
ExternalizationServiceSpecification

Version1.0
NewEdition:April 2000

Copyright 1994 International Business Machines Corporation
Copyright 1994 SunSoft, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

iii
iii

iv

iv

1-1

1-1

1-2
2
-3
4
6

1-8

-11

2

-1

2-1
2-2
-3

2-3

2-5
2-8
-9
Preface .

About the Object Management Group .
What is CORBA? .

Associated OMG Documents. .

Acknowledgments .

1. Service Description .

1.1 Overview .

1.2 Service Structure .
1.2.1 Client’s Model of Object Externalization 1-
1.2.2 Stream’s Model of Object Externalization . . . 1
1.2.3 Object’s Model of Externalization 1-
1.2.4 Object’s Model of Internalization 1-

1.3 Object and Interface Hierarchies

1.4 Interface Summary . 1
1.4.1 Externalization Service Architecture:

Audience/Bearer Mapping 1-1

2. Externalization Service Modules . 2

2.1 CosExternalization Module .
2.1.1 StreamFactory Interface
2.1.2 FileStreamFactory Interface 2
2.1.3 Stream Interface .

2.2 CosStream Module .
2.2.1 Standard Stream Data Format
2.2.2 The StreamIO Interface 2
Externalization Service V1.0 April 2000 i

Contents

2-9
-11
-12
-13
-13
14

-15

-15

-16

2-18
18
-19
20

-1
2.2.3 The Streamable Interface
2.2.4 The StreamableFactory Interface 2
2.2.5 The Node Interface . 2
2.2.6 The Role Interface . 2
2.2.7 The Relationship Interface 2
2.2.8 The PropagationCriteriaFactory Interface. 2-

2.3 Specific Externalization Relationships 2

2.4 The CosExternalizationContainment Module. 2

2.5 The CosExternalizationReference Module 2

2.6 Standard Stream Data Format. .
2.6.1 OMG Externalized Object Data 2-
2.6.2 Externalized Repeated Reference Data. 2
2.6.3 Externalized NIL Data 2-

Appendix A - References. A
ii Externalization Service V1.0 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Externalization Service V1.0 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Externalization Service V1.0 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Externalization Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Externalization Service V1.0 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Externalization Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Externalization Service V1.0 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted parts of theExternalization Servicespecification:

• International Business Machines Corporation

• SunSoft, Inc.
Externalization Service V1.0 Interface Style Consistency April 2000 ix

x Externalization Service V1.0 April 2000

ServiceDescription 1
with

and

s

Contents

This chapter contains the following topics.

Note – Dec. 1998: OMG made some editorial changes. These changes involved
merging the old CosCompoundExternalization section and IDL into the CosStream
section and IDL. Those were the only changes, along with a few text references to
CosCompoundExternalization that became CosStream, which have been marked
changebars.

1.1 Overview

The Externalization Service specification defines protocols and conventions for
externalizing and internalizing objects. To externalize an object is to record the
object’s state in a stream of data. Objects which support the appropriate interfaces
whose implementations adhere to the proper conventions can be externalized to a
stream (in memory, on a disk file, across the network, etc.) and subsequently be
internalized into a new object in the same or a different process. The externalized
form of the object can exist for arbitrary amounts of time, be transported by mean
outside of the ORB, and can be internalized in a different, disconnected ORB.

Topic Page

“Overview” 1-1

“Service Structure” 1-2

“Object and Interface Hierarchies” 1-8

“Interface Summary” 1-11
Externalization Service V1.0 (updated) April 2000 1-1

1

by
ata

ere
e”

re.”

the

ed

am
r

s

Many different externalized data formats and storage mediums can be supported
service implementations. But, for portability, clients can request that externalized d
be stored in a file using a standardized format that is defined as part of this
Externalization Service specification.

Externalizing and internalizing an object is similar to copying the object. The copy
operation creates a new object that is initialized from an existing object. The new
object is then available to provide service. Furthermore, with the copy operation, th
is an assumption that it is possible to communicate via the ORB between the “her
and “there”. Externalization, on the other hand, does not create an object that is
initialized from an existing object. Externalization “stops along the way”. New
objects are not created until the stream is internalized. Furthermore, there is no
assumption that is possible to communicate via the ORB between “here” and “the

The Externalization Service is related to the Relationship Service. It also parallels
Life Cycle Service in defining externalization protocols for simple objects, for
arbitrarily related objects, and for graphs of related objects that support compound
operations. (For more information, refer to the Service Dependencies section in
Chapter 2.)

The Externalization Service defines protocols in these areas:

• Client’s view of externalization, composed of the interfaces used by a client to
externalize and internalize objects. The client’s view of externalization is defin
by theStream interface.

• Object’s view of externalization, composed of the interfaces used by an
externalizable object to record and retrieve their object state to and from the
stream’s external form. The object’s view is defined by theStreamIO interface.

• Stream’s view of externalization, composed of the interfaces used by the stre
to direct an externalizable object or graph of objects to record or retrieve thei
state from the stream’s external form. The stream’s view of externalization is
given by theStreamable , Node , Role andRelationship interfaces.

1.2 Service Structure

This section explains the model of externalization for client and stream. It also
describes the model of externalization and internalization for objects.

1.2.1 Client’s Model of Object Externalization

A client has a simple view of the externalization service. A client that wishes to
externalize an object first must have an object reference for aStream object. A
Stream object owns and provides access to the externalized form of one or more
objects. Streams may be provided that hold externalized data on various medium
such as in memory or on disk. All Externalization Service implementors provide a
Stream object that saves the externalized data in a file. A client may create aStream
object using thecreate() operation on aStreamFactory object, or may specify that a
file be used to store the externalized data using thecreate() operation of a
FileStreamFactory object.
1-2 Externalization Service V1.0 (updated) April 2000

1

ta

n

n

f

me
t

e

nts

sms,

may
he

the
The client can create aStream object that supports a standardized externalization da
format. Externalization data that follows this format will be internalizable on all
CORBA-compliant ORBs that can locate compatible object implementations. By
including support for a specific external representation format in the Externalizatio
Service, portability of object state is provided across different CORBA-compliant
implementations and hardware architectures.

Once a client has aStream object, the client may externalize an object by issuing a
externalize() request on theStream object, providing the object reference to the
object that should be externalized. In general, the client is unaware of whether
externalizing an object causes any other related objects to be externalized. An
externalizable object may represent a simple object, a set of objects, or a graph o
related objects. The client uses the same interface in all cases.

If a client wishes to externalize multiple objects (or related sets of objects) to the sa
stream, the client issues abegin_context() request before the first externalize reques
and then issues anend_context() following the last externalize request for that sam
stream.

