Date: December-November 20253

UAF FACE Profile
Version 2.0 — beta 24

OMG Document Number: dtc/20232025-1205-0902

Standard document URL.: https://www.omg.org/spec/FACE/

This OMG document replaces the submission document (c41/2023-06-08). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome
and should be directed to issues@omg.org by December 11, 2023.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in September 2024. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/FACE/

Copyright © 2023, OMG

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

ii UAF FACE Profile, v2.0 — beta 42

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (i) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, [IOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

FACE Profile, v2.0 — beta 1 iii

https://www.omg.org/legal/tm_list.htm

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

iv UAF FACE Profile, v2.0 — beta 42

Table of Contents

0 Submission-Specific Material............ccoccveveereriiereienieeieee, Error! Bookmark not defined.
0.1 Submission Preface..........cocvevevirinininieiinienccccce e Error! Bookmark not defined.
0.2 (010750 28 1ed s LA 1A < USSR Error! Bookmark not defined.
0.3 Submitter Representativeccveveereereereeie e Error! Bookmark not defined.
0.4 AULhOT TEAIM ... e Error! Bookmark not defined.
0.5 Proof Of CONCEPL ...ccvieeiieeiieciie ettt e Error! Bookmark not defined.
1 SCOPE ettt ettt ettt e beeenaeas Error! Bookmark not defined.
1.1 FACE Profile BaCK@IOUNGcouiiiiieieieee ettt ebe et s 1
1.2 INEENAEA USETS....c.eeieiienieiete ettt b ettt b e s bbbt es et et e nbesbeebeeaeens 2
2 CONTOTINANCE ...ttt ettt b e bt bttt et et b sbeeb e bt e s et et e besbeebesaeenee 2
2.1 Level A CONOIMANCEc..oiuiiiiitiriieiieieete sttt ettt et sb e st be ettt e bbb ebe i ene 2
2.2 Level AA CONTOIMAINCEccuevuiriiriiiiieieiteeteste ettt ettt ettt ettt be bbbt et e b aesaeeaes 3
23 Level AAA CONFOIMANCEovviitiriiiiiiiiieieieste sttt ettt ettt et sbeebe et b et e aenaesaeeaes 3
3 RETETEIICES ...ttt ettt ettt st eae 3
3.1 NOIMAtIVE RETEIEIICESeeeuieiie ettt ettt ettt eee e eneesee e 3
3.1.1 OMG Documents (Normative REferences)ccoecvrevuieerieeiieeeie e eeee e e 3
3.1.2 The Open Group Documents (Normative References)..........ccecveveriiienieniesieeeieeens 4
32 NoNn-NOrmative RETEIEIICES.oouiiiiiiiiiieiieieee ettt ettt b et e 5
4 Terms and DEfINItIONScoieiiiiieiireee ettt sttt b e b et e e e eesneseeenes 6
5 SYINDOLS ..ttt ettt a b et e bbbt e heeh et et et e bt ebe bt ebeeneentetentenneeaea 7
6 Additional INfOrmationcoueieieriiiiii et 7
6.1 Scope Of thisS SPECTTICALIONcvieiieiieiierieeieeie ettt ettt e e e seeste e beesbeesaesseesseesseenseessenssens 7
6.2 How to Read this SpecifiCation............covevuiiiiiiiiiieieiieieete ettt esseesaessaesaeennas 7
6.2.1 Content Notes for this SPecifiCation...........ccevveriieriierieeieeiesiee et 8
6.2.2 Representing Additional Properties and Constraints on Stereotypes.......cc.ccoeeverereeruennee. 8

6.2.2.1 FACE Conformance/OCL CONSIaintS.c.ccoerveerereeienienienenenenieneeeerensenseniennens 8

6.2.2.2 Metaconstraint Dependencycceiierieririieiieniese e 9

6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotypeccceveeveeriereeneeneenne 9

6.2.2.2.2 Example Usage of the Metaconstraint Dependency...........ccccoeeevienieniencencnnennne. 10

6.2.2.3 Stereotyped Relationship Dependency............ccooeviririeienieneneseeeeeeeee e 10

6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotypecccc..... 10

6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency............ccceveveennnneee. 11

6.2.2.4 Stereotyped Association Dependencyccccceveerierieriieciieienieseeseene e 12

6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype..........cccveennenee.. 12

62242 Example Usage of the Stereotyped Association Dependency..........cccccveveenveennnnee. 13

6.2.2.5 Stereotyped Generalization Dependency Stereotypeccveeveevereenverieenieeceernenne 13

6.2.2.5.1 Definition of the Stereotyped Generalization Dependencyccoccevvervenveenennnen. 14

6.2.2.52 Example Usage of the Stereotyped Generalization Dependencycccccueenenee. 14
7 S O D s o)) (SR 16
7.1 FACE PrOfile.......eiiiiieieieeeee ettt ettt et et b et e sttt st esaeesee e st enteenteenseeneens 16
FACE_ ArchitectureMOGe]c..iiiiieiieiieeee ettt sttt et b ettt et beseeebeeneens 16
FACE ELBIMENT ...ttt ettt b ettt sttt she e s bt e bt et e es b e eateebeesbeebeenbeenaeenees 17
7.1.1 FACE_Profile::FACE Data ATChIteCtUIecceiiiiieieieieiesieeeeie e 18

FACE ADSEraCtASSOCIALIONcuvievvieiieitiertieteetestesteesteesteesseesseessesseesseesseesseassesssesseesseesseessesssesssessesssesssesssesseenns 18

FACE _DataMOdE]ccueoovieiieiieieciesiete ettt ettt st et s e be e beesaessaessaessaesseessaessesssesssesseessesssesssesssenns 20

FACE _ENAPOINToiiiiiiiciiiciieit ettt ettt sttt e ste e beesseesbesssessaesseessaesseessesssesssesseesseesseessenssasssenseans 21

FACE _IntegrationNIMOGE]ccuiiiiiieiiieiieie ettt ettt ettt et sae e st e et e enteensessaesseenseensesnsesnnesnnenns 24

FACE MeESSAZETYPE . .teiutieiiieiiteeitte sttt st e et e et e st e st ee st e st e e s bt e satee s bt e sabeesabaeeateesabtesabeesabaesnseesabaesnrees 25

FACE MOGEIEIBINENLeiiieiieiieieeiie ettt ettt ettt et ettt e et et e e es e s st e saeesbe e st emeeeneeeneesneesseanseenseenseeneenneans 27

FACE Profile v2.0 — beta 1 i

FACE REALIZE ..ottt ettt ettt sttt ettt et e et e s s e st e e st enseensesmaesseasseenseanseensessseaseeseenseensesnnesnnenns 28

FACE _TraceabilityMOELc.ooiieiieieiieee ettt ettt sttt ettt et st sae e s et ete e e enteeneennnans 34
FACE _UOPMOUEL.......ccuiiiieiieiiieee ettt ettt ettt ettt ettt et e e ese s essesseeseeneanse s anseaseeseeseeneansensansensesneas 35
7.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model.............ccccccereennnee. 35
FACE_ConceptualDatalMOGAE]cc.eiuiiuieiiiieiieiee ettt ettt ettt be et e bt st ene et enteabeseeabeeneenens 36
FACE _DataMOAEIELISIMENL ..ottt sttt sttt ettt et see bt et enseneesteaaeseeeseeneensesaneeaaesaeas 36
FACE_L0ogICalDataMOGELc.eoiuiiiiiieiieieeieieee ettt sttt ettt e st e e be et ebe e st ese et antesbesbeebeeneenens 38
FACE_PlatformDataMOde]c.ooviiieiiieiicic ettt ettt et sveeae st saeesteebeessaessesssesssessaesseensesssessnenns 39
FACE _SPecialiZatiONOWIETccueecvieieiiesieesieesteeteetesetesseesseesseesseesseassesssesseesseessesssesssesssesseesseesseessesssesssessenns 40
FACE _SPECIALIZE.......ueeiuietieiieiieteetiesttesttesteetestte st esteesteesseesbesssesseeseesseesseassesssesseesseasseessesssesssessasssesssesssesssenns 41
7.1.1.1.1 FACE Profile::FACE Data Architecture::FACE Data
Model::ConceptualDataMOAE]ccueeieiieriieieeie ettt ettt et e te e st e st e se b e enbeenaenraenneennes 43
FACE BaSISEICINENL.ocuiiiiiiieiieiececeee ettt ettt ettt et e et et e e et e es e eseesneenneenseenees 43
SN O D 2 713) 2% 113 1 SO URRT 44
FACE _ConceptualASSOCIAtION.eeueeitieiieieeie et ettestt et et este st e sbeeteeaeeeesaeesseesseenteenseeseeeseenseeseenseenees 44
FACE_ConceptualCRAaracteriSTICeeueeuteuieuieieitieteeteettetteieie e stestesteeteeseeneeeenbessesteebeeseeseeneensessessesneeseeneans 45
FACE_ConceptualComposableEISMENtccuiiiiiiiiiiieieieee ettt 46
FACE_ConceptualCompOSTEQUETYc..eeueeuieuieieiteiteetieteeetestetetestestesteeteeseeseensensessessesaeeseeneesseneensessessessens 47
FACE _ConceptualComPOSItIONcveeveiiertierieeieeteeetesstesseesseesseessesssesseesseessesssesssessessseessesssesssesssesssesseesses 49
FACE _ConceptualEICMENtcccuieiiiiiiiiiriieieeie ettt ettt etaeste e teesbeesaesseesseesssesseesseessesssensaesseesses 50
FACE _CONCEPIUALENTILY cccuiiiiieiieiieieiiesit ettt ettt ettt e e et e staesteesseesbeesseesaesseeseenseesseessesssensaesseesses 51
FACE _ConceptualPartiCIPantc.eeuerierierieeieeieeiesiiesiteteeseestessaesseesseeseesesseesseesssenseessesssesssesseesseenses 53
FACE _CONCeptUalQUETYccueeiieiieiieeiieeiiestteeteeteeteetesstes et eteenteesaessaesseeseenseensesssesseenseenseensesssesssesseesseenses 56
FACE_ConceptualQUeryCOmMPOSITION........ccuieriieieeieeiestietieteeieetessaesseesseesseessesssesseesseenseessesssesssesseesseenses 57
SN O D @113 17<) o] 11 1 A4 [5OSR 58
FACE DOMAIMN. c...eettiiieieieettee ettt ettt ettt et e e et e st e e bt e bt e b e e aaeemeeemeeeaee st enteenseenseeseenseenseenseenees 59
RN O D 2315172 2] T SO 60
FACE ODSEIVADIL ..ottt ettt b et ettt st sbe e bt et et e eateebeesbeenbeenaes 61
7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel 61
FACE ADStractIMEASUICINIENLc..eeiueeiietieieeieeite st stcentt et eateettesbtesbee bt estesaeesatesbeenbeenteenteeseesbeenbeebeenneenees 61
FACE_AbstractMeasuremMENtSYStEIM. .. .ccuvervierieeierieriertiesseeseesesssesseesseeseessesssesseesseessesssesssessssssesssesssessees 62
FACE AffINCCONVEISION.....cuiiitieiieeieeiieiiesttesteeteetesetesteesseesseesseessesssessaesseesseessesssesseesssensesssenssesssesseesseenses 62
RN O DN o] o) L eTe (@14 TSy 11 PSS 63
FACE ApplicdValueTyPEUNIL....c..eecveeeieiiieiieieeie e eiesiteie ettt et siaesteesseeseetesnaesseenseenseenseensesssessaenseennas 65
FACE AXIS ittt ettt h ettt bt bbbt a et et b bbbt bt et ettt beshe bt eae 67
2N O D 0111 s 11 | SRS 70
FACE CONVEISION ...ttt ettt ettt ettt sete e et et e et eateeseeeseeebeebeeaseemeeemeeeseeseenseenseenseeseenseenseenseennes 70
FACE _ConvertiblEEISIMENTccuiiiiiiieitieitieie ettt ettt ettt ettt e st e e e e eseeeseesneenneeneeenees 71
FACE_ COOTAINAtESYSIEIMeeuiiiiiiiteetietieiiei ettt sttt ettt e et e sttt eteebe et enee s e eeebesaeebeeneenseneenseaseseeenene 71
FACE _COOTdINateSyStEMAXIS. ...c.veettitertietieiienieiertestesteeteeetestentestestesteabeeeeeseeseensensesseabesseeseeneenseneensenseseessens 72
FACE_DefinedReferencePOINcciiuiiieieiieiee sttt sttt 73
FACE EnumerationCONSIIAINTccvieieiieriierieeieetesetesttesteesseeseessesssesseesseessesssesssesseesssessesssesssesssessessseeses 75
FACE EnumerationLabel............ccvecuiiiiiiiiiiieiie ettt ettt ste et eaeeaesseesseessaesaesseessesssessaesseennas 75
FACE FixedLengthStringCONStraiNt........c.ccveriieriiiieeieeiesieesteeieeteeteeseesseeseesessnesseesssesseessesssesssessessseenses 76
FACE INt@ZETCONSIIAINL.evietieieeieeiiesiiesteesteeieetestesseesseeseesseessessaesseeseenseensesssesseesseenseensesssesssesseesseeses 77
FACE IntegerRangeCONSIIAINEc.eeveiieriieiieieeieeieseiesit et eieetestaestee st eseeaesneesseesseenseesseensesssesseenseenses 78
FACE _Landmarkccioiiiieieii ettt ettt ettt et esbeeae st e sste s e enseenseenseessenseenseennes 78
FACE LOZICAlASSOCIALION.eoutteiiieiieitieitiete ettt ettt ettt ettt e et e bt e beeaeemee st e saee st enteenseeseeeseenneeseenseenees 79
| VN3 D e Tea Ter:1 (@1 T3 217 1<) 0] 5 Lo USRS 80
FACE_ LogicalComposableEISMEntcceiiiiiiiiiieiieiieieee ettt 81
FACE LogicalCOmpPOSItEQUETYc.eeitiertietiiiieieiitesitestt ettt et sttt ettt st st e b e bt et et seeesbeenbeenbeenaeenees 81
FACE LogiCalCOmMPOSITION.....cc.titiiiiitieitientieteeie ettt ettt ettt ettt ettt st sbe et e b et eatesbeesbeenbeenaes 83
FACE _LOZICAIEICIMENLccouiiiieiiieiiiciieciieetieie ettt ettt te et e et staesba e seesseesbesseesseesssenseessenssesssensaeseenses 85
FACE LOZICAIENTILY.....c.cccieiiieiieiieieeiesttesit ettt ettt e teebeesbeesbestaesba e seesseessesseesseesssenseesseessesssenseeseenses 86
FACE _LOGICAIPAITICIPANTeevieiiieeieeiieiiiesieeteete e eete st et eteesbeessestaestaesseesseessesssesseesssenseesseessesssesseesseenses 87
|2V N D T4 Tet:1 (0 11 TS o RS 90

