Date: June 2024

g ®
2 - e =
R g% F ==
> —w v . —
s BT = =
= E E % i = =
B Y = B i § s — &%
B2 L 5 -
| — — B

OBJECT MANAGEMENT GROUP®

Essence — Kernel and Language for
Engineering Methods

Version 2.0 — beta 1

OMG Document Number: ptc/24-06-07
Standard document URL: https://www.omg.org/spec/Essence/
Machine Readable File(s):

https://www.omg.org/spec/Essence/20150601/Essence.xmi

This OMG document replaces the submission document (ad/24-02-01). It is an OMG Adopted Beta Specification and is
currently in the finalization phase. Comments on the content of this document are welcome and should be directed to
issues@omg.org by October 25, 2024.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in May 2025. If you are reading this after
that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/Essence/
https://www.omg.org/spec/Essence/20150601/Essence.xmi

Copyright © 2013-2024, Data Access Technologies (Model Driven Solutions)
Copyright © 2013-2015, Florida Atlantic University
Copyright © 2013-2015, Fujitsu

Copyright © 2013-2015, Fujitsu Services

Copyright © 2013-2024, Ivar Jacobson International AB
Copyright © 2013-2015, KTH Royal Institute of Technology
Copyright © 2013-2015, Metamaxim Ltd.

Copyright © 1997-2024, Object Management Group
Copyright © 2013-2024, PEM Systems

Copyright © 2013-2015, Stiftelsen SINTEF

Copyright © 2013-2015, University of Duisburg-Essen
Copyright © 2024, 88solutions Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

PTOTACE. ...ttt e e e e e ta e e aae e e aa e e e bt e e abaeeebeeeeabeeenrbeeennraeans xi
| o703 o 1 USSP 1
B 10) 0] 4 01 F: 31 (o1 TSRS 1
2.1 CoNTOIMANCE ClaSSES....ccuuiieieiieeeiiieestieeeieeeeteeesteeestteeetbeesseeesseeesseeessseeesssesesssesessseeensseesnsses 1
2.2 Practice Description CONfOTMANCEeeeriieeiiieeiiiieeiiee et eieeeeire e et e e sbeeesaeeesaeeeenseeenneas 2
2.2, 1 OVEIVIEW .citiieeiiee ettt eeieeeeieeesiteeeseteeestaeeasaeeessseeesssaeessseeessseesssseesssaeessseeessseeeasseesnsseesnsseeans 2
2.2.2 LeVEl 1: NAITALIVEeeiiiiiieiieecieeeeieeeeiiee ettt e ettt e et e e e tveeetaeesaeeesabeeessseeesaseeesssesessseeesseeans 2
2.2.3 Level 2: Practice Description Interchange.............cccoccueeviieniiiiieniieiieeie e 2
2.2.4 Level 3: Practice Actionable and Trackable.............cccccueeeviiiriiiiniiieeie e 2

2.3 TOOl CONTOTIMANCEveiieiiiieeiiieeciieeciee et e ettt e et e e et e e e taeeesbaeeebaeesaseeessseeesaseeessseeesaseeensseeesseas 3

3 NOrmative REEIENCEScoouiiiiiiiiieiieiie ettt ettt ettt esaaeebeeeabeenbeesnneenseens 3
4 Terms and DETINItIONScccuiiiiiiiieiiieeciie ettt et e et e et e e et e e e tee e e baeesbeeesbeeessseeessseeensseeennseesnnns 4
I N o] o) () 1 101 4 SRS 6
6 Additional INTOrMAtIONciciiiiiiieiiiie ettt et et e bt eseaeebeesabeenbeesnneenseens 6
6.1 Submitting OTZANIZALIONSeeeeuiieiiiieeiieeeieeesieeeeteeerteeesteeesereeesteessseesseeesseeessseeessseesnsseeans 6
6.2 Supporting OTZANIZATIONSccueeueruierierieriterteete ettt ettt ettt et e steetesaeesbeetesaeesbeetesseesaeennens 7
6.3 ACKNOWIEAGEMENLS.......ooiiiiiiiiieiie ettt ettt ettt et e sabeebeeesbeenseeenseenne 7

7 Overview Of the SPeCIfICAtIONueeiiiieiiieciie ettt ee e e e e e e e s abeeesaseeeneeas 9
7.1 INEEOAUCTION....cciiiii ettt ettt e et e et eeetbeeebaeeessaeesssaeesasaeessseeessseeensseeennseeans 9
7.2 KEY FEATUIES ..ceuetiiiiiieeiiie ettt ettt e ettt e ettt e st e e st e e sabte e sabeeesabeeenaneesaseeeas 9
7.3 The Method ATCRItECIUIEeeeiiieeiiieciie ettt ettt e e e aee e e e e s aee e enseeesnseeesaeas 10
7.4 Why a Kernel and @ Language?ccoiivuiiiiniininieniceccnece ettt 11
7.4.1 The Role of the Kernel..........coooiiiiiiiiiiiieeceecee e 11
7.4.2 The Role of the Language..........cocvieeiiiiiiiiecieeece ettt 12

7.5 How to Read this SpecifiCation.........coceiiiiuiiiiriiiiiieiiccecreeetc e 12

8 Kernel SPECIICATION ...c..viiuiiiiiieiieiie ettt ettt ettt et e et e e bt e st e eteeenbeenseesnseenneens 15
LT B O A T4 1< OSSPSR 15
8.1.1 What 1S the KeInel?.......cccviiiiieiiieeeeee ettt e e e 15
8.1.2 What is in the Kernel?.........ccoiiiiiiiiiiiie ettt et 15

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 i

8.1.3 Organizing the Kernel.........ccccoiuiiiiiiiiiiiiiiceeeee e 16

8.1.4 Alphas: The Things to Work Withccccciiiiiiiiiiiiiii e 16
8.1.5 Activity Spaces: The Things t0 DOccccueeeiiiiiiiieeiieecie et 18
8.1.6 Competencies: The Abilities Needed........c.ccociriiriiiiniiniiiiiceeee e 20
8.2 The Customer Area Of CONCEITevuietiriiriieiieieeitete ettt sttt st e e ae e nes 23
8.2.1 INETOAUCTION ... ettt ettt ettt et e et e st eebeesaeeebeen 23
B.2.2 AIPRAS . et ettt et ettt e e beesnbeeneens 23
8.2.2.1 StAKEROIARLSeeiiiniieiieiiete ettt 23
8.2.2.2 OPPOTEUNILY ..eeeitieeeiiieeetieeeieeeteeeteeette e et eessaeeessaeeessseeessseesssseeenseeessseeessseeessseesnnsens 27
8.2.3 ACHIVILY SPACES .ueeeiiniieiiiiteteeieet ettt ettt ettt ettt sttt be ettt a et as 31
8.2.3.1 EXPIOre POSSIDIIITIES. ...ccueieiiiiiieiieciie ettt ettt et 32
8.2.3.2 Understand Stakeholder Needsccoceeriiriirieriiiierieeeeee e 32
8.2.3.3 Ensure Stakeholder SatiSfactioncccccueiiiiiiiiiiiiiie e 32
8.2.3.4 USE the SYSTEIM..eccuiiiiiiiiiieiieie ettt ettt ettt et e et e et e et esnaeenseesneeenee 33
B.2.4 COMPELETICIES ...eeuvvreeerieeitieeeiteeestteeeeteeetteestteesteeeasseeeasseeensseeansseessseesnseeesnseeensseesnnseesnnns 33
8.2.4.1 Stakeholder Representationccccveeriiriireiiiinienieie ettt 33
8.3 The Solution Area 0f CONCETNoouiiuiiiiiiiriieieeiesieeeete ettt 34
8.3.1 INEIOAUCTION ... ettt ettt et sttt e e st ene e 34
B.3.2 AIPRAS .t ettt ettt et e b e s nbeeteens 35
8.3.2.1 REQUITEIMENLSeoviieiiiiiiieiiieiie et eite ettt ettt e et e st e et e e st e ssbeebaeenbeenseesnseenseessseenne 35
LINR T] 1< 4 o BT 39
8.3.3 ACLIVILY SPACES ..eietiniieiiieiteieeieet ettt ettt ettt et sttt et b ettt b et nas 43
8.3.3.1 Understand the REqUITEMENTSc.eccuierieiiieiieeiieie ettt 43
8.3.3.2 Shape the SYSIEMccuiiiiieiiiiiieiiecee ettt ettt st e e e e enseenne 44
8.3.3.3 Implement the SyStem......cccocuiiiiiiiiiiniiiiiic e 44
8.3.3.4 TSt the SYSLEIM ..eueiiiiiiiiieiieie ettt ettt ettt beesebeeaeeeneeenne 45
8.3.3.5 Deploy the SYSLEIMccciiiiiiiiieiiecie ettt ettt e bee e eaeeenaeenne 45
8.3.3.6 Operate the SYSTEIMccuiiiiiiieiie ettt et e e eree e saee e nreeenneas 45
B.3.4 COMPELEIICIES ...eeuvieiiieniieeiiieiieeteestteeteestteeeteestteeabeesateenseessseesseesssaesseassseenseessseenseassseenseens 46
B.3. 4.1 ANALYSIS...uiiiiiiiiiieeiiieiieeie ettt ettt ettt e ta e et e e teeerbeeta e e b e etaesnbeeraennaeenns 46
8.3.4.2 DeVEIOPMENL......eeiiiiieiiie ettt e e et e e e e e e et e e e e e e enbee e areeennneas 47

ii Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

B.314.3 TOSTIME e utieiieeieeeiee ettt ettt ettt ettt e et e st e e bt e bt e e et e e bt e enbeebeeeabeebeeenbeebeeenteenne 48

8.4 The Endeavor Area of CONCEIM.........oviiiiiiiriiiiiiiesiteteetesieee ettt s 49
841 INETOAUCTIONeiitiiiiiiiiie ettt ettt et e et e e st e ebeesaeeeabeens 49
B4 2 AIPRAS ..ttt ettt abe e b e e nbeeneens 49

BiA. 2.1 TEAIM.c..eiiuiiiiiieeee ettt ettt e sttt et be e 49
84,22 WOTK ..ottt ettt ettt ettt et eea et et esae et e entenaeenteeneens 53
8.4.2.3 Way-0f-WOTKINGcooiiriiiiiiiiiiieet ettt sttt 57
843 ACLIVILY SPACES c.uveeeuiieiiieiiieiieetteeite et e et e et e stte e bt esate e bt e saaeesseessbeesbeesssesseessseenseassseenseens 61
8.4.3.1 Prepare to do the WOrK.........coooiiiiiieeiiece e e e 61
8.4.3.2 CoOrdiNate ACLIVITY ..cc.eeruieieriiiriieiieitenteet ettt ettt ettt ettt nees 61
8.4.3.3 SupPOTt the TEAMc.eiiiiiiiiiiieeiieee ettt ettt bee s e e e eee e 62
8.4.3.4 TTACK PrOGIESS....eeeeueiiiiiieeiie ettt ettt et e et e et e et e et e e sebeeessseeeenneeennseas 62
8.4.3.5 Stop the WOTK....couiiiiiiei e 62
B4.4 COMPELEIICIES ...euvieiiieniieeiieeiieeteestteeteestteebeestteeseesateesseesseeesseessseesseesssesseessseenseassseaseens 63
B.4.4.1 LeaderShIP.....cccuieiiieiieeie ettt et et be e enbeetaeenaeenns 63
8.4.4.2 MaANAZEMENL.coiiiiiiiiiieiiiie ettt ettt e et e et e et e st e s bt e e st e et e et eseanees 64

O Language SPECTIICATION ...ecuieiuiieiieeieeiie ettt et et e et et e et e et e et eesaaeesseeesbeenseeesseenseessseenseennnes 67

0.1 Specification TECHNIQUEcc.eeviieiieiieeiieeie ettt ettt ebeeseaeebeessaeeraesaseesseensnes 67
0.1.1 Different Meta-LevelS......c.oiciiieiiieciieece ettt e e s e ree e saveeesaaeeens 67
9.1.2 Specification FOIMAL.........c.ccouiiiiiiiiieiie ettt ettt e te b e nreesee s 67
0.1.3 NOtAtION USEA ...ttt ettt ettt eee e 68

9.2 Conceptual Overview of the Language..........c.cooveveriiiiiiiiiiiinieicnceeeeteeee e 68

9.3 Language Elements and Language Model.............ccccoeiiiiiiiiniiiiiinieceeeeee e 70
0.3.1 OVETVIEW ..ttt et ettt b e sttt esat e e bt e sate e beesate e bt e saeeebeens 70
0.3.2 FOUNAALION ..eeiutiiiiiiieeiiee ettt ettt e et e e e et eeettee e taeeesbeesssaeesssaeesssaeesssaeessseeenssaeensseeans 71

0.3.2.1 OVRIVICW ..ttt ettt ettt ettt ettt b ettt b et e e s bt et e et esae e bt et esbeebeense e 71
0.3.2.2 BaSICEICMENLoooiiiiiiiiiiiie e 73
0.3.2.3 CHECKPOINT ...etiiiiiieeiiee ettt ettt e et e et eetae e esta e e estaeeesbaeessseeessseeennseeennns 74
0.3.2.4 EICMENIGTOUPeeeiiiiiieeiieetieeiteeite et eteeeete et e sateesbeeseaeeseessseenseessseeseessseenseassseeseens 75
0.3.2.5 EndeavorASSOCIALIONcecuieiiriieieeiertieteetestteteetestee bt e e siee et eaeesaeenaeeneeeneenseenee e 76
0.3.2.6 ENdEavOrPrO eItcceecuiieeiiieeiieeciie ettt ettt eetae e et estee e s e e sae e e snneeennneeennns 76

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 iii

0.3.2.7 EXtensioNEICIMENTcccviiiiiiiiiiiieciie ettt et ere e e ae e e e enes 77
0.3.2.8 KEINCL. ..ot ettt 78
0.3.2.9 LanguageEICmMENtcccceviiiiiiiiiieciie ettt 79
0.3.2.10 LADTATY ...ttt ettt ettt et e sttt esat e et e s st e et e e eateebeesnneeneans 80
0.3.2.11 MerERESOIULIONccviiiiieiiieeiiteite ettt ettt ettt e sibeeteesabeesbeesnseensaens 80
L TN 1A Y (<11 1 Vo T« TSP PR PSR 81
L T B T o 1) o A SRS 81
0.3.2.14 PatterNASSOCIAtIONveereiieiieeiiieieeeiteeteeeteesieesateeteessteeseessseenseessseeseessseenseessseenseens 82
0.3.2.15 PLACHICE. ..ueeueeeteeeee ettt ettt ettt et e s at e et e bt et e e st e e b e saeeeneen 83
0.3.2.16 PraCtiCEASSCL....cuvieeiiieetiieetie e ettt e et e e et e e te e e tteeeeteeeetaeeesbeessseeeesseeessseeeasseeensseeennns 85
0.3.2.17 RESOUICE. ...couuiieuiieiieiiee sttt ettt ettt et sat e et e sat e et esat e et esbeeebeesateeaneessneeneens 85
0.3.2.18 T e teutteiieet ettt ettt h e bt et a ettt e at e b e et e eneebe et 86
0.3.3 AlphaAndWOrKProduUCt........c..ooiuiiiiiiiiieiiee ettt 87
0.3.3.1 OVRIVICW ..ttt ettt s bttt et h ettt sbt ettt esbe e bt estesbeeaeenee e 87
0.3.3.2 AIPNA. .ttt b et ea e 88
0.3.3.3 AIPhaASSOCIALIONcc.uiiiiiieiieeiii ettt ettt ettt ebeesateebeesnneeneans 89
0.3.3.4 AlphaContainmentc.cecuieeiieriieriieitieeteereesteeieesteesseesereebeessaeenseessseeseessneenseens 90
0.3.3.5 LevelOfDetallccoouiiieiiieeiieeeeeeee ettt 91
L TG TN TN - (< TP 91
0.3.3.7 WOTKPTOAUCT ...ttt sttt et 92
0.3.3.8 WOTKProducCtManIfestc.ccocuiiiiiiiiieiieciieiee ettt eveebeeseneennae s 93
9.3.4 ActivitySPaCEANAACEIVITY ...cuveiuiiriiiiiiieeiteteete ettt sttt sttt 94
0.3.4.1 OVEIVICW ..ttt ettt et h ettt b ettt s bt et e et esbe e bt estesbeeaeense e 94
0.3.4.2 ADSITACLACHIVILY .eevviiiieeeiieieeeit et ettt ettt e st e et e saaeeteessbeesseessseensaessseenseessseensaens 95
0.3.4.3 ACHION.cccuuiiieiiieeiee ettt e et e e et e e et e e et e e e ta e e e taeeetae e e ateeebeeeebeeenbaeeanaeeennreeennns 96
0.3.4.4 ACHONKING.....ooiiiiiiiiiieii e ettt ettt ettt et e e e snaeenaens 96
0.314.5 ACHIVILY eeitieieeieete ettt ettt ettt ettt et a bt e et e bt 97
0.3.4.6 ACHVILYASSOCIATION. ...eceutiieeiiieeiieeeieeesieeeeteeessteeessreeessseeesseesseeesseeessseeessseesnsseesnnns 98
0.3.4.7 ACHVIEYSPACE ..uveeerietieeiieetee ettt e ettt et e et esateesbeesabeebeesabeenbeassseenseesnseenseassseenseens 99
0.3.4.8 APPTOACKH......eiiiiiie e e e et e e e e e naree e 99
0.3.4.9 CoMPIEtIONCTIIEETIONuvvieiiieeeiieeeieeeeieeeeteeesteeestaeeeseaeeeseeessseeesseeessseeessseeessseeens 100

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

0.3 4. 10 CIILEIION .. eeeeeeeeee e e e e e et eaa e aaeaeeeeereaneaaaaaeaeeeeeenanaans 100

0.3.4. 11 ENtIYCTIEETION ..teentiieiiieiieetieiie ettt ettt e ettt e e esteessbeeseesnbeenseesnseenseesnseenseennnas 101

L T T 001111015 <) 1 Lo APPSR 102
0.3.5.1 OVRIVIEW ..eiiuiiieiieeeiiee ettt e ettt e et e e et e e et eeeetbee e tseeesaeeessseesssseesssaeesnsesessseeensseeenssaeans 102
0.3.5.2 COMPELEIICY ...eeeuvrieeniiieeitieeitee ettt e st e esiteeestteeeateestbeessteessbteesabeeesaseeennseessnseesnnseeans 102
0.3.5.3 CompPetenCYLEVELocoiuiiiiiiieciieeieeee ettt 103
0.3.6 USerDefINedTYPeS. ...ccuiriiiieiiiieitieeetce ettt st 104
0.3.6.1 OVEIVIEW ...ttt ettt ettt ettt b et sbe e bt e e sat e bt et esbee bt eatesbeenbeas 104
0.3.6.2 TYPEAPALLEIN ..ccueviieiiiieeieeeee ettt ettt e e tae e et e e e ba e e eabeeessbeeesnseeennnaeens 104
0.3.60.3 TYPEARESOUICE......ueeiuiieiiieitieiie ettt ettt ettt sttt sttt e e e e e enteebeeeneas 105
0.3.0.4 TYPEATAG...ceuiieiieiie ettt ettt ettt ettt e et e et e st e e bt e snbe e seeenbeenseeennas 105
0.3.6.5 USErDefINEATYPE ..ccuvvieeiiieeiieeeite ettt ettt ebre e e e e bee e saseeennneeens 106
0.3.7 VEBW ettt e e e e ettt e et e e e tb e e e bt e e e aaeeebbeeebeeeeaeeenabeeennreeenareas 107
0.3.7.1 OVEIVIEW ..ttt sttt ettt ettt ettt ebt ettt sat e bt et esbeentesatesaeenbeas 107
0.3.7.2 FeatureSeleCtiOn......ccc.eeiuiiiiiiiieiiieiieet ettt st e 108
0.3.7.3 VIEWSEICCHION ...uveieiiiieciieeciee ettt et e et e e et e e e tb e e s baeesabeeessseeesnseeennsaeens 108
9.4 Composition and ModifiCationcccuieruieriiieiieiiieieeie ettt 111
0.4.1 TNOAUCTION ... ittt ettt sttt e st e s 111
9.4.2 Notations and CONVENTIONSccccuurieiiiieeiieeeieeeireeeeieeesreeestreeseseeesseeesseeessesessseeensses 112
0.4.3 EXIENAING ..uvieeiiieiieeie ettt ettt ettt et e st e et e st e e beestaeenbeessbeenseeenbeenbeeenseenseennseenne 112
9.4.3.1 Basic Extension AIOrithimcccueeiiieriiiiiiiniicieceee et 112
9.4.3.2 Renaming and SUPPIESSION......ccueriirieriirierieeiinieneetesee st eteseeesre et sieeseeseesreerens 113
9.4.3.3 Standard EXtension FUNCHONS.cceeruiriiriiiinienieienieeneee e 113
9.4.3.4 Precedence and Chaining...........ccceevveeiiierieeiieeniieeieenieereesseeeveeseeeeeseesseeesseeseessnas 113
044 IMEIZING....oeiieiiieiee ettt ettt et ettt et e et e at e et e e s st e e bt e eseeeabeesabeenbeesabeenbeeenbeenbeeenteenne 113
0.4 4.1 OVEIVIEW ..ttt sttt ettt ettt b et sbtesbe et esat e bt et e sbe e bt satesbeenbeas 113
9.4.4.2 Basic Merging AIZOTIthmccceiiiieiiieiiieieeie et 114
9.4.4.3 Merge Conflict RESOIULION.......ccuuiiiiiieiiiieciieeiieeee e e 114
9.4.4.4 Standard Merge Resolution FUNCHONS.........cceeviiiiieniiiiieiieciceie e 115
9.4.4.5 Precedence and ChaiNing...........ccceevveeiiierieeiieenieeieeneeereesteeeveeseeeesreesseesnseeseesnnas 115
LR B T = < 1111) (<SR 115

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 v

0.5 DyNamiC SEMANTICSeevueruiiriiiiiiienieeieeiteett ettt ettt ettt ettt saeete st e sbeebe st e sbeetessnesbeennens 119

0.5.1 INITOAUCTION . ..c..tiiieniieiieiiiete ettt ettt ettt et sbe et st sbe et et e sbeenbesatesbeenneas 119
0.5.2 DOMAIN ClASSES. ...uuteiutiiiieeiiieiie ettt ettt ettt et e ittt e it e s be e s it e e bt e sateenbeesaeeenne 119
9.5.2.1 Recap of Metamodeling Levelscooieiiiiiiiiiiiieeeeeee e 119
0.5.2.2 Naming CONVENTIONccuuietieriieeiieniieetierieeteertteeteesteeeseesseesseesseessseenseessseenseessnes 120
0.5.2.3 ADSIIact SUPEICIASSES.vieieiiieiiieeiieeeieeeetee ettt e e te e e eeebee e sreeesbeeesaseeeenseeens 120
9.5.3 Operational SEMANTICSeecueruieriirieniieieetent ettt ettt ettt et sbe e saeesaeeneas 122
0.5.3.1 OVEIVIEW ..ttt ettt ettt ettt sb et sbt e bt et sat e bt eatesbe e bt satesaeenbeas 122
9.5.3.2 Populating the Level 0 Model............oooiiiiiiiiiiiiiceeeeeeeee e 122
9.5.3.3 Determining the Overall Statecccceeiiriiiiniiiiieieneeeeceee e 123
0.5.3.4 Generating GUIAANCEccvieruieeiiieriieeiieiie ettt aee ettt et esbeenseesnbeeseesnnas 123
9.5.3.5 Formal definition of the Guidance Function............ccccoeceeveeiienienienenieneniecceens 124
0.5.3.6 FUrther fUNCHIONSoeeiuiiiiiiicciie ettt e e e e e e e be e e saseeeeareeens 125
0.6 AdAPLALION.......iiiiiieiieeiie ettt ettt et et ettt abe et eetb e e teeeabeenbeeenbeenseeeaseenne 126
9.6.1 Alignment of Level 0 and Level ©......c.cocieiiiiiiiiiiiiieiccieeeece e 126
0.6.2 Adaptation APPIOACKeeiuiiiiiiiiieee e e 127
0.6.3 Internal MIGIatiOoncceeeiiieriieeiieeiieetieeie ettt ettt ettt e et e s e eteesaaeenbeessneenseeenseenne 127
0.6.4 EXternal MIZIatiONccccuiieeiiiieiiiieeiiieeeiteerieeesteeeiteeetreestreestteessbeeesnseeesaseeennseeennseas 128
9.7 GraphiCal SYNEAX......coeeiiiriiriiiieiiere ettt ettt ettt sbe et st bt et saee bt enae s 128
0.7.1 Specification FOIMAL.........c.ccccuiiiiiiiiieiierie ettt e 128
9.7.2 Relevant Symbols and Diagram Interchange Metamodelc.ccccoevvvievieniieninennnnnne. 128
9.7.3 Default Notation for Meta-Class CONSEIUCES..........cceeiiieiiieeiiieeiieeeiee e eereeeevee e 129
9.7.4 View 1: Alphas and their Statescceeiiiiiiiiiiiiiieeee e 130
0.7 4.1 AIPNA..ciiiiee ettt sttt h ettt 130
0.7.4.2 AlPha ASSOCIALION ...c.ueiiiiiiiiieiie ettt ettt et te ettt e st e e b e s b e eseesnteeseeeneas 130
0.7.4.3 KEIMEL..c.eiiiiiiieieieeeeee ettt sttt st 131
0.7 4.4 STALC....eiieeeeieeeeeeee ettt et b e et sa e bt et e ehe e teenteeneenbea 132
0.7.4.5 STALE SUCCESSOT.....eiiuiiiiiiiieiiieeeit ettt ettt et e ettt e sttt e sttt e sabeeesabeeesabeeeaabeeenreeeas 132
0.7.4.6 DIQGTAMS ...eouviieiiieiieeiieeiie et ette ettt e et et e e bt estteesbe e seeenseeseeenbeenseesnseenseesnseenseennnas 132
0.7 4. T CAIAS ettt et b et b et eh et et e e nee b 134
9.7.5 View 2: Sub-Alphas and Work Products...........ccccueeeiiieiiiieiiieeieeeeeee e, 139

vi Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

0.7.5. 1 WOTK PTOAUCT ... e e e et e e e e e e e e e ee e e e e e e e e e eeaaaaas 139

0.7.5.2 Alpha Containmentcceeriieiiienieeiienie ettt eiee et ebeesaeeeebeeseesnbeenseesnnas 139
9.7.5.3 Work Product Manifestccccuieiiieiiiieeciie et 140
0.7.5.4 Level Of DEtailcccviiiiiieeiieeeee ettt e e be e e saaeeenanaeens 141
0.7.5.5 Level of Detail SUCCESSOTccuuiiiiiiiieiieiie ettt ettt e 142
0.7.5.60 PIaACHICE....ueieciieeiiieciee ettt ettt e e et e et e et eeetaeeesaeeessaeeessaeesnsaeessseeensseeennseeans 142
0.7.5.7 DIQGIAIMS ...ttt ettt ettt et et e et et e et e et esabeebeesabeeseesnbeeseesnseenseenneas 143
0.7.5.8 CAIAS ittt ettt ettt ettt e bt e eabe e seeenbeenseeeneas 145
9.7.6 View 3: Activity Spaces and ACHVITIESeecureeriieeiiieeieeeiieeete e e ereeesreeeseaeeeeeneas 149
0.7.0. 1 ACHIVILY 1ttt ettt ettt e e et e et e e bt e s it e e st e snbe e st e enbeenbeeennas 149
0.7.6.2 ACHVIEY SPACE .. .eeiuiieiieiiieiieeiie ettt et eite ettt e te e teesbeesteesabeeseesnbeeseesnseenseennnas 149
9.7.6.3 Activity Association (“part-of” Kind)..........cceervviiiiiiiiiiiiiiieeieeeeeee e 150
9.7.6.4 Activity Association (other than the “part-of” kind).........ccccoveiiiiiiininiiin. 151
0.7.6.5 COMPELEIICY ...eevuviieeuiiieeiiieeitee ettt e et e estteesiteeesiteeestteeetbeessbteesabaeesaseeesnseessnseesnnseeens 152
0.7.6.6 CompPetenCy LeVEl....c.cooviiiiiiiiiiieieeeee ettt 152
0.7.6.7 DIQGTAIMS ...eeneeeeuiieiie ettt ettt ettt et ettt et e et e et eeenteebeesabeestesnseeseesnseenseesnnas 153
0.7.6.8 CAIAS cnvtieiiieeiie ettt ettt ettt ettt e et e et et e bt e e nbe e teeenbeenseenneas 154
O0.7.7T VIEW 4: PAMEINISeveeeieiieeiieeeee ettt ettt e ettt e st e e st e e e stee e snbeeesnseeennneeenneas 160
R B B o2 7<) o AU UURRRRURUPSR 160
0.7.7.2 Pattern ASSOCIATION.eeiuiierieriieeiieniieeteeriteeteertteeteenteesseenseeeabeeseesnseeseesnseenseennnas 161
0.7.7.3 DIQGTAIMS ..ccuevieeiiieeiiee ettt e ettt e et e e et e e st e estbeeesebeessaeeessaeesssseessseeesnseeensseesnnseesnnseesns 162
O.7.7.4 CAIAS weeieeiei ettt et e st e et e et e e e tae e e taeeebaeesabaeeeabeeeesbeeeaaseeennraeans 162
0.8 TEeXtUAL SYNEAX ..uviiiiiiiiiiiieeie ettt ettt ettt e st e et esateesbeessbeenbeesabeenseessseenseesnseenne 164
0.8.1 OVETVIEW ...utiiiiiieeiieeeiiee et ettt e et e e et e e st e e sitee e ebeeesabeeensseeessseeensseeenseeeanseesanseesnsseeenseas 164
0.8.2 RULES .ttt e et e e e b e e b e e e b e e e ba e e e naeeeeabaeennaaeeareas 164
0.8.2.1 INOLALION. ...eeueieeiiieeiieeteeeite et e ette et et e et e stteebeetteesbe e seeenseenseeenseenseesnseenseesnseenseennnas 164
0.8.2.2 ROOt EICMENLScccuiiiiiiiiieiieciie ettt ettt ettt ve et e eeebe e saeesseenseennnas 165
0.8.2.3 EIEMENt GIOUPS ...eeeviieeiiieeiieeeiieesieeesieeestteeesteeestaeeessseesssseessseeessseeessseesssseesnsseeans 166
0.8.2.4 Kernel EICMENTS......ccceeiiieiieiieeiieiie ettt ettt et eaeesaeesteeseeeneas 167
0.8.2.5 Practice EICMENLS......c.ccoiiiiieriiieiieiie ettt ettt e et enbe b e 168
0.8.2.6 Auxiliary EICMENLScccuviiiiiiiiiiieciieece ettt e 169

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 vii

0.8.3 EXAMIPIES .ttt et ettt e e e nb e et e et 170

Annex A: Software Engineering Kernel EXteNnSionccccoeviieiiiniieiiienieeiece e 175
AT INEEOAUCTION ...ttt ettt et e sat e e bt e bt e et e e sate et e e ssbeeeeens 175
AT T OVEIVIEW ..ttt ettt ettt ettt ettt e et e st e et e b e e ab e e bt e enbe e st e snbeeseesaseeseasnseenseennseenne 175
A.2 The Software System AIPRa..........cccueiiiiiiiiiiiiee et 176
WA B0 02 BN) 41 1<) 1 4 SRR 176
A.3 The Required Extension EIEments............ccccuiiiiiiiiiiiiiiiieiiee et 180
A.3.1 The System Alpha (TeXtual SYNtaX)ccevieriieriieiiieiieeie et sre e 181
A.3.2 The Extension Elements (Textual Syntax).......c.cccccueeerieeriiieniieesiieeeiee e e 183
Annex B: Optional Kernel EXtENSIONS.cccueviiiiiriiiieiiiiienieeenteectese ettt 185
Bl INETOQUCTION ...ttt ettt sttt ettt et s be et e e s st e bt et e eaaenas 185
B.1.1 ACKNOWICAZEMENLS.......cuiiiiiiiieiiieiieciie ettt ettt e et ebeebeessseensaeenseenns 185
BL1.2 OVEIVIEW ..ottt ettt ettt et e h e et e bt e st e et eenbeebeesabeebeeenseenseesnseenne 185
B.1.3 Why the Focus on Adding AIPhas?.........cccooviieiiiiiiiiiieieeitee e 185
B.1.4 Why are the Subordinate Alphas not included in the Kernel?.............ccccooeveevienennnnnn. 186
B.1.5 How do you use the Kernel EXtensions?cccoocueeiieiieniiienieiieeiee e 186
B.2 Business Analysis EXtENSION........ccciiriiiiiiiiieeiierie ettt ettt et e ebeeseaeebeesnseenseens 186
B.2.1 INErOAUCIION. ..co.uiiiiiiiiiiiie ettt et sttt e e e e 186
B.2.2 AIPRAS ettt et st b et ente e 186
B.2.2.1 Stakeholder Representative.coeeuiiriieiiieniieiiieiiecie et 186
B2.2.20 INEEA ...ttt ettt ettt s nees 191

B.3 Development EXTENSIONSceriiiiiiiriiiiiieiie ettt ettt ettt sttt e sieeeteesaaeenbeesneeenseens 194
B.3.1 INtrOQUCHION .c..eiuiiiieiieteiteeeee ettt sttt et st s b et eaee e 194
B.3.2 AIPNAS oot ettt e e eeta e et e ebeeesbeenseeenseenns 195
B.3.2.1 Requirement [Eem.........coouiiiiiiiiiiiieie ettt e 195
Bi3.2.2 Bl ittt ettt naes 200
B.3.2.3 Software System Element...........ccceeciiiiiiiiiieiiiiiiciece e 203

B.4 Task Management EXtENSIONc.eievviiiiiieeiiieeiiieetee ettt e svee e saee e sveeesveeesnseeenneaens 207
Bi4.T INtrOQUCHION .c..eiuiiiiiiiieteiteeeee ettt sttt st st sb et eaeeaes 207
Bi4.2 AIPNAS ..ottt et e e nb e e teeenbeebeeenseenseeenseenns 208
B.4.2.1 Team MEMDETooiuiiiiiiiiieiiee ettt s 208

viii Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Bi4.2.2 TaSK ..ottt 211

B.4.2.3 Practice AdOPHION......ccieiiieiieeiiietieeie ettt ettt et ettt e eteesnbeenbeessseesaesnse e 214

Annex C: Alignment With SPEM 2.0.......ccuiiiiiiiiiiecee ettt e e e e 219
Gl OVRIVIEW ..eiiitiieiiie ettt ettt ettt e ettt e et e e e ta e e s baeeassaeeasseeesseeesssaeassseeessaeeassseeassaeessseeeasseeesseeennns 219
C.2 Key Objectives of SPEM and ESSENCEccccuieiiiiiiieiiiiiieiiecieetee et 219
C.3 Comparison of SPEM and Essence and Recommendations.............cceceeeveiieeecieeencieeeeneeenne, 220
C.4 Migrating SPEM t0 ESSENCEcccuiruiiiiiriiiiiiiiiiieniecicect ettt 222
Cid. 1 INITOAUCTION. ..cutiiiieiiiiieeiiet ettt sttt ettt et sbe et st sb et et e sbeenbesatesbeenbeas 222
C.4.2 Overall Approach to a Manual Migration Procedure............ccccoeevveeiiiencieencieecieeeee, 222
C.4.3 Transforming SPEM Managed Content............ccccecueriinieiiinienienieneeieeiesieesie e 224
C.4.4 Transforming SPEM Method Content...........ccceecuiiriieiieniieiiecieeieecee e 226
C.4.5 Transforming SPEM ProCeSSES.......cccciiiiiiiiiiiieeiiieeiee ettt ettt eaee e e eaee e 228
Cd.5.1 ACHVITIES wueieeiieeiiieeciiee ettt e ettt e et e e et e e sateeestbee e aseeesseeesseesssseesssseesssesessseeesssesenssaeans 228

C.4.6 SPEM Activity vs. Essence Activity Space and ACtIVILY.......ccceevveeriierieeniienieeiieeeene 229
C.4.7 A Note on Transforming SPEM Methods and Plugins...........cccceceevieriievieenieeniieenn, 231
Annex D: Alignment With ISO 24744c..ooiiiiieee ettt 233
DLl INETOAUCTION ...ttt ettt ettt sttt et sa ettt ebe e bt et s st e be et e eaaenes 233
D.2 Alignment With ISO 24744cooomiiiie ettt 233
D.2.1 Different metamodel architeCturecccvveeeiiieiiie e e e 233
D.2.2 Different Writing SYSTEIMcccvieruieeriierieeiieeiie et esite et esiteeteeseeesbeesseesnseesseessseensaesnseenne 234
D.2.3 Definition of an ISO 24744 Kernel eXtensionccoeeeeeeiienieecieeneeeieeniesveeseeeeeneenns 235

D.3 Overview of ISO 24744 fRATUIESc.veeeeurieeeiiieeeiiieeeiee et ettt e teeeeaee e s e e sveeesereeesaseeennneaens 236
Annex E: Practice EXampPIes.........ooouiiiiiiiiiiiiiciiee ettt ettt e 241
E.1 INETOAUCTION. ..ottt ettt ettt ettt et eae e bt et e e st enbe et e eaeenees 241
E.2 PraCHICES c.uuviieiiie ettt e ettt e et e et e e e taeeeataeeebaeesbaeesabaeessaeeeeaseeeenbaeeanseeenreaans 241
E.2.1 OVRIVIEW ...ttt ettt b ettt st b et et e bt et sbeenbe et e eaeenas 241
E.2.2 SCIUIM .ttt ettt ettt ettt et e s 241
E.2.2.1 OVEIVIEW ...uiiiiiiiieiieie ettt ettt ettt ettt ettt et et e s et et e entesaeenseeneenseenseeneenees 241
E.2.2.2 PrACHCE. c..eitiiiietteteete ettt ettt ettt sb et et sb ettt b et e aes 241
E.2.2.3 AIPRAS wooneieeeee et 243
E.2.2.4 WOTK ProdUucts......cc.eoeuiiiiiiiieee ettt 247

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 ix

B2 2.5 A CHIVITIES ettt e e et e aaaeeeeeeeeea e aaeeeeeeaenanraaaaeaes 250

E.2.2.6 0 ROIES .ottt 253
E.2.3 USET STOTY wettiiiiiiiiie ettt ettt et e e et e e e ettt e e e et eeeeensbeeeeensaeeeesnnsaeeesnnnees 254
| B B o T 5 (o1 RSP URRRRPPRRR 254
E.2.3.2 WOTK PrOQUCES....couiiiiiiiiieiieiteec e 254
E.2.3.3 ACHVITIES 1eeuteeueeitieieeie ettt ettt ettt ettt et st et e et e bt et e e st e sseenseeneesseenseeneeees 256
E.2.4 Multi-phase Waterfallccooiiiiiiiiii e 257
E.2.4. 1 ACHVITIES .outeiiiiieieeetestt ettt ettt et sb et et sb et nb et nes 257
E.2.4.2 Alpha Extensions for Multi-Phase Waterfall Requirements............c.ccccceeeeveeneen. 261

E.2.4.3 Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions262
E.2.4.4 Extensions of Requirement Item Alpha for Tracking Individual Multi-Phase

Waterfall Requirement ItemMSc.ceeoiiiiiiiieiie et e 262
E.2.5 Lifecycle EXamPIes......ccoooiiiiiiiiiiiieie ettt e 264
E.2.5.1 The Unified Process Lifecycle.......ccooiiriiriieiiiiiiiieciteeeee e 265
E.2.5.2 The Waterfall LIfECYCLEccccvviieiiieiieeee ettt 266
E.2.5.3 A set of complementary application development lifecyclesccccevueerieennnenne 267
E.2.6 Business Change ESSEntialscccieriiriiiiiiieiiieiieieeie ettt 272
E.2.0.1 OVEIVIEW ...utiiiiiieiieiie ettt ettt ettt ettt et ettt et e st e st e st e st e saeenseeneenseensesneenees 272
E.2.6.2 PraACHICE...ccuuieiuiietie ettt ettt et ettt ettt ettt bt e st e et e sateeabeesateeseesnneenne 272
E.2.6.3 Alphas and Work Products...........ccceecuiiriiiiieniieiiiciecee et 273
N Y S N # 4 3 1< USROS 277

E.3 Composing Practices iInto Methodscoceeviriiiiiiiiriiiniiiietcieeeeeeeee e 279
E.3.1 Composing Scrum and USET StOTY......cc.eeeriiieriiieiiieeiieeeiieeeireeeieeeeieeesveeesveeesaee e 279
E.4 Enactment 0f Methodscoouiiiiiiiiii e 280
E.4.1 The Initial Set 0f Cardscocueeiiieiiieieeeee et 281
E.4.2 Determining the Overall State for the First Timecccoocveviiiiiiinieeiieieceeeee, 282
E.4.3 Generating Guidance for the First Timecccccoovviieiiiiiiiiicieeee e 283
E.4.4 Updating the Overall State...........coceeviiriiriiiiiniiiteieeteree e 283

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road
PMB 274

Milford, MA 01757
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 xi

Xii

This page intentionally left blank.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

1 Scope

This document provides comprehensive definitions and descriptions of the kernel and the language for engineering
methods.

The Kernel provides the common ground for defining engineering practices. It includes the essential elements that are
always prevalent in every engineering endeavor, such as Requirements, System, Team, and Work. These elements have
states representing progress and health, so as the endeavor moves forward the states associated with these elements
progress. The Kernel among other things helps practitioners (e.g., architects, designers, developers, testers, requirements
engineers, process engineers, project managers, etc.) compare methods and make better decisions about their practices.

The Kernel is described using the Language, which defines abstract syntax, dynamic semantics, graphic syntax, and
textual syntax. The Language supports composing two practices to form a new practice, and composing practices into a
method, and the enactment of methods.

This document addresses the mandatory requirements of the Kernel, the Language, and Practice in the following:
o [t defines the Kernel and its organizations into three areas of concerns: Customer, Solution, and Endeavor.

o [t defines the Kernel Alphas (i.e., the essential things to work with), and Activity Spaces (i.e., the essential things
to do).

o [t describes the Language specification, Language elements, and Language model.
o [t defines Language Dynamic Semantics, Graphical Syntax, and Textual Syntax.

o It describes examples of composing Practices into Methods, and Enactment of Methods.

2 Conformance

2.1 Conformance Classes

The normative requirements in this specification are contained in Clause 8, Clause 9, Annex A and Annex B. This
specification provides two conformance classes. See also the definitions given in Clause 4 of important terms used in a
specific technical sense in this specification.

o Practice Description Conformance. This class applies to the description of practices, defined using the Essence
language, as specified in Clause 9.

o Tool Conformance. This class applies to tools that provide a means for the definition of description practices in the
Essence language, using the Essence kernel, as specified in Clause 8, with optional extensions given in Annex A.

A claim of Essence conformance shall declare the practice or tool for which conformance is claimed. Conformance is
achieved by demonstrating that the requirements for the appropriate conformance class have been satisfied, as further
discussed in the following subclauses.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 1

2.2 Practice Description Conformance

2.2.1 Overview

This conformance class applies to published practice descriptions defined using the Essence language, as specified in
Clause 9. It provides a clear indication of what can be done with the practice description. One of three levels of
conformance may be claimed for a practice description, as further described below.

NOTE: These practice description conformance levels are not associated with a practice; they are a measure of the level
of detail with which the practice has been described. It is quite possible for the same practice to be described at all the
different conformance levels, for example Scrum could be described by different authors at different conformance levels.
It is also possible for teams to use practices which are described at different conformance levels, for example a team
could have their much used development and requirement practices at level 3 as these areas are important for them to
monitor and track, and their project kick-off practices at level 1 as it is not as important to track their progress and they
are typically only performed once by the team.

2.2.2 Level 1: Narrative

Practice descriptions defined at this conformance level use the conceptual elements of the Essence language as a
framework for structuring their text. All of the elements in the practice are expressed correctly according to the language;
for example all the work products appear as work products and all the activities appear as activities. Beyond this simple
classification of the elements in the practice there are no other constraints or invariants.

Once published practices at this level can be referenced by other practices but cannot be exchanged between tools or
automatically composed with other practices. Practices described at this level are typically just free format text and there
is no XMI interchange format for sharing or composing them.

2.2.3 Level 2: Practice Description Interchange

Practice descriptions defined at this level use the full expressive quality of the language. Everything is typed properly and
uses any applicable language element attributes and associations correctly; for example all the elements will have names
and brief descriptions conformant with the language rules and all associations between the elements will be queryable
and traversable.

Level 2 practices can be exchanged between tools in XMI. This formal use of the language allows the practices to be
composed with the kernel and other practices. Practice descriptions at this level are highly structured and will require
specialist authoring or modeling tools to produce.

Level 2 practice descriptions add rigor and XMI interchange to Level 1. This provides the consistency and robustness to
all tools to “do things” with them. They can read, manipulate and compose the practices but a person is needed to
"action" the resulting composition.

2.2.4 Level 3: Practice Actionable and Trackable
Practice descriptions defined at this level use the full power of the language to ensure they are prepared to be
automatically actioned and tracked. For example there will always be an Alpha with a fully defined state machine with a

complete set of checklists either contained in, or extended by the practice and all activities will be clearly related to the
Alpha state progressions that they enable.

2 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Like Level 2 practice descriptions, level 3 practice descriptions can be exchanged between tools using XMI, and like the
level 2 practice descriptions they can be composed with the kernel and other practice descriptions. Practice descriptions
at this level are highly structured and will require specialist authoring or modeling tools to produce.

Level 3 practice descriptions add additional detail and precision over and above that needed for practice descriptions
defined at Level 2. The additional information ensures full support for the language’s dynamic semantics enabling tools
to provide more sophisticated features such as real-time alpha state tracking, task generation, pattern matching, and
completeness checking.

2.3 Tool Conformance

This conformance class applies to tools that provide the ability to define practices and methods using the Essence
language. As defined in 9.3.2.8, the Essence language Foundation includes the ability to define a kernel as “a set of
elements used to form a common ground for describing an engineering endeavor” and, as specified in 9.3.2.12, a method
must be defined based on a specific kernel. While the Essence language provides this general capability for defining and
using kernels, a tool may only claim conformance to this specification if it provides both the ability to define methods
and practices in the Essence language and a built-in definition of the Essence kernel that may be used in the definition of
methods. Specifically:

o The tool shall implement the entire Essence kernel, in the sense of providing a definition of the kernel in the
Essence language, as specified in Clause 8, and allowing this kernel to be used as the base kernel for methods
defined using the tool (per 9.3.2.12).

¢ Any practice description produced by the tool shall conform to the requirements for the Essence language, as
specified in Clause 9, at any one of the conformance levels defined in 2.2.

For a tool that conforms to this specification as defined above, conformance may also be additionally claimed for one or
more of the optional kernel extensions specified in Annex A and Annex B.

e A tool conforms to the Software Engineering Kernel Extension if it implements the entire Software Engineering
Kernel Extension, as specified in Annex A, allowing the Essence kernel to be used as the base kernel for method
definitions.

¢ A tool conforms to the Essence Business Analysis Extension if it implements the entire Business Analysis
Extension, as specified in B.2, allowing the Essence kernel so extended to be used as the base kernel for method
definitions.

¢ A tool conforms to the Essence Development Extension if it implements the entire Development Extension, as
specified in B.3, allowing the Essence kernel so extended to be used as the base kernel for method definitions.

e A tool conforms to the Essence Task Management Extension if it implements the entire Task Management
Extension, as specified in B.4, allowing the Essence kernel so extended to be used as the base kernel for method
definitions.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 3

e OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Document formal/2011-08-07,
https://www.omg.org/spec/MOF/2.4.1/

e OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, OMG Document formal/2011-08-
05, https://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

e Diagram Definition (DD), Version 1.0, OMG Document formal/2012-07-01, https://www.omg.org/spec/DD/1.0/

e [SO/IEC 13817-1:1996, Information technology -- Programming languages, their environments and system
software interfaces -- Vienna Development Method -- Specification Language -- Part 1: Base language.
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22988

o ISO/IEC/IEEE 15288:2023, Systems and software engineering - System life cycle processes,
https://www.iso.org/standard/81702.html

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Activity

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Activity space

A placeholder for something to be done in the engineering endeavor; a placeholder may consist of zero to many
activities.

Alpha

An essential element of the engineering endeavor that is relevant to an assessment of the progress and health of the
endeavor. Alpha is an acronym for an Abstract-Level Progress Health Attribute

Alpha association

An alpha association defines a relationship between two alphas.

Area of concern

Elements in kernels or practices may be divided into a collection of main areas of concern that an engineering endeavor
has to pay special attention to. All elements fall into at most one of these.

Check list item

A check list item is an item in a check list that needs to be verified in a state.

Competency

A competency encompasses the abilities, capabilities, attainments, knowledge, and skills necessary to do a certain kind of
work.

A competency defines a sequence of competency levels ranging from a minimum level of competency to a maximum
level. Typically, the levels range from O-assists to 5—innovates. (See 8.1.6 and 9.3.5.)

4 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

https://www.omg.org/spec/MOF/2.4.1/
https://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
https://www.omg.org/spec/DD/1.0/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22988
https://www.iso.org/standard/81702.html

Constraints

Restrictions, policies, or regulatory requirements the team must comply with.

Enactment

The act of applying a method for some particular purpose, typically an endeavor.

Endeavor

An activity or set of activities directed towards a goal.

Invariant

An invariant is a proposition about an instance of a language element which is true if the instance is used in a language
construct as intended by the specification.

Kernel

A kernel is a set of elements used to form a common ground for describing an engineering endeavor.
Method
A Method is the composition of a Kernel and a set of Practices to fulfill a specific purpose.

A team’s method acts as a description of the team’s way-of- working and provides help and guidance to the team as they
perform their task. The running of a development effort is expressed by a used method instance. This instance holds
instances of alphas, work products, activities, and the like that are the outcome from the real work performed in the
development effort. The used method instance includes a reference to the defined method instance, which is selected as
the method to be followed. (See 9.3.2.12.)

Opportunity

The set of circumstances that makes it appropriate to develop or change a system.

Pattern

A pattern is a description of a structure in a practice.

Practice

A practice is a repeatable approach to doing something with a specific objective in mind.

Requirements

What the system must do to address the opportunity and satisfy the stakeholders.

Role

A set of responsibilities.

Stakeholders

The people, groups, or organizations that affect or are affected by a system.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 5

State

A state expresses a situation where some condition holds.

State Graph

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states.

System

A system consists of a set of elements interacting to achieve a defined purpose. The elements of a system include one or
more of the following: hardware, software, data, humans, processes, services, procedures, facilities, materials and
naturally occurring entities.

Team

The group of people actively engaged in the development, maintenance, delivery or support of a specific system.

Transition

A transition is a directed connection from one state in a state machine to a state in that state machine.

Way-of-working

The tailored set of practices and tools used by a team to guide and support their work.

Work

Work is defined as all mental and physical activities performed by the team to produce a system.

Work item

A piece of work that should be done to complete the work. It has a concrete result and it leads to either a state change or a
confirmation of the current state. Work item may or may not have any related activity.

5 Abbreviations

o Sub-alpha: Subordinate alpha

6 Additional Information

6.1 Submitting Organizations

The following organizations submitted this specification:
o Fuyjitsu/Fujitsu Services
e [var Jacobson International AB

e Model Driven Solutions

6 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

6.2

SOFTEAM

Universidad Nacional Autonoma de México (UNAM)

Supporting Organizations

The following organizations supported this specification:

6.3

Alarcos Research Group, University of Castilla— La Mancha (UCLM)
Florida Atlantic University

General Direction of Computing and Information Technologies and Communication (DGTIC), National
Autonomous University of Mexico (UNAM)

Graduate Science and Engineering Computing, National Autonomous University of Mexico (UNAM)
IICT-BAS

Impetus

InfoBLOCK

JPE Consultores

KnowGravity Inc.

KTH Royal Institute of Technology

Magnabyte

Metamaxim Ltd.

PEM Systems

Science Faculty, National Autonomous University of Mexico (UNAM)
Software Guru

Stiftelsen SINTEF

Tecnalia Corporacion Tecnologica

Ultrasist

University of Duisburg-Essen

Acknowledgements

The work is based on the Semat initiative incepted at the end of 2009, which was envisioned by Ivar Jacobson, along
with the other two Semat advisors Bertrand Meyer and Richard Soley.

Among all the people who have worked as volunteers to make this submission possible, there are in particular a few
people who have made significant contributions: Ivar Jacobson guides the work of this submission; Paul E. McMahon

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

coordinates this submission; Ian Michael Spence leads the architecture of the Kernel and the Kernel specification;
Michael Striewe leads the Language specification with technical guidance from Brian Elveseter on the metamodel,
Stefan Bylund on the graphical syntax, Ashley McNeile on the dynamic semantics and Gunnar Overgaard on
composition and merging.

The following persons are members of the core team that have contributed to the content specification: Andrey A. Bayda,
Arne-Jorgen Berre, Stefan Bylund, Bob Corrick, Dave Cuningham, Brian Elveseter, Todd Fredrickson, Michael
Goedicke, Shihong Huang, Ivar Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Paul E. McMahon, Ashley
McNeile, Winifred Menezes, Hiroshi Miyazaki, Miguel Ehécatl Morales Trujillo, Magdalena Déavila Mufioz, Hanna J.
Oktaba, Bob Palank, Tom Rutt, Ed Seidewitz, Ed Seymour, Ian Michael Spence, Michael Striewe and Gunnar Overgaard.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
the work behind this specification: Scott Ambler, Chris Armstrong, Gorka Benguria, Jorn Bettin, Stefan Britts, Anders
Caspar, Adriano Comai, Jorge Diaz-Herrera, Jean Marie Favre, Carlo Alberto Furia, Tom Gilb, Carson Holmes, Ingvar
Hybbinette, Sylvia Ilieva, Capers Jones, Melir Page Jones, Mark Kennaley, Philippe Kruchten, Bruce Maclsaac, Yeu Wen
Mak, Tom McBride, Bertrand Meyer, Martin Naedele, Jaana Nyfjord, Jaime Pavlich-Mariscal, Walker Royce, Andrey
Sadovyk, Markus Schacher, Roly Stimson and Paul Szymkowiak.

The finalization of version 1.0 of this standard was handled by the following members of the finalization task force:
Manfred Koethe, 88solutions; Chris Armstrong, Armstrong Process Group, Inc.; Bernd Wenzel, Fachhochschule
Vorarlberg; Hiroshi Miyazaki, Fujitsu; Ed Seidewitz, Ivar Jacobson AB; June Park, Korea Advanced Institute of Science
and Technology; Arne Berre; SINTEF; James D. Baker, Sparx Systems; Miguel Ehécatl Morales Trujillo, Universidad
Nacional Autonoma de Mexico. Special thanks to June Park and Nurhak Aktas of KAIST for editing the updates to the
specification document.

The following persons are members of the core team that have contributed to the version 2.0 specification: Stefan Bylund
and Ivar Jacobson. In addition, the following persons contributed valuable ideas and feedback that improved the content
and the quality of the work behind the version 2.0 specification: Simon Girvan, Carlos Mario Zapata Jaramillo, Manfred
Koethe, Stefan Malich, Paul E. McMahon, Hanna J. Oktaba, Jim Rhyne, Ed Seidewitz, Michael Striewe, Miguel Ehécatl
Morales Trujillo.

8 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

7 Overview of the Specification

7.1 Introduction

This specification defines a kernel and a language for the creation, use, and improvement of practice-based engineering
methods. Together they are known as Essence. They are scalable, extensible, and easy to use. They allow people to
describe the essentials of their existing and future methods and practices so that they can be compared, evaluated,
tailored, used, adapted, simulated, and measured by practitioners as well as taught and researched by academics and
researchers. They also allow teams to continually assess the progress and health of their engineering endeavors.

This specification builds on the work of the SEMAT! (Software Engineering Method and Theory) community. SEMAT
exists to address many of the issues that challenge the field of software engineering. For example, the reliance on fads
and fashions, the lack of a theoretical basis, and the abundance of unique methods that are hard to compare, the dearth of
experimental evaluation and validation, and the gap between academic research and its practical application in industry.
Key to the success of SEMAT is the establishment of a kernel and language to enable the free and fair exchange of
practices.