The externalized form of the object can exist in the stream object for arbitrary amou
of time, be transported by means outside of the ORB, and can be internalized in a
different, disconnected ORB.

A client that wishes to internalize an object issues aninternalize() request on the
appropriateStream object, providing a factory finder. TheStream object interacts
with the specified factory finder, or uses other implementation dependent mechani
to create an implementation of the object that matches the externalized data. The
client is returned an object reference to the newly internalized object.

1.2.2 Stream’s Model of Object Externalization

A Stream object provides theStream interface for use by clients. TheStream object
is also responsible for providing an object that supports aStreamIO interface for
actually reading and writing data to the externalized data form. The stream object
support theStreamIO interfaces itself, or may create another object that supports t
StreamIO interfaces. This is considered an implementation detail.

Note – When the behavior described in this section may be implemented in either
Stream or StreamIO objects (or other internal objects they may use), the term
“stream service” is used.

When a stream object receives an externalize request from a client, it also gets an
object reference to the object to be externalized. The stream cooperates with the
externalizable object to accomplish externalization and internalization, using the
object’sStreamable interfaces.

The stream service uses the readonlyKey attribute of the externalizable object to
decide what information to put into the external data in order to be able to find the
correct factory and implementation with which to subsequently internalize an
equivalent object. The stream service then issues anexternalize_to_stream() request
Externalization Service V1.0 (updated) Service Structure April 2000 1-3

1

data.

e

p
cts
ingle

nt
to the externalizable object, providing an object reference to aStreamIO object that is
to be used by the externalizable object to record its state in the stream service’s
external data.

When aStream object receives an internalize request from a client, it also gets a
factory finder. The stream service holds the external form of the object, or set of
objects, to be internalized. The stream service reads the key from its externalized
It may then pass the key to the factory finder to locate a factory that can create an
object with an implementation that matches the recorded object state. The stream
service implementation may use other implementation specific ways of creating an
appropriate object. The stream service then issues aninternalize_from_stream()
request to the newly created object, providing an object reference to aStreamIO
object that is used by the externalizable object to initialize its state according to th
stream service’s externalized data.

When aStream object receives abegin_context() request, the stream service sets u
a context during which the stream service ensures that externalizing multiple obje
that may have overlapping object references and/or object relationships produces s
instances of those objects on internalization. Anend_context() request causes the
stream service to remove the previous internal context, and externalize subseque
objects without regard to whether they have already been externalized in thisStream ’s
data.

8.2.3 Object’s Model of Externalization

Every object that wishes to be externalizable must support theStreamable interface,
and follow conventions on use of theStreamIO interfaces to record and retrieve their
object state from aStream ’s data.

When aStreamable object receives anexternalize_to_stream request from the
stream service, it must write all of its state necessary for internalization to the
StreamIO object provided by the stream service.StreamIO provides
write_<type>() operations for writing each of the CORBA basic data types, plus
string types. If an object has object references that are part of its state, theStreamIO
write_object() operation may be used to cause the object specified by an object
reference to also be externalized to the stream’s data.
1-4 Externalization Service V1.0 (updated) April 2000

1

e the

e

Figure 1-1 Externalization control flow when streamable object is not in a graph of related
objects

A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support theCosStream::Node
interface. Such a streamable object simply delegates the
Streamable::externalize_to_stream() request back to the stream service, using th
StreamIO::write_graph() operation.

The stream service then coordinates the externalization of the graph and calls the
object back using the object’sCosStream::Node interface.

Client callsStream::externalize(Streamable object)

Stream writes a key for this object to the external representation.

Stream calls theStreamable::write_to_stream(StreamIO this_sio) so that the ob-
ject can write out whatever internal state it needs to save.

If Streamable object is a node in a graph of related objects, flow is given
in Figure 1-2

Streamable object writes out its non-object data using the primitive
StreamIO::write_...(data) functions

Streamable object writes out other objects using the
StreamIO::write_object(Streamable object) function

ExternalizationControlFlow (streamableobjectis notanode)
Externalization Service V1.0 (updated) Service Structure April 2000 1-5

1

ted

e to
Figure 1-2 Externalization control flow when streamable object is a node in a graph of rela
objects

1.2.4 Object’s Model of Internalization

When a streamable object receives aninternalize_from_stream() request from a
stream, it must read data from theStreamIO object provided by the stream service,
and initialize its state to match the externalized state. The externalizable object
requests data from the stream service using theStreamIO read_<type>() operations
for basic data, and string types. If the object being internalized includes a referenc
another object as part of its state, theStreamIO read_object() operation may be used
to have that object also internalized from the stream’s data.

Streamable object, recognizing that it is a node in a graph of related ob-
jects, delegates the externalization of the graph to the stream service using
StreamIO::write_graph (this_node) operation.

ExternalizationControlFlow (streamableis anode)

Node writes out its non-object data using the primitive
StreamIO::write_...(data) functions

Node writes out other objects using the
StreamIO::write_object(Streamable object) function

StreamIO::write_graph ,coordinates the externalization of the
graph usingNode::externalize_node(this_sio) operation.

StreamIO object externalizes the involved relationships using
Relationship::externalize() . StreamIO writes traversal scoped ids for
the externalized roles and relationships to theStream ’s data.

Node writes out its role objects using the
Role::externalize_role(this_sio) operation.

StreamIO::write_graph uses propagation value to deter-
mine next nodes and writes a key for next node
1-6 Externalization Service V1.0 (updated) April 2000

1

e the

r

al
Figure 1-3 Internalization control flow when object is not in a graph of related objects

A streamable object may be a node in a graph of related objects, that is, it may us
Relationship Service to connect to other objects and support theCosStream::Node
interface. Such a streamable object simply delegates the
Streamable::internalize_from_stream() request back to the stream service, using
the StreamIO::write_graph() operation.

Client callsStreamable = Stream::internalize(FactoryFinder f)

Stream reads key from the external representation, and uses this and the factory finde
to create an object of the correct interface and implementation. The stream may use the
StreamableFactory interface.

Stream calls theStreamable::read_from_stream(StreamIO this_sio) so that
the object can read the data in its external representation and reset or calculate its intern
state

If Streamable object is a node in a graph of related objects, flow is given in
Figure 1-4

Streamable object reads in its non-object data using the primitive
StreamIO::read_...(data) functions

Streamable object internalizes other objects using the
Streamable = StreamIO::read_object() function

InternalizationControlFlow (streamableobjectis notanode)
Externalization Service V1.0 (updated) Service Structure April 2000 1-7

1

t

The stream service then coordinates the externalization of the graph and calls the
object back using the object’sCosStream::Node interface.