FACE Profile, v2.0 — beta 1 2

FACE LogicalQuUeryCOmPOSItIONueiueertieteeieeieeteneiesiteteeteaetessaessaesseeseesesseesseesseenseessesssesssesseesseenses 91

FACE _LogICalVaAIUCTYPE.eeeeieieeeieetieiteete ettt ettt ettt ettt e st e bt et e e eseeeseesseenneenaeenees 92
FACE _LOZICAIVIBW ...ttt ettt ettt et e sttt e bt et e et e aeesaee st enteeneeeseeeseesseeneenseenees 94
FACE MEASUICIMENLceuietietieieeiieetieeteeste et etesetesuteste e teenteeseeeseesseeseenseemeeemeesseenseanseenseenseeseesseeseenseenees 95
FACE MeasuremMENtALIIDULSco.eiuiiieiieieieieete ettt sttt et s e e bt eaeese e e e e sbeseesbeeseeneens 97
FACE MeEASUICIMENTAXIS ...eeutteutteuteetienttentieteeteeitesttesteesteenteeateeseesbee bt ebeenseestesaeesbeenbeenteenseeseesbeenbeebeenseenees 98
FACE MeasurementCONSTIAINTcc.ueiieiiertiiieeie ittt ettt ettt sttt et ettt satesbee bt eteenteeatesbeesbeenbeennes 99
FACE_ MeasuremMeNtCONVEISIONcc.eecuieierierreerieerseerseetesseesseesseeseesesssesssesssessesssesssesssesssessessseessesssesssens 101
FACE MeaSuremMEeNtSYSTEIMccuvieuieeiieeiiiteiteeiie ettt eite ettt esieesbeeeatesbaeesseessbaeenseeessaeeseessseenssesnsseenseenns 102
FACE MeasuremMeNtSYStEIMAXIS.ccvieververtierieesreetesteseesseesseesseesseessessaesseessesssesssesssssssesseessesssesssesssessaens 103
FACE MeasurementSyStemMCONVEISIONeiieriierieeteeiesiestietteseesseeaessaessaesseesseessessesssesseesseesseensesssens 104
FACE REAICONSIIAINL.......ueeiuieiieiieiieieetiestiesteeteetestesetesseesseesseessesssessaesseasseessesnsesssesssesseessessseensenssessaens 105
FACE _RealRANGECONSIIAINLeeutieuiieeieetieetieiteeie et eete st et ettt eeeesteesseeseeseeneeeneesseesseeseanseenseensenseens 106
FACE RefeIreNCEPOINTueiitiiiiiiieieee ettt ettt ettt ettt ettt e st esa e e teeneeenteennesneens 107
FACE _ReferenCePOINTPAIT..........cociieiieiieiieteeee ettt ettt st e e et e e eneeeneens 108
FACE_RegularEXpressionCONSIIAINT.c.ceveieriiriiie ettt ettt ettt et et st be et eaeeseeneeneeseesaeseeenes 109
FACE RPPAIT ...ttt ettt ettt e bttt eb e et eaeemeen s e se et e ebeebeebeeneensensesenaeeneenes 109
FACE_StandardMeasuremMeNtSYSTEIMc.ceuueueriirieiteitietieiieiteteie et eteeteeseeteneesteseesbesteeseeneensensenseseeseeenes 110
FACE _StrINZCONSIIAINLeeivietietietieteeteeeeseeseeseeseetesseesseesseesseesseassesssesssesseesseessesssesssesssesssesseessenssens 111
FACE UNIE citiiiie ettt h bbbt bt bt a e s et et e bt sb e bt e bt e st et et e besbeebeebeenes 112
FACE _ValUCTYPEENUINooviiiiiiieiieieeiectecteee ettt ettt te e esbeesaeesaessaesseesseessesssesssesseesseenseensenssens 112
FACE _ValUCTYPEUNIL.....ccueeiuieiieiieiieieeiieeiiesie et eteeeeste et et esteesseesaessaesseesseessesnsesssesseesseenseanseensennsenseens 113
7.1.1.1.3 FACE _Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel
114

SN O DN & ¥) SRR PRRRPRSRRRN 114
2N D 2 7o Te) (S 1 SR PRRPRRSRORN 114
FACE BOUNAEASIIINGoueiiieiieieeie ettt ettt sttt ettt et e b e st ebeeaeemeesmeeeseesneenteaneeenseeneenneens 115
FACE CRAT ...ttt ettt ettt ettt et e a e e a e e b e s bt e bt et e e mbesaeesetesbee bt enteenteenaenbeens 115
FACE CRATATITAY ..ottt ettt ettt st h ettt ea e e et e e bt e bt e bt et e emtesatesbeesbe e bt enteenteennenaeens 116
FACE CRAITYPe. . ueeeuteieieitieeit ettt ettt sttt et et e a e s b e bt et et e atesaeeseeesbee bt enteenteenaenbeens 116
FACE DOUDIC.......cotiiiiiiiciectectet ettt ettt st e s be e teesbeesbeesaeesaesseeseesseessesssesssesseenseenseensenssens 117
FACE ENUIMEIATIONcuviiiiitieitieiieieeteeieeteesteesteeteeaessaesseesseesseesseesseessesssessseseesseessesssesssesseesseenseessenssens 117
FACE FIXEA ..ttt ettt st ettt et e b e bbbttt et e ae st sbe b eae 118
FACE FIOGE ..ottt ettt ettt bbbt et b e sb e bt ettt et e b et e be b eae 118
FACE INEEZETiiiitiieie ettt ettt ettt b et et s bt e et e s bt e ebteeabaeebteebbeenbtesbeeenaeeans 119
FACE LONE ...ttt et ettt et et et e e et et et ea e e s e e s e e st e st e b e eatesmeeenteenee bt enteenteenteeneen 119
FACE _LONZDOUDIE ...ttt ettt ettt b et et e e tesate s st e saeenaeeneeenseeneeeneens 120
FACE LONGLONG. ...ttt ettt ettt ettt et e st e s s e bt e seenbeemeesneesstesneenaeanseenseeneenneans 120
FACE NUIMDET ...ttt ettt ettt st h ettt et e h e sb e e s bt e bt e bt eaeesheesbeesbee bt enteenteennenbeens 121
FACE OCL. ...ttt ettt e a e b et et e et ea e e bt e s bt e bt e bt e bt s aeesatesbee bt enteenteearens 121
FACE PlatfOrmASSOCIATION.........etiitiiteieietieiieiet ettt ettt ettt et sttt eeeest et et et e steebeeaeebe e st ense s eneesaesaeenes 122
FACE_PlatformCRAraCteriStiCcveeevieieriieriieriieieeieeteseesteesseeseesseessestaesseesseessesssesssesssesssessessseessenssenseens 123
FACE_PlatformComposableEISMENtc.ccvieruieiiiiriiiiiiiesieie ettt sve e eae e sseesreesseeseesseensens 124
FACE_PlatformCompPoOSItEQUETYccveeveiieiiieriieieeteeteeeesteesteesseesseesseessesseesseesseessesssesssessessseessesssessens 124
FACE_PlatformCOmMPOSITIONceuieiieiieeieeiiesiesieeteesteeeesetesteesees e enseesaessaessaesseesseensesnsesnsesseesseenseensesnsens 126
FACE PlatformDataTyPeceouveiieiieiieieeiiestere ettt et et sae s e s e et e esseensesnaesneesseenseenseensennsens 128
FACE PlatfOrmELCINENLccuiiiiiiieiieieeiieeiiesitesie ettt sttt et eae s estae s e esseensesnnesneesseenseenseensennsens 130
FACE PlatfOrmMENTIEY ... cooueiieiiiieieeeeee ettt ettt ettt et e b e emeesaeesseesae e teeneeenteeneesneens 131
FACE_PlatformPartiCIPantc.eeouieieeieitieiieie ettt ettt ettt sttt et eeeesee e st e sneesteeneeenteeneenneens 132
FACE PlatformQUETYcoiuieiieiieiieieet et ettt ettt sttt et e eee et ee s bt e seeseemeesmeesseesneeteeneeenseeneenneans 135
FACE_PlatformQueryCOmMPOSILIONc..eeueeuieierierierteetteteeiteiteeeieste sttt et ettetensesseseesbeseeeseeseensensenseaeeseeenes 136
FACE _PlatfOrMVIBWcueiiiiiiiiie ettt ettt ettt ettt sae bt et et e s e besbeseeeneeneens 137
FACE PIIMITIVE....ctiiiiiiiiiieitiete et eieetesttestee e e teestessaesseesseesseesseessesssessaesseesseessesssesssesssesssessesssesssenssensenns 138
FACE REAL.....uooiieiieice ettt ettt ettt sttt e s be e se e s s e esbeesbeessesse e seesseensesssesssesssesseenseensenssens 139
FACE _SEQUETIICEeeeeiiieiiieeiie ettt ettt ettt ettt e et e et e e baeesatesabbeenseesabeeastesssaeensaesnsaeenseessseensneens 139
FACE SROTT ..ttt ettt ettt st eb ettt bbbt et et e b et e b saeebeebeeae 140

FACE Profile v2.0 — beta 1 3

FACE_SHNG. v vveeovoeee e eeeeeeeeeseeeeeeeeeeseesseeeeseeeeeeesseeesseeesseeesseessseeseeeesseesseeeeeeeesseeseseeeeesessseessseeeeeseseeoes 140

FACE SHINETYPE ettt ettt et ettt ettt e et e st e et e e en e eseeeseesseeseenseeneesmeeeseesseenseanseenseensenneens 140

FACE SHUCE ..ottt ettt ettt st e st e bt et ea e en e e st e bt e st enseemeesmeeeseesneenteaneeenseensenneens 141

FACE _SHTUCIIMEIMDETceiitiiiieieeieeiieet ettt ettt st e st et et et eee e et ee s bt e beenbeemeesmeesseesseeteeneeenseensenseens 142

FACE ULONE ..ttt ettt sttt ettt ea e e h e s bt e bt e bt et e embesatesbtesbe e bt enteenteennenaeens 143

FACE ULONGLONG ...ttt ettt ettt et b e b ettt et satesbeesbee bt enteenteeneenbeens 144

FACE UNSIGNEAINEEEETcouieiieiieiiieieeieet ettt ettt ettt b e b et ettt setesbeenbeenteenteennens 144