Note. Essence version 2.0 intends to remove the unnecessary limitations of Essence version 1.2 being focused on only
software engineering and can instead be applied to practice-based engineering methods in general. In most branches of
engineering, the idea of accepted working practices found in common method handbooks is already fairly well
established. Still, the challenges with such practices are the same as outlined above for software engineering. The purpose
of Essence is to make it easier for teams to capture, use and share such common engineering practices both locally within
organizations as well as globally within the wider engineering community.

7.2 Key Features

The Essence Kernel and the Essence Language are designed to support practitioners as well as method engineers.
Together the kernel and the language:

o Separate the "what" of engineering (articulated as the Essence Kernel) from the "how" (articulated as practices
and methods), thus providing a common vocabulary for talking about engineering and a framework on which
practices and methods are defined.

¢ Provide a common base that is useful for engineering endeavors of all sizes (small, medium, and large) and that
can easily be extended without changing or complicating the kernel.

o Actively support practitioners in the conduct of their work by providing guidance based on state and practice
definitions.

e Focus on method use instead of method description. This is supported by the alpha construct which allows you to,
at any time, measure the health and progress of a project.

¢ Enable method building by the composition of practices, so that methods can be quickly assembled by a project
team to match their needs, experiences, and aspirations. Allowing the method to start small and grow as needed.

e Encourage and support incremental adoption by small and medium sized organizations by keeping the entry costs
low and minimizing the barriers to adoption.(e.g., starting by using "cards", the kernel or a single practice)

! Software Engineering Method and Theory (SEMAT) website: www.semat.org

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 9

http://www.semat.org/

o Separate the method support that different types of user are interested in to make methods useful for, and
accessible to, everyone involved in engineering. For example, process engineers are usually more interested in
methodology aspects but their interest should not overload developers, analysts, testers, team leaders, and project
managers.

o Support method agility, so that practices and methods can be refined and modified during a project to reflect
experiences, lessons learned, and changing needs.

¢ Support scalability including from one product to many, from one team to many, and from one method to many.

e Apply the principle of Separation of Concerns (SoC) and put the focus on the things that matter the most.

7.3 The Method Architecture

The domain of the Essence specification is engineering, and in particular engineering methods. It uses the simple layered
architecture shown in Figure 7.1, where a method is a simple composition of practices, practices which are described
using both the Essence Kernel and the Essence Language. It is the use of both the kernel and the language that allows a
practice to be safely merged with other relevant practices to form a “higher-level” method.

Methods v
et .

Practices
— The Kernel

The Language

Figure 7.1 — Method architecture

The key concepts include:

¢ A method is a composition of practices. Methods are not just descriptions for team members to read, they are
dynamic, supporting their day-to-day activities. This changes the conventional definition of a method. A method is
not just a description of what is expected to be done, but a description of what is actually done.

e A practice is a repeatable approach to doing something with a specific objective in mind. A practice provides a
systematic and verifiable way of addressing a particular aspect of the work at hand. A practice can be part of many
methods.

o The Essence Kernel captures the essential elements of engineering, those that are integral to all engineering
methods. Note: other kernels for other domains could be defined using the Essence Language but these are outside
the scope of this specification.

10 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

e The Essence Language is the domain-specific language to define methods, practices and kernels.

7.4 Why a Kernel and a Language?

The successful development of systems benefits from the application of effective methods and well-defined practices.
Traditionally, methods have been defined up-front before a team starts to work. They are then instantiated so that the
activities — created from the definition — are ready to be executed by practitioners (e.g., analysts, developers, testers,
project leads) in a predefined order to get the result specified by the definition. Methods defined in this way are often
considered by development teams to be too prescriptive, heavyweight and inflexible. The view — “the team is the
computer, the process is the program” — is not suitable for creative engineering work, which is agile, trial-and-error based
and collaboration intensive.

What has been missing is a simple way to bootstrap a method, one that allows a team to experiment and evolve a way of
working that meets their needs while they do their work. A living method that they can continuously inspect and adapt so
that it learns as they learn and reflects what the team is actually doing rather than what the team thought they would be
doing before they started work. A living method where the set of practices the team uses can change over time as their
systems mature and they continuously improve their way of working.

Teams need to be agile when working with methods so that:
e The focus is on method use, rather than comprehensive method description.
e The full team owns the method rather than a select few.
e The method evolves to address the team’s ongoing needs, rather than staying fixed and unchanged.

e The method remains as close to practitioners’ practice as possible, so that it evolves and adapts to their particular
context and challenges.

o The method supports all competency levels helping the experienced and inexperienced practitioners alike.
This requires a separation of concerns:

e Separating the what from the how.

o Separating the results from the documentation.

o Separating the essence from the details.

o Separating what the least experienced developers need from what the most experienced developers need.

e Separating the complexity of engineering from the complexity of defining methods.

Key to achieving this is the separation of the kernel — capturing the essence of engineering — from 1) the practices that
will be combined to form the method and 2) the language used to capture the kernel and the practices. This allows them
all to be kept small, focused, and as simple as possible.

7.4.1 The Role of the Kernel

The Essence Kernel provides the common ground to, among other things, help practitioners to compare methods and
make better decisions about their practices. Presenting the essence of engineering in this way enables us to build our
knowledge on top of what we have known and learnt, and to apply and reuse gained knowledge across different
application domains and systems of differing complexity.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 11

The kernel elements form the basis of a vocabulary — a map of the engineering context —upon which we can define and
describe any method or practice in existence or foreseen in the near future. They are defined in a way that allows them to
be extensible and tailorable, supporting a wide variety of practices, methods, and development styles.

The Essence Kernel is also designed to be extensible to cater for the emergence of new technologies, new practices, new
social working patterns, and new research. It is small and light at its base but extensible to cover more advanced uses,
such as dealing with life-, safety-, business-, mission-, and security-critical systems.

The Essence Kernel can also be used whether or not a team has a documented method. The elements of the kernel are
always prevalent in any engineering endeavor. They are what we always have (e.g., teams and work), what we always do
(e.g., specify and implement), and what we always produce (e.g., systems) when we conduct engineering work. Even
without a defined method the Essence Kernel can be used to monitor the progress and health of any endeavor, and to
analyze the strengths and weaknesses of a team’s way of working.

7.4.2 The Role of the Language

Methods, practices and the Essence Kernel itself are defined using the Essence Language. The Essence Language is a
domain-specific language for practices and methods (where in turn a typical domain for those is engineering as expressed
by the Essence Kernel), which has a static base (syntax and well-formedness rules) to allow the effective definition of
kernels, methods and practices, and additional dynamic features (operational semantics) to enable usage, and adaptation.

The language design was driven by two main objectives: making methods visible to teams and making methods useful to
teams. The first objective led to the definition of both textual and graphical syntax as well as to the development of a
concept of views in the latter. This way, teams can represent methods in exactly the way that suits their purposes best. By
providing both textual and graphical syntax, nobody is forced to use a graphical notation in situations where textual
notation is easier to handle, and vice versa. By providing a concept of views, nobody is forced to show a complete
graphical representation in situations where a partial graphical representation of a method is sufficient.

The second objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running engineering
endeavor, the method can be consulted and it will return advice on what to do next. Moreover, the method can be
tweaked at any point in time and will still return (possibly alternate) advice on what to do next for the same situation.

The Essence Language emphasizes intuitive and concrete graphical syntax over formal semantics. This does not mean
that the semantics are not as important or necessary. However, the description should be provided in a language that can
be easily understood by the vast developer community whose interests are to quickly understand and use the language,
rather than caring about the beauty of the language design. Hence, Essence pays extreme attention to syntax.

7.5 How to Read this Specification

This specification contains detailed descriptions of both the Essence Kernel and the Essence Language. You do not need
a detailed knowledge of the language to be able to read and understand the kernel. Although the kernel is specified using
the language it only uses a small subset of the language, and is designed to be intuitive, self-contained and accessible to
those without a detailed knowledge of the language.

Some readers will be more interested in the Essence Kernel and its usage than the details of the language. If you fall into
this category, it is recommended that you focus on Clause 8 Kernel Specification dipping into Clause 9 Language
Specification when and where you require more information about the language elements or icons used. You may also
want to look at the examples and extensions described in the annexes before looking at the details of the language itself.

12 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Other readers will want to understand the detail of the language before looking at the Kernel or the examples. In this case
it is recommended that you first read Clause 9 Language Specification before reading Clause 8 Kernel Specification and
looking at the example and extensions presented in the annexes.

We expect most readers to prefer to read the Kernel Specification before diving into the Language Specification because
1) it only uses a small subset of the language, 2) it provides a good example of the expressive qualities of the language,
and 3) if it cannot be understood without first reading the entire language specification it is not a good basis for the
definition and sharing or your practices and methods.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 13

14

This page intentionally left blank.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

8 Kernel Specification

8.1 Overview

This clause presents the specification for the Essence Kernel. It begins with an overview of the kernel as a whole and its
organization into the three areas of concern. This is followed by a description of each area of concern and its contents.

8.1.1 What is the Kernel?

The kernel is a stripped-down, light-weight set of definitions that captures the essence of effective, scalable engineering
in a practice independent way.

The focus of the kernel is to define a common basis for the definition of engineering practices, one that allows them to be
defined and applied independently. The practices can then be mixed and matched to create specific engineering methods
tailored to the specific needs of a specific engineering community, project, team, or organization. The kernel has many
benefits including:

¢ Allowing you to apply as few or as many practices as you like.
¢ Allowing you to easily capture your current practices in a reusable and extendable way.
¢ Allowing you to evaluate your current practices against a technique neutral control framework.

¢ Allowing you to align and compare your on-going work and methods to a common, technique neutral framework,
and then to complement it with any missing critical practices or process elements.

¢ Allowing you to start with a minimal method adding practices as the endeavor progresses and when you need
them.

8.1.2 What is in the Kernel?

The kernel is described using a small subset of the Language defined in Clause 9 Language Specification. It is organized
into three areas of concern, each containing a small number of:

o Alphas — representations of the essential things to work with. The Alphas provide descriptions of the kind of
things that a team will manage, produce, and use in the process of developing, maintaining, and supporting
systems and, as such, are relevant to assessing the progress and health of an engineering endeavor. They also act
as the anchor for any additional sub-alphas and work products required by the engineering practices.

e Activity Spaces — representations of the essential things to do. The Activity Spaces provide descriptions of the
challenges a team faces when developing, maintaining, and supporting systems, and the kinds of things that the
team will do to meet them.

o Competencies — representations of the key capabilities required to carry out the work of engineering.

To maintain its practice independence the kernel does not include any instances of the other language elements such as
work products or activities. These only make sense within the context of a specific practice.

The best way to get an overview of the kernel as a whole is to look at the full set of Alphas and Activity Spaces and how
they are related.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 15

8.1.3 Organizing the Kernel

The Kernel is organized into three discrete areas of concern, each focusing on a specific aspect of engineering. As shown
in Figure 8.1, these are:

o Customer — This area of concern contains everything to do with the actual use and exploitation of the system to
be produced.

o Solution — This area of concern contains everything to do the specification and development of the system.

e Endeavor — This area of concern contains everything to do with the team, and the way that they approach their
work.

Customer

Solution

Endeavor

Figure 8.1 — The Three Areas of Concern

Throughout the diagrams in the body of the kernel specification, the three areas of concern are distinguished with
different color codes where green stands for customer, yellow for solution, and blue for endeavor. The colors will
facilitate the understanding and tracking of which area of concern owns which Alphas and Activity Spaces. We have also
added textual labels so the reader need not rely totally on the color codes.

8.1.4 Alphas: The Things to Work With

The kernel Alphas 1) capture the key concepts involved in engineering, 2) allow the progress and health of any
engineering endeavor to be tracked and assessed, and 3) provide the common ground for the definition of engineering
methods and practices. The Alphas each have a small set of pre-defined states that are used when assessing progress and
health. Associated with each state is a set of predefined checklists. These states are not just one-way linear progressions.
Each time you reassess a state, if you do not meet all the checklist items, you can go back to a previous state. You can
also iterate through the states multiple times depending on your choice of practices. The Alphas should not be viewed as
a physical partitioning of your endeavor or as just abstract work products. Rather they represent critical indicators of the
things that are most important to monitor and progress. As an example, team members, while they are part of the Team
Alpha, are also stakeholders, and therefore can also be part of the Stakeholders Alpha. The Alphas, their relationships
and their areas of concern are shown in Figure 8.2. Note that the Alphas are agnostic to your chosen practices and
method. For example, the relationship shown in Figure 8.2 that the “team performs and plans work" does not imply any
specific order in which they perform and plan the work.

16 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

¥4

\(Customer)

< provide
4@_//\ /@oldera
<

0O C
= S g
o tign
A @ = =
0 b o
= g v : 2
= = g
= 2 Requirements =
o a b
) = 50
\ E 58 @0 =
i3 s :
&l e o g h
WO W
e
(@]
=>
1]
1]
)
=
LLl
h &

Figure 8.2 — The Kernel Alphas

In the customer area of concern the team needs to understand the stakeholders and the opportunity to be addressed:

1.

Opportunity: The set of circumstances that makes it appropriate to develop or change a system.

The opportunity articulates the reason for the creation of the new, or changed, system. It represents the team’s shared
understanding of the stakeholders’ needs, and helps shape the requirements for the new system by providing
justification for its development.

Stakeholders: The people, groups, or organizations who affect or are affected by a system.

The stakeholders provide the opportunity and are the source of the requirements and funding for the system. The
team members are also stakeholders. As much stakeholder involvement as possible throughout an engineering
endeavor is important to support the team and ensure that an acceptable system is produced.

In the solution area of concern the team needs to establish a shared understanding of the requirements, and implement,
build, test, deploy, and support a system that fulfills them:

3.

Requirements: What the system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the system, share this understanding among the stakeholders and the
team members, and use it to drive the development and testing of the new system.

System: A system consists of a set of elements interacting to achieve a defined purpose. The elements of a system
include one or more of the following: hardware, software, data, humans, processes, services, procedures, facilities,
materials and naturally occurring entities.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 17

A system is the primary outcome of an engineering endeavor. The work done by the engineering team is focused on
producing a system that helps to address an opportunity, that fulfils its requirements and that is useful and valuable to
its stakeholders. A system can be part of a larger system.

In the endeavor area of concern the team and its way-of-working have to be formed, and the work has to be done:

5.

Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of engineering, work is everything that the team does to meet the goals of producing a system
matching the requirements, and addressing the opportunity, presented by the stakeholders. The work is guided by the
practices that make up the team’s way-of-working.

Team: A group of people actively engaged in the development, maintenance, delivery, or support of a specific
system.

One, or more, teams plan and perform the work needed to create, update, and/or change the system.
Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working
environment. As their work proceeds, they continually reflect on their way of working and adapt it as necessary to
their current context.

8.1.5 Activity Spaces: The Things to Do

The kernel also provides a set of activity spaces that complement the Alphas to provide an activity based view of
engineering. The kernel activity spaces are shown in Figure 8.3.

In the customer area of concern the team has to understand the opportunity, and involve the stakeholders:

1.

18

Explore Possibilities: Explore the possibilities presented by the creation of a new or improved system. This includes
the analysis of the opportunity to be addressed and the identification of the stakeholders.

Understand Stakeholder Needs: Engage with the stakeholders to understand their needs and ensure that the right
results are produced. This includes identifying and working with the stakeholder representatives to progress the
opportunity.

Ensure Stakeholder Satisfaction: Share the results of the development work with the stakeholders to gain their
acceptance of the system produced and verify that the opportunity has been successfully addressed.

Use the System: Observe the use of the system in a live environment and how it benefits the stakeholders.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

. | \ | \ i \ 1 \
QO | \ I \ I \ I \
e 1 ? [? 1 ’ 1 ;
o 1 / 1 / 1 ; 4 1 . 4
o R ‘ i z aa e
O Explore Understand Ensure Stakeholder Usethe System
Possibilities StakeholderNeeds Satisfaction
=
3
g
=
O
2 Understandthe Shape Implementthe Test Deploy Operate
Requirements the System System the System the System the System
=) 1 \ 1 \ 1 \ 1 \ 1 \
@) | \ | \ | \ | \ | \
% 1 /] / 1 / I / 1 /
D 1 / 1 ! 1 / I /! 1 F i
= T { i { g { P / . 4
LLl Preparetodo Coordinate SupporttheTeam TrackProgress Stopthe Work
the Work Activity

Figure 8.3 — The Kernel Activity Spaces

In the solution area of concern the team has to develop an appropriate solution to exploit the opportunity and satisfy the
stakeholders:

e Understand the Requirements: Establish a shared understanding of what the system to be produced must do.

o Shape the system: Shape the system so that it is easy to develop, change and maintain, and can cope with current
and expected future demands. This includes the overall design and architecting of the system to be produced.

o Implement the System: Build a system by implementing, testing, and integrating one or more system elements.
This includes bug fixing and unit testing.

o Test the System: Verify that the system produced meets the stakeholders’ requirements.
¢ Deploy the System: Take the tested system and make it available for use outside the development team.
¢ Operate the System: Support the use of the system in the live environment.

In the endeavor area of concern the team has to be formed and progress the work in-line with the agreed (who agrees is
dependent on team's constraints and governance rules) way-of-working:

o Prepare to do the Work: Set up the team and its working environment. Understand and commit to completing
the work.

e Coordinate Activity: Co-ordinate and direct the team’s work. This includes all on-going planning and re-planning
of the work, and re-shaping of the team.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 19

e Support the Team: Help the team members to help themselves, collaborate and improve their way of working.
o Track Progress: Measure and assess the progress made by the team.

o Stop the Work: Shut-down the engineering endeavor and hand over of the team’s responsibilities.

8.1.6 Competencies: The Abilities Needed

The kernel also provides a set of competencies that complement the Alphas and Activity Spaces to provide a view of the
key capabilities required to carry out the work of engineering. The kernel competencies are shown in Figure 8.4.

(=
=
= Stakeholder
O Representation
Ly
je)
)
=
o)
n Analysis Development Testing
5 ﬁ‘
% <> <=
© I~ I~
o
LICJ Leadership Management

Figure 8.4 — The Kernel Competencies

In the customer area of concern the team has to be able to demonstrate a clear understanding of the business and
technical aspects of their domain and have the ability to accurately communicate the views of their stakeholders. This
requires the following competencies to be available to the team:

o Stakeholder Representation: This competency encapsulates the ability to gather, communicate, and balance the
needs of other stakeholders, and accurately represent their views.

In the solution area of concern the team has to be able to capture and analyze the requirements, and build and operate a
system that fulfills them. This requires the following competencies to be available to the team:

o Analysis: This competency encapsulates the ability to understand opportunities and their related stakeholder
needs, and transform them into an agreed and consistent set of requirements.

e Development: This competency encapsulates the ability to design and produce effective systems following the
standards and norms agreed by the team.

20 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

o Testing: This competency encapsulates the ability to test a system, verifying that it is usable and that it meets the
requirements.

In the endeavor area of concern the team has to be able to organize itself and manage its work load. This requires the
following competencies to be available to the team:

e Leadership: This competency enables a person to inspire and motivate a group of people to achieve a successful
conclusion to their work and to meet their objectives.

e Management: This competency encapsulates the ability to coordinate, plan and track the work done by a team.

Each competency has five levels of achievement. These are standard across all of the kernel competencies and
summarized in Table 8.1. The table reads from top to bottom with the lowest level of competency shown in the first row
and the highest in the last row.

Table 8.1 — The Generic Competency Levels

Competency Level Brief Description

1 - Assists Demonstrates a basic understanding of the concepts involved and can follow
instructions.

The following describe the traits of a Level 1 individual:
e Understands and conducts his or her self in a professional manner.
e Is able to correctly respond to basic questions within his or her domain.
o [s able to perform most basic functions within the domain.

e Can follow instructions and complete basic tasks.

2 - Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

The following describe the traits of a Level 2 individual:
o [s able to collaborate with others within the Team.
o [s able to satisfy routine demands and do simple work requirements.
e Can handle simple challenges with confidence.

e Can handle simple work requirements but needs help in handling any
complications or difficulties.

e Is able to reason about the context and draw sensible conclusions.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 21

Competency Level

Brief Description

3 - Masters

Able to apply the concepts in most contexts and has the experience to work without
supervision.

The following describe the traits of a Level 3 individual:
e s able to satisfy most demands and work requirements.

e Isable to speak the language of the competency’s domain with ease and
accuracy.

e [s able to communicate and explain his or her work.
e [s able to give and receive constructive feedback.

e Knows the limits of his or her capability and when to call on more expert
advice.

o Works at a professional level with little or no guidance.

4 - Adapts

Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can make it possible for others to apply the concepts.

The following describe the traits of a Level 4 individual:
o Is able to satisfy complex demands and work requirements.
e Is able to communicate with others working outside the domain.
e Can direct and help others working within the domain.

o [s able to adapt his or her way-of-working to work well with others, both inside
and outside their domain.

5 - Innovates

A recognized expert, able to extend the concepts to new contexts and inspire others.
The following describe the traits of a Level 5 individual:

e Has many years of experience and is currently up to date in what is happening
within the domain.

o Isrecognized as an expert by his or her peers.
o Supports others in working on complex problems.

e Knows when to innovate or do something different and when to follow normal
procedure.

e Develops innovative and effective solutions to the current challenges within the
domain.

22

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The higher competency levels build upon the lower ones. An individual at level 2 has all the traits of an individual at
level 1 as well as the additional traits required at level 2. An individual at level 3 has all the traits required at levels 1, 2
and 3, and so on.

Individuals at levels 1 and 2 have an awareness or basic understanding of the knowledge, skills, and abilities associated
with the competency. However, they do not possess the knowledge, skills, and abilities to perform the competency in
difficult or complex situations and typically can only perform simple routine tasks without direction or other guidance.

Individuals at level 3 and above have mastered this aspect of their profession and can be trusted to integrate into, and
deliver the results required by, the team.

There are many factors that drive up the level of competency required by a team's members, including:
e The size and complexity of the work.
e The size and distribution of the team.
o The size, complexity, and diversity of the stakeholder community.
e The novelty of the solution being produced.
o The technical complexity of the solution.

o The levels of risk facing the team.
8.2 The Customer Area of Concern

8.2.1 Introduction

This area of concern contains everything to do with the actual use and exploitation of the system to be produced.

Engineering always involves at least one customer, the actual expected consumer for the system that it produces. The
customer perspective must be integrated into the day-to-day work of the team to prevent an inappropriate solution from
being produced.

8.2.2 Alphas

The customer area of concern contains the following Alphas:
o Stakeholders
o Opportunity

8.2.2.1 Stakeholders

Description

Stakeholders: The people, groups, or organizations who affect or are affected by a system.

The stakeholders provide the opportunity, and are the source of the requirements for the system. They are involved
throughout the engineering endeavor to support the team and ensure that an acceptable system is produced.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 23

States

Recognized
Represented

Involved

In Agreement
Satisfied for Deployment

Satisfied in Use

Associations

provide : Opportunity
support : Team
demand : Requirements

use and consume : System

Stakeholders have been identified.

The mechanisms for involving the stakeholders are agreed and the
stakeholder representatives have been appointed.

The stakeholder representatives are actively involved in the work and
fulfilling their responsibilities.

The stakeholder representatives are in agreement.

The minimal expectations of the stakeholder representatives have
been achieved.

The system has met or exceeds the minimal stakeholder expectations.

Stakeholders provide Opportunity.
Stakeholders support Team.
Stakeholders demand Requirements.
Stakeholders use and consume System.

Justification: Why Stakeholders?

Stakeholders are critical to the success of the system and the work done to produce it. Their input and feedback help
shape the engineering endeavor and the resulting system.

Progressing the Stakeholders

During the development of a system the stakeholders progress through several state changes. As shown in Figure 8.5,
they are recognized, represented, involved, in agreement, satisfied for deployment, and satisfied in use. These states focus
on the involvement and satisfaction of the stakeholders, from their recognition as stakeholders through their
representation in the development activities to their satisfaction with the use of the resulting system. The states
communicate the progression of the relationship with the stakeholders who are either directly involved in the engineering
endeavor or support it by providing input and feedback.

24 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

y
 E——
Recognized The stakehaolders have been identified.
Represented Themechanisms forinv_olvin gthe stakeh olde_rs are agreed andthe
stakeholder representatives have been appointed.
L R SO
@
The stakeholder representatives are actively involvedin thework and
o Involved fulfilling th eir responsibilities.
O
€ T
) In : :
N The stakeholder representatives are in agreement.
© | Agreement
-~
@ Satisfied f
atisfied for
Depl t Theminimal expectations of the stakeh older representatives have been
\ eploymen) achieved.
Satisfied in The system meets or exceeds the minimal stakeh ol der expectations.
Use
. e

Figure 8.5 — The states of the Stakeholders

As indicated in Figure 8.5, the first thing to do is to make sure that the stakeholders affected by the proposed system are
recognized. This means that all the different groups of stakeholders that are, or will be, affected by the development and
operation of the system are identified.

The number and type of stakeholder groups to be identified can vary considerably from one system to another. For
example, the nature and complexity of the system and its target operating environment, and the nature and complexity of
the development organization will both affect the number of stakeholder groups affected by the system.

It is not always possible to have all the stakeholder groups involved. Focus should be primarily on the ones that are
critical to the success of the engineering endeavor. It is these stakeholder groups that need to be directly involved in the
work. Their selection depends on the level of impact they have on the success of the system and the level of impact the
system has on them. The stakeholder groups that assure quality, fund, use, support, and maintain the system should
always be identified.

It is not enough to determine which stakeholder groups need to be involved, they will also need to be actively
represented. This means that there will be one or more stakeholder representatives selected to represent each stakeholder
group, or in some cases one stakeholder representative selected to represent all stakeholder groups, and help the team. To
make the contribution of the stakeholder representatives as effective as possible, they must know their roles and
responsibilities within the engineering endeavor. Without defining clear roles and responsibilities, the engineering
endeavor runs the risk that some of its important aspects may get unintentionally omitted or neglected.

Once the stakeholder representatives have been appointed, the represented state is achieved. Here, the stakeholder
representatives take on their agreed to responsibilities and feel fully committed to helping the new system to succeed.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 25

Acting as intermediaries between their respective stakeholder groups and the team, they are now granted authority to
carry out their responsibilities on behalf of their respective stakeholder groups.

The team needs to make sure that the stakeholder representatives are actively involved in the development of the system.
Here, the stakeholder representatives assist in the engineering endeavor in accordance with their responsibilities. They
provide feedback and take part in decision making in a timely manner. In cases when changes need to be done to the
system, or when the stakeholder group they represent suggests changes, the stakeholder representatives make sure that
the changes are relevant and promptly communicated to the team. No engineering endeavor is fixed from the beginning.
Its requirements are continuously evolving as the opportunity changes or new limitations are identified. This requires the
stakeholder representatives to be actively involved throughout the development and to be responsive to all the changes
affecting their stakeholder group.

It may not always be possible to meet all the expectations of all the stakeholders. Hence, compromises will have to be
made. In the in agreement state the stakeholder representatives have identified and agreed upon a minimal set of
expectations which have to be met before the system is deployed. These expectations will be reflected in the
requirements agreed by the stakeholder representatives.

Throughout the development the stakeholder representatives provide feedback on the system’s state from the perspective
of their stakeholder groups. Once the minimal expectations of the stakeholder representatives have been achieved by the
new system they will confirm that it is ready for operational use and the satisfied for deployment state is achieved.

Finally, the stakeholders start to use the operational system and provide feedback on whether or not they are truly
satisfied with what has been delivered. Achieving the satisfied in use state indicates that the new system has been
successfully deployed and is delivering the expected benefits for all the stakeholder groups.

Understanding the current state of the stakeholders and how they are progressing towards being satisfied with the new
system is a critical part of any engineering endeavor.

Checking the progress of the Stakeholders

To help assess the state and progress of the stakeholders, the following checklists are provided.

Table 8.2 — Checklist for Stakeholders
State Checklist

Recognized All the different groups of stakeholders that are, or will be, affected by the
development and operation of the system are identified.

There is agreement on the stakeholder groups to be represented. At a minimum, the
stakeholders’ groups that fund, use, support, and maintain the system have been
considered.

The responsibilities of the stakeholder representatives have been defined.

Represented The stakeholder representatives have agreed to take on their responsibilities.
The stakeholder representatives are authorized to carry out their responsibilities.

The collaboration approach among the stakeholder representatives has been agreed.

The stakeholder representatives support and respect the team's way of working.

26 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist

Involved The stakeholder representatives assist the team in accordance with their
responsibilities.

The stakeholder representatives provide feedback and take part in decision making in a
timely manner.

The stakeholder representatives promptly communicate changes that are relevant for
their stakeholder groups.

In Agreement The stakeholder representatives have agreed upon their minimal expectations for the
next deployment of the new system.

The stakeholder representatives are happy with their involvement in the work.

The stakeholder representatives agree that their input is valued by the team and treated
with respect.

The team members agree that their input is valued by the stakeholder representatives
and treated with respect.

The stakeholder representatives agree with how their different priorities and
perspectives are being balanced to provide a clear direction for the team.

Satisfied The stakeholder representatives provide feedback on the system from their stakeholder
for Deployment group perspective.

The stakeholder representatives confirm that they agree that the system is ready for
deployment.

Satisfied in Use Stakeholders are using the new system and providing feedback on their experiences.

The stakeholders confirm that the new system meets their expectations.

8.2.2.2 Opportunity

Description

Opportunity: The set of circumstances that makes it appropriate to develop or change a system.

The opportunity articulates the reason for the creation of the new, or changed, system. It represents the team’s shared
understanding of the stakeholders’ needs, and helps shape the requirements for the new system by providing justification
for its development.

States

Identified A commercial, social, or business opportunity has been identified that
could be addressed by a system-based solution.

Solution Needed The need for a system-based solution has been confirmed.

Value Established The value of a successful solution has been established.

Viable It is agreed that a solution can be produced quickly and cheaply enough
to successfully address the opportunity.

Addressed A solution has been produced that demonstrably addresses the
opportunity.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 27

Benefit Accrued The operational use or sale of the solution is creating tangible benefits.

Associations

focuses : Requirements Opportunity focuses Requirements.

Justification: Why Opportunity?

Most engineering work is initiated by the stakeholders that own and use the system. Their inspiration is usually some
combination of problems, suggestions, and directives, which taken together provide the development team with an
opportunity to create a new or improved system. Occasionally it is the development team itself that originates the
opportunity that they must then sell to the other stakeholders to get funding and support. In many cases the system only
provides part of the solution needed to exploit the opportunity and the development team must co-ordinate their work
with other teams to ensure that they actually deliver a useful, and deployable system.

In all cases understanding the opportunity is an essential part of engineering, as it enables the team to:

o Identify and motivate their stakeholders.

Understand the value that the system offers to the stakeholders.

Understand why the system is being developed.

Understand how the success of the deployment of the system will be judged.

Ensure that the system effectively addresses the needs of all the stakeholders.

It is the opportunity that unites the stakeholders and provides the motivation for producing a new or updated system. It is
by understanding the opportunity that you can identify the value, and the desired outcome that the stakeholders hope to
realize from the use of the system either alone or as part of a broader business, or technical solution.

Progressing the Opportunity

During the development of a system the opportunity progresses through several state changes. As presented in Figure 8.6,
these are identified, solution needed, value established, viable, addressed, and benefit accrued. These states indicate
significant points in the team’s progression of the opportunity from the initial formulation of an idea to use a system
through to the accrual of benefit from its use. They indicate:

1. When the opportunity is first identified,
2. When the opportunity has been analyzed and it has been confirmed that a solution is needed,
3. When the opportunity’s value is established and the desired outcomes required of the solution are clear,

4. When enough is known about the cost of creating and using the proposed solution that it is clear that the pursuit of
the opportunity is viable,

5. When a solution is available that demonstrably shows that the opportunity has been addressed, and finally
6. When benefit has been accrued from the use of the resulting solution.

As shown in Figure 8.6, the opportunity is first identified. The opportunity could be to entertain somebody, learn
something, make some money, or even to change the world. Regardless of the kind of opportunity presented, if it is not
understood by the team, it is unlikely that they will produce an appropriate system. For engineering endeavors the

28 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

opportunity is usually identified by the stakeholders that own and use the system, and typically takes the form of an idea
for a way to improve the current way of doing something, increase market share, or apply a new or innovative
technology.

Different stakeholders will see the opportunity in different ways, and they will be looking for different results from any
system produced to address it. It is important that the different stakeholder perspectives are understood and used to
increase the team’s understanding of the opportunity. Analyzing the opportunity to understand the stakeholder’s needs
and any underlying problems is essential to ensure that an appropriate system is produced and a satisfactory return-on-
investment is generated.

Once the opportunity has been analyzed, and it has been agreed that a system-based solution is needed, it is possible to
determine the value that the solution is expected to generate. Progressing the opportunity to value established is an
important step in determining whether or not to proceed with work to address the opportunity as it means that the prize is
clear to everyone involved.

The next step is to establish the viability of the opportunity. An opportunity is viable when a solution can be envisaged
that it is feasible to develop and deploy within acceptable time and cost constraints. Although addressing the opportunity
may be a very valuable thing to do it is probably not a good idea if the resources expended will be greater than the
benefits accrued.

Once it has been agreed that the opportunity is viable then the team can be confident that a system can be produced that
will not just address the opportunity but will be acceptable to all of the stakeholders. As releases of the system become
available their viability must be continuously checked to ensure that they meet the needs of the stakeholders. After a
suitable system has been made available then, as far as the development team is concerned, the opportunity has been
addressed. Now the users of the system have to use it to generate value for any benefit to be accrued.

It is important that the team understands the current state of the opportunity so that they can ensure that an appropriate
system is developed, one that will satisfy the stakeholders and result in a tangible benefit being accrued.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 29

Opportunity

i

-

|dentified

H

Solution
Meesded

H

Value
Establishe«d

H

Viable

Acddressed

H

Benefit
Accrued

.{

Acommercial, social or business oppartunity has bean
identified that could be addressed by a system-based
salution

Theneedfor a system -based solution has been
confirmed.

Thevalue of a successful solution has been
established

Itis agreed that a solution can be produced quickly
and cheaply enough o successfully address the
opportun ity

A solution has been produced hat demon strably
addresses th e opportu ity

Theoperational use ar sale of the solution is creating
tan gible benefits

Figure 8.6 — The states of the Opportunity

Checking the Progress of the Opportunity

To help assess the state of the opportunity and the progress being made towards its successful exploitation, the following
checklists are provided.

Table 8.3 — Checklist for Opportunity

State Checklist
Identified An idea for a way of improving current ways of working, increasing market share, or
applying a new or innovative system has been identified.
At least one of the stakeholders wishes to make an investment in better understanding
the opportunity and the value associated with addressing it.
The other stakeholders who share the opportunity have been identified.
30 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State

Checklist

Solution Needed

The stakeholders in the opportunity and the proposed solution have been identified.
The stakeholders' needs that generate the opportunity have been established.

Any underlying problems and their root causes have been identified.

It has been confirmed that a system-based solution is needed.

At least one system-based solution has been proposed.

Value Established

The value of addressing the opportunity has been quantified either in absolute terms or
in returns or savings per time period (e.g., per annum).

The impact of the solution on the stakeholders is understood.

The value that the system offers to the stakeholders that fund and use the system is
understood.

The success criteria by which the deployment of the system is to be judged are clear.

The desired outcomes required of the solution are clear and quantified.

Viable

A solution has been outlined.
The indications are that the solution can be developed and deployed within constraints.
The risks associated with the solution are acceptable and manageable.

The indicative (ball-park) costs of the solution are less than the anticipated value of the
opportunity.

The reasons for the development of a system-based solution are understood by all
members of the team.

It is clear that the pursuit of the opportunity is viable.

Addressed

A usable system that demonstrably addresses the opportunity is available.
The stakeholders agree that the available solution is worth deploying.

The stakeholders are satisfied that the solution produced addresses the opportunity.

Benefit Accrued

The solution has started to accrue benefits for the stakeholders.

The return-on-investment profile is at least as good as anticipated.

8.2.3 Activity Spaces

The customer area of concern contains four activity spaces that cover the discovery of the opportunity and the
involvement of the stakeholders.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

31

8.2.3.1 Explore Possibilities

Description

Explore the possibilities presented by the creation of a new or improved system. This includes the analysis of the
opportunity to be addressed and the identification of the stakeholders.

Explore possibilities to:
o Enable the right stakeholders to be involved.
e Understand the stakeholders’ needs.
o Identify opportunities for the use of the system.
e Understand why the system is needed.
o Establish the value offered by the system.
Input: None
Entry Criteria: None

Completion Criteria: Stakeholders::Recognized, Opportunity::Value Established.
8.2.3.2 Understand Stakeholder Needs

Description

Engage with the stakeholders to understand their needs and ensure that the right results are produced. This includes
identifying and working with the stakeholder representatives to progress the opportunity.

Understand stakeholder needs to:

Ensure the right solution is created.

Align expectations.

Collect feedback and generate input.

Ensure that the solution produced provides benefit to the stakeholders.
Input: Stakeholders, Opportunity, Requirements, System
Entry Criteria: Stakeholders::Recognized, Opportunity::Value Established

Completion Criteria: Stakeholders::In Agreement, Opportunity:: Viable
8.2.3.3 Ensure Stakeholder Satisfaction

Description

Share the results of the development work with the stakeholders to gain their acceptance of the system produced and
verify that the opportunity has been successfully addressed.

32 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Ensure the satisfaction of the stakeholders to:

Get approval for the deployment of the system.

Validate that the system is of benefit to the stakeholders.

Validate that the system is acceptable to the stakeholders.

Independently verify that the system delivered is the one required.

Confirm the expected benefit that the system will provide.
Input: Stakeholders, Opportunity, Requirements, System
Entry Criteria: Stakeholders::In Agreement, Opportunity:: Value Established

Completion Criteria: Stakeholders::Satisfied for Deployment, Opportunity:: Addressed
8.2.3.4 Use the System

Description
Observe the use the system in an operational environment and how it benefits the stakeholders.

Use the system to:

e Generate measurable benefits.

Gather feedback from the use of the system.

Confirm that the system meets the expectations of the stakeholders.

Establish the return-on-investment for the system.
Input: Stakeholders, Opportunity, Requirements, System
Entry Criteria: Stakeholders::Satisfied for Deployment, Opportunity::Addressed

Completion Criteria: Stakeholders::Satisfied in Use, Opportunity::Benefit Accrued
8.2.4 Competencies

8.2.4.1 Stakeholder Representation

This competency encapsulates the ability to gather, communicate, and balance the needs of other stakeholders, and
accurately represent their views.

The stakeholder representation competency is the empathic ability to stand in for and accurately reflect the opinions,
rights, and obligations of other stakeholders.

People with this competency help the team to:
o Understand the business opportunity.

e Understand the complexity and needs of the customers, users and other stakeholders.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 33

e Negotiate and prioritize the requirements.

o Interact with the stakeholders and developers about the solution to be developed.

o Understand how well the system produced addresses the stakeholders’ needs.
Essential skills include:

e Negotiation

Facilitation

Networking

Good written and verbal communication skills

Empathy

This competency can be provided by an on-site customer, a product manager, or a group of people from the
commissioning business organization.

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.

Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.

Level 5 — Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Stakeholder Representation?

When developing a system it is essential to interact with the stakeholder community. However, it is impossible to directly
interact with all of the stakeholders all of the time. This leads to a small number of stakeholders being selected to
represent their particular stakeholder communities. For the smooth running of the team, it is essential that the people
selected have the competency needed to represent their stakeholder communities. The stakeholder representation
competency encapsulates the abilities needed to be able to represent and act on behalf of others within an engineering
endeavor.

8.3 The Solution Area of Concern

8.3.1 Introduction

This area of concern covers everything to do with the specification and development of the system.

The goal of engineering is to develop a working system as part of the solution to some problem. Any method adopted
must describe a set of practices to help the team produce good quality system in a productive and collaborative fashion.

34 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

8.3.2 Alphas

The solution area of concern contains the following Alphas:
e Requirements

e System
8.3.2.1 Requirements

Description

Requirements: What the system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the system, share this understanding among the stakeholders and the team
members, and use it to drive the development and testing of the new system.

States

Conceived The need for a new system has been agreed.

Bounded The purpose and extent of the new system are clear.

Coherent The requirements provide a consistent description of the essential
characteristics of the new system.

Acceptable The requirements describe a system that is acceptable to the
stakeholders.

Addressed Enough of the requirements have been addressed to satisfy the need
for a new system in a way that is acceptable to the stakeholders.

Fulfilled The requirements that have been addressed fully satisfy the need for a
new system.

Associations

scopes and constrains : Work The Requirements scope and constrain the Work.

Justification: Why Requirements?

The requirements capture what the stakeholders want from the system. They define what the system must do, but not
necessarily how it must do it. They describe the value the system will provide by addressing the opportunity and how the
opportunity will be pursued by the production of a new system. They also scope and constrain the work by defining what
needs to be achieved.

The requirements are captured as a set of requirement items. The requirement items can be communicated and recorded
in various forms and at various levels of detail. They may be communicated explicitly as a set of extensive requirements
documents or more tacitly in the form of conversations and brain-storming sessions. The requirement items themselves
are always documented and tracked. The documentation can take many forms and be as brief as a one-line user story or
as comprehensive as a use case.

As the development of the system proceeds, the requirements evolve and are constantly re-prioritized and adjusted to
reflect the changing needs of the stakeholders. Much that is implicit at first is made explicit later by adding more detailed
requirement items such as well-defined quality characteristics and test cases. This allows the requirements to act as a
verifiable specification for the system. Regardless of how the requirement items are captured it is essential that the
system produced can be shown to successfully fulfill the requirements. This is why requirements play such an essential

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 35

role in the testing of the system. As well as providing a definition of what needs to be achieved, they also allow tracking
of what has been achieved. As the testing of each requirement item is completed it can be individually checked off as
done, and the requirements as a whole can be looked at to see if the system produced sufficiently fulfills the requirements
and whether or not work on the system is finished.

It is important that the overall state of the requirements is understood as well as the state of the individual requirement
items. If the overall state of the requirements is not understood then it will be impossible to 1) tell when the system is
finished and 2) judge whether or not an individual requirement item is in the scope of the system.

¢

Conceived The need for a new system has been agreed.
%) Bounded The purpose and theme of the new system are clear.
= !
LL] The requirements provide a consistent description of
E Coherent the essential characteristics of the new system.
LLl I
e requirements describe a system that is
o Th i describ hat |
5 Acceptable acceptable to the stakeholders.
LLl Enough of the requirements have been addressed
nd Addressed to satisfy the need for a new system in a way that
is acceptable to the stakeholders.
¥
Fuffiled The requirements that have been addressed fully satisfy

the need for a new system.

;

Figure 8.7 — The states of the Requirements

Progressing the Requirements

During the development of a system the requirements progress through several state changes. As shown in Figure 8.7,
they are conceived, bounded, coherent, acceptable, addressed, and fulfilled. These states focus on the evolution of the
team’s understanding of what the proposed system must do, from the conception of a new set of requirements as an initial
idea for a new system through their development to their fulfillment by the provision of a usable system.

As shown in Figure 8.7, the requirements start in the conceived state when the need for a new system has been agreed.
The stakeholders can hold differing views on the overall meaning of the requirements. However, they all agree that there
is a need for a new system and a clear opportunity to be pursued.

Before too much time is spent collecting and detailing the individual requirement items the requirements as a whole must
be bounded. To bound the requirements, the overall scope of the new system, the aspects of the opportunity to be

36 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

addressed, and the mechanisms for managing and accepting new or changed requirement items all need to be established.
In the bounded state there may still be inconsistencies or ambiguities between the individual requirement items.
However, the stakeholders now have a shared understanding of the purpose of the new system and can tell whether or not
a request qualifies as a requirement item. They also understand the mechanisms to be used to evolve the requirement
items and remove the inconsistencies. Once the requirements are bounded there is a shared understanding of the scope of
the new system and it is safe to start implementing the most important requirement items.

Further elicitation, refinement, analysis, negotiation, demonstration, and review of the individual requirement items leads
to a coherent set of requirements, one that clearly defines the essential characteristics of the new system. The requirement
items continue to evolve as more is learned about the new system and its impact on its stakeholders and environment. No
matter how much the requirement items change, it is essential that they stay within the bounds of the original concept and
that they remain coherent at all times.

The continued evolution of the requirements leads to an acceptable set of requirements, one that defines a system that
will be acceptable to the stakeholders as, at least, an initial solution. The requirements may only describe a partial
solution; however, the solution described is of sufficient value that the stakeholders would accept it for operational use.
The number of requirement items that need to be agreed for the requirements to be acceptable to the stakeholders can
vary from one to many. When changing a mature system, it may be acceptable to just address one important requirement
item. When building a replacement system, a large number of requirement items will need to be addressed.

As the individual requirement items are implemented and a usable system is evolved, there will come a time when
enough requirements have been implemented for the new system to be worth releasing and using. In the addressed state
the amount of requirements that have been addressed is sufficient for the resulting system to provide clear value to the
stakeholders. If the resulting system provides a complete solution, then the requirements may advance immediately to the
fulfilled state.

Usually, when the addressed state is achieved the resulting system provides a valuable but incomplete solution. To fully
address the opportunity, additional requirement items may have to be implemented. The shortfall may be because an
incremental approach to the delivery of the system was selected, or because the missing requirements were difficult to
identify before the system was made available for use.

In the fulfilled state enough of the requirement items have been implemented for the stakeholders to agree that the
resulting system fully satisfies the need for a new system, and that there are no outstanding requirement items preventing
the system from being considered complete.

Understanding the current and desired state of the requirements can help everyone understand what the system needs to
do and how close to complete it is.

Checking the Progress of the Requirements

To help assess the state of the requirements and the progress being made towards their successful conclusion, the
following checklists are provided.

Table 8.4 — Checklist for Requirements

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 37

State

Checklist

Conceived

The initial set of stakeholders agrees that a system is to be produced.
The stakeholders that will use the new system are identified.
The stakeholders that will fund the initial work on the new system are identified.

There is a clear opportunity for the new system to address.

Bounded

The stakeholders involved in developing the new system are identified.

The stakeholders agree on the purpose of the new system.

It is clear what success is for the new system.

The stakeholders have a shared understanding of the extent of the proposed solution.
The way the requirements will be described is agreed upon.

The mechanisms for managing the requirements are in place.

The prioritization scheme is clear.

Constraints are identified and considered.

Assumptions are clearly stated.

Coherent

The requirements are captured and shared with the team and the stakeholders.
The origin of the requirements is clear.

The rationale behind the requirements is clear.

Conlflicting requirements are identified and attended to.

The requirements communicate the essential characteristics of the system to be
delivered.

The most important usage scenarios for the system can be explained.
The priority of the requirements is clear.
The impact of implementing the requirements is understood.

The team understands what has to be delivered and agrees to deliver it.

Acceptable

The stakeholders accept that the requirements describe an acceptable solution.
The rate of change to the agreed requirements is relatively low and under control.
The value provided by implementing the requirements is clear.

The parts of the opportunity satisfied by the requirements are clear.

The requirements are testable.

38

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist

Addressed Enough of the requirements are addressed for the resulting system to be acceptable to
the stakeholders.

The stakeholders accept the requirements as accurately reflecting what the system does
and does not do.

The set of requirement items implemented provide clear value to the stakeholders.

The system implementing the requirements is accepted by the stakeholders as worth
making operational.

Fulfilled The stakeholders accept the requirements as accurately capturing what they require to
fully satisfy the need for a new system.

There are no outstanding requirement items preventing the system from being
accepted as fully satisfying the requirements.

The system is accepted by the stakeholders as fully satisfying the requirements.

8.3.2.2 System

Description

System: A system consists of a set of elements interacting to achieve a defined purpose. The elements of a system include
one or more of the following: hardware, software, data, humans, processes, services, procedures, facilities, materials and
naturally occurring entities.

A system is the primary outcome of an engineering endeavor. The work done by the engineering team is focused on
producing a system that helps to address an opportunity, that fulfils its requirements and that is useful and valuable to its
stakeholders. A system can be part of a larger system.

States

Architecture Selected An architecture has been selected that addresses the key technical
risks and any applicable organizational constraints.

Demonstrable A demonstrable version of the system is available that demonstrates
the architecture is fit for purpose and supports testing.

Usable The system is usable and demonstrates all of the quality
characteristics of an operational system.

Ready The system (as a whole) has been accepted for deployment in a live
environment.

Operational The system is in use in an operational environment.

Retired The system is no longer supported.

Associations

helps to address : Opportunity System helps to address Opportunity.

fulfills : Requirements System fulfills Requirements.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 39

Justification: Why System?

A system as defined in Essence represents what is created and utilized to provide products or services for the benefit of
users and other stakeholders. An example of an in-depth definition of the term “system” can be found in ISO/IEC/IEEE
15288. There are also many other definitions that would serve as valid systems in Essence.

Note. There is no guarantee that Essence is useful for any type of system. However, Essence has been successfully
applied to the development of a wide variety of systems, such as software, hardware, innovation services and general
products.

Progressing the System

The life-cycle of a system is hard to define as there can be many releases of a system. These releases can be worked on
and used in parallel. For example, one team can be working on the development of release 3, while another team is
making small changes to release 2, and a third team is providing support for those people still using release 1. If we treat
this system as one entity, what state is it in?

To keep things simple, Essence treats each major release as a separate system; one that is built, released, updated, and
eventually retired. A major release encompasses significant changes to the scope, purpose, usage, or architecture of a
system. It can encompass many minor releases including internal releases produced for testing purposes, and external
releases produced to support incremental delivery or defect fixes. In the example above the second team would be
producing a series of minor releases (2.1, 2.2, 2.3, etc.) of their system to allow the delivery of their small changes.

During its development a system progresses through several state changes. As shown in Figure 8.8, they are architecture
selected, demonstrable, usable, ready, operational, and retired. These states provide points of stability on a system’s
journey from its conception to its eventual retirement indicating:

1. When the architecture is selected,
2. When a demonstrable system is produced to prove the architecture and enable testing to start,
3. When the system is extended and improved so that it becomes usable,
4. When the usable system is enhanced until it is accepted as ready for deployment,
5. When the system is made available to the stakeholders who use it and made operational, and finally,
6. When the system itself is retired and its support is withdrawn.
These states can be applied to the initial release of the system or any subsequent modification or replacement.

As indicated in Figure 8.8, the first thing to do for any major system release is to make sure that there is an appropriate
architecture available; one that complies with any applicable organizational constraints and addresses the key technical
risks facing the new system. Achieving this may require the creation of a brand new architecture, the modification of an
existing architecture, the selection of an existing architecture, or the simple re-use of whatever is already in place.
Regardless of the approach taken, the result is that the system progresses to the architecture selected state.

40 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

'

An architecture has beean selected that addresses the

Architeciure
Salactad key technical risks and any applicable crganizational
: constraints.
(: y A demonstrable version of the systemis available that
Demonstrabile demonstrates the architecture is fit for purpose and
» 4 supports testing.
L 4
E | Usahle | The system is usable and demonstrates all of the
@ quality characteristics required of an operational
‘u;".ll system.
h
w | Read | The system (as a whole) has been accepted for
y deploymentin a live environment
- L 4 -
| Operational | The system is in use in a live environment.
|' Retirad | The system is no longer supported.

8

Figure 8.8 — The states of the System

Once the architecture had been selected, it must be shown to be fit-for-purpose by building and testing a demonstrable
version of the system. It is not sufficient to just present a set of rolling images or a stand-alone single-user version of a
multi-user system. The system needs to be truly demonstrable, exercising all of the significant characteristics of the
selected architecture. It must also be capable of supporting both functional and non-functional testing.

The demonstrable system is then evolved to become usable by adding more functionality, and fixing defects. Once the
system has achieved the usable state, it has all the qualities desired of an operational system. If it implements a sufficient
amount of the requirements, if it provides sufficient business value, and if there is an appropriate window of opportunity
for its deployment, then it can be considered to be ready for operational use.

Although a useable system has the potential to be an operational system, there are still a few essential steps to be
performed before it is ready. The system has to be accepted for use by the stakeholders, and it has to be prepared for
deployment in the live environment. In this state, the system is typically supplemented with deployment guidance and
training materials.

The system is made operational when it is deployed for real use within the live environment. It is now available for use
and to generate value and provide benefit to its stakeholders.

Even after the system has been made operational, development work can still continue. This may be as part of the plans
for the incremental delivery of the system or, as is more common, a response to defects and problems occurring during
the deployment and operation of the system. Support and maintenance continue until the system is retired and its support
is withdrawn. This may be because:

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 41

1) the system has been completely replaced by a later generation,
2) the system no longer has any users or,
3) it does not make business sense to continue to support it.

During the development of a major release many minor releases are often produced. For example, many teams using an
iterative approach produce a new release during every iteration whilst they keep their system continuously in a usable,
and therefore potentially shippable, state. It is then the stakeholder representatives who decide whether it is ready to be
made operational. This approach is not always possible, particularly if major architectural changes are required as these
often render the system unusable for a significant period of time.

Understanding the current and desired state of a system helps everyone understand when a system is ready, what kinds of
changes can be realistically made to the system, and what kinds of work should be left to a later generation of the system.
Checking the Progress of the System

To help assess the state of a system and the progress being made towards its successful operation, the following checklist
items are provided.

Table 8.5 — Checklist for System
State Checklist

Architecture Selected | The criteria to be used when selecting the architecture have been agreed on.
The architecture’s key concepts and properties are clearly defined.

The selected architecture is clearly conceived.

System boundary is known.

Significant decisions about the organization of the system have been made.
Buy, build, and reuse decisions have been made.

Key technical risks agreed to.

Demonstrable Key architectural characteristics have been demonstrated.

The system can be exercised and its performance can be measured.
Critical configurations of the architecture have been demonstrated.
Critical interfaces have been demonstrated.

The integration with other existing systems has been demonstrated.

The relevant stakeholders agree that the demonstrated architecture is appropriate.

42 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist

Usable The system can be operated by stakeholders who use it.

The functionality provided by the system has been tested.

The performance of the system is acceptable to the stakeholders.
Defect levels are acceptable to the stakeholders.

The system is sufficiently documented.

Released system elements are known.

The added value provided by the system is clear.

Ready Documentation on how to deploy and use the system in its intended environment is
available.

The stakeholder representatives accept the system as fit-for-purpose.
The stakeholder representatives want to make the system available for use.

Operational support is in place.

Operational The system has been made available to the stakeholders intended to use it.
At least one example of the system is fully operational.

The system is fully supported to the agreed service levels.

Retired The system has been replaced or discontinued.
The system is no longer supported.
There are no “official” stakeholders who still use the system.

Updates to the system will no longer be produced.

8.3.3 Activity Spaces

The solution area of concern contains six activity spaces that cover the capturing of the requirements and the
development of the system.

8.3.3.1 Understand the Requirements

Description

Establish a shared understanding of what the system to be produced must do.
Understand the requirements to:
e Scope the system.

o Understand how the system will generate value.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

43

e Agree on what the system will do.

o Identify specific ways of using and testing the system.

o Drive the development of the system.
Input: Stakeholders, Opportunity, Requirements, System, Work, Way-of-Working
Entry Criteria: None

Completion Criteria: Requirements::Coherent
8.3.3.2 Shape the System

Description

Shape the system so that it is easy to develop, change and maintain, and can cope with current and expected future
demands. This includes the overall design and architecting of the system to be produced.

Shape the system to:

o Structure the system and identify the key system elements.

e Assign requirements to elements of the system.

o Ensure that the architecture is suitably robust and flexible.
Input: Stakeholders, Opportunity, Requirements, System, Work, Way-of-Working
Entry Criteria: Requirements::Coherent

Completion Criteria: Requirements::Acceptable, System::Architecture Selected
8.3.3.3 Implement the System

Description

Build a system by implementing, testing, and integrating one or more system elements. This includes defect fixing and
system element testing.

Implement the system to:
o Create a working system.
e Develop, integrate, and test the system elements.
e Increase the number of requirements implemented.
e Fix defects.
e Improve the system
Input: Requirements, System, Way-of-Working

Entry Criteria: System::Architecture Selected

44 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Completion Criteria: System::Ready
8.3.3.4 Test the System

Description
Verify that the system produced meets the stakeholders’ requirements.
Test the system to:
o Verify that the system matches the requirements
o Identify any defects in the system.
Input: Requirements, System, Way-of-Working
Entry Criteria: Requirements::Acceptable, System::Architecture Selected

Completion Criteria: Requirements::Fulfilled, System::Ready
8.3.3.5 Deploy the System

Description

Take the tested system and make it available for use outside the development team.