Figure 1-4 Internalization control flow when object is in a graph of related objects

1.3 Object and Interface Hierarchies

This section identifies the objects required for the Externalization Service and
important inheritance and use relationships that exist between their interfaces.

The Object Externalization Service can only externalize and internalize objects tha
inherit theStreamable interface. Streamable does not inherit any other interfaces.
However, it must have an associatedStreamableFactory that the Externalization
Service implementation can find and use when internalizing the object.

Streamable object, recognizing that it is a node in a graph of related ob-
jects, delegates the internalization of the graph to the stream service using
StreamIO::read_graph(this_node) operation.

Internalization Control Flow (streamable is a node)

Node reads its non-object data using the primitive
StreamIO::read_...(data) functions

Node read other objects using the
StreamIO::read_object(Streamable object) function

StreamIO::read_graph ,coordinates the internalization of the
graph usingNode::internalize_node(this_sio) operation.

StreamIO object internalizes the traversal scoped identifiers for the exter-
nalized roles and relationships and internalizes the relationships using
Relationship::internalize() .

Node reads its role objects using the
Role::internalize_role(this_sio) operation.

StreamIO::read_graph reads the key for next node and
uses the StreamableFactory interface to create the next node.
1-8 Externalization Service V1.0 (updated) April 2000

1

n

t
st be

e

ject
Stream inherits theLifeCycleObject interface because clients of the Externalizatio
Service need to remove these objects. TheStreamFactory or File StreamFactory
interfaces may be used to create stream objects.

In addition to the inheritance relationships described above, the class diagram in
Figure 1-5 also shows the usage relationships between the service objects.Stream
externalize() and internalize() operations invoke theStreamable
externalize_to_stream() and internalize_from_stream() operations to write and
read the appropriate object internal state. AStreamIO object is passed as an argumen
to these operations. The externalized object determines how much of its state mu
put in the external representation, and can minimize saved state by recreating som
state upon internalization. TheStreamable externalize_to_stream() and
internalize_from_stream() useStreamIO operations to actually put various data
types and contained object references in the external representation. This allows
StreamIO to put appropriate headers in the external representation so that the ob
can be recreated correctly during internalization. TheStream is responsible for
providing an object that supports theStreamIO interface. TheStream object may
support theStreamIO interface itself, or create another object that supports the
StreamIO interface. TheStream andStreamIO implementations decide on the
storage medium and data type representation conversion for different hardware,
without requiring different implementation of the objects being externalized.
Externalization Service V1.0 (updated) Object and Interface Hierarchies April 20001-9

1

Figure 1-5 Object Externalization Service Booch Class (=Interface) Diagram

write_object()
read_object()
write_graph()
read_graph()
write_...
read_...

external_form_id
externalize_to_stream()
internalize_from_stream()

StreamableFactory

LifeCycleObject

Streamable

IdentifiableObject

Stream

StreamIO

StreamFactory

B inherits from A

A B A has B

A B A uses B

A B

LEGEND

Node Relationship

Role
1-10 Externalization Service V1.0 (updated) April 2000

1

el
e the
1.4 Interface Summary

The Externalization Service defines interfaces (using OMG IDL) to support the
functionality described in the previous sections. The following tables give high lev
descriptions of the Externalization Service interfaces. Subsequent sections describ
interfaces in more detail.

Table 1-1 Client Functional Interfaces support client’s model of externalization

Interface Purpose Primary Client

Stream Holds external form of objects. Clients that need to externalize
and internalize objects.

StreamFactory Creates and initializes stream
objects.

Clients that need to create
stream objects.

FileStreamFactory Creates and initializes stream
objects that stores data in a file.

Clients that need to create
stream objects, and want the
externalized data in a file.

Table 1-2 Service Construction Interfaces support service implementation’s model of
externalization

Interface Purpose Primary Client

Streamable Provides its state to a stream
for externalization, and gets
its state from the stream on
internalization.

The stream service
implementation of
externalization and
internalization.

StreamableFactory Creates and initializes
streamable objects

The stream service
internalization implementation.

StreamIO Part of stream
implemenation that writes
and reads object state to
appropriately converted
external form.

The externalizable objects that
need to record and retrieve their
state from a stream.
Externalization Service V1.0 (updated) Interface Summary April 2000 1-11

1

ay
1.4.1 Externalization Service Architecture: Audience/Bearer Mapping

Stream andStreamFactory are solely functional interfaces. Their audience is the
client of the Externalization Service.

Streamable , StreamableFactory , andStreamIO are solely construction interfaces.
The audience forStreamable is both theStream andStreamIO objects. To be
“externalizable,” objects must inherit theStreamable interface and provide
implementations of its operations. The audience forStreamIO interface is the
externalizableStreamable andStreamableNode objects. TheStreamIO objects
are part of the Externalization Service implementation.

The Stream , StreamFactory , andStreamIO objects are specific objects because
their purpose is to provide a part of the Externalization Service. However, there m
be manyStream andStreamIO instances in a system, since each represents a
particular external representation of an object or group of objects.

Streamable andStreamableFactory objects are generic objects because their
primary purpose is unrelated to the Externalization Service. Any definer or
implementor of an object may choose to inherit theStreamable interface in order to
support externalization/internalization of that object.

In summary:
- Stream andStreamFacto ry are specific functional interfaces
- Streamabl e and StreamableFactory are generic construction interfaces
- StreamIO is a specific construction interface

Table 1-3 Compound Externalization Interfaces support service implementation’s model of
graph externalization

Interface Purpose Primary Client

Node Defines externalization and
internalization operations on
nodes in graphs of related
objects.

The stream service
implementation of
externalization and
internalization.

Relationship Defines externalization and
internalization operations on
relationships.

The stream service
implementation of
externlization and
internalization.

Role Defines externalization and
internalization operations on
roles.

The stream service
implementation of
externalization and
internalization.
1-12 Externalization Service V1.0 (updated) April 2000

ExternalizationServiceModules 2
ze
Contents

This chapter contains the following topics.

2.1 CosExternalization Module

The client-functional interfaces defined by the theCosExternalization module are:

• StreamFactory interface, which creates a stream.

• FileStreamFactory interface, which has an operation that lets clients cause
externalized data be stored in a file or internalize objects from a file they have
been given.

• Stream interface, which can externalize one object or a group of objects; finali
the externalization, and internalize an object.