FACE USROIL...c.uiiitiiiieie ettt ettt ettt et e te e bessaesvesteessaesseesseesseessaessessaessaesseansesssesssesseesseenseensenssens 145
7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model............ccccoenenne. 145
FACE INtegratioNCONtEXEeecvieviereeresieesieesieeteeteseesseesseesseesseasseassessaesseessesssesssesseesseessesssesssenssesssesseessesses 145
FACE _IntegratioNEICMENtcccueeiiiieiieiieie ettt ettt e st e st enseenteenseensessaesseensaensennnes 146
FACE _TranSportCRanmeElc.occuiiierieiieiieie et ste sttt testte st et eessesaesneesseesseanseenseenseensessaesseenseensennnes 147
FACE _TranSpOrtNOG@.cocuieiieieeiieetieeteeit ettt ettt ettt e e e s ee s bt e s beeteemeesmeesaeesse e seenseenseeneesseeaseenseenseeneas 147
FACE _TSNOAECONNECHIONeuieeiiiieiietieitteie ettt stee st et ete e te e s eesteesbeeteemeesmeesaeesseaseenseenseeneeeseesseenseeseenees 149
FACE TSNOAEINDUIPOIT........eiiieiieiieeiieite ettt ettt ettt et et ete et e e etesaeesse e bt enteenteeneesseeaseeseenseeneas 151
FACE TSNOAEOULPULPOITcoutiiiiiieitieitet ettt sttt ettt st st sb ettt ee e sbeesbeenbe e beenaeenees 152
FACE TSINOGEPOIT ...ttt ettt ettt ettt b e bt e bt et e s st e satesbe e bt e et enteenteebeenbeenbeenees 153
FACE TSNOEPOITBASEccutiiuiieiiieiieiiieitiet ettt ettt b e bt ettt sttt e s bt e bt et es e estesbeesbeenbeenees 154
FACE _UOPENAPOINEooitiiiiiiieiieieeiestesiteie ettt et ete b esteesaestaesbeesseessessaesseesseeseenseessanssesssesseensennses 155
FACE _UOPINDULENAPOINE.......ccuiiiiiiiiieiiecieie ettt ettt te e be e beessessaesseessaesseessaesseessesssesseesseensas 156
FACE UOPINSIANCE ... eeiutieiiiieiieesiteeteesitt sttt e st e st e steeseteesabeesebeesabeessseessseessseessseessseesaseensseesnseensseesnseennse 157
FACE _UOPOULPULENAPOINLeieiiieiieiieiieieeie ettt ettt st e s e seenteenseensessaesseensaenseennes 159
FACE VIEWAZEICZATION.c.uieiieiieiieeiieeitesteeieetestestesetesseesseesseassessaesseesseensesssesnsesseesseeseenseenseassesssesseessesses 159
FACE VIBWEIILETeiiieiieiieie ettt sttt ettt e et e st e s e eseensesnsesstesseanseenseenseansensaenseenseensennnes 160
FACE VIBWSINK ...ttt ettt sttt sttt b st b et b et et ebe st et ebe st eeebenbeneas 160
FACE _ VIBWSOUICEceutetietietieiteiie ettt ettt et te s et et e e et et e esteeseeesee bt e st emeeemeesaeeeseaseenteenseeneeeseeaseenseeseenees 161
FACE VieWTTansfOIMAtiON.cccueeieitieiieitteie et stte sttt ettt et te sttt ete e teemeesseesae e teenteenseeneeeseesseenseenseenees 161
FACE VIEW TTANSPOTTETeeutieuiiaiiietieitiet ettt ettt sttt ettt a e e b e s bt e b e et e e s tesaeesaeesbe e bt emteenteeseenbeenbeenbeennesnees 162
7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Modelcccccceruennenee. 163
FACE _ConceptualENtityTTACEccueiuiieietieiieeieieee sttt ettt sttt es et et ettt seeebeene et e e e eeeseseeenes 163
FACE _CONCEPIUAIVIEWTTACEecuvievvieiieiiieitieieeie ettt eteeveeeteesaesteesteesseesseasaesseesseenseenseesseessesssesseenseesses 163
FACE _CONNECHONTIACE.cvieiieeiieiieeiesieeitteieeteetesttesteesseesseesseessesssesseesseesseessesssesseesseesseesseesseessesssesseessennses 164
FACE _ConnectioNTrac@abilitySEtcccvevieiieiiieieiieeierit et et ete ettt sse e seesee e sseenseenseessessaessaenseennes 166
FACE EICMENEITTACE.......ccueetieiieiieieetestesit et eteeeestesete st esteesseessessaessaenseenseansesnsesseesseenseenseenseessesssesseensesnses 167
FACE LOGICAIENTEYTIACEveetieeiieeieeiiesiierieeie et steste st ettt e eeteesaestee s e eseensesneesseesseanseenseensesssessaesseenseensennnes 168
FACE _LOZICAIVIEWTTACEeeuiieiiieiieeiiesitestt ettt ettt ettt ettt ettt e s et e e st e te e et en e eneeeneesseeneenseenees 168
FACE_ PlatformENtEYTIACE ...ccuveeuiieiiieiieitieittete ettt ettt ettt ettt e s ae et e e et e enteeseesneenneennes 169
FACE_ PlatformMVIEWTTACEc.eeeuiiiiiiiiieiieie ettt ettt ettt et ae et e e e enteen e eseeeseenneeaeeneas 169
FACE Traceability EISIMENL.cc.oiuiiiiiieiieieieeee ettt ettt sttt see et et s e e e be s beeaeebeeaeens 170
FACE_Trac@abilityPOINTccciuiiiiiiie ittt sttt ettt e et et besee e bt e st en s eeebesbeeeeebeeneens 171
FACE _TraceableELEMENtc.oiiiiiiiiiietieiieiie ettt sttt ese et e et e sttt saeeb e ene et e e ebeeneseeenes 172
FACE TTaCEENLILY ...vviiiiiitieiieiieieee ettt ettt st s ettt et e et e esbeesaesba e beessaessessaesseesseesseenseesseessasssenseesensses 172
FACE _TTACEVIEW ..vevviiiiitieiieiieieeteete st e steeteetesseesaeessaesseesseesseessaassessaessaesseassesssesssesssenssesseesseassasssesseensennss 174
FACE UOPTIACEcoitiiiiieiiteeieesit et stt e st e st e st e sttt e s bt esa bt e sabeessbeesabeessbeessseeasseesasaensseesaseennseesnseensseesnseennse 176
FACE UOPTIaCEaDIIIEYSEL. ... ectieiieiieeiiesiieiteeie ettt ettt te ettt et e e s e e naesneesstesseanseenseensesssessaesseenseensennnes 177
7.1.1.4 FACE Profile::FACE Data Architecture::UoP Modelcoccoceveeiincncncnenne. 178
FACE ADSLraCtCONNECTIONeuvieitieiieeiieeiiestieieeieeteetesetesstesseesseestessaessaenseenseensesnsesseesseenseanseenseessenssesseensesses 178
SN O DN o112 o1 1 o) USROS 180
FACE ADSIACEVIEW ...ttt ettt ettt ettt ettt e et e s bt e be et e e e e s meeeaeesae e st eneeenteeneeeseeseenseenseeneas 181
FACE BacKingCOMPONENLoecuiiieiiieitieitieie et stte st et te e e eseesseesteeteemsesneesseesseanseenseenseeneeeseeaseenseeseeneas 182
FACE BOUNAQUETY ...ttt ettt sttt et es et e e st e st e ebeeaees e emeem s e se et e ebeeaeeseeneenseneenbeseeeseaneeneens 183
FACE ClientServerCONNECTION.cc.utitieitieteeieete ettt sitestce st ettt ettesttesbeesbe e beestesatesaeesbeenbeenteeneeentesseenbeenbeenees 185
FACE _ClientServerROICENUMc.ccciiiiiiiieiicie ettt sttt et s e s teesseesseesseessesssessaesseensas 185
FACE_ComponentFrameWOTKcceiiiiieiiieiiiiiiiestesteeie ettt ste e seeaessaesseesseesseesseesseessesssessaesseensas 186
FACE _ComponentTyPEENUMccc.iiiiiiiiiiiiiieiiteeiteeite sttt ste ettt e sttt e sbeesateesbeessbeesnbeesnseesnbeensseesnseennne 186
FACE _COmMPOSIETEMPIALEeevieeieeiieeiieiieieeie et eteeite st et eteeteeetessaesseeseensesnsesseesseenseenseenseensesssesseensennses 187

FACE Profile, v2.0 — beta 1 4

FACE CONNECHON.eoiietieiieiieieeteeteste st et estestesstessteseesseesseasseesaessaesseenseansesnsesseesseenseanseenseansesssenseensennses 188

FACE DesignAssuranceLeVelEMUmL.ccoooiiiiiiiiiiiiiee ettt 190
FACE_DesignAssuranceStandardEntm..............ccoooiiiiiiiiiiiiieeeeee e 190
2N O D B i (<o A 10 10 1<) 2SS 191
FACE LanguageRUNTIINEcccueeiiiiiitieiieitiete ettt ettt sttt e bt ettt eb et e nbe e beeaeenees 193
FACE_LifeCycleManagementPOITc.citeiiieiiieiteete ettt sttt ese et e besee st seeebeene et e e e naesseseeenes 193
FACE MessageEXchangeTyPeENUMcooiiiiiiiiiiiieiteeeee ettt 194
FACE PartitionTyPEeENUMLcc.ecoiiiiiiiiiieciecieee ettt ettt be b st e s aeesseesseesseesseesseessessaesseennas 195
FACE ProfileENUML.......ccciiiiiiiieiieieciesteseee ettt ettt e et esteesbe e beessessaesseesseeseesseesseessesssesseenseesss 195
FACE_ ProgrammingLanguageEnumccccoeviiiiiiiiiiiiiieiieiccteete ettt sve et esse e saesneennas 196
FACE PUDSUDCONNECHONeoutieiiieiieeiieitesteeieetesetestesttesteesteesaessaesseesseesseensesnsesseesseanseenseensesssesseesseesseensesnes 196
FACE QUEUINZCONNECLIONvieetieieeeiieeiieieeteestestestesetesstesseesseessessaesseesseesseensesnsesseesseesseenseensesssesssesseensesses 197
FACE _RAMMEMOTYREQUITEIMEILScetieiieieiiieeiieetiestteit et eteeite st et eteeteseeesaeesseeteeneeeneeeneesseesseenseenseenees 198
FACE REQUESTVIEW.eitietieiieieeeie et ettt ettt ettt ettt et e e st e e bt et e e et emeesmeesaeeese e st enteenseeneeeseenseeseenseeneas 199
FACE RESPONSEVIEWcutieiiieiiieiiieiie ettt ettt st ettt et e te e s e s st e st e e st e et emeesaeeese e st eneeenseeneeeseeaseenseenseenees 201
FACE_SingleInstanceMessageCONNECTIONc..eeueiiiriirtieniieiieieeiieetiestte st et ete st sieestee bt eeeesteeaneseeesbeenbeenees 202
FACE_SupportingCOmMPONEIL........couiitieitietieieete it eite sttt ettt eitesttesbeesbe e bt estesatesaeesaee bt enteenteeaeesseesbeenbeenees 202
FACE_SynchronizationStylEENUMcooiiiiiiiiiii ettt 203
FACE TeMPIALEviiveiieietieiieieeiiet e ete sttt ettt e st esta e teesbeesbeesbaesaessaesseessaessesssesseesssesseenseassaassenssenseessennses 203
FACE TemplateCOmMPOSITION.cc.iecviiierieriieiieieereeteseeesseesseesseessesssesseesseesseessesssesseesseesseessesssenssesssesseessesses 204
FACE TRHICAG......ccoiiiiiieiieetieieett ettt ettt et ettt e s vt e beesbeesbeesbaesaessa e seesseassesssesseesssenseenseesseessanssenseesseenss 206
FACE ThreadTYPEENUINoociiiiiiiecieieeee ettt ettt ettt e s e st e s st et e enseenseensessaesseenseensennnes 207
FACE UNIOPOITADIIILY ..c..eeutiiteiitirteiteetieitet ettt ettt ettt sttt e et b sa e b b eae 207
FACE UOPEICIMENL.........oootiiiieiieiieiecie sttt st esete st et esteestessaesseeseenseensesnsesseesseenseenseenseensenssesseensennses 209
FACE UOPMESSAZETYPE ... euveeuteeuieenieetieiteeitt ettt seee st et e et et e st e et e s bt e beeseemeeentesaeesse e st enteenseeneeeseenseeseenseenees 210
FACE UOPRESOUICTEcetieiieiieeiieeiee ettt ettt ettt ste et e et et e s te e st esse e beeseemeeemeesaeeeaeaseeneeenseeneeeseenseeseenseenees 210
7.1.2 FACE _ Profile:FACE_Extended Stereotypesccceeveereereereerieiienienieenieeeeeeeneens 212
FACE TOENAPOINT ...ttt ettt ettt e et et e be et e eb e eaeeseem e e s e abesteebesaeebeeneensensensenseseeenes 212
FACE_OperationalEXCRANGE.couiiiiieiieieieesee ettt ettt ettt et et see et e st e s et e tesbesaeeneeneens 214
FACE ReSOUICEEXCRANGE.ccutiiiiiiieiieitieeet ettt ettt sttt et ettt ea e bt e b e beeaeeaees 215
FACE _UnNitOfCONTOIMANCEeovieiiiiiieiiieitieiieie e eeestte st eteebeesteesaesteesseesseessesssesseesseesseesseassenssesssesseessessses 216
FACE_UnitOfConformancCeENdPOiNt..........ccceouieiiiiiiiieiieriieiteieeteete sttt ere et ssee e e saeesseesseessesssessaesseesnas 217
FACE_UnitOfConformance Endpoint TyPeENUMcccoiiriiiiiieiiciecieriteie et 219
FACE _UnitOfConformanCeTyPEENUIML..........cciiiiiiiiiieeieiieiteie ettt st sttt e enaeesaesseenneennes 219
FACE _UOCEICIENLcootieniieiiieieeieeiesitesit et tesetestte et esseeaseesaessaesseesseensesnsesnsesseesseanseenseansesssessaesseesesnsesnes 220
FACE UOCMOUEL ...ttt ettt ettt e e b et e bt et e s meesaeesae e et eneeenteeneeeseesseeneeseeneas 220
7.13 FACE_Profile::UAF EXtENSIONSeeouiiiiriieiieiieiieie ettt eneens 221
FACE TMPIEMENLS ..ottt ettt et ste ettt et e s te et e bt et e e et emeesmeeeaeeese e st eneeenseenseeseenseeseenseeneas 221
7.2 VIEW CUSTOMIZALIONS ...eenteiiiiietieiiete et ettt ettt ettt et e st e sb e e bt e e e sbesatesaeesbee bt emteentesbeesbeenbeenees 227
7.2.1 View Specifications::FACE Data Architecturecccoevvevieveerieevieeieceeceeereeveennns 227
7.2.1.1 View Specifications::All FACE Components VIewcccceeveereerieeieeeeereennenn, 227
7.2.1.2 View Specifications::FACE Components Per Segment VIiewcccceeevvrverennne 229
7.2.1.3 View Specifications::FACE Logical Interfaces VieW..........ccceccevvvereenienieeiennenns 231
7.2.1.4 View Specifications::FACE Physical Interfaces VIewcccoccevvvevvenieciiecinnnenne 232
8 Design Considerations (NON-NOIMALIVE)cceerureriieieriieriienreesieesieseeseesseesseesseesessensnens 234
8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions Enhance Related Architectures 234
8.2 Support for Cyber Security within the System: Security Analysis enhancements from FACE Profile 234
83 Combining FACE Profile with MARTE markings to feed AADL analysisccccoceveeereennnne. 234
8.4 Non-Profile Tool implementation aspects of the FACE Technical Standard...............ccccoeceenneee. 235
8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE Technical Standard 235
8.4.1.1 Level AA Conformance application of FACE OCL Constraints.......................... 235
8.4.1.2 Level AAA Conformance application of FACE OCL Constraints 235
8.4.2 Recommended mechanism to generate content into FACE Profile tabular views........ 236
8.4.3 Inclusion of the FACE vertical architecture image in tool implementations................ 236
A FACE Profile Mapping Tables (Informational / Non-NoOrmative)ccccceevverreecieevieneeneeseenneenes 238
A.1 FACE Metamodel to FACE Profile Mapping........cccccceeveriieriieeiieieeieseeseeie e seesee st eee e enseseaessaesseennes 238

FACE Profile v2.0 — beta 1 5

A.l.l FACE Metamodel path €lements............cccocverierieniieieeiecieseese et
Al2 Full Mapping of FACE Metamodel to FACE Profile.........cccccoociriiiiiniiiieieeeiee

A.2 FACE Profile to FACE Metamodel Mapping

FACE Profile, v2.0 — beta 1

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

FACE Profile v2.0 — beta 1 vii

1 Scope

This specification defines a profile to express The Open Group® Future Airborne Capability Environment (FACE™)!
Technical Standard, Edition 3.1 and associated Meta-Object Facility (MOF) data architecture metamodel in terms of the
Object Management Group’s (OMG) Unified Modeling Language (UML) metamodel, with extensions to connect FACE
elements to appropriate elements of the Unified Architecture Framework (UAF).