Deploy the system to:
o Package the system up for delivery to the live environment.
e Make the system operational.

Input: Stakeholders, System, Way-of-Working

Entry Criteria: System::Ready

Completion Criteria: System::Operational
8.3.3.6 Operate the System

Description

Support the use of the system in the live environment.
Operate the system to:

e Maintain service levels.

o Support the stakeholders who use the system.

e Support the stakeholders who deploy, operate, and help support the system.
Input: Stakeholders, Opportunity, Requirements, System, Way-of-Working

Entry Criteria: System::Ready

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

45

Completion Criteria: System::Retired
8.3.4 Competencies
8.3.4.1 Analysis

Description

This competency encapsulates the ability to understand opportunities and their related stakeholder needs, and transform
them into an agreed and consistent set of requirements. This competency also includes the ability to study and provide
input to making decisions during system design. This means that the system is analyzed both as a black box in terms of
its requirements, as well as a white box in terms of its internal design.

The analysis competency is the deductive ability to understand the situation, context, concepts and problems, identify
appropriate high-level solutions, and evaluate and draw conclusions by applying logical thinking.

People with the analytical competency help the team to:

o Identify and understand needs and opportunities.

Get to know the root causes of the problems

Capture, understand, and communicate requirements.

Create and agree on specifications and models.

e Visualize solutions and understand their impact.
Essential skills include:

e Verbal and written communication

o Ability to observe, understand, and record details

e Agreement facilitation

e Requirements capture

e Ability to separate the whole into its component parts

o Ability to see the whole by looking at what is required

This competency can be provided by the customer representatives, product owners, business analysts, requirement
specialists or developers on the team.

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.

Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.

46 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Analysis?

Analysis is an examination of a system including its environment, its elements, and their relations. It is performed in
order to gather, manage and analyze large and complex amounts of information and data and make sense of it. It is more
than just the separation of a whole into its component parts as it involves the resolution of complex expressions into
simpler or more basic ones, and the clarification of the purpose of a system by an explanation of its use.

When developing system it is essential that the current situation is analyzed and the correct requirements identified for
the new system. The requirements themselves must also be analyzed to make sure that they are, among other things,
practical, achievable, and appropriately sized to drive the system’s development. The analysis competency encapsulates
the abilities needed to successfully define the system to be built.

8.3.4.2 Development

Description

This competency encapsulates the ability to design and produce effective systems following the standards and norms
agreed by the team.

The development competency is the mental ability to conceive and produce a system, or one of its elements, for a
specific function or end. It enables a team to produce systems that meet the requirements.

People with the development competency help the team to:
e Design and produce systems

e Formulate and/or evaluate strategies for choosing an appropriate design pattern or for combining various design
patterns

o Compare, prototype, simulate, design and leverage technical solutions
e Troubleshoot and resolve production problems
Essential skills include:
e Knowledge of production and development technologies
e C(ritical thinking
e Refactoring
e Design
e Researching production and development technologies, and evaluating their feasibility for the system at hand

This competency can be provided by the production engineers such as designers or architects on the team.

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.
Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 47

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.

Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Development?

Developing a system is a complex mental activity requiring the ability to exploit all the knowledge about the opportunity,
stakeholder’s needs, company’s business, the technology used and balance them by creating an appropriate solution. It
requires a combination of talent, experience, knowledge and technical skills in order to develop the right solution.

The development competency is about solving complex problems and producing effective systems. It lies in the
observing, the sense-making of, and representing the system as others expect it to see it, that is, as effective and
functional and easy to use. All this in turn requires the ability to imagine and visualize system elements and structure the
system in a way so that it is easy to understand and maintain.

8.3.4.3 Testing

Description

This competency encapsulates the ability to test a system, including validating that the system meets the needs of users;
and verifying that the system meets the requirements.

The testing competency is an observational, comparative, detective, and destructive ability that enables the system to be
tested.

People with the testing competency help the team to:
o Test the system.
o Create the correct tests to efficiently verify that the system meets the requirements.
o Create the correct tests to efficiently validate that the system meets the user needs.
e Decide what, when and how to test.
o Evaluate whether the system meets the requirements and the user needs.
¢ Find defects and understand the quality of the system produced.
Essential skills include:
e Keen observation
e Exploratory and destructive thinking
o Inquisitive mind
e Attention to detail

This competency can be provided by specialist individuals or other team members such as customers, users, analysts,
developers, or other stakeholders.

48 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.

Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work
without supervision.

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.

Level 5 — Innovates A recognized expert, able to extend the concepts to new contexts and inspire
others.

Justification: Why Testing?

When developing a system it is essential to test that the system meets the requirements and demonstrate that it is fit for
purpose. The ability to conceive and undertake testing is essential throughout the evolution of a system, and is an
essential complement to the team’s analysis, design, and production capabilities.

The testing competency encapsulates the ability to conceive and execute tests to demonstrate that the system is fit for
purpose, usable, meets one or more of its requirements, and constitutes an appropriate solution to the stakeholders needs.

8.4 The Endeavor Area of Concern

8.4.1 Introduction

This area of concern contains everything to do with the team, and the way that they approach their work.

Engineering is a significant endeavor that typically takes many weeks to complete, affects many different people (the
stakeholders), and involves a development team (rather than a single developer). Any practical method must describe a
set of practices to effectively plan, lead and monitor the efforts of the team.

8.4.2 Alphas

The endeavor area of concern contains the following Alphas:
e Team
e Work
e Way-of-Working
8.421 Team
Description
Team: A group of people actively engaged in the development, maintenance, delivery, or support of a specific system.

One or more teams plan and perform the work needed to create, update and/or change the system.

States

Seeded The team’s mission is clear and the know-how needed to grow the
team is in place.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 49

Formed The team has been populated with enough committed people to start
to pursue the team mission.

Collaborating The team members are working together as one unit.
Performing The team is working effectively and efficiently.
Adjourned The team is no longer accountable for carrying out its mission.

Associations

produces : System Team produces System.
performs and plans : Work Team performs and plans Work.
applies : Way-of-Working Team applies Way-of-Working.

Justification: Why Team?

Engineering is a team sport involving the collaborative application of many different competencies and skills. The
effectiveness of a team has a profound effect on the success of any engineering endeavor. To achieve high performance,
team members should reflect on how well they work together, and relate this to their potential and effectiveness in
achieving their mission.

Normally a team consists of several people. Occasionally, however, work may be undertaken by a single individual
creating a system purely for their own use and entertainment. A team requires at least two people, but the guidance
provided by the Team Alpha can also be used to help single individuals when creating a system.

Progressing the Team

Teams evolve during their time together and progress through several state changes. As shown in Figure 8.9, the states
are seeded, formed, collaborating, performing, and adjourned. They communicate the progression of a team on the
journey from initial conception to the completion of the mission indicating:

(1) When the team is seeded and the individuals start to join the team.

(2) When the team is formed to start the mission.

(3) When the individuals start collaborating effectively and truly become a team.

(4) When the team is performing and achieves a crucial level of efficiency and productivity, and
(5) When the team is adjourned after completing its mission.

As shown in Figure 8.9, the team is first seeded. This implies defining the mission, deciding on recruitment for the
necessary skills, capabilities and responsibilities, and making sure that the conditions are right for an effective group to
come together. As the team is formed, the people in the group, and those joining it, bring the necessary skills and
experience to the team. The group becomes a team as the people begin to see how they can contribute to the work at
hand. As they discover and take account of each other’s capabilities, they start collaborating effectively and make
progress towards completing their mission.

At its peak of performing, the team shares a way of working, and plays to its strengths to complete its mission effectively
and efficiently. The performing team easily adapts to the changing context and takes appropriate measures. If a number of
people join or leave the team, or the context of the mission changes, it may revert to a previous state. Finally, if the team
has no further goals or missions to complete, it is adjourned.

It is important to understand the current state of the team so that suitable practices can be used to address the issues and
impediments being faced, and to ensure that the team focuses on working effectively and efficiently.

50 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Collaborating
-~/

TEAM

Y

—

Performing
.~ J

A

)

Adjourned

e

o

The team'’s mission is clear and the know-how needed
to grow the team is in place.

The team has been populated with enough committed
people to start to pursue the team mission.

The team members are working together as one unit.

The team is working effectively and efficiently.

The team is no longer accountable for carrying out its
mission.

Figure 8.9 — The states of the Team

Checking the Progress of the Team

To help assess the state of a team and its progress, the following checklists are provided.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

51

Table 8.6 — Checklist for Team

State Checklist

Seeded The team mission has been defined in terms of the opportunities and outcomes.
Constraints on the team's operation are known.

Mechanisms to grow the team are in place.

The composition of the team is defined.

Any constraints on where and how the work is carried out are defined.

The team's responsibilities are outlined.

The level of team commitment is clear.

Required competencies are identified.

The team size is determined.

Governance rules are defined.

Leadership model is determined.

Formed Individual responsibilities are understood.
Enough team members have been recruited to enable the work to progress.

Every team member understands how the team is organized and what their individual
role is.

All team members understand how to perform their work.

The team members have met (perhaps virtually) and are beginning to get to know each
other.

The team members understand their responsibilities and how they align with their
competencies.

Team members are accepting work.
Any external collaborators (organizations, teams and individuals) are identified.
Team communication mechanisms have been defined.

Each team member commits to working on the team as defined.

Collaborating The team is working as one cohesive unit.
Communication within the team is open and honest.
The team is focused on achieving the team mission.

The team members know and trust each other.

52 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist
Performing The team consistently meets its commitments.
The team continuously adapts to the changing context.
The team identifies and addresses problems without outside help.
Effective progress is being achieved with minimal avoidable backtracking and
reworking.
Wasted work and the potential for wasted work are continuously identified and
eliminated.
Adjourned The team responsibilities have been handed over or fulfilled.
The team members are available for assignment to other teams.
No further effort is being put in by the team to complete the mission.
8.4.2.2 Work
Description

Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of engineering, work is everything that the team does to meet the goals of producing a system matching the
requirements and addressing the opportunity presented by the stakeholders. The work is guided by the practices that

make up the team’s way-of-working.

States

Initiated
Prepared
Started

Under Control

Concluded
Closed

Associations

updates and changes: System
set up to address : Opportunity

Justification: Why Work?

The work has been requested.

All pre-conditions for starting the work have been met.

The work is proceeding.

The work is going well, risks are under control, and productivity
levels are sufficient to achieve a satisfactory result.

The work to produce the results has been concluded.

All remaining housekeeping tasks have been completed and the work
has been officially closed.

Work updates and changes System.
Work set up to address Opportunity.

The ability of team members to co-ordinate, organize, estimate, complete, and share their work has a profound effect on
meeting their commitments and delivering value to their stakeholders. Team members need to understand how to carry
out their work, and how to recognize when the work is going well.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 53

Progressing the Work

During the development of a system the work progresses through several state changes. As shown in Figure 8.10, they
are initiated, prepared, started, under control, concluded, and closed. These states provide points of stability in the
progression of the work indicating when the work is initiated and prepared, when the team is assembled and the work is
started and brought under control, when the results are achieved and the development work is concluded, and finally,
when the work itself is closed and all loose ends and outstanding work items are addressed.

As indicated in Figure 8.10, the work is first initiated. This implies that someone defines the desired result, and makes
sure that the conditions are right for the work to be performed. If the work is not successfully initiated, it will never be
progressed and assigned to a team. As the work is prepared, commitments are made, funding and resources are secured,
the work is organized, appropriate governance policies and procedures are put in place, and priorities, constraints, and
impediments are understood. Once all the pre-conditions for starting the work are addressed, the team gets the go-ahead
to get the real work started. The team starts to complete the individual work items, and builds evidence showing that the
work is under control.

£ i
S~

-

Initigted Wark has been requested.

|

Prepared All pre-condition s for starting th e work have been met.

H

Started Theworkis proceeding.

H

Under Theworkis goingwell, risks are under control and produ clivity
Control levels are sufficientto achieve a satisfactory result.

Work

Concluded Theworkto produce the results has been concluded.

H

Closed All remainin g housekeeping tasks have been completed
andthewoaork has been officially closed.

E*

h 4

Figure 8.10 — The states of the Work

There are many practices that can be used to help organize and co-ordinate the work including SCRUM, Kanban,
PMBoK, PRINCE2, Task Boards and many, many more. These typically involve breaking the work down into:

1. Smaller, more bite sized work items that can be completed one-by-one such as work packages, and tasks.

2. One or more clearly defined work periods such as phases, stages, iterations, or sprints.

54 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The level, depth and extent of the work breakdown depends on the style and complexity of the work and on the specific
practices the team selects to help them co-ordinate, monitor, control, and undertake the work.

If the team has their work under control then there will be concrete evidence that:
1. The work is going well.

2. The risks threatening a successful conclusion to the work are under control as the impact if they occur and/or as the
likelihood of them occurring have been reduced to acceptable levels.

3. The team’s productivity levels are sufficient to achieve satisfactory results within the time, budget and any other
constraints that have been placed upon the work.

Typically, once the work has been concluded and the results have been accepted by the relevant stakeholders, there
remain some final housekeeping and wrap up activities to be completed before the work itself can be closed.

If, for any reason, the work is not going well, then it may be halted, abandoned or reverted to a previous state. If the work
is abandoned once it is started, it should still be properly closed even though it has not managed to pass through the
concluded state.

Understanding the current and desired state of the work can help the team to balance their activities, make the correct
investment decisions, nurture the work that is going well, and help or cancel the work that is going badly.
Checking the Progress of the Work

To help assess the state of the work and the progress being made towards its successful conclusion, the following
checklists are provided.

Table 8.7 — Checklist for Work
State Checklist

Initiated The result required of the work being initiated is clear.

Any constraints on the work’s performance are clearly identified.
The stakeholders that will fund the work are known.

The initiator of the work is clearly identified.

The stakeholders that will accept the results are known.

The source of funding is clear.

The priority of the work is clear.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 55

State

Checklist

Prepared

Commitment is made.

Cost and effort of the work are estimated.

Resource availability is understood.

Governance policies and procedures are clear.

Risk exposure is understood.

Acceptance criteria are defined and agreed with client.

The work is broken down sufficiently for productive work to start.
Tasks have been identified and prioritized by the team and stakeholders.
A credible plan is in place.

Funding to start the work is in place.

The team or at least some of the team members are ready to start the work.

Integration and delivery points are defined.

Started

Development work has been started.
Work progress is monitored.

The work is being broken down into actionable work items with clear definitions of
done.

Team members are accepting and progressing tasks.

Under Control

Tasks are being completed.
Unplanned work is under control.

Risks are under control as the impact if they occur and the likelihood of them
occurring have been reduced to acceptable levels.

Estimates are revised to reflect the team’s performance.
Measures are available to show progress and velocity.
Re-work is under control.

Tasks are consistently completed on time and within their estimates.

Concluded

All outstanding tasks are administrative housekeeping or related to preparing the next
piece of work.

Work results have been achieved.

The stakeholder(s) has accepted the resulting system.

56

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist

Closed Lessons learned have been itemized, recorded and discussed.
Metrics have been made available.

Everything has been archived.

The budget has been reconciled and closed.

The team has been released.

There are no outstanding, uncompleted tasks.

8.4.2.3 Way-of-Working
Description
Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working environment. As
their work proceeds they continually reflect on their way of working and adapt it to their current context, if necessary.

States

Principles Established The principles, and constraints, that shape the way-of-working are
established.

Foundation Established The key practices, and tools, that form the foundation of the way of
working are selected and ready for use.

In Use Some members of the team are using, and adapting, the way-of-
working.

In Place All team members are using the way of working to accomplish their
work.

Working well The team's way of working is working well for the team.

Retired The way of working is no longer in use by the team.

Associations

guides : Work Way-of-Working guides Work.

Justification: Why Way-of-Working?

Engineering is a team sport, one that requires the whole team to collaborate effectively regardless of how the team is
organized. They need to agree on a way of working that will support collaboration and guide them throughout the
engineering endeavor.

The way of working:
e Is key to enabling a team to work together effectively.
e Focuses the team on how they will collaborate to ensure success.

e Enables the work to be planned and controlled.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 57

R

o Helps the team, and their associated stakeholders, to successfully fulfill their responsibilities.

Way-of-Working

-

Principles
Established

i

Foundation
Established

i

In Use

i

In Place

1

Workingwell

H

Retired

|

-~

The principles, and constraints, that shape the way-of-working
are established.

Thekey practices, andtools, that formthe foundation of the
way of working are selected andready for use.

Some members of the team are using, and adapting, the
wiay-of-working.

All team members are usingtheway-of-workingto accomplish
theirtasks.

Theway-ofworking isworkingwell forth e team.

Theway-of-workingisnolongerin use by the team.

Figure 8.11 — The states of the Way-of-Working

Progressing the Way-of-Working

During the course of an engineering endeavor the way of working progresses through several state changes. As presented
in Figure 8.11, they are principles established, foundation established, in use, in place, working well, and retired. These

states focus on the way a team establishes an effective way-of-working indicating:

1.
2.

5.
6.

Examples of principles and constraints could be how far into the future you plan, governance policies, how decisions are

When the principles and constraints that shape the way-of-working are established.

When a minimal number of key practices and tools have been identified and integrated to establish a foundation for

the evolution of the team’s way-of-working.

When the chosen way of working is in use by the team.

When a team’s way of working is in place and in use by the whole team.

When it is working well.

When the way of working has been retired and is no longer in use by the team.

made, and how the work in broken down.

58

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

There are many ways of working that the team could adopt to meet their objectives and establish their approach to
engineering. As shown in Figure 8.11, the first step in adopting a new way-of-working, or adapting an existing way-of-
working, is to understand the team’s working environment and establish the principles that will guide their selection of
appropriate practices and tools. This includes identifying the constraints governing the selection of the team's practices
and tools and understanding the practices and tools that the team, and their stakeholders, are already using or are required
to use.

It is not enough to just understand the principles and constraints that will inform the team's way of working. These must
be agreed with, and actively supported by, the team and its stakeholders. Once the principles are established the team is
ready to start selecting the practices and tools that will form their way-of-working.

To establish a natural way of working the focus should first be on the key practices and tools; those that bring the team
together, enable communication among the team members, support collaborative working and are essential to the success
of the team. However, these practices and tools act as the foundation for the team’s way-of-working. Before the
foundation can be assembled it is important to understand the gaps between the practices and tools needed by the team
and the practices, and tools immediately available to the team. This enables the activities needed to fill these gaps to be
planned.

Once the key practices and tools are integrated then the way-of-working’s foundation is established and the way-of-
working is ready to be trialed by the team. It will however be continuously adapted as the work progresses, and
additional practices and tools will be added as the team inspects their way-of-working and adapts it to meet their
changing circumstances.

Rather than spending more time tailoring or tuning the way-of-working it is important that the team puts it into use as
soon as possible. The way-of-working is in use as soon as any of the team members are using and adapting it as part of
completing their work. As more and more of the team start to use and benefit from the way-of-working its usage will
grow until it is firmly in place and all the team members are using it to accomplish their work. Some team members may
still need help to understand certain aspects of the team's way of working and to make effective progress, but the way of
working is now the normal way for the team to develop a system.

As the team progresses through the work, the way of working will become embedded in their activities and
collaborations to such an extent that its use, inspection and adaptation are all seen as a natural part of the way the team
works. The way-of-working is working well once it has stabilized and all team members are making progress as planned
by using and adapting it to suit their current working environment. Finally, when the way of working is no longer in use
by the team, it is retired.

Understanding the current and desired state of the team's way of working helps a team to continually improve their
performance, and adapt quickly and effectively to change.

Checking the Progress of the Way-of-Working

To help assess the current status of the way of working, the following checklists are provided.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 59

Table 8.8 — Checklist for Way-of-Working

State Checklist

Principles Established | Principles and constraints are committed to by the team.
Principles and constraints are agreed to by the stakeholders.
The tool needs of the work and its stakeholders are agreed.

A recommendation for the approach to be taken is available.
The context within which the team will operate is understood.

The constraints that apply to the selection, acquisition, and use of practices and tools are

known.
Foundation The key practices and tools that form the foundation of the way-of-working are
Established selected.

Enough practices for work to start are agreed to by the team.
All non-negotiable practices and tools have been identified.

The gaps that exist between the practices and tools that are needed and the practices and
tools that are available have been analyzed and understood.

The capability gaps that exist between what is needed to execute the desired way of
working and the capability levels of the team have been analyzed and understood.

The selected practices and tools have been integrated to form a usable way-of-working.

In Use The practices and tools are being used to do real work.

The use of the practices and tools selected are regularly inspected.

The practices and tools are being adapted to the team’s context.

The use of the practices and tools is supported by the team.

Procedures are in place to handle feedback on the team’s way of working.

The practices and tools support team communication and collaboration.

In Place The practices and tools are being used by the whole team to perform their work.
All team members have access to the practices and tools required to do their work.

The whole team is involved in the inspection and adaptation of the way-of-working.

Working well Team members are making progress as planned by using and adapting the way-of-
working to suit their current context.

The team naturally applies the practices without thinking about them.

The tools naturally support the way that the team works.

The team continually tunes their use of the practices and tools.

60 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

State Checklist

Retired The team's way of working is no longer being used.

Lessons learned are shared for future use.

8.4.3 Activity Spaces

The endeavor area of concern contains five activity spaces that cover the formation and support of the team, and planning
and co-coordinating the work in-line with the way of working.

8.4.3.1 Prepare to do the Work

Description
Set up the team and its working environment. Understand and commit to completing the work.
Prepare to do the work to:
o Put the initial plans in place.
o Establish the initial way of working.
e Assemble and motivate the initial project team.
e Secure funding and resources.
Input: Stakeholders, Opportunity, Requirements
Entry Criteria: None

Completion Criteria: Team::Seeded, Way of Working::Foundation Established, Work::Prepared
8.4.3.2 Coordinate Activity

Description

Co-ordinate and direct the team’s work. This includes all ongoing planning and re-planning of the work, and adding any
additional resources needed to complete the formation of the team.

Coordinate activity to:
e Select and prioritize work.
o Adapt plans to reflect results.
o Get the right people on the team.
o Ensure that objectives are met.
e Handle change.

Input: Requirements, Team, Work, Way of Working

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 61

Entry Criteria: Team::Seeded, Work::Prepared

Completion Criteria: Team::Formed, Work::Under Control
8.4.3.3 Support the Team

Description
Help the team members to help themselves, collaborate, and improve their way of working.
Support the team to:
e Improve team working.
e Overcome any obstacles.
e Improve ways of working.
Input: Team, Work, Way of Working
Entry Criteria: Team::Formed, Way of Working::Foundation Established

Completion Criteria: Team::Collaborating, Way of Working::In Place
8.4.3.4 Track Progress

Description
Measure and assess the progress made by the team.
Track progress to:
e Evaluate the results of work done.
e Measure progress.
o Identify impediments.
Input: Requirements, Team, Work, Way of Working
Entry Criteria: Team::Collaborating, Way of Working::In Place, Work::Started

Completion Criteria: Team::Performing, Way of Working::Working Well, Work::Concluded
8.4.3.5 Stop the Work

Description

Shutdown the engineering endeavor and hand over the team’s responsibilities.
Stop the work to:
e Close the work.

e Hand over any outstanding responsibilities.

62 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

e Hand over any outstanding work items.
e Stand down the team.
o Archive all work done.
Input: Requirements, Team, Work, Way of Working
Entry Criteria: Team::Performing, Way of Working::Working Well, Work::Concluded

Completion Criteria: Team::Adjourned, Way of Working::Retired, Work::Closed
8.4.4 Competencies
8.4.41 Leadership

Description

This competency enables a person to inspire and motivate a group of people to achieve a successful conclusion to their
work and to meet their objectives.

People with the leadership competency help the team to:

o Inspire people to do their work.

Make sure that all team members are effective in their assignments.

Make and meet their commitments.

e Resolve any impediments or issues holding up the team's work.

o Interact with stakeholders to shape priorities, report progress, and respond to challenges.
Essential skills include:

e Inspiration

Motivation

Negotiation
o Communication
e Decision making

This competency is sometimes provided by a Scrum Master, an appointed team leader, the more experienced members of
the team, or a dedicated project manager.

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.

Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 63

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.
Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Leadership?

Engineering is a complex endeavor typically involving teams of people dedicated to delivering an appropriate solution to
extended networks of customers, users, and other stakeholders. It is essential that everybody is focused, inspired, and
motivated towards achieving the same goals.

Within the kernel, the leadership competency is the ability to radiate enthusiasm, energy, trustworthiness, confidentiality,
and direction. The people with this competency guide and help the team to a successful conclusion, one that satisfies the
needs of the stakeholders, within acceptable time and cost constraints.

8.4.4.2 Management

Description

This competency encapsulates the ability to coordinate, plan, and track the work done by a team.

The management competency is the administrative and organizational ability that enables the right things to be done at
the right time to maximize a team’s chances of success.

Management helps the team to:
e Proactively manage risks
e Account for time and money spent
o Interact with stakeholders to report progress
e Coordinate and plan activities
Essential skills include:
e Communication
e Administration
e Organization
e Resource planning
e Financial reporting

This competency can be provided by the team members themselves, a team leader, a lead developer, a project manage-
ment office or a professional project manager.

Competency Levels

Level 1 — Assists Demonstrates a basic understanding of the concepts and can follow instructions.

Level 2 — Applies Able to apply the concepts in simple contexts by routinely applying the experience
gained so far.

Level 3 — Masters Able to apply the concepts in most contexts and has the experience to work without
supervision.

64 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Level 4 — Adapts Able to apply judgment on when and how to apply the concepts to more complex
contexts. Can enable others to apply the concepts.
Level 5 - Innovates A recognized expert, able to extend the concepts to new contexts and inspire others.

Justification: Why Management?

Engineering is a complex endeavor that requires the organization and coordination of many people and other resources. It
needs the team to possess the ability to track progress, organize facilities and events, co-ordinate all the work, and
integrate into the structure of the owning organization. The management competency encapsulates the abilities needed to
be able to coordinate and track the work done by the team.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 65

66

This page intentionally left blank.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9 Language Specification

9.1 Specification Technique

This specification is constructed using a combination of three different techniques: a metamodel, a formal language, and
natural language. The metamodel (see 9.2) expresses the abstract syntax and some constraints on the structural
relationships between the elements. An invariant is provided for each element that, together with the structural constraints
in the metamodel, provides the well-formedness rules of the language (the static semantics). The invariants and some
additional operations are stated using the Object Constraint Language (OCL) as the formal language used in this
document. The composition of elements (see 9.4) as well as the dynamic semantics (see 9.5) are described using natural
language (English) accompanied by formal definitions using Vienna Development Method where appropriate.

9.1.1 Different Meta-Levels

The metamodel is based upon a standard specification technique using four meta-levels of constructs (meta-classes).
These levels are:

o [evel 3 — Meta-Language: the specification language, i.c., the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

o Level 2 — Construct: the language constructs, i.c., the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

e Level 1 — Type: the specification elements, i.e., the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

e Level 0 — Occurrence: the run-time instances, i.e., these are the representations of real-life elements in a running
development effort.

For a more thorough description of the meta-level hierarchy, see Sections 7.9-7.11 in UML Infrastructure [UML 2011].

9.1.2 Specification Format

Within each subclause, there is first a brief informal description of the purpose of the elements in that language layer.
This is followed by a description of the abstract syntax of these elements together with some of the well-formedness
rules, i.e., the multiplicity of the associated elements. The abstract syntax is defined by a CMOF model [MOF 2011], the
same language used to define the UML metamodel. Each modeling construct is represented by an instance of a MOF
class or association. In this specification, this model is described by a set of UML class and package diagrams showing
the language elements and their relationships.

Following the abstract syntax is an enumeration of the elements in alphabetic order. Each concept is described according
to:

o Heading is the formal name of the language element.

e Description is a short informal description of the element. This is intended as a quick reference for those who
want only the basic information about an element.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 67

¢ Generalizations list each of the parents (superclasses) of the language element, i.e., all elements it has
generalizations to.

o Attributes lists each of the attributes that are defined for that element. Each attribute is specified by its formal
name, its type, and multiplicity. This is followed by a textual description of the purpose and meaning of the
attribute. The following data types for attributes are used:

o String

o Boolean

o Integer

o GraphicalElement

If data type Integer is used for lower or upper bounds on classes representing associations, only positive values, 0,
and -1 are allowed. As by the usual convention, -1 represents an unlimited bound in these cases.

o Associations list all the association ends owned by the element. Note that this subclause does not list the
association-owned association ends. The format for element-owned association ends is the same as the one for
attributes described above.

¢ Invariant describes the well-formedness rules for the element. These are mostly described both with an informal
text and with OCL expressions.

¢ Additional Operations describes any additional operations needed when expressing the well-formedness rules.
These are mostly described both with an informal text and with OCL expressions. This subclause is only present
when there are any additional operations defined.

o Semantics provides a detailed description of the element in natural language.
9.1.3 Notation Used

The following conventions are adopted in the diagrams throughout the specification:
o All meta-class names and class names start with an uppercase letter.

e An association with one end marked by a navigability arrow means that the association is navigable in the
direction of that end. An association end marked with a dot is owned by the element on the opposite end. An
association end not marked with a dot is owned by the association itself.

9.2 Conceptual Overview of the Language

This subclause serves as a narrative introduction to the most important language elements and illustrates their semantics
on a coarse-grained level.

Figure 9.1 illustrates informally the main elements of the language and their most important associations. The elements
centered in the figure (i.e., Alpha, Alpha State, Activity Space, and Competency) are used to describe the contents of a
Kernel. They provide the abstract and essential things to do, things to work with, and things to know in engineering
endeavors. It is considered sufficient to know these four elements to be able to talk about the state, progress, and health
of an engineering endeavor.

68 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

While the elements used in a Kernel represent abstract things, concrete guidance can be created via Practices by adding
elements like those shown on the right hand side of the figure. Work Products represent the concrete things to work with,
providing evidence for the states an Alpha is in. For example, the source code provides evidence on whether a component
is fully implemented or just a stub. Activities provide explicit guidance on how to produce or update Work Products,
which eventually will lead to state changes on some Alpha.

The dynamic semantics of the language are concerned with Alpha States and Activities. Based on the States an endeavor
is in and based on the States a team wants to reach next, Activities are derived that drive the endeavor towards that goal.

D < evidences [|

Alpha State Work Product

>

targets >

produces
/ updates

organizes >

Activity Space Activity

- y

Resource Pattern

Can be added to anything
Competency

Figure 9.1 — Conceptual Overview of the Language

Patterns and Resources are generic concepts that can be attached to any language element. They are not considered by the
dynamic semantics of the language as defined in this specification. Examples for Resources include templates attached to
Work Products, scripts or tools attached to Activities, and learning materials or tests attached to Competencies. A simple
and usual way to tailor or adapt predefined Practices is to add specialized resources or replace existing ones.

Patterns can arrange language elements into arbitrary meaningful structures. Examples for Patterns are shown in Figure
9.2. There is no limitation in the number of elements involved in a pattern. Patterns may also relate to other Patterns, like
a Pattern for phases, which sequence Activities or Activity Spaces and end by reaching a milestone, which in turn is a
Pattern again that aligns a set of Alpha States in order to synchronize the progress of Alphas.

Beyond these main elements, the language contains additional elements to detail the associations and to handle metadata.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 69

e.g. Checkpoint

. aligns a set of > i
or Milestone _algns asetor> D < evidences E|

Patterns that synchronize

Alpha State progression Alpha State Work Product
A A A
= 2 [
w © = T
E i 53
e.g. Phase \“ sequences > __ organizes >
Patterns that sequence and —
filter activities Activity Space Activity

%

Resource Pattern

Team Role

Patterns that qualify team membership
Competency such as Team Roles and Team Structures.

< helps up profile teams and team members L‘ €e.g.

Can be added to anything

Figure 9.2 — Examples of Patterns

The complete set of language elements supports advanced use cases, but the language concept is designed for those users
who want to select. Consequently, the language is designed to allow meaningful usage already with very small subsets of
language elements. Most associations and several attributes are optional, so users are not forced to use a large set of
language elements right from the beginning. Instead, the complete set of language elements can be divided into several
small chunks that can be learned and used independently and incrementally.

As a remarkable feature, the graphical syntax of the language defines specific views to be used to represent the essence
about each of the elements of the conceptual model (besides Resources).

9.3 Language Elements and Language Model
9.3.1 Overview

As with most language specifications, this specification defines the elements included in the language (the abstract
syntax), some rules for how these elements should be combined to create well-formed language constructs (the static
semantics), and a description of the dynamic semantics of the language. In addition, for some of the elements or language
constructs a concrete syntax (notation) is also provided.

This subclause provides the abstract syntax and static semantics of the language by listing and describing the elements in
the language and the relationships between them. The elements are grouped into five main metamodel packages as
depicted in Figure 9.3.

¢ Foundation, contains the base elements to form a minimal core of the language. It contains elements to organize
sets of practices.

70 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

¢ AlphaAndWorkProduct, contains the base elements to form minimal practices. A domain model for engineering
endeavors can be created. No activities can be expressed using this layer, but concrete work products can be
related to abstract domain elements.

o ActivitySpaceAndActivity, contains elements to enrich practices by expressing activities.

o Competency, contains elements to support the specification of competencies.

o UserDefinedTypes, contains elements to enrich simple elements from Foundation with type information.
e View, contains elements to support the specification of view contents.

The dependency between the packages is expressed with import relationships. Each of the packages is described in a
separate subclause.

Package Diagram Essence| Structure of the Essence Language M&tamc:-d&lu
ActivitySpaceAndActivity
[I I
| imports | simports | wimports
| I [
I [I R 1 1
AlphaAndWorkProduct | Compatency UserDefinedTypes View
I
|, | ' ! '
|°""‘p'°rt”‘ | | «imports | simports | «imports
v " | | |
| W V) W
Foundation

Figure 9.3 — Structure of the Essence Language metamodel
9.3.2 Foundation

9.3.2.1 Overview

The intention of the Foundation package is to provide all the base elements, including abstract super classes, necessary to
form a baseline foundation for the Language. The elements and their relationships are presented in the diagrams below. A
detailed definition of each of the elements is found in the following subclauses.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 71

package Foundation] Language element super class U

EndeavorProperty § L EndeavorAssociation
LanguageElement — +memberEnd +association
+languageElement +properties +:75”“9 ‘-35\“ “;'jg "t 7. 0.1
i - : =tr lowerBound : Integer | < "
+isSuppressable : Boolean = true 1 or +upperBound ; Imeger +ownedEnd +owningAssociation
' 0.1
+property |*
+Hype |1
Type

+name : String

Figure 9.4 — Foundation::Language element super class

package Foundation] g5 |)

LanguageElement

+isSuppressable : Boolean = true

i

ElamentGroup BasicElement ExtensionElement Resource Tag

+name : String +name : String +targetattribute : String +content : String +value : String

+icon : GraphicalElement [0..1] 4icon : GraphicalElement [0..1] +axtensionFunction : String

+briafDescription : String +brisfDescription : String

+description : String +description : String

- MergeResolution PatternA iati Checkp
+targetName : String +name : String +name : String
+argetAttribute : String +description : String
| +resolutionFunction : String

Method | PracticeAsset | Library Pattern

+purpose : String

Practice Kernel

+consistencyRules : String +consistencyRules : String
+pbjective : String
+maasuras : String [0..]
+entry : String [0..”
+result : String [0.."]

Figure 9.5 — Foundation::Language elements

72 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

package Foundation[Comainersu
- ; | LanguageElement +referredElements
+ar EE L]
g +isSuppressable | Boolzan = true O
1 +ownedElements
0.*
+extension |0.*

ExtensionElement ElementGroup rowner MergeResolution
+HargetAttribute © String +name ; String g.1 +argetblame : String
+extensionFunction : String +icon : GraphicalElement [0..1] [+referrer +targetAttribute © String

+hriefDescription : String 0.* +resolutionFunction : String
+e>densionTtl..‘ +elementGroup | Feescription - String +elementGroup 1] R
1 T 1 +mergeResolution =
Method Kernel Practice Library PracticeAsset
+purpose ; String +consistencyRules : String +consistencyRules : String
+objective : String
P N +measures ; String [0,
+referringhethod 0. +hasekernel |1 +entry : String [0..%]
+result : String [0..*]
Figure 9.6 — Foundation::Containers
package Foundation[Generic elements U
BasicElameant relements LanguwageElament
+name : String " +igSuppressable : Boolean = trus
+icon : GraphicalElemsnt [0..1]
+b|'iefD_es_crip1ion_: String
+dlescription : String +languageElement +languageElement
+patterndssociation * +resaurce | Hag [*
Pattern PatternAssociation Resource Tag
+name : String +content ; String +value : String
+pattern 1 +associationT‘

Figure 9.7 — Foundation::Generic elements

9.3.2.2 BasicElement

Package: Foundation
isAbstract: Yes
Generalizations: LanguageElement

Description

Abstract superclass for all main concepts in Essence other than Element groups.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Attributes

name : String [1] The name of the element.
icon : GraphicalElement [0..1] The icon to be used when presenting the element.
briefDescription : String [1] A short and concise description of what the element is. It is

discouraged to use rich formatting and structuring elements like
section headings in the brief description. The content of this attribute
should be a summary of the content given in attribute “description”.
description : String [1] A more detailed description of the element. The content of this
attribute may be written in a markup language to allow for rich
descriptions. It may include section headings, formatting information,
hyperlinks, or similar to ease structured reading and navigation.

Associations
N/A

Invariant

true

Semantics

Basic elements are considered to represent the small set of main concepts within Essence. Basic elements are most likely
the first elements of Essence a user interacts with.

Elements of Essence which are no basic elements (and no element groups) are considered to be auxiliary elements used
to detail or connect basic elements.

9.3.2.3 Checkpoint

Package: Foundation
isAbstract: No
Generalizations: “LanguageElement”

Description

A condition that can be tested as true or false that contributes to the determination of whether a state (of an alpha), or a
level of detail (of a work product), or a competency level has been attained.

Attribute

name : String [1] The name of the checkpoint.

description : String [1] A description of the checkpoint.

shortDescription : String [0..1] An optional abbreviated version of the full description.

Associations
N/A

Invariant

true

74 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Semantics

Checkpoints are used as follows:

o The checkpoints of an alpha state are joined by AND. The state of an alpha is deemed to be the most advanced
(favorable) state for which all checkpoints are true.

o The checkpoints of a work product level of detail are joined by OR. The level of detail of a work product is
deemed to be the most detailed level for which at least one checkpoint is true.
9.3.2.4 ElementGroup

Package: Foundation
isAbstract: Yes
Generalizations: "LanguageElement”

Description

A generic name for an Essence concept that names a collection of elements. Element groups are recursive, so a group
may own other groups, as well as other (non-group) elements.

Attributes

name : String [1] The name of the element group.

icon : GraphicalElement [0..1] The icon to be used when presenting the element group.
briefDescription : String [1] A short description of what the group is. It is discouraged to use rich

formatting and structuring elements like section headings in the brief
description. The content of this attribute should be a summary of the
content given in attribute “description”.

description : String [1] A more detailed description of the group. The content of this attribute
may be written in a markup language to allow for rich descriptions. It
may include section headings, formatting information, hyperlinks, or
similar to ease structured reading and navigation.

Associations

referredElements : LanguageElement [0..*] The language elements this group owns by reference.
ownedElements : LanguageElement [0..*] The language elements this group owns by value.

Invariant
-- An element group may not own itself
self.allElements (ElementGroup) ->excludes (self)

-- An element group may only extend elements it owns
self.extensions->forAll(e | self.allElements (e.targetElement.oclType())
->includes (e.targetElement))

Additional Operations

-- Get all elements of a particular type which are available within this group
and its referenced groups.
context ElementGroup::allElements (t : OclType) : Set(t)

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

body: self.referredElements->select(e | e.oclIsKindOf(t))
->union(self.allElements (ElementGroup)->collect(c | c.allElements(t))
->union (self.ownedElements->select(e | e.oclIsKindOf(t)))

Semantics

Element groups are used to organize Essence elements into meaningful collections such as Kernels or Practices. Elements
in a particular group belong together for some reason, while elements outside that group do not belong to them. The
reasoning for including elements in the group should be given in the description attribute of the group.

Element groups can own their members by reference or by value.

If an element group owns two or more members of the same type and name, composition (cf. 9.4) is applied to them so
that only one merged element of that type with that name is visible when viewing the contents of the element group.
9.3.2.5 EndeavorAssociation

Package: Foundation
isAbstract: No
Generalizations:

Description

Represents associations that you want to track during an endeavor.

Attributes
N/A

Associations

memberEnd: EndeavorProperty [2..*] End properties of the association.
ownedEnd: EndeavorProperty [*] The properties of this association.

Invariant

true

Semantics

Endeavor associations are used to link actual instances of elements on metalevel 0 (aka “the endeavor level”). This can be
used for instance to keep track of which particular document (an instance of a work product) was created by which
particular team member (an instance of alpha “Team member”). In general, these associations have no specific semantics
within Essence.

9.3.2.6 EndeavorProperty

Package: Foundation
isAbstract: No
Generalizations:

76 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Description

An element to represent properties that you want to track during an endeavor; each property can either be simple or be
expressed via an association.

Attributes

name: String [1] Name of the property.
lowerBound: Integer [1] Lower bound of the property.
upperBound : Integer [1] Upper bound of the property.

Associations

association : EndeavorAssociation The association used to express this property if it is not a simple
[0..1] property.

owningAssociation : The association owning this property.

EndeavorAssociation [0..1]

type : Type [1] The type of the property.

Invariant

true

Semantics

Endeavor properties are used to track individual properties of actual instances of elements during an endeavor. Endeavor
properties can be defined individually for language elements. See 9.5 for the minimal set of endeavor properties that is
used by the dynamic semantics of Essence.

9.3.2.7 ExtensionElement

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement”

Description

An element that extends a language element by replacing the content of one of its attributes.

Attributes
targetAttribute : String [1] The name of the attribute which is to be extended.
extensionFunction : String [1] The function applied to the target attribute.

Associations

targetElement : LanguageElement [1] The element to be extended.

Invariant

-- The target element may not be an extension element or merge resolution
not self.targetElement.oclIsKindOf (ExtensionElement) and not
self.targetElement.oclIsKindOf (MergeResolution)

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 77

Semantics

If an extension X is associated with a target element T and referenced by element group C, then when T is viewed in C,
what is seen is T modified by X by applying extension functions to the attributes of T. See 9.4 for the detailed
mechanism.

9.3.2.8 Kernel

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A kernel is a set of elements used to form a common ground for describing an engineering endeavor. A kernel is an
element group that names the basic concepts (i.c., alphas, activity spaces and competencies) for a domain (e.g.,
Engineering).

Attributes

consistencyRules : String [1] A set of rules on the consistency of a particular Kernel. The format for
writing these rules is out of the scope of this specification. It is
recommended to use either plain text or OCL.

Associations
N/A

Invariant

-- A kernel can only contain alphas, alpha associations, alpha containments,
activity spaces, competencies, kernels, extension elements, and merge
resolutions.

self.referredElements->union (self.ownedElements)->forAll (e |

e.oclIsKindOf (Alpha) or e.oclIsKindOf (AlphaAssociation) or

.oclIsKindOf (AlphaContainment) or e.oclIsKindOf (ActivitySpace) or
.0oclIsKindOf (Competency) or e.oclIsKindOf (Kernel) or

.0clIsKindOf (ExtensionElement) or e.oclIsKindOf (MergeResolution))

® OO

-- The alphas associated by alpha associations are available within the kernel or
-- its referred kernels.

self.allElements (AlphaAssociation)->forAll (aa | self.allElements (Alpha)
->includes (aa.endl) and self.allElements (Alpha)->includes (aa.end2))

-- All input alphas of the activity spaces are available within the
-- kernel or its referred kernels.

self.allElements (ActivitySpace)->forAll (as | self.allElements (Alpha)
->includesAll (as.input))

-- Completion criteria are only expressed in terms of states which belong to
alphas which are available in the kernel or its referred kernels.
self.allElements (ActivitySpace)->forAll (as | as.completionCriterion->forAll (cc
| cc.state<> null and cc.workProduct = null and self.allElements (Alpha)->exists(a
| a.states->includes(cc.state))))

78 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Semantics

A kernel is a kind of domain model. It defines important concepts that are general to everyone when working in that
domain.

A kernel may be defined including references to other kernels. For example, a more basic kernel may contain elements
that are meaningful to the domain of “Engineering” and that may be used in the specific context of “Software
Engineering” domains as defined by a referring kernel.

A kernel is closed in that elements in the kernel may only refer to elements which are also part of the kernel or it’s
referred kernels.

9.3.2.9 LanguageElement

Package: Foundation
isAbstract: Yes
Generalizations:

Description

Abstract superclass for an Essence concept.

Attributes

isSuppressable : Boolean A flag indicating whether this element may be suppressed in an
extension or composition (see 9.4.3.2).

Associations

owner : ElementGroup [0..1] The element group that owns this language element.

tags : Tag [0..%] Tags associated with this language element.

resources : Resource[0..*] Resources associated with this language element.

properties : EndeavorProperty [*] Properties (defined at M1 level) that you want to track during the
endeavor.

Invariant

-- All language elements that are not element groups need an owner
(not self.oclIsKindOf (ElementGroup)) implies owner <> null

-- Each and every instance of LanguageElement may be related to each other via
endeavor associations

LanguageElement: :allInstances->forAll (el,e2 : LanguageElement |
EndeavorAssociation::allInstances->exists (a: EndeavorAssociation | a.memberEnd
->exists(pl,p2 : EndeavorProperty | pl.languageElement=el and
P2.languageElement=e2)))

Semantics

Language element is the root for all basic elements, auxiliary elements and element groups. It defines the concepts within
the Essence language that can be grouped to build composite entities such as Kernels and Practices.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 79

9.3.2.10 Library

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A library is a container that names a collection of element groups.

Attributes
N/A

Associations
N/A

Invariant

-- A library may only own element groups
self.referredElements->forAll(e | e.oclIsKindOf (ElementGroup)) and
self.ownedElements->forAll (e | e.oclIsKindOf (ElementGroup))
Semantics

A library contains element groups relevant for a specific subject or area of knowledge, like software development.

A library can be used to set up a meaningful collection of element groups of any scale, e.g., a collection of practices used
in a company or a collection of practices and kernels taught in a university course.
9.3.2.11 MergeResolution

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

An element that provides a solution for a merge conflict as defined in 9.4.4.3.

Attributes

targetAttribute : String [1] The name of the attribute on which the conflict is solved.
targetName : String [1] The name of the element on which the conflict is solved.
resolutionFunction : String [1] The function applied to the target attribute.

Associations
N/A

Invariant

true

80 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Semantics

If an element group refers to more than one element with the same name, these elements are merged when viewing the
content of this element group. For each conflicting attribute on the merged objects, a merge resolution must be defined. It
applies a resolution function to the conflicting attributes and returns the attribute value to be used as resolution. See 9.4
for the detailed mechanism.

9.3.2.12 Method

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A Method is the composition of a Kernel and a set of Practices to fulfill a specific purpose.

Attributes

purpose : String [1] The purpose of this Method. The content of this attribute should be
an explicit short statement that describes the goal that the method
pursues. Additional explanations can be given in the attribute
“description” inherited from “ElementGroup”.

Associations
baseKernel : Kernel [1] The Kernel this Method is based on.

Invariant

-- A method can only contain practices.
self.referredElements->forAll (e | e.oclIsKindOf (Practice)) and
self.ownedElements->forAll (e | e.oclIsKindOf (Practice))

Semantics

A method contains a set of practices to express the practitioners’ way of working in order to fulfill a specific purpose. The
method purpose should consider the stakeholder needs, particular conditions, and the desired product. The set of practices
that makes up a method should contribute and be sufficient to the achievement of this purpose.

For example, a method purpose can be related to developing, maintaining, or integrating a product.

The set of practices, that articulate a method, should satisfy the coherence, consistency, and completeness properties. The
set of practices is coherent if the objective of each practice contributes to the entire method purpose, is consistent if each
of its entries and results are interrelated and useful. Finally, it is complete if the achievement of all practice objectives
fulfills entirely the method purpose and produces expected output.

Those properties are most likely not true from the beginning while authoring a method.

9.3.2.13 Pattern

Package: Foundation
isAbstract: No
Generalizations: "BasicElement"

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 81

Description

A pattern is a generic mechanism for naming complex concepts that are made up of several Essence elements. A pattern
is defined in terms of pattern associations.

Attributes
N/A

Associations

associations : PatternAssociation [*] Named association types between elements.

Invariant

true

Semantics

Pattern is a general mechanism for defining a structure of language elements. Typically, the pattern references other
elements in a practice or kernel. For example, a role may be defined by referencing required competencies, having
responsibility of work products, and participation in activities. Another example could be a phase which groups activity
spaces that should be performed during that phase.

Patterns can also be used to model complex conditions. For example, a pattern for pre-conditions can create associations
to activities, work products and level of detail to express that particular work products must be present in at least the
designated levels of detail to be ready to start the particular activities.

9.3.2.14 PatternAssociation

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement”

Description

Pattern associations are used to create named links between the elements of a pattern.

Attributes

name : String [1] Name of the association.

Associations

elements : LanguageElement [*] The elements taking part in the pattern via this association.

Invariant

-- A pattern association may not refer to other pattern associations, element
groups, extension elements, or merge resolutions

self.elements->forAll (e | not e.oclIsKindOf (PatternAssocation) and not
e.oclIsKindOf (ElementGroup) and not e.oclIsKindOf (ExtensionElement) and not
e.oclIsKindOf (MergeResolution))

82 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Semantics

Each pattern association introduces elements to take part in a pattern. The name of the pattern association should explain
the meaning these elements have inside the pattern. For example, in a pattern defining a toolset there may be a pattern
association named “used for” referring to an activity, another pattern association named “used on” referring to a work
product, and a third pattern association named “suitable for” referring to a level of detail on the work product that can be
achieved with that toolset.

9.3.2.15 Practice

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A practice is a repeatable approach to doing something with a specific objective in mind. A practice describes how to
handle a specific aspect of an engineering endeavor, including the descriptions of all relevant elements necessary to
express the desired work guidance that is required to achieve the purpose of the practice. A practice can be defined as a
composition of other practices.

Attributes

consistencyRules : String [1] Rules on the consistency of a particular Practice. The format for
writing these rules is out of the scope of this specification. It is
recommended to use either plain text or OCL.

objective : String [1] The objective of this Practice, expressed as a concise and isolated
phrase. The content of this attribute should be an explicit and short
statement that describes the goal that the practice pursues. Additional
explanations can be given in the attribute “description” inherited from
“ElementGroup”.

measures : String [0..*] List of standard units used to evaluate the practice performance and
the objectives’ achievement.

entry : String [0..¥] Expected characteristics of elements needed to start the execution of a
practice.

result: String [0..*] Expected characteristics of elements required as outputs after the

execution a practice is completed.

Associations
N/A

Invariant

-- The alphas and the work products associated by the work product manifests are
-- visible within the practice.

self.allElements (WorkProductManifest)->forAll (wpm |
self.allElements (Alpha) ->includes (wpm.alpha) and

self.allElements (WorkProduct)->includes (wpm.workProduct)

-- Associated activities are visible within the practice.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 83

self.allElements (ActivityAssociation)->forAll (a | (self.allElements (Activity)
->includes (a.endl) or self.allElements (ActivitySpace)->includes(a.endl)) and
(self.allElements (Activity)->includes (a.end2) or self.allElements (ActivitySpace)
->includes(a.end2)))

-- All alphas and work products involved in actions of activities are
-- available within the practice.

self.allElements (Activity)->forAll (a | a.action->forAll (ac |
self.allElements (WorkProduct)->includesAll (ac.workProduct) and
self.allElements (Alpha)->includesAll (ac.alpha))

-- Completion criteria are only expressed in terms of states which belong to
alphas or levels of detail which belong to work products which are available in
the practice.

self.allElements (ActivitySpace)->forAll (as | as.completionCriterion->forAll (cc
| (cc.state<> null and cc.levelOfDetail = null and self.allElements (Alpha)
->exists(a | a.states->includes(cc.state))) or (cc.state = null and
cc.levelOfDetail<> null and self.allElements (WorkProduct)->exists (wp |
wp.levelsOfDetail->includes (cc.workProduct)))))

-- The activities’ required competencies are visible within the practice.
self.allElements (Activity)->forAll(a | self.allElements (Competency)->exists (c |
c.possiblelevel->includes (a.requiredCompetencylevel))

-- All elements associated with a patterns are visible within the practice.
self.allElements (Pattern)->forAll (p | p.associations->forAll (pa | pa.elements
->forall (pae | self.allElements (pae.oclType)->includes (pae))

Semantics

A practice addresses a specific aspect of development or teamwork. It provides the guidance to characterize the problem,
the strategy to solve the problem, and instructions to verify that the problem has indeed been addressed. It also describes
what supporting evidence, if any, is needed and how to make the strategy work in real life.

A practice provides a systematic and repeatable way of work focused on the achievement of an objective. When the
practice is made up by activities, the completion criteria derived from them are used to verify if the produced result
achieves the practice’s objective. To evaluate the practice performance and the objectives’ achievement, selected
measures can be associated to it. Measures are estimated and collected during the practice execution.

As might be expected, there are several different kinds of practices to address all different areas of development and
teamwork, including (but not limited to):

e Development Practices — such as practices for developing components, designing user interfaces, establishing an
architecture, planning and assessing iterations, or estimating effort.

e Social Practices — such as practices on teamwork, collaboration, or communication.
¢ Organizational Practices — such as practices on milestones, gateway reviews, or financial controls.

Except trivial examples, a practice does not capture all aspects of how to perform a development effort. Instead, the
practice addresses only one aspect of it. To achieve a complete description, practices can be composed. The result of
composing two practices is another practice capturing all aspect of the composed ones. In this way, more complete and

84 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

powerful practices can be created, eventually ending up with one that describes how an effort is to be performed, i.c., a
method.

The definition of a practice may be based on elements defined in a kernel. These elements, like alphas, may be used (and
extended) when defining elements specific to the practice, like work products.

A practice may be a composition of other practices. All elements of the other practices are merged and the result becomes
a new practice (see 9.4 for the definition of composition).

A practice is closed in that elements in the practice may only refer to elements which are also part of the practice or the
element groups this practice relates to.

9.3.2.16 PracticeAsset

Package: Foundation
isAbstract: No
Generalizations: "ElementGroup"

Description

A practice asset is a container that names a collection of language element that are no element groups.

Attributes
N/A

Associations
N/A

Invariant

-- A practice asset may not own element groups
self.referredElements->forAll(e | not e.oclIsKindOf (ElementGroup)) and
self.ownedElements.>forAll (e | not e.oclIsKindOf (ElementGroup))
Semantics

A practice asset contains elements intended to be reused while building practices. Different to a kernel, the elements in a
practice asset do not necessarily form a common ground or vocabulary. Different to a practice, the elements in a practice
asset do not necessarily address a particular problem or provide explicit guidance.

9.3.2.17 Resource

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement”

Description

A source of information or content, such as a website, that is outside the Essence model and referenced from it, for
instance by a URL.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 85

Attributes

content : String [1] A reference to the content of the resource. The reference can be
provided in any suitable way, e.g., as a hyperlink or as a full text
document.

Associations
N/A

Invariant

true

Semantics

Resources are used to make information available from an Essence model without translating this information into terms
of Essence elements and their attributes explicitly. This can for instance be used if the formal model should be kept small
for some reason while storing additional information informally in resources. It can also be used if a complex practice or
method is to be adopted partially in Essence, while the full practice or method description lives as an external resource
outside the Essence model.

Resources are also used to attach external objects like templates, tools, study material, or similar to language elements.

9.3.2.18 Tag

Package: Foundation
isAbstract: No
Generalizations: "LanguageElement"

Description

A non-empty label that can be attached to a language element.

Attributes
value : String [1] Value of the tag.

Associations
N/A

Invariant

-- Value may not be empty
not self.value.isEmpty ()

Semantics

Tagging allows the user to add user defined or tool specific information to any language element. It is up to the user or
tool vendor who applied the tags to define tagging schemes and interpret them. Examples for tagging include author tags,

LRI

version tags, and categorization into areas of concern like “endeavor space”, “customer space”, and “solution space”.

Note that this element is untyped and thus does not have a name attribute. For typed tags suitable for key-value-pairs and
tags with empty values see 9.3.6.4.