/File: CosExternalization.idl
//Part of the Externalization Service

#ifndef _COS_EXTERNALIZATION_IDL_
#define _COS_EXTERNALIZATION_IDL_

Topic Page

“CosExternalization Module” 2-1

“CosStream Module” 2-5

“Specific Externalization Relationships” 2-15

“CosExternalizationContainment Module” 2-15

“CosExternalizationReference Module” 2-16

“Standard Stream Data Format” 2-18
Externalization Service V1.0 (updated) April 2000 2-1

2

he
#include <CosLifeCycle.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalization {
exception InvalidFileNameError{};
exception ContextAlreadyRegistered{};
interface Stream: CosLifeCycle::LifeCycleObject{

void externalize(
in CosStream::Streamable theObject);

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

CosStream::StreamDataFormatError);
void begin_context()

raises(ContextAlreadyRegistered);
void end_context();
void flush();

};
interface StreamFactory {

Stream create();
};
interface FileStreamFactory {

Stream create(
in string theFileName)
raises(InvalidFileNameError);

};
};
#endif /* ifndef _COS_EXTERNALIZATION_IDL_ */

2.1.1 StreamFactory Interface

2.1.1.1 Creating a Stream Object

Stream create();

Clients of the Object Externalization Service must create aStream object before they
can externalize or internalize any objects. Two factory interfaces are supported. T
first, theStreamFactory interface has acreate() operation that creates a stream
without specifying any special characteristics of the implementation.
2-2 Externalization Service V1.0 (updated) April 2000

2

ing
al
tion

t

ct
d to

ed

n

2.1.2 FileStreamFactory Interface

2.1.2.1 Creating a Stream Objec Associated with a File

Stream create(
in string theFileName)
raises(InvalidFileNameError);

For clients that want to cause the externalized data stored in a file, or that need to
internalize objects from a file they have been given, theFileStreamFactory interface
has acreate() operation that takes a string input parameter. The client sets this str
to the filename of the file that will be used by the stream service to hold the exterm
representation of the objects externalized, or that contains the external representa
of objects that the client wishes to internalize.Stream::externalize() requests will
append to any existing data in the file associated with a stream.

2.1.3 Stream Interface

2.1.3.1 Externalizing an Object

void externalize(
in CosStream::Streamable theObject);

Clients of the Object Externalization Service invokeexternalize() on aStream object
passing the object reference of aCosStream::Streamable object,theObject , to be
externalized. Only objects that are of typeCosStream::Streamable can be
externalized. Subsequently, clients invoke theinternalize() operation on theStream
containing the external representation, andStream internalize() operation creates a
new object with state identical to what was externalized and returns the new objec
reference.

The implementation ofexternalize() writes implementation specific header
information to the external representation it is maintaining, so that the correct obje
can be recreated at internalization time. This could be the factory key that was use
create theCosStream::Streamable object, or could include the interface type,
implemenation repository, or factory object names. The factory key may be obtain
by from theexternal_form_id attribute oftheObject . Theexternalize()
implementation must then invoke theCosStream::Streamable
externalize_to_stream() operation ontheObject to cause the object’s internal state
to be written to the external respresentation. TheStream is responsible for providing
an object that supports theStreamIO interfaces for the externalizable object to use i
writing data to the stream service.

2.1.3.2 Externalizing Groups of Objects

void begin_context()
raises(ContextAlreadyRegistered);

void end_context();
Externalization V1.0 (updated) CosExternalization Module April 2000 2-3

2

r

re

s

les

final

o the

e

If a client wishes to externalize a set of objects with overlapping references and/o
object relationships, the client invokesbegin_context() on theStream . This must be
called before externalizing any of the set of objects, andend_context() must be
called on theStream after the entire set of objects has been externalized and befo
the Stream is used with another set of objects.

The Stream implementation establishes an association with the specifiedStream
object and a logical “context.” TheStream ensures that all objects externalized to thi
stream while this association lasts will be externalized in such a way that
internalization will not create any duplicate objects. That is, the implementation of
Stream checks for “context,” and for objects externalized in the same context hand
overlapping or circular references and/or relationships between those objects. The
association lasts untilend_context() is called. TheStream raises the
ContextAlreadyRegistered exception ifbegin_context() is called and a context
is already established, perhaps through some other implementation dependent
mechanism or perhaps becauseend_context() has not been called following a
previousbegin_context() .

2.1.3.3 Completing Externalization

void flush();

Clients invokeflush() to request that the external representation is committed to its
final storage medium, whatever that may be. The implementation offlush() should
attempt to ensure that the external respresentation is completely up-to-date in its
storage (e.g., memory buffer, file, tape, ...).

2.1.3.4 Internalizing an Object

CosStream::Streamable internalize(
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

CosStream::StreamDataFormatError);

The implementation ofinternalize() must create an object with the correct interface
and implementation to match the externalized representation and return a pointer t
new CosStream::Streamable object. Theinternalize() implementation must then
invoke theinternalize_from_stream() operation on the new object. The
CosStream::StreamDataFormatError exception should be raised if an error is
detected in the data format of the object header. TheCosLifeCycle::NoFactory
exception should be raised if the object cannot be created because an appropriat
factory cannot be found. If the object cannot be created due to other reasons, an
ObjectCreationError exception should be raised. Additional
CosStream::StreamDataFormat exceptions may be raised by theread_<type>
operations invoked byinternalize_from_stream() operation due to errors in the
externalized data format.
2-4 Externalization Service V1.0 (updated) April 2000

2

n

The
2.2 CosStream Module

The service construction interfaces defined by theCosStream module are:

• Streamable interface

• StreamableFactory interface

• StreamIO interface

If a Streamable object participates as a node in a graph of related objects, the
Streamableobject can delegate the externalization operation to the stream service. I
particular, theStreamable object simply uses thewrite_graph() operation. The
write_graph() operation expects a streamable object reference as a starting node.
stream service narrows the streamable object reference toCosStream::Node . The
write_graph() then coordinates the orderly externalization of the graph of related
objects. For more details on compound operations, see the Relationship Service
specification and the Compound Life Cycle section in the Life Cycle Service
specification.