Unless otherwise explicitly stated, all references in this document to the FACE Technical Standard shall be interpreted as
references to the Future Airborne Capability Environment (FACE) Technical Standard, Edition 3.1 as listed in the References
section of this document.

The data model portion of the FACE Technical Standard is based upon The Open Group Open Universal Domain Description
Language (Open UDDL™)?, Edition 1.0. As such, this standard also references the Open UDDL Standard. Unless
otherwise explicitly stated, all references in this document to the UDDL Standard shall be interpreted as reference to The
Open Group Open Universal Domain Description Language (Open UDDL), Edition 1.0 as listed in the References section of
this document.

1.1 FACE Profile Background

The FACE Profile v2.0 specification defines a profile to express the FACE Technical Standard and its underlying UDDL
Standard as expressed in their Meta-Object Facility (MOF) data architecture metamodels in terms of the Object Management
Group’s (OMG) Unified Architecture Framework (UAF). This profile is purposefully designed to be loosely coupled with
the UAF standard and expresses FACE metamodel elements as UML with relationships to connect appropriate FACE
metamodel elements to UAF profile elements. The UML portion of this standard can be stand-alone or paired with the UAF-
specific extensions.

The FACE Technical Standard is a software open architecture specification that “defines the software computing
environment intended for the development of portable software components, including requirements for architectural
segments and key interfaces.”* The focus of the FACE Technical Standard is the support of real-time and safety critical
software beginning with avionics, representing the software elements as modules in a layered architecture with defined
interfaces between the layers. The software elements are meant to be separable and replaceable to fit changing contexts and
requirements. As a result of its focus on portable software components (Units of Portability, or UoPs), the FACE Technical
Standard is primarily concerned with individual components, rather than the larger contexts into which they will be
integrated. Because semantic understanding of message data is so important to integration of system components, The FACE
Technical Standard includes the UDDL Standard to define the data semantics underlying the elements in its message
definitions. The FACE Technical Standard has been used in military and commercial avionics as well as in other industrial
control systems such as power control and communications systems.

“UAF defines ways of representing an enterprise architecture that enables stakeholders to focus on specific areas of interest
in the enterprise while retaining sight of the big picture ... to meet the specific business, operational and systems-of-systems
integration needs of commercial and industrial enterprises as well as the U.S. Department of Defense (DoD), the UK
Ministry of Defence (MOD), the North Atlantic Treaty Organization (NATO) and other defense organizations.”*

The UAF standard provides the larger scope to describe the environments into which the FACE-described components fit.
The Open Group UDDL Standard defines the elements, attributes, and associations for the FACE Data Architecture. The
Open Group FACE Technical Standard leverages the FACE Data Architecture and includes descriptions of software
components to be included in larger system-of-systems architectures. The UAF standard provides a mechanism for defining
the larger context in which the FACE components reside. UAF provides representations for defense and non-defense
architectures that can be used to effectively combine FACE software components and other systems components into

' FACE™ is a trademark of The Open Group®.

2 Open UDDL™ is a trademark of The Open Group®

3 FACE FAQs | The Open Group. (2022). Opengroup.org. Retrieved 28 December 2022, from https://www.opengroup.org/content/future-
airborne-capability-environment-face/faqs

4 “Unified Architecture Framework® (UAF®) | Object Management Group. (2022). omg.org. Retrieved 28 December 2022, from
https://www.omg.org/uaf/index.htm”

FACE Profile v2.0 — beta 1 1

cohesive systems architectures.

Together, the FACE Profile and its UAF extensions will enable platform and enterprise level acquisition analysis, software
security and cybersecurity analysis, and rapid capability development and deployment. The definition of this profile is the
first step. The implementation and realization of this profile in software and systems engineering tools, followed by
organizational utilization of these tools and standards will be necessary to achieve “the benefits of interoperability,
affordability, portability, increased competition and improved time-to-field”> promised by the FACE Technical Standard.

1.2 Intended Users

The profile enables the modeling of FACE components, data descriptions, data exchanges, integration elements, and
traceability mechanisms using the UML metamodel and in the context of system-of-systems airframe architectures described
in UAF. It is intended to be used in project and system planning as well as to inform acquisition and integration efforts. This
specification is intended to be used by tools implementors, computer scientists, data scientists, software engineers, systems
engineers, and software systems engineers. For the best application of this profile, users should have some familiarity or
background with UAF and the FACE approach as well as UML and OCL.

2 Conformance

The FACE Profile contains a separable portion that is dependent upon UML, and another portion that is dependent upon UAF
for the connectivity to a larger systems-of-systems architecture. It defines constraints that do not conflict with application of
Unified Architecture Framework (UAF) Profile (UAFP) stereotypes. There are three levels of conformance designated for
the FACE Profile. The requirements for a tool to be considered as conformant with the FACE Profile at each level of
conformance are detailed below.

The Conformance clause identifies which clauses of the RFC are mandatory (or conditionally mandatory) and which are
optional in order for an implementation to claim conformance to the RFC.

2.1 Level A Conformance

Level A is the lowest level of conformance. Level A Conformance provides the basic profile and constraints that are based on
the FACE metamodel, along with enhanced export/import that includes both the FACE and UAF model elements. This is the
minimum implementation that can meet the conformance requirements of this standard.

Table 2-1 Level A Conformance Points

Implementation of profile All stereotypes, classes, attributes, associations and package structures must exist and
stereotypes be conformant with this specification. The core UML elements of the profile (the
FACE metamodel expressed as UML) may be separated from the UAF connection
extensions for implementation as two related profiles, with the UAF extension profile
dependent upon both the UAF and FACE/UML profiles

XMI data exchange Provide XMI import and export (.xmi) of the user model and profile, including UML
representations of FACE elements and UAF extensions

Fidelity of XMI exchange Be able to import and export FACE Profile models with 100% fidelity (i.e., no loss or
transforms).

Basic constraints only Application of only “Constraint” constraints (no requirement for FACE
Conformance/OCL Constraints)

FACE Element Aggregation |Provide a mechanism to generate the specified tabular views that aggregate FACE
Tables constructs

5 FACE FAQs | The Open Group. (2022). Opengroup.org. Retrieved 28 December 2022, from https://www.opengroup.org/content/future-
airborne-capability-environment-face/faqs

FACE Profile, v2.0 — beta 1 2

2.2 Level AA Conformance

Level AA Conformance is a mid-range level of conformance. AA Conformance includes all Level A conformance points
and adds .face file format export and import (round-tripping) in support of external checks for FACE model conformance.
Level AA Conformance provides the minimum support needed by the users of FACE data architecture models in order to use
the authored information in a FACE integration effort.

Table 2-2 Level AA Conformance Points

Level A Conformance Level A conformance criteria met.

face file XML data Provide import and export of FACE elements in the FACE XML (.face) format as

exchange specified in the XMI Specifications for UDDL and FACE delivered with this document
(document ¢41/23-05-11)

Fidelity of .face file Be able to import and export FACE elements to and from FACE XML models (.face

exchange files) with 100% fidelity (i.e., no loss or transforms).

2.3 Level AAA Conformance

Level AAA Conformance is the highest level of conformance. AAA Conformance supports the rapid development of FACE
architecture, data models, and software development through application of the FACE/OCL Constraints during the
architecture modeling process. By applying these constraints during the model authoring process, the user is spared export of
the data model for conformance testing.

Table 2-3 Level AAA Conformance Points

Level AA Conformance Level AA conformance criteria met (includes Level A).

Basic PLUS FACE All constraints must exist and be conformant with this specification. For details of OCL
Conformance/OCL Constraints, please refer to the UDDL Standard and the FACE Technical Standard.
Constraints

FACE Conformance Checks |FACE Conformance checking in tool using FACE Conformance/OCL Constraints
in tool

3 References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

List of normative references.

3.1.1 OMG Documents (Normative References)
Meta Object Facility (MOF), v2.5.1, October 2016, https://www.omg.org/spec/MOF/

FACE Profile v2.0 — beta 1 3

Unified Modeling Language (UML), v2.5.1, December 2017, http://www.omg.org/spec/UML
Object Constraint Language (OCL), v2.4, February 2014, http://www.omg.org/spec/OCL
System Modeling Language (SysML), v1.6, December 2019, http://www.omg.org/spec/SysML
Diagram Definition (DD), v1.1, August 2015, http://www.omg.org/spec/DD

Unified Architecture Framework (UAF), v1.2, July 2022, https://www.omg.org/spec/UAF/
Interface Definition Language (IDL), v4.2, March 2018, https://www.omg.org/spec/IDL/

UML Profile for MARTE, v1.2, April 2019, https://www.omg.org/spec/MARTE/

3.1.2 The Open Group Documents (Normative References)

While all documents published by The Open Group are freely available for download, The Open Group requires that users
register for and use an Open Group account to download documents. Registration and document access are no-cost.

The Open Group normative references that apply to this standard are:
e FACE Technical Standard, Edition 3.1

o Open Group FACE™ Consortium, The Open Group FACE™ (Future Airborne Capability Environment)
Technical Standard, Edition 3.1, 28 July 2020, accessed 19-May-2023, ISBN: 1-947754-61-4
<https://publications.opengroup.org/standards/face/c207>

o Unless otherwise explicitly stated, all references in this document to the FACE Technical Standard shall be
interpreted as references to the Future Airborne Capability Environment (FACE) Technical Standard,
Edition 3.1.

o The written FACE Technical Standard remains the normative standard FACE Architecture, and most
importantly, conformance. The profile presented in this standard follows the metamodel in section J of the
FACE Technical Standard, including UDDL metamodel referenced by the FACE metamodel. Section J of
the FACE Technical Standard also includes conformance criteria expressed as OCL statements. The FACE
conformance criteria extend the UDDL conformance criteria in addition to introduction of conformance
criteria specific to elements only found in the FACE Technical Standard.

e Open Universal Domain Description Language (Open UDDL), Edition 1.0

o Open Group FACE™ Consortium, The Open Group Standard for the Open Universal Domain Description
Language (Open UDDL), Edition 1.0, 03 July 2019, accessed 19 May 2023, ISBN: 1-947754-32-4,
<https://publications.opengroup.org/standards/face/ c198>

o Unless otherwise explicitly stated, all references in this document to the UDDL Standard shall be
interpreted as reference to The Open Group Open Universal Domain Description Language (Open UDDL),
Edition 1.0.

o The written UDDL standard remains the normative standard for the FACE Technical Standard’s Data
Model Architecture. The purpose of the Universal Domain Description Language (UDDL) is to define a
data modeling language for formally describing, querying, and communicating information. The written
UDDL standard (in conjunction with the FACE Technical Standard) provide both language definition
information and conformance criteria expressed as OCL statements. The profile presented in this standard
follows the metamodel in section 7 of the UDDL Standard for all elements other than the
Conceptual/Logical/Platform CharacteristicPathNode, ParticipantPathNode, and PathNode elements.
Those metamodel elements are represented in the stereotypes FACE ConceptualParticipant,

FACE LogicalParticipant, and FACE PlatformParticipant as strings in the stereotypes' "path" tagged
values. The path strings for these stereotypes use the notation described in Section 3.6.4.1.1.3 of the
Technical Standard for Future Airborne Capability Environment (FACE™), Edition 2.1. The two notations
(elements and string) are interchangeable using a translation algorithm. XMI exchange mechanisms

FACE Profile, v2.0 — beta 1 4

between models using the FACE Profile and the FACE XMI (face) file are required to translate between
the two notations.

e FACE Technical Standard, Edition 2.1

o

Open Group FACE™ Consortium, The Open Group FACE™ (Future Airborne Capability Environment)
Technical Standard, Edition 2.1.1, 21 June 2017, accessed 19 May 2023,
<http://www.opengroup.org/library/c176>

As mentioned in the UDDL Standard discussion, the expression of FACE Path data in this specification
refers to the path notation in the FACE 2.1 Technical Standard. The FACE Technical Standard, Edition 2.1
is referenced in this standard solely for the purpose of simplifying the expression of FACE Path elements.
The profile presented in this standard follows the metamodels in the above-listed UDDL Standard and
FACE Technical Standard for all elements other than the UDDL Conceptual/Logical/Platform
CharacteristicPathNode, ParticipantPathNode, and PathNode elements. Those metamodel elements are
represented in the stereotypes FACE ConceptualParticipant, FACE_LogicalParticipant, and

FACE _PlatformParticipant as strings in the stereotypes' "path" tagged values. The path strings for these
stereotypes use the notation described in Section 3.6.4.1.1.3 of the Technical Standard for Future Airborne
Capability Environment (FACE™), Edition 2.1. The two notations (elements and string) are
interchangeable using a translation algorithm. XMI exchange mechanisms between models using the
FACE Profile and the FACE XMI (face) file are required to translate between the two notations.

3.2 Non-normative References

List of non-normative references.

e FACE 3rd Party Tools

o

Tool listings and links found under URL: https://www.opengroup.org/face/third-party-tools. These tools
are previous proof-of-concept implementations of the FACE metamodel as a UML-based profile. They are
referenced to provide prospective implementers of the profile working examples of the profile.

MagicDraw / Cameo (NoMagic) Model Tool Integration (MTI) for FACE™ 3.1 Data Modeling NAVAIR
public release 2022-554, accessed 19 May 2023,
<https://archive.isis.vanderbilt.edu/sites/default/files/face_products/MTI/FACE31 MagicDraw MTI v202
2 03 1 A.zip> This plug-in is an implementation of most of the UML portion of this standard and serves
as a proof of concept for the standard.

FACE Edition 2.1 EA Data Model Profile and Plugins NAVAIR Public Release 2015-746, accessed 19
May 2023,

<https://archive.isis.vanderbilt.edu/sites/default/files/face_products/MTI/FACE31 MagicDraw MTI v202
2 03 1 A.zip>

FACE Edition 2.1 Rhapsody Data Model Profile and Plugins NAVAIR Public Release 2015-746, accessed
19 May 2023,

<https://archive.isis.vanderbilt.edu/sites/default/files/face _products/downloads/FACE21RhapsodyPlugins.z
ip>

e FACE Consortium Conformance Publications & Tools

o

The conformance publications are listed as assistance to implementers of this profile. The conformance
rules would be implemented by implementers that extend to Level AAA conformance, and the
Conformance Test Suite would be used to verify that a FACE file that the tool considers to be conformant
passes the FACE standard's conformance tests.

