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual , worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cubelogo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™ IMM™ MOF™, OMG Interface Definition Language (IDL)™, and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://

www.omg.org, under Documents, Report a Bug/Issue (http: //www.omg.org/technol ogy/
agreement.htm).

Table of Contents

] o) o T | ST IX
PIEIACE ..ot —————— Xi
I 11 0 T {1 o 1] o 1
2 SCOPE ANU PUIMPOSE ..ovviiiiiieiiiii ettt e e e e e et e e e e e e aaa e e e 3
3 NOrmative REfEIENCEScovviiiiei e e 3
A CONFOIMANCE ...t e e e e e e e ra e e aaa s 3
4.1 Conformance of an exchange documentoooo s 3

4.2 Conformance as a producer (Pre-proCeSSON)ccciveeieeieieesieeeeeieeeiseeeeaaanrnnaees 4

4.3 Conformance as a (POSt-)PrOCESSON ...cceeeeieeeeeeeeee e 4

4.4 ComplianCe POINES ..oeeiiiiieeii i 4

4.4.1 Compliance point: ENUMETALIONSccccoiiiiiiiiiiiieiieeeeeeesssssiieneee e e eee e s e s ssnannrneeeeeeeas 4

4.4.2 Compliance point: AlGOItNMSuuiiiiiiie e 4

4.4.3 Compliance point: RUIESuuiiiiiieiieoie e e e e e s e rr e e e e s 5

4.4.4 Compliance point: EXPreSSIONSueiuiieeeeeiiiiiiiriiiieereeseesesssssstsnnereereeeesesssnesssnesseees 5

4.4.5 Compliance point: StateMENLSceeiieeeeiiiiiiiiiiir e e e e e e e s e e eees 5

4.4.6 Compliance POINt: EXPrESS2 ...uvviviiiieieeeiieiiiienieeeeereeeesesssssnteeeeereeeaeessnnsnnssnsneereeeees 5

5 Terms and DefinitioNSccoouiiiiiiiii e 5
5.1 Unified Modeling Language (UML) TEIMSooooiiiiiiiiiii e 5

5.2 EXPRESS TEIMS oot 6

5.3 Terms for Model EIEMENtS ..o 7

5.4 Additional terms introduced in this specificationccoo i 7

6 Additional INfOrmMationcoii i 7
6.1 DocUmMENt CONVENLIONScooiiiiiiiiiiii e e e e et e e e e e e e e e r e e e e e e e ae bt e e e eeeeeenenes 7

6.2 ACKNOWIEAQEMENTS ..o 8

7 Overview of the EXPRESS Metamodelccoieiiiiiiii e, 9
R = To) - To [T O 0] - S 11
8.1 DEPENUENCIES ...iiiiiiii ittt te st et e e e e e eeeeeeas 11

8.2 MOF Metamodel DatatyPescooieiiiiiiiieiiiee e eeeeeees 11

8.2.1 Datatype: BOOIBANccceiiiiiiiiiec et e e s e e e e e e a e a e e e 11

o T B T =117/ o L= [1 =T 0= O 11

R = L =14 o 1) 1 1 o PR 11

8.3 EXPRESS Language DatatyPeScccceeuviiiiiiiiiiieiiiiinee e st e et s s e 11

8.3.1 Datatype: EXPreSSTEXL ...cceeiiiiieiie et s s s e ae e e ereneennnnnnnnan 11

8.3.2 Datatype: IAENLIFIEI ..eceii i 12

8.3.3 Datatype: KEYWOITcceiieiiiiiieeie ettt e e e e s st e e e e e e e e s s e s e e eeeeeeaes 12

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 i

8.4

8.5

8.6

8.7

8.8

Schemas, Scopes, and Naming ..o 12

8.4.1 Class: AlJONtNMSCOPEcoiiiiiiiiieie ettt e e e 13
8.4.2 Class: COMMONEIEMENLooeei e 14
R I R O F= 1TSSl [1 (T = Lo = 15
8.4.4 Class: InterfacedEIEMENLooiiiiiie e 17
8.4.5 Datatype: InterfaceKindcceueeiiiiiiiii e 18
8.4.6 Class: LOCAIEIEMENLoooiieieee e s 19
8.4.7 Class: LOCAISCOPE ...coiiiiiiiiiiitiete ettt e et e e e e e e e e e e anb e e 19
8.4.8 Class: NamedEIEMENLooviiiiii i 20
R e O I 1T Tl 1= 1 - U 21
8.4.10 Class: SChemMaEIEmMENtoovvriiiii e 23
S O B O = TS Yoo 1= P UT TP 24
8.4.12 Datatype: SCOPEAIcooeeeiiieeee ettt a e e e e as 24
8.4.13 Class: TYPEEIEMENT ... 25
8.4.14 Association: common-element-has-l10Ccal-SCOPecooviiiiiiiiiiiii e, 26
8.4.15 Association: element-defined-iN-SCOPEcccuviiiiiiiiiiiiiee e 26
8.4.16 Association: interface-includes-elementsccccciii 27
8.4.17 Association: local-element-has-10Cal-SCOPEciiiiiiiiiiiiiiiiie e, 28
8.4.18 Association: schema-defines-elementsccc e 28
8.4.19 Association: schema-element-is-interfaced-elementccccccviiiiiiiiiiienieeennnn. 29
8.4.20 Association: schema-interfaces-elementscccccciiiiiiirecee 29
8.4.21 Association: schema-has-interfacecccccciiii 30
8.4.22 Association: type-element-has-SCOPEccuuiiiiiiiiiiiii e 31
REMAIKS ...t e e e e st e e e e s et be e e e e e e e s 31
IR T R O F= 1Tl =T 0 1= 1 32
8.5.2 Association: remark-appears-in-SCOPEccuuuiiiiiiiiieaaiia et 33
8.5.3 Association: remark-describes-elementc.ccce s 34
8.5.4 Association: remark-describes-SChemacoeeeeiiiiiiiiii 34
OVEIVIEW Of TYPES oo, 35
8.6.1 Class: ACIUAITYPE ..oeveiieeeeiiie ittt et r e e e e e e e e s s e e e e e e e e e e e s enannrrneeees 37
8.6.2 Class: ANONYMOUSTYPE ..coiiiiieiiiiiieieeieees e e seitettee e e eeeeeeeessssnntesbeeneeeeaeeseesannnnnrenenees 37
8.6.3 Class: CONCIEIETYPE .iiiiieceeiiiieeeiie e e e e e e e sttt er e e e e e e s e s s e e e e e e aeeeasnannntanreeeeeees 38
I Ol TS B T | - 1 3/ 1 38
8.6.5 Class: DefiNeATYPE ..ccvie i e e e e e e e 39
8.6.6 Class: ENUMETAtIONTYPEuuuviiiiiiieeeeeeieiiiiieieneereseeessessnssnssrnereeeeeessesssnsnnssnereereeeses 39
8.6.7 Class: INStantiablETYPEccco it e 41
8.6.8 Class: NAMEATYPE .oovviieieii ittt e e e e e e e e s e s r e e e e e e e an e annannrraeeees 42
8.6.9 Class: ParameterTYPEccoiiiiiiiiiiiiieiee e e e e seete et et e e e e e s s s st e e e eaeeesn e anneanreneeees 43
8.6.10 Class: SeIECITYPE oiviieiei ittt e e e e e e e e e e e e e e e s e e s eeeees 44
8.6.11 Class: SPeCialiZEATYPE ..cuuuiiiieiiiie e e e e e e s e e e e s 46
8.6.12 Class: VariableTYPe ...cccooiiiiiiiieee e e e s 46
8.6.13 Association: enumeration-extends-enumerationccccccevviieeeeeinieeee e a7
8.6.14 Association: select-type-extends-Select-typeccccovvcvviiiiiiiee e, 47
8.6.15 Association: type-instantiates-SeleCt-typecccccceeeeviiiiriiiieireeee e 48
TYPE CONSLIAINTSeiiiitiiiiiiiiiiieiiiieeeteeee et ee ettt e et et e e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 48
8.7.1 Class: DOMAINCONSIIAINTciiiiiiiiiieeiiieieee ittt e e aeaeee s 49
8.7.2 Class: DOMAINRUIEcoiiiiiiiiiiiiiiiii ettt saaee e 50
8.7.3 Association: NamedType-has-DomainRUIEcceeeveiiiiiiiiiiiiiiie e 51
8.7.4 Association: type-has-CoONSIraiNtSccoooiiiiiiiiiiiiie e 51
SIMPIE TYPES oo —— 52

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

oS A O - TS =71 o = U Y 1) o - R 53

8.8.2 Class: LengthCONStraintcuviiiiiiiiiiiiie et e e rnree e e e 53
RS O - 11T o T [[od I3/ 1= SR 54
8.8.4 Class: NUMEIICTYPE ..ooiceeieeiiieieeee e et e e ettt e e e e e e e e e s s s st e e e e aeeesessnnnnnrennaeeeeeees 55
8.8.5 Class: REAITYPE ..ccoiiiiiiiiiee it s e e e e e e e e s et rrr e e e eaeeeanean 55
8.8.6 Class: SIMPIETYPE oooiiiii ettt e e e e e s e s e e e e e e e e s e s et anreeeeeeaes 56
8.8.7 Class: StNGTYPE oeieeiiiiieetie et s et e e e e e e s e e e e e aeeess s annranrrarreraaeeeeas 56
RS I Ao (o T =T =0T T IV o= TP 57
8.9.1 Class: AQOregatiONTYPEuuuieeieiieeaiaiiitiiteeieeea e e e e e e s rabee e e e e e aaeeaa s anbabbeeeaeeaaaaaeas 57
8.9.2 Class: ArrayBOUNG ...ttt eaa e 59
8.9.3 Class: ARRAY TY P .ttt ettt e e e e e e e st b e e e e e e e e e e e st et e e e e eeaaaeaeas 60
8.9.4 ClasSS: BAGTYPE iiiiiiiiiiittte ettt ettt e e e e e e e s bbb b e e e e e e e e e e e e e e abnbbeaeaeeaaaaaas 60
8.9.5 Class: ConcreteAggregatioNTYPE ...oocoiceuuiiiiiiiiaae ettt e e e eeeeaa e 61
8.9.6 ClasS: LIS T TY PO ciiiiiiiiiittte ettt e e e e e bbbt e e e e e e e e e e e s e aabanb et e aeeaaaaaas 61
8.9.7 Datatype: OrderingKINGooiiiii it 62
8.0.8 ClaSS: SE T T PR iiiiiiiiiiittt ettt et e ettt e e e e e e e e e bt b be et e e e e e e e e e e e banbbeaeeeaaaaaaas 63
8.9.9 Class: SIZECONSIIAINT ...t e e e e e e e e e e 63
8.10 Generalized TYPES ..ooiiii i i it ie e r e e an e 64
8.10.1 Class: AGGREGATETYPE ..uiiiiiiiiaiiiiitiiie ettt e e e e e e e 65
8.10.2 Class: GeneralAggregationNTY P . ..ottt eeeaa e 66
8.10.3 Class: GENEIAlARRAY TYPE .oeiiiiiiaiie ittt e e eeeaa e as 67
8.10.4 Class: GENEIAIBAGTYPE ..uutieiieiiiaaieeiaititeeieeee e e e e e e et e et e e e e e e e e e e snbbebbeeeaeaaaeaaeas 68
8.10.5 Class: GENEraliZEATYPE ...uuuieiiiiiiaeii ittt e e e e e e 69
8.10.6 Class: GENEIAILISTTYPE .uuuiiiiiiiieaiii ittt ettt e e e e a e e e e e 69
8.10.7 Class: GENEIAISETTYPE ..uutiiiiiiiaaiii ittt ittt e ettt e e e e e e e sab e eeeeeaaaaaeas 70
8.10.8 Class: GENEIICTYPE .euiteieieieeteaae e et e ettt ettt e e e e e e s e aabe bt eeeeeeeaa e s e e s e abanbeaeaeeeaaaaas 70
8.11 Entities and AHDULEScoooiiiiiii e 71
8.11.1 Class: AUMDULEceiiiiiiiiee et et e e e e 73
8.11.2 Class: DeriVEAALIDULEc.eviiiiiiiieee e 74
8.11.3 Class: ENEYTYPE oeeiiiiieeiiiie et e e e ee e e e e e e e s e s e e e e e e e e e s e st enreeeeeeees 75
8.11.4 Class: EXPlICIALIIIDULEvieiiieiieee e 78
8.11.5 Class: INVErSEAMIDULEoiiiiiiiiiiiiee et e e 79
8.11.6 Class: INVErtibIEALIDULEc.eeeiiiiiiiiiee e 80
8.11.7 Class: PartialEN ity TYPEuuviiiiiiieeeeeieciiieetie e s e e e e s e s sseere e e e e e e e s s s nnnnrrananeeeeees 81
8.11.8 Class: SINGIEENTIYTYPE ..uvuriiiiiiiieee i ieiiiie e e e e e e s e e s e e e e e e e e s e s s eereeeaes 82
8.11.9 Class: UNIQUERUIEuiiiiiiiieiie et e e e e e e e e s e e e e e e e e 83
8.11.10 Association: attribute-declared-in-entityccccccoveiiiiiiiieeieeen e 84
8.11.11 Association: attribute-has-data-type........ccccceer i 84
8.11.12 Association: entity-has-attributesccccceviveie i 85
8.11.13 Association: EntityType-has-Attributeccccceeiiiiiiiiiiiie e 85
8.11.14 Association: EntityType-has-UniqUeRUIEcccccciiiiiiiieeie e 86
8.11.15 Association: InverseAttribute-inverts-ExplicitAttributecccccccoevviiiiiievenneenn, 87
8.11.16 Association: single-entity-declared-in-entitycccccviiiviiieen i, 87
8.12 RelatioNSNIPS ..o et e e 88
8.12.1 Class: DOMAINROIEooiiiiiiiiieiiiie e 89
8.12.2 Class: RANGEROIE ...t e e 90
8.12.3 Class: RelatioNShiPuuvviiiiiiieie e e e 91
8.12.4 ClasS: ROIE ..ceiiiiteiie e 92
8.12.5 Association: DomainRole-in-RelationShip ..o, 93
8.12.6 Association: entity-plays-domain-rolecccccceveeiiiiiiiiiiiiiie e 93

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 iii

8.12.7 Association: entity-plays-range-roleccccveeiiieeeeiiiiiie e 94

8.12.8 Association: entity-used-in-attributeccccccveie i 94
8.12.9 Association: InverseAttribute-modelS-roleccccveiiiiieniii e 95
8.12.10 Association: InvertibleAttribute-creates-relationshipccccccevveiiiiiicciinnnnn, 95
8.12.11 Association: InvertibleAttribute-models-roleccocveeeiiiiiiniiie e 96
8.12.12 Association: RangeRole-in-Relationshipccccccvveiiiiiicciiiic e, 96
8.13 RedECIArationScoovvviiiiiiiiiiiii e, 96
8.13.1 Class: REUECIAratioNuuuiiiiiiiiiiiiiiiiiis e e e ee e s 97
8.13.2 Association: scope-of-redeclaration-is-Entity TYPecoccciiiiiiiiiiieiiniiiiiiieeeeee, 99
8.14 Parametric Datatype EIemMeNnts ... 100
8.14.1 Class: EIEMENTISOUICEvviiiiiiiiiiiieiieeis e e e e e e e e e 101
8.14.2 Class: ParametriCEIEMENTuuiuiiiiiiii e 101
8.14.3 Class: ParametriCSIIUCIUIEuvuviiiiiiiiiiiii e ie e e e e e 103
8.14.4 Class: ParametriCTYPE ..ooiiiiiieieieieee ettt e ettt e e e e e e e e e baeeeeas 104
8.14.5 Association: AGGREGATEType-defines-parametercccccceeeeeeniiiiiiiinnennn. 104
8.14.6 Association: element-has-SOUICEccccceeiiiiiiiiieiiieeiiiceeeeeeee e 105
8.15 Actual Type CONSIIAINTSccceiiieiiieeee e 105
8.15.1 Class: ActualStructureCONSLIAINTc.uueviiiiiiiie e 106
8.15.2 Class: ACtUAITYPECONSIIAINTcuvviieeeeei i ittt ee e e e e e s e e e e e e e e rneee e 107
8.15.3 Association: aggregate-has-CoONStraintccccueveeeeeiiiiiiiiieier e e e e seeeereee e 108
8.16 Expressions and INSTANCEScoovviiiiieiiieieee e 109
8.16.1 ClassS: EXPIrESSION ...ccccceiiiiiiiiiieieeeie e e e e e s ee st e e e e e e e e s e s s st e e s e aeeeesesssnnnaneeees 109
8.16.2 ClasS: INSTANCEuveiiiiiiiiiiie ittt nb e e s nbee s 111
8.17 Instance Package: BUiltINTYPEScooiiiiiiii e 112
S0 A I =T o =Y T [T Vo =SS 113
8.17.2 INnStanCe: BINARY ..ottt e 113
8.17.3 Instance: BOOLEAN ...ttt e e 113
8.17.4 InStancCe: INTEGERccciiiiiiiieiie e 113
8.17.5INStANCE: LOGICAL ...ttt e e e e 113
8.17.6 InsStance: NUMBER ..ottt e 114
8.17.7 INSTANCE: REAL ..ot 114
8.17.8 INSTANCE: ROLE ...coiiiiiiiiii e e e e 114
8.17.9 INStaNCe: STRING ...ciiiiiiiie e e e e 114
8.17.10 INSTANCE: TYPE ..ooiiiiiiiii ittt e e e e e e 114
8.17.11 Association: iNStanCe-Of-tYPEceviviiiiiii i 115
8.18 Instance Package: GENneriCTYPES ...cooviviieiiiiie e 115
8.18.1 DEPENUENCIES ...eeeeeiiiieiaieiiiiittee et et e e e e e e e ettt et e e e e e e s e e abbbeeeeeaaeaa e e e s anbenbeeeaeas 115
8.18.2 Instance: GENERIC ... e e 116
8.18.3 Instance: GENERIC_ENTITY ..ottt e e e 116

S I 01U =T = 11 0] o PO 117
9.1 DEPENUENCIES ..eeiiieiieee et 117
9.2 ENUMETrAtiON ILEBIMSiiiiiieeiiies e e e e e e s e e e e e e e et e e s e e aeeeaees 117
9.2.1 Class: CONCIEtEVAIUEueviiiiiiiiiie ettt 117
9.2.2 Class: ENUMETAtiONITEMuuiiiiiiiiei et 118
9.2.3 Association: enumeration-declaresS-itemMscoooviiiiiiiiiiiee e 119
9.2.4 Association: value-of-EnumerationTYPEccvvvviiiiieeereeiiiiiirieeeer e e e e e e e e s ssnneeneeees 120

10 Package : INSLANCEScccuvuiiiiiiiiiiiie ettt 121
10.1 DEPENUENCIES ..cooviieeieeeeeee e —— 121

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.2 OVEIVIEW Of INSLANCES ..oiireieiit ettt et et e e et et e et e et e e e e e e ers 121

10.2.1 ClaSS COFEIINSLANCEuveeiiiiieeiiaiiiiite ettt e e e et e e e e e e e s aeaeeaaaaaee e s 122
10.2.2 Class: CONCIEEVAIUEciiiiiiiiiiiiiiie ettt a e e e e e 122
10.2.3 Class: ENUMErAtiONITEIMoooiiiiiiiiiiiieiie e a e 123
10.2.4 CIass: INAEIEIMINALEciiiiiiiiiiiiiie e e e e e e e 123
10.2.5 Class: SpecialiZedValUEcoooiiiiiiiiii e 124
10.2.6 Class: TYPEAINSIANCEeeiiiiiaiiiiiiiiee ettt ee e e e e e e 125
10.2.7 Instance: INDETERMINATEcooiiiiiiiiiiiiee ettt sttee e e staee e e s nnreeeeeeees 126
10.3 SIMPIE VAIUES ...ttt te s se e e s e e e seseeeeseeeeees 126
10.3.1 CIasS: BINAIYVAIUEcoeiiiiiiiiiiiiieee ettt e e e e 126
10.3.2 Class: BOOIEANVAIUEcoeiiiiiiiiiiiiee et 127
10.3.3 Class: INEGEIVAIURueiiiiiiiiii et a e e e e e 127
10.3.4 CIass: LOQICAIVAIUEoeiiiiiiiiiiiie e e e 128
10.3.5 Class: NUMDEIVAIUEoeiiiiiiiiiiiiii et 128
10.3.6 Class: REAIVAIUEuuuiiiiiiiiiei et 129
10.3.7 Class: ROIENGIMEuuiiiiiiiiiiaeii et a e e e e e 129
10.3.8 Class: SIMPIEVAIUEeeiiiiiiiiiiiieieee ettt e e e e e 130
10.3.9 CIass: SHNGVAIUEuueiiiiiiiiii i e e e e e e 131
10.3.10 ClasS: TYPENAITIEeeeiiiiiiiiaiiieiitit ettt e ettt e e e e e e e e et eeeeeeaaeaeeaans 131
O o T =T o =L L= I 4= 1 U= 132
10.4.1 Class: AQOregateValUecccoiiiciiiiiiiiieee et e e e e e e s st eereeeeeeeaean 132
10.4.2 Class: ArTaYMEMDETuuiiiiieii ettt e e e s s r e e e e s e e s s reaereeeaeeeaeas 133
10.4.3 Class: ARRAYVAIUEooiiiiiiiiii ittt et e st e e st ee e ane 133
10.4.4 Class: BAgMEMDIETcuuiiiiiiiii ittt e e e e e e e e e e s ss st er e e e e e e e e e e e e annes 134
10.4.5 Class: BAGVAIUEuviiiiiiiiiie ettt et e e s eeesnne 135
10.4.6 Class: GENEMCAQUIEIALEcveeeieiiiee ettt e e e e e e s e e sere e e e e e e s e e s s aeeeeeaaeeanas 135
10.4.7 Class: LISIMEMDErcooiiiiiiii e 136
10.4.8 Class: LISTVAIUEccueiiiieiiiiiie ettt e st e e ee e nne 136
10.4.9 ClassS: SETVAIUEccuuiiiieiiiiiie ettt ettt e e sabe e e s snbeeeeesne 137
10.5 Entity Instances and ValUEScoeiiieiiiiiiiiiciie et 138
10.5.1 Class: AtHDULEVAIUEccoiiiiiiiiiiiiiie e 139
10.5.2 Class: ENLILYINSIANCEuvviiiiiieeei ettt e e e s st e e e e e e e e s s an e e e e aeeeeeas 140
10.5.3 Datatype: ENtItYNAIMEcovviiiiiieiiiiiiiiiieir e s e ssterre e e e e s e e s s s nereeeaeee e 141
10.5.4 Class: ENLIYVAIUEcouviiiiiiiiiee e e et e e e e e e e s e s nnn e e e e eee s 141
10.5.5 Class: MUItILEAfINSIANCEeeiiiiiiiiiie i rreee e 142
10.5.6 Class: PartialENtityValueccooiiiiiiiiiiiiiiccee e eer e 142
10.5.7 Class: SINGIEENLLYVAIUEcooeeeeiiiiiiiieee e 143
10.5.8 Class: SingleLeafINStanceccooviiciiiiiiiiii e 144
10.5.9 Association: entity-value-describes-Stateccooecvviiviiiiee e 144
10.5.10 Association: insStance-of-ENtityTYPEvvvviiiieeiiiiiiiiiieeeeee e eee e 145
L10O.6 CONSLANTS ..ot e e e e e e e e e e e e e e e e e e e s 145
10.6.1 ClasS: CONSTANT ...ceeiiiiiiieeeiiiiiee ettt e et e e e e st e ee e s snbeeee s e snbeeeeesanes 146
O o] o101 = 1T 1P 147
10.7.1 ClasS: EXLENT ..ottt e e e e e e e e e e eeaaeaaeaans 147
10.7.2 Class: POPUIALIONuiiiiiiiiiieai it e e e e e e 148
10.7.3 Association: extent-Of-Entity TYPeeueiiiiiiiiiiiiie e 149
10.7.4 Association: extent-within-populationcccoiiiiieee e 150
10.7.5 Association: population-includes-iNStanceccceeeiiiiiiiiiiiiiiieeee e 150
10.8 Instance Package: BUiltinConstantsccccccuviiiviiiiiiiiiniieiieeeiereieseeeereeenes 150
10.8.1 DEPENUENCIES ...coiiiiiititieie et e ettt e et e e e e ettt e e et e e e e e e e s e anbebeaeeaaaaaeaaas 151

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 v

IO TR S T2 [) = g [TS =N 151

10.8.3 INSTANCE: FALSEo e e e e eeaenes 151
O 8 B [] = o = S 152
10.8.5INStANCE: TRUE ...ovuiiiiiii e e e e e e e eeeeenen 152
10.8.6 Instance: UNKNOWNiiiiiiiiiiie i e et s e e e e e e e e e e e e aaa e e e eenenes 152

11 Package : Algorithms ... 153
11.1 DEPENUENCIES ..coeeiieeieeeeeee e ——— 153
11.2 FUunctions and ProCEAUIESouuiieeiiieeeeeee e e 153
11.2.1 Class: AIGOItRmM ..o 153
11.2.2 ClasS: FUNCLION ..uvuiiiiiiiiic ettt e e e et e e e e e e aa s e e e eeneees 155
11.2.3 Class: FUNCLONRESUILoooiiiiiiieiiiiiii e ee e bbb 155
11.2.4 Class: INPArAMELEE ...ccceceiiiiieiieeeeeeee e et e s e e e e e e e e e e e e e e e eeeeeeseseeesbarares 156
11.2.5 ClassS: PArameteIcccceeiiiiiiiiie et e e e et ereseae b er e aaaaes 156
11.2.6 ClasS: PrOCEAUIEccoeeiiiiiiiee e e et e e et e e e e e e e e e e e e e e e eeeeeereseseabe b e anaanes 158
11.2.7 Class: StAtEMENTccooeiiiiiiiieeeeee ererese b e aaaes 158
11.2.8 Class: VARPAIAMELEToooiiiiieiieieiiiiicesiee s et e e e e e e e e e e e e e e e ee e e e eveseaearer e aaanes 160
11.2.9 Association: algorithm-has-bodycoccmiiiiii e, 160
11.2.10 Association: algorithm-has-parameters........cccccccovveevciiiiiierie e 161
11.2.11 Association: function-has-resultccccceeiiiiiiiiiee 161
11.3 VANADIES .ooeiie e 162
11.3.1 Class: LocalVariableooooevuuiiiiiiiiiiiiiiiiiieeee e 162
11.3.2 Class: NamedVariableoooeveeiiiiiiiiiiiiiiiee e 163
11.3.3 Class: VARVANADIEooooiiiiee ettt 164
11.3.4 Class: Variablecccooiiiiiiiiiiiiii et e e e e e e e e e e e e e e e eeee b 164
11.3.5 Association: variable-defined-iN-SCOPEcccuvviviiieeii i 165
114 ACHUAI TYPES e 166
11.4.1 Class: COre::ACtUAITYPE ..uviiiiiiiiiiee e e ice st e e s e e s r e e e e e e e e s e s renee e 166
11.4.2 Class: ACtUAIAGGREGATETYPE oocviiiie ittt e e e e 167
11.4.3 Class: ACtUaIAQQregatioNTYPE ...ceveeeeeeieeiicieiieiee e e e e e e e e se st e e e s e e e e e e s s nnnnennraeees 168
11.4.4 Class: ACLUAIARRAY TYPE ..uutiiiiiiieeeeeeiiiiiiieieeet e et e e e s s e sntntaaeeeeseaeeeesennnrnnnneeeees 169
11.4.5 Class: ACLUAIBAGTYPE ...ueueriiiiiiiieeeeeiissetieite et e eteeesssssanntaneseesaaeaee s e s snsnnnnneeees 169
11.4.6 Class: ACtUAIGENEICTYPE ..uurrieriiieeeeeiiieieiieiieereeeeeeseessssnnranereereaeaeeseansnsnnnneneees 170
11.4.7 Class: ACLUAILISTTYPE .ocureeiiiiriiieeeeeeiie sttt e et e e e e s e e sstnbaae e e e e e e e e e s e s nnrnerneeeees 171
11.4.8 Class: ACLUAISETTYPE ..cviieiiiiiiiieeeeee i siiiniee e e e e e e e e ss s st e eeeaaeee e s e s nnsnnnnneeees 171
11.4.9 Association: scope-of-actual-typeccoocciiiiiiiiiiee e 171

12 Package : RUIESuiiiiii et 173
12.1 DEPENUENCIES ..oooiiieeieeee e —— 173
12.2 GIODAI RUIES ...t 173
12.2.1 Class: GIODAIRUIEoouuiiiiieeeece e eeeaees 173
12.2.2 Class: NaMEARUIEcoouviiiiiiiiie ettt e e e e e e 175
12.2.3 Association: GlobalRule-contains-NamedRUIEccccooeeiiiiiiiiieiiiiieiieeieeeeeee, 176
12.2.4 Association: rule-ConStraiNS-eXtENLSccciceiiiiiiiiiiieeiiiiiieeee e e e 176
12.3 SupertypeRules and SubtypeConstraintSccceeeeiiiiniiii e 177
12.3.1 Class: ANDCONSIIAINTcoooiiiiiiiiiiiiieii e e e e e e e ee e e e e e e eeeeesreaesesrerar e 177
12.3.2 Class: ONEOFCONSIIAINTccvvvveriiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeesereeeessrsrssanarannan 178
12.3.3 Class: SUbtypeCONSIIAINtcuviiiieeeeiicc e e e e e e neee e 178
12.3.4 Class: SUPEMYPERUIEouuiiiiiiiiee e e e e e e rneee e 179
12.3.5 Class: TOTAL_OVERCONSIIAINTccccceiiiiiiiiiieeeeeeeis e csiiieeee e e e e e e e e s e s snnnnnneees 180

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

12.3.6 Association: rule-ConstrainS-SUDLYPEScuvivieeiiiiiiiiiiiiir e e e eee e e e e 180

12.3.7 Association: rule-includes-SubtypeConstraintscccccccveeeeeiiiicciiieiieneeee e, 181

13 Package : EXPreSSiONScocceviiiiiiiii e 183
R T A B 1= 0 T=T o [T T =P 183
13.2 OVerview Of EXPreSSIONSuuuuuuiuiiiiiiiiiiiiieiiiiiieeeieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 183
13.2.1 Class COre:IEXPIESSION ..ccciiieiiiiiiiiiiieie et e ettt e e e e e et eeeaaaeaeeaaaan 184
13.2.2 CIass: INAEXOPEIALIONeieiiiaeiaiiiiiieiei ittt a e e ee e e e e e e e 184
13.2.3 ClasS: OPEIAtiONueeiiiiiiiieiee ettt e e e e e e et e e e e s e s s annb e e e aeeaaaaaeeaans 184
13.2.4 ClaSS: PIIMAIY ..oooiiiiiieiiiiee ettt et a e e e e e s e bbb aaeeeeaaae e s 185
13.2.5 ClaSS: SEIECION ...uueiiiiiieiiie ettt a e e e e e e e e e e e e anes 185

R T T o T ¢ 7= PP 186
13.3.1 Class: CONSIANTRETScooiiiiiiiiei e 186
13.3.2 Class: ENUMIEMRETooiiiiiii e 187
13.3.3 Class: EXIENTRETS ..o 188
13.3.4 Class: IndeterminateRefcoooiiiiiiiiiii e 188
13.3.5 ClasS: LILEIaluveeiiiiiiiiiie ittt e e e ee e aae 189
13.3.6 Class: ParameterRefoooiiiiiiii e 189
13.3.7 Class: SELFRET ...cooiiiiiiei e 190
13.3.8 Class: VariableRefooo i 191
RS 0 1 To 1= Vo P 192
13.4.1 Class: AQOregateINaeXciecieeiiiiiiiiirieireeeeeeseesseientreererreee s e e s s s snrnreneereeaaeeaes 192
13.4.2 CIass: BINAIYINAEXuvuuiiiiieeiiiiiiiiiiiiee e e e e e e s s seee e e e e e e e s s ss s snnbbnreeeeeeaeeeeeeannes 193
13.4.3 CIass: SHNGINAEXuvviiiiiriiiie e r e e e s e e s s aeereeaeeeenas 193
13.5 SEIBCHION oottt 194
13.5.1 Class: AtHDULERET ... 194
13.5.2 Class: GIrOUPRET ...ttt e e e e e e e 195
13.5.3 Class: USEAINRETuuiiiiiiiiiiei et 196
RS I @] 1= = 110} o PSP 196
13.6.1 CIass: BiNAryOPEIatiONcoiiiiuuiiiiiiiiiia ettt e e e e et ee e e e e e e e e e e e aaaes 197
13.6.2 Datatype: BiNaryOPEIAtOrccooiiiiiiiiiiieiiee ettt e e e e e e e aaeeeeaaa e 198
13.6.3 ClasS: COBITIONuiiiiiiiieiteete ettt e et e e et e et e e e e e e e s et e beaaeeaeaaaeaas 201
13.6.4 Class: UNAryOPEIAtiONcoceaiaiiiiiiieiiiiitea e e ettt eeee e e e e s e e saiebeseeeeaaaaaeaaans 202
13.6.5 Datatype: UNaryOPEIatorccocieeeiiieeeeeeieieeee ettt a e e e e e e e 202
13.7 FUNCHON CAIIS ...t 204
13.7.1 Class: ACtUAIPAIAMELETccooiiiiiiiiitii ittt a e e e e e e e 204
13.7.2 Class: FUNCHONCAIDooiiiiiiiiiieee e e e 206
13.7.3 PASSBYVAIUE ...ttt e e e e e e e bbb e e e e e e e 207
13.7.4 Association: call-provides-actual-parameterscccccceveeeieiiiiiiiiiieiieeeeee e 207
13.8 QUETY EXPIESSIONS ...uuuuuiiuuiiuiiniiiintentueneeeteeeeeeeeeeseeaseeeeaeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeees 208
13.8.1 Class: QUEIYEXPIESSION ...cccvieeeieiiiiiieetieeeeeteesisssssietteereeeeeessesssnsnnsrnnneereaeaeesanns 208
13.8.2 Class: QUEryVariableoooeieiiiiiiiiiie e 209
13.8.3 Association: scope-of-variable-iS-QUENYoocciiivieiiiiieiee st e e e e 210
13.9 Aggregate INIIAliZErScoiii i e e 210
13.9.1 Class: AggregatelnitialiZErcooccueriiiiieiie e 211
13.9.2 Class: MeMbBEIrBINAINGuureeiiieieiiiiiiiiiiiir e s r e e e s e e s s s e e e e e e e e 212
13.9.3 Class: REPEAICOUNLuuiiiiiieeeieiiiiiiietie e e e e ee e e s s e ssebeer e e e e e e s e e s s snanrenereeaaaeeees 213
13.10 Partial Entity CONSIIUCTOISuuuiiiiiiiiiiiiiiiiiiiniiiiisieisreeesressseereseseesreseeeeeeeeeees 213
13.10.1 Class: AtribUtEBINAING ...evvvvieeeeeiiicer e e e e e 214
13.10.2 Class: PartialEntityCONSIIUCLOrccvvviiiiiiieeeie e e e s eer e e e e e 215

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 vii

14 Package : StatemeNntScoviiiiiiiiiiiie et 217

14.1 DEPENUENCIES ..cooiiieeieeee e ——— 217
14.2 Overview of StateMENtScooooiiiiiiii e ———— 217
14.2.1 Class: Algorithms::Statementooooiiiiiiiii e 218
14.2.2 Class: ControlStatemeNntoeviiiiiiiiiiiiiiiiiii e 218
14.2.3 Class: NUIISTAtEMENLooiiiiiee e 219
14.2.4 Class: StatementBIOCKoooviiiiiiiiic e 219
14.2.5 Association: block-sequences-statemMentsccccoeviiiiiiiiiiiiiieieee e 220
14.3 ALIAS SEAEMENLS ..oiviiiiii ittt e e s 220
14.3.1 Class: AlIaSStatemMeENntoooiiiiiiiiiii e e 221
14.3.2 Class: AlIasVariable ... 222
14.3.3 Association: alias-binds-variableccccooiiiiiii 223
14.4 AsSIgNMENt StAatEMENLSoooviiiiiiii i e e e e 223
I R O = TS AT T [41T o | 223
14.5 CASE StatemMeENTS ..oovvuiiiiiiiiii i e e e e et e e e e e e e et e e e e s 224
14.5.1 Class: CASEACHION ...ceeiiiiiieie ittt e ettt e ee e s ebb e e e e s nnbeeee s 224
14.5.2 Class: CaseStateMENTccoiiiiiiiiiiiiie et 225
I | Y ¥= 1= 1 1Y 1 226
14.6.1 Class: [fStAtEMENT.....ccoiiiiiiie it e e senbaee s 226
14.7 Procedure Calls ... 227
14.7.1 PaSSBYREFEIENCE ...ccooiiiee e 228
14.7.2 Class: Procedur@Calloooiiiiiiiiiiiiiii i e e eeee e 229
14.7.3 Association: procedure-call-provides-actual-parameterscccoocuvvvveeeenenenn. 230
14.8 REPEAT StAl@MENTS ...uiiiiiiiiiiiiiie ettt et e e 230
14.8.1 Class: ControlVariableoooeiiiiiiiiiiiiiiiir e 230
14.8.2 Class: ESCAPESIAtEMENTcciiiiiiiiiiiiiiiiiiie et e e e 232
14.8.3 Class: RepeatStatemMeNnt ...t 232
14.8.4 Class: SKIPSIAtEMENTuiiiiiiiiiie e 233
14.8.5 Association: repeat-nas-body ... 234
14.8.6 Association: repeat-has-increment-controlcccooiiiiiiiiiiiiee e, 234
14.9 RETURN Stat@MENLSciiiiiiiiiiiiiiiec ettt 235
14.9.1 Class: RetUrNSIAtEMENTocovviiiiiiiiiiiiii e e e ee e 235
14.10 VAR EXPIrESSIONS ..oiiiiiiiiiiiiee oot nneeenee 236
14.10.1 Class: ALHDULECEIDeeeeieieiee e 237
14.10.2 Class: GroUPCEIL ... s areae s 238
14.10.3 Class: MemMDBEICEIlooiiiiiiiiii e 239
14.10.4 Class: AIASRETeiiiiiiiie e 239
14.10.5 Class: VAREXPIESSIONuuiiiiiiiieeeiiiiii sttt e e e e e s s s streer s e e e e s e e s snnreenaeeeeeas 240
14.10.6 Class: VariableCell ... e 241

15 Package : EXPrESS2cooeiiiiiiiiiiiiiiiie ettt 243
15.1 DEPENUENCIES ..cooeiieeieeeeeee e ——— 244
15.2 Classes and ASSOCIAtIONSocooeiiieiiiiieeei e neennnes 244
10T L2 PSP 245

viii Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

List of Figures

Figure 7.1 - EXRESS Metamodel Packages 9
Figure 8.1 - Schemas and Interfacing 13

Figure 8.2 - EXPRESS Scope and Named Element Concepts 13
Figure 8.3 - Conceptual Model of Scopedid 25
Figure 8.4 - Remarks 32

Figure 8.5 - Overview of EXPRESS Type concepts 36
Figure 8.6 - NamedTypes and Instantiable Types 36
Figure 8.7 - Type Constraints 48

Figure 8.8 - Simple Types 52

Figure 8.9 - Aggregation Types 57

Figure 8.10 - Generalized Types 64

Figure 8.11 - Entity Types 72

Figure 8.12 - Attributes 72

Figure 8.13 - Relationships 88

Figure 8.14 - Redeclarations 97

Figure 8.15 - Parametric Datatype Elements 100
Figure 8.16 - Actua Type Constraints 106

Figure 8.17 - Basic Expression Concepts 109
Figure 8.18 - Instance Model for Built-In Types 113
Figure 8.19 - Instance Model for Generic Types 115
Figure 9.1 - Enumeration Items 117

Figure 10.1 - Overview of Instances 122

Figure 10.2 - Specialized Values 124

Figure 10.3 - Typedinstances 125

Figure 10.4 - Simple Values 126

Figure 10.5 - Aggregate Values 132

Figure 10.6 - Entity Instances 138

Figure 10.7 - PartialEntityValues 139

Figure 10.8 - Constants 145

Figure 10.9 - Populations and Instances 147

Figure 10.10 - Built-In Constants 151

Figure 11.1 - Algorithms 153

Figure 11.2 - Variables 162

Figure 11.3 - Actual Types 166

Figure 12.1 - Global Rules 173

Figure 12.2 - Supertype Rules and Subtype Constraints 177
Figure 13.1 - Expressions 183

Figure 13.2 - Primaries 186

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Figure 13.3 - Indexing Operations 192

Figure 13.4 - Attribute and Attribute-Group Selectors 194
Figure 13.5 - Operations and Built-in Functions 197
Figure 13.6 - Function Calls 204

Figure 13.7 - Query Expressions 208

Figure 13.8 - Aggregate Initializers 211

Figure 13.9 - Partial Entity Value Constructors 214
Figure 14.1 - Statements 218

Figure 14.2 - ALIAS Statements 221

Figure 14.3 - Assignment Statements 223

Figure 14.4 - CASE Statements 224

Figure 14.5 - IF Statements 226

Figure 14.6 - Procedure Calls 228

Figure 14.7 - REPEAT, SKIP, and ESCAPE Statements 230
Figure 14.8 - RETURN Statements 235

Figure 14.9 - VAR Expressions 236

Figure 15.1 - Integrated Overview of Scopes 243

Figure 15.2 - Overview of Named Elements 243

X Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG'’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through afull-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG'’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http: //mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Xi

Platform Specific Model and Interface Specifications

. CORBAservices

. CORBA(facilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier / Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Xii Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

1 Introduction

Background - the origins of EXPRESS

In 1984, the Standards for Exchange of Product Data (STEP) project was officially created in the International Standards
Organization (ISO) as an outgrowth of standardization projects in the United States and France. The objective of the
STEP project was to develop standards for the exchange of product information among software tools that supported
product engineering. It rapidly came to include support for construction engineering and manufacturing systems
engineering as well.

An objective of this project was to specify the information content of a product description in away that was independent
of the form of exchange, so that more than one specific exchange form could be specified, while the semantic
equivalences would be retained by reference to the common model. In particular, the project members envisaged the need
for both database representations and sequentia file structures.

At that time, there were no standard information modeling languages, and the languages in common use were purely
graphical. In order to specify the relationships between the information model (what we would now call a“platform
independent model”) and the data implementation model (a “platform specific model”), it was perceived to be a
requirement that the information model have a formal text form. Such a form would enable an information model to be
processed by a software tool that could generate the corresponding PSM. There being no usable standard, nor any
common language, with these characteristics, the STEP project developed and standardized its own information modeling
language: EXPRESS.

The information modeling language EXPRESS was standardized in 1994 as Part 11 of the SO 10303 Standards for the
Exchange of Product Data. It was revised in 1999 and in 2004. It was used for every information model in the STEP
series, and in 3 other standards seriesin ISO TC184 (Industrial Data), and for information models in standards devel oped
by other 1SO Technical Committees. As of 2005, there were over 300 major information models for manufacturing and
construction information that are formally specified in EXPRESS and standardized by 1SO. These models, and the
EXPRESS language are in wide use in the manufacturing industry, and the exchange models are supported by dozens of
software tools.

In the more recent past, in order to make these models useful to an industry in which programmers and modelers are not
commonly taught EXPRESS, further 1SO projects have been undertaken to produce mappings from EXPRESS to XML
Schema (1SO 10303-28) and UML (1SO 10303-25). But each of these mappings was specified entirely in text and targeted
version 1 of XML Schema and UML respectively.

The MEXICO project

In 2005, the MEXICO project was created with the objective of applying OMG Model-Driven Architecture (MDA)
technologies to the “EXPRESS problem.” The project has three components:

1. Development of a MOF metamodel for the EXPRESS language.

2. Development of aforma (MOF/QVT) mapping from the EXPRESS metamodel to the UML v2 metamodel (thus
replacing 1SO 10303-25 with a formal and machine-processable specification).

3. Development of aforma (MOF/QVT) mapping from the EXPRESS metamodel to the metamodel of OWL specified
in the OMG Ontology Definition Metamodel .

This specification represents the final deliverable of the first project component: the MOF metamodel of EXPRESS.
Results of the other project components will be published separately.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 1

Taken together, these elements will permit automatic generation of UML models that faithfully represent the content of
any 1SO standard model formulated in EXPRESS. Similarly, these elements will permit automatic generation of faithful
renditions of those models in OWL, which will enable them to be used as draft ontologies and tested for logical
consistency (and consistency with other models) using Semantic Web tooling. In this way, the knowledge captured in the
many standard EXPRESS models can be made available and usable for 21% century technologies and practitioners.

Development of the EXPRESS metamodel
The MEXICO project has developed a complete metamodel of the EXPRESS language and tooling to support it.

NIST developed an EXPRESS compiler that accepts an EXPRESS schema (model) and produces XM (v1.1) that
corresponds to the metamodel. NIST is currently reworking that compiler to produce M1 instances of the complete
CMOF model herein specified in the XMI 2.1.x form.

Fraunhofer IPK developed a MOF implementation of the metamodel and used the output of the NIST tool to populate the
MOF database for a set of EXPRESS schemas.

Fraunhofer developed additional tooling to implement a mapping from the MOF population to UML (v1.4) following the
guidance in 1SO 10303-25. This was a first step toward the goals of the second MEXICO project component.

Eurostep developed tooling to map a subset of the metamodel to OWL. This was afirst step toward the goals of the third
MEXICO project component. Further work in this area is continuing with Eurostep and other partners.

At the same time, a number of other tool vendors who support the EXPRESS modeling community have devel oped
independent internal models of EXPRESS and mappings to various languages, including UML, OWL, and XML Schema.
(Many of them are listed as “supporters’ of this specification.) We all agree that the time has come to standardize an XM|
representation of EXPRESS, so as to permit these tools to interoperate around a common representation.

This specification is the metamodel of the semantics of the EXPRESS language that was developed and tested in the
MEXICO project. It represents completion of the first subproject in the MEXICO trilogy. And it has value in its own right
to other EXPRESS tool developers. For this reason, we are bringing it to OMG for standardization.

Participants in the metamodel development activity include four “technical experts’ who participated in the development
of the EXPRESS language itself. It al'so includes technical experts who were principal developers of the Part 25 (mapping
to UML) and Part 28 (mapping to XML Schema) standards. This expertise gives us confidence that the metamodel is
faithful to the semantic intent of the EXPRESS standard.

To be clear about what has been “tested”: For the MEXICO proof-of-concept tooling, all the tools were built to aversion
of the metamodel known as version 060615f. Only the NIST tool dealt with the concepts “internal to” Algorithms:
Variables, Statements, and Actual Types. Parallel work at the New University of Lisbon (UNINOVA) developed tooling
for an elaborate model of Statements. The major change in this specification is the integration of the UNINOVA model,
and related changes and repairs to the Algorithms Package.

Further, to satisfy the current level of technical expectationsin OMG, the MOF 1.4 version has been modified to a CMOF
version in this version. Several errors have been discovered and they are corrected in this version.
Acknowledgements

This specification is derived in part from early work on the development of a metamodel of EXPRESS (that was itself
specified in EXPRESS) by Prof. Donald Sanderson of East Tennessee State University, Dr. Philip Spiby of Eurostep, Dr.
Markus Maier of PDTEC, and Dr. Peter Wilson of Boeing Corporation (now retired).

Every organization listed as a submitter or supporter has made some technical contribution to this specification.

2 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

2 Scope and Purpose

This specification is a metamodel for the EXPRESS information modeling language, as defined by SO 10303-11.2:2004,
Product data exchange — EXPRESS Language Reference Manual. It includes all elements of the language.

The metamodel conforms to the OMG Complete Meta-Object Facility (CMOF) specification, version 2.0.

The metamodel captures the meaning of the EXPRESS syntactic constructs, not the syntactic constructs themselves. It
differs from an abstract syntactic model of the language when either:

« the same syntax is used with different semanticsin different contexts, or
- the syntax is more complex than the semantic content it expresses.

Some attributes of concepts in the metamodel serve only to permit the EXPRESS syntactic form to be recreated from the
metamodel instance. Such attributes are so described.

The purpose of this specification is to provide a common basis for communication among tools that create or compile
EXPRESS models, analyze them, and/or map them to various forms of implementation specifications.

It is also intended to serve as a basis for the definition of formal standard mappings to other modeling and implementation
languages.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Subsequent amendments to, or revisions of, any of these publications do not necessarily apply. However,
users and implementors of this specification are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. 1ISO and OMG maintain registers of currently valid specifications.

SO 10303, Industrial data — Product data exchange — Part 11: EXPRESS Language Reference Manual, ed. 2, 2004.
OMG Meta-Object Facility (MOF) Core Specification, v2.0, January, 2006, (formal/06-01-01)
OMG XML Metadata Interchange (XMI) Specification, v2.1.1, December, 2007, (formal/07-12-01)

4 Conformance

An exchange document can conform to this specification as specified in Conformance of an exchange document. A tool
can conform as a producer, as specified in Conformance as a producer (pre-processor), or as a processor, as specified in
Conformance as a (post-)processor, or both. In addition, it is possible for a tool to conform to one or more of the
compliance points specified in Compliance points, as a part of conformance as a producer or a processor.

4.1 Conformance of an exchange document

An exchange document conforms to this specification if:

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 3

« itisavalid XMI exchange document and represents aMOF M1 model that is consistent with the M2 metamodel
defined in clauses 6-12 of this specification; and

» theM1 model represents avalid EXPRESS schema as defined by 1SO 10303-11.2:2004.

Representation of an EXPRESS schema need not include representation of all elements of the schema. It shall include all
elements of the schema that can be represented by elements of the Core Package, as defined in Clause 7.

4.2 Conformance as a producer (pre-processor)

A software tool conforms to this specification as a producer if it produces conforming exchange documents as specified
in Conformance of an exchange document.

A software tool may claim conformance to a given compliance point as a producer if the exchange document it produces
for any given EXPRESS schema contains representations of all the EXPRESS model elements that correspond to that
compliance point.
4.3 Conformance as a (post-)processor
A software tool conforms to this specification as a processor if
- it can accept any and all exchange documents that conform as specified in Conformance of an exchange document; and
- it caninterpret all EXPRESS concepts modeled by elements in the Core Package.

The nature of the process performed on the EXPRESS schema that is represented by a document that it accepts is not
specified by this standard, but the interpretation of the EXPRESS schema in that process shall be consistent with the
interpretation given by 1SO 10303-11.

A software tool may claim conformance to a given compliance point as a processor if it can also interpret all the
EXPRESS model elements that correspond to that compliance point.

4.4 Compliance points

In addition to support of the elements in the Core Package, a tool may support any of the additional compliance points
defined below.

441 Compliance point: Enumerations

A tool conforms to the Enumerations compliance point by producing or interpreting model elements defined in the
Enumerations Package.

4.4.2 Compliance point: Algorithms
A tool conforms to the Algorithms compliance point by producing or interpreting model elements defined in the

Algorithms Packages. Conformance to this compliance point requires Statements to be produced as text, if the Statements
compliance point is not supported. It makes no requirements for the interpretation of Statements.

4 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

4.4.3 Compliance point: Rules

A tool conforms to the Rules compliance point by producing or interpreting model elements defined in the Rules,
Algorithms, and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.

4.4.4 Compliance point: Expressions

A tool conforms to the Expressions compliance point by producing or interpreting model elements defined in the
Expressions, Algorithms, and Instances Packages.

A tool that conforms as a producer to this compliance point shall not represent any Expression solely as text. That is, it
shall represent every EXPRESS expression properly as the subtype of Expression that models it. Conformance to this
compliance point requires Statements to be produced as text, if the Statements compliance point is not supported. It makes
no requirements for the interpretation of Statements.

445 Compliance point: Statements

A tool that conforms to the Statements compliance point shall conform to the Expressions compliance point, and shall
produce or interpret model elements defined in the Statements Package as well.

A tool that conforms as a producer to this compliance point shall not represent any Statement solely as text. That is, it
shall represent every EXPRESS statement properly as the subtype of Statement that models it.

4.4.6 Compliance point: Express2

A tool conforms to the Express2 compliance point shall conform to the Statements compliance point and to the Rules
compliance point. A tool that conforms to the Express2 compliance point shall fully support all elements of the EXPRESS
language.

5 Terms and Definitions

5.1 Unified Modeling Language (UML) Terms

The following terms are taken from the Unified Modeling Language (UML) Specification, and are used with the
definitions given in that specification:

« abstract

- association

- association end

- attribute

» class

- constraint

« dependency

* derived

 enumeration

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 5

« multiplicity
» navigable

» package

- stereotype
« tagged value

572 EXPRESS Terms

The following terms are taken from the EXPRESS L anguage Reference Manual, and are used with the definitions given
in that specification:

+ aggregate, and aggregation

« agorithm

- constant

» domain

 entity, and entity type

« function

« identifier

- instance

e inverse

» keyword

» member

+ parameter

+ population

- rule

» schema

 scope

« statement

 subtype

* supertype

*+ type
Some of these terms have the same orthography as certain UML terms that are not used in this specification. The
following terms are used in this specification with their UML interpretation and are prefixed by “EXPRESS’ whenever
they are used with their EXPRESS interpretation:

« abstract

- attribute

» datatype

 derived

» enumeration

6 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

53 Terms for Model Elements

This specification defines a number of metaclasses, associations, attributes, and association end names. Each of those
becomes a term that may be used in other definitions and requirements.

When aterm is capitalized in the text, e.g., Schema, it refers to the metaclass with that identifier, and by extension, to the
semantic concept that it represents.

In the text, a term beginning with a period (.) and set in Courier font, e.g., :namespace, refers to the attribute or
association end with that name that is owned by the class being described.

Note — Other than these conventions, some terms that refer to model elements have the same spelling as terms used in UML
and EXPRESS. The convention denotes the intended distinction. In most cases, however, when the EXPRESS term and the
model element identifier have the same spelling, the model element models the concept designated by the EXPRESS term.

5.4 Additional terms introduced in this specification

The following additional terms are introduced in this specification:

instance package

A UML Package that comprises only declarations of individual objects that represent fixed instances of metaclasses
defined in the parent package.

namespace

The domain of interpretation of a body of EXPRESS text in which a given identifier is associated with a given model
element.

6 Additional Information

6.1 Document Conventions

This specification is a Complete Meta-Object Facility (CMOF) specification of the EXPRESS metamodel, conforming to
the OMG Meta-Object Facility Core specification v2.0, as an M2 model.