TheCosStream module defines interfaces for use by thewrite_graph() operation:

• Node interface

• Role interface

• Relationship interface

• PropagationCriteriaFactory interface

//File: CosStream.idl
//Part of the Externalization Service
// Modified from version 1.0 to include the previous CosCompoundExternalization
module

#ifndef _COS_STREAM_IDL_
#define _COS_STREAM_IDL_

#include <CosLifeCycle.idl>
#include <CosObjectIdentity.idl>
#include <CosGraphs.idl>

#pragma prefix “omg.org”

module CosStream {
exception ObjectCreationError{};
exception StreamDataFormatError{};

interface StreamIO;
interface Node;
interface Role;
interface Relationship;

interface Streamable:
 CosObjectIdentity::IdentifiableObject {

readonly attribute CosLifeCycle::Key external_form_id;
void externalize_to_stream(

in StreamIOtargetStreamIO);
void internalize_from_stream(
Externalization V1.0 (updated) CosStream Module April 2000 2-5

2

in StreamIOsourceStreamIO,
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

ObjectCreationError,
StreamDataFormatError);

};

interface StreamableFactory {
Streamable create_uninitialized();

};

interface StreamIO {
void write_string(in string aString);
void write_char(in char aChar);
void write_octet(in octet anOctet);
void write_unsigned_long(

in unsigned long anUnsignedLong);
void write_unsigned_short(

in unsigned short anUnsignedShort);
void write_long(in long aLong);
void write_short(in short aShort);
void write_float(in float aFloat);
void write_double(in double aDouble);
void write_boolean(in boolean aBoolean);
void write_object(in Streamable aStreamable);
void write_graph(in Node aNode);
string read_string()

raises(StreamDataFormatError);
char read_char()

raises(StreamDataFormatError);
octet read_octet()

raises(StreamDataFormatError);
unsigned long read_unsigned_long()

raises(StreamDataFormatError);
unsigned short read_unsigned_short()

raises(StreamDataFormatError);
long read_long()

raises(StreamDataFormatError);
short read_short()

raises(StreamDataFormatError);
float read_float()

raises(StreamDataFormatError);
double read_double()

raises(StreamDataFormatError);
boolean read_boolean()

raises(StreamDataFormatError);
Streamable read_object(

in CosLifeCycle::FactoryFinder there,
in Streamable aStreamable)
raises(StreamDataFormatError);

void read_graph(
in Node starting_node,
in CosLifeCycle::FactoryFinder there)
raises(StreamDataFormatError);
2-6 Externalization Service V1.0 (updated) April 2000

2

the
};

 // the following are required for compound externalization

struct RelationshipHandle {
CosRelationships::Relationship theRelationship;
CosObjectIdentity::ObjectIdentifier constantRandomId;

};

interface Node : CosGraphs::Node, CosStream::Streamable{
void externalize_node (in CosStream::StreamIO sio);
void internalize_node (in CosStream::StreamIO sio,

in CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (CosLifeCycle::NoFactory);
};

interface Role : CosGraphs::Role {
void externalize_role (in CosStream::StreamIO sio);
void internalize_role (in CosStream::StreamIO sio);
CosGraphs::PropagationValue externalize_propagation (

in RelationshipHandle rel,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface Relationship : CosRelationships::Relationship {
void externalize_relationship (

in CosStream::StreamIO sio);
void internalize_relationship(

in CosStream::StreamIO sio,
in CosGraphs::NamedRoles newRoles);

CosGraphs::PropagationValue externalize_propagation (
in CosRelationships::RoleName fromRoleName,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

};

interface PropagationCriteriaFactory {
 CosGraphs::TraversalCriteria create_for_externalize();
};

};
#endif /* ifndef _COS_STREAM_IDL_ */

Since IDL only supports template instantiations rather than templates themselves,
fixed-point decimal template type cannot be used directly for thewrite_fixed and
read_fixed operations. Instead, thefixed type instances must be passed to and from
these routines asanys with TypeCode s of tk_fixed .
Externalization V1.0 (updated) CosStream Module April 2000 2-7

2

so

ent
O
o
ISO
n

zed

e
loss
tring
be
le
2.2.1 Standard Stream Data Format

The standard stream format for each new IDL type is shown in the table below. Al
shown are the standard formats for typeschar andstring , which have been extended
to state explicitly that data is encoded as defined by ISO 8859-1.

The first two entries in the table describe the current formats forchar andstring ,
modified only to state explicitly, rather than implicitly, that the encoding used is
defined by ISO 8859-1. These existing formats are unchanged for backward
compatibility purposes.

The next two entries (x’E1’ and x’E2’) define tagged formats forchar andstring ,
which consist of a code set tag (from the OSF Character and Code Set Registry)
followed by an actual data value. The motivation for these tagged formats is to prev
information loss, which may occur for some native code sets when converted to IS
8859-1 (i.e., when such data is externalized in the formats described in the first tw
entries). However, if character and string data is externalized in a form other than
8859-1, some ORBs may not be able to internalize it successfully (e.g., because a
appropriate converter is not available), thus reducing the portability of the externali
data. So, if maximum portability is desired, character and string data should be
externalized in ISO 8859-1 form.

The remaining entries in the table describe the formats for the new IDL types. Not
that the previous discussion about the tradeoff between portability and information
for externalized character and string data also applies to wide character and wide s
data. If maximum portability is desired, wide character and wide string data should
externalized in Unicode form, while if using this form would result in an unacceptab
loss of information, then a form other than Unicode should be used.

Tag CORBA Type Data Format
x’F1’ char one byte, encoded as defined by ISO 8859-1

x’FA’ string null-terminated sequence of bytes, encoded as
defined by ISO 8859-1

x’E1’ char an unsigned long code set tag, followed by a one byte
data value, encoded as defined by code set tag

x’E2’ string an unsigned long code set tag, followed by a null-ter-
minated sequence of characters, encoded as defined
by code set tag

x’E3’ fixed<d,s> an unsigned short byte count (d+2)/2), followed by
(d+2)/2 bytes in CDR format.

x’FE’ wchar an unsigned long code set tag, followed by a data
value, encoded as defined by code set tag

x’FF’ wstring an unsigned long code set tag, followed by a null-ter-
minated sequence of wchar, encoded as defined by
code set tag

x’FB’ long long eight bytes, big-endian format

x’FC’ unsigned long long eight bytes, big-endian format

x’FD’ long double sixteen bytes, IEEE 754 format, sign bit in first byte
2-8 Externalization Service V1.0 (updated) April 2000

2

n
re

ion.
s

rnal
ay

nt
ory,
ian

s
m

ta

e.

e to
on on
Data values of typewchar andwstring are represented as one or more octets, or a
unsigned integer, depending on the code set used. This is similar to the on-the-wi
representation ofwchar andwstring data.

2.2.2 The StreamIO Interface

The write_<type>() andread_<type>() operations onStreamIO are used by
Streamable externalize_to_stream() and internalize_from_stream() operations
to cause internal object state to be written to or read from the external representat
The externalize_to_stream() decomposes the internal state of an object in a serie
of primitive data type values that can be written and read with these operations.
StreamIO supports writing and reading all the CORBA basic data types.