These publications and tools are listed located at URL:
https://www.opengroup.org/face/docsandtools#collapse3 1, accessed 19 May 2023

Link to FACE™ Conformance Verification Matrix, Edition 3.1 (Revision A)

FACE Profile v2.0 — beta 1 5

https://www.opengroup.org/face/third-party-tools

Link to the FACE Conformance Test Suites page that includes conformance test suites for FACE Edition
3.1

Link to the FACE Reference Implementation Guide (RIG) for FACE Technical Standard Edition 3.0
Volume 3 (Data Architecture)

e FACE New Users Resources

o

These resources available at URL: https://www.opengroup.org/face/softwaresuppliers, accessed 19 May
2023

Software Suppliers Guide

Basic Avionics Lightweight Source Archetype (BALSA), a working software example of applications
aligned to the FACE Technical Standard executing in a FACE Reference Architecture (includes data model
in .face format), currently only available to FACE consortium members pending global public release
authorizations, <https://www.opengroup.org/face/balsa>

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Table 4-1 Acronyms in the Specification

AADL Architecture Analysis & Design Language

ARINC Avionics Application Standard Software Interface

BALSA Basic Avionics Lightweight Source Archetype

CTS Conformance Test Suite

CVvM Conformance Verification Matrix

DAL Design Assurance Level

DoDAF Department of Defense Architecture Framework

EA (Sparx) Enterprise Architect

EASA European Aviation Safety Agency

EMOF Essential Meta-Object Facility

FAA (U.S.) Federal Aviation Administration

FACE Future Airborne Capability Environment

GCM General Component Model

10SS Input/Output Services Segment

MARTE Modeling and Analysis of Real-Time and Embedded systems

MODAF (British) Ministry of Defence Architecture Framework

MOF Meta-Object Facility

MTI Model Tool Integration

NATO North Atlantic Treaty Organization

OCL Object Constraint Language

OSS Operating System Segment

PCS Portable Components Segment

PSSS Platform-Specific Services Segment

RFP Request For Proposals

RIG Reference Implementation Guide

RTCA Radio Technical Commission for Aeronautics

STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of
privilege

TSS Transport Services Segment

UDDL Open Universal Domain Description Language

UAF Unified Architecture Framework

FACE Profile, v2.0 — beta 1

UML Unified Modeling Language

UoC Unit of Conformance (a FACE software component)

UoP Unit of Portability (a cohesive unit that represents a FACE software component)
XMI XML Metadata Interchange

XML eXtensible Markup Language

5 Symbols

No new symbols have been required to create this specification.

6 Additional Information

6.1 Scope of this Specification

This specification covers the entire scope of the FACE Technical Standard metamodel, which includes the UDDL Standard
metamodel. This specification additionally includes references to the FACE Technical Standard and UDDL Standard OCL.

Rationale for complete FACE Metamodel:

Inclusion of the data model portion of the FACE metamodel enables expression of the semantically rigorous
descriptions of the data being passed in FACE UoP messages

The FACE Traceability Model is dependent on FACE Data Model elements

There are existing 3rd-party UML-based profiles and import/export plugins that extend to the entire scope of the
FACE metamodel

There are existing 3rd-party Import/Export plugins provide exchange between tool-authored data architecture and
“gold standard” FACE XMI format The FACE standard specifies that the file format for storage, exchange, and use
of FACE Data Architecture files conform to the metamodels described in the FACE and UDDL standards. This
“gold standard” format is an XMI file format that describes the data, Units of Conformance (UoPs - FACE software
components) , and optionally integration and traceability information required for deployment of FACE UoPs. The

“ face file XML data exchange” compliance point specified for conformance level AAA of this standard enables
ingestion of .face files into models that use this profile and production of .face files from models that use this profile.
As a result of implementing .face format import/export, FACE data architectures exchanged between different
organizations that conform to the FACE standard can be viewed, modified, and exported between models
implementing this profile and systems that implement the FACE standard.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UDDL Standard and the FACE Technical Standard that are the basis for the elements contained
herein. These specifications include the Data Architecture specifications, Object Constraint Language (OCL) rules, and
EMOF metamodels that govern the FACE artifacts, and from which all elements of this specification have been derived.
After that, the UAF specification provides needed background for understanding the UAF concepts and acts as a reference
when considering the mapping of the FACE standard to the UAF and UML standards. The UAF, UDDL and FACE
standards provide the basic constructs used to define the FACE Profile.

FACE Profile v2.0 — beta 1 7

6.2.1 Content Notes for this Specification

In the interest of avoiding potential inconsistencies between this specification and the FACE Technical Standard, this
specification adds no information about FACE elements that is not present in that standard. This specification refrains from
providing descriptions of FACE metamodel elements, associations, attributes, and enumeration elements that are not
provided in either the UDDL Standard or the FACE Technical Standard. As such, these unspecified descriptions for
metamodel attributes, relationships, and enumerated values within this specification will appear ‘blank’ where those
descriptions would normally appear.

In the interest of clarity and of avoiding any possible name collisions with other profiles, all stereotypes and enumerations
defined in this specification are prefixed with “FACE_”. Where appropriate, this prefix has also been applied to the
descriptions for stereotypes that correspond to elements in the UDDL and FACE metamodels. The content of those
descriptions otherwise remains unchanged from the corresponding descriptions in the UDDL and FACE metamodels.

This specification introduces some abstract elements not found in the UDDL and FACE metamodels. The additional abstract
elements are provided in support of XMI data interchange with the FACE XMI Schema and/or application of constraints.
They can be considered optional if not otherwise needed for conformant implementation of the profile.

This specification introduces some concrete elements not found in the FACE metamodel. The additional concrete elements
are separated from the FACE Architecture element package and exist to supplement the FACE metamodel with elements that
recognize the larger context of a UAF system-of-systems. The supplemental elements either represent FACE segments that
are not explicitly represented in the FACE metamodel or provide connection between FACE Components and other
components of a system-of-systems.

6.2.2 Representing Additional Properties and Constraints on Stereotypes

The FACE Profile follows the enhanced standard notation used in the UAF Standard to represent metaconstraints graphically.
The FACE Profile has extended the metaconstraint notation to express application of stereotyped Associations and
stereotyped Generalizations. The enhanced standard notation has been used both in this and in the UAF profile diagrams to
improve readability of the profile specifications and overcome limitations of being unable to visualize constraints
diagrammatically in UML.

The enhanced notation dependencies (metaconstraint, stereotyped relationship, stereotyped association, stereotyped
generalization) appear in the FACE Profile specification diagrams for visualization purposes only. The representation in the
standard varies by dependency stereotype:

e A metaconstraint is represented in the standard is as a UML constraint, specified in structured English. These
constraints are implementable in a tool, by OCL for example.

e A stereotyped relationship is represented in the standard by a correspondingly named stereotype with metatype
Dependency. These dependencies are implemented using the corresponding stereotype and the constraints
associated with them in the standard.

e A stereotyped association is represented in the standard by a correspondingly named stereotype with metatype
Association. These associations are implemented using the metatypes and constraints associated with them in this
standard.

e A stereotyped generalization is represented in the standard by a correspondingly named stereotype with metatype
Generalization. These generalizations are implemented using the metatypes and constraints associated with them in
this standard.

A simple UML profile defines the enhanced notation.

The following sub clauses detail the enhanced notation profile definition within the FACE Profile.

6.2.2.1 FACE Conformance/OCL Constraints

The FACE Conformance/OCL Constraints represented in this standard are representations of the OCL Constraints listed in
the UDDL Standard and FACE Technical Standard. These constraints are not represented by any graphical notation in

FACE Profile, v2.0 — beta 1 8

diagrams appearing in this standard but are included to provide additional information about the constraints needed for full
conformance to the standard. The UDDL and FACE Conformance/OCL Constraints descriptions have been taken from the
UDDL Standard and FACE Technical Standard, with minor modifications to indicate the intent of the constraint (e.g. “is”
changed to “must be”). For the full Object Constraint Language (OCL) expansions of the UDDL and FACE
Conformance/OCL Constraints, see the appropriate subsections of the UDDL Standard and FACE Technical Standard.

6.2.2.2 Metaconstraint Dependency

«metaconstraint» is a stereotype that extends the Dependency metaclass. It is used to specify constrained elements within the
profile and is not part of the profile itself.

6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotype

metaconstraint
Package: stereotyped dependencies
isAbstract: No

Extension: Dependency
Description

«metaconstrainty is a stereotype that extends the Dependency metaclass. It has been created for the purpose of expressing the
FACE Profile specification and is not part of the profile itself. It is applied to dependencies between stereotypes to visually
model constraints on the stereotypes' underlying UML properties. The umlRole Tag relates to a property of the meta-type for
the source stereotype, and is used in diagrams to provide a visual indication that there is a constraint on the property defined
in the source stereotype for the dependency. To fully understand the «metaconstraint», the reader must review the Constraints
applied to the stereotype that is its source.

Note — When stereotype extends Association or Dependency, the stereotype property umlRole has values " memberEnd[
[0].role" and/or “memberEnd[1].role." The square bracketed number after the memberEnd indicates whether the
metaconstraint applies to the originating end (memberEnd[0]) or the target end (memberEnd[1]) of the relationship. This
convention is consistent with the subscript syntax in the Java and other programming languages.

For example metaconstraint umlRole = “memberEnd[1].multiplicity” with constraint text “memberEnd[1].multiplicity shall
be 17 should be interpreted as the “the multiplicity at the target end of the stereotyped Association shall be constrained to be
exactly 1”.

watersotvpes
metaconstraint
[Dependency]

—umRole Etrln g

Figure 6-1: metaconstraint Dependency (specification stereotype)
Attributes

umlRole : String [] UML Role (property) of the source of the Dependency that is to be constrained by a same-named
Constraint applied to the stereotype. If the target of the metaconstraint is a different type than the
source, the property identified by UML Role may be typed by the target type.

FACE Profile v2.0 — beta 1 9

6.2.2.2.2 Example Usage of the Metaconstraint Dependency

An example of the «metaconstraint» dependency is a diagram for a stereotype extending the Association metaclass.

The diagram shows «Example Association» with «metaconstrainty Dependencies that indicate constraints on the endpoint
types, and the multiplicity, aggregation, and name properties of memberEnd[1]. The stereotype definition for

«Example_ Association» includes applied constraints named to match the metaconstraint umlRole tagged values. The plain-
English constraint definitions for those constraints are shown in the anchored text box in the diagram.

«stereotype»
Example_Association
[Association] «metaconstraint» «stereotype»
== o= = o= = e = == P Stereotyped_Class_1
{umlIRole = "memberEnd[0].type"} [Class]

«metaconstraint» «stereotype»
= o= o= e == == == == P Stereotyped_Class_2

{umlRole = "memberEnd[1].type"} [Class]

' «metaconstraint»
¢ - {umIRole = "memberEnd[1].multiplicity"}
-— -

«metaconstraint»

- {umIRole = "memberEnd[1].aggregation"}

€

«metaconstraint»

{umIRole = "memberEnd[1].name"}

€

| AN

| {The value for the memberEnd[0].type metaproperty must be stereotyped by
«Stereotyped_Class_1»}

| {memberEnd[1].aggregation shall be none}

______ {memberEnd[1].multiplicity shall be 1}

{memberEnd[1].name is "otherEnd"}

{The value for the memberEnd[1].type metaproperty must be stereotyped by
«Stereotyped_Class_2»}

Figure 6-2 Use of «metaconstraint» dependency

6.2.2.3 Stereotyped Relationship Dependency

There are stereotypes in the profile specification that have Metaclass Dependency. While the constraints described for these
stereotypes express the allowed sources and targets of these dependencies, when showing a diagram representing another
stereotype in this profile it is also helpful to see how elements typed by that stereotype could be related to other elements
using these dependencies. The stereotyped relationship dependency is a mechanism to graphically represent the application
of stereotyped dependencies between elements of the FACE Profile and other elements.

6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotype

stereotyped relationship
Package: stereotyped dependencies

isAbstract: No

FACE Profile, v2.0 — beta 1 10

Extension: Dependency
Description

The «stereotyped relationship» stereotype has been created for the purpose of expressing the FACE Profile specification and
is not part of the profile itself. It is applied to dependencies between stereotypes to visually model UML relationships that
the profile explicitly dictates to be possible between model elements to which the stereotypes have been applied. The applied
stereotype tag names the FACE profile stereotype for the dependency that is being expressed. To fully understand the
relationship, the reader must examine the stereotyped relationship named in the tagged value.

sstersotypes
stereotyped relationship |
[Dependency]

| +stere uty[;é : Ete f& otype

Figure 6-3: stereotyped relationship
Attributes

stereotype : Stereotype [] The stereotype that applies to the Dependency depicted by the relationship. The "type"
of Dependency that is being expressed by the depicted relationship.

6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency

The example diagram shows two different representations for a dependency stereotyped by «stereotyped relationship». The
upper image shows how the «stereotyped relationship» would appear in the definition of «Stereotyped Class 1» that has an
«Example Dependency» on «Stereotyped Class 2». This enables readers of this standard to see that an

«Example Dependency» could be defined between the two types of shown elements.

The lower image shows how the «stereotyped relationship» would look in the diagram for the definition of

«Example Dependency». In this case the information may be redundant but provides an explicit visual showing that the
«Example Dependency» relationship is defined as a way to connect the two classes. The Constraints identified in the
«metaconstraint» Dependencies would further refine the «kExample Dependency» relationship between
«Stereotyped_Class_1» and «Stereotyped Class 2».

FACE Profile v2.0 — beta 1 11

«stereotyped relationship» in definition diagram for Stereotyped_Class_1

«stereotype» «stereotyped relationship» «stereotype»
Stereotyped Class_ 1= o= e= e= ‘e= o= = «= == P Stereotyped_Class_2
[Class] {stereotype = Example_Dependency} [Class]

(«stereotyped relationship» in definition diagram for of stereotyped Dependency «Example_Dependency » h
«stereotype»
Example_Dependency «metaconstraint» «stereotype»
[Dependency] — — — — — — — >Stereotyped_Class_1| = =
{umlRole = "supplier"} [Class] l
|«stereotyped relationship»
l{stereotype = Example_Dependency}
«metaconstraint» «stereotype» |
——————— > Stereotyped_Class 2 /@ =
{umIRole = "target"} [Class]
N J

Figure 6-4 Uses of «stereotyped relationship» dependency

6.2.2.4 Stereotyped Association Dependency

There are several stereotypes in the profile specification that have the Metaclass Association. There is no profiling
mechanism to visually express that the Association between a source and target is characterized by a specific (constrained)
Association stereotype.. As a result, the FACE Profile standard introduces a notation to identify Associations between FACE
Profile elements that are stereotyped by FACE Profile Association Stereotypes. This information is represented using
«stereotyped association» dependencies.