The only CMOF features (beyond those of EMOF) that are used in this specification are:
» Specidlization of primitive types
 Subsetting of properties

The stereotype «implicit» isused only as a drawing convention to show relationships that exist as more complex
paths than are actually depicted. These associations do not exist in this form in the metamodel itself. These are used only
to show important conceptual relationships on the diagrams.

MOF 2.0 requires that every association be named, even those that are navigable in only one direction. In this
specification, all associations are named (in the UML and CMOF XMI files), but only the names of bidirectional
associations are displayed and only bidirectional associations are separately documented (as Associations).

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 7

Similarly, MOF 2.0 requires that every association end be named, even those that are not navigable. In this specification,
the names of non-navigable association ends are not shown and not documented. They do appear in the UML and CMOF
XMI files for the metamodel. Every navigable association end is documented as a properties of the owning class.

For derived attributes and associations, the UML model includes an <<isDerived>> stereotype that allows the attachment
of the tagged-value “derivation.” Wherever the derivation is a simple navigation expression, it is given as the value of
“derivation” and documented accordingly in the normative text. Where the derivation is a more complex operation, it is
omitted from the UML model and described in the text. The CMOF model does not include the tagged values, but
wherever the derivation expression is given in the UML model, the CMOF model contains a Constraint requiring the
value of the derived property to be equal to the value of the derivation expression.

6.2 Acknowledgements

The following companies submitted/supported parts of this specification:
 88Solutions
« AIDIMA
« Electronic Commerce Promotion Council of Japan
 Eurostep, Limited
 Fachhochschule Vorarlberg
» Fraunhofer Ingtitut fir Produktions- und K onstruktionstechnik (IPK)
 John Deere
» LKSoftWare Gmbh
» NASA Goddard Space Flight Center
« National Institute of Standards and Technology (NIST)
« New University of Lisbon (UNINOVA)
- PDTEC

8 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

7 Overview of the EXPRESS Metamodel

This specification is a metamodel for the EXPRESS information modeling language, as defined by SO 10303-11. The
Metamodel is composed of 7 packages, which are related as shown in Figure 7.1.

pamport==_ T T > Instances =<iMmparts=
w=merge== | = — — — — —
| F-= == |
|
5 |
| Enumerations I<imports
W |
| Core |
|
|
|
|
|
|

= — =
==import== <<\mp011>>

i

X -
==import== - L |
- ==import==

j -7 I :ll I
Expressions | _<dmport=> | Algorithms s<import=> Rules

keimparts= <=import== | <cimport=4

| | |
[Statements ‘i'mpf’bi Express?

Figure 7.1 - EXRESS Metamodel Packages

The Core Package contains all of the generally required modeling elements of EXPRESS, along with some basic
metamodel artifacts. It is the foundation on which all of the other packages are built. The Core Package is the minimal
implementation of the EXPRESS Metamodel.

The Enumerations Package contains the model of Enumerationltem and the subclasses of Instance that it instantiates. Its
purpose is to support a compliance point that includes schema-level declarations and Enumerationltems.

The Instances Package completes the model of instances that conform to the EXPRESS types. This package is needed to
support many of the concepts in EXPRESS rules.

The Algorithms Package contains the model of function and procedure definitions. This model is needed to support
Expressions, and some of its features are used in Global Rules.

The Rules Package contains the models of RULESs and SUBTYPE_CONSTRAINTS, which rely on the notion of extents
of types with populations.

The Expressions Package contains a model of expressions that includes all details of value manipulation that are
described in Clause 12 of 1SO 10303-11.

The Statements Package contains a model of the executable statements that may be contained in the body of functions and
procedures. It contains all of the concepts in Clause 13 of SO 10303-11.

The Express2 Package contains nothing in its own right. It imports everything defined in the metamodel, and thus serves
as the package that models the entire EXPRESS language.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 9

10

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8 Package :: Core

The Core package contains al of the generally required modeling elements of EXPRESS, including:
» Scopes and Naming concepts
» Schemas
» (Data) Types
« Entities, Attributes, and Relationships

« Domain Constraints

The Core package also includes the abstract classes Expression and Instance, which serve aslinking points for detailed models
contained in other packages.

8.1 Dependencies

none

8.2 MOF Metamodel Datatypes

The following basic data types from the MOF metamodel are used in this package with the interpretation given in the MOF
specification.

8.2.1 Datatype: Boolean

Definition: MOF metatype for logical values.

8.2.2 Datatype: Integer

Definition: MOF metatype for numeric information.

Note — All integer values used in this metamodel are non-negative.

8.2.3 Datatype: String

Definition: MOF Metatype for arbitrary character (code) representation.

8.3 EXPRESS Language Datatypes

8.3.1 Datatype: ExpressText

Definition: Represents any EXPRESS language text, including both unparsed text and specific syntactic elements.
Note — See Clause 7 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 11

8.3.1.1 Supertypes

Redlization typeis. MOF::String

The realization relationship is modeled as a generalization.
8.3.1.2 Members

none

8.3.2 Datatype: Identifier

Definition: EXPRESS language element used for naming NamedElements.
Note — See 7.4 of 1SO 10303-11:2004.

8.3.2.1 Supertypes
ExpressText.
8.3.2.2 Members

none

8.3.3 Datatype: Keyword

Definition: EXPRESS language element used for names of built-in data types.
Note — See 7.2.1 of SO 10303-11:2004.

8.3.3.1 Supertypes
EXxpressText
8.3.3.2 Members

none

8.4 Schemas, Scopes, and Naming

This section of the Core model introduces the naming and namespace concepts of the EXPRESS language.

An EXPRESS model consists primarily of a set of NamedElements — model elements that have (or may have) identifiers. Per
Clause 10 of 1SO 10303-11, every NamedElement has a Scopein whichitis“visible,” that is, a collection of model contextsin
which the identifier refers to that NamedElement. Such identifiers are modeled here as Scopedlds — the combination of an
Identifier and the namespace (Scope) in which it is defined (see Datatype: Scopedid).

The primary Scope/namespace of an EXPRESS model is a Schema. All model elements, except those that are predefined in
the EXPRESS language, are defined in some Schema. Interfacing is the mechanism by which an EXPRESS Schemaincludes
model elements defined in other Schemas. Figure 8.1 shows the basic Scope, Schema, and Interfacing concepts of EXPRESS.

12 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

element-defined-in-scope
==metaclass>= ==metaclass==

NamedElement +namec-slements +NEMESPACE Scope
+id: Seopedid [0.4] | 0.7 {union}

T +schema-elements +dlefined-in T
z=metaclasss= {subsets named-slemerts} | {subsets namespace} ==metaclass==
SchemaFioment | o - schema-def TH—) Schema
+version : String [0.1]
+irterfacing-schema | *name : ldentifier [1]
1| +refersao .
schema-elgment-is-nterfaced-slement " +intertacing-schema [1 1 | +interfaced-schema
Ischema-interfacss-elements ;
schema-has-interface
0.% | sreferencedas |, /’/aace
<metaclassss ’?ﬁérfaced-e\emerﬁs “interfaces | 0. | 0.1
InterfacedElement)) <<metaciassss
+iterfacedd : Scopedid [0.1] ertace-nclides slemerls Interface
+ind : Interfacekind 1] ndl: InterfaceKind [1]
+position : Integer [0.1] +intertaced-elements 1

Figure 8.1 - Schemas and Interfacing

There are three general subclasses of Scope: Schemas, Local Scopes, and Type Scopes. These Scope concepts are shown in
Figure 8.2. All of these concepts are defined in detail below, except for NamedType — the scope of TypeElements— whichis

defined in “ Overview of Types’ on page 35.

==metacassE= lasa=®
P et +named-elements +nemespace Scope
+id : Seopedid [0..1] | O.F junion} E]
B tdlisioint, total} ‘|}
Jelisjoint, total
==metaciass=> ==metaclass== =smetaciasss>
Schema LocaIScope Mzmad Type
+werzion : String [0..1]
+Name : Identitier [1]
1 | +namespace
ST {subsets namespace
{subsets namespace ; SRR memespacs |
P baels r 4
=chema defines glements
==metaclaze== o= Hocal-scops [0.1
Ubzets N e}
+zchs t:
T {subzcts named-clements }
e +common-elemerts
{subsets named-elements)
0.4 common-element-has-local-scope
cemetaciass== | ‘lecal-slemerts
focarsrogane | (unionsubsets named clements)
—1 . focalelement hae local scope
= sty t:
SEMEIACIASSEE | ion subeets named-slemerts }
o~ Bt ele e b A 5 SCGpE

Figure 8.2 - EXPRESS Scope and Named Element Concepts

8.4.1 Class: AlgorithmScope
Definition: A Local Scope that can be the namespace of CommonElements.
Properties: abstract

8.4.1.1 Supertypes

L ocal Scope
8.4.1.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13

8.4.1.3 Associations

AssociationEnd: common-elements To: CommonElement

via: common-€l ement-has-local-scope

Subsets: Scope:named-elements

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined init. Thisisa
refinement of the (abstract) Scope:named-elements rel ationship.

Note — See clause 10 of |SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: composite

AssociationEnd: variables To: Algorithms::LocalVariable

via: Algorithms::variabl e-defined-in-scope

Subsets: L ocal Scope:local-el ements

Definition: represents the relationship between the AlgorithmScope and the set of LocalVariables that are defined within it.
Multiplicity: 0..* unordered

Properties: composite

8.4.1.4 Other Roles

none

8.4.2 Class: CommonElement

Definition: a SchemaElement that can be defined in either a Schema or a L ocal Scope, and has (or may have) a unique
identifier within that Scope. Thisis an artifact of the declaration and namespace rules for the EXPRESS language.
NamedTypes, Algorithms, Constants, and SupertypeRules can be defined at the Schema level or within Algorithms and
GlobalRules (AlgorithmScopes).

Every CommonElement has a Scope. The Scope is either a SchemaScope or an AlgorithmScope.
Properties. abstract

8.4.2.1 Supertypes

SchemaElement

8.4.2.2 Attributes

none

14 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.4.2.3 Associations

Note — The AssociationEnd: defined-in to Schema is inherited from SchemaElement.

AssociationEnd: local-scope To: AlgorithmScope

via: common-gl ement-has-local -scope

Subsets: NamedEl ement:namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scopein
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note — See Clause 10 of SO 10303-11:2004.
Multiplicity: 0..1

8.4.2.4 Other Roles

none

8.4.2.5 Rules

Constraint has-scope (OCL)
exists(self->defined-in) XOR exists(self->local-scope)

A CommonElement has exactly one scope, either a Schema (via defined-in), or a Local Scope.

8.4.3 Class: Interface

Definition: represents the EXPRESS “interface” relationship between two Schemasthat is created by a USE or REFERENCE
statement.

Each EXPRESS interface statement (USE or REFERENCE) explicitly includes zero or more SchemaElements from the
interfaced Schemain the interfacing Schema. Each interface statement shall be represented by an Interface object with the
corresponding : kind. If there are multiple interface statements of the same kind for the same interfaced schema, they may all
be represented by a single Interface object of that kind. Each SchemaElement that is explicitly interfaced by the statement(s)
shall be represented by exactly one InterfacedElement that isincluded in the Interface. Such elements are considered to bein
the namespace of the interfacing Schema as well, but the identifier in the interfacing schema may be overridden in the
InterfacedElement.

In addition, an EXPRESS interface statement may implicitly interface zero or more SchemaElements from the interfaced
Schema in the interfacing Schema, in order to complete the specifications of the explicitly interfaced elements. For each
interfaced schema from which one or more SchemaElements are implicitly interfaced, the interfacing Schema shall also
contain one Interface object that has : kind=IMPLICIT, and that includes one InterfacedElement for each implicitly
interfaced element from that interfaced Schema. Implicitly interfaced elements are not considered to be in the namespace of
the interfacing schema, but they may appear in a corresponding population.

Note — See Clause 11 of 1SO 10303-11:2004. Interface models the USE and REFERENCE statements, but follows the
interpretation rules given in that clause. In particular, a statement of the form

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 15

REFERENCE FROM <schemas;
explicitly interfaces every SchemaElement defined in the interfaced schema, and a statement of the form
USE FROM <schema>;

explicitly interfaces every NamedType defined in the interfaced schema.

Note — The above requires an interfaced element that is both USEd and REFERENCEd in the same interfacing schemato have
two corresponding InterfacedElements, one in each of the Interface objects corresponding to the two kinds of interface
statements.

Note — Per SO 10303-11, a SchemaElement can be implicitly interfaced to define the terms used in defining explicitly
interfaced SchemaElements in one USE or REFERENCE statement. The same SchemaElement can also be explicitly
interfaced in another USE or REFERENCE statement. This specification does not require a SchemaElement that is explicitly
interfaced to be modeled asimplicitly interfaced at all. But SchemaElementsthat areimplicitly interfaced at least once and are
not explicitly interfaced at all must be modeled by InterfacedElements that are included in an Interface whose kind isimplicit.

8.4.3.1 Supertypes
none
8.4.3.2 Attributes

Attribute: kind To: InterfaceKind

Definition: The nature of the interface, asindicated by the interface statement the Interface represents. USE, REFERENCE,
implicit.

Multiplicity: 1..1
8.4.3.3 Associations

AssociationEnd: interfaced-elements To: InterfacedElement

via: interface-includes-elements

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the Interface.

Properties. composite
Multiplicity: 0..* unordered

AssociationEnd: interfaced-schema To: Schema

Definition: represents the rel ationship between the Interface and the Schema whose SchemaElements are being interfaced into
the . interfacing-schema.

Multiplicity: 1..1

AssociationEnd: interfacing-schema To: Schema

via: schema-has-interface

16 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Definition: represents the relationship between the Interface and the Schemain which it appears.
Multiplicity: 1..1
8.4.3.4 Other Roles

none

8.4.4 Class: InterfacedElement

Definition: represents the EXPRESS “interface” relationship (USE, REFERENCE) between an interfacing Schema and one
SchemaElement that is defined in some other Schema. It can be viewed asa“role” of the .refers-to SchemaElement in the
interfacing schema. Each InterfacedElement is contained in exactly one Interface, which models one or more interface
statements of the same kind for the interfaced schema. Because it is hot meaningful for an interface statement to interface the
same SchemaElement more than once, the combination (: included-in, : refers-to) uniquely identifies an
InterfacedElement relationship.

Note — See clause 11 of 1SO 10303-11:2004.
8.4.4.1 Supertypes
none

8.4.4.2 Attributes

Attribute: interfacedld To: Scopedld

Definition; the new Identifier for the .refers-to SchemaElement in the interfacing schema.
Note — See clause 11 of SO 10303-11:2004.
Multiplicity: 0..1

Attribute: kind To: InterfaceKind

Definition: the nature of theinterface that is represented by the InterfacedElement: USE, REFERENCE, implicit. It isderived
from the kind of Interfaceit isincluded in.

Multiplicity: 1..1

Properties: derived.

derivation = self->included-in->kind

8.4.4.3 Associations

AssociationEnd: included-in To: Interface

via: interface-includes-elements

Definition: the Interface that includes the InterfacedElement.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 17

AssociationEnd: interfacing-schema To: Schema

via: schemarinterfaces-elements

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedid.

Multiplicity: 1..1

Properties: derived.
TaggedValues

derivation = self-s>included-in->interfacing-schema

AssociationEnd: refers-to To: SchemaElement

via: schema-element-is-interfaced-el ement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the InterfacedElement.
Multiplicity: 1..1
8.4.4.4 Other Roles

none

8.4.5 Datatype: InterfaceKind

Stereotype: enumeration

Definition: The nature of an Interface — the EXPRESS interface rel ationship between two Schemas.
8.4.5.1 Supertypes

none

8.4.5.2 Values

Value: IMPLICIT

Definition: Represents“implicit” interfacing, as defined in SO 10303-11. A NamedElement isimplicitly interfaced whenitis
not explicitly interfaced by any USE or REFERENCE statement but is used in the specification of a NamedElement that is
explicitly interfaced, or in the specification of another element that isimplicitly interfaced. Elementsthat areimplicitly
interfaced do not appear in the namespace of the interfacing schema. Instances of implicitly interfaced NamedTypes may
appear in a Population governed by that Schema asif they were REFERENCEC.

Value: REFERENCE

Definition: Represents explicit interfacing by aREFERENCE statement. NamedElements that are explicitly interfaced have
identifiersin the namespace of the interfacing schema. Instances of NamedTypesthat are interfaced by a REFERENCE
statement may exist in a Population, but only to fulfill some Attribute of an entity that is ultimately dependent on an
“independent entity.”

18 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Value: USE

Definition: Represents explicit interfacing by aUSE statement. NamedElements that are explicitly interfaced have identifiers
in the namespace of theinterfacing schema. Instances of every NamedType that is explicitly interfaced by aUSE statement are
permitted to be “independent entities’ in a Population governed by the interfacing Schema.

8.4.6 Class: LocalElement

Definition: An abstract class, representing NamedElements whose scope is a Local Scope. No LocalElement is defined in the
Core package.

Properties: abstract
8.4.6.1 Supertypes
NamedElement
8.4.6.2 Attributes
none

8.4.6.3 Associations

AssociationEnd: namespace To: LocalScope

Subsets: NamedEl ement:namespace

Definition; the Scope in which the Local Element is defined. Unlike SchemaElements, a LocalElement isinstantiated only in
the context of a particular “use” or “invocation” of the Scope in which it is defined. As a consegquence, a Local Element can be
instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a“lifetime’
corresponding to that use/invocation.

Multiplicity: 1..1
Properties: abstract
8.4.6.4 Other Roles

none

8.4.7 Class: LocalScope

Definition: A Scope that is neither a Schema nor a NamedType. Terms defined in a Local Scope are not visible at the Schema
level.

Note — See Clause 10 of 1SO 10303-11:2004.
Properties. abstract

8.4.7.1 Supertypes

Scope

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 19

8.4.7.2 Attributes
none

8.4.7.3 Associations

AssociationEnd: local-elements To: LocalElement

Subsets: Scope:named-elements

Definition: the Local Elements that are defined in the Local Scope. (A Local Scope that is an AlgorithmScope may also be the
scope of CommonElements.)

Multiplicity: 0..* unordered
Properties. composite, derived union
8.4.7.4 Other Roles

none

8.4.8 Class: NamedElement

Definition: An abstract class representing a principal modeling concept of the EXPRESS language: an object that is defined in
amodel, has anotion of “lifetime,” and has an identifier that refersto it in Schemas or in some nested Scope in a Schema.

Note — Every NamedElement has an :id attribute whose value is a Scopedld. Some NamedElements are not required to have
identifiers, and some NamedElements can have additional identifiers. The scope of each such identifier is the Scope in which
the NamedElement is defined.

Properties: abstract
8.4.8.1 Supertypes
none

8.4.8.2 Attributes

Attribute: id To: ScopedId

Definition: Represents the identifier that uniquely identifies the NamedElement within the Scope that is the :namespace. Not
all NamedElements are required to have identifiers.

Note — See Clause 10 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.4.8.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-element

20 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of the
NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

AssociationEnd: namespace To: Scope

Definition: represents the abstract rel ationship between a NamedElement and the “scope” in which it is defined, i.e., the set of
model elements for which that name refers to that NamedElement.

Note — See clause 10 of SO 10303-11:2004.
Multiplicity: 1..1

Properties. abstract

8.4.8.4 Other Roles

none

8.4.9 Class: Schema

Definition: a Scope that represents an EXPRESS SCHEMA, i.e., acollection of SchemaElement declarations and interface
declarations.

Note — “Schema’ is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.3 of 1SO 10303-11:2004.

8.4.9.1 Supertypes

Scope
8.4.9.2 Attributes

Attribute: name To: Identifier
Definition: the name of the EXPRESS schema.
Note — See clause 9.3 of 1SO 10303-11:2004.

Multiplicity: 1..1
Attribute: version To: Identifier

Definition; the version identifier for the EXPRESS schema, if any.
Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 21

8.4.9.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema documentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: interfaced-elements To: InterfacedElement

via: schemarinterfaces-elements

Definition: represents the relationship between a Schema and the InterfacedElementsiit contains, that is, the SchemaElements
that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties. derived.

Multiplicity: 0..* unordered
TaggedValues

derivation = self-s>interfaces->interfaced-elements;

AssociationEnd: interfaces To: Interface

via: schema-has-interface

Definition: the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface into
the Schema.

Properties. composite
Multiplicity: 0..* unordered

AssociationEnd: schema-elements To: SchemaElement

via: schema-defines-elements

Subsets: Scope:named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined in it, as distinct from
those that are interfaced into it.

Note — See 9.3 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties. composite

22 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.4.9.4 Other Roles

From: Interface as interfaced-schema
From: Instances::Population as governing-schema

8.4.10 Class: SchemaElement

Definition: a NamedElement whose scope can be a Schema. This includes all CommonElements and Global Rule. The scope
of CommonElements can be a Schema, but is not required to be a Schema.

Properties. abstract
8.4.10.1 Supertypes
NamedElement
8.4.10.2 Attributes
none

8.4.10.3 Associations

AssociationEnd: defined-in To: Schema

via: schema-defines-elements

Subsets: NamedElement:namespace

Definition: represents the relationship between the SchemaElement and the Schemain whichit is (originally) defined.
Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: referenced-as To: InterfacedElement

via: schema-el ement-is-interfaced-el ement

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered
8.4.10.4 Other Roles
none

8.4.10.5 Rules

Constraint (OCL)
exists(self->defined-in) OR NOT exists(self->referenced-as)

Only a SchemaElement that is defined-in a Schema can be referenced-as an I nterfacedElement.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 23

8.4.11 Class: Scope

Definition: any EXPRESS object that defines a namespace for the interpretation of identifiers.
Note — See clause 10 of |SO 10303-11:2004.

Properties. abstract
8.4.11.1 Supertypes
none

8.4.11.2 Attributes
none

8.4.11.3 Associations

AssociationEnd: includes-remarks To: Remark

via: remark-appears-in-scope

Definition: represents the relationship between a Schema and the Remarks that appear in it.
Note — See 7.1.6 of SO 10303-11:2004.

Multiplicity: 0..* unordered
AssociationEnd: named-elements To: NamedElement

Definition: represents the abstract relationship between a Scope and the NamedElements that are defined in it.

Note — This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See Clause 10 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered
Properties: composite, derived union
8.4.11.4 Other Roles

From: Expression as interpretation-context

8.4.12 Datatype: Scopedld
Stereotypes. structure

Definition: The combination of an Identifier and its namespace, which together constitute a well-defined symbol for an
EXPRESS M odel Element. Figure 8.3 shows the conceptual model of a Scopedid. A Scopedld whose Scope is a Schemais
visible throughout the Schema, and possibly to other Schemas that interface the NamedElement. A Scopedld whose Scopeisa
Local Scopeisvisible only in that Local Scope. A Scopedld whose Scope isa NamedType isvisible only in the declaration of
that NamedType and in Expressions involving references to elements whose data type is that NamedType.

24 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

alemenlaerinedinscope
==metaciass=> e ==ietaclags=>
NamedElomont +amed-elments s i Scope
0.

dertiios
Adentiies |1 wiefiningScope | 1
leturigrel-loertifies-element Rare-defined-n-scope
. =astructiress

e Scopedid -Aerms
0.4 0.

+ocalame | dertifier [1]

Figure 8.3 - Conceptual Model of Scopedld

8.4.12.1 Supertypes

none

8.4.12.2 Members

Member: definingScope To: Scope

Definition; Represents the relationship between the Scopedid and the Scope in which it is defined.
Note — See Clause 10 of 1SO 10303-11:2004.

Multiplicity: 1..1

Member: localName To: Identifier

Definition: Represents the EXPRESS identifier that uniquely identifies the NamedElement within the namespace that is the
Scope.

Multiplicity: 1..1

8.4.13 Class: TypeElement

Definition: A NamedElement whose namespace is a data type (NamedType).
Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.

Properties. abstract
8.4.13.1 Supertypes
NamedElement
8.4.13.2 Attributes
none

8.4.13.3 Associations

AssociationEnd: namespace To: NamedType

via: type-element-has-scope

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 25

Subsets: NamedElement:namespace

Definition: represents the relationship between the TypeElement and the NamedTypein which it is defined. Thisisa
refinement of the NamedElement:namespace and an abstraction of the specific relationships of TypeElements to their owner
NamedTypes.

Multiplicity: 1..1
8.4.13.4 Other Roles

none

8.4.14 Association: common-element-has-local-scope

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. Thisisa
refinement of the (abstract) element-defined-in-scope relationship.

Note — See clause 10 of SO 10303-11:2004.
8.4.14.1 Supertypes

el ement-defined-in-scope

8.4.14.2 Association Ends

AssociationEnd: common-elements To: CommonElement
Definition: the CommonElements that are defined in the AlgorithmScope.

Note — See clause 10 of SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: local-scope To: AlgorithmScope
Subsets: NamedElement:namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scopein
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note — See Clause 10 of SO 10303-11:2004.

Multiplicity: 0..1

8.4.15 Association: element-defined-in-scope

Definition: represents the generic relationship between a NamedElement and the Scope in which it is defined. Every

NamedElement is defined in exactly one Scope. It may be interfaced into other Scopes, and it may be visible in Scopes nested
inside the Scope in which it defined and the Scopes into which it isinterfaced.

Note — See clause 10 of SO 10303-11:2004.

26 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — Thisis an abstract relationship. Each separate form of thisrelationship is separately model ed.
Properties. abstract

8.4.15.1 Association Ends

AssociationEnd: named-elements To: NamedElement
Definition: represents the relationship between a Scope and the NamedElements that are defined in it.

Note — Thisrelationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See clause 10 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered
Properties. composite, derived union

AssociationEnd: namespace To: Scope

Definition: represents the relationship between a NamedElement and the “ scope” in which it is defined, i.e., the set of model
elements for which that name refers to that NamedElement.

Note — See clause 10 of 1SO 10303-11:2004.
Multiplicity: 1..1

Properties: abstract

8.4.16 Association: interface-includes-elements

Definition: represents the relationship between an Interface and the InterfacedElements it contains, that is the relationship
between an interface statement (USE or REFERENCE) and the SchemaElementsit implicitly and explicitly interfaces.

Note — See clause 11 of 1SO 10303-11:2004.

8.4.16.1 Association Ends

AssociationEnd: included-in To: Interface

Definition: the Interface that includes the I nterf acedElement.
Multiplicity: 1..1

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the Interface.

Properties: composite

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 27

8.4.17 Association: local-element-has-local-scope

Definition: represents the abstract relationship between a Local Scope and the LocalElements that are defined in it. (A
L ocal Scope that is an AlgorithmScope may also be the scope of CommonElements.)

Note — This relationship is an abstraction of the actua relationships between L ocal Elements and Scopes. Each separate form
of thisrelationship is separately modeled. Not every kind of LocalElement can be defined in every Local Scope. In fact, only
NamedVariables can be defined in every Local Scope.

Note — See Clause 10.3 of 1SO 10303-11:2004.
Properties: abstract
8.4.17.1 Supertypes

e ement-defined-in-scope

8.4.17.2 Association Ends
AssociationEnd: local-elements To: LocalElement
subsets: Scope:named-elements

Definition: the Local Elements that are defined in the Local Scope. (A Local Scope that is an AlgorithmScope may also be the
scope of CommonElements.)

Multiplicity: 0..* unordered
Properties: composite, derived union

AssociationEnd: namespace To: LocalScope

Subsets: NamedElement:namespace

Definition: the Scope in which the Local Element is defined. Unlike SchemaElements, a L ocal Element isinstantiated only in
the context of a particular “use” or “invocation” of the Scopeinwhich it is defined. As a consequence, a L ocal Element can be
instantiated more than once in interpreting a Population under a given Schema, and each such instantiation has a“lifetime’
corresponding to that use/invocation.

Multiplicity: 1..1

Properties. abstract

8.4.18 Association: schema-defines-elements

Definition: represents the relationship between a Schema and the SchemaElements that are defined in it.
8.4.18.1 Supertypes

el ement-defined-in-scope

28 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.4.18.2 Association Ends

AssociationEnd: defined-in To: Schema

Subsets: NamedElement:namespace

Definition: represents the rel ationship between the SchemaElement and the Schemain whichiit is (originally) defined. Refines
the (abstract) NamedElement:namespace relationship.

Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..1

AssociationEnd: schema-elements To: SchemaElement
subsets: Scope:named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined init, as distinct from
those that are interfaced into it. refines the (abstract) Scope:named-elements rel ationship.

Note — See 9.3 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties. composite

8.4.19 Association: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

8.4.19.1 Association Ends

AssociationEnd: referenced-as To: InterfacedElement

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered

AssociationEnd: refers-to To: SchemaElement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the InterfacedElement.
Multiplicity: 1..1
8.4.20 Association: schema-interfaces-elements

Definition: represents the EXPRESS “interface” relationships (USE, REFERENCE) between an interfacing Schema and the
InterfacedElements that represent the SchemaElements that are interfaced from other Schemas.

Note — See clause 11 of 1SO 10303-11:2004.

Properties: derived

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 29

8.4.20.1 Association Ends

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: represents the relationship between a Schema and the InterfacedElementsiit contains, that is, the SchemaElements
that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties. derived

Multiplicity: 0..* unordered
TaggedValues

derivation = self-s>interfaces->interfaced-elements;

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedid.

Properties: derived
Multiplicity: 1..1
Tagged Values
derivation = self->included-in->interfacing-schema;

8.4.21 Association: schema-has-interface

Definition: represents the relationship between a Schema and the Interfaces it contains, and indirectly, the Schemas that it
imports/interfaces.

Note — See clause 11 of SO 10303-11:2004.

8.4.21.1 Association Ends

AssociationEnd: interfaces To: Interface

Definition: the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface into
the Schema.

Properties. composite
Multiplicity: 0..* unordered

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the Interface and the Schemain which it appears.

Multiplicity: 1..1

30 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.4.22 Association: type-element-has-scope

Definition: represents the abstract relationship between a TypeElement and the NamedType in which it isdefined. Thisisa
refinement of the entity-defined-in-scope relationship and an abstraction of the specific relationships of TypeElementsto
their owner NamedTypes.

Properties. abstract
8.4.22.1 Supertypes

el ement-defined-in-scope

8.4.22.2 Association Ends

AssociationEnd: type-elements To: TypeElement

subsets: Scope:named-elements

Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.
Multiplicity: 0..* unordered

Properties. composite, derived union

AssociationEnd: namespace To: NamedType

subsets: NamedElement:namespace

Definition: represents the relationship between the TypeElement and the NamedTypein which it is defined. Thisisa
refinement of the NamedElement:namespace and an abstraction of the specific relationships of TypeElements to their owner
NamedTypes.

Multiplicity: 1..1

8.5 Remarks

This section of the Core model introduces the Remark constructs that serve to document Schemas and NamedElements.
Figure 8.4 depicts the Remark concept and its properties.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 31

==metaclazs==
Scope

1 +appears-in

remark-appears-in-scope

0.*% | +includes-remarks

==metaclass== remark-describes-element ==metaclass==
Remark 0.+ +describes-slemert | MawredEfemant
+ext | String [1] 0.* |+id: Scopedd [0..1]
+izTail : Boolean [1]
+isTagged : Boolean [1]

+documentation

0. +documentation ==metaclass=>=
Schema

+describes-schema

k-l ibes-schi +wersion : String [0..1]
remark-describes-schems 0. PeSEREEETRES o

Figure 8.4 - Remarks

8.5.1 Class: Remark

Definition: A comment or or other documentation element that provides additional information about a model element.
8.5.1.1 Supertypes

none

8.5.1.2 Attributes

Attribute: isTagged To: MOF::Boolean

Definition: Is TRUE if the Remark is “tagged” to refer to one or more NamedElements, and FALSE if the remark is not
explicitly tagged.

If . isTagged is TRUE, the Remark should havethe .describes-element or .describes-schema property.
Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 1..1

Attribute: isTail To: MOF::Boolean

Definition: is Trueif the Remark islexicaly atail remark; and Falseif the Remark islexically an embedded remark.
This distinction describes only the representation and placement of the remark in the EXPRESS syntax.

Note — See 7.1.6 of 1SO 10303-11:2004.
Multiplicity: 1..1
Attribute: text To: ExpressText

Definition: Represents the actual text of the remark.

Note — Part 11 requires that the character set of the remark be the EXPRESS character set, but in practice alarger subset of
SO 10646-1 Basic Multilingual Planeis often used.

32 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 7.1.6 of SO 10303-11:2004.
Multiplicity: 1..1
8.5.1.3 Associations

AssociationEnd: appears-in To: Scope

via remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schemathat lexically containsit.
Multiplicity: 1..1
AssociationEnd: describes-element To: NamedElement

via: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While atagged remark is
formally associated with one or more NamedElement(s), a processor may also ascribe a given un-tagged Remark to a given
NamedElement, based on itslexical position.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: describes-schema To: Schema

via: remark-describes-schema

Definition: represents the relationship between a Remark that describes a Schema and the Schemait describes. The Remark
may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In particular, a
Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered
8.5.1.4 Other Roles

none

8.5.2 Association: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schemathat lexically containsit.
8.5.2.1 Association Ends

AssociationEnd: appears-in To: Scope

Definition: the Schema that lexically contains the Remark.

Note — This may be the only cue as to the subject of the Remark. The first edition of EXPRESS did not specify a means for
binding Remarks to model elements.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 33

Multiplicity: 1..1

AssociationEnd: includes-remarks To: Remark
Definition: represents the relationship between a Schema and the Remarks that appear init.
Note — See 7.1.6 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.5.3 Association: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While atagged remark is
formally associated with one or more NamedElements, a processor may also ascribe a given un-tagged Remark to a given
NamedElement, based on its lexical position.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

8.5.3.1 Association Ends

AssociationEnd: describes-element To: NamedElement

Definition: the NamedElement(s) described by the Remark.
Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schemafrom the declaration of the
NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.5.4 Association: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema documentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

8.5.4.1 Association Ends

AssociationEnd: describes-schema To: Schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The Remark
may be Tagged to refer to the Schema, or it may be ascribed to the Schemaif it lacks any other association. In particular, a
Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced fromit.

34 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a Schemaand the Remarks, if any, that constitute its in-schemadocumentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

8.6 Overview of Types

This section of the Core model introduces the data type modeling concepts of the EXPRESS language, including the built-in
types.

Asisshown in Figure 8.5, the EXPRESS data type model consists of several dichotomies. Each of the high-level abstract
types represents a group of EXPRESS data types that can play a given role in the metamodel.

DataTypeisthe general class of types of results of Expressions. Thisincludes al VariableTypes, together with “partial
complex entity datatypes’ (Partial Entity Types), which can only occur as the result of an (intermediate) Expression.

VariableTypeisthe genera class of typesthat Variables can be declared to have. Thisincludes al InstantiableTypes and
Actual Types, which are formal types that resolve to InstantiableTypes at the time the Variableis created.

ParameterType is the most general class of types that amodel element, and in particular, Attributes and Parameters, can be
declared to have. Thisincludes all VariableTypes and GeneralizedTypes, which represent generalized requirements on the type
of the element that must be specialized in actual uses.

Instantiable Types represent all the data type notions that characterize objects and properties in EXPRESS. Instantiable Types
also represent all the data types that have Instances, except for Partial Entity Types. They are subdivided into Entity Types, which
largely represent non-data objects, and ConcreteTypes, which represent data elements. They are also subdivided into
NamedTypes, which are defined by declarations in the Schema, and AnonymousTypes, which are defined in the EXPRESS
language and have specific syntactic designations instead of “identifiers.”

Any given object representing an EXPRESS datatype is an instance of exactly one of InstantiableType, Actua Type,
GeneralizedType, and Partial Entity Type, and in fact, it is an instance of exactly one specific instantiable subclass.

All of these concepts are defined below.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 35

==metaclass== “ametaclass==
Datz Type ParamaterType
{dlisjoirt, tatal} | {disioirt, total}

==metaclass==
VariablaType

R REC

==metaclazs==
ActuaiType

==metaclazs==
PartialEntityType

==metaclazs==
IustantiabloType

GenaeralizedType

==metaclass==

{disjoirt, total}

7

T‘ {isjoint, total}

==implicit==

==implicit==

==metaclass==
ConcreteType

e

==metaclass==
ARORYIHIONS TVpe

==metaclazs==
Entity Type

“ametaclass==
{~ PR dType

+izAbstract | Boolean [1]

Figure 8.5 - Overview of EXPRESS Type concepts

Figure 8.5 also shows, using “implicit” subclass relationships for Entity Types and AnonymousTypes, that there are two
dichotomies for InstantiableTypes. Every InstantiableType is either an Entity Type or a ConcreteType, and every
InstantiableType is either a NamedType or an AnonymousType.

Figure 8.6 shows the model of Instantiable Typesin detail. SimpleTypes, (Concrete) AggregationTypes and Entity Types are
defined in separate sections. The other classes and associations are defined below.

0.*

==metaclass==
CommonEfonent

fnstantiable Type

1
==metaclass==

+ifundamental-type

i

[T

+zelect-list
ety ==metaclass== ==metaclazs== +underlying-type
0.* {ordered} NamedTypa ConcreteType
+allovved-types 1
o.*
typetinstantistes-select-type +zpecializes
Tdizjairt, total | | {olizjoint, total | o.*
==metaclass== ==metaclass== ==metaclass==
EntityType Dafined Type Aroryvimous Type o
+izAhstract | Boolean [1]
T {dizjoint, total} {disjoint, tatal}
0.+ | +instantistes |
==metaclass== ==metaclazs== ==metaclass== ==metaclazs==
SelectType EnumerationType SpecializedType SimiplaType

+izExtensible : Boolean [1]
+izErtity : Boolean [1]

+isExtensible : Boolean [1]

+id © Heyweord [1]

1 | +hase

select-type-extends-select-type

0.* +extension

1 +baze 0.* |+extension
enumeration-extends-enumeration

0.*

==metaclass==
ConcretaAggregation Type

Figure 8.6 - NamedTypes and Instantiable Types

36

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.6.1 Class: ActualType

Definition; specification of an instantiable datatype by reference to (acomponent of) the data type of the actual parameter that
corresponds to aformal parameter of the Algorithm.

Each subtype of Actual Typerefersto a ParametricElement that is defined among the formal Parameters of the Algorithm. The
ParametricElement denotes the corresponding component of the data type of the corresponding actual parameter in any given
invocation. The ParametricElement is named by an EXPRESS type label, and the Actual Type refers to that
ParametricElement viathe type label.

Note — See 9.5.3.4 of SO 10303-11:2004.

Properties. abstract

The details of Actual Types are specified in the Algorithms Package (Clause 10.4).
8.6.1.1 Supertypes

Variable

8.6.1.2 Attributes

none

8.6.1.3 Associations

AssociationEnd: scope To: Algorithms::Algorithm
Via: Algorithms::scope-of -actual-type

Definition: The Algorithm in which the Actual Type is specified.

The Actual Type must be the data type of a Variable or Attribute whose scope is contained in the Algorithm, and the
ParametricElement that definesthe type label to which the Actual Type refers must be defined among the formal
parameters of the Algorithm.

An Actua Type does not have a namespace; it defines no identifiers. The :scope of the Actual Type represents the ownership of
the Actual Type and the lifetime of the Actua Type.

Multiplicity: 1..1

8.6.1.4 Other Roles

From: Algorithms::ActualAgaregationType as member-type
8.6.2 Class: AnonymousType

Definition: represents any InstantiableType that is not a NamedType.
Properties. abstract

8.6.2.1 Supertypes

| nstantiableType, ConcreteType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 37

8.6.2.2 Attributes
none
8.6.2.3 Associations

AssociationEnd: specializes To: AnonymousType

Definition: represents the relationship of an AnonymousType to an AnonymousType of which it isa*“specialization,” as
specified in Part 11 clause 9.2.7. Unlike the speciaization for defined data types, these rel ationships are true subtypes: the
domain of the "specialization™ is a subset of the domain of AnonymousType and has the same interpretation.

Multiplicity: 0..* unordered

8.6.2.4 Other Roles

From: AnonymousType as specializes

8.6.3 Class: ConcreteType

Definition: represents any InstantiableType that is not an Entity Type.
Note — See 9.1 of 1SO 10303-11:2004.

Properties. abstract
8.6.3.1 Supertypes

| nstantiableType

8.6.3.2 Attributes
none

8.6.3.3 Associations
none

8.6.3.4 Other Roles

From: SpecializedType as underlying-type

8.6.4 Class: DataType

Definition: an ExpressionType that represents all the data type notions that can be declared for objects and propertiesin

EXPRESS. Syntactically called parameter_type, it includes InstantiableTypes and GeneralizedTypes (which represent
conformance rules for InstantiableTypes). It excludes Partial Entity Types, which are only classifiers for intermediate results.

Note — See clause 8 of 1SO 10303-11:2004.

Properties. abstract

38 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.6.4.1 Supertypes
none

8.6.4.2 Attributes
none

8.6.4.3 Associations

AssociationEnd: instances To: Instance

Definition: the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless they
appear directly in a Schema.

Note — For most DataTypes, navigating the association in this direction is not a required feature of the model.
Multiplicity: 0..* unordered.
8.6.4.4 Other Roles

From: Expression as data-type

8.6.5 Class: DefinedType

Definition: a NamedType representing an EXPRESS defined data type, atype declared by atype declaration.
Note — See 8.3.2 and 9.1 of 1SO 10303-11:2004.

Properties: abstract
8.6.5.1 Supertypes

ConcreteType, NamedType

8.6.5.2 Attributes
none

8.6.5.3 Associations
none

8.6.5.4 Other Roles

none

8.6.6 Class: EnumerationType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type isan ENUMERATION
datatype - adata type that has asits domain a set of named values.

Note — See 8.4.1 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 39

8.6.6.1 Supertypes

DefinedType
8.6.6.2 Attributes

Attribute: isExtensible To: MOE::Boolean

Definition: Trueif the EnumerationType can have additional values in a schemathat interfaces it; Falseif not.

In the context schemafor a population, the final set of possible valuesis known. But the set given in the defining schema may
be incompl ete and be extended by other EnumerationTypes for which thisis the base.

Note — See 8.4.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.6.6.3 Associations

AssociationEnd: base To: EnumerationType

via enumerati on-extends-enumeration

Definition: represents the rel ationship of an extended EnumerationType to the EnumerationTypeitisBASED ON. Thedomain
of the extended typeincludes all of the values of the base type and al the values defined in the extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: declared-items To: Enumerations::Enumerationltem

via_Enumerations.enumerati on-declares-items

Subsets: NamedType:type-elements

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type_declaration. For extended enumeration types, thisis distinct from the .val ues rel ationship, which captures al of the valid
values of the type.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: composite

AssociationEnd: extension To: EnumerationType

via enumerati on-extends-enumeration

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED ON
it. Each extension type may add additional values to the domain, and these are considered to be values of the base type for all
uses within the schema containing the extension.

Note — See 8.4.1 of 1SO 10303-11:2004.

40 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 0..* unordered

AssociationEnd: values To: Enumerations::Enumerationltem

via: Enumerations::value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type. An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declaresit. This
relationship can be derived recursively as the union of the values of the .declared-items attribute for the EnumerationType, for
each EnumerationType in the sequence of .base relationships from the EnumerationType, and from all the extensions of the
EnumerationType.

Note — See clause 8.4.1 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: derived

Note — The derivation of the entire list of values is arecursive operation, described in the Definition above.
8.6.6.4 Other Roles

none

8.6.7 Class: InstantiableType

Definition; an abstract classifier, encompassing all the datatype notions that characterize objects and propertiesin EXPRESS.
InstantiableType is a proper subtype of DataType, which includes all the data types that have Instances.

Note — See 8.6.1 of 1SO 10303-11:2004.
Properties. abstract

8.6.7.1 Supertypes

VariableType

8.6.7.2 Attributes

none

8.6.7.3 Associations

AssociationEnd: fundamental-type To: InstantiableType

Definition: represents the relationship between the InstantiableType and the data type used to represent its values. The
fundamental -type of a SpecializedType is the fundamental-type of its underlying-type; the fundamental-type of any other
InstantiableType is the InstantiableType itself.

Note — 1SO 10303-11 is not clear about the fundamental -type of a SelectType. The values of a SelectType are necessarily also
values of one of the typesin the select-list, and each value is represented according to the fundamental -type of its narrowest
datatype.

Note — See 13.3.2 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 41

Multiplicity: 1..1
Properties: derived
The derivation is arecursive operation as stated in the Definition above:
if self isa SpecializedType then
self->fundamental-type = self->underlying-type->fundamental -type

else
self->fundamental-type = self

8.6.7.4 Other Roles

From: InstantiableType as fundamental-type
From: InstantiableAggregationType as member-type

From: Instances::Constant as data-type

8.6.8 Class: NamedType

Definition: a CommonElement that defines a new InstantiableType.

Note — See 8.3 of 1SO 10303-11:2004.
Properties: abstract
8.6.8.1 Supertypes

CommonElement , Scope, | nstantiableType

8.6.8.2 Attributes
none

8.6.8.3 Associations

AssociationEnd: domain-rules To: DomainRule

via NamedType-has-DomainRule

Subsets: Core::NamedType:type-elements

Definition: arefinement of Instantiabl eType:constraints, represents the association of DomainRules that restrict the domain of
valid values of the NamedType.

Note — See 9.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: instantiates To: SelectType
via: type-instantiates-sel ect-type

42 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-elements To: TypeElement

via: type-element-has-scope

Subsets: Scope:named-elements

Definition: represents the relationship between the NamedType and the TypeElements that are defined in its scope.
Multiplicity: 0..* unordered

Properties. composite, derived union

8.6.8.4 Other Roles

From: SelectType as select-list
From: Instances::TypeName as refers-to

From: Expressions::ExtentRef as refers-to

8.6.8.5 Rules

Constraint (OCL)
exists(self->id) ;

Every NamedType shall have an identifier

8.6.9 Class: ParameterType

Definition; An abstract classification of Typesthat includesthe Instantiabl eTypes, Actual Types and GeneralizedTypes. That is,
aParameterTypeis any Typethat is admissible as the declared type of a Parameter or an (abstract) ExplicitAttribute.

Note — See | SO 10303-11:2004 clause 8.6.2

Note — Thelexical parameter type in EXPRESS may represent an Actua Type rather than a ParameterType, and it may
include |abeled GenericComponents that are used in Actual Types and Actua TypeConstraints. All of these concepts are
described in the Algorithms Package.

Properties. abstract
8.6.9.1 Supertypes
none

8.6.9.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 43

8.6.9.3 Associations

AssociationEnd: constraints To: DomainConstraint

via: type-has-constraints

Definition: represents the association of DomainConstraints that restrict the value domain of the Parameter Type

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties. composite, derived union

AssociationEnd: role To: Attribute

via: attribute-has-data-type

Definition: represents the relationship between the Parameter Type and the roles (attributes of entities) that its admissible
values may play.

Note — See 9.2.1 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered
8.6.9.4 Other Roles

From: AGGREGATEType as member-type
From: Redeclaration as restricted-type

From: Algorithms::Parameter as formal-parameter-type

8.6.10 Class: SelectType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type iSaSELECT datatype:
adata type that has as its domain the union of the domains of a specified set of named data types.

Note — See 8.4.2 of 1SO 10303-11:2004.
8.6.10.1 Supertypes

DefinedType
8.6.10.2 Attributes

Attribute: isEntity To: MOF::Boolean

Definition: represents a constraint on the extensions of an Extensible SelectType: True if every NamedType in the extension
must be an Entity Type; otherwise False.

Multiplicity: 1..1

44 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Attribute: isExtensible To: MOF::Boolean

Definition: Trueif the SelectType isEXTENSIBLE, i.e., if it can have additional NamedTypesin the select-list when it is
interfaced into another Schema; Fal se otherwise.

Note — See 8.4.2 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.6.10.3 Associations

AssociationEnd: allowed-types To: NamedType
via: type-instanti ates-sel ect-type

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: base To: SelectType
via: sel ect-type-extends-sel ect-type

Definition: represents the relationship of an extended select type to the (extensible) select typeit is BASED ON.
Note — See 8.4.2 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType
via: sel ect-type-extends-sel ect-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: select-list To: NamedType

Definition: represents the appearance of the NamedType in the select list in the declaration of the SelectType. For extended
and extensible SelectTypes, the NamedType should appear in exactly one of the select-listsin any set of SelectTypesrelated by
extension. Thisisdistinct from .allowed-types, which represents all of the NamedTypes that can validly instantiate the
SelectType, including any related by extension. The select-list is said to be “ordered,” to convey the syntactic ordering. The
ordering has no semantic significance.

Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* ordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 45

8.6.10.4 Other Roles

From: Instances::TypedInstance as satisfies-type

8.6.11 Class: SpecializedType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type isneither an explicit
ENUMERATION data type nor an explicit SELECT datatype. According to SO 10303-11 clause 9.1, a SpecializedType
represents an abstract data type whose values are represented by values of theunderlying type; butin practice, a
SpecializedType may also simply name an underlying type that isan AnonymousType, or name an

underlying type whosedomain isa subset of the domain of another DefinedType.

Note — See 9.1 of 1SO 10303-11:2004.
8.6.11.1 Supertypes
DefinedType

8.6.11.2 Attributes

none

8.6.11.3 Associations

AssociationEnd: underlying-type To: ConcreteType

Definition: represents the EXPRESS “specialization” relationship between a defined data type and the “underlying type” used
to represent it.

Note — See 9.1 and 9.7 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.6.11.4 Other Roles

From: Instances::SpecializedValue as of-type

8.6.12 Class: VariableType

Definition: An abstract class representing the permissible data types of avariable: InstantiableTypes and Actual Types.

Properties: abstract
8.6.12.1 Supertypes

ParameterType, Datalype

8.6.12.2 Attributes
none
8.6.12.3 Associations

none

46 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.6.12.4 Other Roles

From: Algorithms::Variable as variable-type
From: Expressions::Coercion as target-type

From: Algorithms::Actual AGGREGATEType as member-type

8.6.13 Association: enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBL E EnumerationType to the EnumerationTypes that are BASED ON
it.

Note — See 8.4.1 of SO 10303-11:2004.

8.6.13.1 Association Ends

AssociationEnd: base To: EnumerationType

Definition: represents the relationship of an extended EnumerationType to the EnumerationTypeitisBASED ON. The domain
of the extended type includes all of the values of the base type and all the values defined in the extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: extension To: EnumerationType

Definition: represents the relationship of an EXTENSIBL E EnumerationType to the EnumerationTypes that are BASED ON
it. Each extension type may add additional values to the domain, and these are considered to be values of the base type for all
uses within the schema containing the extension.

Note — See 8.4.1 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.14 Association: select-type-extends-select-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note — See 8.4.2 of SO 10303-11:2004.

8.6.14.1 Association Ends
AssociationEnd: base To: SelectType

Definition: represents the relationship of an extended select type to the (extensible) select typeit is BASED ON.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType
Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 47

Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.15 Association: type-instantiates-select-type

Definition: represents the appearance of the “generalizes’ NamedType in the select list of the “instantiates” SelectType.
Note — See 8.4.2 of 1SO 10303-11:2004.

8.6.15.1 Association Ends

To: NamedType

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All valuesin the domain of the NamedType are valid values of the SelectType.

AssociationEnd: allowed-types

Note — See 8.4.2 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: instantiates To: SelectType
Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.7 Type Constraints

InstantiableTypes can have local constraints on the admissible values of their “domain.” The basic concept is shownin
Figure 8.7. All NamedTypes can have DomainRules. AnonymousTypes have specialized constraints, which are shown in the
sections for those types.

==metaclass== 1 tye_has-constraints soonstraints ==metaclass==
ParamaterType - DomainConstraint
+oomain b funion} 0.*
T 0.1
[e s +asser‘tsﬁ.1
VariablaTypa ==metaclass==
Expression
T +ext . ExpressText [0..1]
==metaclass==
Fistantiadle Type
MamedType-has-DomainRule ==metaclass==
+clomain +oomain-rules DomainRule
T {subsets namespace, {subsets typ lements:, e
prrm— T) subsets conatraints} | TROStoN : Integer [1]
MNamedType 1 l a.x T
+NEMESpace Hype-elements [o aseee

TypaFfomoant

1 tpe-slement-has scope n.x
{unian}
{clisjoint, total

==metaclass== ==metaclazs==
Dofinad Type EntityType
+izAbstract | Boolean [1]

Figure 8.7 - Type Constraints

48 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.7.1 Class: DomainConstraint

Definition: represents a constraint on the allowable values of an EXPRESS data type. This concept does not appear explicitly
in the EXPRESS language. Some DomainConstraints are explicit DomainRules (WHERE rules); others, such as
SizeConstraints and LengthConstraints, are stated in the EXPRESS syntax for the data type. In this model, a
DomainConstraint is always formulated as a (boolean) Expression, regardless of the EXPRESS syntax used to specify it.

Properties. abstract
8.7.1.1 Supertypes
none

8.7.1.2 Attributes
none

8.7.1.3 Associations

AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the rel ationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1
Properties. abstract

AssociationEnd: asserts To: Expression

Definition: represents the relationship between the domain constraint and a Bool ean expression that can be eval uated to
determineif it holds.

While all DomainConstraints can be represented by Boolean expressions, some DomainConstraints have representations that
do not require the Expression to be explicitly modeled. For thisreason, . asserts hasmultiplicity 0..1. When the
DomainConstraint has a simple representation (such as afixed size that is an integer), . asserts may, but need not, have a
value. When the DomainConstraint cannot be simply represented, . asserts shall have avalue that is a Boolean expression
that conveys the constraint.

Note — The asserts expression that formul ates the DomainConstraint is wholly owned by the DomainConstraint. It is not
treated as reusable.

Multiplicity: 0..1
EXAMPLE

For the EXPRESS text:

ENTITY roster;

max team: INTEGER;

members: LIST [l:max_ team+1l] OF entry;
END ENTITY;

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 49

The DomainConstraint representing the maximum size of themembers list isa SizeConstraint that has no . bound valueand
hasavaluefor .asserts that isan Expression of the form:

SizeOf (SELF.members) <= SELF.max team + 1

The DomainConstraint representing the minimum size of themembers list isa SizeConstraint that has . bound = 1. Itis
not required to have any valuefor .asserts. But, if present, thevalueof . asserts should be an Expression of the form:

SizeOf (SELF.members) >= 1
8.7.1.4 Other Roles

none

8.7.2 Class: DomainRule

Definition: represents a DomainConstraint that is stated as an EXPRESS domain rule in aWHERE clause in the
type_declaration or the entity declaration. In atype declaration, it is a Boolean expression in terms of SELF that limitsthe
alowable values in the domain of the datatype. In an entity _declaration, it is a Boolean expression that constrains the values
of one or more attributes (or other relationships) of the entity data type.