The implementation of thewrite_ ... andread_ ... operations are responsible for any
desired conversion of the data and transfering the data to or from the desired exte
representation. Actual transfer of the representation to the final storage medium m
be deferred until theflush() operation. All details of the external representation
format, storage medium, and buffering are specific to the implementation. Differe
implementations may support buffering of the external representation data in mem
converting data values to a canonical binary form for exchange across big/little end
CPU hardware, conversion of data to a canonical text form for readability or to
facilitate mailing objects across networks, use of various storage mediums such a
memory, filesystem, tape or other differences. See Section 2.2.1, “Standard Strea
Data Format,” on page 2-8 for information on a portable external representation. A
StreamDataFormatError exception should be raised if errors are detected in the da
format of the external representation.

In support of integrating the Externalization Service with the Transaction and
Persistent Object Services, theread_object operation supports the internalization to
existing objects. The semantics of the operation are that if theaStreamable parameter
is Null, then theFactoryFinder parameter is used to create an instance for internaliz
If the aStreamable parameter is not Null, then theStreamIO implementation will
internalize to a streamable object. This semantic allows the Externalization Servic
be used as a Persistent Object Service protocol and to support the restore operati
existing objects in the case of an aborted transaction.

2.2.3 The Streamable Interface

Object implementors must inherit from theStreamable interface if they want an
object to be externalizable. Three operations must be implemented.

Comparing Streamable Objects

boolean CosObjectIdentity::IdentifiableObject::is_identical(
in CosObjectIdentity::IdentifiableObject anObject);

readonly unsigned long constant_random_id;
Externalization V1.0 (updated) CosStream Module April 2000 2-9

2

les or
me

ion

ve
n to

s,

nces
A Streamable object inherits fromCosObjectIdentity::IdentifiableObject , and
therefore must support aconstant_random_id attribute and anis_identical()
operation. The stream service uses these to compare objects when detecting cyc
overlapping references in objects being externalized to the same stream in the sa
context or within the same graph. Theconstant_random_id attribute value does not
have to be unique, but a unique value may substantially speed up the externalizat
process.

Creation Key for a Streamable Object

readonly attribute CosLifeCycle::Key external_form_id;

An Streamable object must support a readonly attribute,external_form_id , which
is a key that can be given to a factory finder in order to find a factory that could ha
created this object. The stream service may use this attribute during internalizatio
create an object that can reinitialize itself from the externalized data.

Writing the Object’s State to a Stream

void externalize_to_stream(
in StreamIOtargetStreamIO);

The externalize_to_stream() operation is responsible for decomposing an
externalizable object’s internal state into a series of primitive data type values and
object references. Theexternalize_to_stream() function must write out all the
neccessary primitive data values using thewrite_<type>() operations on the
targetStreamIO for non-object data types. If this object has other object reference
then, normally, those objects should also be written out using thewrite_object()
operation on thetargetStreamIO . However, it is up to theStreamable implementor
to decide which referenced objects should be externalized with this object. The
primitive data values must all be written before any of the embedded objects refere
are written.

If the Streamable is a node in a graph, then it should delegate the
externalize_to_stream() to theStreamIO by invoking write_graph() . The object
would subsequently receive anexternalize_node_to_stream() and write out its
internal state as described above.Node objects should not callwrite_object() for
other nodes in their graph, but may callwrite_object() for object references that are
not for nodes in their graph.

2.2.3.1 Reinitializing the Object’s State from a Stream

void internalize_from_stream(
in StreamIOsourceStreamIO,
in CosLifeCycle::FactoryFinder there)
raises(CosLifeCycle::NoFactory,

ObjectCreationError,
StreamDataFormatError);
2-10 Externalization Service V1.0 (updated) April 2000

2

te

sing

ved

er.

n

he
reate

ble
The internalize_from_stream() operation is responsible for reinitializing the
object’s internal state from the series of primitive data type values and object
references that are written/flattened duringexternalize_to_stream() . The
internalize_from_stream() operation should read in all the neccessary internal sta
of the object using theread_<type>() operations on thesourceStreamIO for non-
object data types. If this object has other object references that were externalized u
write_object() , then those objects should be recreated using theread_object()
operation on thesourceStreamIO with the sameFactoryFinder argument as the
there parameter passed in to theinternalize_from_stream() operation. The
read_<type>() andread_object() operations for the various portions of the object’s
internal state must be invoked in the same order in which they are written by the
externalize_to_stream() implementation. Theinternalize_from_stream() must
also initialize any additional state that was not externalized because it can be deri
from other state information. Therefore, theexternalize_to_stream() and
internalize_from_stream() operations must be designed to complement each oth

If the Streamable is a node in a graph, then it should delegate the
internalize_to_stream() to thesourceStreamIO by invoking read_graph() with
the sameFactoryFinder argument as thethere parameter passed in to the
internalize_from_stream() operation. TheStreamable (alsoNode) object would
subsequently receive aninternalize_node_to_stream() and read in its internal state
as described above.Node objects should not callread_object() for other nodes in
their graph, but may callread_object() for object references that are not for nodes i
their graph..

The ObjectCreationError andStreamDataFormatError exceptions originate
from theread_object() andread_<type> operations on thesourceStreamIO , and
are not explicitly raised by theinternalize_from_stream() code.

2.2.4 The StreamableFactory Interface

2.2.4.1 Creating a Streamable Object

Streamable create_uninitialized();

The stream service must be able to create aStreamable object in order to internalize
an object from the stream’s externalized data. For any externalizable object, a
StreamableFactory object must exist that supports creation of that object. This
factory must be findable using thereadonly external_form_id Key attribute of the
streamable object. The stream service implementation could store this key during
externalization and use it during internalization to find the factory that can create t
externalized object. However, a stream implementation may use other means to c
the object during internalization. Thecreate_uninitialized() operation on the
StreamableFactory should create the associated streamable object. This streama
object does not have to be initialized, since that can be done on the subsequent
internalize_from_stream() operation on the newly created streamable object.
Externalization V1.0 (updated) CosStream Module April 2000 2-11

2

y
de

m

ny
ed.”

A
e,
2.2.5 The Node Interface

The Node interface defines operations to internalize and externalize a node.

2.2.5.1 Externalizing a Node

void externalize_node (in CosStream::StreamIO sio);

The externalize_node() operation transfers the node’s state to the stream given b
the sio parameter. The node is responsible to externalize its roles as well. The no
can accomplish this by writing the role’s key to the stream and using the
Role::externalize_role() operation.

2.2.5.2 Internalizing a Node

void internalize_node (in CosStream::StreamIO sio,
in CosLifeCycle::FactoryFinder there,
out Roles rolesOfNode)

raises (CosLifeCycle::NoFactory);

The internalize_node() operation causes a node and its roles to be internalized fro
the streamsio .