86 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.3.3 AlphaAndWorkProduct

9.3.3.1 Overview

The intention of the AlphaAndWorkProduct package is to provide the basic elements needed for the simplest form of
practices. The elements and their relationships are presented in the diagrams below. A detailed definition of each of the
elements is found below.

package AlphafndWorkProduct[[25 Language elements U

LanguageElement

+is Suppressable | Boclean = true

i

BasicElernent AlphaContainment WorkProductManifest LevelOfDetail
+name : String +iowerBound : Integer +HowearBound : Integer +name : String
+icon | GraphicalElement [0..1] +upperBound : Integer +upperBound : Integer +is SufficientLevel : Boolean
+briefDescription : String +description : String
+description : String

1

Alpha WorkProduct AlphaAssociation State
+name . String +name : String
+and1lowerBound : Integer +description : String
+end lupperBound : Integer

+end2lowerBound : Integer
+end?upperBound : Integer

Figure 9.8 — AlphaAndWorkProduct::Language elements

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 87

package AlphaAndWorkProduct[[25 Alpha and work product U

AlphaContainment

+lowerBound : Integer
+upperBound : Integer

+alphaContainment

+subordinateAlpha |1

+superdlpha |1

+alphaContainment |*

+predecessor |1

+SUCCBSS0r

A

+end1
1 Alpha +alpha +states =
+name : String
+end2 1 1.* |+description : String [0.1
1
+alpha |1 ate 10,1
+alphafssociation |* +alphaAssociation |° +slate (U
AlphaAssociation +workProductManifest |* *checkListitem)
+name : String WorkProductManifest Checkpoint
+end1lowerBound : Integer - e
+end1uppaerBound : Integer +HowerBound ._Imeger +name . h_?T””_.Clo)
+end2lowerBound : Integer +upperBound : Intager +description : String
+end2upperBound : Intager - .
+workProductManifest +checkListitern T
+Hevel |0..1
+workProduct | 1 LevelOfDetail
WorkProduct +workProduct +evelOfDetail |+name : String

+isSufficientLevel : Boolean
+description : String

+EUCCESs0r

+

predecessor (1

0.1

Figure 9.9 — AlphaAndWorkProduct::Alpha and work product

9.3.3.2 Alpha

Package: AlphaAndWorkProduct

isAbstract: No

Generalizations: "BasicElement"

Description

An essential element that is relevant to an assessment of the progress and health of an engineering endeavor.

An alpha represents and holds the state of some element, aspect, or abstraction in an endeavor that has a discernible state

and knowledge of whose state is required to understand the state of progress and/or health of the endeavor.

The instances of alphas in an endeavor form acyclic graphs. These graphs show how the states of lower level, more

granular instances, contribute to and drive the states of the higher level, more abstract, alphas.

Attributes
N/A

88

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Associations
states : State [1..*] The states of the alpha.

Invariant

-- All states of an alpha must have different names.
self.states->forAll(sl, s2 | sl <> s2 implies sl.name <> s2.name)

Semantics

Alpha is an acronym that means “Abstract-Level Progress Health Attribute.”

Alphas are subjects whose evolution we want to understand, monitor, direct, and control. The major milestones of an
engineering endeavor can be expressed in terms of the states of a collection of alphas. Thus, alpha state progression
means progression towards achieving the objectives of the engineering endeavor.

An alpha has well-defined states, defining a controlled evolution throughout its lifecycle — from its creation to its
termination state. Each state has a collection of checkpoints that describe what the alpha should fulfill in this particular
state. Hence it is possible to accurately plan and control their evolution through these states. However, these states are not
just one-way linear progressions. Each time you reassess a state, if you do not meet all the checklist items, you can go
back to a previous state. You can also iterate through the states multiple times depending on your choice of practices.
The linear ordering of states just denotes the usual way of progression.

An alpha may be used as input to an activity space in which the content of the alpha is used when performing the work of
the activity space. The alpha (and its state) may be created or updated during the performance of activities in an activity
space.

An alpha is often manifested in terms of a collection of work products. These work products are used for documentation
and presentation of the alpha. The shape of these work products may be used for concluding the state of the alpha.

Different practices may use different collections of work products to document the same alpha. For example, one practice
may document all kinds of requirements in one document, while other practices may use different types of documents.
One practice may document both the flow and the presentation of a use case in one document, while another practice may
separate the specification of the flow from the specification of the user interface and write them in different documents.

An alpha may contain a collection of other alphas. Together, these sub-alphas contribute to the state of the superordinate
alpha. However, there is no explicit relationship between the states of the subordinate alphas and the state of their
superordinate alpha.

9.3.3.3 AlphaAssociation

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement”

Description

Alpha association is used to represent a relationship between alphas. Generally these associations are defined by a
practice.

Attributes
end1LowerBound : Integer [1] Lower bound of association endpoint 1.
end1UpperBound : Integer [1] Upper bound of association endpoint 1.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 89

end2LowerBound : Integer [1] Lower bound of association endpoint 2.
end2UpperBound : Integer [1] Upper bound of association endpoint 2.
name : String [1] Name of the alpha association.

Associations

endl : Alpha [1] The alpha endpoint 1 of the association.
end2 : Alpha [1] The alpha endpoint 2 of the association.
Invariant

true

Semantics

Unlike a relationship between alphas defined using alpha containment, which is used for the Essence “sub-alpha”
relationship, a relationship between alphas defined using alpha association has no defined semantics in Essence. An
example would be between a Risk and the Team Member who identified the Risk. While Risk Management practice
might recommend that this relationship be tracked, it is not a sub-alpha relationship.

A relationship modeled by an alpha association can, in general, be many-to-many.

9.3.3.4 AlphaContainment

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

Alpha association is used to represent a sub(ordinate)-alpha relationship between alphas.

Attributes
lowerBound : Integer [1] Lower bound for the number of instances of the sub(ordinate)-alpha.
upperBound : Integer [1] Upper bound for the number of instances of the sub(ordinate)-alpha.

Associations

superAlpha : Alpha [1] The super alpha.
subordinateAlpha : Alpha [1] The subordinate alpha.
Invariant

true

Semantics

The sub-alpha relationships define the graphs that show how the states of lower level, more granular alpha instances
contribute to and drive the states of the higher level, more abstract, alpha instances.

The relationship between a sub(ordinate)-alpha and a super-alpha can, in general, be many-to-many. The ends of the
relationship are modeled separately to indicate which is the sub(ordinate)-alpha and which is the super-alpha of the
relationship.

920 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.3.3.5 LevelOfDetail

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Description

A specification of the amount of detail or range of content in a work product; the level of detail of a work product is
determined by evaluating checklist items.

Attributes

description : String [1] A description of the level of detail.

isSufficientLevel : Boolean [1] Boolean value determined by the practice (author) to indicate the
sufficient level of detail.

name : String [1] Name of the level of detail.

Associations

checkListltem : Checkpoint [*] Checklist items to determine if the level of detail has been reached.

successor: LevelOfDetail [0..1] Next level of detail.

Invariant

-- All checkpoints of a level of detail must have different names
self.checkListItem->forAll(il, i2 | il <> i2 implies il.name <> i2.name)

-- A level of detail may not be its own direct or indirect successor
self.allSuccessors () ->excludes (self)

Additional Operations

-- All successors of a level of detail
context LevelOfDetail::allSuccessors : Set (LevelOfDetail)
body: Set{self.successor}->union(self.successor.allSuccessors())

Semantics

Levels of detail describe the amount and granularity of information that is present in a work product. For example, they
allow the user to distinguish between a sketch of a system architecture, a formally modeled system architecture, and an
annotated system architecture which is ready for code generation. It depends on the practice which of these levels is
considered sufficiently detailed.

It is important to note that levels of detail are not concerned with the completeness of a work product. A work product
can be considered complete for the purpose of the endeavor without being in the most advanced level of detail. In turn, a
work product can be in the most advanced level of detail, but not yet been completed.

9.3.3.6 State

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "LanguageElement"

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 91

Description

A specification of the state of progress of an alpha. The state of an alpha is determined by evaluating checklist items.

Attributes
name : String [1] The name of the state.
description : String [1] Some additional information about the state.

Associations

checkListItem : Checkpoint [*] A collection of checkpoints associated with the state.
successor : State [0..1] The successor state.
Invariant

-- All checkpoints of a state must have different names
self.checkListItem->forAll(il, i2 | il <> i2 implies il.name <> i2.name)

-- A state may not be its own direct or indirect successor
self.allSuccessors () ->excludes (self)

Additional Operations

-- All successors of a state

context State::allSuccessors : Set(State)

body: Set{self.successor}->union(self.successor.allSuccessors())

Semantics

A state expresses a situation in which all its associated checklist items are fulfilled. It is considered to be an important
and remarkable step in the lifecycle of an alpha.

9.3.3.7 WorkProduct

Package: AlphaAndWorkProduct
isAbstract: No
Generalizations: "BasicElement"

Description

A work product is an artifact of value and relevance for an engineering endeavor. A work product may be a document or a
piece of software, but also other created entities such as:

e (Creation of a test environment

e Delivery of a training course

Attributes
N/A

Associations
levelOfDetail: LevelOfDetail [0..*] The level of details defined for the work product.

92 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Invariant

-- All levels of detail of a work product must have different names
self.levelOfDetail->forAll (11, 12 | 11 <> 12 implies ll.name <> 1l2.name)
Semantics

A work product is a concrete representation of an alpha. It may take several work products to describe the alpha from all
different aspects.

A work product can be of many different types such as models, documents, specifications, code, tests, executables,
spreadsheets, as well as other types of artifacts. In fact, some work products may even be tacit (conversations, memories,
and other intangibles).

Work products may be created, modified, used, or deleted during an endeavor. Some work products constitute the result
of (the deliverables from) the endeavor and some are used as input to the endeavor.

A work product could be described at different levels of details, like overview, user level, or all details level.

9.3.3.8 WorkProductManifest

Package: AlphaAndWorkProduct
isAbstract: No

Generalizations: "LanguageElement”
Description

A work product manifest binds a work product to an alpha.

Attributes

lowerBound : Integer|1] Lower bound for the number of instances of the work product
associated to one instance of the alpha.

upperBound : Integer [1] Upper bound for the number of instances of the work product

associated to one instance of the alpha.

Associations

alpha : Alpha [1] The alpha bound by this manifest.
workProduct : WorkProduct [1] The work product bound by this manifest.
Invariant

true

Semantics

Work product manifest represents a trinary relationship. It is a relationship from a practice to a work product which is
used for describing an alpha. Several work products may be bound to the same alpha, i.e., there may be multiple alpha
manifests within a practice binding a specific alpha to different work products.

For each work product manifest, there is a multiplicity stating how many instances there should be of the associated work
product describing one instance of the alpha.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 93

9.3.4 ActivitySpaceAndActivity

9.3.4.1 Overview

The intention of the ActivitySpaceAndActivity package is to provide additional elements to deal with more advanced
practices. The elements and their relationships are presented in the diagrams shown below. A detailed definition of each
of the elements is found below.

package ActivitySpacelndsctivity [Language elements U

LanguageElemeant

+izSuppressable | Boolzan = true

BasicElemeant ActivityAssociation CompletionCriterion Action

+name : String +kingd : String +description : String +kind : String
+icon : GraphicalElement [0..1]
+hrigfDescription : String
+description : String

AbstractActivity

T

ActivitySpace Activity
+approach : String [1..%]

Figure 9.10 — ActivitySpaceAndActivity::Language elements

94 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

package ActivitySpaceAndActivity [| 21 Activity space and activity U

d1 tivity Associat
AbstractActivity per HactiityAssociaton ity
i 1 N - -
+activty +and? +activityAssociation | +kind : String
! 1 0.
+criterion [1.." | |
. N Approach
- S o - +activity pp
+Critarion Criterfon +criterion ActivitySpace Activity o = +name : String
" +description : String . v ” +description : String
[y +activity Space
+activity
0.
+state |0..1 +evelOfDetail 0.1 +activity |1 +requiredCompetencyLevel |0.."

State LevelOfDetail CompetencyLevel
+name : String +name : String +action{0..* +name : String
+description : String +isSufficientLevel : Boolean . +briefDescription : String

+description : String +action Action +action +evel : Integer
+kind : ActionKind [
aenumerations
ActionKind
+input |0.. +workProduct|0.." create
read
EntryCriterion | |Comp|e1iont:rimrion WorkProduct update
[| [| delete

Figure 9.11 — ActivitySpaceAndActivity::Activity space and activity

9.3.4.2 AbstractActivity

Package: ActivitySpaceAndActivity

isAbstract: Yes

Generalizations: "BasicElement"

Description

An abstract activity is either a placeholder for something to be done or a concrete activity to be performed.

Attributes
N/A

Associations

criterion : Criterion[1..*]

Invariant

true

A collection of criteria that have to be fulfilled for entering

the activity or considering the activity completed.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

95

Semantics

Abstract activities serve as a super class for activity spaces and activities. Each abstract activity has to have completion
criteria, telling the practitioner when the abstract activity can be considered completed.

9.3.4.3 Action

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "LanguageElement"

Description

An operation performed by an activity on a particular alpha or work product.

Attributes
kind : ActionKind [1] The kind of the action.

Associations

alpha : Alpha [0..*] The alphas (if any) touched by this action.
workProduct : WorkProduct [0..*] The work products (if any) touched by this action.
Invariant

-- The action touches either alphas or work products, but not both nor nothing
(self.alpha->isEmpty () implies self.workProduct->notEmpty()) and (self.alpha
->notEmpty () implies self.workProduct->isEmpty())

Semantics

Activities may involve work products in different ways. In an action, one of four possible operations can be specified that
an activity performs on a work product:

e “create” - The activity creates the work product. It is likely to use this kind of operation in activities that set up an
environment or create initial version of work products.

e “read” - The activity reads the work product but does not change it. This kind of operation assumes that the work
product needs to be present to be successful in this activity. It is likely to use this kind of operation in activities
that transform contents from one work product into other work products.

e “update” - The activity possibly modifies the work product. In an actual endeavor, there may be cases in which no
modification is necessary, but there is at least one case in which the work product has changed after performing
the activity. This kind of operation assumes that the work product needs to be present to be successful in this
activity.

e “delete” - The activity deletes the work product. This kind of operation assumes that the work product no longer
exists if the activity is completed successfully. Note that deleted work products cannot be covered by completion
criteria. It is likely to use this kind of operation in activities that finalize an endeavor and thus remove
intermediate results for privacy or security reasons.

9.3.44 ActionKind
Package: ActivitySpaceAndActivity

96 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

IsAbstract: n/a
Generalizations:

Description

Enumeration of all supported Actions.

Literals

create Indicates a create Action
read Indicates a read Action
update Indicates an update Action
delete Indicates a delete Action
Semantics

See clause 9.3.4.3 Action for a details on the indicated Actions.

9.3.4.5 Activity

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "AbstractActivity"

Description

An Activity defines one or more approaches for carrying out some work to be performed and can recommend actions on
alphas and/or work products in order to perform this work.

Attributes
N/A

Associations

requiredCompetencyLevel : CompetencyLevel [*] A collection of competencies required for completing this
activity successfully.

action : Action [0..*] A collection of actions on work products or alphas
recommended by this activity.

approach : Approach [1..¥] Different approaches to accomplish the activity

Invariant

true

Semantics

An activity describes some work to be performed. It is considered completed if all its completion criteria are fulfilled;
whether or not this completion was because of performance of the activity or for some other reason. Performing an
activity can normally be expected to result in its completion criteria being fulfilled, but this is not guaranteed.

An activity can recommend to perform actions on alphas and/or work products. There is no specific relation between the
actions recommended by an activity and its completion criteria. For example, an activity for a Sprint Retrospective
according to Scrum will have alpha “Way of Working” as subject for action “modify”, because it is possible that the team
decides to change the way of working based on the results of the retrospective. However, there is no specific relationship

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 97

indicating that the Sprint Retrospective can only be considered complete if the alpha “Way of Working” has reached a
certain state, so it will not be listed among the completion criteria. In turn, an activity for monitoring a team’s
performance can be considered complete if the team is abandoned, but the activity will never imply any action on the
“team” alpha.

The activity is a manifestation of (part of) an activity space through an activity association. The activities filling the same
activity space jointly contribute to the achievement of the completion criteria of the activity space. Activities may define
different approaches to reach a goal which may imply restrictions on how different activities may be combined. One
activity may be bound to multiple activity spaces within a practice.

The activity may be related to other activities via an activity association. The association indicates a relationship between
the activities, such as a work breakdown structure. Activity associations do not constrain the completion of the associated
activities.

To be likely to succeed with the activity, the performer(s) of the activity must have at least the competencies required by
the activity to be able to perform that activity with a satisfactory result.
9.3.4.6 ActivityAssociation

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "LanguageElement”

Description

Activity association is used to represent a relationship or dependency between activities. Generally these dependencies
are defined by the practice that defines the activities.

Attributes
kind : String [1] The kind of the association.

Associations

endl : AbstractActivity [1] The first member of the association.
end?2 : AbstractActivity [1] The second member of the association.
Invariant

-- Activity spaces can only be part of other activity spaces
(self.end2.o0clIsKindOf (ActivitySpace) and self.kind = “part-of”) implies
self.endl.oclIsKindOf (ActivitySpace)

Semantics

Activities can be related to each other via activity associations. They define relationships or dependencies between
activities, but do not constrain their completion.

If the kind of the association is “part-of”, the first member of the association is considered to be part of the second
member in a work breakdown structure. A usual way of using this kind is to assign activities to an activity space they
populate.

If the kind of the association is “start-before-start™, it is suggested to start the first member before starting the second
member.

98 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

If the kind of the association is “start-before-end”, it is suggested to start the first member before finishing the second
member.

If the kind of the association is “end-before-start”, it is suggested to finish the first member before starting the second
member. This may imply that the second member cannot be started before the first member is finished.

If the kind of the association is “end-before-end”, it is suggested to finish the first member before finishing the second
member. This may imply that the second member cannot be finished before the first member is finished.

However, in any case a member is considered complete if its completion criteria are met, independent of the completion
of its associated activities.

9.3.4.7 ActivitySpace

Package: ActivitySpaceAndActivity
isAbstract: No
Generalizations: "AbstractActivity"

Description

A placeholder for something to be done in the engineering endeavor.

Attributes
N/A

Associations

input : Alpha[*] A collection of alphas that have to be present to be
successful in fulfilling the objectives of this activity
space.

Invariant

true

Semantics

An activity space is a high-level abstraction representing “something to be done”. It uses a (possibly empty) collection of
alphas as input to the work. When the work is concluded a collection of alphas (possibly some of the alphas used as
input) has been updated. The update may cause a change of the alpha’s state. When the update and the state change of an
alpha takes place is not defined; only that it has been done when the activity space is completed.

What should have been accomplished when the work performed in the activity space is completed, i.e., the activity
space’s completion criteria, is expressed in terms of which states the output alphas should have reached. Using the
checkpoints for the states of alphas, it is at the discretion of the team to decide when a state change has occurred and thus
the completion criteria of the activity space have been met.

9.3.4.8 Approach

Package: ActivitySpaceAndActivity
isAbstract: No
Generalization: "LanguageElement"

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 99

Description

An Approach defines one way to accomplish some work. An approach is specified in the context of a specific activity.

Attributes
name : String The name of the Approach
description : String Contains the detailed description or definition of

the Approach.

Associations
N/A

Invariant

true

Semantics

The Approach element defines or describes how a particular Activity is accomplished. Multiple Approaches may be
associated with a single Activity. Also, an Approach, if generic enough, may be associated with multiple Activities.
9.3.4.9 CompletionCriterion

Package: ActivitySpaceAndActivity
isAbstract: No
Generalization: "Criterion"

Description

CompletionCriterion specializes Criterion and must be satisfied to consider work of an activity as complete.

Attributes
N/A

Associations
N/A

Invariant

(See "Criterion")

Semantics

The work of an activity or activity space is considered complete when its completion criteria are fulfilled, i.e., when the
alpha states or work product levels of detail defined by the completion criteria are reached.

9.3.4.10 Criterion

Package: ActivitySpaceAndActivity
isAbstract: Yes
Generalizations: "LanguageElement”

100 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Description
A condition that can be tested as true or false that contributes to the determination of whether an activity or an activity
space may be entered or is complete. A criterion is expressed in terms of the state of an alpha or the level of detail of a
work product. The abstract Criterion must be specialized by EntryCriterion or Completion Criterion.
Attributes
description : String [1] A description of the criterion which is to be reached at the target state
of an alpha or the level of detail of a work product.
Associations
state : State [0..1] A state to be reached.
levelOfDetail : LevelOfDetail [0..1] A level of detail to be reached.

Invariant

-- A criterion addresses either a state or a level of detail
(self.state<> null and levelOfDetail = null) or (self.state = null and
levelOfDetail<> null)

Semantics

Criterion specifies a condition that must be met to enter an activity or activity space; or to consider the work in an
activity or activity space complete. Criterion must be specialized by either EntryCriterion or CompletionCriterion. The
work of an activity or activity space is considered complete when its completion criteria are fulfilled, i.e., when the alpha
states or work product levels of detail defined by the completion criteria are reached.

9.3.4.11 EntryCriterion

Package: ActivitySpaceAndActivity
isAbstract: No

Generalization: "Criterion"
Description

EntryCriterion specializes Criterion and must be satisfied before work of an activity can be started.

Attributes
N/A

Associations
N/A

Invariant

(See "Criterion")

Semantics

An entry criterion is fulfilled when the alpha state or work product level of detail defined by the entry criterion is
reached. The work of an activity may be started when all its entry criteria are fulfilled. The work of an activity space may

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 101

be started when one or more of its entry criteria are fulfilled; the work started (by activities in the activity space) can only
be done in relation to the alphas that fulfill the entry criteria.

9.3.5 Competency

9.3.5.1 Overview

The intention of the Competency package is to provide facilities to add competencies to practices. The elements and their
relationships are presented in the diagrams shown below. A detailed definition of each of the elements is found below.

package Competency[Language elements U

LanguageElement

+isSuppressable | Boolean = true

|

BasicElameant Competencylevel
+name : String +name : String
+icon : GraphicalElement [0..1] +hbriefDescription : String
+hriefDescription : String +evel : Integer
+clescription : String
FaY
Competency

Figure 9.12 — Competency::Language elements

package Competency [|2 Competency JJ

CompetencylLevel] Checkpoint
Competency +competency +possibleLevel |+name : String +competencylLevel +checklistitem e £ Sirv
+briefDescription : String | g, 1 0. v .qc\ -
1 wavel : Intager . - +description : String

Figure 9.13 — Competency::Competency

9.3.5.2 Competency

Package: Competency
isAbstract: No

102 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Generalizations: "BasicElement"

Description

A competency encompasses the abilities, capabilities, attainments, knowledge, and skills necessary to do a certain kind of
work. It is assumed that for each team member a level of competency for each individual competency can be named or
determined.

Attributes
N/A

Associations

possibleLevel : CompetencyLevel [*] A collection of levels defined for this competency.

Invariant

-- The possible levels are distinct
self.possiblelLevel->forAll (11, 12 | 11 <> 12 implies (ll.level <> 12.level and
11l .name <> 12.name))

Semantics

A competency is used for defining a capability of being able to work in a specific area. In the same way as an Alpha is an
abstract thing to monitor and control and an Activity Space is an abstraction of what to do, a Competency is an abstract
collection of knowledge, abilities, attitudes, and skills needed to perform a certain kind of work.

9.3.5.3 CompetencylLevel

Package: Competency
isAbstract: No
Generalizations: "LanguageElement”

Description

A competency level defines a level of how competent or able a team member is with respect to the abilities, capabilities,
attainments, knowledge, or skills defined by the respective competency.

Attributes

name : String [1] The name of the competency level.

briefDescription : String [1] A short description of what the competency level is.

level : Integer [1] A numeric indicator for the level, where a higher number means

more/better competence.

Associations

checklistitem: Checkpoint [0..*] Checklist items to determine if the level of competency is available.

Invariant

true

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 103

Semantics

Competency levels are used to create a range of abilities from poor to excellent or small scale to large scale. While a
competency describes what capabilities are needed (such as “Analyst” or “Developer”), a competency level adds a
qualitative grading to them. Typically, the levels range from 0 — no competence to 5 — expert. (Such as “basic”,
“advanced”, or “excellent”).

9.3.6 UserDefinedTypes

9.3.6.1 Overview

In order to add more detailed information on some of the elements in the Foundation package, these are extended by
elements in the package for user defined types. The elements and their relationships are presented in the diagrams shown
below. A detailed definition of each of the elements is found below.

package UserDefinedTypes[UgerDefinedTypes U

Pattern Resource Tag
+oontent @ String +value : String

TypedPattern TypedResource TypedTag

+#typedPattern |0..* +HypedResource |04 +HypedTag (0..*

+kinel [1
4

UserDefinedType
+kind [+name : String +kinel
+description ; String i
+constraint ;. String

Figure 9.14 — UserDefinedTypes::UserDefinedTypes

9.3.6.2 TypedPattern

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Pattern"

Description

A pattern that has a user defined type.

Attributes
N/A

104 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Associations
kind : UserDefinedType [1]

Invariant

true

Semantics

The user defined type associated with this pattern.

Typed patterns are used to ease interchange and consistent interpretation of complex patterns across tools and
organizations. Based on the type given to the pattern, certain pattern associations can be expected to be present or not

present on a particular pattern instance.

9.3.6.3 TypedResource

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Resource"

Description

A resource that has a user defined type.

Attributes
N/A

Associations
kind : UserDefinedType [1]

Invariant

true

Semantics

The user defined type associated with this resource.

Typed resources are used to ease interchange and consistent interpretation of resources across tools and organizations.
Based on the type given to a resource, tools and users can decide how to interpret, display, and use the content of the

resource.

9.3.6.4 TypedTag

Package: UserDefinedTypes
isAbstract: No
Generalizations: "Tag"

Description

A tag that has a user defined type.

Attributes
N/A

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

105

Associations

kind : UserDefinedType [1] The user defined type associated with this tag.

Invariant

true

Semantics

Typed tags are used to ease interchange and consistent interpretation of tags across tools and organizations. Based on the
type given to the tag, certain values can be expected to be used on a particular tag instance. Descriptions provided in the
type of the tag can be displayed as introductory information to a list of all language elements tagged with this tag.

9.3.6.5 UserDefinedType

Package: Competency
isAbstract: No
Generalizations: "LanguageElement"

Description

A user defined type is a named type containing a description and constraints that can be used to detail patterns, resources,
and tags.

Attributes

name : String [1] The name of the type.

description : String [1] A short description of what the type is about.

constraint : String [1] Rules that apply to all constructs using this type. It is recommended

to use either plain text or OCL.

Associations
N/A

Invariant

true

Semantics

User defined types are intended to detail, explain, and constrain the proper usage of particular patterns, resources, or tags.

The constraints defined by the type are meant to be evaluated on each typed element that is associated with this type.
Elements on which the evaluation fails are considered ill-defined. For example, a constraint on a type called “triary
pattern” could express that this type is intended to be used on typed patterns with at exactly three pattern associations.
Hence, using this type on other elements than typed patterns would be reported as ill-defined usage. Similarly, using this
type on a typed pattern with more or less than three pattern associations would also be ill-defined usage.

106 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.3.7 View

9.3.7.1 Overview

A user interacts through the realization of one or more views as he or she works according to a kernel, practice, or
method. The views provide a means for users to interact with a relevant subset, and relevant details, of Essence language
constructs as they are used to describe a method instance.

The overall objective with the views is to be able to provide the right and purposeful support for different types of users
and at different points in time; and as a consequence, help in avoiding information overflow of language construct detail.
This is because different types of users have different needs or interests in the details of a method instance description.
Some users need very little details whereas others need more.

For this purpose, the Essence language introduces the ViewSelection construct to support the specification of view
contents.

package View[[ELanguage elements u

LanguageElement

+isSuppressable : Boolean = true

T

ViewSelection FeatureSelection

+name : String +featureName : String
+description : String

Figure 9.15 — View::Language elements

package View [Wiew selection U

LarnguageElement
+constructSelection |—— +construct
T +igSuppressable | Boclean = true g

+viewSelection |* +featureSelection (*
sreferringViewSelection ViewSelection | yiewSelection +featureSelection | FeatureSelection
" +name : String * 1.+ |+featureMame : String

+description ; String

+included'iewSelection'|*

Figure 9.16 — View::View selection

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 107

9.3.7.2 FeatureSelection

Package: View
isAbstract: No
Generalizations: "LanguageElement”

Description

A reference to a construct feature such as a particular attribute or association.

Attributes

featureName : String [1] The name of the referred feature, such as the name of an attribute or
the role name of an association.

Associations

construct : BasicElement [1] The construct that defines the feature.

Invariant

true

Semantics

A feature selection names a feature (property or association) from a language construct which is to be included in a view.
The feature is identified by its name, since property and association names are unique within a language element. If a
feature with the given name does not exist, this feature selection does not contribute anything to the view.

9.3.7.3 ViewSelection

Package: View
isAbstract: No
Generalizations: "LanguageElement”

Description

A ViewSelection selects a subset of constructs and construct features such as attributes and associations.

Attributes
name : String [1] The name of the view.
description : String [1] A description of the view, including the purpose of the view.

Associations

constructSelection : LanguageElement The selected constructs (such as Alpha, State, etc) to be included in
[1..%] the view.

featureSelection : FeatureSelection The selected features, such as attributes and associations of constructs
[1..%] to be included in the view.

includedViewSelection : ViewSelections to be included in this ViewSelection (provides a
ViewSelection [*] means to build extended and more sophisticated views based on

existing/smaller views).

108 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Invariant

-- The featureSelections in a ViewSelection V refers to constructs that are part
of constructSelections in V.

self.featureSelection->forAll (fs | self.constructSelection

->inludes (fs.construct))

Semantics

A view selection names the language constructs to be included in a view. From these constructs, only features named by a
feature selection are actually included in the view. A view selection may include other view selections.

A view selection only contains information about the elements and features included in a view. It does not contain any
layout or presentation information.

9.3.7.3.1 Example ViewSelection 1

name: “Alpha state view”

description: “The purpose of this view is to show a particular state of an alpha including the checkpoints of the state.”
includedViewSelection: none

Table 9.1 — Included features for Example ViewSelection 1

Included selection number Feature name Basic element
1 name (attribute) Alpha

2 name (attribute) State

3 description (attribute) Checkpoint

4 states (role name) Alpha

This example ViewSelection can be realized with a state card i.e., the following is one possible implementation of the
ViewSelection:

D(Use-Case Slice

[Analyzed

= The use-case realization(s) for the slice
are detailed towards Responsibilities
Allocated or beyond.

The use-case realization(s) for the slice
contain enough information to enable
the relevant flows, special requirements|
and supporting definitions coverad by
the use-case slice to be successfully
implemented.

It is agreed how implementing the slice
will impact (new or existing)
implementation elements.

= The anticipated impact is acceptable.

| 3/5

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 109

So in Essence, the ViewSelection helps us define the subset of information to be shown on this specific type of card;
however how to visualize the card (read: implementing the view) is not specified by the view itself but is instead
something that is supported by the graphical syntax of the language.

In other words, it must be the purpose of the graphical syntax to implement (support) relevant views of the language.
9.3.7.3.2 Example ViewSelection 2
name: “Basic user view”

description: “The purpose of this view is to support a user that has very little interest in methods, but understands the
value in having some kind of descriptions of the practices. This is expected to be the largest user group and the one that
has high priority. This user will use a minimum number of language constructs that large user groups still can be
expected to get value from. This view includes simple narrative descriptions of each practice of interest, including the
work products of the practices.”

includedViewSelection: none

Table 9.2 — Included features for Example ViewSelection 2

Included selection number Feature name Basic element
1 name (attribute) Practice

2 briefDescription (attribute) Practice

3 description (attribute) Practice

4 elements (role name) Practice

5 name (attribute) WorkProduct
6 briefDescription (attribute) WorkProduct
7 description (attribute) WorkProduct
8 levelOfDetail (role name) WorkProduct
9 name (attribute) LevelOfDetail
10 briefDescription (attribute) LevelOfDetail
11 checkListltem (role name) LevelOfDetail
12 name (attribute) Checkpoint

13 description (attribute) Checkpoint

NOTE: Selection 4 returns all elements of the practice, but only the ones used in subsequent selections are actually

included. Selections 8-13 are all about including work product levels of detail in the view.

9.3.7.3.3 Example ViewSelection 3

name: “Extended user view including alphas”

description: “The purpose of this view is to extend and complement the basic user view above (example 2) by also

including alphas and the state of alphas.”

includedViewSelection: “Basic user view” (example 2 above) + “Alpha state view” (example 1 above)

110

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table 9.3 — Included features for Example ViewSelection 3

Included selection number Feature name Basic element

1 lowerBound (attribute) WorkProductManifest
2 upperBound (attribute) WorkProductManifest
3 alpha (role name) WorkProductManifest
4 workproduct (role name) WorkProductManifest
5 superAlpha (role name) AlphaContainment

6 subordinateAlpha (role name) AlphaContainment

7 lowerBound (attribute) AlphaContainment

8 upperBound (attribute) AlphaContainment

9.3.7.3.4 Example ViewSelection 4

name: “Yet another extended user view including activity flows”

description: “The purpose of this view is to extend and complement the extended user view above (example 3) by
supporting complete activity flows; this will allow users to view sequences of activities, parallel activities, and
understand how activities manipulate alphas and work products. Here the users can also view criteria for alpha state
changes, and understand how to progress alpha states in terms of activities.”

includedViewSelection: “Extended user view including alphas” (example 3 above)

Table 9.4 — Included features for Example ViewSelection 4

Included selection number Feature name Construct

1 name (attribute) Activity

2 briefDescription (attribute) Activity

3 approach (attribute) Activity

4 inputWorkProduct (role name) Activity

5 outputWorkProduct (role name) Activity

6 inputAlpha (role name) Activity

7 outputAlpha (role name) Activity

8 completionCriterion (role name) Activity

9 description (attribute) CompletionCriterion
10 state (role name) CompletionCriterion

9.4 Composition and Modification

9.4.1 Introduction

Composition and modification of language constructs are done via merge and extension operations in the Essence
language. They are the means by which more sophisticated and powerful constructs are built from smaller, simpler ones.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 111

Extension refers to the modification or customization of an element to suit a new context. For example, a Work Product
defined in practice P1 may be modified in the context of a wider practice P2 that uses P1 as a component. The extension
mechanism in Essence allows elements to be modified or customized, and has two key features:

e Extension is “aspectual” in the sense that the element being modified is oblivious of the modification.
o Extension is non-destructive, in the sense that the original element still exists and is available.

Merging refers to the capability to put elements together to build more powerful elements from simpler ones. The main
use of merging is to put practices together where they are to be used together in an endeavor. In this context, merging
allows the way of working on a project to be established by selecting and composing “best in class” practices addressing
different aspects of the endeavor.

9.4.2 Notations and Conventions

Each instance of a language element owns a set of attributes. Each attribute can be thought of as a (label, value) pair. In
particular each instance of a language element has an attribute with label = “name”.

The notation A(P1.xyz) denotes the set of attribute labels in P1.xyz. Type discipline guarantees that instances of language
elements of the same type from different practices have the same set of attribute labels, and that the values of a given
label have the same type. We allow that, in general, any label may have a null value.

Names of language elements are scoped by element groups. This means that, in the context of an element group, each
name is unique. Names can be prefixed by the name of an element group to ensure uniqueness in larger contexts. If P3 is
a Practice containing two Practices P1 and P2, then P1.xyz refers to the xyz that is provided by P1, and P2 xyz refers to
the xyz that is provided by P2.

9.4.3 Extending

9.4.3.1 Basic Extension Algorithm

Extending allows local changes to be made to the values of the attributes of an element in the context of an element
group. Extension works via the use of an instance of ExtensionElement added to an element group and referencing the
element being extended. If a language element is extended by an element group A, its original attribute values remain
unchanged. However, from the perspective of A the values are seen as modified by the extension. Whether the results of
extending are persisted or derived “on the fly” is a tooling issue and not part of the standard.

An association with role “targetElement” connects the ExtensionElement with the element to be extended. The attribute
“targetAttribute” of ExtensionElement denotes the attribute to be extended. The attribute “extensionFunction” provides a
post-condition in OCL for a function with signature:

extend (input : targetAttribute.oclType()) : targetAttribute.oclType ()
In this signature:
e The input to the function is a single value for the attribute to be extended.
e The result of the function a single value to be used for the attribute.

o null is an allowed value, both on input and output.

112 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.4.3.2 Renaming and Suppression

The set of attributes that can be given an extension function includes the “name,” so it is possible for the extended object
to be given a different name.

An extending function that sets the “name” attribute of an element to null suppresses this element. Hence it does not
appear (is not visible) in the extended practice. Note that it is not “physically” deleted, so is still present and visible in the
source (non-extended) practice. It is not allowed to define an extending function that suppresses language elements that
have their attribute “isSuppressable” set to false.

An element may not be suppressed in an element group if it is referenced by another, unsuppressed, named element in the
same group via an association that is mandatory for this element, resulting in a “dangling reference.” Tools should
support “cascading extension” whereby the user is prompted to make suitable extensions to referencing elements when
suppressing an element, to ensure that such “dangling references” are resolved.

Unnamed elements that represent binary links between language elements (i.e., links represented by
“AlphaContainment,” “WorkProductManifest,” and “ActivityAssociation”) must be suppressed automatically if at least
one of their ends is suppressed.

9.4.3.3 Standard Extension Functions

A template post-condition for an extending function that provides a fixed output independent of the inputs (assuming
attribute type String) looks like this:

post: result = “someFixedOutput”

A template post-condition for an extending function that performs a set of search and replace operation on the inputs
(assuming attribute type String) looks like this:

post: result = input.regexReplaceAll (OrderedSet (Tuple (“somePattern”,
“someReplacement”)))

Where regexReplaceAll is a function that performs a succession of string replacement based on pattern matching
with POSIX Extended Regular Expressions.

At a minimum, tools are expected to supply extension functions that satisfy these post conditions, and may support more.

9.4.3.4 Precedence and Chaining

Extensions are cumulative. If a given element is extended in element group A, and element group A is referenced by
element group B which also extends x, then the extensions added to x by B are applied on top of those added by A.

Where an element is subject to both extensions and merging (see below) by the same element group, the extensions are
applied first, before merging.

9.4.4 Merging

9.4.41 Overview

Suppose that two element groups, B and C, are being composed in an element group A. If the set of names of all elements
referenced by B and C are disjoint, then the discipline that each name is unique in the context of an element group is
maintained. In the event that an element referenced by B and an element referenced by C have the same name, these two
elements have to be merged in A. The merged element has the same name as the elements being merged, and ensures

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 113

uniqueness of this name in A. The merging is local to A and does not affect the elements as seen in B or C, so the
contents of B and C remain unchanged by the merging operation.

If two elements from practices being composed share the same name and type “by accident,” but are actually
semantically distinct and should not be merged, then the name of one of one them must be changed using the Extension
mechanism. This prevents the two elements being merged.

The language elements “AlphaContainment,” “WorkProductManifest,” and “ActivityAssociation” that do not have a
“name” attribute and that represent links between language elements are automatically equipped with a derived name that
is only visible for the purpose of detecting and handling merge conflicts. The name is composed of the names of the
associated language elements by concatenating them in the order “superAlpha” + “subordianteAlpha”, “alpha” +
“workProduct”, or “end1” + “end2”, respectively.

If certain conditions apply, merging is automatic, without the need for user input required. In other cases, where there is a
“merge conflict”, user input is required to resolve the conflict. Whether the results of merging (with or without a Merge
Resolution Object) are persisted or derived “on the fly” is a tooling issue and not part of the standard.

An element group in which there are unresolved merge conflicts is considered badly formed. Tools must detect badly
formed element groups and prompt the user to resolve the issue. Also, tools should prevent a badly formed element group
from being referenced (used by another element group) or being instantiated (at level-0) for enactment. If an element
group that is already referenced or instantiated is rendered badly formed by an edit to the model, the tool should prompt
the user to resolve the issue.

9.4.4.2 Basic Merging Algorithm

Let A be the element group to show the merged element, B and C be two element groups contained by A, and B.x and
C.x two elements of same name that are subject to the merge operation.

There is no “merge conflict” between B and C provided that:
a) B.x and C.x are of the same type, so that A(A.x) = A(B.x) = A(C.x).
b) Forall A in A(A.x), if both B.x and C.x offer a non-null value for A, then the values offered must be equal.

If there is no merge conflict between B.x and C.x, then A x is formed automatically, using the non-null value for
attributes where one offers a value for that label and the other does not.

Where more than two elements are being merged and there is no merge conflict when the elements are considered pair-
wise, then the automatically merged element can be formed in the obvious way.

9.4.4.3 Merge Conflict Resolution
In the event of a merge conflict, user action is required to resolve the conflict as follows:

a) IfB.x and C.x are not of the same type, one or other must be renamed using an ExtensionElement. The two elements
are then not subject to merge.

b) If B.x and C.x are of the same type, but have a label where both offer a different non-null value, an element of type
“MergeResolution” must be defined in A to give a value of the label in the merged object. This must be done for
each label in A where there is a conflict.

When defining a MergeResolution, the attributes “targetName” and “targetAttribute” denote the element name and
attribute whose value is being resolved. The value of “targetName” must be not null, as it is not possible (or meaningful)
to merge suppressed elements.

114 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The attribute “resolutionFunction” provides a post-condition in OCL for a function with signature:

merge (input : Set (Tuple(String,targetAttribute.oclType()))
targetAttribute.oclType ()

In this signature:

o The input to the function is a set of pairs, each pair being an element group name and the value for the target
attribute in that element group. Suppose an attribute in an element with name x is given value “London” by the
element named x in element group B and value “Paris” by the element named x in element group C. The input to a
merge function for merging this attribute of x in an element group A that references both B and C would be: { (B,
“London”), (C, “Paris”) }.

o The result of the function is a single value. This is the value to be used for the target attribute in A.
o null is an allowed value, both on input and output.

Using an element of type “MergeResolution” is mandatory if there is a merge conflict, but may be used even where there
is no merge conflict to “override” the results of the standard merge. Since merging is based on name, it is not possible to
define a MergeResolution on the “name” attribute of element being merged; so the “name” attribute can only be changed
using an ExtensionElement.

9.4.4.4 Standard Merge Resolution Functions

A template post-condition for a merge function that provides a fixed output independent of the inputs (assuming attribute
type String) looks like this:

post: result = “someFixedOutput”

A template post-condition for a merge function that picks the value from one of the elements being merged looks like
this:

post: result = input.selectValueFrom(“someElementGroupName”)

where selectValueFrom is a function that selects the second of the pair in input where the first in the pair equals the
name supplied as a parameter.

At a minimum, tools are expected to supply merge functions that satisfy these post conditions, and may support more.

9.4.4.5 Precedence and Chaining

If elements B.x and C.x are being merged in A, and B and/or C extend X, then it is the extended versions of x that are
merged to form A.x. Similarly, if A merges B.x and C.x and another element group then references A, that element group
may further extend A.x or even merge it with another element named x.

9.4.5 Example
As an example, Figure 9.17 shows the conceptual model of two practices P1 and P2 that are to be composed into a new
practice P3. In the result of the composition, activity CC should be inserted between AA and BB as depicted at the

bottom of the figure. This is an arbitrary choice by the practice author. Any other valid position for CC (including
keeping it unconnected from AA and BB) would be possible as a target result as well.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 115

P1 P2

P3

cC

Figure 9.17 — Two practices P1 and P2 and their merge result P3. Elements that are referred to by P3 are shown in
light grey. Elements that are modified by P3 are shown in dark grey. Elements that are owned by P3 are shown in
black.

The original object structure of P1 and P2 is shown in Figure 9.18. To achieve the desired composition, several steps
have to be taken:

e A new practice object P3 has to be created that refers to P1 and P2.

e A new extension element object has to be created for modifying the activity association from AA to BB in a way
that it gets an association from AA to CC.

e A new activity association object has to be created for the link between CC and BB.

Note that there is also the alternative to modify the activity association from AA to BB in a way that it links CC and BB
and consequently insert a new association from AA to CC. Both alternatives are equal with respect to complexity and
result.

116 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The resulting object structure for P3 is shown in Figure 9.19. Since there are no merge conflicts in the resulting practice,
no merge resolution objects are needed in this example.

Object Diagram Compostion1 [P1 U

p001 : Practice

ownedElements = a001, a002, a003, a004, a005, w01
a001 : Activity a002 : Action w01 : WorkProduect
action=a0d0z2 kind ="output" name = "WwW"
name ="AA" owner=p001 owner=pd01
owner = p001 workProduct = w001
al03 : ActivityAs sociation al04 : ActivityAssociation
end1 =a001 endl =al0s
end2=a005 end2=al01
owner=p001 owner=p0o01
al05 : Activity
name ="BE"
owner=p001

Object Diagram Composition1 [PQU

p002 : Practice
ownedElements = al0g, a007, w002

I I

a6 : Activity a7 : Action w02 : WorkProduct
action=a007 kind = "output’ name ="Yy"
name="CC" owner=p002 owner=p002
owner=p002 workProduct=w002

Figure 9.18 — Object diagrams for P1 and P2

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 117

Object Diagram Composition [p3 u

pl03 : Practice
extensions = e001
ownedElements = a008
referredElements = p001, p002

al0§ : ActivityAssociation
end! = al0g

end2 = al0s
owner=p003

p002 : Practice
ownedElements = a006, a007, w002

p0o1 : Practice

ownedElements = al01, a002, a003, a004, a005, wi01

el1 : ExtensionElement

extensionFunction ="post : result="a00&™
targetAttribute ="end2"
targetElement=a003

a003 : ActivityAssociation

endl = adll
end2 = al0s

owner=p001

Figure 9.19 — Partial object diagram for P3

In some cases, it is even not necessary to use an extension object in practice that merges other practices. An example for
this case is shown in Figure 9.20. Practices P4 and P5 are very similar. They both add a new alpha as subordinate alpha to
some other alpha owned by a kernel. These two practices can be composed to a new practice P6 without the need for an
extension element object or merge resolution object. In P6, the kernel alpha will have two subordinate alphas, one from

each of the composed practices.

However, a practice author may desire to sequence the subordinate alphas in a way that the one from P5 becomes

subordinate alpha of the one from P4, instead of being subordinate to the kernel alpha. In this case, an extension element
object is needed again as shown in Figure 9.21. It modifies the alpha containment in an appropriate way, changing the

super alpha of the alpha contained in practice P5.

Object Diagram Composition2 [P4 U

p001 : Practice

ownedElements = al02, a003
referredElements = k001

k001 : Kernel ab02 : Alpha
ownedElements = ali1 owner= p001
ald1 : Alpha ald3 : AlphaContainment
owner = k001 owner=p001
subordinateAlpha = a002

superAlpha = a001

Object Diagram Composition2 | PS U

p002 : Practice

ownedElements = al04, ad0s
referredElements = k001

ki1 : Kernel al04d: Alpha
ownedElements = al01 owner=p002
a001 : Alpha al05 : AlphaContainment
owner= k001 owner=p002
subordinateAlpha = a004

superAlpha = a001

Figure 9.20 — Object diagrams for P4 and P5

118 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Object Diagram Composttion2 [F‘S U

p003 : Practice

extensions = e001
referredElements = p001, p002

el : ExtensionElement
extensionFunction ="post . result= a002"

targetAttribute = "superalpha”
targetElement= al0ds

p001 : Practice

ownedElements = a002, ad03
referredElements = k001

p002 : Practice al05 : AlphaContainment
ownedElements = a004, a005 owner=p002
referredElements = k001 subordinateAlpha = alo4
superAlpha=a001

Figure 9.21 — Partial object diagrams for P6
9.5 Dynamic Semantics

9.5.1 Introduction

Since the language defines not only static elements like Alphas and Work Products, but also states associated with them,
it can not only be used to express static method descriptions, but also dynamic semantics. Using the states of the single
Alphas and their constituent Work Products, the overall state of an engineering endeavor can be expressed. Based on this,
denotational semantics can be defined for a function that supports a team in the enactment of an engineering endeavor, by
using the current state and a specification of the desired state to create a “to-do” list of activities to be performed by the
team.

In a large or complex endeavor this function may be provided by a specialist tool. In smaller endeavors, where the
overhead of tool support cannot be justified, the function represents a manual recipe that can be followed to determine
guidance on how to proceed.

9.5.2 Domain classes

9.5.21 Recap of Metamodeling Levels

As stated in 9.1.1, the Essence language is defined as a set of constructs which are language elements defined in the
context of a metamodeling framework. In this framework all the constructs of the language, as described in 9.2, are at
level 2.

o Level 3 — Meta-Language: the specification language, i.c., the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 119

e Level 2 — Construct: the language constructs, i.e., the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

e Level 1 — Type: the specification elements, i.e., the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

e Level 0 — Occurrence: the run-time instances, i.e., these are the real-life elements in a running development effort.

A Method Engineer using the Essence language to model the Practices and its associated Activities, Work Products, etc.,
would work at level 1. For instance, to describe an agile Practice like Scrum the Method Engineer would define activities
such as “Sprint Planning Meeting” and “Daily Scrum,” and work products such as “Sprint Goal” at level 1. This is
exactly analogous to a Software Engineer using the UML language (also described as constructs at level 2) to model an
order processing system by define classes such as “Customer,” “Order,” and “Product” and use cases such as “Place an
Order” and “Check Stock Availability” at level 1.

A team using Scrum on a project would be working at level 0. The project team would hold “Sprint Planning Meetings”
and “Daily Scrums” and each would be a level 0 instance of the corresponding activity at level 1, and the goal set for
each Sprint would be a level 0 instance of the “Sprint Goal” work product defined at level 1. This is exactly analogous to
the creation of Customers “Bill Smith” and “Andy Jones” and products “Flange” and “Grommet” at level 0 in the
executing order processing system.

9.5.2.2 Naming Convention

In order to define the dynamic semantics it is necessary to refer to the inhabitants of levels 1 and 0 as well as those of
level 2. In order to make it clear at which level a named term belongs, we use the following naming convention:

e X (an unadorned name) is a language Construct at level 2 as defined in 9.2, such as Alpha or Work Product.

e my X (prefixed) is a Type at level 1 created by instantiating X. So if X is Work Product, my WorkProduct could
be “Use case narrative.”

e my X instance is an Occurrence at level 0 by instantiating my_X. So if X is Work Product,
my_WorkProduct_instance could be the use case narrative on how to withdraw cash from an atm.

This naming convention is used in the type signatures of functions of the dynamic semantics, so that it is clear to which
level of the framework the terms used in the function signature belong. Consider the function guidance which returns
a set of activities to be performed to a take an endeavor forward to the next stage. The type signature of this function is:

guidance: (my_ Alpha, State)* — (my_ Alpha, Activity¥*)*

The termmy Alpha in this type signature has a name prefixed with my _and so is at level 1. The terms State and
Activity, on the other hand, have an unadorned name and so are at level 2. Notice here that we allow a function type
signature to use elements from different levels of the metamodeling framework.

9.5.2.3 Abstract Superclasses

9.5.2.3.1 Overview

To ensure that occurrences at level 0 are endowed with the attributes they need to support the dynamic semantics, we
define a set of abstract superclasses at level 1 from which the types defined at level 1 are subclassed. For instance the
superclass my_Alpha ensures that every Alpha occurrence at level 0 will have attributes “instanceName,” “currentState,”
“workProductlnstances,” and “subAlphalnstances”. These superclasses are named consistently with the naming
convention described above.

120 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The relationships between these superclasses and the classes created from the level 2 constructs are shown in Figure 9.22.

Level 2 WorkProduct
_I- ~
< ‘\.
Level 1 my_WorkProduct — . Cgse
= narrative
1
i
Level 0 Withdraw Cash
|:| Definedin the Essence language l:l Instantiation Sub-classing
| (lowerbox is an (lowerboxis a
Definedb fthe E | d instance of the sub-class of the
|:| efined by a user of the Essence language l:l i) i gt bor)

Figure 9.22 — The Essence language framework

9.5.2.3.2 my_Alpha

The superclass to all level 1 types instantiated from the level 2 construct “Alpha”, i.e., the Alphas in some Kernel (such
as “Requirements”) or Practice as well as to Sub-Alphas added by a particular Practice (such as “Use Case”).

Attributes

instanceName : String [1] The name of an occurrence (e.g., Requirements for the XYZ
Project)

currentState : my_State [1] A pointer to the current State of an occurrence (e.g., to the state

“Coherent”)

9.5.2.3.3 my_State

The superclass to all level 1 #ypes instantiated from the level 2 construct “State,” i.e., the States of some Alpha.

Attributes
N/A

9.5.2.3.4 my_WorkProduct

The superclass to all level 1 types instantiated from the level 2 construct “Work Product”, i.e., to all templates
representing physical documents used in the engineering endeavor, such as “Use Case narrative.”

Attributes

instanceName : String [1] The name of an occurrence (e.g., Use Case Narrative for Withdraw
Cash)

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 121

currentlevelOfDetail : A pointer to the current LevelOfDetail of an occurrence (e.g., to the
my_LevelOfDetail [1] level “Sketch™)

9.5.2.3.5 my_LevelOfDetail

The superclass to all level 1 #ypes instantiated from the level 2 construct “LevelOfDetail”, i.e., the level of detail of some
work product.

Attributes
N/A

9.5.3 Operational Semantics

9.5.3.1 Overview

In this subclause we describe and illustrate the operational semantics. This covers how the level 0 model is created, how
the state of the endeavor is tracked in the model, and how the model can be used to give advice based on how to progress
the state of the endeavor. For the last of these we provide a formal denotational semantics.

The execution of operational semantics happens inside an execution environment. The execution environment can be a
tool, a cognitive activity possibly supported by handwritten notes, or any combination of these and other suitable means.
The notion of instance used in this subclause thus refers to an entity inside the execution environment that represents
some entity outside the environment. Both the entity inside the execution environment and the one outside of it may or
may not be physical. For example, a physical entity being a Work Product outside the execution environment can be
represented by a non-physical entity in a tool. As an inverse example, the Alpha “Requirements” is a non-physical entity
outside the execution environment, but can be represented physically by a piece of paper attached to a whiteboard. Since
there is no automatic update from the outside to the inside of the execution environment, the manual creation and update
of instances is explained in 9.5.3.2 and 9.5.3.3.

The execution environment may be used to collect and manage more information than the ones defined in the abstract
superclasses in 9.5.2.3. It may also be used to execute more functions than the ones defined in 9.5.3.5 and 9.5.3.6.

Besides the instances belonging to the level 0 model, the execution environment holds a complete copy of the method
description (i.e., the level 1 model) selected for the particular endeavor for reference. Any lookup to that model necessary
for the creation of instances or during the execution of functions refers only to this copy. Any adaptation made to the
method description by the team during the endeavor applies only to this copy as well. If two teams start to work
according to the same method, adaptations made by one team do not affect the other team, because all adaptations stay
local to copy of the method description owned by the respective execution environment. However, an adapted copy of a
method description can at any point in time be declared to be a new method description and a team can then use a copy of
this new method description in their execution environment.

9.5.3.2 Populating the Level 0 Model

Generally, the appropriate Alpha instances and associated Work Product instances are created as soon as the respective
Alpha is considered in the endeavor. Some may exist right from the start of the endeavor (such as the Alpha instances for
Stakeholders or Requirements), while others may be created later, at the appropriate point in the conduct of a practice.
This is usually the case for Sub-Alpha instances, which are instantiated as needed through the endeavor. The model of a
practice is used as the basis for instantiating the appropriate sets of Alpha instances and associated Work Product
instances, using the Work Product Manifests defined for the Practice as templates. Although the mechanisms of
instantiation and updating Alpha instances and their associated Work Product instances can be formalized using
computational semantics, it is not an automatic process and must be triggered explicitly by the team.

122 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

A team is also free to create instances in their model that do not derive by instantiating from Practice templates, and thus
tailor the use of a Practice or even depart from it to create a partially or completely customized approach.
9.5.3.3 Determining the Overall State

Determining the overall state of the endeavor is done by determining the states of each individual Alpha instance in the
endeavor. This is done using the checkpoints associated with each state of the respective state graphs; and the state is
determined to be the most advanced in the state graph consistent with the currently met checkpoints. This means the state
that has:

1. All currently fulfilled checkpoints met; and
2. No outgoing transition to a state that has also all currently fulfilled checkpoints met.

This is illustrated in Figure 9.23. Here the most advanced state of System “XYZ” consistent with the checkpoints that
have been met (shown as ticked) is “Usable.”