Note — See clauses 9.1 and 9.2.2.2 of 1SO 10303-11:2004.

Part 11 permits a DomainRule to evaluate to indeterminate (“?") and requires arule with that evaluation to be treated as
satisfied. The most common case is the evaluation of an expression involving an OPTIONAL attribute. Languages like OCL
and OWL require the possibly indeterminate values to be protected by an EXISTS operation.

EXAMPLE
For the EXPRESS text:

ENTITY time_ interval;

begin time: date time;

end _time: OPTIONAL date time;
WHERE

wrl: begin time <= end time;
END ENTITY;

The EXPRESS domain rulewr1 isrepresented by aDomainRulewith : id="wr1" and :position = 1,and :asserts
linked to an Expression of the form:
SELF.begin time <= SELF.end time

The proper trandation of the EXPRESS DomainRule wr1, however, may require the rule to be represented as:
NOT EXISTS (SELF.end time) OR (SELF.begin time <= SELF.end time)

8.7.2.1 Supertypes

TypeElement, DomainConstraint

8.7.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Domain Rulein the list of rules following the WHERE keyword in the entity/type
declaration.

50 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 1..1
8.7.2.3 Associations

AssociationEnd: domain To: NamedType

via: NamedType-has-DomainRule

Subsets: Core:: TypeElement:namespace, Core::DomainConstraint:domain

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of valuesto which it applies.
Multiplicity: 1..1
8.7.2.4 Other Roles

none

8.7.3 Association: NamedType-has-DomainRule

Definition: arefinement of type-has-constraints, representing the relationship of a NamedType to a DomainRule that restrict
the domain of valid values of the NamedType.

Note — See 9.1 of SO 10303-11:2004.
8.7.3.1 Supertypes

type-element-has-scope, type-has-constraints

8.7.3.2 Association Ends

AssociationEnd: domain To: NamedType

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of valuesto which it applies.
Multiplicity: 1..1

AssociationEnd: domain-rules To: DomainRule

Definition: arefinement of InstantiableType:constraints, represents the association of DomainRules that restrict the domain of
valid values of the NamedType.

Note — See 9.1 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties. composite

8.7.4 Association: type-has-constraints

Definition: an abstract relationship, represents the association between a ParameterType and a DomainConstraint that restricts
the value domain of the ParameterType.

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 51

Properties. abstract

Note — Thisis an abstract relationship. Each separate form of this relationship is separately model ed.

8.7.4.1 Association Ends

AssociationEnd: constraints To: DomainConstraint

Definition: represents the association of DomainConstraints that restrict the value domain of the Parameter Type.

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties. composite, derived union

AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

8.8 Simple Types

The EXPRESS language defines “simple types’ as those that carry a single conceptual information unit. Each simple typeis
denoted by a keyword, rather than an identifier. The ssmple types are BOOLEAN, INTEGER, LOGICAL, NUMBER, all
BINARY types, all REAL types, and all STRING types. They are shown in Figure 8.8 and described below.

==metaclass==
i ==instartiate== =
gnnieTyoe _ 77" | BuiltinTypes
+id : Keyward [1]
{dizjoint, totsl
==metaclasz== ==metaclass== ==metaclass== ==metaclasz==
HumericType LogicType StringType BinaryType
0.1 0.1
+string-length-constraint +hinary-length-constraint
=emetaclasss= {subsets constraints}y [0.1 0.1 [{subsets constraintz}
RealType ==metaclass==
+precision : Integer [0..1] LengthConstraint
+izFixed : Boolean [1]
+maxLength : Integer [0..1]
==metaclass== J?
. N ==metaclass==
xpression +azserts DomainConstraint
+ext : ExpressText [0..1] 0.1 0.1

Figure 8.8 - Simple Types

52 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.8.1 Class: BinaryType

Definition: a SimpleType representing all EXPRESS BINARY data types, which are distinguished by different
LengthConstraints.

By definition, every EXPRESS BINARY type with a LengthConstraint is different from every other BINARY datatype.
(They may be compatible with others, but not the same.) The only instance of BINARY Type with no LengthConstraint is the
EXPRESS data type BINARY.

Note — See 8.1.7 of 1SO 10303-11:2004.
8.8.1.1 Supertypes

SimpleType

8.8.1.2 Attributes

none

8.8.1.3 Associations

AssociationEnd: binary-length-constraint To: LengthConstraint

Subsets: Parameter Type:constraints

Definition: represents a constraint on the length (in bits) of the values in the domain of the BINARY datatype.
Note — See 8.1.7 of SO 10303-11:2004.

Multiplicity: 0..1
8.8.1.4 Other Roles

From Instances:BinaryValue as of-type

8.8.2 Class: LengthConstraint

Definition: represents any maximum-length or fixed-length constraint on the length of the values of a STRING or BINARY
type. A LengthConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using the built-in
Length() function.

Note — See 8.1.6 and 8.1.7 of 1SO 10303-11:2004.
8.8.2.1 Supertypes

DomainConstraint

8.8.2.2 Attributes

Attribute: isFixed To: MOF::Boolean

Definition; Trueif al values of the SimpleType are required to be of the same length; False if the constraint specifies only the
maximum length of the values.

Note — See 8.1.6 and 8.1.8 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 53

Multiplicity: 1..1

Attribute: maxLength To: MOF::Integer

Definition: represents a constant val ue specifying the required maximum/fixed length of the STRING or BINARY value. This
attribute is present when the constraint expression is a*“ constant.”

Note — See 8.1.6 and 8.1.9 of 1SO 10303-11:2004.
Multiplicity: 0..1

8.8.2.3 Associations

none

8.8.2.4 Other Roles

From: StringType as string-length-constraint
From: BinaryType as binary-length-constraint

8.8.2.5 Rules

Constraint ()

Every LengthConstraint is either a string-length-constraint or a binary-length-constraint for exactly one SimpleType.

Constraint ()

A LengthConstraint is unique to the STRINGType or BINARY Type it constrains.

8.8.3 Class: LogicType

Definition: a SimpleType representing the EXPRESS data types BOOLEAN and LOGICAL, which are the only instances of
LOGICALType.

Note — See 8.1.4 of 1SO 10303-11:2004.
8.8.3.1 Supertypes

SimpleType

8.8.3.2 Attributes

none

8.8.3.3 Associations

none

54 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.8.3.4 Other Roles

From Instances:LogicalValue as of-type

8.8.4 Class: NumericType

Definition; a SimpleType representing the EXPRESS datatypes NUMBER, INTEGER, and all REAL data types. NUMBER
and INTEGER are instances of NUMBERTYype.

Note — See 8.1.1 of 1SO 10303-11:2004.
8.8.4.1 Supertypes

SimpleType

8.8.4.2 Attributes

none

8.8.4.3 Associations

none

8.8.4.4 Other Roles

From [nstances:NumberValue as of-type

8.8.5 Class: RealType

Definition: represents all EXPRESS REAL data types, which are distinguished from one another by different values of
“precision.” Type REAL (with no “precision” value) is one instance of REALType.

Note — See 8.1.2 of SO 10303-11:2004.
8.8.5.1 Supertypes

NumericType
8.8.5.2 Attributes

Attribute: precision To: MOEFE::Integer

Definition: represents the number of significant figuresin the values of the Real Type, as specified in its syntactic designation.
Although the value of “precision” is specified in EXPRESS to be an expression, it is assumed in this model that the value will
in practice be a“constant.” The only REALType for which “precision” is not present isthe EXPRESS type REAL (with no
precision specification).

Note — See 8.1.3 of SO 10303-11:2004.
Multiplicity: 0..1
8.8.5.3 Associations

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 55

8.8.5.4 Other Roles

none

8.8.6 Class: SimpleType

Definition: an AnonymousType representing those EXPRESS data types defined in the language as “ simple types’: BINARY
types, BOOLEAN, INTEGER, LOGICAL, NUMBER, REAL types, and STRING types.

Note — See 8.1 of 1SO 10303-11:2004.
Properties: abstract
8.8.6.1 Supertypes

AnonymousType

8.8.6.2 Attributes

Attribute: id To: Keyword

Definition: represents the EXPRESS keyword dencting the SimpleType, one of: BINARY, BOOLEAN, INTEGER,
LOGICAL, NUMBER, REAL, STRING

Note — See 8.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

8.8.6.3 Associations

none

8.8.6.4 Other Roles

none

8.8.7 Class: StringType

Definition: a SimpleType representing all EXPRESS STRING data types, which are distinguished by different
LengthConstraints. By definition, every EXPRESS STRING type with a LengthConstraint is different from every other
STRING datatype. (They may be compatible with others, but not the same.) The only instance of STRINGType with no
LengthCongtraint is the EXPRESS datatype STRING.

Note — See 8.1.6 of 1SO 10303-11:2004.

8.8.7.1 Supertypes

SimpleType
8.8.7.2 Attributes

none

56 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.8.7.3 Associations

AssociationEnd: string-length-constraint To: LengthConstraint

Definition: represents a constraint on the length (in characters) of the valuesin the domain of the STRING data type.

Subsets: Parameter Type:constraints

Note — See 8.1.6 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.8.7.4 Other Roles

From [nstances:StringValue as of-type

8.9 Aggregation Types

EXPRESS “aggregation types’ are types whose instances are collections of instances of a“member type.” There are four
kinds of aggregation types, which represent different structures for the collections: ARRAY, BAG, LIST, SET. Figure8.9
shows the overview of Aggregation types. The model elements are defined bel ow.

+ower-hound
==metaclassss {zubszets constrairts }

. ==metaclass==
e AggregationType 0.1 0.4 SizeConstraint
+orcering : Oroeringhind [1] ,
fstautiableType +isUnige - Bolean [1] 0.1 0.1 i neoe 1011
+Lipper-bound
T {subsets constrairts}
1| +member-type
==metaclazz== v
0.* | Concret AggregationType =zmetaclazs==
DomainGonstraint
| {dlisjaint, tatal} | 0.1
z=metaclazs== z=metaclass== ==metaclass== ==metaclass=>
ARRAYType BAGType LISTType SETType
+isOptional : Boolean [1]
0.1 0.1
+hi-index |, 1 1 | Ho-index 0.1 | +asserts
==metaclazs== . ==metaclazz==
ArrayBound +hound-expression Expression
+hound @ Irteger [0..1] 0. 1 +ext: ExpressText [0.1]

Figure 8.9 - Aggregation Types

8.9.1 Class: AggregationType

Definition: an AnonymousType representing an EXPRESS “aggregation type,” whose instances are collections of instances of

a“member type”: ARRAY, BAG LIST, SET.
Note — See 8.2 of 1SO 10303-11:2004.

Properties: abstract

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

57

8.9.1.1 Supertypes
none
8.9.1.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: Trueif the members of a given instance of the type are required to be distinct; else False. isUnique is always True
for a SET type, always False for aBAG type, and True for LIST and ARRAY typesif and only if the UNIQUE keyword is
present in the type designation.

Note — See 8.2 of SO 10303-11:2004.

Multiplicity: 1..1

Attribute: ordering To: OrderingKind

Definition: Specifies the structure of the AggregationType: indexed (ARRAY), ordered (LIST), unordered (BAG, SET).
Multiplicity: 1..1

8.9.1.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents the appearance of alower-bound constraint in syntactic designation for the aggregation type. Refines
Instanti ableType:constraints. For this purpose the appearance of an explicit zero (“0") value may be considered to represent no
lower-bound constraint; and the lower-bound rel ationship need not appear. (The appearance of alower-bound expression that
may evaluate to zero shall always be represented by alower-bound relationship.)

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents the appearance of an upper-bound constraint in the syntactic designation for the aggregation type.
Refines InstantiableType:constraints. For this purpose the appearance of an explicit indeterminate value (“?’) is considered to
represent no upper-bound constraint, and shall not be represented by an upper-bound relationship. (The appearance of an
upper-bound expression that may evaluate to “?’" shall be represented by an upper-bound relationship.)

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.9.1.4 Other Roles

none

58 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.9.2 Class: ArrayBound

Definition: represents a bound on the index domain of an ARRAY datatype.
Note — See 8.2.1 of SO 10303-11:2004.

8.9.2.1 Supertypes
none

8.9.2.2 Attributes

Attribute: bound To: MOEFE::Integer
Definition: the integer value of the bound, when it can be determined “ by inspection” of the bound expression.

Note — See 8.2.1 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.9.2.3 Associations

AssociationEnd: bound-expression To: Expression
Definition: the Expression that defines the ArrayBound.
Note — See 8.2.1 of SO 10303-11:2004.

Multiplicity: 1..1
8.9.2.4 Other Roles

From: ARRAYType as hi-index

From: ARRAYType as lo-index

From: GeneralARRAYType as lo-index

From: GeneralARRAYType as hi-index

From: Algorithms::ActualARRAYType as lo-index
From: Algorithms::ActualARRAYType as hi-index

8.9.2.5 Rules

Constraint ()

Every ArrayBound is either a hi-index or lo-index for exactly one ARRAY Type, Actual ARRAY Type, or
General ARRAY Type.

Constraint ()

An ArrayBound is unique to the A RRAY Type (or General ARRAY Type) and the role (hi-index/lo-index) it plays with respect
to that type.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 59

8.9.3 Class: ARRAYType
Definition: an AggregationType representing all EXPRESS ARRAY data types.
8.9.3.1 Supertypes

| nstanti ableAggregationType

8.9.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: Trueif the member typeis declared to be OPTIONAL in the syntactic designation for the ARRAY Type; False
otherwise. When isOptional is True, any instance of the ARRAY Type is permitted to have members whose value is
unspecified ("?").

Note — See 8.2.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.9.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: represents the relationship between the ARRAY Type and the upper bound on the Integer index-range of each value
of the ARRAY Type.

Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: lo-index To: ArrayBound

Definition: represents the relationship between the ARRAY Type and the lower bound on the Integer index-range of each value
of the ARRAY Type.

Note — See 8.2.1 and 15.17 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.9.3.4 Other Roles

From: Instances::ARRAYValue as of-type

8.9.3.5 Rules

Constraint (OCL)
self->ordering = Indexed

8.9.4 Class: BAGType

Definition: an AggregationType representing all EXPRESS BAG data types.
Note — See 8.2.3 of SO 10303-11:2004.

60 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.9.4.1 Supertypes

| nstanti ableAggregationType

8.9.4.2 Attributes
none

8.9.4.3 Associations
none

8.9.4.4 Other Roles

From: Instances::BAGValue as of-type

8.9.4.5 Rules

Constraint (OCL)
NOT self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.9.5 Class: ConcreteAggregationType

Definition: an anonymous Instantiabl eType that is an AggregationType whose member-type isitself an InstantiableType.
Properties: abstract

8.9.5.1 Supertypes

AggregationType, AnonymousType

8.9.5.2 Attributes
none

8.9.5.3 Associations

AssociationEnd: member-type To: InstantiableType
Definition: represents data type of its components (members) of the I nstantiableAggregationType.

Multiplicity: 1..1
8.9.5.4 Other Roles

none

8.9.6 Class: LISTType

Definition; an AggregationType representing all EXPRESS LIST data types.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 61

Note — See 8.2.2 of 1SO 10303-11:2004.
8.9.6.1 Supertypes

| nstanti ableAggregationType

8.9.6.2 Attributes
none

8.9.6.3 Associations
none

8.9.6.4 Other Roles

From: Instances::LISTValue as of-type

8.9.6.5 Rules

Constraint (OCL)
self->ordering = Ordered

8.9.7 Datatype: OrderingKind
Stereotypes: enumeration

Definition: Values that characterize the logical structure of the collections represented by an AggregationType (or a
General AggregationType).

8.9.7.1 Supertypes
none
8.9.7.2 Values

Value: indexed

Definition: Specifies that the structure of the AggregateValuesis an ARRAY. That is, the positions in the sequence are
associated with specific (consecutive) INTEGER index values.

Value: ordered

Definition: Specifiesthat the structure of the AggregateValuesisaLIST. That is, the position of each member-value in the
sequence is significant in interpreting the AggregateValue.

Value: unordered

Definition: Specifiesthat the structure of the AggregateValuesisaBAG or SET. That is, the position of each member-valuein
the sequence has no significance in interpreting the AggregateVal ue.

62 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.9.8 Class: SETType

Definition; an AggregationType representing all EXPRESS SET data types.
Note — See 8.2.4 of 1SO 10303-11:2004.

8.9.8.1 Supertypes

| nstanti ableAggregationType

8.9.8.2 Attributes
none

8.9.8.3 Associations
none

8.9.8.4 Other Roles

From: Instances::SETValue as of-type

8.9.8.5 Rules

Constraint (OCL)
self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.9.9 Class: SizeConstraint

Definition: A SizeConstraint represents a constraint on the number of membersin each value of an EXPRESS aggregation
type, stated as a bound in the syntactic designation for the type. A SizeConstraint represents either an upper-bound or alower-
bound. In the case of an ARRAY type, the value (hi-index - lo-index + 1) is both the lower-bound value and the upper-bound
value. A SizeConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using the built-in
SizeOf() function.

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.

8.9.9.1 Supertypes

DomainConstraint

8.9.9.2 Attributes

Attribute: bound To: MOEFE::Integer

Definition: represents a constant val ue specifying the (upper or lower) bound on the number of membersin avalid instance of
the aggregation type. This attribute is present when the bound expression isa* constant.”

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 63

8.9.9

none

8.9.9

From:
From:

From:
From:
From:

From

From:
From:
From:
From:

8.9.9

.3 Associations

.4 Other Roles

AGGREGATEType as upper-bound
AGGREGATEType as lower-bound

AagregationType as upper-bound

AgaregationType as lower-bound
Redeclaration as upper-bound

: Redeclaration as lower-bound

Role as lower-bound
Role as upper-bound
Algorithms::ActualAGGREGATEType as lower-bound
Algorithms::Actual AGGREGATEType as upper-bound

.5 Rules

Constraint ()

Every SizeConstraint is either an upper-bound or alower-bound for exactly one AggregationType or
General AggregationType.

Constraint ()

A SizeConstraint is unique to the AggregationType (or General AggregationType) it describes and the role (upper-bound/
lower-bound) it plays with respect to that AggregationType.

8.10 Generalized Types

Generalized types are those EXPRESS data types that are “abstract,” in the sense that every actual instance is an instance of

some

InstantiableType(s). These types are only permitted as the data type of formal parameters and the data type of “ abstract”

Attributes of ABSTRACT EntityTypes. They are shown in Figure 8.10.

<=metaciazs== <=metackss== member-tyne =<metaclass==
Type i Type e Aggreqation Type
1 +ordering : Orderingkind [1]
[A3 +islniue : Boolean [1]
1| +member-type
dlisjoirt, total}
o o i
==metaclass=> ==metaclass=» ==metaclass==
\AGGREGATEType GenericType GeneraiAqgreqation Type
T
1 1 | {lisjaint, tatal}
+upper-bound +Howver-bound ==instartiates=
{subsets {subsets |
constraints} [0.1 0.1 | constraints}

! «=metaclass== =<metaclass=»
==metaciass=> 5 GeneralBAGType GeneralSETType
SizeConstraint GenencTypes ae w

+hound : Integer [0.1]

Hao-index

<=metaciass== ==metackazs== ==metaclazs==

ArrayBound 0.1 0.1 GeneralARRAY Type GeneralLISTType
+hound @ Irteger [0.1] | +hidndex +HzOptional : Boolean [1]
0.1 0.1

Figure 8.10 - Generalized Types

64

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.10.1 Class: AGGREGATEType

Definition; a GeneralizedType that is an abstraction of all AggregationTypes and all General AggregationTypes. That is, any
ARRAY, BAG LIST, or SET Instance that satisfies the SizeConstraints (if any), whose members are of the specified member
type or some specialization of it, is an instance of the AGGREGATETYype. It follows that any ARRAY, BAG, LIST, or SET
type whose instances are necessarily instances of the AGGREGATETypeis a specialization.

Each syntactic occurrence of AGGREGATE is considered to be adistinct instance of AGGREGATEType, even when the
bounds and member-type are the same as those of some other syntactic occurrence, because the corresponding types of the
actual parameters or subtype attributes need not be the same. When the structures are required to be the same, that is
represented as an Actual StructureConstraint.

Note — When the keyword AGGREGATE isfollowed by an EXPRESS type label, therearethree possible interpretations
in the metamode!:

1. A ParametricStructureis being defined to havethat type label (see8.14.3) and relate to the datatype of the actual
parameters or instantiable attributes that correspond to the : source. The datatype, or component of the datatype, of
the : source isanew AGGREGATEType. Thisisthe interpretation of the first occurrence of the type label in
aparameter list or entity declaration.

2. An Actua StructureConstraint is being specified that refersto the ParametricStructure with that type label. The
datatype denoted by the occurrence of AGGREGATE : label isanew AGGREGATEType that has that constraint.
Thisisthe interpretation of any later occurrence of the type label inthe same parameter list or entity declaration.

3. A new Actud AGGREGATEType is being defined by reference to the ParametricStructure with that type label
(see Section 11.4.3), and the datatype of the variable, attribute, or member is the Actual AGGREGATEType. Thisis
the interpretation of any other occurrence of the type 1abel within the same Algorithm.

Note — See 9.5.3.1 of 1SO 10303-11:2004.
8.10.1.1 Supertypes

GeneralizedType

8.10.1.2 Attributes
none

8.10.1.3 Associations

AssociationEnd: constraint To: Algorithms::ActualStructureConstraint
via: Algorithms::aggregate-has-constrai nt

Definition: the Actual StructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note — Only an AGGREGATEType that appearsin the specification of the data type of a Parameter can have an
Actual StructureConstraint. The AGGREGATETYype has an Actual StructureConstraint only if it has a syntactic type label and
does not itself define that type |abel.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 65

AssociationEnd: defines-parameter To: ParametricStructure

via AGGREGAT EType-defines-parameter

Definition: The ParametricStructure, if any, that is defined to refer to the structure of the actual data types that conform to this
AGGREGATEType.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Subsets: Parameter Type: constraints

Definition: represents alower-bound constraint on aggregate values conforming to the AGGREGATE type. If the lower-bound
constraint is present, the number of members of the aggregate value shall be greater than or equal to this value. If the lower-
bound is not present or evaluates to zero, there is no constraint. Unless the lower-bound specified for the
AGGREGATIONTypeisan explicit “0,” this constraint shall appear.

Note — See 9.5.3.2 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: member-type To: ParameterType

Definition: represents the relationship between an AGGREGATE Type and the specification for the data type of the members
of itsinstances. If the specification is an Instanti abl eType, the member-type of conforming aggregation typesis required to be
exactly that datatype. If the specification is a GeneralizedType, the member-type of the conforming aggregation types must
conform to it.

Note — See 9.5.3.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents an upper-bound constraint on aggregate va ues conforming to the AGGREGATE type. If the upper-
bound constraint is present and does not eval uate to indeterminate ("?"'), the number of members of the aggregate value shall
be lessthan or equal to thisvalue. If the upper-bound is not present or eval uatesto indeterminate, thereis no constraint. Unless
the upper-bound specified for the AGGREGATE typeisan explicit "?" this constraint shall appear.

Note — See 9.5.3.3 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.10.1.4 Other Roles

none

8.10.2 Class: GeneralAggregationType

Definition: represents a GeneralizedType whose instances are AggregateVal ues with a specific structure (ARRAY, BAG, LIST,
or SET), but whose member-types are specializations of some specified GeneralizedType. That is, a

66 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

General AggregationType is an aggregation data type whose member-type is specified to be a GeneralizedType; while an
(Instantiable) AggregationType is an aggregation data type whose member-type is specified to be an InstantiableType.

Any instance of a General AggregationType s required to be an AggregateVal ue that has the specified structure and has
members that are instances of some InstantiableType that conforms to the specified member-type. In addition,the instance
must satisfy any DomainConstraints associated with the General AggregationType.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Properties. abstract

8.10.2.1 Supertypes

AqggregationType, GeneralizedType

8.10.2.2 Attributes
none

8.10.2.3 Associations

AssociationEnd: member-type To: GeneralizedType

Definition: represents the relationship between a General AggregationType and the conformance specification for the member-
type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.10.2.4 Other Roles

none

8.10.3 Class: GeneralARRAYType

Definition: represents a General AggregationType whose structure is an ARRAY. The hi-index and lo-index values of a
conforming ARRAY Instance are required to be equal to the values given for the Genera ARRAY Type.

When the General ARRAY Type is the data type of an abstract attribute (see Section 11.4.4), the datatype of every conforming
redeclaration is required to be an ARRAY Type or a General ARRAY Type whose hi-index and lo-index values are equal to the
values given for the General ARRAY Type. In addition, the .isOptional property of the redeclaration shall be as specified bel ow.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.10.3.1 Supertypes

Generad AggregationType

8.10.3.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: When isOptional is True, any conforming ARRAY Instance is permitted to have members whose valueis
indeterminate ("?"). When isOptional is False, no member of a conforming ARRAY Instance is permitted to have an

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 67

unspecified value.

If isOptional is True for an abstract attribute, the member type of any attribute that redecl ares the abstract attribute may be
declared to be OPTIONAL; if False, the member type of an attribute that redeclares the abstract attribute shall not be declared
to be OPTIONAL.

Note — See 9.5.3.5 of SO 10303-11:2004.
Multiplicity: 1..1
8.10.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: The hi-index value of aconforming ARRAY datatypeis required to be equal to the hi-index value, if any, for the
Genera ARRAY Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: lo-index To: ArrayBound

Definition: The lo-index value of aconforming ARRAY datatypeis required to be equal to the lo-index value, if any, for the
Genera ARRAY Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.10.3.4 Other Roles

none

8.10.4 Class: GeneralBAGType

Definition: represents a General AggregationType whose structureisa BAG

When the General BAGType is the data type of an abstract attribute (see Section 11.4.5), the datatype of every conforming
redeclaration is required to be a BAGType or a General BAGType that includes or refines any DomainConstraint associated
with the Genera BAGType.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.10.4.1 Supertypes

General AggregationType

8.10.4.2 Attributes
none
8.10.4.3 Associations

none

68 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.10.4.4 Other Roles

none

8.10.5 Class: GeneralizedType

Definition; an abstract classifier, representing those EXPRESS data types that are “abstract,” in the sense that every actua
instance is an instance of some I nstantiableType(s). These types are only permitted as the data type of formal parameters and
the datatype of “abstract” Attributes of ABSTRACT EntityTypes. GeneralizedTypeis aproper subclass of Parameter Type that
is disjoint with InstantiableType.

Note — The syntactic occurrences of EXPRESS generalized type do not always denote GeneralizedTypes per se. In
particular, ageneralized_type that appears with atype label may denote an Actua Type or a constraint. When used as the type
of aLocalVariable or FunctionResult, it denotes an Actual Type (g.v.). When used as the type of a Parameter, it may be a
ParametricElement that defines a reference to the data type of the corresponding actual parameter (in addition to being a
GeneralizedType specification for the allowable data types of the actual parameter), or it may represent a constraint on the data
type of the corresponding actual parameter that relates to the data type of another actual parameter.

Note — See 9.5.3.4 of SO 10303-11:2004.
Properties: abstract

8.10.5.1 Supertypes

ParameterType

8.10.5.2 Attributes

none

8.10.5.3 Associations

none

8.10.5.4 Other Roles

From: GeneralAggregationType as member-type

8.10.6 Class: GeneralLISTType

Definition: represents a General AggregationType whose structureisa LIST.

When the General LI ST Type is the data type of an abstract attribute (see Section 11.4.7), the datatype of every conforming
redeclaration isrequired to be aLISTType or a GeneralLI ST Type that includes or refines any DomainConstraint associated
with the General LIST Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.10.6.1 Supertypes

GeneralAggregationType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 69

8.10.6.2 Attributes
none

8.10.6.3 Associations
none

8.10.6.4 Other Roles

none

8.10.7 Class: GeneralSETType
Definition: represents a General AggregationType whose structureis a SET.

When the General SET Type is the data type of an abstract attribute (see Section 11.4.8), the datatype of every conforming
redeclaration isrequired to be a SET Type or a General SET Type that includes or refines any DomainConstraint associated with
the General SET Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.10.7.1 Supertypes

Genera AgaregationType

8.10.7.2 Attributes
none

8.10.7.3 Associations
none

8.10.7.4 Other Roles

none

8.10.8 Class: GenericType
Definition: represents the EXPRESS generalized types GENERIC and GENERIC_ENTITY.

Every datatypeis a specialization of the GenericType GENERIC, and every Instance is an Instance of GENERIC. Every
entity datatypeis a specialization of the GenericType GENERIC_ENTITY. Every Entitylnstance is an instance of
GENERIC_ENTITY and every instance of GENERIC_ENTITY isan Entitylnstance.

Note — See 9.5.3.2 and 9.5.3.3 of 1SO 10303-11:2004.

Note — When the keywords GENERIC and GENERIC_ENTITY arefollowed by an EXPRESS type label, therearethree
possible interpretations in the metamodel:

1. A ParametricTypeis being defined to have that type label (see Section 11.4.6) and relate to the datatype of the
actual parameters or instantiable attributes that correspond to the : source. The datatype, or component of the
datatype, of the : source isthe GenericType. Thisis the interpretation of the first occurrence of the type label

70 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

in a parameter list.

2. AnActua TypeConstraint is being specified that refers to the ParametricType with that type label. The datatype
denoted by the occurrence of GENERIC: label or GENERIC ENTITY:label isthe GenericType but the allow-
able data types that correspond to it in this usage are constrained by the Actual TypeConstraint. Thisisthe interpreta-
tion of any later occurrence of the type label in the same parameter list.

3. AnActualGenericTypeis being identified by reference to the ParametricType with that type label (see Section
11.4.6), and the datatype of the variable, attribute, or member isthe Actual GenericType. Thisisthe interpretation of
any other occurrence of the type label within the same Algorithm.

8.10.8.1 Supertypes

GeneralizedType

8.10.8.2 Attributes
none

8.10.8.3 Associations

AssociationEnd: constraint To: Algorithms::ActualTypeConstraint
via: Algorithms::generic-has-constraint

Definition: the Actual TypeConstraint, if any, that applies to this component of the GeneralizedType specification.

Note — Only a GenericType that appears in the specification of the data type of a Parameter can have an Actual TypeConstraint.
The GenericType has an Actual TypeConstraint only if it has a syntactic type label and does not itself define that type label.

Note — See 9.5.3.4 of SO 10303-11:2004.
Multiplicity: 0..1

8.10.8.4 Other Roles

none

8.10.8.5 Rules

Constraint (OCL)
self = GenericTypes::GENERIC OR self = GenericTypes::GENERIC ENTITY;

8.11 Entities and Attributes

This section of the Core model introduces the entity and attribute concepts of the EXPRESS language.

Figure 8.11 shows the primary concepts associated with EXPRESS entities: Entity Types, Attributes, UNIQUE rules, and
DomainRules (WHERE rules). The SingleEntity Type represents the group of attributes declared explicitly in the entity
declaration (as distinct from those inherited), and is used in Partial EntityValues (see 9.5.6) that represent states of entities.
Partial EntityType is a specia datatype that characterizes such values when they are produced in Expressions. All of these
concepts are described in detail below.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 71

DomainRules are akind of TypeConstraint that appliesto NamedTypesin general. They are describedin 8.7.2. Inthe

particular case of EntityTypes, they are used to capture constraints on the relationships among Attributes of the entity data
type.

emetaciesaes | roomivalent ==metaclasss»
PartialEntityType | ! 0.1 | SingleEntityType
HCOMPONSNEs | 1id : Scopedid [1]
1.% 1.#

+declares | 1 +of-entity Y 1

0 ot ¢ o> single-entity-declaned-in-entity
% +zubtype-o B

+declared-in
==metaclazs== ==metaclazs==
MamaedType o — EntityType 1 attribute-declared-in-gntity
+izibstract ; Boolean [1] 1
+In =3
1Y +domain - {subsets namespace}
1 [+namespace {zubszets namespace, 1 | +domain
subzets domain} {zubsets namespace}

FErtity Type-has-Attribute

Il T -has-Do inFLl

AmEdTypp-Nas-UomainkLle EntityTypet-has-UnigueRule +local-attributes
+domain-rules

o.*
o {zubsets type-slements, {subsets type-elements

+Unigue-rules

subszets conatrairts} 0.x {subsets type-elemerts} +declares | 0.4
==metaclass==
==metaclasss= ==metaclasss== Attribuate
DomainRule UniqueRule +key-component Al
= = +izdbstract | Boolean [1
+position : Integer [1] +position : Integer [1] 0.* 1.4 |+postion : Integer [1] [

H\w« i -/__//,_--—

==metackassss
TypeEfemtant

+ype-elements

hpe-element-has-scope o.*

Figure 8.11 - Entity Types

Figure 8.12 depicts the concepts associated with Attributesin EXPRESS. Attributes are of three kinds: explicit, INVERSE,

and DERIVEd. To facilitate modeling INVERSE attributes and relationships, this model adds the concept InvertibleAttribute.
All of these concepts are described below.

0 s +subtype-of

e fertity-has-attributes =z=metaclasss= attribute-has-data-type =
i . ==mietaciass=-
EntityType 1* +isttributes | Abstm;”":“‘ il 0.¢ +attributetype B rarater Typs
:] . - . [Hisdbstract | Bodlean
+isdbatract : Boolean [1] | +iowning-erntty 0. +postion : Integer [1] +ole 1
I 7%
1.5 | +range-type {disjoirit, total}
==metaclass== ==metaclass=» ==metaclass==
ExplicitAttribute InverseAttribute DerivedAttribute
+izOptionasl : Boolean [1] +iglnicue : Boolesn [1] '7
0.
0.* |+Hnverse
entity-used-in-sttribute 1 +dderivation
InverseAttribute-inverts-Explcit Attribute zemetaclasses
. z=metaclazs== N E _
5 linvertibleAttribute | _*explct BprEssion
+uzed-n 1 Hext: ExpressText [0.1]

Figure 8.12 - Attributes

8.11.1 Class: Attribute

Definition: represents an EXPRESS attribute, i.e., amodel of a property of an entity instance.

72 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 9.2.1 of SO 10303-11:2004.
Properties. abstract
8.11.1.1 Supertypes

TypeElement, ElementSource

8.11.1.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: Trueif .isAbstract is True for the owning Entity Type (see .of-entity) and the attribute-type of the EXPRESS
attribute is a GeneralizedType; Falsein al other cases. When .isAbstract is True, this Attribute must be redeclared to have an
attribute-type that is an Instantiabl€Type in any subtype of the owning Entity Type that is not itself ABSTRACT.

Multiplicity: 1..1

Attribute: position To: MOEF::Integer

Definition: Represents the position of the attribute declaration in the sequence of attribute declarations in the entity
declaration.

Multiplicity: 1..1
8.11.1.3 Associations

AssociationEnd: attribute-type To: ParameterType

via: attribute-has-data-type

Definition; representsthe required data type for all values of that Attributein all instances of the Entity Type. When Entity Type
that declares the Attribute is “abstract”, the attribute-type can be a GeneralizedType. When the Attribute is defined within the
scope of an Algorithm, the attribute-type can be an Actual Type. In these cases, the attribute-type can also be an
InstantiableType, and in any other case, the attribute-type is required to be an I nstantiableType.

Note — See 9.2.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: namespace To: EntityType
via EntityType has_Attribute

subsets; TypeElement::namespace

Definition; the nominal scope/namespace of the Attribute. It isincluded in the scopes of al subtypes of the Entity Type.
Multiplicity: 1..1

Properties: derived
Tagged Values

derivation = self->of-entity->declared-in

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 73

AssociationEnd: of-entity To: SingleEntityType

via: attribute-declared-in-entity

Definition: represents the relationship of an Attribute to the SingleEntity Type for which it was originally declared.
Multiplicity: 1..1

Note — The derived relationship .of -entity.declared- in isthe specialization of TypeElement:namespace for
Attributes. The EntityType isthe namespace for the Attribute, not the SingleEntity Type.

AssociationEnd: owning-entity To: EntityType

via: entity-has-attributes

Definition: the EntityTypes that have or inherit the Attribute, that is, the Entity Type in which the Attribute is declared and all
subtypes of that Entity Type.

Multiplicity: 1..* unordered
Properties: derived

Note — The derivation of thisrelationship beginswith self->namespace (i.e., self->of -entity->declared-in) and recursively adds
al EntityTypes reached by supertype-of.

8.11.1.4 Other Roles

From: UnigueRule as key-component
From: EntityType as attributes

From: Redeclaration as original-attribute
From: Instances::RoleName as refers-to

From: Expressions::AttributeRef as refers-to

From: Expressions::UsedInRef as inverse-of

8.11.1.5 Rules

Constraint (OCL)
exists(self->id) ;

Every Attribute shall have an Identifier.

8.11.2 Class: DerivedAttribute

Definition: represents an EXPRESS DERIVE attribute = a property whose value can be determined from other attributes and
relationships of the entity instance.

Note — See 9.2.1.2 of 1SO 10303-11:2004.
8.11.2.1 Supertypes

Attribute

74 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.11.2.2 Attributes
none

8.11.2.3 Associations

AssociationEnd: derivation To: Expression

Definition: the Expression that specifies how to determine the value of the DerivedAttribute from the values of other
Attributes.

Note — See 9.2.1.2 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.11.2.4 Other Roles

none

8.11.3 Class: EntityType

Definition: a NamedType representing an EXPRESS entity data type, atype declared by an entity declaration.
Note — See 9.2 of 1SO 10303-11:2004.

8.11.3.1 Supertypes

| nstanti ableType, NamedType

8.11.3.2 Attributes

Attribute: isAbstract To: MOF::Boolean

Definition: Trueif the EXPRESS entity datatypeis declared ABSTRACT initsoriginal declaration, either as ABSTRACT
entity or as ABSTRACT SUPERTY PE; False otherwise. The entity data type can also/later be declared “abstract” in a
SUBTYPE_CONSTRAINT, e.g., in an interfacing Schema, but that is taken as a constraint on the usage of the EntityType in
that context.

Note — See 9.2.4 and 9.2.5.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.11.3.3 Associations

AssociationEnd: attributes To: Attribute

via: entity-has-attributes

Definition: represents the rel ationship between an Entity Type and the declared Attributes of that Entity Type, including thosein
the entity declaration and those inherited from supertypes.

Note — See 9.2 of SO 10303-11:2004.

Properties: derived

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 75

Multiplicity: 0..* unordered
TaggedValues

derivation = declares.declares + subtype-of.declares.declares

AssociationEnd: declares To: SingleEntityType

via: single-entity-declared-in-entity

Definition: the SingleEntityType that is declared in the declaration for the Entity Type, i.e., the group of Attributesthat is
named for the Entity Type.

Multiplicity: 1..1
Properties: composite

AssociationEnd: extension To: Instances::Extent

via: |nstances::extent-of -Entity Type

Definition: represents the relationship between an Entity Type and its extent (the set of corresponding Entitylnstances) in a
given Population.

Multiplicity: 0..* unordered

AssociationEnd: local-attributes To: Attribute

via: EntityType has Attribute

Definition: the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntity Type.

Subsets: NamedType:type-elements

Multiplicity: 0..* unordered

Properties: derived
Tagged Values

derivation = self->declares->declares

AssociationEnd: instances To: Instances::Entitylnstance

via: |Instances::instance-of-Entity Type

Definition: represents the relationship between an Entity Type (classifier) and the Entityl nstances that satisfy it.

Multiplicity: 0..* unordered

AssociationEnd: plays-domain-role To: DomainRole

via: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.

76 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An Entitylnstanceis
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an AggregationType.

Properties: derived.
Multiplicity: 0..* unordered

Note — The derivation of this property iscomplex. For each InvertibleAttribute x in self->attributes, the Entity Type plays-the-
domain-rolethat isx->creates-relationship->domain, i.e., the DomainRole in the Relationship that is created by
the InvertibleAttribute x.

AssociationEnd: plays-range-role To: RangeRole

via: entity-plays-range-role

Definition: represents the rel ationship between an entity type and the range roles that itsinstances play. For each occurrence of
the Entity Type in/as the attribute-type of an InvertibleAttribute, the Entity Type plays the corresponding RangeRole.

Properties: derived.
Multiplicity: 0..* unordered

Note — The derivation of plays-range-roleis complex. For each InvertibleAttribute that is an instance of self->used-in, agiven
Entity Type plays the RangeRole that is InvertibleAttribute::models-role.

AssociationEnd: redeclarations To: Redeclaration

via: scope-of-redeclaration-is-Entity Type

Definition: represents the relationship between the Entity Type and any attribute Redeclarations that appear in its declaration.
Note — See 9.2.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: subtype-of To: EntityType

Definition: represents the relationship of an entity data type to itsimmediate supertypes — those entity data types from whose
common domain the instances of the Entity Type are drawn. For compatibility with the interpretation of other features of
EXPRESS, this relationship extends only to those Entity Types that are “immediate supertypes,” i.e., those explicitly declared
in the SUBTY PE OF clause for this Entity Type.

Note — See 9.2.3 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: unique-rules To: UnigueRule
via: EntityType-has-UnigueRule

Subsets: NamedType:type-elements

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 77

attributes of that EntityType
Note — See 9.2.2.1 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: used-in To: InvertibleAttribute

via: entity-used-in-attribute

Definition: represents the relationship between the Entity Type and the InvertibleAttributes (of other Entity Types) that
establish relationships to it.

Multiplicity: 0..* unordered
8.11.3.4 Other Roles

From: Rules::SupertypeRule as named-supertype
From: EntityType as subtype-of

From: Instances::EntityValue as corresponds to

From: Instances::SingleL eafinstance as characterizing-type

8.11.4 Class: ExplicitAttribute

Definition: represents an EXPRESS “explicit” attribute, amodel of a property of an entity instance that is not, in general,
derived from other properties of that instance or other entity instances.

Note — See 9.2.1.1 of SO 10303-11:2004.
8.11.4.1 Supertypes

Attribute

8.11.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: Trueif the entity instance is permitted to have no specified value for this attribute; Falseif avalue for this attribute
isrequired.

Note — See 9.2.1.1 of SO 10303-11:2004.
Multiplicity: 1..1

8.11.4.3 Associations

none

8.11.4.4 Other Roles

From: Expressions::AttributeBinding as attribute
From: Instances::AttributeValue as attribute

78 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

From: Statements::AttributeObject as refers-to

8.11.5 Class: InverseAttribute

Definition: represents an EXPRESS INVERSE attribute = a property of each instance of this entity data type that represents a
relationship between it and instances of some other entity data type, created by an InvertibleAttribute of that entity datatype.

Note — See 9.2.1.3 of 1SO 10303-11:2004.
8.11.5.1 Supertypes

Attribute

8.11.5.2 Attributes

Attribute: isUnique To: MOF::Boolean

Definition: Trueif the designated relationship between this instance and any given instance can occur at most once; False if it
can occur more than once.

(Trueif the attribute-type of the INVERSE attribute is declared to be an entity datatype or a SET; Falseif itisdeclaredtobea
BAG)

Note — See 9.2.1.3 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.11.5.3 Associations

AssociationEnd: explicit To: InvertibleAttribute

via: |nverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an inverse attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of another entity data type that models the Relationship from which the inverse attribute is derived.

Note — See 9.2.1.3 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: models-role To: DomainRole

via: |nverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models -
role:in-relationship), it modelsthe relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1
8.11.5.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 79

8.11.6 Class: InvertibleAttribute

Definition: An ExplicitAttribute whose attribute type is one of:
» an EntityType
» aSelectType whose select-list consists of Entity Types

» an AggregationType whose member-type is either of the above

An InvertibleAttribute models a Relationship between two Entity Types — the Entity Type that declares the InvertibleAttribute,
and the Entity Type that appearsin its attribute-type.

An InvertibleAttribute whose attribute-type (or its member-type) is a Sel ectType defines one Relationship for each Entity Type
in the select-list.

Note — See SO 10303-11.2:2004 clause 9.2.1.3
8.11.6.1 Supertypes

ExplicitAttribute

8.11.6.2 Attributes
none

8.11.6.3 Associations

AssociationEnd: creates-relationship To: Relationship
via InvertibleAttribute-creates-rel ationship

Definition: represents the rel ationship between an I nvertibl eAttribute and the Relationship between Entity Typesthat it models.
Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

via: |InverseAttribute-inverts-ExplicitAttribute

Definition: representsthe relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range entity
data type that model s the same Relationship. While the inverse is conceptually unique, EXPRESS alowsiit to be declared
differently in different subtypes of the original range entity.

Note — See 9.2.1.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: models-role To: RangeRole

via: |nvertibleAttribute-models-role

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note — An explicit attribute defines a RangeRol e (and thus a Relationship) if and only if it is an InvertibleAttribute.

80 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 0..1

AssociationEnd: range-type To: EntityType
via: entity-used-in-attribute

Definition: models the relationship between the Invertibl eAttribute and the Entity Types that are, or are members of, its
attribute-type. These Entity Types are the “range” of the Relationship with the “referencing” entity that is created by the
InvertibleAttribute.

Multiplicity: 1..* unordered
8.11.6.4 Other Roles

none

8.11.7 Class: PartialEntityType

Definition: a-DataType representing a collection of SingleEntity Types. A PartialEntity Type is the data type of a
Partial EntityValue.

Note — See 9.2.6 of SO 10303-11:2004.

8.11.7.1 Supertypes

DataType
8.11.7.2 Attributes

none

8.11.7.3 Associations

AssociationEnd: components To: SingleEntityType

Definition: represents the relationship between the Partial EntityValue and the SingleEntityValues that make it up.
Note — See 9.2.6 of SO 10303-11:2004.

Multiplicity: 1..* unordered
8.11.7.4 Other Roles

From: SingleEntityType as equivalent
From: Instances::PartialEntityValue as of-type

8.11.8 Class: SingleEntityType

Definition: the group of Attributes of a given EntityType that appear directly inthe entity declaration for that EntityType, i.e.,
excluding “inherited” attributes. A SingleEntity Type corresponds to, and hasthe sameid as, the Entity Type whose declaration
definesit.

Note — A SingleEntityType isnot a DataType; it cannot be the type of an Expression result or of any other EXPRESS concept.
Itisonly the “type” of SingleEntityValues, and they are not Instances.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 81

Note — See 3.3.9 of 1SO 10303-11:2004 (should be corrected by TC#1).
8.11.8.1 Supertypes

none

8.11.8.2 Attributes

Attribute: id To: Scopedid

Definition: Represents the EXPRESS Identifier for the SingleEntity Type, which is the same as the Identifier for the
corresponding Entity Type.

Properties. derived.

Multiplicity: 1..1
TaggedValues

derivation = self->derived-from->id

8.11.8.3 Associations

AssociationEnd: declares To: Attribute

via: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntity Type and the Attributes declared in the entity declaration for the
corresponding Entity Type.

Multiplicity: 0..* unordered
Properties: composite
AssociationEnd: derived-from To: EntityType

via: single-entity-declared-in-entity

Definition: represents the derivation of the SingleEntityType from the entity_declaration for the Entity Type.
Multiplicity: 1..1

AssociationEnd: equivalent To: PartialEntityType

Definition: represents the relationship between the SingleEntity Type and the “ equivalent” Partial Entity Type, namely, the
Partial Entity Type that consists of exactly that one SingleEntity Type. For those Partial Entity Types that are equivalent to
SingleEntity Types, the Partial Entity Type:includes relationship is the inverse of this relationship.

Multiplicity: 1..1
8.11.8.4 Other Roles

From: PartialEntityType as components
From: Instances::SingleEntityValue as of-type

From: Expressions::GroupRef as refers-to

82 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

From: Expressions::PartialEntityConstructor as attribute-group

From: Statements::GroupQObject as refers-to

8.11.8.5 Rules

Constraint (OCL)
sizeof (self->equivalent->includes) = 1

Constraint (OCL)
self->equivalent->includes[1] = self

8.11.9 Class: UniqueRule

Definition: represents an EXPRESS UNIQUE rule = arequirement that the combination of values of the specified “key”
attributes be unique over al instances of the entity datatype in a given Population.

Note — See 9.2.2.1 of 1SO 10303-11:2004.
8.11.9.1 Supertypes

TypeElement
8.11.9.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Unique Rule in the list of rules following the UNIQUE keyword in the entity/type
declaration.

Multiplicity: 1..1
8.11.9.3 Associations

AssociationEnd: domain To: EntityType
via Entity Type-has-UniqueRule

Subsets: Core:: TypeElement:namespace

Definition: represents the relationship of the UniqueRule to the Entity Type whose Extent is the domain of valuesto which it
applies.

Multiplicity: 1..1

AssociationEnd: key-component To: Attribute

Definition: represents the relationship between the UniqueRule and the “key” attributes of the (possibly joint) key for the
instances of the EntityType.

Note — See 9.2.2.1 of 1SO 10303-11:2004.

Multiplicity: 1..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 83

8.11.9.4 Other Roles

none

8.11.10 Association: attribute-declared-in-entity

Definition: represents the relationship between a SingleEntity Type and the Attributes declared in the entity declaration for the
corresponding Entity Type.

8.11.10.1 Association Ends

AssociationEnd: declares To: Attribute

Definition: represents the relationship between a SingleEntity Type and the Attributes declared in the entity declaration for the
corresponding Entity Type.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: of-entity To: SingleEntityType

Definition: represents the relationship of an Attribute to the SingleEntity Type for which it was originally declared.

Multiplicity: 1..1

8.11.11 Association: attribute-has-data-type

Definition: represents the relationship between an Attribute and the ParameterType that characterizes all values of the
Attribute.

Note — See 9.2.1 of 1SO 10303-11:2004.
8.11.11.1 Association Ends

AssociationEnd: attribute-type To: ParameterType

Definition: represents the required data type for all values of that Attributein al instances of the EntityType. The attribute-
typeis required to be an InstantiableType unless either:;

 isAbstract is True for the Entity Type, in which case the attribute-type may be a GeneralizedType, or

- the EntityType is defined in an AlgorithmScope (instead of a Schema), in which case the attribute-type may be an
Actual Type.

Note — See 9.2.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: role To: Attribute

Definition: represents the relationship between the Parameter Type and the roles (attributes of entities) that its admissible
values may play.

84 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 9.2.1 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.12 Association: entity-has-attributes

Definition: represents the relationship between an Entity Type and all of the Attributes that are associated with every instance
of the EntityType, including instances of any of its subtypes. That is, this association relates an Entity Type to the Attributes
declared in the corresponding SingleEntity Type and to all the Attributes declared in the SingleEntity Types that correspond to
its supertypes.

Properties: derived
8.11.12.1 Association Ends

AssociationEnd: attributes To: Attribute

Definition: represents the rel ationship between an Entity Type and the declared Attributes of that Entity Type, including thosein
the entity declaration and those inherited from supertypes.

Note — See 9.2 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: derived

Note — The derivation of thisrelationship is recursive, using e->subtype-of, beginning with e = self and adding the attributes of
e->declares->declares for each e.

AssociationEnd: owning-entity To: EntityType

Definition; the Entity Types that have or inherit the Attribute, that is, the Entity Type in which the Attribute is declared and all
subtypes of that Entity Type.

Multiplicity: 1..* unordered
Properties: derived

Note — The derivation of this rel ationship begins with self->namespace (i.e., self->of-entity->declared-in) and recursively adds
all EntityTypes reached by supertype-of.

8.11.13 Association: EntityType-has-Attribute

Definition: represents the rel ationship between an Entity Type and the Attributes that are declared within the entity declaration,
that is, the attributes that are declared in the corresponding SingleEntity Type.

Note — Thisis a derived association that refines the type-el ement-has-scope relationship for Attribute.
8.11.13.1 Supertypes

type-element-has-scope

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 85

8.11.13.2 Association Ends

AssociationEnd: local-attributes To: Attribute

Definition: the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntity Type.

Subsets: NamedType:type-elements

Multiplicity: 0..* unordered

Properties: derived
Tagged Values

derivation = self->declares->declares

AssociationEnd: namespace To: EntityType
Definition: the nominal scope/namespace of the Attribute. It isincluded in the scopes of all subtypes of the Entity Type.

Subsets: TypeElement:namespace

Multiplicity: 1..1
Properties. derived
Tagged Values
derivation = self->of-entity->declared-in

8.11.14 Association: EntityType-has-UniqueRule

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of
attributes of that Entity Type.

8.11.14.1 Supertypes

type-element-has-scope

8.11.14.2 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the relationship of the UniqueRule to the Entity Type whose Extent is the domain of valuesto which it
applies.

Multiplicity: 1..1

AssociationEnd: unique-rules To: UnigueRule

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of
attributes of that Entity Type.

Note — See 9.2.2.1 of 1SO 10303-11:2004.

86 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 0..* unordered

Properties. composite

8.11.15 Association: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an INVERSE attribute of one entity data type to the explicit attribute
(InvertibleAttribute) of the entity data type that models the Relationship from which the inverse attribute is derived.

8.11.15.1 Association Ends

AssociationEnd: explicit To: InvertibleAttribute

Definition: the explicit attribute (InvertibleAttribute) of the associated entity data type that models the Relationship from
which the inverse attribute is derived.

Note — The attribute-type of the InverseAttribute may be a subtype of the entity data type that defines the InvertibleAttribute.
Note — See 9.2.1.3 of SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

Definition: represents the relationship of an explicit attribute denoting a Rel ationship to the inverse attribute of the range entity
data type that models the same Relationship. While the inverse is conceptually unique, EXPRESS alows it to be declared
differently in different subtypes of the original range entity.

Note — See 9.2.1.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.11.16 Association: single-entity-declared-in-entity

Definition: represents the relationship between the Entity Type and the SingleEntity Type that isimplicitly declared in the
entity_declaration for the Entity Type.

8.11.16.1 Association Ends

AssociationEnd: declares To: SingleEntityType

Definition: the SingleEntity Type that is declared in the declaration for the EntityType, i.e., the group of Attributesthat is
named for the EntityType.

Multiplicity: 1..1

AssociationEnd: declared-in To: EntityType
Definition: represents the derivation of the SingleEntity Type from the entity_declaration for the Entity Type.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 87

8.12 Relationships

According to SO 10303-11, a“distributive relationship” between entity data typesis modeled by an attribute whose data type
is either an entity type or an aggregation type whose member typeis an entity type. This section models the “distributive
relationship” concepts.

Note — The primary purpose of this subclause is to facilitate mappings to languages in which relationships, also called
“associations’ or “properties,” are first-class concepts from which the associated “ attributes’ are derived.

