Date: May 2015

W
i\
b

| lan
I\
|\
|\ \g
\‘w \
|1\ \ A
\

N
\\\

|l
\
\
\

o
w
o
m
0
-
S
>
p4
>
(0}
m
S
m
p4
-
®
Py
o
c
T

Reference Metamodel for the EXPRESS
Information Modeling Language

Version 1.1
change bar version

OMG Document Number: formal/2015-05-02
Standard document URL: http://www.omg.org/spec/EXPRESS/1.1/
Machine Consumable Files:
Normative:
http://www.omg.org/spec/EXPRESS/20140201/express-mof.xmi
http://lwww.omg.org/spec/EXPRESS/20140201/EXPRESSMM_Profile.xml
http://lwww.omg.org/spec/EXPRESS/20140201/expresselements.xmi

Copyright © 2008, JBIC (Japan Biological Informatics Consortium)
Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual , worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIB, IMPLIED WARRANTY OF MERCHANTABILITY OR

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG Systems Modeling
Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other specia designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this speci-
fication, but may not claim compliance or conformance with this specification. In the event that testing suites are implemented
or approved by Object Management Group, Inc., software developed using this specification may claim compliance or con-
formance with the specification only if the software satisfactorily completes the testing suites.

OMG's ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://mwww.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

] 0 o T | S TPTP Xi
Preface ... Xiii
I 1 o Yo [o 1 o P 1
1.1 Background — the origins of EXPRESS...........ccooiiiiiccsee e 1

1.2 The MEXICO PrOJECE ...cieeeeiieeeeeeeeettiee s e e e e e e e e e e e e s e s e e e e e e e e aeeeaeeeeresannsnnnnnnes 1

1.3 Development of the EXPRESS metamodel ... 2

1.4 ACKNOWIEAQEMENTS ...t e e et a e e e e e e e e e e e e aeeeeeeenenennnnanes 3

2 SCOPE AN PUIPOSEceiiiiiiiiiiiiie i 3
3 NOrMAatiVe RETEIENCES ... i i i e 3
R @ 0] o] (o] 1 T g [= PSPPI 4
4.1 Conformance of an exchange dOCUMENTuuuiiiiiiiiiiie e 4

4.2 Conformance as a producer (Pre-ProCESSON) ..uuuuuiiiieeeeeeeeeeeeeeeererrnnnnnanaeaseaeaaaaerreeneenns 4

4.3 Conformance as @ (POST-)PIrOCESSONcvuviiiiiiiiiiiiiaaaaa e e e e e e aeeeeeeeeeeearrranr e e e aaaeeaas 4

4.4 COMPLIANCE POINES ...ciiiiiieiiiiiiitteree et e ettt e e e e e e e e e e e e e eeeeeseaanba e e e aaeaeeaas 4

4.4.1 Compliance point: ENUMETALIONSoooiiiiiiiiiiiiiie e ettt e et e e e e e e e e e ennbeeeeeas 5

4.4.2 Compliance point: AIGOItNMS ...t a e 5

4.4.3 ComplianCe POINt: RUIESuiiiiiiiiiiei ettt a et e e e e e e e e e e e aanbeeeaees 5

4.4.4 ComplianCe POiNt: EXPrESSIONSciiiii ittt eeet e e e e ettt e e e e e e e e s e s aab bbb e e eeeae e e e e e s nnbbeeeeees 5

4.4.5 Compliance point: STAEMENTSooiii it e e e e e e e s bbb eeeeaeaaeas 5

4.4.6 CompPlianCe POINE: EXPIESS2eeiiiiiieiiaiiiitiiie ettt e e e e et e et e e e e e e s e e st bbb e e e e eaae e e e e e annnnbeeeeeees 5

5Terms and DefiNitiONS........couvuuiiii e e e e e e e 6
5.1 Unified Modeling Language (UML) TEIMScooviiiiiiiiiiiiiiiiee s e e eeeeeeeeeeeeeeeeeannennnnes 6

I =) o o =S S T =T 12 P 6

5.3 Terms for Model EIEMENLSuuuriiiii i 7

5.4 Terms for primitive data tyPESiiie i e e e e s 7

5.5 Additional terms introduced in this SpecifiCation.............cccooeeiieeiiiiiiiiiiieiin 7

6 Additional INfOrMAatiONccciii e 8
L0 R To o0 [1T o1 A @0] 1 V7=T o1 o] o 1= 8

6.2 ACKNOWIEAGEMENTSo e e e e e e e e e e as 8

7 Overview of the EXPRESS Metamodel.............cooiiiiiiiiiii e 11
o = T0d € To [T O o] = PP USPTPR 13
S0 =T T = | 13

8.2 IMpPOrted PACKAGEScooiiiiiiiiiiit e 13

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 i

8.3 UML PrIMItIVE TYPES ..evettieiiiiii i i ee e e e e e e e ee sttt s s s e e e e e e e e e e e e e e eeeaaae s a e e e e e aaaeaaaees 13

8.3.1 Primitive type: BOOIBAN ... ittt e e e e e e e e e e e e nnaes 13
8.3.2 Primitive tyPe: INTEOET ...ttt e e e e e e e e e st eeee e e e e e e e e bannenee e 13
8.3.3 PrimitiVe fyPe: SN «eeeiiii ittt ettt e et e e e e e e e et ebb e e e e e aa e e e e e e aannnes 13
8.4 EXPRESS Language DatatyPesc.uviiiiiiiiieiiieeiiiie e e et e et e e e e e ea e 14
8.4.1 DatatyPe: EXPrESSTEXE . .iieiiieiieiieeuieiurnniasasasaseseseeeeeeeteteteererereeeneeerarernsnnnnnn i aaanaaeaaseaeeaeeees 14
R D= 1= 14/ o T (o 1=)T SRR 14
R G D = 1= 14/ o 1 1= VAT o] (o P ESERR 14
8.5 Schemas, Scopes, and NaMINGcooiiiiiiiiiiii e 14
8.5.1 Class: AlQONtNMSCOPEcoi ittt e e e e s e e e e e e e s e s s st e reeeeeeeseeannnnnns 16
8.5.2 Class: COMMONEIBMENTcooiiiiiiieii ittt e e eeees 17
B.5.3 Class: INTEITACE ... et e et e e e e e e e e e e e aaaaaeas 18
8.5.4 Class: INterfaCedEIEMENToueiiiii e e e e e e e 19
8.5.5 Datatype: INterfaceKind.............uueiiiiiiiiee e e 21
8.5.6 ClasSS: LOCAISCOPE ...eeeiiiiiiiiiiiitie ettt ettt et e e e e e e e e ettt e e e e ae e e s e sanbebbeeeaaaaaeesaeaannnns 21
8.5.7 Class: NamMEAEIEMENLooviiiiee e e e e e e a e e e e e e e e 22
B.5.8 ClasSs: SCNEMAccc i e e e e e e e e e e e e e et et e e e e e et e aeaaaeaaaaaaas 23
8.5.9 Class: SChEMAEIEMENT..........oviiie e e ea e e e e e e e 24
o R O O = TS oo o1 T U PPPRPTTTPT 25
8.5.11 Datatype: SCOPEAIU. ... ittt ettt et e e e e e e e e e s abb e bb e e e e e aaa e e e e e annnnns 27
8.5.12 Association: common-element-has-l0Cal-SCOPE........c.ooiiiiiiiiiiiiii e 28
8.5.13 Association: element-defined-iN-SCOPEcc.uuuiiiiiiiie e 28
8.5.14 Association: interface-inCludes-elementS.........ccooooiiiiiiii s 29
8.5.15 Association: schema-defines-elements...........coooo i 29
8.5.16 Association: schema-element-is-interfaced-element ... e, 30
8.5.17 Association: schema-interfaces-elements.........cccooooviiiiii 30
8.5.18 Association: schema-has-iNterface ... 31
8.5.19 GENEraliZatioN SEIS........cuviiiiiiiiiiiic i e e e e et e e e e e aaaaaaaas 31
8.6 REMAIKS ... e e e aaaaas 31
I ST RO = 1Yl =T 1 4 - 1 RS 32
8.6.2 Association: remark-appears-iN-SCOPE........c.uuuuueiiiiiieeii ittt et e e e e e e s eeee e e e e e e e e sneeeeees 33
8.6.3 Association: remark-describes-elEMENt ..o 34
8.6.4 Association: remark-descCribDeS-SChEMAcccoceiiiiiiiii e 34
A O V=T VLYV o) IV o= SRR 35
S T I O o TS o (- L Y/ o1 USSR 37
8.7.2 Class: ANONYMOUSTYPE . .ceiiieitieeieeteeteeesesssiteateeeeeeeeeesessaastaaeaeeeeeaeeeaassnasssnrnnnreeeeeesessnnsnns 38
T O o T T 0o g ot £ =1 (=) I3/ o = PSSR 38
T O o Ty Tl T - 1 5/ 1.7 USRS 39
8.7.5 Class: DefiNEATY PO ...ceiee it i e ittt ettt e e e s e e e e s e e e e aee e s e s s s se b ereeeeeeeeeannnnne 39
8.7.6 Class: ENUMEIAtiONTY PO ..ciicirieeieetee e e e e e es sttt e e e e e e e s e e as st e e e e e e e aeeesassnnstenbaneeeeeeeeseesnnnnnns 40
8.7.7 Class: INStaNtiable Ty PO .. .ot e e e e e e e e e s e r e e eae e e s e e ennnnes 41
S T @ o Tl V=T =T I I3 1= P EEER 42
8.7.9 Class: ParameterTYPE ...cocoiic it ee e e e e e es sttt r e e e e e s e s se st e e e aeeaeessassnnstenbnneeeeaeeeseeannnnns 43
S T O @ = 1TSS Y= 1= o 3/ 1= P EEERS 44
8.7.11 Class: SPECIAliZEATY PO ..ci ittt e e e e e e e e e s e st rr e e aaee e e e e annnnn 46
8.7.12 Class: VariableTyPe ...ttt e e e e e e r e e e e e e e 46
8.7.13 Association: enumeration-extends-enUMErationoccveeeiiiiieee e a7
8.7.14 Association: select-type-eXtends-SEIECI-tYPEuuuiiiiiie e 47
8.7.15 Association: type-instantiateS-SeleCt-tYPEuuuiiviiiii i 48
8.7.16 GENEraliZAtION SEIS....cciiiiiiiiieiiiiiie ettt e et anaes 48

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.8 TYPE CONSIIAINTSieeeeieeeieeeeeeeett s e e e e e e e e e e et e e aa e e e e e e e eeeeeeeeeeeeesensnnnnnnes 49

8.8.1 Class: DOMAINCONSIIAINTeiiiiaiieii ittt e e e e e e e e et bbb e e e e eeaa e s e e e aabnnbeneees 49
8.8.2 Class: DOMAINRUIEuuiiiiiiiiiie ettt e e e e e e e et e e e e eaa e e e e e e e nbnnbeeeeeas 51
8.8.3 Association: NamedType-has-DOMaiNRUIEcooiiiiiiiiiiiiiie e 52
8.8.4 Association: type-has-CONSIIAINTSoouueiiiiiiiiie e 52
SRS IR 1] o LS 5/ 0L 53
IR I O TSl =T o= 1Y 11 o =R 54
8.9.2 Class: LengthCONSIIaINt.uiiiiee i e e s e e e e e e e e s e reneeeeeeees 55
e IR @4 =TSl o o [Tl 5/ o 1= P 56
I I @ o TSl VUL g T ol 1Y/ o 56
oIS IR O - TSl = Lo |11/ o L= SR 57
oI B O - TS 14T o] (=) 5/ 1 57
IR T @1 - TS 1] o 1Y/ o L= S 58
8.9.8 GENEIAliZAtION SELS.....ciiiiiiiiiii ittt s s bbb e e e e enaes 59
8.10 AQQregation TYPES ... oie ettt e e e e e e et e e e e et eetbe bbb a e e e e e e e e aaaeeeeeeeerrenranas 59
8.10.1 Class: AQQIrEgatIONTYPE. . .uueeeiieieieeiat ittt et e e e e e e s et e e et et e e e e e e aa s aaebesbeeeaaeaaaeaesaanbnsbeeeeees 60
8.10.2 Class: ArrayBOUNG ...ttt e e e e e bbb e e e e e e e e e nb e e 61
8.10.3 ClasSS: ARRAY Ty P .. ettt ettt e ettt et e e e e e e e s e bbb e e ettt e e e e e e s e s nbebbe e et e eaaaeaesaanbnnbeeeees 62
8.10.4 ClasS: BAGTYPE . .iiiiititiieet it e ettt ettt e e e e e e e e e bbb ettt et e e e e e e s e s nbbbbe e e e e eeaaeaeeaanbanbreeees 63
8.10.5 Class: ConcreteAggregatioNTYPEcoi.ueieiiieiieee e ettt e e e e e e e e e eeee e e e e e e s e anneeeeees 63
I L N O oS I I I Y/ o1 2 PP RP TR 64
8.10.7 Datatype: OrderiNgKINGcooi i e e e e e e e s 64
T R S O o S] = I Y/ o1 PP UPP TR 65
8.10.9 Class: SIZECONSIIAINT.......uuueiiiiiieeee ittt e et e e e s e e s aab e e et e e aaaaeeeaansnnbesreeaeees 65
8.10.10 GENErAliIZAtION SELS.... .. uutieiiiiiee ittt e e e e e e e e s e b et e e e e e eaeaeaa s aannbnnbenee e 66
o I T g T = 1= I 1Y 1= T 66
8.11.1 Class: AGGREGATETYPE ...eeiiiieiieiii ittt ettt e e bbb e e e e e e e e e s e ebanbeeee e 67
8.11.2 Class: GeneralAggregatioNTY PO . ..coe et e e ettt et e e e e e e e e e e e e e e e e e e e sanneeeeees 69
8.11.3 Class: GENEIAIARRAY TYPE ...etiiiiieiii ittt ettt e e e e e e s e s bbb e e e e e e e e e e e e s anbnnbeaeees 70
8.11.4 Class: GENEIAIBAGT Y|P .. uuettieiieiie ettt et e e e e e e e e e bbbt e e e e e e e e e e e e bbbbaeeeeeaaaaaeseaaannneeees 71
8.11.5 Class: GENEIAlIZEATYPE. . .uueieiiiieiaee ettt e e e e e e e e bbb e e e e e aa e e e e e e anbnnbeseeeas 71
8.11.6 Class: GENEIAILIS T TY PO . uueteieiieiaee ittt et e e e ettt e e e e e e e e e e e st bbb e e e eeeaaeeeeaaannrneeees 72
8.11.7 Class: GENEIAISETTYPE ...ueeeiiiiaeaieeiiaaiie ettt e e e e e ettt e e e aa e e aa s s e sbe bbb aeeeeeaaeeeeaaaaannreeeees 72
o T R O o S 1T o 1= o Y/ o 1= 2 PP UP PSP 73
8.11.9 GeNEraliZatiON SELS. ieiiiiiiiiii ettt e e e e e e e e e e e e e b b 74
8.12 Entities and AHIDULEScoviiiiiiiiee e 74
o 2 R O o T N {1 o 10 = PRSP 76
8.12.2 Class: DeriVEAAMIDULEoiiiiiiie ittt s e e e e e nenees 78
o T I O o T Tl =t 1]V 1Y/ o1 78
8.12.4 Class: EXPlICIALIIDULEuviiieiieiie e r e e e e e s e aee e 81
8.12.5 Class: INVEISEALIIDULEcoiiiiiiii it b e e e e enees 83
8.12.6 Class: INVErtiDIEALTIDULEeeiiiii e 84
8.12.7 Class: PartialEN ity TYPE ...uuuuriiiiieie e it ettt e e e e e e e st e e e e e e e s ae st e e e e aeeesan s nnrenrreeeeees 84
8.12.8 Class: SINGIEENTIEY TYPE ..uuuiriiiiiieieeies i ciettiiere e e e e e e e e s s st ereaeeeesessantaa e rereeeeeesssannnsnnrnneeees 85
8.12.9 Class: UNIQUERUIEueiiiiiiiieee e e e e st r e e e e e e s e st e e e eee e e s e s s nnennrnneeees 86
8.12.10 Association: attribute-has-data-typeeeeeeieiieiiiiiie e 87
8.12.11 Association: entity-has-attribDUtesSuviiieiiiee e 88
8.12.12 Association: EntityType-has-AttrDULEceevreei i 89
8.12.13 Association: EntityType-has-UniQUERUIE..............ooooiiiiiiiiiieiie e 89
8.12.14 Association: InverseAttribute-inverts-EXplicitAttribute..........ccoooev i, 90

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 iii

8.12.15 Association: single-entity-declared-in-entity.........cccccceoeiiiciiieiiee e 90

8.12.16 GeNEraliZation SES........c.coiivieiriiiie ettt 91
8.13 RelaliONSNIPS ... e —————————— 91
8.13.1 Class: DOMAINROIEooiiiiiiie ettt ettt e e e e e e s et b b e e e e e eeaaeeeeaannnes 92
8.13.2 Class: RANGEROIEcoi ittt e e e e e e s e s s bbb e e e e e eeaa e e e e aannans 93
8.13.3 Class: RelatiONSNIP ..oceiiiiiieiee ettt e e e e e e bbb e e e e e e e e e e naaes 94
o T B O = TS (o | L= TP PURRTPT 95
8.13.5 Association: DomainRole-in-RelationShipcoooiiii e 96
8.13.6 Association: entity-plays-domain-rOleccoiiiiiiiiii e 97
8.13.7 Association: entity-playS-range-roOleuuuueiiiiiiiii e 97
8.13.8 Association: entity-used-iN-attribUtec.uuuiiiiiiii e 98
8.13.9 Association: InverseAttribute-modelS-role............oooiiiiiiii 98
8.13.10 Association: ExplicitAttribute-creates-relationship ..., 99
8.13.11 Association: ExplicitAttribute-modelS-roleooi i 99
8.13.12 Association: RangeRole-in-RelationShipccei e 100
8.14 REUECIAIALIONS.ccee et a e e e e e e as 100
8.14.1 Class: REUECIAIALIONcceiieieriieieieie ettt nre e e e 101
8.14.2 Association: scope-of-redeclaration-is-ENntity TYPecovveviivieiiiiee e e 103
8.15 Parametric Datatype Elements. ... 103
8.15.1 Class: EIEMENTISOUICE.cii ittt ettt e ettt et e e e e e e e e et b beaeeeaeaaaeeens 104
8.15.2 Class: ParametriCEIBMENT.............uiiiiiiii e 105
8.15.3 Class: ParametriCSITUCTUIEuuiiiiiiiiie ettt ettt e e e et e e e e e e e e e ns 106
8.15.4 Class: ParametliCTY PO . oottt ettt e e e e e ettt e e e e e e e e e e s bt a e e e e aaaaaaea s 107
8.15.5 Association: AGGREGATETYype-defines-parameter...........occuuviiiiiiiiiiiiiiiiiiiiiiieeeeeeeen 108
8.15.6 AssOciation: elemMent-NasS-SOUICEooii ittt e e e e e e e e e eeees 109
8.15.7 GENEraliZAtION SELS....ciii ittt e e e e e e e e e e e e e e e ns 109
8.16 Actual TYPE CONSLIAINTS ...uuuuiiiiiiie e e e e et eaeeas 109
8.16.1 Class: ACtUalSIrUCIUrECONSIIAINTcoiiiiiiiiitiie ettt e e e e e e e e e e e e e e eanes 110
8.16.2 Class: ACtUAITYPECONSIIAINT.........ciiiieiiiiitieie ettt et e e e e e e e s e eeaaeae e e e s aaneees 111
8.16.3 Association: aggregate-has-CONSIIAINT.............uuiiiiiiiiiiee e 112
8.17 EXPressions and INSLANCES.......ccoiiiie e e eieeee e s e e e e e e e e e e e e e 113
o T A O = TS ot o] (=71 o] o SRR 113
8.17.2 ClasS: INSLANCE......ccoiiiii ittt ettt e e e e nn e s e e nnre e e eneees 115
8.17.3 Association: eXpresSioN-Nas-CONEXL...........cccccuiiriiiree e serre e e e s e e s s e e e e aeee e 116
8.17.4 ASSOCIation: INSTANCE-Of-TYPE ...uvviiiii e e e e er e e e e e e s e s e nnnenes 117
8.18 Instance Package: BUIIINTYPEScoiiiii it s 117
8.18.1 DEPENUENCIESeeieeeiiiieee ettt ettt e e e e e e e e e e b e bbbttt e e e e e e e e e e s nnnbebeaeeaaaaaaeans 118
8.18.2 INStANCE: BINARY .. ittt e e e e e et et et e et e e e e eeee et et et et e e e e e e e e e e e e aaaaaans 118
8.18.3 Instance: BOOLEANttt e st b bbb s 119
8.18.4 InStance: INTEGER.........oo e e e e 119
8.18.5 INSLANCE: LOGICAL ...ttt e et e et ettt e e e e bbb e e e e e e e e eeeeas 119
8.18.6 Instance: NUMBER ...t e e e e e e 120
8.18.7 INSTANCE: REAL ... et e e e e e e e et et ettt e e eeee e ba b e b e bbb e e e e e e e aeeeeas 120
8.18.8 INStANCE: ROLE e e et et et e et e e et e e et e bbbt e a e e e e e e e e e aaaaeaas 120
8.18.9 INStANCE: STRINGo e e e et e e e e et e e e e ee e e b ab et e e e aa e e e e e e aaaaeaas 121
8.18.10 INStANCE: TYPE ... ettt et e bbb a e e e e e e e e e aeaeas 121
8.19 Instance Package: GENEINCTYPES. ...cccci it s e e e e e e e e e ee e 121
8.19.1 DEPENUENCIESeeeeeeiiieieeeee ittt ettt bttt e e e e e e e e e s n b e b b e et e e eea e e e e e e aannnbebeaeeaaaaaaaans 122
8.19.2 Instance: GENERICo e e e e e e et e e et e e e e e st e e bbb e s 122
8.19.3 Instance: GENERIC_ENTITYuiiiiiiiiiiiieiiie ettt sttt sbe e e sne e e nee s 122

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

O ENUMIBIALIONS ..eeneeeee e et ettt e e et aan e 125

S T K CT=T o T=T = | DSOS POTRPPPP 125
9.2IMPOrted PACKAGEScooiiieeeeeee it 125
9. 3ENUMETALION ITEIMIS . .ouiiiiiiii e e et e e e e e et e e e e s e e e eaa e e e eran e eenanns 125
9.3.1 Class: CONCIEIEVAIUEvuueieeieiii e st e e e e e e e e e e e e e e eeeeeesreeeesbarares 125

9.3.2 Class: ENUMEIAtiONII Mcccoeiiiiiiiee et e s e s e e e e e e e e e e e e e e eeeeesssssesearabebnaaaaes 126

9.3.3 Association: enumeration-deClareS-it€MSuuriiiiiiieiiieiee e 127

9.3.4 Association: value-of-ENUMEratioNTYPEuiveiieeiii e e e e e e e s esreeer e e e e e e e e anrnaee e 128

10 Package : INSTANCEScciiiii e e e 131
O I R CT=T 0 1= = | PO PTRRR 131
10.2 IMpPOrted PACKAQESccoo et e e e e e 131
10.3 OVEINVIEW Of INSTANCESuuiiiiiee ittt e e e e et e e e e e eeaans 131
O T A O F= T O] (=T [) = T (o SRRSO 132

10.3.2 Class: CONCIEIEVAIUEcoeeviiiieeeeeeteee ettt e et e e e e e e e e e e e e et s e e e e e esaaeeeeesesbanaaeaaees 133

10.3.3 Class: ENUMETatiONITEIMuuiiiiiieeiice ettt e e e e e e e e e e aae e e e e e s eabaa e eeaes 133

10.3.4 Class: INAELEIMINALE ...uuu. ittt e e e e e e e e e et bt e e e e e et eeeeeeebannns 134

10.3.5 Class: SPeCIi@liZEAVAIUEoueiiiiiiiiiiii et a e e e 134

10.3.6 Class: TYPEAINSIANCEccciiiiiiiiiieiee ettt e e e e e et e e e e e e e e s anbabereeaaaaaaaeeas 136

10.3.7 GENETAlZALION SIS ..uuui ittt e e e et e e e e e et s e e e e e esaaeaeeeseebbaaeaaees 137

10.4 SIMPIE VAIUEBSeveii ittt s e e e e e e e e e e aeeeeaeesannnnn 137
10.4.1 ClasS: BINANYVAIUE......cciiiieii ittt e e e e e e e e e s b be e e e e e aaae e s 138

10.4.2 Class: BOOIEANVAIUE............cuuiii ettt e e e e e e e ra s 139

10.4.3 ClasS: INTEGEIVAIUE......ccoi ittt e e e e e e e b e e e e e e e aae e e s 139

10.4.4 Class: LOGQICAIVAIUEcooiiiiiiieiie ettt e e e e e et e e e e e e e e e e s e aanaes 140

10.4.5 Class: NUMDBDEIVAIUEciiieice ettt e et e e e e e et e e e e eaa e 140

10.4.6 Class: REAIVAIUEooiiiiiiiii et e e e e e e et e e e e e e eebbaaaeeaes 141

10.4.7 Class: ROIENGIMEuuuiieiiieeiee et e e e e e et e e e e e e e et s e e e e eesaaeeeeesesbanaeaaees 141

10.4.8 Class: SIMPIEVAIUEccoii ittt e e e e e e ab e e e e e e aaee e s 142

10.4.9 ClaSS: SHNGVAIUEeeiiiiiiiiiii ettt e et e e e e e e e e e e s b b aeaeeeaaaaaeaas 142
10.4.20 ClaSS: TYPENGIMIE ...coiiiiieiie ittt ettt e e e e e e e e e s e e bbb bt e e e et aaaaaeaeaaaanbnbsbeaeeaeaaaaens 143
10.4.11 GENEraliZAtiON SEES...uuuiiiiiiiiiii ettt ettt e e e e et e e e e e bbb e e e s e et eeeeeesaaanns 144

10.5 AQQregate ValUS......cccooii i i e s e e e e e e e e e e e e e et s e e s e e e e e e aeaeeeeeennnnnns 144
10.5.1 Class: AQOregateValUeEcccuuiiiieiiieie e e e e e e e s e e e e e e e e s s s aeaeeeaeaeeeeeas 145

10.5.2 Class: ArrayMEMDETccoiii e r e e e e e e e s s ar e e e e e e e e e e aannnes 145

10.5.3 Class: ARRAYVAIUEovvvetuiiiiiiieciiiie e ie e et e e e e e e e e e e e e e et e e e e e e e ee et e bbb s e s e s e e eaeeeeaaaeeeas 146

10.5.4 Class: BAGMEMDIELcciiiieii ittt et s e e e e e e e s s e s e e e e e e e e e s s s nnra e aneeeeaeeeeeas 146

10.5.5 ClasS: BAGVAIUEcuuvutuieiiiiiieieiet et ettt e e e e ettt ee bbbt s e s et e s e e e aeeaaeaeseseeeeessaseees 147

10.5.6 Class: GENEICAGOIEIALEc.ci i eerieeieeee e e e s e seesrt e e e e ee e s s e ss s bearrereeeeeeesaannreaearreeeeeesaans 148

10.5.7 Class: LISIMEIMDETvvveiiiiiiiiieeeee et ettt ettt ettt bbb e s se s e e e e e e eaeaeaesaeseeseeeeees 148

10.5.8 ClaSS: LISTVAIUEevvvvetiiittiiieeeee et et ettt ee e ettt e bbbt s e s e s e s e e e eeeeaeaeseseeeeessaeeees 149

10.5.9 ClasS: SETVAIUEovveeiiiiitiiii ettt ettt ettt s e s e s e e e e e e e e e aeeeeeseeeeesaaeeees 149
10.5.10 GENEIAliZALION SEIS....iiviiiiiiiiiiiiiii e ieiee it tee e e e e et et e e et et e e et aa s e e s e s e s eeeaeeaeeeesas 150

10.6 Entity INStances and ValUEScooueiiiiiiiiiiiiiieee et e e 150
10.6.1 Class: AtHDULEVAIUEcooviiiiieeieece et e e et e e e e e e eaba e e eaes 152

10.6.2 Class: ENItYINSIANCEccooiiiiiiieeee ettt e e e e e ae e e e e e e e e e as 153

10.6.3 Datatype: ENGItYNAIMEcoooiiiiiiiiiee ettt e et e e e e e e e s et aeaeeeaaaaae e s 154

10.6.4 Class: ENULYVAIUEooeiiiiiieiiee ettt e e e e e e e e s b bereeeaeaaaeaeas 154

10.6.5 Class: MUIILEAfINSIANCEuuuiieiiiie e e e e e e e e 155

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 \Y

10.6.6 Class: PartialENtityValUe...........cooiuviiiiiei et e s s e e e e e e e s e s s eeeaeeeeeas 155

10.6.7 Class: SINGIEENLYVAIUEcccii i e e eeeee s 156

10.6.8 Class: SiNgIeLeafINStANCE.........ccciiiiciiie e e s e e e e e e e s e s aee e 157

10.6.9 Association: entity-value-descCribes-State............cooccuvviiiiiiiee e 157

10.6.10 Association: iNStance-0f-ENttY TYPE ...cuviiiieei it e e e e e e e e e e 158

10.6.11 GENErAliZAtiON SEES.....eeiiiiiiiiiie ittt e bbb e e s e b b e e e sbbbre e e s nneeeas 158
JO.7CONSTANLS ...uiieeiiei ettt e et e e e e et e e e 158
O A O = ST 0 1 = o | 159

O S o o 11] =1 1o 1 1 U 160
10.8.1 ClaSS: EXLENTiieiiiieiiiet ettt e e st e e e s sttt e s et e e s e nb e e e e s enbbbe e e e e annreas 161

10.8.2 Class: POPUIALIONuuveiiiiriiieeee et e e e e s e s s e e e e e e e e s e st eeereeeaeeseansnnsnnrrnneees 162

10.8.3 Association: eXteNt-Of-ENtitY TYPE....uuuuiiiirieee it e e e e e ee e 163

10.8.4 Association: extent-within-pOPUIAtiON..............oiiciiiieeirie e 163

10.8.5 Association: population-iNClUdeS-INStANCEcovicuiiiiiiiiie e 164

11 Package : AlgOMtNMS.......i e 165
I R 7= 1= = | PSPPSR 165
11.2 IMPOrted PACKAQES.ccceeeiieeeeeeette ettt n e e e e e e e e e e e e aeeeaannnnnnaaa 165
11.3 FUNCLIONS @Nd PrOCEAUIES.uiiiiiieiii ettt e e e e e e e e e 165
IO 300 O = 1Y o o 11 o PP 165

I T2 O = L= U o T o PO PRP 167

11.3.3 Class: FUNCHONRESUILoiueiiiiiiiiiiie ettt e s nn e e e e e 167

11.3.4 ClasS: INPAIAMELETeeiiiiiiiiiiie ettt st e e sttt e s e st ee e s snbbbe e e e e anereas 168

R R O 1= L o= = 10 0 =] (T PSPPSR 169

I T G O = Ll o {0 Tor =T [F] T PSR PRT 170

I T A O = T S = =] 1= 0 PRSP 170

11.3.8 Class: VARPAIAMELETccoiiuiiieiiiiiiite ittt ettt e e s et e e s anbbbe e e e e enereas 172

11.3.9 Association: algorithm-has-bodyccueeeiviiiiiiii e 172

11.3.10 Association: algorithm-has-parameters.........cccovveciiiiiieieee e 173

11.3.11 Association: fuNCtioN-NAS-TESUILc.uuiiiiiiiii e s 173

11.3.12 GENErAliZAtiON SES......eiiiiiiiiiie ittt ettt et e e s b e e e s bbe e e e s naeee s 174

L1 A VANADIES. ... et 174
O R O = T e Yoz | Y 2=V 1= o] [T 175

11.4.2 Class: NaMEAVANADIEooiieeiiiiii e et e e e et e e et e e e s e e s raa e e eerans 176

11.4.3 Class: VARVANADIE...........coo ottt et 176

A O = TS Y = T = o L= P 177

11.4.5 Association: variable-defined-iN-SCOPEcoiiiii it 178

11.4.6 GENEIAliZAtiON SEIS...cciii i i i i e e e e e e e e e e e e e e ———— 178

R o (1T LI/ 1= PSSP 179
11.5.1 Class: COre::ACIUAITYPE .oovveie ittt e e e e s e s r e e e e e e e s s s s b rreeereaeeas 179

11.5.2 Class: ACtUAIAGGREGATETYPE ...uuvuiiiiiiieie i e e e ettt e e e e e e e s s sieesaee e e e s e e e e s s e annnrnreeeeeeeee s 180

11.5.3 Class: ACtUaIAGOIrEgatiONTY POcei e eer e e e e e e s es et r e e e e e e s e s e e e e e e e e s snnsnrrnneeeeees 181

11.5.4 Class: ACIUAIARRAY TY P .ciiiii ittt ittt et e e e e e e et e e e e e e s s et e e e e eae s e s s e anntbrrrreeeeaeeas 182

11.5.5 Class: ACIUAIBA G TY P ..uuuiieiieeeieeiiiititee et e e e eeesasass et baeeeaeeeaesaesaasnstaaeeeeeeaeeeessannnranreneeees 182

11.5.6 Class: ACtUAIGENEIICTY P . .uiiiieeeeee i titee et e e e ee et et s et eereeeeeeseesassnnra e e eareaaeeesasnsranrennees 183

11.5.7 Class: ACUAILIS T TY PO uuuueiieiieeeie e ittt er e e e e e e s e s s et r e et e e e s e e ss et reeeeeaeeese s nnranreneeees 184

11.5.8 Class: ACIUAISETTYPE ..uuuuiieiiieeeeeeiiiiiiitieteteeeeeesssssssnesteeeeeeeeessessassnnsaaeeaneeeeaeesssnannsnnsnnneees 184

11.5.9 Association: SCOPE-0f-aCtUAl-TYPEuuviiriiiiiiie e 184

11.5.10 GENErAliZAtiON SES......eiiiiiiiiiie ittt e et e e s e e e sbbr e e e s naeee s 185

Vi

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

12 Package : RUIES ...t 187

D R 1= 1= - L PRSP 187
12.2 IMpPOorted PACKAQESccooeiieieeeeee et e e 187
12.3 GlODAI RUIESueiccee e e 187
12.3.1 Class: GIODAIRUIEcooiiiiiiiiei ettt e e e snnaeeee s 187

12.3.2 Class: NAMEURUIEciiiiiiiiiie ettt e e e sbeee e e s snnreeee s 189

12.3.3 Association: GlobalRule-contains-NamedRUIE ...t 190

12.3.4 Association: rule-CoNStraiNS-EXIENTSuiiiiiiiiie et 190

12.4 SupertypeRules and SubtypeCoNnStraintsooovviiiiiiiiiiiiiiiieee e 191
12.4.1 Class: ANDCONSIIAINTcoiiiiiiiiieiee ettt e e e e e e e e e e eaaa e e e e e s eanbbeaeaeeaaaaaeaaas 191

12.4.2 Class: ONEOFCONSIIAINT........c.ueiiiiieiiieie ettt e et e e e e e e s e s e e reeaaaaaaeaeas 192

12.4.3 Class: SUDtYPECONSIIAINT ...ttt e e e e e e e e e e e 192

12.4.4 Class: SUPEIYPERUIEcooiiieeee et e e e e bbb e e e e e e e e 193

12.4.5 Class: TOTAL_OVERCONSIIAINL........cccoiiiiiiiiiicicceeeeeee s s s e s e s e e e e e e e e e e e e e eeeeeeanaaeees 194

12.4.6 Association: rule-conStrainS-SUDLYPEScooiiiiiiiiiiiiiee ettt e e 194

12.4.7 Association: rule-includes-SubtypeCoNnStraints.........c.oueie i 195

12.4.8 GENEIAlIZALION SEIS.....ciieeiiiii ettt e e et e e et e e et e e e s s e e e s e e e eeasessaaeeeen 195

13 Package : EXPreSSIONSuui i it ee ettt e et s e e e et e e e e e et e e e e e 197
R 0 I =T 1= - PRSP 197
13.2 IMpPOrted PACKAGEScoo oo 197
13.3 OVerview Of EXPreSSIONScccoiiiiiieeeeieieiiie s e e e e e e e ee e e e e e e e e e e e e e aeeeees 197
13.3.1 Class COre: EXPIrESSIONcoiiiiiiiiiiiee ettt e ettt et e e e e e e e e s e et b e aeeeaaaaeeaeas 198

13.3.2 Class: INAEXOPEIALIONoceeiiiiiiiitiie ettt e e e e e e e et e e e e e e s e s b b aeaeeeaaaaee e s 198

13.3.3 ClaSS: OPEIALIONueeiieiiieeie ittt e e e e e e et et et e e e e e e s e e e e abb bbb et e eeeaaeeeeaaannnbbaeaeeaaaaaaaaans 198

13.3.4 ClaSS: PrIMAIY ...ttt ettt ettt et e e e e e e e s e e b b bbbt e et e e e e e e e e e s nnbbbeaaeaaaaaaaans 199

13.3.5 ClASS: SEIBCION ...ttt e e ettt et e e e e e e e e e e bt e aeaeeaaeaaaeaas 199

13.3.6 GENEIAlIZALION SEOIS....ueiiiiiiieiiie ittt e e e ettt e e e e e e e e e s s bnbe e eeeaeaae e s 200

R B o = 1 1 U PPPPRTRR 200
13.4.1 Class: CONSIANTRETcoiiiiiiii et e e e snbaee e 201

13.4.2 Class: ENUMIEMRET ... et eeeeene 202

13.4.3 Class: EXIENTRET ... ittt 203

13.4.4 Class: IndeterminateREToooiiiiiii e 203

R N O 1= 1L 1 1= - | R PP PTPRTTR 204

13.4.6 Class: ParameterReueiiiiiiiiii e 205

13.4.7 Class: SELFRETueiiiiiiiii ettt e e et e e e e e e 205

13.4.8 Class: VariablERETcoiiiiiiiie e 206

13.4.9 GENETAliZALION SELS......iiiiiiiiiiie ittt e e et e e 207

RS ST [0 (=3t o PP UR SR RPPPPPPPRTRPP 207
13.5.1 Class: AQGregateINaeX.........ooiuuiiiiieiiieie ettt e e e e e et ae e e e e e aae e as 208

13.5.2 ClaSS: BINAINYINAEXceeiiiiieiiiiiiiietee ettt e et e et e e e e e e e e e sab s aeaeeaaaaaeaaaas 208

13.5.3 ClasS: SHINGINUEXeeiieiiiieiei ittt ettt e e e e et e e e e e e e e e e e e aanbbeaeaeeaaaaaaaans 209

13.5.4 GENEIAlIZAtION SEOIS....eiiiiiiiiiei ittt e e e et e et e e e e e e e e e bt e e e e eeaaaaeeaaas 209

13.6 SEIECHION.ceiitieieieie et e e e e e e e e et et e e e e et a e n e e e e e e e e e aeaeaaeeeaarana 210
13.6.1 Class: ARINDULERETcoiii et a e e e e e e 210

13.6.2 ClasS: GIOUPRET ...t e e e e e e et e e e e e e e e e e e e s 211

13.6.3 Class: USEAINRET ...ttt e e e e e e et eeaaaaa e as 211

13.6.4 GENEIAlIZALION SEOIS....uiiiiiiiiiiiiii ettt e e e e e et e e e e e e e s e bbb aeaeeaaaaeeaa s 212

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 vii

R A @ o T= T = 11 0] 212

13.7.1 Class: BiNaryOPeIatiOoncuuauu oot ieiea e ettt e e e e e e e et e e e e e e e e e e s e nanbraeeeeeaeas 213

13.7.2 Datatype: BiNaryOPEratorcoiiiiuiiiiiieieiae ettt e e e et eeee e e e e e e e s e sannbaereeeeeas 214

R e O - o 1= (ot [0 IO RPN 217

13.7.4 Class: UNAryOPEIATIONetiiie ettt e e e e e e ettt e e e e e e e e s et b e et e e e e e e e e s e s anrabbeneeeas 218

13.7.5 Datatype: UNaryOPEIaLOrcccoieieieiieieiee ettt e e e e e e e e e e aeaaaeeeeeeeeeeeeesrenssnnnnnnes 218

13.7.6 GENEIAliZAtION SEIS......uuuiiiiiiiiiiee ettt e e e e e e st e e e e e e e e e e e e nbenbeeeeeas 220

13.8 FUNCLION CallS... ..o e e e e e e e e e e e e e e 220
13.8.1 Class: ACIUBIPAIAMELETcciiiiiiriie ettt 221

13.8.2 Class: FUNCHONCAIcoiiiiiiiiiieie et 222

13.8.3 PASSBYVAIUE.......ccci ittt e e s e st e et e e e e e e s e n e e e e e e e e e e e e narrrane e 223

13.8.4 Association: call-provides-actual-parameterscccccceveeeeeiiiiiiiiiiee e 224

13.9 QUETY EXPIrESSIONSottt e e et ettt s e e e e e e e e e e eeeeeeeesessennnnnns 224
13.9.1 Class: QUENYEXPIESSION.....ciiiii ittt et e e e e e e s e e e e e e e e e e e s nbabbeaeeeas 225

13.9.2 Class: QUETNYVANADIEoiiiiiiii ittt e e e e e e e e ee e aee s 226

13.9.3 Association: scope-of-variable-iS-QUETYcooi i 227

13.10 Aggregate INILIAlIZEISeeveeiiiie i e e e e e e e e e e e e e eeeeaeeannnnanns 227
13.10.1 Class: AggregatelnitialiZerooiiiiiiiiie e 228

13.10.2 Class: MemMDBDErBINGINGceeuiiiiiiiiittee et e e e e e e e eeeeeeas 229
13.10.3 Class: REPEALICOUNTeiiiiiiee ittt et e e e e ettt et e e e e e e e s s s bbb eeeeaeaeeeeaannnnbbanreeeaeas 230

13.11 Partial ENtity CONSITUCTONS ...uuuuiiiiiieie e e e e eee ettt s e e e e e e e e e e e e e e eeeeeeeeaennnnnnnnns 231
13.11.1 Class: AtHDULEBINAINGcccvieeii i e e s rr e e e e e e e s nanr e eeeees 231

13.11.2 Class: PartialENtityCONSIIUCTONuvviriiieeeeeeiisiiciiiiiier e e e e e s e e st e e e e e e e e e s e snrenreeeeees 232

13.12 Instance Package: BUIltiNCONSIANTS..........cooiiiiiiiiiiiiiiiicee e 233
13.12.2 IMPOItEA PACKAGESeeteeiieiieeiii ittt ettt e e e e e e e e et b e e e e e e e e e e s e e annbbnbaeeeaaaeens 234
L13.12.2 INSTANCE: E ..ottt s e e e e e e e e e e e e e e e e e e aaeeeeeeeeeesrnbnaes 234
13.12.3 INSTANCE: FALSE ... e e e e e e e e e e e et e e e e eeeeeeeabaresannnaans 234
13.12.4 INSTANCE: Pl ..o e e e e e e e e e e e e et e e e e e eanereearnbebnnnnns 235
13.12.5 INSTANCE: TRUE ... e e e e e e e e e e e e e et e e e e eeeeeeeababebanaanans 235
13.12.6 InStanCe: UNKNOWN. e e e e e e e e et e et eeeeeeeeeeseannnannnns 235

14 Package : StateMENTScooiiiiiiiiieceiei e 237
R =T 01T = PP PUUPPPPPPP 237
14.2 IMPOIrted PaACKAQES.uuuii ittt e e e e e e e e e e e aaa e e e 237
14.3 OVerview Of STAtEMENTSuuuuuiiiiiiie e 237
14.3.1 Class: Algorithms::StatemMENt...........uuiiiiiiieie e a e 238

14.3.2 Class: CoNtrolStatemMENTcooiiiiiei et e e e e e e e e e eeeeeaaaeeas 238

14.3.3 Class: NUIISTAIEMENT.c.oiiiiiiiiii ettt e e e e e e e e e e e s e e snab e eeeaaaeeas 239

14.3.4 Class: StatemMeENntBIOCKcccuii it 239

14.3.5 Association: block-sequences-StatemMeNtSooiiuiiiiiiiiiiie e 240

14.3.6 GENEIAlIZAtION SISuuiiiiiiiiiiii ettt et e e e e e e s bbb e e e e e e e e e e e e s nnbanbeaeeeas 240

T14.4 ALIAS SEateIMENTS ..ouiviiiiiii e e e e e et e e et e et e et e s e ea e et e sneeanns 241
14.4.1 Class: AlIaSSTAEMENTc.vviiiiiieii e 241

14.4.2 Class: AlIaSVAriabIec.oooiiii s 242

14.4.3 Association: alias-binds-variable.............ccooviii 243

14.4.4 GENEraliZation SELS........oiiiiriieiiiieie et 243

14.5 ASSIGNMENT SEALEMENTS. ..c.euiiiiiiiiiiee e e e e e e e e e e 244
B0 O = T =T T [1= o | 244

14.6 CASE SEAtEMENTS.cuieiiie ittt e e e e e et e e e e e et e e e e e eenaa e eas 245

viii

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

B0 O = TS = 1 =Y Y o 1o) o 1P EEE 245

14.6.2 Class: CaseSIAtEMENTc.ciiiieeieeee e e e e e e e e s e e e e e e e e e e e s e snanrnanrenreeaeaeeeas 246

A |) = (=] 1 1= £ T PSPPI 247
A I O = 11T | 1] 2= 1 (T 4 =1 | PPN 247

14.8 ProCedure CallS.......cooeiiiiie e e e e e s e e e e e e e e e e aeeaeannnne 248
14.8.1 PASSBYRETEIENCE ..uvviiiiiieei ettt e e e e e e e s e e re e e e e e e s s s s st rnaeeneeaeaeeeas 248

I S B O = 11 S o Yo =T [1 =T | RS 249

14.8.3 Association: procedure-call-provides-actual-parameters..........ccccccveeeiivicciiiieeeeeee e eninns 250

14.9 REPEAT StatEMENTS.....cuuiiiiiiiieeiiie et e et e e e et e e e et e e e st e e e aan e e eaan e e eeanas 250
14.9.1 Class: ControlVariable ... 251

14.9.2 Class: ESCAPESIAtEMENL..........uuuiiiiiiiieeiie it e e e e e e e s sse e er e e e e e e e s sn s sanrrnrrereeeaeeeeeannnes 252

14.9.3 Class: RepeatStatemMeENtuuuiiiiiiiee ettt e e e e e e e s e e e e e e e e e e aaannes 253

14.9.4 Class: SKIPSTAIEIMENT......ooii et e e e e e e st e e e e e e e e as 254

14.9.5 Association: repeat-Nas-DOAY e 255

14.9.6 Association: repeat-has-increment-CoNtrol ... 255

14.9.7 GENEIAliZAtION SEIS....uuiiiiiiiiiiiiiii et e e e e e e e e e aaaaaaaraaaan 255

14.10 RETURN SEAEMENTSuniiiiiiiiiii ettt e et e et e e e e eenans 256
14.10.1 Class: RetUMNSIAtEMENT e e e e e e e e e e e e e e aeeeeearaeaees 256

I Y G e d 1 = T7S] (o] 1P 257
14.11.1 Class: AHNDULECEILcoo e e e e e s e e e e e e e e e e e annes 258

I A O = S € (o 10 1= PSR 259

14.11.3 Class: MEMDBEICEI........ccoii i e e e e e e s s e e e e e e e e e e e eennnes 260
14.10.4 Class: AlIASRET ... e e e e e e e s e e e e e e e aa e e 260

14.11.5 Class: VAREXPIESSIONc.ciiiiieeiieieeeie e e e e s se e e e e e e e e e s ss s st taeeaeaaeesssssnsnsrntnereeaaeeeeaaannes 261

14.11.6 Class: VariablECEIl...........ccocuiieiieiee et e e e e e e s s rr e e e e e e e e e e enannes 262

14.11.7 GENEraliZation SeIS.......cciii i e e e e s s e e e e e e e e s raaeeaeanane 262

15 Package | EXPreSS2... ... 263
TR R 1= 1= - L PSP 263
15.2 IMpPorted PACKAQESccooeiiieeeeeee et a e 265
15.3 Classes and ASSOCIALIONSuuiiieeiiiiiiie e e e e e e e e e e e e 266
15.4 GENEraliZAtiON SEIScccuuiiiiiii e e e e e e e aaas 266
16 The EXPRESSElIements Module............cccooovriiiiiiicic e 267
G A =T T - | U PPPRTRR 267
A Y, (== T L= OSSR 267
GRS B = U T g 17 1= U 267
G B =T o1 o I/ o1 U UPPPURRR 269
16.5 BUIIt-IN CONSIANTScoiiiiii e e e e e e 270
Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 iX

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

List of Figures

Figure 7.1 - EXPRESS Metamodel Packages 11
Figure 8.1 - Schemas and Interfacing 15

Figure 8.2 - EXPRESS Scope and Named Element Concepts 16
Figure 8.3 - Conceptual Model of Scopedid 27
Figure 8.4 - Remarks 32

Figure 8.5 - Overview of EXPRESS Type concepts 36
Figure 8.6 - NamedTypes and Instantiable Types 37
Figure 8.7 - Type Constraints 49

Figure 8.8 - Simple Types 54

Figure 8.9 - Aggregation Types 59

Figure 8.10 - Generalized Types 67

Figure 8.11 - Entity Types 75

Figure 8.12 - Attributes 76

Figure 8.13 - Relationships 92

Figure 8.14 - Redeclarations 100

Figure 8.15 - Parametric Datatype Elements 104
Figure 8.16 - Actual Type Constraints 110

Figure 8.17 - Basic Expression Concepts 113
Figure 8.18 - Instance Model for Built-In Types 118
Figure 8.19 - Instance Model for Generic Types 122
Figure 9.1 - Enumeration Items 125

Figure 10.1 - Overview of Instances 132

Figure 10.2 - Specialized Values 135

Figure 10.3 - TypedInstances 136

Figure 10.4 - Simple Values 138

Figure 10.5 - Aggregate Values 144

Figure 10.6 - Entity Instances 151

Figure 10.7 - Partial EntityValues 152

Figure 10.8 - Constants 159

Figure 10.9 - Populations and Instances 161

Figure 11.1 - Algorithms 165

Figure 11.2 - Variables 175

Figure 11.3- Actua Types 179

Figure 12.1 - Globa Rules 187

Figure 12.2 - Supertype Rules and Subtype Constraints 191
Figure 13.1 - Expressions 197

Figure 13.2 - Primaries 201

Figure 13.3 - Indexing Operations 207

Figure 13.4 - Attribute and Attribute-Group Selectors 210
Figure 13.5 - Operations and Built-in Functions 213
Figure 13.6 - Function Calls 221

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Xi

Figure 13.7 - Query Expressions 225

Figure 13.8 - Aggregate Initializers 228

Figure 13.9 - Partia Entity Value Constructors 231
Figure 13.10 - Built-In Constants 234

Figure 14.1 - Statements 238

Figure 14.2 - ALIAS Statements 241

Figure 14.3 - Assignment Statements 244

Figure 14.4 - CASE Statements 245

Figure 14.5 - IF Statements 247

Figure 14.6 - Procedure Calls 248

Figure 14.7 - REPEAT, SKIP, and ESCAPE Statements 251
Figure 14.8 - RETURN Statements 256

Figure 14.9 - VAR Expressions 257

Figure 15.1 - Integrated Overview of Scopes 263
Figure 15.2 - Overview of Named Elements 264
Figure 15.3 - Overview of Variables 265

Xii Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include; UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A listing of all OMG
Specifications is available from the OMG website at:

http: //www.omg.org/spec/index.htm

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
. CORBA/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

xiii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBAServices
. CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications
CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http: //mwww.omg.org/report_issue.htm.

Xiv Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

1 Introduction

1.1 Background —the origins of EXPRESS

In 1984, the Standards for Exchange of Product Data (STEP) project was officially created in the International Standards
Organization (I1SO) as an outgrowth of standardization projects in the United States and France. The objective of the
STEP project was to develop standards for the exchange of product information among software tools that supported
product engineering. It rapidly came to include support for construction engineering and manufacturing systems
engineering as well.

An objective of this project was to specify the information content of a product description in away that was independent
of the form of exchange, so that more than one specific exchange form could be specified, while the semantic
equivalences would be retained by reference to the common model. In particular, the project members envisaged the need
for both database representations and sequential file structures.

At that time, there were no standard information modeling languages, and the languages in common use were purely
graphical. In order to specify the relationships between the information model (what we would now call a“platform
independent model”) and the data implementation model (a “platform specific model”), it was perceived to be a
requirement that the information model have a formal text form. Such a form would enable an information model to be
processed by a software tool that could generate the corresponding PSM. There being no usable standard, nor any
common language, with these characteristics, the STEP project developed and standardized its own information modeling
language: EXPRESS.

The information modeling language EXPRESS was standardized in 1994 as Part 11 of the 1SO 10303 Standards for the
Exchange of Product Data. It was revised in 1999 and in 2004. It was used for every information model in the STEP
series, and in 3 other standards seriesin SO TC184 (Industrial Data), and for information models in standards devel oped
by other 1SO Technical Committees. As of 2005, there were over 300 major information models for manufacturing and
construction information that are formally specified in EXPRESS and standardized by 1SO. These models, and the
EXPRESS language are in wide use in the manufacturing industry, and the exchange models are supported by dozens of
software tools.

In the more recent past, in order to make these models useful to an industry in which programmers and modelers are not
commonly taught EXPRESS, further 1SO projects have been undertaken to produce mappings from EXPRESS to XML
Schema (1SO 10303-28) and UML (1SO 10303-25). But each of these mappings was specified entirely in text and targeted
version 1 of XML Schema and UML respectively.

1.2 The MEXICO project

In 2005, the MEXICO project was created with the objective of applying OMG Model-Driven Architecture (MDA)
technologies to the “EXPRESS problem.” The project has three components:

1. Development of a MOF metamodel for the EXPRESS language.

2. Development of aforma (MOF/QVT) mapping from the EXPRESS metamodel to the UML v2 metamodel (thus
replacing 1 SO 10303-25 with a formal and machine-processable specification).

3. Development of aformal (MOF/QV T) mapping from the EXPRESS metamodel to the metamodel of OWL specified
in the OMG Ontology Definition Metamodel .

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 1

This specification represents the final deliverable of the first project component: the MOF metamodel of EXPRESS.
Results of the other project components will be published separately.

Taken together, these elements will permit automatic generation of UML models that faithfully represent the content of
any 1SO standard model formulated in EXPRESS. Similarly, these elements will permit automatic generation of faithful
renditions of those models in OWL, which will enable them to be used as draft ontologies and tested for logical
consistency (and consistency with other models) using Semantic Web tooling. In this way, the knowledge captured in the
many standard EXPRESS models can be made available and usable for 21% century technologies and practitioners.

1.3 Development of the EXPRESS metamodel

The MEXICO project has developed a complete metamodel of the EXPRESS language and tooling to support it.

NIST developed an EXPRESS compiler that accepts an EXPRESS schema (model) and produces XM (v1.1) that
corresponds to the metamodel. NIST is currently reworking that compiler to produce M1 instances of the complete
CMOF model herein specified in the XMI 2.1.x form.

Fraunhofer IPK developed a MOF implementation of the metamodel and used the output of the NIST tool to populate the
MOF database for a set of EXPRESS schemas.

Fraunhofer developed additional tooling to implement a mapping from the MOF population to UML (v1.4) following the
guidance in 1SO 10303-25. This was a first step toward the goals of the second MEXICO project component.

Eurostep developed tooling to map a subset of the metamodel to OWL. This was afirst step toward the goals of the third
MEXICO project component. Further work in this area is continuing with Eurostep and other partners.