Alpha State Graph Checkpoints

The eriteria to be used when selecting the architecture
have been agread on.

The architecture’s key concepts and properties are clearly
defined

The selected architecture is clearly conceived.

System boundary is known.

decisions about the organization of the system
have been made.

Buy, build, and reuse decisions have been made.

Key technical risks agreed to.

System
“xyz”

[Architecture Selected]

PR N

Key have been .
The system can be exercised and its performance can be
measured.

Critical configurations of the architecture have been
demonstrated.

Critical interfaces have been demonstrated

The with other existing systems has been
demonstrated.

The relevant agree that the

architecture is appropriate.

[Demonstrable]

2 222 2 2

The system can be operated by stakeholders who use it.
The functionality provided by the system has been tested
The performance of the system is acceptable to the
stakeholders.

Defect lovels are acceptable to the stakeholders

The system is sufficiently documented.

Released system elements are known.

The added value provided by the system is clear.

P

(e |

el 2

Decumentation on how to deploy and use the system in its
intended environment is available.
The stakeholder representatives accept the system as fit-

Ready for purpose.
The stakeholder representatives want to make the system
available for use.
Operational support is in place.
The system has been made available to the stakeholders
OPerational intended to use it. i
At least one example of the system is fully operational
J, The system is fully supported to the agreed service levels
The system has been replaced or discontinued.
. The system is no longer supported
Retired There are no “official” stakeholders who still use the
system.
Updates to the system will na longer be produced

< 2

Figure 9.23 — Determination of State using Checkpoints

The determination of Alpha instance states can happen at any point in time since evaluating the checkpoints is a manual
activity. When checkpoints are evaluated the result can be that an Alpha instance regresses, its current state being set
back to some earlier state of its lifecycle. This happens if re-evaluation determines that a checkpoint previously thought
to have been met is now deemed not to have been met.

9.5.34 Generating Guidance

In an actual running engineering endeavor, a team will want to get guidance on what to do next.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 123

Once the overall state of the endeavor is determined, the model can be used to generate such advice. This can be
understood as a guidance function that takes a set of pairs of (Alpha instance and target State) as its argument and returns
a set of newly instantiated Activities: a “to-do” list to be performed by the team. This function is invoked with an actual
argument consisting of a set of pairs, each pair consisting of a my_ Alpha_instance (at level 0) and a my_State (at level
1). For each pair the function returns guidance on how to progress each my_Alpha instance to its target state my_State.
This guidance is of the form of a set of newly instantiated activities (at level 0) for each my Alpha_instance, constituting
a to-do list to be performed by the team to advance its state. The essential idea is to assemble the to-do list by examining
each Alpha instance given to the function and finding those activities that have the target state of that Alpha instance
among its completion criteria.

Note that an Essence model does not specify how the team works on a set of activities. This is the dictated by the
policies, rules or advice of the practices being used on the endeavor. These may require or suggest that certain activities
should be prioritized, done in a particular sequence, divided among sub-teams, and so on. The team uses its expertise in
the practices to work out exactly how to perform the activities required. Nor is there any ultimate guarantee that the team
will follow the advice or perform the suggested activities competently: in that sense the model is an “open loop” control
system. However, regular re-evaluation of the checkpoints and the consequent re-setting of the Alpha instance states will
provide feedback to the team on whether or not their work is advancing as hoped.

Several other functions can be defined to measure the progress and health of the endeavor, for instance to determine
whether the right set of my_Alpha Instances and my_ WorkProduct Instances is in place, or to determine whether the
endeavor has reached its final state. These have not been defined here.

9.5.3.5 Formal definition of the Guidance Function

In this subclause, we provide a formal description of the operational semantics in terms of the function guidance using
VDM-SL in mathematical syntax. This function takes a set of pairs of (Alpha instance and target State) as its argument
and returns a set of to-do lists, one for each Alpha instance and target State provided to the function.

The essential idea is to compile the to-do lists by examining each Alpha instance given to the function and finding those
activities that have the target state of that Alpha instance among its completion criteria. However, the target state
specified for an Alpha instance may not be the next state in the state graph of the Alpha, and so a function
statesAfter isused to find the intermediate states. The to-do list generated consists of the activities required to
progress the Alpha instance through all these states in order to reach the specified target.

First we specify the statesAfter function. Suppose that a state graph has a sequence of states So, Si, Sz, Ss. If
statesAfter is called with (So, S3) it will return {Si, S,, S3}. In other words, all the states passed through to get to S3
but not including the starting state Sy This is easier to specify in terms of a function fullPath that generates the full
set of states including the starting state. So if fullPath is called with (So, S3) it will return {So, S1, S2, S3}.

statesAfter: (State, State) — State*
statesAfter (si1, s2) =
fullPath(si, s2) - {si}

fullPath: (State, State) — State¥*
fullPath (si1, s2) =

if ((si.successor = null) v(s: = s2)) {s1}
else {s:} UfullPath(s:.successor, s;)

We use this to specify the guidance function. Each (Alpha instance, target State) pair is taken in turn.

guidance: (my Alpha, State)* — (my_alpha, Activity*)¥*
guidance (cas) =

124 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

let as ecas
in to_do(as) U guidance (cas— {as})

The to_do function takes a single (Alpha instance, target State) pair and creates the set of activities that are
recommended to progress the Alpha instance to the required target State. This is done by finding those activity types that
have the target state or any intermediate state among its completion criteria. The function statesAfter is used to
find the intermediate states.

Note that the completion criteria (defined at level 1) are defined using activity types (at level 1). The function to_do
determines the set of activity types required for each Alpha instance.

to_do: (my Alpha, State) — (my_alpha, Activity¥*)
to_do (a, o) =
let cw = { w | (06’ NcompletionStates(w.completionCriterion) #J) A
(o’ estatesAfter(a.currentState,c)) }
in (a,cw)

Finally, we specify the function completionStates which is used by the to_do function to determine the set of states
forming the completion criteria of an activity.

completionStates: CompletionCriterion* — State*
completionStates (ccc) =

let cc € ccec and rs = cc.state

in rsUcompletionStates (ccc - {cc})

9.5.3.6 Further functions

As well as the Guidance Function, a number of other functions can be defined to support enactment. This subclause
describes a number of these as illustration. It is expected that any Essence tool will support at least these functions.

The to do function used to generate guidance makes use of the property “currentState” on my Alpha. It is not specified
whether tool vendors allow users to set this property directly or consider it a derived property. However, if it is handled as
a derived property, it has to be derived in the following way:

derive_current_state: my Alpha—>my State
derive_current_state (a) =

let s = { s | s ea.statesn {ps | ps.successor=s} = J}
in fullfilledSuccessorState(s)

fullfilledSuccessorState: my State—smy State
fullfilledSuccessorState (s) =

if (s.successor = J) {s}
else

let mc = {c | c es.successor.checkpointsan not c.isFullfilled}
in (if (mc = J) {fullfilledSuccessor (s.successor)} else {s})

The same can be done for “currentLevelOfDetail” on my WorkProduct:

derive_current_level of detail: my WorkProduct—my LevelOfDetail

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 125

derive_current_ level of detail (wp) =

let s = { 1 | 1 ewp.levelOfDetailA {pl | pl.successor=1l} = J}
in fullfilledSuccessorLevel(l)

fullfilledSuccessorlLevel: my LevelOfDetail—>my LevelOfDetail

fullfilledSuccessorlevel (1) =

if (l.successor = J) {1}
else

let mc = {c | c es.successor.checkpointsA not c.isFullfilled}
in (if (mc =) {fullfilledSuccessor (s.successor)} else {1l})

Before using the guidance function on a set of (Alpha instance, target State) pairs, a user may want to derive a set of
sensible target states from the current states.

nextAlphaStatesToReach: my Alpha* —my State*
nextAlphaStateToReach(a) =

let ocae a
in oa.currentState.successorUnextAlphaStateToReach(a - {oa})

9.6 Adaptation

9.6.1 Alignment of Level 0 and Level 1

A key objective of Essence is to be able to support “adaptation,” meaning that a practices and methods can be adapted to
meet particular project needs and to incorporate refinements that emerge from experience gained through enactment. It is
required that such adaptation can take place during the course of a project, and this means that it must be possible to
amend the level 1 model of a Method at a time when instances of the Method at level 0, representing enactments of the
Method on an endeavor, are in existence. As a level 0 model must always be a valid instance of level 1, tool functionality
is required to keep the two properly aligned.

What this involves depends on how much level 0 information the Essence tool holds. While, by definition, the Essence
tool is the host of the level 1 model (defining the Kernel and Method being used, and the associated Practices, Alphas,
Sub-Alphas, Activity Spaces, Activities, and Work Products) it may only hold a partial level 0 model. The content of the
level 0 model hosted in the Essence Tool is driven by the key enactment aims of Essence:

¢ To enable the overall state of the endeavor to be recorded and tracked.
e To support moving the endeavor forward using the functions of the Dynamic Semantics.

e Meeting these enactment aims generally means that the Essence tool hosts the key level 0 instances of an
endeavor, including the Method itself.

o The Kernel used by the Method, along with its top level Alphas and Activity Spaces.
e The Practices used by the Method, along with top level Alphas and Work Products associated with each Practice.

However much of the detailed level 0 information generated on an endeavor during enactment may not be in the Essence
tool itself but federated across a whole set of tools and environments used on a project, such as:

e Project Planning Tools

126 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

e Requirements Management Tools

e Risk and Issue Repositories/Management Tools

e CASE Tools and IDEs (for various models and code artifacts)

o Content Management Systems/Folders/Repositories of documents, spreadsheets, etc.

In some cases it may be appropriate to keep “proxy” information about such items in the Essence tool. For instance,
details of project risks may be maintained in a specialized Risk Management Tool, but a corresponding set of Risk Alphas
may be kept in the Essence tool to represent the state of each Risk for overall management purposes. In this case, it is
clearly necessary to keep the Essence Risk Alphas and the detail in the Risk Management Tool properly synchronized.

In the context of adaptation it is necessary to think about both of:
¢ Internal alignment between level 1 and level 0, for that part of the level 0 model that is hosted by Essence.
o External alignment between level 1 and level 0, for that part of the level 0 model that is federated to other tools.

These are considered below, after a general discussion of the adaptation mechanism.

9.6.2 Adaptation Approach

The general approach to adaptation is provided by the extension and merging mechanisms described earlier in 9.4.

For concreteness, consider this example: An endeavor is using a method M that combines practices P1 and P2. So M, P1
and P2 have been described at level 1 in Essence and instantiated (in Essence and across the supporting tool federation)
for enactment. Now suppose that, with the endeavor underway and the level 0 model populated, P1 is to be refined and
the project migrated to use the refined version. Typically, this is done as follows:

o First a new Practice P1’ is created that references Pland extends (modifies) those elements that are to be refined.
These elements are given new names in their extended versions in P1°.

e Secondly, the new Practice P1’ is added to M. Elements in P1’ that are not refined, so are the same as the old
version in P1, are automatically merged.

The level 0 model is still a valid instance of the new level 1 model of M, but at this stage none of the new (refined)
elements in P1’ are populated at level 0. Population of these requires migration, and the Essence tool should support this
as described in the following subclauses.

9.6.3 Internal Migration

This subclause covers tool support for migration of level 0 instances that are hosted in the Essence tool. In this case, the
tool should support automatic migration as described below.

Suppose that an element x in P1 has been refined to x” in P1°. The user can ask the Essence tool to create a “migration
function” x -> x’. To do this, the tool provides functionality for the user to:

e Enter an OCL function for each attribute of x’ specifying how this attribute should be populated from the existing
level 0 model.

o Specify whether, after creating an instance of x’ the old instance of x should be retained or deleted.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 127

(The reason for allowing the x instance to be retained is that a refinement might “split” x into two elements: x” and x”. In
this case, two migration functions (x -> x” and x —> x””) would be needed and an x instance only deleted after the second
is run.)

The user can then ask the Essence tool to execute the migration. The tool will prompt the user to specify whether all
instances of x are to be migrated, or allow the user to select those that are to be migrated. It will then execute the
migration function, which will create an instance of x’ for each selected instance of x and populate its attributes using the
OCL function. It will then (if requested) delete the instance of x.

Note that, because the merged model for M supports both x and x’, if desired the migration may be undertaken
incrementally by running the migration function repeatedly over time. Once all instances of “legacy” elements (such as
x) have been migrated to their refined version (x’), P1 can be deleted from M.

9.6.4 External Migration

This subclause covers tool support for migration of level 0 instances that are not hosted in the Essence tool. In this case,
how migration is handled depends on whether and how level 0 information in other tools are synchronized with the
Essence tool.

Where the Essence tool holds “proxies” of level 0 items, migration may be handled as described for internal migration.
Alternatively the mechanism used to maintain synchronization between the detail in federated systems and the Essence
model may be used to achieve migration, by importing new proxy data that conform to the refined model.

For cases where the level 0 data is entirely in a federated tool, any required migration is handled entirely in the external
tool.

9.7 Graphical Syntax

9.7.1 Specification Format

The graphical syntax provides a visual form for each construct. Each graphical notation is introduced in a separate
subclause that provides a description and symbol of the syntax. This subclause includes subclauses for Style Guidelines
and Examples when applicable.

Diagrams are introduced by listing the graphical nodes and links to be included in the diagrams. Each node and link
refers to the syntax specification of an individual element.

9.7.2 Relevant Symbols and Diagram Interchange Metamodel

Most of the constructs in the abstract syntax of the Kernel Language require a visual representation in terms of a symbol
for the purpose of being visualized. However, constructs like Completion Criterion and Required Competency may not
require symbols of their own but are instead visualized textually only. Thus the graphical syntax defines four main ways
of representing language elements: nodes, links, labels, and texts. They can be used on general diagrams as well as on
two types of cards. The relationships between these elements and the Diagram Interchange Metamodel are shown in
Figure 9.24.

128 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

package Diagraminterchange[|2 Diagran‘lntcrchangcu

DOf::Diagram
Df::DiagramElernent
i

DiagramElement

1 | +modelElement

LanguageElement

Df::Edge Node +leftHeaderSide +modelElement| 1

a 1

DetailCard

Link Harget +header

) 1 1 0.1
+SOUTCE +leftHeader Side

0.1 1 1 0.1

D Shape

7

+bottomRightLabel |0..1 +name

ightBody Sid
+name Label Text ;rrg yoide
0.1 +body
+end2-bounds 1
0.1 +rightHeaderSide
+end1-bounds]footcr
0.1 1

Figure 9.24 - Metamodel of the graphical syntax for diagram interchange
9.7.3 Default Notation for Meta-Class Constructs

The default notation for a meta-class construct in the abstract syntax is a solid-outline rectangle containing the name of
the construct’s type (level 1 in the abstract syntax). The name of the construct itself (level 2 in the abstract syntax) can be
shown in guillemets above the type name. Alternatively, if the meta-class construct defines its own distinct symbol, this
symbol can be shown above the type name in the rectangle.

This provides a default and unique visualization of each meta-class construct in the abstract syntax.

Style Guidelines

o Center the name of the construct’s type in boldface.
o Center the name of the construct itself in plain face within guillemets above the type name, or alternatively:

e Include the symbol of the construct above the type name and aligned to the right.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 129

Examples

«Alpha» CX

System System

Figure 9.25 — Example visualizations of the Alpha meta-class construct and its System type
9.7.4 View 1: Alphas and their States

9.7.41 Alpha

An Alpha is visualized by the following symbol, either containing the name of the Alpha or with the name of the Alpha
placed below the symbol:

name

Figure 9.26 — Alpha symbol

Style Guidelines

o Center the name of the Alpha in boldface, either within the symbol or below the symbol.

Examples

System

Figure 9.27 —System Alpha

9.7.4.2 Alpha Association

An Alpha Association is visualized by a solid line connecting two associated Alphas. The line may consist of one or more
connected segments. The association line is adorned with the name of the association, and optionally with the lower and
upper bounds of the associated alphas placed near the end of the line connecting each alpha.

end1-bounds name end2-bounds

Figure 9.28 — Alpha Association symbol
Style Guidelines
o Center the name of the Alpha Association above or under the association line in plain face.

e An open arrowhead ‘>’ or ‘<’ next to the name of the association and pointing along the association line indicates
the order of reading and understanding the association. This arrowhead is for documentation purposes only and
has no general semantic meaning.

130 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

o [flower and upper bounds are included, use the notation “<lower-bound>..<upper-bound>" such as for example

[73 1)

“0..3”; if the lower and upper bound are the same, exclude the “..” and just show one of the bounds. Let a bound
value of -1 imply an “arbitrary number of instances” and denote this as “*”.

Examples

1

Figure 9.29 — Alpha Association between the Requirements Alpha and the
System Alpha, read as: “The System fulfills the Requirements.”

9.7.4.3 Kernel

A Kernel is visualized by a hexagon containing a cogwheel; either containing the name of the Kernel or with the name of
the Kernel placed below the symbol.

E®

name

Figure 9.30 — Kernel symbol

Style Guidelines

e Center the name of the Kernel in boldface, either within the symbol or below the symbol.

Examples

Business

Engineering

Figure 9.31 — Kernel for Business Engineering

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 131

9.7.4.4 State

A State is visualized by a rectangle with rounded corners containing the name of the State.

=n

Figure 9.32 — State symbol

Style Guidelines

e Center the name of the State in boldface.
Examples

Milestones

Agreed

Figure 9.33 — Milestones Agreed State

9.7.4.5 State Successor

A State Successor association is visualized by a solid line with an open arrowhead connecting a State with its successor
State. The line may consist of one or more connected segments.

N
rd

Figure 9.34 — State Successor association

Examples
e ™)
Objectives

Agreed

\. ‘L J

e ~

Plan

Agreed

. J

Figure 9.35 — Transition from the Objectives Agreed State to the Plan Agreed State
9.7.4.6 Diagrams

9.7.4.6.1 Alpha Structure Diagram

Table 9.5 — Graphical nodes in Alpha Structure diagrams

Node Type Symbol Reference

Alpha Q 9.7.4.1 Alpha.

132 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table 9.6 — Graphical links in Alpha Structure diagrams

Link Type Symbol Reference
Alpha Association 9.7.4.2 Alpha Association.
Examples

Refer to kernel examples.

9.7.4.6.2 State Graph Diagram
Table 9.7 — Graphical nodes in State Graph diagrams

Node Type Symbol Reference
State [] 9.7.4.4 State.
Table 9.8 — Graphical links in State Graph diagrams

Link Type Symbol Reference

Vv

State Successor

9.7.4.5 State Successor.

Style Guidelines

o Place the start state at the top of the diagram, and the stop state at the bottom of the diagram.

o Use State successors to visualize a logical sequence through states, from start to stop. Only visualize alternative
successors when there are mutually exclusive state sets involved in the sequence from start to stop. Within a
specific sequence from start to stop, we may assume that any loop or alternation is permitted without visualizing

corresponding successors.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

133

Examples

4 I
Objectives
Agreed
. \L J
e ~
Plan
Agreed
L J
'S J(™
Code
Freeze
. J
(" ¢ ™\
Assessed
\ ‘I, J
e ™
Closed
\ J

Figure 9.36 — State Graph example
9.7.4.7 Cards

9.7.4.71

Overview

As a complement to the symbols and diagrams we use a card metaphor (as in 5x3 inch index cards) to visualize the most
important aspects of an element in the Kernel Language. A card presents a succinct summary of the most important
things you need to remember about an element. In many cases, all that a practitioner needs to be able to apply a kernel or

a practice is a corresponding set of cards.

In particular, cards are straightforward to manifest as physical entities (print them on paper) which makes them very
hands-on and natural for practitioners to put on the table, play around with, and reason about; all for the purpose to guide

practitioners in their way of working.

9.7.4.7.2 The Anatomy of a Definition Card

A definition card is visualized as a solid-outline rectangle in landscape format containing a mix of symbols and textual
syntax related to the element. The following is a basic anatomy although variations are allowed:

134

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

<owner name (kernel or practice)> |Card header
oy

<element symbol and name> /

Card
right-hand-side
|
<additional symbols or a diagram> <textual descriptions/syntax> /
>
/
Card
left-hand-side

Figure 9.37 — A basic definition card anatomy to visualize an element

Style Guidelines

e Place the owner name in boldface at the top-right of the card and use a font with smaller size than for the element
name top-left.

9.7.4.7.3 Alpha Definition Card
An Alpha definition card is defined as follows:
Card left-hand-side: State Graph Diagram for the Alpha.

Card right-hand-side: Brief Description of the Alpha, as well as a listing of its description and contained elements (sub-
Alphas or Work Products, if any).

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 135

Examples

C X

System

S |
Architecture
Selected

p— —

Demonstrable
Useable

0
Ready

P —

Operational
Tﬂ
Retired

e ————

Essence Kernel

A system consists of a set of elements
interacting to achieve a defined
purpose, The elements of a system
include one or more of the following:
hardware, software, data, humans,
processes, services, procedures,
facilities, materials and naturally
occurring entities.,

Contents
MNiA

Figure 9.38 —System Alpha Definition Card

9.7.4.7.4 The Anatomy of a Detail Card

A detail card is visualized as a solid-outline rectangle in portrait format containing a mix of symbols and textual syntax
related to the element. The following is a basic anatomy although variations are allowed:

<element symbol and name> «“ Card header

<brief description> <icon>

«— Card body

<sub-element symbol(s) or icon(s)
and name>

<referenced element symbol(s)
or icon(s) and name>

«}— Card footer
<sub-element order>

<element group symbol or icon>

Figure 9.39 — A basic detail card anatomy to visualize an element

This card anatomy is applicable to the following elements:

136 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

e Basic Elements such as Alpha, Work Product, Activity Space, Activity, Competency and Pattern.
e Language Elements such as State, Level of Detail and Competency Level.
¢ Element Groups such as Practice and Method.

Style Guidelines

o Place the element name in boldface centered in the card header and use a font with larger size than what is used in
the card body.

o [fthe card is for a Basic Element that has an icon (refer to the “icon” attribute in subclause 9.3.2.2), place the icon
top right in the card body.

e When the element is owned by an element group, place the element group symbol or icon (if it exists) to the left in
the card footer.

e For Language Elements such as State, Level of Detail and Competency Level:

o Let the card header visualize the owning element (Alpha, Work Product or Competency respectively) and
let the card body visualize the element as a sub-element.

o Visualize the order of the sub-element as for example “4/6” in the card footer.

o If several cards are needed to present the details (such as checkpoints) of the sub-element, include a card
number in the card footer, for example “Card 1 of 2” for card number 1 out of 2 in total.

9.7.4.7.5 Alpha State Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Alpha symbol and name at the top, followed by a State symbol and name.

e Card body: Checklist of the Alpha State. If provided, the short description of a checkpoint is used as the default.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 137

Examples

(X Requirements <

[Acceptable]‘E‘

O The stakeholders accept that the
requirements describe an acceptable
solution.

O The rate of change to the agreed
requirements is relatively low and
under control.

O The value provided by implementing
the requirements is clear.

O The parts of the opportunity satisfied by
the requirements are clear.

I The requirements are testable.

afe <
O

Alpha

State

Checklist

State order

Kernel
symbol

Figure 9.40 — Requirements Acceptable State detail card

9.7.4.7.6 Alpha Detail Card

The following is a basic anatomy although variations are allowed:

e Card header: Alpha symbol and name at the top.

e Card body: Brief description of the Alpha, followed by its State symbols and their names in sequence.

Examples

What the software system must do to
address the opportunity and satisfy the <
stakeholders.

Conceived

Bounded

Coherent

Addressed

Fulfilled

()
(]
()
(Acceptable]
(]
|]

©

Figure 9.41 — Requirements Alpha detail card

138

. Alpha
(X Requirements < "

|___—— Brief Description

—— States

Kernel
symbol

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.7.5 View 2: Sub-Alphas and Work Products

9.7.5.1 Work Product

A Work Product is visualized by the following symbol, either containing the name of the Work Product or with the name
of the Work Product placed below the symbol:

name

name

Figure 9.42 — Work Product symbol

Style Guidelines

o Center the name of the Work Product in boldface, either within the symbol or below the symbol.

Examples

Business Change
Roadmap

Figure 9.43 — Business Change Roadmap Work Product

9.7.5.2 Alpha Containment

An Alpha Containment is visualized by a solid line connecting a super- and a sub-Alpha. The line may consist of one or
more connected segments. The line is adorned with a filled diamond placed at the end of the line connecting the super-
Alpha; and with the lower and upper bounds of the sub-Alpha placed near the end of the line connecting the sub-Alpha.

bounds

Figure 9.44 — Alpha Containment symbol

As an alternative, an Alpha Containment can be visualized by encompassing the sub-Alpha symbols within the super-
Alpha symbol. In this case, the Alpha symbol is adorned with a +/- sign to denote whether it is collapsed (+) and thereby
not showing its content, or whether it is expanded (-) and showing its content.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 139

Style Guidelines

o Arrange the line vertically with the super-Alpha on top and the sub-Alpha at the bottom, thereby visualizing a top-
down hierarchy.

o [fthere are two or more sub-Alphas of the same super-Alpha, they may be visualized as a tree by being placed at
the same horizontal level and by merging the lines to the super-Alpha into a single segment.

o If lower and upper bounds are included, use the notation “<lower-bound>..<upper-bound>" such as for example

“0..3”; if the lower and upper bound are the same, exclude the “..” and just show one of the bounds. Let a bound
value of -1 imply an “arbitrary number of instances” and denote this as “*”.

o [f the encompassment notation is used, place the +/- sign top-left within the Alpha symbol, and when expanded,
place the name of the Alpha under the symbol.

Examples
L 2
1 1.* 0..*

Architecture ' Component x l Test ’

Figure 9.45 —System super-Alpha and three sub-Alphas: Architecture, Component, and Test with visualized
bounds

9.7.5.3 Work Product Manifest

A Work Product Manifest is visualized by a solid line connecting an Alpha and a Work Product. The line may consist of
one or more connected segments. The line is adorned with a filled diamond placed at the end of the line connecting the
Alpha; and with the lower and upper bounds of the Work Product placed near the end of the line connecting the Work
Product.

bounds

4

Figure 9.46 — Work Product Manifest symbol

Note that this is the same symbol as the Alpha Containment symbol, however the symbols are discriminated based on
their context; that is, whether two Alphas are connected (Alpha Containment), or whether an Alpha and a Work Product
are connected (Work Product Manifest).

140 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

As an alternative, a Work Product Manifest can be visualized by encompassing the Work Product symbols within the
Alpha symbol. In this case, the Alpha symbol is adorned with a +/- sign to denote whether it is collapsed (+) and thereby
not showing its content, or whether it is expanded (-) and showing its content.

Style Guidelines

e Arrange the line horizontally with the Alpha to the left and the Work Product to the right, thereby visualizing a
left-to-right hierarchy.

o [f there are two or more Work Products of the same Alpha, they may be visualized as a tree by being placed at the
same horizontal level and by merging the lines to the Alpha into a single segment.

o [flower and upper bounds are included, use the notation “<lower-bound>..<upper-bound>" such as for example

@

“0..3”; if the lower and upper bound are the same, exclude the “..” and just show one of the bounds. Let a bound
value of -1 imply an “arbitrary number of instances” and denote this as “*”.

o [f the encompassment notation is used, place the +/- sign top-left within the Alpha symbol, and when expanded,
place the name of the Alpha under the symbol.

Examples

’

1 1.*
Design . Release
Build
Model Description

Figure 9.47 —System Alpha and three Work Products: Design Model, Build, and Release Description with
visualized bounds

9.7.5.4 Level of Detail

A Level of Detail is visualized by a trapezoid containing the name of the Level of Detail.

\ /

Figure 9.48 — Level of Detail symbol

Style Guidelines

e Center the name of the Level of Detail in boldface.

o Use a dashed border line in the trapezoid for a Level of Detail that is a successor (or transitive successor) of a
sufficient level.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 141

Examples

\ /

Figure 9.49 — Sketch Level of Detail

Generator-ready
0 Model '

Figure 9.50 — Generator-ready Model Level of Detail that is a successor of a sufficient level

9.7.5.5 Level of Detail Successor

A Level of Detail Successor association is visualized by a solid line with an open arrowhead connecting two Levels of
Detail. The line may consist of one or more connected segments.

N
I
Figure 9.51 — Level of Detail Successor

Examples

\ Sketch /
v
\ Formal Maodel /

Figure 9.52 — Formal Model Level of Detail is a successor of the Sketch Level of Detail

9.7.5.6 Practice

A Practice is visualized by a hexagon; either containing the name of the Practice or with the name of the Practice placed
below the symbol.

DO

name

Figure 9.53 — Practice symbol

Style Guidelines

o Center the name of the Practice in boldface, either within the symbol or below the symbol.

142 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Examples

Figure 9.54 — Scrum Essentials Practice

9.7.5.7 Diagrams

9.7.5.7.1 Alpha Hierarchy Diagram

Table 9.9 — Graphical nodes in Al

pha Hierarchy diagrams

Node Type Symbol Reference
Alpha Q 9.7.4.1 Alpha.
Work Product 9.7.5.1 Work Product.

Table 9.10 — Graphical links in Alpha Hierarchy diagrams

Link Type Symbol Reference

Alpha Containment See 9.7.5.2 Alpha Containment.
bounds

Work Product Manifest bounds See 9.7.5.3 Work Product Manifest.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

143

Examples

’

¢

Design
Model

1

1.*

0.*

' Component x ' Test x

Figure 9.55 — Alpha Containment and Work Product Manifest relationships of the System Alpha

9.7.5.7.2 Level of Detail Diagram

Table 9.11 — Graphical nodes in Level of Detail diagrams.

Build

Release
Description

Node Type

Symbol

Reference

Level of Detail

\

9.7.5.4 Level of Detail.

Table 9.12 — Graphical links in Level of Detail diagrams.

Link Type

Symbol

Reference

Level of Detail Successor

A 4

9.7.5.5 Level of Detail Successor.

Style Guidelines

o Place the first Level of Detail at the top of the diagram, and the last Level of Detail at the bottom of the diagram.

o Use Level of Detail Successor arrows to visualize a logical sequence through levels, from the first one to the last.

144

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Examples

\ Sketch /
\

\ Formal Model /

]

Generator-ready
Model I

Figure 9.56 — Level of Detail diagram example

9.7.5.8 Cards

9.7.5.8.1 Work Product Definition Card

A Work Product definition card is defined as follows:

e Card left-hand-side: Level of Detail Diagram for the Work Product.

e Card right-hand-side: Brief Description of the Work Product, as well as a listing of related elements (Alphas or

Work Products, if any).

Examples

Architectural Model

Architectural Modeling Practice

e J

v

\ romaimoser |

Vo { T

Generator-ready
Medel]

The architectural model is a model of the

architecture that:

* Describes how the architectural demands
are met by the approach

* Explains the most important design
decisions

Related alphas:
* Architectural Requirement ltem

Related work products:
* Design Model

Figure 9.57 — Architectural Model Work Product Definition Card

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

145

9.7.5.8.2 Level of Detail Card

The following is a basic anatomy although variations are allowed:

e Card header: Work Product symbol and name at the top, followed by a Level of Detail symbol. Note that the Level
of Detail symbol shall have a dashed border line if the Level of Detail is a successor (or transitive successor) of a
sufficient level.

e Card body: Checklist of the Work Product Level of Detail. If provided, the short description of a checkpoint is used
as the default.

Examples

] Work Product
D Architectural Model <7

\ Sketch / <

O The modelis briefly described. <

0 Key model elements are named.

0 Key model elements are briefly
described.

. Level of Detail

___— Checklist

__— Level order

1z < |

O Practice

symbol

Figure 9.58 — Architectural Model Level of Detail card

9.7.5.8.3 Work Product Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Work Product symbol and name at the top.

e Card body: Brief description of the Work Product, followed by its Level of Detail symbols and their names in
sequence.

146 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Examples

CI Architectural Model <

The architectural model is a model of the
architecture that: £
Describes how the architectural
demands are met by the approach
Explains the mostimportant design
decisions

\ Sketch / <
\ Formal Model /

| ___— Work Product

|___— Brief Description

____Levelsof Detail

Practice

symbol

Figure 9.59 — Architectural Model Work Product detail card

9.7.5.8.4 Practice Detail Card

The following is a basic anatomy although variations are allowed:

e Card header: Practice name at

the top.

e Card body: Brief description of the Practice, followed by its owned elements symbols (or corresponding icons if

they exist) and their names.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

147

Examples

Daily Stand-Up Essentials <—— Practice name

meetings to reaffirm delivery focus, assess
progress, agree immediate work plans and
action the removal of any impediments to

«L— Brief Description

productive progress.

|__—— Owned elements

- () <
Impediment Hold a Daily
Stand-up
&= =1
Round-Robin Board-Driven
Stand-up Stand-up
O < Practice
symbol

Figure 9.60 — Daily Stand-Up Practice detail card

9.7.5.8.5 Method Detail Card

The following is a basic anatomy although variations are allowed:
o Card header: Method name at the top.

e Card body: Brief description of the Method, followed by its composed practice symbols (or corresponding icons
if they exist) and their names.

Examples

Starter Method <«— Methodname

| ___— Brief Description

Use this method for smaller teams that
start developing system X.

O

User Story
Essentials

<

O —t Referenced elements
(practices)

Timeboxing
Essentials

Method
symbol

Figure 9.61 — Starter Method detail card

148 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.7.6 View 3: Activity Spaces and Activities

9.7.6.1 Activity

An Activity is visualized by the following symbol, either containing the name of the Activity or with the name of the
Activity placed below the symbol:

- D

name

Figure 9.62 — Activity symbol

Style Guidelines

o Center the name of the Activity in boldface, either within the symbol or below the symbol.

Examples

Sprint
Retrospective

Figure 9.63 — Sprint Retrospective Activity

9.7.6.2 Activity Space

An Activity Space is visualized by the following dashed-outline symbol, either containing the name of the Activity Space
or with the name of the Activity Space placed below the symbol:

Figure 9.64 — Activity Space symbol

Style Guidelines

Center the name of the Activity Space in boldface, either within the symbol or below the symbol.

Examples

A\
Shape the ,
System /

Figure 9.65 — Shape the System Activity Space

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 149

9.7.6.3 Activity Association (“part-of” kind)

An Activity Association that is of the “part-of” kind is visualized by a solid line connecting an Activity Space and an
Activity. The line may consist of one or more connected segments. The line is adorned with a filled diamond placed at
the end of the line connecting the second member of the association.

|

Figure 9.66 — Activity Association (“part-of” kind) symbol

Note that this is the same symbol as the Alpha Containment and Work Product Manifest symbol, however the symbols
are discriminated based on their context; that is, whether two Alphas are connected (Alpha Containment), or whether an
Alpha and a Work Product are connected (Work Product Manifest), or whether Activity Spaces and/or Activities are
connected (Activity Association).

As an alternative, an Activity Association can be visualized by encompassing the Activity symbols within the Activity
Space symbol. In this case, the Activity Space symbol is adorned with a +/- sign to denote whether it is collapsed (+) and
thereby not showing its content, or whether it is expanded (-) and showing its content.

Style Guidelines

e Arrange the line horizontally with the Activity Space to the left and the Activity to the right, thereby visualizing a
left-to-right hierarchy.

o I[fthere are two or more Activities of the same Activity Space, they may be visualized as a tree by being placed at
the same horizontal level and by merging the lines to the Alpha into a single segment.

o If the encompassment notation is used, place the +/- sign top-left within the Activity Space symbol, and when
expanded, place the name of the Activity Space under the symbol.

Examples

I

\

: Understand the

. 2 4
I Requirements ,

1

Identify
Use Cases

Specify
Use Cases

Figure 9.67 — Understand the Requirements Activity Space and two Activities: Identify Use Cases and Specify Use
Cases

Understand the Requirements

Figure 9.68 — Understand the Requirements Activity Space, encompassment notation with expanded symbol

150 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

P i
il+] K
| Understand the *,
I Requirements ,’
/

Figure 9.69 — Understand the Requirements Activity Space, encompassment notation with collapsed symbol

9.7.6.4 Activity Association (other than the “part-of” kind)

An Activity Association that is not of the “part-of” kind is visualized by a solid line connecting two Activity and/or
Activity Space symbols. The line may consist of one or more connected segments. The line is adorned with a filled
triangular arrowhead placed at the end of the line connecting end2.

The association line is optionally adorned with the kind of the association.

kind

|
Figure 9.70 — Activity Association symbol.

Style Guidelines
¢ Lines may be drawn using curved segments.

o Center the kind of the Activity Association above or under the association line in plain face.

o If the Activity Association kind is “start-before-start” it is assumed to be most common and can thereby be
excluded; other kinds should be explicitly shown.

Examples

Sprint Planning
Meeting

Z

Daily Scrum

rint Review

D

Sprint
Retrospective

Figure 9.71 — Activity Association among four activities in a Scrum Essentials practice

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 151

9.7.6.5 Competency

A Competency is visualized by a 5-point star symbol with the name of the Competency placed below the symbol:

name

Figure 9.72 — Competency symbol

Style Guidelines

o Center the name of the Competency in boldface below the symbol.

Examples

Leadership

Figure 9.73 — Leadership Competency

9.7.6.6 Competency Level

A Competency Level is visualized by a rectangle containing the name and number of the Competency Level. The level is
visualized by surrounding it with a 5-point star.

¢

Figure 9.74 — Competency Level symbol, level n

As a short-hand alternative, a Competency Level can be visualized using the star only, with the level within the star and
the name of the Competency under the star.

s

competency name

Figure 9.75 — Competency Level symbol, level n

Style Guidelines

o Center the name of the Competency Level or Competency in boldface.

152 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

o Place the level star to the right within the Competency Level symbol.

Examples

Masters ﬁ

Figure 9.76 — Masters Competency Level, level 3

¢

Leadership

Figure 9.77 — Leadership Competency, level 3
9.7.6.7 Diagrams

9.7.6.7.1 Activity Space Hierarchy Diagram
Table 9.13 — Graphical nodes in Activity Space Hierarchy diagrams.

Node Type Symbol

Reference

Activity Space

~

9.7.6.2 Activity Space.

Activity

9.7.6.1 Activity.

Table 9.14 — Graphical links in Activity Space Hierarchy diagrams.

Link Type Symbol Reference

Activity Association (“part-of” . 9.7.6.3 Activity Association (“part-of”
kind) kind).

Examples

Refer to 9.7.6.3 Activity Manifest example.

9.7.6.7.2 Activity Flow Diagram
Table 9.15 — Graphical nodes in Activity Flow diagrams.

Node Type Symbol

Reference

Activity

9.7.6.1 Activity.

Table 9.16 - Graphical links in Activity Flow Hierarchy diagrams.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

153

Link Type Symbol Reference

Activity Association (not of the > See 9.7.6.4 Activity Association (other
“part-of” kind) than the “part-of” kind).

Style Guidelines

e Arrange the Activity Association arrow pointing from left-to-right or from top-to-bottom, except for loop-backs.

Examples

Refer to 9.7.6.4 Activity Association

9.7.6.7.3 Competency Level Diagram

Table 9.17 — Graphical nodes in Competency Level diagrams.

Node Type Symbol Reference

Competency Level 9.7.6.6 Competency Level.

¢

Style Guidelines

e Place competency level symbols for the same competency on top of each other, where the lowest level is at the
bottom and the highest level is at the top.

o Use a slightly smaller symbol for each competency level symbol placed on top of another (larger) symbol,
forming a “staircase”.

Examples

Innovates

Adapts

Masters

Applies

Assists

PR

Figure 9.78 — Competency Level diagram example, for one specific Competency with 5 levels
9.7.6.8 Cards

9.7.6.8.1 Activity Definition Card

An Activity definition card is defined as follows:

154 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

e Card left-hand-side: Symbols for activity inputs, required competencies, and outputs. Alpha and Work Product
output symbols are annotated with the latest reached State and Level of Detail within the activity (as part of its
completion criteria).

o Card right-hand-side: Brief description of the activity, as well as a listing of completion criteria and approaches.

Examples
: User Story Practice
Identify User Stories
Q CX Identify user stories to capture the
requirements on the system.
Opportunity Stakeholders

This activity is completed when:

¢ Requirements: Bounded
*Analyst ¢ User Stories: Briefly Described
Approaches:

v * Run a user story workshop
* Interview stakeholders

Requirements User Story
(Bounded) (Briefly Described)

Figure 9.79 — Identify User Stories activity definition card
9.7.6.8.2 Activity Space Definition Card
An Activity Space definition card is defined as follows:

e Card left-hand-side: Symbols for activity inputs and outputs. Alpha output symbols are annotated with the latest
reached State within the activity space (as part of its completion criteria).

e Card right-hand-side: Brief description of the activity space, as well as a listing of completion criteria and
contained activities.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 155

Examples

- =

C X CX

~ System Requirements
(Ready) (Fulfilled)

f TN Essence Kernel
1 ?
o=t
Test the System
Verify that the system produced
CX meets the stakeholders’
System Requirements requirements.

This activity space is completed
when:

* Requirements: Acceptable
* Requirements: Fulfilled

+ System: Demonstrable

« System: Usable

+ System: Ready

Activities:
N/A

Figure 9.80 — Test the System Activity Space definition card

9.7.6.8.3 Competency Definition Card

A Competency definition card is defined as follows:

e Card left-hand-side: Competency Level Diagram for the Competency.

e Card right-hand-side: Brief description of the Competency.

156

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Examples

Software Development Extension

Leadership

A person with this competency is skilled
at leading a team to a successful

conclusion, one that satisfies the needs
Leads Leaders of the stakeholders, within acceptable
time and cost.

Leadership help the team to:

@ ¢ Proactively manage risks

¢ Make sure that all team members
are effective in their assignments

@ ¢+ Make and meet their commitments

Builds Teams

Leads Teams

Figure 9.81 — Leadership Competency definition card

9.7.6.8.4 Competency Level Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Competency symbol and name at the top, followed by a Competency Level symbol and name.

e Card body: Checklist of the Competency Level. If provided, the short description of a checkpoint is used as the
default.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 157

Examples

c t
* Leadership «— (Lompetency

Assists b Competency
Level

A Understands and conducts his or her Checklist

. . é..--—"-"_'—'
selfin a professional manner.

O Isable to correctly respond to basic
questions within his or her domain.

4 Isable to perform maost basic functions
within the domain.

Q Can follow instructions and complete
basic tasks.

__—— Level order

s < |

Kernel

symbol

Figure 9.82 — Leadership Assists Competency Level detail card

9.7.6.8.5 Competency Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Competency symbol and name at the top.

e Card body: Brief description of the Competency, followed by its Competency Level symbols and their names in
sequence (listed bottom-up).

Examples
) |__—— Competency
Leadership <
This competency enables a person to inspire . . .
and motivate a group of people to achieve a _ BrIEf Descrlptlon
successful conclusion to their work and to <
meet their objectives.
Innovates ﬁ
Adapts % - Competency
Levels
Masters %
Applies %
Assists %
Kernel
symbol

Figure 9.83 — Leadership Competency detail card

158 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.7.6.8.6 Activity Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Activity symbol and name at the top.

e Card body: Brief description of the Activity, followed by its Entry Criteria, Activity Space(s) that the Activity is
part of, required Competency Levels and Completion Criteria.

Examples

Activit
> PlanaTimebox < v

The team is guided on the current priority _—— Brief Description
e <
objectives, and collaborates to plan the work

and negotiate a viable and acceptable work

plan. «——+ EntryCriteria
(X Timebox: Scheduled R -—t ActivitvSpace

(part of)

Required
CompetencyLevels

Leadership Management

(X, Work: Started

L(:)(Timebox: Planned Comp|EtI0I‘I
L El Timebox Plan: Viable Plan Criteria
Outlined
O Practice
symbol

Figure 9.84 — Plan a Timebox Activity detail card

9.7.6.8.7 Activity Space Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Activity Space symbol and name at the top.

e Card body: Brief description of the Activity Space, followed by its Alpha Input, Entry Criteria and Completion
Criteria.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 159

Examples

Y Activity Space
L _ _# Use the System g y>P
Observe the use of the system in an L Brief Description

operational environment and how it benefits
the stakeholders.

() Requirements — 1 A'Phampl.lt

(X System . .
(X Opportunity: Addressed | Entrv Criteria

(X Stakeholders: Satisfied for Deployment

() Opportunity: Ben.efi.t Ac-crued ¢ Comp|eti0n
(X Stakeholders: Satisfied in Use . .
Criteria

< Kernel

symbol

Figure 9.85 — Use the System Activity Space detail card

9.7.7 View 4: Patterns

9.7.7.1 Pattern
A Pattern is visualized by the following symbol, with the name of the Pattern placed below the symbol:

I_I

name

Figure 9.86 — Pattern symbol

Style Guidelines

o Center the name of the Pattern in boldface below the symbol.

o [f the Pattern is a Typed Pattern of a specific kind, annotate the name of the pattern with the name of the kind
within < and >.

Examples

I_|

Programmer <Role>

Figure 9.87 — Programmer Pattern of the Role kind

160 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

9.7.7.2 Pattern Association

A Pattern Association is visualized by one or more solid lines originating from a circle that connects each associated
element within the pattern. Each line may consist of one or more connected segments. The name of the Pattern
Association is placed within the circle.

The owning Pattern may also optionally be visualized by connecting it with the circle using a solid line; this line is then
adorned with a filled diamond placed at the end of the line connecting the Pattern.

owning associated
pattern elements

Figure 9.88 — Pattern Association symbol

Style Guidelines

e Center the name of the Pattern Association in boldface within the circle.

e Visualizing the owning Pattern is optional.

Examples

Source code

{4 Works on

Programmer <Role>

Build

Figure 9.89 — Programmer Pattern with Pattern Association “Works on” that in turn associates two Work
Products: Source code and Build

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 161

9.7.7.3 Diagrams

9.7.7.3.1 Pattern Diagram
Table 9.18 — Graphical nodes in Alpha Hierarchy diagrams.

Node Type Symbol Reference
Pattern l 9.7.7.1 Pattern.
Symbol of any associated element All Language Element symbols

within the Pattern

Table 9.19 — Graphical links in Alpha Hierarchy diagrams.

Link Type Symbol Reference
Pattern Association See 9.7.7.2 Pattern Association.
Examples

See 9.7.7.2 Pattern Association.
9.7.7.4 Cards

9.7.7.4.1 Pattern Definition Card

A Pattern definition card is defined as follows:

e Card left-hand-side: Pattern Diagram visualizing Pattern Associations owned by the Pattern, or optionally any
free-form text or picture visualizing the essence of the Pattern.

e Card right-hand-side: Brief Description of the Pattern.

162 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Examples

| Role Practice

Programmer <Role>

A programmer implements the
software system based on the

Source code requirements by producing software
source code and executables.

Build

r———=x

|Imp|ementthe\

1 System /

I— -— o

r—=— ==

I Testthe

1 System ’

I /

Figure 9.90 — Programmer Pattern Definition Card, including Pattern Associations

| Change Management Practice

Rate of Change

This pattern describes measuring the
rate at which change is requested
and responded to. This enables a

1 1 1 1 1 1 1 1
S m s e | project to track its convergence on
- Open Change Requests (Acceptable) an acceptable solution.
Changes
/\ The outcomes of applying this
,\/ f\’\ pattern are:
~ : .
* The project has an understanding
Project Schedule of the stability of the specified
Measure the level of change to converge on an solution and can make decisions
acceptable business solution and focus work accordingly.

* Progress towards converging on
an accurate business solution is
objectively measured.

Figure 9.91 — Rate of Change Pattern Definition Card, including free-form text and picture on the left-hand side

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 163

9.7.7.4.2 Pattern Detail Card

The following is a basic anatomy although variations are allowed:
e Card header: Pattern symbol and name at the top.

e Card body: Brief description of the Pattern, or any free-form text or picture visualizing the essence of the Pattern
(from the “description” attribute of the Pattern).

Examples

Patt
E Build Quality In < attem

|__—— Brief Description
Quality is planned, designed and built in: < p

* The tests that define acceptable quality
are agreed before work is started (e.g.
at Product Backlog Item and unit test
level)

* An item is not finished until adequate
quality has been achieved

* Enough design is done to ensure the
right approach is taken, and continuous
refactoringis done to ensure that the
code-base stays robust and
maintainable.

O Practice

symbol

Figure 9.92 — Build Quality In Pattern detail card
9.8 Textual Syntax

9.8.1 Overview

This subclause provides a textual syntax for the SEMAT Kernel Language and describes its mapping to the abstract
syntax presented above. The rules of the textual syntax are given in BNF-style.

The textual syntax does not specify any rules for file handling. Specifically it assumes that everything to be expressed
using this syntax is written in one single file. However, parser implementations may include facilities for merging files
prior to parsing in order to handle contents which are split over multiple files.

References between elements specified in the textual syntax can be made via identifiers. Each element that can be
referred to must define a unique identifier. Every element that wants to refer to another element can use this identifier as
a reference. Identifiers are unique within the containment hierarchy. Using an identifier outside the containment hierarchy
requires to prefix it with the identifiers of its parent element(s).

9.8.2 Rules

9.8.2.1 Notation

The following notation is used in this subclause:

164 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

(...)* means 0 or more occurrences

(...)? means 0 or 1 occurrence

e (...)+ means 1 or more occurrences

| denotes alternatives

ID is a special token representing a string which can be used as an identifier for the defined element

e ...Ref denotes a token representing an identifier of some element (i.e., not the defined element)

9.8.2.2 Root Elements

The root element representing the file containing the specification is defined as:

Model:
elements+=GroupElement*;

An empty file is a valid root. If not empty, the file may contain an arbitrary number of elements.

There are several categories of elements, not necessarily excluding each other:

GroupElement:
Kernel | Practice | Library | PracticeAsset | Method;

PatternElement:

Alpha | AlphaAssociation | AlphaContainment | WorkProduct |
WorkProductManifest | Activity | ActivitySpace | ActivityAssociation | Competency
| Pattern;

PracticeElement:
PatternElement | ExtensionElement | MergeResolution | UserDefinedType;

AnyElement:
GroupElement | PracticeElement | State | Level | CheckListItem |
Competencylevel | PatternAssociation | Tag | Resource;

KernelElement:
Alpha | AlphaAssociation | AlphaContainment | ActivitySpace | Competency |
Kernel | ExtensionElement | MergeResolution | UserDefinedType;

StateOrLevel:
State | Level;

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 165

AlphaOrWorkProduct:
Alpha | WorkProduct;

AbstractActivity:
Activity | ActivitySpace;

PracticeContent:
PracticeElement | Practice | PracticeAsset;

MethodContent:
Practice | ExtensionElement | MergeResolution;

9.8.2.3 Element Groups

A Kernel declaration is defined as:

Kernel:
'kernel' ID ':' STRING
('with rules' STRING)?
('owns' '{' KernelElement* '}')?
('uses' '{' KernelElementRef (',' KernelElementRef)* '}')?

(AddedTags) ?;

This maps directly to the language element with the same name. The ID creates a unique identifier for this Kernel, which
maps to the attribute “name.” The first STRING is considered as content for attribute “description.” The second STRING
is considered as content for attribute “consistencyRule”. If this optional bit is not used, the empty string must be used for
attribute “consistencyRule.” KernelElementRef is a unique identifier to an element to be contained in this kernel.

A Practice declaration is defined similarly as:

Practice:
'practice' ID ':' STRING

'with objective' STRING
('with measures' STRING(',' STRING) *)?
('with entry' STRING(',' STRING)*)?
('with result' STRING(',' STRING) *)?
('with rules' STRING)?
('owns' '{' PracticeElement* '}')?
('uses' '{' PracticeContentRef (',' PracticeContentRef)* '}')?
(AddedTags) ?;

The STRINGS used in the clauses for objective, measures, entry, and result are considered as contents for the respective
attributes. Missing clauses are handled as above.

Declarations for Library, PracticeAsset and Method are similar:

Library:

166 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

'library' ID ':' STRING
('owns' '{' GroupElement* '}'"')?
('uses' '{' GroupElementRef (',' GroupElementRef)* '}')?
(AddedTags) ?;

PracticeAsset:
'practiceAsset' ID ':' STRING
('owns' '{' PracticeElement* '}')?
('uses' '{' PracticeElementRef (',' PracticeElementRef)* '}')?
(AddedTags) ?;
Method:
'method' ID 'based on' KernelRef ':' STRING

'with purpose' STRING

('owns' '{' MethodContent* '}')?

('uses' '{' PracticeRef(',' PracticeRef)* '}')?
(AddedTags) ?;

9.8.2.4 Kernel Elements

An Alpha declaration and its contents are defined as:

Alpha:
'alpha' ID ':' STRING
(Resource(',' Resource)*)?
'with states' '{' State+ '}'
(AddedTags) ?;
State:
'state' ID '{' STRING ('checks {' CheckListItem+ '}')? '}' (AddedTags)?;
CheckListItem:

'item' ID '{' STRING '}' (AddedTags)?;

In all cases, the ID creates a unique identifier for the element, which maps to the attribute “name.” The STRING is con-
sidered as content for attribute “description.”

KernelAssociation declarations resolve to two alternatives as:

AlphaAssociation:
Cardinality AlphaRef '--' STRING '-->' Cardinality AlphaRef (AddedTags)?;

AlphaContainment:
AlphaRef 'contains' Cardinality AlphaRef (AddedTags)?;

The STRING is considered as content for attribute “name” of this AlphaAssociation. The Cardinality maps to the attrib-
utes for lower and upper bounds in all cases. References via identifiers directly map to the respective associations of the
meta-classes as defined in the abstract syntax.

An ActivitySpace declaration is defined as:
ActivitySpace:

'activitySpace' ID ':' STRING
(Resource(',' Resource)*)?

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 167

'targets' StateRef (',' StateRef)*
('with input' AlphaRef (',' AlphaRef) *)?
(AddedTags) ?;

The ID creates a unique identifier for this ActivitySpace, which maps to the attribute “name.” The STRING is considered
as content for attribute “description.” References via identifiers directly map to the respective associations of the meta-
classes as defined in the abstract syntax.

A Competency declaration is defined as:

Competency:
'competency' ID ':' STRING
(Resource (',' Resource)*)?
('has' '{' Competencylevel* '}')?
(AddedTags) ?;

Competencylevel:
'level’' INT ID STRING? AddedTags?;

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name.” The STRING is
considered as content for attribute “description.” The INT maps to the attribute “level” of the CompetencyLevel element
in the abstract syntax. References via identifiers directly map to the respective associations of the meta-classes as defined
in the abstract syntax.

9.8.2.5 Practice Elements

A WorkProduct declaration and its usage in an AlphaManifest declaration are defined as:

WorkProduct:
'workProduct' ID ':' STRING
(Resource(',' Resource)*)?
'with levels' '{' Level+ '}'
(AddedTags) ?;
Level:

('sufficient')? 'level' ID '{' STRING ('checks {' CheckListItem+ '}')? '}"'
(AddedTags) ?;

WorkProductManifest:
'describe' AlphaRef 'by' Cardinality WorkProductRef (',' Cardinality
WorkProductRef) * (AddedTags) ?;

The ID creates a unique identifier for this WorkProduct, which maps to the attribute “name.” The STRING is considered
as content for attribute “description.” The Cardinality maps to the attributes for lower and upper bounds in the
WorkProductManifest. References via identifiers directly map to the respective associations of the meta-classes as
defined in the abstract syntax.

An Activity declaration and its contents are defined as:

Activity:
'activity' ID ':' STRING
(Resource(',' Resource)*)?
'targets' StateOrLevelRef (',' StateOrLevelRef) *
('with actions' Action (',' Action)*)?

168 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

('requires competency level' CompetencylevelRef(','
CompetencylLevelRef) *) ?
(AddedTags) ?;

Action:
STRING 'on' (AlphaOrWorkProductRef (',' AlphaOrWorkProductRef) *)?;
(AddedTags) ?;

The ID creates a unique identifier for this Activity, which maps to the attribute “name.” The STRING on Activity is
considered as content for attribute “description.” The STRING on Action is considered as content for attribute “kind.”
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

An ActivityAssociation declaration is defined as:

ActivityAssociation:
AbstractActivityRef '--' STRING '-->' AbstractActivityRef (AddedTags)?;

The STRING is considered as content for attribute “kind.” References via identifiers directly map to the respective
associations of the meta-classes (i.e., “end1” and “end2” in this order) as defined in the abstract syntax.