In EXPRESS, all relationships are directed. The entity type that isthe “domain” of the relationship has an explicit attribute —
an InvertibleAttribute — that denotes the relationship; the entity type that isthe “range” of the relationship may have aninverse
attribute that denotes the relationship, but EXPRESS aways supports an implicit inverse attribute via the Usedin function (see
12.5.3).

Figure 8.13 shows these concepts, and their relationship to the Attribute concepts. They are described in detail below.

Note — In Figure 8.13, the «implicit» relationship entity-has-attributes represents the derived association entity-has-
attributes defined in 8.12.3.3, but restricted to InvertibleAttribute, which is a subclass of Attribute.

+/cre lationship

<<metaclass>

+in-relationship

w)

q

mainRole-in-Relationship

Relationship

1

1
+in-relationship

1

RangeRole-in-Reld

tionship

+/lower-bound

<<metaclass>

Role -1

[role-has-lower-bound

0.1

<<metaclass>>
SizeConstraint

+/upper-bound

+bound : Integer [0..1]

0.1

I

Irole-has-upper-bound

0.1

+domain| 1 :) : 1 | +range
lentity-plays-domain-role lentity-plays-range-role
<<metaclass>>) <<metaclass>> <<metaclass>>
DomainRole | */plays-domain-role 1 EntityType 1 +/plays-range-rolel RangeRole

+/id : Scopedid [0..1]

0..* +/domain

0..*

+isAbstract : Boolean [1]

+/range

+/id : Scopedld [1]

. = — g
1 | +models-role +/owning-entity | 1.. 1..x| +range-type +models-role| 1

<<implicit>>

InverseAttribute-models-role lentity-has-at{ributes entity-ised-in-attribute

+/attributes | 0..* 0..* | +used-in InvertibleAttribute-mpdels-role

0..1| +range-view
<<metaclass>>
InverseAttribute

<<metaclass>>
InvertibleAttribute

+domain-view
T

+inverse
] 0.*

+explicit
1

+/based-on
1

R ¢ (Soslzmm i /InvertibleAttribute-creates-relationship

InverseAttribute-inverts-ExplicitAttribute

Figure 8.13 - Relationships

8.12.1 Class: DomainRole
Definition: arole representing the behavior of the entity instances that is designated the “domain” of the relationship.
8.12.1.1 Supertypes

Role

88 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.12.1.2 Attributes

Attribute: id To: Scopedid

Definition: Represents the “complete” identifier for the Role. The identifier for the DomainRole is derived from the identifier
for the InverseAttribute, when present, including the Identifier value and the associated Entity Type identifier. When thereis no
InverseAttribute, :id has no proper value, but the DomainRole may be identified by the pseudo-identifier:
Usedin.<RangeRoleiid>, where <RangeRol:id> is the identifier for the RangeRole in the Relationship.

Properties: derived.
Multiplicity: 0..1
TaggedValues
derivation = self->range-view->id

8.12.1.3 Associations

AssociationEnd: domain To: EntityType

via: entity-plays-domain-role

Definition: represents the (single) entity data type common to all instances that play the Domain Role.
Properties: derived.

Multiplicity: 1..1

TaggedValues

derivation = self->in-relationship->range->domain-view->of-entity

AssociationEnd: in-relationship To: Relationship

via: DomainRole-in-Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined.
Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

via: |nverseAttribute-models-role

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain role.
The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1
8.12.1.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 89

8.12.2 Class: RangeRole

Definition: arole representing the behavior of the entity instances that is designated the “range” of the relationship.
8.12.2.1 Supertypes

Role

8.12.2.2 Attributes

Attribute: id To: Scopedid

Definition: Represents the “complete” identifier for the Role. The identifier for a RangeRole is derived from the identifier for
the ExplicitAttribute that creates the relationship, including the Identifier value and the associated Entity Type identifier.

Properties. derived.

Multiplicity: 1..1
TaggedValues

derivation = self->domain-view->id
8.12.2.3 Associations

AssociationEnd: domain-view To: InvertibleAttribute

via: InvertibleAttribute-models-role

Definition: represents the relationship between a RangeRol e and the InvertibleAttribute of the domain/referencing entity that
modelsit.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship
via: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.
Multiplicity: 1..1

AssociationEnd: range To: EntityType

via: entity-plays-range-role

Definition: represents the (single) entity data type common to al instances that play the Range Role.
Properties. derived.

Multiplicity: 1..1
TaggedValues

derivation = self->domain-view->attribute-type

90 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.12.2.4 Other Roles

none

8.12.3 Class: Relationship
Definition; a“distributive relationship” between entity data types.

Every InvertibleAttribute creates a Relationship between two Entity Types and creates two Roles -- one for each participating
EntityType. All relationships are directed. The InvertibleAttribute is an explicit attribute of the Entity Type that plays the
DomainRole; the range-type of the InvertibleAttribute is the Entity Type that plays the RangeRole.

The range-type may have an inverse attribute denoting the DomainRole; or the DomainRole may be referred to by the Usedin
function (see 12.5.3).

8.12.3.1 Supertypes
none

8.12.3.2 Attributes
none

8.12.3.3 Associations

AssociationEnd: based-on To: InvertibleAttribute

via: | nvertibleAttribute-creates-relationship

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1
AssociationEnd: domain To: DomainRole

via DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.
Multiplicity: 1..1

AssociationEnd: range To: RangeRole
via: RangeRole-in-Relationship

Definition: represents the relationship between the Relationship and its “range” role.
Multiplicity: 1..1
8.12.3.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 91

8.12.4 Class: Role

Definition: a“slot” in arelationship, denoting the behavior of one of the Instances involved in the relationship. Since all
relationships in EXPRESS are directed, the two dots are nominally designated domain and range.

Properties. abstract
8.12.4.1 Supertypes
none

8.12.4.2 Attributes
none

8.12.4.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents alower-bound on the number of Relationship instances in which a given Entitylnstance can play this
Role. An explicit zero ("0") value may be considered to represent no lower-bound constraint; and the lower-bound relationship
need not appear. A lower-bound expression that may evaluate to zero shall aways be represented by alower-bound
relationship.

Note — The lower-bound on the Domain roleis specified by the Explicit Attribute that models the RangeRole. The lower-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a
DomainRule on the “range” EntityType involving UsedIn(SELF,).

Note — Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, agiven pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs.

Note — See 9.2.1.3 of 1SO 10303-11:2004.
Properties. derived.
Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents an upper-bound on the number of Relationship instances in which a given Entitylnstance can play the
Role. An explicit indeterminate value ("?") is considered to represent no upper-bound constraint, and shall not be represented
by an upper-bound relationship. (An upper-bound expression that may evaluateto "?" shall be represented by an upper-bound
relationship.)

Note — The upper-bound on the Domain roleis specified by the Explicit Attribute that model s the RangeRole. The upper-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a
DomainRule on the “range” EntityType involving UsedIn(SELF,).

Note — Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, agiven pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs.

92 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 9.2.1.3 of SO 10303-11:2004.
Properties: derived.

Multiplicity: 0..1

8.12.4.4 Other Roles

From: Redeclaration as refined-role

8.12.5 Association: DomainRole-in-Relationship
Definition: represents the relationship between the Relationship and the Role that isits DomainRole.

8.12.5.1 Association Ends

AssociationEnd: domain To: DomainRole

Definition: represents the relationship between the Relationship and the Role that isits DomainRole.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1

8.12.6 Association: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.
Properties: derived

8.12.6.1 Association Ends

AssociationEnd: domain To: EntityType
Definition: represents the (single) entity data type common to all instances that play the Domain Role.
Multiplicity: 1..1

Properties: derived
TaggedValues

derivation = self->in-relationship->range->domain-view->of-entity

AssociationEnd: plays-domain-role To: DomainRole

Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each InvertibleAttribute of the EntityType, the EntityType plays a corresponding DomainRole. An Entitylnstanceis
considered to play the DomainRole once for each member of an InvertibleAttribute whose data type is an AggregationType.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 93

Multiplicity: 0..* unordered

Properties: derived
TaggedValues

derivation = ((self->attributes) * extent (InvertibleAttribute))->
creates-relationship->domain

8.12.7 Association: entity-plays-range-role

Definition: represents the relationship between an entity type and the range roles that its instances play.
Properties. derived

8.12.7.1 Association Ends

AssociationEnd: plays-range-role To: RangeRole
Definition: represents the relationship between an entity type and the range roles that its instances play.

For each occurrence of the EntityType as the attribute-type, or amember of the attribute-type, of an explicit attribute
(InvertibleAttribute), the Entity Type plays the corresponding RangeRole (.models-role).

Multiplicity: 0..* unordered
Properties: derived

Note — The derivation of plays-range-role is complex. For each InvertibleAttribute that is an instance of self->used-1in,
agiven EntityType plays the RangeRolethat is InvertibleAttribute: :models-role.

AssociationEnd: range To: EntityType
Definition: represents the (single) entity datatype common to all instances that play the Range Role.
Multiplicity: 1..1
Properties: derived.
TaggedValues

derivation = self->domain-view->attribute-type

8.12.8 Association: entity-used-in-attribute

Definition: represents the relationship between the Entity Type and the InvertibleAttributes (of other Entity Types) that
establish relationships to it.

8.12.8.1 Association Ends

AssociationEnd: range-type To: EntityType

Definition: models the relationship between the InvertibleAttribute and the Entity Types that are, or are members of, its
attribute-type. These Entity Types are the “range” of the Relationship with the “referencing” entity that is created by the

94 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

InvertibleAttribute.

Multiplicity: 1..* unordered

AssociationEnd: used-in To: InvertibleAttribute

Definition: represents the relationship between the Entity Type and the InvertibleAttributes (of other Entity Types) that
establish relationships to it.

Multiplicity: 0..* unordered

8.12.9 Association: InverseAttribute-models-role
Definition: represents the relationship between an Inverse Attribute and the domain-role it refers to.
8.12.9.1 Association Ends

AssociationEnd: models-role To: DomainRole

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models -
role:in-relationship), it modelstherelationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain role.
The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1

8.12.10 Association: InvertibleAttribute-creates-relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between Entity Types that it
models.

8.12.10.1 Association Ends

AssociationEnd: based-on To: InvertibleAttribute

Definition: represents the relationship between a Relationship and the InvertibleAttribute on which it is based, i.e., the
Attribute that creates the Relationship.

Multiplicity: 1..1

AssociationEnd: creates-relationship To: Relationship

Definition: represents the relationship between an InvertibleAttribute and the Relatiionship between Entity Types that it
models.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 95

8.12.11 Association: InvertibleAttribute-models-role
Definition: represents the relationship between an Invertible Attribute and the RangeRole it defines.

8.12.11.1 Association Ends

AssociationEnd: domain-view To: InvertibleAttribute

Definition: represents the relationship between a RangeRol e and the InvertibleAttribute of the domain/referencing entity that
modelsit.

Multiplicity: 1..1
AssociationEnd: models-role To: RangeRole

Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note — An explicit attribute defines a RangeRol e (and thus a Relationship) if and only if it is an InvertibleAttribute.
Multiplicity: 0..1

8.12.12 Association: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.
8.12.12.1 Association Ends

AssociationEnd: in-relationship To: Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.
Multiplicity: 1..1

AssociationEnd: range To: RangeRole

Definition: represents the relationship between the Relationship and its “range” role.

Multiplicity: 1..1

8.13 Redeclarations

Redeclaration is an EXPRESS mechanism that permits a subtype to “redeclare” an inherited attribute in order to constrain its
possible values in instances of the subtype. Figure 8.14 shows the model of this concept, and this section defines the related
metamodel elements.

96 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

entity-is-subtype-of-entity

0..* 0..* | +subtype-of

<<metaclass>> /entity-has-attributes <<met}aclass>> rol
EntityType +/owning-entity +/attributes Attribute role
+isAbstract : Boolean [1] - 0. |+isAbstract : Boolean [1] O--*
- +position : Integer [1]
attribute-has-fata-type

1 +scope 1 | +original-attribute
0.1 redeclaration-refines-attribute
<<meR‘a|C|355>‘ +/refined-role +attribute-type| 1
ole
. <<metaclass>>
/role-has-upper-bound 0..1 0..1 +restricted-type ParameterType
1

/role-hasj-lower-bound

edeclaration-specifies-type
+/upper-bound| 0..1 0..1 | +/lower-bound) P Y

<<metaclass>> <<metaclass>>
SizeConstraint Expression
/redeclaration-refines-fole

+bound : Integer [0..1] +text : ExpressText [0..1]

+/lower-bound | 0..1 0..1 | +/upper-bound 0..1 |+derivation
/redeclargtion-specifies-upper-bound 0.4 0.%| o.«| redeclaration-gpecifies-derivation
1 <<metaclass>>
/redeclaration-specifies-lower-bound 1 Bedeciaiaiion 90"

+position : Integer [1]
+isMandatory : Boolean [0..1] 4+refines
+alias : Scopedld [0..1] 0.1

or

redeclaration-refines-redeclaration

0..*

scope-of-redeclaration-is-Entity Type +redeclarations

Figure 8.14 - Redeclarations

8.13.1 Class: Redeclaration

Definition; represents the “redeclaration” of an EXPRESS attribute in a subtype of the entity data type for which that attribute
was originally declared. A redeclaration represents a refinement of the original attribute concept in the subtype, and it states
corresponding constraints on the possible values of that attribute in the subtype. It may also rename the attribute for the
subtype. When the attribute-type of the original-attribute is an Entity Type, the Redeclaration may be seen asrefining the
RangeRol e represented by the original-attribute for the domain restricted to the subtype.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
8.13.1.1 Supertypes
none

8.13.1.2 Attributes

Attribute: alias To: Scopedid

Definition: an additional EXPRESS identifier that may be used to identify the original attribute in this subtype.
Note — See 9.2.2.2 of SO 10303-11:2004.

Multiplicity: 0..1

Attribute: isMandatory To: MOF::Boolean

Definition:; Trueif the entity instance is required to have avalue for this attribute in this subtype; Falseif it is permitted to have
no specified value. This attribute is only present if isOptional is True for the original attribute.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 97

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

Attribute: position To: MOF::Integer

Definition: Represents the position of the redeclaration in the sequence of attribute declarations in the entity declaration. By
convention these follow all the new attribute declarations of each kind.

Multiplicity: 1..1
8.13.1.3 Associations

AssociationEnd: derivation To: Expression

Definition: When specified, represents a Redeclaration that redeclares an ExplicitAttribute to be “derived” in the .scope
subtype. That is, it declares an Expression that can be used to derive (or validate) the value of the redeclared Attribute in this
subtype.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents the minimum cardinality of the role that is stated by the Redeclaration. Thisis the case when the
Redeclaration redeclares the ParameterType to restrict the minimum size of the aggregate values.

When the restricted-type is an AggregationType, the lower-bound SizeConstraint is the lower-bound of that AggregationType.
Multiplicity: 0..1
Properties: derived.

AssociationEnd: original-attribute To: Attribute

Definition: identifies the original Attribute being redeclared by the Redeclaration. If the Redeclaration redeclares another
redeclared-attribute (see .refines), the .original-attribute is determined transitively. Every Redeclaration ultimately constrains
an original attribute in some supertype.

Note — See 9.2.3.4 of SO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: refined-role To: Role

Definition: represents the relationship between a Redeclaration and the Role represented by the .original-attribute.

« If the Redeclaration redeclares an InvertibleAttribute, it refines the corresponding RangeRol e by restricting the
alowable participants in the RangeRole for the domain that isthe . scope of the Redeclaration.

- If the Redeclaration redeclares an InverseAttribute, it refines the corresponding DomainRole by restricting the
allowabl e participants in the DomainRole for the range that isthe . scope of the Redeclaration.

Multiplicity: 0..1

Properties. derived.

98 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

AssociationEnd: refines To: Redeclaration

Definition: Thisrelationship is present only when a Redeclaration is stated as a refinement of an attribute of a subtype that
itself redeclares that attribute. . refines refersto the Redeclaration that represents that redeclared attribute.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: restricted-type To: ParameterType

Definition: when specified, specifies the subtype or specialization of the data type of the original attribute to which all values
of the original attribute in instances of the “scope” Entity Type must conform.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: scope To: EntityType

via: scope-of-redeclaration-is-Entity Type

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration applies.
Values for the origina attribute are constrained by the Redeclaration for instances of the .scope Entity Type and all of its
subtypes. The .scope Entity Type is the namespace of the .aliasidentifier, if present.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents a restriction on the maximum cardinality of the role that is stated by the Redeclaration. Thisisthe case
when the Redeclaration redeclares the Parameter Type to restrict the maximum size of the aggregate values.

When the restricted-type is an AggregationType, the upper-bound SizeConstraint is the upper-bound of that AggregationType.
Multiplicity: 0..1

Properties: derived.

8.13.1.4 Other Roles

From: Redeclaration as refines
8.13.2 Association: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration applies.

8.13.2.1 Association Ends

AssociationEnd: redeclarations To: Redeclaration
Definition: represents the relationship between the Entity Type and any attribute Redeclarations that appear in its declaration.
Note — See 9.2.3.4 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 99

Multiplicity: 0..* unordered

AssociationEnd: scope To: EntityType

Definition: the entity data type to which the redeclaration applies.

Values for the original attribute are constrained by the Redeclaration for instances of the .scope Entity Type and all of its
subtypes. The .scope Entity Type is the namespace of the .alias identifier, if present.

Note — See 9.2.3.4 of 1SO 10303-11:2004.

Multiplicity: 1..1

8.14 Parametric Datatype Elements

EXPRESS permitsthegeneralized type specificationsfor formal parameters and attributes of abstract entity datatypes
to contain labeled components that refer to specific elements of the data type of the corresponding actual parameters and
instantiable entity subtypes. These labeled components are modeled as ParametricElements. In the declarations of other
attributes of the abstract entity data type or other parameters of the same Algorithm, Actual TypeConstraints refer to these
ParametricElements. In Algorithm bodies, the specifications of data types that are Actual Types refer to ParametricElements
defined in the formal parameter list. Figure 8.15 depicts the ParametricElement concepts.

==metaclasss== element-defined-in-scope ==metaclazss==
MNamedElemont +named-elements +NEMmespace Scope
+idd : Scopedld [0.4] | 0% {union} 1
+namespace |1
'|' +itype-parameters {subsets namespace}
] {zubszets named-elements }
==metaclazs== TF "
- L -of-P etricEl rit
ParametricFlentant SEope-al-FarametricEieme
clement-has-source
0.* +S0UrCE ==metaclass==
+Hype-parameters 1 ElomentSource
jeclizjairt, totalt
==metackases= ==metaclass==
ParametricType ==metaclasss= Entity Type
+isEntity : Boolean [1] Algorithm +isMstract : Boalean [1]
[Algorithms)
+ramespace 11 +hamespace | 1
“=metaclass== algarithm-hag-parameters [Ertity Type-has-Attribute

ParametricStructure

+formal-parameters | 0* 0.* |+docal-attributes

{dlisjoirt, tatal}

==metaclazs== ==metaclazs==

0.1 | +defines-parameter
Parameter Attridute
AGGREGATEType-defines-parameter (Algorithms) +isAbatract : Baolean [1]
N +pozition : Integer [1]
1| +structure-zource 0.
==metaclazs== +role | 0.*
AGGREGATEType attribute-haz-data-type
1 ==metaclazs== 1
ParamoterType -
+farmal-parameter-type +attribute-type

Figure 8.15 - Parametric Datatype Elements

Note — In the diagram the model elementsthat are taken from the Algorithms Package can be ignored if only the Core package
is being implemented.

100 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.14.1 Class: ElementSource

Definition: an Attribute or Parameter. ElementSource reifies the roles of Attribute and Parameter as : source of
ParametricElements — the container of their declarations — and as owner of Actual TypeConstraints and
Actual StructureConstraints.

Note — InverseAttributes cannot have values for any of the properties of ElementSource - type-parameters, type-constraints,
structure-constraints.

Properties. abstract
8.14.1.1 Supertypes
none

8.14.1.2 Attributes
none

8.14.1.3 Associations

AssociationEnd: structure-constraints To: ActualStructureConstraint

Definition; the Actual StructureConstraints, if any, that constrain the allowabl e data types of the corresponding actual
parameter.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-constraints To: ActualTypeConstraint

Definition: the Actual TypeConstraints, if any, that constrain the allowable data types of the corresponding actual parameter.
Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-parameters To: ParametricElement

via: element-has-source

Definition; the ParametricElements, if any, whose declarations are contained in the declared type of the ElementSource
(Attribute or Parameter).

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.14.2 Class: ParametricElement

Definition; a NamedElement representing a parametric data type — a component of the type description for an abstract
Attribute or aformal Parameter that refers to the corresponding type component of the InstantiableType or the corresponding
actual parameter. The ParametricElement is denoted by an EXPRESS type label that is unique within the scope of the
EntityType or Algorithm.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 101

The : 14 attribute of the ParametricElement represents the EXPRESS type label.

INEXPRESSentity declarations, thefirst occurrenceof the type label among the Attribute declarations defines
the ParametricElement. Any later occurrence of thesame type label inthe Attribute declarations for the same Entity Type
(even for the same Attribute) specifies an Actual StructureConstraint or an Actua TypeConstraint that is based on the
ParametricElement. The : source property indicates the Attribute whose data type contains the ParametricElement
definition.

In EXPRESS Algorithm declarations, the first occurrence of the type label inthe formal parameter list definesthe
ParametricElement. Any later occurrence of the same type label intheformal parameter list (even in the same
Parameter) specifies an Actual StructureConstraint or an Actua TypeConstraint that is based on the ParametricElement. The
: source property indicates the Parameter whose formal parameter type contains the ParametricElement definition.

Note — An EXPRESS type label isnot part of the model of a GenericType or AGGREGATEType; it is an identifier for a
ParametricElement that can be used in Actual Types and Actual TypeConstraints.

Properties: abstract
8.14.2.1 Supertypes
NamedElement
8.14.2.2 Attributes
none

8.14.2.3 Associations

AssociationEnd: namespace To: Scope

Definition: the EntityType or Algorithm that is the namespace of the Scopedid that isthe type label. Thisrelationshipis
derived — the namespace of a ParametricElement is the same as the namespace of its : source element (Attribute or
Parameter).

Multiplicity: 1..1
Properties: derived

Note — While the derivation has the conceptual form: self->source->namespace in al cases, each kind of source
inheritsits name space association from a different supertype.

AssociationEnd: source To: ElementSource

via: e ement-has-source

Definition: the ElementSource (Attribute or Parameter) whose declared type is or includes the ParametricElement and defines
itstype label. Thefirst (by : position) Attribute or Parameter whose declared type containsthe type label isthe
source for that ParametricElement and definesthe type label asits : id.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 1..1

102 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.14.2.4 Other Roles

none

8.14.3 Class: ParametricStructure

Definition: A syntactic occurrence of AGGREGATE within aformal parameter type or attribute type that defines a
type label. The ParametricStructureisthe first occurrence of the label among the Parameters of the Algorithm or the
Attributes of the Entity Type.

In an Attribute declaration, the ParametricStructure refers to the structure (ARRAY, BAG, LIST, SET) of the corresponding
instantiable AggregationType in corresponding Attributes of subtypes. In a Parameter declaration, the ParametricStructure
refers to the structure of the corresponding component of the corresponding Actual Parameters.

Note — Later occurrences of the type label in the same Scope are Actual StructureConstraints.
Example -- In the EXPRESS declaration:

FUNCTION check properties(inputs: AGGREGATE:ins OF property, selectors:
AGGREGATE:ins OF BOOLEAN) : BOOLEAN;

the AGGREGATE : ins in the inputs parameter declares both an AGGREGATEType component of the formal -parameter-
type of the inputs Parameter and a ParametricStructure that definesthe type label “ins”. The : source-
structure of the ParametricStructure is that AGGREGATEType. (The AGGREGATE : ins inthe selectors Parameter
declares an AGGREGATEType component and an Actual StructureConstraint based on “ins.”

8.14.3.1 Supertypes

ParametricElement

8.14.3.2 Attributes
none

8.14.3.3 Associations

AssociationEnd: source-structure to: AGGREGATEType
via AGGREGATEType-defines-parameter

Definition: the AGGREGATEType from whose instantiations the ParametricStructure takes its values. That is, the
ParametricStructure refers to the structure of the attribute-type or the component of the actual parameter that corresponds to
this AGGREGATETYype.

Note — the AGGREGATEType is unique and is, or is a component of, the data type of the : source, whichisa
ParameterType. Since a Parameter Type can contain more than one occurrence of AGGREGATE, theintended component of the
actual parameter type must be explicitly identified.

Multiplicity: 1..1
8.14.3.4 Other Roles

From: ActualAGGREGATEType as refers-to
From: ActualStructureConstraint as required-structure

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 103

8.14.4 Class: ParametricType

Definition: A syntactic occurrence of GENERIC or GENERIC ENTITY within aformal parameter type or attribute type that
definesatype label. The ParametricTypeisthefirst occurrence of the type label among the Parameters of the
Algorithm or the Attributes of the Entity Type.

In an Entity Type declaration, the ParametricType refers to the corresponding I nstantiableType component of each
corresponding Attribute. In an Algorithm declaration, the ParametricType refers to the data type of the corresponding
component of each corresponding Actual Parameter. Since the ElementSource (Attribute or Parameter) contains exactly one
component that is a GenericType, the ParametricType is always associated with that component.

Note — The association between the ParametricType and the GenericType component is not modeled, since the GenericType
component is not itself modeled (it is simply an occurrence of one of the two objects of GenericType). The association is
implied, as stated above, by the (inherited) association to the ElementSource (ParametricElement : source).

Note — Later occurrences of the type label within the same Scope are Actual TypeConstraints (g.v.).

Note — See | SO 10303-11 clause 9.5.3.4. It also requires that the ParametricType must be based on GENERIC ENTITY,i.e,
that : isEntity must be TRUE, if the : source of the ParametricType is an Attribute.

8.14.4.1 Supertypes

Parametri cElement

8.14.4.2 Attributes

Attribute: isEntity to: MOF::Boolean
Definition: Trueif the ParametricType isbased on GENERIC ENTITY; Falseif it isbased on GENERIC.
Multiplicity: 1..1

8.14.4.3 Associations

none

8.14.4.4 Other Roles

From: ActualGenericType as refers-to
From: ActualTypeConstraint as required-type

8.14.4.5 Rules

Constraint (OCL):

not (self-s>source.type = Attribute) or (self->isEntity);
If the source is an Attribute, the ParametricType must be based on GENERIC_ENTITY.

8.14.5 Association: AGGREGATEType-defines-parameter

Definition: represents the relationship between a ParametricStructure and the AGGREGATEType that definesit. The
ParametricStructure takes on the structure of the actual parameters that conform to this element of the formal parameter type.

104 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.14.5.1 Association Ends

AssociationEnd: defines-parameter To: ParametricStructure

Definition: The ParametricStructure, if any, that is defined to refer to the structure of the actual data types that conform to this
AGGREGATEType.

Multiplicity: 0..1

AssociationEnd: structure-source To: AGGREGATEType

Definition; the AGGREGATEType from whose instantiati ons the ParametricStructure takes its values. That is, the
ParametricStructure refers to the structure of the attribute-type or the component of the actual parameter that corresponds to
this AGGREGATETYype.

Note — the AGGREGATEType is unique and is, or is a component of, the data type of the : source, whichisa
Parameter Type. Since a Parameter Type can contain more than one occurrence of AGGREGATE, the intended component of the
actual parameter type must be explicitly identified.

Multiplicity: 1..1

8.14.6 Association: element-has-source

Definition: represents the rel ationship between a ParametricElement and the syntactic/semantic element (ElementSource) that
contains its definition.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

8.14.6.1 Association Ends

AssociationEnd: source To: ElementSource

Definition; the ElementSource (Attribute or Parameter) whose declared type is or includes the ParametricElement and defines
itstype_label. Thefirst (by : position) Attribute or Parameter whose declared type containsthe type label isthe
source for that ParametricElement and definesthe type label asits : id.

Multiplicity: 1..1

AssociationEnd: type-parameters To: ParametricElement

Definition: the ParametricElements, if any, whose declarations are contained in the declared type of the ElementSource
(Attribute or Parameter).

Multiplicity: 0..* unordered

8.15 Actual Type Constraints

EXPRESS permits the generalized_type specifications for formal parameters to contain labeled generic components that refer
to specific elements of the data type of the corresponding actual parameters. These elements can be referred to in the
specifications for the data types of other formal parameters. The effect of such areferenceis to state a constraint on the data
types of the actual parameters that correspond to the formal parameter that contains the reference to the labeled component.
This section provides a model for the capture of such constraints, herein called Actual TypeConstraints. The associated
concepts are depicted in Figure 8.14 (in Section 8.14) and Figure 8.15.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 105

According to clause 9.5.3.4 of 1SO 10303-11, the first occurrence of alabeled component in a parameter typeis the defining
occurrence and subsequent occurrences are constraining references.

==metaclass==
ParameterType

“=metaciass==

==metaclazs== +10rmal-parameter-type‘[1 1| +attribute-type Attribute
Parameter - +role [*izAbatract : Boolean [1]

aioriins) attribute-has-catatype 0.5 |Tooon : mteger [1]

{elisjoinit, total |

“=metaclass==

E ca

+structure-constraints [0..* +s0UrCe 1 +ype-constraints |, 0%
==metaclazs=» element-hdz-zource ==metaclass==
ActualStructureConstraint ActualTypeConstraint
+Hype-parameters | 0%
+label ; Idertifier [1] +label ; Idertifier [1]
==metaclass==
0.1 | +constraint 0.* QaizctricElanant 0.*
+required-structure | 1 {cligjoirt, total} 1 +reguired-type
. ==metaclazs== ==metaclags==
aggregate-nas-constraint |, o etriStructure ParametricType
+izEntity : Boolean [1]
1 | +matching-structure
==metaclass==
AGGREGATEType

Figure 8.16 - Actual Type Constraints

8.15.1 Class: ActualStructureConstraint

Definition: A constraint on the structure of the ConcreteA ggregationType that correspondsto agiven AGGREGATEType. The
congtraint is declared in EXPRESS by atype label onthe AGGREGATE keyword that occurs in the specification of an
attribute-type or aformal-paramater-type, but is not the definition of that type label (cf. ParametricStructure). The
requirement declared by the constraint is that the structure of the ConcreteAggregationType that corresponds to the
AGGREGATETYype that usesthe type label (the :matching-structure, the component in the datatype of the
corresponding actual parameter or corresponding instantiabl e attribute) must be the same as the structure referred to by the
ParametricStructure that definesthe type label (the : required-structure).

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Example -- In the EXPRESS declaration:

FUNCTION check properties(inputs: AGGREGATE:ins OF property, selectors:
AGGREGATE:ins OF BOOLEAN) : BOOLEAN;

the AGGREGATE : ins inthe inputs parameter declares both an AGGREGATEType component of the formal-parameter-
type of the inputs Parameter and a ParametricStructure that definesthe type label “ins.” The AGGREGATE:insin
the selectors Parameter declares both an AGGREGATEType component of the formal-parameter-type of the selectors
Parameter and an Actual StructureConstraint based on “ins.” Thematching-structure of the

Actual StructureConstraint is the AggregateType of the selectors parameter, and the required-structure isthe
ParametricStructure declared by the input s parameter.

106 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.15.1.1 Supertypes
none
8.15.1.2 Attributes

Attribute: label To: Core::ldentifier

Definition: the EXPRESS type label onthe AGGREGATE keyword that denotes the constraint. Any occurrence of the
same type label after thefirst denotes a constraint.

Multiplicity: 1..1
8.15.1.3 Associations

AssociationEnd: matching-structure To: AGGREGATEType

via: aggregate-has-constraint

Definition; the AGGREGATEType component to which the constraint applies, i.e., the AGGREGATEType that is denoted by
the AGGREGATE keyword that usesthe type label.

Multiplicity: 1..1

AssociationEnd: required-structure To: ParametricStructure

Definition: the ParametricStructure that defines the EXPRESS type label that isused to establish the constraint. The
:required-structure definestherequired structure (ARRAY, BAG, LIST, SET) of the ConcreteAggregationType that
corresponds to the AGGREGATETypethat isthe :matching structure.

Multiplicity: 1..1
8.15.1.4 Other Roles

From: ElementSource as structure-constraints

8.15.2 Class: ActualTypeConstraint

Definition: a constraint on the InstantiableType that corresponds to a given GenericType component of an attribute-type or a
formal-parameter-type. The constraint is declared in EXPRESS by atype label (the : 1abel property) on aGENERIC or
GENERIC ENTITY keyword that occursin the specification of the formal-parameter-type, but is not defined there. The
requirement declared by the constraint is that the I nstantiableType that corresponds to the GenericType component that uses
thetype label (the component in the datatype of the corresponding actual parameter or corresponding instantiable
attribute) must be type compatible with the InstantiableType to that corresponds to the ParametricType that defines the

type label (the :required-type).

If the formal parameter types of additional Parameters of the same Algorithm contain the same type label, each such
occurrence constitutes a distinct Actual TypeConstraint.

The data type of the ElementSource (Attribute or Parameter) that has the Actual TypeConstraint contains exactly one
occurrence of aGenericType (GENERIC or GENERIC ENTITY). That occurrenceisthe component that is constrained by the
Actual TypeConstraint.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 107

8.15.2.1 Supertypes
none
8.15.2.2 Attributes

Attribute: label To: Identifier

Definition: the EXPRESS type label onthe GENERIC of GENERIC_ ENTITY keyword that denotes the constraint. Any
occurrence of the same type label after the first denotes a constraint.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.15.2.3 Associations

AssociationEnd: required-type To: ParametricType

Definition: the ParametricType that defines the EXPRESS type label that is used to establish the constraint. The
ParametricType defines the data type with which the component of the data type of the actual parameter that has the
Actual TypeConstraint must be compatible.

Multiplicity: 1..1
8.15.2.4 Other Roles

From: Parameter as type-constraints

8.15.3 Association: aggregate-has-constraint

Definition: the relationship between an AGGREGATE type specification and its Actual StructureConstraint, if any.
8.15.3.1 Association Ends

AssociationEnd: constraint To: ActualStructureConstraint

Definition: the Actual StructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note — Only an AGGREGATEType that appears in the specification of the data type of a Parameter or an Attribute of an
abstract entity data type can have an Actual StructureConstraint. The AGGREGATEType has an Actual StructureConstraint
only if it hasasyntactic type label and does not itself define that type label.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: matching-structure To: Core::AGGREGATEType

Definition: the AGGREGATEType component to which the constraint applies, i.e., the AGGREGATEType that is denoted by
the AGGREGATE keyword that usesthe type label.

Multiplicity: 1..1

108 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.16 Expressions and Instances

This section of the Core model introduces the basic concepts for Expression and I nstance, which are expanded in other
packages. They are provided here so that implementations need not support the Expressions and Instances Packages in order to
support all features of the Core model.

For Expressions, the Core package contains only the class Expression. The optional : text attribute allows an Expression to
be represented as verbatim EXPRESS language text. The Expressions package (see Clause 12) model s the subclasses of
Expression that represent the semantic interpretation of the parsed language text. Support for the Expressions Packageis a
compliance point (see Section 4.4).

The class Instance is abstract. The Core package contains the Instance concept solely in order to model the semantics of
Expressions. The Instances Package (see Clause 9) models the detailed expansion of the Instance concept, including all of the
instantiable subclasses. Support for the Instances package is a compliance point (see Section 4.4.1). Implementations that do
not support the Instances package do not, in general, need to provide any implementation of the Instances class, and may
provide any simple implementation where needed.

Figure 8.17 shows the base Expression and Instance concepts, and they are described bel ow.

==metaclass== P e
- +data-type
Expression DataType
+ext | ExpressTesxt [0.1] 0. 0.1
o . 0.* | +oftype
Instanca-oflype
+irterpretation-context | 0.1 0.* | +instances
==metaclazsss . |z=metaclassss
Scope +evalustion Iestanca

0.1

Figure 8.17 - Basic Expression Concepts

8.16.1 Class: Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operationsthat will produce
that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated in a context
which determines the Instances denoted by the model elements (e.g., Variables, Attributes, etc.) that appear in the Expression.
This context is explicit in the model element that contains the Expression being evaluated, but it implicitly includes the
Population under study. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note — In general, Expressions are treated as reusable. It isrecommended, however, that, except for literals and local
variables, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable,
specifically those that are the definitions of Rules.

8.16.1.1 Supertypes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 109

8.16.1.2 Attributes

Attribute: text To: ExpressText

Definition: represents the actual EXPRESS language text denoting the Expression. The text is required if the Expressions
Package is not implemented. It is optional in most cases when the Expressions Package isimplemented. Certain forms of
Expression (in the Expressions Package) specialize the text attribute.

Multiplicity: 0..1
8.16.1.3 Associations

AssociationEnd: data-type To: DataType

Definition: represents the DataType of the evaluation of the Expression. While the result of an Expression always has a
DataType, it is not always possible to determine at model-analysis time what that datatypeis. And in many cases, even when
itisknown, it is not necessary to specify it.

Multiplicity: 0..1

AssociationEnd: evaluation To: Instance

Definition: represents the Instance (value) that results from evaluating the Expression. Since the same Expression can be
evaluated in more than one “situation,” i.e., different values for the operands, the result in each situation may be a different
Instance. The evaluation isincluded in a model, however, only when it is “constant” and can be computed at “ compile time.”

Multiplicity: 0..1

AssociationEnd: interpretation-context To: Scope

Definition: An Expression is always evaluated in a context which determines the assignment of specific instances of model
elements to symbols (e.g.,Variables, Attributes, etc.). When the Expression is represented by text only, thisrelationship is
usualy required, but in many casesit may be implicit. When the Expression is represented by the detailed model elementsin
the Expressions Package, the interpretation of the Text has been done, and this association is purely documentary and not
reguired. Certain permissible EXPRESS constructs, however, only permit interpretation of certain keyword symbolsto
Operations in the presence of actual operand Instances.

Multiplicity: 0..1
8.16.1.4 Other Roles

From: ArrayBound as bound-expression
From: DerivedAttribute as derivation

From: DomainConstraint as asserts

From: Redeclaration as derivation
From: Algorithms::LocalVariable as initial-value

From: Expressions::Agdgregatelndex as index-value

From: Expressions::AttributeBinding as attribute-value

From: Expressions::BinaryIlndex as first-bit

From: Expressions::Binarylndex as last-bit

From: Expressions::BinaryOperation as right-operand

110 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

From: Expressions::BinaryOperation as left-operand

From: Expressions::Coercion as operand
From: Expressions::IndexOperation as base-value

From: Expressions::MemberBinding as member-value
From: Expressions::PassByValue as actual-value

From: Expressions::QueryExpression as aggregate-operand

From: Expressions::QuervExpression as select-condition

From: Expressions::RepeatCount as derivation
From: Expressions::Selector as entity-instance

From: Expressions::StringIindex as first-code
From: Expressions::Stringlndex as last-code

From: Expressions::UnaryOperation as unary-operand
From: Instances::Constant as value-expression

From: Rules::NamedRule as asserts-expression
From: Rules::SubtypeConstraint as equivalent-rule

From: Statements::Assignment as assigned-value
From: Statements::CaseAction as label-value

From: Statements::CaseStatement as selection-expression
From: Statements::ControlVariable as bound-value

From: Statements::ControlVariable as increment
From: Statements::ControlVariable as initial-value

From: Statements::IfStatement as if-condition
From: Statements::MemberCell as index-value

From: Statements::RepeatStatement as while-expression
From: Statements::RepeatStatement as until-expression

From: Statements::ReturnStatement as return-value

8.16.1.5 Rules

Constraint ()

An Expression can only exist to fulfill arole.

8.16.2 Class: Instance

Definition; an object that isin the domain of a DataType - any real or conceptual object, information unit or data element.
Properties. abstract

8.16.2.1 Supertypes

none

8.16.2.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 111

8.16.2.3 Associations

AssociationEnd: appears-in-population

To: Instances::Population

via: |nstances::instance-appears-in-popul ation

Definition: represents the relationship between an Instance and the Populationsin which it appears.

Multiplicity: 0..* unordered

AssociationEnd: of-type

To: DataType

Definition: the DataType(s) that are instantiated in the I nstance. With the exception of the Indeterminate I nstance (see Section
10.2.7), every modeled I nstance instantiates at |east one modeled DataType; an Instance may instantiate more than one.

A modeled Instance should be modeled as an Instance of its “declared type.” 1t may, but need not, be modeled as an Instance
of al the supertypes or SelectTypes that it instantiates.

Multiplicity: 0..*

8.16.2.4 Other Roles

From: Expression as evaluation

From:
From:
From:
From:
From:
From:

Instances:

Instances::

:ArrayMember as member-value

ListMember as member-value

Instances:

:BagMember as member-val

Instances::

SETValue as member-value

Instances:

:AttributeValue as actual-val

Instances:

:Constant as actual-value

8.16.2.5 Rules

Constraint (OCL): datatype-required
self = INDETERMINATE or exists(self->of-type);;

ue

ue

Every Instance except INDETERMINATE has at |east one data type.

8.17

Instance Package: BuiltinTypes

This Package is a part of the Core Package. It contains required instances of subclasses of SimpleType. All of the other
instances of SimpleType appear in a Schema as a SimpleType with a constraint or a precision.

Note — The purpose of making this a Package is to separate the class model from the “ground facts.”

112

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

BuiltinTypes
BINARY ; BinaryType NUMBER : NumericType STRING : StringType
type-spedialiresdype : type-specializesitype
LOGICAL : LogicType REAL : RealType ROLE : StringType
specializes = NUMBER specializes = STRING
type-specializes-type - type-sped & il
type-spegalizes-ivoe type-specializeg-type
BOOLEAN : LogicType INTEGER : HumericType TVPE: SwrinaTvpe
specializes = LOGIGAL specializes = REAL specializes = STRING

Figure 8.18 - Instance Model for Built-In Types
8.17.1 Dependencies

Dependency on Class: Core::SimpleType

Stereotypes. instantiates

This Package provides base individual s that are always instances of SimpleType (that is, instances of its subtypes).

8.17.2 Instance: BINARY

Type: Core::BinaryType

Definition: represents the EXPRESS type BINARY without length constraints.

Note — The class Binary Type a so includes instances of EXPRESS BINARY that have declared length constraints.

8.17.3 Instance: BOOLEAN

Type: Core::LogicType

Definition: represents the EXPRESS type BOOLEAN
Note — BOOLEAN and LOGICAL are the only instances of LogicType.

8.17.4 Instance: INTEGER

Type: Core::NumericType

Definition: represents the EXPRESS type INTEGER
Note — INTEGER and NUMBER are the only instances of NumericType that are not Real Types.

8.17.5 Instance: LOGICAL

Type: Core::LogicType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

113

Definition: represents the EXPRESS type LOGICAL
Note — BOOLEAN and LOGICAL are the only instances of LogicType.

8.17.6 Instance: NUMBER

Type: Core::NumericType

Definition: represents the EXPRESS type NUMBER
Note — INTEGER and NUMBER are the only instances of NumericType that are not Real Types.

8.17.7 Instance: REAL

Type: Core::Rea Type
Definition: represents the EXPRESS type REAL without a precision specification.
Note — The class Real Type al so includes instances of EXPRESS REAL that have precision specifications.

8.17.8 Instance: ROLE

Type: Core..StringType

Definition: ROLE is the StringType whose instances are the names of Attributes, i.e. the result of RolesOf and the formal
second operand of UsedIn. These objects are datatyped STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappings to other languages, these datatypes are explicitly identified, and coerced to/from
STRING where necessary.

Note — See Clause 15.20 of SO 10303-11:2004.

8.17.9 Instance: STRING

Type: Core::StringType

Definition: represents the EXPRESS type STRING without constraints.

Note — The class StringType a so includes TY PE, ROLE and instances of EXPRESS STRING that have declared length
constraints.

8.17.10 Instance: TYPE

Type: Core:.StringType

Definition: TYPE is the StringType whose instances are the names of DataTypes (TypeNames), i.e., the result of TypeOf and
related operands. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved interpretation.
In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/from STRING
where necessary.

Note — See Clause 15.25 of SO 10303-11:2004.

114 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

8.17.11 Association: instance-of-type
Definition: represents the abstract relationship between an Instance (a value) and the DataTypes that it instantiates.
8.17.11.1 Association Ends

AssociationEnd: instances To: Instance

Definition: the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless they
appear directly in a Schema.

Note — For most DataTypes, navigating the association in this direction is not a required feature of the model.

Multiplicity: 0..* unordered.

AssociationEnd: of-type To: DataType

Definition: the DataType(s) that are instantiated in the Instance. Every modeled Instance instantiates at |east one modeled
DataType; an Instance may instantiate more than one.

Multiplicity: 1..* unordered.

8.18 Instance Package: GenericTypes

This Package is a part of the Core Package. It contains the required instances of the class GenericType. There are no other
instances of the class GenericType.

Note — The purpose of making this a Package is to separate the class model from the “ground facts.”

]

GenericTypes

GENERIC :
GenericType

GENERIC_ENTITY
L GenericType

Figure 8.19 - Instance Model for Generic Types
8.18.1 Dependencies

Dependency on Class: Core::GenericType

Stereotypes: instantiates

This Package provides base individual s that are always the only instances of class GenericType.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 115

8.18.2 Instance: GENERIC

Type: Core:.GenericType

Definition: represents the EXPRESS generalized type GENERIC. Every datatype is a specialization of the GenericType
GENERIC, and every Instance is an Instance of GENERIC.

Note — See 9.5.3.2 of 1SO 10303-11:2004.

8.18.3 Instance: GENERIC_ENTITY

Type: Core:.GenericType

Definition: represents the EXPRESS generalized type GENERIC_ENTITY. Every entity datatype is a speciaization of
GENERIC_ENTITY. Every Entitylnstance is an instance of GENERIC_ENTITY and every instance of GENERIC_ENTITY
is an Entitylnstance.

Note — See 9.5.3.3 of 1SO 10303-11:2004.

116 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

9 Enumerations

The Enumerations Package contains the Enumerationltem concept and its relationships to EnumerationType in the Core
Package. It also contains the abstract subclass ConcreteType, which is a subclass of Instance and a supertype of
Enumerationltem. The purpose of the Enumerations Package is to support a compliance point consisting of the Core
Package (schema declarations) and Enumerationltems, without requiring support for the full Instances Package.

9.1 Dependencies

Dependency on Package: Core

The Enumerations Package depends on the Core Package for the EnumerationType and Instance concepts.

9.2 Enumeration ltems

Figure 9.1 shows the overall model of Enumerationltems, i.e., Instances of EXPRESS ENUMERATION data types.
Enumerationltems are ConcreteValues.

==metaclass=>=
NamedEiament
(Core)
+idl* Seopedid [0.1]

L l b,
==metaclazs== tpe-slement-has-scope ==metaclazs== ==metaclass==
TypeFfoment | *hype-slements +namespace | NawedType (+— DefinedType
(Core) 0. 1 (Core) (Core)
enumeration-geckares-item
i +decaredin
o
==metaclass=> pr P {subsets namespace} ==metaclass=>
3 +recharec-tems 1 .
Enumer {subsets type-ed s} EnumerationType +extension
+postion : Integer [1] (Core) o
0. Ivalue-of-EnumerationType 1.7 |+isExtensible : Boolean [1] -
T +ivalues +ot-type
{subsets instances} {subsets of-type} 1 +hase
<=metaciazs==
CoucrataVaine enumeration-extends-enumeration
I
==metaclazss= ==metaclazses
e wwce +instances sottype | pataType
(Care) o0.* Instance-ofiype 0.2 (Care)

Figure 9.1 - Enumeration ltems

9.2.1 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Properties: abstract

Note — ConcreteValue isincluded in this Package in order to enable a consistent “package merge” of the Enumerations
Package into the Instances Package. Itsreal usage is described in the Instances Package.

9.2.1.1 Supertypes

Core::lnstance

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 117

9.2.1.2 Attributes

none

9.2.1.3 Associations

none

9.2.1.4 Other Roles

none

9.2.2 Class: Enumerationltem

Definition; a ConcreteValue representing a named value of an EnumerationType. An Enumerationitem is also a
Typedinstance, because the corresponding EnumerationType has an Identifier. An Enumerationitem is also a
TypeElement, in that the scope of its identifier is the EnumerationType.

Note — See 8.4.1 of 1SO 10303-11:2004.
9.2.2.1 Supertypes

ConcreteValue, Core:: TypeElement

9.2.2.2 Attributes

Attribute: position To: MOF::Integer

Definition: Represents the position of the Enumeration Item in the list of items in the type _declaration that defines the
Enumerationltem. That is, : position relatesto the : declared-in EnumerationType. When the number of values of
:of -type (the types of which this Enumerationitem is a value) is exactly 1, the position defines an ordering on the
values of the EnumerationType.

Multiplicity: 1..1

9.2.2.3 Associations

AssociationEnd: declared-in To: Core::EnumerationType
via: enumeration-declares-items

Subsets: Core:: TypeElement.namespace

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::EnumerationType

via: value-of-EnumerationType

Definition: represents the relationship between an Enumerationitem and the EnumerationTypes of which it is a value.

118 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

With respect to a given “governing schema’ and all of the SchemaElements it defines and interfaces, each declared
Enumerationitem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

(@) the EnumerationType self->declared-in;

(b) the EnumerationType that is the : base of that EnumerationType, if any, and recursively of all
EnumerationTypes related by :base, and

(c) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b) above,
and recursively of all EnumerationTypes related to them by :extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..* unordered
Properties: derived.

9.2.2.4 Other Roles

From Expressions::EnumltemRef as refers-to

9.2.2.5 Rules

Constraint (OCL)
exists(self->id) ;
Every Enumerationltem shall have an Identifier.

9.2.3 Association: enumeration-declares-items

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

This can be different from value-of-EnumerationType (see below) only when the EnumerationType is EXTENSIBLE, or
isitself the extension of another EnumerationType.

9.2.3.1 Supertypes

Core::type-el ement-has-scope

9.2.3.2 Association Ends

AssociationEnd: declared-in To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

Multiplicity: 1..1

AssociationEnd: declared-items To: Enumerationltem

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type declaration. For extended enumeration types, this is distinct from the : values relationship, which captures all of
the valid values of the type.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 119

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties: composite

9.2.4 Association: value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type.

Properties: derived

9.2.4.1 Association Ends

AssociationEnd: of-type To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationTypes of which it is a value.

With respect to a given “governing schema’ and all of the SchemaElements it defines and interfaces, each declared
Enumerationltem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

€) the EnumerationType sel f->declared-in;

(b) the EnumerationType that is the : base of that EnumerationType, if any, and recursively of all
EnumerationTypes related by :base; and

(©) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b) above,
and recursively of all EnumerationTypes related to them by :extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..* unordered

Properties. derived.

AssociationEnd: values To: Enumerationltem

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type.

An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declaresit. This
relationship can be derived recursively as the union of the values of the : declared-items attribute for the
EnumerationType, for each EnumerationType in the sequence of :base relationships from the EnumerationType, and
from all the extensions of the EnumerationType.

Note — See clause 8.4.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: derived.

Note — The derivation of the values of : values isarecursive operation, described in the text above.

120 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10 Package : Instances

The Instances Package contains all of the Instance concepts that go with the Type concepts in the Core Package. The
Instances Package incorporates the model elements in the Enumerations Package, in order to do this.

The purpose of the Instances Package is to provide a model representation for specific Instances that are explicitly
referred to in a Schema. A tool that supports the Expressions Package may also use Instances to represent the values of
expressions that can be statically evaluated.

Note — It is possibleto represent an actual Population as an instance of this package, but such arepresentation is“ unexpected.”
In MOF terminology, the EXPRESS metamodel defined in this specification isan M2 model. An EXPRESS Schema and its
contents constitute an M1 population that conforms to this metamodel. A Population (in the EXPRESS sense) should be
represented as an MO population that conforms to the M1 model of the governing-schema. Representing that Population as an
instance of this package would make it an M1 population that carries direct M 1 links to the M1 objects representing the model
elements of the EXPRESS Schema. While such arepresentation is (accidentally) enabled by this Package, that is not the
purpose of this package, and it is not to be considered a required part of any compliance point.

10.1 Dependencies

Dependency on Package: Core
Stereotypes. import

The Instances Package depends on the Core Package for the InstantiableType concepts that are the data types of the
individuals (Instances).

Dependency on Package: Enumerations

Stereotypes. merge

The Instance Package extends the ConcreteType and Enumerationlitem model elements from the EnumerationsPackage,
while importing the properties and associations modeled therein.

10.2 Overview of Instances

Figure 10.1 shows the overall model of Instances of EXPRESS data types. Instances are divided into Typedlnstances,
ConcreteValues, and two special categories — Indeterminate and Partial EntityValue, as listed below.

» Typedinstancesrepresent instances of NamedTypes. There are three subcategories — Entityl nstances, SpecializedValues
and Enumerationltems. Typedinstances are the instances that can be values of SelectTypes. Each of the subcategories
corresponds to one of the other subtypes of NamedType.

» ConcreteValues are Instances that can be the fundamental values of SpecializedValues — the values of
SpeciaizationTypes. There are three subcategories— SimpleValues, AggregateValues and Enumerationltems.
SimpleValues correspond to the SimpleTypes. AggregateVal ues correspond to the ConcreteAggregationTypes.
Enumerationltems correspond to EnumerationTypes, and because EnumerationTypes are NamedTypes,
Enumerationltems are also Typedlnstances.

+ Indeterminate is the class that corresponds to the EXPRESS constant “?,” which can be considered to be an instance of
all EXPRESS data types, or of none of them.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 121

 Partia EntityValues only arise as the results of Expressions. They are described in detail in 10.5, ' Entity Instances and
Values,” which deals with values of EntityTypes.

This section defines the Instance concepts associated with EXPRESS defined data types — Select types, Enumeration
types, and Specializations — in detail. SimpleValues, AggregateValues, values of Entity Types are described in subsequent
sections.

While the domains of EXPRESS data types are often unbounded, only those Instances that actually occur in, or as aresult
of an Expression in, a Schema need to be materialized in a metamodel population that represents the Schema. Similarly,
in a Population that is realized as an instance of this package, only the Instances actually occurring in that Population
need to be represented.