At the same time, a number of other tool vendors who support the EXPRESS modeling community have devel oped
independent internal models of EXPRESS and mappings to various languages, including UML, OWL, and XML Schema.
(Many of them are listed as “supporters’ of this specification.) We all agree that the time has come to standardize an XM|
representation of EXPRESS, so as to permit these tools to interoperate around a common representation.

This specification is the metamodel of the semantics of the EXPRESS language that was developed and tested in the
MEXICO project. It represents completion of the first subproject in the MEXICO trilogy. And it has value in its own right
to other EXPRESS tool developers. For this reason, we are bringing it to OMG for standardization.

Participants in the metamodel development activity include four “technical experts’ who participated in the development
of the EXPRESS language itself. It also includes technical experts who were principal developers of the Part 25 (mapping
to UML) and Part 28 (mapping to XML Schema) standards. This expertise gives us confidence that the metamodel is
faithful to the semantic intent of the EXPRESS standard.

To be clear about what has been “tested”: For the MEXICO proof-of-concept tooling, all the tools were built to aversion
of the metamodel known as version 060615f. Only the NIST tool dealt with the concepts “internal to” Algorithms:
Variables, Statements, and Actual Types. Parallel work at the New University of Lisbon (UNINOVA) developed tooling
for an elaborate model of Statements. The major change in this specification is the integration of the UNINOVA model,
and related changes and repairs to the Algorithms Package.

Further, to satisfy the current level of technical expectationsin OMG, the MOF 1.4 version has been modified to a CMOF
version in this version. Several errors have been discovered and they are corrected in this version.

2 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

1.4 Acknowledgements

This specification is derived in part from early work on the development of a metamodel of EXPRESS (that was itself
specified in EXPRESS) by Prof. Donald Sanderson of East Tennessee State University, Dr. Philip Spiby of Eurostep, Dr.
Markus Maier of PDTEC, and Dr. Peter Wilson of Boeing Corporation (now retired).

Every organization listed as a submitter or supporter has made some technical contribution to this specification.

2 Scope and Purpose

This specification is a metamodel for the EXPRESS information modeling language, as defined by SO 10303-11.2:2004,
Product data exchange — EXPRESS Language Reference Manual. It includes all elements of the language.

The metamodel conforms to the OMG Complete Meta-Object Facility (CMOF) specification, version 2.0.

The metamodel captures the meaning of the EXPRESS syntactic constructs, not the syntactic constructs themselves. It
differs from an abstract syntactic model of the language when either:

« the same syntax is used with different semanticsin different contexts, or
« the syntax is more complex than the semantic content it expresses.

Some attributes of concepts in the metamodel serve only to permit the EXPRESS syntactic form to be recreated from the
metamode! instance. Such attributes are so described.

The purpose of this specification is to provide a common basis for communication among tools that create or compile
EXPRESS models, analyze them, and/or map them to various forms of implementation specifications.

It is also intended to serve as a basis for the definition of formal standard mappings to other modeling and implementation
languages.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Subsequent amendments to, or revisions of, any of these publications do not necessarily apply. However,
users and implementors of this specification are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. 1ISO and OMG maintain registers of currently valid specifications.

SO 10303, Industrial data — Product data exchange — Part 11: EXPRESS Language Reference Manual, ed. 2, 2004.
OMG Meta-Object Facility (MOF) Core Specification, v2.0, January, 2006, (formal/06-01-01)
OMG XML Metadata Interchange (XMI) Specification, v2.1.1, December, 2007, (formal/07-12-01)

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 3

4 Conformance

An exchange document can conform to this specification as specified in Conformance of an exchange document. A tool
can conform as a producer, as specified in Conformance as a producer (pre-processor), or as a processor, as specified in
Conformance as a (post-)processor, or both. In addition, it is possible for a tool to conform to one or more of the
compliance points specified in Compliance points, as a part of conformance as a producer or a processor.

4.1 Conformance of an exchange document

An exchange document conforms to this specification if:

- itisavalid XMI exchange document and represents aMOF M1 model that is consistent with the M2 metamodel
defined in clauses 6-12 of this specification; and

» theM1 model represents avalid EXPRESS schema as defined by 1SO 10303-11.2:2004.

Representation of an EXPRESS schema need not include representation of all elements of the schema. It shall include all
elements of the schema that can be represented by elements of the Core Package, as defined in Clause 7.

4.2 Conformance as a producer (pre-processor)

A software tool conforms to this specification as a producer if it produces conforming exchange documents as specified
in Conformance of an exchange document.

A software tool may claim conformance to a given compliance point as a producer if the exchange document it produces
for any given EXPRESS schema contains representations of all the EXPRESS model elements that correspond to that
compliance point.

4.3 Conformance as a (post-)processor

A software tool conforms to this specification as a processor if
« it can accept any and all exchange documents that conform as specified in Conformance of an exchange document; and
- it caninterpret all EXPRESS concepts modeled by elements in the Core Package.

The nature of the process performed on the EXPRESS schema that is represented by a document that it accepts is not
specified by this standard, but the interpretation of the EXPRESS schema in that process shall be consistent with the
interpretation given by 1SO 10303-11.

A software tool may claim conformance to a given compliance point as a processor if it can also interpret all the
EXPRESS model elements that correspond to that compliance point.

4.4 Compliance points

In addition to support of the elements in the Core Package, a tool may support any of the additional compliance points
defined below.

4 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

4.4.1 Compliance point: Enumerations

A tool conforms to the Enumerations compliance point by producing or interpreting model elements defined in the
Enumerations Package.

4.4.2 Compliance point: Algorithms

A tool conforms to the Algorithms compliance point by producing or interpreting model elements defined in the
Algorithms Packages. Conformance to this compliance point requires Statements to be produced as text, if the Statements
compliance point is not supported. It makes no requirements for the interpretation of Statements.

4.4.3 Compliance point: Rules

A tool conforms to the Rules compliance point by producing or interpreting model elements defined in the Rules,
Algorithms, and Instances Packages. Conformance to this compliance point requires Statements to be produced as text, if
the Statements compliance point is not supported. It makes no requirements for the interpretation of Statements.

4.4.4 Compliance point: Expressions

A tool conforms to the Expressions compliance point by producing or interpreting model elements defined in the
Expressions, Algorithms, and Instances Packages.

A tool that conforms as a producer to this compliance point shall not represent any Expression solely as text. That is, it
shall represent every EXPRESS expression properly as the subtype of Expression that models it. Conformance to this
compliance point requires Statements to be produced astext, if the Statements compliance point is not supported. It makes
no requirements for the interpretation of Statements.

4.45 Compliance point: Statements

A tool that conforms to the Statements compliance point shall conform to the Expressions compliance point, and shall
produce or interpret model elements defined in the Statements Package as well.

A tool that conforms as a producer to this compliance point shall not represent any Statement solely as text. That is, it
shall represent every EXPRESS statement properly as the subtype of Statement that models it.

4.4.6 Compliance point: Express2

A tool conforms to the Express2 compliance point shall conform to the Statements compliance point and to the Rules
compliance point. A tool that conforms to the Express2 compliance point shall fully support all elements of the EXPRESS
language.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 5

5 Terms and Definitions

5.1 Unified Modeling Language (UML) Terms

The following terms are taken from the Unified Modeling Language (UML) Specification, and are used with the
definitions given in that specification:

« abstract

- association

- association end

- attribute

- class

- constraint

« dependency

* derived

+ enumeration

« multiplicity

» navigable

» package

. stereotype

« tagged value

52 EXPRESS Terms

The following terms are taken from the EXPRESS L anguage Reference Manual, and are used with the definitions given
in that specification:

» aggregate, and aggregation

- agorithm

- constant

« domain

« entity, and entity type

- function

« identifier

« instance

- inverse

» keyword

« member

« parameter

» population

6 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

- rule

- schema

 scope

* statement

» subtype

* supertype

+ type
Some of these terms have the same orthography as certain UML terms that are not used in this specification. The
following terms are used in this specification with their UML interpretation and are prefixed by “EXPRESS’ whenever
they are used with their EXPRESS interpretation:

- abstract

- attribute

- datatype

* derived

+ enumeration

5.3 Terms for Model Elements

This specification defines a number of metaclasses, associations, attributes, and association end names. Each of those
becomes a term that may be used in other definitions and requirements.

When aterm is capitalized in the text, e.g., Schema, it refers to the metaclass with that identifier, and by extension, to the
semantic concept that it represents.

In the text, a term beginning with a period (.) and set in Courier font, e.g., . namespace, refers to the attribute or
association end with that name that is owned by the class being described.

Note — Other than these conventions, some terms that refer to model elements have the same spelling as terms used in UML
and EXPRESS. The convention denotes the intended distinction. In most cases, however, when the EXPRESS term and the
model element identifier have the same spelling, the model element model s the concept designated by the EXPRESS term.
5.4 Terms for primitive data types

As specified in sub clause 8.3, this specification uses the UML primitive types Boolean, Integer, and String as the data
types of attributes in the metamodel. These terms differ in representation from the EXPRESS datatype identifiers
BOOLEAN, INTEGER, and STRING only in case. To avoid confusion, the EXPRESS identifiers always appear in upper
case, and the UML primitive type identifiers appear in mixed case prefixed by “(UML).”

5.5 Additional terms introduced in this specification

The following additional terms are introduced in this specification:

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 7

instance package

A UML Package that comprises only declarations of individual objects that represent fixed instances of metaclasses
defined in the parent package.

namespace

The domain of interpretation of a body of EXPRESS text in which a given identifier is associated with a given model
element.

6 Additional Information

6.1 Document Conventions

This specification is a Complete Meta-Object Facility (CMOF) specification of the EXPRESS metamodel, conforming to
the OMG Meta-Object Facility Core specification v2.0, as an M2 model.

The only CMOF features (beyond those of EMOF) that are used in this specification are:
» Specidization of primitive types
 Subsetting of properties
MOF 2.0 requires that every association be named, even those that are navigable in only one direction. In this

specification, all associations are named (in the UML and CMOF XMI files), but only the names of bidirectional
associations are displayed and only bidirectional associations are separately documented (as Associations).

Similarly, MOF 2.0 requires that every association end be named, even those that are not navigable. In this specification,
the names of non-navigable association ends are not shown and not documented. They do appear in the UML and CMOF
XMI files for the metamodel. Every navigable association end is documented as a properties of the owning class.

For derived attributes and associations, the UML model includes an <<isDerived>> stereotype that allows the attachment
of the tagged-value “derivation.” Wherever the derivation is a simple navigation expression, it is given as the value of
“derivation” and documented accordingly in the normative text. Where the derivation is a more complex operation, it is
omitted from the UML model and described in the text. The CMOF model does not include the tagged values, but
wherever the derivation expression is given in the UML model, the CMOF model contains a Constraint requiring the
value of the derived property to be equal to the value of the derivation expression.

6.2 Acknowledgements

The following companies submitted/supported parts of this specification:

- 88Solutions

- AIDIMA

« Electronic Commerce Promotion Council of Japan

 Eurostep, Limited

 Fachhochschule Vorarlberg

 Fraunhofer Ingtitut fur Produktions- und K onstruktionstechnik (IPK)

8 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

« John Deere

» LKSoftWare Gmbh

» NASA Goddard Space Flight Center

« Nationa Institute of Standards and Technology (NIST)
» New University of Lisbon (UNINOVA)

- PDTEC

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

7 Overview of the EXPRESS Metamodel

This specification is a metamodel for the EXPRESS information modeling language, as defined by 1SO 10303-11. The
Metamodel is composed of 7 packages, which are related as shown in Figure 7.1.

PrimitiveTypes
{uri=http://'www.omg.org/spec/Primitive Types/20110701}

T
| itriports
| |
. Core
imparts
Enumerations | _ — — &
T
A nerge l«merge»
3
) 1]
Instances Algorithms | «mports Rules
T P < T T
cimports | gimports . l-ecmerge» chmerge»
| | - | |
Expressions | «merd== | Statements L wmerges Express?

Figure 7.1 - EXPRESS Metamodel Packages

The Core Package contains all of the generally required modeling elements of EXPRESS, along with some basic
metamodel artifacts. It is the foundation on which all of the other packages are built. The Core Package is the minimal
implementation of the EXPRESS Metamodel.

The Enumerations Package contains the model of Enumerationltem and the subclasses of Instance that it instantiates. Its
purpose is to support a compliance point that includes schema-level declarations and Enumerationltems.

The Instances Package completes the model of instances that conform to the EXPRESS types. This package is needed to
support many of the concepts in EXPRESS rules.

The Algorithms Package contains the model of function and procedure definitions. This model is needed to support
Expressions, and some of its features are used in Global Rules.

The Rules Package contains the models of RULESs and SUBTYPE_CONSTRAINTS, which rely on the notion of extents
of types with populations.

The Expressions Package contains a model of expressions that includes all details of value manipulation that are
described in Clause 12 of 1SO 10303-11.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 11

The Statements Package contains a model of the executable statements that may be contained in the body of functions and
procedures. It contains all of the concepts in Clause 13 of 1SO 10303-11.

The Express2 Package contains nothing in its own right. It imports everything defined in the metamodel, and thus serves
as the package that models the entire EXPRESS language.

12 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8 Package :: Core

8.1 General

The Core package contains all of the generally required modeling elements of EXPRESS, including:
 Scopes and Naming concepts
» Schemas
- (Data) Types
« Entities, Attributes, and Relationships

« Domain Constraints

The Core package also includes the abstract classes Expression and Instance, which serve aslinking points for detailed models

contained in other packages.

8.2 Imported Packages

Imports Package: UML Standard Profile.UML2 Metamodel.PrimitiveTypes

The Core Package imports the UML PrimitiveTypes Package for the data types of many metamodel attributes.

8.3 UML Primitive Types

The following basic data types from the UML PrimitiveTypes Package are used in this specification with the interpretation
givenin the UML specification. Where these data types formally appear as the types of attributes of metaclasses, they are
prefixed with (UML) to further distinguish them from the similarly named EXPRESS data types.

8.3.1 Primitive type: Boolean

Definition: UML primitive type for logical values.

8.3.2 Primitive type: Integer

Definition; UML primitive type for numeric information.

Note — All integer values used in this metamodel are non-negative.

8.3.3 Primitive type: String

Definition: UML primitive type for arbitrary character (code) representation.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13

8.4 EXPRESS Language Datatypes

8.4.1 Datatype: ExpressText

Definition: represents any EXPRESS language text, including both unparsed text and specific syntactic elements.
Note — See Clause 7 of SO 10303-11:2004.

8.4.1.1 Supertypes

Redlization typeis. (UML) String

The redlization relationship is modeled as a generalization.
8.4.1.2 Members

none

8.4.2 Datatype: Identifier

Definition: EXPRESS language element used for naming NamedElements.
Note — See 7.4 of 1SO 10303-11:2004.

8.4.2.1 Supertypes
ExpressText.
8.4.2.2 Members

none

8.4.3 Datatype: Keyword

Definition: EXPRESS language element used for names of built-in data types.
Note — See 7.2.1 of SO 10303-11:2004.

8.4.3.1 Supertypes

EXxpressText
8.4.3.2 Members

none

8.5 Schemas, Scopes, and Naming

This sub clause of the Core model introduces the naming and namespace concepts of the EXPRESS language.

An EXPRESS model consists primarily of a set of NamedElements — model elements that have (or may have) identifiers. Per
Clause 10 of 1SO 10303-11, every NamedElement has a Scopein whichitis“visible,” that is, a collection of model contextsin

14 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

which the identifier refers to that NamedElement. Such identifiers are model ed here as Scopedlds — the combination of an
Identifier and the namespace (Scope) in which it is defined (see Datatype: Scopedid).

The primary Scope/namespace of an EXPRESS mode is a Schema. All model elements, except those that are predefined in
the EXPRESS language, are defined in some Schema. Interfacing is the mechanism by which an EXPRESS Schema includes
model elements defined in other Schemas. Figure 8.1 shows the basic Scope, Schema, and Interfacing concepts of EXPRESS.

glement-define i scope

shletaclazsss shletaclazsss
MNamadEfomant +named-elements +namespace Scope
M
+id - Scopedid [0.1] | 0. 1
Fa
ﬂ T
-|_ +zchema-element s +defined-in
sMetaclasss {redefines named-elements}| {zubsets namespace shetaclazss
SchemaEfement | - schema-defines-elements 0.1 Schema
+name : ldentifier [1]

] +wersion : String [0..1]
+irterfacing-schema | +URI : String [0..1]

-
-
.-"--- 1

1 +refers-to

schema-slgment-is-interfaced-element e +interfacing-schema| 1 1 | +interfaced-schema

Ischema-imjjiat'égjelemems

0.+ +referenced-as 0r schema-haz-internface
zMetaclazss | : . .
InterfacedElement +interfaced-elements Hnterfaces |0. u..
zhletaclazss
+interfacedld | Scopedid [0..1] interface-includes-element=s Interf;
+Xind : Interfacekind [1] 0. AT _ RIERET
+position : Integer [0..1] +kind : Interfacekind [1]
+interfaced-elements 1

Figure 8.1 - Schemas and Interfacing

There are three general subclasses of Scope: Schemas, Local Scopes, and Type Scopes. These Scope concepts are shownin
Figure 8.2. All of these concepts are defined in detail below, except for NamedType — the scope of TypeElements— whichis
defined in 8.7, Overview of Types.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 15

sMetaclasss element-detined-in-scope aMetaciasss
MamedFloment |+named-elements +NAMESPACE Scope
+id : Scopedid [0..1] 0.x 1
7

fcomplete, disjoint
Scope categories

zchema-defines-element=

S +defined-in zhetaclazss zhetaclazss:
SchomaFiement |0 isubsets namespace} EEhEma e diype
+zchema-elements 0.1
T {redefines named-elements }
#hetaclazsss -
ComuronEfelront
LocaiScopa
0.* | +common-elements
{zubsets named-elements } T
et +local-scope sMetaclazss
{zubsets namespace} AfgoritiunScope
common-glemert-haz-local-scope 0.1

Figure 8.2 - EXPRESS Scope and Named Element Concepts

8.5.1 Class: AlgorithmScope

Definition: a Local Scope that can be the namespace of CommonElements.
Properties: abstract

8.5.1.1 Supertypes

L ocal Scope

8.5.1.2 Attributes

none

8.5.1.3 Associations

AssociationEnd: common-elements To: CommonElement

via: common-el ement-has-local-scope

Subsets: Scope:named-elements

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined in it. Thisisa
refinement of the (abstract) Scope:named-elements rel ationship.

Note — See clause 10 of SO 10303-11:2004.

Multiplicity: 0..* unordered

16 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Properties. composite

AssociationEnd: variables To: Algorithms::LocalVariable

via: Algorithms::variable-defined-in-scope

subsets: Scope:named-el ements

Definition: represents the relationship between the AlgorithmScope and the set of Local Variables that are defined within it.

Multiplicity: 0..* unordered
Properties: composite
8.5.1.4 Other Roles

none

8.5.2 Class: CommonElement

Definition; a SchemaElement that can be defined in either a Schema or a L ocal Scope, and has (or may have) a unique
identifier within that Scope. Thisis an artifact of the declaration and namespace rules for the EXPRESS language.
NamedTypes, Algorithms, Constants, and SupertypeRules can be defined at the Schemalevel or within Algorithms and
Global Rules (AlgorithmScopes).

Every CommonElement has a Scope. The Scope is either a SchemaScope or an AlgorithmScope.
Properties: abstract

8.5.2.1 Supertypes

SchemaElement

8.5.2.2 Attributes

none

8.5.2.3 Associations

Note — The AssociationEnd: defined-in to Schemais inherited from SchemaElement.

AssociationEnd: local-scope To: AlgorithmScope

via: common-&lement-has-local-scope

Subsets: NamedEl ement:namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scopein
which it is defined; also, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note — See Clause 10 of 1SO 10303-11:2004.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

17

8.5.2.4 Other Roles
none

8.5.2.5 Rules

Constraint has-scope (OCL)
exists(self->defined-in) XOR exists(self->local-scope)

A CommonElement has exactly one scope, either a Schema (via defined-in), or a Local Scope.

8.5.3 Class: Interface

Definition: represents the EXPRESS “interface” relationship between two Schemasthat is created by a USE or REFERENCE
Statement.

Each EXPRESS interface statement (USE or REFERENCE) explicitly includes zero or more SchemaElements from the
interfaced Schema in the interfacing Schema. Each interface statement shall be represented by an Interface object with the
corresponding : kind. If there are multiple interface statements of the same kind for the same interfaced schema, they may all
be represented by a single Interface object of that kind. Each SchemaElement that is explicitly interfaced by the statement(s)
shall be represented by exactly one InterfacedElement that isincluded in the Interface. Such elements are considered to bein
the namespace of the interfacing Schema as well, but the identifier in the interfacing schema may be overridden in the
InterfacedElement.

In addition, an EXPRESS interface statement may implicitly interface zero or more SchemaElements from the interfaced
Schema in the interfacing Schema, in order to complete the specifications of the explicitly interfaced elements. For each
interfaced schema from which one or more SchemaElements are implicitly interfaced, the interfacing Schema shall also
contain one Interface object that has : kind=IMPLICIT, and that includes one InterfacedElement for each implicitly
interfaced element from that interfaced Schema. Implicitly interfaced elements are not considered to be in the namespace of
the interfacing schema, but they may appear in a corresponding population.

Note — See Clause 11 of 1SO 10303-11:2004. Interface models the USE and REFERENCE statements, but follows the
interpretation rules given in that clause. In particular, a statement of the form
REFERENCE FROM <schema>;
explicitly interfaces every SchemaElement defined in the interfaced schema, and a statement of the form
USE FROM <schema>;
explicitly interfaces every NamedType defined in the interfaced schema.

Note — The above requires an interfaced element that is both USEd and REFERENCEd in the same interfacing schemato have
two corresponding InterfacedElements, one in each of the Interface objects corresponding to the two kinds of interface
statements.

Note — Per SO 10303-11, a SchemaElement can be implicitly interfaced to define the terms used in defining explicitly
interfaced SchemaElements in one USE or REFERENCE statement. The same SchemaElement can also be explicitly
interfaced in another USE or REFERENCE statement. This specification does not require a SchemaElement that is explicitly
interfaced to be modeled asimplicitly interfaced at all. But SchemaElementsthat areimplicitly interfaced at least once and are
not explicitly interfaced at all must be modeled by InterfacedElements that are included in an Interface whose kind isimplicit.

8.5.3.1 Supertypes

none

18 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.5.3.2 Attributes

Attribute: kind To: InterfaceKind

Definition: the nature of the interface, as indicated by the interface statement the Interface represents: USE, REFERENCE,
implicit.

Multiplicity: 1..1
8.5.3.3 Associations

AssociationEnd: interfaced-elements To: InterfacedElement

via: interface-includes-elements

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the Interface.

Properties: composite
Multiplicity: 0..* unordered

AssociationEnd: interfaced-schema To: Schema

Definition: represents the rel ationship between the Interface and the Schema whose SchemaElements are being interfaced into
the .interfacing-schema.

Multiplicity: 1..1

AssociationEnd: interfacing-schema To: Schema

via: schema-has-interface

Definition: represents the relationship between the Interface and the Schemain which it appears.
Multiplicity: 1..1
8.5.3.4 Other Roles

none

8.5.4 Class: InterfacedElement

Definition: represents the EXPRESS “interface” relationship (USE, REFERENCE) between an interfacing Schema and one
SchemaElement that is defined in some other Schema. It can be viewed asa“role” of the .refers-to SchemaElement in the
interfacing schema. Each InterfacedElement is contained in exactly one Interface, which models one or more interface
statements of the same kind for the interfaced schema. Because it is hot meaningful for an interface statement to interface the
same SchemaElement more than once, the combination (: included-in, : refers-to) uniquely identifies an
InterfacedElement relationship.

Note — See clause 11 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 19

8.5.4.1 Supertypes

none

8.5.4.2 Attributes

Attribute: interfacedld To: Scopedid

Definition: the new Identifier for the .refers-to SchemaElement in the interfacing schema.

Note — See clause 11 of 1SO 10303-11:2004.
Multiplicity: 0..1

Attribute: kind To: InterfaceKind

Definition: the nature of the interface that is represented by the InterfacedElement: USE, REFERENCE, implicit. Itisderived
from the kind of Interfaceit isincluded in.

Multiplicity: 1..1

Properties: derived.

derivation = self->included-in->kind

8.5.4.3 Associations

AssociationEnd: included-in To: Interface

via: interface-includes-elements

Definition: the Interface that includes the InterfacedElement.
Multiplicity: 1..1

AssociationEnd: interfacing-schema To: Schema

via: schema-interfaces-el ements

Definition: represents the relationship between the I nterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schema is the namespace for the .interfacedid.

Multiplicity: 1..1

Properties. derived.
TaggedValues

derivation = self-s>included-in->interfacing-schema

AssociationEnd: refers-to To: SchemaElement

via: schema-element-is-interfaced-el ement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the InterfacedElement.

Multiplicity: 1..1

20 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.5.4.4 Other Roles

none

8.5.5 Datatype: InterfaceKind

Stereotype: enumeration

Definition; the nature of an Interface — the EXPRESS interface relationship between two Schemas.
8.5.5.1 Supertypes

none

8.5.5.2 Values

Value: IMPLICIT

Definition: represents “implicit” interfacing, as defined in SO 10303-11. A NamedElement isimplicitly interfaced when it is
not explicitly interfaced by any USE or REFERENCE statement but is used in the specification of a NamedElement that is
explicitly interfaced, or in the specification of another element that isimplicitly interfaced. Elements that are implicitly
interfaced do not appear in the namespace of the interfacing schema. Instances of implicitly interfaced NamedTypes may
appear in a Population governed by that Schema as if they were REFERENCEGd.

Value: REFERENCE

Definition: represents explicit interfacing by aREFERENCE statement. NamedElements that are explicitly interfaced have
identifiers in the namespace of the interfacing schema. Instances of NamedTypes that are interfaced by a REFERENCE
statement may exist in a Population, but only to fulfill some Attribute of an entity that is ultimately dependent on an
“independent entity.”

Value: USE

Definition: represents explicit interfacing by aUSE statement. NamedElementsthat are explicitly interfaced have identifiersin
the namespace of the interfacing schema. Instances of every NamedType that is explicitly interfaced by aUSE statement are
permitted to be “independent entities” in a Population governed by the interfacing Schema.

8.5.6 Class: LocalScope

Definition: a Scope that is neither a Schema nor a NamedType. Terms defined in a Local Scope are not visible at the Schema
level.

Note — See Clause 10 of 1SO 10303-11:2004.
Properties. abstract

8.5.6.1 Supertypes

Scope
8.5.6.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 21

8.5.6.3 Associations
none
8.5.6.4 Other Roles

none

8.5.7 Class: NamedElement

Definition: an abstract class representing a principal modeling concept of the EXPRESS language: an object that is defined in
amodel, has anotion of “lifetime,” and has an identifier that refersto it in Schemas or in some nested Scope in a Schema.

Note — Every NamedElement has an :id attribute whose value is a Scopedld. Some NamedElements are not required to have
identifiers, and some NamedElements can have additional identifiers. The scope of each such identifier is the Scope in which
the NamedElement is defined.

Properties: abstract
8.5.7.1 Supertypes
none

8.5.7.2 Attributes

Attribute: id To: Scopedld

Definition: representsthe identifier that uniquely identifiesthe NamedElement within the Scope that is the :namespace. Not all
NamedElements are required to have identifiers.

Note — See Clause 10 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.5.7.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-element

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of the
NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: namespace To: Scope

Definition: represents the abstract rel ationship between a NamedElement and the “ scope” in which it is defined, i.e., the set of
model elements for which that name refers to that NamedElement.

Note — See clause 10 of SO 10303-11:2004.

22 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1
Properties. abstract
8.5.7.4 Other Roles

none

8.5.8 Class: Schema

Definition: a Scope that represents an EXPRESS SCHEMA,, i.e., a collection of SchemaElement declarations and interface
declarations.

Note — “Schema” is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.3 of 1SO 10303-11:2004.

8.5.8.1 Supertypes

Scope
8.5.8.2 Attributes

Attribute: name To: Ildentifier
Definition: the name of the EXPRESS schema.
Note — See clause 9.3 of 1SO 10303-11:2004.

Multiplicity: 1..1
Attribute: version To: Identifier

Definition; the version identifier for the EXPRESS schema, if any.
Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..1
Attribute: URI To: (UML) String

Definition; the Uniform Resource Identifier for the EXPRESS schema, if any.
Note — Thisisthe XMI substitute for one use of the ‘version’ attribute described in clause 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..1
8.5.8.3 Associations

AssociationEnd: documentation To: Remark

via: remark-describes-schema

Definition: represents the relationship between a Schemaand the Remarks, if any, that constitute its in-schemadocumentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 23

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: interfaced-elements To: InterfacedElement

via: schemarinterfaces-elements

Definition: represents the relationship between a Schema and the InterfacedElementsit contains, that is, the SchemaElements
that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties: derived.

Multiplicity: 0..* unordered
TaggedValues

derivation = self-s>interfaces->interfaced-elements;

AssociationEnd: interfaces To: Interface

via: schema-has-interface

Definition: the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface into
the Schema.

Properties: composite
Multiplicity: 0..* unordered

AssociationEnd: schema-elements To: SchemaElement

via: schema-defines-elements

redefines; Scope:named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined init, as distinct from
those that are interfaced into it.

Note — See 9.3 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: composite

8.5.8.4 Other Roles

From: Interface as interfaced-schema
From: Instances::Population as governing-schema

8.5.9 Class: SchemaElement

Definition: a NamedElement whose scope can be a Schema. This includes all CommonElements and GlobalRule. The scope
of CommonElements can be a Schema, but is not required to be a Schema.

24 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Properties. abstract
8.5.9.1 Supertypes
NamedElement
8.5.9.2 Attributes
none

8.5.9.3 Associations

AssociationEnd: defined-in To: Schema

via: schema-defines-elements

Subsets: NamedElement:namespace

Definition: represents the relationship between the SchemaElement and the Schemain whichit is (originally) defined.

Note — See 9.3 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: referenced-as To: InterfacedElement

via: schema-element-is-interfaced-el ement

Definition: represents a use of the SchemaElement in some Schema other than the onein which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an InterfacedElement.

Multiplicity: 0..* unordered
8.5.9.4 Other Roles
none

8.5.9.5 Rules

Constraint (OCL)
exists(self->defined-in) OR NOT exists(self->referenced-as)

Only a SchemaElement that is defined-in a Schema can be referenced-as an I nterfacedElement.

8.5.10 Class: Scope

Definition: any EXPRESS object that defines a namespace for the interpretation of identifiers.
Note — See clause 10 of SO 10303-11:2004.

Properties: abstract
8.5.10.1 Supertypes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

25

8.5.10.2 Attributes
none

8.5.10.3 Associations

Association End: anonymous-type To: AnonymousType

Definition: the AnonymousTypes that are formally “contained in” the Scope. An AnonymousType should be contained in the
largest scope in which it has meaning, that is, the Scope that provides the interpretation for al of its member type and bound
expressions. The Scope of types and literals defined in the EXPRESS language itself is taken to be the Schema.

Multiplicity: 0..*, composite

Note — MOF requires that all objects are contained by others that trace to aroot model element. This association permits a
Scope to be the container for AnonymousTypes used within it.

Association End: expression To: Expression

via: expression-has-context
Definition: the Expressions whose interpretation-context is the Scope.
Multiplicity: 0..*, composite

Note — MOF requires that all objects are contained by others that trace to aroot model element. This association permits a
Scope to be the container for Expressions used within it.

Association End: generalized-type To: GeneralizedType

Definition: the GeneralizedTypes that are formally “contained in” the Scope. A GeneralizedType should be contained in the
largest scope in which it has meaning, that is, the Scope that provides the interpretation for al of its member type and bound
expressions.

Multiplicity: 0..*

Note — MOF requires that all objects are contained by others that trace to aroot model element. This association permits a
Scope to be the container for GeneralizedTypes used within it.

AssociationEnd: includes-remarks To: Remark

via: remark-appears-in-scope

Definition: represents the relationship between a Schema and the Remarks that appear init.
Note — See 7.1.6 of SO 10303-11:2004.

Multiplicity: 0..*, composite

AssociationEnd: named-elements To: NamedElement

Definition: represents the abstract relationship between a Scope and the NamedElements that are defined in it.

Note — This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See Clause 10 of 1SO 10303-11:2004.

26 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 0..*, composite
8.5.10.4 Other Roles

From: Expression as interpretation-context

8.5.11 Datatype: Scopedld

Stereotypes: structure

Definition; the combination of an Identifier and its namespace, which together constitute a well-defined symbol for an
EXPRESS Model Element. Figure 8.3 shows the conceptual model of a Scopedid. A Scopedld whose Scopeis a Schemais
visible throughout the Schema, and possibly to other Schemas that interface the NamedElement. A Scopedld whose Scopeisa
Local Scopeis visible only in that Local Scope. A Scopedld whose Scope is a NamedType isvisible only in the declaration of
that NamedType and in Expressions involving references to elements whose data type is that NamedType.

element-defingdin-scope
=ametaclass= P aTesnace ==metaclass==
ManredElomrant *+named-ektrents Gl i Scope
o

Hdentities

+definingScope | 1

Jetumi leientities-efement hatne-definect-ih-scone

=agtructipess
Scopedld
+localhame © dertifier [1)]

+idl
0.4

Figure 8.3 - Conceptual Model of Scopedld

8.5.11.1 Supertypes

none

8.5.11.2 Members

Member: definingScope To: Scope

Definition: represents the relationship between the Scopedid and the Scope in which it is defined.
Note — See Clause 10 of 1SO 10303-11:2004.

Multiplicity: 1..1

Member: localName To: Ildentifier

Definition: represents the EXPRESS identifier that uniquely identifies the NamedElement within the namespace that is the
Scope.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 27

8.5.12 Association: common-element-has-local-scope

Definition: represents the relationship between an AlgorithmScope and the CommonElements that are defined init. Thisisa
refinement of the (abstract) element-defined-in-scope relationship.

Note — See clause 10 of SO 10303-11:2004.
8.5.12.1 Supertypes

el ement-defined-in-scope

8.5.12.2 Association Ends

AssociationEnd: common-elements To: CommonElement
Definition: the CommonElements that are defined in the AlgorithmScope.

Note — See clause 10 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: local-scope To: AlgorithmScope
Subsets: NamedElement:namespace

Definition: represents the relationship between a CommonElement that is defined in an AlgorithmScope and the scopein
which it is defined; al so, the scope (set of model elements) in which the id of the CommonElement refers to that
CommonElement.

Note — See Clause 10 of 1SO 10303-11:2004.

Multiplicity: 0..1

8.5.13 Association: element-defined-in-scope

Definition: represents the generic relationship between a NamedElement and the Scope in which it is defined. Every
NamedElement is defined in exactly one Scope. It may be interfaced into other Scopes, and it may be visible in Scopes nested
inside the Scope in which it defined and the Scopes into which it isinterfaced.

Note — See clause 10 of SO 10303-11:2004.

Note — Thisis an abstract relationship. Each separate form of this relationship is separately model ed.
Properties. abstract

8.5.13.1 Association Ends

AssociationEnd: named-elements To: NamedElement

Definition: represents the relationship between a Scope and the NamedElements that are defined init.

Note — This relationship is very much conceptual. Not every kind of NamedElement can be defined in every kind of Scope.
See clause 10 of 1SO 10303-11:2004.

28 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 0..*, composite

AssociationEnd: namespace To: Scope

Definition: represents the relationship between a NamedElement and the “ scope” in which it is defined, i.e., the set of model
elements for which that name refers to that NamedElement.

Note — See clause 10 of 1SO 10303-11:2004.
Multiplicity: 1..1

Properties. abstract

8.5.14 Association: interface-includes-elements

Definition: represents the relationship between an Interface and the InterfacedElements it contains, that is the relationship
between an interface statement (USE or REFERENCE) and the SchemaElementsit implicitly and explicitly interfaces.

Note — See clause 11 of 1SO 10303-11:2004.

8.5.14.1 Association Ends

AssociationEnd: included-in To: Interface

Definition: the Interface that includes the InterfacedElement.
Multiplicity: 1..1

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: the InterfacedElements that are included in the Interface. That is, the SchemaElements that are implicitly or
explicitly interfaced into the interfacing schema by the USE or REFERENCE statement that is represented by the Interface.

Properties. composite

Multiplicity: 0..* unordered

8.5.15 Association: schema-defines-elements

Definition: represents the relationship between a Schema and the SchemaElements that are defined in it.
8.5.15.1 Supertypes

el ement-defined-in-scope

8.5.15.2 Association Ends

AssociationEnd: defined-in To: Schema

Subsets: NamedElement:namespace

Definition: represents the rel ationship between the SchemaElement and the Schemain whichiit is (originally) defined. Refines
the (abstract) NamedElement:namespace relationship.

Note — See 9.3 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 29

Multiplicity: 0..1

AssociationEnd: schema-elements To: SchemaElement

redefines: Scope:named-elements

Definition: represents the relationship between the Schema and the SchemaElements that are defined init, as distinct from
those that are interfaced into it. refines the (abstract) Scope:named-elements rel ationship.

Note — See 9.3 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties. composite

8.5.16 Association: schema-element-is-interfaced-element

Definition: represents a use of the SchemaElement in some Schema other than the one in which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an I nterfacedElement.

8.5.16.1 Association Ends

AssociationEnd: referenced-as To: InterfacedElement

Definition: represents a use of the SchemaElement in some Schema other than the onein which it is defined. Only a
SchemaElement whose scope is a Schema can be referenced as an I nterfacedElement.

Multiplicity: 0..* unordered

AssociationEnd: refers-to To: SchemaElement

Definition: represents the SchemaElement being imported (interfaced) into the interfacing schema as the InterfacedElement.

Multiplicity: 1..1

8.5.17 Association: schema-interfaces-elements

Definition: represents the EXPRESS “interface” relationships (USE, REFERENCE) between an interfacing Schema and the
InterfacedElements that represent the SchemaElements that are interfaced from other Schemas.

Note — See clause 11 of 1SO 10303-11:2004.
Properties: derived
8.5.17.1 Association Ends

AssociationEnd: interfaced-elements To: InterfacedElement

Definition: represents the relationship between a Schema and the InterfacedElementsit contains, that is, the SchemaElements
that it imports/interfaces from other Schemas via USE and REFERENCE statements.

Properties: derived

Multiplicity: 0..* unordered

30 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

TaggedValues

derivation = self-sinterfaces->interfaced-elements;

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the InterfacedElement and the Schema in which it appears. If the
InterfacedElement renames the .refers-to SchemaElement, the interfacing-schemais the namespace for the .interfacedid.

Properties: derived
Multiplicity: 1..1
Tagged Values
derivation = self->included-in->interfacing-schema;

8.5.18 Association: schema-has-interface

Definition: represents the relationship between a Schema and the Interfaces it contains, and indirectly, the Schemas that it
imports/interfaces.

Note — See clause 11 of SO 10303-11:2004.

8.5.18.1 Association Ends

AssociationEnd: interfaces To: Interface

Definition; the Interfaces that link the Schema to the Schemas it interfaces and to the InterfacedElements they interface into
the Schema.

Properties. composite
Multiplicity: 0..* unordered

AssociationEnd: interfacing-schema To: Schema

Definition: represents the relationship between the Interface and the Schemain which it appears.

Multiplicity: 1..1
8.5.19 Generalization Sets

Generalization Set: Scope categories complete, disjoint

Every Scopeis one of Schema, NamedType, or Local Scope.

8.6 Remarks

This sub clause of the Core mode! introduces the Remark constructs that serve to document Schemas and NamedElements.
Figure 8.4 depicts the Remark concept and its properties.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 31

shetaclasss
Scope
11 +appears-in
remark-appears-in-scope
0.* | +includes-remarks) ehetaclazss
retark-describes-elemeant NamodElanant
sMetaciasss +documentstion +odezcribes-element
Remark o " +id : Scopedid [0..1]
et © String [1]))

+izTail : Boalean [1]

+izTagged ; Boolean [1] remark-describes-schema

+documentation +describes-schems sMetaclasss

i 0 Schema

+nathe | Identifier [1]
+yersion : String [0..1]
+URI: String [0..1]

Figure 8.4 - Remarks

8.6.1 Class: Remark

Definition: acomment or other documentation element that provides additional information about amodel element.
8.6.1.1 Supertypes

none

8.6.1.2 Attributes

Attribute: isTagged To: (UML) Boolean

Definition: is TRUE if the Remark is “tagged” to refer to one or more NamedElements, and FAL SE if the remark is not
explicitly tagged.

If .isTagged is TRUE, the Remark should havethe .describes-element or .describes-schema property.
Note — See 7.1.6.3 of 1SO 10303-11:2004.
Multiplicity: 1..1

Attribute: isTail To: (UML) Boolean

Definition: is Trueif the Remark islexicaly atail remark; and Falseif the Remark islexically an embedded remark.
This distinction describes only the representation and placement of the remark in the EXPRESS syntax.

Note — See 7.1.6 of SO 10303-11:2004.
Multiplicity: 1..1

Attribute: text To: ExpressText

Definition: represents the actual text of the remark.

32 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — Part 11 requires that the character set of the remark be the EXPRESS character set, but in practice alarger subset of
1SO 10646-1 Basic Multilingual Plane is often used.

Note — See 7.1.6 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.6.1.3 Associations

AssociationEnd: appears-in To: Scope

via: remark-appears-in-scope

Definition: represents the relationship of a Remark to the Schemathat lexically containsit.
Multiplicity: 1..1
AssociationEnd: describes-element To: NamedElement

via: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While atagged remark is
formally associated with one or more NamedElement(s), a processor may also ascribe a given un-tagged Remark to a given
NamedElement, based on itslexical position.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: describes-schema To: Schema

via: remark-describes-schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The Remark
may be Tagged to refer to the Schema, or it may be ascribed to the Schema if it lacks any other association. In particular, a
Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced from it.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered
8.6.1.4 Other Roles

none

8.6.2 Association: remark-appears-in-scope
Definition: represents the relationship of a Remark to the Schemathat lexically containsit.

8.6.2.1 Association Ends

AssociationEnd: appears-in To: Scope
Definition: the Schema that lexically contains the Remark.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 33

Note — This may be the only cue asto the subject of the Remark. The first edition of EXPRESS did not specify a means for
binding Remarks to model elements.

Multiplicity: 1..1
AssociationEnd: includes-remarks To: Remark

Definition: represents the relationship between a Schema and the Remarks that appear init.
Note — See 7.1.6 of SO 10303-11:2004.

Multiplicity: 0..*, composite

8.6.3 Association: remark-describes-element

Definition: represents the relationship between a Remark and the NamedElement(s) it describes. While atagged remark is
formally associated with one or more NamedElements, a processor may also ascribe a given un-tagged Remark to a given
NamedElement, based on its lexical position.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

8.6.3.1 Association Ends

AssociationEnd: describes-element To: NamedElement
Definition: the NamedElement(s) described by the Remark.
Note — See 7.1.6.3 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a NamedElement and the Remarks, if any, that constitute its in-schema
documentation. If the Scope (.appears-in) of the Remark is, or is contained in, a different Schema from the declaration of the
NamedElement, the Remark only applies to the NamedElement as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.6.4 Association: remark-describes-schema

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema documentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

8.6.4.1 Association Ends

AssociationEnd: describes-schema To: Schema

Definition: represents the relationship between a Remark that describes a Schema and the Schema it describes. The Remark
may be Tagged to refer to the Schema, or it may be ascribed to the Schemaif it lacks any other association. In particular, a

34 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Remark may appear in one Schema and refer to an interfaced Schema or to elements interfaced fromit.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schema is a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

AssociationEnd: documentation To: Remark

Definition: represents the relationship between a Schema and the Remarks, if any, that constitute its in-schema documentation.
If the Scope (.appears-in) of the Remark is a different Schema, the Remark only applies to the Schema as-interfaced.

Note — See 7.1.6.3 of 1SO 10303-11:2004. Technically the Schemais a named element of the EXPRESS language, but it has
no defined Scope.

Multiplicity: 0..* unordered

8.7 Overview of Types

This sub clause of the Core model introduces the data type modeling concepts of the EXPRESS language, including the built-
in types.

Asisshown in Figure 8.5, the EXPRESS data type model consists of several dichotomies. Each of the high-level abstract
types represents a group of EXPRESS data types that can play a given role in the metamodel.

DataType isthe general class of types of results of Expressions. Thisincludes all VariableTypes, together with “partial
complex entity datatypes’ (Partial EntityTypes), which can only occur as the result of an (intermediate) Expression.

VariableTypeisthe genera class of types that Variables can be declared to have. Thisincludes all InstantiableTypes and
Actual Types, which are formal types that resolve to InstantiableTypes at the time the Variableis created.

ParameterType is the most general class of types that amodel element, and in particular, Attributes and Parameters, can be
declared to have. Thisincludes all VariableTypes and GeneralizedTypes, which represent generalized requirements on the type
of the element that must be specialized in actual uses.

Instantiable Types represent all the data type notions that characterize objects and properties in EXPRESS. Instantiable Types
also represent all the data types that have Instances, except for Partial Entity Types. They are subdivided into Entity Types, which
largely represent non-data obj ects, and ConcreteTypes, which represent data elements. They are also subdivided into
NamedTypes, which are defined by declarations in the Schema, and AnonymousTypes, which are defined in the EXPRESS
language and have specific syntactic designations instead of “identifiers.”

Any given object representing an EXPRESS datatype is an instance of exactly one of InstantiableType, Actua Type,
GeneralizedType, and Partial Entity Type, and in fact, it is an instance of exactly one specific instantiable subclass.

All of these concepts are defined bel ow.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 35

shetaclazss
Data Type

shietaciazss 0*
ParameterType

+3pecializes

fcomplete, disioint } | | fcomplete, disioint }
DataType categories sMetaclazss PatameterType categaries
VariablaType
fcomplete, disjoint }
YariableType categories
zhietaclazss shietaclazzs zhietaclazss zhletaclasss
PartialEntity Type ActuziTypa Instantiabie Type GeneralizedType
Fas Fas

{complete, dizjoint }
InztantiableType named/anonymous

{complete, disjoirt
Inzstantiable Type: entityiconcrete

zhetaclaszs zMetaclazzs
ConcreteType 1 [AnonymousType
shietaciazss AN
EntityType 1 MamedTypo

Figure 8.5 - Overview of EXPRESS Type concepts

Figure 8.5 also shows, using “implicit” subclass relationships for Entity Types and AnonymousTypes, that there are two
dichotomies for InstantiableTypes. Every InstantiableType is either an Entity Type or a ConcreteType, and every
InstantiableType is either a NamedType or an AnonymousType.

Figure 8.6 shows the model of Instantiable Typesin detail. SimpleTypes, (Concrete) AggregationTypes and Entity Types are
defined in separate sub clauses. The other classes and associations are defined bel ow.

36 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

or [

zhMetaclasss zhetaclasss 1
CommonElamont Instantiabio Type

I

+ifundamertal-type

+zelect-list

. «hetaclazss «hetaclasss .
0.* fordered} Nawted Type ConcreteType +underlying-type
+allovwed-types 1
£
; S {complete‘Eisjoint} {complete, disjoint }
vpetinstantiates- . :
shlect type MamedType ategarles| ConcreteType categories
sMetaciasss sMetaciasss zhMetaclasss
EntityType DefinedType AnonviiousType
{complete, disjoint } {completef disjoint }
DefinedTypg categories AnonymousType categories
0.# 0.* | +inctantistes |
zMetaclazss zMetaclazss zMetaclasss «Metaclazsss
SelectType EnumerationType SpecializedType SimpleTypa
+izExtensible : Boolean [1] +izExtensible : Boolean [1] +id - Keyweard [1]
+izEntity : Boolean [1] 0
1| +haze 0.*% | +extension

1 | +base 0.* |+extension sMetaclasss
enumer ation-extends-enumer ation

ConcreteAgaraqation Type
zelect-type-extends-select-type gt i

Figure 8.6 - NamedTypes and Instantiable Types

8.7.1 Class: ActualType

Definition; specification of an instantiable datatype by reference to (acomponent of) the data type of the actual parameter that
corresponds to aformal parameter of the Algorithm.

Each subtype of Actual Type refersto a ParametricElement that is defined among the formal Parameters of the Algorithm. The
ParametricElement denotes the corresponding component of the data type of the corresponding actual parameter in any given
invocation. The ParametricElement is named by an EXPRESS type label, and the Actua Type refersto that
ParametricElement viathe type label.

Note — See 9.5.3.4 of SO 10303-11:2004.

Properties. abstract

The details of Actual Types are specified in the Algorithms Package (Clause 11).
8.7.1.1 Supertypes

Variable

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 37

8.7.1.2 Attributes
none

8.7.1.3 Associations

AssociationEnd: scope To: Algorithms::Algorithm

Via: Algorithms;:scope-of-actual -type

Definition: the Algorithm in which the Actual Typeis specified.

The Actual Type must be the data type of a Variable or Attribute whose scope is contained in the Algorithm, and the
ParametricElement that definesthe type label to which the Actual Type refers must be defined among the formal
parameters of the Algorithm.

An Actua Type does not have a namespace; it defines no identifiers. The :scope of the Actual Type represents the ownership of
the Actual Type and the lifetime of the Actual Type.

Multiplicity: 1..1

8.7.1.4 Other Roles

From: Algorithms::ActualAggregationType as member-type
8.7.2 Class: AnonymousType

Definition: represents any InstantiableType that is not a NamedType.
Properties. abstract

8.7.2.1 Supertypes

I nstantiableType, ConcreteType

8.7.2.2 Attributes
none

8.7.2.3 Associations
none

8.7.2.4 Other Roles

From: AnonymousType as specializes

8.7.3 Class: ConcreteType

Definition: represents any InstantiableType that is not an Entity Type.
Note — See 9.1 of 1SO 10303-11:2004.

Properties. abstract

38 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.7.3.1 Supertypes

| nstantiableType

8.7.3.2 Attributes
none

8.7.3.3 Associations
none

8.7.3.4 Other Roles
From: SpecializedType as underlying-type
8.7.4 Class: DataType

Definition: an ExpressionType that represents al the data type notions that can be declared for objects and propertiesin
EXPRESS. Syntactically called parameter_type, it includes InstantiableTypes and GeneralizedTypes (which represent
conformance rules for InstantiableTypes). It excludes Partia Entity Types, which are only classifiers for intermediate results.

Note — See Clause 8 of SO 10303-11:2004.
Properties: abstract

8.7.4.1 Supertypes

none

8.7.4.2 Attributes

none

8.7.4.3 Associations

AssociationEnd: instances To: Instance

Definition; the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless they
appear directly in a Schema.

Note — For most DataTypes, navigating the association in this direction is not arequired feature of the model.
Multiplicity: 0..* unordered.
8.7.4.4 Other Roles

From: Expression as data-type

8.7.5 Class: DefinedType

Definition: a NamedType representing an EXPRESS defined data type, atype declared by atype declaration.
Note — See 8.3.2 and 9.1 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 39

Properties. abstract
8.7.5.1 Supertypes

ConcreteType, NamedType

8.7.5.2 Attributes
none

8.7.5.3 Associations
none

8.7.5.4 Other Roles

none

8.7.6 Class: EnumerationType

Definition: a DefinedType representing an EXPRESS defined datatype whose underlying type isan ENUMERATION
datatype - adata type that has as its domain a set of named values.

Note — See 8.4.1 of SO 10303-11:2004.
8.7.6.1 Supertypes

DefinedType
8.7.6.2 Attributes

Attribute: isExtensible To: (UML) Boolean
Definition: is True if the EnumerationType can have additional values in a schemathat interfacesit; Falseif not.

In the context schema for a population, the final set of possible valuesis known. But the set given in the defining schema may
be incomplete and be extended by other EnumerationTypes for which thisis the base.

Note — See 8.4.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.7.6.3 Associations

AssociationEnd: base To: EnumerationType

via: enumeration-extends-enumeration

Definition: represents the rel ationship of an extended EnumerationType to the EnumerationTypeitisBASED ON. Thedomain
of the extended typeincludes all of the values of the base type and al the values defined in the extension.

Note — See 8.4.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

40 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: declared-items To: Enumerations::Enumerationltem

via. Enumerations.enumeration-declares-items

Subsets: Scope.named-elements

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type _declaration. For extended enumeration types, thisis distinct from the .values rel ationship, which captures all of the valid
values of the type.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: extension To: EnumerationType

via enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBL E EnumerationType to the EnumerationTypes that are BASED ON
it. Each extension type may add additional values to the domain, and these are considered to be values of the base type for all
uses within the schema containing the extension.

Note — See 8.4.1 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: values To: Enumerations::Enumerationltem

via Enumerations;:value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type. An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declaresit. This
relationship can be derived recursively as the union of the values of the .declared-items attribute for the EnumerationType, for
each EnumerationType in the sequence of .base relationships from the EnumerationType, and from all the extensions of the
EnumerationType.

Note — See clause 8.4.1 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: derived

Note — The derivation of the entire list of values is arecursive operation, described in the Definition above.
8.7.6.4 Other Roles

none

8.7.7 Class: InstantiableType

Definition: an abstract classifier, encompassing all the datatype notions that characterize objects and propertiesin EXPRESS.
InstantiableType is a proper subtype of DataType, which includes all the data types that have Instances.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 41

Note — See 8.6.1 of 1SO 10303-11:2004.
Properties. abstract

8.7.7.1 Supertypes

VariableType

8.7.7.2 Attributes

none

8.7.7.3 Associations

AssociationEnd: fundamental-type To: InstantiableType

Definition: represents the relationship between the InstantiableType and the data type used to represent its values. The
fundamental-type of a SpecializedType is the fundamental -type of its underlying-type; the fundamental-type of any other
InstantiableType is the InstantiableType itself.

Note — SO 10303-11 is not clear about the fundamental-type of a SelectType. The values of a SelectType are necessarily also
values of one of the typesin the select-list, and each value is represented according to the fundamental -type of its narrowest
datatype.

Note — See 13.3.2 of 1SO 10303-11:2004.
Multiplicity: 1..1
Properties. derived
The derivation is arecursive operation as stated in the Definition above;
if self isa SpecializedType then
self->fundamental-type = self->underlying-type->fundamental -type
o self->fundamental-type = self
8.7.7.4 Other Roles

From: InstantiableType as fundamental-type
From: InstantiableAgaregationType as member-type

From: Instances::Constant as data-type

8.7.8 Class: NamedType

Definition: a CommonElement that defines a new InstantiableType.

Note — See 8.3 of 1SO 10303-11:2004.
Properties. abstract
8.7.8.1 Supertypes

CommonElement , Scope, | nstantiableType

42 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.7.8.2 Attributes
none

8.7.8.3 Associations

AssociationEnd: domain-rules To: DomainRule

via NamedType-has-DomainRule

Subsets: Scope.named-elements

Definition: arefinement of InstantiableType:constraints, represents the association of DomainRules that restrict the domain of
valid values of the NamedType.

Note — See 9.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: instantiates To: SelectType
via: type-instanti ates-sel ect-type

Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note — See 8.4.2 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered
8.7.8.4 Other Roles

From: SelectType as select-list
From: Instances::TypeName as refers-to

From: Expressions::ExtentRef as refers-to

8.7.8.5 Rules

Constraint (OCL)
exists(self->id);

Every NamedType shall have an identifier

8.7.9 Class: ParameterType

Definition: an abstract classification of Typesthat includesthe InstantiableTypes, Actual Types, and GeneralizedTypes. That is,
a ParameterTypeis any Typethat is admissible as the declared type of a Parameter or an (abstract) ExplicitAttribute.

Note — See | SO 10303-11:2004 clause 8.6.2

Note — Thelexical parameter type in EXPRESS may represent an Actua Type rather than a ParameterType, and it may
include labeled GenericComponents that are used in Actual Types and Actual TypeConstraints. All of these concepts are
described in the Algorithms Package.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 43

Properties. abstract
8.7.9.1 Supertypes
none

8.7.9.2 Attributes
none

8.7.9.3 Associations

AssociationEnd: constraints To: DomainConstraint

via: type-has-constraints

Definition: represents the association of DomainConstraints that restrict the value domain of the Parameter Type

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of 1SO 10303-11:2004.
Multiplicity: 0..*, composite

AssociationEnd: role To: Attribute

via: attribute-has-data-type

Definition: represents the relationship between the Parameter Type and the roles (attributes of entities) that its admissible
values may play.