A Pattern declaration and its contents are defined as:

Pattern:
'pattern’' ('<' UserDefinedTypeRef '>')? ID ':' STRING
(Resource(',' Resource)*)?
('{' PatternAssociation+ '}')?
(AddedTags) ?;

PatternAssociation:
'with' PatternElementRef (',' PatternElementRef)* 'as' STRING (AddedTags)?;

The ID on Pattern creates a unique identifier for the element, which maps to the attribute “name.” The STRING is
considered as content for attribute “description.” The STRING on PatternAssociation is considered as content for
attribute “name.” References via identifiers directly map to the respective associations of the meta-classes as defined in
the abstract syntax.

9.8.2.6 Auxiliary Elements

A user defined type declaration is defined as:

UserDefinedType:
'type' ID ':' STRING
(Resource(',' Resource)*)?
('with constraint' STRING) ?
(AddedTags) ?;

The ID creates a unique identifier for this user defined type, which maps to the attribute “name.” The first STRING is
considered as content for attribute “description.” A missing clause with the second STRING is handled as above.

Tags and resources are expressed as:

Tag:
(UserDefinedTypeRef '=')? STRING;

Resource:

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 169

'resource' (UserDefinedTypeRef '=')? STRING;

AddedTags:
'tagged with' '{' Tag(',' Tag)* '}';

Extension elements and merge resolutions are expressed as:

ExtensionElement:
'on' AnyElementRef 'in' STRING 'apply' STRING (AddedTags)?;

MergeResolution:
'on' STRING 'in' STRING 'apply' STRING (AddedTags)?;

On an ExtensionElement, the STRINGsS refer to attributes “targetAttribute” and “extensionFunction” in this order. On a
MergeResolution, the STRINGsS refer to attributes “targetName”, “targetAttribute” and “ResolutionFunction” in this
order.

A Cardinality can be specified according to the following definition:

Cardinality:
CardinalityValue ('..' CardinalityValue)?

CardinalityValue:
INT | 'N’

An identifier used for reference is either a single token or prefixed as following:

ID ('.'ID)*
9.8.3 Examples

A complete Alpha declaration for Kernel Alpha “Requirements”:

alpha Requirements:
"What the system must do to address the opportunity and satisfy the
stakeholders."
with states {
state Conceived {"The need for a new system has been agreed."
checks {
item checkpointl {"The initial set of stakeholders agrees
that a system is to be produced."}
item checkpoint2 {"The stakeholders that will use and
fund the new system are identified."}
item checkpoint3 {"The stakeholders agree on the purpose
of the new system."}
item checkpoint4 {"The expected value of the new system
has been agreed."}
}
}
state Bounded {"The purpose and extent of the new system is clear."
checks {
item checkpointl {"Stakeholders involved in developing
the new system are identified."}
item checkpoint2 {"It is clear what success is for the

170 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

new system."}
item checkpoint3

{"The stakeholders have a shared

understanding of the extent of the proposed solution."}

item checkpoint4
described is agreed upon."}

item checkpoint5
requirements are in place."}

item checkpointé6

item checkpoint7
considered."}

item checkpoint8

}
}

{"The way the requirements will be
{"The mechanisms for managing the

{"The prioritization scheme is clear."}
{"Constraints are identified and

{"Assumptions are clearly stated."}

state Coherent {"The requirements provide a coherent description of

the essential characteristics of the new

system."
{"The requirements are captured and
{"The origin of the requirements is

{"The rationale behind the requirements

checks {

item checkpointl
shared with the team and the stakeholders."}

item checkpoint2
clear."}

item checkpoint3
is clear."}

item checkpoint4

identified and attended to."}
item checkpoint5

{"Conflicting requirements are

{"The requirements communicate the

essential characteristics of the system to be delivered."}

item checkpointé
the system can be explained."}

item checkpoint7
clear."}

item checkpoint8
requirements is understood."}

item checkpoint9

{"The most important usage scenarios for
{"The priority of the requirements is
{"The impact of implementing the

{"The team understands what has to be

delivered and agrees that they can deliver it."}

}
}

state Acceptable {"The requirements describe a system that is

acceptable to the stakeholders."
checks {
item checkpointl
requirements as describing an acceptable
item checkpoint2
requirements is relatively low and under
item checkpoint3
requirements is clear."}
item checkpoint4
by the requirements are clear."}
item checkpoint5
}
}

{"The stakeholders accept the
solution."}

{"The rate of change to the agreed
control."}

{"The value provided by implementing the

{"The parts of the opportunity satisfied

{"The requirements are testable."}

state Addressed {"Enough of the requirements have been addressed to
satisfy the need for a new system in a way that is acceptable to the

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

171

stakeholders."
checks {
item checkpointl {"Enough of the requirements are
addressed for the resulting system to be acceptable to the stakeholders."}
item checkpoint2 {"The stakeholders accept the
requirements as accurately reflecting what the system does and does not do."}
item checkpoint3 {"The set of requirement items
implemented provide clear value to the stakeholders."}
item checkpoint4 {"The system implementing the
requirements is accepted by the stakeholders as worth making operational."}
}

}
state Fulfilled {"The requirements that have been addressed fully

satisfy the need for a new system."
checks {
item checkpointl {"The stakeholders accept the
requirements as accurately capturing what they require to fully satisfy the need
for a new system."}
item checkpoint2 {"There are no outstanding requirement
items preventing the system from being accepted as fully satisfying the
requirements."}
item checkpoint3 {"The system is accepted by the
stakeholders as fully satisfying the requirements."}
}
}
}

A minimal declaration of an Activity Space using the Alpha declared above:
activitySpace SpecifyTheSystem:

targets Requirements.SufficientlyDescribed
An example for a work product declaration:

workProduct DeveloperTest:

with levels {
level Sketched {"..."}
sufficient level Implemented {"..."}

}

An example for an activity declaration:

activity ImplementSolution {
targets Implementation.Partial, TestableSystemFeature.Tested
with actions "read" on DeveloperTest,SEMAT Kernel.Requirements,
"modify" on SEMAT Kernel.System,Implementation

}

An example for a practice declaration making use of a practice asset:

practiceAsset ImplementationWork:

172 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

owns {
workProduct Implementation:

" n

with levels {

level Stubs {"..."}
level Partial {"..."}
sufficient level Clean {"..."}

}

practice TestDrivenDevelopment:
with objective "..."
owns {
alpha TestableSystemFeature:
with states {
state Planned {"..."}
state TestImplemented {"..."}
state SolutionImplemented {"..."}
state Tested {"..."}

}

workProduct DeveloperTest:
with levels {
level Sketched {"..."}
sufficient level Implemented {"..."}

}

workProduct TestLog:

with levels {
level Raw {"..."}
level Analyzed {"..."}
}

activity ImplementDeveloperTests:

n n

targets DeveloperTest.Implemented,
TestableSystemFeature.TestImplemented
with actions "read" on SEMAT Kernel.Requirements

activity RunDeveloperTests:

" "

targets TestableSystemFeature.Tested
with actions "read" on DeveloperTest,SEMAT Kernel.
"create" on TestLog

activity ImplementSolution:

n 1]

targets ImplementationWork.Implementation.Partial,

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

System,

173

TestableSystemFeature.Tested

with actions "read" on DeveloperTest,SEMAT Kernel.Requirements,
"modify" on SEMAT Kernel.System,ImplementationWork.Implementation

SEMAT Kernel.System contains 1..N TestableSystemFeature

describe TestableSystemFeature by 1
ImplementationWork.Implementation, 1 DeveloperTest

ImplementDeveloperTests -- "part-of" -->

SEMAT Kernel.ImplementTheSystem
ImplementSolution -- "part-of" --> SEMAT Kernel.ImplementTheSystem
RunDeveloperTests -- "part-of" --> SEMAT Kernel.ImplementTheSystem

}

uses {
ImplementationWork

}

174 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Annex A: Software Engineering Kernel Extension

(Normative)

A.1 Introduction

This annex defines an extension of the Essence Kernel that specialize the kernel for software engineering. This
demonstrates how the Software Engineering Kernel as defined in version 1.2 of the Essence standard can be obtained and
used for backward compatibility purposes.

A1.1 Overview

To define this kernel extension, we specialize the System alpha into a Software System alpha. Such a specialization can
be achieved by using extension elements that target the System alpha and its states, and that can do the following:

e Rename the System alpha to “Software System”.
o Opverride the description of the System alpha with the description of the Software System alpha.

e Override some of the System alpha state descriptions and checklists to re-create the states of the Software System
alpha.

Software Engineering Kernel

Sg’;g‘t’\é%[le ... is obtained via extension elements: E1 E2 E3

,-"'extends/"

Essence Kernel) ,

... and including all other kernel elements.

Figure A.1 - The Software Engineering Kernel extends the Essence Kernel

We thereby assume that all other minor refinements of descriptive texts in the kernel elements, such as, for example,
changing “Software Engineering” to only “Engineering”, can be preserved as is. The resulting Software Engineering
Kernel will still be backwards compatible.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 175

Below, we will start by including the description of the Software System alpha (clause A.2). We will then formally list the
extension elements that are required to re-create this alpha in the Software Engineering Kernel extension (clause A.3).

A.2 The Software System Alpha

The following describes the Software System alpha from version 1.2 of the Essence standard. The Software System alpha
is associated with other kernel alphas as follows:

Frie ~
()]
5
< provide
"g 4@\/ Stakeholders
O _/\ﬁ% /L —
o eyt T o
' A 7 33
b ™
s : : .
e = 5
 — = ‘g
= 2 Requirements _ Software g
() ‘é < fulfils \ System v
\ w & § tg.r) / n
' i L E
4 23 o s Y
Vo b
< performs and plans
it Team
(@]
>
1)
1))
=]
=
L
~ J

Figure A.2 - The Software Engineering Kernel alphas and their associations

The Software System alpha resides in the solution area of concern where the team needs to establish a shared
understanding of the requirements, and implement, build, test, deploy, and support a software system that fulfills them.

A.21 Software System

Description

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

A software system can be part of a larger software, hardware, business, or social solution.

States

Architecture Selected An architecture has been selected that addresses the key technical
risks and any applicable organizational constraints.

Demonstrable An executable version of the system is available that demonstrates the

architecture is fit for purpose and supports testing.

176 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Usable The system is usable and demonstrates all of the quality
characteristics of an operational system.

Ready The system (as a whole) has been accepted for deployment in a live
environment.

Operational The system is in use in an operational environment.

Retired The system is no longer supported.

Associations

helps to address : Opportunity Software System helps to address Opportunity.
fulfills : Requirements Software Systems fulfills Requirements.

Justification: Why Software System?

Essence uses the term software system rather than software because software engineering results in more than just a piece
of software. While the value may well come from the software, a working software system depends on the combination
of software, hardware, and data to fulfill the requirements.

Progressing the Software System

The life-cycle of a software system is hard to define as there can be many releases of a software system. These releases
can be worked on and used in parallel. For example, one team can be working on the development of release 3, while
another team is making small changes to release 2, and a third team is providing support for those people still using
release 1. If we treat this software system as one entity, what state is it in?

To keep things simple, Essence treats each major release as a separate software system; one that is built, released,
updated, and eventually retired. A major release encompasses significant changes to the scope, purpose, usage, or
architecture of a software system. It can encompass many minor releases including internal releases produced for testing
purposes and external releases produced to support incremental delivery or bug fixes. In the example above, the second
team would be producing a series of minor releases (2.1, 2.2, 2.3, etc.) of their software system to allow the delivery of
their small changes.

During its development, a software system progresses through several state changes. As shown in Figure A.3, they are
architecture selected, demonstrable, usable, ready, operational, and retired. These states provide points of stability on a
software system’s journey from its conception to its eventual retirement, indicating:

1. When the architecture is selected,
2. When a demonstrable system is produced to prove the architecture and enable testing to start,
3. When the system is extended and improved so that it becomes usable,
4. When the usable system is enhanced until it is accepted as ready for deployment,
5. When the system is made available to the stakeholders who use it and made operational, and finally,
6. When the system itself is retired and its support is withdrawn.
These states can be applied to the initial release of the software system or any subsequent modification or replacement.

As indicated in Figure A.3, the first thing to do for any major software system release is to make sure that there is an
appropriate architecture available; one that complies with any applicable organizational constraints and addresses the key
technical risks facing the new system. Achieving this may require the creation of a brand new architecture, the
modification of an existing architecture, the selection of an existing architecture, or the simple re-use of whatever is

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 177

already in place. Regardless of the approach taken, the result is that the system progresses to the architecture selected
state.

'

Architecture An architecture has been selected that addressesthe

Selected key technical risks and any applicable organizational
1 constraints.
An executable version of the system is available that
Demonstrable demonstrates the architecture is fit for purpose and
E supports testing.
(]
%) :
= Usable The system is usable and demonstrates all of the
(dp) quality characteristics required of an operational
system.
@ ,
| -
© The system (as a whole) has been accepted for
Ready . . g
E deploymentin a live environment.
O]
n Operational The systemis in use in a live environment.
Refired The system is no longer supported.

.

Figure A.3 — The states of the Software System

Once the architecture had been selected, it must be shown to be fit-for-purpose by building and testing a demonstrable
version of the system. It is not sufficient to just present a set of rolling screen-shots or a stand-alone version of a multi-
user system. The system needs to be truly demonstrable exercising all of the significant characteristics of the selected
architecture. It must also be capable of supporting both functional and non-functional testing.

The demonstrable system is then evolved to become usable by adding more functionality, and fixing defects. Once the
system has achieved the usable state, it has all the qualities desired of an operational system. If it implements a sufficient
amount of the requirements, if it provides sufficient business value, and if there is an appropriate window of opportunity
for its deployment, then it can be considered to be ready for operational use.

Although a usable system has the potential to be an operational system, there are still a few essential steps to be
performed before it is ready. The system has to be accepted for use by the stakeholders, and it has to be prepared for
deployment in the live environment. In this state, the system is typically supplemented with installation guidance and
training materials.

The system is made operational when it is installed for real use within the live environment. It is now available for use
and to generate value and provide benefits to its stakeholders.

Even after the software system has been made operational, development work can still continue. This may be as part of
the plans for the incremental delivery of the system or, as is more common, a response to defects and problems occurring

178 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

during the deployment and operation of the system. Support and maintenance continue until the software system is
retired and its support is withdrawn. This may be because:

1) the software system has been completely replaced by a later generation,
2) the software system no longer has any users or,
3) it does not make business sense to continue to support it.

During the development of a major release, many minor releases are often produced. For example, many teams using an
iterative approach produce a new release during every iteration whilst they keep their software system continuously in a
usable, and therefore potentially shippable, state. It is then the stakeholder representatives who decide whether it is ready
to be made operational. This approach is not always possible, particularly if major architectural changes are required as
these often render the system unusable for a significant period of time.

Understanding the current and desired state of a software system helps everyone understand when a system is ready, what
kinds of changes can be realistically made to the system, and what kinds of work should be left to a later generation of
the software system.

Checking the Progress of the Software System

To help assess the state of a software system and the progress being made towards its successful operation, the following
checklist items are provided:

Table A.1 — Checklist for Software System
State Checklist

Architecture Selected | The criteria to be used when selecting the architecture have been agreed on.
Hardware platforms have been identified.

Programming languages and technologies to be used have been selected.
System boundary is known.

Significant decisions about the organization of the system have been made.
Buy, build, and reuse decisions have been made.

Key technical risks agreed to.

Demonstrable Key architectural characteristics have been demonstrated.

The system can be exercised and its performance can be measured.
Critical hardware configurations have been demonstrated.

Critical interfaces have been demonstrated.

The integration with other existing systems has been demonstrated.

The relevant stakeholders agree that the demonstrated architecture is appropriate.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 179

State Checklist

Usable The system can be operated by stakeholders who use it.

The functionality provided by the system has been tested.

The performance of the system is acceptable to the stakeholders.
Defect levels are acceptable to the stakeholders.

The system is fully documented.

Release content is known.

The added value provided by the system is clear.

Ready Installation and other user documentation are available.
The stakeholder representatives accept the system as fit-for-purpose.
The stakeholder representatives want to make the system operational.

Operational support is in place.

Operational The system has been made available to the stakeholders intended to use it.
At least one example of the system is fully operational.

The system is fully supported to the agreed service levels.

Retired The system has been replaced or discontinued.
The system is no longer supported.

There are no “official” stakeholders who still use the system.

Updates to the system will no longer be produced.

A3 The Required Extension Elements

To formally describe the extension elements required to obtain the Software System alpha as presented above, we employ
the textual syntax of the Essence language (clause 9.8) to first describe the System alpha, and then to describe the
extension elements that need to be applied on this alpha.

180 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

A.3.1 The System Alpha (Textual Syntax)

alpha System:

"System: A system consists of a set of elements interacting to achieve a
defined purpose. The elements of a system include one or more of the
following: hardware, software, data, humans, processes, services,

procedures,

facilities, materials and naturally occurring entities.

A system is the primary outcome of an engineering endeavor. The work done by
the engineering team is focused on producing a system that helps to address
an opportunity, that fulfils its requirements and that is useful and
valuable to its stakeholders. A system can be part of a larger system."

with states {

state Architecture Selected {"An architecture has been selected that
addresses the key technical risks and any applicable organizational
constraints."

checks {

}
}

item checkpointl {"The criteria to be used when selecting the
architecture have been agreed on."}

item checkpoint2 {"The architecture’s key concepts and
properties are clearly defined."}

item checkpoint3 {"The selected architecture is clearly
conceived."}

item checkpoint4 {"System boundary is known."}

item checkpoint5 {"Significant decisions about the organization
of the system have been made."}

item checkpoint6 {"Buy, build, and reuse decisions have been
made."}

item checkpoint7 {"Key technical risks agreed to."}

state Demonstrable {"A demonstrable version of the system is available that
demonstrates the architecture is fit for purpose and supports testing."
checks {

}
}

item checkpointl {"Key architectural characteristics have been
demonstrated."}

item checkpoint2 {"The system can be exercised and its
performance can be measured."}

item checkpoint3 {"Critical configurations of the architecture
have been demonstrated."}

item checkpoint4 {"Critical interfaces have been
demonstrated."}

item checkpoint5 {"The integration with other existing systems
has been demonstrated."}

item checkpoint6é {"The relevant stakeholders agree that the
demonstrated architecture is appropriate."}

state Usable {"The system is usable and demonstrates all of the quality
characteristics of an operational system."
checks {

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 181

}
}

item checkpointl {"The system can be operated by stakeholders
who use it."}

item checkpoint2 {"The functionality provided by the system has
been tested."}

item checkpoint3 {"The performance of the system is acceptable
to the stakeholders."}

item checkpoint4 {"Defect levels are acceptable to the
stakeholders."}

item checkpoint5 {"The system is sufficiently documented."}
item checkpoint6é {"Released system elements are known."}

item checkpoint7 {"The added value provided by the system is
clear."}

state Ready {"The system (as a whole) has been accepted for deployment in a

live environment."

checks {

}
}

item checkpointl {"Documentation on how to deploy and use the
system in its intended environment is available."}

item checkpoint2 {"The stakeholder representatives accept the
system as fit-for-purpose."}

item checkpoint3 {"The stakeholder representatives want to make
the system available for use."}

item checkpoint4 {"Operational support is in place."}

state Operational {"The system (as a whole) has been accepted for
deployment in a live environment."
checks {

}
}

item checkpointl {"The system has been made available to the
stakeholders intended to use it."}

item checkpoint2 {"At least one example of the system is fully
operational."}

item checkpoint3 {"The system is fully supported to the agreed
service levels."}

state Retired {"The system (as a whole) has been accepted for deployment in
a live environment."
checks {

182

item checkpointl {"The system has been replaced or
discontinued."}

item checkpoint2 {"The system is no longer supported."}
item checkpoint3 {"There are no “official” stakeholders who
still use the system."}

item checkpoint4 {"Updates to the system will no longer be
produced. "}

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

A.3.2 The Extension Elements (Textual Syntax)

ExtensionElement:

on System in "name" apply "post: result = “Software System”"
ExtensionElement:

on System in "description" apply "post: result = “Software System: A system

made up of software, hardware, and data that provides its primary value by
the execution of the software. A software system can be part of a larger
software, hardware, business, or social solution.”"

ExtensionElement:
on System.Architecture Selected.checkpoint2 in "description" apply "post:
result = “Hardware platforms have been identified.”"

ExtensionElement:
on System.Architecture Selected.checkpoint3 in "description" apply "post:
result = “Programming languages and technologies to be used have been
selected.”"

ExtensionElement:

on System.Demonstrable in "description" apply "post: result = “An
executable version of the system is available that demonstrates the
architecture is fit for purpose and supports testing.”"

ExtensionElement:
on System.Demonstrable.checkpoint3 in "description" apply "post: result =
“Critical hardware configurations have been demonstrated.”"

ExtensionElement:
on System.Usable.checkpoint5 in "description" apply "post: result = “The
system is fully documented.”"

ExtensionElement:
on System.Usable.checkpoint6é in "description" apply "post: result
“Release content is known.”"

ExtensionElement:
on System.Ready.checkpointl in "description" apply "post: result =
“Installation and other user documentation are available.”"

ExtensionElement:

on System.Ready.checkpoint3 in "description" apply "post: result = “The
stakeholder representatives want to make the system operational.”"

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 183

This page intentionally left blank.

184 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Annex B: Optional Kernel Extensions

(Normative)

B.1 Introduction

This annex defines the optional extensions to the Essence Kernel. It presents a number of optional extensions for use with
the kernel. It begins with an introduction of the set of kernel extensions and their use. It then continues with a description
of each extension and its contents.

B.1.1 Acknowledgements

Arne-Jorgen Berre, Shihong Huang, Andrey Bayda and Paul McMahon lead the work on the optional Kernel extension.

The following persons contributed valuable ideas and feedback that improved the Kernel extensions: Bob Corrick, Ivar
Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Winifred Menezes, Hiroshi Miyazaki, Bob Palank, Tom Rutt and
Ian Michael Spence.

B.1.2 Overview

Although the kernel can have many uses, including helping monitor the progress and health of your engineering
endeavors, and the completeness of your engineering methods, it can appear to be too abstract to actually drive the
engineering work. This is because the kernel is designed to be used in conjunction with your selected practices. To help
you understand how the kernel works, and to provide some extensible assets to help in the creation of your own practices,
we present three optional kernel extensions, one for each area of concern. These are the following:

¢ Business Analysis Extension — adds two Alphas, Need and Stakeholder Representative, to drive forward the
Opportunity and the Stakeholders.

¢ Development Extension — this is an extension of the Software Engineering Kernel (Annex A) that adds two
Alphas, Requirement Item and Software System Element to drive forward the Requirements and the Software
System. As well as Software System Element it also adds Bug to monitor the health of the Software System. Bugs
are an important thing to monitor, track and address in any software development endeavor, and one which will
inhibit, rather than drive, progress being made to the Software System.

e Task Management Extension — adds three Alphas, Team Member, Task and Practice Adoption, to drive forward
the Team, Work and Way-of-Working.

B.1.3 Why the Focus on Adding Alphas?

When using the kernel it is very unlikely that you will progress any of its Alphas as a single unit. In each case you will
drive the progress of the Alpha by progressing its parts. For example the Requirements will be progressed by progressing
the individual Requirement Items, each of which can progress at its own speed.

The way in which the Alphas progress is, of course, practice specific. For example agile practices will progress the
Requirement Items either individually or in small batches, whereas a waterfall practice will typically try to move them all
at the same time.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 185

B.1.4 Why are the Subordinate Alphas not included in the Kernel?

When you look at the suggested set of new Alphas you may well think that they themselves are universal and question
why they haven’t been included in the kernel.

The problem when looking at engineering at this level of detail is that the universals tend to be types of things rather than
specific things. For example although every endeavor will have Requirement Items, they won’t all have the same type of
Requirement Items. Some teams will be using user stories, others will be using use cases, and some even using both.
Whilst it is tempting to think that one could provide a definitive definition of a Requirement Item that is satisfactory to all
communities and practices, in reality this is an impossibility and would lead to the practices becoming distorted and
overly complicated. It is better to provide a generic definition and allow the practice authors to either extend this or
ignore it as they wish.

B.1.5 How do you use the Kernel Extensions?

The kernel extensions can be used in a number of different ways:
1. To flesh out the kernel, providing a more complete picture of engineering.

2. As templates for the creation of your own practices — for example the Requirement Item Alpha could be extended to
provide a base for the definition of your own specific types of Requirement Items.

3. As inspiration and examples. By considering the relevant extensions before defining your own practices you will
find it easier to create these and understand how they would be plugged into the kernel.

B.2 Business Analysis Extension

B.2.1 Introduction

This extension provides two additional Alphas to help teams to progress their Opportunities and Stakeholders.

B.2.2 Alphas

The business analysis extension extends the customer area of concern adding the following Alphas:
o Stakeholder Representative as a subordinate of Stakeholders.

e Need as a subordinate of Opportunity.
B.2.2.1 Stakeholder Representative

Description

Stakeholder Representative: A person, or group, empowered to represent a subset of the stakeholders in the endeavor.

186 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Super-Ordinate Alpha
Stakeholders

States
Identified

Empowered

Engaged
Satisfied

Delighted

Associations
drive : Stakeholders

The need for a sub-set of the stakeholders to be represented has been
identified.

A stakeholder representative has been empowered to work with the
team and understands his or her responsibilities to the team and the
people he or she represents.

The stakeholder representative is actively involved in the work and
fulfilling his or her responsibilities.

The stakeholder representative is satisfied with the work done and the
system produced.

The stakeholder representative is delighted with the work done and
the system produced.

The progress of the Stakeholder Representatives drives the progress
of the Stakeholders.

Justification: Why Stakeholder Representative

The number of Stakeholders in any system is often unbounded, with many systems affecting millions of people. The only
practical way to engage with the Stakeholders is to appoint one or more Stakeholder Representatives to gather and reflect
the opinions of the actual stakeholders. The Stakeholder Representative may be a single individual representing a sub-set
of the stakeholders (or all stakeholders as is the case with the Scrum Product Owner), or some kind of official body such

as a focus group or steering committee.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

187

£ , ™\
 E——
Identified Theneedfor a sub-set of the stakeholders to be represented has
been identified.
A stakeh olderrepresentative has been empowered to work with the

(1)) Empowered tearmn and understands his orherrespon sibilities to the team andthe
B 2 people he ar sherepresents.

-
O S
[e) E Engaded The stakeholder representative is actively involvedin thework and
O gag fulfilling his or herrespon sibilities.
C 0 T
=~ O
E ’5_ Satisfied The stakeholder representative is satisfied with the work done andthe
N o software system produced.

XY T

Deliahted The stakeholder representative is delighted with the work doneandthe
elighte software system produced.
o R —
+
\. J

Figure B.1 — The states of the Stakeholder Representative

Progressing the Stakeholder Representatives

During the development of a system the stakeholder representatives progress through several state changes. As shown in
Figure B.1, they are identified, empowered, engaged, satisfied, and delighted. These states focus on the involvement and
satisfaction of the stakeholder representatives, from the identification of a sub-set of the stakeholders that require explicit
representation through the empowerment of stakeholder representatives, their engagement in the development work and
their satisfaction and delight in the resulting system. They communicate the progression of the relationship with the
stakeholders who are either directly involved in the engineering endeavor or support it by providing input and feedback.

As indicated in Figure B.1, the first thing to do is to identify which sub-sets of the Stakeholders that require explicit
representation in the project and to determine the number of Stakeholder Representatives required. The number of
Stakeholder Representatives required can vary considerably from one system to another, but there is always at least one
Stakeholder Representative available to the team.

To be effective the Stakeholder Representatives must be empowered both in their relationship with the team and in their
relationship with their sub-set of the Stakeholders. Of particular importance is to make sure that they have the time
available to support the team and understand the particular needs of the stakeholders they represent. Once they are
empowered they need to be engaged with the team and to work with the team so that they are satisfied with the work
done and the system produced. It is key part of their responsibilities to accurately reflect the opinions of the Stakeholders
they represent.

Checking the progress of a Stakeholder Representative

To help assess the state and progress of a Stakeholder Representative, the following checklists are provided:

188 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.1 — Checklist for Stakeholder Representative

State Checklist
Identified e A person to act on behalf of the stakeholders has been identified from the stakeholder
group.

e The responsibilities of the stakeholder representative have been identified.

Empowered o The stakeholder representative has domain knowledge.
e The stakeholder representative has been authorized in decision making.

e The stakeholder representative knows his /her responsibilities.

Engaged e The stakeholder representative actively supports the team.
o The stakeholder representative participates in decision making of the product.

e The stakeholder representative provides feedback about the product.

Satisfied e The minimum expectation of the stakeholders has been achieved.

Delighted e The system meets, or exceeds, the minimum expectation of the stakeholders.

How the Stakeholder Representatives drive the progress of the Stakeholders

The progress of the Stakeholders is driven by the Stakeholder Representatives. For illustrative purposes the states of the
two Alphas are shown in Figure B.2.

- s ®

~\

Recognized
Identified
() Represented
« > | Empowered
E T L ——
_8 % L) Involved
Engaged g
g gl " Drives F o m—
< QO ——— o) "
E S = Agreement
N o Satisfied © g
o n ———
p—m— Satisfied for
Delighted Deployment
S —
¥ Satisfied in
@ Use
 —

‘ ’ ®
& ‘ J

Figure B.2 — The Stakeholder Representatives drive the progress of the Stakeholders

How the Stakeholder Representatives drive the progress of the Stakeholders is summarized in Table B.2, along with the
additional checklist items that this kernel extension adds to the Stakeholders’ state checklists.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 189

Table B.2 — How the Stakeholder Representatives drive the Stakeholders

Stakeholders How the Stakeholder Representatives Additional Checklist Items

State drive the progress of the Stakeholders

Recognized First the Stakeholders must be recognized. | The proposed set of Stakeholder
An important part of this is to identify Representatives has been Identified.
how they will be represented.

Represented Continuing to progress the Stakeholder All the recognized groups of Stakeholders
Representatives will help to continue the have at least one empowered Stakeholder
progress of the Stakeholders. Representative.

To ensure that the Stakeholders are
represented it is important to make sure
that all the identified Stakeholder groups
have empowered Stakeholder

Representatives.

Involved To involve the Stakeholders their All the recognized groups of Stakeholders
Stakeholder Representatives will have to have at least one engaged Stakeholder
be engaged. Representative.

In Agreement Actively engaging the Stakeholder Enough of the Stakeholder Representatives
Representatives will facilitate bringing are engaged in the decision making for

them to agreement about the Opportunity | agreement to be reached.
to be addressed and the Requirements for

the System.
Satisfied for The best indication of whether the All the Stakeholder Representatives are
Deployment Stakeholders are satisfied is the level of satisfied or delighted with the System that has

satisfaction of the individual Stakeholder | been produced.
Representatives. By satisfying the
Stakeholder Representatives you can
progress the Stakeholders to satisfied for
deployment.

Note: you may want to engage with more
Stakeholder Representatives to verify that
the System produced for the initial set of
Stakeholder Representatives is generally
applicable.

Satisfied In Use The best indication of whether the All the Stakeholder Representatives are
Stakeholders are satisfied is the level of satisfied or delighted with the System that is
satisfaction of the individual Stakeholder | operational.

Representatives. By ensuring the
continued satisfaction of the Stakeholder
Representatives you can progress the
Stakeholders to satisfied in use.

Again you may want to engage with more
Stakeholder Representatives to verify that
the System produced for the initial set of
Stakeholder Representatives is actually
useful.

190 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

The state of the individual Stakeholder Representatives is independent of the overall state of the Stakeholders. For
example an individual Stakeholder Representative may be engaged before the Stakeholders as a whole are represented.

Note that it is possible that a team may only have one Stakeholder Representative who represents all of the Stakeholders.
In this case it is still useful to track the state of the Stakeholder Representative as well as the Stakeholders.

B.2.2.2 Need

Description

Need: A lack of something necessary, desirable or useful, requiring supply or relief.

Need exists within the customer, and will be considered by product or portfolio managers who analyze whether there will
be value generated by addressing the Need, and pursuing the identified opportunities.

Super-Ordinate Alpha

Opportunity

States

Identified A need related to the opportunity and the stakeholders is identified.

Value Established The value to the customers and other stakeholders of a successful
solution that addresses the need is established.

Satisfied The minimal expectations for a solution that addresses the need have
been met.

Expectation Exceeded The minimal expectations for a solution that addresses the need have

been exceeded to the extent that the stakeholders are delighted.

Associations

drive : Opportunity The progress of the Needs drive the progress of the Opportunity.

Justification: Why Need

Different groups of Stakeholders will respond to the Opportunity in different ways and have different needs for a
solution. Explicitly tracking the individual Needs is necessary if you want to truly understand the value of an Opportunity
and delight the Stakeholders. Progressing the individual Needs is the best way to ensure that you progress the
Opportunity.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 191

i , ™
—
) Aneedrelated to the opportunity andthe stakeh olders is identified.
Identified
" Val A Thewalueto the customers and other stalkehalders of a successful
a 'j'e solution that addressesth e needis established
Established
o]
3
. Theminimal expectationsfor a solution thataddressesthe needhave
= Satisfied LAl
Expectations The minimal expectations fora solution thataddressesthe need have
Exceeded been exceededto the extentth at the stakeh olders are delighted..
+
. J

Figure B.3 — The states of the Need

The Need is necessary for having a well-defined Opportunity, as the Opportunity is the possibility to provide a
solution/system that meets the Needs of the Stakeholders.

Progressing the Need

If the Team does not take the time to understand the Needs that drive the Opportunity they are likely to identify the
wrong Requirements and develop the wrong System. The Needs need to be understood and individually addressed. As
shown in Figure B.3 Needs progress through the identified, value established, satisfied, and expectations exceeded states.
These states focus on understanding the value of addressing the need and the benefit that can be expected from the
delivery of an appropriate System.

The need is the inherent lack of something necessary, desirable or useful, requiring supply or relief. As indicated in
Figure B.3, a Need initially is identified and described in a suitable form. One form it can take is in describing potential
features of a new or existing system. Alternatively it can be described in terms of desired outcomes or benefits to be
achieved. Once the Need has been identified the next step is to quantify the benefit that could be generated if the Need is
addressed. As a next step, the Need’s value gets established, the value to the customers, and other stakeholders. Here, the
solution that addresses the Need is quantified and the need has been prioritized.

Finally, when a System is available and it fulfills the minimum expectations the Need can progress to the satisfied state.
To truly delight the Stakeholders the System must surpass the minimal expectation in some way. If this happens then the
Need is progressed to the expectations exceeded state.

Checking the progress of Need

To help assess the state and progress of Need, the following checklists are provided:

192 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.3 — Checklist for Need
State Checklist

Identified o A lack of something necessary, desirable or useful to the Stakeholders and related to
the Opportunity has been identified.

o The Need has been clearly described.

e It is clear which Stakeholder groups share the Need.

Value Established | ¢ The value of addressing the Need has been quantified.
e The relative priority of the Need is clear.

e The minimum expectations of the affected Stakeholders are clear.

Satisfied e Ausable system that addressed the Need is available.

e The minimum expectations of the affected stakeholders have been satisfied.

Expectation e The minimum expectations of the affected stakeholders have been exceeded.
Exceeded

How the Need drives the progress of the Opportunity

The need will drive the opportunity by providing the targets for the opportunity to achieve. From a provider point of view
the opportunity is the possibility to create a solution that meets the needs of the Stakeholders. The need also provides the
foundation for the formulation of the Requirements.

The progress of the Opportunity is driven by the Needs. For illustrative purposes the states of the two Alphas are shown
in Figure B.4.

P e,
R
’ Identified

Identified
Value
Established

Solution
Needed
Value
Established

Addressed
Benefit
Accrued

Figure B.4 — The Needs drive the progress of the Opportunity

Drives

Need

Expectations
Exceeded
@

Opportunity

How the Needs drive the progress of the Opportunity is summarized in Table B.4, along with the additional checklist
items that this kernel extension adds to the Opportunity’s state checklists.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 193

Table B.4 — How the Needs drive the Opportunity

Opportunity
State

How the Needs drive the progress of the
Opportunity

Additional Checklist Items

Identified

First an Opportunity must be identified.
Although the Opportunity will be more
convincing if some of the Needs that drive
it have been identified progress to this
state is independent of the state of any of
the subordinate Needs.

None.

Solution Needed

To demonstrate that a solution is needed
analysis if the Opportunity and the Needs
that drive it is required. If no compelling
Needs are identified then there is no real
need for the solution.

At least one compelling Need has been
identified.

Value Established

To understand the value of the
Opportunity one must understand the
value of the Needs that drive it.

Progressing the Needs to Value
Established will help to progress the
Opportunity to Value Established.

All of the Needs have been progressed to
value established.

Viable

Once the value of addressing the
Opportunity and its underlying Needs has
been established additional work is needed
to cost the solution and establish if the
Opportunity is viable. No further progress
on the Needs is needed at this stage.

None

Addressed

Continuing to progress the Needs will
help to progress the Opportunity to
Addressed.

The Opportunity has not been properly
addressed in there are critical Needs that
have not been satisfied.

All of the critical Needs have been satisfied.

Benefit Accrued

It will be difficult for benefit to be accrued

It is confirmed by the users that the critical

from the use of the System if it has not
satisfied the critical Needs.

Needs have been satisfied or expectations are
exceeded.

Some practices, like goal oriented requirements engineering practices, will introduce the concept of goal as a link from
needs and opportunities to system requirements. In such cases a new subordinate alpha of requirements can be introduced
for this.

B.3 Development Extensions

B.3.1 Introduction

The Development Extension is an extension of the Software Engineering Kernel (Annex A) and provides three additional
Alphas to help teams to progress the Requirements and Software System alphas.

194 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

B.3.2 Alphas

The development extension expands the solution area of concern adding the following Alphas:
e Requirement Item as a subordinate of Requirements.
e Bug as a subordinate of Software System.

o Software System Element as a subordinate of Software System.
B.3.2.1 Requirement Item

Description

Requirement Item: a condition or capability needed by a stakeholder to solve a problem or achieve an objective.

Requirements are composed of Requirement Items. These are the individual requirements, which can be addressed and
progressed individually. The overall progress and health of the Requirements alpha is driven by the progress and health
of its Requirement Items. The number of Requirement Items can vary in a wide range from one system to another.

Super-Ordinate Alpha

Requirements

States

Identified A specific condition or capability that the Software System must
address has been identified.

Described The Requirement Item is ready to be implemented.

Implemented The Requirement Item is implemented in the Software System and
demonstrated to work.

Verified Successful implementation of the Requirement Item in the Software

System has been confirmed.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 195

?

A specific condition or capability that the Software System

Identified must address has been identified.
el
= !
Q)))
E Described The Requirement ltem is ready to be implemented.
o £
o i
-0 =
o Implemented The Requirement ltem is implemented in the Software System
Q and demonstrated to work.
o 3
Verified Successful implementation of the Requirement ltem in the

Software System has been confirmed.

®

Figure B.5 — The states of Requirement Item

Associations

drive : Requirements The progress of the Requirement Items drives the progress of the
Requirements.

Justification: Why Requirement Item

The Software System is usually developed to fulfill a number (a potentially very high number) of Requirements. The
only efficient way to manage them is to manage them individually (e.g., as Requirement Items) while being aware of
their progress as a whole. Managing requirements at the Requirement Item level allows teams to ensure that the
Requirements are appropriately crafted (i.e., they are necessary, implementation independent, clear and concise,
complete, consistent, achievable, traceable and verifiable). It also helps when mapping them to the code and tests, and
when using any form of requirements management tool.

Progressing the Requirement Items

During the development of a software system the requirement items progress through several state changes. As shown in
Figure B.5, they are identified, described, implemented, and verified. These states focus on the progress and health of the
individual Requirement Items, from their identification and description as part of the requirements elicitation to their
implementation and verification by the development team. Understanding the state of the Requirement Items helps in
planning, tracking and driving the development of the required Software System.

The individual Requirement Items are first identified. This may be as the result of a requirements workshop, receiving a
change request, or even derived from another higher-level Requirement Item. In the first state of the Requirement Item,
the identified state, a specific condition or capability that the Software System must address has been identified. Its
objectives have been briefly defined and its management mechanism is selected. Work is then needed to flesh out the
Requirement Item and ensure that it is well formed and suitably described.

In the described state, the description of the Requirement Item evolves into a clear, concise, complete, consistent, and
verifiable description. The Requirement Item is also justified as necessary and achievable, and prioritized relative to its

196 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

peers. Next, the Requirement Item is implemented as part of the Software System. Finally the last few activities and
pieces of testing are completed to confirm that the Requirement Item is truly done. In the verified state, it has been

confirmed that the Software System successfully implements the Requirement Item.

Checking the progress of a Requirement Item

To help assess the state and progress of a Requirement Item, the following checklists are provided:

Table B.5 — Checklist for Requirement Item

State

Checklist

Identified

Requirement Item is briefly described.
The Requirement Item is logged.
The origin of the Requirement Item is clear.

The value of implementing the Requirement Item is clear.

Described

The Requirement Item is justified as necessary and achievable.

The Requirement Item specification technique is selected.

The Requirement Item is described clearly, concisely, and consistently.

The Requirement Item is described in a verifiable way, and is possible to test.
The Requirement Item is prioritized relative to its peers.

The Requirement Item does not specify a design or solution.

The Requirement Item is ready for development.

The impact of implementing the Requirement Item is understood.

Implemented

The Software System Elements involved in the implementation of the Requirement Item
are known.

The development and developer testing of the code that implements the Requirement
Item is complete.

A version of the Software System implementing the Requirement Item is available for
further demonstration and testing.

Verified

Tests showing that the Requirement Item has been implemented to an acceptable level of
quality have been successfully executed.

Verification report is stored and available for future reference.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

197

Identified

Requirement
Item

Verified

®

Described

| Implemented |

&

Conceived

]

Bounded

Drives

Requirements

¢

Caoherent

¥

Acceptable

!

Addressed

¥

Fulfilled

;

Figure B.6 — The Requirement Items drive the progress of the Requirements

How the Requirement Items drive the progress of the Requirements

The progress of the Requirements is driven by the associated Requirement Items. For illustrative purposes the states of
the two Alphas are shown in Figure B.6.

How the Requirement Items drive the progress of the Requirements is summarized in Table B.6, along with the additional
checklist items that this kernel extension adds to the Requirements state checklists.

Table B.6 — How the Requirement Items drive the Requirements

Requirements How the Requirement Items drive the Additional Checklist Items
State progress of the Requirements
Conceived Progress to the conceived state is None
independent of the state of any of the
subordinate Requirement Items.
Bounded To properly bound the Requirements some | One or more essential Requirement Items
of the most important Requirement Items | have been identified and described.
should be identified and described.
198 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Requirements
State

How the Requirement Items drive the
progress of the Requirements

Additional Checklist Items

Coherent Continuing to progress the Requirement New complete checklist:
Items will help to continue the progress of
the Requirements. e The Requirement Items have been iden-
Describing the Requirement Items that ntﬁle(d; nl(jl shared with the team and the
communicate the essential characteristics Stakeholders.
?f;[)he systeml:v ill lzelp the Requirements e The Requirement Items that communi-
0 become coherent. cate the essential characteristics of the

system have been described.

e Conflicting Requirement Items have
been identified and attended to.

e The described Requirement Items
communicate the essential characteris-
tics of the system to be delivered.

e The most important usage scenarios for
the system can be explained.

e The team understands what has to be
delivered and agrees to deliver it.

Acceptable Describing the highest priority New complete checklist:

Requirement Items will help evolve the
Requirements to the point where they
define a system acceptable to the
stakeholders.

Note: For mature systems this may only
require the definition of a single
Requirement Item — what makes the
Requirements acceptable is up to the
Stakeholders.

Enough Requirement Items are de-
scribed to define a system acceptable to
the stakeholders.

The rate of change to the agreed Re-
quirement Items is relatively low and
under control.

The Needs satisfied by the Require-
ment Items are clear.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

199

Requirements How the Requirement Items drive the Additional Checklist Items

State progress of the Requirements
Addressed Implementing and verifying the New complete checklist:
Requirement Items is the only way to
address the Requirements. e Enough of the Requirement Items have

been Implemented and Verified for the
resulting system to be acceptable to the
stakeholders.

The Requirements are addressed when
the set of Requirement Items
implemented and verified provide clear
value to the stakeholders and the resulting

g X e The stakeholders accept the Require-
system is worth releasing.

ment [tems as accurately reflecting
what the system does and does not do.

e The set of Requirement Items imple-
mented and verified provide clear value
to the stakeholders.

e The system implementing the Require-
ment Items is accepted be the stake-
holders as worth making operational.

Fulfilled You continue implementing and verifying | Requirements checklist item “There are no
additional requirement items until the outstanding requirement items preventing the
resulting system fully satisfies the need system from being accepted as fully
for a new system, and there are no satisfying the requirements” is replaced with
outstanding Requirement Items preventing | the following item: “All Requirement Items
the system from being considered preventing the system from being accepted as
complete. fully satisfying the requirements have been

verified.”

The state of the individual Requirement Items is independent of the states of their owning Requirements. It is quite
possible for one or more Requirement Items to be verified before the Requirements are bounded or coherent. For
example you could implement and verify some of the most obvious, important and risky requirement items before
investing the time and effort in working with the Stakeholders to make the Requirements bounded or coherent.

B.3.2.2 Bug

Description

Bug: An error, flaw, or fault in a Software System that causes the system to fail to perform as required.

Super-Ordinate Alpha

Software System

States

Detected An error, fault or flaw in the Software System is observed and logged.
Located The cause of the Bug in the Software System has been found.

Fixed The Bug has been removed from the Software System.

Closed The removal of the Bug from the Software System has been

confirmed.

200 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Associations

inhibit : Software System The Bugs inhibit the progress of the Software System.

Justification: Why Bug

Bugs are inevitable part of software development. The trick is to eliminate them all before the Software System is
operational. The overall state of the Software System is affected by the quantity and severity of the Bugs it contains.
Understanding and monitoring the progress and health of any Bugs detected is an essential part of any software
engineering endeavor.

Essence uses the term Bug as it is one of the most common words in the software industry, and is more intuitive and less
open to misinterpretation than the other alternatives such as problem and defect.

?

Detected

An error, fault or flaw in the Software System is observed and logged.

The cause of the Bugin the Software System has been found.

TheBughasbeen removed from the Software System.

Theremoval of the Bugfrom the Software System has been confirmed.

Figure B.7 — The states of a Bug

Progressing the Bugs

Bugs threaten the success of any software engineering endeavor. They have to be found and resolved before they cause

any damage. As shown in Figure B.7, Bugs progress through the defected, located, fixed and closed states. These states

focus on the management of the Bugs and provide clear understanding of whether they are inhibiting the progress of, or
threatening the health of, the Software System.

The Bug first has to be detected. This may be as the result of testing, reviewing or using the Software System. Once a
Bug is detected it is reported and logged. Then the Bug must be investigated and its cause must be located. If the cause of
the bug cannot be identified then it will be impossible to fix. Once the Bug is located it can be fixed and a new bug-free
version of the Software System can be made available. Finally, after the Team has confirmed its absence in the updated
Software System, the Bug is closed.

Checking the progress of a Bug

To help assess the state and progress of a Bug, the following checklists are provided:

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 201

Table B.7 — Checklist for Bug
State Checklist

Detected Bug has been reported and given a unique identifier.

o Details about the Bug, and the situation within which it occurred, have been reported.

e The severity of the Bug has been assessed.

Located The Bug has been investigated and its impact assessed.

e The Software System Elements causing the Bug have been identified.
e The cost of fixing and testing the Bug has been estimated.

o The Bug is ready to be fixed.

Fixed The work required to correct the offending Software System Elements has been completed.

¢ A new Bug-free version of the Software System is available.

o The absence of the Bug has been verified.

Closed Tests, reviews or other appropriate activities have been undertaken to ensure that the Bug has
been corrected or shown not to actually be an error, fault or flaw.

o The Bug management has been finalized.

| Architecture |
Selected |

. =

Demanstrable |

Detected E
: g |
g lsahle
Located (7]
(@] Q l
o Inh|b|t5 Y | Feady |
Fixed = ")
S5 l
w | Cperational |
Closed | 0/ e l

@ | Retired |

Figure B.8 — The Bugs inhibit the progress of the Software System

How the Bugs inhibit the progress of the Software System

The progress of the Software System is inhibited by the Bugs found in it. For illustrative purposes the states of the two
Alphas are shown in Figure B.8.

202 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

How the Bugs inhibit the progress of the Software System is summarized in Table B.8, along with the additional
checklist items that this kernel extension adds to the Software System state checklists.

Table B.8 — How the Bugs inhibit the Software System

Software System How the Bugs drive the progress of | Additional Checklist Items

State the Software System

Architecture Selected | Progress to this state is independent of | None
the state of any of Bugs in the
Software System.

Demonstrable When the Software System is in The Bugs detected and/or located did not
demonstrable state some bugs may be | prevent the Software System from being
detected and located. successfully demonstrated.

Usable Detecting and fixing Bugs will help to | All critical Bugs have been fixed.
continue the progress of the Software
System.

Fixing any Bugs in the core
functionality of the Software System is
essential for it to become usable.

Ready Detecting and fixing Bugs will help The number and severity of the Bugs yet to
evolve the Software System to the be Fixed and Closed are low enough so that
point where it is ready for deployment | the system can be deployed.
in a live environment.

Operational Fixing any Bugs detected during live The remaining Bugs, if any, do not require
use of the Software System is an immediate fixing.
important part of keeping it
operational.

Retired The system is no longer being None
supported

The state of the individual Bugs are independent of the states of their owning Software System. It is quite possible for
one or more Bugs to be Detected or Located after the Software System is Ready or Operational. For example using the
system which contains some non-critical Bugs may be beneficial enough for deploying and using it before these Bugs are
closed.

B.3.2.3 Software System Element

Description

Software System Element: Independently developable and testable part of a system.

Software System Elements are the independent but interrelated parts that together comprise a Software System. Hence,
the Software System’s progress and health are driven by the progress and health of its Software System Elements.
Super-Ordinate Alpha

Software System

States

Identified A system element has been identified as part of the Software System

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 203

Interfaces Agreed
Developed

Ready

Associations

drive : Software System

and its responsibilities and its position in the Software System are
clear.

The Software System Elements interfaces have been agreed.

The Software System Element has been implemented and tested, and
is believed to be ready for integration into the Software System.

The Software System Element has been verified and is ready for live
use as part of the Software System.

The progress of the Software System Elements drives the progress of
the Software System.

Justification: Why Software System Element

A Software System is made up of software, hardware, and data. Each part of the Software System can be software or
hardware or data or any combination of the three. A Software System usually consists of several parts or System

?

identified
]

Interfaces
Agreed

'

Developed
¥
Ready

®

System Element

A =ystemn element has been identified as part of the Software System
and its responsibilties and its position in the Software System are
clear.

The System Elementz interfaces have been agreed.

The System Element has been implemented and tested, and is believed
to be ready forintegration into the Software System.

The System Element has been verified and is ready forlive use as part
of the Software System..

Figure B.9 — The states of Software System Element

Element

s in Essence terms. Essence recognizes universal states that all system elements progress through during the development

of a Software System.

204

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Progressing the Software System Elements

A Software System is not usually developed as a single solid block. It is built from a number of Software System
Elements, each of which may be specially built or acquired from elsewhere. During their development Software System
Elements progress through several state changes. As shown in Figure B.9, they are identified, interfaces defined,
developed, and ready. These states focus on providing clear understanding of Software System Element states.

As indicated in Figure B.9, the first thing to do is to identify Software System Elements needed and assign them their
responsibilities within the overall Software System. Once the Software System Element is identified its expected
behavior and position in the Software System is known and the decision can be made about how to source it. The next
step is to refine the Software System Element’s responsibilities and make sure its interfaces are agreed. When the
Software System Element interfaces are agreed its relationship with the other Software System Elements, and where
necessary other systems, are defined. The Team can now complete the implementation and testing of the Software
System Element progressing it to the developed state. Finally, after all the required testing is done, the Software System
Element is ready for live use as part of the Software System.

Checking the progress of a Software System Element

To help assess the state and progress of a Software System Element, the following checklists are provided:

Table B.9 — Checklist for Software System Element
State Checklist

Identified e The need for the Software System Element is recognized.

o The Software System Element’s expected behavior and responsibilities in the
Software System are clear.

e Any additional Software Systems that need this Software System Element are
identified.

o The options about whether to buy or build the Software System Element have been
explored.

e Any requirements and constraints on the Software System Element are known,
such as performance requirements or memory utilization constraints.

Interfaces Agreed o Interfaces of the Software System Element with the other system elements are
defined.

e Required interfaces of the Software System Element with other systems are
defined.

e Buy or build decisions have been made.

o It has been specified how other Software System Elements should interact with the
Software System Element.

o All externally detectable outcomes are specified including data that is returned and
events that may be raised.

Developed o The Software System Element has been implemented in a way that is conformant
with its interfaces.

o The Software System Element implements the operations on its provided

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 205

State Checklist

interfaces.

e The Software System Element has been verified as conformant with its interfaces
by passing all its unit tests.

o The Software System Element is available for integration into the Software System.

Ready o All the required testing on the Software System Element is complete.

o The Software System Element can interoperate with the other Software System
Elements in the System.

e The Software System Element can interoperate with any external systems it
communicates with.

o Software System Element is available for use in the live environment.

*

Architecture
, Selected
|dentified Demonstrable
t= =
@ I (b}
- w ¥
D Interfaces = Ueable
— Agreed N
LLl I s
£ Drives = '
@D Developed Ready
7 =
= + y—
w o 1
REEdY m Cperational

® ;
®

Figure B.10 — The Software System Elements drive the progress of the Software System

How the Software System Elements drive the progress of the Software System

The progress of the Software System is driven by the system elements composing it. For illustrative purposes the states
of the two Alphas are shown in Figure B.10.

How the Software System Elements drive the progress of the Software System is summarized in Table B.10, along with
the additional checklist items that this kernel extension adds to the Software System state checklists.

206 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.10 — How the Software System Elements drive the Software System

Software System | How the Software System Elements Additional Checklist Items
State drive the progress of the Software
System
Architecture To progress the Software System to the The core Software System Elements are all in
Selected architecture selected state the Software the interfaces agreed state.

System Elements that make up the
Software System should be identified and
have their Responsibilities Assigned.

The core Software System Elements
should also have their interfaces agreed.

Demonstrable The core Software System Elements need | The core Software System Elements are all
to be acquired or developed to be able to developed and included in the Software
assemble a demonstrable Software System
System.

Usable Making ready the Software System The Software System Elements that
Elements that implement the essential implement the essential characteristics of the

characteristics of the system will help the | system have been made ready.
whole system to become usable.

Ready Continuing to progress the Software All of the Software System Elements that
System Elements will help to continue the | make up the system are ready.
progress of the Software System.

For the Software System to be ready all of
its parts must also be ready.

Operational All the Software System Elements should | All of the Software System Elements that
remain ready to make, and keep, the make up the system are Ready.
Software System operational.

Retired Progress to the refired state is independent | None
of the state of any of the subordinate
Software System Elements.

The state of the individual Software System Elements is independent of the state of their owning Software System. It is
quite possible for the Software System Elements to change states between interfaces defined and developed in both
forward and backward directions to reflect the need for their further development and maturation. When Software System
Element reaches ready state its correct interoperability with other Software System Elements and Systems is confirmed.
In many cases once a Software System Element achieves the ready state any additional changes are only allowed if the
state is maintained.

B.4 Task Management Extension

B.4.1 Introduction

The Task management extension provides three additional Alphas to allow teams to progress their Team, Work and Way
of Working.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 207

B.42 Alphas

The task management extension enhances the endeavor area of concern adding the following Alphas:
e Team Member as a subordinate of Team
e Task as a subordinate of Work

e Practice Adoption as a subordinate of Way of Working
B.4.21 Team Member

Description

Team Member: An individual working as part of a team.

The Team Members are a group of people that comprise a team.

Super Ordinate Alpha

Team

States

Wanted A team member with specific skills is sought to join the team.

On Board The team member is on board and learning how to contribute to the
team.

Contributing The team member is helping her teammates and driving the team's
performance

Exiting The team member is preparing to leave the team.

Associations

drive : Team The progress of the Team Members drives the progress of the Team.

Justification: Why Team Member

Team Members are needed to form a Team. A Team may range from two to many Team Members. This means that Teams
have at least two Team Members.

Progressing the Team Members

Team Members progress through a number of states. As indicated in Figure B.11, these are wanted, on-board,
contributing, and exiting. These states focus on how well the Team Members are integrated into the team.