2
s=metaclass== | o . saftype | SSMEtECkSs=S
Instauce DataType
Core) +instances 0. (Corel

{disjoirt, total}

==metaclass== ==metaclass== ==metaclasz== ==metaclazs==
Indeterminate ConucretelVzine Typediustance PartialEntityValue

L FaY

1| +fundamental-value (disicint, total}

\
‘==instantiste==
| 0.*
INDETERMINATE ==metaclass=> ==metaclass>=
:Indeterminate SpecializedValue Entityinstance

+id ; EntityMame [1]

{disjoirt, total}

==metaclass== ==metaclass== ==metaclass==
fmp iggreg Enumerati

+name ; String [1] +position © Integer [1]

Figure 10.1 - Overview of Instances

10.2.1 Class Core::Instance

Definition: an object that is in the domain of a DataType - any real or conceptual object, information unit or data element.
Properties: abstract

Note — The Instance concept, and all its properties, is defined in the Core Package, so that it may be referenced in other
Packages without creating interdependencies. Thereis no real requirement for support of Instances in the Core Package. This
entry serves to define the Instance concept in the context of the Instances Package, and to provide a link to the complete
specificationin 8.17.2.

10.2.2 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Properties: abstract

Note — ConcreteValue is defined in the Enumerations Package. The Instances Package extendsiit, but only by adding a
(passive) role: 1t represents the instances that can be fundamental-values of SpecializedValues.

10.2.2.1 Supertypes

Core::Instance

122 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.2.2.2 Attributes

none

10.2.2.3 Associations

none

10.2.2.4 Other Roles

From: SpecializedValue as fundamental-value

10.2.3 Class: Enumerationltem

Definition: a ConcreteValue representing a named value of an EnumerationType. An Enumerationltem is also a
Typedlnstance, because the corresponding EnumerationType has an Identifier. An Enumerationltem is also a
TypeElement, in that the scope of its identifier is the EnumerationType.

Note — Enumerationltem is defined in the EnumerationsPackage. The I nstances Package extends Enumerati onltem by making
it asubclass of Typedinstance, and inheriting those properties. There are no other changes or additions.

10.2.3.1 Supertypes

ConcreteValue, Typedl nstance, Core:: TypeElement

10.2.3.2 Attributes

no additions or changes

10.2.3.3 AssociationEnds

no additions or changes

10.2.3.4 Other Roles

no additions or changes

10.2.3.5 Rules

no additions or changes

10.2.4 Class: Indeterminate

Definition: The class that contains only the INDETERMINATE object (see Section 10.2.7).
Note — See 14.2 of SO 10303-11:2004.

10.2.4.1 Supertypes

Core::Instance

10.2.4.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 123

10.2.4.3 Associations

none

10.2.4.4 Other Roles

From Expressions::IndeterminateRef as refers-to

10.2.4.5 Rules

Constraint (OCL): is-singleton
self = INDETERMINATE;
The only instance of Indeterminate isthe INDETERMINATE object.

10.2.5 Class: SpecializedValue

Definition: a Typedinstance that is a value of a SpecializedType. Every SpecializedValue is represented by some
ConcreteValue, called its fundamental-val ue.

==metaclass=> inst it ==metaclass=>
lnstance HNslances i fe Data Type
(Core) o.* 1 (Core)

Tpe
==metaclass=> 0.+ 4 ==metaclass=»=

MNamedType
+instances +of-type [Core)
ubsets instances} {subsets of-type}

7

==metaclass== 1 ==metaclass=>
iali Type

0.F +of-type
ubsets of-type}

0.
1 +fundamerntal-value
==melaclass==
ConcreteVaiue

Figure 10.2 - Specialized Values
10.2.5.1 Supertypes
Typedinstance

10.2.5.2 Attributes

none

10.2.5.3 Associations

AssociationEnd: fundamental-value To: ConcreteValue

Definition: represents the relationship between a Specializedinstance and the “fundamental” ConcreteValue that is used to
represent that Instance.

Multiplicity: 1..1

124 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

AssociationEnd: of-type To: Core::SpecializedType

subsets: Core::Instance: of-type

Definition: represents the relationship between a SpecializedValue and its data type.
Multiplicity: 1..1

10.2.5.4 Other Roles
none
10.2.6 Class: Typedinstance

Definition: an abstract classifier, a subtype of Instance comprising those Instances that are instances of a NamedType.
Only a Typedinstance can instantiate a SelectType.

Properties: abstract

z=metaclass== . Instance-of-type =zmetaclass==
vinstances wottype | C e

[Core) 0. T 1. (Core)

instance-otNamed Type
+of-type
o.» {subsets of-type}

==metaclass== ==metaclass=>

Type
+instances 1. (Care)

{subsets instances}
0.* | +alowed-value

+allovwed-types 0.*

type-instantisties -select-type

+instartistes | o+

==metaclass==

fvalue-0f-Select Type +isatisfiestvRe | galectType
o.* (Core)

Figure 10.3 - Typedinstances
10.2.6.1 Supertypes
Core::Instance

10.2.6.2 Attributes

none

10.2.6.3 Associations

AssociationEnd: satisfies-type To: Core::SelectType
via value-satisfies-SelectType

subsets: Core::Instance:of-type

Definition: represents the relationship between a Typedinstance and the SelectTypes of which it is an allowable instance.

Multiplicity: 0..* unordered

10.2.6.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 125

10.2.7 Instance: INDETERMINATE

Type: Instances::Indeterminate
Definition: Represents the EXPRESS “indeterminate” value, which is interpreted as “no determinable value.”

This Instance arises as the evaluation of an Expression that is the Indeterminate literal (“?”), or an Expression in which
one of the operations “fails.” Indeterminate is not an instance of any data type, but it may be treated as an instance of the
required data type of the Expression, if any.

Note — See clause 14.2 of 1SO 10303-11:2004.

10.3 Simple Values

This section specifies the model of SimpleValues — Instances that correspond to the simple data types defined in the
EXPRESS language: BINARY, BOOLEAN, LOGICAL, INTEGER, NUMBER, REAL, STRING. The model is shown in
Figure 10.4.

It also includes two specialized classes of STRING value that have specific syntax requirements in the EXPRESS
language: TypeName and RoleName. There are no EXPRESS data types for these, but certain values in Expressions are
required to be instances of these classes.

There are exactly three distinct Logical Values — FALSE, TRUE, and UNKNOWN. These are explicitly modeled as
individual objects in the NamedVal ues package.

<=metackass==
SimpleVaine
Z|+name : String [1]

BuiltinConstants | =ntantiste==

| ‘ {elisjoint, total} |

==metackss== ==metackss== ==metaclass== =<metackasss=
= | LogicalValue = HumberValue 0. String' BinaryValue

[[[1

<=metackazs== <=metackass== ==metaclass== ==metaclass==
T

-" 1 1
+represents [1 1| +represents

==metaclass==
Int Val ==structures=
EHcrEauC Scopedid

(Core)

o
o

L| +oftype 1. +of-type 1. +of-type +of-type
= | {subsets ottype} | {subsets of-type} - | {subsets of-type} {subsets oftype} | 1.*

<=metaclass== <=metaciass== <=metackazs== <=metackass==
LogicType NumericType StringType BinaryType
(Core] (Core) [Core) (Core)

Figure 10.4 - Simple Values

10.3.1 Class: BinaryValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

10.3.1.1 Supertypes

SimpleValue

126 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.3.1.2 Attributes

none

10.3.1.3 Associations

AssociationEnd: of-type To: Core::BinaryType

subsets: Core::lnstance:of-type

Definition: the BinaryType(s) that are instantiated in the BinaryValue.

Multiplicity: 1..* unordered.

10.3.1.4 Other Roles

none

10.3.2 Class: BooleanValue

Definition: a SimpleValue, a value of the EXPRESS data type BOOLEAN: TRUE, FALSE
10.3.2.1 Supertypes

L ogicalValue

10.3.2.2 Attributes

none

10.3.2.3 Associations

none

10.3.2.4 Other Roles

none

10.3.2.5 Rules

Constraint
(self == NamedValues::TRUE) or (self == NamedValues::FALSE) ;

Every BooleanValue must be either TRUE or FALSE.

10.3.3 Class: IntegerValue

Definition: a SimpleValue, a value of the EXPRESS data type INTEGER: any mathematical integer value.

10.3.3.1 Supertypes

RealValue

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 127

10.3.3.2 Attributes

none

10.3.3.3 Associations

none

10.3.3.4 Other Roles

none
10.3.4 Class: LogicalValue

Definition: a SimpleValue, a value of the EXPRESS data type LOGICAL: TRUE, UNKNOWN, FALSE.
10.3.4.1 Supertypes

SimpleValue

10.3.4.2 Attributes
none

10.3.4.3 Associations

AssociationEnd: of-type To: Core::LogicType

subsets: Core::Instance:of-type

Definition: the LogicType(s) that are instantiated in the Logical Value.
Note — The of-type relationships of the Logical Values are explicitly modeled in the NamedVal ues Package.

Multiplicity: 1..* unordered.

10.3.4.4 Other Roles

none

10.3.4.5 Rules

Constraint

(self == NamedValues::TRUE) or (self == NamedValues: :FALSE)
or (self == NamedValues: :UNKNOWN) ;

Every LogicalValue must be one of: TRUE or FALSE or UNKNOWN.

10.3.5 Class: NumberValue

Definition: a SimpleValue, a value of the EXPRESS data type NUMBER: any numeric value with its mathematical
interpretation.

128 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.3.5.1 Supertypes

SimpleVaue

10.3.5.2 Attributes
none

10.3.5.3 Associations

AssociationEnd: of-type To: Core::NumericType

subsets: Core::Instance: of-type

Definition: the NumericType(s) that are instantiated in the NumberValue.

Multiplicity: 1..* unordered.

10.3.5.4 Other Roles

none

10.3.6 Class: RealValue

Definition: a SimpleValue, a value of the EXPRESS data type REAL : supposedly a mathematical “real” value, but
properly a computational fixed or floating-point value.

10.3.6.1 Supertypes
NumberVaue
10.3.6.2 Attributes

none

10.3.6.3 Associations

none

10.3.6.4 Other Roles

none

10.3.7 Class: RoleName

Definition: A RoleName is a reference to an Attribute that has the form of a StringValue. It is an instance of StringType
ROLE. RoleNames are produced as the result-type of the UnaryOperator RolesOf, and used as the formal parameter type
for Usedin. They have reserved syntax and reserved interpretation.

Note — The result of RolesOf is only well-defined for Attributes of Entity Types defined in the Schema. Some problems arise
with interfaced Entity Types, renamed Attributes, and attributes of Entity Types defined in AlgorithmScopes.

Note — See Clause 15.25 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 129

10.3.7.1 Supertypes
StringValue
10.3.7.2 Attributes

Attribute: represents To: Core::Scopedid

Definition: represents the relationship between the RoleName — a StringValue — and the (structured) TypeScopedid for the
Attribute, of which it is a representation.

Multiplicity: 1..1
10.3.7.3 Associations

AssociationEnd: refers-to To: Core::Attribute
Definition: represents the relationship between a RoleName and the Attribute to which it refers.

Multiplicity: 1..1

10.3.7.4 Other Roles

none

10.3.8 Class: SimpleValue

Definition: a ConcreteValue that consists of a single atomic information unit of a data type defined in the EXPRESS
language itself.

Properties: abstract
10.3.8.1 Supertypes
ConcreteValue
10.3.8.2 Attributes

Attribute: name To: MOF::String
Definition: the representation of the value, assumed to be a character string.

Multiplicity: 1..1

10.3.8.3 Associations

none

130 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.3.8.4 Other Roles

From Expressions::Literal as refers-to

10.3.9 Class: StringValue

Definition: a SimpleValue, a value of the EXPRESS data type STRING: a sequence of character codes from the 1SO
10646-1 Basic Multilanguage Plane.

10.3.9.1 Supertypes
SimpleValue

10.3.9.2 Attributes

none

10.3.9.3 Associations

AssociationEnd: of-type To: Core::StringType

subsets: Core::Instance: of-type

Definition: the StringType(s) that are instantiated in the StringValue.
Multiplicity: 1..* unordered.
10.3.9.4 Other Roles

none

10.3.10 Class: TypeName

Definition: A TypeName is a reference to a DataType that has the form of a StringValue. It is an instance of StringType
TY PE. TypeNames are produced as the result-type of the UnaryOperator TypeOf. They have reserved syntax and reserved
interpretation.

Note — The result of TypeOf is only well-defined for NamedTypes defined in the Schema, although it can also produce
EXPRESS keywords. Some problems arise with interfaced NamedTypes, and NamedTypes defined in AlgorithmScopes.

Note — See Clause 15.25 of 1SO 10303-11:2004.
10.3.10.1 Supertypes

StringValue

10.3.10.2 Attributes

Attribute: represents To: Core::Scopedld

Definition: the (structured) Scopedid for the NamedType, of which the TypeName is a String representation.
Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 131

10.3.10.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between a TypeName and the NamedType to which it refers.

Multiplicity: 1..1

10.3.10.4 Other Roles

none

10.4 Aggregate Values

This section specifies the model of AggregateValues — Instances that correspond to EXPRESS aggregation types:
ARRAY, BAG, LIST, SET.

==metackazss= =2metaclassss
AggregateVaize GenericAggregate
| (dlisjoint, total} | | l
==metaclass== ==metaclass== ==metaclass== ==metaclass==
ARRAYValue BAGValue SETValue LISTValue
1 o.* 1 o.* o.* o.* 1 o.*
. +of-type 1 +ofiype 14 +of-type 14 +of-type
© L {subsets of-type} © | {subsets of-type} " {zubsets of-type} " {subsets of-type}
==metaclass== ==metaclass== ==metaclass== =<metaclass==
ARRAYType BAGType SETType LISTType
[Core) [Core) (Core) (Core)

1.7 | +member-slot 0. +member-siot 0. | +member-siot
==metaclazs== ==metaclazs== ==metaclass==
ArrayMember BagMember ListMember

+index : Integer [1] +court : Integer [1] +pozition : Integer [1]

* * *
b 0. +member-value | 0.* b

1 Jeemetaclase== LHMember-value

Hthember-vallie Instance

0.1 (Care)
tmember-valle

=zmetaclass==
Data Type
[Caore)

1
+instances +of-type
0. 1.4
< Instance-ofbpe

Figure 10.5 - Aggregate Values

10.4.1 Class: AggregateValue

Definition: a ConcreteValue that is composite, consisting of a collection of Instances from a given member DataType.
Properties: abstract

10.4.1.1 Supertypes

ConcreteVaue

132 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.4.1.2 Attributes

none

10.4.1.3 Associations

none

10.4.1.4 Other Roles

none

10.4.2 Class: ArrayMember

Definition: Represents a single element of an ARRAY Value seen as arelation. It maps one index-value to one value of the
base data type (the “member” value). In the case of an ARRAY OF OPTIONAL, the member-value need not be present.

10.4.2.1 Supertypes
none
10.4.2.2 Attributes

Attribute: index To: MOE::Integer

Definition: represents the index value to which the ArrayMember corresponds. In a given ARRAY Value, there is exactly
one ArrayMember that corresponds to each index value.

Multiplicity: 1..1
10.4.2.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: for a given ARRAY Value, represents the relationship between an index value (represented by an
ArrayMember) and the Instance value that is the image of that index value in the base type.

Multiplicity: 0..1

10.4.2.4 Other Roles

From: ARRAYValue as member-slot

10.4.3 Class: ARRAYValue

Definition: an AggregateValue, representing a value of an EXPRESS ARRAY data type: a set of pairs of the form (index
value, domain value) where the index value is selected from a finite range of integers, and each such value occursin
exactly one pair, and the domain value is an instance of the member-type of the ARRAY.

10.4.3.1 Supertypes

AqgaregateValue

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 133

10.4.3.2 Attributes

none

10.4.3.3 Associations

AssociationEnd: member-slot To: ArrayMember

Definition: represents the relationship between an ArrayValue and each of its distinct slots for member values.
Multiplicity: 1..* unordered

Properties: composite

AssociationEnd: of-type To: Core::ARRAYType

subsets: Core::Instance:of-type

Definition: represents the relationship between the ARRAY Value and the ARRAY Types of which it is an instance.

Multiplicity: 1..* unordered

10.4.3.4 Other Roles

none

10.4.4 Class: BagMember

Definition: Represents the relationship between a BAGValue and one value of the base data type (the “member” value). It
has a “count” attribute that represents the number of times the given member-value occurs in the BAGValue.

10.4.4.1 Supertypes

none

10.4.4.2 Attributes

Attribute: count To: MOEF::Integer

Definition: represents the relationship between a BagMember and the number of occurrences of the member-value that it
represents, i.e., the number of occurrences of that member-value in the bag.

Multiplicity: 1..1
10.4.4.3 Associations

AssociationEnd: member-value To: Core::lnstance

Definition: represents the relationship between a BagMember and the Instance that it includes, one or more times, in the
BAGValue.

Multiplicity: 1..1

134 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.4.4.4 Other Roles

From: BAGValue as member-slot

10.4.5 Class: BAGValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

10.4.5.1 Supertypes

AqgaregateValue
10.4.5.2 Attributes

none

10.4.5.3 Associations

AssociationEnd: member-slot To: BagMember

Definition: represents the relationship between a BagValue and each of its distinct member values. Each distinct member
value is represented by a BagMember (slot) that counts its occurrences in the bag.

Multiplicity: 0..* unordered
Properties: composite
AssociationEnd: of-type To: Core::BAGType

subsets; Core::Instance:of-type

Definition: represents the relationship between the BAGValue and the BAGTypes of which it is an instance.

Multiplicity: 1..* unordered

10.4.5.4 Other Roles

none

10.4.6 Class: GenericAggregate

Definition: An AggregateValue representing the output of an Aggregatelnitiaizer. It isinterpreted as a LIST value whose
member-type is GENERIC, but actually constrained to the common DataType of all the Expressions in the Initializer. It
can be coerced to an ARRAY, BAG, SET, or LIST value of the appropriate member-type, according to the context of its
use.

Note — Certain GenericAggregate values have a syntactic parse asa LIST of instances, but no clear semantics as to data type;
thisisadefect in Part 11.

Note — See 12.9 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 135

10.4.6.1 Supertypes
LISTValue

10.4.6.2 Attributes
none

10.4.6.3 Associations
none

10.4.6.4 Other Roles

From Expressions::Aggregatelnitializer as result-value

10.4.7 Class: ListMember

Definition: represents one position in a ListValue and the instance of the member-type in that position.

10.4.7.1 Supertypes

none

10.4.7.2 Attributes

Attribute: position To: MOE::Integer
Definition: the ordinal identifier for the position in the sequence.

Multiplicity: 1..1

10.4.7.3 Associations

AssociationEnd: member-value To: Core::lnstance

Definition: represents the relationship between a position in a LISTValue (represented by a ListMember) and the Instance
that appears in that position.

Multiplicity: 1..1

10.4.7.4 Other Roles

From: LISTValue as member-slot
10.4.8 Class: LISTValue

Definition: an AggregateValue, representing a value of an EXPRESS LIST data type: a sequence of instances of the
member-type of the LIST.

10.4.8.1 Supertypes

AqggregateValue

136 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.4.8.2 Attributes

none

10.4.8.3 Associations

AssociationEnd: member-slot To: ListMember

Definition: represents the relationship between a ListValue and each of its distinct slots for member values. Each member-
slot represents a position in the ListValue.

Multiplicity: 0..* unordered
Properties. composite
AssociationEnd: of-type To: Core::LISTType

subsets: Core::Instance: of-type

Definition: represents the relationship between the LISTValue and the LI1STTypes of which it is an instance.
Multiplicity: 1..* unordered

10.4.8.4 Other Roles

none

10.4.9 Class: SETValue

Definition: an AggregateValue representing a value of a SET data type.

Note — A SETValue can be viewed as a specialization of aBAGValue in which the “count” value for each BagMember is 1.
But technically, the conversion of the SETValue to the corresponding BAGValue is a coercion, because the behavior of the
resulting BAGValue is different. For example, the union of two SETValues is different from the union of the corresponding
BAGValues.

10.4.9.1 Supertypes

AggregateValue
10.4.9.2 Attributes
none

10.4.9.3 Associations

AssociationEnd: member-value To: Core::lnstance

Definition: represents the relationship between a SETValue and the Instances that appear in it. Any given Instance can
take this role at most once for any given SetValue.

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 137

AssociationEnd: of-type To: Core::SETType

subsets: Core::Instance:of-type

Definition: represents the relationship between the SETValue and the SETTypes of which it is an instance.

Multiplicity: 1..* unordered

10.4.9.4 Other Roles

none

10.5 Entity Instances and Values

This sub clause specifies the model of Entitylnstances — instances that correspond to entity datatypes. It also specifies the
model of PartialEntityValues, which are aggregates of entity attribute values that are constructed and manipulated by
some Expressions.

Figure 10.6 depicts the model of entity instances. In general, entity instances represent real-world objects being described
by the EXPRESS schema. What is captured in the information base is an EntityValue which is a representation of the
current state of the real-world object. A SingleL eafInstance is an Entitylnstance that has a model as a single Entity Type.
A MultiLeafInstance is an Entitylnstance that has a model as an allowable collection of overlapping subtypes of modeled
Entity Types.

==metackassss | Instance-or-type ==metaclasss=
et +instances +of-tvpe DataType
(Core) o “' 1.* (Core)
==metaclass== o 1.5 | zemetaclass==
Entitylnstance +inztances +oftvpe EntityType

i EntityName [1] {=ubsets instances} {zubsets of type} (Core)

-H;‘Tﬂ?iilif +correspondzsto | 1.* 1 | +characterizing-type
{dizjaint, total} entity-valug=describes-state
'ele.ga_&_ s
— 4 L
rstate | Ssmetaclassss
==metaclazss= EntityValue

MultiLeaflnstance

==metaclass== 0.*
SingleLeaflnst:

Figure 10.6 - Entity Instances

Figure 10.7 depicts the model of PartialEntityValues. A Partial EntityValue is a collection of information — assignments of
values to named Attributes. Some Partial EntityValues are EntityValues, that is, they describe the state of an
Entitylnstance.

138 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

sactuslvalue | SSmetaclassss | instance-ot-type =ametaclass==
Instance +instances +of-type DataType
0.1 (Core) 0.2 1.2 (Core)
==metaclass== 1 ==metaclass==
PartialEntityValue PartialEntity Type
o +of-type [Core)
- {subsets of-type}

1.#
+equivalert | 1 1 h

==metaclass== ==metaclass==
EntityValue +corresponds to EntityType
0.* 1.* [Core)

+declared-in 11
sinole-entity-deckarep-in-entty

0.1 | 1.* | +components 1 +oompanents
T — ==metaclass==
+declares i i
SingleEntityValue +ottype SIHQ|B(EE::§!TYDE
o.* 1
1 1 +of-entity
attribute-deciared-in-entity
0.* | +properties 0.* |rdeclares
==metaclazs== . ==metaclazs== ==metaclazs==
i +attribute. | EyplicitAttribute L Attridute
0.* o.* 1 (Core) (Core)

Figure 10.7 - PartialEntityValues

10.5.1 Class: AttributeValue

Definition: represents the assignment of a value to a given Attribute of the EntityType corresponding to the
SingleEntityValue.

10.5.1.1 Supertypes

none

10.5.1.2 Attributes
none
10.5.1.3 Associations

AssociationEnd: actual-value To: Core::lnstance

Definition: represents the value assigned to the Attribute by the AttributeValue. If the Attribute is declared OPTIONAL,
it is possible that no value is assigned.

Multiplicity: 0..1

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the relationship between the AttributeValue assignment and the ExplicitAttribute to which it assigns
avalue.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 139

10.5.1.4 Other Roles

From: SingleEntityValue as properties

Multiplicity: 1..1 composite

10.5.2 Class: Entitylnstance

Definition: a Taggedinstance that represents an EXPRESS entity instance — an instance of an entity data type, a view of
an object that incorporates those properties and relationships that are significant to some particular purpose(s). The
Entitylnstance is distinct from the EntityValue — a collection of information about the object that represents those
properties and relationships.

Note — See clause 5 of 1SO 10303-11:2004.
10.5.2.1 Supertypes

TypedInstance
10.5.2.2 Attributes

Attribute: id To: EntityName

Definition: represents a nominal identifier for an Entitylnstance that distinguishes it from other Entitylnstances. The
nature of thisidentifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note — See clause 5 of 1SO 10303-11:2004.
Multiplicity: 1..1
10.5.2.3 Associations

AssociationEnd: of-type To: Core::EntityType

via: instance-of-EntityType

subsets: Core::Instance:of-type

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.
Multiplicity: 1..* unordered

AssociationEnd: state To: EntityValue

via: entity-value-describes-state

Definition: represents the relationship between the Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1

140 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.5.2.4 Other Roles
From: Rules::Extent as content
10.5.3 Datatype: EntityName

Definition: represents the unique underlying identity of an entity instance, expressed as some kind of identifier. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note — See clause 5 of 1SO 10303-11:2004.

10.5.3.1 Supertypes

Realization type is . MOF::String

The readlization relationship is modeled as a generalization.
10.5.3.2 Members

none

10.5.4 Class: EntityValue

Definition: A Partial EntityValue that completely describes an Instance of some Entity Type(s).

10.5.4.1 Supertypes

Partial EntityVValue

10.5.4.2 Attributes

none

10.5.4.3 Associations

AssociationEnd: corresponds to To: Core::EntityType

Definition: represents the Entity Type(s) whose complete modeled description comprises a set of Attributes that is
contained in the EntityValue. The complete modeled description of an EntityType is a set of SingleEntityTypes, and the
EntityValue contains SingleEntityVal ues corresponding to each of them.

Multiplicity: 1..* unordered

AssociationEnd: describes To: Entitylnstance

via: entity-value-describes-state

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular Entitylnstance.

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 141

10.5.4.4 Other Roles

none

10.5.5 Class: MultiLeaflnstance

Definition: A (complex) Entitylnstance that is a valid instance of more than one EntityType and whose state includes
more SingleEntityValues than are declared for, or inherited by, any named Entity Type defined in the governing Schema.
The subtype/supertype graph corresponding to such an Entitylnstance has multiple “leaf” nodes.

Note — This concept appearsin Part 11 only in 3.3.12, but it appearsin 1SO 10303-21:2002 as an “ uncharacterized instance”
whose representation requires the “ external mapping.”

10.5.5.1 Supertypes
Entitylnstance

10.5.5.2 Attributes

none

10.5.5.3 Associations

none

10.5.5.4 Other Roles

none

10.5.6 Class: PartialEntityValue

Definition: an Instance that is a collection of Attributes (of SingleEntityTypes) with associated values.
10.5.6.1 Supertypes

Core::Instance

10.5.6.2 Attributes

none

10.5.6.3 Associations

AssociationEnd: components To: SingleEntityValue
Definition: the SingleEntityValues that make up the Partial EntityVal ue.
Multiplicity: 1..* unordered

Properties: composite

142 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

AssociationEnd: of-type To: Core::PartialEntityType

Definition: represents the relationship between a Partial EntityValue and the Partial Entity Type that identifies the collection
of SingleEntityTypes for which the Partial EntityValue provides values.

Multiplicity: 1..1

10.5.6.4 Other Roles

From: SinaleEntityValue as equivalent

Multiplicity: 0..1

From: Expressions::PartialEntityConstructor as result-value

10.5.7 Class: SingleEntityValue

Definition: A collection of values for the explicit Attributes of exactly one SingleEntityType.

Note — A SingleEntityValue is not an Instance; it is apart of a PartialEntityValue. It cannot be the result of an Expression, nor
can it be the value of any EXPRESS concept. The result of a Partial EntityConstructor is the .equivalent Partial EntityValue.

10.5.7.1 Supertypes

none

10.5.7.2 Attributes

none

10.5.7.3 Associations

AssociationEnd: equivalent To: PartialEntityValue

Definition: represents the relationship between a SingleEntityValue and the Partial EntityVVal ue that consists of exactly that
one SingleEntityValue.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SingleEntityType

Definition: represents the relationship between a SingleEntityValue and the SingleEntity Type that declares the Attributes
whose values are contained in the SingleEntityValue.

Note — While the relationship between a SingleEntityVValue and a SingleEntity Type appears to be an Instance-to-Type
relationship, it is not treated as such in the metamodel, because SingleEntityVal ues are not Instances & “ they can only appear
as components of a Partial EntityValue.

Multiplicity: 1..1
AssociationEnd: properties To: AttributeValue

Definition: represents the relationship of the SingleEntityValue to the AttributeValue assignments it comprises.
Multiplicity: 0..* unordered
Properties: composite

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 143

10.5.7.4 Other Roles

From: PartialEntityValue as components

Multiplicity: 1..1 composite

10.5.8 Class: SingleLeaflnstance

Definition: An Entitylnstance that is completely characterized by a single Entity Type (and al its supertypes) that is
declared in the governing Schema.

Note — This concept does not appear in Part 11, but is the “characterized instance” that isthe basis for the “internal mapping”
in SO 10303-21:2002.

10.5.8.1 Supertypes

Entityl nstance
10.5.8.2 Attributes

none

10.5.8.3 Associations

AssociationEnd: characterizing-type To: Core::EntityType

Definition: represents the unique Entity Type classifier that has (defines or inherits) exactly all of the Attributes present in
the representation of the Entitylnstance. Not every Entitylnstance has a characterizing-type — it may be an “instance-of”
two or more Entity Types for which the intersection is not explicitly modeled, but permitted by the model to be non-empty.

Multiplicity: 1..1
10.5.8.4 Other Roles

none

10.5.9 Association: entity-value-describes-state

Definition: represents the relationship between an Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

10.5.9.1 Association Ends

AssociationEnd: describes To: Entitylnstance

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular Entitylnstance.

Multiplicity: 0..* unordered

AssociationEnd: state To: EntityValue

Definition: represents the relationship between the Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

144 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 1..1
10.5.10 Association: instance-of-Entity Type
Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.

10.5.10.1 Association Ends

AssociationEnd: of-type To: Core::EntityType

subsets: Core::Instance:of-type

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.
Multiplicity: 1..* unordered

AssociationEnd: instances To: Entitylnstance

subsets: Core::DataType:instances

Definition: represents the relationship between an Entity Type (classifier) and the Entitylnstances that satisfy it.

Multiplicity: 0..* unordered

10.6 Constants

This section defines the Constant concept. A Constant is a model element that provides a name for an instance of any data
type, and allows the instance it names to be specified as the value of an Expression. Figure 10.8 depicts the model of
Constants. The Constant class and its properties are described below.

<=metaciass==
CommonEfement
(Core)

i

==metaclass=>= <=metaclass==

Constant +data-type | mstantizbleType
0. 1 (Core)

==metaclass==

+valug-expression Expression
1 (Core)

0.*

expression-evalustes-to-Instance

+evaluation | 0.1

<=metaclass==
Instance
(Core])

+iactual-value
.1

Figure 10.8 Constants

10.6.1 Class: Constant

Definition: a CommonElement that denotes a single instance value throughout each of its life cycles. The instance value
is described by an Expression that evaluates to the value to be used in each instantiation of the Constant.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 145

For a Constant that is defined as a SchemaElement, the value is unchanged across all algorithms and rules, and over all
corresponding populations. It is a constant and names a specific Instance. Its : value expression may only refer to
Instances and other Constants. A Constant defined in an AlgorithmScope, however, assumes a value for a given
invocation of the Algorithm or Rule, but may assume different values for different invocations. Its : value
expression may refer to parameters of the Algorithm or to elements of the population.

Note — “Constant” is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See clause 9.4 of 1SO 10303-11:2004.

10.6.1.1 Supertypes

Core::CommonElement

10.6.1.2 Attributes

none

10.6.1.3 Associations

AssociationEnd: actual-value To: Core::Instance

Definition: represents the value resulting from evaluating the value-expression. This value may only be computable for a
given population, or it may require computational capabilities a given agent does not have.

Multiplicity: 0..1
Properties: derived

Tagged Values

derivation = self->value-expression->evaluation;

AssociationEnd: data-type To: Core::InstantiableType

Definition: represents the relationship between the Constant and the DataType of the Instance denoted by the Constant.
Multiplicity: 1..1

AssociationEnd: value-expression To: Core::Expression

Definition: represents the Expression that specifies the value of the Constant for a given lifetime.

Multiplicity: 1..1

10.6.1.4 Other Roles

From: Expressions::ConstantRef as refers-to

10.6.1.5 Rules

Constraint (OCL)
exists(self->id);
Every Constant shall have an Identifier.

146 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.7 Populations

This section defines the Population concept and its relationship to Schemas and Instances. A population represents an
information base that corresponds to a Schema. Figure 10.9 depicts the model of Population. The class Population and its

associations are described below.

a.x +compos'rtionl 0.+
=emetaclass== ==metaclazss== =zmetaclazs==
* X
Population SETValue | - smember-value [y
0.* [Core)
o.#| 4 | +within-populstion "'
extent-within-population
==metaclasss== 0 o a=metackass==
+extents Extent :) Entitylnstance
0.* |+id: Scopedd[1] +content |+id: Entitylame [1]
{zubsets member-value}
0.#| +goverring-schema 0.*| +extenszion +instances | 0.*
L. 1subzets instances}
=ametaclaga== extert-of-Ertity Type
Schema +artype | 1
[Care)

2=metaclassss | +nstance-of
EntityType {aubzets of-type}

(Core) 1.0 instance-of-Ertity Type

Figure 10.9 - Populations and Instances

10.7.1 Class: Extent

Definition: the collection of all Instances in a given Population that satisfy the specified EntityType. That is, Extent is the

SetValue that is the intersection of EntityType:instances and Population:composition.

Note — See 9.6 of SO 10303-11:2004.

10.7.1.1 Supertypes

SETValue

10.7.1.2 Attributes

Attribute: id To: Core::Scopedld
Definition: the identifier for the EntityType, used as a name for the Extent.

Note — See 9.6 of SO 10303-11:2004.

Multiplicity: 1..1

Properties: derived.
TaggedValues

derivation = self->for-type->id

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

147

10.7.1.3 Associations

AssociationEnd: content To: Entitylnstance
Subsets: SETValue:member-values

Definition: represents the rel ationship between the Extent (within a Population) and the Entitylnstances it contains. Extent
is a SetValue and Extent:content is just the relationship between that SetValue and its members.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType

via: extent-of-Entity Type

Definition: the Entity Type to which the Extent corresponds.

Note — See 9.6 of SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: within-population To: Population

via: extent-within-population

Definition: the Population from which the Set of instances is drawn.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

10.7.1.4 Other Roles

none

10.7.2 Class: Population

Definition: represents the collection of all entity instances over which the LocalRules and Global Rules of a schema are to
be evaluated.

The EXPRESS interpretation of Population is the complete closed collection of entity instances that is used for a
particular purpose, such as the content of a database or an exchange document. Many distinct Populations may have the
same governing-schema. The presumption is that the Population will be realized when the Entitylnstances are realized,
but it is not necessary that that realization will itself be represented as instance of this Package.

Note — See Clause 5 of 1SO 10303-11:2004.

10.7.2.1 Supertypes

none

10.7.2.2 Attributes

none

148 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

10.7.2.3 Associations

AssociationEnd: composition To: Core::Instance

via: instance-appears-in-population
Definition: represents the relationship between a Population and the Instances that make it up.

Multiplicity: 0..* unordered

AssociationEnd: extents To: Extent

via: extent-within-population

Definition: the collection of Extents of EntityTypes that make up the Population.
Multiplicity: 0..* unordered
Properties: composite

AssociationEnd: governing-schema To: Core::Schema

Definition: represents the relationship between a Population and a Schema that governs (models, describes) it.
Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

10.7.2.4 Other Roles

none

10.7.3 Association: extent-of-EntityType

Definition: represents the relationship between an Entity Type and its Extent (the set of corresponding Entitylnstances) in
a given Population.

10.7.3.1 Association Ends

AssociationEnd: extension To: Extent

Definition: represents the relationship between an Entity Type and its extension (the set of corresponding Entitylnstances)
in a given Population.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType

Definition: represents the relationship between an Extent and the EntityType to which it corresponds.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

10.7.4 Association: extent-within-population

Definition: represents the relationship between an Extent and the Population from which it is drawn.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 149

10.7.4.1 Association Ends

AssociationEnd: extents To: Extent
Definition: the collection of Extents of Entity Types that make up the Population.
Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: within-population To: Population
Definition: the Population from which the Set of instances constituting the Extent is drawn.
Note — See 9.6 of SO 10303-11:2004.

Multiplicity: 1..1

10.7.5 Association: population-includes-instance
Definition: represents the relationship between an Instance and the Populations in which it appears.

10.7.5.1 Association Ends

AssociationEnd: appears-in-population To: Population
Definition: represents the relationship between an Instance and the Populations in which it appears.
Multiplicity: 0..* unordered

AssociationEnd: composition To: Core::Instance
Definition: represents the relationship between a Population and the Instances the make it up.

Multiplicity: 0..* unordered

10.8 Instance Package: BuiltinConstants

This Package represents the values of the “built-in constants’ of the EXPRESS language. They are here modeled as
individual objects that are instances of subtypes of SimpleValue.

Note — See clause 14 of SO 10303-11:2004.

Note — The built-in constants are also modeled as Literalsin Clause 12.11, i.e., as the Expressions that refer to these values.

150 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

BuiltinConstants

TRUE:
LogicalValue
name ="TRUE"
of-type = LOGIGAL E: RealValue
name="E" ‘
FALSE: of-type = REAL
Core:; Logi Core:
BuiltinTypes:: BuiltinTypes::
LOGICAL : [T hame="FALSE" REAL :
LogicType of-type = LOGICAL = RealType
UNKNOWN : nﬁme a ;IEAL |
LogicalValue oFtype =
narme = "UNKNOWN"
of-type = LOGICAL

Figure 10.10 - Built-In Constants
10.8.1 Dependencies

Dependency on Class: Instances::SimpleValue

Stereotypes: instantiates

This Package provides base individuals that are always instances of class SimpleValue.

10.8.2 Instance: E

Type: Instances::RealValue

Definition: Represents the unique REAL number e such that the area above the x-axis and below the curve 1/x, for 1 < x
< g isexactly 1.

Note — See clause 14.1 of 1SO 10303-11:2004.

10.8.2.1 Slots
Attribute: name Value: “E”
Attribute: of-type Values: Core::BuiltinTypes::REAL

10.8.3 Instance: FALSE
Type: Instances::LogicalValue
Definition: Represents the LOGICAL value that is the evaluation of a proposition whose negation is asserted.

Note — See clause 14.3 of 1SO 10303-11:2004.

10.8.3.1 Slots
Attribute: name Value: “FALSE”
Attribute: of-type Values: Core::BuiltinTypes::L OGICAL

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 151

10.8.4 Instance: PI

Type: Instances::RealValue
Definition: Represents the REAL value that is the ratio of the circumference of a circle to its diameter.

Note — See clause 14.4 of 1SO 10303-11:2004.

10.8.4.1 Slots
Attribute: name Value: “PI”
Attribute: of-type Values: Core::BuiltinTypes::REAL

10.8.5 Instance: TRUE

Type: Instances::LogicalValue
Definition: Represents the LOGICAL value that is the evaluation of a proposition that is asserted.
Note — See clause 14.6 of 1SO 10303-11:2004.

10.8.5.1 Slots
Attribute: name Value: “TRUE”
Attribute: of-type Values: Core::BuiltinTypes::L OGICAL

10.8.6 Instance: UNKNOWN

Type: Instances::LogicalValue

Definition: Represents the LOGICAL value that is the evaluation of an Expression that involves Indeterminate values.
UNKNOWN is a specialization of the Indeterminate value that is treated only as a value of data type LOGICAL.
Note — See clause 14.7 of 1SO 10303-11:2004.

10.8.6.1 Slots
Attribute: name Value: “UNKNOWN?”"
Attribute: of-type Values: Core::BuiltinTypes::LOGICAL

152 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11 Package : Algorithms

The Algorithms Package contains the concepts related to definitions of Algorithms and Functions in EXPRESS.

11.1 Dependencies

Dependency on Package: Core

Stereotypes. import

The Algorithms Package depends on the Core Package for the NamedElement and Scope concepts, for data type concepts,
and for the basic Expression concept.

11.2 Functions and Procedures

This section defines all the major concepts in EXPRESS Algorithm definitions, except for Variables and their data types.

Those concepts are described in subsequent clauses below. Figure 11.1 depicts the concepts described in this section.

|

==metaclazs==
ContintonElenant

==metaclass==
AlgoritiimScopa

[Care)

[Core)

[

_ ==metaclazs==
+implements Algorithm

algorithm-has-parameters

+Namespace
{subzets namespace}

==etaclass== lacalelement-has-tocalscape =zmetaclass==
LocafScope 1 +Hocal-elements |LocafiEfamant
[Core) +HNEmespace T 0.* [(Core)

==metaclass==
Paraureter Type
[Core)

+formal-parameter type 1

0.*

==metaclass==
0. Paramater

algarithm-

0.1

0.1

]

as-body
{clizioint, total}

+formal-parameters [+HROstion : Integer [1]

{subsets local-elements }

{igjoint, total}

==metaclazz==
Procedure

==metaclass==
Function

==metaclazs== ==metaclass==
InParameter VARParameter

+hody

==metaclazs==
Statement

+ext : ExpressText [0..1]

Figure 11.1 - Algorithms

{subsetz namespace}

+hamespace

function

-

as-result 1

==metaclass==
FunctionR it

11.2.1 Class: Algorithm

+result
{subsets local-elements }

Definition: a CommonElement that represents an operation or process that transforms information. Every Algorithm is
either a Procedure or a Function. Every Algorithm is also an AlgorithmScope, in that it may define CommonElements and
local Model Elements.

Note — See 9.5 of 1SO 10303-11:2004.

Properties:

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

abstract

153

11.2.1.1 Supertypes

Core::CommonElement, Core::AlgorithmScope

11.2.1.2 Attributes
none
11.2.1.3 Associations

AssociationEnd: actual-types To: Core::ActualType

via: scope-of-actual-type

Subsets: Core::L ocal Scope:local-elements

Definition: the Actual Types that are defined in the Algorithm.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: body To: Statement

via: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note — See 9.5 of 1SO 10303-11:2004.

Multiplicity: 0..1

Properties: composite

AssociationEnd: formal-parameters To: Parameter

via: algorithm-has-parameters

Subsets: Core::L ocal Scope:local-elements

Definition: represents the relationship between the Algorithm and its formal parameters.
Multiplicity: 0..* unordered
Properties: composite

11.2.1.4 Other Roles

From: Core::ActualType as scope

11.2.1.5 Rules

Constraint (OCL)
exists(self->id) ;

Every Algorithm has an identifier

154 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.2.2 Class: Function

Definition: an Algorithm that returns a single Instance and can appear in an Expression.

Note — “Function” is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.5.1 of 1SO 10303-11:2004.

11.2.2.1 Supertypes
Algorithm

11.2.2.2 Attributes

none
11.2.2.3 Associations

AssociationEnd: result To: FunctionResult

via: function-has-result

Subsets: Core::L ocal Scope:local-elements

Definition: represents the relationship between a Function and its FunctionResult.
Note — See 9.5.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

Properties. composite

11.2.2.4 Other Roles

From: Expressions::FunctionCall as invokes-function

11.2.3 Class: FunctionResult

Definition: the formal parameter representing the result Instance that is returned by the invocation of a Function. Within
the body of the Function, the FunctionResult is a Variable that is denoted by the Algorithm identifier. Upon termination
of the execution of the function-body, the (current) value of that Variable is returned.

Note — See 9.5.1 of 1SO 10303-11:2004.
11.2.3.1 Supertypes

Variable

11.2.3.2 Attributes

none

11.2.3.3 Associations

AssociationEnd: namespace To: Eunction

via: function-has-result

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 155

Subsets: Core::L ocal Element:namespace

Definition: the Function that is the Scope in which the Function name refers to the FunctionResult.
Multiplicity: 1..1
11.2.3.4 Other Roles

From: Expressions::FunctionCall as returns-result

11.2.3.5 Rules

Constraint (OCL)
self->id = self->namespace->id;

The identifier for the function result is the identifier for the function.

11.2.4 Class: InParameter

Definition: a formal parameter to a Procedure or Function to which the ActualParameter is passed “by value.”

During an invocation of the Algorithm, the InParameter is a Variable that isinitially set to the value of the corresponding
Actual Parameter. The value of the InParameter can be changed during the execution of the Algorithm.

An InParameter has a formal-parameter-type, which is the type specification to which the corresponding

Actual Parameters are required to conform. The InParameter also has a variable-type, which is the type specification for
the Variable created to hold the value during invocation of the Algorithm. When the formal-parameter-type is an
InstantiableType, the variable-type is the same type. When the formal parameter-type is a GeneralizedType, the variable-
type is the corresponding Actual Type.

Note — It is possible that the formal-parameter-type isitself an Actual Type, if the Algorithm is defined within another
Algorithm. In such a case, the variable-type is the same type.

Note — See 9.5.3 of SO 10303-11:2004.
11.2.4.1 Supertypes

Parameter, Variable

11.2.4.2 Attributes

none

11.2.4.3 Associations

none
11.2.4.4 Other Roles

From: Expressions::PassByValue as for-parameter

11.2.5 Class: Parameter

Definition; aformal parameter — the formal description of an operand — of a Procedure or Function.

156 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Parameters are of two kinds:

» InParameter, to which the values of the corresponding Actual Parameters are passed by value.
» VarParameter, to which the corresponding Actual Parameters are passed by reference

A Parameter is actually a NamedVariable whose scope is the Algorithm, and in each invocation of the Algorithm its
(initial) value is set from the value or reference provided as the actual parameter. The formal-parameter-type of the
Parameter constrains the types/values of the corresponding actual parameters. As a NamedVariable, it also has a variable-
type, which is its data type for the purpose of operations within the body of the Algorithm. If the formal-paramater-type
is an InstantiableType or an ActualType, the variable-type is the same type. If the formal-parameter-type is a
GeneralizedType, the variable-type is the corresponding Actual Type.

Note — See 9.5.3 of SO 10303-11:2004.
Properties: abstract
11.2.5.1 Supertypes

Core::ElementSource

Note — Parameter is an abstract classifier. The two instantiable subclasses of Parameter — InParameter and VARParameter --
are subclasses of NamedVariable. So Parameter is an implicit subclass of NamedVariable.

11.2.5.2 Attributes

Attribute: position To: MOE::Integer

Definition: A positive integer value designating the ordinal position of the Parameter in the formal-parameter-list for the
Algorithm that is its :namespace. The position is used to associate Actual Parameters with the formal Parameter.

Note — See 9.5.3 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.2.5.3 Associations

AssociationEnd: formal-parameter-type To: Core::ParameterType

Definition: the specification for the required data type of the actual parameters (see 12.7.1) that correspond to the formal
Parameter; the data type that represents the allowable values of the Parameter.

Multiplicity: 1..1

Note — Thelexical parameter_ type in EXPRESS may refer to an InstantiableType, an Actual Type (if the Algorithm is
defined within an outer AlgorithmScope) or a GeneralizedType, and when it is syntactically ageneralized type, it may
include Actua TypeConstraints.

AssociationEnd: namespace To: Algorithm

via: agorithm-has-parameters

Subsets: Core::L oca Element:namespace

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its :id.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 157

11.2.5.4 Other Roles

From: Expressions::ParameterRef as refers-to

From: Expressions::ActualParameter as formal-parameter

11.2.5.5 Rules

Constraint (OCL)
exists(self->id) ;

Every Parameter has an identifier

Constraint (OCL)
IF typeof (self->namespace) = 'Function' THEN NOT self->inout;
No parameter to a Function shall be a VAR parameter.

11.2.6 Class: Procedure

Definition: an Algorithm that is executed as an action in a FunctionBody.
Note — See 9.5.2 of 1SO 10303-11:2004.

Note — “Procedure” is areserved word in EXPRESS,; if this metamodel is converted to EXPRESS, this class must be renamed.
11.2.6.1 Supertypes

Algorithm

11.2.6.2 Attributes

none

11.2.6.3 Associations

none

11.2.6.4 Other Roles

From: Statements::ProcedureCall as invokes

11.2.7 Class: Statement

Definition: An EXPRESS Statement, a directive to perform a certain set of operations.
Note — See Clause 13 of 1SO 10303-11:2004.

Note — Even though Statement istechnically an abstract classifier, it isrepresented by direct instances with text representations
when the Statements compliance point is not supported.

11.2.7.1 Supertypes

none

158 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.2.7.2 Attributes

Attribute: text To: Core::ExpressText

Definition: Represents the EXPRESS statement verbatim.
Multiplicity: 0..1
11.2.7.3 Associations

AssociationEnd: controlled-by To: Statements::RepeatStatement

via: Statements::repeat-has-body

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.
Multiplicity: 0..1

AssociationEnd: implements To: Algorithm

via algorithm-has-body

Definition: represents the relationship between a Statement and the Algorithm for which it specifies an implementation.
Multiplicity: 0..1
AssociationEnd: in-block To: Statements::StatementBlock

via: Statements::bl ock-sequences-statements

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note — This relationship is needed for ESCAPE statements and SKI1P statements, whose interpretation requires a path back to
the REPEAT statement that controls them (see 13.8.3). It may also be needed to associate a RETURN statement with the
Algorithm that whose implementation containsiit.

Multiplicity: 0..1
11.2.7.4 Other Roles

From: Rules::GlobalRule as supporting-body

Multiplicity: 0..1

From: Statements::AliasStatement as body

Multiplicity: 0..1

From: Statements::CaseAction as action

Multiplicity: 0..1

From: Statements::IfStatement as then-action

Multiplicity: 0..1

From: Statements::|fStatement as else-action

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 159

11.2.8 Class: VARParameter

Definition: A formal parameter to a Procedure that is used as a reference to the object that is the ActualParameter in a
given invocation. That is, a VARParameter represents a parameter that is “passed by reference.”

During an invocation of the Algorithm, theVARParameter is a VARVariable whose referent is specified by the
VARExpression that is the corresponding Actual Parameter. All references to a VARParameter (in Statements and
Expressions) refer to its referent.

As a Parameter, the VARParameter has a formal-parameter-type, which is the type specification to which the
corresponding Actual Parameters are required to conform. As a VARVariable, its data type is the type of its referent.

Note — See 9.5.3 of SO 10303-11:2004.
11.2.8.1 Supertypes

Parameter, VARVariable

11.2.8.2 Attributes

none

11.2.8.3 Associations

none
11.2.8.4 Other Roles

From: Statements::PassByReference as for-parameter

11.2.8.5 Rules

Constraint (OCL)

typeof (self->namespace) ="'Procedure' ;
Only a Procedure can have a VAR Parameter.

11.2.9 Association: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
StatementBlock — a sequence of actions to be performed.

Note — See 9.5 of 1SO 10303-11:2004.
11.2.9.1 Association Ends

AssociationEnd: body To: Statement

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note — See 9.5 of 1SO 10303-11:2004.

160 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 0..1
Properties: composite
AssociationEnd: implements To: Algorithm

Definition: represents the relationship between a FunctionBody and the Algorithm for which it specifies an
implementation.

Multiplicity: 0..1

11.2.10 Association: algorithm-has-parameters

Definition: represents the relationship between an Algorithm and its formal parameters.
11.2.10.1 Supertypes

Core::local-el ement-has-local -scope

11.2.10.2 Association Ends

AssociationEnd: formal-parameters To: Parameter
Definition: represents the relationship between the Algorithm and its formal parameters.
Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: namespace To: Algorithm

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its :id.

Multiplicity: 1..1
11.2.11 Association: function-has-result

Definition: represents the relationship between a Function and its FunctionResult.

Note — See 9.5.1 of SO 10303-11:2004.
11.2.11.1 Supertypes

Core::local-el ement-has-local -scope

11.2.11.2 Association Ends

AssociationEnd: namespace To: Eunction

Subsets: L ocal Element:namespace

Definition: the Function that is the AlgorithmScope in which the Function name refers to the FunctionResult.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 161

AssociationEnd: result

To: EunctionResult

Subsets: Local Scope:local-elements

Definition: represents the relationship between a Function and its FunctionResult.

Note — See 9.5.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

Properties. composite

11.3 Variables

This section describes the concepts associated with Variables in EXPRESS. Variables are introduced in Algorithms and
GlobalRules. Figure 11.2 depicts the concepts described in this section.

+namespace | 1
{suUbzets namespace}

==metaclass== localelementhas-focalscope ==metaclass==
LocalScope FNAMmespace 0.* |LocalEiement
(Core) 1 I Hocal-elements (Core)

T ==metaclazs== T
<=metackass== ariabiaType ==metaclazs==
AlgorithmScope ¥p MNamedVariabdle

(Core]

(Core)

variable-defingd-in-scope

{zubsets local-

+variables | 0.*
elemerts

+varishle-type
[{dizjoirt, total}

Variabie

==metaclasss== ==metaclasss=

VARVariabie

RN i

==metaclass=>=
LocalVariable

<=metackass==
FunctionResult

==metaclass== <=metackass==
InParameter VARParameter

o.#

+intial-walue | 0.1

==metaclass=>=
Expression
(Core)

Figure 11.2 - Variables

11.3.1 Class: LocalVariable

Definition: a Variable that is declared as LOCAL to an Algorithm or GlobalRule and given an Identifier, and possibly an
initial value, in the declaration.

Note — See 9.5.4 of 1SO 10303-11:2004.

11.3.1.1 Supertypes

Variable

11.3.1.2 Attributes

none

162

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.3.1.3 Associations

AssociationEnd: initial-value To: Core::Expression

Definition: represents the relationship between the Local Variable and the Expression that specifies its initial-value on
entry to the body of the Algorithm or GlobalRule that defines it.

Multiplicity: 0..1

AssociationEnd: namespace To: Core::AlgorithmScope

via: variable-defined-in-scope

Subsets: Core::L oca Element:namespace

Definition: represents the relationship between the Local Variable and the AlgorithmScope in which it is defined. Thisisa
refinement of the NamedElement:namespace relationship. The lifetime of a Local Variable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1
11.3.1.4 Other Roles

none

11.3.2 Class: NamedVariable

Definition: Any EXPRESS syntactic variable: A LocalVariable, a QueryVariable, an increment ControlVariable, an
AliasVariable, or a Parameter or FunctionResult. A NamedVariable is a NamedElement and always has a name/identifier.
Each kind of NamedVariable has a different scope, but the scope of every NamedVariable is a Local Scope.

Every NamedVariable is either a Variable or a VARVariable.

Properties: abstract
11.3.2.1 Supertypes

Core::L ocal Element

11.3.2.2 Attributes

none

11.3.2.3 Associations

none
11.3.2.4 Other Roles

From: Expressions::VariableRef as refers-to

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 163

11.3.2.5 Rules

Constraint (OCL)
exists(self->id) ;

Every NamedVariable has an identifier.

11.3.3 Class: VARVariable

Definition: A VARVariable represents a “pointer” that functions as a reference to a“cell” - a Variable, or a part of a
Variable - during the execution of an Algorithm.