Note — See 9.2.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered

AssociationEnd: specializes To: ParameterType

Definition: represents the relationship of a ParameterType to a Parameter Type of which it isa*“ specialization,” as specified in
Part 11 clause 9.2.7. Unlike the “ specialization” for defined data types (.underlying-type), these relationships are true
subtypes: the domain of the “specialization” is a subset of the domain of the .specializes ParameterType and has the same
interpretation.

Multiplicity: 0..* unordered
8.7.9.4 Other Roles

From: AGGREGATEType as member-type
From: Redeclaration as restricted-type

From: Algorithms::Parameter as formal-parameter-type

From: ParameterType as specializes

8.7.10 Class: SelectType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type iSaSELECT datatype:
adata type that has as its domain the union of the domains of a specified set of named data types.

44 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 8.4.2 of SO 10303-11:2004.
8.7.10.1 Supertypes

DefinedType
8.7.10.2 Attributes

Attribute: isEntity To: (UML) Boolean

Definition; represents a constraint on the extensions of an Extensible SelectType: True if every NamedType in the extension
must be an Entity Type; otherwise False.

Multiplicity: 1..1

Attribute: isExtensible To: (UML) Boolean

Definition: Trueif the SelectTypeisEXTENSIBLE, i.e,, if it can have additional NamedTypesin the select-list whenitis
interfaced into another Schema; Fal se otherwise.

Note — See 8.4.2 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.7.10.3 Associations

AssociationEnd: allowed-types To: NamedType
via: type-instantiates-sel ect-type

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All values in the domain of the NamedType are valid values of the SelectType.

Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: base To: SelectType
via: sel ect-type-extends-sel ect-type

Definition: represents the relationship of an extended select type to the (extensible) select typeit is BASED ON.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType
via: sel ect-type-extends-sel ect-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 45

AssociationEnd: select-list To: NamedType

Definition: represents the appearance of the NamedType in the select list in the declaration of the SelectType. For extended
and extensible SelectTypes, the NamedType should appear in exactly one of the select-listsin any set of SelectTypes related by
extension. Thisis distinct from .allowed-types, which represents all of the NamedTypes that can validly instantiate the
SelectType, including any related by extension. The select-list is said to be “ordered,” to convey the syntactic ordering. The
ordering has no semantic significance.

Note — See 8.4.2 of SO 10303-11:2004.
Multiplicity: 0..* ordered
8.7.10.4 Other Roles

From: Instances::TypedInstance as satisfies-type

8.7.11 Class: SpecializedType

Definition: a DefinedType representing an EXPRESS defined data type whose underlying type isneither an explicit
ENUMERATION data type nor an explicit SELECT data type. According to SO 10303-11 clause 9.1, a SpecializedType
represents an abstract data type whose values are represented by values of theunderlying type; butin practice, a
SpecializedType may also simply name an underlying type that isan AnonymousType, or name an

underlying type whosedomain isa subset of the domain of another DefinedType.

Note — See 9.1 of SO 10303-11:2004.
8.7.11.1 Supertypes
DefinedType

8.7.11.2 Attributes

none

8.7.11.3 Associations

AssociationEnd: underlying-type To: ConcreteType

Definition: represents the EXPRESS “specialization” relationship between a defined data type and the “underlying type” used
to represent it.

Note — See 9.1 and 9.7 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.7.11.4 Other Roles

From: Instances::SpecializedValue as of-type

8.7.12 Class: VariableType

Definition: an abstract class representing the permissible data types of avariable: | nstantiableTypes and Actual Types.

Properties: abstract

46 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.7.12.1 Supertypes

ParameterType, Datalype

8.7.12.2 Attributes
none

8.7.12.3 Associations
none

8.7.12.4 Other Roles

From: Algorithms::Variable as variable-type
From: Expressions::Coercion as target-type

From: Algorithms::ActualAGGREGATEType as member-type

8.7.13 Association: enumeration-extends-enumeration

Definition: represents the relationship of an EXTENSIBL E EnumerationType to the EnumerationTypes that are BASED ON
it.

Note — See 8.4.1 of 1SO 10303-11:2004.
8.7.13.1 Association Ends

AssociationEnd: base To: EnumerationType

Definition: represents the relationship of an extended EnumerationType to the EnumerationTypeitisBASED ON. The domain
of the extended type includes all of the values of the base type and all the values defined in the extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: extension To: EnumerationType

Definition: represents the relationship of an EXTENSIBLE EnumerationType to the EnumerationTypes that are BASED ON
it. Each extension type may add additional values to the domain, and these are considered to be values of the base type for all
uses within the schema containing the extension.

Note — See 8.4.1 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.7.14 Association: select-type-extends-select-type

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.
Note — See 8.4.2 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 47

8.7.14.1 Association Ends

AssociationEnd: base To: SelectType

Definition: represents the relationship of an extended select type to the (extensible) select typeit isBASED ON.
Note — See 8.4.2 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: extension To: SelectType

Definition: represents the relationship of an EXTENSIBLE select type to a select type BASED ON it.

Note — See 8.4.2 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.7.15 Association: type-instantiates-select-type

Definition: represents the appearance of the “generalizes’ NamedType in the select list of the “instantiates” SelectType.
Note — See 8.4.2 of 1SO 10303-11:2004.

8.7.15.1 Association Ends

AssociationEnd: allowed-types To: NamedType

Definition: represents the relationship of the SelectType to a NamedType whose values are included in the domain of the
SelectType. All valuesin the domain of the NamedType are valid values of the SelectType.

Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: instantiates To: SelectType
Definition: represents the relationship between the NamedType and a SelectType whose domain includes it.
Note — See 8.4.2 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.7.16 Generalization Sets

Generalization Set: AnonymousType categories complete, disjoint

Every AnonymousType is one of SimpleType or ConcreteAggregationType.

Generalization Set: ConcreteType categories complete, disjoint

Every DataType is one of DefinedType or AnonymousType.

Generalization Set: DataType categories complete, disjoint

Every DataTypeis one of VariableType or Partia Entity Type.

48 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Generalization Set: DefinedType categories complete, disjoint

Every DefinedType is one of EnumerationType, SelectType, or SpecializedType.

Generalization Set: InstantiableType entity/concrete complete, disjoint

Every InstantiableType is one of EntityType or ConcreteType.

Generalization Set: InstantiableType named/anonymous complete, disjoint

Every InstantiableType is one of NamedType or AnonymousType.

Generalization Set: NamedType categories complete, disjoint

Every NamedType is one of EntityType or DefinedType.

Generalization Set: ParameterType categories complete, disjoint

Every DataTypeis one of VariableType or GeneralizedType.

Generalization Set: VariableType categories complete, disjoint

Every DataTypeis one of InstantiableType or Actual Type.

8.8 Type Constraints

InstantiableTypes can have local constraints on the admissible values of their “domain.” The basic concept is shown in
Figure 8.7. All NamedTypes can have DomainRules. AnonymousTypes have specialized constraints, which are shown in the
sub clauses for those types.

e +0MEIn +oomain-rules sMetaclazss
redefines namespace subsets named-elements i
NawmedTypa t pace} { : ! DomainRule
1 NamedType-has-DomainRule 0.% |+position : Intener [1]
{complete, disjoint
MamedType categaries

LY

sMetaclazss eMetaclassy
sMetaclazss shetaclassy Expression passerts Domain Constraint
DefinedType EntityType +ext : ExpressText [0.1] 0.1 0.1

Figure 8.7 - Type Constraints

8.8.1 Class: DomainConstraint

Definition: represents a constraint on the allowable values of an EXPRESS data type. This concept does not appear explicitly
in the EXPRESS language. Some DomainConstraints are explicit DomainRules (WHERE rules); others, such as
SizeConstraints and LengthConstraints, are stated in the EXPRESS syntax for the data type. In this model, a
DomainConstraint is always formulated as a (boolean) Expression, regardless of the EXPRESS syntax used to specify it.

Properties. abstract

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 49

8.8.1.1 Supertypes
none

8.8.1.2 Attributes
none

8.8.1.3 Associations

AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1
Properties: abstract

AssociationEnd: asserts To: Expression

Definition: represents the relationship between the domain constraint and a Boolean expression that can be evaluated to
determineif it holds.

While all DomainConstraints can be represented by Bool ean expressions, some DomainConstraints have representations that
do not reguire the Expression to be explicitly modeled. For thisreason, . asserts has multiplicity 0..1. When the
DomainConstraint has a simple representation (such as afixed size that is an integer), . asserts may, but need not, have a
value. When the DomainConstraint cannot be simply represented, . asserts shall have avalue that is a Boolean expression
that conveys the constraint.

Note — The asserts expression that formulates the DomainConstraint is wholly owned by the DomainConstraint. It is not
treated as reusable.

Multiplicity: 0..1

EXAMPLE
For the EXPRESS text:

ENTITY roster;

max_team: INTEGER;

members: LIST [l:max team+1l] OF entry;
END ENTITY;

The DomainConstraint representing the maximum size of themembers listisaSizeConstraint that hasno . bound value and
hasavaluefor .asserts that isan Expression of the form:

SizeOf (SELF.members) <= SELF.max team + 1

The DomainConstraint representing the minimum size of themembers list isa SizeConstraint that has .bound = 1. Itis
not required to have any valuefor . asserts. But, if present, thevalueof . asserts should be an Expression of the form:

SizeOf (SELF.members) >= 1

50 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.8.1.4 Other Roles

none

8.8.2 Class: DomainRule

Definition: represents a DomainConstraint that is stated as an EXPRESS domain rule in a WHERE clause in the
type_declaration or the entity declaration. In atype declaration, it is a Boolean expression in terms of SELF that limits the
alowable values in the domain of the datatype. In an entity_declaration, it is a Boolean expression that constrains the values
of one or more attributes (or other relationships) of the entity data type.

Note — See clauses 9.1 and 9.2.2.2 of 1SO 10303-11:2004.

Part 11 permits a DomainRule to eval uate to indeterminate (“?") and requires arule with that evaluation to be treated as
satisfied. The most common case is the evaluation of an expression involving an OPTIONAL attribute. Languages like OCL
and OWL require the possibly indeterminate values to be protected by an EXISTS operation.

EXAMPLE
For the EXPRESS text:

ENTITY time_ interval;
begin time: date time;
end time: OPTIONAL date time;

WHERE
wrl: begin time <= end time;
END ENTITY;

The EXPRESS domainrulewr1 isrepresented by aDomainRulewith : id="wr1" and :position = 1,and :asserts
linked to an Expression of the form:
SELF.begin time <= SELF.end time

The proper translation of the EXPRESS DomainRule wr1, however, may require the rule to be represented as:
NOT EXISTS (SELF.end time) OR (SELF.begin time <= SELF.end time)

8.8.2.1 Supertypes

NamedElement, DomainConstraint

8.8.2.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the position of the Domain Rulein thelist of rules following the WHERE keyword in the entity/type
declaration.

Multiplicity: 1..1
8.8.2.3 Associations

AssociationEnd: domain To: NamedType

via NamedType-has-DomainRule

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 51

redefines; NamedElement.namespace, DomainConstraint:domain

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it applies.
Multiplicity: 1..1
8.8.2.4 Other Roles

none

8.8.3 Association: NamedType-has-DomainRule

Definition: arefinement of type-has-constraints, representing the relationship of aNamedType to a DomainRule that restrict
the domain of valid values of the NamedType.

Note — See 9.1 of 1SO 10303-11:2004.
8.8.3.1 Supertypes

el ement-defined-in-scope, type-has-constraints

8.8.3.2 Association Ends

AssociationEnd: domain To: NamedTyvpe

Definition: represents the relationship of the DomainRule to the NamedType that is the domain of values to which it applies.
Multiplicity: 1..1

AssociationEnd: domain-rules To: DomainRule

Definition: arefinement of Instantiabl eType:constraints, represents the association of DomainRules that restrict the domain of
valid values of the NamedType.

Note — See 9.1 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties: composite

8.8.4 Association: type-has-constraints

Definition: an abstract relationship, represents the association between a ParameterType and a DomainConstraint that restricts
the value domain of the ParameterType.

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of 1SO 10303-11:2004.

Properties: abstract

Note — Thisis an abstract relationship. Each separate form of this relationship is separately model ed.

52 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.8.4.1 Association Ends

AssociationEnd: constraints To: DomainConstraint

Definition: represents the association of DomainConstraints that restrict the value domain of the Parameter Type.

Note — See 8.1.6, 8.1.7, 8.2, and 9.1 of 1SO 10303-11:2004.
Multiplicity: 0..*, composite

AssociationEnd: domain To: ParameterType

Definition: a dependency — represents the relationship between the DomainConstraint and the data type whose values it
constrains.

Multiplicity: 1..1

Properties: abstract

8.9 Simple Types

The EXPRESS language defines “simple types’ as those that carry a single conceptual information unit. Each simple typeis
denoted by a keyword, rather than an identifier. The simple types are BOOLEAN, INTEGER, LOGICAL, NUMBER, all
BINARY types, all REAL types, and all STRING types. They are shown in Figure 8.8 and described bel ow.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 53

«hetaclazss . #Metaclasss

+APREars-in 0.
Scope AnonymousType
1 +ananymous-type

zMetaclas s
Stuipie fype snstantiate: | BuiltinTypes
+id © Keyword [1]
foomplety, disjoint
SimpleType|categories
zhletaclazss zhletaclazss zhletaclazss zhletaclazss
HumericType LogicType StringType BinaryType
0.1 0.1
+string-length-constraint +hinaty-lencth-constraint
ehetaclasss 0.1 a.1
RealType zhetaclasss

LengthConstraint

+isFixed : Boolean [1]
+maxLength : Integer [0.1]

|

+precision : Integer [0..1]

shetaclazss
E _ ehetaclasss
ERIESEIN +asserts Domain Constraine
+ext : ExpressText [0..1] 0.1 0.1

Figure 8.8 - Simple Types

8.9.1 Class: BinaryType

Definition: a SimpleType representing all EXPRESS BINARY data types, which are distinguished by different
LengthCongtraints.

By definition, every EXPRESS BINARY type with a LengthConstraint is different from every other BINARY data type.
(They may be compatible with others, but not the same.) The only instance of BINARY Type with no LengthConstraint isthe
EXPRESS data type BINARY.

Note — See 8.1.7 of SO 10303-11:2004.

8.9.1.1 Supertypes

SimpleType
8.9.1.2 Attributes

none

54 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.9.1.3 Associations

AssociationEnd: binary-length-constraint To: LengthConstraint

Subsets: Parameter Type:constraints

Definition: represents a constraint on the length (in bits) of the values in the domain of the BINARY datatype.
Note — See 8.1.7 of 1SO 10303-11:2004.

Multiplicity: 0..1
8.9.1.4 Other Roles

From Instances:BinaryValue as of-type

8.9.2 Class: LengthConstraint

Definition: represents any maximum-length or fixed-length constraint on the length of the values of a STRING or BINARY
type. A LengthConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using the built-in
Length() function.

Note — See 8.1.6 and 8.1.7 of 1SO 10303-11:2004.
8.9.2.1 Supertypes

DomainConstraint

8.9.2.2 Attributes

Attribute: isFixed To: (UML) Boolean

Definition; Trueif al values of the SimpleType are required to be of the same length; False if the constraint specifies only the
maximum length of the values.

Note — See 8.1.6 and 8.1.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

Attribute: maxLength To: (UML) Integer

Definition; represents a constant val ue specifying the required maximum/fixed length of the STRING or BINARY value. This
attribute is present when the constraint expression is a “ constant.”

Note — See 8.1.6 and 8.1.9 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.9.2.3 Associations

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 55

8.9.2.4 Other Roles

From: StringType as string-length-constraint
From: BinaryType as binary-length-constraint

8.9.2.5 Rules

Constraint ()

Every LengthConstraint is either a string-length-constraint or a binary-length-constraint for exactly one SimpleType.

Constraint ()

A LengthConstraint is unique to the STRINGType or BINARY Type it constrains.

8.9.3 Class: LogicType

Definition: a SimpleType representing the EXPRESS data types BOOLEAN and LOGICAL, which are the only instances of
LOGICALType.

Note — See 8.1.4 of 1SO 10303-11:2004.
8.9.3.1 Supertypes

SimpleType

8.9.3.2 Attributes

none

8.9.3.3 Associations

none

8.9.3.4 Other Roles

From Instances:LogicalValue as of-type

8.9.4 Class: NumericType

Definition: a SimpleType representing the EXPRESS data types NUMBER, INTEGER, and all REAL data types. NUMBER
and INTEGER are instances of NUMBERTYype.

Note — See 8.1.1 of SO 10303-11:2004.

8.9.4.1 Supertypes

SimpleType
8.9.4.2 Attributes

none

56 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.9.4.3 Associations
none
8.9.4.4 Other Roles

From [nstances:NumberValue as of-type

8.9.5 Class: RealType

Definition: represents all EXPRESS REAL data types, which are distinguished from one another by different values of
“precision.” Type REAL (with no “precision” value) is one instance of REALType.

Note — See 8.1.2 of SO 10303-11:2004.
8.9.5.1 Supertypes

NumericType
8.9.5.2 Attributes

Attribute: precision To: (UML) Integer

Definition: represents the number of significant figuresin the values of the Real Type, as specified in its syntactic designation.
Although the value of “precision” is specified in EXPRESS to be an expression, it is assumed in this model that the value will
in practice be a“constant.” The only REALType for which “precision” is not present isthe EXPRESS type REAL (with no
precision specification).

Note — See 8.1.3 of 1SO 10303-11:2004.
Multiplicity: 0..1

8.9.5.3 Associations

none

8.9.5.4 Other Roles

none

8.9.6 Class: SimpleType

Definition: an AnonymousType representing those EXPRESS data types defined in the language as “ simple types’: BINARY
types, BOOLEAN, INTEGER, LOGICAL, NUMBER, REAL types, and STRING types.

Note — See 8.1 of SO 10303-11:2004.
Properties: abstract
8.9.6.1 Supertypes

AnonymousType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 57

8.9.6.2 Attributes

Attribute: id To: Keyword

Definition: represents the EXPRESS keyword denoting the SimpleType, one of: BINARY, BOOLEAN, INTEGER,
LOGICAL, NUMBER, REAL, STRING

Note — See 8.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

8.9.6.3 Associations

none

8.9.6.4 Other Roles

none

8.9.7 Class: StringType

Definition: a SimpleType representing all EXPRESS STRING data types, which are distinguished by different
LengthCongtraints. By definition, every EXPRESS STRING type with a LengthConstraint is different from every other
STRING datatype. (They may be compatible with others, but not the same.) The only instance of STRINGType with no
LengthCongtraint is the EXPRESS datatype STRING

Note — See 8.1.6 of SO 10303-11:2004.

8.9.7.1 Supertypes

SimpleType
8.9.7.2 Attributes

none

8.9.7.3 Associations

AssociationEnd: string-length-constraint To: LengthConstraint

Definition: represents a constraint on the length (in characters) of the valuesin the domain of the STRING data type.

Subsets: Parameter Type: constraints

Note — See 8.1.6 of SO 10303-11:2004.

Multiplicity: 0..1

58 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.9.7.4 Other Roles

From Instances:StringValue as of-type

8.9.8 Generalization Sets

Generalization Set: SimpleType categories complete, disjoint

Every SimpleTypeis one of LogicType, NumericType StringType, or BinaryType.
8.10 Aggregation Types
EXPRESS “aggregation types’ are types whose instances are collections of instances of a“member type.” There are four

kinds of aggregation types, which represent different structures for the collections: ARRAY, BAG, LIST, SET. Figure 8.9
shows the overview of Aggregation types. The model elements are defined bel ow.

zMetaclasss zenUmerations
Scope OrderingKind
unordered
ordered
+appears-in | 1 indexed

+anonymous-type (0.*

+soecislizes sMetaclasss A «Metatc:_lass;a Howver-hound sMetaclazss
F 0 Anonyious Iypa ggregation lype 0.1 g.1 SizeConstraint
. +ardering . Orderingkind [1] ;
+zUnigue . Boolean [1] +Upper-baund e r=cen 0. 1)

. .
QD" HH ? 0.1 0.1 J;

shetaclasss shetaclasss . ‘Kr"'!agzlajf» N
RstantiableType | *Membertipe ConcreteAggregation Type mainConstrain
1 n.*
o 0.1

fcomplete, disjoint }
AgoregationType categaries

sMetaclasss sMetaclasss sMetaclasss sMetaclasss
ARRAYType BAGType LISTType SETType

+izptional : Boolean [1]

0. 0.1

0.1 | +assers

+hi-index [1 1 +lo-index

zMetaclazss] zMetaclazss
ArrayBound +hound-exprezzion Expression
+hound ; Integer [0..1] 0.* 1 et ExpressText [0.1]

Figure 8.9 - Aggregation Types

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.10.1 Class: AggregationType

Definition; an AnonymousType representing an EXPRESS “ aggregation type,” whose instances are collections of instances of
a“member type’: ARRAY, BAG LIST, SET.

Note — See 8.2 of 1SO 10303-11:2004.
Properties. abstract

8.10.1.1 Supertypes

none

8.10.1.2 Attributes

Attribute: isUnique To: (UML) Boolean

Definition: Trueif the members of a given instance of the type are required to be distinct; else False. isUnique is always True
for a SET type, always False for aBAG type, and True for LIST and ARRAY typesif and only if the UNIQUE keyword is
present in the type designation.

Note — See 8.2 of SO 10303-11:2004.

Multiplicity: 1..1

Attribute: ordering To: OrderingKind

Definition: specifies the structure of the AggregationType: indexed (ARRAY), ordered (LIST), unordered (BAG, SET).
Multiplicity: 1..1

8.10.1.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents the appearance of alower-bound constraint in syntactic designation for the aggregation type. Refines
InstantiableType:constraints. For this purpose the appearance of an explicit zero (“0") value may be considered to represent no
lower-bound constraint; and the lower-bound rel ationship need not appear. (The appearance of alower-bound expression that
may evaluate to zero shall always be represented by alower-bound relationship.)

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents the appearance of an upper-bound constraint in the syntactic designation for the aggregation type.
Refines InstantiableType:constraints. For this purpose the appearance of an explicit indeterminate value (“?’) is considered to
represent no upper-bound constraint, and shall not be represented by an upper-bound relationship. (The appearance of an
upper-bound expression that may evaluate to “?” shall be represented by an upper-bound relationship.)

60 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 8.2.2, 8.2.3, and 8.2.4 of SO 10303-11:2004.
Multiplicity: 0..1
8.10.1.4 Other Roles

none

8.10.2 Class: ArrayBound

Definition: represents a bound on the index domain of an ARRAY datatype.

Note — See 8.2.1 of 1SO 10303-11:2004.

8.10.2.1 Supertypes

none

8.10.2.2 Attributes

Attribute: bound To: (UML) Integer

Definition: the integer value of the bound, when it can be determined “ by inspection” of the bound expression.

Note — See 8.2.1 of 1SO 10303-11:2004.

Multiplicity: 0..1

8.10.2.3 Associations

AssociationEnd: bound-expression To: Expression
Definition: the Expression that defines the ArrayBound.

Note — See 8.2.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

8.10.2.4 Other Roles

From: ARRAYType as hi-index
From: ARRAYType as lo-index
From: GeneralARRAYType as lo-index

From: GeneralARRAYType as hi-index

From: Algorithms::ActualARRAYType as lo-index
From: Algorithms::ActualARRAYType as hi-index

8.10.2.5 Rules

Constraint ()

Every ArrayBound is either a hi-index or lo-index for exactly one ARRAY Type, Actual ARRAY Type, or
General ARRAY Type.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

61

Constraint ()

An ArrayBound is unique to the ARRAY Type (or Genera ARRAY Type) and the role (hi-index/lo-index) it plays with respect
to that type.

8.10.3 Class: ARRAYType
Definition: an AggregationType representing all EXPRESS ARRAY data types.
8.10.3.1 Supertypes

| nstanti ableAggregationType

8.10.3.2 Attributes

Attribute: isOptional To: (UML) Boolean

Definition: Trueif the member typeis declared to be OPTIONAL in the syntactic designation for the ARRAY Type; False
otherwise. When isOptional is True, any instance of the ARRAY Type is permitted to have members whose value is
unspecified ("?").

Note — See 8.2.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.10.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: represents the relationship between the ARRAY Type and the upper bound on the Integer index-range of each value
of the ARRAY Type.

Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: lo-index To: ArrayBound

Definition: represents the relationship between the ARRAY Type and the lower bound on the Integer index-range of each value
of the ARRAY Type.

Note — See 8.2.1 and 15.17 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.10.3.4 Other Roles

From: Instances::ARRAYValue as of-type

8.10.3.5 Rules

Constraint (OCL)
self->ordering = Indexed

62 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.10.4 Class: BAGType

Definition; an AggregationType representing all EXPRESS BAG data types.
Note — See 8.2.3 of SO 10303-11:2004.

8.10.4.1 Supertypes

| nstanti ableAggregationType

8.10.4.2 Attributes
none

8.10.4.3 Associations
none

8.10.4.4 Other Roles

From: Instances::BAGValue as of-type

8.10.4.5 Rules

Constraint (OCL)
NOT self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.10.5 Class: ConcreteAggregationType

Definition: an anonymous Instantiabl eType that is an AggregationType whose member-type isitself an InstantiableType.
Properties: abstract

8.10.5.1 Supertypes

AggregationType, AnonymousType

8.10.5.2 Attributes
none

8.10.5.3 Associations

AssociationEnd: member-type To: InstantiableType
Definition: represents data type of its components (members) of the I nstantiableAggregationType.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.10.5.4 Other Roles

none

8.10.6 Class: LISTType

Definition: an AggregationType representing all EXPRESS LIST data types.
Note — See 8.2.2 of SO 10303-11:2004.

8.10.6.1 Supertypes

| nstantiableA ggregationType

8.10.6.2 Attributes
none

8.10.6.3 Associations
none

8.10.6.4 Other Roles

From: Instances::LISTValue as of-type

8.10.6.5 Rules

Constraint (OCL)
self->ordering = Ordered

8.10.7 Datatype: OrderingKind
Stereotypes. enumeration

Definition: values that characterize the logical structure of the collections represented by an AggregationType (or a
General AggregationType).

8.10.7.1 Supertypes
none
8.10.7.2 Values

Value: indexed

Definition: specifies that the structure of the AggregateValuesis an ARRAY. That is, the positions in the sequence are
associated with specific (consecutive) INTEGER index values.

Value: ordered

Definition: specifies that the structure of the AggregateValuesisaLIST. That is, the position of each member-value in the
sequence is significant in interpreting the AggregateValue.

64 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Value: unordered

Definition: specifiesthat the structure of the AggregateValuesisaBAG or SET. That is, the position of each member-valuein
the sequence has no significance in interpreting the AggregateValue.

8.10.8 Class: SETType

Definition: an AggregationType representing all EXPRESS SET data types.
Note — See 8.2.4 of SO 10303-11:2004.

8.10.8.1 Supertypes

| nstanti ableAggregationType

8.10.8.2 Attributes
none

8.10.8.3 Associations
none

8.10.8.4 Other Roles

From: Instances::SETValue as of-type

8.10.8.5 Rules

Constraint (OCL)
self->isUnique

Constraint (OCL)
self->ordering = Unordered

8.10.9 Class: SizeConstraint

Definition; a SizeConstraint represents a constraint on the number of members in each value of an EXPRESS aggregation
type, stated as a bound in the syntactic designation for the type. A SizeConstraint represents either an upper-bound or alower-
bound. In the case of an ARRAY type, the value (hi-index - lo-index + 1) is both the lower-bound value and the upper-bound
value. A SizeConstraint is a DomainConstraint, considered to have an equivalent Boolean expression using the built-in
SizeOf() function.

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
8.10.9.1 Supertypes

DomainConstraint

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 65

8.10.9.2 Attributes

Attribute: bound To: (UML) Integer

Definition: represents a constant val ue specifying the (upper or lower) bound on the number of membersin avalid instance of
the aggregation type. This attribute is present when the bound expression isa* constant.”

Note — See 8.2.2, 8.2.3, and 8.2.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

8.10.9.3 Associations

none

8.10.9.4 Other Roles

From: AGGREGATEType as upper-bound
From: AGGREGATEType as lower-bound

From: AggregationType as upper-bound

From: AggregationType as lower-bound

From: Redeclaration as upper-bound

From: Redeclaration as lower-bound

From: Role as lower-bound

From: Role as upper-bound

From: Algorithms::Actual AGGREGATEType as lower-bound
From: Algorithms::Actual AGGREGATEType as upper-bound

8.10.9.5 Rules
Constraint ()

Every SizeConstraint is either an upper-bound or alower-bound for exactly one AggregationType or
General AggregationType.

Constraint ()

A SizeConstraint is unique to the AggregationType (or General AggregationType) it describes and the role (upper-bound/
lower-bound) it plays with respect to that AggregationType.

8.10.10 Generalization Sets

Generalization Set: AggregationType categories complete, disjoint
Every AggregationTypeis one of ARRAY Type, BAGType, LISTType, or SETType.
8.11 Generalized Types

Generalized types are those EXPRESS data types that are “abstract,” in the sense that every actual instance is an instance of
some | nstanti ableType(s). These types are only permitted as the data type of formal parameters and the data type of “abstract”
Attributes of ABSTRACT EntityTypes. They are shown in Figure 8.10.

66 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

zhetaclasss
Scope

type-specializes-type +appears-n 01

+zpecializes [0..* +generalized-type (0.*
ahetaclasss shMetaclasss ahletackasss
; +member -type ;
ParameterType }—— Generdfized Iype Aggregation Type
0. 1 +ordering ;. Orderingkind [1]
7% +izUnigue : Boolean [1]
1| +member-type tcomplete|disjoint}
GeneralizedTyge categaries
0. | 0.*
sMetaclaszs shletaclasss sMetaclaszs
AGGREGATEType GenericType GenaraiAggragation Typa
+id ; Heyweard [1]
L 1 i {complete, disjoint}
+upper-bound | 0.1 001 | +Hoseer-hound «Instantiste:s GeneraliggregationType categaries
zMetaclasss | ‘
SizeConstraint = zhetaclazssy shietaclazss
+hound @ Irteger [0.1] GenericTypes GeneralBAGType GeneralSETType
aMetaclazss Ho-incle Metaclasss sMetaclasss
ArrayBound 0.1 0.1 GeneralARRAY Type GeneralLISTType
+hound : Integer [0.1] | +hi-index +iziptional : Boolean [1]
0.1 0.1

Figure 8.10 - Generalized Types

8.11.1 Class: AGGREGATEType

Definition: a GeneralizedType that is an abstraction of all AggregationTypes and all General AggregationTypes. That is, any
ARRAY, BAG LIST, or SET Instance that satisfies the SizeConstraints (if any), whose members are of the specified member
type or some specialization of it, is an instance of the AGGREGATEType. It follows that any ARRAY, BAG, LIST, or SET
type whose instances are necessarily instances of the AGGREGATEType is a specialization.

Each syntactic occurrence of AGGREGATE is considered to be adistinct instance of AGGREGATEType, even when the
bounds and member-type are the same as those of some other syntactic occurrence, because the corresponding types of the
actual parameters or subtype attributes need not be the same. When the structures are required to be the same, that is
represented as an Actual StructureConstraint.

Note — When the keyword AGGREGATE isfollowed by an EXPRESS type label, therearethree possible interpretations
in the metamode!:

1. A ParametricStructureis being defined to havethat type label (see8.15.3) and relate to the datatype of the actual
parameters or instantiabl e attributes that correspond to the : source. The datatype, or component of the datatype, of
the : source isanew AGGREGATEType. Thisis the interpretation of the first occurrence of the type label in
aparameter list or entity declaration.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 67

2. AnActualStructureConstraint is being specified that refers to the ParametricStructure with that type label. The
datatype denoted by the occurrence of AGGREGATE : 1abel isanew AGGREGATEType that has that constraint.
Thisistheinterpretation of any later occurrence of the type label inthe same parameter list or entity declaration.

3. A new Actual AGGREGATEType s being defined by reference to the ParametricStructure with that type label,
and the datatype of the variable, attribute, or member isthe Actual AGGREGATEType. Thisisthe interpretation of
any other occurrence of the type label within the same Algorithm.

Note — See 9.5.3.1 of 1SO 10303-11:2004.
8.11.1.1 Supertypes

GeneralizedType

8.11.1.2 Attributes
none

8.11.1.3 Associations

AssociationEnd: constraint To: Algorithms::ActualStructureConstraint

via: Algorithms::aggregate-has-constraint

Definition: the Actual StructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note — Only an AGGREGATEType that appears in the specification of the data type of a Parameter can have an
Actual StructureConstraint. The AGGREGATETYype has an Actual StructureConstraint only if it has a syntactic type label and
does not itself define that type_label.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: defines-parameter To: ParametricStructure

via AGGREGAT EType-defines-parameter

Definition: the ParametricStructure, if any, that is defined to refer to the structure of the actual data types that conform to this
AGGREGATEType.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents alower-bound constraint on aggregate values conforming to the AGGREGATE type. If the lower-bound
constraint is present, the number of members of the aggregate value shall be greater than or equal to this value. If the lower-
bound is not present or evaluates to zero, there is no constraint. Unless the lower-bound specified for the
AGGREGATIONTypeisan explicit “0,” this constraint shall appear.

Note — See 9.5.3.2 of 1SO 10303-11:2004.

Multiplicity: 0..1

68 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: member-type To: ParameterType

Definition: represents the relationship between an AGGREGATE Type and the specification for the data type of the members
of itsinstances. If the specification is an InstantiableType, the member-type of conforming aggregation typesis required to be
exactly that data type. If the specification is a GeneralizedType, the member-type of the conforming aggregation types must
conform to it.

Note — See 9.5.3.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: upper-bound To: SizeConstraint

Subsets: Parameter Type:constraints

Definition: represents an upper-bound constraint on aggregate values conforming to the AGGREGATE type. If the upper-
bound constraint is present and does not evaluate to indeterminate (“?"), the number of members of the aggregate value shall
belessthan or equal to thisvalue. If the upper-bound is not present or evaluatesto indeterminate, thereisno constraint. Unless
the upper-bound specified for the AGGREGATE type is an explicit “?’ this constraint shall appear.

Note — See 9.5.3.3 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.11.1.4 Other Roles

none

8.11.2 Class: GeneralAggregationType

Definition: represents a GeneralizedType whose instances are AggregateVal ues with a specific structure (ARRAY, BAG, LIST,
or SET), but whose member-types are specializations of some specified GeneralizedType. That is, a General AggregationType
is an aggregation data type whose member-typeis specified to be a GeneralizedType; while an (Instantiable) AggregationType
is an aggregation data type whose member-type is specified to be an InstantiableType.

Any instance of a GeneralAggregationType s required to be an AggregateVal ue that has the specified structure and has
members that are instances of some Instantiabl eType that conforms to the specified member-type. In addition,the instance
must satisfy any DomainConstraints associated with the General AggregationType.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Properties. abstract
8.11.2.1 Supertypes

AqggregationType, GeneralizedType

8.11.2.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 69

8.11.2.3 Associations

AssociationEnd: member-type To: GeneralizedType

Definition: represents the relationship between a General AggregationType and the conformance specification for the member-
type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.11.2.4 Other Roles

none

8.11.3 Class: General ARRAYType

Definition: represents a General AggregationType whose structure is an ARRAY. The hi-index and lo-index values of a
conforming ARRAY Instance are required to be equal to the values given for the General ARRAY Type.

When the General ARRAY Type is the data type of an abstract attribute (see 8.12.1), the datatype of every conforming
redeclaration is required to be an ARRAY Type or a General ARRAY Type whose hi-index and lo-index values are equal to the
values given for the General ARRAY Type. In addition, the .isOptional property of the redeclaration shall be as specified below.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.11.3.1 Supertypes

Genera AgaregationType

8.11.3.2 Attributes

Attribute: isOptional To: (UML) Boolean

Definition: when isOptional is True, any conforming ARRAY Instance is permitted to have members whose value is
indeterminate (“?"). When isOptional is False, no member of a conforming ARRAY Instance is permitted to have an
unspecified value.

If isOptional is True for an abstract attribute, the member type of any attribute that redecl ares the abstract attribute may be
declared to be OPTIONAL ; if False, the member type of an attribute that redeclares the abstract attribute shall not be declared
to be OPTIONAL.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.11.3.3 Associations

AssociationEnd: hi-index To: ArrayBound

Definition: the hi-index value of a conforming ARRAY datatypeisrequired to be equal to the hi-index value, if any, for the
Genera ARRAY Type.

70 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: lo-index To: ArrayBound

Definition; the lo-index value of a conforming ARRAY datatype isrequired to be equal to the lo-index value, if any, for the
General ARRAY Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
Multiplicity: 0..1
8.11.3.4 Other Roles

none

8.11.4 Class: GeneralBAGType
Definition: represents a General AggregationType whose structureisa BAG,

When the General BAGType is the data type of an abstract attribute (see 8.12.1), the datatype of every conforming
redeclaration is required to be a BAGType or a General BAGType that includes or refines any DomainConstraint associated
with the Genera BAGType.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.11.4.1 Supertypes

Generad AggregationType

8.11.4.2 Attributes
none

8.11.4.3 Associations
none

8.11.4.4 Other Roles

none

8.11.5 Class: GeneralizedType

Definition; an abstract classifier, representing those EXPRESS data types that are “abstract,” in the sense that every actua
instance is an instance of some I nstantiableType(s). These types are only permitted as the data type of formal parameters and
the datatype of “abstract” Attributes of ABSTRACT EntityTypes. GeneralizedTypeis aproper subclass of Parameter Type that
is disjoint with InstantiableType.

Note — The syntactic occurrences of EXPRESS generalized type do not always denote GeneralizedTypes per se. In
particular, ageneralized_type that appears with atype label may denote an Actua Type or a constraint. When used as the type
of aLocalVariable or FunctionResult, it denotes an Actual Type (see 11.5). When used as the type of a Parameter, it may be a
ParametricElement that defines a reference to the data type of the corresponding actual parameter (in addition to being a

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 71

GeneralizedType specification for the allowabl e data types of the actual parameter), or it may represent a constraint on the data
type of the corresponding actual parameter that relates to the data type of another actual parameter.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Properties. abstract

8.11.5.1 Supertypes

ParameterType

8.11.5.2 Attributes

none

8.11.5.3 Associations

none

8.11.5.4 Other Roles

From: GeneralAgaregationType as member-type

8.11.6 Class: GeneralLISTType

Definition: represents a General AggregationType whose structureisa LIST.

When the General LIST Type is the data type of an abstract attribute (see 8.12.1), the datatype of every conforming
redeclaration isrequired to be a LISTType or a General LI ST Type that includes or refines any DomainConstraint associated
with the GeneralLIST Type.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.11.6.1 Supertypes

General AggregationType

8.11.6.2 Attributes
none

8.11.6.3 Associations
none

8.11.6.4 Other Roles

none

8.11.7 Class: GeneralSETType

Definition: represents a General AggregationType whose structureis a SET.

When the General SET Typeis the data type of an abstract attribute (see 8.12.1), the datatype of every conforming redeclaration

72 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

isrequired to be a SETType or a General SET Type that includes or refines any DomainConstraint associated with the
General SETType.

Note — See 9.5.3.5 of 1SO 10303-11:2004.
8.11.7.1 Supertypes

GeneralAggregationType

8.11.7.2 Attributes
none

8.11.7.3 Associations
none

8.11.7.4 Other Roles

none

8.11.8 Class: GenericType
Definition: represents the EXPRESS generalized types GENERIC and GENERIC_ENTITY.

Every datatype is a specialization of the GenericType GENERIC, and every Instance is an Instance of GENERIC. Every
entity datatypeis a specialization of the GenericType GENERIC_ENTITY. Every Entitylnstance is an instance of
GENERIC_ENTITY and every instance of GENERIC_ENTITY isan Entitylnstance.

Note — See 9.5.3.2 and 9.5.3.3 of SO 10303-11:2004.

Note — When the keywords GENERIC and GENERIC_ENTITY arefollowed by an EXPRESS type label, therearethree
possible interpretations in the metamodel:

1. A ParametricTypeisbeing defined to have that type label (see 8.15.4) and relate to the datatype of the actual
parameters or instantiable attributes that correspond to the : source. The datatype, or component of the datatype, of
the : source isthe GenericType. Thisisthe interpretation of the first occurrence of the type label ina
parameter list.

2. AnActual TypeConstraint is being specified that refers to the ParametricType with that type label. The datatype
denoted by the occurrence of GENERIC: label of GENERIC ENTITY:label isthe GenericType but the
allowable data types that correspond to it in this usage are constrained by the Actual TypeConstraint. Thisisthe
interpretation of any later occurrence of the type label inthe same parameter list.

3. AnActualGenericTypeis being identified by reference to the ParametricType with that type label, andthe
datatype of the variable, attribute, or member is the Actual GenericType. Thisisthe interpretation of any other
occurrence of the type label within the same Algorithm.

8.11.8.1 Supertypes

GeneralizedType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 73

8.11.8.2 Attributes

Attribute: id To: Keyword
Definition: the EXPRESS keyword that denotes the GenericType: GENERIC or GENERIC_ENTITY.
Note — Note - See 9.5.3.2 and 9.5.3.3 of SO 10303-11:2004.

Multiplicity: 1..1
8.11.8.3 Associations
none

8.11.8.4 Other Roles
none

8.11.8.5 Rules

Constraint (OCL)
self = GenericTypes::GENERIC OR self = GenericTypes::GENERIC ENTITY;

8.11.9 Generalization Sets

Generalization Set: GeneralizationType categories complete, disjoint

Every GeneralizedType is one of GenericType, AGGREGATEType, or General AggregationType.

Generalization Set: GeneralAggregationType categories complete, disjoint

Every General AggregationType is one of Generad ARRAY Type, Genera BAGType, GeneralLISTType, or General SET Type.

8.12 Entities and Attributes

This sub clause of the Core model introduces the entity and attribute concepts of the EXPRESS language.

Figure 8.11 shows the primary concepts associated with EXPRESS entities: Entity Types, Attributes, UNIQUE rules, and
DomainRules (WHERE rules). The SingleEntity Type represents the group of attributes declared explicitly in the entity
declaration (as distinct from those inherited), and is used in Partial EntityValues (see 10.6.6) that represent states of entities.
Partial Entity Type is a specia data type that characterizes such values when they are produced in Expressions. All of these
concepts are described in detail below.

74 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

+zubtype-of [0.* 1

shletaclasss

+ecuivalent

=y

PartialEntityType

zMetaclasss

+pattial-entity-type (0.*

1.

Entity Type-has-FartislErtity Type

+defined-by

single-entity-declared-in-entity

+declared-in

0.1 SingleEntity Type
+oomponerts [id : Scopedid [1]
* 1“*
+oeclares | 1 1

zMetaclasss:

whetaclazss
Namod Type

0.#

Entity Type

‘C]—

+izAbstract | Boolean [1]

1
1

+clarmain 1
fredefines

+Namespace

+damain
{redefines namespace}

{redefines namespace}

Ernitity Type-hag-Attribut
Namespace} W IYpe-nag-Atrioute

MNamedType-has-DomainRule Ertity Type-has-UnigueRule

+domain-rules
{subsets
named-elemerts Ho. *

+ocal-attributes |0.*

+Unigue-rules
o {zubzets named-elements} +ideclares |0.*

{subsets named-elements} |0.*

sMetaclasss sMetaclasss *Eztﬁzlaf%
DomainRule UniqueRule +key-component praarte
= = +Hzsbstract : Boolean [1
+position : Integer [1] +position © Integer [1] | 0.% 1 ..*/ +position : Inegsr [1] (]
— __—
T eMetaclasss "
NamedFElamemnt
+idd : Scopedid [0..1]

Figure 8.11 - Entity Types

DomainRules are akind of TypeConstraint that applies to NamedTypesin general. They are described in 8.8.2. In the
particular case of EntityTypes, they are used to capture constraints on the rel ationships among Attributes of the entity data

type.

Figure 8.12 depicts the concepts associated with Attributes in EXPRESS. Attributes are of three kinds: explicit, INVERSE,
and DERIVEd. All of these concepts are described bel ow.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

75

o.* o +aubyne-nt -

Metacimss <Motaclasss | sttribte rasdatatype
L - ‘1' 11 r
Etype | et | mewste 0. amuseis [s
} : 1.* . [risAbstrac) Boolean 1] \Param Type |
HEAbslract Bodlesn [1] . a.. +posticn: Fisges [+igs 1 | 1
N * | srargeayns {oompiele, dizord
| Altribude caleqmics
ertityaieeclar-attribune I_
«lotaciazss Metaclases [votacies s
+uz=d-i | Eupl:i‘tl.'ltribm- Iwniu-u.ﬂi.rihm | horiva dAtiributo
0 * |[HE2otons @ Eoolean | HsLingue B':IDEEI‘-IH —
vizinverthic Dc-:n:qr[] e
L - L o.% sinverse
ropRck] : 1 sclorivation
rwerspAtrinute-invets-Fxplot dtribure «hlelaclasse
Expiession

et : ExpreceText [0.1]

Figure 8.12 - Attributes

8.12.1 Class: Attribute

Definition: represents an EXPRESS attribute, i.e., amodel of a property of an entity instance.
Note — See 9.2.1 of SO 10303-11:2004.

Properties. abstract
8.12.1.1 Supertypes

NamedElement, ElementSource

8.12.1.2 Attributes

Attribute: isAbstract To: (UML) Boolean

Definition: Trueif .isAbstract is True for the owning Entity Type (see .of-entity) and the attribute-type of the EXPRESS
attribute is a GeneralizedType; Falsein all other cases. When .isAbstract is True, this Attribute must be redeclared to have an
attribute-type that is an InstantiableType in any subtype of the owning Entity Type that is not itself ABSTRACT.

Multiplicity: 1..1
Attribute: position To: (UML) Integer
Definition: represents the position of the attribute declaration in the sequence of attribute declarations in the entity declaration.

Multiplicity: 1..1

76 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.12.1.3 Associations

AssociationEnd: attribute-type To: ParameterType

via: attribute-has-data-type

Definition; represents the required data typefor all values of that Attributein all instances of the Entity Type. When Entity Type
that declares the Attribute is “abstract,” the attribute-type can be a GeneralizedType. When the Attribute is defined within the
scope of an Algorithm, the attribute-type can be an Actual Type. In these cases, the attribute-type can also be an
InstantiableType, and in any other case, the attribute-type is required to be an I nstantiableType.

Note — See 9.2.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: namespace To: EntityType
via EntityType has Attribute

redefines; NamedElement.namespace

Definition; the nominal scope/namespace of the Attribute. It isincluded in the scopes of al subtypes of the Entity Type.
Multiplicity: 1..1

AssociationEnd: owning-entity To: EntityType

via: entity-has-attributes

Definition; the Entity Types that have or inherit the Attribute, that is, the Entity Type in which the Attribute is declared and all
subtypes of that Entity Type.

Multiplicity: 1..* unordered
Properties: derived

Note — The derivation of this rel ationship begins with self->namespace (i.e., self->of-entity->declared-in) and recursively adds
all EntityTypes reached by supertype-of.

8.12.1.4 Other Roles

From: UnigueRule as key-component
From: EntityType as attributes

From: Redeclaration as original-attribute
From: Instances::RoleName as refers-to

From: Expressions::AttributeRef as refers-to

From: Expressions::UsedInRef as inverse-of

8.12.1.5 Rules

Constraint (OCL)
exists(self->id);

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 77

Every Attribute shall have an Identifier.

8.12.2 Class: DerivedAttribute

Definition: represents an EXPRESS DERIVE attribute = a property whose value can be determined from other attributes and
relationships of the entity instance.

Note — See 9.2.1.2 of 1SO 10303-11:2004.
8.12.2.1 Supertypes

Attribute

8.12.2.2 Attributes

none

8.12.2.3 Associations

AssociationEnd: derivation To: Expression

Definition: the Expression that specifies how to determine the value of the DerivedAttribute from the values of other
Attributes.

Note — See 9.2.1.2 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.12.2.4 Other Roles

none

8.12.3 Class: EntityType

Definition: a NamedType representing an EXPRESS entity data type, atype declared by an entity _declaration.
Note — See 9.2 of 1SO 10303-11:2004.

8.12.3.1 Supertypes

| nstantiableType, NamedType

8.12.3.2 Attributes

Attribute: isAbstract To: (UML) Boolean

Definition: Trueif the EXPRESS entity datatypeis declared ABSTRACT initsoriginal declaration, either as ABSTRACT
entity or as ABSTRACT SUPERTY PE; False otherwise. The entity data type can also/later be declared “ abstract” in a
SUBTYPE_CONSTRAINT, eg., in an interfacing Schema, but that is taken as a constraint on the usage of the EntityTypein
that context.

Note — See 9.2.4 and 9.2.5.1 of SO 10303-11:2004.

Multiplicity: 1..1

78 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.12.3.3 Associations

AssociationEnd: attributes To: Attribute

via: entity-has-attributes

Definition: represents the rel ationship between an Entity Type and the declared Attributes of that Entity Type, including thosein
the entity declaration and those inherited from supertypes.

Note — See 9.2 of 1SO 10303-11:2004.
Properties: derived

Multiplicity: 0..* unordered
TaggedValues

derivation = declares.declares + subtype-of.declares.declares

AssociationEnd: declares To: SingleEntityType

via: single-entity-declared-in-entity

Definition: the SingleEntity Type that is declared in the declaration for the EntityType, i.e., the group of Attributesthat is
named for the Entity Type.

Multiplicity: 1..1
Properties. composite

AssociationEnd: extension To: Instances::Extent

via: |nstances::extent-of-Entity Type

Definition: represents the relationship between an Entity Type and its extent (the set of corresponding Entitylnstances) in a
given Population.

Multiplicity: 0..* unordered

AssociationEnd: local-attributes To: Attribute

via EntityType has Attribute

Definition; the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntity Type.

Subsets: Scope.named-elements

Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: instances To: Instances::Entitylnstance

via: | nstances::instance-of-Entity Type

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 79

Definition: represents the relationship between an Entity Type (classifier) and the Entityl nstances that satisfy it.

Multiplicity: 0..* unordered

Association End: partial-entity-type To: Partial Entity Type

Definition: a PartialEntity Type that is avalid group of subtypes of the EntityType. The determination of when a
Partial Entity Type is actually materialized is dependent on the application.

Multiplicity: 0..* unordered, composite

AssociationEnd: plays-domain-role To: DomainRole

via: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each ExplicitAttribute of the Entity Type, the Entity Type plays a corresponding DomainRole. An Entitylnstance is
considered to play the DomainRole once for each member of an ExplicitAttribute whose data type is an AggregationType.

Properties. derived.

Multiplicity: 0..* unordered

Note — The derivation of this property is complex. For each ExplicitAttribute x in self->attributes, the Entity Type plays-the-
domain-rolethat isx->creates-relationship->domain, i.e.,, the DomainRole in the Relationship that is created by
the ExplicitAttribute x.

AssociationEnd: plays-range-role To: RangeRole

via: entity-plays-range-role

Definition: represents the relationship between an entity type and the range roles that its instances play. For each occurrence of
the Entity Type in/as the attribute-type of an ExplicitAttribute, the Entity Type plays the corresponding RangeRole.

Properties. derived.

Multiplicity: 0..* unordered

Note — The derivation of plays-range-role is complex. For each ExplicitAttribute that is an instance of self->used-in, agiven
EntityType plays the RangeRole that is ExplicitAttribute::models-role.

AssociationEnd: redeclarations To: Redeclaration

via: scope-of -redeclaration-is-Entity Type

Definition: represents the relationship between the Entity Type and any attribute Redeclarations that appear in its declaration.
Note — See 9.2.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: subtype-of To: EntityType
Definition: represents the relationship of an entity datatypeto itsimmediate supertypes — those entity data types from whose

80 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

common domain the instances of the Entity Type are drawn. For compatibility with the interpretation of other features of
EXPRESS, this relationship extends only to those Entity Types that are “immediate supertypes,” i.e., those explicitly declared
in the SUBTY PE OF clause for this Entity Type.

Note — See 9.2.3 of SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: unique-rules To: UnigueRule
via EntityType-has-UniqueRule

Subsets: Scope.named-elements

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of
attributes of that Entity Type.

Note — See 9.2.2.1 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: used-in To: ExplicitAttribute
via entity-used-in-attribute

Definition: represents the relationship between the Entity Type and the ExplicitAttributes (of other Entity Types) that establish
relationshipsto it.

Multiplicity: 0..* unordered
8.12.3.4 Other Roles

From: Rules::SupertypeRule as named-supertype
From: EntityType as subtype-of

From: Instances::EntityValue as corresponds to

From: Instances::SingleLeafinstance as characterizing-type

8.12.4 Class: ExplicitAttribute

Definition: represents an EXPRESS “explicit” attribute, amodel of a property of an entity instance that is not, in general,
derived from other properties of that instance or other entity instances.

Note — See 9.2.1.1 of 1SO 10303-11:2004.
8.12.4.1 Supertypes

Attribute

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 81

8.12.4.2 Attributes
Attribute: isInvertible To: (UML) Boolean
Definition: Trueif the explicit attribute can be the referent of an INVERSE attribute, and Fal se otherwise.
The explicit attribute can be the referent of an INVERSE attribute if and only if the attribute type is one of:
» an EntityType
» aSelectType whose select-list consists of Entity Types
» an AggregationType whose member-type is either of the above

An Explicit attribute that islnvertible models one or more Relationshi ps between two Entity Types — the Entity Type that
declares the ExplicitAttribute, and each EntityType that appears in its attribute-type.

An ExplicitAttribute whose attribute-type is, or is an aggregate of, an Entity Type defines exactly one Relationship. An
ExplicitAttribute whose attribute-type is, or is an aggregate of, a SelectType defines one Relationship for each Entity Type in
the select-list.

Note — See SO 10303-11.2:2004 clause 9.2.1.3.

Attribute: isOptional To: (UML) Boolean

Definition: Trueif the entity instance is permitted to have no specified value for this attribute; Falseif avalue for this attribute
isrequired.

Note — See 9.2.1.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

8.12.4.3 Associations

AssociationEnd: creates-relationship To: Relationship

via: InvertibleAttribute-creates-rel ationship

Definition: represents the relationship between an ExplicitAttribute and the Relationships that it models.
Multiplicity: 1..*

AssociationEnd: inverse To: InverseAttribute

via: InverseAttribute-inverts-ExplicitAttribute

Definition: representsthe relationship of an explicit attribute denoting a Rel ationship to the inverse attribute of the range entity
data type that models the same Relationship. While the inverseis conceptually unique, EXPRESS alows it to be declared
differently in different subtypes of the original range entity.

Note - See 9.2.1.3 of 1SO 10303-11:2004.

Multiplicity: 0..*, unordered

82 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: models-role To: RangeRole

via: ExplicitAttribute-models-role

Definition; represents the relationship between an Explicit Attribute and the RangeRole it defines. Note - An explicit attribute
defines a RangeRole (and thus a Relationship) if and only if it isinvertible.

Multiplicity: 0..1
AssociationEnd: range-type To: EntityType
via: entity-used-in-attribute

Definition: models the rel ationship between the ExplicitAttribute and the Entity Types that are, or are members of, its attribute-
type. These Entity Types are the “range” of the Relationships that are created by the ExplicitAttribute.

Multiplicity: 0..*, unordered
8.12.4.4 Other Roles

From: Expressions::AttributeBinding as attribute
From: Instances::AttributeValue as attribute

From: Statements::AttributeObject as refers-to

8.12.5 Class: InverseAttribute

Definition: represents an EXPRESS INVERSE attribute = a property of each instance of this entity data type that represents a
relationship between it and instances of some other entity data type, created by an invertible attribute of that entity data type.