208 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

g ! ™
. Wanted A team member with specific skills is sought to join the team.
Q
O
E The team member is on board and learning how to contribute to the
q, Cin-Board team.
—
E Contributing The team member is helping her teammates and driving the team's
(4] performance
A a—
F . .
Exiting The team member is preparing to leave the team .
e 4

Figure B.11 — The states of Team Member

First it must be decided that a new team member is wanted. In this state the competencies and skills that are required are
identified and steps are being taken to find a new Team Member. Once a new team member has been found she needs to

be brought on board. This means that the Team Member has been selected and inducted into the team, and is ready to

learn how to fulfill her responsibilities and overcome any challenges presented by the new role. Over time she becomes a

contributing member of the team implying that she is actively fulfilling her responsibilities and helping to drive the

team's performance.

When a team member decides to leave the team, or is no longer needed by the team, she is considered to be exiting and is
transitioned out of the team.

Checking the progress of a Team Member

To help assess the state and progress of a Team Member, the following checklists are provided:

Table B.11 — Checklist for Team member

State

ChecKlist

Wanted

e The required competencies and skills for a role have been identified.

¢ An individual with required competencies and skills is being sought.

On Board

e Team member has been inducted into the team.

e Team member is learning how to contribute to the work and participate on the
team.

e The gap, if any, between the Team member’s actual skills and competencies and
those required by their new role are known.

Contributing

e The Team member is collaborating effectively with teammates.

e The Team member actively contributes to the team.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

209

State Checklist

Exiting e The Team member’s participation on the team is coming to an end.

o The Team member has completed or is handing over her responsibilities to
someone else.

' , I
™ —
Seeded
® S
=
Wanted " 3
E \, b, Formed
_Q . e R
g On-Board E —e—
= ¥ Drives <I_ | Collaborating
.
L e J
E Contributing |_
8 ,:I: ——
|_ Ferforming
Exiting .-/
5 —
Adjourned
/ T

AN vy

Figure B.12 — The Team Members drive the progress of the Team

How the Team Members drive the progress of the Team

The progress of the Team is driven by the associated Team Members. For illustrative purposes the states of the two
Alphas are shown in Figure B.12.

How the Team Member Alpha drives the progress of the Team Alpha is summarized in Table B.12, along with the
reference to additional checklist items that this kernel extension adds to the Team state checklists.

210 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.12 — How the Team Members drive the Team

Team State How the Team Members drive the Additional Checklist Items
progress of the Team

Seeded One or more of the expected Team One or more key Team Members are on board.
Members are needed to seed the Team. One or more additional Team Members are

wanted.

Formed The remaining Team Members are recruited | All required team members are on board.
to form the team.

Collaborating | As the Team members start to work The majority of the team members are actively
together they drive the team to the contributing to the success of the team.
collaborating state.

Performing As the Team Members start to work well All team members are actively contributing to
together and continuously improve their the success of the team.

team working they drive the team to the
performing state.

Adjourned Finally, when the team is no longer needed | All team members have exited the team.
it is adjourned.

The state of the individual Team Members is independent of the states of their owning Team. It is quite possible for one
or more Team Members to be contributing before the Team is collaborating or performing. For example you might have
some Team Members that are on-board but are still being brought up to speed, while others are fully contributing.

B.4.2.2 Task

Description

Task: A portion of work that can be clearly identified, isolated, and then accepted by one or more team members for
completion.

Super Ordinate Alpha

Work

States

Identified The task has been identified and is ready to be done.

In Progress The task has been accepted by one or more team members and work
has started.

Done The work required to do the task has been completed.

Associations

drive : Work The progress of the Tasks drives the progress of the Work.

Justification: Why Task

Tasks are the fundamental unit of work that team members use to identify and track their work progress.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 211

Progressing the Tasks

Tasks pass through a number of states. As indicated in Figure B.13, these are identified, in progress, and done. These
states focus on the management of the Task. Tracking the progress of the tasks is important for monitoring the work.

Tasks are first identified by looking at the Work that needs to be done. Tasks correspond to pieces of work that are easily
isolated from the work, small enough to be estimated by the team, and easily manageable to be implemented by one or
several team members. A single task may concern different levels of difficulty and effort required. It could concern
development of multiple work products, or multiple tasks could concern completion of a single work product. The
granularity of a task is proportional to the trust you have in your team members based on previous work experience.

Once work starts on a Task it progresses to the in progress state during which time there is at least one team member
actively working on it. Finally a task is done when the work required to do the task has been completed. This may be
because it has been determined to be completed according to the agreed to completion criteria.

g , ™
e
Identifiad The task has been identified and is ready to be done

- SEEE—

(1)} The task has been accepted by one or mare team members and work

© In Progress has started.

e s

Done The work required to do the task has been completed.

i /

Figure B.13 — The states of the Task

Checking the progress of a Task

To help assess the state and progress of a Task, the following checklists are provided:

212 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.13 — Checklist for Task

State

Checklist

Identified

A portion of work has been clearly identified, isolated and named as a task.
The objective of the task is clear.

The activities that need to be done have been clearly described.

It is clear whether the task is a full team task, group task or individual task.
The completion criteria for the task are clearly defined.

The effort required to complete the task has been estimated and agreed.

In Progress

A team member has accepted and is progressing the task.
The progress of the task is monitored.
A target completion date for the task has been agreed.

The amount of effort required to complete the task is being tracked.

Done o The task is determined to be complete according to its agreed to completion criteria.
i N
s ™
’ x =
P —— "-\. Prapared
Y

Identified

H

In Pragrass

Task

|

Done

"

Figure B.14 — The Tasks drive the progress of the Work

Work

H

Started

H

Uinder
Control

1

Concheded

—T—

Cloged

S

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

How the Tasks drive the progress of the Work

The progress of the Work is driven by the associated Tasks. For illustrative purposes the states of the two Alphas are
shown in Figure B.14.

How the Task Alpha drives the progress of the Work Alpha is summarized in Table B.14, along with the reference to
additional checklist items that this kernel extension adds to the Work state checklists.

Table B.14 — How the Tasks drive the progress of the Work

Work State How the Task drive the progress of the Additional Checklist Items
Work

Initiated The Tasks needed to prepare the Work are | Tasks to be undertaken to prepare the work
identified as part of the activity to initiate | have been identified.
the work.

Prepared Tasks are identified as part of the activity The Tasks to be undertaken to prepare the
to prepare the work and all are in the done | Work are Done.
state. Enough Tasks have been Identified for the

Team to start the real Work.

Started As Tasks move to the in progress state the | Atleast one task has been initiated by one
work gets started. or several team members

Under control | After sufficient tasks are completed work | All team members are effectively working
reaches the under control state. on their tasks

Concluded When all tasks are done the work is All identified tasks have been done
concluded.

Closed None None

The state of the individual Tasks are independent of the state of the overall Work. For example, it is quite possible for one
or more Tasks to be in progress, or even done, before the Work is under control.

B.4.2.3 Practice Adoption

Description

Practice Adoption: The adoption of a practice over time and its supporting tooling as part of a team's way of working.

Super-Ordinate Alpha

Way of Working

States

Selected The practice is selected.

Integrated The practice and related tools have been integrated into the way of
working and are ready for use.

In Use Team members are using the practice and related tools to accomplish
their work.

Working well The adopted practice is working well for the team members.

214 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Associations

drive : Way of Working The progress of the Practice Adoptions drive the progress of the Way
of Working

o

Selected The practice is selected.

H

The practice and related tools have been integrated into the way-of-
Integrated working and are ready for use.

In Use Team members are using the practice to accomplish their work.

Practice
Adoption

i

Working Well The adapted practice is working well for the team members.

"

N /

Figure B.15 — The states of Practice Adoption

s N
. ™ ,
Principles
Established
Selected ,—\'
Foundation
I Established
 EEmm— (@)
o £ c —T
O 9 Integrated E
'..3 -05_ \ ! —_— 5.6 In Use
3 | - Jp—m—
ol E In Use :
-) "'6 In Place
i]
() = T
Woaorking Well ©
\ J ; Working well
- - Retired

Figure B.16 — Practice Adoption drive the progress of the Way of Working

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 215

Justification: Why Practice Adoption

Teams improve their way of working by adopting and adapting individual practices. Even teams with the simplest way of

working have at least one practice.

Progressing the Practice Adoptions

Practice Adoption undergoes a number of states. As indicated in Figure B.15, these states are selected, integrated, In Use,
and working well. These states focus on the progression of practice adoption as the practices are integrated with tools and
other practices. Practice use by the team and their evolution towards working well help team members collaborate and

complete their tasks effectively.

Checking the progress of a Practice Adoption

To help assess the state and progress of a Practice Adoption, the following checklists are provided:

Table B.15 — Checklist for Practice Adoption

State Checklist
Selected e The practice and related tools have been selected.
Integrated e The practice has been tailored to meet the constraints of the work environment.
o The related tools have been integrated to work together with the selected practice and
other selected tools.
e The team members who will use this practice have received the necessary training, if
needed.
In Use o The tailored practice is being used by team members to perform their work.
e The tools that have been selected for integration with the practices are being used by the
team members.
Working ¢ All team members are making progress as planned by using the tailored practice.
well

All team members naturally apply the tailored practice without thinking about it.
The practice and tools are used routinely and effectively by the team.

The practice and tools are regularly being inspected and improved by the team.

How Practice Adoption drives the progress of Way of Working

The progress of the Way of Working is driven by the associated Practice Adoptions. For illustrative purposes the states of

the two Alphas are shown in Figure B.16.

How the Practice Adoption Alpha drives the progress of the Way of Working Alpha is summarized in Table B.16, along
with the reference to additional checklist items that this kernel extension adds to the Way of Working state checklists.

216

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table B.16 — How the Practice Adoption Alpha drives the Way of Work Alpha

Way of Working | How the practice adoption drives the Additional Checklist Items

State progress of the Way of Work

Principles At least one Practice has been selected in | At least one Practice has been selected that

Established support of the established principles. supports the established principles.

Foundation As each practice and related tools are At least two practices have been selected and

Established selected and integrated the Way of integrated.

Working foundation is established.

In Use Once the foundation is established, the A sufficient number of practices and tools
practices and tools are used by team have been selected and integrated to support
members as part of their way of working. some of the team member's needs.

In Place The Way of Working is in place when the | A sufficient number of practices have been
selected and integrated practices and tools | integrated to support the team member's
are used by all relevant team members. needs,

At least some of the practices and tools are
working well for the team.

Working Well As the practices help team members All the required practices have been
effectively complete their work the way of | integrated and are supporting all team
working reaches a working well state. member's needs.

Retired None None

The state of the individual Practice Adoption is independent of the state of the overall Way of Working. For example, one

or more Practices may be in use, or even working well, before the Way of Working is working well for the Team.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

217

This page intentionally left blank.

218 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Annex C: Alignment with SPEM 2.0

(Informative)

CA Overview

SPEM? and Essence provide two distinct, but complementary, approaches to process modeling.

It is well known that the agile movement has changed the way organizations view processes and their evolution and
maintenance. For example, popular agile approaches, such as Scrum, encourage teams to take responsibility for the
evolution of their own practices. Supporting this was never a design goal of SPEM, but it was a major design goal of
Essence.

Supporting practitioners owning and maintaining their own processes fundamentally affects the way processes need to be
modeled. As an example, SPEM focuses on work products and activities. When supporting practitioners it is more
natural to focus on progress and health (e.g., goals), which was part of the motivation for the Alpha element within
Essence. Another design goal within Essence was to base process models on a kernel of Essentials. A kernel was never a
design goal of SPEM, but it is fundamental to the Essence approach.

This Annex:
o identifies the objectives that drove the development of SPEM and Essence
e compares the two standards
e provides recommendations when to use each
e provides recommendations when a complementary strategy is preferred

e provides guidance for migrating from SPEM to Essence.

C.2 Key Objectives of SPEM and Essence

Following are key objectives that drove the development of SPEM, as extracted from the SPEM Specification:
o The target audience for SPEM per its specification is process engineers.

o The focus of the SPEM Specification is organizations that want a separate group to maintain the processes.
Specifically, it is targeted at process engineers, project leads, project and program managers who are responsible
for maintaining and implementing processes for their development organizations or individual projects.

e SPEM 2.0 includes the following new capabilities for process authors:

o Clear separation of method content definitions from the development process application of method
content

2 Software & Systems Process Engineering Metamodel Specification, Version 2.0, OMG Document formal/2008-04-01,
http://www.omg.org/spec/SPEM/2.0/

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 219

o Consistent maintenance of many alternative development processes

o Support many different lifecycle models

o Support flexible process variability and extensibility plug-in mechanism

o Support reusable process patterns of best practices for rapid process assembly

o Replaceable and reusable Process Components realizing the principles of encapsulation

Following are key objectives that drove the development of the Essence Specification:

C.3

Separate the "what" of engineering (articulated as the kernel) from the "how" (articulated as practices and
methods), thus providing a common vocabulary and framework for talking about engineering and on which
practices and methods are defined.

Separate the method support that different user types are interested in. For instance, the least method-interested
user should not be overloaded with what more interested users want. Process engineers are usually more
interested in methodology aspects but their interest should not overload developers, analysts, testers, project
leaders, and managers.

Having a common base expressed as a kernel which is useful for projects of all size (small, medium and large).

Encourage and support incremental adoption by small/medium organizations with low entry cost/barriers (e.g.,
starting by using "cards").

Focus on method use instead of method description.

Support method building by composition of practices, so that methods can be assembled by a project team to
match the needs of the project and the experience and aspirations of the team.

Actively support practitioners in the conduct of a project by providing guidance based on state and practice
definitions.

Support method agility, meaning that practices and methods can be refined and modified during a project to reflect
experience and changing needs.

Support scalability including from one product to many and from one method to many.

Comparison of SPEM and Essence and Recommendations

While there is clearly some overlap in the objectives of both the SPEM and Essence standards, this subclause focuses on
the differentiators to help identify when the use of one standard may be preferred over the other, or when it may be best
to adopt a complementary approach using both.

SPEM differentiators:

220

Target process engineers.
Target organizations that want a separate group to maintain their processes.
There are several implementations of SPEM in existence and in use.

More mature.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Defines processes in terms of work breakdown structures.

Essence differentiators:

Provide Alpha construct, which allows assessment of progress and health.

Focus on method use by presentation of method content and guidance targeting needs and perspective of
practitioners.

Provides a separate common base kernel with a common vocabulary.

Leverages language constructs to support practice adaptation during a project to reflect accumulated experience
and changing needs.

Encourages incremental adoption, starting small and growing as needed.

Handles methods as a composition of practices.

Recommendations:

The SPEM standard is the preferred approach:

For organizations that want a separate group to maintain their processes.

For organizations that want to target process modeling to process engineers responsible for process definition,
even at the project level.

For organizations that decide not to use the Essence Kernel.

For organizations with a significant investment in SPEM-based processes that cannot justify the cost benefit
payback for migrating to Essence.

The Essence standard is the preferred approach:

For organizations that want their practitioners to take on a more active role in the maintenance and evolution of
their processes.

For organizations that want to target process modeling for practitioners in order to provide additional guidance,
such as assistance in progress and health assessments.

For organizations that want to actively monitor the progress and health of their projects in a consistent but method
independent manner.

For organizations using Kanban and other approaches not based around work-breakdown structures.

A SPEM and Essence complementary strategy is the preferred approach.

For organizations currently applying SPEM that want to encourage incremental agile adoption.

For organizations currently applying SPEM that want to continue with a separate group to maintain their
processes, but also want to encourage the use of the Essence kernel by their practitioners to assess progress and
health of their projects and/or encourage the use of the common Essence kernel vocabulary.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 221

C4 Migrating SPEM to Essence

c.41 Introduction

This subclause provides some general commentary and specific steps for migrating from SPEM to Essence. It is intended
as a technical guide to executing a migration.

Migrating method content from SPEM to essence is a reengineering task not fundamentally different from migrating
software from one programming language to another for example migrating a piece of software from COBOL to Java.
Some parts will be easy to migrate, whereas other parts will be harder to migrate or may need to be refactored or
rewritten. It is also something that every organization needs to do when migrating from their existing process
documentation (if they have any) to either a SPEM Process description or an Essence Practice or Method description.

The extent and complexity of a migration depends on many specific factors that will differ from organization to
organization, so every migration effort must be planned taking into account the situation at hand (aims, priorities, culture,
resources, etc.). However such business aspects of a migration are out of the scope of this annex; instead we here focus
on the technical approach to migration.

Regarding the technical details of a migration, it is important to note that the vision of the Essence language is different
from that which drove the development of the SPEM 2.0 specification. These differences are outlined in C.3. This means
that the business drivers that determine how Essence is adopted and used will differ from those that have driven the
adoption and use of SPEM. In general, therefore, the scope and content of existing SPEM models will not necessarily be
fully reproducible in Essence models, and vice versa.

In particular and as may be noted below, the described mapping between SPEM and Essence constructs is partial; i.e., it
does not take into consideration all SPEM constructs. However it does take into consideration the constructs that we
believe are most relevant to the cases when migration from SPEM to Essence might be recommended (see C3).

C4.2 Overall Approach to a Manual Migration Procedure

It is not recommended that entire methods be migrated in one go. Essence is a practice-based language and so the
migration should take place practice-by-practice.

When migrating content from SPEM to Essence the following steps should be followed. This procedure can be iterated
for several practices or practice areas; however the key idea is to migrate incrementally and not try to migrate a large
SPEM process or method library all at once.

1. Identify a candidate practice. Select the existing content to be migrated. Focus on migrating elements that you
expect to become part of the description of the identified candidate practice.

a. Much more can be said about this scoping, regarding how to identify appropriate practices and practice
areas to focus on. This relates to both business aspects as well as Essence language pragmatics. Such details
are out of the scope of what can be described in this annex.

b. The candidate practice to be migrated may also be an extension of an existing practice.

2. Migrate the relevant SPEM content. Transform relevant SPEM content into corresponding Essence language
elements, as outlined in the subclauses below:

a. C.4.3 Transforming SPEM Managed Content: Describes how basic SPEM elements such as
DescribableElements (abstract) and their properties can be transformed into Essence.

222 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

b. C.4.4 Transforming SPEM Method Content: Describes how core SPEM elements such as Task Definitions,
Work Product Definitions, and Role Definitions can be transformed into Essence.

¢. C.4.5 Transforming SPEM Processes: Reasons about how to transform an Activity breakdown structure, to
the extent applicable in Essence Practices and Methods.

3. Bind the transformed content with the Essence kernel (optional). The primary reason for doing is to be able to
compare and evaluate the newly transformed candidate practice with existing Essence practices that already are
bound to the kernel. This will help position the newly transformed content against any existing Essence content and
will help in directing and prioritizing the overall migration effort. Note however that this kernel binding is optional;
it can thus be excluded from this migration procedure. Or, the kernel binding may be excluded initially, but done
later when the resulting Essence elements mature or when the corresponding values with a binding are wanted.

a. Bind transformed Task Definitions (Essence Activities) to Essence kernel Activity Spaces. This is done by
establishing Essence “part-of”” Activity Associations between relevant kernel Activity Spaces and newly
transformed Activities.

b. Bind transformed Work Product Definitions to Essence kernel Alphas. This is done by establishing Essence
Work Product Manifests between relevant kernel Alphas and newly transformed Work Products.

c. Bind transformed Role Definitions to Essence kernel Competencies where the
RoleDefinition.providedQualification association has been used. This is done by establishing Essence
Pattern Associations between relevant kernel Competency Level(s) and newly transformed Roles (Patterns).

4. Add Alphas complementing the transformed SPEM content (optional). The Work Products need to be related to
the Alphas that they describe. New Alphas will be required when the binding to kernel Alphas (in the previous step)
is insufficient in the sense that the kernel Alphas do not serve as useful monitor and control instruments for the new
Work Products. This is done by creating new Alphas and establishing Essence Alpha Containments between the new
Alphas and the newly transformed Work Products. These new Alphas may be top alphas extending the existing
Essence kernel Alphas, or new sub-alphas bound to the existing Essence kernel Alphas.

5. Add Activity Spaces complementing the transformed SPEM content (optional). Every Activity should be bound
to an Activity Space. This will be required when it is not possible to bind the new Activities to existing Essence
kernel Activity Spaces, and new Activity Spaces thereby need to be created. This is done by creating new Activity
Spaces and establishing Essence “part-of” Activity Associations between the new Activity Spaces and the newly
transformed Activities.

6. Add Competencies complementing the transformed SPEM content (optional). This is relevant to do in particular
when it is not possible to bind the new Roles to existing Essence kernel Competency Level(s), and new
Competencies thereby need to be created. This is done by creating new Competencies and establishing Pattern
Associations between the new Competency Level(s) and the newly transformed Roles.

7. Package the transformed SPEM content, primarily as Essence Practices; and also possibly as Essence kernel
extensions, and Practice Assets.

a. Recall (step 1) that the scope of the current migration effort is a candidate practice or practice area. It
should thereby be possible to create at least one corresponding Essence Practice at this point, and then
establish relevant relationships from this Practice to the newly transformed content. This is done by
establishing “owned” and “referred” element relationships from the Practice to the elements created in
step 2-6 above.

b. Ifnew top Alphas, Activity Spaces, or Competencies were identified in the migration procedure above (step
4-6), these elements can be packaged into the new practices (previous substep). However, it is often the case

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 223

that such elements extend the kernel and are relevant to be bound to elements in more than one practice.
Such elements are thus candidates to be packaged as kernel extensions instead. This is done by establishing
“owned” element relationships from a new Kernel extension to these new elements.

c. It may also be the case that the migration procedure above identified reusable “core” method element such
as commonly used Activities, Work Products, and Roles. If such elements are reused or likely to be reused
by two or more Practices they may be packaged as separate and reusable Practice Assets instead. This is
done by establishing “owned” element relationships from a new Practice Asset to these new core elements.

8. Assure the quality of the transformed result. Any resulting Essence Practices, Kernel Extensions, and Practice
Assets would need to be explicitly quality assured based on both formal and informal qualities. This includes making
sure that the results are well-formed and complete from an Essence language point of view; and also to ensure more
informal qualities such as Practice scope, value and ease-of-use.

a. Much more can be said about this quality assurance. Such details are out of the scope of what can be
addressed in this annex.

9. Return to step 1 and migrate additional candidate practices or practice areas, as appropriate.
As a result of the above migration procedure we get a library of Essence Practices that in turn can be composed into

Methods to serve different development teams. These Essence Methods can then take the place of the original SPEM
processes that we started from.

C.43 Transforming SPEM Managed Content

We start by considering SPEM Managed Content, as given by the following figure from the SPEM Specification.

SPEM::Core::
ExtenstbleElement

A

DescribableElement |

ay
1 = |+ categorizedElement

ProcessElement

{subsets ownedMember}
+ description

ContentDescription
presentationName - String
briefDescription - String 0.1
mainDescription : String {subsets ownedMember}
purpese : String + expression| 1.*

B InfrastructureLibrary::
Core::Constructs::Class

+ class

{subsets namespace,
subsets featuringClassifier,
subsets classifier}

0..1

1’ {subsets ownedMember, ordered}
+ section

Section

{subsets attribute, secl!ﬂnName String
cubsets ownedMember, sectionDescription - String
ordered}

= |+ ownedAttribute

+ subSection
B InfrastructureLibrary:: {subsets ownedMember, ordered}
Core::Constructs::Property

Figure C.1 — SPEM Describable Element parts and subclasses

224 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table C.1 — Mapping SPEM Describable Element parts and subclasses onto Essence language constructs

SPEM construct or Essence construct or property Mapping description

property

ExtensibleElement. Depends on context, see below There are different ways to model a relation

kind to Kind, for different subclasses of
ExtensibleElement (see below).

DescribableElement BasicElement (abstract) DescribableElement may include a

(abstract) ContentDescription with properties that can
be mapped onto BasicElement properties
(see below).
DescribableElement may refer to Guidance
that is mapped to Resource on
LanguageElement (see below).
DescribableElement may refer to a Metric
that is then mapped to a Pattern related to the
BasicElement (see below).

ContentDescription. BasicElement.name

presentationName

ContentDescription. BasicElement.briefDescription

briefDescription

ContentDescription. BasicElement.description

mainDescription

ContentDescription. BasicElement.description The purpose property would be included as a

purpose part of the description of BasicElement.

Section BasicElement.description or Pattern Alt. 1: Section would be informally

represented in terms of a section hierarchy in
the description of BasicElement. Alt. 2:
Section as nested Pattern (more formally
represented).

Section.kind TypedPattern.kind Use TypedPattern if the Section is related to
Kind.

Guidance Resource The Resource content property would
include all data/properties of the Guidance.

Guidance.kind TypedResource.kind Use TypedResource if the Guidance is
related to Kind.

Metric Pattern

Metric.kind TypedPattern.kind Use TypedPattern if the Guidance is related

to Kind.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

225

SPEM construct or Essence construct or property Mapping description

property

Category ElementGroup

Only relevant if the Category kind is suitable
to map to ElementGroup subclasses, such as
PracticeAssets. This means that the mapping
procedure may require that categories are
changed and/or refactored to suit the element
grouping approach (and architecture in
general) of the Essence language.

C44 Transforming SPEM Method Content

Based on the transformation of the basic SPEM Managed Content described in C.4.3, we continue to consider SPEM
Method Content, as given by the following figure from the SPEM Specification.

” Classifier

o

(from Construcs)

B Class J

{from Constructs)

[y

[Section | | WorkDefintion |~
T)

DescribableFlement

MethodContentElement

i)

i

FiA)

[Taskpefinition || | Workproductpefinition |
Step

I Guidance |

| WorkProductDefinitionRelationshp | | Default_TaskDefintionPerformer | \ Default_ResponsibilityAssignment

[RoleDefinition | | ToolDefinition ‘ Category | Default_TaskDefinitionParameter || DefauIt_TaskDeﬁn'rticnParameher|

Figure C.2 — SPEM Taxonomy of Core Describable Elements

Here, “Method Content is fundamentally described by defining Task Definitions organized into Steps, having Work
Product Definitions as input and output, and performed by Roles Definitions. Role Definitions define important
responsibility relationships to work products.”

226

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Table C.2 — Mapping SPEM Taxonomy of Core Describable Elements onto Essence language constructs

SPEM construct or property

Essence construct or property

Mapping description

TaskDefinition

Activity

Activity defines approaches, and it should
be possible to derive at least one default
approach from the mainDescription and/or
steps of the TaskDefinition and/or any
Guidance related to the TaskDefinition.

Note: there is not a strict 1:1 relationship
between SPEM TaskDefinition and
Essence Activity, although it will be
appropriate in most cases. In some cases
the TaskDefinition may need to be split, or
merged with others, to serve as a suitable
Activity in Essence. This is primarily due
to the fact that the Essence Activity
normally defines completion criteria in
terms of Alpha States; so in a sense, the
Essence Activity tends to be designed so
that it aligns with Alpha States. Since
Alphas and their States are non-existent in
SPEM, the SPEM Task to start with may
very well have the wrong scope in this
sense, and may need to be refactored.

TaskDefinition.
ownedTaskDefinitionParameter

Activity.action

Refer to Default TaskDefinitionParameter
mapping.

TaskDefinition.usedTool

Pattern associated with Activity

Refer to ToolDefinition mapping.

TaskDefinition.step

Activity.description, or Pattern

Refer to Section mapping.

TaskDefinition.
requiredQualification

Activity.
requiredCompetencyLevel

Refer to Qualification mapping.

Default TaskDefinitionParameter

Action

Default TaskDefinitionParameter.
Optionality

Action.kind

Default TaskDefinitionParameter.
parameterType

Action.workProduct and possibly
Activity.completionCriterion

If the WorkProduct defines at least one
level of detail (see WorkProductDefinition
mapping) it may be possible to derive a
corresponding CompletionCriterion for the
Activity.

Default TaskDefinitionParameter. | Action.kind
direction
Qualification CompetencyLevel Either map onto CompetencyLevel of

Essence kernel competencies, or onto
new/added competencies.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

227

SPEM construct or property

Essence construct or property

Mapping description

WorkProductDefinition

WorkProduct

WorkProduct defines levels of detail, and it
should be possible to derive at least one
default level from the mainDescription of
the WorkProductDefinition and/or any
Guidance related to the
WorkProductDefinition.

Note that there is no strict 1:1 relationship
between SPEM WorkProductDefinition
and Essence WorkProduct, although it may
be appropriate in most cases. In some cases
the WorkProductDefinition may need to be
split or merged with others to serve as a
suitable WorkProduct in Essence.

WorkProductDefinition Pattern Pattern associations may relate
RelationShip WorkProducts.

ToolDefinition Pattern

ToolDefinition. PatternAssociation Pattern associated with WorkProduct.
managedWorkProduct

RoleDefinition Pattern

RoleDefinition. PatternAssociation Pattern associated with CompetencyLevel.
providedQualification

Default ResponsibilityAssignment | TypedPattern

Default ResponsibilityAssignment. | TypedPattern.kind

kind

Default ResponsibilityAssignment. | PatternAssociation Pattern associated with (RoleDefinition)
linkedRoleDefinition Pattern.

Default ResponsibilityAssignment. | PatternAssociation Pattern associated with WorkProduct.
linkedWorkProductDefinition

Default TaskDefinitionPerformer TypedPattern

Default TaskDefinitionPerformer. | TypedPattern.kind

kind

Default TaskDefinitionPerformer. | PatternAssociation Pattern associated with Activity.
linkedTaskDefinition

Default TaskDefinitionPerformer. | PatternAssociation Pattern associated with (RoleDefinition)

linkedRoleUse

Pattern.

C.4.5

C.4.51 Activities

228

Transforming SPEM Processes

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Transforming SPEM processes is a bit delicate since this is where the underlying design philosophies of SPEM and
Essence differ significantly. Consider the following definitions from the SPEM Specification:

e “In the SPEM 2.0 Meta-Model, processes are represented with a breakdown structure mechanism that defines a
breakdown of Activities, which are comprised of other Activities or leaf Breakdown Elements such as Milestones
or Role Uses.”, (p. 43)

e “SPEM 2.0 separates reusable core method content from its application in processes. A Development Process
defines the structured work definitions that need to be performed to develop a system, e.g., by performing a
project that follows the process. Such structured work definitions delineate the work to be performed along a
timeline or lifecycle and organize it in so-called breakdown structures.”, (p. 95)

e “The scope of a process is to provide extended as well as concrete breakdown structures for a specific
development situation. Therefore, a process with methods takes reusable core method content elements such as
Tasks and Work Product Definitions and relates them into partially-ordered sequences that are customized to
specific types of projects.”, (p. 95)

Comparing this with Essence, the Essence language construct “Method” is likely to take the role of the SPEM “Process.”
However a Method in Essence is essentially a composition of Practices and includes a kernel. The focus and overall goal
of the Essence method is thereby not to provide a (SPEM) process breakdown structure in terms of activity
decomposition, but instead to serve as a composition of pluggable components in terms of Practices. This different focus
on “activity decomposition” vs. “practice composition” is what makes the SPEM and Essence languages fundamentally
different.

Given this, a key approach to transforming a SPEM Process into an Essence Method would be to identify one or more
separate Essence Practices from the SPEM Process breakdown structure and then ensure that these practices are
composable into valid and relevant Essence Methods. Doing this would require significant human intervention and is not
something that can be automated.

The following subclause provides additional notes on how some of the SPEM process breakdown structure elements may
be transformed, although this is something that should be viewed as “transformation hints and tips” as opposed to strict
guidelines.

C.4.6 SPEM Activity vs. Essence Activity Space and Activity

According to the SPEM Specification:

e “An Activity is a Work Breakdown Element and Work Definition that defines basic units of work within a Process
as well as a Process itself. In other words, every Activity represents a Process in SPEM 2.0. It relates to Work
Product Use instances via instances of the Process Parameter class and Role Use instances via Process Performer
instances.” (p. 46)

e “Activity represents a grouping of nested Breakdown Elements such as other Activity instances, Task Uses, Role
Uses, Milestones, etc. It is not just a ‘high-level’ grouping of work such as Work Definitions as in other similar
meta-models. It also aims to be a grouping for all different kinds of Breakdown Elements defining a namespace
for these elements.” (p. 97)

In addition to this, consider the following diagram from the SPEM Specification:

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 229

{subsets ownedMember, ordered} BreakdownElement

+ nestedBreakdownElement |- hasMultipleOccurrences : Boolean = false <]—

* + isOptional : Boolean = false
? I<I—| WorkProductUse

WorkBreakdownElement 47‘ Milestone |
+ isRepeatable : Boolean = false

+ isOngoing : Boolean = false peppe——
+ isEventDriven : Boolean = false [* .
T WorkSequence
1

Activity + predecessor

—

+

Figure C.3 — A SPEM breakdown structure is defined by Activities nesting Breakdown Elements

Given this, our conclusion is that even though it is possible to define nested Activity Space and Activity structures in
Essence (using the “part-of”” Activity Association), there is no 1:1 or simple mapping between SPEM Activity and
Essence Activity Space and Activity.

We particularly note that the SPEM specification introduces the “use” vs. “definition” separation of concern as elements
are defined; that is, core method elements such as Role, Task, and Work Product are modeled as “definition” elements on
one hand (see Clause 12 Method Content of the SPEM Specification) and as “use” elements as they are used in
breakdown structures of processes (see Clause 13 Process with Methods). As is noted in the figure above, a SPEM
Activity can nest RoleUse and WorkProductUse; this is not possible or applicable for an Essence Activity Space or
Activity. And in general, the Essence Activity Space and Activity are more concerning the “definition” side as opposed to
the “use” side of matters as is the case for the SPEM Activity.

This said it may of course still be the case that some Essence Activity Spaces and Activities can be derived from SPEM
Activities, although we find no 1:1 or simple mapping. From case to case one would need to evaluate any existing SPEM
Activities and determine whether there is an appropriate mapping to corresponding Essence Activity Spaces and/or
Activities.

In addition to the above, we consider the pre-defined “Activity Kinds” in SPEM.

Table C.3 — Mapping SPEM “Activity Kinds” onto Essence language constructs

SPEM Activity Kind | Essence language mapping

Phase The primary way to model a Phase in the Essence language is in terms of a Pattern,
and Annex E: Practice Examples provides a few such examples. A significant
contribution in the Essence approach to modeling Phases is to define phase
completion in terms of Alpha states as opposed to work product results. This makes
the phase completion criteria well defined without being dependent on physical work
products. Also be aware is that, as noted above, the Essence Pattern would be more
concerning the “definition” as opposed to the “use” of the SPEM Phase (Activity).

Note also that most phase models can be defined purely in terms of the Kernel Alphas
and their states, enabling the phase models to be defined in an entirely practice
independent fashion.

Iteration The primary way to model an Iteration in the Essence language is in terms of an
Alpha, thereby explicitly defining what it means to progress through the iteration in
terms of its (alpha) states. This is because we often want to monitor and control the
progression through each individual iteration (instance), and, at each point in time, be
able to understand the state of each iteration (instance).

Process Process can be modeled in different ways in the Essence language, depending on the

230 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

SPEM Activity Kind | Essence language mapping

purpose of the Process; refer to subclasses of Process below (Delivery Process,
Process Pattern, and Process Planning Template).

Delivery Process The primary way to model a Delivery Process in the Essence language is as a Method
where SPEM defines “A Delivery Process is a Process that covers a whole
development lifecycle from beginning to end.” In Essence, this would imply the
composition of a specific set of Practices into a Method for the purpose of covering a
whole development lifecycle. Describing the implications and requirements of
“covering a whole development lifecycle” can be done in terms of an Essence Pattern;
this Pattern could then be consulted and applied as such (Delivery) Methods are to be

created.
Process Pattern The primary way to model a Process Pattern in the Essence language is in terms of a
Practice or a Practice Asset.
Process Planning The primary way to model a Process Planning Template in the Essence language is in
Template terms of a Pattern that in turn is related to a Resource template for planning purposes.

The template would need to be manually derived based on the content and structure
of the Essence Method to be planned using the template.

Cc.4.7 A Note on Transforming SPEM Methods and Plugins

As described in clause /3 Process with Methods and clause 14 Method Plugin of the SPEM specification, there are a
number of SPEM constructs described including MethodPlugin, MethodContentPackage, ProcessPackage, and
MethodConfiguration that essentially have to do with how one package, maintain, and compose SPEM elements into
useful collections.

MethodLibrary

o
.

1 1

{subsets packagedElement, unigue} + baseConfiguration
* |+ fownedMethodPlugin

{subsets packagedElement}
"1 + /predefinedConfiguration

MethodPlugin MethodConfiguration

+ validContext

+ /methodPluginSelection
"

‘ 1 + /ownedProcessPackage o * |* |+ defaultContext
1 .\ {subsets packagedElement} 0.1
ProcessPackage +kpmcassPackageSe\ectmn 41@
{subsets packagedElement} 1 . _
faultVi Vi
+ /ownedMethodContentPackage + defaultView + processView
+ contentPackageSelection SPEM::ManagedContent::

MethodContentPackage je— * Category

+ substractedCategory

+ subCategory

Figure C.4 — SPEM Method Library and Configurations

The corresponding constructs in Essence for this purpose are primarily Practice, Practice Asset, and Method. However
note that these Essence constructs are based on a fundamentally different design approach, i.e., based around the notion

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 231

of kernel and practice and practice extensions etc. Because of this, it is likely that during a migration, one would consider
these SPEM constructs but are likely to end up with a different packaging scheme of elements on the Essence side.

In addition, the SPEM MethodConfiguration defines association properties “defaultView” and “processView.” Our
interpretation is that these views provide end-user views of the MethodConfiguration. The corresponding construct to be
used for this purpose in Essence is the ViewSelection construct (although this construct is defined and used in a slightly
different way compared to the SPEM Category).

It is out of the scope of this annex to elaborate further on the mapping of these SPEM constructs; and it is not considered
to be required for the purpose of describing the migration procedure in C.4.2 above.

232 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Annex D: Alignment with ISO 24744

(Informative)

D.1 Introduction

This annex discusses alignment with ISO 24744 which the initial SEMDM (OMG Document ad/2011-06-26) is based on.
D.2 Alignment with ISO 24744
This subclause describes an approach to align the Essence specification with the ISO 24744 specification.

D.2.1 Different metamodel architecture

ISO 24744 Essence

Metamodel (IS0 24744) | M2: Metamodel (Essence) |

WorkProduct
+CreationTime ‘WorkProductKind WorkProduct HasicElement LanguageElement
+LastChangeTime®| = = = =@ Description +tlescription I | []
+Status Fi
T
Fay
1 | |
inst Of I
<<instahce0f» seinslangeli=> =<instanceQf>=
Methodologly (ISO 24744) | ' M1: Model (Essence) |

1 I

_____ T---____________;_________ | my_WorkProduct

+creationTime

ProductBacklog E
+instanceMame

: WorkProductKind

ProductBacklog

1 1
1 1
1 P 1
| |tinstancehame Description ="A Product I +lastChangeTime
1 Backlog .." 1 ", +status
1 T 1 | -~
1 1
""" T S e | .
Clabject description = "A Product Backlog ."

| | |(Metaproperty according to the Metamaclel)

' I

K) N

=<instanceOf=> =<instancgOf>>

M0: Endeavour, (Essence) |
N

Endeavour (1S0.24744) |
N

[ProductBacklogiD1] : ProductBacklog

CreationTime ="01-Apr-2012"
InstanceMame ="Project Product Backlog”
LastChangeTime ="15-Apr-2012"

Status ="Initial"

CE—

[ProductBackloglDi] : ProductBacklog

creationTime ="01-Apr-2012"
instanceMame ="Project Product Backlog"
lastChangeTime = "15-Apr-2012"

status = "Initial"

Figure D.1 — WorkProduct example alignment between ISO 24744 and Essence

The ISO 24744 uses a dual-layer metamodel architecture, separating between an Endeavour and a Method(ology)
domain, and uses metamodelling constructs such as Powertypes and Clabjects to relate elements in these two domains.

e Powertypes are used to relate (language) concepts in the Method(ology) and Endeavor domains.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

233

o Clabjects (instances) are used to endow properties at enactment.

Since metamodelling constructs such as Powertypes and Clabjects are not supported by MOF the Essence approach
introduces a set of instance attributes through the use of Domain classes. Figure D.1 shows an example of how to align
the definition of the language concept WorkProduct as defined in ISO 24744 with the approach in Essence.

The ISO 24744 example is shown on the left side. Note that WorkProduct and WorkProductKind are related through a
Powertype (visualized as a dotted line with a circle endpoint). Both these elements are part of the ISO 24744 metamodel
that can be extended to model your method(ology). The WorkProduct class is extended through a generalization and the
WorkProductKind is instantiated. The resulting extension is called a Clabject since it has both a class facet (i.e., the
ProductBacklog subclass of WorkProduct) and an object instance (i.e., the unnamed : WorkProductKind).

The MOF layered architecture does not allow generalizations across metalayers (i.e., M2 and M1), so it is typically
assumed that any instance attributes are dealt with by the tool vendor that is to implement the specification. In Essence
we explicitly define Domain classes, such as my WorkProduct, that contains the necessary instance properties (defined as
EndeavourProperty instances from the metamodel), that is to be endowed at enactment. As can be seen in Figure D.1 by
adding the ISO 24744 instance properties to the class my WorkProduct we can support the construct WorkProduct as
defined in the ISO 24744 specification.

In fact, if the MOF architecture had supported Powertypes and Clabjects, this would be the preferred way of defining the
Domain classes and relate them to the metamodel classes using the Powertype relationship. Based on this it should be
possible to define a mapping between the dual-layer metamodel architecture of ISO 24744 and the MOF architecture
used by Essence.

Adding properties on domain classes thus represents one way to align ISO 24744 and Essence. So, why are not the ISO
24744 properties captured? The objective of Essence is to define the smallest language possible, and unless we can define
functions that operate on these properties that tool providers are required to support, we have decided to omit them.
However, tool vendors are free to add their own properties and functions in order to support richer enactment capabilities
that make use of additional properties.

D.2.2 Different writing system

Another difference between ISO 24744 and Essence is the notion of what can be called a language. ISO 24744 defines all
its language constructs as part of the metamodel, whereas in Essence the metamodel can be viewed as a writing system
and the language (exposed to the users) is actually a combination of the language constructs defined in the metamodel
and the standardized model elements (defined at the MOF M1 layer) that the Kernel consist of. In a sense this is also
similar to the dual-layer formalism of ISO 24744 and its extension mechanisms. In Essence the preferred way is to keep
the set of language constructs in the metamodel to a minimum and extend elements of the Kernel instead.

In particular one essential and generic construct of the writing system (i.e., metamodel) is the notion of an Alpha. The
Alpha can be viewed as important as the notion of Class in an Object-Oriented system as it can be used to express many
different things in the Engineering Method domain, e.g., a Task, a Requirement, a Requirements Item, a Team, a Team
Member, etc., that can be monitored and progressed through states changes. These set of named and defined Alphas
becomes the "language" that the practitioners of Engineering will use. The fact that they are of type or instances of
Alphas are not important, but how you apply and use them are. Generic constructs such as the Alpha means that writing
system can be kept to a minimum since metamodel classes for Task, Requirement, Team, etc., do not need to be
introduced in the metamodel layer.

Figure D.2 shows an example of how to align the definition of the language concept Task as defined in ISO 24744 with
the approach in Essence. As can be seen, the approach is basically the same as shown in Figure D.1 for WorkProduct,
with a few differences. The Essence Kernel defines the top-level Alpha Work and a subordinate Alpha Task in the
optional Kernel Extension. In Figure D.2 we introduce an ISO 24744 compliant Task instead of the one proposed in the

234 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

optional Kernel extension. As can be seen this now contains the properties from the ISO 24744 definition of 7ask. If we
want to use the instanceName property introduced by the Essence Alpha we would have to create a TaskExtension in the

ISO 24744 approach containing this property.

ISO 24744

Metamodel (IS0 24744) |

Description="ATaskis .."

i
1
1
1
1 +nstanceMame
1
1
1

Clabject

sk TaskKind
+StartTime ~ f§= = =—=— = it
+EncTime +Description
+Duration i
iy i
|
<<instanFeOf>>
Methodology (ISO 24744) |
e e e e e e e e = = = = = |
|
TaskExtension : TaskKind

=<<instancelf==

Endeavour (ISO 24744)
L

M2: Metamodel (Essence]|
Alpha t| BasicElement __|tanguageErement
+deseription I] []
T)
| |
- |
==zinstanceOf== <<instan|ce0f>>
M1: Mbdel (Essence) |
i I
e my_Alpha
B tinstancehlame
Task
:gﬂdﬂg‘;e — — — |description = "A Taskis ."
Nl (Metaproperty accaording to the Metamodel)
N
<<inst\énce0f>>
Y

MO: Endeavour (Essence) |

[TasklD1] : TaskExtension
Duration="2 hours"
EndTime = "1 5-Apr-2012"
InstanceMame ="Sprint Planning Meeting 1 for Project A"
StarfTime ="15-Apr-2012"

=)

AS
TasklD1]: Task
Duration ="2 hours"
EndTime ="15-Apr-2012"
instanceMame ="Sprint Planning Meeting 1 for Project A"
StarfTime ="15-Apr-2012"

Figure D.2 — Task example alignment between ISO 24744 and Essence

D.2.3

Comparing the ISO 24744 and the Essence approach shows that both are built one a similar foundation separating the
method and the endeavour: which in the ISO 24744 approach is supported by a dual-modeling approach with explicit

Definition of an ISO 24744 Kernel extension

Endeavour and Method(ology) domains, and in the Essence approach is separated into a metamodel (i.e., writing system
or language as understood in the OMG context) and the Kernel providing the common starting ground.

e Some of the ISO 24744 concepts map to concepts in the Essence Language as explained in D.2.1.

o WorkProductKind maps to WorkProduct (language construct in Essence)

o WorkProduct maps to my_WorkProduct (abstract super class in Essence)

e Some of the ISO 24744 concepts map to elements in the Kernel (or optional Kernel extensions) as explained in

D.2.2.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

235

o Task can be mapped to Task (which is an Alpha in the optional Kernel extension)

The naming differences related to WorkProduct, i.c., use of Kind and my _, between ISO 24744 and Essence are due to
different use of naming conventions.

The ISO 24744 specification also defines a set of language concepts such as Milestone, Producer, Role, etc. that are not
defined as part of the Essence Language. The reason that Essence does not define these as standardized language
concepts are that there is no universal agreement of the definition of such terms and they are used differently in different
practices. Instead The Essence language introduces the generic construct Pattern that can be used to define and express
terms such as Milestone or Role according to specific practices or Kernel extensions that applies to a set of consistent
practices. For those concepts in the ISO 24744 specification that cannot be mapped to a corresponding language element
in the Essence language or defined as an Alpha the Pattern construct can be used to define a library of supplemental ISO
24744 language concepts.

Based on our analysis it should be possible to align the ISO 24744 and Essence approach using the techniques illustrated
above. We advise that the SEMDM team can define an ISO 24744 Kernel extension similar to the KUALI-BEH Kernel
extension.

D.3 Overview of ISO 24744 features

This subclause provides an overview of [SO 24744 features.

Table D.1 — 1SO 24744 features

ISO 24744 language construct | Description (single sentence)

Action An action is a usage event performed by a task upon a work product.

ActionKind An action kind is a specific kind of action, characterized by a given cause (a
task kind), a given subject (a work product kind) and a particular type of
usage.

Build A build is a stage with duration for which the major objective is the delivery
of an incremented version of an already existing set of work products.

BuildKind A build kind is a specific kind of build, characterized by the type of result that
it aims to produce.

CompositeWorkProduct A composite work product is a work product composed of other work
products.

CompositeWorkProductKind A composite work product kind is a specific kind of composite work product,
characterized by the kinds of work products that are part of it.

Conglomerate A conglomerate is a collection of related methodology elements that can be
reused in different methodological contexts.

Constraint A constraint is a condition that holds or must hold at certain point in time.

Document A document is a durable depiction of a fragment of reality.

DocumentKind A document kind is a specific kind of document, characterized by its structure,

type of content and purpose.

Element An element is an entity of interest to the metamodel. Element is an abstract
class, specialized into MethodologyElement and EndeavourElement.

EndeavourElement An endeavour element is an element that belongs in the endeavour domain.

236 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

ISO 24744 language construct

Description (single sentence)

Guideline A guideline is an indication of how a set of methodology elements can be used
during enactment.

Hardwareltem A hardware item is a piece of hardware of interest to the endeavour.

HardwareltemKind A hardware item kind is a specific kind of hardware item, characterized by its
mechanical and electronic characteristics, requirements and features.

InstantaneousStage An instantaneous stage is a managed point in time within an endeavour.

InstantaneousStageKind

An instantaneous stage kind is a specific kind of instantaneous stage,
characterized by the kind of event that it represents.

Language A language is a structure of model unit kinds that focus on a particular
modelling perspective.

MethodologyElement A methodology element is an element that belongs in the methodology
domain.

Milestone A milestone is an instantaneous stage that marks some significant event in the
endeavour.

MilestoneKind A milestone kind is a specific kind of milestone, characterized by its specific
purpose and kind of event that it signifies.

Model A model is an abstract representation of some subject that acts as the subject’s
surrogate for some well-defined purpose.

ModelKind A model kind is a specific kind of model, characterized by its focus, purpose
and level of abstraction.

ModelUnit A model unit is an atomic component of a model, which represents a cohesive
fragment of information in the subject being modelled.

ModelUnitKind A model unit kind is a specific kind of model unit, characterized by the nature
of the information it represents and the intention of using such a
representation.

ModelUnitUsage A model unit usage is a specific usage of a given model unit by a given model.

ModelUnitUsageKind A model unit usage kind is a specific kind of model unit usage, characterized
by the nature of the use that a given model kind makes of a given model unit
kind.

Notation A notation is a concrete syntax, usually graphical, that can be used to depict
models created with certain languages.

Outcome An outcome is an observable result of the successful performance of any work
unit of a given kind.

Person A person is an individual human being involved in a development effort.

Phase A phase is a stage with duration for which the objective is the transition
between cognitive frameworks.

PhaseKind A phase kind is a specific kind of phase, characterized by the abstraction level
and formality of the result that it aims to produce.

PostCondition A postcondition is a constraint that is guaranteed to be satisfied after an action

of the associated kind is performed.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

237

ISO 24744 language construct

Description (single sentence)

PreCondition A precondition is a constraint that must be satisfied before an action of the
associated kind can be performed.

Process A process is a large-grained work unit that operates within a given area of
expertise.

ProcessKind A process kind is a specific kind of process, characterized by the area of
expertise in which it occurs.

Producer A producer is an agent that has the responsibility to execute work units.

ProducerKind A producer kind is a specific kind of producer, characterized by its area of
expertise.

Reference A reference is a specific linkage between a given methodology element and a
given source.

Resource A resource is a methodology element that is directly used at the endeavour
level, without an instantiation process.

Role A role is a collection of responsibilities that a producer can take.

RoleKind A role kind is a specific kind of role, characterized by the involved
responsibilities.

Softwareltem A software item is a piece of software of interest to the endeavour.

SoftwareltemKind A software item kind is a specific kind of software item, characterized by its
scope, requirements and features.

Source A source is a source of information, experience or best practices.

Stage A stage is a managed time frame within an endeavour.

StageKind A stage kind is a specific kind of stage, characterized by the abstraction level
at which it works on the endeavour and the result that it aims to produce.

StageWithDuration A stage with duration is a managed interval of time within an endeavour.

StageWithDurationKind

A stage with duration kind is a specific kind of stage with duration,
characterized by the abstraction level at which it works on the endeavour and
the result that it aims to produce.

Task A task is a small-grained work unit that focuses on what must be done in order
to achieve a given purpose.

TaskKind A task kind is a specific kind of task, characterized by its purpose within the
endeavour.

TaskTechniqueMapping A task-technique mapping is a usage association between a given task and a

given technique.

TaskTechniqueMappingKind

A task-technique mapping kind is a specific kind of task-technique mapping,
characterized by the mapped task kind and technique kind.

Team A team is an organized set of producers that collectively focus on common
work units.
TeamKind A team kind is a specific kind of team, characterized by its responsibilities.
Technique A technique is a small-grained work unit that focuses on how the given
purpose may be achieved.
238 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

ISO 24744 language construct

Description (single sentence)

TechniqueKind A technique kind is a specific kind of technique, characterized by its purpose
within the endeavour.

Template A template is a methodology element that is used at the endeavour level
through an instantiation process.

TimeCycle A time cycle is a stage with duration for which the objective is the delivery of
a final product or service.

TimeCycleKind A time cycle kind is a specific kind of time cycle, characterized by the type of
outcomes that it aims to produce.

Tool A tool is an instrument that helps another producer to execute its
responsibilities in an automated way.

ToolKind A tool kind is a specific kind of tool, characterized by its features.

WorkPerformance A work performance is an assignment and responsibility association between
a particular producer and a particular work unit.

WorkPerformanceKind A work performance kind is a specific kind of work performance,
characterized by the purpose of the inherent assignment and responsibility
association.

WorkProduct A work product is an artefact of interest for the endeavour.

WorkProductKind A work product kind is a specific kind of work product, characterized by the
nature of its contents and the intention behind its usage.

WorkUnit A work unit is a job performed, or intended to be performed, within an
endeavour.

WorkUnitKind A work unit kind is a specific kind of work unit, characterized by its purpose

within the endeavour.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

239

This page intentionally left blank.

240 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Annex E: Practice Examples

(Informative)

E.1 Introduction

This annex provides working examples to demonstrate the use of the Kernel and Language to describe practices.

E.2 Practices

E.2.1 Overview

This subclause contains illustrative examples of the following:
e Scrum
e User Story
e Multi-phase Waterfall

o Lifecycle examples

E.2.2 Scrum

E.2.2.1 Overview

This subclause illustrates the Essence approach by modeling the Scrum?® project management practice. The Scrum
practice as documented here is for illustrative purposes only and explores how the Scrum practice may be mapped to the
Essence Kernel and Language. It should not be interpreted as a definitive example of how Scrum should be represented.

E.2.2.2 Practice
The following Scrum concepts were identified from the Scrum guide [Schwaber and Sutherland 2011]:
e Scrum team (roles)
o Product Owner
o Development Team (of developers)
o Scrum Master
e Scrum events

o The Sprint

3 K. Schwaber and J. Sutherland, "The Scrum Guide", Scrum.org, October 2011.
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 241

o Sprint Planning Meeting
o Daily Scrum
o Sprint Review
o Sprint Retrospective
e Scrum artifacts
o Product Backlog
o Sprint Backlog

o Increment

Graphical syntax

Scrum & Requirements

Work

Team

System

Figure E.1 — Scrum practice

Textual syntax
kernel ESSENCE kernel:

" "

owns {
alpha Work:

with states {
state someState {

" n

242 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

}

alpha Team:
with states {
state somelevel {

n n

}
}

practice Scrum:
with objective "...
owns {
ESSENCE_kernel.Work contains 1..N Sprint
alpha Sprint:
ESSENCE kernel.Team contains 1 ScrumTeam
alpha ScrumTeam:
workProduct ProductBacklog:
workProduct SprintBacklog:
workProduct Increment:
type Role: "..."
pattern <Role> ProductOwner:
pattern <Role> DevelopmentTeam:
pattern <Role> ScrumMaster:

}
E.2.2.3 Alphas

E.2.2.3.1 Work

We extend the Work alpha for Scrum. The Work alpha is typically used for the duration of a development project that
may cover a number of sprints. Thus we define a new sub-alpha called Sprint.

e "The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable, and potentially
releasable product Increment is created. Sprints have consistent durations throughout a development effort. A new
Sprint starts immediately after the conclusion of the previous Sprint." [Schwaber and Sutherland 2011]

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 243

Graphical syntax

Figure E.2 — Sprint sub-alpha of Work

Work

Sprint

The Sprint has its own state graph. Scrum comes with its own specific set of rules that should be defined as part of the
practice, whereas the Work state machine and its associated checkpoints are more general.