It is the node’s responsibility to create and internalize its roles. It can do this by
reading the key for a role from the stream and using the
CosStream::StreamableFactory interface to create the uninitialized role and the
CosStream::internalize_role() operation to internalize the role. The new roles
should be collocated with the factory finder given by thethere parameter.

The result of ainternalize_node() operation is a sequence of roles.

Figure 2-1 illustrates the result of an internalize. A node, when it is born, is not in a
relationships with other objects. That is, the roles in the new node are “disconnect
It is the read_graph() operation’s job to correctly establish new relationships.

Figure 2-1 Internalizing a node returns the new object and the corresponding roles.

If an appropriate factory to internalize the roles cannot be found, theNoFactory
exception is raised. The exception value indicates the key used to find the factory.

In addition to theNoFactory exception, implementations may raise standard CORB
exceptions. For example, if resources cannot be acquired for the internalized nod
NO_RESOURCES will be raised.

internalized
document
2-12 Externalization Service V1.0 (updated) April 2000

2

lize

en
2.2.6 The Role Interface

The Role interface defines operations to externalize and internalize a role. TheRole
interface also defines an operation to return the propagation value for the externa
operation.

The implementation of aCosStream::Node operation can call these operations on
roles. For example, an implementation ofexternalize on a node can call the
externalize operation on theRole .

2.2.6.1 Externalizing a Role

void externalize_role (in CosStream::StreamIO sio);

The externalize_role() operation transfers the role’s state to the streamsio .

2.2.6.2 Internalizing a Role

void internalize_role (in CosStream::StreamIO sio);

The internalize_role() operation causes a role to read its state from the stream giv
by sio .

2.2.6.3 Getting a Propagation Value

CosGraphs::PropagationValue externalize_propagation (
in RelationshipHandle rel,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

The externalize_propagation() operation returns the propagation value to the role
toRoleName for the externalization operation and the relationshiprel . If the role can
guarantee that the propagation value is the same for all relationships in which it
participates,sameForAll is true.

2.2.7 The Relationship Interface

The Relationship interface defines operations to externalize and internalize a
relationship. TheRelationship interface also defines an operation to return the
propagation values for the exteranlize operations.

2.2.7.1 Externalizing the Relationship

void externalize_relationship (
in CosStream::StreamIO sio);

The externalize_relationship() operation transfers the role’s state to the streamsio .
Externalization V1.0 (updated) CosStream Module April 2000 2-13

2

lues

on
rvice
2.2.7.2 Internalizing the Relationship

void internalize_relationship(
in CosStream::StreamIO sio,
in CosGraphs::NamedRoles newRoles);

The internalize_relationship() operation internalizes the state of a relationship from
the stream given bysio .

The values of the internalized relationship’s attributes are defined by the
implementation of this operation. However, thenamed_roles attribute of the newly
created relationship must matchnewRoles . That is, the internalized relationship
relates objects represented bynewRoles parameter, not the by the original
relationship’s named roles.

2.2.7.3 Getting a Propagation Value

CosGraphs::PropagationValue externalize_propagation (
in CosRelationships::RoleName fromRoleName,
in CosRelationships::RoleName toRoleName,
out boolean sameForAll);

The propagation_for() operation returns the relationship’s propagation value from
the rolefromRoleName to the roletoRoleName for the externalization operation. If
the role named byfromRoleName can guarantee that the propagation value is the
same for all relationships in which it participates,sameForAll is true.

2.2.8 The PropagationCriteriaFactory Interface

The CosGraphs module in the Relationship Service defines a general service for
traversing a graph of related objects. The service accepts a “call-back” object
supporting theCosGraphs::TraversalCriteria interface. Given a node, this object
defines which edges to emit and which nodes to visit next.

The PropagationCriteriaFactory creates aTraversalCriteria object that
determines which edges to emit and which nodes to visit based on propagation va
for the compound externalization operations.

2.2.8.1 Create a Traversal Criteria Based on Externalization Propagation

CosGraphs::TraversalCriteria create_for_externalize();

The create_for_externalize operation returns aTraversalCriteria object for an
operation op that determines which edges to emit and which nodes to visit based
propagation values for op. For a more detailed discussion see the Relationship Se
specification.
2-14 Externalization Service V1.0 (updated) April 2000

2

ny
nd, is

be

o

.

2.3 Specific Externalization Relationships

The Relationship Service defines two important relationships: containment and
reference. Containment is a one-to-many relationship. A container can contain ma
containees; a containee is contained by one container. Reference, on the other ha
a many-to-many relationship. An object can reference many objects; an object can
referenced by many objects.

Containment is represented by a relationship with two roles: theContainsRole , and
the ContainedInRole, Similarly, reference is represented by a relationship with tw
roles:ReferencesRole andReferencedByRole .

Compound externalization adds externalization semantics to these specific
relationships. That is, it defines propagation values for containment and reference

2.4 CosExternalizationContainment Module

The CosExternalizationContainment module defines the following interfaces:

• Relationship interface
• ContainsRole interface
• ContainedInRole interface

//File: CosExternalizationContainment.idl
//Part of the Externalization Service
// modified from version 1.0 to use CosStream module
// instead of CosCompoundExternalization

#ifndef _COS_EXTERNALIZATION_CONTAINMENT_IDL_
#define _COS_EXTERNALIZATION_CONTAINMENT_IDL_

#include <CosContainment.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalizationContainment {

interface Relationship :
CosStream::Relationship,
CosContainment::Relationship {};

interface ContainsRole :
CosStream::Role,
CosContainment::ContainsRole {};

interface ContainedInRole :
CosStream::Role,
CosContainment::ContainedInRole {};

};
#endif /* ifndef _COS_EXTERNALIZATION_CONTAINMENT_IDL_*/
Externalization V1.0 (updated) Specific Externalization Relationships April 20002-15

2

ort
The CosExternalizationContainment module does not define new operations. It
merely “mixes in” interfaces from theCosStream andCosContainment modules.
Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationContainment::ContainsRole::propagation_for
operation returns the following:

The CosExternalizationContainment::ContainedInRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory::create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not supp
the CosStream::Node interface.

The CosRelationships::RelationshipFactory::create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not
CosExternalizationContainment::ContainsRole and
CosExternalizationContainment::ContainedInRole . It will raise
MaxCardinalityExceeded if the
CosExternalizationContainment::ContainedInRole is already participating in a
relationship.