Note — See 9.2.1.3 of SO 10303-11:2004.
8.12.5.1 Supertypes

Attribute

8.12.5.2 Attributes

Attribute: isUnique To: (UML) Boolean

Definition: Trueif the designated relationship between this instance and any given instance can occur at most once; False if it
can occur more than once.

(Trueif the attribute-type of the INVERSE attribute is declared to be an entity datatype or a SET; Falseif itisdeclaredtobea
BAG)

Note — See 9.2.1.3 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.12.5.3 Associations

AssociationEnd: explicit To: ExplicitAttribute

via: |nverseAttribute-inverts-ExplicitAttribute

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 83

Definition: represents the relationship of an inverse attribute of one entity data type to the explicit attribute of another entity
data type that model s the Relationship from which the inverse attribute is derived.

Note — See 9.2.1.3 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: models-role To: DomainRole

via: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models -
role:in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1
8.12.5.4 Other Roles
none

8.12.5.5 Constraints

Explicit-attribute-is-invertible (OCL)
self.explicit.isInvertible

The explicit attribute is invertible, having the properties required by 1SO 10303-11 (see 8.12.4.2).

8.12.6 Class: InvertibleAttribute

Definition: an ExplicitAttribute whose .isInvertible attribute has value true (see 8.12.4.2).

Note — Thisclassisretained solely for compatibility with the EXPRESS Metamodel v1.0. All properties of InvertibleAttribute
are properties of ExplicitAttribute. The use of InvertibleAttribute is deprecated.

8.12.6.1 Supertypes

ExplicitAttribute

8.12.6.2 Attributes
none

8.12.6.3 Associations
none

8.12.6.4 Other Roles

none

8.12.7 Class: PartialEntityType

Definition: a-DataType representing a collection of SingleEntity Types. A PartialEntityType is the data type of a
Partial EntityValue.

84 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.2.6 of 1SO 10303-11:2004.

8.12.7.1 Supertypes

DataType

8.12.7.2 Attributes

none

8.12.7.3 Associations

AssociationEnd: components To: SingleEntityType

Definition: represents the relationship between the Partial EntityValue and the SingleEntityValues that make it up.
Note — See 9.2.6 of SO 10303-11:2004.

Multiplicity: 1..* unordered

Association End: defined-in To: EntityType

Definition: the narrowest Entity Type of which all the SingleEntity Types in the Partial Entity Type are (not necessarily proper)
subtypes.

Multiplicity: 1..1
8.12.7.4 Other Roles

From: SingleEntityType as equivalent
From: Instances::PartialEntityValue as of-type

8.12.8 Class: SingleEntityType

Definition; the group of Attributes of a given EntityType that appear directly inthe entity declaration for that EntityType, i.e.,
excluding “inherited” attributes. A SingleEntity Type corresponds to, and hasthe sameid as, the Entity Type whose declaration
definesit.

Note — A SingleEntityType isnot a DataType; it cannot be the type of an Expression result or of any other EXPRESS concept.
Itisonly the “type” of SingleEntityValues, and they are not Instances.

Note — See 3.3.9 of 1SO 10303-11:2004 (should be corrected by TC#1).
8.12.8.1 Supertypes

none

8.12.8.2 Attributes

Attribute: id To: Scopedid

Definition: represents the EXPRESS Identifier for the SingleEntity Type, which is the same as the Identifier for the
corresponding Entity Type.

Properties: derived.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 85

Multiplicity: 1..1
TaggedValues

derivation = self->derived-from->id
8.12.8.3 Associations

AssociationEnd: declares To: Attribute

Definition: represents the relationship between a SingleEntity Type and the Attributes declared in the entity declaration for the
corresponding Entity Type.

Multiplicity: 0..* unordered
Properties: derived
AssociationEnd: derived-from To: EntityType

via: single-entity-declared-in-entity

Definition: represents the derivation of the SingleEntityType from the entity_declaration for the Entity Type.
Multiplicity: 1..1

AssociationEnd: equivalent To: PartialEntityType

Definition: represents the relationship between the SingleEntity Type and the “ equivalent” Partial Entity Type, namely, the
Partial Entity Type that consists of exactly that one SingleEntity Type. For those Partial Entity Types that are equivalent to
SingleEntity Types, the Partial Entity Type:includes relationship is the inverse of this relationship.

Multiplicity: 1..1
8.12.8.4 Other Roles

From: PartialEntityType as components
From: Instances::SinagleEntityValue as of-type

From: Expressions::GroupRef as refers-to

From: Expressions::PartialEntityConstructor as attribute-group

From: Statements::GroupQObject as refers-to

8.12.8.5 Rules

Constraint (OCL)
sizeof (self->equivalent->includes) = 1

Constraint (OCL)
self-s>equivalent->includes[1l] = self

8.12.9 Class: UniqueRule

Definition: represents an EXPRESS UNIQUE rule = arequirement that the combination of values of the specified “key”
attributes be unique over al instances of the entity data type in a given Population.

86 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.2.2.1 of 1SO 10303-11:2004.
8.12.9.1 Supertypes

NamedElement

8.12.9.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the position of the Unique Rulein thelist of rules following the UNIQUE keyword in the entity/type
declaration.

Multiplicity: 1..1
8.12.9.3 Associations

AssociationEnd: domain To: EntityType
via Entity Type-has-UniqueRule

redefines; NamedElement.namespace

Definition: represents the relationship of the UniqueRule to the Entity Type whose Extent is the domain of valuesto which it
applies.

Multiplicity: 1..1
AssociationEnd: key-component To: Attribute

Definition: represents the relationship between the UniqueRule and the “key” attributes of the (possibly joint) key for the
instances of the Entity Type.

Note — See 9.2.2.1 of 1SO 10303-11:2004.
Multiplicity: 1..* unordered
8.12.9.4 Other Roles

none

8.12.10 Association: attribute-has-data-type

Definition: represents the relationship between an Attribute and the ParameterType that characterizes all values of the
Attribute.

Note — See 9.2.1 of SO 10303-11:2004.

8.12.10.1 Association Ends

AssociationEnd: attribute-type To: ParameterType

Definition: represents the required data type for all values of that Attributein all instances of the EntityType. The attribute-
typeisrequired to be an InstantiableType unless either:

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 87

« isAbstract is True for the Entity Type, in which case the attribute-type may be a GeneralizedType, or

- the EntityType is defined in an AlgorithmScope (instead of a Schema), in which case the attribute-type may be an
Actual Type.

Note — See 9.2.1 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: role To: Attribute

Definition: represents the relationship between the Parameter Type and the roles (attributes of entities) that its admissible
values may play.

Note — See 9.2.1 of SO 10303-11:2004.

Multiplicity: 0..* unordered

8.12.11 Association: entity-has-attributes

Definition: represents the relationship between an Entity Type and all of the Attributes that are associated with every instance
of the EntityType, including instances of any of its subtypes. That is, this association relates an Entity Type to the Attributes
declared in the corresponding SingleEntity Type and to all the Attributes declared in the SingleEntity Types that correspond to

its supertypes.
Properties: derived
8.12.11.1 Association Ends

AssociationEnd: attributes To: Attribute

Definition: represents the rel ationship between an Entity Type and the declared Attributes of that Entity Type, including thosein
the entity declaration and those inherited from supertypes.

Note — See 9.2 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: derived

Note — The derivation of thisrelationship isrecursive, using e->subtype-of, beginning with e = self and adding the attributes of
e->declares->declares for each e.

AssociationEnd: owning-entity To: EntityType

Definition: the EntityTypes that have or inherit the Attribute, that is, the Entity Type in which the Attribute is declared and all
subtypes of that Entity Type.

Multiplicity: 1..* unordered
Properties: derived

Note — The derivation of thisrelationship begins with self->namespace (i.e., self->of -entity->declared-in) and recursively adds
all EntityTypes reached by supertype-of.

88 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.12.12 Association: EntityType-has-Attribute

Definition: represents the rel ationship between an Entity Type and the Attributes that are declared within the entity declaration,
that is, the attributes that are declared in the corresponding SingleEntity Type.

Note — Thisis a derived association that refines the element-defined-in-scope relationship for Attribute.
8.12.12.1 Supertypes

element-defined-in-scope

8.12.12.2 Association Ends

AssociationEnd: local-attributes To: Attribute

Definition; the Attributes that are declared within the entity declaration, that is, the attributes that are declared in the
corresponding SingleEntity Type.

Subsets: Scope.named-elements

Multiplicity: 0..* unordered

Properties: derived
Tagged Values

derivation = self->declares->declares

AssociationEnd: namespace To: EntityType
Definition; the nominal scope/namespace of the Attribute. It isincluded in the scopes of al subtypes of the Entity Type.

redefines; NamedElement.namespace

Multiplicity: 1..1
Properties: derived
Tagged Values
derivation = self->of-entity->declared-in

8.12.13 Association: EntityType-has-UniqueRule

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of
attributes of that Entity Type.

8.12.13.1 Supertypes

el ement-defined-in-scope

8.12.13.2 Association Ends

AssociationEnd: domain To: EntityType

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 89

Definition: represents the relationship of the UniqueRule to the Entity Type whose Extent is the domain of valuesto which it
applies.

Multiplicity: 1..1

AssociationEnd: unique-rules To: UnigueRule

Definition: represents the relationship between an Entity Type and the local uniqueness rules that constrain the values of
attributes of that EntityType.

Note — See 9.2.2.1 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties. composite

8.12.14 Association: InverseAttribute-inverts-ExplicitAttribute

Definition: represents the relationship of an INVERSE attribute of one entity data type to the explicit attribute of the entity
data type that models the Relationship from which the inverse attribute is derived.

8.12.14.1 Association Ends

AssociationEnd: explicit To: ExplicitAttribute

Definition: the explicit attribute of the associated entity datatype that model s the Relationship from which the inverse attribute
is derived.

Note — The attribute-type of the InverseAttribute may be a subtype of the entity datatype that defines the ExplicitAttribute.
Note — See 9.2.1.3 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: inverse To: InverseAttribute

Definition: representsthe relationship of an explicit attribute denoting a Relationship to the inverse attribute of the range entity
data type that model s the same Relationship. While the inverse is conceptually unique, EXPRESS alows it to be declared
differently in different subtypes of the original range entity.

Note — See 9.2.1.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.12.15 Association: single-entity-declared-in-entity

Definition: represents the relationship between the Entity Type and the SingleEntity Type that isimplicitly declared in the
entity_declaration for the Entity Type.

8.12.15.1 Association Ends

AssociationEnd: declares To: SingleEntityType

Definition: the SingleEntity Type that is declared in the declaration for the Entity Type, i.e., the group of Attributesthat is
named for the Entity Type.

90 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1
AssociationEnd: declared-in To: EntityType
Definition: represents the derivation of the SingleEntity Type from the entity_declaration for the Entity Type.

Multiplicity: 1..1

8.12.16 Generalization Sets

Generalization Set: Attribute categories complete, disjoint

Every Attribute is one of ExplicitAttribute, InverseAttribute, or DerivedAttribute.

8.13 Relationships

According to SO 10303-11, a“distributive relationship” between entity datatypesis modeled by an attribute whose datatype
is either an entity type or an aggregation type whose member typeis an entity type. This sub clause models the “distributive
relationship” concepts.

Note — The primary purpose of this sub clause is to facilitate mappings to languages in which relationships, also called
“associations’ or “properties,” are first-class concepts from which the associated “ attributes” are derived.

In EXPRESS, all relationships are directed. The entity typethat isthe“domain” of the relationship has an explicit attribute that
denotes the relationship; the entity type that isthe “range” of the relationship may have an inverse attribute that denotes the
relationship, but EXPRESS always supports an implicit inverse attribute via the Usedin function (see 13.6.3).

Figure 8.13 shows these concepts, and their relationship to the Attribute concepts. They are described in detail below.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 91

shietaclazss +oreates-relationship
+in-relationship Relationship 0. ExplicitAttribute-crestes-relationship

1 +in-relstionzhip
1

DamainRole-in-Relationship RangeRole-in-Relstionship
frale-has-lovweer-bound

+ilower-bound

sMetaclazss shetaclazss
Role 0.1 Iru:ule-has-upper-boundu"1 SizeConstraint

+iupper-bound | +bound : Integer [0..1]

{complete, disjoint} 0.1 0.1
Role categories

+olomain 1 1 +Hrange
zMetaclazss zMetaclazss zMetaclasss
DomainRole 1 EntityType 1 RangeRole
+id - Scopedld [0.1]) 0.F +oomain [+isshbstract : Boolean [1] +range 0.* |+id: Scopedid [1]
1 | +models-role 1.k 0.* +range-type +imodels-role |0.*

. fertity-hag-attributes entity used-in-attribute
Inversedtribute-models-rale
JExplicit &ttributetmodels-rale

0.* | +uzed-in

0.1 | +range-view 0. | +iattributes
aMetaclazss shetaclasss y «:ﬂ%:t&:tl.:ls_itn +idomain-vieny
InverseAttribute Attribute Xplic ribute 1

+HzOptional . Boolean [1]
+izlnvertible : BEoolean [1]

— k—
+bazed-on
1

+izlnigue : Boolean [1]

g . —
inverse (0. +explicit (1

Irversedttribute-inverts-Explicit Attribute

Figure 8.13 - Relationships

8.13.1 Class: DomainRole
Definition: arole representing the behavior of the entity instances that is designated the “domain” of the relationship.

8.13.1.1 Supertypes

Role

8.13.1.2 Attributes

Attribute: id To: ScopedId

Definition: represents the “complete” identifier for the Role. Theidentifier for the DomainRole is derived from the identifier
for the InverseAttribute, when present, including the Identifier value and the associated Entity Type identifier. When thereisno
InverseAttribute, :id has no proper value, but the DomainRole may be identified by the pseudo-identifier:
Usedin.<RangeRole:id>, where <RangeRol:id> is the identifier for the RangeRole in the Rel ationship.

Properties: derived.

Multiplicity: 0..1
TaggedValues

derivation = self-s>range-view->id

92 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.13.1.3 Associations

AssociationEnd: domain To: EntityType

via: entity-plays-domain-role

Definition: represents the (single) entity data type common to all instances that play the Domain Role.
Properties: derived.

Multiplicity: 1..1
TaggedValues

derivation = self->in-relationship->range->domain-view->of-entity

AssociationEnd: in-relationship To: Relationship

via: DomainRole-in-Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined.
Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

via: |nverseAttribute-models-role

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain role.
The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1
8.13.1.4 Other Roles

none

8.13.2 Class: RangeRole

Definition: arole representing the behavior of the entity instances that is designated the “range” of the relationship.
8.13.2.1 Supertypes

Role

8.13.2.2 Attributes

Attribute: id To: Scopedid

Definition: represents the “ complete” identifier for the Role. The identifier for a RangeRole is derived from the identifier for
the ExplicitAttribute that creates the relationship, including the Identifier value and the associated Entity Type identifier.

Properties: derived.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 93

Multiplicity: 1..1
TaggedValues

derivation = self->domain-view->id

8.13.2.3 Associations

AssociationEnd: domain-view To: ExplicitAttribute
via: ExplicitAttribute-models-role

Definition: represents the relationship between a RangeRol e and the ExplicitAttribute of the domain/referencing entity that
modelsiit.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship
via: RangeRole-in-Relationship

Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.
Multiplicity: 1..1

AssociationEnd: range To: EntityType

via: entity-plays-range-role

Definition: represents the (single) entity datatype common to all instances that play the Range Role.
Properties. derived.

Multiplicity: 1..1
TaggedValues

derivation = self->domain-view->attribute-type
8.13.2.4 Other Roles

none

8.13.3 Class: Relationship
Definition: a“distributive relationship” between entity data types.

Every ExplicitAttribute creates a Relationship between the Entity Type that has the explicit attribute and the type and/or base
type(s) of the explicit attribute. The relationship is directed, and involves two distinguished Roles. The DomainRole is played
by the Entity Type that has the ExplicitAttribute. When the ExplicitAttributeis “invertible” (see . isInvertible in
8.12.4.2), the relationship is between Entity Types, and the RangeRole is played by the range-type of the ExplicitAttribute.

The range-type may have an inverse attribute denoting the DomainRole; or the DomainRole may be referred to by the Usedin
function (see 13.6.3).

94 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.13.3.1 Supertypes
none

8.13.3.2 Attributes
none

8.13.3.3 Associations

AssociationEnd: based-on To: ExplicitAttribute

via: ExplicitAttribute-creates-relationship

Definition; represents the rel ationship between a Relationship and the ExplicitAttribute on which it is based, i.e., the Attribute

that creates the Relationship.
Multiplicity: 1..1

AssociationEnd: domain To: DomainRole

via: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.
Multiplicity: 1..1

AssociationEnd: range To: RangeRole
via: RangeRole-in-Relationship

Definition: represents the relationship between the Relationship and its “range” role.
Multiplicity: 1..1
8.13.3.4 Other Roles

none

8.13.4 Class: Role

Definition: a“slot” in arelationship, denoting the behavior of one of the Instances involved in the relationship. Since all
relationships in EXPRESS are directed, the two slots are nominally designated domain and range.

Properties: abstract
8.13.4.1 Supertypes
none

8.13.4.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

95

8.13.4.3 Associations

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents alower-bound on the number of Relationship instances in which a given Entitylnstance can play this
Role. An explicit zero (“0") value may be considered to represent no lower-bound constraint; and the lower-bound relationship
need not appear. A lower-bound expression that may evaluate to zero shall aways be represented by alower-bound
relationship.

Note — The lower-bound on the Domain roleis specified by the Explicit Attribute that models the RangeRole. The lower-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a
DomainRule on the “range” Entity Type involving UsedIn(SELF,).

Note — Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, agiven pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs.

Note — See 9.2.1.3 of 1SO 10303-11:2004.

Properties. derived.

Multiplicity: 0..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents an upper-bound on the number of Relationship instances in which a given Entitylnstance can play the
Role. An explicit indeterminate value (“?") is considered to represent no upper-bound constraint, and shall not be represented
by an upper-bound relationship. (An upper-bound expression that may evaluate to “?” shall be represented by an upper-bound
relationship.)

Note — The upper-bound on the Domain role is specified by the Explicit Attribute that model s the RangeRole. The upper-
bound on the Range role is specified by the Inverse Attribute that models the Domain Role, if any, or possibly by a
DomainRule on the “range” Entity Type involving UsedIn(SELF,).

Note — Because the ExplicitAttribute that creates the Relationship may have an aggregation data type for which isUnique does
not hold, agiven pair of participating entity instances may occur more than once as an instance of the Relationship. The Size
constraint is on the count of pairs, not the count of distinct pairs.

Note — See 9.2.1.3 of SO 10303-11:2004.

Properties: derived.

Multiplicity: 0..1

8.13.4.4 Other Roles

From: Redeclaration as refined-role

8.13.5 Association: DomainRole-in-Relationship

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

96 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.13.5.1 Association Ends

AssociationEnd: domain To: DomainRole

Definition: represents the relationship between the Relationship and the Role that is its DomainRole.

Multiplicity: 1..1

AssociationEnd: in-relationship To: Relationship

Definition: represents the relationship between a Domain Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1

8.13.6 Association: entity-plays-domain-role

Definition: represents the relationship between an entity type and the domain roles that its instances play.
Properties: derived

8.13.6.1 Association Ends

AssociationEnd: domain To: EntityType

Definition: represents the (single) entity data type common to al instances that play the Domain Role.
Multiplicity: 1..1

Properties: derived
TaggedValues

derivation = self->in-relationship-s>based-on->owning-entity
AssociationEnd: plays-domain-role To: DomainRole
Definition: represents the relationship between an entity type and the domain roles that its instances play.

For each ExplicitAttribute of the Entity Type, the Entity Type plays a corresponding DomainRole. An Entitylnstanceis
considered to play the DomainRole once for each member of an ExplicitAttribute whose data type is an AggregationType.

Multiplicity: 0..* unordered

Properties: derived
TaggedValues

derivation = ((self-sattributes) * extent (ExplicitAttribute))->
creates-relationship->domain

8.13.7 Association: entity-plays-range-role
Definition: represents the relationship between an entity type and the range roles that its instances play.

Properties: derived

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.13.7.1 Association Ends

AssociationEnd: plays-range-role To: RangeRole

Definition: represents the relationship between an entity type and the range roles that its instances play.
Multiplicity: 0..* unordered

Properties: derived

Note — The derivation of plays-range-role is complex. For each occurrence of the EntityType as arange-type of an
ExplicitAttribute, the EntityType plays the corresponding RangeRole (ExplicitAttribute: :models-role).

AssociationEnd: range To: EntityType
Definition: represents the (single) entity datatype common to al instances that play the Range Role.
Multiplicity: 1..1
Properties: derived.
TaggedValues
derivation = self->domain-view->attribute-type

8.13.8 Association: entity-used-in-attribute

Definition: represents the relationship between the Entity Type and the ExplicitAttributes (of other Entity Types) that establish
relationshipsto it.

8.13.8.1 Association Ends

AssociationEnd: range-type To: EntityType

Definition: models the relationship between the ExplicitAttribute and the Entity Types that are, or are members of, its attribute-
type. These Entity Types are the “range” of the Relationship with the “referencing” entity that is created by the
ExplicitAttribute.

Multiplicity: 1..* unordered

AssociationEnd: used-in To: ExplicitAttribute

Definition: represents the relationship between the Entity Type and the ExplicitAttributes (of other Entity Types) that establish
relationshipsto it.

Multiplicity: 0..* unordered

8.13.9 Association: InverseAttribute-models-role

Definition: represents the relationship between an Inverse Attribute and the domain-roleit refersto.

98 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.13.9.1 Association Ends

AssociationEnd: models-role To: DomainRole

Definition: represents the relationship between an Inverse Attribute and the domain-role it defines. By extension (models-
role:in-relationship), it models the relationship of the inverse attribute to the Relationship it denotes.

Multiplicity: 1..1

AssociationEnd: range-view To: InverseAttribute

Definition: represents the relationship between a domain-role and the inverse attributes of the range entities that model it.
Different subtypes of the primary “range” entity data type can define different views of (and constraints on) the domain role.
The “range” entity has an inverse attribute that defines the “domain” role (the role of the other entity).

Multiplicity: 0..1

8.13.10 Association: ExplicitAttribute-creates-relationship
Definition: represents the relationship between an ExplicitAttribute and the Relationship between Entity Types that it models.

8.13.10.1 Association Ends

AssociationEnd: based-on To: ExplicitAttribute

Definition; represents the rel ationship between a Relationship and the ExplicitAttribute on which it is based, i.e., the Attribute
that creates the Relationship.

Multiplicity: 1..1
AssociationEnd: creates-relationship To: Relationship
Definition: represents the relationship between an ExplicitAttribute and the Relationship between Entity Types that it models.

Multiplicity: 1..*, unordered

8.13.11 Association: ExplicitAttribute-models-role
Definition: represents the relationship between an Invertible Attribute and the RangeRol e it defines.
8.13.11.1 Association Ends

AssociationEnd: domain-view To: ExplicitAttribute

Definition: represents the relationship between a RangeRole and the ExplicitAttribute of the domain/referencing entity that
modelsit.

Multiplicity: 1..1

AssociationEnd: models-role To: RangeRole
Definition: represents the relationship between an Explicit Attribute and the RangeRole it defines.

Note — An explicit attribute defines a RangeRol e (and thus a Relationship) if and only if it is an ExplicitAttribute.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 99

Multiplicity: 0..1

8.13.12 Association: RangeRole-in-Relationship
Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

8.13.12.1 Association Ends

AssociationEnd: in-relationship To: Relationship
Definition: represents the relationship between a Range Role and the (unique) Relationship in which it is defined.

Multiplicity: 1..1
AssociationEnd: range To: RangeRole
Definition: represents the relationship between the Relationship and its “range” role.

Multiplicity: 1..1

8.14 Redeclarations

Redeclaration is an EXPRESS mechanism that permits a subtype to “redeclare” an inherited attribute in order to constrain its
possible values in instances of the subtype. Figure 8.14 shows the model of this concept, and this sub clause defines the rel ated
metamodel elements.

o.* 0.x +zubtype-of

; i hetaclass:s
sMetaclazss fertity-has-sttributes & !
EntityType :.I’u::twnlng-errtrt_.-' +iattributes Attribute ;r':'*le
- . 0.* |+issbstract | Boolean [1 .
+izAbstract | Boolean [1] +position ; Integer [1] 0]
sttribute-has-data-tyvpe
1 +ICope 9.4 1| +original-attribute
| aMetaclasse +attribute-type | 1
0.1 Roje +iretfined-role +restrictad-type zMetaclasss
0.1 Parameter Type
. 1
+iupper-bound | 0.1 0.1 | +Aocwer-bound
zhMetaclasss zMetaclasss
SizeConstraint Expression
+hound ; Integer [0..1] +Hewt ExpressText [0..1]
+lowver-bound [0.1 0.1 | +upper-bound 0.* n.# 0. 0.1 |+derivation
1 zhletaclasss
4 Redeclaration 0.
+_p03'rti0n :Integer [1]
scope-of-redeclaration-is-Entity Type 0.t :g?;z'?dgt:';geagj[%lﬁf{' [0.1] +refines
0.1
+redeclarations

0.x

redeclaration-refines-redeclaration

Figure 8.14 - Redeclarations

100 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.14.1 Class: Redeclaration

Definition; represents the “redeclaration” of an EXPRESS attribute in a subtype of the entity data type for which that attribute
was originally declared. A redeclaration represents a refinement of the original attribute concept in the subtype, and it states
corresponding constraints on the possible values of that attribute in the subtype. It may also rename the attribute for the
subtype. When the attribute-type of the original-attribute is an Entity Type, the Redeclaration may be seen asrefining the
RangeRol e represented by the original-attribute for the domain restricted to the subtype.

Note — See 9.2.3.4 of 1SO 10303-11:2004.

8.14.1.1 Supertypes

none

8.14.1.2 Attributes

Attribute: alias To: Scopedld

Definition; an additional EXPRESS identifier that may be used to identify the original attribute in this subtype.
Note — See 9.2.2.2 of SO 10303-11:2004.

Multiplicity: 0..1

Attribute: isMandatory To: (UML) Boolean

Definition:; Trueif the entity instance is required to have avalue for this attribute in this subtype; Falseif it is permitted to have
no specified value. This attribute is only present if isOptional is True for the original attribute.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

Attribute: position To: (UML) Integer

Definition: represents the position of the redeclaration in the sequence of attribute declarations in the entity declaration. By
convention these follow al the new attribute declarations of each kind.

Multiplicity: 1..1
8.14.1.3 Associations

AssociationEnd: derivation To: Expression

Definition: when specified, represents a Redeclaration that redeclares an ExplicitAttribute to be “derived” in the .scope
subtype. That is, it declares an Expression that can be used to derive (or validate) the value of the redeclared Attribute in this
subtype.

Multiplicity: 0..1

AssociationEnd: lower-bound To: SizeConstraint

Definition: represents the minimum cardinality of therole that is stated by the Redeclaration. Thisis the case when the
Redeclaration redeclares the Parameter Type to restrict the minimum size of the aggregate values.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 101

When the restricted-type is an AggregationType, the lower-bound SizeConstraint is the lower-bound of that AggregationType.
Multiplicity: 0..1
Properties: derived.

AssociationEnd: original-attribute To: Attribute

Definition: identifies the original Attribute being redeclared by the Redeclaration. If the Redeclaration redeclares another
redeclared-attribute (see .refines), the .original-attribute is determined transitively. Every Redeclaration ultimately constrains
an original attribute in some supertype.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
AssociationEnd: refined-role To: Role

Definition: represents the relationship between a Redeclaration and the Role represented by the .original-attribute.

« If the Redeclaration redeclares an ExplicitAttributethat . isInvertible (see8.12.4.2), it refines the corresponding
RangeRole by restricting the allowable participants in the RangeRole for the domain that isthe . scope of the
Redeclaration.

- If the Redeclaration redeclares an InverseAttribute, it refines the corresponding DomainRole by restricting the
allowabl e participants in the DomainRole for the range that isthe . scope of the Redeclaration.

Multiplicity: 0..1
Properties. derived.

AssociationEnd: refines To: Redeclaration

Definition: thisrelationship is present only when a Redeclaration is stated as arefinement of an attribute of a subtype that itself
redeclaresthat attribute. . ref ines refersto the Redeclaration that represents that redeclared attribute.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: restricted-type To: ParameterType

Definition: when specified, specifies the subtype or specialization of the data type of the original attribute to which all values
of the original attribute in instances of the “scope” Entity Type must conform.

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: scope To: EntityType

via: scope-of -redeclaration-is-Entity Type

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration applies.
Values for the original attribute are constrained by the Redeclaration for instances of the .scope Entity Type and all of its
subtypes. The .scope Entity Type is the namespace of the .alias identifier, if present.

102 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.2.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: upper-bound To: SizeConstraint

Definition: represents a restriction on the maximum cardinality of the role that is stated by the Redeclaration. This isthe case
when the Redeclaration redeclares the Parameter Type to restrict the maximum size of the aggregate values.

When the restricted-type is an AggregationType, the upper-bound SizeConstraint is the upper-bound of that AggregationType.
Multiplicity: 0..1

Properties: derived.

8.14.1.4 Other Roles

From: Redeclaration as refines

8.14.2 Association: scope-of-redeclaration-is-EntityType

Definition: represents the relationship between the Redeclaration and the entity data type to which the redeclaration applies.
8.14.2.1 Association Ends

AssociationEnd: redeclarations To: Redeclaration

Definition: represents the relationship between the Entity Type and any attribute Redeclarations that appear in its declaration.
Note — See 9.2.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered
AssociationEnd: scope To: EntityType
Definition: the entity data type to which the redeclaration applies.

Values for the original attribute are constrained by the Redeclaration for instances of the .scope EntityType and all of its
subtypes. The .scope Entity Type is the namespace of the .aiasidentifier, if present.

Note — See 9.2.3.4 of 1SO 10303-11:2004.

Multiplicity: 1..1

8.15 Parametric Datatype Elements

EXPRESS permitsthegeneralized type specificationsfor formal parameters and attributes of abstract entity datatypes
to contain labeled components that refer to specific elements of the data type of the corresponding actual parameters and
instantiable entity subtypes. These labeled components are modeled as ParametricElements. In the declarations of other
attributes of the abstract entity datatype or other parameters of the same Algorithm, Actual TypeConstraints refer to these
ParametricElements. In Algorithm bodies, the specifications of data types that are Actual Types refer to ParametricElements
defined in the formal parameter list. Figure 8.15 depicts the ParametricElement concepts.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 103

sMetaclass: element-definec-in-zcope sMetaclasss
NamadFlement +named-elements +namespace Scope
iy
1

+id : Scopedid [0..1]] 0%

+inamespace § 1
T {redefines namespace }
o {zubsets named-elements }
sMetaclas s -
0. f: -of-P etricElement
ParametricEloment SEOpe-OT-raramelnctiems
element-has-source
+50UrCE zhletaclasss
Fay Aype-parameters 1 | FlemartSonrce
fcomplete| disjoint }
ParametricElement categories iy
| zhletaclasss zMetaclasss
«Metaclazsy Algorithm EntityType
ParametricType [Algorithims) +igfbstract : Boolean [1]
+izEntity : Boolean [1]

+inamespace ¥ 1
fcomplete, Hisjoint

1 Y +namespace

ghletaclazzs Element=ource categaries
ParametricStructure +lormal-parameters | 0 * 0.# |+local-attributes
zhletaclasss hletaclasss
0.1 +defines-parameter Paramoeter Attribute
(Algarithms)
AGGREGATET ype-defines-paramester +position © Integer [1]
+role | 0%
1| +structure-source 0
aMetaclasss h
hetaclass
AGGREGATEType 1 i y 1
Paramoter Type
+formal-parameter-type +attribute-type

Figure 8.15 - Parametric Datatype Elements

Note — In the diagram the model elements that are taken from the Algorithms Package can be ignored if only the Core package
is being implemented.

8.15.1 Class: ElementSource

Definition: an Attribute or Parameter. ElementSource reifies the roles of Attribute and Parameter as : source of
Parametri cElements — the syntactic container of their declarations — and as owner of the related Actual TypeConstraints and
Actual StructureConstraints.

Note — InverseAttributes cannot have values for any of the properties of ElementSource - type-parameters, type-constraints,
structure-constraints.

Properties. abstract
8.15.1.1 Supertypes
none

8.15.1.2 Attributes

none

104 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.15.1.3 Associations

AssociationEnd: structure-constraints To: ActualStructureConstraint

Definition: the Actual StructureConstraints, if any, that constrain the allowable data types of the corresponding actual
parameter.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-constraints To: ActualTypeConstraint
Definition: the Actual TypeConstraints, if any, that constrain the allowable data types of the corresponding actual parameter.
Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

AssociationEnd: type-parameters To: ParametricElement

via: element-has-source

Definition: the ParametricElements, if any, whose declarations are contained in the declared type of the ElementSource
(Attribute or Parameter).

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

8.15.2 Class: ParametricElement

Definition; a NamedElement representing a parametric data type — a component of the type description for an abstract
Attribute or aformal Parameter that refers to the corresponding type component of the InstantiableType or the corresponding
actual parameter. The ParametricElement is denoted by an EXPRESS type label that is unique within the scope of the
EntityType or Algorithm.

The : id attribute of the ParametricElement represents the EXPRESS type label.

INEXPRESSentity declarations, thefirst occurrence of the type label among the Attribute declarations defines
the ParametricElement. Any later occurrence of the same type label inthe Attribute declarations for the same Entity Type
(even for the same Attribute) specifies an Actua StructureConstraint or an Actual TypeConstraint that is based on the
ParametricElement. The : source property indicates the Attribute whose data type contains the ParametricElement
definition.

In EXPRESS Algorithm declarations, the first occurrence of the type label intheforma parameter list defines the
ParametricElement. Any later occurrence of thesame type label intheformal parameter list (even in the same Parameter)
specifies an Actual StructureConstraint or an Actual TypeConstraint that is based on the ParametricElement. The : source
property indicates the Parameter whose formal parameter type contains the ParametricElement definition.

Note — An EXPRESS type label isnot part of the model of a GenericType or AGGREGATETYype; it isan identifier for a
ParametricElement that can be used in Actual Types and Actual TypeConstraints.

Properties. abstract

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 105

8.15.2.1 Supertypes
NamedElement
8.15.2.2 Attributes
none

8.15.2.3 Associations

AssociationEnd: namespace To: Scope

Definition: the EntityType or Algorithm that is the namespace of the Scopedid that isthe type label. Thisrelationshipis
derived — the namespace of a ParametricElement is the same as the namespace of its : source element (Attribute or
Parameter).

Multiplicity: 1..1
Properties: derived

Note — While the derivation has the conceptual form: self->source->namespace in al cases, each kind of source
inheritsits namespace association from a different supertype.

AssociationEnd: source To: ElementSource

via: e ement-has-source

Definition: the ElementSource (Attribute or Parameter) whose declared type is or includes the ParametricElement and defines
itstype label. Thefirst (by : position) Attribute or Parameter whose declared type containsthe type label isthe
source for that ParametricElement and definesthe type label asits : id.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.15.2.4 Other Roles

none

8.15.3 Class: ParametricStructure

Definition: a syntactic occurrence of AGGREGATE within aformal parameter type or attribute type that defines a
type label. The ParametricStructure isthe first occurrence of the label among the Parameters of the Algorithm or the
Attributes of the Entity Type.

In an Attribute declaration, the ParametricStructure refers to the structure (ARRAY, BAG, LIST, SET) of the corresponding
instantiable AggregationType in corresponding Attributes of subtypes. In a Parameter declaration, the ParametricStructure
refersto the structure of the corresponding component of the corresponding Actual Parameters.

Note — Later occurrences of the type label in the same Scope are Actual StructureConstraints.

Example -- In the EXPRESS declaration:

106 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

FUNCTION check properties (inputs: AGGREGATE:ins OF property, selectors:
AGGREGATE:ins OF BOOLEAN) : BOOLEAN;

the AGGREGATE : ins inthe inputs parameter declares both an AGGREGATEType component of the formal-parameter-
type of the inputs Parameter and a ParametricStructure that definesthe type label “ins”. The : source-
structure of the ParametricStructure is that AGGREGATEType. (The AGGREGATE : ins inthe selectors Parameter
declares an AGGREGATEType component and an Actual StructureConstraint based on “ins.”

8.15.3.1 Supertypes

ParametricElement

8.15.3.2 Attributes
none

8.15.3.3 Associations

AssociationEnd: source-structure to: AGGREGATEType
via AGGREGATEType-defines-parameter

Definition: the AGGREGATEType from whose instantiations the ParametricStructure takes its values. That is, the
ParametricStructure refers to the structure of the attribute-type or the component of the actual parameter that corresponds to
this AGGREGATETYype.

Note — the AGGREGATETypeis unique and is, or is a component of, the data type of the : source, whichisa
ParameterType. Since a Parameter Type can contain more than one occurrence of AGGREGATE, the intended component of the
actual parameter type must be explicitly identified.

Multiplicity: 1..1
8.15.3.4 Other Roles

From: ActualAGGREGATEType as refers-to
From: ActualStructureConstraint as required-structure

8.15.4 Class: ParametricType

Definition: A syntactic occurrence of GENERIC of GENERIC ENTITY within aformal parameter type or attribute type that
definesatype label. The ParametricTypeisthe first occurrence of the type label among the Parameters of the
Algorithm or the Attributes of the Entity Type.

In an EntityType declaration, the ParametricType refers to the corresponding I nstantiableType component of each
corresponding Attribute. In an Algorithm declaration, the ParametricType refers to the data type of the corresponding
component of each corresponding Actual Parameter. Since the ElementSource (Attribute or Parameter) contains exactly one
component that is a GenericType, the ParametricType is always associated with that component.

Note — The association between the ParametricType and the GenericType component is not modeled, since the GenericType
component is not itself modeled (it is simply an occurrence of one of the two objects of GenericType). The association is
implied, as stated above, by the (inherited) association to the ElementSource (ParametricElement : source).

Note — Later occurrences of the type label within the same Scope are Actua TypeConstraints (see 8.16.2).

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 107

Note — See | SO 10303-11 clause 9.5.3.4. It also requires that the ParametricType must be based on GENERIC ENTITY,i.e,
that : isEntity must be TRUE, if the : source of the ParametricType is an Attribute.

8.15.4.1 Supertypes
ParametricElement

8.15.4.2 Attributes

Attribute: isEntity to: (UML) Boolean

Definition: Trueif the ParametricTypeis based on GENERIC ENTITY; Falseif it isbased on GENERIC.
Multiplicity: 1..1

8.15.4.3 Associations

none

8.15.4.4 Other Roles

From: ActualGenericType as refers-to
From: ActualTypeConstraint as required-type

8.15.4.5 Rules

Constraint (OCL):

not (self-ssource.type = Attribute) or (self->isEntity);
If the source is an Attribute, the ParametricType must be based on GENERIC_ENTITY.

8.15.5 Association: AGGREGATEType-defines-parameter

Definition: represents the relationship between a ParametricStructure and the AGGREGATEType that definesit. The
ParametricStructure takes on the structure of the actual parameters that conform to this element of the formal parameter type.

8.15.5.1 Association Ends

AssociationEnd: defines-parameter To: ParametricStructure

Definition: the ParametricStructure, if any, that is defined to refer to the structure of the actual data types that conform to this
AGGREGATEType.

Multiplicity: 0..1

AssociationEnd: structure-source To: AGGREGATEType

Definition: the AGGREGATEType from whose instantiations the ParametricStructure takes its values. That is, the
ParametricStructure refers to the structure of the attribute-type or the component of the actual parameter that corresponds to
this AGGREGATETYype.

Note — the AGGREGATEType is unique and is, or is a component of, the data type of the : source, whichisa
ParameterType. Since a Parameter Type can contain more than one occurrence of AGGREGATE, the intended component of the
actual parameter type must be explicitly identified.

108 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1

8.15.6 Association: element-has-source

Definition: represents the rel ationship between a ParametricElement and the syntactic/semantic element (ElementSource) that
contains its definition.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

8.15.6.1 Association Ends

AssociationEnd: source To: ElementSource

Definition; the ElementSource (Attribute or Parameter) whose declared type is or includes the ParametricElement and defines
itstype_label. Thefirst (by : position) Attribute or Parameter whose declared type containsthe type label isthe
source for that ParametricElement and definesthe type label asits : id.

Multiplicity: 1..1

AssociationEnd: type-parameters To: ParametricElement

Definition: the ParametricElements, if any, whose declarations are contained in the declared type of the ElementSource
(Attribute or Parameter).

Multiplicity: 0..* unordered

8.15.7 Generalization Sets

Generalization Set: ParametricElement categories complete, disjoint

Every ParametricElement is one of ParametricType or ParametricStructure.

8.16 Actual Type Constraints

EXPRESS permits the generalized_type specifications for formal parameters to contain labeled generic components that refer
to specific elements of the data type of the corresponding actual parameters. These elements can be referred to in the
specifications for the data types of other formal parameters. The effect of such areferenceisto state a constraint on the data
types of the actual parameters that correspond to the formal parameter that contains the reference to the labeled component.
This sub clause provides a model for the capture of such constraints, herein called Actual TypeConstraints. The associated
concepts are depicted in Figure 8.14 (in sub clause 8.15) and Figure 8.15.

According to clause 9.5.3.4 of 1SO 10303-11, the first occurrence of alabeled component in a parameter type is the defining
occurrence and subsequent occurrences are constraining references.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 109

zhetaclasss
ParantetarTypa
. sMetaclazss
zhetaclasss a a+f0rmal-parameter-type 1 1 | +attribute-type Attribute
Paramatar - +role
[Algorithims] attribute-has-datatype o
jcomplete, disjoint
EIemerﬂSourcj categories
aMetacliasss
ElemantSonrce
1 1
+structure-constraint=s | 0.* +S0UrCE 1 +ype-constraints |0..*
whetaclazss element-hdz-source shetaclasss
ActualStructureConstraint ActualTypeConstraint
= Hype-parameters | 0% =
+akel ; Identifier [1] +lakel ; Identifier [1]
sMetaclasss
+constraint |0 A o ParametricElemeont o
. i
aggregate-nas-constraint {completd, disjaint}
ParametricElement categories
+imatching-structure | 1 +reguired-structure | 1 | | 1 +Heguired-type
sMetaclasss sMetaclassy sMetaclassy
AGGREGATEType ParametricStructure ParametricType

+izEntity : Bodlean [1]

Figure 8.16 - Actual Type Constraints

8.16.1 Class: ActualStructureConstraint

Definition: aconstraint on the structure of the ConcreteAggregationType that correspondsto a given AGGREGATEType. The
constraint is declared in EXPRESS by atype label onthe AGGREGATE keyword that occursin the specification of an
attribute-type or aformal-paramater-type, but is not the definition of that type label (cf. ParametricStructure). The
requirement declared by the constraint is that the structure of the ConcreteAggregationType that corresponds to the
AGGREGATEType that usesthe type label (the :matching-structure, the component in the data type of the
corresponding actual parameter or corresponding instantiabl e attribute) must be the same as the structure referred to by the
ParametricStructure that definesthe type label (the : required-structure).

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Example -- In the EXPRESS declaration:

FUNCTION check properties (inputs: AGGREGATE:ins OF property, selectors:
AGGREGATE:ins OF BOOLEAN) : BOOLEAN;

the AGGREGATE : ins inthe inputs parameter declares both an AGGREGATEType component of the formal-parameter-
type of the input s Parameter and a ParametricStructure that definesthe type label “ins.” The AGGREGATE:insin
the selectors Parameter declares both an AGGREGATEType component of the formal-parameter-type of the selectors
Parameter and an Actual StructureConstraint based on “ins.” Thematching-structure of the

Actual StructureConstraint is the AggregateType of the selectors parameter, and the required-structure isthe
ParametricStructure declared by the input s parameter.

110 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.16.1.1 Supertypes
none
8.16.1.2 Attributes

Attribute: label To: Core::ldentifier

Definition: the EXPRESS type label onthe AGGREGATE keyword that denotes the constraint. Any occurrence of the
same type label after thefirst denotes a constraint.

Multiplicity: 1..1
8.16.1.3 Associations

AssociationEnd: matching-structure To: AGGREGATEType

via: aggregate-has-constraint

Definition; the AGGREGATEType component to which the constraint applies, i.e., the AGGREGATEType that is denoted by
the AGGREGATE keyword that usesthe type label.

Multiplicity: 1..1

AssociationEnd: required-structure To: ParametricStructure

Definition: the ParametricStructure that defines the EXPRESS type label that isused to establish the constraint. The
:required-structure definestherequired structure (ARRAY, BAG, LIST, SET) of the ConcreteAggregationType that
corresponds to the AGGREGATETypethat isthe :matching structure.

Multiplicity: 1..1
8.16.1.4 Other Roles

From: ElementSource as structure-constraints

8.16.2 Class: ActualTypeConstraint

Definition: a constraint on the InstantiableType that corresponds to a given GenericType component of an attribute-type or a
formal-parameter-type. The constraint is declared in EXPRESS by atype label (the : 1abel property) on aGENERIC or
GENERIC ENTITY keyword that occursin the specification of the formal-parameter-type, but is not defined there. The
requirement declared by the constraint is that the I nstantiableType that corresponds to the GenericType component that uses
thetype label (the component in the datatype of the corresponding actual parameter or corresponding instantiable
attribute) must be type compatible with the InstantiableType to that corresponds to the ParametricType that defines the

type label (the :required-type).

If the formal parameter types of additional Parameters of the same Algorithm contain the same type label, each such
occurrence constitutes a distinct Actual TypeConstraint.

The data type of the ElementSource (Attribute or Parameter) that has the Actual TypeConstraint contains exactly one
occurrence of aGenericType (GENERIC or GENERIC ENTITY). That occurrenceisthe component that is constrained by the
Actual TypeConstraint.

Note — See 9.5.3.4 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 111

8.16.2.1 Supertypes
none
8.16.2.2 Attributes

Attribute: label To: Identifier

Definition: the EXPRESS type label onthe GENERIC or GENERIC ENTITY keyword that denotesthe constraint. Any
occurrence of the same type label after the first denotes a constraint.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
8.16.2.3 Associations

AssociationEnd: required-type To: ParametricType

Definition: the ParametricType that defines the EXPRESS type label that is used to establish the constraint. The
ParametricType defines the data type with which the component of the data type of the actual parameter that has the
Actual TypeConstraint must be compatible.

Multiplicity: 1..1
8.16.2.4 Other Roles

From: Parameter as type-constraints

8.16.3 Association: aggregate-has-constraint

Definition: the relationship between an AGGREGATE type specification and its Actual StructureConstraint, if any.
8.16.3.1 Association Ends

AssociationEnd: constraint To: ActualStructureConstraint

Definition: the Actual StructureConstraint, if any, that applies to this component of the GeneralizedType specification.

Note — Only an AGGREGATEType that appears in the specification of the data type of a Parameter or an Attribute of an
abstract entity data type can have an Actual StructureConstraint. The AGGREGATEType has an Actual StructureConstraint
only if it hasasyntactic type label and does not itself define that type label.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: matching-structure To: Core::AGGREGATEType

Definition: the AGGREGATEType component to which the constraint applies, i.e., the AGGREGATEType that is denoted by
the AGGREGATE keyword that usesthe type label.

Multiplicity: 1..1

112 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.17 Expressions and Instances

This sub clause of the Core model introduces the basic concepts for Expression and Instance, which are expanded in other
packages. They are provided here so that implementations need not support the Expressions and Instances Packages in order to
support all features of the Core model.

For Expressions, the Core package contains only the class Expression. The optional : text attribute allows an Expression to
be represented as verbatim EXPRESS language text. The Expressions package (see Clause 12) model s the subclasses of
Expression that represent the semantic interpretation of the parsed language text. Support for the Expressions Packageis a
compliance point (see sub clause 4.4).

The class Instance is abstract. The Core package contains the Instance concept solely in order to model the semantics of
Expressions. The Instances Package (see Clause 9) models the detailed expansion of the Instance concept, including all of the
instantiabl e subclasses. Support for the Instances package is a compliance point (see 4.4.1, Compliance point: Enumerations).
Implementations that do not support the I nstances package do not, in general, need to provide any implementation of the
Instances class, and may provide any simple implementation where needed.

Figure 8.17 shows the base Expression and Instance concepts, and they are described bel ow.

zMetaclazss
Expression i «hietaclazss
P +evaluation T
+ext: ExpressText [0.1] | 0.F 0.1
+expression [0.* T +instances |0.*
expression-has-context Instancerottyne
+oftype | 0.2
+interpretation-context § 0.1 bl
sMetaclasss +riata-type sMetaclasss
DatzType
gcope 0.1

Figure 8.17 - Basic Expression Concepts

8.17.1 Class: Expression

Definition: in general, an Expression is the representation of an Instance by a set of computational operationsthat will produce
that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated in a context
which determines the Instances denoted by the model elements (e.g., Variables, Attributes, etc.) that appear in the Expression.
This context is explicit in the model element that contains the Expression being evaluated, but it implicitly includes the
Population under study. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note — In general, Expressions are treated asreusable. It is recommended, however, that, except for literals and local variables,
each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable, specifically
those that are the definitions of Rules.

8.17.1.1 Supertypes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 113

8.17.1.2 Attributes

Attribute: text To: ExpressText

Definition: represents the actual EXPRESS language text denoting the Expression. The text is required if the Expressions
Package is not implemented. It is optional in most cases when the Expressions Package isimplemented. Certain forms of
Expression (in the Expressions Package) specialize the text attribute.

Multiplicity: 0..1
8.17.1.3 Associations

AssociationEnd: data-type To: DataType

Definition: represents the DataType of the evaluation of the Expression. While the result of an Expression always has a
DataType, it is not always possible to determine at model-analysis time what that datatypeis. And in many cases, even when
itisknown, it is not necessary to specify it.

Multiplicity: 0..1

AssociationEnd: evaluation To: Instance

Definition: represents the Instance (value) that results from evaluating the Expression. Since the same Expression can be
evaluated in more than one “situation,” i.e., different values for the operands, the result in each situation may be a different
Instance. The evaluation isincluded in a model, however, only when it is “constant” and can be computed at “ compile time.”

Multiplicity: 0..1

AssociationEnd: interpretation-context To: Scope

via: expression-has-context

Definition: an Expression is always evaluated in a context which determines the assignment of specific instances of model
elements to symbols (e.g.,Variables, Attributes, etc.). When the Expression is represented by text only, this view of the
relationship is usually required, but it may be implicit in many cases. When the Expression is represented by the detailed
model elementsin the Expressions Package, the interpretation of the Text has been done, and this view of the association is
purely documentary and not required. Certain permissible EXPRESS constructs, however, only permit interpretation of certain
keyword symbols to Operations in the presence of actual operand Instances.

Multiplicity: 0..1
8.17.1.4 Other Roles

From: ArrayBound as bound-expression
From: DerivedAttribute as derivation

From: DomainConstraint as asserts

From: Redeclaration as derivation
From: Algorithms::lLocalVariable as initial-value

From: Expressions::Aggregatelndex as index-value

From: Expressions::AttributeBinding as attribute-value

From: Expressions::BinaryIlndex as first-bit

From: Expressions::Binarylndex as last-bit

114 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

From: Expressions::BinaryOperation as right-operand

From: Expressions::BinaryOperation as left-operand
From: Expressions::Coercion as operand

From: Expressions::IndexOperation as base-value
From: Expressions::MemberBinding as member-value
From: Expressions::PassByValue as actual-value

From: Expressions::QueryExpression as aggregate-operand

From: Expressions::QueryExpression as select-condition

From: Expressions::RepeatCount as derivation

From: Expressions::Selector as entity-instance
From: Expressions::Stringlndex as first-code

From: Expressions::StringIlndex as last-code
From: Expressions::UnaryOperation as unary-operand

From: Instances::Constant as value-expression
From: Rules::NamedRule as asserts-expression

From: Rules::SubtypeConstraint as equivalent-rule
From: Statements::Assignment as assigned-value

From: Statements::CaseAction as label-value
From: Statements::CaseStatement as selection-expression

From: Statements::ControlVariable as bound-value
From: Statements::ControlVariable as increment

From: Statements::ControlVariable as initial-value
From: Statements::IfStatement as if-condition

From: Statements::MemberCell as index-value
From: Statements::RepeatStatement as while-expression

From: Statements::RepeatStatement as until-expression
From: Statements::ReturnStatement as return-value

8.17.1.5 Rules

Constraint ()

An Expression can only exist to fulfill arole.

8.17.2 Class: Instance

Definition: an object that isin the domain of a DataType - any real or conceptual object, information unit or data element.
Properties: abstract

8.17.2.1 Supertypes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 115

8.17.2.2 Attributes
none

8.17.2.3 Associations

AssociationEnd: appears-in-population To: Instances::Population

via: | nstances::instance-appears-in-popul ation

Definition: represents the relationship between an Instance and the Populationsin which it appears.
Multiplicity: 0..* unordered

AssociationEnd: of-type To: DataType

Definition: the DataType(s) that are instantiated in the I nstance. With the exception of the Indeterminate Instance (see 10.3.4),
every modeled Instance instantiates at |east one modeled DataType; an Instance may instantiate more than one.

A modeled Instance should be modeled as an Instance of its “ declared type.” 1t may, but need not, be modeled as an Instance
of al the supertypes or SelectTypes that it instantiates.

Multiplicity: 0..*
8.17.2.4 Other Roles

From: Expression as evaluation
From: Instances::ArrayMember as member-value

From: Instances::ListMember as member-value

From: Instances::BagMember as member-value

From: Instances::SETValue as member-value

From: Instances::AttributeValue as actual-value

From: Instances::Constant as actual-value

8.17.2.5 Rules

Constraint (OCL): datatype-required
self = INDETERMINATE or exists(self-sof-type);;

Every Instance except INDETERMINATE has at |east one data type.

8.17.3 Association: expression-has-context

Definition: represents the relationship between an Expression and the Scope in which all of its elements can be properly
interpreted.

Note — This association is bi-directional so that the interpretation-context Scope can serve as a container for the Expression
objects in the MOF/XMI structure.

116 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.17.3.1 Association Ends

Association End: Scope.expression To: Expression

Definition: the Expressions whose interpretation-context is the Scope.
Multiplicity: 0..*, composite

AssociationEnd: interpretation-context To: Scope

Definition; an Expression is always evaluated in a context which determines the assignment of specific instances of model
elements to symbols (e.g.,Variables, Attributes, etc.). When the Expression is represented by text only, this view of the
relationship is usually required, but it may be implicit in many cases. When the Expression is represented by the detailed
model elementsin the Expressions Package, the interpretation of the Text has been done, and this view of the association is
purely documentary and not required. Certain permissible EXPRESS constructs, however, only permit interpretation of certain
keyword symbols to Operations in the presence of actual operand Instances.

Multiplicity: 0..1

8.17.4 Association: instance-of-type
Definition: represents the abstract relationship between an Instance (a value) and the DataTypes that it instantiates.

8.17.4.1 Association Ends

AssociationEnd: instances To: Instance

Definition; the modeled Instances of the DataType, if any. In general, Instances of a DataType are not modeled unless they
appear directly in a Schema.

Note — For most DataTypes, navigating the association in this direction is not arequired feature of the model.

Multiplicity: 0..* unordered.

AssociationEnd: of-type To: DataType

Definition: the DataType(s) that are instantiated in the Instance. Every modeled Instance instantiates at |east one modeled
DataType; an Instance may instantiate more than one.

Multiplicity: 1..* unordered.

8.18 Instance Package: BuiltinTypes

This Package is a part of the Core Package. It contains required instances of subclasses of SimpleType. All of the other
instances of SimpleType appear in a Schema as a SimpleType with a constraint or a precision.

Note — The purpose of making this a Package is to separate the class model from the “ground facts.”