Graphical syntax

¥ '
Planned
L%
L
F '
Started

v

Under Control

h

Concluded

v

%,

Closed

"

Figure E.3 — The states of the Sprint sub-alpha

244

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Textual syntax
alpha Sprint:

"The heart of Scrum is a Sprint, a time-box of one month or less during
which a “Done”, useable, and potentially releasable product Increment is
created. Sprints have consistent durations throughout a development effort.
A new Sprint starts immediately after the conclusion of the previous
Sprint. (...continues...)"

with states
state

state

state

state

{

Planned {
"The work has been requested and planned."
checks {
item cl {"Sprint Planning Meeting is held."}
item c2 {"Product Owner presents ordered Product Backlog
items to the Development Team."}
item c3 {"Development Team decides how it will build this
functionality into a “Done” product Increment during
the Sprint"}
item c4 {"Scrum Team crafts a Sprint Goal."}
item c5 {"Development Team defines a Sprint Backlog."}
}
Started {
"The work is proceeding."
checks {
item cl {"Team is taking their work items from the Sprint
Backlog"}
}
UnderControl ({

"The work is going well, risks are under control, and
productivity levels are sufficient to achieve a satisfactory
result."
checks {
item cl {"Daily Scrum optimizes the probability that the
Development Team will meet the Sprint Goal."}
item c2 {"Every day, the Development Team should be able
to explain to the Product Owner and Scrum Master how it
intends to work together as a self-organizing team to
accomplish the goal and create the anticipated increment
in the remainder of the Sprint."}

}

Concluded {

"The work to produce the results has been concluded."

checks {
item cl {"During the Sprint Review, the Scrum Team and
stakeholders collaborate about what was done in the
Sprint."}

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 245

state Closed {

"All remaining housekeeping tasks have been completed and the

work has been officially closed.”

checks {
item cl {"A Sprint Review Meeting is held at the end of
the Sprint."}
item c2 {"The Sprint Retrospective occurs after the
Sprint Review and prior to the next Sprint Planning
Meeting."}

}

E.2.2.3.2 Team

The Scrum practice relates to the Team alpha. The Team alpha refers to the individuals working in the team, i.e.,
members that may be represented by a sub-alpha. Scrum defines a specific Scrum Team which consists of a Product
Owner, the Development Team, and a Scrum Master.

e "The Scrum Team consists of a Product Owner, the Development Team, and a Scrum Master. Scrum Teams are
self-organizing and cross-functional. Self-organizing teams choose how best to accomplish their work, rather than
being directed by others outside the team. Cross-functional teams have all competencies needed to accomplish the
work without depending on others not part of the team. The team model in Scrum is designed to optimize
flexibility, creativity, and productivity." [Schwaber and Sutherland 2011]

Graphical syntax

Team

Scrum Team

Figure E.4 — Scrum Team

Scrum mandates that one sole person should take on the role of a Product Owner and another sole person should take on
the role of the Scrum Master. These types of constraints could be added as checkpoints on the Team alpha itself, but
another alternative would be to define a specific Scrum Team as a sub-alpha. The introduction of a specific sub-alpha
would allow us to easier extend and scale the practice to Scrum of Scrums, including managing different types of teams
not all following Scrum.

246 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Graphical syntax

Established

Figure E.5 — The states of the Scrum Team sub-alpha

Textual syntax

alpha ScrumTeam:
"The Scrum Team consists of a Product Owner, the Development Team, and a

Scrum Master. Scrum Teams are self-organizing and cross-functional. Self-
organizing teams choose how best to accomplish their work, rather than
being directed by others outside the team. Cross-functional teams have all
competencies needed to accomplish the work without depending on others not
part of the team. The team model in Scrum is designed to optimize
flexibility, creativity, and productivity. (...continues...)"

with states {
state Established {
"Scrum Team is established."

checks {
item cl {"The Product Owner is assigned."}
item c2 {"Developers are assigned to the Development

Team."}
item c3 {"The Scrum Master is assigned."}

E.2.2.4 Work Products

E.2.2.41 Product Backlog
The Product Backlog and Sprint Backlog are associated with the Requirements alpha.

e "The Product Backlog is an ordered list of everything that might be needed in the product and is the single source
of requirements for any changes to be made to the product. The Product Owner is responsible for the Product
Backlog, including its content, availability, and ordering." [Schwaber and Sutherland 2011]

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 247

Graphical syntax

Requirements X ¢—

Product
Backlog

Figure E.6 — Product Backlog

Textual syntax

workProduct ProductBacklog:
"The Product Backlog is an ordered list of everything that might be needed
in the product and is the single source of requirements for any changes to
be made to the product. The Product Owner is responsible for the Product
Backlog, including its content, availability, and ordering.
(...continues...)"

with levels {
level somelevel {

" n

}
}

E.2.2.4.2 Sprint Backlog
The Sprint Backlog is associated with the Sprint sub-alpha.

e "The Sprint Backlog is the set of Product Backlog items selected for the Sprint plus a plan for delivering the
product Increment and realizing the Sprint Goal. The Sprint Backlog is a forecast by the Development Team about
what functionality will be in the next Increment and the work needed to deliver that functionality." [Schwaber and
Sutherland 2011]

248 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Graphical syntax

Sprint
Backlog

Figure E.7 — Sprint Backlog

Textual syntax

workProduct SprintBacklog:
"The Sprint Backlog is the set of Product Backlog items selected for the
Sprint plus a plan for delivering the product Increment and realizing the
Sprint Goal. The Sprint Backlog is a forecast by the Development Team about
what functionality will be in the next Increment and the work needed to
deliver that functionality. (...continues...)"

with levels {
level somelevel {

" n

}
}

E.2.2.4.3 Increment

The Increment is associated with the System alpha.

e "The Increment is the sum of all the Product Backlog items completed during a Sprint and all previous Sprints. At
the end of a Sprint, the new Increment must be “Done,” which means it must be in useable condition and meet the
Scrum Team’s Definition of “Done.” It must be in useable condition regardless of whether the Product Owner
decides to actually release it." [Schwaber and Sutherland 2011]

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 249

Graphical syntax

Increment

Figure E.8 — Increment

Textual syntax

workProduct Increment:
"The Increment is the sum of all the Product Backlog items completed during
a Sprint and all previous Sprints. At the end of a Sprint, the new
Increment must be “Done,” which means it must be in useable condition and
meet the Scrum Team’s Definition of “Done.” It must be in useable condition
regardless of whether the Product Owner decides to actually release it.
(...continues...)"

with levels {
level somelevel {

}

E.2.2.5 Activities

The identified Scrum events may be mapped to corresponding activities. The concept of sprint however describes an
iteration that we will map to a sub-alpha of Work. This gives us the following activities:

o Sprint Planning Meeting
e Daily Scrum
o Sprint Review

e Sprint Retrospective

250 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Graphical Syntax

Sprint Planning
Meeting

|

(Daily Scrum

!

Sprint Review

|

Sprint
Retrospective

Figure E.9 — Scrum activities

NS

NS

E.2.2.5.1 Sprint Planning Meeting

The Sprint Planning Meeting is associated with the Prepare to do the Work activity space.
e "The work to be performed in the Sprint is planned at the Sprint Planning Meeting. This plan is created by the
collaborative work of the entire Scrum Team. The Sprint Planning Meeting is time-boxed to eight hours for a one-

month Sprint. For shorter Sprints, the event is proportionately shorter. For example, two-week Sprints have four-
hour Sprint Planning Meetings." [Schwaber and Sutherland 2011]

Graphical syntax

\
! Sprint Planni
| Prepare to do the Work ,\.— print Planning

Meeting

Figure E.10 — Sprint Planning Meeting
E.2.2.5.2 Daily Scrum
The Daily Scrum is associated with the Track Progress activity space.

e "The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize activities and create
a plan for the next 24 hours. This is done by inspecting the work since the last Daily Scrum and forecasting the
work that could be done before the next one." [Schwaber and Sutherland 2011]

Graphical syntax

I \
I Track Progress ,\0— Daily Scrum >
/

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 251

Figure E.11 — Daily Scrum

Textual syntax

activity DailyScrum:
"The Daily Scrum is a 15-minute time-boxed event for the Development Team
to synchronize activities and create a plan for the next 24 hours. This is
done by inspecting the work since the last Daily Scrum and forecasting the
work that could be done before the next one."

targets Sprint.Concluded

DailyScrum -- "part-of" --> ESSENCE kernel.TrackProgress

E.2.2.5.3 Sprint Review

The Sprint Review is associated with the Track Progress activity space.

e "A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product Backlog if
needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about what was done in the
Sprint. Based on that and any changes to the Product Backlog during the Sprint, attendees collaborate on the next
things that could be done. This is an informal meeting, and the presentation of the Increment is intended to elicit
feedback and foster collaboration." [Schwaber and Sutherland 2011]

Graphical syntax

\
Track Progress ,\.v Sprint Review

/

Figure E.12 — Sprint Review

Textual syntax

activity SprintReview:
"A Sprint Review is held at the end of the Sprint to inspect the Increment
and adapt the Product Backlog if needed. During the Sprint Review, the
Scrum Team and stakeholders collaborate about what was done in the Sprint.
Based on that and any changes to the Product Backlog during the Sprint,
attendees collaborate on the next things that could be done. This is an
informal meeting, and the presentation of the Increment is intended to
elicit feedback and foster collaboration."

targets Sprint.Concluded, Sprint.Closed

SprintReview -- "part-of" --> ESSENCE kernel.TrackProgress

E.2.2.5.4 Sprint Retrospective

The Sprint Retrospective is associated with the Support the Team activity space.

e "The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan for
improvements to be enacted during the next Sprint. The Sprint Retrospective occurs after the Sprint Review and

252 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

prior to the next Sprint Planning Meeting. This is a three-hour time-boxed meeting for one-month Sprints.
Proportionately less time is allocated for shorter Sprints." [Schwaber and Sutherland 2011]

Graphical syntax

\
Support the Team ,\0— Sprint >

Retrospective
/

Figure E.13 — Sprint Retrospective

E.2.2.6 Roles

Roles can be described as patterns:
e Product Owner
e Development Team (of developers)

e Scrum Master
E.2.2.6.1 Product Owner

Textual syntax
type Role: "..."
pattern <Role> ProductOwner:
"The Product Owner is responsible for maximizing the value of the product

and the work of the Development Team. How this is done may vary widely
across organizations, Scrum Teams, and individuals. (...continues...)"

E.2.2.6.2 Development Team

Textual syntax

type Role: "..."

pattern <Role> DevelopmentTeam:
"The Development Team consists of professionals who do the work of
delivering a potentially releasable Increment of “Done” product at the end

of each Sprint. Only members of the Development Team create the Increment.
(...continues...)"

E.2.2.6.3 Scrum Master

Textual syntax

type Role: "..."

pattern <Role> ScrumMaster:

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 253

"The Scrum Master is responsible for ensuring Scrum is understood and
enacted. Scrum Masters do this by ensuring that the Scrum Team adheres to
Scrum theory, practices, and rules. The Scrum Master is a servant-leader
for the Scrum Team. The Scrum Master helps those outside the Scrum Team
understand which of their interactions with the Scrum Team are helpful and
which aren’t. The Scrum Master helps everyone change these interactions to
maximize the value created by the Scrum Team. (...continues...)"

E.2.3 User Story
E.2.3.1 Practice

Graphical syntax

UserStory Requirements

Practice

Figure E.14 — User Story practice

Textual syntax
kernel ESSENCE_kernel:

owns {
alpha Requirements:

" "

with states {
state someState {

n "

}
}

practice UserStory:

with objective "..."

owns {
ESSENCE_kernel.Requirements contains 1..N UserStory
workProduct UserStoryCard:

}
E.2.3.2 Work Products

E.2.3.21 User Story

A User Story can be seen as a requirement item sub-alpha of Requirements that you want to monitor the state of. This
requirement item is described by a User Story Card.

254 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Graphical syntax

Requirements

User Story
(Requirements
Item)

Figure E.15 — User Story

Textual syntax

alpha UserStory:
"A User Story is an Independent, Negotiable, Valuable, Estimatable, Small,
Testable requirement (INVEST)"

with states {
state Described {
"The User Story is described."
checks {
item cl {"User Story is described by the customer."}
item c2 {"User Story is prioritized by the customer."}

}

}
state Understood {"The User Story has been analyzed by the Team"

checks {
item cl {"The User Story has been broken down into tasks
by the developers."}
item c2 {"The User Story has been estimated by the
developers."}
}
}

state Implemented {"The User Story has been implemented."
checks {
item cl {"The User Story has been implemented."}
item c2 {"The implementation has been tested."}

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 255

}
state Fulfilled {"The User Story has been fulfilled."

checks {
item cl {"The Customer has approved the implementation."}

}
}

workProduct UserStoryCard:
"The User Story Card contains the description of the User Story. User
stories generally follow the following template:
“As a <role>, I want <goal/desire> so that <benefit>”
“As a <role>, I want <goal/desire>""

with levels {
level somelevel {

n "

}

E.2.3.3 Activities
E.2.3.3.1 Write User Story

Graphical syntax

|

Under_stand the \0—— Write User Story
| Requirements /
e o e - - /

Figure E.16 — Write User Story

Textual syntax

activity WriteUserStory:

targets UserStory.Described

WriteUserStory -- "part-of" --> SEMAT kernel.UnderstandTheRequirements
E.2.3.3.2 Prioritize User Story

Graphical syntax

\
| Understand the .
‘¢ | Prioritize User Story

| Requirements /
/

Figure E.17 — Prioritize User Story

256 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Textual syntax

activity PrioritizeUserStory:

targets UserStory.Described

PrioritizeUserStory -- "part-of" --> SEMAT kernel.UnderstandTheRequirements
E.2.3.3.3 Estimate User Story

Graphical syntax

\
| Understand the .
‘o1 Estimate User Story

| Requirements /

Figure E.18 — Estimate User Story

Textual syntax

activity EstimateUserStory:

targets UserStory.Understood

EstimateUserStory -- "part-of" --> SEMAT kernel.UnderstandTheRequirements

E.24 Multi-phase Waterfall

In some practices in common use, there are multiple phases of Requirements Definition, each adding more detail.
e Multiple Requirements and Design Activities normally flow top down.
e Multi-phase Testing Activities normally flow bottom up.

This practice example is closely related to the so-called V-Model for software process engineering http://www.the-
software-experts.de/e_dta-sw-process.htm .

o Actual Flow of Activities associated with each phase can be quite complex in a real project.

e Requirements alpha specializations are needed to model requirement documents from each phase.

E.2.4.1 Activities
The general form of the V-model of Activities for the Multi-phase Waterfall practice is shown in Figure E.19.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 257

http://www.the-software-experts.de/e_dta-sw-process.htm
http://www.the-software-experts.de/e_dta-sw-process.htm

Operational
Test

..--""..“l-.v

External Design Y®E-------f—-—o-=----- System Test >
fication>> /

Integration
e i
Test

cevafification>>

Requirements
Definition

Hbion>>

Detail Design

Implementation,
Programming

Figure E.19 — Multi-phase Waterfall Practice Activities Flow

Figure E.19 shows an example of “V-Model” for Multi-phase Waterfall Practice. Each Test Activity verifies/validates
work products of one Requirements/Design Activity. Normal progression flows from left to right. If defects are detected
or rewind is required, process flows back to appropriate point thru the depicted virtual node

E.2.411 Requirements Definition Phase

Description Major work products

e Confirm the systematization requirements to define e Use cases & Scenario
functional (system functions, data, interface) and non-
functional requirements ¢ Business flows

e Define and outline design of the system and examine e Business rules

the feasibility of the system. .
e Data model (High-level)

e Develop a project plan and establish management

measurers to carry out the project. e Execution environment prescription (as Non-

functional requirement)

e Business operational test spec.

258 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

E.2.4.1.2 External Design Phase

Description

Major work products

e Design high-level specifications for end users such as
system functions, data, interfaces, screens and print-
form

e Design the system architecture and operation
measures.

o Investigate the current assets (applications, system
configuration, data) to determine which resources
should be transferred to the new system.

e Develop a total test plan.

e Application architecture spec.

e Conceptual data model

e Screen Design spec.

e Printing-form design spec.

e Process structure spec.

e Interface design spec.

e Message & Code design

e Detail Non-functional requirements

e System test specification.

E.2.4.1.3 Detailed Design Phase

Description

Major work products

e Design the system internal structure (ex. program unit,
database physical structure) and interfaces between
programs based on the outline specifications.

e Design an operation management system, security
system, and methods for transition of the current
resources.

e Software component/module spec.

e Physical Database schema specification
e Detail screen spec.(screen constituent)
e Performance design

e Security design

e Integration test spec

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

259

E.2.

41.4 Implementation/Programming Phase

Description

Major work products

Define program structure and design program logic

Develop and complete programs based on the program
design

Implement the database based on the data model.

Test each program module individually to verify
correctness and quality.

e Source code
e Middleware/Hardware configuration specification.

e Database definition Language

E.2.

41.5 Integration Test Phase

Description

Major work products

Test each process by integrating programs to verify the
application.

Test interfaces between all processes

Confirm interfaces between external systems

e Result reports for Integration test spec.

E.2.

41.6 System Test Phase

Description

Major work products

Test the business system functions on the actual
machines.

Test the entire system by evaluating system
performance, reliability, operability, security, etc.

e Result reports for System test spec.

260

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

E.2.41.7 Operational Test Phase

Description

Major work products

o Test business operations in the real environment with
actual machines and real data. This test is performed
by end users.

e Validate the business functions, performance,
reliability, operability, and security.

e Make decision to transit from test operation to real
operation, and perform a transition.

e Result reports for business operational test.

E.2.4.2 Alpha Extensions for Multi-Phase Waterfall Requirements

High Level

Requirements

1] | 1

High-level HighLevel External xternal Non- Detailed etailed Non-
Functional onFunctional Functional Functional Functional Functional
Ragmts Spec || Ramts Spec Rgmts Spec || Ramts Spec| |rgmits Spec || Ramts Spec

Figure E.20 — Multi-phase Waterfall Requirements Alpha Extensions and Requirements Spec Work Products

High Level Requirements Specs (Functional and Non-Functional) are produced by Requirements Definition Activity.

External Requirements Specs (Functional and Non-Functional) are produced by External Design Activity.

Detailed Requirements Specs (Functional and Non-Functional) are produced by Detailed Design Activity.

Each Requirements extension Alpha has:

o [ts own state values, the same as specified for the Requirements Alpha;

o Conceived; Bounded; Coherent; Described;

Addressed; Fulfilled

e Functional and Non-Functional Requirements Spec Work Products

o each having Sub-Alphas for every Requirement Item, with their own state values (the same as specified for
the Requirement Item Sub-Alpha Kernel Extension

Kernel and Language for Engineering Methods (Essence)

, v2.0 — beta 1

261

o Requirements Alpha Extension state transitions conditional on Requirements Item Sub-alpha state
transitions

E.2.4.3 Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions

.

Leo_%e]

takeholders Opportunity

T

High-Level RgmisExternal Ramts Detailed Rgmts ~ System

ERERCNE)

Initiation

Requirements
Definition

External Design

Detailed Design

Implementation

Integration Test

a1

Solution Needed

Value
Established

e

— Conceived

|___Bounded |
| Conherent |
__Aocepiable " Coneived |

N [cemte | e 1| A
"~ Bounded | Selected

__ L epae)

strable

" -~ £ r 1 Fulfilled

System Test

Operational Test

Deployment

| | Fulfilled —

)
= Addressed — Fulfilled —— | A— Ready

Safisfied in Use

Benefit Accrued

ToL T

Figure E.21 - Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions

E.2.4.4 Extensions of Requirement Item Alpha for Tracking Individual Multi-Phase Waterfall
Requirement Iltems

If a project needs to track to state of each individual requirement item, the following Sub-Alpha extensions of the
Requirement Item kernel Extension Sub-alpha can be employed.

The individual Requirement Work products are part of their respective Requirements Spec (Functional or Non-
Functional) associated with their parent Requirements Alpha Extension.

262

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

High-Level
Requi

High Level
Non-Functional

Requirements
Item

High Level
Functional
Requirements
Item

High-Level

High-Level e
Functional Non-Functional
Requirement . Requirement

Requirements
ltem

Figure E.22 — High-Level Requirements Sub-Alphas and Requirement Work Products

External
Requirments

External

External
Non-Functional

Functional
Requirements Requirements
Item Item
L 2 L 2
1 ™. extends extends .- 1
External \‘n‘ 4t External
Fun;tional ““1 Non-Functional
Requirement Y e Requirement

Requirements
ltem

Figure E.23 — External Requirements Sub-Alphas and Requirement Work Products

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

263

Detailed
Requirments

Detailed
Non-Functional

Requirements
Item

@

Detailed
Functional

Requirements
Item

.. extends extends -~ 1
Detailed e Detailed
Fun_ctional e MNon-Functional
Requirement T & Requirement

Requirements
Item

Figure E.24 — Detailed Requirements Sub-Alphas and Requirement Work Products

E.2.5 Lifecycle Examples

The Essence Kernel enables practices to define lifecycles by sequencing a number of patterns, one for each phase and/or
milestone in the lifecycle.

This subclause provides illustrations of a number of typical software engineering lifecycles:
e A Unified Process lifecycle
o A waterfall lifecycle
o A set of complementary application development lifecycles
¢ A funding and decision making lifecycle

When reading these subclauses one should bear in mind that a lifecycle practice can do more than just arrange the alpha
states, it can also add items to the checklists, activities to formally review the milestones and any other planning or
review guidance it sees fit.

All the lifecycles are illustrated using the template shown in Figure E.25.

264 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

FNRE

Stakeholders Opportunity Requirements System

m
Principlas
Conceived Established

et _

e
Beretraccrueg POMELY Fulfilled - m

Figure E.25 — Lifecycle template

Each Kernel Alpha and its states are shown in a vertical column with their creation at the top and their destruction at the
bottom. Milestones are shown as a vertical bar across the grid starting with an inverted triangle to represent the milestone
and continuing with a white line over which are shown the states to be achieved to successfully pass the milestone.
Where achieving a state is either recommended or optional the state is shown with a dashed outline and italicized text.

E.2.5.1 The Unified Process Lifecycle

An illustration of the Unified Process Lifecycle is shown in Figure E.26. In the Unified Process Lifecycle there are four
phases: Inception, Elaboration, Construction and Transition. Each of these ends in a distinct milestone: Lifecycle
Objectives Milestone, Lifecycle Architecture Milestone, Initial Operational Capability, Project End. In Figure E.26, the
milestones are represented by the blue inverted triangles but the names are suppressed to keep things simple.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 265

Requirements System

m
Principles
Blahl\shed

fpproach Fourndation
Prepamd AR Eﬁab”smd
.' i

foceptatle

3 .
Satleted Br
— Depiyment Fulfilled Ready Concluded Ferforrnlng Wortiing LUed
e
_—__ g m o=

Figure E.26 — The Unified Process lifecycle

E.2.5.2 The Waterfall Lifecycle

An illustration of a Waterfall Lifecycle is shown in Figure E.27. In this case there are six phases: Initiation,
Requirements, Analysis and Design, Implementation, Testing, and Deployment. Each of these ends in a distinct
milestone, which in this case are not named.

266 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Principles
Established
s
— 1 In Use
T~ S - L
oo
r (o)

| Under ”
-
b R — T

(Wortking Well)

(Callaborating)

Fulfilled Working Well)
i (CoMabomding)
Concluded (Beromian)
T OO e 5 M OO e)

Figure E.27 — A Waterfall lifecycle

Of most interest here are:
1. The fact that there is no work on the system itself until the Analysis and Design Phase at the earliest.

2. Different team formations are used for each phase and so the state of the team keeps getting set back to formed with
the hope that the new team will be collaborating and performing before the end of its phase.

3. The Requirements are acceptable by the end of the Requirements Phase and then not progressed again until the
Testing Phase.

E.2.5.3 A set of complementary application development lifecycles

The Kernel can be used in much more subtle ways than in the previous two examples. It is not uncommon for application
development organizations to need multiple lifecycles to cope with the different types and styles of development that
they undertake. Figure E.28 shows four complementary lifecycle models illustrating the typical demands made upon an
application development organization. This example is taken from a real software development organization and uses
their names for the four lifecycle models.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 267

Software Development — Build Application

Model | - Model | - Model Il —
Exploratory Standard Maintenance
Develop, enhance and maintain software solutions. 9 Principles
1 Kernel
Software Operation / Run Application 20 Practices

Model IV — Support

<o

Operate and support solution in production

Figure E.28 — Different types of development need different methods and lifecycles

Each lifecycle model is supported by a method, each of which is built on the same kernel, many of which share the same
practices, and each of which has its own lifecycle. The four lifecycles are shown in Figure E.29. Here the four lifecycles
are deliberately shown in a single diagram to make the differences in the arrangements of the states easily visible.
Unfortunately this makes the wording very hard to read. If you are interested in the details of the figures they are
repeated at a larger size in Figure E.30, Figure E.31, Figure E.32, and Figure E.33.

268 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

o

R
L4

Maintenance

Figure E.29 — Four complementary lifecycles to support application development

The interesting things to note here are:

1.

The different starting points of the different lifecycles. In this case much of the preparation work for standard
developments is done outside the Application Development project; hence the fact that the Opportunity is value
established, the Requirements are bounded and the System is architecture selected before the standard method is
used.

The way that maintenance doesn’t start until there is a usable system, and Support doesn’t start until there is an
operational System. These two methods are very focused with the Maintenance lifecycle only supporting small
changes and not allowing architectural change. If you want to change the architecture you must apply either the
Exploratory or the Standard lifecycles and their supporting methods.

The different end points of the different lifecycles. For example Transition is optional in the Exploratory method and
the Support method continues until the system is retired.

The Standard lifecycle is called standard as this is the default lifecycle for the teams to follow.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 269

@) (&

Requirernents Systerm

Seeded

Zoltos Needed
Walte dpprmac Foundation
m- - teatnd " Established
Epproach
-

Und

Foceptable

Concluded
Transition

Figure E.30 — The Exploratory lifecycle

i -— g Initizted
Extblk kel Selested .

|
tructian R :
-

Sath kel In Use

Figure E.31 — The Standard lifecycle

270 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Maintenance : i J ke |
e IR

" ™ : ; 3 Foundation

focsptable

—— B T T

Fulfilled

System

AT 4

Support

Foproach
Selected

Demonstrable 3 1 Princ_ples
[o)

Addressed

o eepese | 3 | Foundation
Operational 2 | Established

ﬁ::u:ﬁ't Fulfilled i Gollsborating | | InPlace

Figure E.33 — The Support lifecycle

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 271

E.2.6 Business Change Essentials

E.2.6.1 Overview

This subclause illustrates the Essence approach by modelling a business process reengineering practice. The practice as
documented here is for illustrative purposes only and explores how a part of the practice may be mapped to the Essence
Kernel and Language. This practice example is inspired by The Object Advantage*.

E.2.6.2 Practice

The purpose of the Business Change Essentials practice is to capture and refine business processes to produce better

solutions that deliver more value.

Graphical syntax

Business
Change

Essentials

Figure E.34 — Business Change practice

Textual syntax

practice BusinessChangeEssentials:
“Capture and refine business processes to produce a better business that

delivers more value.”
owns {
BusinessChange

BusinessUseCaseModel
SupportingBusinessInformation
BusinessChangeRoadmap
ScopeTheBusinessChange
SpecifyTheBusinessChange
AlignBusinessAndSolution
VerifyTheBusinessChange

}

uses {

ESSENCE_kernel.
ESSENCE_kernel.
ESSENCE_kernel.
ESSENCE_kernel.
.Analysis
ESSENCE_kernel.

ESSENCE_kernel

Requirements
UnderstandTheRequirements
ShapeTheSystem
TestTheSystem

Development

4 The Object Advantage: Business Process Reengineering With Object Technology, by Ivar Jacobson, Maria Ericsson,

Agneta Jacobson. Addison-Wesley 1995.

272

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

ESSENCE_kernel.Testing

}

E.2.6.3 Alphas and Work Products

We add alphas and work products under the Requirements alpha, thereby representing the requirements for forming a
new business.

Graphical syntax

Requirements

1.*%
Business
Change
1 1 1
Business Supporting Business
Use-Case Business Change
Model Information Roadmap

Figure E.35 — Alphas and work products

E.2.6.3.1 Business Change

A change to the business, representing an area of the business that the team wants to understand and improve. The
business change scope may be the entire business or just a smaller part of the business.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 273

Graphical syntax

Business

Change

s N
Identified

N J

g J, N\
Described

. J

s \|’ N

Impact Understood

(. J

4 J’ 7
Ready

o J

- ‘L N

Underway

. J

s J’ N
Done

. J

Figure E.36 — The Business Change alpha and its states

Textual syntax

alpha BusinessChange:
“A change of the business that the team wants to understand and
implement.”
with states {

274

state Identified {
“Identifying and bounding the change confirms that the team
understands the business need and the type of change needed to
address it.”
checks {
item checkpointl {
“The high level descriptions for the set of changes to be
introduced into the business have been agreed by the
stakeholders.”
}
item checkpoint2 ({
“The stakeholders confirm that they will in fact address
the targeted business need and are implementable.”
}
item checkpoint3 ({
“A roadmap to deliver the improved business has been
agreed.”
}
}
}

state Described {

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

“To describe the target business the team needs to establish a
shared understanding of what the change entails.”
checks {
item checkpointl ({
“A stable, robust definition of the changes that are to
be introduced to the business has been produced.”
}
item checkpoint2 ({
“There is a sufficient understanding of the gap between
the current business and the desired business to enable
the identification of the transitioning requirements.”

}

item checkpoint3 {
“The defined business changes are aligned to the
underlying business need.”

}

item checkpoint4 {
“The business benefit to be expected and the means by
which it will be measured are described.”

}

item checkpoint5 ({

“The business tests to be used to verify the new business
have been identified.”

}
item checkpoint6 {

“The approach to be used to introduce the change into the
business has been described.”

}

E.2.6.3.2 Business Use-Case Model

The purpose of the Business Use-Case Model work product is to explain, bound and scope the part of the business that is
to be changed.

Graphical syntax

\ Value Established /

Business h 4
Use-Case
Model

Boundary Established

| i 7
A I
\ Structured ;
o o o o e o

Figure E.37 — Business Use-Case Model work product and its levels of detail

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 275

Textual syntax

workProduct BusinessUseCaseModel:
“Explain, bound and scope the part of the business that is to be
changed.”
with levels {
level ValueEstablished {
“The specific aspects of the (part of the) business to be
improved is established by identifying and describing the
business use-cases to be addressed. These are known as the
primary business use-cases because improving the way they are
done will deliver real value to the business, and increase the
value received by their business actors.”
checks {
item checkpointl ({
“Primary business actors are named and briefly
described.”
}
item checkpoint2 ({
“Primary business use-cases are named and briefly
described.”
}
item checkpoint3 ({
“There is an explanation of the business use-case model
as a whole which distinguishes between the specific
aspects of the model that are to be changed and those
that will remain as-is and are included to establish
overall context.”

}

}
sufficient level BoundaryEstablished ({

“The essence of the business is captured by describing its
value through the use of primary business actors and primary
business use-cases. However, secondary actors and business use-
cases are also necessary to enable and support the effective
operation of the business.”
checks {
item checkpointl ({
“Secondary business actors and business use-cases have
been identified.”
}
item checkpoint2 {
“Any other actors and use cases required to completely
describe the (part of the) business have been
identified.”

276 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

E.2.6.4 Activities

The activities (here simplified) help progressing the Business Change alpha.

Graphical syntax

Scope the
Business Change

Specify the
Business Change

\

Align Business
and Solution

Verify the

Business Change

Figure E.38 — The activity flow

E.2.6.4.1 Scope the Business Change

The purpose of the Scope the Business Change activity is to agree on the value of the change and its impact on the

business. This activity results in updates to the Business Use-Case Model and the Supporting Business Information that
describes the business.

Graphical syntax

: Understand the \s‘ Scope the
1 Requirements , Business Change

Figure E.39 — Scope the Business Change activity

Textual syntax

activity ScopeTheBusinessChange
“Agree on Business Change value and how it will be verified.”
targets BusinessChange.Identified,
BusinessUseCaseModel.ValueEstablished,

SupportingBusinessInformation.KeySuccessFactorsIdentified
requires competency level

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 277

ESSENCE_kernel.Analysis.Masters

ScopeTheBusinessChange -- "part-of" -->
ESSENCE_kernel.UnderstandTheRequirements

E.2.6.4.2 Specify the Business Change

The purpose of the Specify the Business Change activity is to describe a business change and how it will be tested. The
activity will only be performed for the parts of the business use-case that are within scope. This means that some parts
such as certain flows or special requirements may be left undefined and incomplete. Typically the scope of this activity is
defined by the specific business scenarios being worked on.

Graphical syntax

\
Understand the ‘\ Specify the
Requirements ‘ Business Change

Figure E.40 — Specify the Business Change activity

Textual syntax

activity SpecifyTheBusinessChange
“Describe a business change and how it will be tested.”

targets BusinessChange.Described,
BusinessUseCaseModel .BoundaryEstablished,
SupportingBusinessInformation.QualityOfServiceDefined
BusinessChangeRoadmap.ChangeMilestonesAgreed

requires competency level
ESSENCE_kernel.Analysis.Masters,
ESSENCE_kernel.Testing.Masters

SpecifyTheBusinessChange -- "part-of" -->
ESSENCE_kernel .UnderstandTheRequirements

E.2.6.4.3 Align Business and Solution

The purpose of the Align Business and Solution activity is to ensure the business change and solution will work together
to deliver maximum business value. This activity reviews candidate areas for automation that have been identified from
the business use-case realizations and confirms where IT support is to be used to realize the business change. On
completion of the review the automation options are selected, enabling timescales and costs to be confirmed.

Graphical syntax

: Shape the \‘ * Align Business
I System ’ and Solution
I

Figure E.41 — Align Business and Solution activity

278 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

Textual syntax

activity AlignBusinessAndSolution

“Ensure the business change and its solution will work to deliver maximum
business value.”

targets BusinessChange.ImpactUnderstood,
BusinessChangeRoadmap.OptionsSelected
requires competency level
ESSENCE kernel.Analysis.Masters,
ESSENCE_kernel .Development.Masters

AlignBusinessAndSolution -- "part-of" --> ESSENCE kernel.ShapeTheSystem
E.2.6.4.4 Verify the Business Change
The purpose of the Verify the Business Change activity is to verify that the changed business operates as specified. This
activity results in a business test being executed and evaluated, and its test results being generated and analysed. If the

test finds any defects these are identified and added to the project’s backlog.

Graphical syntax

A .
Test the System 1 ¢ \.Ierlfy the
! Business Change

Figure E.42 — Verify the Business Change activity

Textual syntax

activity VerifyTheBusinessChange

“Verify that the changed business operates as specified.”
targets BusinessChange.Done
requires competency level
ESSENCE kernel.Analysis.Applies,
ESSENCE_kernel.Testing.Masters

VerifyTheBusinessChange -- "part-of" --> ESSENCE kernel.TestTheSystem
E.3 Composing Practices into Methods
E.3.1 Composing Scrum and User Story

In Scrum requirement items are expressed as Product Backlog items. Scrum does not provide any guidance on how to
express these requirement items. Many Scrum teams adopt user stories to express their requirements. A simple
composition of the Scrum and User Story work products with respect to the Requirements alpha is shown below.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 279

Requirements

1..% Requirements X ¢——

User Story
(Requirements
Item) 1
Product
Backlog

Figure E.43 — Merging User Story with Scrum

This simple composition adds work products from different practices to the same alpha, and also relates the sub-alphas of
Requirements. The result of the merger is shown below.

/
1

Requirements Y¢——| Product
Backlog

User Story 1 User
(Product Backlog A¢———— Story

Item)
Card

Figure E.44 — Scrum with User Story

E.4 Enactment of Methods

The purpose of this subclause is to illustrate the enactment of methods using a simple example. This example is based on
the examples discussed so far in E.2.2, E.2.3, and E.2.6 above. The example uses the notion of cards and does not make
any implication on whether these cards are handled physically or as digital artifacts in a tool.

280 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

E.4.1

The Initial Set of Cards

How to find the initial set of cards is described in 9.5.3.2 of the specification. The initial situation for this example is to
use a method that is a composition of Scrum and User Story on an endeavor. Thus the initial set of cards contains the
following elements independent of the current situation in the actual endeavor:

One Alpha card for each of the Kernel Alphas;
One Activity Space card for each of the Kernel Activity Spaces;
One Competency card for each of the Kernel Competencies;

One Work Product card for work product “Product Backlog”, attached to the Alpha card for Alpha
“Requirements”;

Seven Activity cards, one for each of the four Activities defined in the Scrum practice and the three Activities
defined in the User Story practice, each attached to an Activity Space card as described by the practice.

In addition, the current situation in the actual endeavor is considered, adding the following cards to the set:

Assuming there is just one Scrum Team, one Alpha card for that team is added (attached to the Alpha card for
Alpha “Team”);

Assuming three Sprints have been planned, three Alpha cards for Alpha “Sprint” are added (attached to the Alpha
card for Alpha “Work™) as well as three Work Product cards for Work Product “Sprint Backlog” (attached to the
Alpha card for the respective Sprint);

Assuming the team is currently working on the first Increment, one Work Product card for Work Product
“Increment” is added (attached to the Alpha card for Alpha “System”);

Assuming three User Stories have been described so far, three Alpha cards for Alpha “User Story” are added
(attached to the Alpha card for Alpha “Requirements”) as well as three Work Product cards for Work Product
“User Story Card” (attached to the Alpha card for the respective User Story.

For each individual Alpha card named above, a set of Alpha State cards for this particular Alpha is added to the set as
well, attached to the respective Alpha card.

See Figure E.45 for an illustration of the complete initial set of cards.

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 281

Wurklng

Cpportunity
Stakehalders

e T
e

Understand Understand
Explore Stakehaolder " :h._- " Implement Deploy the Preparato Track Support the
[

Possibilities Neads Requirements the System System do the Wark TOgress Team

Ensure
stakeholder Use the Shape the Testthe Operate the Coordinate Stop the

mi i rk

satisfaction Syste system System System Activity Wo

Figure E.45 — lllustration of the complete initial set of cards for the example. Top section shows Alpha cards,
attached Work Product cards (rotated) and attached Alpha State cards (small). Middle section shows Competency
cards. Bottom section shows Activity Space cards with attached Activity cards (rotated).

E.4.2 Determining the Overall State for the First Time

How to determine the overall state of the endeavor is described in 9.5.3.3 of the specification. For each of the Alpha
cards, the attached set of Alpha State cards is used. In the example, the set of Alpha State cards for Alpha “Scrum Team”
contains only one card for State “Established.” Assuming the Scrum Team has a Product Owner assigned, a Scrum
Master assigned and the Developers assigned, all checkpoints on this card are fulfilled, this state is considered the current
state for Alpha “Scrum Team.”

All other sets of Alpha State cards are handled the same way. Assuming that on one of the Sprint Alphas all checkpoints
on the first three Alpha State cards are fulfilled, but the checkpoint on the fourth card is not, this Sprint is considered to
be in state “Under Control.” Assuming for the other two Sprints, no Sprint planning meeting has been held yet, not even
the checkpoints of the first Alpha State card are fulfilled. Consequently, these Alphas are considered to be in some
anonymous initial state.

See Figure E.46 for an illustration of the cards marking the overall state.

282 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

i
Way-of-
Oppartunity Reguirements '-'.'urlung i
-
o Team 7
User Story2 T |

Scrum Team

(Y v i I T4
Stakehalders mtrc’mﬁ User Story 1
et

dMEEEN

System

Figure E.46 — lllustration of the individual Alpha State cards marking the overall state. States with all checkpoints
fulfilled in the example are ticked off with a green check mark at the related Alpha State cards.

E.4.3 Generating Guidance for the First Time

How to generate guidance based on the current state of the endeavor is described in 9.5.3.4 of the specification. It is
based on the decision on what should be the next Alpha State to be reached. According to the Scrum practice, a good next
target state is “Concluded” in Alpha Sprint. Assuming this is selected as a target state, the guidance returned includes two
Activities: “Daily Scrum” and “Sprint Review”, because these two have the target state in their completion criteria.
Assuming state “Understood” on some User Story Alpha as a target state, the guidance is to perform Activity “Estimate
User Story”.

Since generating guidance does not mean to instatiate Activities automatically, many requests for guidance for different
target states (even on the same Alpha) can be issued without affecting the current state of the endeavor and the set of
cards directly.

E.4.4 Updating the Overall State

At some point in time after the generation of guidance the overall state is updated again. Assuming the team has held a
Sprint Review, a Sprint Retrospective, and a Sprint Planning Meeting (thus starting the next Sprint), several updates can
be made to the overall state and to the set of cards:

e The Sprint that was in Alpha State “Under Control” so far is now in Alpha State “Closed,” which is its final state.
e One of the Sprints that were in the anonymous initial state so far is now in Alpha State “Planned.”

o A new Work Product card for Work Product “Increment” is added to the Alpha “System,” representing the next
increment being created in the Sprint.

Assuming the team has also spent some time on the User Stories, bringing all of them to Alpha State “Understood,” this
may cause the Alpha “Requirements” to move to Alpha State “Acceptable.”

Assuming the person who was assigned to the role of the Product owner so far leaves the endeavor, one checkpoint for
Alpha State “Established” on Alpha “Scrum Team” is no longer fulfilled, thus this Alpha is not in Alpha State

Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1 283

“Established” any more, but goes back to its anonymous initial state. This will also have an effect on Alphas “Work™ and
“Team,” forcing them to go back some Alpha States as well.

See Figure E.47 for an illustration of the updated overall state.

¥ T
1]

¥
Way-of-
wurklng
Team
*(.'
¥ l. Scrum Team
Stakehaolders

Figure E.47 — lllustration of the updated overall state in the example. Some Alphas have advanced in their states,
thus having more of their Alpha States ticked off. Others were set back to an earlier state. An additional Work
Product card has been added to the Alpha “System”.

284 Kernel and Language for Engineering Methods (Essence), v2.0 — beta 1

	Essence – Kernel and Language for Engineering Methods
	Table of Contents
	Preface
	1 Scope
	2 Conformance
	2.1 Conformance Classes
	2.2 Practice Description Conformance
	2.2.1 Overview
	2.2.2 Level 1: Narrative
	2.2.3 Level 2: Practice Description Interchange
	2.2.4 Level 3: Practice Actionable and Trackable

	2.3 Tool Conformance

	3 Normative References
	4 Terms and Definitions
	5 Abbreviations
	6 Additional Information
	6.1 Submitting Organizations
	6.2 Supporting Organizations
	6.3 Acknowledgements

	7 Overview of the Specification
	7.1 Introduction
	7.2 Key Features
	7.3 The Method Architecture
	7.4 Why a Kernel and a Language?
	7.4.1 The Role of the Kernel
	7.4.2 The Role of the Language

	7.5 How to Read this Specification

	8 Kernel Specification
	8.1 Overview
	8.1.1 What is the Kernel?
	8.1.2 What is in the Kernel?
	8.1.3 Organizing the Kernel
	8.1.4 Alphas: The Things to Work With
	8.1.5 Activity Spaces: The Things to Do
	8.1.6 Competencies: The Abilities Needed

	8.2 The Customer Area of Concern
	8.2.1 Introduction
	8.2.2 Alphas
	8.2.2.1 Stakeholders
	8.2.2.2 Opportunity

	8.2.3 Activity Spaces
	8.2.3.1 Explore Possibilities
	8.2.3.2 Understand Stakeholder Needs
	8.2.3.3 Ensure Stakeholder Satisfaction
	8.2.3.4 Use the System

	8.2.4 Competencies
	8.2.4.1 Stakeholder Representation

	8.3 The Solution Area of Concern
	8.3.1 Introduction
	8.3.2 Alphas
	8.3.2.1 Requirements
	8.3.2.2 System

	8.3.3 Activity Spaces
	8.3.3.1 Understand the Requirements
	8.3.3.2 Shape the System
	8.3.3.3 Implement the System
	8.3.3.4 Test the System
	8.3.3.5 Deploy the System
	8.3.3.6 Operate the System

	8.3.4 Competencies
	8.3.4.1 Analysis
	8.3.4.2 Development
	8.3.4.3 Testing

	8.4 The Endeavor Area of Concern
	8.4.1 Introduction
	8.4.2 Alphas
	8.4.2.1 Team
	8.4.2.2 Work
	8.4.2.3 Way-of-Working

	8.4.3 Activity Spaces
	8.4.3.1 Prepare to do the Work
	8.4.3.2 Coordinate Activity
	8.4.3.3 Support the Team
	8.4.3.4 Track Progress
	8.4.3.5 Stop the Work

	8.4.4 Competencies
	8.4.4.1 Leadership
	8.4.4.2 Management

	9 Language Specification
	9.1 Specification Technique
	9.1.1 Different Meta-Levels
	9.1.2 Specification Format
	9.1.3 Notation Used

	9.2 Conceptual Overview of the Language
	9.3 Language Elements and Language Model
	9.3.1 Overview
	9.3.2 Foundation
	9.3.2.1 Overview
	9.3.2.2 BasicElement
	9.3.2.3 Checkpoint
	9.3.2.4 ElementGroup
	9.3.2.5 EndeavorAssociation
	9.3.2.6 EndeavorProperty
	9.3.2.7 ExtensionElement
	9.3.2.8 Kernel
	9.3.2.9 LanguageElement
	9.3.2.10 Library
	9.3.2.11 MergeResolution
	9.3.2.12 Method
	9.3.2.13 Pattern
	9.3.2.14 PatternAssociation
	9.3.2.15 Practice
	9.3.2.16 PracticeAsset
	9.3.2.17 Resource
	9.3.2.18 Tag

	9.3.3 AlphaAndWorkProduct
	9.3.3.1 Overview
	9.3.3.2 Alpha
	9.3.3.3 AlphaAssociation
	9.3.3.4 AlphaContainment
	9.3.3.5 LevelOfDetail
	9.3.3.6 State
	9.3.3.7 WorkProduct
	9.3.3.8 WorkProductManifest

	9.3.4 ActivitySpaceAndActivity
	9.3.4.1 Overview
	9.3.4.2 AbstractActivity
	9.3.4.3 Action
	9.3.4.4 ActionKind
	9.3.4.5 Activity
	9.3.4.6 ActivityAssociation
	9.3.4.7 ActivitySpace
	9.3.4.8 Approach
	9.3.4.9 CompletionCriterion
	9.3.4.10 Criterion
	9.3.4.11 EntryCriterion

	9.3.5 Competency
	9.3.5.1 Overview
	9.3.5.2 Competency
	9.3.5.3 CompetencyLevel

	9.3.6 UserDefinedTypes
	9.3.6.1 Overview
	9.3.6.2 TypedPattern
	9.3.6.3 TypedResource
	9.3.6.4 TypedTag
	9.3.6.5 UserDefinedType

	9.3.7 View
	9.3.7.1 Overview
	9.3.7.2 FeatureSelection
	9.3.7.3 ViewSelection
	9.3.7.3.1 Example ViewSelection 1
	9.3.7.3.2 Example ViewSelection 2
	9.3.7.3.3 Example ViewSelection 3
	9.3.7.3.4 Example ViewSelection 4

	9.4 Composition and Modification
	9.4.1 Introduction
	9.4.2 Notations and Conventions
	9.4.3 Extending
	9.4.3.1 Basic Extension Algorithm
	9.4.3.2 Renaming and Suppression
	9.4.3.3 Standard Extension Functions
	9.4.3.4 Precedence and Chaining

	9.4.4 Merging
	9.4.4.1 Overview
	9.4.4.2 Basic Merging Algorithm
	9.4.4.3 Merge Conflict Resolution
	9.4.4.4 Standard Merge Resolution Functions
	9.4.4.5 Precedence and Chaining

	9.4.5 Example

	9.5 Dynamic Semantics
	9.5.1 Introduction
	9.5.2 Domain classes
	9.5.2.1 Recap of Metamodeling Levels
	9.5.2.2 Naming Convention
	9.5.2.3 Abstract Superclasses
	9.5.2.3.1 Overview
	9.5.2.3.2 my_Alpha
	9.5.2.3.3 my_State
	9.5.2.3.4 my_WorkProduct
	9.5.2.3.5 my_LevelOfDetail

	9.5.3 Operational Semantics
	9.5.3.1 Overview
	9.5.3.2 Populating the Level 0 Model
	9.5.3.3 Determining the Overall State
	9.5.3.4 Generating Guidance
	9.5.3.5 Formal definition of the Guidance Function
	9.5.3.6 Further functions

	9.6 Adaptation
	9.6.1 Alignment of Level 0 and Level 1
	9.6.2 Adaptation Approach
	9.6.3 Internal Migration
	9.6.4 External Migration

	9.7 Graphical Syntax
	9.7.1 Specification Format
	9.7.2 Relevant Symbols and Diagram Interchange Metamodel
	9.7.3 Default Notation for Meta-Class Constructs
	9.7.4 View 1: Alphas and their States
	9.7.4.1 Alpha
	9.7.4.2 Alpha Association
	9.7.4.3 Kernel
	9.7.4.4 State
	9.7.4.5 State Successor
	9.7.4.6 Diagrams
	9.7.4.6.1 Alpha Structure Diagram
	9.7.4.6.2 State Graph Diagram

	9.7.4.7 Cards
	9.7.4.7.1 Overview
	9.7.4.7.2 The Anatomy of a Definition Card
	9.7.4.7.3 Alpha Definition Card
	9.7.4.7.4 The Anatomy of a Detail Card
	9.7.4.7.5 Alpha State Detail Card
	9.7.4.7.6 Alpha Detail Card

	9.7.5 View 2: Sub-Alphas and Work Products
	9.7.5.1 Work Product
	9.7.5.2 Alpha Containment
	9.7.5.3 Work Product Manifest
	9.7.5.4 Level of Detail
	9.7.5.5 Level of Detail Successor
	9.7.5.6 Practice
	9.7.5.7 Diagrams
	9.7.5.7.1 Alpha Hierarchy Diagram
	9.7.5.7.2 Level of Detail Diagram

	9.7.5.8 Cards
	9.7.5.8.1 Work Product Definition Card
	9.7.5.8.2 Level of Detail Card
	9.7.5.8.3 Work Product Detail Card
	9.7.5.8.4 Practice Detail Card
	9.7.5.8.5 Method Detail Card

	9.7.6 View 3: Activity Spaces and Activities
	9.7.6.1 Activity
	9.7.6.2 Activity Space
	9.7.6.3 Activity Association (“part-of” kind)
	9.7.6.4 Activity Association (other than the “part-of” kind)
	9.7.6.5 Competency
	9.7.6.6 Competency Level
	9.7.6.7 Diagrams
	9.7.6.7.1 Activity Space Hierarchy Diagram
	9.7.6.7.2 Activity Flow Diagram
	9.7.6.7.3 Competency Level Diagram

	9.7.6.8 Cards
	9.7.6.8.1 Activity Definition Card
	9.7.6.8.2 Activity Space Definition Card
	9.7.6.8.3 Competency Definition Card
	9.7.6.8.4 Competency Level Detail Card
	9.7.6.8.5 Competency Detail Card
	9.7.6.8.6 Activity Detail Card
	9.7.6.8.7 Activity Space Detail Card

	9.7.7 View 4: Patterns
	9.7.7.1 Pattern
	9.7.7.2 Pattern Association
	9.7.7.3 Diagrams
	9.7.7.3.1 Pattern Diagram

	9.7.7.4 Cards
	9.7.7.4.1 Pattern Definition Card
	9.7.7.4.2 Pattern Detail Card

	9.8 Textual Syntax
	9.8.1 Overview
	9.8.2 Rules
	9.8.2.1 Notation
	9.8.2.2 Root Elements
	9.8.2.3 Element Groups
	9.8.2.4 Kernel Elements
	9.8.2.5 Practice Elements
	9.8.2.6 Auxiliary Elements

	9.8.3 Examples

	Annex A: Software Engineering Kernel Extension
	A.1 Introduction
	A.1.1 Overview

	A.2 The Software System Alpha
	A.2.1 Software System

	A.3 The Required Extension Elements
	A.3.1 The System Alpha (Textual Syntax)
	A.3.2 The Extension Elements (Textual Syntax)

	Annex B: Optional Kernel Extensions
	B.1 Introduction
	B.1.1 Acknowledgements
	B.1.2 Overview
	B.1.3 Why the Focus on Adding Alphas?
	B.1.4 Why are the Subordinate Alphas not included in the Kernel?
	B.1.5 How do you use the Kernel Extensions?

	B.2 Business Analysis Extension
	B.2.1 Introduction
	B.2.2 Alphas
	B.2.2.1 Stakeholder Representative
	B.2.2.2 Need

	B.3 Development Extensions
	B.3.1 Introduction
	B.3.2 Alphas
	B.3.2.1 Requirement Item
	B.3.2.2 Bug
	B.3.2.3 Software System Element

	B.4 Task Management Extension
	B.4.1 Introduction
	B.4.2 Alphas
	B.4.2.1 Team Member
	B.4.2.2 Task
	B.4.2.3 Practice Adoption

	Annex C: Alignment with SPEM 2.0
	C.1 Overview
	C.2 Key Objectives of SPEM and Essence
	C.3 Comparison of SPEM and Essence and Recommendations
	C.4 Migrating SPEM to Essence
	C.4.1 Introduction
	C.4.2 Overall Approach to a Manual Migration Procedure
	C.4.3 Transforming SPEM Managed Content
	C.4.4 Transforming SPEM Method Content
	C.4.5 Transforming SPEM Processes
	C.4.5.1 Activities

	C.4.6 SPEM Activity vs. Essence Activity Space and Activity
	C.4.7 A Note on Transforming SPEM Methods and Plugins

	Annex D: Alignment with ISO 24744
	D.1 Introduction
	D.2 Alignment with ISO 24744
	D.2.1 Different metamodel architecture
	D.2.2 Different writing system
	D.2.3 Definition of an ISO 24744 Kernel extension

	D.3 Overview of ISO 24744 features

	Annex E: Practice Examples
	E.1 Introduction
	E.2 Practices
	E.2.1 Overview
	E.2.2 Scrum
	E.2.2.1 Overview
	E.2.2.2 Practice
	E.2.2.3 Alphas
	E.2.2.3.1 Work
	E.2.2.3.2 Team

	E.2.2.4 Work Products
	E.2.2.4.1 Product Backlog
	E.2.2.4.2 Sprint Backlog
	E.2.2.4.3 Increment

	E.2.2.5 Activities
	E.2.2.5.1 Sprint Planning Meeting
	E.2.2.5.2 Daily Scrum
	E.2.2.5.3 Sprint Review
	E.2.2.5.4 Sprint Retrospective

	E.2.2.6 Roles
	E.2.2.6.1 Product Owner
	E.2.2.6.2 Development Team
	E.2.2.6.3 Scrum Master

	E.2.3 User Story
	E.2.3.1 Practice
	E.2.3.2 Work Products
	E.2.3.2.1 User Story

	E.2.3.3 Activities
	E.2.3.3.1 Write User Story
	E.2.3.3.2 Prioritize User Story
	E.2.3.3.3 Estimate User Story

	E.2.4 Multi-phase Waterfall
	E.2.4.1 Activities
	E.2.4.1.1 Requirements Definition Phase
	E.2.4.1.2 External Design Phase
	E.2.4.1.3 Detailed Design Phase
	E.2.4.1.4 Implementation/Programming Phase
	E.2.4.1.5 Integration Test Phase
	E.2.4.1.6 System Test Phase
	E.2.4.1.7 Operational Test Phase

	E.2.4.2 Alpha Extensions for Multi-Phase Waterfall Requirements
	E.2.4.3 Lifecycle Diagram for Multi-Phase Waterfall Requirements Alpha Extensions
	E.2.4.4 Extensions of Requirement Item Alpha for Tracking Individual Multi-Phase Waterfall Requirement Items

	E.2.5 Lifecycle Examples
	E.2.5.1 The Unified Process Lifecycle
	E.2.5.2 The Waterfall Lifecycle
	E.2.5.3 A set of complementary application development lifecycles

	E.2.6 Business Change Essentials
	E.2.6.1 Overview
	E.2.6.2 Practice
	E.2.6.3 Alphas and Work Products
	E.2.6.3.1 Business Change
	E.2.6.3.2 Business Use-Case Model

	E.2.6.4 Activities
	E.2.6.4.1 Scope the Business Change
	E.2.6.4.2 Specify the Business Change
	E.2.6.4.3 Align Business and Solution
	E.2.6.4.4 Verify the Business Change

	E.3 Composing Practices into Methods
	E.3.1 Composing Scrum and User Story

	E.4 Enactment of Methods
	E.4.1 The Initial Set of Cards
	E.4.2 Determining the Overall State for the First Time
	E.4.3 Generating Guidance for the First Time
	E.4.4 Updating the Overall State