A VARVariable is a NamedVariable, but it is not a Variable. Unlike a Variable, it does not itself hold an Instance. Instead,
it points to a cell that holds an Instance. The cell to which a VARVariable refers is called its referent. The referent of a
VARVariable can be anything to which a VAREXpression (see Section 14.10.5) can refer. The referent of a VARVariable
is fixed at the time the instance of the VARVariable is created.

There are two kinds of VARVariables: VARParameter and AliasVariable.
Properties: abstract

11.3.3.1 Supertypes

NamedVariable

11.3.3.2 Attributes

none

11.3.3.3 Associations

none

11.3.3.4 Other Roles

From: Statements::AliasRef as refers-to

11.3.4 Class: Variable

Definition: a NamedVariable that exists during an invocation of an Algorithm or the evaluation of a GlobalRule and
contains an Instance of a specified data type. (In essence, the type of a Variable specifies the structure of the object that
contains the value.) During execution of an Algorithm, the Instance contained in a Variable can change.

Variables can be the objects of assignments or the referents of VAREXpressions (see Section 14.10), and they have
declared or implied data types that constrain their allowable values.

Note — See 9.5.4 of 1SO 10303-11:2004. Part 11 uses the term “variable” to denote any of several kinds of objects that hold
values, including L ocal Variables, FunctionResults, Parameters, aggregate members, and ExplicitAttributes in EntityValues.
The term Variable here only refers to Local Variables, FunctionResults, and InParameters.

Properties: abstract

164 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.3.4.1 Supertypes
NamedVariable

11.3.4.2 Attributes

none

11.3.4.3 Associations

AssociationEnd: variable-type To: Core::VariableType
Definition: the data type of the Variable - the type of the values that the Variable can contain.

In any given invocation, the data type of the Variable is an InstantiableType. If the data type of the Variable is specified
as an InstantiableType, it is fixed for al invocations. If the data type of the Variable is specified as an Actual Type, the
actual data type varies from invocation to invocation, according to the data type of an actual parameter. If the Variable is
an InParameter and its formal parameter type is a GeneralizedType, the variable-type is the corresponding Actual Type.

Note — See 9.5.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.3.4.4 Other Roles

From: Statements::VariableCell as refers-to

11.3.5 Association: variable-defined-in-scope

Definition: represents the relationship between a LocalVariable and the AlgorithmScope in which it is defined. Thisis a
refinement of the el ement-defined-in-scope relationship.

11.3.5.1 Supertypes

Core::local-element-has-local-scope

11.3.5.2 Association Ends

AssociationEnd: namespace To: Core::AlgorithmScope

Subsets: L ocal Element:namespace

Definition: represents the relationship between the Local Variable and the AlgorithmScope in which it is defined. Thisisa
refinement of the NamedElement:namespace relationship. The lifetime of a LocalVariable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1
AssociationEnd: variables To: LocalVariable

Subsets: Local Scope:local-elements

Definition: represents the relationship between the Local Scope and the set of Local Variables that are defined within it.
Multiplicity: 0..* unordered

Properties: composite

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 165

11.4 Actual Types

In the simplest case, return values, variables, and other elements whose lifetime is the evaluation of the Algorithm are
declared to have InstantiableTypes. But they can also be declared to be derivatives of the data types of the actual
parameters in a given invocation. Figure 11.3 depicts the model of data types that have such declarations, herein called
Actual Types.

EXPRESS permitsthe generalized type specifications for formal parametersto contain labeled generic components
that refer to specific elements of the data type of the corresponding actual parameters. These labeled components are
modeled as ParametricElements (see Section 8.14.2). The specifications of data types that are Actual Types refer to
ParametricElements, as shown in Figure 11.3.

All of these concepts are described in detail in this section.

==metaclass== ==metackass==
+Mmember-type VariabieType Algorithm
1 (Core)
T 1 ¥ tscope
+actual-types
s=metaclass=: . scope-of-actual-type
ActealType -
(Core) +membet-type <=Etackassss
T AgagregationType
. (Core)
{disjoint, total}
. [
0 \ | 1
==metaclasss= ==metaclazs== ==metaclasss=
‘Actual AGGREGATEType ActualGenericType ActuziAggregation Type
+label ; Identifier [1] +abel : Identifier [1]
+isEntity - Boolean [1]
01V oa 0.* {dlisjoint, total} tr
. o |
1 srefersto 1 srefersto ==metaclasss= ==metaclass==
==metaclass>> s=metaclass>> Type TType
ParametricStructure ParametricType
(Core) (Core)
0.1 ==metaclas == ==metaclass==
Hower-bound | SSmetaciass== Actual ARRAY Type ActualLISTType
{subsets constraints} | SizeConstraint +izOptional : Boolean [1]
0.1 (Core)
+upper-bound 1 1 T
{subsets constrairts} +o-indlex ==metaclass==
1 ArrayBound
+hi-index (Care)

1

Figure 11.3- Actual Types

11.4.1 Class: Core::ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Each subtype of Actual Type refers to a ParametricElement that is defined among the formal Parameters of the Algorithm.
The ParametricElement denotes the corresponding component of the data type of the corresponding actual parameter in
any given invocation. The ParametricElement is named by an EXPRESS type label, and the Actua Type refers to that
ParametricElement viathe type label.

Note — The class Actua Type is defined in the Core package (8.6.1).

166 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.4.2 Class: ActualAGGREGATEType

Definition; an Actua Type that is an aggregation type whose structure is specified by a ParametricStructure, which refers
to the structure of a (component of) an actual parameter. The .label attribute is used to determine the ParametricStructure
to which it refers. The member-type of the Actual AGGREGATEType can be any VariableType (Instantiable or Actual)
and need not have any relationship to the member type of the corresponding actual parameter.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
11.4.2.1 Supertypes

Core::Actua Type

11.4.2.2 Attributes

Attribute: label To: Core::ldentifier

Definition: Represents the EXPRESS type label on the AGGREGATE type, which is used to associate it with the
ParametricStructure that defines that identifier.

Note — The label on the Actual AGGREGATETypeis not a definition of that symbol; it is areference to the occurrence of that
symbol asalabel on acomponent of aformal parameter type that definesthe label in the Algorithm namespace asthe 1d for a
ParametricStructure that defines what the actual structure isfor each invocation. M ore than one Actual AGGREGATEType can
have the same label and refer to the same structure.

Multiplicity: 1..1
11.4.2.3 Associations

AssociationEnd: lower-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents a lower-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the lower-bound constraint is present, the number of members of the
aggregate value shall be greater than or equal to this value. If the lower-bound is not present or evaluates to zero, thereis
no constraint. Unless the lower-bound specified for the AGGREGATE type is an explicit “0,” this constraint shall appear.

Note — See 9.5.3.2 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: member-type To: Core::VariableType

Definition: represents the type of the components of the actual aggregation type that has the structure that corresponds to
the AGGREGATE type. The type of the members may be an InstantiableType or an Actual Type derived from a
ParameterType.

Note — See 9.5.3.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 167

AssociationEnd: refers-to To: ParametricStructure

Definition: the ParametricStructure that defines the identifier that corresponds to the : 1abel on the
Actua AGGREGATEType. When instantiated, the Actual AGGREGATEType will have the structure of the component of
the datatype of the ActualParameter that corresponds to this ParametricStructure.

Multiplicity: 1..1

AssociationEnd: upper-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents an upper-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the upper-bound constraint is present and does not evaluate to indeterminate
("?"), the number of members of the aggregate value shall be less than or equal to this value. If the upper-bound is not
present or evaluates to indeterminate, there is no constraint. Unless the upper-bound specified for the AGGREGATE type
is an explicit "?", this constraint shall appear.

Note — See 9.5.3.3 of 1SO 10303-11:2004.
Multiplicity: 0..1
11.4.2.4 Other Roles

none

11.4.3 Class: ActualAggregationType

Definition: An aggregation type whose member-type is an Actual Type. An Actual AggregationType differs from an
InstantiableAggregationType in that the data type of its components is dynamically specified.

Properties: abstract
11.4.3.1 Supertypes

Core::AgaregationType , Core::Actual Type

11.4.3.2 Attributes

none

11.4.3.3 Associations

AssociationEnd: member-type To: Core::ActualType

Definition: represents the Actual Type that is the the type of the component elements of the Actual AggregationType.

Note — If the member-type were not itself an Actual Type, the Actual AggregationType would be an Instantiable
AggregationType.

Multiplicity: 1..1
11.4.3.4 Other Roles

none

168 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.4.4 Class: ActualARRAYType
Definition: An Actual AggregationType whose structure is an ARRAY with defined lower and upper bounds on the index.
11.4.4.1 Supertypes

Actual AggregationType

11.4.4.2 Attributes

Attribute: isOptional To: MOF::Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAY Type; False
otherwise. When isOptional is True, any instance of the ARRAY Type is permitted to have members whose value is
unspecified ("?").

Note — See 8.2.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.4.4.3 Associations

AssociationEnd: hi-index To: Core::ArrayBound
Definition: represents the upper bound on the Integer index-range of each value of the Actual ARRAY Type.
Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: lo-index To: Core::ArrayBound
Definition: represents the lower bound on the Integer index-range of each value of the Actual ARRAY Type.
Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.

Multiplicity: 1..1

11.4.4.4 Other Roles

none

11.4.5 Class: ActualBAGType
Definition: An Actual AggregationType whose structure is a BAG (see 8.10.4).
11.4.5.1 Supertypes

Actual AggregationType

11.4.5.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 169

11.4.5.3 Associations

none

11.4.5.4 Other Roles

none

11.4.6 Class: ActualGenericType

Definition: an Actual Type that refers to a ParametricType - the data type, or the member-type, of an actual parameter.
The :1abel attribute is used to determine the ParametricType to which it refers.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
11.4.6.1 Supertypes

Core::Actua Type

11.4.6.2 Attributes

Attribute: isEntity To: MOE::Boolean
Definition: True if the ActualType is required to be an EntityType; False otherwise.
Multiplicity: 1..1
Properties: derived.
Tagged Values

derivation = self->refers-to->isEntity;
Attribute: label To: Core::ldentifier

Definition: Represents the EXPRESS type label onthe GENERIC or GENERIC_ENTITY keyword, which is used to
associate it with the ParametricType that defines that type label.

Note — Thelabel on the ActualGenericType is not adefinition of that symbol; it is areference to the occurrence of that symbol
asalabel on acomponent of aformal parameter type.

Multiplicity: 1..1
11.4.6.3 Associations

AssociationEnd: refers-to To: Core::ParametricType

Definition: the ParametricType that defines the identifier that corresponds to the : 1abel on the Actual GenericType.
When instantiated, the actual type will be the (component of the) datatype of the actual parameter that corresponds to this
ParametricType.

Multiplicity: 1..1
11.4.6.4 Other Roles

none

170 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

11.4.7 Class: ActualLISTType
Definition: An Actual AggregationType whose structure is a LIST. (See 8.10.6)
11.4.7.1 Supertypes

Actual AggregationType

11.4.7.2 Attributes

none

11.4.7.3 Associations

none
11.4.7.4 Other Roles

none

11.4.8 Class: ActualSETType

Definition: An Actual AggregationType whose structure is a SET. (See 8.10.8)
11.4.8.1 Supertypes

Actual AggregationType

11.4.8.2 Attributes
none
11.4.8.3 Associations

none

11.4.8.4 Other Roles

none

11.4.9 Association: scope-of-actual-type

Definition: represents the relationship between an Actual Type and the Algorithm that is its scope.

11.4.9.1 Association Ends

AssociationEnd: scope To: Algorithm

Definition: The Algorithm in which the Actual Type is specified. The Actual Type must be the data type of a Variable or

Attribute whose scope is contained in the Algorithm.

The ParametricElement that defines the type label to which the Actual Type refers shall be defined among the formal

parameters of the Algorithm.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — An Actual Type does not have a namespace; it defines no identifiers. The : scope of the Actua Type represents the
ownership of the Actual Type and the lifetime of the Actua Type.

Multiplicity: 1..1

AssociationEnd: actual-types To: ActualType
Definition: the set of ActualTypes that are defined in the Algorithm.

Multiplicity: 0..* unordered

Properties. composite

172 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

12 Package : Rules

The Rules Package contains the models of RULEs and SUBTY PE_CONSTRAINTS, which rely on the notion of extents of
types with populations (see 9.7).

12.1 Dependencies

Dependency on Package: Core

Stereotypes. import

The Rules Package depends on the Core Package for the NamedElement and Scope concepts, for the Entity Type concept,
and for the basic Expression concept.

Dependency on Package: Algorithms

Stereotypes. import

The Rules Package depends on the Algorithms Package for the Variable and Statement concepts.

12.2 Global Rules

This section models the concepts used in EXPRESS RULE declarations. Figure 12.1 depicts the principal concepts.

==metaclazs==

==metaclass==

g P
[Core)

Fomant
[Core)

+Namespace 1 "'

[

Gl

variable-definedtin-scope | cometaclazs==

+const

ule-constrains-extents

raint-rules q.%

+vatiables | 0.*

a.*

==metaclazz==
LocalVariable
[Algorithms)

+supporting-bady [, 0.1

+constrained-extents

1 +NAMeSpace

{subsets namespace }

GlobgiRule-contains-MamedRule

==metaclass==
Statement
[Algorithms)

=ametaclazs==

Figure 12.1 - Global Rules

{zubsgets local-elements}

1.*

==metaclass==
HamedRule

==metaclass==
Entity Type
[Core)

+contains-rules

+position - Integer [1] | 0.1

focarScope +NAMESPace 7 +Hocal-elements LocalEfement

(Core) 1 localelement-has-localscope

0+

12.2.1 Class: GlobalRule

Definition: a SchemaElement denoting a collection of NamedRules for the interaction of the Extents of one or more

l +asserts-expression 1

==metaclazs==

(Core)

==metaclazs==
Expression
(Core)

Entity Types. It corresponds to the RULE declaration in EXPRESS. Every GlobalRule is al'so an AlgorithmScope and may
define CommonElements and Variables.

Note — See 9.6 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

173

12.2.1.1 Supertypes

Core::AlgorithmScope, Core:: SchemaElement

12.2.1.2 Attributes
none
12.2.1.3 Associations

AssociationEnd: constrained-extents To: Core::EntityType

via: rule-constrains-extents

Definition: the Entity Types whose Extents are constrained by the GlobalRule

Note — See 9.6 of SO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: contains-rules To: NamedRule

via: GlobalRule-contains-NamedRule

Subsets: Core::L ocal Scope:local-elements

Definition: represents the relationship between the Globa Rule (container) and the NamedRules it contains. Since the
GlobaRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope:named-elements relationship.

Multiplicity: 1..* unordered
Properties: composite
AssociationEnd: supporting-body To: Algorithms::Statement

Definition: represents the Statement, usually a StatementBlock, that provides values for Local Variables used in the
NamedRules that are contained in the GlobalRule.

The supporting-body of the GlobalRule can only appear if one or more Local Variables are introduced for use in the
NamedRules, and even then, the supporting-body is not required if the value of each LocalVariable is completely defined
by an initializing expression.

If an implementation of the metamodel does not support the Statements compliance point, the supporting body should be
captured as text when it is present.

Note — See 9.6 of 1SO 10303-11:2004.
Multiplicity: 0..1

Properties. composite

12.2.1.4 Other Roles

none

174 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

12.2.1.5 Rules

Constraint (OCL)
exists(self->defined-in) ;

Every GlobalRule shall be defined-in a Schema.

Constraint (OCL)
exists(self->id) ;

Every GlobalRule shall have an identifier

Constraint (OCL)
if exists(self->supporting-body) then exists(self-s>variables);

A GlobalRule cannot have a supporting body unlessit defines Local Variables.

12.2.2 Class: NamedRule

Definition: a constraint requiring a given Boolean Expression involving the Extents of one or more Entity Types to
evaluate to True. It corresponds to a domain rule contained in a Rule declaration in EXPRESS.

Note — See 9.6 of SO 10303-11:2004.
12.2.2.1 Supertypes

Core::L ocal Element

12.2.2.2 Attributes

Attribute: position To: MOEF::Integer

Definition: Represents the lexical position of the NamedRule in the sequence of NamedRules contained in the
GlobaRule.

Multiplicity: 1..1

12.2.2.3 Associations

AssociationEnd: asserts-expression To: Core::Expression

Definition: represents the fact that every NamedRule states a Boolean expression that is required to be True for the
Extents in a given Population.

Note — See 9.6 of 1SO 10303-11:2004. The asserts-expression that formulates the NamedRule is wholly owned by the
NamedRule. It is not treated as reusable.

Multiplicity: 1..1
AssociationEnd: namespace To: GlobalRule

via: GlobalRule-contains-NamedRule

Subsets: Core::L oca Element:namespace

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 175

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement:namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the Global Rule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1
12.2.2.4 Other Roles

None

12.2.3 Association: GlobalRule-contains-NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains.
12.2.3.1 Supertypes

Core::local -element-has-local -scope

12.2.3.2 Association Ends

AssociationEnd: contains-rules To: NamedRule

Definition: represents the relationship between the Globa Rule (container) and the NamedRules it contains. Since the
GlobaRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope:named-elements relationship.

Multiplicity: 1..* unordered
Properties: composite
AssociationEnd: namespace To: GlobalRule

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement:namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the Global Rule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

12.2.4 Association: rule-constrains-extents

Definition: represents the relationship between a GlobalRule and the Entity Types whose Extents it constrains.
Note — See 9.6 of 1SO 10303-11:2004.

12.2.4.1 Association Ends

AssociationEnd: constrained-extents To: Core::EntityType
Definition: represents the relationship between a GlobalRule and the Extents of the EntityTypes that it constrains.
Note — See 9.6 of SO 10303-11:2004.

Multiplicity: 1..* unordered

176 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

AssociationEnd: constraint-rules To: GlobalRule
Definition: represents the relationship between an EntityType and the GlobalRules that constrain it.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

12.3 SupertypeRules and SubtypeConstraints

This section models the concepts used in EXPRESS supertype clauses and SUBTY PE_CONSTRAINT declarations.

==metackass==
CommonEiement
(Core)

==metaclass==
*
SupertypeRule 0.
+assertsAbstract | Boolean [1]
+named-supertype | q
1 —— zametaclass==
EntityType
rule-includes-SubtypeConstraints [Core)
0.* | +constraints +constrained-subtypes | 1.*
<=metaclass=> | equivalent-ruls =<metaclass>> +subtype-constraints
Expression 7 K] onstraint
(Core) 0.* rule-constrains-subtypes

FAY
{digjoint, total}
==metaclass== ==metaclass==
ANDConstraint ONEOFConstraint

==metaclass==
TOTAL_OVERConstraint

Figure 12.2 - Supertype Rules and Subtype Constraints

12.3.1 Class: ANDConstraint

Definition: a constraint requiring its two operands to be equal as sets. Each operand can be a single Extent or a union of
Extents.

Note — See 9.2.5.4 of 1SO 10303-11:2004.

12.3.1.1 Supertypes

SubtypeConstraint

12.3.1.2 Attributes

none

12.3.1.3 Associations

none

12.3.1.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 177

12.3.2 Class: ONEOFConstraint

Definition: a constraint requiring all of its operands to be mutually exclusive. Each operand can be a single Extent or a
union of Extents.

Note — See 9.2.5.2 of 1SO 10303-11:2004.
12.3.2.1 Supertypes

SubtypeConstraint

12.3.2.2 Attributes
none
12.3.2.3 Associations

none

12.3.2.4 Other Roles

none

12.3.3 Class: SubtypeConstraint

Definition: a Rule requiring a specific relationship among the Extents of two or more subtypes of a given supertype
EntityType. The constraint can be stated as a relationship among the Extents as Sets of entity instances, and is equivalent
to a NamedRule.

Note — See 9.2.5 of 1SO 10303-11:2004.
12.3.3.1 Supertypes

none

12.3.3.2 Attributes

none

12.3.3.3 Associations

AssociationEnd: collection To: SupertypeRule

via: rule-includes-SubtypeConstraints

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1
AssociationEnd: constrained-subtypes To: Core::EntityType

via: rule-constrains-subtypes

Definition: the Entity Types whose Extents are constrained by the SubtypeConstraint.

178 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 9.2.5 of SO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: equivalent-rule To: Core::Expression

Definition: represents the fact that every SubtypeConstraint is equivalent to a BooleanExpression involving the Extents of
the EntityTypes named in the SubtypeConstraint. The Expression is required to evaluate to True. The effect is that the
SubtypeConstraint is equivalent to a NamedRule.

Note — The equivalent-rule that formulates the SubtypeConstraint is wholly owned by the SubtypeConstraint. It is not treated
asreusable.

Multiplicity: 1..1
12.3.3.4 Other Roles

none

12.3.4 Class: SupertypeRule

Definition: a CommonElement representing a collection of rules requiring specific relationships among the Extents of two
or more subtypes of a given supertype EntityType. The interpretation of a SupertypeRule is that all of the contained
constraints shall hold. SupertypeRule corresponds to a SUBTYPE_CONSTRAINT declaration, or to the EXPRESS
supertype-clause attached to an entity declaration.

A SupertypeRule shall have an :1d value if and only if it represents an EXPRESS SUBTY PE_CONSTRAINT.

Note — This rule reflects the EXPRESS syntax. An EXPRESS supertype-clause has no identifier. An EXPRESS
SUBTYPE_CONSTRAINT isrequired to have an identifier.

Note — See 9.2.5 and 9.7 of 1SO 10303-11:2004.
12.3.4.1 Supertypes

Core::CommonElement

12.3.4.2 Attributes

Attribute: assertsAbstract To: MOFE::Boolean

Definition: Represents a declaration in a SUBTY PE_CONSTRAINT that the .supertype EntityType is to be treated as
ABSTRACT in this context, which is usually an interfacing schema.

Note — See clause 9.2.5.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

12.3.4.3 Associations

AssociationEnd: constraints To: SubtypeConstraint

via: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 179

Multiplicity: 0..* unordered
Properties. composite
AssociationEnd: named-supertype To: Core::EntityType

Definition: represents the relationship between a SupertypeRule and the Entity Type that is the supertype of all the
Entity Types that appear in the SupertypeRule. This relationship is nominal for ANDConstraints and ONEOFConstraints,
but significant for ABSTRACT and TOTAL_OVERConstraints.

Note — See 9.2.5 and 9.7 of 1SO 10303-11:2004.
Multiplicity: 1..1
12.3.4.4 Other Roles

none

12.3.5 Class: TOTAL_OVERConstraint

Definition: a constraint requiring the union of al of its operands to be equal to the Extent of the supertype.
Note — See 9.7.2 of SO 10303-11:2004.

Note — The proper model of a TOTAL_OVER constraint requires that the supertype be one of the operands of the equivalent-
expression and that the supertype be included among the constrai ned-subtypes.

12.3.5.1 Supertypes

SubtypeConstraint

12.3.5.2 Attributes

none

12.3.5.3 Associations

none

12.3.5.4 Other Roles

none

12.3.6 Association: rule-constrains-subtypes

Definition: represents the relationship between a SubtypeConstraint and the Extents of the Entity Types to which it refers.
Note — See 9.2.5 of 1SO 10303-11:2004.
12.3.6.1 Association Ends

AssociationEnd: constrained-subtypes To: Core::EntityType
Definition: represents the relationship between a SubtypeConstraint and the Entity Types whose Extents it constrains.
Note — See 9.2.5 of 1SO 10303-11:2004.

180 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 1..* unordered

AssociationEnd: constraints To: SubtypeConstraint
Definition: represents the relationship between an Entity Type and the SubtypeConstraints that involve it.
Note — See 9.2.5 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

12.3.7 Association: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

12.3.7.1 Association Ends

AssociationEnd: collection To: SupertypeRule

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1
AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTY PE_CONSTRAINT) and the
individual subtype constraints it contains.

Multiplicity: 0..* unordered

Properties: composite

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 181

182 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13 Package : Expressions

The Expressions Package contains the detailed modeling concepts for Expressions. The basic Expression model in the
Core Package is permitted to be a syntactic string. This package provides the elements that support the operational
semantics of the expression.

13.1 Dependencies

Dependency on Package: Core

Stereotypes. import

The Expressions Package depends on the Core Package for the basic Expression concept, for the basic Instance concept
for Expression results, and for references to InstantiableTypes, SingleEntityTypes, and Attributes.

Dependency on Package: Instances
Stereotypes. import

The Expressions Package depends on the Instances Package for the Instance concepts that correspond to Literals and
other references to Constants.

Dependency on Package: Algorithms
Stereotypes. import

The Expressions Package depends on the Algorithms Package for the Variable concept, and for the Function and
Parameter concepts used in FunctionCalls.

13.2 Overview of Expressions

Figure 13.1 provides the overview of Expression types. Expression and TextExpression are described in the Core package.
FullExpression is the abstract class that represents the semantic model of an EXPRESS expression. It is described in this
section. Each of its subclasses is described in a separate section below.

==metaclasz== +evalugtion | SSmetaclass==
Expression Rt
.

(Core) 0. 0.1 (Core)

{dlisfoirt, total} T

==metaclass== ==metaclass== ==thetaclass== ==metaclass==
Primary Sefector Operation FunctionCall

==metaclazs=» ==metaclazs=> ==metaclass=» ==metaclazs=»
RedexOperation QueryExpression PartialEntityConstructor Aggregatelnitializer
+id : Idertifier [1{subsets tesxt}

Figure 13.1 - Expressions

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 183

13.2.1 Class Core::Expression

Definition: In general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the assignment of Instances to model elements (e.g.,Variables, Attributes, etc.) that appear
in the Expression. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note — In general, Expressions are treated as reusable. It isrecommended, however, that, except for literals and local
variables, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable,
specifically those that are the definitions of Rules.

Note — Class Expression, and all of its properties, are defined in the Core Package, so that it can be used by other Packages,
including Core, as necessary. This entry serves only to provide the Definition and alink to the complete specification in
8.17.1.

13.2.2 Class: IndexOperation

Definition: an Expression that returns a value “extracted from” a given base value.

Properties: abstract
13.2.2.1 Supertypes

Core::Expression

13.2.2.2 Attributes
none
13.2.2.3 Associations

AssociationEnd: base-value To: Core::Expression

Definition: represents the base value from which the result value is to be extracted. For an Aggregatel ndex, the base-value
Expression must evaluate to an AggregateValue. For a Binarylndex, the base-value Expression must evaluate to a
BINARY value. For a Stringlndex, the base-value Expression must evaluate to a STRING Value.

Multiplicity: 1..1
13.2.2.4 Other Roles

none

13.2.3 Class: Operation

Definition: an abstract subclass of Expression; represents the result of a well-defined mathematical operation or character
mani pul ation.

Note — See clause 12 of SO 10303-11:2004.

Properties: abstract

184 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.2.3.1 Supertypes

Core::Expression

13.2.3.2 Attributes

none
13.2.3.3 Associations
none

13.2.3.4 Other Roles

none

13.2.4 Class: Primary

Definition: an abstract subclass of Expression representing a specific Instance, or the current value of an object that has a
simple lexical designation.

Note — See 12.7 of 1SO 10303-11:2004.

Properties. abstract
13.2.4.1 Supertypes

Core::Expression

13.2.4.2 Attributes

none

13.2.4.3 Associations

none

13.2.4.4 Other Roles

none

13.2.5 Class: Selector

Definition: A FullExpression that returns the value of one or more Attributes of an Entitylnstance.
Note — This concept does not appear in Part 11 per se, but the three subclasses all appear in Part 11 and have this property.

Properties: abstract
13.2.5.1 Supertypes

Core::Expression

13.2.5.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 185

13.2.5.3 Associations

AssociationEnd: entity-instance To: Core::Expression

Definition: represents the entity instance from which the Selector extracts the value of the named Attribute(s).
Note — See 12.7.3 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.2.5.4 Other Roles

none

13.3 Primaries

This section describes the EXPRESS operations that return the values of named independent elements — Constants,
Enumeration items, Extents, Variables, Parameters. It also includes SELF, which is a reference to the current instance of
a datatype, and Literals, which are specialized syntactic notations that refer to values of simple types.

==metaclass==
=emetackass=> Expression [=zmetaciass=»
Primaty — (Core) +evaluation Instance
0.* 0.1 (Care)
+ext | ExpressText [0.1]
T {dlisjoirt, total}
==metaclass== ==metaclass==
SELFRef IndeterminateRef
==metaclasss= ==metaclasss=
4 0.1 A
Literal o ey P
b +refersta
{subsets evaluation} iiznee)

==metaclass==

N ==metaclass=»
VariableRef +reters-to p

+idl - Iderifier [1){subsets text} | 0. ‘j\ 1 (Blgorithms)
[
|
llf
=zmetaclasss= / 1 | ==metaciass==
ParameterRef " :
0. +refersto (Algarithms)
{subzets reters-ta}

== =5
metaclass ’ ==metaclass=>

=

+refersto
{subsets evaluation}

+icl ; Idertifier [1}subsets text} (Instances)

==metaclass==
ConstantRefl +reters-to

+idd | lchertifier [1 Hsubsets text} 1

==metaclass==
Constant
(Instances)

=

==metaclass==
ExtentRef +reters-to

+id ; Idertifier [1]{subsets text} 1

==metaclass==
NamedType
(Core)

o

Figure 13.2 - Primaries

13.3.1 Class: ConstantRef

Definition: a Primary Expression that returns the (current) value of a given Constant. The :id attribute refers to an
identifier for a Constant defined in, or interfaced into, the schema.

Note — See 12.7.1 of 1SO 10303-11:2004.
Note — A reference to an EXPRESS “Built-in Constant” is considered to be a Literal, not a ConstantRef.

186 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.3.1.1 Supertypes
Primar
13.3.1.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the Reference.
Multiplicity: 1..1
13.3.1.3 Associations

AssociationEnd: refers-to To: Instances::Constant
Definition: represents the Constant referred to by a ConstantRef.

Note — See 12.7.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.3.1.4 Other Roles

none

13.3.2 Class: EnumltemRef

Definition: a Primary Expression that returns an Enumerationltem (value)

Note — See 12.7.1 of 1SO 10303-11:2004.
13.3.2.1 Supertypes

Primar

13.3.2.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.3.2.3 Associations

AssociationEnd: refers-to To: Instances::Enumerationltem

Subsets: Core::Expression:evaluation

Definition: represents the Enumerationltem value referred to by the EnumltemRef. This relationship specializes
Expression:eval uation.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

187

Multiplicity: 1..1
13.3.2.4 Other Roles

none

13.3.3 Class: ExtentRef

Definition; a Primary Expression denoting the extent of a NamedType (almost always an entity data type), that is, the set
of instances of that data type that appear in the population. This type of Primary is only permitted in an Expression that
states a Rule.

Note — See 9.6 of 1SO 10303-11:2004.
13.3.3.1 Supertypes

Primar

13.3.3.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.3.3.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between the Extent Reference and the NamedType to which the :id value refers.
The value returned is the Extent of that NamedType within the (current) Population.

Multiplicity: 1..1
13.3.3.4 Other Roles

none

13.3.4 Class: IndeterminateRef

Definition: a Primary Expression consisting of the ‘symbol ”?"’, which always evaluates to the INDETERMINATE vaue
(see 9.2.9).

Note — See 14.2 of 1SO 10303-11:2004.

Although the Indeterminate (“?’) symbol is described as a built-in constant in SO 10303-11, it is treated here as a distinct
kind of Primary, because it refers-to (evaluates-to) an instance that is not a value of any DataType.

13.3.4.1 Supertypes

Primary

188 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.3.4.2 Attributes

none
13.3.4.3 14164:Associations
none

13.3.4.4 Other Roles

none

13.3.5 Class: Literal

Definition: a Primary Expression consisting of a symbol that denotes a specific value of a SimpleType. The :text attribute
of Expression is the representation of the value.

Note — See 7.5 of 1SO 10303-11:2004.

Note — References to the built-in constants - E, Pl, TRUE, FALSE, UNKNOWN - are considered to be Literalswhose : text
isthe keyword.

13.3.5.1 Supertypes
Primary
13.3.5.2 Attributes

none
13.3.5.3 Associations

AssociationEnd: refers-to To: Instances::SimpleValue

subsets: Core::Expression:evaluation

Definition: represents the SimpleValue value referred to by the Literal. This relationship specializes
Expression:eval uation.

Multiplicity: 0..1

Note — Although every Literal refersto exactly one SimpleValue, it is not usually necessary to instantiate either the
SimpleValue or the relationship.

13.3.5.4 Other Roles

none

13.3.6 Class: ParameterRef

Definition: a Primary Expression that returns the current value associated with a given Parameter.
A ParameterRef is only permitted within the body of an Algorithm.

For an InParameter, the associated value is the current value of the InParameter..
For a VarParameter, the associated value is the current value in the referent of the VarParameter.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 189

A ParameterRef is a subclass of VariableRef, because every Parameter is a NamedVariable, and a ParameterRef is a
reference to the value of the Parameter seen as a variable in the body of the Algorithm.

Note — See 12.7.1 of SO 10303-11:2004.
13.3.6.1 Supertypes
VariableRef

13.3.6.2 Attributes

none
13.3.6.3 Associations

AssociationEnd: refers-to To: Algorithms::Parameter

Subsets: VariableRef:refers-to

Definition: the formal Parameter to which the ParameterRef refers. If the formal Parameter is an InParameter, the
ParameterRef refers to its current value. If the formal Parameter is a VarParameter, the ParameterRef refers to the current
value of its referent.

Note — See 12.7.1 of SO 10303-11:2004.
Multiplicity: 1..1
13.3.6.4 Other Roles

none

13.3.7 Class: SELFRef

Definition: A Primary Expression consisting of the symbol SELF. It refers to the value of each instance (in any
Population) of the data type being defined by the declaration in which it appears. SELF is only a valid Symbol in a
DomainRule.

Note — See clause 14.5 of 1SO 10303-11:2004.
13.3.7.1 Supertypes

Primary

13.3.7.2 Attributes

none

13.3.7.3 Associations

none

13.3.7.4 Other Roles

none

190 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.3.8 Class: VariableRef

Definition: a Primary Expression that returns the value currently associated with a given NamedVariable.
NamedVariables include Local Variables, QueryVariables, ControlVariables, and AliasVariables. They also include
Parameters and FunctionResults seen as variables within the body of the Algorithm.

A VariableRef that refers-to a QueryVariable may occur anywhere within expressions in the owning Query.

A VariableRef that refers-to a ControlVariable may occur anywhere within the RepeatStatement that defines the
Control Variable.

A VariableRef that refers-to an AliasVariable may occur anywhere within the AliasStatement.
A VariableRef that refers-to a Local Variable may occur anywhere within the AlgorithmScope in which it is defined:

- for aGlobalRule, it may occur anywhere within the body of the GlobalRule, or within the NamedRules contained
in the GlobalRule;

- for an Algorithm, it may occur within the body of an Algorithm or within initial-value expressions for other
Local Variables.

A VariableRef that refers to a Parameter may occur anywhere within the body of the Algorithm, or within initial-value
expressions for Local Variables.

A VariableRef that refers to a FunctionResult may occur anywhere within the body of the Algorithm.

The value associated with a VariableRef that refers to aVARVariable (an AliasVariable or a VARParameter) is the current
value in the referent of the VARVariable.

The value associated with any other VariableRef is the current value in the Variable to which the VariableRef refers.
Note — See 12.7.1 of SO 10303-11:2004.

13.3.8.1 Supertypes

Primary

13.3.8.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.3.8.3 Associations

AssociationEnd: refers-to To: Algorithms::NamedVariable

Definition: represents the relationship between the VariableReference and the local Variable to which it refers.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 191

13.3.8.4 Other Roles

none

13.4 Indexing

This section describes the EXPRESS operations that select values that are part of Instances. Indexing operations —
aggregate indexing, string indexing and binary indexing — extract component values by their numbered positions in the
Instance. These concepts are shown in Figure 13.3.

e +inch lue
_ fistoode | TEETES T
1 ~ +Hirst-hit
+aszt-code (Care) 1
0. +ast-bit
+haze-value | 1 0.1
o.* —‘V
==metaclazs==
IidexOperation
fa3
{dizjoint, total}
0. o | 0.4 0.
“<metaclazs== ==metaclass==
StringIndex Binaryindex
=ametaclass==
Aggr: Ind. 0.1

Figure 13.3 - Indexing Operations

13.4.1 Class: Aggregatelndex

Definition: an IndexOperation that returns the value of a specified member of a given AggregateValue. .base-value
evaluates to the AggregateValue. .index-value evaluates to the “position” of the member to be extracted. The
interpretation of the .index-value depends on the kind of AggregateValue (Indexed, Ordered, Unordered).

Note — See 12.6.1 of SO 10303-11:2004.
13.4.1.1 Supertypes

IndexOperation
13.4.1.2 Attributes

none
13.4.1.3 Associations

AssociationEnd: index-value To: Core::Expression

Definition: represents the (Integer) index value designating the member whose value is to be extracted. The interpretation
of the index value depends on the kind of AggregateValue.

Note — See 12.6.1 of SO 10303-11:2004.

192 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Multiplicity: 1..1
13.4.1.4 Other Roles

none

13.4.2 Class: Binarylndex

Definition: An IndexOperation that returns a substring of one or more bits from a BINARY value. .base-value is the
BINARY value. .first-bit designates the position of the first bit to be extracted. .last-bit designates the position of the last
bit to be extracted. .last-bit has no value if only one bit is to be extracted.

Note — See clause 12.3.1. of 1SO 10303-11:2004.
13.4.2.1 Supertypes
IndexOperation

13.4.2.2 Attributes

none
13.4.2.3 Associations

AssociationEnd: first-bit To: Core::Expression
Definition: represents the (positive integer) value that designates the position of the first bit to be extracted.
Multiplicity: 1..1

AssociationEnd: last-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last bit to be extracted. .1ast-bit has no
value if only one hit is to be extracted.

Multiplicity: 0..1
13.4.2.4 Other Roles

none

13.4.3 Class: StringIndex

Definition: An IndexOperation that returns a substring of one or more characters (codes) from a STRING value. .base-
value is the STRING value. .first-code designates the position of the first character (code) to be extracted. .last-code
designates the position of the last character (code) to be extracted. .last-code has no value if only one character is to be
extracted.

Note — See clause 12.5.1. of 1SO 10303-11:2004.

13.4.3.1 Supertypes

IndexOperation

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 193

13.4.3.2 Attributes

none

13.4.3.3 Associations

AssociationEnd: first-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first character (code) to be extracted.
Multiplicity: 1..1

AssociationEnd: last-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last character (code) to be extracted.
Jast-code has no value if only one character (code) is to be extracted.

Multiplicity: 0..1
13.4.3.4 Other Roles

none

13.5 Selection

This section describes the EXPRESS operations that select values that are related to Entitylnstances, or are components
of Partial EntityValues. Selector operations extract values related to entity instances by the name of the relationship —
attributes, implicit inverse attributes (Usedin), and attribute-groups. In a similar way, they can be used to extract the
values of attributes and attribute-groups from Partial EntityValues. The Selector operations are shown in Figure 13.4.

==metaclass==
+entity-instance Expression

q [Core)
+text : ExpressText [0.1]
. ==metaclass==
o Sefector
{ddisjoint, total
==metaclass== ==metaclass== ==metaclass==
AttributeRef UsedinRefl GroupRef
+id - Idertifier []{subsets text} +id - Idertifier [1]{subsets text}
0. 0. 0.
g i of
+refersto | 1 1 +Hinverse-o refersta | 1
==metaclasss== sttributes-declared-in-entity ==metaclass==
Attribute +declares +ot-entity | Si ityType
[Core) * 1 (Core)

Figure 13.4 - Attribute and Attribute-Group Selectors

13.5.1 Class: AttributeRef

Definition: a Selector expression that returns the value of a given Attribute of a given entity instance.

Note — See 12.7.3 of SO 10303-11:2004.

194 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.5.1.1 Supertypes
Selector
13.5.1.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.

Multiplicity: 1..1

13.5.1.3 Associations

AssociationEnd: refers-to To: Core::Attribute
Definition: represents the relationship between the AttributeReference and the Attribute to which it refers.
Multiplicity: 1..1

13.5.1.4 Other Roles

none

13.5.2 Class: GroupRef

Definition: a Selector that returns a Partial EntityValue consisting of the values of the Attributes of a given entity instance
that constitute a given SingleEntityType.

Note — See 12.7.4 of 1SO 10303-11:2004.
13.5.2.1 Supertypes

Selector

13.5.2.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.5.2.3 Associations

AssociationEnd: refers-to To: Core::SingleEntityType

Definition: represents the relationship between the GroupReference and the SingleEntity Type (group of Attributes) to
which it refers.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 195

13.5.2.4 Other Roles

none

13.5.3 Class: UsedInRef

Definition: a Selector expression that returns the Set of Entitylnstances for which the given entity instance is in the range
of the specified Attribute. In effect, it returns the value of the corresponding inverse attribute for the given entity instance.

Note — See clause 15.26 of 1SO 10303-11:2004.
13.5.3.1 Supertypes

Selector
13.5.3.2 Attributes

none
13.5.3.3 Associations

AssociationEnd: inverse-of To: Core::Attribute

Definition: represents the relationship between the Usedin Reference and the Attribute designated by the :id value. The
Usedin Reference effectively produces the “inverse” of this Attribute.

Multiplicity: 1..1
13.5.3.4 Other Roles

none

13.6 Operations

This section describes the Expressions that are conceptually “operations” with one operand (UnaryOperation) or two
operands (BinaryOperation).

The EXPRESS syntax for Operations takes several forms. Some of the operations are denoted by infix or prefix
operation symbols, such as “+” or “NOT.” Others are denoted by “built-in functions” that take one or two arguments that
are the operands. In this metamodel, they are all treated as Operations. Each built-in function is represented by a
corresponding BinaryOperator or UnaryOperator. There is not a one-to-one correspondence between Operations and
EXPRESS operation symbols and built-in functions, because some of the symbols are “overloaded,” in that they denote
different operations for operands of different data types.

This section also includes the Coercion operation, which is a special case. It has only one operand, but it also has a “ meta-
operand” — the data type to which the operand is to be logically or physically converted. Each EXPRESS data type,
including all user-defined types, implicitly defines a Coercion operation whose target is that datatype. And in that sense,
the data type simply distinguishes one coercion operations from another. There is no explicit EXPRESS syntax for
Coercion operations; they are inserted as part of the semantic interpretation of Expressions, when it is necessary to treat a
literal or result as representing a value of a different datatype.

196 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

+ett-operand ==metaclasses +operand
1 Expression 1
+ight-operand (Core) +UREEY-OpErand
1 1
==metaclass==
Operation
Fil
{dlisjoint, total}
0.4 o 0.*
==metaclass=» ==metaclasse=
BinaryOperation UnaryOperation
+operator | BinaryOperator [1] +operatar : UnaryCperator [1]
==metaclass== ==metaclass== 0
VariableType | oroettype Coercion -

[

1

Figure 13.5 - Operations and Built-in Functions

13.6.1 Class: BinaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation or character manipulation on
two Expression operands, which are distinguished. An instance of BinaryOperation represents a usage of a value of
BinaryOperator with a specific left and right operand.

Note — See clause 12 of SO 10303-11:2004.
13.6.1.1 Supertypes

Operation

13.6.1.2 Attributes

Attribute: operator To: BinaryOperator
Definition: Represents the conceptual operation that is actually being performed by the BinaryOperation.
Note — See | SO 10303-11.2:2004, clause 12.

Multiplicity: 1..1

13.6.1.3 Associations

AssociationEnd: left-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “left” operand in the definition of the operation.

Note — See clause 12 of 1SO 10303-11:2004.
Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 197

AssociationEnd: right-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “right” operand in the definition of the operation.

Note — See clause 12 of SO 10303-11:2004.
Multiplicity: 1..1
13.6.1.4 Other Roles

none

13.6.2 Datatype: BinaryOperator

Stereotypes: enumeration

Definition: Conceptual EXPRESS language element representing the interpretation of a binary operation symbol in the
context of the operand datatypes. Instances of this class are distinct operations, such as number-addition, set-union, string-
compare-equal, etc. Some BinaryOperators are denoted by “built-in functions” in EXPRESS syntax.

Note — See |SO 10303-11.2:2004 clause 12 and some €lements of clause 15.
13.6.2.1 Supertypes

none

13.6.2.2 Values

Value Definition

AND Returnstrue if both operands are true, unknown if both are unknown, and false if either is
false.

Add Returns the arithmetic sum of two NUMBER operands.

BadAdd Returns the BagValue resulting from adding one to the count of occurrences of the value

of the second operand in the first operand, which must be a BagValue.

BagRemove Returns the BagVal ue resulting from subtracting one from the count of occurrences of
the value of the second operand in the first operand, which must be a BagValue. If the
first operand contains no occurrences of the value of the second operand, returns the
value of the first operand.

BagUnion For two BAG operands with a common member type, returns the BAG value in which
the number of occurrences of each value of the member type is the sum of the number
of its occurrences in the two operands.

BinaryAppend Returns the BinaryValue whose bits are the bits of the value of the first operand, which
must be a BinaryValue, in that order, followed by the bits of the value of the second
operand, which must be a BinaryValue, in that order.

DIV For two INTEGER operands, returns the integral part of the quotient of dividing the
value of the first by the value of the second.

198 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Difference For two SET operands with a common member type, returns the SET value containing
all members of the first operand except for those that are also members of the second
operand. For two BAG operands with a common member type, returns the BAG value
in which the number of occurrences of each value of the member type is the number of
its occurrences in the first operand minus the number of its occurrences in the second
operand, but not |ess than zero.

Divide For two NUMBER operands, returns the quotient of dividing the value of thefirst by the
value of the second.
EntityConstructor For two operands that are PartialEntityValues, returns the Partial EntityValue that

contains al of the SingleEntityValues that were present in either operand. This
operation is referred to in EXPRESS as the “complex entity constructor” ([]).

Note — See 1SO 10303-11:2004 clause 12.10

EntityValueEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
faseif the value of any attribute of the first operand is NotEqual to (or

EntityV @ ueNotEqual to) the value of that attribute of the second operand, elsetrue. If both
operands are of acommon data type and that data type is an aggregation type whose
members are entity instances, returnsfalse if the operands are of different sizes, or if for
any of the corresponding members of the two operands, the value of any attribute of the
member of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that
attribute of the member of the second operand, else true. If the common datatypeis
anything else, this operator is equivalent to Equal.

EntityValueNotEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif the value of any attribute of the first operand is NotEqual to (or
EntityVaueNotEqual to) the value of that attribute of the second operand, else false. If
both operands are of a common data type and that data type is an aggregation type whose
membersare entity instances, returnstrueif the operands are of different sizes, or if for any
of the corresponding members of the two operands, the value of any attribute of the
member of the first operand is NotEqual to (or EntityVaueNotEqual to) the value of that
attribute of the member of the second operand, else false. If the common datatypeis
anything else, this operator is equivalent to NotEqual.

Equal Returns true if both operands are of a common data type and equal in value, as defined
for that type, else false. For the definition of “equal in value,” see SO 10303-11:2004
Clause 12.2.1.

Exponent For two NUMBER operands, returnsthe the value of thefirst raised to the power specified

by the value of the second.

Greater Returnstrueif both operands are of acommon data type and the value of the first operand
is greater than the value of the second operand, as defined for that type, elsefalse. For the
definition of “is greater than,” see 1SO 10303-11:2004 Clause 12.2.1.

IN Returns trueif the value of thefirst operand is Equal to the value of any member of the
second operand (which must be an AggregateValue); else false. If the first operand isan
Entitylnstance, “is Equal to” isinterpreted as “is InstanceEqual to.”

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 199

InstanceEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif both operands refer to the same individual, else false. If both operands are of a
common data type and that data type is an aggregation type whose members are entity
instances, returnsfalse if the operands are of different sizes, or if any of the corresponding
members of the two operands refer to different individuals, else true. If the common data
typeis anything else, this operator is equivalent to Equal.

InstanceNotEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif the operands refer to distinct individuals, else false. If both operands are of a
common data type and that data type is an aggregation type whose members are entity
instances, returnstrue if the operands are of different sizes, or if any of the corresponding
members of the two operands refer to different individuals, else false. If the common data
typeis anything else, this operator is equivalent to NotEqual.

Intersection For two SET operands with acommon member type, returnsthe mathematical intersection
of the two sets. For two BAG operands with a common member type, returns the BAG
value in which the number of occurrences of each value of the member type isthe smaller
of the number of its occurrences in the two operands.

LIKE Returnstrueif both operands are StringV alues and the val ue of thefirst operand isamatch
for the pattern that isthe value of the second operand. For the interpretation of the pattern,
see 1SO 10303-11:2004 Clause 12.2.5.

Less Returnstrueif both operands are of a common datatype and the value of the first operand
isless than the value of the second operand, as defined for that type, else false. For the
definition of “islessthan,” see 1SO 10303-11:2004 Clause 12.2.1.

ListAddFirst Returns the ListVaue whose first member is the value of the second operand and whose
subsequent members are the members of the value of the first operand, which must be a
ListValue, in that order.

ListAddLast Returns the ListVaue whose members are the members of the value of the first operand,
which must be aListValue, in that order, followed by the value of the second operand.

ListAppend Returns the ListValue whose members are the members of the value of the first operand,
which must be aListValue, in that order, followed by the members of the value of the
second operand, which must be aListValue, in that order.

MOD For two INTEGER operands, returns the remainder of dividing the value of thefirst by the
value of the second.

Multiply Returns the arithmetic product of two NUMBER operands.

NVL If the value of the first operand is Indeterminate (?), returns the value of the second

operand; else returns the value of the first operand.

Note — See 1SO 10303-11:2004 Clause 15.18.

NotEqual Returnstrueif both operands are of a common data type and unegual in value, as defined
for that type, else false. For the definition of “equal in value,” see SO 10303-11:2004
Clause 12.2.1.

NotGreater Returnstrueif both operands are of a common datatype and the value of the first operand

islessthan or equal to the value of the second operand, as defined for that type, elsefalse.
For the definition of “isless than or equal to,” see 1SO 10303-11:2004 Clause 12.2.1.

200 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

NotLess Returnstrueif both operands are of a common data type and the value of the first operand
is greater than or equal to the value of the second operand, as defined for that type, else
false. For the definition of “is greater than or equal to,” see 1SO 10303-11:2004 Clause

12.2.1.

OR Returnstrue if either operand is true, unknown if both are unknown, and false if both are
fase.

SetAdd Returns the SetVaue that is the union of the value of the first operand, which must be a

SetValue, with the SetValue comprising exactly one member equal (or InstanceEqual) to
the value of the second operand.

SetUnion For two SET operandswith acommon member type, returnsthe mathematical union of the
two sets.
StringAppend Returns the StringValue whose characters are the characters of the value of the first

operand, which must be a StringValue, in that order, followed by the characters of the
value of the second operand, which must be a StringValue, in that order.

Subset Returnstrue if every member of the value of the first operand (which must be an
AggregateValue) is IN the value of the second operand (which must be an
AggregateValue); else false.

Subtract For two NUMBER operands, returns the result of subtracting the value of the second
from the value of the first.
Valueln Returnstrue if the value of the first operand is Equal to the value of any member of the

second operand (which must be an AggregateValue); elsefalse. If thefirst operandisan
Entitylnstance, “is Equal to” isinterpreted as “is EntityValueEqual to.”
Note — See 1SO 10303-11:2004 Clause 15.28.

XOR Returnstrue if one operand is true and one is false, unknown if either is unknown, and
false otherwise.

13.6.3 Class: Coercion

Definition: an Operation representing the conversion of the operand to a specific data type (InstantiableType). This
operation is implicit in a number of EXPRESS expressions, notably:

« in converting between a defined data type and its fundamental type (on which the operations are defined), and
« inconverting an EntityValue to an Entitylnstance of the corresponding EntityType.

In most cases, the Coercion does not change the “value” of the operand; rather the Coercion maps the value to the
corresponding value of the related data type.

Note — See clause 12 of 1SO 10303-11:2004, and the proposed revision to Clause 12.10.

13.6.3.1 Supertypes

Operation
13.6.3.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 201

13.6.3.3 Associations

AssociationEnd: operand To: Core::Expression

Definition: represents the Expression whose result is to be converted to the target-type by the Coercion operation.
Multiplicity: 1..1

AssociationEnd: target-type To: Core::VariableType

Definition: represents the data type to which the operand of the Coercion is to be converted.

Multiplicity: 1..1

13.6.3.4 Other Roles

none

13.6.4 Class: UnaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation on a single Expression operand.
A UnaryOperation models a use of a UnaryOperator with a particular operand.

Note — See Clause 12 of 1SO 10303-11:2004.

13.6.4.1 Supertypes

Operation

13.6.4.2 Attributes

Attribute: operator To: UnaryOperator
Definition: Represents the conceptual operation that is actually being performed by the UnaryOperation.
Note — See | SO 10303-11.2:2004, Clause 12.

Multiplicity: 1..1

13.6.4.3 Associations

AssociationEnd: unary-operand To: Core::Expression
Definition: represents the operand Expression that produces the input to a UnaryOperation.

Note — See Clause 12 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.6.4.4 Other Roles

none

13.6.5 Datatype: UnaryOperator

Stereotypes: enumeration

202 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Definition: Conceptual EXPRESS language element representing the interpretation of a unary operation symbol in the
context of the operand datatype. Instances of this class are distinct operations, such as numeric-negation, boolean-
negation, real-square-root, absolute-value, etc. Some UnaryOperators are denoted by “built-in functions” in EXPRESS
syntax.

See 1SO 10303-11.2:2004 Clause 12 and some elements of Clause 15.
13.6.5.1 Supertypes

none

13.6.5.2 Values

Value Definition

ABS For aNUMBER operand, returns the magnitude (absolute value) of the value of the
operand.

ACOS For aNUMBER operand, returns the mathematical arc cosine of the value of the
operand.

ASIN For aNUMBER operand, returns the mathematical arcsine of the value of the operand.

ATAN For aNUMBER operand, returns the mathematical arctangent of the value of the
operand.

BinaryLength For an operand that is a BinaryValue, returns the number of bitsin the value.

COs For aNUMBER operand, returns the mathematical cosine of the value of the operand.

EXISTS Returns false if the operand is Indeterminate (?), else true.

EXP For aNUMBER operand, returns the mathematical exponential function of the value of
the operand.

HiBound For an operand whose datatypeis an aggregation type, returnsthe declared upper-bound
value for the size of the values, or for an ARRAY, the declared maximum index-value.

Hilndex For an operand that is an AggregateValue, returns the largest valid index-value for the
value.