Note — Important: This Packageis not included in the MOF Model of EXPRESS. Instead, al of the BuiltinTypes are conveyed
in the EXPRESSElements Module that is described in Clause 16.

Note — The .appears-in Scope for all of these objects is the EXPRESS language itself, and is therefore left empty in most
implementation models. It is hereidentified as the artificial context introduced in the EXPRESSElements module and shown
in Figure 8.18 .

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 117

BINARY : BinaryType
appears-in = EXPRESSElemeants
fundamental-type = BINARY
id ="BINARY"

LOGICAL : LogicType

appears-in= EXPRESEElements
fundamental-type = LOGICAL
id="LOGICAL

BOOLEAN-shegializes-LOGICAL
type-specializes-type

BOOLEAHN : LogicType

appears-in = EXPRESEElements
fundamental-type = BOOLEAN
id="BOOLEAN"

specializes = LOGICAL

HUMBER : HumericType
appears-in = EXPRESSElements
fundamental-type = NUMBER
id="MNUMBER"

REAL-specializez-MNUMEBER :
type-specializes-type

REAL : RealType
appears-in = EXPRESSElements
fundamental-type = REAL
id="REAL"
specializes = NUMBER

INTEGER-shecislizes-REAL :
type-shecialzes-type

INTEGER : HumericType
appears-in = EXPRESSElements
fundamental-type = INTEGER

id="INTEGER"
specializes = REAL

EXPRESSElements : Schema

name ="EXPRESS_ELEMEMNTS"
LRI ="http/fwwnee.omg.org/spec/EXPRESS201 30601/ EXPRESSElements”

wersion="1.1"

Figure 8.18 - Instance Model for Built-In Types

8.18.1 Dependencies

Dependency on Class: Core::SimpleType

Stereotypes. instantiates

STRING : StrinaType
appears-in= EXPREEEElements
fundamental-type = STRIMNG
id ="5TRING"

role-uzeststring - type-
speciglizes-type
ROLE : StringType
appears-in = EXPRESSElements
fundamental-type = STRIMNG
specializes = STRING

type-uses-string :
type-shecislizes-type
TYPE : StringType
appears-in= EXPRESEElements
fundamental-type = STRIMNG
specializes = STRIMG

This Package provides base individual s that are always instances of SimpleType (that is, instances of its subtypes).

8.18.2 Instance: BINARY

Type: Core::BinaryType

Definition: represents the EXPRESS type BINARY without length constraints.

Note — The class BinaryType a so includes instances of EXPRESS BINARY that have declared length constraints.

118

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.18.2.1 Slots

Attribute: id Value: "BINARY"

Attribute: fundamental-type Value: BINARY
8.18.3 Instance: BOOLEAN

Type: Core::LogicType

Definition: represents the EXPRESS type BOOLEAN.
Note — BOOLEAN and LOGICAL are the only instances of LogicType.

8.18.3.1 Slots

Attribute: id Value: "BOOLEAN"
Attribute: fundamental-type Value: BOOLEAN
Attribute: specializes Value: LOGICAL

8.18.4 Instance: INTEGER

Type: Core::NumericType

Definition: represents the EXPRESS type INTEGER.

Note — INTEGER and NUMBER are the only instances of NumericType that are not Real Types.

8.18.4.1 Slots

Attribute: id Value: "INTEGER"
Attribute: fundamental-type Value: INTEGER
Attribute: specializes Value: REAL

8.18.5 Instance: LOGICAL

Type: Core::LogicType

Definition: represents the EXPRESS type LOGICAL.
Note — BOOLEAN and LOGICAL are the only instances of LogicType.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

119

8.18.5.1 Slots

Attribute: id Value: "LOGICAL"

Attribute: fundamental-type Value: LOGICAL
8.18.6 Instance: NUMBER

Type: Core::NumericType

Definition: represents the EXPRESS type NUMBER.
Note — INTEGER and NUMBER are the only instances of NumericType that are not Real Types.

8.18.6.1 Slots
Attribute: id Value: "NUMBER"
Attribute: fundamental-type Value: NUMBER

8.18.7 Instance: REAL

Type: Core::Real Type
Definition: represents the EXPRESS type REAL without a precision specification.

Note — The class Real Type a so includes instances of EXPRESS REAL that have precision specifications.

8.18.7.1 Slots

Attribute: id Value: "REAL"
Attribute: fundamental-type Value: REAL
Attribute: specializes Value: NUMBER

8.18.8 Instance: ROLE

Type: Core::StringType

Definition: ROLE is the StringType whose instances are the names of Attributes, i.e., the result of RolesOf and the formal
second operand of UsedIn. These objects are datatyped STRING in Part 11, but they have reserved syntax and reserved
interpretation. In order to facilitate mappingsto other languages, these datatypes are explicitly identified, and coerced to/from
STRING where necessary.

Note — See Clause 15.20 of 1SO 10303-11:2004.

8.18.8.1 Slots

Note — the .id attribute is not present, because the ROLE data type does not have an EXPRESS designation.

120 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Attribute: fundamental-type Value: STRING

Attribute: specializes Value: STRING
8.18.9 Instance: STRING

Type: Core::StringType

Definition: represents the EXPRESS type STRING without constraints.

Note — The class StringType a so includes TY PE, ROLE and instances of EXPRESS STRING that have declared length
constraints.

8.18.9.1 Slots
Attribute: id Value: "STRING"
Attribute: fundamental-type Value: STRING

8.18.10 Instance: TYPE

Type: Core::StringType

Definition: TY PE is the StringType whose instances are the names of DataTypes (TypeNames), i.e., the result of TypeOf and
related operands. These objects are data typed STRING in Part 11, but they have reserved syntax and reserved interpretation.
In order to facilitate mappings to other languages, these data types are explicitly identified, and coerced to/from STRING
where necessary.

Note — See Clause 15.25 of SO 10303-11:2004.
8.18.10.1 Slots

Note — the .id attribute is not present, because the TY PE data type does not have an EXPRESS designation.

Attribute: fundamental-type Value: STRING

Attribute: specializes Value: STRING

8.19 Instance Package: GenericTypes

This Package is a part of the Core Package. It contains the required instances of the class GenericType. There are no other
instances of the class GenericType.

Note — The purpose of making this a Package is to separate the class model from the “ground facts.”

Note — Important: This Packageis not included in the MOF Model of EXPRESS. Instead, all of the built-in GenericTypes are
conveyed in the EXPRESSEIements Module that is described in Clause 16.

Note — The .appears-in Scope for all of these objects is the EXPRESS language itself, and is therefore left empty in most
implementation models. It is here identified asthe artificial context introduced in the EXPRESSElements module and shown
in Figure 8.18.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 121

GENERIC : GenericType

appears-in = EXPRESSElements
i ="GEMERIC"

GEMERIC ENTIT‘r‘-specializes-ClENERIC - tvpe-specializes-tvpe

GEHERIC ENTITY : GenericType

appears-in= EXPRESSElements
id ="GEMERIC_EMTITY"
specializes = GEMNERIC

Figure 8.19 - Instance Model for Generic Types
8.19.1 Dependencies

Dependency on Class: Core::GenericType

Stereotypes: instantiates

This Package provides base individuals that are always the only instances of class GenericType.

8.19.2 Instance: GENERIC

Type: Core:.GenericType

Definition: represents the EXPRESS generalized type GENERIC. Every datatype is a specialization of the GenericType
GENERIC, and every Instance is an Instance of GENERIC.

Note — See 9.5.3.2 of 1SO 10303-11:2004.

8.19.2.1 Slots
Attribute: id Value: "GENERIC"
8.19.3 Instance: GENERIC_ENTITY

Type: Core:.GenericType

Definition: represents the EXPRESS generalized type GENERIC_ENTITY. Every entity datatype is a speciaization of
GENERIC_ENTITY. Every Entitylnstance is an instance of GENERIC_ENTITY and every instance of GENERIC_ENTITY
is an Entitylnstance.

Note — See 9.5.3.3 of 1SO 10303-11:2004.

122 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

8.19.3.1 Slots

Attribute: id Value: "GENERIC_ENTITY"

Attribute: specializes Value: GENERIC

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 123

124 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

9 Enumerations

9.1 General

The Enumerations Package contains the Enumerationltem concept and its relationships to EnumerationType in the Core
Package. It also contains the abstract subclass ConcreteType, which is a subclass of Instance and a supertype of
Enumerationltem. The purpose of the Enumerations Package is to support a compliance point consisting of the Core
Package (schema declarations) and Enumerationltems, without requiring support for the full Instances Package.

9.2 Imported Packages

Imports Package: Core

The Enumerations Package imports the Core Package for the EnumerationType and Instance concepts.

9.3 Enumeration ltems

Figure 9.1 shows the overall model of Enumerationltems, i.e., Instances of EXPRESS ENUMERATION data types.
Enumerationltems are ConcreteValues.

zhletaclaszs
NamedElement shletaclaszs shletaclaszs
. ! MamedType 11— DefinadType
+id © Scopedid [0.1] (Core) (Core)
- A
'|' enumeration-declares-tem Lyeclared-in T
. .
zMetaclaszs o - {redefines namespace zhetaclasss
Enumerationitem +decl§red-nems 1 EnumerationType +exdension
+position : Integer [1] jredefines named-elements} (Core) y
0. Mvalue-of-EnumerstionType 1.+ |*isExtensible - Baolean [1]
J_ +hvalues +iof-type
57 {subsets instances} {subsets of-type} 1 thase
co«MEtafliS? enumeration-extends-enumeratian
worete Vaine
L
zMetaclaszs) sMetaclazss
festance Hinstances kv +of-type Data Type
(Core) 0.* Instance-of-dype 0.* (Core)

Figure 9.1 - Enumeration ltems

9.3.1 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 125

Properties. abstract

Note — ConcreteValue isincluded in this Package in order to enable a consistent “package merge” of the Enumerations
Package into the I nstances Package. Itsreal usageis described in the Instances Package.

9.3.1.1 Supertypes
Core::Instance

9.3.1.2 Attributes

none

9.3.1.3 Associations

none

9.3.1.4 Other Roles

none

9.3.2 Class: Enumerationltem

Definition: a ConcreteValue representing a named value of an EnumerationType. An Enumerationitem is also a
Typedinstance, because the corresponding EnumerationType has an Identifier. An Enumerationitem is also a
NamedElement. The scope (namespace) of its identifier is the EnumerationType.

Note — See 8.4.1 of 1SO 10303-11:2004.
9.3.2.1 Supertypes

ConcreteValue, Core::NamedElement

9.3.2.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the position of the Enumeration Item in the list of items in the type_declaration that defines the
Enumerationitem. That is, : position relatesto the : declared-in EnumerationType. When the number of values of
:of -type (the types of which this Enumerationltem is a value) is exactly 1, the position defines an ordering on the
values of the EnumerationType.

Multiplicity: 1..1

9.3.2.3 Associations

AssociationEnd: declared-in To: Core::EnumerationType

via: enumeration-declares-items

redefines: Core::NamedElement.namespace

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

126 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1

AssociationEnd: of-type To: Core::EnumerationType

via: value-of-EnumerationType

Definition: represents the relationship between an Enumerationitem and the EnumerationTypes of which it is a value.

With respect to a given “governing schema’ and all of the SchemaElements it defines and interfaces, each declared
Enumerationitem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

€) the EnumerationType self ->declared-in;

(b) the EnumerationType that is the : base of that EnumerationType, if any, and recursively of all
EnumerationTypes related by :base, and

(c) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b) above,
and recursively of all EnumerationTypes related to them by :extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..* unordered
Properties: derived.

9.3.2.4 Other Roles

From Expressions::EnumltemRef as refers-to

9.3.2.5 Rules

Constraint (OCL)
exists (self->id);
Every Enumerationltem shall have an Identifier.

9.3.3 Association: enumeration-declares-items

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

This can be different from value-of-EnumerationType (see below) only when the EnumerationType is EXTENSIBLE, or
isitself the extension of another EnumerationType.

9.3.3.1 Supertypes

Core::element-defined-in-scope

9.3.3.2 Association Ends

AssociationEnd: declared-in To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationType whose declaration defines
the item.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 127

Multiplicity: 1..1

AssociationEnd: declared-items To: Enumerationltem

Definition: represents the relationship of an EnumerationType to the Enumerationltems that are declared in its
type_declaration. For extended enumeration types, this is distinct from the : values relationship, which captures all of
the valid values of the type.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 0..* unordered

Properties. composite

9.3.4 Association: value-of-EnumerationType

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type.

Properties: derived

9.3.4.1 Association Ends

AssociationEnd: of-type To: Core::EnumerationType

Definition: represents the relationship between an Enumerationltem and the EnumerationTypes of which it is a value.

With respect to a given “governing schema’ and all of the SchemaElements it defines and interfaces, each declared
Enumerationltem is a value of every EnumerationType that is related by extension to the EnumerationType in which it is
declared. That is, it is a value of

(@ the EnumerationType self->declared-in;

(b) the EnumerationType that is the : base of that EnumerationType, if any, and recursively of all
EnumerationTypes related by :base; and

(©) each EnumerationType that is an .extension of any of the EnumerationTypes related by either (a) or (b) above,
and recursively of all EnumerationTypes related to them by :extension.

Note — See 8.4.1 of SO 10303-11:2004.
Multiplicity: 1..* unordered

Properties: derived.

AssociationEnd: values To: Enumerationltem

Definition: represents the relationship between an EnumerationType and the Enumerationltems that are valid values of the
type.

An Enumerationltem is a value of every EnumerationType that is related by extension to the type that declares it.This
relationship can be derived recursively as the union of the values of the : declared-items attribute for the

EnumerationType, for each EnumerationType in the sequence of :base relationships from the EnumerationType, and
from all the extensions of the EnumerationType.

128 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See clause 8.4.1 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered
Properties: derived.

Note — The derivation of the values of : values isarecursive operation, described in the text above.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 129

130 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10 Package : Instances

10.1 General

The Instances Package contains all of the Instance concepts that go with the Type concepts in the Core Package. The
Instances Package incorporates the model elements in the Enumerations Package, in order to do this.

The purpose of the Instances Package is to provide a model representation for specific Instances that are explicitly
referred to in a Schema. A tool that supports the Expressions Package may also use Instances to represent the values of
expressions that can be statically evaluated.

Note — It ispossibleto represent an actual Population as an instance of this package, but such a representation is“ unexpected.”
In MOF terminology, the EXPRESS metamodel defined in this specification isan M2 model. An EXPRESS Schema and its
contents constitute an M1 population that conforms to this metamodel. A Population (in the EXPRESS sense) should be
represented as an MO population that conforms to the M1 model of the governing-schema. Representing that Population as an
instance of this package would make it an M1 population that carries direct M1 links to the M1 objects representing the model
elements of the EXPRESS Schema. While such a representation is (accidentally) enabled by this Package, that is not the
purpose of this package, and it is not to be considered a required part of any compliance point.

10.2 Imported Packages

Merges Package: Enumerations

The Instance Package extends the ConcreteType and Enumerationltem model elements from the EnumerationsPackage,
while importing the properties and associations modeled therein.

By way of the Enumerations Package, the Instances Package imports the Core Package for the InstantiableType concepts
that are the data types of the individuals (Instances).

10.3 Overview of Instances

Figure 10.1 shows the overall model of Instances of EXPRESS data types. Instances are divided into Typedlnstances,
ConcreteValues, and two special categories — Indeterminate and Partial EntityValue, as listed below.

» Typedinstances represent instances of NamedTypes. There are three subcategories — Entityl nstances,
SpecializedValues, and Enumerationltems. Typedinstances are the instances that can be values of SelectTypes. Each of
the subcategories corresponds to one of the other subtypes of NamedType.

» ConcreteValues are Instances that can be the fundamental values of SpecializedValues — the values of
SpecializationTypes. There are three subcategories— SimpleValues, AggregateValues, and Enumerationltems.
SimpleValues correspond to the SimpleTypes. AggregateVal ues correspond to the ConcreteAggregationTypes.
Enumerationltems correspond to EnumerationTypes, and because EnumerationTypes are NamedTypes,
Enumerationltems are also Typedlnstances.

« Indeterminate is the class that corresponds to the EXPRESS constant “?,” which can be considered to be an instance of
all EXPRESS data types, or of none of them.

« Partial EntityValues only arise as the results of Expressions. They are described in detail in 10.6.6, which deals with
values of EntityTypes.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 131

This sub clause defines the Instance concepts associated with EXPRESS defined data types — Select types, Enumeration
types, and Specializations — in detail. SimpleValues, AggregateValues, values of Entity Types are described in subsequent
sub clauses.

While the domains of EXPRESS data types are often unbounded, only those Instances that actually occur in, or as aresult
of an Expression in, a Schema need to be materialized in a metamodel population that represents the Schema. Similarly,
in a Population that is realized as an instance of this package, only the Instances actually occurring in that Population
need to be represented.

Inst [
Metaclasss | ance-oftype aMetaclasss
Instance +instances +aftype Data Type
(Core) 0.+ 0. (Core)

Tcomplete, overlapping
Instance categories

zMetaclasss zMetaclasss zMetaclazss zMetaclasss
Indeterminate ConcreteVzina Typediustance PartialEntityValue
= 1 | +fundamental-walue
{complgte, disjoint
Typedinstance categories
0.*
sMetaclasss zhletaclasss
SpecializedValue Entityinstance
+id ; ErtityMame [1]
fcamplete, disjoirt }
Concrete’alue categaries
zMetaciasss
zMetaclasss zhletaclasss zhetaclasss MamodFlomant
Simplolaiue AqgregateVaine Enumerationitem — - [(Core)
+name ; String [1] (Enumerations] +id : Soopedid [0.1]

Figure 10.1 - Overview of Instances

10.3.1 Class Core::Instance

Definition: an object that is in the domain of a DataType - any real or conceptual object, information unit or data element.
Properties: abstract

Note — The Instance concept, and all its properties, is defined in the Core Package, so that it may be referenced in other
Packages without creating interdependencies. Thereis no real requirement for support of Instances in the Core Package. This
entry serves to define the Instance concept in the context of the Instances Package, and to provide alink to the complete
specificationin 8.18.2.

132 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.3.2 Class: ConcreteValue

Definition: represents a data item, an Instance that is an item of information that has an explicit data representation
conveying its meaning.

Properties: abstract

Note — ConcreteValue is defined in the Enumerations Package. The Instances Package extends it, but only by adding a
(passive) role: It represents the instances that can be fundamental -values of SpecializedVal ues.

10.3.2.1 Supertypes
Core::Instance

10.3.2.2 Attributes

none

10.3.2.3 Associations

none

10.3.2.4 Other Roles

From: SpecializedValue as fundamental-value

10.3.3 Class: Enumerationltem

Definition: a ConcreteValue representing a named value of an EnumerationType. An Enumerationltem is also a
Typedinstance, because the corresponding EnumerationType has an Identifier. An Enumerationltem is also a
NamedElement. The scope (namespace) of its identifier is the EnumerationType.

Note — Enumerationltem is defined in the EnumerationsPackage. The I nstances Package extends Enumerati onltem by making
it asubclass of Typedinstance, and inheriting those properties. There are no other changes or additions.

10.3.3.1 Supertypes

ConcreteVaue, Typedl nstance, Core::NamedElement

10.3.3.2 Attributes

no additions or changes

10.3.3.3 AssociationEnds

no additions or changes

10.3.3.4 Other Roles

no additions or changes

10.3.3.5 Rules

no additions or changes

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 133

10.3.4 Class: Indeterminate

Definition: the class that contains only the Indeterminate value.

The sole instance of this class arises as the evaluation of an Expression that is the Indeterminate literal (*?"), or an
Expression in which one of the operations “fails.” The Indeterminate value is not an instance of any data type, but it may
be treated as an instance of the required data type of the Expression, if any.

Note — See 14.2 of 1SO 10303-11:2004.
10.3.4.1 Supertypes
Core::Instance

10.3.4.2 Attributes

none

10.3.4.3 Associations

none

10.3.4.4 Other Roles

From Expressions::IndeterminateRef as refers-to

10.3.4.5 Rules

Constraint (OCL): is-singleton
self .metaobject.allInstances.size = 1;
The only instance of Indeterminate isthe INDETERMINATE object.

Constraint (OCL): indeterminate-has-no-type
isEmpty (self.of-type) ;
The Indeterminate instance has no data type.

10.3.5 Class: SpecializedValue

Definition; a Typedinstance that is a value of a SpecializedType. Every SpecializedValue is represented by some
ConcreteValue, called its fundamental-value.

134 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Instance-oftyne

sMetaclassy . sMetaclass:
T iice +instances +of-type DataType
*
[Care) 0. o [Care)
T Instance-oftNamed Type
SRR +instances +of-type il =s>
Typedinstance - — NamedType
0. 1. [Care)
‘T {redefines instances} {redefines of-type}
shetaclazss +ot-type sMetaclazs:
SpecializedValue s o] SpecializedType
{redefines instances} jredefines of-type}
D..*
1 +fundamental-value
sMetaclazss
Concretelfaine

Figure 10.2 - Specialized Values

10.3.5.1 Supertypes

Typedinstance
10.3.5.2 Attributes

none

10.3.5.3 Associations

AssociationEnd: fundamental-value

Definition: represents the relationship between a Specializedl nstance and the “fundamental” ConcreteValue that is used to

represent that Instance.

Multiplicity: 1..1

AssociationEnd: of-type
redefines. Core:lnstance.of-type

To: ConcreteValue

To: Core::SpecializedType

Definition: represents the relationship between a SpecializedValue and its data type.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.3.5.4 Other Roles

none

10.3.6 Class: Typedinstance

Definition: an abstract classifier, a subtype of Instance comprising those Instances that are instances of a NamedType.
Only a Typedinstance can instantiate a SelectType.

Properties. abstract

zhetaclazss Instance-oilype zMetaclasss
F e +instances +ofdype | Data Type
(Core) o.* 0.* (Core)
Inatance-oNamed Tipe
T tinstances +of-type

sMetaclazss | {redefines instances} {redefines oftype} | *Metaciasss
Typoedinstance 0.* | MamedType

[Corel

+allowed-valus

o.* +allowed-types | 0.#

{complate, disjoirt

Typedinstance categaries ~.value-of-SelectType

type-instartiates-select-type

zhletaclazss zhletaclas sy '“‘*-,____%__x\\ .))
Entityinstance Enumerationttem “'*E.L' 0.* | +instartistes
+izatizfiestype™ «Metaclasss
SelectType
[Core)
sMetaclas s
SpecializedValue
Figure 10.3 - TypedInstances
10.3.6.1 Supertypes
Core::Instance
10.3.6.2 Attributes
none
10.3.6.3 Associations
AssociationEnd: satisfies-type To: Core::SelectType

via value-satisfies-SelectType

redefines: Core:l nstance.of-type

136 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: represents the relationship between a Typedinstance and the SelectTypes of which it is an allowable instance.

Multiplicity: 0..* unordered

10.3.6.4 Other Roles

none

10.3.7 Generalization Sets

Generalization Set: ConcreteValue categories complete, disjoint

Every ConcreteValue is one of SimpleValue, AggregateValue, or Enumerationltem.

Generalization Set: Instance categories complete, overlapping

Every Instance is one of ConcreteValue, Typedinstance, Partial EntityValue or Indeterminate, but Enumerationltems are
ConcreteValues that are Typedlnstances.

Generalization Set: Typedinstance categories complete, disjoint

Every Typedinstance is one of Entitylnstance, SpecializedValue, or Enumerationltem..

10.4 Simple Values

This sub clause specifies the model of SimpleValues — Instances that correspond to the simple data types defined in the
EXPRESS language: BINARY, BOOLEAN, LOGICAL, INTEGER, NUMBER, REAL, STRING. The model is shown in
Figure 10.4.

It also includes two specialized classes of STRING value that have specific syntax requirements in the EXPRESS
language: TypeName and RoleName. There are no EXPRESS data types for these, but certain values in Expressions are
required to be instances of these classes.

There are exactly three distinct LogicalVaues — FALSE, TRUE, and UNKNOWN. These are explicitly modeled as
individual objects in the NamedValues package.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 137

zhletaclazzs
SimplaVaiue

+natme ;. String [1]

{complete, disjoint }
SimpleValue categories

0* aMetaclazss 0+ eMetaclasss 0.+ sMetaclazss eMetaclasss
LogicalValue ~_| HumberValue - StringValue BinaryValue
T T T T I:I”*
zhletaclazss zhletaclasss zhletaclazsss zhetaclazss
BooleanValue RealValue TypeHame RoleName
1 1
+represents |, 1 1. +represernts
zhetaclasss zdataTypes
IntegerValue Scopedid
[Carel
{redefines of-type} {redefines of-type} {redefines of-type} {redefines of-type}

1.% |+oftype 1.% | +oftype 1.%| +oftype +of-type (1.*
zhletaclazss zhletaclazss zhetaclazss zhletaclasss
LogicType HumericType StringType BinaryType

[Core) [Care) [Core) [Core)

Figure 10.4 - Simple Values

10.4.1 Class: BinaryValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

10.4.1.1 Supertypes

SimpleValue
10.4.1.2 Attributes

none
10.4.1.3 Associations

AssociationEnd: of-type To: Core::BinaryType
redefines: Core:Instance.of-type

138 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: the BinaryType(s) that are instantiated in the BinaryValue.

Multiplicity: 1..* unordered.
10.4.1.4 Other Roles
none

10.4.2 Class: BooleanValue

Definition: a SimpleValue, a value of the EXPRESS data type BOOLEAN: TRUE, FALSE
10.4.2.1 Supertypes

L ogicalValue
10.4.2.2 Attributes

none

10.4.2.3 Associations

none

10.4.2.4 Other Roles

none

10.4.2.5 Rules

Constraint
(self == NamedValues::TRUE) or (self == NamedValues::FALSE) ;

Every BooleanValue must be either TRUE or FALSE.

10.4.3 Class: IntegerValue

Definition: a SimpleValue, a value of the EXPRESS data type INTEGER: any mathematical integer value.
10.4.3.1 Supertypes

RealValue

10.4.3.2 Attributes

none

10.4.3.3 Associations

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 139

10.4.3.4 Other Roles

none

10.4.4 Class: LogicalValue

Definition: a SimpleValue, a value of the EXPRESS data type LOGICAL: TRUE, UNKNOWN, FALSE.
10.4.4.1 Supertypes

SimpleValue

10.4.4.2 Attributes

none

10.4.4.3 Associations

AssociationEnd: of-type To: Core::LoqgicType
redefines: Core:Instance.of-type

Definition: the LogicType(s) that are instantiated in the Logical Value.
Note — The of-type relationships of the Logical Values are explicitly modeled in the NamedVal ues Package.
Multiplicity: 1..* unordered.

10.4.4.4 Other Roles

none

10.4.4.5 Rules

Constraint

(self == NamedValues::TRUE) or (self == NamedValues: :FALSE)
or (self == NamedValues: :UNKNOWN) ;

Every LogicalValue must be one of: TRUE or FALSE or UNKNOWN.

10.4.5 Class: NumberValue

Definition: a SimpleValue, a value of the EXPRESS data type NUMBER: any numeric value with its mathematical
interpretation.

10.4.5.1 Supertypes

SimpleValue
10.4.5.2 Attributes

none

140 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.4.5.3 Associations

AssociationEnd: of-type To: Core::NumericType

redefines. Core:lnstance.of-type
Definition: the NumericType(s) that are instantiated in the NumberVal ue.

Multiplicity: 1..* unordered.

10.4.5.4 Other Roles

none

10.4.6 Class: RealValue

Definition: a SimpleValue, a value of the EXPRESS data type REAL: supposedly a mathematical “real” value, but
properly a computational fixed or floating-point value.

10.4.6.1 Supertypes
NumberValue

10.4.6.2 Attributes

none

10.4.6.3 Associations

none

10.4.6.4 Other Roles

none

10.4.7 Class: RoleName

Definition: a RoleName is a reference to an Attribute that has the form of a StringValue. It is an instance of StringType
ROLE. RoleNames are produced as the result-type of the UnaryOperator RolesOf, and used as the formal parameter type
for Usedin. They have reserved syntax and reserved interpretation.

Note — The result of RolesOf is only well-defined for Attributes of Entity Types defined in the Schema. Some problems arise
with interfaced Entity Types, renamed Attributes, and attributes of Entity Types defined in AlgorithmScopes.

Note — See Clause 15.25 of 1SO 10303-11:2004.
10.4.7.1 Supertypes

StringValue

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 141

10.4.7.2 Attributes

Attribute: represents To: Core::Scopedld

Definition: represents the relationship between the RoleName — a StringValue — and the (structured) TypeScopedid for the
Attribute, of which it is a representation.

Multiplicity: 1..1
10.4.7.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between a RoleName and the Attribute to which it refers.

Multiplicity: 1..1

10.4.7.4 Other Roles

none

10.4.8 Class: SimpleValue

Definition: a ConcreteValue that consists of a single atomic information unit of a data type defined in the EXPRESS
language itself.

Properties. abstract
10.4.8.1 Supertypes
ConcreteValue

10.4.8.2 Attributes

Attribute: name To: (UML) String
Definition: the representation of the value, assumed to be a character string.

Multiplicity: 1..1
10.4.8.3 Associations

none

10.4.8.4 Other Roles

From Expressions::Literal as refers-to

10.4.9 Class: StringValue

Definition: a SimpleValue, a value of the EXPRESS data type STRING: a sequence of character codes from the 1SO
10646-1 Basic Multilanguage Plane.

142 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.4.9.1 Supertypes

SimpleValue
10.4.9.2 Attributes

none
10.4.9.3 Associations

AssociationEnd: of-type To: Core::StringType

redefines: Core:Instance.of-type

Definition: the StringType(s) that are instantiated in the StringValue.
Multiplicity: 1..* unordered.

10.4.9.4 Other Roles

none

10.4.10 Class: TypeName

Definition: a TypeName is a reference to a DataType that has the form of a StringValue. It is an instance of StringType
TY PE. TypeNames are produced as the result-type of the UnaryOperator TypeOf. They have reserved syntax and reserved
interpretation.

Note — The result of TypeOf is only well-defined for NamedTypes defined in the Schema, although it can also produce
EXPRESS keywords. Some problems arise with interfaced NamedTypes, and NamedTypes defined in AlgorithmScopes.

Note — See Clause 15.25 of 1SO 10303-11:2004.
10.4.10.1 Supertypes

StringValue

10.4.10.2 Attributes

Attribute: represents To: Core::Scopedld

Definition: the (structured) Scopedid for the NamedType, of which the TypeName is a String representation.
Multiplicity: 1..1

10.4.10.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between a TypeName and the NamedType to which it refers.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 143

10.4.10.4 Other Roles
none

10.4.11 Generalization Sets

Generalization Set: SimpleValue categories complete, disjoint

Every SimpleVaueis one of LogicVaue, NumberValue, StringValue, or BinaryValue.

10.5 Aggregate Values

This sub clause specifies the model of AggregateValues — Instances that correspond to EXPRESS aggregation types:
ARRAY, BAG, LIST, SET.

zhletaclasss
AggregateVaine Metaclazas
GenericAggregate
fcomplete, disjoint }
AgoregateYalue categories l'
zhletaclasss zhletaclasss zhletaclasss zhletaclasss
ARRAYValue BAGValue SETValue LISTValue
1 o 1 0.z o.x 0.x a1 o
iredefines iredefines iredefines iredefines
of-type} of-type} of-type} of-type}

1.% | +of-tyvpe 1.% | +oftype 1.* | +oftype 1. +oftype
sMetaclasss zhMetaclasss zhetaclasss shetaclass:s
ARRAYType BAGType SETType LISTType

(Core) [Care) [Core) [Core)
1.% | +member-siot 0.* | +member-siot 0. | +member-=slot
shletaclasss zhletaclazsss zhletaclasss
ArrayMember BagMember ListMember
+index | Integer [1] +count | Integer [1] +position : Integer [1]
a.:* o.* ao.x
+member-value | 0%
1 ehMetaclazss Hmemher-value sMetaclasss
+member -value Istance 1 Data Type
0.1 (Core) +instances +of-type (Core)
+member -value o.x a.*

Instance-o-iype

Figure 10.5 - Aggregate Values

144 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.5.1 Class: AggregateValue

Definition: a ConcreteValue that is composite, consisting of a collection of Instances from a given member DataType.
Properties: abstract

10.5.1.1 Supertypes

ConcreteValue

10.5.1.2 Attributes

none

10.5.1.3 Associations

none

10.5.1.4 Other Roles

none

10.5.2 Class: ArrayMember

Definition: represents a single element of an ARRAY Value seen as arelation. It maps one index-value to one value of the
base data type (the “member” value). In the case of an ARRAY OF OPTIONAL, the member-value need not be present.

10.5.2.1 Supertypes

none

10.5.2.2 Attributes

Attribute: index To: (UML) Integer

Definition: represents the index value to which the ArrayMember corresponds. In a given ARRAY Value, there is exactly
one ArrayMember that corresponds to each index value.

Multiplicity: 1..1
10.5.2.3 Associations

AssociationEnd: member-value To: Core::lnstance

Definition: for a given ARRAY Value, represents the relationship between an index value (represented by an
ArrayMember) and the Instance value that is the image of that index value in the base type.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 145

10.5.2.4 Other Roles
From: ARRAYValue as member-slot

10.5.3 Class: ARRAYValue

Definition: an AggregateValue, representing a value of an EXPRESS ARRAY data type: a set of pairs of the form (index
value, domain value) where the index value is selected from a finite range of integers, and each such value occurs in
exactly one pair, and the domain value is an instance of the member-type of the ARRAY.

10.5.3.1 Supertypes

AqggregateValue
10.5.3.2 Attributes
none

10.5.3.3 Associations

AssociationEnd: member-slot To: ArrayMember
Definition: represents the relationship between an ArrayValue and each of its distinct slots for member values.
Multiplicity: 1..* unordered

Properties: composite

AssociationEnd: of-type To: Core::ARRAYTvype

redefines: Core:Instance.of-type
Definition: represents the relationship between the ARRAY Value and the ARRAY Types of which it is an instance.

Multiplicity: 1..* unordered
10.5.3.4 Other Roles

none

10.5.4 Class: BagMember

Definition: represents the relationship between a BAGValue and one value of the base data type (the “member” value). It
has a “count” attribute that represents the number of times the given member-value occurs in the BAGValue.

10.5.4.1 Supertypes

none

10.5.4.2 Attributes

Attribute: count To: (UML) Integer

Definition: represents the relationship between a BagMember and the number of occurrences of the member-value that it
represents, i.e., the number of occurrences of that member-value in the bag.

146 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1
10.5.4.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a BagMember and the Instance that it includes, one or more times, in the
BAGValue.

Multiplicity: 1..1

10.5.4.4 Other Roles

From: BAGValue as member-slot
10.5.5 Class: BAGValue

Definition: an AggregateValue, representing a value of an EXPRESS BAG data type: a collection of instances of the
member-type of the BAG, in which a given instance can appear more than once.

10.5.5.1 Supertypes

AqggregateValue
10.5.5.2 Attributes

none
10.5.5.3 Associations

AssociationEnd: member-slot To: BagMember

Definition: represents the relationship between a BagValue and each of its distinct member values. Each distinct member
value is represented by a BagMember (slot) that counts its occurrences in the bag.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: of-type To: Core::BAGType

redefines. Core:lnstance.of-type
Definition: represents the relationship between the BAGValue and the BAGTypes of which it is an instance.

Multiplicity: 1..* unordered

10.5.5.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 147

10.5.6 Class: GenericAggregate

Definition; an AggregateValue representing the output of an Aggregatelnitializer. It isinterpreted as a LIST value whose
member-type is GENERIC, but actually constrained to the common DataType of all the Expressions in the Initializer. It
can be coerced to an ARRAY, BAG, SET, or LIST value of the appropriate member-type, according to the context of its
use.

Note — Certain GenericAggregate values have a syntactic parse asa LIST of instances, but no clear semantics as to datatype;
thisisadefect in Part 11.

Note — See 12.9 of 1SO 10303-11:2004.
10.5.6.1 Supertypes

LISTValue

10.5.6.2 Attributes

none

10.5.6.3 Associations

none

10.5.6.4 Other Roles

From Expressions::Aggregatelnitializer as result-value

10.5.7 Class: ListMember

Definition: represents one position in a ListValue and the instance of the member-type in that position.

10.5.7.1 Supertypes

none

10.5.7.2 Attributes

Attribute: position To: (UML) Integer
Definition: the ordinal identifier for the position in the sequence.

Multiplicity: 1..1
10.5.7.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a position in a LISTValue (represented by a ListMember) and the Instance
that appears in that position.

Multiplicity: 1..1

148 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

10.5.7.4 Other Roles

From: LISTValue as member-slot

10.5.8 Class: LISTValue

Definition: an AggregateValue, representing a value of an EXPRESS LIST data type: a sequence of instances of the
member-type of the LIST.

10.5.8.1 Supertypes

AqggregateValue
10.5.8.2 Attributes

none
10.5.8.3 Associations

AssociationEnd: member-slot To: ListMember

Definition: represents the relationship between a ListValue and each of its distinct slots for member values. Each member-
dlot represents a position in the ListValue.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: of-type To: Core::LISTType

redefines. Core:lnstance.of-type

Definition: represents the relationship between the LISTValue and the LISTTypes of which it is an instance.

Multiplicity: 1..* unordered
10.5.8.4 Other Roles

none

10.5.9 Class: SETValue

Definition: an AggregateValue representing a value of a SET data type.

Note — A SETValue can be viewed as a specialization of aBAGValue in which the “count” value for each BagMember is 1.
But technically, the conversion of the SETValue to the corresponding BAGValue is a coercion, because the behavior of the
resulting BAGValue is different. For example, the union of two SETValues is different from the union of the corresponding
BAGValues.

10.5.9.1 Supertypes

AqgaregateValue

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 149

10.5.9.2 Attributes

none
10.5.9.3 Associations

AssociationEnd: member-value To: Core::Instance

Definition: represents the relationship between a SETValue and the Instances that appear in it. Any given Instance can
take this role at most once for any given SetValue.

Multiplicity: 0..* unordered

AssociationEnd: of-type To: Core::SETType

redefines: Core:Instance.of-type

Definition: represents the relationship between the SETValue and the SETTypes of which it is an instance.

Multiplicity: 1..* unordered

10.5.9.4 Other Roles

none

10.5.10 Generalization Sets

Generalization Set: AggregateValue categoriescomplete, disjoint

Every AggregateValue is one of ARRAY Value, BAGValue, LISTValue, or SETValue.

10.6 Entity Instances and Values

This sub clause specifies the model of Entitylnstances — instances that correspond to entity data types. It also specifies the
model of PartialEntityValues, which are aggregates of entity attribute values that are constructed and manipulated by
some Expressions.

Figure 10.6 depicts the model of entity instances. In general, entity instances represent real-world objects being described
by the EXPRESS schema. What is captured in the information base is an EntityValue which is a representation of the
current state of the real-world object. A Singlel eafInstance is an Entitylnstance that has a model as a single Entity Type.
A MultiLeafInstance is an Entitylnstance that has a model as an allowable collection of overlapping subtypes of modeled
Entity Types.

150 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

sMetaclasss | fnstance-ot-te ahetaclazss
et Ce +instances +of-type DataType
(Core) 0. 0. (Core)
+instances
zMetaclazzs redefines instances} 1.7 zMetaclasss
Entityinstance | 0. +oftype | EntityType
il - Eniti redefines of-type Care
+idl : ErtityMame [1] |_+diescrives i yith [Core)
D::'"-H +Ccortespondsto | 1.% 1
comiels disoit) emﬂmrde:crihes-state
complere, digjoi =
0.x
Ertityinstance categaries \x“‘xl
+atate] shietaclasss
EntityWalue
shietaclasss shietaclazss ox
MultiLeafinstance SinglelLeaflnstance

Figure 10.6 - Entity Instances

+characterizing-type

Figure 10.7 depicts the model of PartialEntityValues. A PartialEntityValue is a collection of information — assignments of

values to named Attributes. Some Partial EntityValues are EntityValues, that is, they describe the state of an

Entitylnstance.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

151

ractuslvalug | Metaclasss . Instance-of-type ahetaclasss
Rrstxrica +instances +of-type Data Type
0.1 (Care) 0.2 0.+ (Core)
sMetaclasss sMetaclasss
PartialEntityValue +0TYRE | partialEntity Type
0. 1 [Core)
{redefines instances {redefines of-typel -
+equivalent | 11 \ 1.
shetaclasss sMetaclasss
EntityValue +Carresponds ta EntityType
0.t 1.k (Core)
+declared-in Y1
zingle-entity-declaref-in-entity
0.1 1.4 +Components 1 1.* +oomponents
zhetaclaszs zMetaclasss
SingleEntityValue +dEClares |gingleEntity Type
+of-type (Core)
0.* 1
1 1 +of-ertity
attribute-deciared-in-ertity
o.* +properties 0.* l+declares
shetaclasss . ghietaclazs: ahletaclasss
— AttributeValue | *#MEL peppeitattribute | Attribute
0. 0. 1 (Core) [Core)

Figure 10.7 - PartialEntityValues

10.6.1 Class: AttributeValue

Definition: represents the assignment of a value to a given Attribute of the Entity Type corresponding to the
SingleEntityValue.

10.6.1.1 Supertypes

none

10.6.1.2 Attributes

none
10.6.1.3 Associations

AssociationEnd: actual-value To: Core::lnstance

Definition: represents the value assigned to the Attribute by the AttributeValue. If the Attribute is declared OPTIONAL,
it is possible that no value is assigned.

Multiplicity: 0..1

152 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the relationship between the AttributeValue assignment and the ExplicitAttribute to which it assigns
avalue.

Multiplicity: 1..1

10.6.1.4 Other Roles

From: SingleEntityValue as properties

Multiplicity: 1..1 composite

10.6.2 Class: Entitylnstance

Definition: a Taggedinstance that represents an EXPRESS entity instance — an instance of an entity data type, a view of
an object that incorporates those properties and relationships that are significant to some particular purpose(s). The
EntityInstance is distinct from the EntityValue — a collection of information about the object that represents those
properties and relationships.

Note — See clause 5 of 1SO 10303-11:2004.

10.6.2.1 Supertypes

TypedInstance
10.6.2.2 Attributes

Attribute: id To: EntityName

Definition: represents a nominal identifier for an Entitylnstance that distinguishes it from other Entitylnstances. The
nature of this identifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note — See clause 5 of 1SO 10303-11:2004.
Multiplicity: 1..1

10.6.2.3 Associations

AssociationEnd: of-type To: Core::EntityType

via: instance-of-Entity Type

redefines: Core:Instance.of-type
Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.
Multiplicity: 1..* unordered

AssociationEnd: state To: EntityValue
via: entity-value-describes-state

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 153

Definition: represents the relationship between the Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1

10.6.2.4 Other Roles

From: Rules::Extent as content
10.6.3 Datatype: EntityName

Definition: represents the unique underlying identity of an entity instance, expressed as some kind of identifier. The
nature of thisidentifier is not defined in EXPRESS, but it is stated that this identifier is not necessarily constructed from
any group of modeled attribute values. Each EntityName is unique within a Population, but the actual namespace of an
EntityName is not specified in Part 11.

Note — See clause 5 of 1SO 10303-11:2004.

10.6.3.1 Supertypes

Realization type is . (UML) String
The realization relationship is modeled as a generalization.

10.6.3.2 Members

none

10.6.4 Class: EntityValue

Definition: a Partial EntityValue that completely describes an Instance of some Entity Type(s).
10.6.4.1 Supertypes

Partia EntityValue

10.6.4.2 Attributes

none

10.6.4.3 Associations

AssociationEnd: corresponds to To: Core::EntityType

Definition: represents the EntityType(s) whose complete modeled description comprises a set of Attributes that is
contained in the EntityValue. The complete modeled description of an EntityType is a set of SingleEntityTypes, and the
EntityValue contains SingleEntityValues corresponding to each of them.

Multiplicity: 1..* unordered

AssociationEnd: describes To: Entitylnstance
via: entity-value-describes-state

154 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular Entitylnstance.

Multiplicity: 0..* unordered

10.6.4.4 Other Roles

none

10.6.5 Class: MultiLeaflnstance

Definition:; a (complex) Entitylnstance that is a valid instance of more than one Entity Type and whose state includes more
SingleEntityVValues than are declared for, or inherited by, any named Entity Type defined in the governing Schema. The
subtype/supertype graph corresponding to such an Entitylnstance has multiple “leaf” nodes.

Note — This concept appearsin Part 11 only in 3.3.12, but it appearsin 1SO 10303-21:2002 as an “ uncharacterized instance”
whose representation requires the “ external mapping.”

10.6.5.1 Supertypes
Entitylnstance

10.6.5.2 Attributes

none

10.6.5.3 Associations

none

10.6.5.4 Other Roles

none
10.6.6 Class: PartialEntityValue

Definition: an Instance that is a collection of Attributes (of SingleEntityTypes) with associated values.
10.6.6.1 Supertypes

Core::Instance

10.6.6.2 Attributes

none
10.6.6.3 Associations

AssociationEnd: components To: SingleEntityValue
Definition: the SingleEntityValues that make up the Partial EntityValue.

Multiplicity: 1..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 155

Properties. composite

AssociationEnd: of-type To: Core::PartialEntityType

redefines: Core:Instance.of-type

Definition: represents the relationship between a Partial EntityVValue and the Partial Entity Type that identifies the collection
of SingleEntityTypes for which the Partial EntityValue provides values.

Multiplicity: 1..1
10.6.6.4 Other Roles

From: SingleEntityValue as equivalent
Multiplicity: 0..1

From: Expressions::PartialEntityConstructor as result-value

10.6.7 Class: SingleEntityValue

Definition: a collection of values for the explicit Attributes of exactly one SingleEntityType.

Note — A SingleEntityValueis not an Instance; it isa part of a Partial EntityValue. It cannot be the result of an Expression, nor
can it be the value of any EXPRESS concept. The result of a Partial EntityConstructor is the .equivalent Partial EntityValue.

10.6.7.1 Supertypes

none

10.6.7.2 Attributes

none

10.6.7.3 Associations

AssociationEnd: equivalent To: PartialEntityValue

Definition: represents the relationship between a SingleEntityValue and the Partial EntityValue that consists of exactly that
one SingleEntityValue.

Multiplicity: 1..1

AssociationEnd: of-type To: Core::SingleEntityType

Definition: represents the relationship between a SingleEntityValue and the SingleEntity Type that declares the Attributes
whose values are contained in the SingleEntityValue.

Note — While the relationship between a SingleEntityVValue and a SingleEntity Type appears to be an Instance-to-Type
relationship, it is not treated as such in the metamodel, because SingleEntityValues are not Instances & “ they can only appear
as components of a Partial EntityValue.

Multiplicity: 1..1

AssociationEnd: properties To: AttributeValue

Definition: represents the relationship of the SingleEntityValue to the AttributeValue assignments it comprises.

156 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 0..* unordered
Properties: composite

10.6.7.4 Other Roles

From: PartialEntityValue as components

Multiplicity: 1..1 composite

10.6.8 Class: SingleLeafInstance

Definition: an Entitylnstance that is completely characterized by a single EntityType (and al its supertypes) that is
declared in the governing Schema.

Note — This concept does not appear in Part 11, but isthe “ characterized instance” that is the basis for the “internal mapping”
in SO 10303-21:2002.

10.6.8.1 Supertypes

Entitylnstance
10.6.8.2 Attributes
none

10.6.8.3 Associations

AssociationEnd: characterizing-type To: Core::EntityType

Definition: represents the unique Entity Type classifier that has (defines or inherits) exactly all of the Attributes present in
the representation of the Entitylnstance. Not every Entitylnstance has a characterizing-type — it may be an “instance-of”
two or more EntityTypes for which the intersection is not explicitly modeled, but permitted by the model to be non-empty.

Multiplicity: 1..1
10.6.8.4 Other Roles
none

10.6.9 Association: entity-value-describes-state

Definition: represents the relationship between an Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

10.6.9.1 Association Ends

AssociationEnd: describes To: Entitylnstance

Definition: represents the Entitylnstances, if any, whose current state is described by the EntityValue. This direction of the
association is only significant when the EntityValue is used as the means of identification of a particular Entitylnstance.

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 157

AssociationEnd: state To: EntityValue

Definition: represents the relationship between the Entitylnstance and the EntityValue that describes the current state of
the Instance (in terms of its modeled properties) at any given time.

Multiplicity: 1..1
10.6.10 Association: instance-of-EntityType

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.
10.6.10.1 Association Ends

AssociationEnd: of-type To: Core::EntityType

redefines: Core:Instance.of-type

Definition: represents the relationship between an Entitylnstance and each of the EntityType classifiers it satisfies.
Multiplicity: 1..* unordered

AssociationEnd: instances To: Entitylnstance
subsets: Core::Datalype:instances

Definition: represents the relationship between an Entity Type (classifier) and the Entitylnstances that satisfy it.

Multiplicity: 0..* unordered

10.6.11 Generalization Sets

Generalization Set: Entitylnstance categories complete, disjoint

Every Entitylnstance is one of Singlel eafInstance or MultiL eafInstance.

10.7 Constants

This sub clause defines the Constant concept. A Constant is a model element that provides a name for an instance of any
data type, and allows the instance it names to be specified as the value of an Expression. Figure 10.8 depicts the model of
Constants. The Constant class and its properties are described below.

158 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Sdetaclazss
Corenon Efanremt
[Care)
£'|_
hEtaclasss Metaclasss:
Constant telota-lvps | Restdaabfe Type
o.* 1 (Care)
a.* a.t

Metaclazss
+alua-Exprassion Expression

0.1 El:.:.rg:’]

0.*
garpression-evaluEies-o-Irstance

sevalugtion | 0.1

+lactunl-valuc s
fastance
1 [Core)

Figure 10.8 - Constants

10.7.1 Class: Constant

Definition: a CommonElement that denotes a single instance value throughout each of its life cycles. The instance value
is described by an Expression that evaluates to the value to be used in each instantiation of the Constant.

For a Constant that is defined as a SchemaElement, the value is unchanged across all algorithms and rules, and over all
corresponding populations. It is a constant and names a specific Instance. Its : value expression may only refer to
Instances and other Constants. A Constant defined in an AlgorithmScope, however, assumes a value for a given
invocation of the Algorithm or Rule, but may assume different values for different invocations. Its : value
expression may refer to parameters of the Algorithm or to elements of the population.

Note — “Constant” is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See clause 9.4 of 1SO 10303-11:2004.

10.7.1.1 Supertypes

Core::CommonElement

10.7.1.2 Attributes

none
10.7.1.3 Associations

AssociationEnd: actual-value To: Core::lnstance

Definition: represents the value resulting from evaluating the value-expression. This value may only be computable for a
given population, or it may require computational capabilities a given agent does not have.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 159

Multiplicity: 0..1
Properties: derived

Tagged Values

derivation = self->value-expression->evaluation;

AssociationEnd: data-type To: Core::InstantiableType
Definition: represents the relationship between the Constant and the DataType of the Instance denoted by the Constant.

Multiplicity: 1..1

AssociationEnd: value-expression To: Core::Expression

Definition: represents the Expression that specifies the value of the Constant for a given lifetime.

Multiplicity: 1..1

10.7.1.4 Other Roles

From: Expressions::ConstantRef as refers-to

10.7.1.5 Rules

Constraint (OCL)
exists(self->id) ;
Every Constant shall have an Identifier.

10.8 Populations

This sub clause defines the Population concept and its relationship to Schemas and Instances. A population represents an
information base that corresponds to a Schema. Figure 10.9 depicts the model of Population. The class Population and its
associations are described below.

160 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

0. +composition o.*
zMetaclasss sMetaclasss i Set rmembervalus zhetaclasss
Population SETValue +n - Instance

a.* n.* [Core)
o.* 1 | +within-population T
extent-within-population
sMetaclasss . zMetaclasss
+extents Extent {zubszets inSet} +content Entityinstance
0.+ |+id: Scopedid 1] | 9 0. 4 Ertityrame [1]
{redefines member-value}
. 0.* | +extension +instances |0.*
0.#| +governing-schems
zhetaclasss extent-of-Ertity Type
Schema +ortype | 1
[Core)
shletaclasss
EntityType +of-type
[Core) 1.2 instance-of-Ertity Type

Figure 10.9 - Populations and Instances

10.8.1 Class: Extent

Definition: the collection of all Instances in a given Population that satisfy the specified EntityType. That is, Extent is the

SetValue that is the intersection of EntityType:instances and Population:composition.

Note — See 9.6 of SO 10303-11:2004.

10.8.1.1 Supertypes

SETValue

10.8.1.2 Attributes

Attribute: id

To: Core::Scopedld

Definition: the identifier for the EntityType, used as a name for the Extent.

Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

Properties: derived.
TaggedValues

derivat

ion = self->for-type->id

10.8.1.3 Associations

AssociationEnd: content

Subsets: SET Value:member-values

To: Entitylnstance

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

161

Definition: represents the rel ationship between the Extent (within a Population) and the Entitylnstances it contains. Extent
is a SetValue and Extent:content is just the relationship between that SetValue and its members.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType
via extent-of-Entity Type

Definition: the Entity Type to which the Extent corresponds.
Note — See 9.6 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: within-population To: Population
via: extent-within-population

Definition: the Population from which the Set of instances is drawn.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

10.8.1.4 Other Roles

none

10.8.2 Class: Population

Definition: represents the collection of all entity instances over which the LocalRules and GlobalRules of a schema are to
be evaluated.

The EXPRESS interpretation of Population is the complete closed collection of entity instances that is used for a
particular purpose, such as the content of a database or an exchange document. Many distinct Populations may have the
same governing-schema. The presumption is that the Population will be realized when the Entityl nstances are realized,
but it is not necessary that that realization will itself be represented as instance of this Package.

Note — See Clause 5 of 1SO 10303-11:2004.

10.8.2.1 Supertypes

none

10.8.2.2 Attributes

none
10.8.2.3 Associations

AssociationEnd: composition To: Core::Instance
via: instance-appears-in-popul ation
Definition: represents the relationship between a Population and the Instances that make it up.

162 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 0..* unordered

AssociationEnd: extents To: Extent
via: extent-within-population

Definition: the collection of Extents of EntityTypes that make up the Population.
Multiplicity: 0..* unordered
Properties: composite

AssociationEnd: governing-schema To: Core::Schema
Definition: represents the relationship between a Population and a Schema that governs (models, describes) it.
Note — See 9.3 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

10.8.2.4 Other Roles

none

10.8.3 Association: extent-of-EntityType

Definition: represents the relationship between an EntityType and its Extent (the set of corresponding Entitylnstances) in
a given Population.

10.8.3.1 Association Ends

AssociationEnd: extension To: Extent

Definition: represents the relationship between an EntityType and its extension (the set of corresponding Entitylnstances)
in a given Population.

Multiplicity: 0..* unordered

AssociationEnd: for-type To: Core::EntityType
Definition: represents the relationship between an Extent and the EntityType to which it corresponds.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

10.8.4 Association: extent-within-population

Definition: represents the relationship between an Extent and the Population from which it is drawn.
10.8.4.1 Association Ends

AssociationEnd: extents To: Extent

Definition: the collection of Extents of EntityTypes that make up the Population.

Multiplicity: 0..* unordered

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 163

Properties. composite

AssociationEnd: within-population To: Population

Definition: the Population from which the Set of instances constituting the Extent is drawn.

Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

10.8.5 Association: population-includes-instance

Definition: represents the relationship between an Instance and the Populations in which it appears.
10.8.5.1 Association Ends

AssociationEnd: appears-in-population To: Population

Definition: represents the relationship between an Instance and the Populations in which it appears.
Multiplicity: 0..* unordered

AssociationEnd: composition To: Core::Instance

Definition: represents the relationship between a Population and the Instances the make it up.

Multiplicity: 0..* unordered

164 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

11 Package : Algorithms

11.1 General

The Algorithms Package contains the concepts related to definitions of Algorithms and Functions in EXPRESS.