6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype

stereotyped association
Package: stereotyped dependencies
isAbstract: No

Extension: Dependency
Description

«stereotyped association» is a stereotype of Dependency. It has been created for the purpose of expressing the FACE Profile
specification and is not part of the profile itself. It is applied to dependencies between stereotypes to visually model
Associations that the profile explicitly dictates to be possible between model elements to which the stereotypes have been
applied. The applied stereotype tag names the FACE profile stereotype for the association that is being expressed. The
stereotype referenced by the applied stereotype tag further describes the nature of the Association. The stereotyped
association Dependency has nothing to do with creating aggregation between stereotypes (i.e. tagged values). To fully
understand the association, the reader must examine the stereotyped association named in the tagged value.

FACE Profile, v2.0 — beta 1 12

u_st&reutype::
stercotyped association
[Dependency]

+ﬂpplied_5t&-r.n;=u.ti,r.p:‘é : Stereotype |

Figure 6-5: stereotyped association

Attributes

applied_stereotype : Stereotype [] The stereotype that applies to the Association depicted by the Dependency.
The "type" of Association that is being expressed by the Dependency.

6.2.2.4.2 Example Usage of the Stereotyped Association Dependency

The example diagram for «stereotyped association» shows two different representations for a dependency stereotyped by
«stereotyped association». The upper image shows how the «stereotyped association» would appear in the definition of
«Stereotyped_Class_1» that has an «Example Association» with «Stereotyped Class 2». This enables readers of this
standard to see that an «Example Association» could be defined between the two types of shown elements. The lower image
shows how the «stereotyped association» would look in the diagram for the definition of «Example Associationy». In this
case the information may be redundant, but provides an explicit visual showing that the «Example Association» relationship
is one way to connect the two classes. The Constraints of «Example Association» further characterize the defined
relationship between «Stereotyped Class_1» and «Stereotyped Class 2».

«stereotyped association» in definition diagram for Stereotyped_Class_1

«stereotype» «stereotyped association» «stereotype»
Stereotyped_Class_1 ™ o= o= o= ‘e= = e= e = 9 Stereotyped_Class_2
[Class] {applied_stereotype = Example_Association} [Class]

(«stereotyped association» in definition diagram for of stereotyped Association «Example_Association» h
«stereotype»
Example_Association «metaconstraint» «stereotype»
[Associaton] [.o T T T — — > Stereotyped_Class_1 w o=
umlRole = "memberEnd[0].type"
{ [0]-type") [Class] '«stereotyped association»
i «stereotype» l{appliedistereotype = Example_Association}
| _ _ «metaconstrainty > Stereotyped_Class_2 @ =
{umIRole = "memberEnd[1].type"} [Class]
& J

Figure 6-6 Use of «stereotyped association» dependency

6.2.2.5 Stereotyped Generalization Dependency Stereotype

The FACE Profile defines specific Generalization relationships in its data model. These generalizations are the only
generalizations between elements stereotyped by FACE profile stereotypes that are meaningful to the FACE framework. The
«stereotyped generalization» dependency in this specification is a means of graphical depiction for these generalization-
specialization relationships.

FACE Profile v2.0 — beta 1 13

6.2.2.5.1 Definition of the Stereotyped Generalization Dependency

stereotyped generalization

Package: stereotyped dependencies
isAbstract: No

Extension: Dependency

Description

The stereotyped generalization stereotype has been created for the purpose of expressing the FACE Profile and is not part of
the profile itself. It is applied to dependencies between stereotypes to visually model specialized Generalizations that the
FACE Profile defines as applicable between model elements. The "stereotype" Tag indicates the FACE Profile stereotype
that is applicable to the Generalization. The stereotype referenced by the "stereotype" tag further describes the nature of the
Generalization. The stereotyped generalization Dependency has nothing to do with creating aggregation between stereotypes
(i.e. tagged values). To fully understand the generalization, the reader must examine the stereotyped generalization named in
the tagged value.

wstereotypes
stereotyped generalization
[Dependency]

-stere nt}fpe- E.té.re-:t}fp-:—

Figure 6-7: stereotyped generalization

Attributes
stereotype : Stereotype [] The name of the stereotype that applies to the Generalization depicted by the
Dependency. The "type" of Generalization that is being expressed by the
Dependency.

6.2.2.5.2 Example Usage of the Stereotyped Generalization Dependency

The example diagram shows two different representations for a generalization stereotyped by «stereotyped generalizationy.
The upper image shows how the «stereotyped generalization» would appear in the definition of «SemanticallySpecific» that
has a «Constrained_Generalization» with «SemanticallyGeneral». This enables readers of this standard to see that a
«Constrained Generalization» could be defined between the two types of shown elements. The lower image shows how the
«stereotyped generalization» would look in the diagram for the definition of «Constrained Generalizatio». In this case the
information may be redundant but provides an explicit visual showing that the «Constrained Generalization» relationship is
one way to connect the two classes. The Constraints applied to «Constrained Generalization» further define the
generalization relationship between «SemanticallySpecific» and «SemanticallyGeneral». The anchored note in the lower
diagram shows an example of the sort of constraints that might be applied to the generalization relationship.

FACE Profile, v2.0 — beta 1 14

«stereotyped generalization» in definition diagram for Semantically Specific

«stereotype» «stereotyped generalization» «ste.reotype»
SemanticallySpecific = == == = = = = = <» SemanticallyGeneral
[Class] {stereotype = Constrained_Generalization} [Class]

(«stereotyped generalization» in definition diagram for of stereotyped Generalization «Constrained_Generalization»

«stereotype»
Constralned_G'en(lerallzatlon «metaconstrainty «ste.reotype»
[Generalization] - — — — — — — > SemanticallyGeneral €@ =
{umIRole = "target"} [Class] '
«stereotyped generalization»
l{stereotype = Constrained_Generalization}
. «stereotype»
«metaconstraint»
— — — — — — ->SemanticallySpecific| == l
{umlRole = "source"} [Class]

{The value for the source metaproperty must be stereotyped by «SemanticallySpecific» or a
specialization of «SemanticallySpecific».}
{The value for the target metaproperty must be stereotyped by «SemanticallyGeneral».}

Figure 6-8 Use of «stereotyped generalization» dependency

FACE Profile v2.0 — beta 1 15

7 FACE Profile

Although FACE Profile implementations must use the UAF Profile in order to indicate implementation of UAF elements
through dependencies, the FACE Profile itself imports only the UML metamodel.

The FACE Profile is the top-level profile root. The package structure of the FACE Profile is based on the FACE package
structure in the FACE metamodel, as defined in the FACE Technical Standard and its referenced UDDL Standard.

7.1 FACE_Profile

The FACE_Profile package contains the FACE Profile as derived from existing FACE Consortium member UML Profile
contributions and mappings from FACE elements to UAF elements. The underlying UML profile represents a unification of
multiple too-specific UML profiles written to describe the FACE metamodel. After establishing the FACE UML stereotypes,
the UAF stereotypes that best matched the FACE metamodel were applied using stereotyped Dependency relationships. The
package organization of the FACE Profile mimics the FACE metamodel packages.

FACE_ArchitectureModel
Package: FACE_Profile

isAbstract: No

Generalization: FACE Element

Extension: Package

Description

A FACE_ArchitectureModel is a container for FACE DataModels, FACE _UoPModels, FACE IntegrationModels, and
FACE TraceabilityModels.

FACE Profile, v2.0 — beta 1 16

ustersotypes
FACE_Element

[Element]
ust&r_&utypeh ametaconstraints
FACE_ArchitectureModel = - — — — —
[Package] {umiRole = "owner'}

ametaconstraints

TumiR ole = "owmner'}

ametaconstraints

TumiRole = "owner'}

ametaconstraints

TumiRole = "owmer'}

«metaconstraints
TumiRole = "pwner'}
.'_:_ —
|
! |
| _smetaconstraints |

TumiRole = "owner'}

Figure 7-1: FACE_ArchitectureModel

Constraints

CO01: FACE_ArchitectureModel.owner

FACE Conformance/OCL Constraints

CO01: FACE_ArchitectureModel.hasUniqueName

FACE_Element
Package: FACE_Profile

FACE Profile v2.0 — beta 1

—|FACE_DataModel

—|FACE_UoPModel

—|FACE_IntegrationModel

—|FACE_UoCModel

wstereotypes

[Package]

astersotypes

[Package]

«wstereotypes

[Package]

wstereotypes

—|FACE_TraceabilityModel

[Package]

ustersotypes

[Package]

This element may only be contained in (owned by)
packages or architectures that are not stereotyped by a
FACE stereotype

In the context of the entire FACE Architectural Model,
the name of each element must be unique using case-
insensitive tests.

17

isAbstract: Yes
Generalization: FACE ModelElement

Description

A FACE_Element is the root type for defining all described elements in the FACE ArchitectureModel. The description
attribute captures a description for the element.

xstereotypes
| FAGE_ModelElement
[Element]

|

msterec;type::
FACE_Element
[Element]

[+des n::ripii.-:.nn .E-t.ring [1]=

Figure 7-2: abstract FACE_Element

Attributes

description : String [1]

FACE Conformance/OCL Constraints

CO01: FACE Element.isValidldentifier An identifier is valid if it consists of alphanumeric
characters.

7.1.1 FACE_Profile::FACE Data Architecture

The FACE Data Architecture package of the FACE Profile contains elements that represent the FACE Data Architecture as
specified in the FACE metamodel. The profile packages within this package are organized to match the organization of the
FACE metamodel.

FACE_AbstractAssociation
Package: FACE Data Architecture
isAbstract: Yes

Extension: Association
Description

The FACE_AbstractAssociation stereotype exists to characterize the constraints that apply to all FACE Association
stereotypes. These constraints and characteristics hold true unless overridden in a subclassed stereotype. By default, all
FACE Stereotypes of metaclass Association are binary Associations (2 endpoints) with no aggregation from the "target"
endpoint (memberEnd[1].aggregation = none) and default to directional (navigable only from memberEnd[0] to

FACE Profile, v2.0 — beta 1

18

memberEnd[1]) . The default constraints can be overridden by constraints specified in specializations of this stereotype.
Directionality and other association memberEnd properties vary and are specified with the Association stereotypes to which

they apply.

This stereotype exists only for specification of constraints that apply to the specialized FACE Profile stereotypes. It is
optional in the implementation of this specification.

ametaconstraints
TumiRale = "memberEnd-=sze{}"}

FACE_AbstractAssociation

-xstérEtypEx- L2t s
|

[A=sociation]
- |

| ametaconstraints

|{umFRuIe = "memb=rEnd[0]. aggregation™}
T —

[xmetaconstraints
. flumiFole = "memberEnd[0] multiplicity']

.E
| xmetaconstraints
|{umlR-:||e = "membserEnd[0].isNavigable"}
= _I axmetaconstraints
| TumiRale = "memb=erEnd[1] EMavigabl="}
—

Figure 7-3: abstract FACE_AbstractAssociation

Constraints

CO01: FACE_AbstractAssociation.memberEnd->size()

C02:
FACE_AbstractAssociation.memberEnd[0].aggregation

Co03:
FACE_AbstractAssociation.memberEnd[0].isNavigable

C04:
FACE_AbstractAssociation.memberEnd[0].multiplicity

CO05:
FACE_AbstractAssociation.memberEnd[1].isNavigable

FACE Profile v2.0 — beta 1

memberEnd.size() shall be 2

memberEnd[0].aggregation shall be none

memberEnd[0].isNavigable shall be false

memberEnd[0].multiplicity shall be 1

memberEnd[1].isNavigable shall be true

19

FACE_DataModel

Package: FACE Data Architecture
isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_DataModel is a container for FACE_ConceptualDataModels, FACE LogicalDataModels, and
FACE_PlatformDataModels.

-xst-eat'_.rp&x-
FACE Element
[Element]

wstereotypes B = e astereotypes
FACE_DataModel i SR TR = FACE_ArchitectureModel
[Package] {aariole: =omey [Package]
; xstereotypes
it traint
e _ Imelconsiat _ EACE ConceptualDataModel
TumiRale = "owner'} [Package]
: wstereotvpes
metaconstraint
o _ IMEEconsiaAl _ FACE_LogicalDataModel
TumiRole = "owner'} [Package]
; i wsterentypes
e _ imeaconsiant» _ |FACE_PlatformDataModel
{umiRtole = "owner'} [Package]
~ T

| |
| wmetaconstraints |

 [umRale = "gwner'}

Figure 7-4: FACE_DataModel

FACE Profile, v2.0 — beta 1

Constraints

CO01: FACE_DataModel.contains

C02: FACE_DataModel.owner

FACE Conformance/OCL Constraints

CO01: FACE_DataModel.hasUniqueName

FACE_EndPoint
Package: FACE Data Architecture
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to associate the FACE Components (FACE_UnitOfPortability, FACE AbstractUoP) with FACE_Connections.

The contained elements must by stereotyped one of the
following:

«FACE_DataModel»
«FACE_ConceptualDataModel»
«FACE_LogicalDataModel»
«FACE_PlatformDataModel»

Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:

«FACE_ArchitectureModel»
«FACE_DataModel»

Each FACE Data Model Element must have a unique
name as determined with case insensitivity.

addition to aggregation and multiplicity specifications on memberEnd[1], this association differs from the default
FACE_AbstractAssociation in that it is bi-directionally navigable.