Identity Returns the value of the operand.

LOG For aNUMBER operand, returns the Napierian logarithm of the value of the operand.

LOG10 For aNUMBER operand, returns the logarithm to the base 10 of the value of the

operand, which for an INTEGER value is the number of decimal digit characters
required to represent it.

LOG2 For aNUMBER operand, returnsthelogarithm to the base 2 of the value of the operand,
which for an INTEGER value is the number of bits required to represent it.

LoBound For an operand whose datatypeis an aggregation type, returnsthe declared lower-bound
vaue for the size of the values, or for an ARRAY, the declared minimum index-value.

Lolndex For an operand that is an AggregateValue, returns the smallest valid index-value for the
value.

NOT For an operand that is a Logical Value, returns true if the value is false, unknown if the

value is unknown, and false if the value is true.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 203

Negate For aNUMBER operand, returns the additive inverse of the value of the operand.

ODD For an operand that is an INTEGERValue, returns false if the value is exactly divisible
by 2 and true otherwise.

RolesOf For an Entitylnstance operand, returns a set of RoleName values representing all the
distinct Attributes (RangeRoles) which the operand plays in the Population.

SIN For aNUMBER operand, returns the mathematical sine of the value of the operand.

SQRT For aNUMBER operand, returns the mathematical square root of the value of the
operand, or Indeterminate if it is negative.

SizeOf For an operand that is an AggregateVal ue, returns the number of members in the value.

StringLength For an operand that is a StringVal ue, returns the number of charactersin the value.

TAN For aNUMBER operand, returns the mathematical tangent of the value of the operand.

TypeOf Returns a Set of TypeName values representing the data types of which the operand is
an instance.

VALUE For a STRING operand, returns the NUMBER value resulting from interpreting the
operand as the representation of a numeric value, or Indeterminate, if no such
interpretation can be made.

ValueUnique For an operand that isan AggregateValue, returnstrue if no two members of the operand
are Equal or EntityValueEqual.

13.7 Function Calls

This section describes the Expressions that represent invocations of schema-defined FUNCTIONS, each of which returns a
FunctionResult that is the evaluation of the Expression.

==metaclazses
Expression
(Core)

+actual-value
1

T call-provides-actual-parameter:
==metaclazsss AR
0 el 0.1 FACIUBMATEMEENS | oty o tParameter
+in-FunctionCal 0.+ |+posiion - Integer [1]
0.7 o0+
1 | +ireturns-resutt T
==metaclass== PP —— ==metaclass==
FunctionResult cnrra;‘;ﬂnds-tn-- PassByValue [~
[Algorthms) forthal-parameter
+result |1 o*
1.} +inwokes-function 1 | +forparameter
tunction-hEs-result zametaciasses
Functi ==metackass==
o InParameter
+namespace | (Algorithms) (Algarithms)
J +iformal-parameter |1 l
<=metaciass==
z=metaclass== | 4 algortthm-has-parameters Parameter
gori +formal-parameters (Algorithms)
+Namespace 0.* .
[&lgorthms) +postion : Integer [1]

Figure 13.6 - Function Calls

13.7.1 Class: ActualParameter

Definition: represents the substitution of the actual parameter instance for the formal parameter and, where required, the
substitution of the data type of the actual parameter for the GeneralizedType of the formal parameter and any derivatives.

204 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Actual Parameter is an abstraction of two different parameter-passing mechanisms; PassByValue and PassByReference.
When the corresponding formal Parameter is an InParameter, the Actual Parameter shall be a PassByValue. When the
corresponding formal Parameter is a VARParameter, the ActualParameter shall be a PassByReference.

In a FunctionCall, the corresponding formal parameter is always an InParameter; a ProcedureCall can have formal
parameters of either kind.

Note — PassByValue is described below. PassByReference is defined in the Statements package (a separate compliance point),
because it isonly used in Procedure Call statements.

Note — See 12.8 of 1SO 10303-11:2004.
Properties: abstract
13.7.1.1 Supertypes

none
13.7.1.2 Attributes

Attribute: position To: MOE::Integer

Definition: represents the position in which the Actual Parameter occurs in the sequence associated with the FunctionCall
(used to associate the Actual Parameter with a formal parameter).

Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.7.1.3 Associations

AssociationEnd: formal-parameter To: Algorithms::Parameter

Definition: represents the formal parameter to which the Actual Parameter corresponds.

Note — See 12.8 of SO 10303-11:2004.

Multiplicity: 1..1

Properties: derived union of PassByValue: for-parameter and PassByReference: for-parameter.
AssociationEnd: in-FunctionCall To: EunctionCall

via: call-provides-actual -parameters

Definition: the FunctionCall, if any, that contains the Actual Parameter.
Multiplicity: 0..1
AssociationEnd: in-ProcedureCall To: Statements::ProcedureCall

via: Statements::procedure-call-provides-actual -parameters

Definition: the ProcedureCall, if any, in which the Actual Parameter appears.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 205

13.7.1.4 Other Roles

none
13.7.1.5 Rules

Constraint

exists(self->in-FunctionCall) xor exists(self->in-ProcedureCall) ;

A given Actual Parameter must occur in either a FunctionCall or a ProcedureCall.

13.7.2 Class: FunctionCall

Definition: an Expression that represents the instance resulting from the invocation of a Function with zero or more
Expression operands called “actual parameters.”

Note — See 12.8 of 1SO 10303-11:2004.
13.7.2.1 Supertypes

Core::Expression

13.7.2.2 Attributes

none
13.7.2.3 Associations

AssociationEnd: actual-parameters To: ActualParameter

via: call-provides-actual -parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: invokes-function To: Algorithms::Function

Definition: represents the relationship between the FunctionCall and the formal definition of the Function invoked.
Note — See 12.8 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: returns-result To: Algorithms::FunctionResult

Definition: represents the relationship between the FunctionCall and the formal definition of the FunctionResult, which
describes the instance that results from the FunctionCall.

Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

206 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Properties: derived
TaggedValues

derivation = self->invokes-function->result

13.7.2.4 Other Roles

none

13.7.3 PassByValue

Definition: An ActualParameter that is passed “by value.” At the time of Algorithm invocation, the actual-value
Expression is evaluated and the resulting value is assigned to the InParameter — the local Variable within the invocation
that corresponds to the formal parameter.

13.7.3.1 Supertypes

Actua Parameter

13.7.3.2 Attributes

none
13.7.3.3 Associations

AssociationEnd: actual-value To: Core::Expression

Definition: the Expression that specifies the value to be passed to the InParameter. This is the Expression that is
syntactically the actual parameter when the corresponding formal parameter is an InParameter.

The actual-value shal evaluate to either an instance of an InstantiableType or Indeterminate.
Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: for-parameter To: Algorithms::InParameter

Subsets: Expressions::Actual Parameter:formal -parameter

Definition: the formal parameter to which the actual value is passed.
Note — See 12.8 of SO 10303-11:2004.

Multiplicity: 1..1

13.7.3.4 Other Roles

none

13.7.4 Association: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 207

13.7.4.1 Association Ends

AssociationEnd: actual-parameters To: ActualParameter

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: in-FunctionCall To: FunctionCall
Definition: the FunctionCall, if any, that contains the Actual Parameter.

Multiplicity: 0..1

13.8 Query Expressions

This sub clause describes the QueryExpression, which models invocations of the EXPRESS built-in QUERY function,
specified in sub clause 12.6.7 of 1SO 10303-11. The concepts are depicted in Figure 13.7.

+ »
cemetaclass=s | o90regate-operand

Expression 1
(Core) +select-condition
1

]

==metaclass== ==metaclass==
LocaiScope +———{QueryExpression
(Core) 0.

+Namespace

+namespace

incateiemethas-lncalscope {subsets namespace}
)

scope-of-variable-is-guery

+ojuery-variable

.
0 +local-elements 1 {subsets local-elements}

==metaciasss= =emetackasss=
LocaiFlement QueryVariable
(Core)
==metaclasss= ==metaclass==
3 . E
b
(Algorithms) [&lgorithms)

Figure 13.7 - Query Expressions

13.8.1 Class: QueryExpression

Definition: an Expression representing the (aggregate) instance that results from extracting from the value of the
aggregate-operand (an Expression yielding an aggregate value) the corresponding collection of member instances that
satisfy a given select-condition. Every QueryExpression is also the Local Scope for the QueryVariable that designates
members of the aggregate value in the select-condition.

Note — See 12.6.7 of SO 10303-11:2004.
13.8.1.1 Supertypes

Core::Expression, Core::L ocal Scope

208 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

13.8.1.2 Attributes
none
13.8.1.3 Associations

AssociationEnd: aggregate-operand To: Core::Expression

Definition: represents the operand Expression whose result is the aggregate value from which members will be extracted
by the Query operation.

Note — See 12.6.7 of 1SO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: query-variable To: QueryVariable

via: scope-of-variable-is-query

Subsets: Core::L ocal Scope:|local -elements

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1
Properties: composite
AssociationEnd: select-condition To: Core::Expression

Definition: represents the relationship between a Query expression and the Logical Expression that defines admissibility
of members in the Query result. This Expression is treated as a kind of "function definition" having a single Parameter
which is the Query variable. The .select-condition "function” is invoked once for each member value of the .aggregate-
value,

Note — See Clause 12.6.7 of 1SO 10303-11:2004. The Expression that formulates the select-condition is owned by the
QueryExpression. It is not treated as reusable.

Multiplicity: 1..1
13.8.1.4 Other Roles

none

13.8.2 Class: QueryVariable

Definition; a Variable that ranges over the member elements of the aggregate-operand in evaluating the QueryExpression.
The scope of a QueryVariable is the QueryExpression, that is, all references to it occur in the select-condition of the
QueryExpression. The data-type of a QueryVariable is implicitly the data type of the member-element of the aggregate
operand.

Note — See 12.6.7 of 1SO 10303-11:2004.

Note — Although QueryVariable is modeled as a subclass of Variable, it is syntactically impossible for a QueryVariable to be
the referent of a VariableCell.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 209

13.8.2.1 Supertypes

Algorithms::Variable

13.8.2.2 Attributes
none
13.8.2.3 Associations

AssociationEnd: namespace To: QueryExpression

via: scope-of-variable-is-query

Subsets: Core::L ocal Element:namespace

Definition: the QueryExpression in which the QueryVariable is defined.
Multiplicity: 1..1
13.8.2.4 Other Roles

none

13.8.3 Association: scope-of-variable-is-query
Definition: represents the (1-to-1) relationship between the QueryVariable and the QueryExpression in which it is defined.
13.8.3.1 Supertypes

Core::local -element-has-local -scope

13.8.3.2 Association Ends

AssociationEnd: namespace To: QueryExpression
Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1

AssociationEnd: query-variable To: QueryVariable

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1

Properties: composite

13.9 Aggregate Initializers

This sub clause describes the EXPRESS operations that construct AggregateValues from component values.

210 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

==thetaclass=- +evaluation 0 zometaclass=s | Hoerivation
Iustance o Expression 0.1
(Core) : [Core) +member-value
1
==metaclass== =2=metaclass==
GenericAggregate 0.1 0. Aggregatelnitializer
(Instances] +result-value
{subsets evalustion}
‘L 1
el +hindings 0.* {orcered}
==metaclass==
LISTValue SR
(Instances) MemberBinding
+position : Integer [1] 0.

1

+repetition | 0.1

==metaclass==
RepeatCount
+zourt : Integer [0..1]

0.*

Figure 13.8 - Aggregate Initializers

13.9.1 Class: Aggregatelnitializer

Definition: represents the EXPRESS “aggregate initializer.” It produces a value of type AGGREGATE OF GENERIC, by
binding a sequence of member values to positions in the generic aggregate value.

Note — See 12.9 of 1SO 10303-11:2004.
13.9.1.1 Supertypes

Core::Expression

13.9.1.2 Attributes

None

13.9.1.3 Associations

AssociationEnd: bindings To: MemberBinding

Definition: represents the relationship between the Aggregatel nitializer and the set of MemberBindings it comprises.
Note — See 12.9 of SO 10303-11:2004.

Multiplicity: 0..* wnordered

Properties: composite

AssociationEnd: result-value To: Instances::GenericAgaregate

subsets: Core::Expression:evaluation

Definition: represents the aggregate value that results from the aggregate initializer. This is a refinement of
Expression:eval uation.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 211

If the Aggregatelnitializer expression can be evaluated without regard to any actual population (“compile time”), this
value shall be present, but not otherwise.

Note — See 12.9 of 1SO 10303-11:2004.
Multiplicity: 0..1
13.9.1.4 Other Roles

none

13.9.2 Class: MemberBinding

Definition: represents the placement of a member value in one or more positions (ListMembers) in the GenericAggregate
value resulting from the aggregate initializer.

If the member binding has no repetition count, the MemberBinding associates the .member-value with one ListMember in
the GenericAggregate. If the member value has a repetition count, the MemberBinding associates the .member-value
with one or more consecutive ListMembers in the GenericAggregate. The member-values are assigned to ListMembersin
the order of the MemberBindings. The : position of the MemberBinding conveys the ordering of the MemberBindings
(but not necessarily the position of the corresponding ListMembers).

Note — The MemberBinding may have arepetition count that depends on values in the population or the actual parameters of
an Algorithm invocation, with the consequence that the relationship between the MemberBinding and ListMembers can only
be determined when the Aggregatelnitializer is evaluated.

Note — See 12.9 of 1SO 10303-11:2004.

13.9.2.1 Supertypes

none
13.9.2.2 Attributes

Attribute: position To: MOE::Integer

Definition: Represents the ordinal position of the MemberBinding specification in the Aggregatelnitializer.

Note — When no MemberBinding in the Aggregatel nitializer hasa . repetition value, the MemberBinding:position will
be the position of the member-value in the resulting GenericAggregate. Otherwise, the relationship between the positions will
depend onthe . repetition values.

Multiplicity: 1..1
13.9.2.3 Associations

AssociationEnd: member-value To: Core::Expression

Definition: represents the member value to be assigned to the MemberBinding position in the aggregate value, as the
result of the Expression.

Note — See 12.9 of 1SO 10303-11:2004.
Multiplicity: 1..1

212 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

AssociationEnd: repetition To: RepeatCount

Definition: represents the relationship between the MemberBinding and an associated RepeatCount, if any. If the
repetition count for the .member-value is implicitly 1, or explicitly aliteral “1,” this relationship shall not appear. In al
other cases, this relationship shall appear.

Multiplicity: 0..1
Properties. composite
13.9.2.4 Other Roles

From: Aaaregatelnitializer as bindings

13.9.3 Class: RepeatCount

Definition: A specification for repeating a given initial value into n consecutive ListMember slots, where n is the .count
value. The repetition value is specified by the .derivation expression. If that expression is, or evaluates to, a constant
(without regard to a Population), the value of .count is that constant.

Note — See 12.9 of SO 10303-11:2004.
13.9.3.1 Supertypes

none

13.9.3.2 Attributes

Attribute: count To: (none)

Definition: The number of actual ListMembers that are to be filled with the member-value. If the .derivation expression
evaluates to a constant, without regard to population, .count has a value; otherwise not.

Multiplicity: 0..1
13.9.3.3 Associations

AssociationEnd: derivation To: Core::Expression

Definition: represents the relationship between the RepeatCount and the Expression that denotes the value of the
RepeatCount. This relationship shall be present whenever the specification for the RepeatCount is not an integer literal.

Multiplicity: 0..1
13.9.3.4 Other Roles

From: MemberBinding as repetition

13.10 Partial Entity Constructors

This sub clause describes the EXPRESS operations that construct Partial EntityValues from component values.

Note — The so-called “entity constructor” is abinary operation (See 13.6.2 Value: EntityConstructor) that produces
Partial EntityVValues from other Partial EntityValues. The actual operation that produces entity instances is a special case of
Coercion (see 13.6.3).

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 213

==metaclass==
==metaclass=> | yevalustion Expression
hest: (Core) +attriute-value
0.1 0.*
(Core) et : ExpressTest [0.1] 1
y T
==metaclass= o) <<m§taclass>> +hincings a<!'netacla_ss=_=
PartialEntityValue . 0.* PartialEntityConstructor AttributeBinding
(nstances) +result-value +id : Identifier [1]{subsets texd} | 1 0.* |+postion : Integer (1]
{subzets evaluation}
0.r o0
+attribute-group / T +attribute "
! Attribt
s=metaclazss= attribute-declared-in-ertity e =<metaclasss=
SingleEntityType | ot entity +eclares (Cars) —— ExplicitAttribute
5 + |+iadhstract | Boolean [1] (Care)
4] S 1 0. +postion : Integer [1]

Figure 13.9 - Partial Entity Value Constructors

13.10.1 Class: AttributeBinding

Definition: represents the assignment of a specific value to one Attribute in the group that comprises the
Partial Entity Type.

Note — See 9.2.6 of SO 10303-11:2004.
13.10.1.1 Supertypes

none
13.10.1.2 Attributes

Attribute: position To: MOEF::Integer

Definition: represents the position of the AttributeBinding in the constructor (and thus the association with the explicit
attribute).

Note — See 9.2.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.10.1.3 Associations

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the explicit attribute to which the AttributeBinding assigns a value. Position is used to identify the
attribute.

Note — See 9.2.6 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: attribute-value To: Core::Expression

Definition: represents the value to be assigned to the explicit attribute by the AttributeBinding, as the result of the
Expression.

214 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — See 9.2.6 of SO 10303-11:2004.
Multiplicity: 1..1

13.10.1.4 Other Roles

From: PartialEntityConstructor as bindings

13.10.2 Class: PartialEntityConstructor

Definition: represents the EXPRESS “partial entity constructor” named for a “single entity data type.” It takes one actual
parameter (AttributeBinding) for each ExplicitAttribute in the group of Attributes identified by the SingleEntity Type, and
binds the values to the ExplicitAttributes in order of their occurrence in the entity _declaration. The result is a

Partial EntityValue of the partial entity data type that consists of exactly that one single entity data type.

Note — See 9.2.6 of SO 10303-11:2004 (revised by TC#1).
13.10.2.1 Supertypes

Core::Expression

13.10.2.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: Represents the identifier for the Partial EntityConstructor, which is the identifier for the SingleEntity Type to
which it refers.

Multiplicity: 1..1
13.10.2.3 Associations

AssociationEnd: attribute-group To: Core::SingleEntityType

Definition: represents the relationship between the Partial EntityConstructor and the SingleEntity Type that defines it, i.e.,
the list of explicit attributes..

Note — See 9.2.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: bindings To: AttributeBinding

Definition: represents the relationship between the Partia EntityConstructor and the set of AttributeBindings it comprises.
Note — See 9.2.6 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: result-value To: Instances::PartialEntityValue

Subsets: Core::Expression:evaluation

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 215

Definition: represents the instance that results from the partial entity constructor. This is a refinement of
Expression:eval uation.

If the expression can be evaluated without regard to any actual population (“compile time”), this value shall be present,
but not otherwise.

Note — See 9.2.6 of 1SO 10303-11:2004.
Multiplicity: 0..1
13.10.2.4 Other Roles

none

216 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14 Package : Statements

The Statements Package contains the detailed modeling concepts for the Statements in the EXPRESS language. The basic
Statement model in the Algorithms Package is permitted to be a syntactic string. This package provides the elements that
support the operational semantics of each kind of Statement. The Statements Package depends on the Expressions
Package. It is a requirement for the Statements compliance point that a complete semantic model of Expressions be
supported.

14.1 Dependencies

Dependency on Package: Core
Stereotypes. import

The Statements Package depends on the Core Package for the basic Expression concept and for the Local Scope and
L ocalElement concepts.

Dependency on Package: Algorithms
Stereotypes. import

The Statements Package depends on the Algorithms Package for the basic Statement concept, the Variable concept, and
the Procedure concept.

Dependency on Package: Expressions
Stereotypes. import

The Statements Package depends on the Expression Package for Actual Parameter, and in most implementations, for the
detailed semantic models of Expressions.

14.2 Overview of Statements

This clause provides the overview of all of the EXPRESS Statement types. They are depicted in Figure 14.1.

The concept StatementBlock and Control Statement are described in detail in this clause. Each of the other statement types
is described in its own clause.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 217

=smetaclass=> | ypody.statemerts block-sequences-statements

Statement
[Algorithms)

T{disjoint, total}

0.* {ordered}

==metaclass== ==metaclage== =ametaclass== =ametaclass==
Assignment IFStat: nit C it ProcedureCall
+in-hlock (0.1
==metaclags== ==metaclass== ==metaclags== ==metaclass==
RepeatStatement ControiStatentent AliasStatement StatementBlock

+delimited : Boolean [1]

T {dlisjairt, total}

==thetaclasss= ==metaclassss ==thetaclasss=
HullStatement EscapeStatement SkipStatement

==hetaclasss=
ReturnStatement

Figure 14.1 - Statements

14.2.1 Class: Algorithms:

:Statement

Definition: An EXPRESS Statement, a directive to perform a certain set of operations.

Note — See Clause 13 of SO 10303-11:2004.

Note — Even though Statement istechnically an abstract classifier, it isrepresented by direct instances with text representations
when the Statements compliance point is not supported.

Note — The class Statement, and all its properties, is specified in the Algorithms Package, which provides the primary use of
Statements. This entry serves only to define the Statement class in context and provide alink to its specification in 10.2.7.

14.2.2 Class: ControlStatement

Definition; an abstract class representing EXPRESS statements whose action is “transfer of control,” i.e., a change in the
sequence of execution. This class was introduced primarily to simplify the metamodel diagram.

Properties: abstract
14.2.2.1 Supertypes

Algorithms:: Statement

14.2.2.2 Attributes

none

14.2.2.3 Associations

none

14.2.2.4 Other Roles

none

218

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.2.3 Class: NullStatement

Definition: Represents an EXPRESS Null statement. A NullStatement is just a syntactic placeholder, made necessary by
grammar rules that require the presence of at least 1 statement. It has the semantics: Take no action. It is modeled here,
solely to permit reconstruction of the Express Text.

Note — See Clause 13.1 of 1SO 10303-11:2004.
14.2.3.1 Supertypes

Control Statement

14.2.3.2 Attributes

none
14.2.3.3 Associations
none

14.2.3.4 Other Roles

none

14.2.4 Class: StatementBlock

Definition: represents a sequence of Statements to be executed in the given order.

”

In EXPRESS syntax, a number of constructs contain a statement or sequence of statements, and a “compound statement
is a statement that begins with BEGIN and ends with END and contains a sequence of statements. All such sequences
have the semantics of the StatementBlock. The BEGIN/END case is here modeled as .delimited = True.

Note — See Clause 13.5 of 1SO 10303-11:2004.
14.2.4.1 Supertypes

Algorithms;: Statement

14.2.4.2 Attributes

Attribute: delimited To: MOF::Boolean

Definition: Is true if the StatementBlock was delimited by BEGIN and END tokens, false if it is implicit in the body of
some other Statement.

Note — The sole purpose of this attribute is to be able to reconstruct the source EXPRESS text properly.
Multiplicity: 1..1
14.2.4.3 Associations

AssociationEnd: body-statements To: Algorithms::Statement

via: block-sequences-statements

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 219

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note — Every EXPRESS syntax whose semanticsis a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a Null Statement in this case.

Multiplicity: 0..* ordered
Properties: composite
14.2.4.4 Other Roles

none

14.2.5 Association: block-sequences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.
14.2.5.1 Association Ends

AssociationEnd: body-statements To: Algorithms::Statement

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note — Every EXPRESS syntax whose semanticsis a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement in this case.

Multiplicity: 0..* ordered

AssociationEnd: in-block To: StatementBlock

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.
StatementBlocks may, but need not, occur directly in other StatementBlocks.

Multiplicity: 0..1

14.3 ALIAS Statements

This clause describes the ALIAS statement. Figure 14.2 depicts the associated concepts.

220 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

==metaclass== +hioddy
. 1
[Algarithms)
T 0.1
==metaclass== ==metaclass==
LocaiScop P e o
(Care) o
1| namespace 1 | +namespace
lacaleldment-has-localscope {subsets namespace}

aliaz-hindg-variable

+aliaz-variahle

0.* +ocal-elements 1
{zubszets local-elements} 0.1 | +referent
==metaclaz s> ==metaclass== ==metaclass==
Locaél(':.irree?ent AliasVariable VARExpression
l +ext : ExpressText [0..1]
==metaclass== ==metaclass==
" dVariadle | VARVariable
(Algorithms) (Algorithms)

Figure 14.2 - ALIAS Statements

14.3.1 Class: AliasStatement

Definition: Represents an EXPRESS ALIAS statement. An ALIAS statement introduces a NamedVariable (the alias-

variable) to represent the result of a VAREXxpression (the referent). The AliasVariable is not a Variable, and the

interpretation is not assignment. The ALIAS statement creates a VARVariable that is persistently associated with the cell
specified by the VARExpression over changes in the content of that cell during execution of the body. Within the body
of the ALIAS statement, any assignment to the AliasVariable assigns the value to the referent cell, and any VariableRef
that refers to the AliasVariable refers to the current value in that cell.

See Clause 13.2 of 1SO 10303-11:2004.
14.3.1.1 Supertypes

Core::L ocal Scope, Algorithms:: Statement

14.3.1.2 Attributes

none

14.3.1.3 Associations

AssociationEnd: alias-variable To: AliasVariable

via: alias-binds-variable

Subsets: Core::L ocal Scope:local-elements

Definition: the AliasVariable that is introduced by the AliasStatement and bound to the : referent.
Multiplicity: 1..1
Properties. composite

AssociationEnd: body To: Algorithms::Statement

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 221

Definition: the Statement (or StatementBlock) specifying the action to be taken by the AliasStatement.

Note — The AliasStatement has the effect of "fixing" the referent of the alias-variable, in the case in which the Statement isa
StatementBlock that includes actions that alter the values of elements of the VAREXxpression.

Multiplicity: 1..1
Properties: composite

AssociationEnd: referent To: VAREXpression

Definition: the VAREXxpression that specifies the referent of the AliasVariable — the cell to which the AliasVariable refers
during execution of the body of the ALIAS statement.

Multiplicity: 1..1
14.3.1.4 Other Roles

none

14.3.1.5 Rules

Constraint (OCL)
self->alias-variable->namespace = self;

14.3.2 Class: AliasVariable

Definition; a NamedVariable that is created by an ALIAS statement, and whose scope is the body of the ALIAS
statement. An Alias Variable is a VARVariable: it does not hold an Instance; it refers to cell that holds an Instance. The
referent of the AliasVariable is specified by the value of the VAREXxpression assigned to it by the ALIAS statement.

Note — See Clause 13.2 of 1SO 10303-11:2004.
14.3.2.1 Supertypes

Algorithms::VARVariable

14.3.2.2 Attributes

none
14.3.2.3 Associations

AssociationEnd: namespace To: AliasStatement

via: alias-binds-variable

Subsets: Core::L ocal Element:namespace

Definition: the AliasStatement that is the scope of the AliasVariable.

Multiplicity: 1..1

222 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.3.2.4 Other Roles

none
14.3.3 Association: alias-binds-variable
Definition: represents the relationship between the AliasStatement and the AliasVariable it defines.

14.3.3.1 Supertypes

Core::local-el ement-has-local -scope

14.3.3.2 Association Ends

AssociationEnd: alias-variable To: AliasVariable
Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.
Multiplicity: 1..1

Properties: composite

AssociationEnd: namespace To: AliasStatement
Definition: the AliasStatement that is the scope of the AliasVariable.

Multiplicity: 1..1

14.4 Assignment Statements

This clause describes assignment statements. Figure 14.3 depicts the associated concepts.

==Mmetaciass==
Statement
[Algarthms)

|

<<me.tac|333:: +azsigned-value aemetaclazs=r
Iz Rnment Expression
0.r ! (Care)

<smetaclagss»)
VARExprassion +yariable

+ext : ExpressTesd [0.1]

=]

Figure 14.3 - Assighment Statements

14.4.1 Class: Assignment

Definition: Represents an EXPRESS assignment statement. An Assignment causes the value of the Variable that is
specified by the .variable VAREXxpression to become equal to the result of the . assigned-value Expression.

Note — See Clause 13.3 of 1SO 10303-11:2004.
14.4.1.1 Supertypes

Algorithms:: Statement

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 223

14.4.1.2 Attributes

none

14.4.1.3 Associations

AssociationEnd: assigned-value To: Core::Expression
Definition: the Expression whose result is the value to be assigned.

Multiplicity: 1..1

AssociationEnd: variable To: VAREXpression
Definition: the VARExpression that designates the object whose value is to be replaced.

Note — The VAREXxpression must not refer to an object that is part of the state of an Entitylnstance in the Population. It may,
however, refer to an object that holds (areference to) an Entitylnstance, or to an object (other than an Entitylnstance) that
holds an EntityValue.

Multiplicity: 1..1
14.4.1.4 Other Roles

none

14.5 CASE Statements

This clause describes CASE statements. Figure 14.4 depicts the associated concepts.

==metaclasg== .
Statement . toction

{Algarithms) 0.1

T

==metaclass== 1
0.r C Statement
1.*
+oases | {ordered} 0.1
+zelection-expression | 1 el
=emetaclazs=»
==metaclazs== | ahelvalue CaseAction
Expr
(Care) 0.* 0.* |+sDefault : Boolean [1]

Figure 14.4 - CASE Statements

14.5.1 Class: CaseAction

Definition: represents a possible action to be taken, together with the .label-values that identify the case and enable it to
be selected. Among the cases for a given CaseStatement, one CaseAction may be designated the “default” action, which
is taken if no other action meets the selection criteria.

14.5.1.1 Supertypes

none

224 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.5.1.2 Attributes

Attribute: isDefault To: MOF::Boolean

Definition: True if this CaseAction represents the default action to be taken if no other case label matches the value of the
sel ection-expression; otherwise False.

Multiplicity: 1..1
14.5.1.3 Associations

AssociationEnd: action To: Algorithms::Statement

Definition: the Statement (or StatementBlock) that defines the actions, if any, to be executed if that case is selected.
Multiplicity: 0..1

Properties: composite

AssociationEnd: label-value To: Core::Expression

Definition; an Expression whose result is a case label. When the value of the .selection-expression matches the value of
the Expression (which is often a Literal), the associated CaseAction defines the action to be taken by the CaseStatement.

Multiplicity: 0..* unordered
14.5.1.4 Other Roles

From: CaseStatement as cases
Multiplicity: 1..1

14.5.1.5 Rules

Constraint labels-unless-default (OCL)
if NOT (self->isDefault) THEN SizeOf (self->label-value) > O0;

Only the default CaseAction can have no label-values.

Constraint one-default (EXPRESS)
SizeOf (Query(c <* self.cases : c.isDefault)) <= 1;

At most 1 CaseActionin thelist of cases for a given CaseStatement can have .isDefault = True.

14.5.2 Class: CaseStatement

Definition: represents an EXPRESS CASE statement. The CASE statement selects and executes a single CaseAction
(from the list of CaseActions), based on the value of a selection-expression. The .cases are considered in order, and the
first CaseAction whose label-value matches the value of the .selection-expression is the action that is taken. If no
CaseAction has a label-value that matches the value of the .selection-expression, the CaseAction for which .isDefault is
true, if any, is taken; otherwise, no action is taken.

Note — See Clause 13.4 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 225

14.5.2.1 Supertypes

Algorithms:: Statement

14.5.2.2 Attributes

none

14.5.2.3 Associations

AssociationEnd: cases To: CaseAction
Definition: represents the possible actions to be taken, in order of consideration, each labeled by one or more values.
Multiplicity: 1..* ordered

Properties. composite

AssociationEnd: selection-expression To: Core::Expression
Definition: the Expression that is used to choose the CaseAction to be taken.

Multiplicity: 1..1

14.5.2.4 Other Roles

none

14.6 IF Statements

This clause describes IF...THEN...EL SE statements. Figure 14.5 depicts the associated concepts.

. ==metaclass== :
+hen-actions +elze-actions
Statement X

1 (Algorithms)

i

==metaclass== 0.1
0.1 IfStatement

0.

1 +if-condition

==metaclass==
Expression
[Core]

Figure 14.5 - IF Statements

14.6.1 Class: IfStatement

Definition: represents an EXPRESS IF...THEN...EL SE statement.
Note — See Clause 13.7 of 1SO 10303-11:2004.

226 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.6.1.1 Supertypes

Algorithms:: Statement

14.6.1.2 Attributes

none
14.6.1.3 Associations

AssociationEnd: else-actions To: Algorithms::Statement
Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is False.
Multiplicity: 0..1

Properties. composite

AssociationEnd: if-condition To: Core::Expression

Definition: an Expression that defines the condition used to determine whether to perform the “then-actions” or the “else-
actions.”

Note — Theif-condition is wholly owned by the If Statement. It is not treated as reusable.
Multiplicity: 1..1

AssociationEnd: then-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is True.
Multiplicity: 1..1

Properties: composite

14.6.1.4 Other Roles

none

14.7 Procedure Calls

This clause describes procedure call statements. Figure 14.6 depicts the associated concepts.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 227

<=metaciass==
Statement
(Algorithims)
.l_ ==metaclass=>=
procedure-call-provides-actual-parameters | ActmafParamoter
==metaciasss= A
ProcedureCall Letn-Proceduretal +actual-parameters (Expressions)
gorEcureCsl +J+postion - Integer [1] | O° ‘actual-parameter-
0.1 0 P 4 corresponds-to-
formal-parameter
0.2 ?
1 +invokes {disjoirt, total}
==metaciass=s =smetaclass== ==metaciass=>
Procedure PassByReference PassByValue
(Algorithims) (Expressions]
a a *
+actual-reterant |, 1 1 | +for-parameter +actual-value |, 1 1|, +or-parameter
<=metackass== <=metaciazs== <=metaciass== <=metaciazs==
VAREXprossion VARParameter Expression InParameter
+text : ExpressText [0..1] (Algarithins) (Core) (Algarithms)
J? {dlizjoirt, total}
algorithm-has-parameters
+iormal-parameters Rl < 255>
==metaclasss= i
A 1 {subsets local-elements} AL g +iformal-parameter
g N [Algorithms)] -
(Algorithms) +hamespace 0 P ol teoe [1] {umion}

{subsets namespace}

Figure 14.6 - Procedure Calls

14.7.1 PassByReference

Definition: An ActualParameter that is passed “by reference.” At the time of Algorithm invocation, the
actual-referent VARExpression is evaluated to identify a cell and that cell becomes the referent of the
VARParameter during execution of the Algorithm.

14.7.1.1 Supertypes

Actua Parameter

14.7.1.2 Attributes

none
14.7.1.3 Associations

AssociationEnd: actual-referent To: Statements::VAREXxpression

Definition: the VARExpression that denotes the cell that is to be the referent of the formal VARParameter during the
invocation. This is the expression that is syntactically the actual parameter when the corresponding formal
parameter is a VAR Parameter.

Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: for-parameter To: Algorithms::InParameter

Subsets: Expressions::Actual Parameter:formal -parameter

Definition: the formal parameter to which the actual referent is assigned.
Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

228 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.7.1.4 Other Roles

none

14.7.1.5 Rules

Constraint
exists(self->inProcedureCall) ;

Every PassByReference appears in a ProcedureCall (not a FunctionCall).

14.7.2 Class: ProcedureCall

Definition: Represents an EXPRESS procedure call statement. A procedure call causes an instance of a defined Procedure
to be created, and the actual parameter values to be passed to the corresponding formal parameters. The .actual-value
Expression corresponding to each InParameter is evaluated and the result is copied into the corresponding InVariable.
Each VARParameter is set to refer to the Variable that is the result of the VARExpression that appears as the
corresponding actual parameter. Then the declared LocalVariables are instantiated, according to their declared types
(which may be Actual Types), with initial values if specified. Finally, the StatementBlock that is the algorithm body is
executed.

Note — See Clause 13.8 of 1SO 10303-11:2004.
14.7.2.1 Supertypes

Algorithms:: Statement

14.7.2.2 Attributes
none
14.7.2.3 Associations

AssociationEnd: actual-parameters To: Expressions::ActualParameter

via: procedure-call-provides-actual -parameters

Definition: the Actual Parameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: invokes To: Algorithms::Procedure
Definition: the Procedure that is invoked by the ProcedureCall.

Multiplicity: 1..1

14.7.2.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 229

14.7.3 Association: procedure-call-provides-actual-parameters

Definition: represents the relationship between the ProcedureCall statement and the ActualParameters to be passed at the
time of invocation.

14.7.3.1 Association Ends

AssociationEnd: actual-parameters To: Expressions::ActualParameter

Definition: the Actual Parameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: in-ProcedureCall To: ProcedureCall
Definition: the ProcedureCall, if any, in which the Actual Parameter appears.

Multiplicity: 0..1

14.8 REPEAT Statements

This section describes REPEAT statements, and the associated ESCAPE and SKIP statements. Figure 14.7 depicts the
associated concepts.

==metaclass== ¢ [e =emetaclass==
+in-black
LocaiFiement | tocal-elements 1 StatementBlock

L
[Core) 0.* & +namespace [care) +delimited * Boolean [1] | 0.1
T
==metackass== hlock-sequences-statemerts
NamedVariabie .

(&lgorithms) Statement +hady-statements
[+3 (Algorithms) 0.* {ordered}
<=metaclass==
Variable +hody | 1
(Algorithms)
s repest-hag-body ==metaclasse=
+namespace
ssmetaclasses | (eubssts nemes ZCE} ==metaclass== Qs tate et
ControlVariable | i 0.1
+eontrol-variable 1 +oontrolled-b
{subsets local-elemerts} ¥ T
or o |os repest-has-increment-control 0.+ 0.+ ==metaclass>>
repeat-has-while-dontrol - repeat. urttil-cortral RRESH sment
+while-expression | 0.1 0.4 [+unti-expression
+inttial-value ==metaclass=> ctach
control-initial-value 1 G SEmEtackazss=
+hound-value TR ion EscapeStatement
control-hound-alug 1 (Care)
+increment
control-Hncremert-value 1

Figure 14.7 - REPEAT, SKIP, and ESCAPE Statements

14.8.1 Class: ControlVariable

Definition: a Variable representing the specification of for the control variable, if any, of the REPEAT statement.

If the REPEAT statement has an “increment control,” it introduces the control variable, whose scope is the
RepeatStatement, and specifies the initial value for the control variable, a bound-value, and the increment value.

Note — In EXPRESS, theinitial value, increment value and bound value are properties of the “increment control.” Herethe
“increment control” properties are assigned to the Control Variable. See 1SO 10303-11:2004 clause 13.9.1.

230 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.8.1.1 Supertypes

Algorithms::Variable

14.8.1.2 Attributes

none
14.8.1.3 Associations

AssociationEnd: bound-value To: Core::Expression

Definition: the Expression whose value, taken together with the initial-value, specifies the bounds of a set of real
numbers. Iteration of the repeated-body of the RepeatStatement terminates when the value of the control-variable lies
outside that set.

Multiplicity: 1..1

AssociationEnd: increment To: Core::Expression

Definition: the Expression whose value is added to the value of the control-variable at the end of each iteration.
Multiplicity: 1..1

Note — When the EXPRESS syntax does not specify an increment value, the Expression is a Literal referring to the Integer
value 1.

Note — See | SO 10303-11:2004 clause 13.9.1.

AssociationEnd: initial-value To: Core::Expression

Definition: the Expression that specifies the value to be assigned to the control-variable before the first iteration.
Multiplicity: 1..1
AssociationEnd: namespace To: RepeatStatement

via: repeat-has-increment-control

Subsets: Core::L ocal Element:namespace

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.
Multiplicity: 1..1
14.8.1.4 Other Roles

none

14.8.1.5 Rules

Constraint
self->control-variable->namespace = self->for-loop;

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 231

14.8.2 Class: EscapeStatement

Definition: Represents an EXPRESS ESCAPE statement. An ESCAPE statement is always contained within the body of
a RepeatStatement. Execution of an ESCAPE statement results in terminating the repetitiion of the repeated-body and
continuing the control flow with the statement following the RepeatStatement.

Note — See Clause 13.11 of SO 10303-11:2004.
14.8.2.1 Supertypes

Control Statement

14.8.2.2 Attributes
none

14.8.2.3 Associations
none

14.8.2.4 Other Roles

none

14.8.2.5 Rules

Constraint
exists(self->in-block->controlled-by) ;

An EscapeStatement shall only appear in the repeated-body of a RepeatStatement.

14.8.3 Class: RepeatStatement

Definition: Represents an EXPRESS REPEAT statement. The RepeatStatement defines an iteration. The execution of the
repeated-body occurs zero or more times depending on the associated controls, which may be any combination of

- aincrement-control (see ControlVariable)
» awhile-expression
» anuntil-expression
If no control is specified, the iteration continues until an EscapeStatement is executed.

Note — See Clause 13.9 of 1SO 10303-11:2004.
14.8.3.1 Supertypes

Core::Local Scope, Algorithms:: Statement

14.8.3.2 Attributes

none

232 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.8.3.3 Associations

AssociationEnd: body To: Algorithms::Statement

via: repeat-has-body

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1
Properties. composite
AssociationEnd: control-variable To: ControlVariable

via: repeat-has-increment-control

Subsets: Core::L ocal Scope:local-elements

Definition: the specification for the increment control, if any. The increment control defines a control variable, its initial
and final values, and the value by which it is incremented on each iteration.

Note — See | SO 10303-11:2004 clause 13.9.1.
Multiplicity: 0..1
Properties: composite

AssociationEnd: until-expression To: Core::Expression

Definition: the Boolean Expression that specifies a condition for terminating the iteration. If the value returned by the
while-expression is True, the iteration is terminated.

Note — See | SO 10303-11:2004 clause 13.9.3.
Multiplicity: 0..1
AssociationEnd: while-expression To: Core::Expression

Definition: the Boolean Expression that specifies the condition for reiterating the repeated-body. If the value returned by
the while-expression is False, the iteration is terminated.

Note — See |SO 10303-11:2004 clause 13.9.2.
Multiplicity: 0..1
14.8.3.4 Other Roles

none

14.8.4 Class: SkipStatement

Definition: Represents an EXPRESS SKIP statement. A SKIP statement is always contained within the body of a
RepeatStatement. Execution of a SKIP statement results in continuing the control flow with the “increment and test”
operations of the RepeatStatement, skipping any intervening actions.

Note — See Clause 13.11 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 233

14.8.4.1 Supertypes

Control Statement

Attributes

none
14.8.4.2 Associations
none

14.8.4.3 Other Roles
none

14.8.4.4 Rules

Constraint
exists(self->in-block->controlled-by) ;

A SkipStatement shall only appear in the repeated-body of a RepeatStatement.

14.8.5 Association: repeat-has-body

Definition: represents the relationship between a RepeatStatement and the Statement (or StatementBlock) that specifies
the actions to be iterated.

14.8.5.1 Association Ends

AssociationEnd: body To: Algorithms::Statement

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1
Properties. composite

AssociationEnd: controlled-by To: RepeatStatement

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.
Multiplicity: 0..1

14.8.6 Association: repeat-has-increment-control

Definition: represents the relationship between the RepeatStatement and its IncrementControl, if any.
14.8.6.1 Supertypes

Core::local -element-has-local -scope

234 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.8.6.2 Association Ends

AssociationEnd: control-variable To: ControlVariable

Definition: the specification for the control variable, if any, and itsinitial and final values.
Multiplicity: 0..1

Properties: composite

AssociationEnd: namespace To: RepeatStatement
Definition: the RepeatStatement whose execution is controlled by the IncrementControl.

Multiplicity: 1..1

14.9 RETURN Statements

This section describes RETURN statements. Figure 14.8 depicts the associated concepts.

==metaclasss= ==metaclass==
ReturnStatement HEtn-valle.] Expression
0. 0.1 (Core)

Figure 14.8 - RETURN Statements

14.9.1 Class: ReturnStatement

Definition: Represents an EXPRESS RETURN statement. A RETURN statement terminates the execution of a
ProcedureCall or FunctionCall.

A RETURN statement that appears in the body of a Function may also specify an expression for the FunctionResult, that
is, the value which is to be returned as the evaluation of a FunctionCall in which the RETURN statement is executed.

Note — See Clause 13.9 of 1SO 10303-11:2004.
14.9.1.1 Supertypes

Control Statement

14.9.1.2 Attributes

none
14.9.1.3 Associations

AssociationEnd: return-value To: Core::Expression

Definition: An Expression that specifies the value to be returned as the Function result.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 235

The result-value shall not exist for a RETURN statement that appears in the body of a Procedure. A RETURN statement
that appears in the body of a Function and does not specify a result-value Expression implicitly specifies that the value of
the FunctionResult variable is to be returned as the evaluation of a FunctionCall in which the RETURN statement is
executed.

Multiplicity: 0..1
14.9.1.4 Other Roles

none

14.10 VAR Expressions

This section defines the concepts associated with references to (what 1SO 10303-11 calls) “variables” that may change in
value during the execution of an invocation of an Algorithm or the evaluation of a GlobalRule. In general, such
“variables” may be simple Variables, or more complex expressions denoting a part of a Variable. The general form of a
“variable,” therefore, is modeled as a VAR Expression — an Expression that refers to an object that contains a value.
Figure 14.9 depicts the concepts associated with VAR Expressions.

<<metaclass>> +base-entity
VARExpression 1

+base-aggregate

+text : ExpressText [0..1} tbase-entity

MemberCell-has-base-aggregate

1
? AttributeCell-has-base-entity

0..1 ‘ 0..1
<<metaclass>> <<metaclass>> <<metaclass>>
MembercCell VariableCell AttributeCell

+id : Identifier [1]{subsets text] +id : Identifier [1]{subsets text

0..*
MemberCell-has-index

0..* 0.

VariableCell-referent AttributeCelltreferent

+index-value | 1 1 +referent 1 | +referent

<<metaclass>> <<metaclass>> <<metaclass>>
Expression Variable ExplicitAttribute
(Core) (Algorithms) (Core)

GroupCell-has-bage-entity
<<metaclass>> <<metaclass>>

AliasRef GroupCell 0.1

+id : Identifier [1]{subsets text +id : Identifier [1]{subsets text

0.7 0..*

AliasRef{refers-to GroupCell-referent
1 |, +refers-to
<<metaclass>=
VARVariable
(Algorithms)

1 |, +referent
<<metaclass>>
SingleEntityType
(Core)

Figure 14.9 - VAR Expressions

VAR Expressions appear in assignment statements, in ALIAS statements and as Actual Parameters that correspond to
formal parameters that are VARParameters (which are permitted only in Procedure definitions).

Note — Primary Expressions, Index Expressions and Selector Expressions are similar in structure (and use the same syntax in
EXPRESS), but they refer to the Instance that is the current value of the “variable” —the value currently held by that object. A
VARExpression formally refers to the object (place) that holds an Instance, rather than to the Instance it contains. That is, for
example, the meaning of the VariableRef is different from the meaning of the VariableCell, even though the EXPRESS syntax
isthe same. Because the meanings are different, they have different metamodels.

236 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Note — A VAR Expression can never refer to an Instance in the modeled population. Instances in the Population cannot be
created or modified by an EXPRESS Schema. For this reason, EXPRESS restricts the syntax for VAR Expressionsto
beginning with aparameter ref oravariable ref. Thisisreflected in the model.

14.10.1 Class: AttributeCell

Definition: A VAREXxpression whose referent is a cell (or “slot”) containing the value of one ExplicitAttribute in an
EntityValue or Partial EntityValue.

The referent of the :base-entity VAREXpression shall be a cell that holds an EntityValue or Partial EntityVal ue that
has a“slot” for the ExplicitAttribute that is the : referent of the AttributeCell. The cell/slot in the referent of the
:base-entity that corresponds to that ExplicitAttribute is the referent of the AttributeCell.

Note — An Entitylnstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
Entitylnstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
Entitylnstance in the Population.

Note — An “entity-valued object” -- a Variable, Attribute, or aggregation member whose datatypeis an Entity Type (or a
SelectType whose select-list contains Entity Types) -- may contain Entityl nstances from the Population, or contain
EntityValues that correspond to the Entity Type, without reference to Instances in the Population. When the base-entity of an
AttributeCell is an entity-valued object, it is not always clear whether it contains an Entitylnstance, which is then the referent,
or an EntityValue, which makes the entity-val ued object the referent.

14.10.1.1 Supertypes

VAREXpression

14.10.1.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VAREXxpression:text

Definition: the lexical text of the identifier for the Attribute.

Multiplicity: 1..1

14.10.1.3 Associations

AssociationEnd: base-entity To: VAREXpression

Definition: the VAREXxpression that identifies the cell that contains the EntityValue or Partial EntityValue that contains the
referent of the AttributeCell.

Multiplicity: 1..1

AssociationEnd: referent To: Core::ExplicitAttribute

Definition: the ExplicitAttribute that designates the slot that is the referent of the AttributeCell.
Multiplicity: 1..1
14.10.1.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 237

14.10.2 Class: GroupCell

Definition: A VAREXxpression whose referent is the group of cells (or “slots”) for the ExplicitAttributes that constitute a
SingleEntity Type within a cell that holds an EntityValue.

The referent of the :base-entity VARExpression shall be a cell that holds an EntityValue or Partial EntityValue that
includes a SingleEntityValue for the SingleEntity Type that is the : referent of the GroupCell. The group of cells/slots
in the referent of the :base-entity that corresponds to that SingleEntityType is the referent of the GroupCell.

Note — An Entitylnstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
Entityl nstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
Entitylnstance in the Population.

Note — An “entity-valued object” -- a Variable, Attribute, or aggregation member whose datatype is an Entity Type (or a
SelectType whose select-list contains Entity Types) -- may contain Entityl nstances from the Population, or contain
EntityValues that correspond to the Entity Type, without reference to I nstances in the Population. When the base-entity of a
GroupCedll is an entity-valued object, it is not always clear whether it contains an Entitylnstance, which is then the referent, or
an EntityValue, which makes the entity-valued object the referent.

14.10.2.1 Supertypes

VAREXxpression

14.10.2.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VARExpression:text

Definition: the lexical text of the identifier for the SingleEntityType.

Multiplicity: 1..1

14.10.2.3 Associations

AssociationEnd: base-entity To: VAREXpression

Definition: the VARExpression that identifies the cell that contains the EntityVValue or Partial EntityValue that contains the
referent of the GroupCell.

Multiplicity: 1..1
AssociationEnd: referent To: Core::SingleEntityType

Definition: the SingleEntityType that designates the group of ExplicitAttribute slots that constitute the referent of the
GroupCell.

Multiplicity: 1..1
14.10.2.4 Other Roles

none

238 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.10.3 Class: MemberCell

Definition: A VAREXpression that represents a reference to a cell that is a member of a cell whose datatype is an
aggregation data type.

The cell that is the referent of the :base-aggregate VAREXpression shall have a datatype that is an aggregation data
type. The referent of the MemberCell is the member of that cell that is designated by the index or position value that is
the result of the : index-value Expression.

14.10.3.1 Supertypes
VAREXpression
14.10.3.2 Attributes

none
14.10.3.3 Associations

AssociationEnd: base-aggregate To: VAREXxpression

Definition: the VARExpression that identifies the aggregate cell that contains the referent member cell.
Multiplicity: 1..1

AssociationEnd: index-value To: Core::Expression
Definition: the index or position value used to identify the member cell within the aggregate cell.
Multiplicity: 1..1

14.10.3.4 Other Roles

none

14.10.4 Class: AliasRef

Definition: A VAREXxpression consisting only of the identifier for a VARVariable, i.e., an AliasVariable, or a
VARParameter. The referent of the AliasRef VAREXxpression is the referent of the VARVariable designated by the
.refers-to relationship.

Note — An AliasRef to a VARVariable produces a different result from a VariableRef to the same VARVariable. The AliasRef
produces the referent of the VARVariable — the place that holds the value; the VariableRef produces the value that is currently
in that place. In computer science terminology, the VariableRef “de-references’ the VARVariable.

14.10.4.1 Supertypes
VAREXxpression
14.10.4.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: VARExpression:text

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 239

Definition: the lexical text of the identifier for the Parameter or the AliasVariable.
Multiplicity: 1..1
14.10.4.3 Associations

AssociationEnd: refers-to To: Algorithms::VARVariable

Definition: the AliasVariable or VARParameter whose referent is the referent of the AliasRef.
Multiplicity: 1..1
14.10.4.4 Other Roles

none

14.10.5 Class: VARExpression

Definition: an expression that refers to a cell - a place - that contains a value.

Unlike Primary Expressions, Index Expressions and Selector Expressions, which are similar in structure, a
VARExpression formally refers to the cell that holds an Instance, rather than to the Instance itself. The cell to which a
VARExpression refers is called its referent. The type of a VAREXxpression is “reference to cell containing” the data type
of the referent cell. The referent of a VAREXxpression can be:

» alocalVariable,
 an InParameter or FunctionResullt,
» amember of acell whose data typeisan AggregationType,
« an ExplicitAttribute slot in a cell that contains an EntityValue or Partial EntityValue,
- thecellsthat contain a SingleEntityValuein a cell that contains an EntityValue or Partial EntityValue,
- thecell that isthe referent of an AliasVariable or a VARParameter.
Properties: abstract
14.10.5.1 Supertypes
none
14.10.5.2 Attributes

Attribute: text To: Core::ExpressText

Definition: the lexical representation of the VAREXxpression.
Multiplicity: 0..1
14.10.5.3 Associations

none

240 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

14.10.5.4 Other Roles

From: PassByReference as actual-referent
From: Assignment as recipient

From: MemberCell as base-aggregate
From: AttributeCell as base-entity
From: GroupCell as base-entity
From: AliasVariable as referent

14.10.6 Class: VariableCell

Definition: A VAREXxpression that consists only of the identifier for a Variable. The referent of the VariableCell
VARExpression is the cell that instantiates that Variable (as distinct from the value of that Variable). The Variable is
designated by the . referent relationship.

Note — A VAREXxpression that consists of the identifier for an AliasVariable or a VARParameter is an AliasRef, not a
VariableCell. A VariableCell differsfrom aVariableRef in that it refers to the place, not the value.

14.10.6.1 Supertypes

VAREXxpression

14.10.6.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VAREXpression:text

Definition: the lexical text of the identifier for the NamedVariable

Multiplicity: 1..1

14.10.6.3 Associations

AssociationEnd: referent To: Algorithms::Variable

Definition: the Variable whose instantiation is the referent object of the VariableCell VAREXpression.
Multiplicity: 1..1
14.10.6.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

241

242 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

15 Package : Express?2

The Express2 Package has no immediate content. It simply combines the Rules Package with the full Statements
Package, and thus contains all of the model elements for the language.