11.2

Merges Package: Core

The Algorithms Package imports the Core Package for the NamedElement and Scope concepts, for data type concepts,
and for the basic Expression concept. It extends the concept Core:ElementSource.

Imported Packages

11.3 Functions and Procedures

This sub clause defines all the major concepts in EXPRESS Algorithm definitions, except for Variables and their data
types. Those concepts are described in subsequent clauses below. Figure 11.1 depicts the concepts described in this sub

clause.
zhietaclazzs zhetaclazss
CommonFElamant [+common-elements 0.1 | AlgorithmScope shetaclazss «Metaclazsy
(Caore) 0.* +local-scope (Core) MNamedWariable ParametorType
[Care)
ey ’
algorithm-has-parameters il +formal-parameter-type
Metaclasss 0.#
) Metach HNAMmespace i .
+implements | SMEaciass: fredefines namespace} 0.F Parametar
Algoritim
0.1 1 +formal-parameters [+position © Integer [1]
‘T' {zubzets named-elements
algarithm-nas-bod T‘
J Y [icomplete, disicint} —
Algorthm categories {eomplet, disjoirt
o g Parameter categories
:Metac:ss» «h:eta;liaSS» zhetaclasss zhetaclasss
IEEECure MrERion InParameter VARParameter
0.1 +b0d‘y’ q +Namespace
eMetaclasss Tredefines namespace}
zhetaclasss
Statement function-has-rezult 1 FunctionResult
+ext : ExpressText [0.1] +result
{subsets named-elemerts }

Figure 11.1 - Algorithms

11.3.1 Class: Algorithm

Definition: a CommonElement that represents an operation or process that transforms information. Every Algorithm is
either a Procedure or a Function. Every Algorithm is also an AlgorithmScope, in that it may define CommonElements and

local Model Elements.

Note — See 9.5 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

165

Properties. abstract
11.3.1.1 Supertypes

Core::CommonElement, Core::AlgorithmScope

11.3.1.2 Attributes

none

11.3.1.3 Associations

AssociationEnd: actual-types To: Core::ActualType
via: scope-of -actual-type

Subsets: Core::L ocal Scope:local-elements

Definition: the Actual Types that are defined in the Algorithm.
Multiplicity: 0..* unordered
Properties. composite

AssociationEnd: body To: Statement

via: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note — See 9.5 of 1SO 10303-11:2004.
Multiplicity: 0..1

Properties: composite

AssociationEnd: formal-parameters To: Parameter
via: algorithm-has-parameters

Subsets: Core::L ocal Scope:local-elements

Definition: represents the relationship between the Algorithm and its formal parameters.
Multiplicity: 0..* unordered
Properties: composite

11.3.1.4 Other Roles

From: Core::ActualType as scope

11.3.1.5 Rules

Constraint (OCL)

exists(self->id) ;

166 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Every Algorithm has an identifier

11.3.2 Class: Function

Definition: an Algorithm that returns a single Instance and can appear in an Expression.

Note — “Function” is areserved word in EXPRESS; if this metamodel is converted to EXPRESS, this class must be renamed.
See 9.5.1 of 1SO 10303-11:2004.

11.3.2.1 Supertypes
Algorithm

11.3.2.2 Attributes

none

11.3.2.3 Associations

AssociationEnd: result To: FunctionResult

via: function-has-result

subsets; Core:Scope:named-el ements

Definition: represents the relationship between a Function and its FunctionResult.
Note — See 9.5.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

Properties: composite

11.3.2.4 Other Roles

From: Expressions::FunctionCall as invokes-function

11.3.3 Class: FunctionResult

Definition: the formal parameter representing the result Instance that is returned by the invocation of a Function. Within
the body of the Function, the FunctionResult is a Variable that is denoted by the Algorithm identifier. Upon termination
of the execution of the function-body, the (current) value of that Variable is returned.

Note — See 9.5.1 of 1SO 10303-11:2004.
11.3.3.1 Supertypes

Variable

11.3.3.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 167

11.3.3.3 Associations

AssociationEnd: namespace To: Function
via: function-has-result

redefines: Core::NamedElement.namespace

Definition: the Function that is the Scope in which the Function name refers to the FunctionResult.
Multiplicity: 1..1
11.3.3.4 Other Roles

From: Expressions::FunctionCall as returns-result

11.3.3.5 Rules

Constraint (OCL)
self->id = self->namespace->id;

The identifier for the function result is the identifier for the function.

11.3.4 Class: InParameter

Definition: a formal parameter to a Procedure or Function to which the ActualParameter is passed “by value.”

During an invocation of the Algorithm, the InParameter is a Variable that isinitially set to the value of the corresponding
Actual Parameter. The value of the InParameter can be changed during the execution of the Algorithm.

An InParameter has a formal-parameter-type, which is the type specification to which the corresponding

Actual Parameters are required to conform. The InParameter also has a variable-type, which is the type specification for
the Variable created to hold the value during invocation of the Algorithm. When the formal-parameter-type is an
InstantiableType, the variable-type is the same type. When the formal parameter-type is a GeneralizedType, the variable-
type is the corresponding Actual Type.

Note — It is possible that the formal-parameter-type isitself an Actual Type, if the Algorithm is defined within another
Algorithm. In such a case, the variable-type is the same type.

Note — See 9.5.3 of SO 10303-11:2004.
11.3.4.1 Supertypes

Parameter, Variable

11.3.4.2 Attributes

none

11.3.4.3 Associations

none

11.3.4.4 Other Roles

From: Expressions::PassByValue as for-parameter

168 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

11.3.5 Class: Parameter

Definition: a formal parameter — the formal description of an operand — of a Procedure or Function.
Parameters are of two kinds:

» InParameter, to which the values of the corresponding Actual Parameters are passed by value.
» VarParameter, to which the corresponding Actual Parameters are passed by reference

A Parameter is actually a NamedVariable whose scope is the Algorithm, and in each invocation of the Algorithm its
(initial) value is set from the value or reference provided as the actual parameter. The formal-parameter-type of the
Parameter constrains the types/values of the corresponding actual parameters. As a NamedVariable, it also has a variable-
type, which is its data type for the purpose of operations within the body of the Algorithm. If the formal-paramater-type
is an InstantiableType or an ActualType, the variable-type is the same type. If the formal-parameter-type is a
GeneralizedType, the variable-type is the corresponding Actual Type.

Note — See 9.5.3 of 1SO 10303-11:2004.
Properties: abstract

11.3.5.1 Supertypes
Core::ElementSource, NamedVariable

11.3.5.2 Attributes

Attribute: position To: (UML) Integer

Definition: a positive integer value designating the ordinal position of the Parameter in the formal-parameter-list for the
Algorithm that is its :namespace. The position is used to associate Actual Parameters with the formal Parameter.

Note — See 9.5.3 of SO 10303-11:2004.
Multiplicity: 1..1

11.3.5.3 Associations

AssociationEnd: formal-parameter-type To: Core::ParameterType

Definition: the specification for the required data type of the actual parameters (see 13.8.1, ' Class: Actual Parameter’) that
correspond to the formal Parameter; the data type that represents the allowable values of the Parameter.

Multiplicity: 1..1
Note — Thelexical parameter type in EXPRESS may refer to an InstantiableType, an Actual Type (if the Algorithm is

defined within an outer AlgorithmScope) or a GeneralizedType, and when it is syntactically ageneralized type, it may
include Actua TypeConstraints.

AssociationEnd: namespace To: Algorithm
via algorithm-has-parameters

redefines: Core::NamedElement.namespace

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its :id.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 169

Multiplicity: 1..1
11.3.5.4 Other Roles

From: Expressions::ParameterRef as refers-to

From: Expressions::ActualParameter as formal-parameter

11.3.5.5 Rules

Constraint (OCL)
exists(self->id);

Every Parameter has an identifier

Constraint (OCL)
IF typeof (self->namespace) = 'Function' THEN NOT self-s>inout;
No parameter to a Function shall be a VAR parameter.

11.3.6 Class: Procedure

Definition: an Algorithm that is executed as an action in a FunctionBody.
Note — See 9.5.2 of SO 10303-11:2004.

Note — “Procedure” is areserved word in EXPRESS; if this metamode! is converted to EXPRESS, this class must be renamed.
11.3.6.1 Supertypes
Algorithm

11.3.6.2 Attributes

none

11.3.6.3 Associations

none
11.3.6.4 Other Roles

From: Statements::ProcedureCall as invokes

11.3.7 Class: Statement

Definition: an EXPRESS Statement, a directive to perform a certain set of operations.
Note — See Clause 13 of SO 10303-11:2004.

Note — Even though Statement istechnically an abstract classifier, it is represented by direct instances with text representations
when the Statements compliance point is not supported.

11.3.7.1 Supertypes

none

170 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

11.3.7.2 Attributes

Attribute: text To: Core::ExpressText

Definition: represents the EXPRESS statement verbatim.
Multiplicity: 0..1

11.3.7.3 Associations

AssociationEnd: controlled-by To: Statements::RepeatStatement
via: Statements::repeat-has-body

Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

AssociationEnd: implements To: Algorithm
via algorithm-has-body

Definition: represents the relationship between a Statement and the Algorithm for which it specifies an implementation.

Multiplicity: 0..1

AssociationEnd: in-block To: Statements::StatementBlock
via Statements::bl ock-sequences-statements

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.

Note — This relationship is needed for ESCAPE statements and SKIP statements, whose interpretation requires a path back to
the REPEAT statement that controls them (see 14.9.3). It may also be needed to associate a RETURN statement with the
Algorithm that whose implementation contains it.

Multiplicity: 0..1
11.3.7.4 Other Roles

From: Rules::GlobalRule as supporting-body

Multiplicity: 0..1
From: Statements::AliasStatement as body
Multiplicity: 0..1

From: Statements::CaseAction as action

Multiplicity: 0..1

From: Statements::IfStatement as then-action

Multiplicity: 0..1

From: Statements::IfStatement as else-action

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 171

11.3.8 Class: VARParameter

Definition; a formal parameter to a Procedure that is used as a reference to the object that is the ActualParameter in a
given invocation. That is, a VARParameter represents a parameter that is “passed by reference.”

During an invocation of the Algorithm, theVARParameter is a VARVariable whose referent is specified by the
VARExpression that is the corresponding Actual Parameter. All references to a VARParameter (in Statements and
Expressions) refer to its referent.

As a Parameter, the VARParameter has a formal-parameter-type, which is the type specification to which the
corresponding Actual Parameters are required to conform. As a VARVariable, its data type is the type of its referent.

Note — See 9.5.3 of SO 10303-11:2004.
11.3.8.1 Supertypes

Parameter, VARVariable

11.3.8.2 Attributes

none

11.3.8.3 Associations
none

11.3.8.4 Other Roles

From: Statements::PassByReference as for-parameter

11.3.8.5 Rules

Constraint (OCL)

typeof (self->namespace) ="'Procedure' ;
Only a Procedure can have a VAR Parameter.

11.3.9 Association: algorithm-has-body

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a
StatementBlock — a sequence of actions to be performed.

Note — See 9.5 of SO 10303-11:2004.

11.3.9.1 Association Ends

AssociationEnd: body To: Statement

Definition: represents the relationship between a (conceptual) Algorithm and a definition of the Algorithm as a Statement.
In most cases, the Statement is a StatementBlock — a sequence of actions to be performed. The body of the Algorithm is
modeled as optional (0..1). Support for the body is not a requirement for the support of Algorithms.

Note — See 9.5 of SO 10303-11:2004.

172 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 0..1

Properties: composite

AssociationEnd: implements To: Algorithm

Definition: represents the relationship between a FunctionBody and the Algorithm for which it specifies an
implementation.

Multiplicity: 0..1

11.3.10 Association: algorithm-has-parameters

Definition: represents the relationship between an Algorithm and its formal parameters.
11.3.10.1 Supertypes

Core::element-defined-in-scope

11.3.10.2 Association Ends

AssociationEnd: formal-parameters To: Parameter

Definition: represents the relationship between the Algorithm and its formal parameters.
Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: namespace To: Algorithm

Definition: represents the relationship between the Parameter and the Algorithm of which it is a formal parameter, and
therefore the Algorithm which is the namespace for its :id.

Multiplicity: 1..1
11.3.11 Association: function-has-result

Definition: represents the relationship between a Function and its FunctionResult.

Note — See 9.5.1 of SO 10303-11:2004.
11.3.11.1 Supertypes

Core::element-defined-in-scope

11.3.11.2 Association Ends

AssociationEnd: namespace To: Eunction
redefines: Core:NamedElement.namespace

Definition: the Function that is the AlgorithmScope in which the Function name refers to the FunctionResult.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 173

AssociationEnd: result To: EunctionResult

subsets: Core:Scope:named-elements

Definition: represents the relationship between a Function and its FunctionResult.
Note — See 9.5.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

Properties: composite
11.3.12 Generalization Sets

Generalization Set: Algorithm categories complete, disjoint

Every Algorithm is one of Function or Procedure.

Generalization Set: Parameter categories complete, disjoint

Every Parameter is one of InParameter or VARParameter.

11.4 Variables

This sub clause describes the concepts associated with Variables in EXPRESS. Variables are introduced in Algorithms and
GlobalRules. Figure 11.2 depicts the concepts described in this sub clause.

174 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

+Namespace
iredefines
namespace}

variakle-defin

Tzubsets

zhletaclasss
AlgorithiinScope
[Core)

1

+variables

named-elementst | 0.°

ed-in-scope

zhletaclasss
LocalVariable

zhetaclass»
Variadie Type
[Core)

1 | +variable-type

o.x

zhletaclasss
NamadFlameant

[Care)

+id : Scopedid [0..1]

zﬁ

zhetaclaszs
NamredVariabie

T

{complete, disjoirt }

zhletaclasss
Variadia

Mamedariable categories

zhletaclasss
FunctionResult

TR

zhletaclasss
InParameter

o.*

+initial-walue [0.1

zhletaclasss
Expression
[Core)

Figure 11.2 - Variables

11.4.1 Class: LocalVariable

zhetaclasss
VARVariadle

[

zhetaclass:
VARParameter

Parameter categories

l {complete, disjoirt

zhletaclasss
Paranmreter

Definition:; a Variable that is declared as LOCAL to an Algorithm or GlobalRule and given an Identifier, and possibly an

initial value, in the declaration.

Note — See 9.5.4 of SO 10303-11:2004.

11411

Variable
11.4.1.2

none

11413

AssociationEnd: initial-value

Supertypes

Attributes

Associations

To: Core::Expression

Definition: represents the relationship between the Local Variable and the Expression that specifies its initial-value on
entry to the body of the Algorithm or GlobalRule that defines it.

Multiplicity: 0..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

175

AssociationEnd: namespace To: Core::AlgorithmScope

via: variable-defined-in-scope

redefines: Core::NamedElement.namespace

Definition: represents the relationship between the Local Variable and the AlgorithmScope in which it is defined. Thisisa
refinement of the NamedElement:namespace relationship. The lifetime of a Local Variable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1
11.4.1.4 Other Roles

none

11.4.2 Class: NamedVariable

Definition: any EXPRESS syntactic variable: A LocalVariable, a QueryVariable, an increment ControlVariable, an
AliasVariable, or a Parameter or FunctionResult. A NamedVariable is a NamedElement and always has a name/identifier.
Each kind of NamedVariable has a different scope, but the scope of every NamedVariable is a Local Scope.

Every NamedVariable is either a Variable or a VARVariable.

Properties: abstract
11.4.2.1 Supertypes

Core::NamedElement

11.4.2.2 Attributes

none

11.4.2.3 Associations

none

11.4.2.4 Other Roles

From: Expressions::VariableRef as refers-to

11.4.2.5 Rules

Constraint (OCL)
exists(self->id) ;

Every NamedVariable has an identifier.

11.4.3 Class: VARVariable

Definition: a VARVariable represents a “pointer” that functions as a reference to a“cell” - a Variable, or a part of a
Variable - during the execution of an Algorithm.

176 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

A VARVariable is aNamedVariable, but it is not a Variable. Unlike a Variable, it does not itself hold an Instance. Instead,
it points to a cell that holds an Instance. The cell to which a VARVariable refers is called its referent. The referent of a
VARVariable can be anything to which a VAREXxpression (see 14.11.5) can refer. The referent of a VARVariable is fixed
at the time the instance of the VARVariable is created.

There are two kinds of VARVariables: VARParameter and AliasVariable.
Properties: abstract

11.4.3.1 Supertypes

NamedVariable

11.4.3.2 Attributes

none

11.4.3.3 Associations

none

11.4.3.4 Other Roles

From: Statements::AliasRef as refers-to

11.4.4 Class: Variable

Definition; a NamedVariable that exists during an invocation of an Algorithm or the evaluation of a GlobalRule and
contains an Instance of a specified data type. (In essence, the type of a Variable specifies the structure of the object that
contains the value.) During execution of an Algorithm, the Instance contained in a Variable can change.

Variables can be the objects of assignments or the referents of VAREXpressions (see Section 14.11), and they have
declared or implied data types that constrain their allowable values.

Note — See 9.5.4 of 1SO 10303-11:2004. Part 11 usesthe term “variable” to denote any of several kinds of objects that hold
values, including L ocalVariables, FunctionResults, Parameters, aggregate members, and ExplicitAttributes in EntityValues.
The term Variable here only refers to Local Variables, FunctionResults, and InParameters.

Properties: abstract
11.4.4.1 Supertypes
NamedVariable

11.4.4.2 Attributes

none

11.4.4.3 Associations

AssociationEnd: variable-type To: Core::VariableType

Definition: the data type of the Variable - the type of the values that the Variable can contain.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 177

In any given invocation, the data type of the Variable is an InstantiableType. If the data type of the Variable is specified
as an InstantiableType, it is fixed for al invocations. If the data type of the Variable is specified as an Actua Type, the
actual data type varies from invocation to invocation, according to the data type of an actual parameter. If the Variable is
an InParameter and its formal parameter type is a GeneralizedType, the variable-type is the corresponding Actual Type.

Note — See 9.5.4 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.4.4.4 Other Roles

From: Statements::VariableCell as refers-to

11.4.5 Association: variable-defined-in-scope

Definition: represents the relationship between a LocalVariable and the AlgorithmScope in which it is defined. Thisis a
refinement of the element-defined-in-scope relationship.

11.4.5.1 Supertypes

Core::element-defined-in-scope

11.4.5.2 Association Ends

AssociationEnd: namespace To: Core::AlgorithmScope

redefines: Core:NamedElement.namespace

Definition: represents the relationship between the Local Variable and the AlgorithmScope in which it is defined. Thisisa
refinement of the NamedElement:namespace relationship. The lifetime of a Local Variable is exactly equal to the lifetime
of the algorithm invocation or the GlobalRule evaluation that corresponds to the AlgorithmScope.

Multiplicity: 1..1

AssociationEnd: variables To: LocalVariable

subsets: Core: Scope.named-elements

Definition: represents the relationship between the Local Scope and the set of LocalVariables that are defined within it.
Multiplicity: 0..* unordered

Properties: composite
11.4.6 Generalization Sets

Generalization Set: NamedVariable categories complete, disjoint

Every NamedVariableis one of Variable or VARVariable.

178 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

11.5 Actual Types

In the simplest case, return values, variables, and other elements whose lifetime is the evaluation of the Algorithm are
declared to have InstantiableTypes. But they can also be declared to be derivatives of the data types of the actual
parameters in a given invocation. Figure 11.3 depicts the model of data types that have such declarations, herein called
Actual Types.

EXPRESS permitsthe generalized type specifications for formal parameters to contain labeled generic components
that refer to specific elements of the data type of the corresponding actual parameters. These labeled components are
modeled as ParametricElements (see 8.15.2). The specifications of data types that are Actual Types refer to
ParametricElements, as shown in Figure 11.3.

All of these concepts are described in detail in this sub clause.

soope-of-actual-type sMetaclazas
+actual-types +SCope A
ahetaclasss aMetaclasss 0] Algorithin
VariabfeType k1 ActualType h
(Core) (Core) HmEmber-type
1| +member-type a3 1 «Metac_lass»
{complete, disjoirt } Aqgregation Type
ActualType categories; [Care)

I

zhetaclaszs zhetaclaszs sMetaclazss
ActualAGGREGATEType ActualGenericType ActuaFAggregation Typa
+akel : Identifier [1] +label : [dentifier [1]
+iizEntity . Boolesn [1]
o1t o4 0. {complete, Hisjoint}
v v 0.2 Actualdogregation|ype categories
1 +refers-to 1 +tefers-to
P Rr— P Er— sMdetaclaszs zMetaclasz:
ParametricStructure ParametricType RERHAGType RUERSETType
[Corel (Core)
0.1 zhletaclasss zhletaclazss
Flovwer-biound ehetaclazss ActualARRAY Type ActualLISTType
SizeConstraint +izOptional : Boolean [1]
0.1 [Core)
+Lpprer-bound
1 1 1 =i
Hlo-index shetaclazzs
. _1 ArrayBound
+hi-incex (Core)

1

Figure 11.3 - Actual Types

11.5.1 Class: Core::ActualType

Definition: specification of an instantiable data type by reference to (a component of) the data type of the actual
parameter that corresponds to a formal parameter of the Algorithm.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 179

Each subtype of Actual Type refers to a ParametricElement that is defined among the formal Parameters of the Algorithm.
The ParametricElement denotes the corresponding component of the data type of the corresponding actual parameter in

any given invocation. The ParametricElement is named by an EXPRESS type label, and the Actua Type refers to that
ParametricElement viathe type label.

Note — The class Actua Type is defined in the Core package (8.7.1).

11.5.2 Class: ActualAGGREGATEType

Definition: an Actual Type that is an aggregation type whose structure is specified by a ParametricStructure, which refers
to the structure of a (component of) an actual parameter. The .label attribute is used to determine the ParametricStructure
to which it refers. The member-type of the Actual AGGREGATEType can be any VariableType (Instantiable or Actual)
and need not have any relationship to the member type of the corresponding actual parameter.

Note — See 9.5.3.4 of 1SO 10303-11:2004.
11.5.2.1 Supertypes

Core::Actua Type

11.5.2.2 Attributes

Attribute: label To: Core::ldentifier

Definition: represents the EXPRESS type label on the AGGREGATE type, which is used to associate it with the
ParametricStructure that defines that identifier.

Note — The label on the Actual AGGREGATETypeis not adefinition of that symbol; it is areference to the occurrence of that
symbol as alabel on acomponent of aformal parameter type that defines the label in the Algorithm namespace asthe i d for a
ParametricStructure that defines what the actual structure isfor each invocation. More than one Actual AGGREGATEType can
have the same label and refer to the same structure.

Multiplicity: 1..1

11.5.2.3 Associations

AssociationEnd: lower-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents a lower-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the lower-bound constraint is present, the number of members of the
aggregate value shall be greater than or equal to this value. If the lower-bound is not present or evaluates to zero, thereis
no constraint. Unless the lower-bound specified for the AGGREGATE type is an explicit “0,” this constraint shall appear.

Note — See 9.5.3.2 of 1SO 10303-11:2004.
Multiplicity: 0..1

AssociationEnd: member-type To: Core::VariableType

Definition: represents the type of the components of the actual aggregation type that has the structure that corresponds to
the AGGREGATE type. The type of the members may be an InstantiableType or an Actual Type derived from a
ParameterType.

180 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.5.3.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: refers-to To: ParametricStructure

Definition: the ParametricStructure that defines the identifier that corresponds to the : 1abel on the
Actua AGGREGATEType. When instantiated, the Actual AGGREGATEType will have the structure of the component of
the datatype of the Actual Parameter that corresponds to this ParametricStructure.

Multiplicity: 1..1

AssociationEnd: upper-bound To: Core::SizeConstraint

Subsets: Core::ParameterType:constraints

Definition: represents an upper-bound constraint on aggregate values that are instances of the actual aggregation type
corresponding to the AGGREGATE type. If the upper-bound constraint is present and does not evaluate to indeterminate
“?"), the number of members of the aggregate value shall be less than or equal to this value. If the upper-bound is not
present or evaluates to indeterminate, there is no constraint. Unless the upper-bound specified for the AGGREGATE type

is an explicit “?’, this constraint shall appear.

Note — See 9.5.3.3 of 1SO 10303-11:2004.
Multiplicity: 0..1
11.5.2.4 Other Roles

none

11.5.3 Class: ActualAggregationType

Definition: an aggregation type whose member-type is an Actual Type. An Actual AggregationType differs from an
InstantiableAggregationType in that the data type of its components is dynamically specified.

Properties: abstract
11.5.3.1 Supertypes

Core::AgaregationType , Core::Actua Type

11.5.3.2 Attributes

none

11.5.3.3 Associations
AssociationEnd: member-type To: Core::ActualType
Definition: represents the Actual Type that is the the type of the component elements of the Actual AggregationType.

Note — If the member-type were not itself an Actual Type, the Actual AggregationType would be an Instantiable
AggregationType.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 181

11.5.3.4 Other Roles

none

11.5.4 Class: ActualARRAYType
Definition: an Actual AggregationType whose structure is an ARRAY with defined lower and upper bounds on the index.
11.5.4.1 Supertypes

Actua AggregationType

11.5.4.2 Attributes

Attribute: isOptional To: (UML) Boolean

Definition: True if the member type is declared to be OPTIONAL in the syntactic designation for the ARRAY Type; False
otherwise. When isOptional is True, any instance of the ARRAY Type is permitted to have members whose value is
unspecified (“7?").

Note — See 8.2.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.5.4.3 Associations

AssociationEnd: hi-index To: Core::ArrayBound

Definition: represents the upper bound on the Integer index-range of each value of the ActualARRAY Type.
Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: lo-index To: Core::ArrayBound
Definition: represents the lower bound on the Integer index-range of each value of the ActualARRAY Type.

Note — See 8.2.1 and 15.11 of 1SO 10303-11:2004.
Multiplicity: 1..1
11.5.4.4 Other Roles

none

11.5.5 Class: ActualBAGType
Definition: an Actual AggregationType whose structure is a BAG (see 8.11.4).
11.5.5.1 Supertypes

Actual AggregationType

182 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

11.5.5.2 Attributes

none

11.5.5.3 Associations

none

11.5.5.4 Other Roles

none

11.5.6 Class: ActualGenericType

Definition: an Actual Type that refers to a ParametricType - the data type, or the member-type, of an actual parameter.
The : 1abel attribute is used to determine the ParametricType to which it refers.
Note — See 9.5.3.4 of 1SO 10303-11:2004.

11.5.6.1 Supertypes

Core::Actua Type

11.5.6.2 Attributes

Attribute: isEntity To: (UML) Boolean
Definition: True if the Actual Type is required to be an EntityType; False otherwise.

Multiplicity: 1..1
Properties: derived.

Tagged Values

derivation = self->refers-to->isEntity;

Attribute: label To: Core::ldentifier

Definition: represents the EXPRESS type label on the GENERIC or GENERIC_ENTITY keyword, which is used to
associate it with the ParametricType that defines that type label.

Note — The label on the ActualGenericTypeis not adefinition of that symbol; it is areference to the occurrence of that symbol
as alabel on acomponent of aformal parameter type.

Multiplicity: 1..1
11.5.6.3 Associations

AssociationEnd: refers-to To: Core::ParametricType

Definition: the ParametricType that defines the identifier that corresponds to the : 1label on the ActualGenericType.
When instantiated, the actual type will be the (component of the) datatype of the actual parameter that corresponds to this
ParametricType.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 183

11.5.6.4 Other Roles

none
11.5.7 Class: ActualLISTType
Definition: an Actual AggregationType whose structure is a LIST. (See 8.11.6)

11.5.7.1 Supertypes

Actua AggregationType

11.5.7.2 Attributes

none

11.5.7.3 Associations

none

11.5.7.4 Other Roles

none
11.5.8 Class: ActualSETType
Definition: an Actual AggregationType whose structure is a SET. (See 8.11.8)

11.5.8.1 Supertypes

Actua AggregationType

11.5.8.2 Attributes

none

11.5.8.3 Associations

none

11.5.8.4 Other Roles

none

11.5.9 Association: scope-of-actual-type

Definition: represents the relationship between an Actual Type and the Algorithm that is its scope.
11.5.9.1 Association Ends

AssociationEnd: scope To: Algorithm

Definition: the Algorithm in which the Actual Type is specified. The Actual Type must be the data type of a Variable or
Attribute whose scope is contained in the Algorithm.

184 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

The ParametricElement that defines the type label to which the Actual Type refers shall be defined among the formal
parameters of the Algorithm.

Note — An Actual Type does not have a namespace; it defines no identifiers. The : scope of the Actual Type represents the
ownership of the Actual Type and the lifetime of the Actua Type.

Multiplicity: 1..1

AssociationEnd: actual-types To: ActualType
Definition: the set of Actual Types that are defined in the Algorithm.
Multiplicity: 0..* unordered

Properties. composite

11.5.10 Generalization Sets

Generalization Set: ActualType categories complete, disjoint

Every Actual Typeis one of ActualGenericType, Actual AGGREGATEType, or Actual AggregationType.

Generalization Set: ActualAggregationType categories complete, disjoint

Every ActualAggregationType is one of Actual ARRAY Type, ActualBAGType, ActualLISTType, or Actual SET Type.

Generalization Set: ElementSource categories complete, disjoint
Every Core:ElementSource is one of Algorithms:Parameter or Core:Attribute

Note — This Generalization set is depicted in Figure 8.15, but the Parameter - ElementSource generalization only existsin the
Algorithms package.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 185

186 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

12 Package : Rules

12.1 General

The Rules Package contains the models of RULEs and SUBTY PE_CONSTRAINTS, which rely on the notion of extents of
types with populations (see sub clause 10.8).

12.2 Imported Packages

Imports Package: Algorithms
The Rules Package imports the Algorithms Package for the Variable and Statement concepts.

By way of the Algorithms Package, the Rules Package imports the Core Package for the NamedElement and Scope
concepts, for the EntityType concept, and for the basic Expression concept.

12.3 Global Rules

This sub clause models the concepts used in EXPRESS RULE declarations. Figure 12.1 depicts the principal concepts.

zhetaclassy
eMetaclasss eMetackasss NamaedFlapent
AlgorithmScope SchemaElomont I [Core)
[Core) (Core] +id - Scopedid [0.1]
Fi
+namespace | 4 -
variable-tefined-n-scope GlobalRule-cortains-MameadRule T
+HNamespace shetaclazss
. Metaclazs
+vatiables | 0.* y d {redefines namespacet 1.3 NamedRule
GlobalRule
shletaclasss 1 +oontainz-rules | +position ; Integer [1]
LocalVariable i {subsets named-elements}
(Algarithms) D-/ 0.* % +constraint-rules 0.1
rule-constrains-extents
+zupporting-bocdy ./ 0.1 1.% % +constrained-extents r:hat I+asserts-expressmn
zhletaclasss sMetaclazss :: raeias?zz
Statement EntityType FECu:urej
[Algarithms] [Care)

Figure 12.1 - Global Rules

12.3.1 Class: GlobalRule

Definition: a SchemaElement denoting a collection of NamedRules for the interaction of the Extents of one or more
Entity Types. It corresponds to the RULE declaration in EXPRESS. Every GlobalRule is al'so an AlgorithmScope and may
define CommonElements and Variables.

Note — See 9.6 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 187

12.3.1.1 Supertypes

Core::AlgorithmScope, Core:: SchemaElement

12.3.1.2 Attributes

none

12.3.1.3 Associations

AssociationEnd: constrained-extents To: Core::EntityType

via: rule-constrains-extents

Definition: the Entity Types whose Extents are constrained by the GlobalRule
Note — See 9.6 of 1SO 10303-11:2004.
Multiplicity: 1..* unordered

AssociationEnd: contains-rules To: NamedRule
via: Global Rule-contains-NamedRule

Subsets: Core::L ocal Scope:local-elements

Definition: represents the relationship between the Globa Rule (container) and the NamedRules it contains. Since the
GlobaRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope:named-elements relationship.

Multiplicity: 1..* unordered
Properties. composite

AssociationEnd: supporting-body To: Algorithms:: Statement

Definition: represents the Statement, usually a StatementBlock, that provides values for Local Variables used in the
NamedRules that are contained in the GlobalRule.

The supporting-body of the GlobalRule can only appear if one or more Local Variables are introduced for use in the
NamedRules, and even then, the supporting-body is not required if the value of each LocalVariable is completely defined
by an initializing expression.

If an implementation of the metamodel does not support the Statements compliance point, the supporting body should be
captured as text when it is present.

Note — See 9.6 of SO 10303-11:2004.
Multiplicity: 0..1

Properties: composite

12.3.1.4 Other Roles

none

188 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

12.3.1.5 Rules

Constraint (OCL)
exists(self->defined-in) ;

Every GlobalRule shall be defined-in a Schema.

Constraint (OCL)
exists(self->id);

Every GlobalRule shall have an identifier

Constraint (OCL)
if exists(self->supporting-body) then exists(self-s>variables);

A GlobalRule cannot have a supporting body unlessit defines Local Variables.

12.3.2 Class: NamedRule

Definition: a constraint requiring a given Boolean Expression involving the Extents of one or more Entity Types to
evaluate to True. It corresponds to a domain rule contained in a Rule declaration in EXPRESS.

Note — See 9.6 of SO 10303-11:2004.
12.3.2.1 Supertypes

Core::NamedElement

12.3.2.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the lexical position of the NamedRule in the sequence of NamedRules contained in the Global Rule.
Multiplicity: 1..1

12.3.2.3 Associations

AssociationEnd: asserts-expression To: Core::Expression

Definition: represents the fact that every NamedRule states a Boolean expression that is required to be True for the
Extents in a given Population.

Note — See 9.6 of 1SO 10303-11:2004. The asserts-expression that formulates the NamedRule is wholly owned by the
NamedRule. It is not treated as reusable.

Multiplicity: 1..1

AssociationEnd: namespace To: GlobalRule
via: Global Rule-contains-NamedRule

redefines; Core::NamedElement.namespace

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 189

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement:namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the Global Rule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1
12.3.2.4 Other Roles

None

12.3.3 Association: GlobalRule-contains-NamedRule

Definition: represents the relationship between the GlobalRule (container) and the NamedRules it contains.
12.3.3.1 Supertypes

Core::element-defined-in-scope

12.3.3.2 Association Ends

AssociationEnd: contains-rules To: NamedRule

Definition: represents the relationship between the Globa Rule (container) and the NamedRules it contains. Since the
GlobaRule also constitutes the scope of the id (if any) for the NamedRule, this relationship is treated as a specialization
of the Scope:named-elements relationship.

Multiplicity: 1..* unordered
Properties: composite

AssociationEnd: namespace To: GlobalRule

Definition: represents the relationship between the NamedRule and the GlobalRule that contains it. This is a refinement
of the NamedElement:namespace relationship to Scope. In addition to being the namespace for the id of the NamedRule,
the Global Rule identifies the EntityTypes to which the NamedRule applies (and whose Extents may be referred to in the
asserts-expression) and may define Variables that are used in the asserts-expression.

Multiplicity: 1..1

12.3.4 Association: rule-constrains-extents
Definition: represents the relationship between a GlobalRule and the Entity Types whose Extents it constrains.
Note — See 9.6 of 1SO 10303-11:2004.

12.3.4.1 Association Ends

AssociationEnd: constrained-extents To: Core::EntityType
Definition: represents the relationship between a GlobalRule and the Extents of the EntityTypes that it constrains.
Note — See 9.6 of 1SO 10303-11:2004.

Multiplicity: 1..* unordered

190 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: constraint-rules To: GlobalRule
Definition: represents the relationship between an EntityType and the Global Rules that constrain it.

Note — See 9.6 of 1SO 10303-11:2004.
Multiplicity: 0..* unordered

12.4 SupertypeRules and SubtypeConstraints

This sub clause models the concepts used in EXPRESS supertype clauses and SUBTYPE_CONSTRAINT declarations.

sMetaclazss
CommonEfamant
[Core)

i

#hetaclasss
*

SupertypeRule 0.
+aszertsabstract | Boolean [1]

+named-zupertype [4

1 +caollection sMetaclaszs
. . EntityType
rule-includes-SubtypeConstraints (Core)

0.* | +constraints

+constrained-subtypes | 1%

shetaclazss shetaclazsy .
Expression jteduivalent-rule SubtypeConstraint --=2ubtype-constraints
[Core) ! 0.1 0.* rule-constrains-subtypes
Fas

fcomplete, disjoirt
SubtypeConstraint categories

sMetaclasss #Metaclasss #Metaclasss
AHNDConstraint TOTAL_OVERConstraint OHNEOFConstraint

Figure 12.2 - Supertype Rules and Subtype Constraints

12.4.1 Class: ANDConstraint

Definition; a constraint requiring its two operands to be equal as sets. Each operand can be a single Extent or a union of
Extents.

Note — See 9.2.5.4 of 1SO 10303-11:2004.
12.4.1.1 Supertypes

SubtypeConstraint

12.4.1.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 191

12.4.1.3 Associations

none

12.4.1.4 Other Roles

none

12.4.2 Class: ONEOFConstraint

Definition: a constraint requiring all of its operands to be mutually exclusive. Each operand can be a single Extent or a
union of Extents.

Note — See 9.2.5.2 of 1SO 10303-11:2004.

12.4.2.1 Supertypes

SubtypeConstraint

12.4.2.2 Attributes
none
12.4.2.3 Associations

none

12.4.2.4 Other Roles

none

12.4.3 Class: SubtypeConstraint

Definition: a Rule requiring a specific relationship among the Extents of two or more subtypes of a given supertype
EntityType. The constraint can be stated as a relationship among the Extents as Sets of entity instances, and is equivalent
to a NamedRule.

Note — See 9.2.5 of 1SO 10303-11:2004.
12.4.3.1 Supertypes

none

12.4.3.2 Attributes

none

12.4.3.3 Associations

AssociationEnd: collection To: SupertypeRule
via: rule-includes-SubtypeConstraints

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

192 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1

AssociationEnd: constrained-subtypes To: Core::EntityType

via: rule-constrains-subtypes

Definition: the Entity Types whose Extents are constrained by the SubtypeConstraint.
Note — See 9.2.5 of SO 10303-11:2004.
Multiplicity: 1..* unordered

AssociationEnd: equivalent-rule To: Core::Expression

Definition: represents the fact that every SubtypeConstraint is equivalent to a BooleanExpression involving the Extents of
the EntityTypes named in the SubtypeConstraint. The Expression is required to evaluate to True. The effect is that the
SubtypeConstraint is equivalent to a NamedRule.

Note — The equivalent-rule that formulates the SubtypeConstraint is wholly owned by the SubtypeConstraint. It is not treated
asreusable.

Multiplicity: 1..1
12.4.3.4 Other Roles

none

12.4.4 Class: SupertypeRule

Definition: a CommonElement representing a collection of rules requiring specific relationships among the Extents of two
or more subtypes of a given supertype EntityType. The interpretation of a SupertypeRule is that all of the contained
constraints shall hold. SupertypeRule corresponds to a SUBTYPE_CONSTRAINT declaration, or to the EXPRESS
supertype-clause attached to an entity declaration.

A SupertypeRule shall have an :id value if and only if it represents an EXPRESS SUBTYPE_CONSTRAINT.

Note — Thisrule reflects the EXPRESS syntax. An EXPRESS supertype-clause has no identifier. An EXPRESS
SUBTYPE_CONSTRAINT isrequired to have an identifier.

Note — See 9.2.5 and 9.7 of 1SO 10303-11:2004.
12.4.4.1 Supertypes

Core::CommonElement

12.4.4.2 Attributes

Attribute: assertsAbstract To: (UML) Boolean

Definition: represents a declaration in a SUBTYPE_CONSTRAINT that the .supertype EntityType is to be treated as
ABSTRACT in this context, which is usually an interfacing schema.

Note — See clause 9.2.5.1 of 1SO 10303-11:2004.
Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 193

12.4.4.3 Associations

AssociationEnd: constraints To: SubtypeConstraint

via: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Multiplicity: 0..* unordered
Properties: composite

AssociationEnd: named-supertype To: Core::EntityType

Definition: represents the relationship between a SupertypeRule and the Entity Type that is the supertype of all the
Entity Types that appear in the SupertypeRule. This relationship is nominal for ANDConstraints and ONEOFConstraints,
but significant for ABSTRACT and TOTAL_OVERConstraints.

Note — See 9.2.5 and 9.7 of 1SO 10303-11:2004.
Multiplicity: 1..1
12.4.4.4 Other Roles

none

12.4.5 Class: TOTAL_OVERConstraint

Definition: a constraint requiring the union of al of its operands to be equal to the Extent of the supertype.
Note — See 9.7.2 of SO 10303-11:2004.

Note — The proper model of a TOTAL_OVER constraint requires that the supertype be one of the operands of the equivalent-
expression and that the supertype be included among the constrai ned-subtypes.

12.4.5.1 Supertypes

SubtypeConstraint

12.4.5.2 Attributes

none

12.4.5.3 Associations

none

12.4.5.4 Other Roles

none

12.4.6 Association: rule-constrains-subtypes

Definition: represents the relationship between a SubtypeConstraint and the Extents of the Entity Types to which it refers.

194 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See 9.2.5 of SO 10303-11:2004.

12.4.6.1 Association Ends

AssociationEnd: constrained-subtypes To: Core::EntityType

Definition: represents the relationship between a SubtypeConstraint and the Entity Types whose Extents it constrains.
Note — See 9.2.5 of SO 10303-11:2004.

Multiplicity: 1..* unordered

AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between an Entity Type and the SubtypeConstraints that involve it.
Note — See 9.2.5 of SO 10303-11:2004.

Multiplicity: 0..* unordered

12.4.7 Association: rule-includes-SubtypeConstraints

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

12.4.7.1 Association Ends

AssociationEnd: collection To: SupertypeRule

Definition: represents the relationship of a SubtypeConstraint to the SupertypeRule that contains it, which also identifies
the common supertype.

Multiplicity: 1..1

AssociationEnd: constraints To: SubtypeConstraint

Definition: represents the relationship between a SupertypeRule (supertype-clause or SUBTYPE_CONSTRAINT) and the
individual subtype constraints it contains.

Multiplicity: 0..* unordered
Properties: composite
12.4.8 Generalization Sets

Generalization Set: ActualType categories complete, disjoint

Every SubtypeConstraint is one of ONEOFConstraint, ANDConstraint, or TOTAL_OVERConstraint.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 195

196 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13 Package : Expressions

13.1 General

The Expressions Package contains the detailed modeling concepts for Expressions. The basic Expression model in the
Core Package is permitted to be a syntactic string. This package provides the elements that support the operational
semantics of the expression.

13.2 Imported Packages

Imports Package: Algorithms

The Expressions Package imports the Algorithms Package for the Variable concept, and for the Function and Parameter
concepts used in FunctionCalls.

By way of the Algorithms Package, the Expressions Package imports the Core Package for the basic Expression concept,
for the basic Instance concept for Expression results, and for references to InstantiableTypes, SingleEntityTypes, and
Attributes.

Imports Package: Instances

The Expressions Package imports the Instances Package for the Instance concepts that correspond to Literals and other
references to Constants.

13.3 Overview of Expressions

Figure 13.1 provides the overview of Expression types. Expression and TextExpression are described in the Core package.
FullExpression is the abstract class that represents the semantic model of an EXPRESS expression. It is described in this
sub clause. Each of its subclasses is described in a separate sub clause below.

ahetaciazss +evaluation aMetaciazss
Expression stance
*
[Core) o. 0.1 [Core)
1complete, disjoint}
Expression categoties T

Metaclazss shietaclazss shietaclazss shietaclazss

Primary Sefactor Qparation FunctionCall
Metaclazss sMetaclazss hetaclzzss zMetaclazss

IndaxQOporation QueryExpression PartialEntityConstructor Aggregatelnitializer

Figure 13.1 - Expressions

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 197

13.3.1 Class Core::Expression

Definition: in general, an Expression is the representation of an Instance by a set of computational operations that will
produce that Instance when performed in the context in which the Expression occurs. An Expression is always evaluated
in a context which determines the assignment of Instances to model elements (e.g.,Variables, Attributes, etc.) that appear
in the Expression. The Instance produced by the same Expression may vary from context to context. The Instance
produced is said to be the value, or the evaluation, of the Expression.

Note — In general, Expressions are treated as reusable. It isrecommended, however, that, except for literals and local
variables, each occurrence should be a unique object. A few uses of Expression are not treated in the model as reusable,
specifically those that are the definitions of Rules.

Note — Class Expression, and all of its properties, are defined in the Core Package, so that it can be used by other Packages,
including Core, as necessary. Thisentry servesonly to provide the Definition and alink to the complete specificationin 8.18.1.

13.3.2 Class: IndexOperation

Definition: an Expression that returns a value “extracted from” a given base value.

Properties: abstract
13.3.2.1 Supertypes

Core::Expression

13.3.2.2 Attributes

none

13.3.2.3 Associations

AssociationEnd: base-value To: Core::Expression

Definition: represents the base value from which the result value is to be extracted. For an Aggregatel ndex, the base-value
Expression must evaluate to an AggregateValue. For a Binarylndex, the base-value Expression must evaluate to a
BINARY value. For a Stringlndex, the base-value Expression must evaluate to a STRING Value.

Multiplicity: 1..1
13.3.2.4 Other Roles

none

13.3.3 Class: Operation

Definition: an abstract subclass of Expression; represents the result of a well-defined mathematical operation or character
manipul ation.

Note — See clause 12 of SO 10303-11:2004.

Properties: abstract

198 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.3.3.1 Supertypes

Core::Expression

13.3.3.2 Attributes

none
13.3.3.3 Associations
none

13.3.3.4 Other Roles

none

13.3.4 Class: Primary

Definition: an abstract subclass of Expression representing a specific Instance, or the current value of an object that has a
simple lexical designation.

Note — See 12.7 of 1SO 10303-11:2004.

Properties. abstract
13.3.4.1 Supertypes

Core::Expression

13.3.4.2 Attributes

none
13.3.4.3 Associations
none

13.3.4.4 Other Roles

none

13.3.5 Class: Selector

Definition: a FullExpression that returns the value of one or more Attributes of an Entitylnstance.
Note — This concept does not appear in Part 11 per se, but the three subclasses all appear in Part 11 and have this property.
Properties: abstract

13.3.5.1 Supertypes

Core::Expression

13.3.5.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 199

13.3.5.3 Associations

AssociationEnd: entity-instance To: Core::Expression

Definition: represents the entity instance from which the Selector extracts the value of the named Attribute(s).
Note — See 12.7.3 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.3.5.4 Other Roles

none

13.3.6 Generalization Sets

Generalization Set: Expression categories complete, disjoint

Every Expression is one of Primary, Selector, Operation, IndexOperation, FunctionCall, QueryExpression,
Partial EntityConstructor, or Aggregatel nitializer.

13.4 Primaries

This sub clause describes the EXPRESS operations that return the values of hamed independent elements — Constants,
Enumeration items, Extents, Variables, Parameters. It also includes SELF, which is a reference to the current instance of
a data type, and Literals, which are specialized syntactic notations that refer to values of simple types.

200 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

«Metaclaszs

sMetaclasss Expression . sMetaclasss
i +evaluation
Primary — (Core) 01 Instance
* ..
+ext : ExpressText [0..1] 0. (Core)

fcomplete, disjoint }
Frimary cateqories

| -refers-to
sMetaclazss shetaclazss fredefines | apetaclasss
SELFRef IndeterminateRef - Svalustion jndeterminate
0. 1 (Instances)
zhietaclazzs sreferstn zMetaclasss
Literal " SimpleVaive
o.. g.1 [Instances)
Tredefines evaluation}
«Metaclaszs Metaciasss
i +refers-to
R EET ra) NamoedVariable
+idl : ldertifier [1]{redefines test}| 0.°] 1 (Algorithims)
|
i | i
.."
shetaclasss JIJ sreferatn wMetaclasss
ParameterRef " Parameotoy
o.. 1 (Algorithims)
{redefines refers-to}
zhetaclasss Metaciazss
fers-t
L=l 2 treferse Enumerationitem
+id : Identifier [1]){redefines text}| 0.7 1 (Enumerations)
Tredefines evaluation}
shetaciasss e asss
ConstantRef +refers-to Constant
+id : Iddertifier [1lredefines text} | 0.° 1 (rstances)
sMetaclasss et . aMetaclasss
ExtentRef FETEFS-10 NawedType
+idd Identifier [1Kredefines text}| 0.° 1 (Care)

Figure 13.2 - Primaries

13.4.1 Class: ConstantRef

Definition: a Primary Expression that returns the (current) value of a given Constant. The :id attribute refers to an
identifier for a Constant defined in, or interfaced into, the schema

Note — See 12.7.1 of 1SO 10303-11:2004.
Note — A reference to an EXPRESS “Built-in Constant” is considered to be a Literal, not a ConstantRef.

13.4.1.1 Supertypes

Primary

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 201

13.4.1.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the Reference.
Multiplicity: 1..1
13.4.1.3 Associations

AssociationEnd: refers-to To: Instances::Constant

Definition: represents the Constant referred to by a ConstantRef.
Note — See 12.7.1 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.4.1.4 Other Roles

none

13.4.2 Class: EnumltemRef

Definition: a Primary Expression that returns an Enumerationltem (value)

Note — See 12.7.1 of SO 10303-11:2004.
13.4.2.1 Supertypes

Primar

13.4.2.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.4.2.3 Associations

AssociationEnd: refers-to To: Instances::Enumerationltem

redefines; Core:Expression.evaluation

Definition: represents the Enumerationltem value referred to by the EnumltemRef. This relationship specializes
Expression:eval uation.

Multiplicity: 1..1

202 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.4.2.4 Other Roles

none

13.4.3 Class: ExtentRef

Definition: a Primary Expression denoting the extent of a NamedType (almost always an entity data type), that is, the set
of instances of that data type that appear in the population. This type of Primary is only permitted in an Expression that
states a Rule.

Note — See 9.6 of SO 10303-11:2004.
13.4.3.1 Supertypes

Primary

13.4.3.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.4.3.3 Associations

AssociationEnd: refers-to To: Core::NamedType

Definition: represents the relationship between the Extent Reference and the NamedType to which the :id value refers.
The value returned is the Extent of that NamedType within the (current) Population.

Multiplicity: 1..1
13.4.3.4 Other Roles

none

13.4.4 Class: IndeterminateRef

Definition; a Primary Expression consisting of the ‘symbol “?"’, which always evaluates to the INDETERMINATE value
(see 10.3.4).

Note — See 14.2 of 1SO 10303-11:2004.

Although the Indeterminate (“?") symbol is described as a built-in constant in 1SO 10303-11, it is treated here as a distinct
kind of Primary, because it refers-to (evaluates-to) an instance that is not a value of any DataType.

13.4.4.1 Supertypes

Primar

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 203

13.4.4.2 Attributes

none

13.4.4.3 Associations

AssociationEnd: refers-to To: Instances:Indeterminate

redefines: Core:Expression.evaluation

Definition: represents the fact that the evaluation of the IndeterminateRef is always the Indeterminate I nstance.
Multiplicity: 1..1

13.4.4.4 Other Roles

none

13.4.5 Class: Literal

Definition: a Primary Expression consisting of a symbol that denotes a specific value of a SimpleType. The :text attribute
of Expression is the representation of the value.

Note — See 7.5 of 1SO 10303-11:2004.

Note — References to the built-in constants - E, PI, TRUE, FALSE, UNKNOWN - are considered to be Literalswhose : text
isthe keyword.

13.4.5.1 Supertypes
Primar

13.4.5.2 Attributes
none

13.4.5.3 Associations

AssociationEnd: refers-to To: Instances::SimpleValue

redefines; Core: Expression.evaluation

Definition: represents the SimpleValue value referred to by the Literal. This relationship specializes
Expression:eval uation.

Multiplicity: 0..1

Note — Although every Literal refersto exactly one SimpleValue, it is not usually necessary to instantiate either the
SimpleValue or the relationship.

13.4.5.4 Other Roles

none

204 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.4.6 Class: ParameterRef
Definition: a Primary Expression that returns the current value associated with a given Parameter.
A ParameterRef is only permitted within the body of an Algorithm.

For an InParameter, the associated value is the current value of the InParameter.
For a VarParameter, the associated value is the current value in the referent of the VarParameter.

A ParameterRef is a subclass of VariableRef, because every Parameter is a NamedVariable, and a ParameterRef is a
reference to the value of the Parameter seen as a variable in the body of the Algorithm.

Note — See 12.7.1 of 1SO 10303-11:2004.
13.4.6.1 Supertypes
VariableRef

13.4.6.2 Attributes

none

13.4.6.3 Associations

AssociationEnd: refers-to To: Algorithms::Parameter

redefines; VariableRef.refers-to

Definition: the formal Parameter to which the ParameterRef refers. If the forma Parameter is an InParameter, the
ParameterRef refers to its current value. If the formal Parameter is a VarParameter, the ParameterRef refers to the current
value of its referent.

Note — See 12.7.1 of SO 10303-11:2004.
Multiplicity: 1..1
13.4.6.4 Other Roles

none

13.4.7 Class: SELFRef

Definition: a Primary Expression consisting of the symbol SELF. It refers to the value of each instance (in any
Population) of the data type being defined by the declaration in which it appears. SELF is only a valid Symbol in a
DomainRule.

Note — See clause 14.5 of 1SO 10303-11:2004.
13.4.7.1 Supertypes

Primar

13.4.7.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 205

13.4.7.3 Associations
none

13.4.7.4 Other Roles

none

13.4.8 Class: VariableRef

Definition: a Primary Expression that returns the value currently associated with a given NamedVariable.
NamedVariables include Local Variables, QueryVariables, ControlVariables, and AliasVariables. They also include
Parameters and FunctionResults seen as variables within the body of the Algorithm.

A VariableRef that refers-to a QueryVariable may occur anywhere within expressions in the owning Query.

A VariableRef that refers-to a ControlVariable may occur anywhere within the RepeatStatement that defines the
Control Variable.

A VariableRef that refers-to an AliasVariable may occur anywhere within the AliasStatement.
A VariableRef that refers-to a Local Variable may occur anywhere within the AlgorithmScope in which it is defined:

- for aGlobalRule, it may occur anywhere within the body of the GlobalRule, or within the NamedRul es contained
in the GlobalRule;

- for an Algorithm, it may occur within the body of an Algorithm or within initial-value expressions for other
Local Variables.

A VariableRef that refers to a Parameter may occur anywhere within the body of the Algorithm, or within initial-value
expressions for Local Variables.

A VariableRef that refers to a FunctionResult may occur anywhere within the body of the Algorithm.

The value associated with a VariableRef that refers to aVARVariable (an AliasVariable or a VARParameter) is the current
value in the referent of the VARVariable.

The value associated with any other VariableRef is the current value in the Variable to which the VariableRef refers.
Note — See 12.7.1 of 1SO 10303-11:2004.

13.4.8.1 Supertypes

Primary

13.4.8.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the reference.

Multiplicity: 1..1

206 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.4.8.3 Associations

AssociationEnd: refers-to To: Algorithms::NamedVariable

Definition: represents the relationship between the VariableReference and the local Variable to which it refers.
Multiplicity: 1..1
13.4.8.4 Other Roles

none

13.4.9 Generalization Sets

Generalization Set: Primary categories complete, disjoint

Every Primary is one of ConstantRef, EnumitemRef, ExtentRef, IndeterminateRef, Literal, SEL FRef, or VariableRef.

13.5 Indexing

This sub clause describes the EXPRESS operations that select values that are part of Instances. Indexing operations —
aggregate indexing, string indexing and binary indexing — extract component values by their numbered positions in the
Instance. These concepts are shown in Figure 13.3.