2.5 CosExternalizationReference Module

The CosExternalizationReference module defines these interfaces:
• Relationship interface
• ReferencesRole interface
• ReferencedByRole interface

//File: CosExternalizationReference.idl
//Part of the Externalization Service
// modified from version 1.0 to use CosStream module
// instead of CosCompoundExternalization

#ifndef _COS_EXTERNALIZATION_REFERENCE_IDL_
#define _COS_EXTERNALIZATION_REFERENCE_IDL_

operation ContainsRole to
ContainedInRole

externalize deep

operation ContainedInRole to
ContainsRole

externalize none
2-16 Externalization Service V1.0 (updated) April 2000

2

#include <CosReference.idl>
#include <CosStream.idl>

#pragma prefix “omg.org”

module CosExternalizationReference {

interface Relationship :
CosStream::Relationship,
CosReference::Relationship {};

interface ReferencesRole :
CosStream::Role,
CosReference::ReferencesRole {};

interface ReferencedByRole :
CosStream::Role,
CosReference::ReferencedByRole {};

};
#endif /* ifndef _COS_EXTERNALIZATION_REFERENCE_IDL_ */

The CosExternalizationReference module does not define new operations. It
merely “mixes in” interfaces from theCosStream andCosReference modules.
Although it does not add any new operations, it refines the semantics of these
operations:

The CosExternalizationReference::ReferencesRole::propagation_for()
operation returns the following:

The CosExternalizationReference::ReferencedByRole::propagation_for()
operation returns the following::

The CosRelationships::RoleFactory::create_role() operation will raise the
RelatedObjectTypeError if the related object passed as a parameter does not
support theCosStream::Node interface.

The CosRelationships::RelationshipFactory::create() operation will raise
DegreeError if the number of roles passed as arguments is not 2. It will raise
RoleTypeError if the roles are not
CosExternalizationReference::ReferencesRole and
CosExternalizationReference::ReferencedByRole .

operation ReferencesRole to
ReferencedByRole

externalize none

operation ReferencedByRole to
ReferencesRole

externalize none
Externalization V1.0 (updated) CosExternalizationReference Module April 20002-17

2

he

es

the
o

the
2.6 Standard Stream Data Format

An externalization client may create a stream that supports a specific external
representation data format that is intended to be portable across different CORBA
implementations and on different CPU hardware. A client creates such aStream
object using a factory found by specifying a Key whose onlyNameComponent has
an NameComponent ::id whose value is the string literal
“StandardExternalizationFormat”.

That format is described in this section.

2.6.1 OMG Externalized Object Data

A leading “tag” byte with a value of x”F0” marks the beginning of an object’s
externalized data. Following this is data associated with a Key that can be used to
internalize the object. The key information is then followed by the data written to t
StreamIO for the object’s state.

Key Info

The key information consists of a byte containing an integer value, “i”, that indicat
how manyCosNaming::NameComponent s make up the associated Key.

This byte is followed by “i” null-terminated sequences of char values that represent
CosNaming::NameComponent::id values for the Key. These values correspond t
the C mapping of a CORBA string type. TheNameComponent::kind values are not
stored in this external data format.

Object Info

The object information is the sequence of bytes generated for one or more
write_<type> operation. For eachwrite_<type> operation, a single “tag” byte
identifying the type of the primitive data is followed by the data. The tag byte gives

Key info Object infotag byte = x’F0’

1 byte

1st id string 2nd id stringlength = i

1 byte

i’th id string. . .

data valuetag byte

1 byte

tag byte data value . . .

1 byte
2-18 Externalization Service V1.0 (updated) April 2000

2

cts

sic

of
ored

t

internalization implementation enough information to skip past object state for obje
that cannot be created, for example when a compatible implementation cannot be
found on the internalizing ORB.

The tag byte values, and data formats for each type are as indicated below for ba
CORBA data types:

2.6.2 Externalized Repeated Reference Data

This format is used only when multiple objects reference the same object. Instead
storing the referenced object multiple times, the duplicate reference objects are st
in this format. Note that the object is represented by a long object number which
indicates that the object has been stored already.

Table 2-1 CORBA Tag Byte Values and Data Formats

tag CORBA type data format

x’F1’ Char one byte

x’F2’ Octet one byte

x’F3’ Unsigned Long four bytes, big-endian format

x’F4’ Unsigned Short two bytes, big-endian format

x’F5’ Long four bytes, big-endian format

x’F6’ Short two bytes, big-endian format

x’F7’ Float four bytes, IEEE 754 single precision format, sign bit
in first byte

x’F8’ Double eight bytes, IEEE 754 double precision format, sign bi
first byte

x’F9’ Boolean TRUE=>one byte==1, FALSE=>one byte==0

x’FA’ String null-terminated sequence of bytes

x’04’

1 (bytes)4

Object number
Externalization V1.0 (updated) Standard Stream Data Format April 2000 2-19

2

m.
2.6.3 Externalized NIL Data

This is a special format used to indicate that there is no object stored in the strea

x’05’

1 (byte)
2-20 Externalization Service V1.0 (updated) April 2000

References A
am
1. James Rumbaugh, “Controlling Propagation of Operations using Attributes on
Relations.”OOPSLA 1988 Proceedings, pg. 285-296

2. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and Willi
Lorensen, “Object-oriented Modeling and Design.” Prentice Hall, 1991.

3. Grady Booch, “Object Oriented Design with Applications.” The
Benjamin/Cummings Publishing Componay, Inc., 1991.
Externalization Service V1.0 April 2000 A-1

A

A-2 Externalization Service V1.0 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Service Structure
	1.2.1 Client’s Model of Object Externalization
	1.2.2 Stream’s Model of Object Externalization
	8.2.3 Object’s Model of Externalization
	1.2.4 Object’s Model of Internalization

	1.3 Object and Interface Hierarchies
	1.4 Interface Summary
	1.4.1 Externalization Service Architecture: Audience/Bearer Mapping

	2. Externalization Service Modules
	2.1 CosExternalization Module
	2.1.1 StreamFactory Interface
	2.1.2 FileStreamFactory Interface
	2.1.3 Stream Interface

	2.2 CosStream Module
	2.2.1 Standard Stream Data Format
	2.2.2 The StreamIO Interface
	2.2.3 The Streamable Interface
	2.2.4 The StreamableFactory Interface
	2.2.5 The Node Interface
	2.2.6 The Role Interface
	2.2.7 The Relationship Interface
	2.2.8 The PropagationCriteriaFactory Interface

	2.3 Specific Externalization Relationships
	2.4 CosExternalizationContainment Module
	2.5 CosExternalizationReference Module
	2.6 Standard Stream Data Format
	2.6.1 OMG Externalized Object Data
	2.6.2 Externalized Repeated Reference Data
	2.6.3 Externalized NIL Data

	Appendix A - References