Figure 15.1 shows the complete view of the scope concepts in EXPRESS version 2. Note that the L ocal Scopes arise only
when the Algorithms, Rules, Expressions, and Statements Packages are supported.

==metaclass== . ==metaclass==
+namespace 0.
Scopa
(Core) 1 +named-elements (Care)

{disjoint, total} T

==metaclass=»= ==metaclass=»= ==metaclass=»=
Schema LocaiScope MNamed Type
[Core) [(Core) [Core)

{dlisjoint, total} T

==metaclass== ==metaclass== ==metaclass== ==metaclass==
QueryExpression GO i
(Expressions) (Core) (Statements) (Statements)
{disjoint, total}
==metaclass=» ==metaclasse=
Afgorithm GlobalRule
[&lgorithms) (Rules)

Figure 15.1 - Integrated Overview of Scopes

In asimilar way, Figure 15.2 depicts the complete view of the NamedElement concepts in EXPRESS version 2, which are
drawn from several packages.

=emetaclasss== element-defined-ir-scope zemetaclazsss
NawedEfement | 0 +namespace Scope
(Core) +named-elements 1 [Core)
{union}

{disjoirt, total) T

==metaclass== ==metaclass== ==metaclass== ==metaclass==
LocaiEfement ParawmetricEiement Schemationtemt TypeElemont
(Core) (Core) (Core) (Core)
(-3
{clisjoint, total} {disjoirt, =
i total} <=metaclass=>
disjoint, total
eynt, otal} L Attribute
==metackass== <=metaciazs== ==metaciasss= (Care)
;i [~ femrant
i Care] Rules
(Algorithms) (Eare) (Rules) e
T {dlisjoirt, total} DomainRule
(Core)
==metaclass== ‘
NamedRule <emetaciassss ==metaclass==
(Rules) Constant Named Type <<mtataclass>>
(Instances) (Care) UniqueRule
(Core)
==metaclasss= ==metaclasss=
Algorithu SupertypeRule ssmetaclass=>
(Algorithins) (Rules) L — Enumerationitem
(Enumerstions)

Figure 15.2- Overview of Named Elements

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 243

15.1 Dependencies

Dependency on Package: Statements

Stereotypes. import

The Express2 Package depends on the Statements Package for complete modeling of EXPRESS Functions and
Procedures. By way of the Statements Package, Express2 implicitly depends on the Expressions Package, for complete
modeling of Expressions and thereby on the Algorithms, Core, and Instances Packages.

Dependency on Package: Rules

Stereotypes: import

The Express2 Package depends on the Rules Package in order to complete the support of all elements of the EXPRESS
language. The Rules Package is the only package that is not required for the support of the Statements compliance point.

15.2 Classes and Associations

none

244 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

block-sequences-statements 220
I n d eX BOOLEAN 113

BooleanValue 127

C
A call-provides-actual-parameters 207
Actua AGGREGATEType 167 CaseAction 224
ActualAggregationType 168 CaseStatement 225
Actual ARRAY Type 169 Coercion 201
ActuadBAGType 169 CommonElement 14
Actua GenericType 170 common-el ement-has-local-scope 26
ActualLISTType 171 Compliance points 3, 4
ActualParameter 204 ConcreteAggregationType 61
Actual StructureConstraint 106 ConcreteType 38
ActualType 37 ConcreteValue 117, 122
Actual TypeConstraint 107 Constant 146
aggregate-has-constraint 108 ConstantRef 186
Aggregatelndex 192 Control Statement 218
Aggregatelnitializer 211 ControlVariable 230
AGGREGATETYype 65 Core Package 9, 11
AGGREGATETYype-defines-parameter 104
AggregateValue 132 D
AggregationType 57 DataType 38
Algorithm 153 DefinedType 39
algorithm-has-body 160 DerivedAttribute 74
algorithm-has-parameters 161 DomainConstraint 49
Algorithms Package 9 DomainRole 89
AlgorithmScope 13 DomainRole-in-Relationship 93
dlias-binds-variable 223 DomainRule 50
AliasRef 239
AliasStatement 221 E
AliasVariable 222 E1S1T
ANDConstraint 177 element-defined-in-scope 26
AnonymousType 37 element-has-source 105
ArrayBound 50 ElementSource 101
ARRAY Type 60 EntityInstance 140
ARRAYValue 133 EntityName 141
Assignment 223 entity-plays-range-role 94
Attribute 73 EntityType 75
AttributeBinding 214 EntityType-has-Attribute 85
AttributeCell 237 EntityType-has-UniqueRule 86
attribute-declared-in-entity 84 entity-used-in-aftribute 94
attribute-has-data-type 84 EntityValue 141
AttributeRef 194 entity-value-describes-state 144
AttributeValue 139 enumeration-declares-items 119

enumeration-extends-enumeration 47
B Enumerationltem 118, 123
BAGType 60 Enumerations Package 9
BAGVaue 135 EnumerationType 39
BINARY 113 EnumitemRef 187
Binarylndex 193 EscapeStatement 232
BinaryOperation 197 Exchange document 3
BinaryOperator 198 ExplicitAttribute 78
BinaryType 53 explicitly 16
BinaryValue 126 EXPRESS BINARY type 53

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0 245

EXPRESS language 1
Expression 109

Expressions Package 9
ExpressText 11

Extent 147
extent-of-Entity Type 149
ExtentRef 188
extent-within-population 150

F

FALSE 151

Function 155
FunctionCall 206
function-has-result 161
FunctionResult 155
fundamental-value 124

G

GeneralAggregationType 66
General ARRAY Type 67
GeneralBAGType 68
GeneralizedType 69
GeneralLISTType 69
GeneralSETType 70
GENERIC 116
GENERIC_ENTITY 116
GenericAggregate 135
GenericType 70
GlobalRule 173

Globa Rule-contains-NamedRule 176
GroupCell 238

GroupRef 195

I

Identifier 12
|fStatement 226
implicitly 15
INDETERMINATE 126
Indeterminate 123
IndeterminateRef 188
IndexOperation 184
InParameter 156
Instance 111

Instance package 7
instance-of-Entity Type 145
instance-of-type 115
Instances Package 9
InstantiableType 41
INTEGER 113
IntegerVaue 127
Interface 15
InterfacedElement 17
interface-includes-elements 27
InterfaceKind 18

InverseAttribute-inverts-ExplicitAttribute 87

InverseAttribute-models-role 95

246

InvertibleAttribute 80
InvertibleAttribute-models-role 96
issues/problems xii

K
Keyword 12

L

LengthConstraint 53
ListMember 136
LISTType 61
LISTValue 136
Litera 189
LocalElement 19
local-element-has-local-scope 28
Local Scope 19
LocalVariable 162
LOGICAL 113
LogicalValue 128
LogicType 54

M

MemberBinding 212
MemberCell 239
MEXICO project 1
MultiLeafInstance 142

N

NamedElement 20

NamedType 42
NamedType-has-DomainRule 51
NamedVariable 163

Namespace 7

Null Statement 219

NUMBER 114

NumberValue 128
NumericType 55

0]

Object Management Group, Inc. (OMG) Xi
OMG specifications xi

ONEOFConstraint 178

Operation 184

OrderingKind 62

P
Parameter 156
ParameterRef 189
ParameterType 43
ParametricElement 101
ParametricStructure 103
ParametricType 104

Partial EntityConstructor 215
Partial EntityType 81

Partial EntityValue 142

Pl 152

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

Population 148

population-includes-instance 150

Primary 185

Procedure 158

ProcedureCall 229
procedure-call-provides-actual-parameters 230

Q
QueryExpression 208
QueryVariable 209

R

RangeRole-in-Relationship 96
REAL 114

Real Type 55

RealVaue 129

Redeclaration 97
REFERENCE statement 15, 18
referent 240

Relationship 91

Remark 32
remark-appears-in-scope 33
remark-describes-element 34
RepeatCount 213
repeat-has-body 234
repeat-has-increment-control 234
RepeatStatement 232
ReturnStatement 235

ROLE 114

Role 92
rule-constrains-extents 176
rule-constrains-subtypes 180
rule-includes-SubtypeConstraints 181
Rules Package 9

S

Schema 21

schema-defines-elements 28
SchemaElement 23
schema-element-is-interfaced-element 29
schema-has-interface 30
schema-interfaces-elements 29

Scope 1,9, 11, 24, 117, 121, 153, 173, 183, 217, 243

Scopedid 24

scope-of-actual -type 171
scope-of-redeclaration-is-Entity Type 99
scope-of-variable-is-query 210
Selector 185

SelectType 44
select-type-extends-sel ect-type 47
SELFRef 190

SETType 63

SETVaue 137

SimpleType 56

SimpleVaue 130
single-entity-declared-in-entity 87

SingleEntity Type 82
SingleEntityValue 143
SingleleafInstance 144
SizeConstraint 63
SkipStatement 233
SpecializedType 46
SpeciadizedValue 124
Standards for Exchange of Product Data (STEP) 1
Statement 158
StatementBlock 219
Statements Package 9
STEP project 1
STRING 114
Stringlndex 193
StringType 56
SubtypeConstraint 178
SupertypeRule 179

T
TOTAL_OVERConstraint 180
TRUE 152

TYPE 114

Typedinstance 125
TypeElement 25
type-element-has-scope 31
type-has-constraints 51
type-instantiates-sel ect-type 48
TypeName 131

typographical conventions Xii

U

UnaryOperator 202
UniqueRule 83

USE statement 15, 19
UsedinRef 196

Vv

value-of-EnumerationType 120
VAREXxpression 240

Variable 164

VariableCell 241
variable-defined-in-scope 165
VariableRef 191
VariableType 46
VARParameter 160
VARVariable 164

Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

247

248 Reference Metamodel for the EXPRESS Information Modeling Language, v1.0

	1 Introduction
	2 Scope and Purpose
	3 Normative References
	4 Conformance
	4.1 Conformance of an exchange document
	4.2 Conformance as a producer (pre-processor)
	4.3 Conformance as a (post-)processor
	4.4 Compliance points
	4.4.1 Compliance point: Enumerations
	4.4.2 Compliance point: Algorithms
	4.4.3 Compliance point: Rules
	4.4.4 Compliance point: Expressions
	4.4.5 Compliance point: Statements
	4.4.6 Compliance point: Express2

	5 Terms and Definitions
	5.1 Unified Modeling Language (UML) Terms
	5.2 EXPRESS Terms
	5.3 Terms for Model Elements
	5.4 Additional terms introduced in this specification

	6 Additional Information
	6.1 Document Conventions
	6.2 Acknowledgements

	7 Overview of the EXPRESS Metamodel
	8 Package :: Core
	8.1 Dependencies
	8.2 MOF Metamodel Datatypes
	8.2.1 Datatype: Boolean
	8.2.2 Datatype: Integer
	8.2.3 Datatype: String

	8.3 EXPRESS Language Datatypes
	8.3.1 Datatype: ExpressText
	8.3.1.1 Supertypes
	8.3.1.2 Members

	8.3.2 Datatype: Identifier
	8.3.2.1 Supertypes
	8.3.2.2 Members

	8.3.3 Datatype: Keyword
	8.3.3.1 Supertypes
	8.3.3.2 Members

	8.4 Schemas, Scopes, and Naming
	8.4.1 Class: AlgorithmScope
	8.4.1.1 Supertypes
	8.4.1.2 Attributes
	8.4.1.3 Associations
	8.4.1.4 Other Roles

	8.4.2 Class: CommonElement
	8.4.2.1 Supertypes
	8.4.2.2 Attributes
	8.4.2.3 Associations
	8.4.2.4 Other Roles
	8.4.2.5 Rules

	8.4.3 Class: Interface
	8.4.3.1 Supertypes
	8.4.3.2 Attributes
	8.4.3.3 Associations
	8.4.3.4 Other Roles

	8.4.4 Class: InterfacedElement
	8.4.4.1 Supertypes
	8.4.4.2 Attributes
	8.4.4.3 Associations
	8.4.4.4 Other Roles

	8.4.5 Datatype: InterfaceKind
	8.4.5.1 Supertypes
	8.4.5.2 Values

	8.4.6 Class: LocalElement
	8.4.6.1 Supertypes
	8.4.6.2 Attributes
	8.4.6.3 Associations
	8.4.6.4 Other Roles

	8.4.7 Class: LocalScope
	8.4.7.1 Supertypes
	8.4.7.2 Attributes
	8.4.7.3 Associations
	8.4.7.4 Other Roles

	8.4.8 Class: NamedElement
	8.4.8.1 Supertypes
	8.4.8.2 Attributes
	8.4.8.3 Associations
	8.4.8.4 Other Roles

	8.4.9 Class: Schema
	8.4.9.1 Supertypes
	8.4.9.2 Attributes
	8.4.9.3 Associations
	8.4.9.4 Other Roles

	8.4.10 Class: SchemaElement
	8.4.10.1 Supertypes
	8.4.10.2 Attributes
	8.4.10.3 Associations
	8.4.10.4 Other Roles
	8.4.10.5 Rules

	8.4.11 Class: Scope
	8.4.11.1 Supertypes
	8.4.11.2 Attributes
	8.4.11.3 Associations
	8.4.11.4 Other Roles

	8.4.12 Datatype: ScopedId
	8.4.12.1 Supertypes
	8.4.12.2 Members

	8.4.13 Class: TypeElement
	8.4.13.1 Supertypes
	8.4.13.2 Attributes
	8.4.13.3 Associations
	8.4.13.4 Other Roles

	8.4.14 Association: common-element-has-local-scope
	8.4.14.1 Supertypes
	8.4.14.2 Association Ends

	8.4.15 Association: element-defined-in-scope
	8.4.15.1 Association Ends

	8.4.16 Association: interface-includes-elements
	8.4.16.1 Association Ends

	8.4.17 Association: local-element-has-local-scope
	8.4.17.1 Supertypes
	8.4.17.2 Association Ends

	8.4.18 Association: schema-defines-elements
	8.4.18.1 Supertypes
	8.4.18.2 Association Ends

	8.4.19 Association: schema-element-is-interfaced-element
	8.4.19.1 Association Ends

	8.4.20 Association: schema-interfaces-elements
	8.4.20.1 Association Ends

	8.4.21 Association: schema-has-interface
	8.4.21.1 Association Ends

	8.4.22 Association: type-element-has-scope
	8.4.22.1 Supertypes
	8.4.22.2 Association Ends

	8.5 Remarks
	8.5.1 Class: Remark
	8.5.1.1 Supertypes
	8.5.1.2 Attributes
	8.5.1.3 Associations
	8.5.1.4 Other Roles

	8.5.2 Association: remark-appears-in-scope
	8.5.2.1 Association Ends

	8.5.3 Association: remark-describes-element
	8.5.3.1 Association Ends

	8.5.4 Association: remark-describes-schema
	8.5.4.1 Association Ends

	8.6 Overview of Types
	8.6.1 Class: ActualType
	8.6.1.1 Supertypes
	8.6.1.2 Attributes
	8.6.1.3 Associations
	8.6.1.4 Other Roles

	8.6.2 Class: AnonymousType
	8.6.2.1 Supertypes
	8.6.2.2 Attributes
	8.6.2.3 Associations
	8.6.2.4 Other Roles

	8.6.3 Class: ConcreteType
	8.6.3.1 Supertypes
	8.6.3.2 Attributes
	8.6.3.3 Associations
	8.6.3.4 Other Roles

	8.6.4 Class: DataType
	8.6.4.1 Supertypes
	8.6.4.2 Attributes
	8.6.4.3 Associations
	8.6.4.4 Other Roles

	8.6.5 Class: DefinedType
	8.6.5.1 Supertypes
	8.6.5.2 Attributes
	8.6.5.3 Associations
	8.6.5.4 Other Roles

	8.6.6 Class: EnumerationType
	8.6.6.1 Supertypes
	8.6.6.2 Attributes
	8.6.6.3 Associations
	8.6.6.4 Other Roles

	8.6.7 Class: InstantiableType
	8.6.7.1 Supertypes
	8.6.7.2 Attributes
	8.6.7.3 Associations
	8.6.7.4 Other Roles

	8.6.8 Class: NamedType
	8.6.8.1 Supertypes
	8.6.8.2 Attributes
	8.6.8.3 Associations
	8.6.8.4 Other Roles
	8.6.8.5 Rules

	8.6.9 Class: ParameterType
	8.6.9.1 Supertypes
	8.6.9.2 Attributes
	8.6.9.3 Associations
	8.6.9.4 Other Roles

	8.6.10 Class: SelectType
	8.6.10.1 Supertypes
	8.6.10.2 Attributes
	8.6.10.3 Associations
	8.6.10.4 Other Roles

	8.6.11 Class: SpecializedType
	8.6.11.1 Supertypes
	8.6.11.2 Attributes
	8.6.11.3 Associations
	8.6.11.4 Other Roles

	8.6.12 Class: VariableType
	8.6.12.1 Supertypes
	8.6.12.2 Attributes
	8.6.12.3 Associations
	8.6.12.4 Other Roles

	8.6.13 Association: enumeration-extends-enumeration
	8.6.13.1 Association Ends

	8.6.14 Association: select-type-extends-select-type
	8.6.14.1 Association Ends

	8.6.15 Association: type-instantiates-select-type
	8.6.15.1 Association Ends

	8.7 Type Constraints
	8.7.1 Class: DomainConstraint
	8.7.1.1 Supertypes
	8.7.1.2 Attributes
	8.7.1.3 Associations
	8.7.1.4 Other Roles

	8.7.2 Class: DomainRule
	8.7.2.1 Supertypes
	8.7.2.2 Attributes
	8.7.2.3 Associations
	8.7.2.4 Other Roles

	8.7.3 Association: NamedType-has-DomainRule
	8.7.3.1 Supertypes
	8.7.3.2 Association Ends

	8.7.4 Association: type-has-constraints
	8.7.4.1 Association Ends

	8.8 Simple Types
	8.8.1 Class: BinaryType
	8.8.1.1 Supertypes
	8.8.1.2 Attributes
	8.8.1.3 Associations
	8.8.1.4 Other Roles

	8.8.2 Class: LengthConstraint
	8.8.2.1 Supertypes
	8.8.2.2 Attributes
	8.8.2.3 Associations
	8.8.2.4 Other Roles
	8.8.2.5 Rules

	8.8.3 Class: LogicType
	8.8.3.1 Supertypes
	8.8.3.2 Attributes
	8.8.3.3 Associations
	8.8.3.4 Other Roles

	8.8.4 Class: NumericType
	8.8.4.1 Supertypes
	8.8.4.2 Attributes
	8.8.4.3 Associations
	8.8.4.4 Other Roles

	8.8.5 Class: RealType
	8.8.5.1 Supertypes
	8.8.5.2 Attributes
	8.8.5.3 Associations
	8.8.5.4 Other Roles

	8.8.6 Class: SimpleType
	8.8.6.1 Supertypes
	8.8.6.2 Attributes
	8.8.6.3 Associations
	8.8.6.4 Other Roles

	8.8.7 Class: StringType
	8.8.7.1 Supertypes
	8.8.7.2 Attributes
	8.8.7.3 Associations
	8.8.7.4 Other Roles

	8.9 Aggregation Types
	8.9.1 Class: AggregationType
	8.9.1.1 Supertypes
	8.9.1.2 Attributes
	8.9.1.3 Associations
	8.9.1.4 Other Roles

	8.9.2 Class: ArrayBound
	8.9.2.1 Supertypes
	8.9.2.2 Attributes
	8.9.2.3 Associations
	8.9.2.4 Other Roles
	8.9.2.5 Rules

	8.9.3 Class: ARRAYType
	8.9.3.1 Supertypes
	8.9.3.2 Attributes
	8.9.3.3 Associations
	8.9.3.4 Other Roles
	8.9.3.5 Rules

	8.9.4 Class: BAGType
	8.9.4.1 Supertypes
	8.9.4.2 Attributes
	8.9.4.3 Associations
	8.9.4.4 Other Roles
	8.9.4.5 Rules

	8.9.5 Class: ConcreteAggregationType
	8.9.5.1 Supertypes
	8.9.5.2 Attributes
	8.9.5.3 Associations
	8.9.5.4 Other Roles

	8.9.6 Class: LISTType
	8.9.6.1 Supertypes
	8.9.6.2 Attributes
	8.9.6.3 Associations
	8.9.6.4 Other Roles
	8.9.6.5 Rules

	8.9.7 Datatype: OrderingKind
	8.9.7.1 Supertypes
	8.9.7.2 Values

	8.9.8 Class: SETType
	8.9.8.1 Supertypes
	8.9.8.2 Attributes
	8.9.8.3 Associations
	8.9.8.4 Other Roles
	8.9.8.5 Rules

	8.9.9 Class: SizeConstraint
	8.9.9.1 Supertypes
	8.9.9.2 Attributes
	8.9.9.3 Associations
	8.9.9.4 Other Roles
	8.9.9.5 Rules

	8.10 Generalized Types
	8.10.1 Class: AGGREGATEType
	8.10.1.1 Supertypes
	8.10.1.2 Attributes
	8.10.1.3 Associations
	8.10.1.4 Other Roles

	8.10.2 Class: GeneralAggregationType
	8.10.2.1 Supertypes
	8.10.2.2 Attributes
	8.10.2.3 Associations
	8.10.2.4 Other Roles

	8.10.3 Class: GeneralARRAYType
	8.10.3.1 Supertypes
	8.10.3.2 Attributes
	8.10.3.3 Associations
	8.10.3.4 Other Roles

	8.10.4 Class: GeneralBAGType
	8.10.4.1 Supertypes
	8.10.4.2 Attributes
	8.10.4.3 Associations
	8.10.4.4 Other Roles

	8.10.5 Class: GeneralizedType
	8.10.5.1 Supertypes
	8.10.5.2 Attributes
	8.10.5.3 Associations
	8.10.5.4 Other Roles

	8.10.6 Class: GeneralLISTType
	8.10.6.1 Supertypes
	8.10.6.2 Attributes
	8.10.6.3 Associations
	8.10.6.4 Other Roles

	8.10.7 Class: GeneralSETType
	8.10.7.1 Supertypes
	8.10.7.2 Attributes
	8.10.7.3 Associations
	8.10.7.4 Other Roles

	8.10.8 Class: GenericType
	8.10.8.1 Supertypes
	8.10.8.2 Attributes
	8.10.8.3 Associations
	8.10.8.4 Other Roles
	8.10.8.5 Rules

	8.11 Entities and Attributes
	8.11.1 Class: Attribute
	8.11.1.1 Supertypes
	8.11.1.2 Attributes
	8.11.1.3 Associations
	8.11.1.4 Other Roles
	8.11.1.5 Rules

	8.11.2 Class: DerivedAttribute
	8.11.2.1 Supertypes
	8.11.2.2 Attributes
	8.11.2.3 Associations
	8.11.2.4 Other Roles

	8.11.3 Class: EntityType
	8.11.3.1 Supertypes
	8.11.3.2 Attributes
	8.11.3.3 Associations
	8.11.3.4 Other Roles

	8.11.4 Class: ExplicitAttribute
	8.11.4.1 Supertypes
	8.11.4.2 Attributes
	8.11.4.3 Associations
	8.11.4.4 Other Roles

	8.11.5 Class: InverseAttribute
	8.11.5.1 Supertypes
	8.11.5.2 Attributes
	8.11.5.3 Associations
	8.11.5.4 Other Roles

	8.11.6 Class: InvertibleAttribute
	8.11.6.1 Supertypes
	8.11.6.2 Attributes
	8.11.6.3 Associations
	8.11.6.4 Other Roles

	8.11.7 Class: PartialEntityType
	8.11.7.1 Supertypes
	8.11.7.2 Attributes
	8.11.7.3 Associations
	8.11.7.4 Other Roles

	8.11.8 Class: SingleEntityType
	8.11.8.1 Supertypes
	8.11.8.2 Attributes
	8.11.8.3 Associations
	8.11.8.4 Other Roles
	8.11.8.5 Rules

	8.11.9 Class: UniqueRule
	8.11.9.1 Supertypes
	8.11.9.2 Attributes
	8.11.9.3 Associations
	8.11.9.4 Other Roles

	8.11.10 Association: attribute-declared-in-entity
	8.11.10.1 Association Ends

	8.11.11 Association: attribute-has-data-type
	8.11.11.1 Association Ends

	8.11.12 Association: entity-has-attributes
	8.11.12.1 Association Ends

	8.11.13 Association: EntityType-has-Attribute
	8.11.13.1 Supertypes
	8.11.13.2 Association Ends

	8.11.14 Association: EntityType-has-UniqueRule
	8.11.14.1 Supertypes
	8.11.14.2 Association Ends

	8.11.15 Association: InverseAttribute-inverts-ExplicitAttribute
	8.11.15.1 Association Ends

	8.11.16 Association: single-entity-declared-in-entity
	8.11.16.1 Association Ends

	8.12 Relationships
	8.12.1 Class: DomainRole
	8.12.1.1 Supertypes
	8.12.1.2 Attributes
	8.12.1.3 Associations
	8.12.1.4 Other Roles

	8.12.2 Class: RangeRole
	8.12.2.1 Supertypes
	8.12.2.2 Attributes
	8.12.2.3 Associations
	8.12.2.4 Other Roles

	8.12.3 Class: Relationship
	8.12.3.1 Supertypes
	8.12.3.2 Attributes
	8.12.3.3 Associations
	8.12.3.4 Other Roles

	8.12.4 Class: Role
	8.12.4.1 Supertypes
	8.12.4.2 Attributes
	8.12.4.3 Associations
	8.12.4.4 Other Roles

	8.12.5 Association: DomainRole-in-Relationship
	8.12.5.1 Association Ends

	8.12.6 Association: entity-plays-domain-role
	8.12.6.1 Association Ends

	8.12.7 Association: entity-plays-range-role
	8.12.7.1 Association Ends

	8.12.8 Association: entity-used-in-attribute
	8.12.8.1 Association Ends

	8.12.9 Association: InverseAttribute-models-role
	8.12.9.1 Association Ends

	8.12.10 Association: InvertibleAttribute-creates-relationship
	8.12.10.1 Association Ends

	8.12.11 Association: InvertibleAttribute-models-role
	8.12.11.1 Association Ends

	8.12.12 Association: RangeRole-in-Relationship
	8.12.12.1 Association Ends

	8.13 Redeclarations
	8.13.1 Class: Redeclaration
	8.13.1.1 Supertypes
	8.13.1.2 Attributes
	8.13.1.3 Associations
	8.13.1.4 Other Roles

	8.13.2 Association: scope-of-redeclaration-is-EntityType
	8.13.2.1 Association Ends

	8.14 Parametric Datatype Elements
	8.14.1 Class: ElementSource
	8.14.1.1 Supertypes
	8.14.1.2 Attributes
	8.14.1.3 Associations

	8.14.2 Class: ParametricElement
	8.14.2.1 Supertypes
	8.14.2.2 Attributes
	8.14.2.3 Associations
	8.14.2.4 Other Roles

	8.14.3 Class: ParametricStructure
	8.14.3.1 Supertypes
	8.14.3.2 Attributes
	8.14.3.3 Associations
	8.14.3.4 Other Roles

	8.14.4 Class: ParametricType
	8.14.4.1 Supertypes
	8.14.4.2 Attributes
	8.14.4.3 Associations
	8.14.4.4 Other Roles
	8.14.4.5 Rules

	8.14.5 Association: AGGREGATEType-defines-parameter
	8.14.5.1 Association Ends

	8.14.6 Association: element-has-source
	8.14.6.1 Association Ends

	8.15 Actual Type Constraints
	8.15.1 Class: ActualStructureConstraint
	8.15.1.1 Supertypes
	8.15.1.2 Attributes
	8.15.1.3 Associations
	8.15.1.4 Other Roles

	8.15.2 Class: ActualTypeConstraint
	8.15.2.1 Supertypes
	8.15.2.2 Attributes
	8.15.2.3 Associations
	8.15.2.4 Other Roles

	8.15.3 Association: aggregate-has-constraint
	8.15.3.1 Association Ends

	8.16 Expressions and Instances
	8.16.1 Class: Expression
	8.16.1.1 Supertypes
	8.16.1.2 Attributes
	8.16.1.3 Associations
	8.16.1.4 Other Roles
	8.16.1.5 Rules

	8.16.2 Class: Instance
	8.16.2.1 Supertypes
	8.16.2.2 Attributes
	8.16.2.3 Associations
	8.16.2.4 Other Roles
	8.16.2.5 Rules

	8.17 Instance Package: BuiltInTypes
	8.17.1 Dependencies
	8.17.2 Instance: BINARY
	8.17.3 Instance: BOOLEAN
	8.17.4 Instance: INTEGER
	8.17.5 Instance: LOGICAL
	8.17.6 Instance: NUMBER
	8.17.7 Instance: REAL
	8.17.8 Instance: ROLE
	8.17.9 Instance: STRING
	8.17.10 Instance: TYPE
	8.17.11 Association: instance-of-type
	8.17.11.1 Association Ends

	8.18 Instance Package: GenericTypes
	8.18.1 Dependencies
	8.18.2 Instance: GENERIC
	8.18.3 Instance: GENERIC_ENTITY

	9 Enumerations
	9.1 Dependencies
	9.2 Enumeration Items
	9.2.1 Class: ConcreteValue
	9.2.1.1 Supertypes
	9.2.1.2 Attributes
	9.2.1.3 Associations
	9.2.1.4 Other Roles

	9.2.2 Class: EnumerationItem
	9.2.2.1 Supertypes
	9.2.2.2 Attributes
	9.2.2.3 Associations
	9.2.2.4 Other Roles
	9.2.2.5 Rules

	9.2.3 Association: enumeration-declares-items
	9.2.3.1 Supertypes
	9.2.3.2 Association Ends

	9.2.4 Association: value-of-EnumerationType
	9.2.4.1 Association Ends

	10 Package : Instances
	10.1 Dependencies
	10.2 Overview of Instances
	10.2.1 Class Core::Instance
	10.2.2 Class: ConcreteValue
	10.2.2.1 Supertypes
	10.2.2.2 Attributes
	10.2.2.3 Associations
	10.2.2.4 Other Roles

	10.2.3 Class: EnumerationItem
	10.2.3.1 Supertypes
	10.2.3.2 Attributes
	10.2.3.3 AssociationEnds
	10.2.3.4 Other Roles
	10.2.3.5 Rules

	10.2.4 Class: Indeterminate
	10.2.4.1 Supertypes
	10.2.4.2 Attributes
	10.2.4.3 Associations
	10.2.4.4 Other Roles
	10.2.4.5 Rules

	10.2.5 Class: SpecializedValue
	10.2.5.1 Supertypes
	10.2.5.2 Attributes
	10.2.5.3 Associations
	10.2.5.4 Other Roles

	10.2.6 Class: TypedInstance
	10.2.6.1 Supertypes
	10.2.6.2 Attributes
	10.2.6.3 Associations
	10.2.6.4 Other Roles

	10.2.7 Instance: INDETERMINATE

	10.3 Simple Values
	10.3.1 Class: BinaryValue
	10.3.1.1 Supertypes
	10.3.1.2 Attributes
	10.3.1.3 Associations
	10.3.1.4 Other Roles

	10.3.2 Class: BooleanValue
	10.3.2.1 Supertypes
	10.3.2.2 Attributes
	10.3.2.3 Associations
	10.3.2.4 Other Roles
	10.3.2.5 Rules

	10.3.3 Class: IntegerValue
	10.3.3.1 Supertypes
	10.3.3.2 Attributes
	10.3.3.3 Associations
	10.3.3.4 Other Roles

	10.3.4 Class: LogicalValue
	10.3.4.1 Supertypes
	10.3.4.2 Attributes
	10.3.4.3 Associations
	10.3.4.4 Other Roles
	10.3.4.5 Rules

	10.3.5 Class: NumberValue
	10.3.5.1 Supertypes
	10.3.5.2 Attributes
	10.3.5.3 Associations
	10.3.5.4 Other Roles

	10.3.6 Class: RealValue
	10.3.6.1 Supertypes
	10.3.6.2 Attributes
	10.3.6.3 Associations
	10.3.6.4 Other Roles

	10.3.7 Class: RoleName
	10.3.7.1 Supertypes
	10.3.7.2 Attributes
	10.3.7.3 Associations
	10.3.7.4 Other Roles

	10.3.8 Class: SimpleValue
	10.3.8.1 Supertypes
	10.3.8.2 Attributes
	10.3.8.3 Associations
	10.3.8.4 Other Roles

	10.3.9 Class: StringValue
	10.3.9.1 Supertypes
	10.3.9.2 Attributes
	10.3.9.3 Associations
	10.3.9.4 Other Roles

	10.3.10 Class: TypeName
	10.3.10.1 Supertypes
	10.3.10.2 Attributes
	10.3.10.3 Associations
	10.3.10.4 Other Roles

	10.4 Aggregate Values
	10.4.1 Class: AggregateValue
	10.4.1.1 Supertypes
	10.4.1.2 Attributes
	10.4.1.3 Associations
	10.4.1.4 Other Roles

	10.4.2 Class: ArrayMember
	10.4.2.1 Supertypes
	10.4.2.2 Attributes
	10.4.2.3 Associations
	10.4.2.4 Other Roles

	10.4.3 Class: ARRAYValue
	10.4.3.1 Supertypes
	10.4.3.2 Attributes
	10.4.3.3 Associations
	10.4.3.4 Other Roles

	10.4.4 Class: BagMember
	10.4.4.1 Supertypes
	10.4.4.2 Attributes
	10.4.4.3 Associations
	10.4.4.4 Other Roles

	10.4.5 Class: BAGValue
	10.4.5.1 Supertypes
	10.4.5.2 Attributes
	10.4.5.3 Associations
	10.4.5.4 Other Roles

	10.4.6 Class: GenericAggregate
	10.4.6.1 Supertypes
	10.4.6.2 Attributes
	10.4.6.3 Associations
	10.4.6.4 Other Roles

	10.4.7 Class: ListMember
	10.4.7.1 Supertypes
	10.4.7.2 Attributes
	10.4.7.3 Associations
	10.4.7.4 Other Roles

	10.4.8 Class: LISTValue
	10.4.8.1 Supertypes
	10.4.8.2 Attributes
	10.4.8.3 Associations
	10.4.8.4 Other Roles

	10.4.9 Class: SETValue
	10.4.9.1 Supertypes
	10.4.9.2 Attributes
	10.4.9.3 Associations
	10.4.9.4 Other Roles

	10.5 Entity Instances and Values
	10.5.1 Class: AttributeValue
	10.5.1.1 Supertypes
	10.5.1.2 Attributes
	10.5.1.3 Associations
	10.5.1.4 Other Roles

	10.5.2 Class: EntityInstance
	10.5.2.1 Supertypes
	10.5.2.2 Attributes
	10.5.2.3 Associations
	10.5.2.4 Other Roles

	10.5.3 Datatype: EntityName
	10.5.3.1 Supertypes
	10.5.3.2 Members

	10.5.4 Class: EntityValue
	10.5.4.1 Supertypes
	10.5.4.2 Attributes
	10.5.4.3 Associations
	10.5.4.4 Other Roles

	10.5.5 Class: MultiLeafInstance
	10.5.5.1 Supertypes
	10.5.5.2 Attributes
	10.5.5.3 Associations
	10.5.5.4 Other Roles

	10.5.6 Class: PartialEntityValue
	10.5.6.1 Supertypes
	10.5.6.2 Attributes
	10.5.6.3 Associations
	10.5.6.4 Other Roles

	10.5.7 Class: SingleEntityValue
	10.5.7.1 Supertypes
	10.5.7.2 Attributes
	10.5.7.3 Associations
	10.5.7.4 Other Roles

	10.5.8 Class: SingleLeafInstance
	10.5.8.1 Supertypes
	10.5.8.2 Attributes
	10.5.8.3 Associations
	10.5.8.4 Other Roles

	10.5.9 Association: entity-value-describes-state
	10.5.9.1 Association Ends

	10.5.10 Association: instance-of-EntityType
	10.5.10.1 Association Ends

	10.6 Constants
	10.6.1 Class: Constant
	10.6.1.1 Supertypes
	10.6.1.2 Attributes
	10.6.1.3 Associations
	10.6.1.4 Other Roles
	10.6.1.5 Rules

	10.7 Populations
	10.7.1 Class: Extent
	10.7.1.1 Supertypes
	10.7.1.2 Attributes
	10.7.1.3 Associations
	10.7.1.4 Other Roles

	10.7.2 Class: Population
	10.7.2.1 Supertypes
	10.7.2.2 Attributes
	10.7.2.3 Associations
	10.7.2.4 Other Roles

	10.7.3 Association: extent-of-EntityType
	10.7.3.1 Association Ends

	10.7.4 Association: extent-within-population
	10.7.4.1 Association Ends

	10.7.5 Association: population-includes-instance
	10.7.5.1 Association Ends

	10.8 Instance Package: BuiltInConstants
	10.8.1 Dependencies
	10.8.2 Instance: E
	10.8.2.1 Slots

	10.8.3 Instance: FALSE
	10.8.3.1 Slots

	10.8.4 Instance: PI
	10.8.4.1 Slots

	10.8.5 Instance: TRUE
	10.8.5.1 Slots

	10.8.6 Instance: UNKNOWN
	10.8.6.1 Slots

	11 Package : Algorithms
	11.1 Dependencies
	11.2 Functions and Procedures
	11.2.1 Class: Algorithm
	11.2.1.1 Supertypes
	11.2.1.2 Attributes
	11.2.1.3 Associations
	11.2.1.4 Other Roles
	11.2.1.5 Rules

	11.2.2 Class: Function
	11.2.2.1 Supertypes
	11.2.2.2 Attributes
	11.2.2.3 Associations
	11.2.2.4 Other Roles

	11.2.3 Class: FunctionResult
	11.2.3.1 Supertypes
	11.2.3.2 Attributes
	11.2.3.3 Associations
	11.2.3.4 Other Roles
	11.2.3.5 Rules

	11.2.4 Class: InParameter
	11.2.4.1 Supertypes
	11.2.4.2 Attributes
	11.2.4.3 Associations
	11.2.4.4 Other Roles

	11.2.5 Class: Parameter
	11.2.5.1 Supertypes
	11.2.5.2 Attributes
	11.2.5.3 Associations
	11.2.5.4 Other Roles
	11.2.5.5 Rules

	11.2.6 Class: Procedure
	11.2.6.1 Supertypes
	11.2.6.2 Attributes
	11.2.6.3 Associations
	11.2.6.4 Other Roles

	11.2.7 Class: Statement
	11.2.7.1 Supertypes
	11.2.7.2 Attributes
	11.2.7.3 Associations
	11.2.7.4 Other Roles

	11.2.8 Class: VARParameter
	11.2.8.1 Supertypes
	11.2.8.2 Attributes
	11.2.8.3 Associations
	11.2.8.4 Other Roles
	11.2.8.5 Rules

	11.2.9 Association: algorithm-has-body
	11.2.9.1 Association Ends

	11.2.10 Association: algorithm-has-parameters
	11.2.10.1 Supertypes
	11.2.10.2 Association Ends

	11.2.11 Association: function-has-result
	11.2.11.1 Supertypes
	11.2.11.2 Association Ends

	11.3 Variables
	11.3.1 Class: LocalVariable
	11.3.1.1 Supertypes
	11.3.1.2 Attributes
	11.3.1.3 Associations
	11.3.1.4 Other Roles

	11.3.2 Class: NamedVariable
	11.3.2.1 Supertypes
	11.3.2.2 Attributes
	11.3.2.3 Associations
	11.3.2.4 Other Roles
	11.3.2.5 Rules

	11.3.3 Class: VARVariable
	11.3.3.1 Supertypes
	11.3.3.2 Attributes
	11.3.3.3 Associations
	11.3.3.4 Other Roles

	11.3.4 Class: Variable
	11.3.4.1 Supertypes
	11.3.4.2 Attributes
	11.3.4.3 Associations
	11.3.4.4 Other Roles

	11.3.5 Association: variable-defined-in-scope
	11.3.5.1 Supertypes
	11.3.5.2 Association Ends

	11.4 Actual Types
	11.4.1 Class: Core::ActualType
	11.4.2 Class: ActualAGGREGATEType
	11.4.2.1 Supertypes
	11.4.2.2 Attributes
	11.4.2.3 Associations
	11.4.2.4 Other Roles

	11.4.3 Class: ActualAggregationType
	11.4.3.1 Supertypes
	11.4.3.2 Attributes
	11.4.3.3 Associations
	11.4.3.4 Other Roles

	11.4.4 Class: ActualARRAYType
	11.4.4.1 Supertypes
	11.4.4.2 Attributes
	11.4.4.3 Associations
	11.4.4.4 Other Roles

	11.4.5 Class: ActualBAGType
	11.4.5.1 Supertypes
	11.4.5.2 Attributes
	11.4.5.3 Associations
	11.4.5.4 Other Roles

	11.4.6 Class: ActualGenericType
	11.4.6.1 Supertypes
	11.4.6.2 Attributes
	11.4.6.3 Associations
	11.4.6.4 Other Roles

	11.4.7 Class: ActualLISTType
	11.4.7.1 Supertypes
	11.4.7.2 Attributes
	11.4.7.3 Associations
	11.4.7.4 Other Roles

	11.4.8 Class: ActualSETType
	11.4.8.1 Supertypes
	11.4.8.2 Attributes
	11.4.8.3 Associations
	11.4.8.4 Other Roles

	11.4.9 Association: scope-of-actual-type
	11.4.9.1 Association Ends

	12 Package : Rules
	12.1 Dependencies
	12.2 Global Rules
	12.2.1 Class: GlobalRule
	12.2.1.1 Supertypes
	12.2.1.2 Attributes
	12.2.1.3 Associations
	12.2.1.4 Other Roles
	12.2.1.5 Rules

	12.2.2 Class: NamedRule
	12.2.2.1 Supertypes
	12.2.2.2 Attributes
	12.2.2.3 Associations
	12.2.2.4 Other Roles

	12.2.3 Association: GlobalRule-contains-NamedRule
	12.2.3.1 Supertypes
	12.2.3.2 Association Ends

	12.2.4 Association: rule-constrains-extents
	12.2.4.1 Association Ends

	12.3 SupertypeRules and SubtypeConstraints
	12.3.1 Class: ANDConstraint
	12.3.1.1 Supertypes
	12.3.1.2 Attributes
	12.3.1.3 Associations
	12.3.1.4 Other Roles

	12.3.2 Class: ONEOFConstraint
	12.3.2.1 Supertypes
	12.3.2.2 Attributes
	12.3.2.3 Associations
	12.3.2.4 Other Roles

	12.3.3 Class: SubtypeConstraint
	12.3.3.1 Supertypes
	12.3.3.2 Attributes
	12.3.3.3 Associations
	12.3.3.4 Other Roles

	12.3.4 Class: SupertypeRule
	12.3.4.1 Supertypes
	12.3.4.2 Attributes
	12.3.4.3 Associations
	12.3.4.4 Other Roles

	12.3.5 Class: TOTAL_OVERConstraint
	12.3.5.1 Supertypes
	12.3.5.2 Attributes
	12.3.5.3 Associations
	12.3.5.4 Other Roles

	12.3.6 Association: rule-constrains-subtypes
	12.3.6.1 Association Ends

	12.3.7 Association: rule-includes-SubtypeConstraints
	12.3.7.1 Association Ends

	13 Package : Expressions
	13.1 Dependencies
	13.2 Overview of Expressions
	13.2.1 Class Core::Expression
	13.2.2 Class: IndexOperation
	13.2.2.1 Supertypes
	13.2.2.2 Attributes
	13.2.2.3 Associations
	13.2.2.4 Other Roles

	13.2.3 Class: Operation
	13.2.3.1 Supertypes
	13.2.3.2 Attributes
	13.2.3.3 Associations
	13.2.3.4 Other Roles

	13.2.4 Class: Primary
	13.2.4.1 Supertypes
	13.2.4.2 Attributes
	13.2.4.3 Associations
	13.2.4.4 Other Roles

	13.2.5 Class: Selector
	13.2.5.1 Supertypes
	13.2.5.2 Attributes
	13.2.5.3 Associations
	13.2.5.4 Other Roles

	13.3 Primaries
	13.3.1 Class: ConstantRef
	13.3.1.1 Supertypes
	13.3.1.2 Attributes
	13.3.1.3 Associations
	13.3.1.4 Other Roles

	13.3.2 Class: EnumItemRef
	13.3.2.1 Supertypes
	13.3.2.2 Attributes
	13.3.2.3 Associations
	13.3.2.4 Other Roles

	13.3.3 Class: ExtentRef
	13.3.3.1 Supertypes
	13.3.3.2 Attributes
	13.3.3.3 Associations
	13.3.3.4 Other Roles

	13.3.4 Class: IndeterminateRef
	13.3.4.1 Supertypes
	13.3.4.2 Attributes
	13.3.4.3 14164:Associations
	13.3.4.4 Other Roles

	13.3.5 Class: Literal
	13.3.5.1 Supertypes
	13.3.5.2 Attributes
	13.3.5.3 Associations
	13.3.5.4 Other Roles

	13.3.6 Class: ParameterRef
	13.3.6.1 Supertypes
	13.3.6.2 Attributes
	13.3.6.3 Associations
	13.3.6.4 Other Roles

	13.3.7 Class: SELFRef
	13.3.7.1 Supertypes
	13.3.7.2 Attributes
	13.3.7.3 Associations
	13.3.7.4 Other Roles

	13.3.8 Class: VariableRef
	13.3.8.1 Supertypes
	13.3.8.2 Attributes
	13.3.8.3 Associations
	13.3.8.4 Other Roles

	13.4 Indexing
	13.4.1 Class: AggregateIndex
	13.4.1.1 Supertypes
	13.4.1.2 Attributes
	13.4.1.3 Associations
	13.4.1.4 Other Roles

	13.4.2 Class: BinaryIndex
	13.4.2.1 Supertypes
	13.4.2.2 Attributes
	13.4.2.3 Associations
	13.4.2.4 Other Roles

	13.4.3 Class: StringIndex
	13.4.3.1 Supertypes
	13.4.3.2 Attributes
	13.4.3.3 Associations
	13.4.3.4 Other Roles

	13.5 Selection
	13.5.1 Class: AttributeRef
	13.5.1.1 Supertypes
	13.5.1.2 Attributes
	13.5.1.3 Associations
	13.5.1.4 Other Roles

	13.5.2 Class: GroupRef
	13.5.2.1 Supertypes
	13.5.2.2 Attributes
	13.5.2.3 Associations
	13.5.2.4 Other Roles

	13.5.3 Class: UsedInRef
	13.5.3.1 Supertypes
	13.5.3.2 Attributes
	13.5.3.3 Associations
	13.5.3.4 Other Roles

	13.6 Operations
	13.6.1 Class: BinaryOperation
	13.6.1.1 Supertypes
	13.6.1.2 Attributes
	13.6.1.3 Associations
	13.6.1.4 Other Roles

	13.6.2 Datatype: BinaryOperator
	13.6.2.1 Supertypes
	13.6.2.2 Values

	13.6.3 Class: Coercion
	13.6.3.1 Supertypes
	13.6.3.2 Attributes
	13.6.3.3 Associations
	13.6.3.4 Other Roles

	13.6.4 Class: UnaryOperation
	13.6.4.1 Supertypes
	13.6.4.2 Attributes
	13.6.4.3 Associations
	13.6.4.4 Other Roles

	13.6.5 Datatype: UnaryOperator
	13.6.5.1 Supertypes
	13.6.5.2 Values

	13.7 Function Calls
	13.7.1 Class: ActualParameter
	13.7.1.1 Supertypes
	13.7.1.2 Attributes
	13.7.1.3 Associations
	13.7.1.4 Other Roles
	13.7.1.5 Rules

	13.7.2 Class: FunctionCall
	13.7.2.1 Supertypes
	13.7.2.2 Attributes
	13.7.2.3 Associations
	13.7.2.4 Other Roles

	13.7.3 PassByValue
	13.7.3.1 Supertypes
	13.7.3.2 Attributes
	13.7.3.3 Associations
	13.7.3.4 Other Roles

	13.7.4 Association: call-provides-actual-parameters
	13.7.4.1 Association Ends

	13.8 Query Expressions
	13.8.1 Class: QueryExpression
	13.8.1.1 Supertypes
	13.8.1.2 Attributes
	13.8.1.3 Associations
	13.8.1.4 Other Roles

	13.8.2 Class: QueryVariable
	13.8.2.1 Supertypes
	13.8.2.2 Attributes
	13.8.2.3 Associations
	13.8.2.4 Other Roles

	13.8.3 Association: scope-of-variable-is-query
	13.8.3.1 Supertypes
	13.8.3.2 Association Ends

	13.9 Aggregate Initializers
	13.9.1 Class: AggregateInitializer
	13.9.1.1 Supertypes
	13.9.1.2 Attributes
	13.9.1.3 Associations
	13.9.1.4 Other Roles

	13.9.2 Class: MemberBinding
	13.9.2.1 Supertypes
	13.9.2.2 Attributes
	13.9.2.3 Associations
	13.9.2.4 Other Roles

	13.9.3 Class: RepeatCount
	13.9.3.1 Supertypes
	13.9.3.2 Attributes
	13.9.3.3 Associations
	13.9.3.4 Other Roles

	13.10 Partial Entity Constructors
	13.10.1 Class: AttributeBinding
	13.10.1.1 Supertypes
	13.10.1.2 Attributes
	13.10.1.3 Associations
	13.10.1.4 Other Roles

	13.10.2 Class: PartialEntityConstructor
	13.10.2.1 Supertypes
	13.10.2.2 Attributes
	13.10.2.3 Associations
	13.10.2.4 Other Roles

	14 Package : Statements
	14.1 Dependencies
	14.2 Overview of Statements
	14.2.1 Class: Algorithms::Statement
	14.2.2 Class: ControlStatement
	14.2.2.1 Supertypes
	14.2.2.2 Attributes
	14.2.2.3 Associations
	14.2.2.4 Other Roles

	14.2.3 Class: NullStatement
	14.2.3.1 Supertypes
	14.2.3.2 Attributes
	14.2.3.3 Associations
	14.2.3.4 Other Roles

	14.2.4 Class: StatementBlock
	14.2.4.1 Supertypes
	14.2.4.2 Attributes
	14.2.4.3 Associations
	14.2.4.4 Other Roles

	14.2.5 Association: block-sequences-statements
	14.2.5.1 Association Ends

	14.3 ALIAS Statements
	14.3.1 Class: AliasStatement
	14.3.1.1 Supertypes
	14.3.1.2 Attributes
	14.3.1.3 Associations
	14.3.1.4 Other Roles
	14.3.1.5 Rules

	14.3.2 Class: AliasVariable
	14.3.2.1 Supertypes
	14.3.2.2 Attributes
	14.3.2.3 Associations
	14.3.2.4 Other Roles

	14.3.3 Association: alias-binds-variable
	14.3.3.1 Supertypes
	14.3.3.2 Association Ends

	14.4 Assignment Statements
	14.4.1 Class: Assignment
	14.4.1.1 Supertypes
	14.4.1.2 Attributes
	14.4.1.3 Associations
	14.4.1.4 Other Roles

	14.5 CASE Statements
	14.5.1 Class: CaseAction
	14.5.1.1 Supertypes
	14.5.1.2 Attributes
	14.5.1.3 Associations
	14.5.1.4 Other Roles
	14.5.1.5 Rules

	14.5.2 Class: CaseStatement
	14.5.2.1 Supertypes
	14.5.2.2 Attributes
	14.5.2.3 Associations
	14.5.2.4 Other Roles

	14.6 IF Statements
	14.6.1 Class: IfStatement
	14.6.1.1 Supertypes
	14.6.1.2 Attributes
	14.6.1.3 Associations
	14.6.1.4 Other Roles

	14.7 Procedure Calls
	14.7.1 PassByReference
	14.7.1.1 Supertypes
	14.7.1.2 Attributes
	14.7.1.3 Associations
	14.7.1.4 Other Roles
	14.7.1.5 Rules

	14.7.2 Class: ProcedureCall
	14.7.2.1 Supertypes
	14.7.2.2 Attributes
	14.7.2.3 Associations
	14.7.2.4 Other Roles

	14.7.3 Association: procedure-call-provides-actual-parameters
	14.7.3.1 Association Ends

	14.8 REPEAT Statements
	14.8.1 Class: ControlVariable
	14.8.1.1 Supertypes
	14.8.1.2 Attributes
	14.8.1.3 Associations
	14.8.1.4 Other Roles
	14.8.1.5 Rules

	14.8.2 Class: EscapeStatement
	14.8.2.1 Supertypes
	14.8.2.2 Attributes
	14.8.2.3 Associations
	14.8.2.4 Other Roles
	14.8.2.5 Rules

	14.8.3 Class: RepeatStatement
	14.8.3.1 Supertypes
	14.8.3.2 Attributes
	14.8.3.3 Associations
	14.8.3.4 Other Roles

	14.8.4 Class: SkipStatement
	14.8.4.1 Supertypes
	14.8.4.2 Associations
	14.8.4.3 Other Roles
	14.8.4.4 Rules

	14.8.5 Association: repeat-has-body
	14.8.5.1 Association Ends

	14.8.6 Association: repeat-has-increment-control
	14.8.6.1 Supertypes
	14.8.6.2 Association Ends

	14.9 RETURN Statements
	14.9.1 Class: ReturnStatement
	14.9.1.1 Supertypes
	14.9.1.2 Attributes
	14.9.1.3 Associations
	14.9.1.4 Other Roles

	14.10 VAR Expressions
	14.10.1 Class: AttributeCell
	14.10.1.1 Supertypes
	14.10.1.2 Attributes
	14.10.1.3 Associations
	14.10.1.4 Other Roles

	14.10.2 Class: GroupCell
	14.10.2.1 Supertypes
	14.10.2.2 Attributes
	14.10.2.3 Associations
	14.10.2.4 Other Roles

	14.10.3 Class: MemberCell
	14.10.3.1 Supertypes
	14.10.3.2 Attributes
	14.10.3.3 Associations
	14.10.3.4 Other Roles

	14.10.4 Class: AliasRef
	14.10.4.1 Supertypes
	14.10.4.2 Attributes
	14.10.4.3 Associations
	14.10.4.4 Other Roles

	14.10.5 Class: VARExpression
	14.10.5.1 Supertypes
	14.10.5.2 Attributes
	14.10.5.3 Associations
	14.10.5.4 Other Roles

	14.10.6 Class: VariableCell
	14.10.6.1 Supertypes
	14.10.6.2 Attributes
	14.10.6.3 Associations
	14.10.6.4 Other Roles

	15 Package : Express2
	15.1 Dependencies
	15.2 Classes and Associations