+ndex-value
fivet-coe «Metau:lagx- 1
] Expression +first-hit
+azt-code Raic) 1
' +Hazt-hit
+hase-value |1 0.1
D..*
sMetaclasss
IrdexOpeoration
Fas
{complete, disjoint }
IndexOperation categories
0.4 |0+ | | 0.5 0.
zhletaclazss zhletaclazss zhletaclazs s
Stringindex Aggregatelndex Binaryindex
0.1

Figure 13.3 - Indexing Operations

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 207

13.5.1 Class: Aggregatelndex

Definition: an IndexOperation that returns the value of a specified member of a given AggregateValue. .base-value
evaluates to the AggregateValue. .index-value evaluates to the “position” of the member to be extracted. The
interpretation of the .index-value depends on the kind of AggregateValue (Indexed, Ordered, Unordered).

Note — See 12.6.1 of SO 10303-11:2004.

13.5.1.1 Supertypes

IndexOperation
13.5.1.2 Attributes

none

13.5.1.3 Associations

AssociationEnd: index-value To: Core::Expression

Definition: represents the (Integer) index value designating the member whose value is to be extracted. The interpretation
of the index value depends on the kind of AggregateValue.

Note — See 12.6.1 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.5.1.4 Other Roles

none

13.5.2 Class: Binarylndex

Definition: an IndexOperation that returns a substring of one or more bits from a BINARY value. .base-value is the
BINARY value. .first-bit designates the position of the first bit to be extracted. .last-bit designates the position of the last
bit to be extracted. .last-bit has no value if only one bit is to be extracted.

Note — See clause 12.3.1. of SO 10303-11:2004.
13.5.2.1 Supertypes

IndexOperation
13.5.2.2 Attributes

none

13.5.2.3 Associations

AssociationEnd: first-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first bit to be extracted.

Multiplicity: 1..1

208 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: last-bit To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last bit to be extracted. .1ast-bit has no
value if only one bit is to be extracted.

Multiplicity: 0..1
13.5.2.4 Other Roles

none

13.5.3 Class: StringIndex

Definition: an IndexOperation that returns a substring of one or more characters (codes) from a STRING value. .base-
value is the STRING value. .first-code designates the position of the first character (code) to be extracted. .last-code
designates the position of the last character (code) to be extracted. .last-code has no value if only one character is to be
extracted.

Note — See clause 12.5.1. of 1SO 10303-11:2004.

13.5.3.1 Supertypes

IndexOperation
13.5.3.2 Attributes

none

13.5.3.3 Associations

AssociationEnd: first-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the first character (code) to be extracted.

Multiplicity: 1..1

AssociationEnd: last-code To: Core::Expression

Definition: represents the (positive integer) value that designates the position of the last character (code) to be extracted.
last-code has no value if only one character (code) is to be extracted.

Multiplicity: 0..1
13.5.3.4 Other Roles

none

13.5.4 Generalization Sets

Generalization Set: IndexOperation categories complete, disjoint

Every IndexOperation is one of Aggregatelndex, Stringlndex, or Binarylndex.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 209

13.6 Selection

This sub clause describes the EXPRESS operations that select values that are related to Entitylnstances, or are
components of PartialEntityValues. Selector operations extract values related to entity instances by the name of the
relationship — attributes, implicit inverse attributes (Usedin), and attribute-groups. In a similar way, they can be used to
extract the values of attributes and attribute-groups from Partial EntityValues. The Selector operations are shown in Figure
13.4.

zhetaclazsy
+entity-instance Expression
1 [Core)

Hext : ExpressText [0.1]

I

0 hletactazss
- Sofactor
focomplete, disjoint}
=electar categaries T
zhetaclazss zhMetaclazss zhetaclazss
GroupRef AttributeRef UsedinRef
+id ; [dertifier [1]){subzets text} +id ; [dertifier [1]){subsets text}
,.--‘f 0.* 0.*
0.x 0.x
0.4 .
+refers-to | 4 +refers-to 1 - +domain | 0.1
. . . +Hnverse-of
Metaclass, | Sttribute-declared-in-entity Metaclasss . . Metaclasss
SingleEntityType | +of-srtity +declarss | Attridate fertity-has-stributes EntityType
[Care) 1 0.* [Care) Hattributes 1 [Care)

n.* +iowyning-entity

Figure 13.4 - Attribute and Attribute-Group Selectors

13.6.1 Class: AttributeRef

Definition: a Selector expression that returns the value of a given Attribute of a given entity instance.

Note — See 12.7.3 of 1SO 10303-11:2004.
13.6.1.1 Supertypes

Selector

13.6.1.2 Attributes

Attribute: id To: Core::ldentifier

Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the reference.

210 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1
13.6.1.3 Associations

AssociationEnd: refers-to To: Core::Attribute

Definition: represents the relationship between the AttributeReference and the Attribute to which it refers.
Multiplicity: 1..1
13.6.1.4 Other Roles

none

13.6.2 Class: GroupRef

Definition: a Selector that returns a Partial EntityValue consisting of the values of the Attributes of a given entity instance
that constitute a given SingleEntityType.

Note — See 12.7.4 of 1SO 10303-11:2004.
13.6.2.1 Supertypes
Selector

13.6.2.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: Core::Expression:text

Definition: represents the identifier that is the content of the reference.
Multiplicity: 1..1
13.6.2.3 Associations

AssociationEnd: refers-to To: Core::SingleEntityType

Definition: represents the relationship between the GroupReference and the SingleEntity Type (group of Attributes) to
which it refers.

Multiplicity: 1..1
13.6.2.4 Other Roles

none

13.6.3 Class: UsedInRef

Definition: a Selector expression that returns the Set of Entitylnstances for which the given entity instance is in the range
of the specified Attribute. In effect, it returns the value of the corresponding inverse attribute for the given entity instance.

Note — See clause 15.26 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 211

13.6.3.1 Supertypes

Selector
13.6.3.2 Attributes

none

13.6.3.3 Associations

AssociationEnd: inverse-of To: Core::Attribute

Definition: represents the relationship between the Usedin Reference and the Attribute designated by the :id value. The
Usedin Reference effectively produces the “inverse” of this Attribute.

Multiplicity: 1..1
13.6.3.4 Other Roles

none

13.6.4 Generalization Sets

Generalization Set: Selector categories complete, disjoint

Every Selector is one of AttributeRef, GroupRef, UsedInRef.

13.7 Operations

This sub clause describes the Expressions that are conceptually “operations’ with one operand (UnaryOperation) or two
operands (BinaryOperation).

The EXPRESS syntax for Operations takes several forms. Some of the operations are denoted by infix or prefix
operation symbols, such as “+” or “NOT.” Others are denoted by “built-in functions” that take one or two arguments that
are the operands. In this metamodel, they are all treated as Operations. Each built-in function is represented by a
corresponding BinaryOperator or UnaryOperator. There is not a one-to-one correspondence between Operations and
EXPRESS operation symbols and built-in functions, because some of the symbols are “overloaded,” in that they denote
different operations for operands of different data types.

This sub clause also includes the Coercion operation, which is a special case. It has only one operand, but it also has a
“meta-operand” — the data type to which the operand is to be logically or physically converted. Each EXPRESS data type,
including all user-defined types, implicitly defines a Coercion operation whose target is that datatype. And in that sense,
the data type simply distinguishes one coercion operations from another. There is no explicit EXPRESS syntax for
Coercion operations; they are inserted as part of the semantic interpretation of Expressions, when it is necessary to treat a
literal or result as representing a value of a different datatype.

212 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

+eft-operand aMetaclasss +operand

1 Expression 1
+right-operand (Care) +unary-operand

1 1
zhetaclasss
Oporation

a3
icomplete, disjoint
Operation categories
0.* o 0.*
zMetaclasss zhMetaclasss
BinaryOperation UnaryOperation
+operator ; BinaryOperator [1] +operator | UnaryCperator [1]
shletaclasss zhetaclasss 0+
VariableType [ttorgst-type - Coercion -
1 K

Figure 13.5 - Operations and Built-in Functions

13.7.1 Class: BinaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation or character manipulation on
two Expression operands, which are distinguished. An instance of BinaryOperation represents a usage of a value of
BinaryOperator with a specific left and right operand.

Note — See clause 12 of SO 10303-11:2004.
13.7.1.1 Supertypes

Operation
13.7.1.2 Attributes

Attribute: operator To: BinaryOperator
Definition: represents the conceptual operation that is actually being performed by the BinaryOperation.

Note — See SO 10303-11.2:2004, clause 12.
Multiplicity: 1..1

13.7.1.3 Associations

AssociationEnd: left-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “left” operand in the definition of the operation.

Note — See clause 12 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 213

Multiplicity: 1..1

AssociationEnd: right-operand To: Core::Expression

Definition: represents the operand Expression that produces one input to a BinaryOperation, distinguished (if needed) as
the “right” operand in the definition of the operation.

Note — See clause 12 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.7.1.4 Other Roles

none

13.7.2 Datatype: BinaryOperator

Stereotypes: enumeration

Definition: conceptual EXPRESS language element representing the interpretation of a binary operation symbol in the
context of the operand datatypes. Instances of this class are distinct operations, such as number-addition, set-union, string-
compare-equal, etc. Some BinaryOperators are denoted by “built-in functions” in EXPRESS syntax.

Note — See 1SO 10303-11.2:2004 clause 12 and some el ements of clause 15.
13.7.2.1 Supertypes

none

13.7.2.2 Values

Value Definition

AND Returnstrue if both operands are true, unknown if both are unknown, and false if either is
false.

Add Returns the arithmetic sum of two NUMBER operands.

BadAdd Returns the BagValue resulting from adding one to the count of occurrences of the value

of the second operand in the first operand, which must be a BagValue.

BagRemove Returns the BagVal ue resulting from subtracting one from the count of occurrences of
the value of the second operand in the first operand, which must be a BagValue. If the
first operand contains no occurrences of the value of the second operand, returns the
value of the first operand.

BagUnion For two BAG operands with a common member type, returns the BAG value in which
the number of occurrences of each value of the member type is the sum of the number
of its occurrences in the two operands.

BinaryAppend Returns the BinaryValue whose bits are the bits of the value of the first operand, which
must be a BinaryValue, in that order, followed by the bits of the value of the second
operand, which must be a BinaryValue, in that order.

DIV For two INTEGER operands, returns the integral part of the quotient of dividing the
value of the first by the value of the second.

214 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Difference For two SET operands with a common member type, returns the SET value containing
all members of the first operand except for those that are also members of the second
operand. For two BAG operands with a common member type, returns the BAG value
in which the number of occurrences of each value of the member type is the number of
its occurrences in the first operand minus the number of its occurrences in the second
operand, but not |ess than zero.

Divide For two NUMBER operands, returns the quotient of dividing the value of thefirst by the
value of the second.
EntityConstructor For two operands that are PartialEntityValues, returns the Partial EntityValue that

contains al of the SingleEntityValues that were present in either operand. This
operation is referred to in EXPRESS as the “complex entity constructor” ([]).

Note — See 1SO 10303-11:2004 clause 12.10

EntityValueEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
faseif the value of any attribute of the first operand is NotEqual to (or

EntityV @ ueNotEqual to) the value of that attribute of the second operand, elsetrue. If both
operands are of acommon data type and that data type is an aggregation type whose
members are entity instances, returnsfalse if the operands are of different sizes, or if for
any of the corresponding members of the two operands, the value of any attribute of the
member of the first operand is NotEqual to (or EntityValueNotEqual to) the value of that
attribute of the member of the second operand, else true. If the common datatypeis
anything else, this operator is equivalent to Equal.

EntityValueNotEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif the value of any attribute of the first operand is NotEqual to (or
EntityVaueNotEqual to) the value of that attribute of the second operand, else false. If
both operands are of a common data type and that data type is an aggregation type whose
membersare entity instances, returnstrueif the operands are of different sizes, or if for any
of the corresponding members of the two operands, the value of any attribute of the
member of the first operand is NotEqual to (or EntityVaueNotEqual to) the value of that
attribute of the member of the second operand, else false. If the common datatypeis
anything else, this operator is equivalent to NotEqual.

Equal Returns true if both operands are of a common data type and equal in value, as defined
for that type, else false. For the definition of “equal in value,” see SO 10303-11:2004
Clause 12.2.1.

Exponent For two NUMBER operands, returnsthe the value of thefirst raised to the power specified

by the value of the second.

Greater Returnstrueif both operands are of acommon data type and the value of the first operand
is greater than the value of the second operand, as defined for that type, elsefalse. For the
definition of “is greater than,” see 1SO 10303-11:2004 Clause 12.2.1.

IN Returns trueif the value of thefirst operand is Equal to the value of any member of the
second operand (which must be an AggregateValue); else false. If the first operand isan
Entitylnstance, “is Equal to” isinterpreted as “is InstanceEqual to.”

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 215

InstanceEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif both operands refer to the same individual, else false. If both operands are of a
common data type and that data type is an aggregation type whose members are entity
instances, returnsfalse if the operands are of different sizes, or if any of the corresponding
members of the two operands refer to different individuals, else true. If the common data
typeis anything else, this operator is equivalent to Equal.

InstanceNotEqual If both operands are of acommon datatype and that datatypeisan entity datatype, returns
trueif the operands refer to distinct individuals, else false. If both operands are of a
common data type and that data type is an aggregation type whose members are entity
instances, returnstrue if the operands are of different sizes, or if any of the corresponding
members of the two operands refer to different individuals, else false. If the common data
typeis anything else, this operator is equivalent to NotEqual.

Intersection For two SET operands with acommon member type, returnsthe mathematical intersection
of the two sets. For two BAG operands with a common member type, returns the BAG
value in which the number of occurrences of each value of the member type isthe smaller
of the number of its occurrences in the two operands.

LIKE Returnstrueif both operands are StringV alues and the val ue of thefirst operand isamatch
for the pattern that isthe value of the second operand. For the interpretation of the pattern,
see 1SO 10303-11:2004 Clause 12.2.5.

Less Returnstrueif both operands are of a common datatype and the value of the first operand
isless than the value of the second operand, as defined for that type, else false. For the
definition of “islessthan,” see 1SO 10303-11:2004 Clause 12.2.1.

ListAddFirst Returns the ListVaue whose first member is the value of the second operand and whose
subsequent members are the members of the value of the first operand, which must be a
ListValue, in that order.

ListAddLast Returns the ListVaue whose members are the members of the value of the first operand,
which must be aListValue, in that order, followed by the value of the second operand.

ListAppend Returns the ListValue whose members are the members of the value of the first operand,
which must be aListValue, in that order, followed by the members of the value of the
second operand, which must be aListValue, in that order.

MOD For two INTEGER operands, returns the remainder of dividing the value of thefirst by the
value of the second.

Multiply Returns the arithmetic product of two NUMBER operands.

NVL If the value of the first operand is Indeterminate (?), returns the value of the second

operand; else returns the value of the first operand.

Note — See 1SO 10303-11:2004 Clause 15.18.

NotEqual Returnstrueif both operands are of a common data type and unegual in value, as defined
for that type, else false. For the definition of “equal in value,” see SO 10303-11:2004
Clause 12.2.1.

NotGreater Returnstrueif both operands are of a common datatype and the value of the first operand

islessthan or equal to the value of the second operand, as defined for that type, elsefalse.
For the definition of “isless than or equal to,” see 1SO 10303-11:2004 Clause 12.2.1.

216 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

NotLess Returnstrueif both operands are of a common data type and the value of the first operand
is greater than or equal to the value of the second operand, as defined for that type, else
false. For the definition of “is greater than or equal to,” see 1SO 10303-11:2004 Clause

12.2.1.

OR Returnstrue if either operand is true, unknown if both are unknown, and false if both are
fase.

SetAdd Returns the SetVaue that is the union of the value of the first operand, which must be a

SetValue, with the SetValue comprising exactly one member equal (or InstanceEqual) to
the value of the second operand.

SetUnion For two SET operandswith acommon member type, returnsthe mathematical union of the
two sets.
StringAppend Returns the StringValue whose characters are the characters of the value of the first

operand, which must be a StringValue, in that order, followed by the characters of the
value of the second operand, which must be a StringValue, in that order.

Subset Returnstrue if every member of the value of the first operand (which must be an
AggregateValue) is IN the value of the second operand (which must be an
AggregateValue); else false.

Subtract For two NUMBER operands, returns the result of subtracting the value of the second
from the value of the first.
Valueln Returnstrue if the value of the first operand is Equal to the value of any member of the

second operand (which must be an AggregateValue); elsefalse. If thefirst operandisan
Entitylnstance, “is Equal to” isinterpreted as “is EntityValueEqual to.”
Note — See 1SO 10303-11:2004 Clause 15.28.

XOR Returnstrue if one operand is true and one is false, unknown if either is unknown, and
false otherwise.

13.7.3 Class: Coercion

Definition: an Operation representing the conversion of the operand to a specific data type (InstantiableType). This
operation is implicit in a number of EXPRESS expressions, notably:

« in converting between a defined data type and its fundamental type (on which the operations are defined), and
« inconverting an EntityValue to an Entitylnstance of the corresponding EntityType.

In most cases, the Coercion does not change the “value” of the operand; rather the Coercion maps the value to the
corresponding value of the related data type.

Note — See clause 12 of 1SO 10303-11:2004, and the proposed revision to Clause 12.10.

13.7.3.1 Supertypes

Operation
13.7.3.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 217

13.7.3.3 Associations

AssociationEnd: operand To: Core::Expression

Definition: represents the Expression whose result is to be converted to the target-type by the Coercion operation.
Multiplicity: 1..1

AssociationEnd: target-type To: Core::VariableType

Definition: represents the data type to which the operand of the Coercion is to be converted.

Multiplicity: 1..1

13.7.3.4 Other Roles

none

13.7.4 Class: UnaryOperation

Definition: an Operation representing the result of a well-defined mathematical operation on a single Expression operand.
A UnaryOperation models a use of a UnaryOperator with a particular operand.

Note — See Clause 12 of SO 10303-11:2004.
13.7.4.1 Supertypes

Operation
13.7.4.2 Attributes

Attribute: operator To: UnaryOperator
Definition: represents the conceptual operation that is actually being performed by the UnaryOperation.

Note — See SO 10303-11.2:2004, Clause 12.
Multiplicity: 1..1

13.7.4.3 Associations

AssociationEnd: unary-operand To: Core::Expression

Definition: represents the operand Expression that produces the input to a UnaryOperation.
Note — See Clause 12 of SO 10303-11:2004.

Multiplicity: 1..1

13.7.4.4 Other Roles

none

13.7.5 Datatype: UnaryOperator

Stereotypes. enumeration

218 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: conceptual EXPRESS language element representing the interpretation of a unary operation symbol in the
context of the operand datatype. Instances of this class are distinct operations, such as numeric-negation, boolean-
negation, real-square-root, absolute-value, etc. Some UnaryOperators are denoted by “built-in functions” in EXPRESS
syntax.

See 1SO 10303-11.2:2004 Clause 12 and some elements of Clause 15.

13.7.5.1 Supertypes

none

13.7.5.2 Values

Value Definition

ABS For aNUMBER operand, returns the magnitude (absolute value) of the value of the
operand.

ACOS For aNUMBER operand, returns the mathematical arc cosine of the value of the
operand.

ASIN For aNUMBER operand, returns the mathematical arcsine of the value of the operand.

ATAN For aNUMBER operand, returns the mathematical arctangent of the value of the
operand.

BinaryLength For an operand that is a BinaryValue, returns the number of bitsin the value.

COs For aNUMBER operand, returns the mathematical cosine of the value of the operand.

EXISTS Returns false if the operand is Indeterminate (?), else true.

EXP For aNUMBER operand, returns the mathematical exponential function of the value of
the operand.

HiBound For an operand whose datatypeis an aggregation type, returnsthe declared upper-bound
value for the size of the values, or for an ARRAY, the declared maximum index-value.

Hilndex For an operand that is an AggregateValue, returns the largest valid index-value for the
value.

Identity Returns the value of the operand.

LOG For aNUMBER operand, returns the Napierian logarithm of the value of the operand.

LOG10 For aNUMBER operand, returns the logarithm to the base 10 of the value of the

operand, which for an INTEGER value is the number of decimal digit characters
required to represent it.

LOG2 For aNUMBER operand, returnsthelogarithm to the base 2 of the value of the operand,
which for an INTEGER value is the number of bits required to represent it.

LoBound For an operand whose datatypeis an aggregation type, returnsthe declared lower-bound
vaue for the size of the values, or for an ARRAY, the declared minimum index-value.

Lolndex For an operand that is an AggregateValue, returns the smallest valid index-value for the
value.

NOT For an operand that is a Logical Value, returns true if the value is false, unknown if the

value is unknown, and false if the value is true.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 219

Negate For aNUMBER operand, returns the additive inverse of the value of the operand.

ODD For an operand that is an INTEGERValue, returns false if the value is exactly divisible
by 2 and true otherwise.

RolesOf For an Entitylnstance operand, returns a set of RoleName values representing all the
distinct Attributes (RangeRoles) which the operand plays in the Population.

SIN For aNUMBER operand, returns the mathematical sine of the value of the operand.

SQRT For aNUMBER operand, returns the mathematical square root of the value of the
operand, or Indeterminate if it is negative.

SizeOf For an operand that is an AggregateVal ue, returns the number of members in the value.

StringLength For an operand that is a StringVal ue, returns the number of charactersin the value.

TAN For aNUMBER operand, returns the mathematical tangent of the value of the operand.

TypeOf Returns a Set of TypeName values representing the data types of which the operand is
an instance.

VALUE For a STRING operand, returns the NUMBER value resulting from interpreting the

operand as the representation of a numeric value, or Indeterminate, if no such
interpretation can be made.

ValueUnique

For an operand that isan AggregateValue, returnstrue if no two members of the operand
are Equal or EntityValueEqual.

13.7.6 Generalization Sets

Generalization Set: Operation categories complete, disjoint

Every Operation is one of UnaryOperation or BinaryOperation.

13.8 Function Calls

This sub clause describes the Expressions that represent invocations of schema-defined FUNCTIONS, each of which returns
a FunctionResult that is the evaluation of the Expression.

220

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

sMetaclasss | yactual-value
Expression
[Care) 1
Fa 0*
T call-provides-actual-parameters -
P — ctual ot zhetaclasss zMetaclazss
* 0.4 +actual-parameters
0. FunctionCall Acta?rlai'IParameter — PassByValue
+Hin-Functioncall 0.* |+position : Integer [1]
*
0.* T 0.
1] Hireturns-result 1 +fDr-parameter
shietaclazzs actustparameter- {redefines for-parameter}
FunctionResult corresponds-to- sMetaclasss
[Algarithms) formatparameter InParameter
+result 1 (Alg]r_rthmsj
for- et 1
function-haz-result 1 .) HTar-parameter 7
+invokes-function algorithm-has-parameters shfetaclasss
1 «Metaclasss aMetaclasss Parameter
Function |— 1 Algorithm L +formal-parameters ¢ Algorithms)
+MEMEspace [Algorithms) [Algorithims) HNAMEIPACE 0.* +postion ; Integer [1]

Figure 13.6 - Function Calls

13.8.1 Class: ActualParameter

Definition: represents the substitution of the actual parameter instance for the formal parameter and, where required, the
substitution of the data type of the actual parameter for the GeneralizedType of the formal parameter and any derivatives.

Actual Parameter is an abstraction of two different parameter-passing mechanisms: PassByValue and PassByReference.
When the corresponding formal Parameter is an InParameter, the Actual Parameter shall be a PassByValue. When the
corresponding formal Parameter is a VARParameter, the ActualParameter shall be a PassByReference.

In a FunctionCall, the corresponding formal parameter is always an InParameter; a ProcedureCall can have formal
parameters of either kind.

Note — PassByValue is described below. PassByReference is defined in the Statements package (a separate compliance point),
because it isonly used in Procedure Call statements.

Note — See 12.8 of 1SO 10303-11:2004.
Properties: abstract
13.8.1.1 Supertypes

none

13.8.1.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the position in which the Actual Parameter occurs in the sequence associated with the FunctionCall
(used to associate the Actual Parameter with a formal parameter).

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 221

Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.8.1.3 Associations

AssociationEnd: for-parameter To: Algorithms::Parameter

Definition: represents the formal parameter to which the Actual Parameter corresponds.

Note — See 12.8 of 1SO 10303-11:2004.

Multiplicity: 1..1

Properties: abstract, realized as PassByValue: for-parameter and PassByReference: for-parameter.

AssociationEnd: in-FunctionCall To: EunctionCall
via: call-provides-actual -parameters

Definition: the FunctionCall, if any, that contains the Actual Parameter.

Multiplicity: 0..1

AssociationEnd: in-ProcedureCall To: Statements::ProcedureCall

via: Statements:: procedure-call -provides-actual - parameters

Definition: the ProcedureCall, if any, in which the Actual Parameter appears.
Multiplicity: 0..1
13.8.1.4 Other Roles

none

13.8.1.5 Rules

Constraint

exists(self->in-FunctionCall) xor exists(self->in-ProcedureCall) ;

A given Actual Parameter must occur in either a FunctionCall or a ProcedureCall.

13.8.2 Class: FunctionCall

Definition: an Expression that represents the instance resulting from the invocation of a Function with zero or more
Expression operands called “actual parameters.”

Note — See 12.8 of 1SO 10303-11:2004.
13.8.2.1 Supertypes

Core::Expression

222 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.8.2.2 Attributes

none

13.8.2.3 Associations

AssociationEnd: actual-parameters To: ActualParameter

via: call-provides-actual -parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties: composite

AssociationEnd: invokes-function To: Algorithms::Function

Definition: represents the relationship between the FunctionCall and the formal definition of the Function invoked.
Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: returns-result To: Algorithms::FunctionResult

Definition: represents the relationship between the FunctionCall and the formal definition of the FunctionResult, which
describes the instance that results from the FunctionCall.

Note — See 12.8 of SO 10303-11:2004.
Multiplicity: 1..1

Properties: derived

TaggedValues

derivation = self->invokes-function->result

13.8.2.4 Other Roles

none

13.8.3 PassByValue

Definition: an ActualParameter that is passed “by value.” At the time of Algorithm invocation, the actual-value
Expression is evaluated and the resulting value is assigned to the InParameter — the local Variable within the invocation

that corresponds to the formal parameter.

13.8.3.1 Supertypes

Actual Parameter

13.8.3.2 Attributes

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 223

13.8.3.3 Associations

AssociationEnd: actual-value To: Core::Expression

Definition: the Expression that specifies the value to be passed to the InParameter. This is the Expression that is
syntactically the actual parameter when the corresponding formal parameter is an InParameter.

The actual-value shall evaluate to either an instance of an InstantiableType or Indeterminate.
Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: for-parameter To: Algorithms::InParameter

redefines; Actual Parameter.for-parameter

Definition: the formal parameter to which the actual value is passed.
Note — See 12.8 of 1SO 10303-11:2004.

Multiplicity: 1..1

13.8.3.4 Other Roles

none

13.8.4 Association: call-provides-actual-parameters

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

13.8.4.1 Association Ends

AssociationEnd: actual-parameters To: ActualParameter

Definition: represents the relationship between a FunctionCall and the specifications for the values of its actual
parameters.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: in-FunctionCall To: FunctionCall
Definition: the FunctionCall, if any, that contains the Actual Parameter.

Multiplicity: 0..1

13.9 Query Expressions

This sub clause describes the QueryExpression, which models invocations of the EXPRESS built-in QUERY function,
specified in sub clause 12.6.7 of 1SO 10303-11. The concepts are depicted in Figure 13.7.

224 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

+aggregate-operand

zMetaclasss
Expression 1
[Core) +aelect-condition
Fa 1
T 0.1
zhletaclaszs zhletaclazss
LocafScope] QueryExpression
[Core) o.*

+Namespace 1
{redefines namespace}
scope-of-variahle-iz-gquery

+ouery-variahle 1

{redefines named-elements}
zMetaclasss

QueryVariable

zhMetaclasss
MNamoedElonrant
[Core)

+id : Scopedid [0..1]

= I

iy

zhetaclasss sMetaclazz:
MamodVariable ¢} Variable
[Algorithms) (Algarithms)

Figure 13.7 - Query Expressions

13.9.1 Class: QueryExpression

Definition: an Expression representing the (aggregate) instance that results from extracting from the value of the
aggregate-operand (an Expression yielding an aggregate value) the corresponding collection of member instances that
satisfy a given select-condition. Every QueryExpression is also the Local Scope for the QueryVariable that designates
members of the aggregate value in the select-condition.

Note — See 12.6.7 of 1SO 10303-11:2004.
13.9.1.1 Supertypes

Core::Expression, Core::L ocal Scope

13.9.1.2 Attributes

none
13.9.1.3 Associations

AssociationEnd: aggregate-operand To: Core::Expression

Definition: represents the operand Expression whose result is the aggregate value from which members will be extracted
by the Query operation.

Note — See 12.6.7 of 1SO 10303-11:2004.
Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 225

AssociationEnd: query-variable To: QueryVariable
via: scope-of-variable-is-query

redefines; Core: Scope.named-elements

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1
Properties: composite

AssociationEnd: select-condition To: Core::Expression

Definition: represents the relationship between a Query expression and the Logical Expression that defines admissibility
of members in the Query result. This Expression is treated as a kind of “function definition” having a single Parameter

which is the Query variable. The .select-condition “function” is invoked once for each member value of the .aggregate-

value.

Note — See Clause 12.6.7 of 1SO 10303-11:2004. The Expression that formulates the select-condition is owned by the
QueryExpression. It is not treated as reusable.

Multiplicity: 1..1
13.9.1.4 Other Roles

none

13.9.2 Class: QueryVariable

Definition: a Variable that ranges over the member elements of the aggregate-operand in evaluating the QueryExpression.
The scope of a QueryVariable is the QueryExpression, that is, all references to it occur in the select-condition of the
QueryExpression. The data-type of a QueryVariable is implicitly the data type of the member-element of the aggregate
operand.

Note — See 12.6.7 of 1SO 10303-11:2004.

Note — Although QueryVariable is modeled as a subclass of Variable, it is syntactically impossible for a QueryVariable to be
the referent of a VariableCell.

13.9.2.1 Supertypes

Algorithms::Variable

13.9.2.2 Attributes

none
13.9.2.3 Associations

AssociationEnd: namespace To: QueryExpression

via: scope-of-variable-is-query

redefines; Core:NamedElement.namespace

226 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: the QueryExpression in which the QueryVariable is defined.
Multiplicity: 1..1
13.9.2.4 Other Roles

none
13.9.3 Association: scope-of-variable-is-query

Definition: represents the (1-to-1) relationship between the QueryVariable and the QueryExpression in which it is defined.
13.9.3.1 Supertypes

Core::element-defined-in-scope

13.9.3.2 Association Ends

AssociationEnd: namespace To: QueryExpression
Definition: the QueryExpression in which the QueryVariable is defined.

Multiplicity: 1..1

AssociationEnd: query-variable To: QueryVariable

Definition: the QueryVariable associated with the QueryExpression. The QueryVariable ranges over the member elements
of the aggregate-operand.

Multiplicity: 1..1

Properties: composite

13.10 Aggregate Initializers

This sub clause describes the EXPRESS operations that construct AggregateValues from component values.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 227

zhletaclazsss

zhletaclazss

+odetivation

+evaluation 0.*
nstance | Expr ion 0.1
(Core) ; [Core) +member-value
zMetaclasss zhetaclasss
GenericAggregate 0.1 0.* Aggregatelnitializer

+result-value

[Inztances)
iredefines evaluation}

JT 1
+hinding=
zMetaclazss

LISTValue
[Instances)

0..* {ordered}

sMetaclasss
MemberBinding

+position : Integer [1]

1

0.1

zMetaclasss
RepeatCount

+count ; Integer [0..1]

+repetition

Figure 13.8 - Aggregate Initializers

13.10.1 Class: Aggregatelnitializer

Definition: represents the EXPRESS “aggregate initializer.” It produces a value of type AGGREGATE OF GENERIC, by
binding a sequence of member values to positions in the generic aggregate value.

Note — See 12.9 of 1SO 10303-11:2004.
13.10.1.1 Supertypes

Core::Expression

13.10.1.2 Attributes

None
13.10.1.3 Associations

AssociationEnd: bindings To: MemberBinding

Definition: represents the relationship between the Aggregatel nitializer and the set of MemberBindings it comprises.
Note — See 12.9 of 1SO 10303-11:2004.
Multiplicity: 0..* wnordered

Properties. composite

228 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

AssociationEnd: result-value To: Instances::GenericAggregate

redefines; Core:Expression.evaluation

Definition: represents the aggregate value that results from the aggregate initializer. This is a refinement of
Expression:eval uation.

If the Aggregatel nitializer expression can be evaluated without regard to any actual population (“compile time”), this
value shall be present, but not otherwise.

Note — See 12.9 of SO 10303-11:2004.
Multiplicity: 0..1
13.10.1.4 Other Roles

none

13.10.2 Class: MemberBinding

Definition: represents the placement of a member value in one or more positions (ListMembers) in the GenericAggregate
value resulting from the aggregate initializer.

If the member binding has no repetition count, the MemberBinding associates the .member-value with one ListMember in
the GenericAggregate. If the member value has a repetition count, the MemberBinding associates the .member-value with
one or more consecutive ListMembers in the GenericAggregate.The member-values are assigned to ListMembers in the
order of the MemberBindings.The : position of the MemberBinding conveys the ordering of the MemberBindings (but
not necessarily the position of the corresponding ListMembers).

Note — The MemberBinding may have arepetition count that depends on values in the population or the actual parameters of
an Algorithm invocation, with the consequence that the relationship between the MemberBinding and ListMembers can only
be determined when the Aggregatel nitializer is evaluated.

Note — See 12.9 of 1SO 10303-11:2004.
13.10.2.1 Supertypes

none

13.10.2.2 Attributes
Attribute: position To: (UML) Integer
Definition: represents the ordinal position of the MemberBinding specification in the Aggregatel nitializer.

Note — When no MemberBinding in the Aggregatel nitializer hasa . repetition value, the MemberBinding:position will
be the position of the member-value in the resulting GenericAggregate. Otherwise, the relationship between the positions will
depend on the . repetition values.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 229

13.10.2.3 Associations

AssociationEnd: member-value To: Core::Expression

Definition: represents the member value to be assigned to the MemberBinding position in the aggregate value, as the
result of the Expression.

Note — See 12.9 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: repetition To: RepeatCount

Definition: represents the relationship between the MemberBinding and an associated RepeatCount, if any. If the
repetition count for the .member-value is implicitly 1, or explicitly aliteral “1,” this relationship shall not appear. In all
other cases, this relationship shall appear.

Multiplicity: 0..1
Properties. composite
13.10.2.4 Other Roles

From: Aaaregatelnitializer as bindings

13.10.3 Class: RepeatCount

Definition: a specification for repeating a given initial value into n consecutive ListMember slots, where n is the .count
value. The repetition value is specified by the .derivation expression. If that expression is, or evaluates to, a constant
(without regard to a Population), the value of .count is that constant.

Note — See 12.9 of 1SO 10303-11:2004.
13.10.3.1 Supertypes

none

13.10.3.2 Attributes

Attribute: count To: (UML) Integer

Definition: the number of actual ListMembers that are to be filled with the member-value. If the .derivation expression
evaluates to a constant, without regard to population, .count has a value; otherwise not.

Multiplicity: 0..1
13.10.3.3 Associations

AssociationEnd: derivation To: Core::Expression

Definition: represents the relationship between the RepeatCount and the Expression that denotes the value of the
RepeatCount. This relationship shall be present whenever the specification for the RepeatCount is not an integer literal.

Multiplicity: 0..1

230 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.10.3.4 Other Roles

From: MemberBinding as repetition

13.11 Partial Entity Constructors

This sub clause describes the EXPRESS operations that construct Partial EntityValues from component values.

Note — The so-called “entity constructor” is abinary operation (See 13.7.2) that produces Partial EntityVal ues from other
Partial EntityVValues. The actual operation that produces entity instancesis a special case of Coercion (see 13.7.3).

shletaclasss
ehetaclazss +evalyation Expression
nstance i (Care) +attribute-value
. D“*
(Core) Hext : ExpressTest [0.1] 1
1
A — shetaclasss o shletaclasss
PartialEntityValue [TosUt-alue 0.:| PartialEntityConstructor +hindings | attributeBinding
(Inztances) 0.1 +idd © [dentifier [1]{redefines text} | 1 0.* |+position : Integer [1]
{redefines evalustion}
D..* D"*
+aa'rtrik:nute-gruup1 eMetaciazss +attribute i
eMetaclasss attribute-declared-in-entity .mtgbute sMetaclassy
SingleEntityType | +st.cntty sdaglares | (cOre) «— | ExplicitAttribute
it Scopedid [1] 1 g+ |rRostion:integer [1] (Core)

Figure 13.9 - Partial Entity Value Constructors

13.11.1 Class: AttributeBinding

Definition: represents the assignment of a specific value to one Attribute in the group that comprises the
Partia Entity Type.

Note — See 9.2.6 of SO 10303-11:2004.

13.11.1.1 Supertypes

none

13.11.1.2 Attributes

Attribute: position To: (UML) Integer

Definition: represents the position of the AttributeBinding in the constructor (and thus the association with the explicit
attribute).

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 231

Note — See 9.2.6 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.11.1.3 Associations

AssociationEnd: attribute To: Core::ExplicitAttribute

Definition: represents the explicit attribute to which the AttributeBinding assigns a value. Position is used to identify the
attribute.

Note — See 9.2.6 of SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: attribute-value To: Core::Expression

Definition: represents the value to be assigned to the explicit attribute by the AttributeBinding, as the result of the
Expression.

Note — See 9.2.6 of 1SO 10303-11:2004.
Multiplicity: 1..1
13.11.1.4 Other Roles

From: PartialEntityConstructor as bindings

13.11.2 Class: PartialEntityConstructor

Definition: represents the EXPRESS “partial entity constructor” named for a “single entity data type.” It takes one actual
parameter (AttributeBinding) for each ExplicitAttribute in the group of Attributes identified by the SingleEntity Type, and
binds the values to the ExplicitAttributes in order of their occurrence in the entity _declaration. The result is a

Partial EntityValue of the partial entity data type that consists of exactly that one single entity data type.

Note — See 9.2.6 of SO 10303-11:2004 (revised by TC#1).
13.11.2.1 Supertypes

Core::Expression

13.11.2.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: Core::Expression:text

Definition: represents the identifier for the Partial EntityConstructor, which is the identifier for the SingleEntityType to
which it refers.

Multiplicity: 1..1

232 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

13.11.2.3 Associations

AssociationEnd: attribute-group To: Core::SingleEntityType

Definition: represents the relationship between the Partial EntityConstructor and the SingleEntity Type that definesiit, i.e.,
the list of explicit attributes.

Note — See 9.2.6 of 1SO 10303-11:2004.

Multiplicity: 1..1

AssociationEnd: bindings To: AttributeBinding

Definition: represents the relationship between the Partia EntityConstructor and the set of AttributeBindings it comprises.
Note — See 9.2.6 of 1SO 10303-11:2004.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: result-value To: Instances::PartialEntityValue
redefines; Core:Expression.evaluation

Definition: represents the instance that results from the partia entity constructor. This is a refinement of
Expression:eval uation.

If the expression can be evaluated without regard to any actual population (“compile time”), this value shall be present,
but not otherwise.

Note — See 9.2.6 of SO 10303-11:2004.
Multiplicity: 0..1
13.11.2.4 Other Roles

none

13.12 Instance Package: BuiltinConstants

This Package represents the values of the “built-in constants’ of the EXPRESS language. They are reserved words that
are used in Expressions to denote values of certain data types. They are here modeled as individual objects that are
instances of Literal.

Note — Important: This Package is not included in the MOF Model of EXPRESS. Instead, al of the BuiltinConstants are
conveyed in the EXPRESSEIements Module that is described in Clause 16.

The interpretation-context for all of these objects is the EXPRESS language itself, and is therefore left empty in most
implementation models. It is here identified as the artificial context introduced in the EXPRESSElIements module (See
Figure 8.18).

Note — See clause 14 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 233

TBUE : Literal E: Literal
data-type = LOGICAL data-type = REAL
interpretation-context = EXPRESSElements interpretation-context = EXPRESESElements
text="TRUE" text="E"

FALSE : Literal Pl: Literal
data-type = LOGICAL data-type = REAL
interpretation-context = EXPRESSElements interpretation-context = EXPRESSEIements
text="FALSE" text="PFI"

UNKHOWHM : Literal

data-type = LOGICAL
interpretation-context = EXPRESSElements
tent = "LIN KM O

Figure 13.10 - Built-In Constants
13.12.1 Imported Packages

Imports Class: Expressions::Literal

Stereotypes: instantiates

This Package provides base individuals that are always instances of class Literal.

13.12.2 Instance: E
Type: Literal

Definition: represents the unique REAL number e such that the area above the x-axis and below the curve 1/x, for 1 < x
< e isexactly 1.

Note — See clause 14.1 of 1SO 10303-11:2004.

13.12.2.1 Slots

Attribute: text Value: “E”
Attribute: data-type Values: Core::BuiltinTypes::REAL
Attribute: interpretation-context Value: EXPRESSElements

13.12.3 Instance: FALSE
Type: Literal

Definition: represents the LOGICAL value that is the evaluation of a proposition whose negation is asserted.

234 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Note — See clause 14.3 of 1SO 10303-11:2004.

13.12.3.1 Slots

Attribute: text Value: “FALSE”
Attribute: data-type Values: Core::BuiltinTypes::LOGICAL
Attribute: interpretation-context Value: EXPRESSElements

13.12.4 Instance: Pl

Type: Literal
Definition: represents the REAL value that is the ratio of the circumference of acircle to its diameter.

Note — See clause 14.4 of 1SO 10303-11:2004.

13.12.4.1 Slots

Attribute: text Value: “PI”
Attribute: data-type Values: Core::BuiltinTypes::REAL
Attribute: interpretation-context Value: EXPRESSEIements

13.12.5 Instance: TRUE

Type: Literal
Definition: represents the LOGICAL value that is the evaluation of a proposition that is asserted.
Note — See clause 14.6 of 1SO 10303-11:2004.

13.12.5.1 Slots

Attribute: text Value: “TRUE”
Attribute: data-type Values: Core::BuiltinTypes::LOGICAL
Attribute: interpretation-context Value: EXPRESSEIements

13.12.6 Instance: UNKNOWN

Type: Literal

Definition: represents the LOGICAL value that is the evaluation of an Expression that involves Indeterminate values.
UNKNOWN is a specialization of the Indeterminate value that is treated only as a value of data type LOGICAL.
Note — See clause 14.7 of 1SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 235

13.12.6.1 Slots

Attribute: text Value: “UNKNOWN?”
Attribute: data-type Values: Core::BuiltinTypes::L OGICAL
Attribute: interpretation-context Value: EXPRESSElements

236 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14 Package : Statements

14.1 General

The Statements Package contains the detailed modeling concepts for the Statements in the EXPRESS language. The basic
Statement model in the Algorithms Package is permitted to be a syntactic string. This package provides the elements that
support the operational semantics of each kind of Statement. The Statements Package imports the Expressions Package. It
is arequirement for the Statements compliance point that a complete semantic model of Expressions be supported.

14.2 Imported Packages

Merges Package: Algorithms

The Statements Package imports the Algorithms Package for the basic Statement concept, the Variable concept, and the
Procedure concept. By way of the Algorithms Package, the Statements Package imports the Core Package for the
L ocal Scope concept.

Merges Package: Expressions

The Statements Package imports the Expression Package for Actual Parameter, and in most implementations, for the
detailed semantic models of Expressions. It extends the possible referents of Expressions;VariableRef.

14.3 Overview of Statements

This clause provides the overview of all of the EXPRESS Statement types. They are depicted in Figure 14.1.

The concept StatementBlock and Control Statement are described in detail in this clause. Each of the other statement types
is described in its own clause.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 237

sMetaclasss | Lpody-statemerts block-segquences-statements
Stat nt
g 0.* {ordered}

[Algorithms)
{complete, disjoint} T

Statement categories

‘ +in-hlock (0.1
shletaclasss zhetaclasss zhetaclasss zhetaclasss #Metaclasss
Assignment HStatement CaseStatement ProcedureCall StatementBlock

+delimited ; Boolean [1]

sMetaclasss sMetaclasss sMetaclasss
RepeatStatement ControlStatement AliasStatement

fcomplete, disjaint }
CortrolStatement categaories

shletaclasss sMetaclasss shetaclasss shetaclasss
HullStatement EzscapeStatement SkipStatement ReturnStatement

Figure 14.1 - Statements

14.3.1 Class: Algorithms::Statement
Definition: an EXPRESS Statement, a directive to perform a certain set of operations.

Note — See Clause 13 of 1SO 10303-11:2004.

Note — Even though Statement istechnically an abstract classifier, it is represented by direct instances with text representations
when the Statements compliance point is not supported.

Note — The class Statement, and all its properties, is specified in the Algorithms Package, which provides the primary use of
Statements. This entry serves only to define the Statement class in context and provide alink to its specificationin 11.3.7.

14.3.2 Class: ControlStatement

Definition: an abstract class representing EXPRESS statements whose action is “transfer of control,” i.e., a change in the
sequence of execution. This class was introduced primarily to simplify the metamodel diagram.

Properties. abstract
14.3.2.1 Supertypes

Algorithms:: Statement

14.3.2.2 Attributes

none

238 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.3.2.3 Associations

none

14.3.2.4 Other Roles

none

14.3.3 Class: NullStatement

Definition: represents an EXPRESS Null statement. A NullStatement is just a syntactic placeholder, made necessary by
grammar rules that require the presence of at least 1 statement. It has the semantics: Take no action. It is modeled here,
solely to permit reconstruction of the Express Text.

Note — See Clause 13.1 of 1SO 10303-11:2004.
14.3.3.1 Supertypes

Control Statement

14.3.3.2 Attributes

none
14.3.3.3 Associations
none

14.3.3.4 Other Roles

none

14.3.4 Class: StatementBlock

Definition: represents a sequence of Statements to be executed in the given order.

In EXPRESS syntax, a number of constructs contain a statement or sequence of statements, and a “compound statement”
is a statement that begins with BEGIN and ends with END and contains a sequence of statements. All such sequences
have the semantics of the StatementBlock. The BEGIN/END case is here modeled as .delimited = True.

Note — See Clause 13.5 of 1SO 10303-11:2004.
14.3.4.1 Supertypes

Algorithms;: Statement

14.3.4.2 Attributes

Attribute: delimited To: (UML) Boolean

Definition: is True if the StatementBlock was delimited by BEGIN and END tokens, False if it isimplicit in the body of
some other Statement.

Note — The sole purpose of this attribute is to be able to reconstruct the source EXPRESS text properly.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 239

Multiplicity: 1..1
14.3.4.3 Associations

AssociationEnd: body-statements To: Algorithms:: Statement
via: block-seguences-statements

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note — Every EXPRESS syntax whose semanticsis a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement in this case.

Multiplicity: 0..* ordered
Properties. composite
14.3.4.4 Other Roles

none

14.3.5 Association: block-sequences-statements
Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

14.3.5.1 Association Ends

AssociationEnd: body-statements To: Algorithms:: Statement

Definition: represents the relationship of a StatementBlock to the Statements of which the sequence consists.

Note — Every EXPRESS syntax whose semanticsis a StatementBlock requires the body to consist of at least 1 statement, but it
may consist solely of a Null statement. This model permits the body to be (semantically) empty — the single Null statement
need not be modeled. Even the EXPRESS text reconstruction is clear without the existence of a NullStatement in this case.

Multiplicity: 0..* ordered

AssociationEnd: in-block To: StatementBlock

Definition: represents the relationship between a Statement and the StatementBlock, if any, in which it occurs.
StatementBlocks may, but need not, occur directly in other StatementBlocks.

Multiplicity: 0..1
14.3.6 Generalization Sets

Generalization Set: Statement categories complete, disjoint

Every Statement is one of Assignment, If Statement, CaseStatement, ProcedureCall, RepeatStatement, AliasStatement,
Control Statement or StatementBlock.

Generalization Set: ControlStatement categories complete, disjoint

Every Control Statement is one of Null Statement, EscapeStatement, SkipStatement, or ReturnStatement.

240 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.4 ALIAS Statements

This clause describes the ALIAS statement. Figure 14.2 depicts the associated concepts.

shetaclazss +hody
Statement 1
[&lgorithms)
T
T 0.1
shetaclasss ehetaclasss sMetaclasss
LocalScope —————— AliasStatement sreferent VARExpression
Core ;
(Core) 01 0.7 |Hext: ExpressText[0.1]
+namespace |1 {redefines namespace}
gliaz-hindg-variakle
sMetaclasss +aligz-variable |1 {redefines named-elements}
MNawmodEfentant shetaclasss
[Core)

AliasVariable

+id : Scopedid [0.1]

" I

LY

«Metaclasss zMetaclasss
MNamoedVariable W | VARVIriable
[&lgarithms] [&lgorithms)

Figure 14.2 - ALIAS Statements

14.4.1 Class: AliasStatement

Definition: represents an EXPRESS ALIAS statement. An ALIAS statement introduces a NamedVariable (the alias-
variable) to represent the result of a VAREXxpression (the referent). The AliasVariable is not a Variable, and the
interpretation is not assignment. The ALIAS statement creates a VARVariable that is persistently associated with the cell
specified by the VAREXpression over changes in the content of that cell during execution of the body. Within the body
of the ALIAS statement, any assignment to the AliasVariable assigns the value to the referent cell, and any VariableRef
that refers to the AliasVariable refers to the current value in that cell.

See clause 13.2 of 1SO 10303-11:2004.
14.4.1.1 Supertypes

Core::Loca Scope, Algorithms:: Statement

14.4.1.2 Attributes

none

14.4.1.3 Associations

AssociationEnd: alias-variable To: AliasVariable

via: alias-binds-variable

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 241

Subsets: Core::Local Scope:|ocal-elements

Definition: the AliasVariable that is introduced by the AliasStatement and bound to the : referent.
Multiplicity: 1..1
Properties. composite

AssociationEnd: body To: Algorithms:: Statement
Definition: the Statement (or StatementBlock) specifying the action to be taken by the AliasStatement.

Note — The AliasStatement has the effect of “fixing” the referent of the alias-variable, in the case in which the Statement isa
StatementBlock that includes actions that alter the values of elements of the VAREXxpression.

Multiplicity: 1..1
Properties. composite

AssociationEnd: referent To: VAREXpression

Definition: the VAREXxpression that specifies the referent of the AliasVariable — the cell to which the AliasVariable refers
during execution of the body of the ALIAS statement.

Multiplicity: 1..1
14.4.1.4 Other Roles
none

14.4.1.5 Rules

Constraint (OCL)
self->alias-variable->namespace = self;

14.4.2 Class: AliasVariable

Definition: a NamedVariable that is created by an ALIAS statement, and whose scope is the body of the ALIAS
statement. An Alias Variable is a VARVariable: it does not hold an Instance; it refers to cell that holds an Instance. The
referent of the AliasVariable is specified by the value of the VARExpression assigned to it by the ALIAS statement.

Note — See clause 13.2 of 1SO 10303-11:2004.
14.4.2.1 Supertypes

Algorithms::VARVariable

14.4.2.2 Attributes

none

14.4.2.3 Associations

AssociationEnd: namespace To: AliasStatement

via: dlias-binds-variable

242 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

redefines; Core::NamedElement.namespace

Definition: the AliasStatement that is the scope of the AliasVariable.
Multiplicity: 1..1
14.4.2.4 Other Roles

none

14.4.3 Association: alias-binds-variable

Definition: represents the relationship between the AliasStatement and the AliasVariable it defines.
14.4.3.1 Supertypes

Core::element-defined-in-scope

14.4.3.2 Association Ends

AssociationEnd: alias-variable To: AliasVariable
Definition: the Variable that is introduced by the AliasStatement and bound to a Reference.
Multiplicity: 1..1

Properties. composite

AssociationEnd: namespace To: AliasStatement
Definition: the AliasStatement that is the scope of the AliasVariable.

Multiplicity: 1..1
14.4.4 Generalization Sets

Generalization Set: VARVariable categories complete, disjoint

Every Algorithms.VARVariableis one of Algorithms: VARParameter or Statements:AliasVariable.

The AliasVariable extends the concept VARVariable in Algorithms, and thus the possible referents of a VariableRef in
Expressions.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

243

14.5 Assignment Statements

This sub clause describes assignment statements. Figure 14.3 depicts the associated concepts.

==metackass==
Statement
[Algorthms)

Pl

|

e +aasigned-value | SSMetaclass=»
Assignment Expression
Hext: ExpressText [0.1] | 1 0. 0 1 (Core)

==metaclass== .
VARFprossion +yariafle

Figure 14.3 - Assighment Statements

14.5.1 Class: Assignment

Definition: represents an EXPRESS assignment statement. An Assignment causes the value of the Variable that is
specified by the .variable VAREXxpression to become equal to the result of the .assigned-value Expression.

Note — See clause 13.3 of 1SO 10303-11:2004.
14.5.1.1 Supertypes

Algorithms:: Statement

14.5.1.2 Attributes

none

14.5.1.3 Associations

AssociationEnd: assigned-value To: Core::Expression

Definition: the Expression whose result is the value to be assigned.

Multiplicity: 1..1

AssociationEnd: variable To: VAREXpression

Definition; the VARExpression that designates the object whose value is to be replaced.

Note — The VAREXxpression must not refer to an object that is part of the state of an Entitylnstance in the Population. It may,
however, refer to an object that holds (areference to) an Entitylnstance, or to an object (other than an Entitylnstance) that
holds an EntityValue.

Multiplicity: 1..1
14.5.1.4 Other Roles

none

244 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.6 CASE Statements

This sub clause describes CASE statements. Figure 14.4 depicts the associated concepts.

zhetaclaszs
Statement +action
[&lgorithms) 0.1

P

?

zhetaclaszs 1
0.r CaseStatement

1.*

+cazes | jordered} 0.1
+zelection-expression [, 1 e
zMetaclasss
shetaclasss +label-value R o
Expression -
* * N
(Core) 0. 0.* |+isDefaul | Boalean [1]

Figure 14.4 - CASE Statements

14.6.1 Class: CaseAction

Definition: represents a possible action to be taken, together with the .label-values that identify the case and enable it to
be selected. Among the cases for a given CaseStatement, one CaseAction may be designated the “default” action, which
is taken if no other action meets the selection criteria.

14.6.1.1 Supertypes

none

14.6.1.2 Attributes

Attribute: isDefault To: (UML) Boolean

Definition: True if this CaseAction represents the default action to be taken if no other case label matches the value of the
sel ection-expression; otherwise False.

Multiplicity: 1..1
14.6.1.3 Associations

AssociationEnd: action To: Algorithms::Statement
Definition: the Statement (or StatementBlock) that defines the actions, if any, to be executed if that case is selected.
Multiplicity: 0..1

Properties: composite

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 245

AssociationEnd: label-value To: Core::Expression

Definition; an Expression whose result is a case label. When the value of the .selection-expression matches the value of
the Expression (which is often a Literal), the associated CaseAction defines the action to be taken by the CaseStatement.

Multiplicity: 0..* unordered
14.6.1.4 Other Roles

From: CaseStatement as cases
Multiplicity: 1..1

14.6.1.5 Rules

Constraint labels-unless-default (OCL)
if NOT (self->isDefault) THEN SizeOf (self->label-value) > O0;

Only the default CaseAction can have no label-values.

Constraint one-default (EXPRESS)
SizeOf (Query(c <* self.cases : c.isDefault)) <= 1;

At most 1 CaseAction in thelist of cases for a given CaseStatement can have .isDefault = True.

14.6.2 Class: CaseStatement

Definition: represents an EXPRESS CASE statement. The CASE statement selects and executes a single CaseAction
(from the list of CaseActions), based on the value of a selection-expression. The .cases are considered in order, and the
first CaseAction whose label-value matches the value of the .selection-expression is the action that is taken. If no
CaseAction has a label-value that matches the value of the .selection-expression, the CaseAction for which .isDefault is
true, if any, is taken; otherwise, no action is taken.