FACE Profile v2.0 — beta 1

In

21

FACE_AbstractAssociation

«stereotypex

[A==ociation]

[

r
smetaconstraints |
fumiRole = "memberEnd| 1].aggregsation}

— 3
=

«metaconstrainty |
{umiRale = "memberEnd[1] muktiplicity"} | 3
| =

ametaconstraints |

fumiRake = "memberEnd] 1].nam="} |
— 3
— =

|
ametaconstraints
JumiRtale = "memberEnd[0] isMavigshle"}

xstereotypes
FACE_EndPoint
[A==sociation]

«metaconstraints

{umiRale = "memberEnd[0].type'}

«metaconstraints

{umiRole = "memberEnd[1] type"}

«metacaonstraints

{umiRcle = "memberEnd(0] type"}

xmetaconstraints

{umiRale = "memberEnd[1] type'}

xmetaconstraints

" {umRoke = 'membsrEnd[vpe}

smetaconstraints

JumRcle = "memberEnd[0] type'}

«metaconstraints

JumiRale = "memberEnd[1] type"}

ametaconstraints

JumRale = "memberEnd[1] type'}

smetaconstraints

JumRle = "memberEnd[0].type'}

ametaconstraints

JumRale = "memberEnd[1] fype"}

ametaconstraints

JumiRole = "memberEnd[1] type"}

ametaconstraints

{umiRole = "memberEnd[0] type"}

ametaconstraints

{umiRole = "memberEnd[1] type"}

Figure 7-5: FACE_EndPoint

Constraints

CO1:

chuﬁf:r;:ziz:u op: | EAETROVIDH SR e
[Class] {applied_stersctype = FACE_EndPgoint} |
|
astereotypes |
= FACE_AbstractConnection & — — — — — — —
[Class]
«=tereotyped associations
astereotypes tapplied_stereotype = FACE_EndPoint} |
—{FACE_UnitOfPortability | — — |
[Class] |
:«sterentyp&d associations I
wstereotypex - .y
= FAGE Connection = — — A{appled_stereot,'pe= FACE_EndPoint} I
[Class] |
|
agtereotypes |
=FACE_LifeCycleManagementPort - _ _ _ _ _ _ _ _ _ -
[Class]
wsterentypes «stereotyped associations
~|FACE_UoPinstance {spplied_stereciype = FACE_EndPoing |
[Class] SRS SEEE 5 I
| I
FACE rJSts:euwtpEE»dPo' . |xsterectyped associations |
loPinputEn in
& - [CIEF;SI __ __ li=pplied_sterectype = FACE_EndPoint} |
I
astereotypes |
—=FACE_UoPOutputEndPoint . _ __ _ _ _ _ _ _ _ _ _ all
[Clasg]
astereotyped associations
T (e S L i e e
= FA CE“STf;iit:gf:Node [applied_sterectype = FACE_EndPoint} |
[Class] SRRy I
I |
n ™ |xaterentyped asszociations |
astereotypes
=|FACE_TSNodelnputPort == — — — [{epplied_stereotype = FACE EndPaing I
[Class] |
I
|
wstereotypes
= FACE_TSNodeOutputPort e — - - — - — — — — — — — |
[Class]
stereotype: i
IFACE_unitorc :Jynpf:rmance | ... jeslereobypedassocione:
- [Class] {applied_sterectype = FACE_EndPoint}
xstereotypen
- FACE_UnitOfConformanceEndpoint = — — — — — — — — — —
[Clazs]

memberEnd[0].isNavigable shall be true

FACE_EndPoint.memberEnd

[0].isNavigable

FACE Profile, v2.0 — beta 1

=

C02:
FACE_EndPoint.memberEnd

[0].type

C03:
FACE_EndPoint.memberEnd
[1].aggregation

C04:
FACE_EndPoint.memberEnd
[1].multiplicity

FACE Profile v2.0 — beta 1

Value for the memberEnd[0].type metaproperty must be stereotyped by one of the

following:
«FACE_UnitofPortability»
«FACE_AbstractUoP»
«FACE_UoPInstance»

A specialization of «<FACE TransportNode»

«FACE_UnitOfConformance»

memberEnd[1].aggregation shall be composite

MemberEnd[1].multiplicity depends on the stereotypes of the values connected by

the association:

»

Endpoint»

memberEnd[0].type memberEnd[1].type memberEn
d[1].multip
licity
«FACE_AbstractUoP» «FACE_AbstractConnection» | 0..*
«FACE_UnitOfPortability» | specialization of 1.*
«FACE_Connection»
«FACE_UnitOfPortability» | «FACE LifeCycleManageme | 0..2
ntPort»
specialization of «FACE_TSNodelnputPort» 0..*
«FACE_TransportNode»
specialization of «FACE_TSNodeOutputPorty | 0..1
«FACE_TransportNode»
«FACE_UoPInstance» «FACE_UoPInputEndPoint» 0.*
«FACE_UnitOfConformanc | «FACE_UnitOfConformance | 0..*

23

CO05: MemberEnd[1].name depends on the stereotypes of the values connected by the
FACE EndPoint.memberEnd association:

[1].name
memberEnd[0].type memberEnd[1].type memberEnd
[1].name
«FACE_AbstractUoP» «FACE_AbstractConnection» | connection
«FACE_UnitOfPortability» | specialization of connection
«FACE_Connection»
«FACE_UnitOfPortability» | «FACE_LifeCycleManageme | lcmPort
ntPort»
specialization of «FACE_TSNodelnputPort» inPort
«FACE_TransportNode»
specialization of «FACE_TSNodeOutputPort» | outPort
«FACE_TransportNode»
«FACE_UoPInstance» «FACE_UoPInputEndPoint» input
«FACE_UoPInstance» «FACE_UoPOutputEndPoint» | output
«FACE_UnitOfConformanc | «FACE_UnitOfConformance | endPoint
e» Endpointy
C06: Based on the EndPoint.memberEnd[0].type's stereotype:
[FIA] ?y]i)EEndPomt.memberEnd = «FACE_UnitOfPortability», the memberEnd[1].type metaproperty must be

stereotyped by one of the following:
A specialization of «<FACE_Connection»
«FACE_LifeCycleManagementPort»

= «FACE_AbstractUoPy, the memberEnd[1].type metaproperty must be
stereotyped by «FACE_AbstractConnectiony

= «FACE_UoPInstancey», the memberEnd[1].type metaproperty must be
stereotyped by one of the following:

«FACE_UoPInputEndPoint»
«FACE_UoPOutputEndPoint»

= A specialization of «FACE_TransportNode», the memberEnd[1].type
metaproperty must be stereotyped by one of the following:

«FACE_TSNodelnputPort»
«FACE_TSNodeOutputPort»

= «FACE_UnitOfConformancey, the memberEnd[1].type metaproperty must be
stereotyped by «FACE_UnitOfConformanceEndpoint»

FACE_IntegrationModel
Package: FACE Data Architecture

FACE Profile, v2.0 — beta 1

isAbstract: No
Generalization: FACE Element

Extension: Package

Description

A FACE_IntegrationModel is a container for FACE _IntegrationElements.

xstereotypes
FACE_Element
[Element]

I

wstereotypes wetereotypes
i metaconstraint
FACE_IntegrationModel s = = FACE_ArchitectureModel

[Package] fumiRole = "owner"} [Package]

swmetaconstraints CIEEIVECs
= — — — — — — — — |FACE_IntegrationElement
TumiRale = "owner'} [Elemant]
s
|
I
|
! ametaconstraints |
B {u;ﬂRJe =Tm:'1_ew"}_ -
Figure 7-6: FACE_IntegrationModel
Constraints
CO01: FACE _IntegrationModel.owner Elements with this stereotype may only be contained in

(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE _IntegrationModel»

FACE_MessageType
Package: FACE Data Architecture
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

FACE Profile v2.0 — beta 1 25

Description

Used to identify the FACE _UoPMessageType that specifies the data to be exchanged through a FACE_Endpoint.

wstereotvpes
| FACE_AbstractAssociation
| [A==ociation]
JT‘ : tereotypes
taconstraint it
. _“MElAconsTaNY . FACE PubSubConnection
ESETEOtpES, {umiRole = "memberEnd[0] type"} [Class]
FACE_MessageType
[A==0ociation]
; ustereotypes
| Smemconchegy: = FACE_LifeCycleManagementPort
TumiRole = "memberEnd[0] typa"} [Class]
: estereotypes
it traint
. . S\FACE TSNodePort
{umiRale = "memberEnd[0] type'"} [Class]
aMetaconstraints ESETENES
- — — — — — — — — =FACFE UoPMessageType
TumiFole = "memberEnd]1].typ="} [Class]
| wmetaconstraints
| TumiRale = "memberEnd] 1].2ggregation™}
= —
| emetaconstraints
[fumiRale = "memberEnd]1].mukiplicity™
.:_ il
| emetaconstraints
| {umiRole = "memberEnd] 1].namea"}
e —
Figure 7-7: FACE_MessageType
Constraints
CO01: FACE_ MessageType.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be

stereotyped by one of the following:
Specialization of «kFACE_ PubSubConnection»
«FACE_LifeCycleManagementPort»
Specialization of «<FACE TSNodePort»

FACE Profile, v2.0 — beta 1 26

C02: FACE_MessageType.memberEnd[1].aggregation

C03: FACE_ MessageType.memberEnd[1].multiplicity

C04: FACE_MessageType.memberEnd[1].name

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 1

Based on the stereotype of the memberEnd[0].type

metaproperty:

= Specialization of «kFACE_PubSubConnection»,
memberEnd[1].name is "messageType"

= «FACE_LifeCycleManagementPorty,
memberEnd[1].name is "lcmMessageType"

= Specialization of «<FACE_TSNodePort»,
memberEnd[1].name is "view"

C05: FACE_MessageType.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be

stereotyped by a specialization of
«FACE_UoPMessageType».

FACE_ModelElement
Package: FACE Data Architecture
isAbstract: Yes

Extension: Element
Description

An abstract stereotype created specifically for the FACE Profile. Used to represent the unique identity of constructed UDDL
and FACE model elements. Ensures that all FACE elements are identified by a GUID that is stable across all representations
of the model, regardless of tool. Applied directly to FACE elements that are not specified to have a description in the UDDL
or FACE metamodel.

| ustereotypes
| FACE_ModelElement
[Element]

|+ faceUUID - String [1] =
Figure 7-8: abstract FACE_ModelElement

Attributes

_faceUUID : String [1] The FACE unique identifier for the element. FACE UUIDs are
stable across all imports and exports of the FACE model regardless
of tool, and are maintained as part of the .face file. FACE UUIDs

are generated as GUIDs for new (no previous FACE UUID)

FACE Profile v2.0 — beta 1 27

FACEModelElements upon export of a new or updated FACE
architecture.

FACE_Realize
Package: FACE Data Architecture
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association
Description

Used to indicate a FACE element realization of another FACE element.

One of three diagrams for FACE_Realize
This diagram =shows only the constraints between FACE Unit of Portability and FACE Integration

uster&utyp&n elements.
FACE_Realize
[A=z=ociation]
| smetaconstraints N wstereotypes wstereotyped associations
fumiRalke = "memberEnd[0].type'} FAC E_Un[g:::fsz'c]:)rtabllltf {applied_stereotype = FACE_Realize} |
I
- ustergotypes |
it traint
L AMEAcOISTANY _ _ SFACE AbstractUoP |
{umiRole = "memberEnd[1].typa"} [Class] e - - - - - - - - - - -
T Lot L TP %FA ;;tzz;tj:z:mﬂ wstereotyped az=ociations
fumiRale = "mermbarEnd[0] typa"] _[CIEISS} Iapplied_sterectype = FACE_Reslize) |
I
) esterectypex |
s, SMCECONARS, == FACE_AbstractConnection e — — — — — — — _— _
{fumiRalke = "membearEnd[1] type"} [Class]
| smetaconstraints estereotypes wstereotyped associations
[fumiRole = "membarEnd[0] typ="} FACE_UoPinstance fapplied_stersctype = FACE_Reslize] |
[Class]
I
) astereotypen |
metaconstraint
- — SR S FACE_UnitOfPortability |
{umiRole = "memberEnd[1].type"} [Class] < - - — - — — — — =
) astereotypes «stereotyped aszociations
| smelaconstiaity _ _ o FAGE UoPEndPoint |~ appied staeciype FACE Reasize
{umiRole = "memberEnd[0].type"} [Clasg] |
I
| astereotypes |
- — —“mEECEEStE'nt”_ — — = FACE Connection y
fumiRale = "memberEnd[1] type"} [Class] I =i =R SRR SRS SR =

Figure 7-9: FACE_Realize

FACE Profile, v2.0 — beta 1

One of three diagrams for FACE_Realize

wstereotypes
FACE_Realize
[A==sociation]

FACE Logical Data Model Elements.