Note — See Clause 13.4 of 1SO 10303-11:2004.
14.6.2.1 Supertypes

Algorithms:: Statement

14.6.2.2 Attributes

none

14.6.2.3 Associations

AssociationEnd: cases To: CaseAction

Definition: represents the possible actions to be taken, in order of consideration, each labeled by one or more values.
Multiplicity: 1..* ordered

Properties: composite

AssociationEnd: selection-expression To: Core::Expression
Definition: the Expression that is used to choose the CaseAction to be taken.

246 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Multiplicity: 1..1
14.6.2.4 Other Roles

none

14.7 |F Statements

This sub clause describes IF...THEN...EL SE statements. Figure 14.5 depicts the associated concepts.

sMetaclasss | Hhen-actions

Statement 1
[Algorithms) | +else-actions

'T 0.1

shMetaclazsy +if-condition shletaciazss 0.1
Expression IfStatement

(Core) 1 0.1 0.1

Figure 14.5 - IF Statements

14.7.1 Class: IfStatement

Definition: represents an EXPRESS IF...THEN...EL SE statement.
Note — See Clause 13.7 of 1SO 10303-11:2004.

14.7.1.1 Supertypes

Algorithms:: Statement

14.7.1.2 Attributes

none

14.7.1.3 Associations

AssociationEnd: else-actions To: Algorithms::Statement
Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is False.

Multiplicity: 0..1

Properties: composite

AssociationEnd: if-condition To: Core::Expression

Definition; an Expression that defines the condition used to determine whether to perform the “then-actions’ or the “else-
actions.”

Note — Theif-condition is wholly owned by the If Statement. It is not treated as reusable.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 247

Multiplicity: 1..1

AssociationEnd: then-actions To: Algorithms::Statement

Definition: the Statement (or StatementBlock) specifying the actions to be taken when the condition is True.
Multiplicity: 1..1

Properties: composite

14.7.1.4 Other Roles

none

14.8 Procedure Calls

This sub clause describes procedure call statements. Figure 14.6 depicts the associated concepts.

shletaciasss
Statement
[Algarithms)

i

T) eMetaclass: actualparameter-
s procedure-call-provides-actual-parameters | getnaiParamotor corespomdsin
ke ¥ A

ProcedureCall Letn-FrocedureCall +actual-parameters (Expressions]) o formatparameter
0.4 0.+ |+Hposition : Integer [1] -
0.: T

1 +invokes | {complete, disjoint |
sMetaclasss sMetaclazss ActualParameter categories | «Metaclazss
Procedure PassByReference PassByValue
[&lgorithms) (Expressions)

o 0.x o 0.x
+for-parameter +for-parameter
iredefines {redefines

+actual-referent [1 1 | for-parameter} +actual-value | 1 1 | for-parameter}
shletaciasss shletaclasss shletaciasss shletaclasss
VARExpression VARParameter Expression InParameter
+exd | ExpressTesxt [0.1] [Algorithims) [Care) [Algorithms]
{complete, disjoint
Parameter categaries
kvi algarithm-has-parameters sMetaclazss
;T:Larcifﬁsr:» +namespace +formal-parameters .E—";ran_::te; +ior-parameter
gorithims
; 1 0.* 1
(Algarithms] +position : Integer [1]

Figure 14.6 - Procedure Calls

14.8.1 PassByReference

Definition; an ActualParameter that is passed “by reference.” At the time of Algorithm invocation, the
actual-referent VARExpression is evaluated to identify a cell and that cell becomes the referent of the
VARParameter during execution of the Algorithm.

248 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.8.1.1 Supertypes

Actual Parameter

14.8.1.2 Attributes

none

14.8.1.3 Associations

AssociationEnd: actual-referent To: Statements::VAREXpression

Definition: the VARExpression that denotes the cell that is to be the referent of the formal VARParameter during the
invocation. This is the expression that is syntacticaly the actual parameter when the corresponding formal
parameter is a VAR Parameter.

Note — See 12.8 of 1SO 10303-11:2004.
Multiplicity: 1..1

AssociationEnd: for-parameter To: Algorithms::InParameter
redefines: Expressions:: A ctual Parameter:for-parameter

Definition: the formal parameter to which the actual referent is assigned.
Note — See 12.8 of 1SO 10303-11:2004.

Multiplicity: 1..1

14.8.1.4 Other Roles

none

14.8.1.5 Rules

Constraint
exists(self->inProcedureCall) ;

Every PassByReference appears in a ProcedureCall (not a FunctionCall).

14.8.2 Class: ProcedureCall

Definition: represents an EXPRESS procedure call statement. A procedure call causes an instance of a defined Procedure
to be created, and the actual parameter values to be passed to the corresponding formal parameters. The .actual-value
Expression corresponding to each InParameter is evaluated and the result is copied into the corresponding InVariable.
Each VARParameter is set to refer to the Variable that is the result of the VARExpression that appears as the
corresponding actual parameter. Then the declared LocalVariables are instantiated, according to their declared types
(which may be Actual Types), with initial values if specified. Finally, the StatementBlock that is the algorithm body is
executed.

Note — See clause 13.8 of SO 10303-11:2004.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 249

14.8.2.1 Supertypes

Algorithms:: Statement

14.8.2.2 Attributes

none

14.8.2.3 Associations

AssociationEnd: actual-parameters To: Expressions::ActualParameter

via: procedure-call-provides-actual -parameters

Definition: the Actual Parameters to be passed at the time of invocation.

Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: invokes To: Algorithms::Procedure
Definition: the Procedure that is invoked by the ProcedureCall.

Multiplicity: 1..1

14.8.2.4 Other Roles

none

14.8.3 Association: procedure-call-provides-actual-parameters

Definition: represents the relationship between the ProcedureCall statement and the ActualParameters to be passed at the
time of invocation.

14.8.3.1 Association Ends

AssociationEnd: actual-parameters To: Expressions::ActualParameter

Definition: the Actual Parameters to be passed at the time of invocation.
Multiplicity: 0..* unordered

Properties. composite

AssociationEnd: in-ProcedureCall To: ProcedureCall
Definition: the ProcedureCall, if any, in which the Actual Parameter appears.
Multiplicity: 0..1

14.9 REPEAT Statements

This sub clause describes REPEAT statements, and the associated ESCAPE and SKIP statements. Figure 14.7 depicts the
associated concepts.

250 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

zhetaclaszs zhletaclazss

+in-klock
sMetaclazss LocaiScope StatementBlock
sMetaclasss NamedElement (Core] +delimited : Boolean [1] | 0.1
Named\ariable | — - (Core) =
ga) +id : Scopedid [0.1] ‘JT block-sequences-statements
‘T— zhletaclazss
sMetaclasss Statement "‘EDTY'StatememS
Variablie [Algorithims) W5 {ordered}
[Algorithms) wbody] 1 V\\\
repest-has-increment-control
repeat-hag-hody

+contral-varishle

sMetaclasss)) 1 shetaclasss shetaclasss
ControlVariable {Dre1def|nes named-elements RepeatStatement 0.1 ControiStatement
. +NaAMespace
{redefines namespgce} +eantrolled-by
0.* 0.
[T B))
repeat-haz-while-qortral repeat-has-until-cantrol
P P «Metaclasss
+while-gxpression | 0.1 0.1 [+until-expression | gkipStatement
+initial-value sMetaclasss
contral-intial-value 1 .
+hound-value e s an
controlFbound-value 1 (Core) sMetaclazss
Hincremernt EscapeStatement
control-increment-value 1

Figure 14.7 - REPEAT, SKIP, and ESCAPE Statements

14.9.1 Class: ControlVariable

Definition:; a Variable representing the specification of for the control variable, if any, of the REPEAT statement.

If the REPEAT statement has an “increment control,” it introduces the control variable, whose scope is the
RepeatStatement, and specifies the initial value for the control variable, a bound-value, and the increment value.

Note — In EXPRESS, theinitial value, increment value and bound value are properties of the “increment control.” Herethe
“increment control” properties are assigned to the Control Variable. See SO 10303-11:2004 clause 13.9.1.

14.9.1.1 Supertypes

Algorithms::Variable

14.9.1.2 Attributes

none

14.9.1.3 Associations

AssociationEnd: bound-value To: Core::Expression

Definition: the Expression whose value, taken together with the initial-value, specifies the bounds of a set of real
numbers. Iteration of the repeated-body of the RepeatStatement terminates when the value of the control-variable lies
outside that set.

Multiplicity: 1..1

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 251

AssociationEnd: increment To: Core::Expression

Definition: the Expression whose value is added to the value of the control-variable at the end of each iteration.
Multiplicity: 1..1

Note — When the EXPRESS syntax does not specify an increment value, the Expression is a Literal referring to the Integer
value 1.

Note — See SO 10303-11:2004 clause 13.9.1.

AssociationEnd: initial-value To: Core::Expression
Definition: the Expression that specifies the value to be assigned to the control-variable before the first iteration.

Multiplicity: 1..1

AssociationEnd: namespace To: RepeatStatement

via: repeat-has-increment-control

redefines: Core::NamedElement.namespace

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.
Multiplicity: 1..1
14.9.1.4 Other Roles

none

14.9.1.5 Rules

Constraint
self->control-variable->namespace = self->for-loop;

14.9.2 Class: EscapeStatement

Definition: represents an EXPRESS ESCAPE statement. An ESCAPE statement is always contained within the body of a
RepeatStatement. Execution of an ESCAPE statement results in terminating the repetitiion of the repeated-body and
continuing the control flow with the statement following the RepeatStatement.

Note — See clause 13.11 of SO 10303-11:2004.
14.9.2.1 Supertypes

Control Statement

14.9.2.2 Attributes

none

14.9.2.3 Associations

none

252 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.9.2.4 Other Roles

none

14.9.2.5 Rules

Constraint
exists(self->in-block->controlled-by) ;

An EscapeStatement shall only appear in the repeated-body of a RepeatStatement.

14.9.3 Class: RepeatStatement

Definition: represents an EXPRESS REPEAT statement. The RepeatStatement defines an iteration. The execution of the
repeated-body occurs zero or more times depending on the associated controls, which may be any combination of

 anincrement-control (see ControlVariable)
» awhile-expression
» anuntil-expression
If no control is specified, the iteration continues until an EscapeStatement is executed.

Note — See clause 13.9 of 1SO 10303-11:2004.
14.9.3.1 Supertypes

Core::L ocal Scope, Algorithms:: Statement

14.9.3.2 Attributes

none

14.9.3.3 Associations

AssociationEnd: body To: Algorithms::Statement
via: repeat-has-body

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

Properties. composite

AssociationEnd: control-variable To: ControlVariable

via: repeat-has-increment-control

Subsets: Core::L ocal Scope:|local-elements

Definition: the specification for the increment contral, if any. The increment control defines a control variable, its initial
and final values, and the value by which it is incremented on each iteration.

Note — See | SO 10303-11:2004 clause 13.9.1.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 253

Multiplicity: 0..1

Properties. composite

AssociationEnd: until-expression To: Core::Expression

Definition: the Boolean Expression that specifies a condition for terminating the iteration. If the value returned by the
while-expression is True, the iteration is terminated.

Note — See | SO 10303-11:2004 clause 13.9.3.
Multiplicity: 0..1

AssociationEnd: while-expression To: Core::Expression

Definition: the Boolean Expression that specifies the condition for reiterating the repeated-body. If the value returned by
the while-expression is False, the iteration is terminated.

Note — See 1SO 10303-11:2004 clause 13.9.2.
Multiplicity: 0..1
14.9.3.4 Other Roles

none

14.9.4 Class: SkipStatement

Definition: represents an EXPRESS SKIP statement. A SKIP statement is always contained within the body of a
RepeatStatement. Execution of a SKIP statement results in continuing the control flow with the “increment and test”
operations of the RepeatStatement, skipping any intervening actions.

Note — See clause 13.11 of 1SO 10303-11:2004.
14.9.4.1 Supertypes

Control Statement

Attributes

none
14.9.4.2 Associations
none

14.9.4.3 Other Roles
none

14.9.4.4 Rules

Constraint

exists(self->in-block->controlled-by) ;

A SkipStatement shall only appear in the repeated-body of a RepeatStatement.

254 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.9.5 Association: repeat-has-body

Definition: represents the relationship between a RepeatStatement and the Statement (or StatementBlock) that specifies
the actions to be iterated.

14.9.5.1 Association Ends

AssociationEnd: body To: Algorithms::Statement

Definition: the Statement that specifies the actions to be iterated. When the EXPRESS text for the body includes multiple
statements, the body Statement is a StatementBlock.

Multiplicity: 1..1

Properties. composite

AssociationEnd: controlled-by To: RepeatStatement
Definition: the RepeatStatement that controls the iterated execution of the actions of the Statement.

Multiplicity: 0..1

14.9.6 Association: repeat-has-increment-control

Definition: represents the relationship between the RepeatStatement and its IncrementControl, if any.
14.9.6.1 Supertypes

Core::element-defined-in-scope

14.9.6.2 Association Ends

AssociationEnd: control-variable To: ControlVariable
Definition: the specification for the control variable, if any, and its initial and final values.
Multiplicity: 0..1

Properties: composite

AssociationEnd: namespace To: RepeatStatement

Definition: the RepeatStatement whose execution is controlled by the IncrementControl.

Multiplicity: 1..1

14.9.7 Generalization Sets

Generalization Set: Variable categories complete, disjoint

Every Algorithms:Variable is one of Algorithms: InParameter, Algorithms:FunctionResult, Algorithms:Local Variabl e,
Expressions:QueryVariable, or Statements:Control Variable.

The Control Variable extends the concept NamedVariable in Algorithms, and thus the possible referents of a VariableRef in
Expressions.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 255

14.10 RETURN Statements

This sub clause describes RETURN statements. Figure 14.8 depicts the associated concepts.

eMetaclasss eMetaclasss
ReturnStatement tefurn-valie.| Expression
0. 0.1 [Core)

Figure 14.8 - RETURN Statements

14.10.1 Class: ReturnStatement

Definition: represents an EXPRESS RETURN statement. A RETURN statement terminates the execution of a
ProcedureCall or FunctionCall.

A RETURN statement that appears in the body of a Function may also specify an expression for the FunctionResult, that
is, the value which is to be returned as the evaluation of a FunctionCall in which the RETURN statement is executed.

Note — See clause 13.9 of 1SO 10303-11:2004.
14.10.1.1 Supertypes

Control Statement

14.10.1.2 Attributes

none

14.10.1.3 Associations
AssociationEnd: return-value To: Core::Expression
Definition: an Expression that specifies the value to be returned as the Function result.

The result-value shall not exist for a RETURN statement that appears in the body of a Procedure. A RETURN statement
that appears in the body of a Function and does not specify a result-value Expression implicitly specifies that the value of
the FunctionResult variable is to be returned as the evaluation of a FunctionCall in which the RETURN statement is
executed.

Multiplicity: 0..1
14.10.1.4 Other Roles

none

256 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.11 VAR Expressions

This sub clause defines the concepts associated with references to (what 1SO 10303-11 calls) “variables’ that may change
in value during the execution of an invocation of an Algorithm or the evaluation of a GlobalRule. In general, such
“variables” may be simple Variables, or more complex expressions denoting a part of a Variable. The general form of a
“variable,” therefore, is modeled as a VAR Expression — an Expression that refers to an object that contains a value.
Figure 14.9 depicts the concepts associated with VAR Expressions.

shetaclaszs +haze-entity
+hase-aggregste VAREprassion 1
g |Hext: ExpressText [0.1] +haze-entity
1
Tcomplete, disjoint }
W ARExpression categaries
0.1 | 0.1
whetaclasss whetaclasss whetaclasss
MemberCell VariableCell AttributeCell
+Hd : [dertifier [1]{subsets text} +Hd : [dertifier [1]{subsets text}
I:I..* I:I_,* D”*
+index-value | 1 1 +referent 1 | +referert
sMetaclasss sMetaclasss sMetaclasss
Expression Variabie ExplicitAttribute
[Care) [Algorithims] [Care)
zMetaclasss sMetaclaszs
AliasRef GroupCell 0.1

+id ; Idertifier [1]}{zubzets text)

+id ; Identifier [1]{zubzets text)

0. o.*
1) +retfers-ta 1) +referert
zMetaclasss sMetaclaszs
VARVzriable SingleEntityType
[&lgorithms) [Core)

Figure 14.9 - VAR Expressions

VAR Expressions appear in assignment statements, in ALIAS statements and as Actual Parameters that correspond to
formal parameters that are VARParameters (which are permitted only in Procedure definitions).

Note — Primary Expressions, Index Expressions and Selector Expressions are similar in structure (and use the same syntax in
EXPRESS), but they refer to the Instance that is the current value of the “variable” —the value currently held by that object. A
VARExpression formally refers to the object (place) that holds an Instance, rather than to the Instance it contains. That is, for
example, the meaning of the VariableRef is different from the meaning of the VariableCell, even though the EXPRESS syntax
isthe same. Because the meanings are different, they have different metamodels.

Note — A VAR Expression can never refer to an Instance in the modeled population. Instances in the Population cannot be
created or modified by an EXPRESS Schema. For this reason, EXPRESS restricts the syntax for VAR Expressionsto
beginning with aparameter ref oravariable ref. Thisisreflected in the model.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 257

14.11.1 Class: AttributeCell

Definition: a VAREXxpression whose referent is a cell (or “slot”) containing the value of one ExplicitAttribute in an
EntityValue or Partial EntityValue.

The referent of the :base-entity VARExpression shall be a cell that holds an EntityValue or Partial EntityValue that
has a “slot” for the ExplicitAttribute that is the : referent of the AttributeCell. The cell/slot in the referent of the
:base-entity that corresponds to that ExplicitAttribute is the referent of the AttributeCell.

Note — An Entitylnstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
Entityl nstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
Entitylnstance in the Population.

Note — An “entity-valued object” -- a Variable, Attribute, or aggregation member whose datatype is an Entity Type (or a
SelectType whose select-list contains Entity Types) -- may contain Entityl nstances from the Population, or contain
EntityValues that correspond to the Entity Type, without reference to Instances in the Population. When the base-entity of an
AttributeCell is an entity-valued object, it is not always clear whether it contains an Entityl nstance, which is then the referent,
or an EntityValue, which makes the entity-valued object the referent.

14.11.1.1 Supertypes

VAREXpression

14.11.1.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VAREXxpression:text

Definition: the lexical text of the identifier for the Attribute.

Multiplicity: 1..1

14.11.1.3 Associations

AssociationEnd: base-entity To: VAREXxpression

Definition: the VARExpression that identifies the cell that contains the EntityVValue or Partial EntityValue that contains the
referent of the AttributeCell.

Multiplicity: 1..1

AssociationEnd: referent To: Core::ExplicitAttribute
Definition: the ExplicitAttribute that designates the slot that is the referent of the AttributeCell.
Multiplicity: 1..1

14.11.1.4 Other Roles

none

258 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

14.11.2 Class: GroupCell

Definition: a VAREXxpression whose referent is the group of cells (or “slots”) for the ExplicitAttributes that constitute a
SingleEntity Type within a cell that holds an EntityValue.

The referent of the :base-entity VAREXxpression shall be a cell that holds an EntityValue or Partial EntityVal ue that
includes a SingleEntityValue for the SingleEntity Type that is the : referent of the GroupCell. The group of cells/slots
in the referent of the :base-entity that corresponds to that SingleEntity Type is the referent of the GroupCell.

Note — An Entitylnstance in the Population is considered to be an object that holds an EntityValue. And therefore, an
Entitylnstance can be the referent of the base-entity. But it is not possible to change the value of an Attribute of an
Entitylnstance in the Population.

Note — An “entity-valued object” -- a Variable, Attribute, or aggregation member whose datatype is an Entity Type (or a
SelectType whose select-list contains Entity Types) -- may contain Entityl nstances from the Population, or contain
EntityValues that correspond to the Entity Type, without reference to Instances in the Population. When the base-entity of a
GroupCdll is an entity-valued object, it is not always clear whether it contains an Entitylnstance, which is then the referent, or
an EntityValue, which makes the entity-valued object the referent.

14.11.2.1 Supertypes

VAREXpression
14.11.2.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VAREXpression:text

Definition: the lexical text of the identifier for the SingleEntity Type.

Multiplicity: 1..1

14.11.2.3 Associations

AssociationEnd: base-entity To: VAREXpression

Definition: the VARExpression that identifies the cell that contains the EntityValue or Partial EntityValue that contains the
referent of the GroupCell.

Multiplicity: 1..1

AssociationEnd: referent To: Core::SingleEntityType

Definition: the SingleEntity Type that designates the group of ExplicitAttribute slots that constitute the referent of the
GroupCell.

Multiplicity: 1..1
14.11.2.4 Other Roles

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 259

14.11.3 Class: MemberCell

Definition: a VAREXxpression that represents a reference to a cell that is a member of a cell whose datatype is an
aggregation data type.

The cell that is the referent of the :base-aggregate VAREXpression shall have a datatype that is an aggregation data
type. The referent of the MemberCell is the member of that cell that is designated by the index or position value that is
the result of the : index-value Expression.

14.11.3.1 Supertypes
VAREXpression
14.11.3.2 Attributes

none

14.11.3.3 Associations

AssociationEnd: base-aggregate To: VAREXxpression
Definition: the VARExpression that identifies the aggregate cell that contains the referent member cell.

Multiplicity: 1..1

AssociationEnd: index-value To: Core::Expression

Definition: the index or position value used to identify the member cell within the aggregate cell.
Multiplicity: 1..1
14.11.3.4 Other Roles

none

14.11.4 Class: AliasRef

Definition: a VAREXxpression consisting only of the identifier for a VARVariable, i.e., an AliasVariable, or a
VARParameter. The referent of the AliasRef VAREXpression is the referent of the VARVariable designated by the
.refers-to relationship.

Note — An AliasRef to a VARVariable produces a different result from a VariableRef to the same VARVariable. The AliasRef
produces the referent of the VARVariable — the place that holds the value; the VariableRef produces the value that is currently
in that place. In computer science terminology, the VariableRef “de-references’ the VARVariable.

14.11.4.1 Supertypes

VAREXpression
14.11.4.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VAREXxpression:text

260 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

Definition: the lexical text of the identifier for the Parameter or the AliasVariable.
Multiplicity: 1..1

14.11.4.3 Associations

AssociationEnd: refers-to To: Algorithms::VARVariable
Definition: the AliasVariable or VARParameter whose referent is the referent of the AliasRef.
Multiplicity: 1..1

14.11.4.4 Other Roles

none

14.11.5 Class: VARExpression

Definition: an expression that refers to a cell - a place - that contains a value.

Unlike Primary Expressions, Index Expressions and Selector Expressions, which are similar in structure, a
VARExpression formally refers to the cell that holds an Instance, rather than to the Instance itself. The cell to which a
VARExpression refers is called its referent. The type of a VAREXpression is “reference to cell containing” the data type
of the referent cell. The referent of a VAREXpression can be:

- alocalVariable,
 an InParameter or FunctionResult,
» amember of acell whose datatypeisan AggregationType,
» an ExplicitAttribute slot in a cell that contains an EntityValue or Partial EntityValue,
- the cellsthat contain a SingleEntityValue in a cell that contains an EntityValue or Partial EntityValue,
- thecell that isthe referent of an AliasVariable or a VARParameter.
Properties: abstract
14.11.5.1 Supertypes

none

14.11.5.2 Attributes

Attribute: text To: Core::ExpressText

Definition: the lexical representation of the VAREXpression.
Multiplicity: 0..1
14.11.5.3 Associations

none

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 261

14.11.5.4 Other Roles

From: PassByReference as actual-referent
From: Assignment as recipient

From: MemberCell as base-aggregate
From: AttributeCell as base-entity

From: GroupCell as base-entity

From: AliasVariable as referent

14.11.6 Class: VariableCell

Definition: a VAREXxpression that consists only of the identifier for a Variable. The referent of the VariableCell
VAREXxpression is the cell that instantiates that Variable (as distinct from the value of that Variable). The Variable is
designated by the . referent relationship.

Note — A VAREXxpression that consists of the identifier for an AliasVariable or a VARParameter is an AliasRef, not a
VariableCell. A VariableCell differsfrom a VariableRef in that it refers to the place, not the value.

14.11.6.1 Supertypes

VAREXxpression
14.11.6.2 Attributes

Attribute: id To: Core::ldentifier
Subsets: VARExpression:text

Definition: the lexical text of the identifier for the NamedVariable

Multiplicity: 1..1

14.11.6.3 Associations

AssociationEnd: referent To: Algorithms::Variable
Definition: the Variable whose instantiation is the referent object of the VariableCell VARExpression.

Multiplicity: 1..1
14.11.6.4 Other Roles

none

14.11.7 Generalization Sets

Generalization Set: VARExpression categories complete, disjoint

Every VAREXxpression is one of AliasRef, MemberCell, AttributeCell, GroupCell, or VariableCell.

262 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

15 Package : Express?2

15.1 General

The Express2 Package has no immediate content. It simply combines the Rules Package with the full Statements

Package, and thus contains all of the model elements for the language.

Figure 15.1 shows the complete view of the scope concepts in EXPRESS version 2. Note that the L ocal Scopes arise only

when the Algorithms, Rules, Expressions, and Statements Packages are supported.

element-definecd-in-scape

ehMetaclasss . 0* ehMetaclasss
Scope d ~ | MamodEfemont
(Core) 1 +named-element = (Core)
{complete, disjoirt } Fah
Scope categaries
sMetaclasss sMetaclasss sMetaclasss
Schema LocaiScope Nameod Type
[Core) [Core) [Core)
Tcomplete, disjoint }
Local=zcope categories
sMetaclasss sMetaclasss sMetaclasss sMetaclasss
QueryExpression AlgorithmScope AliasStatement RepeatStatement
[Expressions) [(Core) [Statements) [Statements)
{complede, disjoirt }
Algorthm=cope categories
sMetaclasss sMetaclasss
Algorithm GlobalRule
[A&lgorithms) [Rules)

Figure 15.1 - Integrated Overview of Scopes

In asimilar way, Figure 15.2 - depicts the complete view of the NamedElement concepts in EXPRESS version 2, which are

drawn from several packages.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

263

shetaclazss element-detined-in-scape shetaclazss
*
NamedElement : +hAMEEpace Scope
(Core) +ramed-slements 1 (Core)
Tcomplete, disjoint
MamedElement categories
sMetaclazss shetaclazss shletaclazss zMetaclazss zhletaclazsss
Attribyta NarregVariabla SchemaFlenront DomainRule UniqueRule
(Core) [Algarithims) [Core) [Core) [Core)
sMetaclasss sMetaclasss sMetaclasss sMetaclasss sMetaclasss
Parameotric Efomont Common Elomont GlobalRule HamedRule Enumerationltem
[Care] [Care) [(Rulez] [Rulez] [Enumerations)
{complete, disjoint }
CommonElement categories
shletaclasss shetaclasss zhetaclasss zMetaclasss
Named Type Algqorithm Constant SupertypeRule
[Core) [Algarithims) (Instances) [Rules)

Figure 15.2 - Overview of Named Elements

In asimilar way, Figure 15.3 depicts the complete view of the Variable concepts in EXPRESS version 2, which are drawn
from the Algorithms, Expressions and Statements Packages.

264 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

zMetaclazss b

VariableRef
[Expressions)
zMetaclazss 0.t aMetaclazss:
VariableCell +refers-to | 1 AliasRef
[Statements] Metaclazss [Statements)
0.* MNamedVariabie 0.*
[&lgarithims)
ferert | 1 Ill X
T [{complete, disjoirt} |1 wrefers-to
sMetaclazss +variahle-type ahetaclasss: Mamedvarishle catenories ehMetaclasss
VarizblaType 7 " Variabie VARVariabla
[Core) 0. [A&lgarithims) [&lgorithims]
jcomplete, disjoint } {complete| disjaint}
W ariable catenories W ARVariabld categories
shetaclazss sMetaclazss shetaclazsy zMetaclazss shetaclazss setaclazss shetaclazss
QueryVariable ControlVariable LocalVariable FunctionResult InParameter VARParameter | |AliasVariable
[Expressions) [Statements) [Algorithms] [Algorithms) [Algorithms) [Algorithms) [Statements)
1 0.1 0.* | +varishles 1| +resut {oomplete, disjoint } 1
Parameter categaries
1§ +hamespace 1 +Namespace 1 § +hamespace 1 § thamespace J} +namespace § 1
shetaclasss zMetaclazss sMetaclazss shetaclasss A, shetaclazss
QueryExpression | |[RepeatStatement | | AlgorithmScope Function e AliasStatement
[Expressions) [Statements) [Core) [&lgarithims] 4 [Statements)
. [Algorithms)
.T. 0. T e +refers-to
,/f [1\“\@efines refers-to}
{complete, disjoint} 1 / 0
Algaorithin=cope categaries o7 Framespace ..-" ~
1+ |- cter-t «Metaclasss
ahletaclazey ghietaclazss o HTOFMEl-RErameter -y pe - et
GlobalRule Algoritim shietaiasss :"’"‘ e
(Rules) [Algorithms) ParameterType Ekie=sions)
[Zore)

Figure 15.3 - Overview of Variables

15.2 Imported Packages

Merges Package: Statements

The Express2 Package imports the Statements Package for complete modeling of EXPRESS Functions and Procedures.
By way of the Statements Package, It extends the Variables concept with a complete generalization set. By way of the
Statements Package, Express2 implicitly merges the Expressions Package, for complete modeling of Expressions and
thereby the Algorithms, Core, and I nstances Packages.

Merges Package: Rules

The Express2 Package imports the Rules Package in order to complete the support of all elements of the EXPRESS
language. The Rules Package is the only package that is not required for the support of the Statements compliance point.
Express2 extends the Rules package (and its imports) with a complete generalization set for NamedElement.

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 265

15.3 Classes and Associations

none

15.4 Generalization Sets

This sub clause defines GeneralizationSets that are only complete when all of the packages defined in the metamodel are
supported. Therefore they are defined in this package.

Generalization Set: AlgorithmScope categories complete, disjoint

Every Core:AlgorithmScope is one of Algorithms:Algorithm or Rules:Global Rule.
Note — Technically, this generalization set can be defined in the Rules Package.

Generalization Set: CommonElement categories complete, disjoint

Every Core:CommonElement is one of Core:NamedType, Algorithms:Algorithm, Instances:Constant, or
Rules:SupertypeRule.

Generalization Set: LocalScope categories complete, disjoint

Every Core:Local Scope is one of Core:AlgorithmScope, Expressions:QueryExpression, Statements:RepeatStatement, or
Statements:AliasStatement.

Generalization Set: NamedElement categories complete, disjoint

Every Core:NamedElement is one of Core:SchemaElement, Core:Attribute, Core:DomainRule, Core:UniqueRule,
Core:ParametricElement, Enumerations.Enumerationltem, Algorithms:NamedVariable, Rules:NamedRule.

266 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

16 The EXPRESSElIements Module

16.1 General

This module conveys those EXPRESS |anguage elements that are formally part of the language itself, but are represented in
the metamodel as instances of metaclasses. MOF does not support the UML InstanceSpecifications used in Clauses 8 and 13
to convey those EXPRESS language elements. Instead, this module is arendering of those elements as declarationsin a
would-be EXPRESS Schema, called “EXPRESSElements.” This Schema could not really be phrased in the EXPRESS
language. The elements are included in the form of out-of-context uses of reserved words representing data types and
expressions as if they appeared in declarations.)

Note — EXPRESS does not provide a means for formally attaching Remarks to an unnamed model element. 1t does support
capturing the placement of Remarks within declarations via Scope.includes-remarks (see 8.6). Thisfeatureis used to capture
the documentation of the built-in model elements.

The EXPRESSElements Schema is considered to be implicitly interfaced into every EXPRESS model that is represented as a
population of the metamodel. Implementations that do not support the Expressions package would not implicitly include the
elements derived from BuiltinConstants (13.12).

16.2 XMI Header

This sub clause formalizes the EXPRESSElements Schema that appearsin Figure 8.18.
<?xml version="1.0"?>

<xmi:XMI xmlns:exp="http://www.omg.org/spec/EXPRESS/20130601/"
xmlns:xmi="http://www.omg.org/spec/XMI/20110701">

<xmi:Documentations>
<xmi:contact>0Object Management Group, issues@omg.org</xmi:contacts>

<xmi:shortDescription>Module document for the built-in data types and
constants of the EXPRESS language </xmi:shortDescriptions>

</xmi:Documentation>

<exp:Schema xmi:type="exp:Schema" xmi:id="EXPRESSElements"
name="EXPRESS ELEMENTS" version="1.1"
URI="http://www.omg.org/spec/EXPRESS/20130601/
EXPRESSElements.xmi#EXPRESSElements" >

<documentation xmi:type="exp:Remark" xmi:id=" text 1000" text="The
EXPRESSElements Schema is an artifice that contains the fixed Types and
Constants that are defined to be parts of the EXPRESS language, rather
than part of any EXPRESS Schema." isTagged="TRUE" isTail="FALSE">

<describes-schema href="#EXPRESSElements"/>

</documentations>

16.3 Built-In Types

This sub clause formalizes the BuiltinTypes instances that are documented in sub clause 8.18.
<!-- BuiltInTypes Package -->

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 267

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1001" isTagged="FALSE"
isTail="FALSE" text="TYPE is the StringType whose instances are the
names of DataTypes (TypeNames), i.e. the result of TypeOf and related
operands. These objects are data typed STRING in Part 11, but they have
reserved syntax and reserved interpretation. In order to facilitate
mappings to other languages, these data types are explicitly identified,
and coerced to/from STRING where necessary. &xA;Note -- See Clause 15.25
of ISO 10303-11:2004."/>

<anonymous-type xmi:type="exp:StringType" xmi:id="TYPE" id="TYPE">
<fundamental-type xmi:idref="STRING"/>
<specializes xmi:idref="STRING" />

</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1002" isTagged="FALSE"
igTail="FALSE" text="ROLE is the StringType whose instances are the
names of Attributes, i.e. the result of RolesOf and the formal second
operand of UsedIn. These objects are data typed STRING in Part 11, but

they have reserved syntax and reserved interpretation. In order to
facilitate mappings to other languages, these data types are explicitly
identified, and coerced to/from STRING where necessary. &xA;Note -- See

Clause 15.20 of ISO 10303-11:2004."/>
<anonymous-type xmi:type="exp:StringType" xmi:id="ROLE" id="ROLE">
<fundamental-type xmi:idref="STRING"/>
<specializes xmi:idref="STRING" />
</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1003" isTagged="FALSE"
igTail="FALSE" text="represents the EXPRESS type REAL (without
precision)"/>
<anonymous-type xmi:type="exp:RealType" xmi:id="REAL" id="REAL">
<fundamental-type xmi:idref="REAL"/>
<specializes xmi:idref="NUMBER" />
</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1004" isTagged="FALSE"
igTail="FALSE"

text="represents the EXPRESS type STRING (without constraints)"/>

<anonymous-type xmi:type="exp:StringType" xmi:id="STRING" id="STRING">
<fundamental-type xmi:idref="STRING"/>
</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1005" isTagged="FALSE"
igTail="FALSE"

text="represents the EXPRESS type NUMBER"/>

268

<anonymous-type xmi:type="exp:NumericType" xmi:id="NUMBER" id="NUMBER">
<fundamental-type xmi:idref="NUMBER"/>

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1006" isTagged="FALSE"
isTail="FALSE" text="represents the EXPRESS type LOGICAL"/>

<anonymous-type xmi:type="exp:LogicType" xmi:id="LOGICAL" id="LOGICAL">
<fundamental-type xmi:idref="LOGICAL"/>
</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1007" isTagged="FALSE"
isTail="FALSE" text="represents the EXPRESS type INTEGER"/>

<anonymous-type xmi:type="exp:IntegerType" xmi:id="INTEGER" id="INTEGER">
<fundamental-type xmi:idref="INTEGER"/>
<specializes xmi:idref="REAL" />

</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1008" isTagged="FALSE"
isTail="FALSE" text="represents the EXPRESS type BOOLEAN"/>

<anonymous-type xmi:type="exp:LogicType" xmi:id="BOOLEAN" id="BOOLEAN">
<fundamental-type xmi:idref="BOOLEAN"/>
<specializes xmi:idref="LOGICAL" />

</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1009" isTagged="FALSE"
igTail="FALSE" text="represents the EXPRESS type BINARY (without
constraints)"/>

<anonymous-type xmi:type="exp:BinaryType" xmi:id="BINARY" id="BINARY">
<fundamental-type xmi:idref="BINARY"/>
</anonymous-type>

16.4 Generic Types

This sub clause formalizes the GenericTypes instances that are documented in sub clause 8.19.
<!-- GenericTypes Package -->

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1010" isTagged="FALSE"
igTail="FALSE" text="represents the EXPRESS generalized type
GENERIC ENTITY. Every entity data type is a specialization of
GENERIC ENTITY. Every EntityInstance is an instance of GENERIC ENTITY
and every instance of GENERIC ENTITY is an EntityInstance. &xA;Note --
See 9.5.3.3 of ISO 10303-11:2004."/>

<anonymous-type xmi:type="exp:GenericType" xmi:id="GENERIC ENTITY"
id="GENERIC ENTITY">

<specializes xmi:idref="GENERIC" />
</anonymous-type>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 1011" isTagged="FALSE"

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 269

isTail="FALSE" text="represents the EXPRESS generalized type GENERIC.
Every data type is a specialization of the GenericType GENERIC, and every
Instance is an Instance of GENERIC. &xA;Note -- See 9.5.3.2 of ISO 10303-
11:2004."/>
<anonymous-type xmi:type="exp:GenericType" xmi:id="GENERIC" id="GENERIC">
</anonymous-type>

16.5 Built-In Constants

This sub clause formalizes the BuiltInConstants instances that are documented in sub clause 13.12.

270

<!-- BuiltInConstants Package -->

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 2001" isTagged="FALSE"
isTail="FALSE" text="Represents the LOGICAL value that is the evaluation
of a proposition that is asserted. &xA;Note -- See clause 14.6 of ISO
10303-11:2004."/>

<expression xmi:type="exp:Literal" xmi:id="TRUE" text="TRUE">
<data-type xmi:idref="LOGICAL"/>
</expression>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 2002" isTagged="FALSE"
igTail="FALSE" text="Represents the LOGICAL value that is the evaluation
of a proposition whose negation is asserted. &xA;Note -- See clause 14.3
of ISO 10303-11:2004."/>

<expression xmi:type="exp:Literal" xmi:id="FALSE" text="FALSE">
<data-type xmi:idref="LOGICAL"/>
</expression>

<includes-remarks xmi:type="exp:Remark" xmi:id="_ text 2003" isTagged="FALSE"
igTail="FALSE" text="Represents the LOGICAL value that is the evaluation
of an Expression that involves Indeterminate values. UNKNOWN is a
specialization of the Indeterminate value that is treated only as a value
of data type LOGICAL. &xA;Note -- See clause 14.7 of ISO 10303-11:2004."

/>
<expression xmi:type="exp:Literal" xmi:id="UNKNOWN" text="UNKNOWN">
<data-type xmi:idref="LOGICAL"/>
</expression>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 2004" isTagged="FALSE"
isTail="FALSE" text="Represents the unigque REAL number e such that the
area above the x-axis and below the curve 1/x, for 1 <= x <= e, 1is
exactly 1. &xA;Note -- See clause 14.1 of ISO 10303-11:2004."/>

<expression xmi:type="exp:Literal" xmi:id="E" text="E">
<data-type xmi:idref="REAL"/>
</expression>

<includes-remarks xmi:type="exp:Remark" xmi:id=" text 2005" isTagged="FALSE"

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

isTail="FALSE" text="Represents the REAL value that is the ratio of the
circumference of a circle to its diameter. &xA;Note -- See clause 14.4 of
ISO 10303-11:2004."/>

<expression xmi:type="exp:Literal" xmi:id="PI" text="PI">
<data-type xmi:idref="REAL"/>
</expression>

</exp:Schema>
</xmi :XMI>

Reference Metamodel for the EXPRESS Information Modeling Language, v1.1 271

272 Reference Metamodel for the EXPRESS Information Modeling Language, v1.1

	List of Figures
	Preface
	1 Introduction
	1.1 Background - the origins of EXPRESS
	1.2 The MEXICO project
	1.3 Development of the EXPRESS metamodel
	1.4 Acknowledgements

	2 Scope and Purpose
	3 Normative References
	4 Conformance
	4.1 Conformance of an exchange document
	4.2 Conformance as a producer (pre-processor)
	4.3 Conformance as a (post-)processor
	4.4 Compliance points
	4.4.1 Compliance point: Enumerations
	4.4.2 Compliance point: Algorithms
	4.4.3 Compliance point: Rules
	4.4.4 Compliance point: Expressions
	4.4.5 Compliance point: Statements
	4.4.6 Compliance point: Express2

	5 Terms and Definitions
	5.1 Unified Modeling Language (UML) Terms
	5.2 EXPRESS Terms
	5.3 Terms for Model Elements
	5.4 Terms for primitive data types
	5.5 Additional terms introduced in this specification

	6 Additional Information
	6.1 Document Conventions
	6.2 Acknowledgements

	7 Overview of the EXPRESS Metamodel
	8 Package :: Core
	8.1 General
	8.2 Imported Packages
	8.3 UML Primitive Types
	8.3.1 Primitive type: Boolean
	8.3.2 Primitive type: Integer
	8.3.3 Primitive type: String

	8.4 EXPRESS Language Datatypes
	8.4.1 Datatype: ExpressText
	8.4.2 Datatype: Identifier
	8.4.3 Datatype: Keyword

	8.5 Schemas, Scopes, and Naming
	8.5.1 Class: AlgorithmScope
	8.5.2 Class: CommonElement
	8.5.3 Class: Interface
	8.5.4 Class: InterfacedElement
	8.5.5 Datatype: InterfaceKind
	8.5.6 Class: LocalScope
	8.5.7 Class: NamedElement
	8.5.8 Class: Schema
	8.5.9 Class: SchemaElement
	8.5.10 Class: Scope
	8.5.11 Datatype: ScopedId
	8.5.12 Association: common-element-has-local-scope
	8.5.13 Association: element-defined-in-scope
	8.5.14 Association: interface-includes-elements
	8.5.15 Association: schema-defines-elements
	8.5.16 Association: schema-element-is-interfaced-element
	8.5.17 Association: schema-interfaces-elements
	8.5.18 Association: schema-has-interface
	8.5.19 Generalization Sets

	8.6 Remarks
	8.6.1 Class: Remark
	8.6.2 Association: remark-appears-in-scope
	8.6.3 Association: remark-describes-element
	8.6.4 Association: remark-describes-schema

	8.7 Overview of Types
	8.7.1 Class: ActualType
	8.7.2 Class: AnonymousType
	8.7.3 Class: ConcreteType
	8.7.4 Class: DataType
	8.7.5 Class: DefinedType
	8.7.6 Class: EnumerationType
	8.7.7 Class: InstantiableType
	8.7.8 Class: NamedType
	8.7.9 Class: ParameterType
	8.7.10 Class: SelectType
	8.7.11 Class: SpecializedType
	8.7.12 Class: VariableType
	8.7.13 Association: enumeration-extends-enumeration
	8.7.14 Association: select-type-extends-select-type
	8.7.15 Association: type-instantiates-select-type
	8.7.16 Generalization Sets

	8.8 Type Constraints
	8.8.1 Class: DomainConstraint
	8.8.2 Class: DomainRule
	8.8.3 Association: NamedType-has-DomainRule
	8.8.4 Association: type-has-constraints

	8.9 Simple Types
	8.9.1 Class: BinaryType
	8.9.2 Class: LengthConstraint
	8.9.3 Class: LogicType
	8.9.4 Class: NumericType
	8.9.5 Class: RealType
	8.9.6 Class: SimpleType
	8.9.7 Class: StringType
	8.9.8 Generalization Sets

	8.10 Aggregation Types
	8.10.1 Class: AggregationType
	8.10.2 Class: ArrayBound
	8.10.3 Class: ARRAYType
	8.10.4 Class: BAGType
	8.10.5 Class: ConcreteAggregationType
	8.10.6 Class: LISTType
	8.10.7 Datatype: OrderingKind
	8.10.8 Class: SETType
	8.10.9 Class: SizeConstraint
	8.10.10 Generalization Sets

	8.11 Generalized Types
	8.11.1 Class: AGGREGATEType
	8.11.2 Class: GeneralAggregationType
	8.11.3 Class: GeneralARRAYType
	8.11.4 Class: GeneralBAGType
	8.11.5 Class: GeneralizedType
	8.11.6 Class: GeneralLISTType
	8.11.7 Class: GeneralSETType
	8.11.8 Class: GenericType
	8.11.9 Generalization Sets

	8.12 Entities and Attributes
	8.12.1 Class: Attribute
	8.12.2 Class: DerivedAttribute
	8.12.3 Class: EntityType
	8.12.4 Class: ExplicitAttribute
	8.12.5 Class: InverseAttribute
	8.12.6 Class: InvertibleAttribute
	8.12.7 Class: PartialEntityType
	8.12.8 Class: SingleEntityType
	8.12.9 Class: UniqueRule
	8.12.10 Association: attribute-has-data-type
	8.12.11 Association: entity-has-attributes
	8.12.12 Association: EntityType-has-Attribute
	8.12.13 Association: EntityType-has-UniqueRule
	8.12.14 Association: InverseAttribute-inverts-ExplicitAttribute
	8.12.15 Association: single-entity-declared-in-entity
	8.12.16 Generalization Sets

	8.13 Relationships
	8.13.1 Class: DomainRole
	8.13.2 Class: RangeRole
	8.13.3 Class: Relationship
	8.13.4 Class: Role
	8.13.5 Association: DomainRole-in-Relationship
	8.13.6 Association: entity-plays-domain-role
	8.13.7 Association: entity-plays-range-role
	8.13.8 Association: entity-used-in-attribute
	8.13.9 Association: InverseAttribute-models-role
	8.13.10 Association: ExplicitAttribute-creates-relationship
	8.13.11 Association: ExplicitAttribute-models-role
	8.13.12 Association: RangeRole-in-Relationship

	8.14 Redeclarations
	8.14.1 Class: Redeclaration
	8.14.2 Association: scope-of-redeclaration-is-EntityType

	8.15 Parametric Datatype Elements
	8.15.1 Class: ElementSource
	8.15.2 Class: ParametricElement
	8.15.3 Class: ParametricStructure
	8.15.4 Class: ParametricType
	8.15.5 Association: AGGREGATEType-defines-parameter
	8.15.6 Association: element-has-source
	8.15.7 Generalization Sets

	8.16 Actual Type Constraints
	8.16.1 Class: ActualStructureConstraint
	8.16.2 Class: ActualTypeConstraint
	8.16.3 Association: aggregate-has-constraint

	8.17 Expressions and Instances
	8.17.1 Class: Expression
	8.17.2 Class: Instance
	8.17.3 Association: expression-has-context
	8.17.4 Association: instance-of-type

	8.18 Instance Package: BuiltInTypes
	8.18.1 Dependencies
	8.18.2 Instance: BINARY
	8.18.3 Instance: BOOLEAN
	8.18.4 Instance: INTEGER
	8.18.5 Instance: LOGICAL
	8.18.6 Instance: NUMBER
	8.18.7 Instance: REAL
	8.18.8 Instance: ROLE
	8.18.9 Instance: STRING
	8.18.10 Instance: TYPE

	8.19 Instance Package: GenericTypes
	8.19.1 Dependencies
	8.19.2 Instance: GENERIC
	8.19.3 Instance: GENERIC_ENTITY

	9 Enumerations
	9.1 General
	9.2 Imported Packages
	9.3 Enumeration Items
	9.3.1 Class: ConcreteValue
	9.3.2 Class: EnumerationItem
	9.3.3 Association: enumeration-declares-items
	9.3.4 Association: value-of-EnumerationType

	10 Package : Instances
	10.1 General
	10.2 Imported Packages
	10.3 Overview of Instances
	10.3.1 Class Core::Instance
	10.3.2 Class: ConcreteValue
	10.3.3 Class: EnumerationItem
	10.3.4 Class: Indeterminate
	10.3.5 Class: SpecializedValue
	10.3.6 Class: TypedInstance
	10.3.7 Generalization Sets

	10.4 Simple Values
	10.4.1 Class: BinaryValue
	10.4.2 Class: BooleanValue
	10.4.3 Class: IntegerValue
	10.4.4 Class: LogicalValue
	10.4.5 Class: NumberValue
	10.4.6 Class: RealValue
	10.4.7 Class: RoleName
	10.4.8 Class: SimpleValue
	10.4.9 Class: StringValue
	10.4.10 Class: TypeName
	10.4.11 Generalization Sets

	10.5 Aggregate Values
	10.5.1 Class: AggregateValue
	10.5.2 Class: ArrayMember
	10.5.3 Class: ARRAYValue
	10.5.4 Class: BagMember
	10.5.5 Class: BAGValue
	10.5.6 Class: GenericAggregate
	10.5.7 Class: ListMember
	10.5.8 Class: LISTValue
	10.5.9 Class: SETValue
	10.5.10 Generalization Sets

	10.6 Entity Instances and Values
	10.6.1 Class: AttributeValue
	10.6.2 Class: EntityInstance
	10.6.3 Datatype: EntityName
	10.6.4 Class: EntityValue
	10.6.5 Class: MultiLeafInstance
	10.6.6 Class: PartialEntityValue
	10.6.7 Class: SingleEntityValue
	10.6.8 Class: SingleLeafInstance
	10.6.9 Association: entity-value-describes-state
	10.6.10 Association: instance-of-EntityType
	10.6.11 Generalization Sets

	10.7 Constants
	10.7.1 Class: Constant

	10.8 Populations
	10.8.1 Class: Extent
	10.8.2 Class: Population
	10.8.3 Association: extent-of-EntityType
	10.8.4 Association: extent-within-population
	10.8.5 Association: population-includes-instance

	11 Package : Algorithms
	11.1 General
	11.2 Imported Packages
	11.3 Functions and Procedures
	11.3.1 Class: Algorithm
	11.3.2 Class: Function
	11.3.3 Class: FunctionResult
	11.3.4 Class: InParameter
	11.3.5 Class: Parameter
	11.3.6 Class: Procedure
	11.3.7 Class: Statement
	11.3.8 Class: VARParameter
	11.3.9 Association: algorithm-has-body
	11.3.10 Association: algorithm-has-parameters
	11.3.11 Association: function-has-result
	11.3.12 Generalization Sets

	11.4 Variables
	11.4.1 Class: LocalVariable
	11.4.2 Class: NamedVariable
	11.4.3 Class: VARVariable
	11.4.4 Class: Variable
	11.4.5 Association: variable-defined-in-scope
	11.4.6 Generalization Sets

	11.5 Actual Types
	11.5.1 Class: Core::ActualType
	11.5.2 Class: ActualAGGREGATEType
	11.5.3 Class: ActualAggregationType
	11.5.4 Class: ActualARRAYType
	11.5.5 Class: ActualBAGType
	11.5.6 Class: ActualGenericType
	11.5.7 Class: ActualLISTType
	11.5.8 Class: ActualSETType
	11.5.9 Association: scope-of-actual-type
	11.5.10 Generalization Sets

	12 Package : Rules
	12.1 General
	12.2 Imported Packages
	12.3 Global Rules
	12.3.1 Class: GlobalRule
	12.3.2 Class: NamedRule
	12.3.3 Association: GlobalRule-contains-NamedRule
	12.3.4 Association: rule-constrains-extents

	12.4 SupertypeRules and SubtypeConstraints
	12.4.1 Class: ANDConstraint
	12.4.2 Class: ONEOFConstraint
	12.4.3 Class: SubtypeConstraint
	12.4.4 Class: SupertypeRule
	12.4.5 Class: TOTAL_OVERConstraint
	12.4.6 Association: rule-constrains-subtypes
	12.4.7 Association: rule-includes-SubtypeConstraints
	12.4.8 Generalization Sets

	13 Package : Expressions
	13.1 General
	13.2 Imported Packages
	13.3 Overview of Expressions
	13.3.1 Class Core::Expression
	13.3.2 Class: IndexOperation
	13.3.3 Class: Operation
	13.3.4 Class: Primary
	13.3.5 Class: Selector
	13.3.6 Generalization Sets

	13.4 Primaries
	13.4.1 Class: ConstantRef
	13.4.2 Class: EnumItemRef
	13.4.3 Class: ExtentRef
	13.4.4 Class: IndeterminateRef
	13.4.5 Class: Literal
	13.4.6 Class: ParameterRef
	13.4.7 Class: SELFRef
	13.4.8 Class: VariableRef
	13.4.9 Generalization Sets

	13.5 Indexing
	13.5.1 Class: AggregateIndex
	13.5.2 Class: BinaryIndex
	13.5.3 Class: StringIndex
	13.5.4 Generalization Sets

	13.6 Selection
	13.6.1 Class: AttributeRef
	13.6.2 Class: GroupRef
	13.6.3 Class: UsedInRef
	13.6.4 Generalization Sets

	13.7 Operations
	13.7.1 Class: BinaryOperation
	13.7.2 Datatype: BinaryOperator
	13.7.3 Class: Coercion
	13.7.4 Class: UnaryOperation
	13.7.5 Datatype: UnaryOperator
	13.7.6 Generalization Sets

	13.8 Function Calls
	13.8.1 Class: ActualParameter
	13.8.2 Class: FunctionCall
	13.8.3 PassByValue
	13.8.4 Association: call-provides-actual-parameters

	13.9 Query Expressions
	13.9.1 Class: QueryExpression
	13.9.2 Class: QueryVariable
	13.9.3 Association: scope-of-variable-is-query

	13.10 Aggregate Initializers
	13.10.1 Class: AggregateInitializer
	13.10.2 Class: MemberBinding
	13.10.3 Class: RepeatCount

	13.11 Partial Entity Constructors
	13.11.1 Class: AttributeBinding
	13.11.2 Class: PartialEntityConstructor

	13.12 Instance Package: BuiltInConstants
	13.12.1 Imported Packages
	13.12.2 Instance: E
	13.12.3 Instance: FALSE
	13.12.4 Instance: PI
	13.12.5 Instance: TRUE
	13.12.6 Instance: UNKNOWN

	14 Package : Statements
	14.1 General
	14.2 Imported Packages
	14.3 Overview of Statements
	14.3.1 Class: Algorithms::Statement
	14.3.2 Class: ControlStatement
	14.3.3 Class: NullStatement
	14.3.4 Class: StatementBlock
	14.3.5 Association: block-sequences-statements
	14.3.6 Generalization Sets

	14.4 ALIAS Statements
	14.4.1 Class: AliasStatement
	14.4.2 Class: AliasVariable
	14.4.3 Association: alias-binds-variable
	14.4.4 Generalization Sets

	14.5 Assignment Statements
	14.5.1 Class: Assignment

	14.6 CASE Statements
	14.6.1 Class: CaseAction
	14.6.2 Class: CaseStatement

	14.7 IF Statements
	14.7.1 Class: IfStatement

	14.8 Procedure Calls
	14.8.1 PassByReference
	14.8.2 Class: ProcedureCall
	14.8.3 Association: procedure-call-provides-actual-parameters

	14.9 REPEAT Statements
	14.9.1 Class: ControlVariable
	14.9.2 Class: EscapeStatement
	14.9.3 Class: RepeatStatement
	14.9.4 Class: SkipStatement
	14.9.5 Association: repeat-has-body
	14.9.6 Association: repeat-has-increment-control
	14.9.7 Generalization Sets

	14.10 RETURN Statements
	14.10.1 Class: ReturnStatement

	14.11 VAR Expressions
	14.11.1 Class: AttributeCell
	14.11.2 Class: GroupCell
	14.11.3 Class: MemberCell
	14.11.4 Class: AliasRef
	14.11.5 Class: VARExpression
	14.11.6 Class: VariableCell
	14.11.7 Generalization Sets

	15 Package : Express2
	15.1 General
	15.2 Imported Packages
	15.3 Classes and Associations
	15.4 Generalization Sets

	16 The EXPRESSElements Module
	16.1 General
	16.2 XMI Header
	16.3 Built-In Types
	16.4 Generic Types
	16.5 Built-In Constants