«metaconstraints

fumiRole = "memberEnd]0] type"}

wmetaconstraints

fumiRale = "memberEnd[0] fype"}

wmetacenstraints

fumiRale = "memberEnd[1].typa'}

wmetaconstraints

fumiRale = "membearEnd[0] typa'}

«metacenstraints

fumiRale = "membarEnd[1] type"}

«metaconstraints

jumiRale = "membarEnd[0] type"}

wmetacenstraints

fumiRole = "memberEnd]0] type"}

«metaconstraints

fumiRale = "memberEnd[1] fype"}

Figure 7-10: FACE_Realize

FACE Profile v2.0 — beta 1

This diagram shows only the conglraints between FACE Platform Data Model elements and

wstereotypes
FACE_PlatformDataType
[Element]

wstereotyped associations

fapplied_sterectype = FACE_Reaslize} |

wsterectypes |
FACE_AbstractMeasurement |
._‘:_ _______
[Element]

wstereotypex
FACE_PlatformEntity
[Class]

wstereotypes |
FACE_LogicalEntity . |
[Clags]

wstereotypes
FACE_PlatformAssociation
[Clazs] |

wstereotypes |
FACE_LogicalAs=sociation =
[Clazs]

wstereotypes
FACE_PlatformQueryr — — — — — — — — — —
[Claz=]

wstereotypes [
FACE_LogicalGQuery .-
[Clazs]

wsterectypes
FACE_CompositeTemplate
[Clazs]

-
{applied_sterectype = FACE_Reslize}

wstereotypes
FACE_PlatformCompositeQuery
[Class]

wstereotyped associations [

1=pplied_stersotype = FAC%_RE&IEE}

wstereotypes
FACE_LogicalCompositeQuery
[Class]

29

FACE_AbstractAssociation

wstereotypes

[&s=ociation]

«metaconstraints =

fumiRcle = "memberEnd]1].muktiplicity |

—

ametaconstraints |

fumiRole = "memberEnd] 1] name"} |
— =

emetaconstraints |
{umiRale = "memberEnd[1] aggregation’)|
— =

B

xstersotypes
FACE_Realize
[&=sociation]

Figure 7-11: FACE_Realize

FACE Profile, v2.0 — beta 1

One of three diagrams for FACE_Realize
Thiz diagram shows the specialization relationship, the constraints on memberEnd[1] (muttiplicity,
name, aggegation) and the constraints between FACE Logical Data Model elements and FACE

Conceptual Data Model Elements.

ametaconstraints

{umiRole = "memberEnd[0] typ="}

emetaconstraint»

{umiRcle = "memberEnd]0] type"}

_ _smetaconstraints
{umiRale = "memberEnd[1] type"}

emetaconstraints

{umiRale = "memberEnd[0] type"}

aemetaconsiraints

{umiRole = "memberEnd[1].type'}

smetaconstraints

{umiRale = "memberEnd[0] type"}

cmetaconstraints

{umiRale = "memberEnd[1] type"}

___smetaconstraints
{umiR ole = "membarEnd[0] fype'"}

emetaconstraints

{umiRale = "memberEnd[1] type"}

emetaconstraints

{umiRale = "memberEnd(0] type"}

___emetaconstraints
{umniRole = "membearEnd] 1] typa"}

b

wstereotypes

FACE_Measurement |

[Class]

xsterectyped associations

wstereotypes

FACE_MeasurementAxis

[Class]

wstereotypes
FACE_Observable
[Class]

s

wstereotypes

FACE_LogicalEntity —

[Class]

«stereotyped assoeciations
{applied_stersctype = FACE_Realize}

A

«stereotypes

FACE_ConceptualEntity

[Class]

Al

wstereotypes

FACE_LogicalAssociation

[Class]

{applied_stereotype = FACE_Reslize}

wstereotypes

FACE_ConceptualAssociation |

[Class]

~|FACE_LogicalQuery |~

xstersotypes

[Clazs]

xstereotyped associations
- — === = — -

{applied_stereotype = FACE_Realize}

i

astereotypen

FACE_ConceptualQuery

[Class]

wstersotypes

FACE_LogicalCompositeQuery

[Class]

)

wstereotypes
FACE_ConceptualCompositeQuery

[Class]

30

Constraints

CO01: FACE_Realize.memberEnd[0].type

C02: FACE_Realize.memberEnd[1].aggregation

FACE Profile v2.0 — beta 1

Value for the memberEnd[0].type metaproperty must be
stereotyped by a one of the following stereotypes:

«FACE_Measurement»
«FACE_MeasurementAxis»
«FACE_LogicalEntity»

«FACE_Logical Associationy»
«FACE_LogicalQuery»
«FACE_LogicalCompositeQuery»
Specializations of «<FACE_PlatformDataType»
«FACE_PlatformAssociation»
«FACE_PlatformEntity»
«FACE_PlatformQuery»
«FACE_PlatformCompositeQuery»
«FACE_CompositeTemplate»
«FACE_UnitOfPortability»
Specializations of «kFACE Connection»
«FACE_UoPInstance»

Specializations of «<FACE_UoPEndPoint»

memberEnd[1].aggregation shall be none

31

C03: FACE_Realize.memberEnd[1].multiplicity

C04: FACE Realize.memberEnd[1].name

FACE Profile, v2.0 — beta 1

Based on the stereotype of the memberEnd[0].type
metaproperty:

= «FACE_CompositeTemplate»,
«FACE_PlatformQuery»,
«FACE_PlatformCompositeQuery»,
«FACE_UnitOfPortability», or specialization of
«FACE_Connectiony», memberEnd[1].multiplicity is
0..1

= specialization of «<FACE PlatformDataType»,
«FACE_LogicalAssociation»,
«FACE_LogicalCompositeQuery»,
«FACE_LogicalComposition»,
«FACE_LogicalEntity», «<FACE_LogicalQuery»,
«FACE_Measurementy, «FACE MeasurementAxisy,
«FACE_PlatformAssociation»,
«FACE_PlatformEntity», specialization of
«FACE_UoPEndPoint», or kFACE_UoPInstance»,
memberEnd[1].multiplicity is 1

memberEnd[1].name shall be "realize"

32

C05: FACE Realize.memberEnd[1].type

FACE Profile v2.0 — beta 1

Based on the Realize.memberEnd[0].type value's
stereotype:

= «FACE_Measurement», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Observable»

= «FACE_MeasurementAxis», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Observable»

= «FACE_LogicalEntity», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Conceptual Entity»

= «FACE_LogicalAssociation», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_Conceptual Association»

= «FACE LogicalQuery», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_ConceptualQuery»

= «FACE_LogicalCompositeQuery», the
memberEnd[1].type metaproperty must be stereotyped
by «<FACE_ConceptualCompositeQuery»

= A specialization of «<FACE_PlatformDataType», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «KFACE_AbstractMeasurement»

= «FACE_PlatformAssociationy, the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalAssociation»

= «FACE_PlatformEntity», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_LogicalEntity»

= «FACE_PlatformQuery», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_LogicalQuery»

= «FACE_PlatformCompositeQuery», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalCompositeQuery»

= «FACE_CompositeTemplate», the
memberEnd[1].type metaproperty must be stereotyped
by «<FACE_ LogicalCompositeQuery»

= «FACE_UnitofPortability», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_AbstractUoP»

= A specialization of «<FACE_Connectiony, the
memberEnd[1].type metaproperty must be stereotyped
by «<FACE_AbstractConnection»

= «FACE_UoPInstancey, the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_UnitOfPortability»

33

= A specialization of «<FACE UoPEndPoint», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «FACE_Connection»

FACE_TraceabilityModel
Package: FACE Data Architecture
isAbstract: No

Generalization: FACE Element

Extension: Package

Description

A FACE_TraceabilityModel is a container for FACE TraceabilityElements.

i xstereotypen |
| FACE_Flement
[Element]

«stereotypes i sk «stereotypes
FACE_TraceabilityModel _ _ smelaconstiaints - FACE_ ArchitectureModel
[Package] {umiRoke = "owner'} [Package]
; wstereotypes
e evelmonstamly | | e eeabilityEtment
TumiR ole = "owmner'} [Element]

TumiRole = "owner'}

Figure 7-12: FACE_TraceabilityModel

Constraints

CO01: FACE TraceabilityModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:

«FACE_ArchitectureModel»
«FACE_TraceabilityModel»

FACE Profile, v2.0 — beta 1 34

FACE_UoPModel

Package: FACE Data Architecture
isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE _UoPModel is a container for FACE_UoPElements.

ugter&utype::
FAGE_Element

[Element]
P smetaconstraints | EsictEpes
EREERI N | PR =/ FACE_ArchitectureModel
[Package] fumiFole = "gwne'} [Package]
. wstereotypes
L _ _kmetaconstrainty __|£acE voPElement
TumiRole = "owner' | [Elemant]
s
, |
| |
emetaconstraints |
R Tl gy i 1 e " i * -
TumiRole = "owner"}
Figure 7-13: FACE_UoPModel
Constraints
C01: FACE_UoPModel.owner Elements with this stereotype may only be contained in

(owned by) elements with the following stereotypes:
«FACE_ ArchitectureModel»
«FACE_UoPModel»

7111 FACE_Profile::FACE Data Architecture::FACE Data Model

The FACE Data Model package of the FACE Profile contains elements that represent the FACE Data Model package as
specified in the FACE metamodel. The FACE metamodel references the UDDL specification for its content. The
subpackages in this package are organized to match the FACE and UDDL metamodel organization.

FACE Profile v2.0 — beta 1 35

FACE_ConceptualDataModel
Package: FACE Data Model

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Package

Description

A FACE_ConceptualDataModel is a container for FACE ConceptualElements.

«stereotypes
FACE DataModelElement
[Element]
xstereotypes
FACE_ConceptualDataModel 5 wstereotypexs
- t traint
Packsge] __ _ metacensiEm™r . FACE_DataModel
TumiRale = "owner'} [Package]
. emetaconstraints | astereotypes
HimiRoks = "owrier'$ FACE_ConceptualElement
[Element] [
I ——— i
|
|
| |
| smetaconstraints
© {umiRole = "owner}
Figure 7-14: FACE_ConceptualDataModel
Constraints
CO01: FACE_ConceptualDataModel.owner Elements with this stereotype may only be contained in

(owned by) elements with the following stereotypes:
«FACE_DataModel»
«FACE_ConceptualDataModel»

FACE_DataModelElement
Package: FACE Data Model
isAbstract: Yes

Generalization: FACE ModelElement

FACE Profile, v2.0 — beta 1

36

Description

A FACE_DatamodelElement is the root type for defining the elements of the Data Model Language. The “name” attribute in
the UML metatype captures the name of the Data Model Element in the model. The “description” attribute captures a
description for the Data Model Element.

ust;areu’.fype:u
FACE_ModelElement
[Element]

[

sstersotypes
FACE _DataModelElement
[Element]

+d ESEFiEﬁD;‘I‘ d Strlng [11 ‘

Figure 7-15: abstract FACE_DataModelElement

Attributes

description : String [1]

FACE Conformance/OCL Constraints

CO01: FACE_DataModelElement.isValidldentifier An identifier is valid if it consists of alphanumeric
characters.

FACE Profile v2.0 — beta 1 37

C02: FACE DataModelElement.nonEmptyDescription ~ The following data model elements must have a non-
empty description:

- Observable

- Unit

- Landmark

- ReferencePoint

- MeasurementSystem

- MeasurementSystemAxis

- CoordinateSystem

- CoordinateSystemAxis

- MeasurementSystemConversion

- LogicalValueTypeUnit.value type == Boolean
- LogicalValueTypeUnit.value type == Character
- LogicalValueTypeUnit.value type == Numeric
- LogicalValueTypeUnit.value type == Integer

- LogicalValueTypeUnit.value type == Natural

- LogicalValueTypeUnit.value type ==
NonNegativeReal

- LogicalValueTypeUnit.value type == Real
- LogicalValueTypeUnit.value type == String

FACE_LogicalDataModel
Package: FACE Data Model

isAbstract: No
Generalization: FACE_DataModelElement

Extension: Package

Description

A FACE_LogicalDataModel is a container for FACE LogicalElements (Logical Data Model elements).

FACE Profile, v2.0 — beta 1

38

xstereotypes :
FACE_DataModelEfement ‘

[Element]
T wetersotypes
wstereotypes . um&tﬂED nitraiﬂtn | FACE_DataModel
FACE_LogicalDataModel [umiRole = "owner'] [Package]
[Package]
) astersotypes
_ wmetaconstraints | FAGE | ogicalElement
{umiRole = "owner'} [Element]
|:_ ES
|
' |
axmetaconstraints |
T T umRae=toemer]
Figure 7-16: FACE_LogicalDataModel
Constraints
C01: FACE LogicalDataModel.owner Elements with this stereotype may only be contained in

(owned by) elements with the following stereotypes:
«FACE_DataModel»
«FACE_LogicalDataModel»

FACE_PlatformDataModel

Package: FACE Data Model

isAbstract: No

Generalization: FACE DataModelElement

Extension: Package

Description

A FACE_PlatformDataModel is a container for FACE PlatformElements (platform Data Model Elements).

FACE Profile v2.0 — beta 1 39

xstereotypes
FACE DataModelElement
[Element]

R

xstereotypes
FACE_PlatformDataModel
[Package]

| wmetaconstraints

smetaconstraints

TumiRaole = "owner'}

smetaconstraints

wstereotypes
=/FACE_DataModel
[Package]

wstereptypes

— — — — — — _—|FACE_FlatformElement

TumiRobe = "owner'}

_{u;ﬂ?nl_e = "D‘.i.l'."l_a'"}_

Figure 7-17: FACE_PlatformDataModel

Constraints

CO01: FACE PlatformDataModel.owner

FACE_SpecializationOwner
Package: FACE Data Model
isAbstract: Yes

Extension: Class

Description

| [Element]

Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:

«FACE_DataModel»
«FACE_PlatformDataModel»

Abstract type to group all FACE stereotypes that can own a «Specialize» generalization. Enables application of constraints
uniformly within specialized elements.

This stereotype exists only for specification of constraints that apply to the specialized FACE Profile stereotypes. It is
optional in the implementation of this specification.

FACE Profile, v2.0 — beta 1

40

wstereotypes
FACE_Specialize
[Generalization]

ustereotypes emetaconstraints
FACE_SpecializationOwner — — — — — — — — — —
[Class] fumiR ole = "generalization"}
- ametaconstraints
TumiRole = "source"}
i ametaconstraints
- {umiRole = "target"}
astereotypes astereotypes astereotypen
FACE_ConceptualEntity FACE_LogicalEntity FACE_PlatformEntity
[Claz=] [Clazs] [Clasz]
wstereotypes astereotypes wstereotypes
FACE_ConceptualAssociation FACE_LogicalAssociation FACE_PlatformAssociation
[Clazs] [Clazs] [Clazs]

Figure 7-18: abstract FACE_SpecializationOwner

Constraints

CO01: FACE SpecializationOwner.generalization

FACE_Specialize
Package: FACE Data Model
isAbstract: No

Extension: Generalization

Description

The generalization collection may contain no more than

one «FACE_Specialize» generalization.

Used to indicate a FACE element Specialization of another FACE element.

FACE Profile v2.0 — beta 1

41

xstereotypes
FACE_Specialize
[Generalization]

smetacenstraints

TumiRole = "sourc="}

wmetaconstraints

TumiRole = "target}

wmetaconstraints

TumiRcle = "generalization'}

Figure 7-19: FACE_Specialize

Constraints

CO01: FACE_Specialize.source

FACE Profile, v2.0 — beta 1

sstersotypes
FACE SpecializationOwner
[Clazs]

The value for the source metaproperty must be
stereotyped by a specialization of
«FACE_SpecializationOwner.

42

C02: FACE Specialize.target

Based on the Specialize.source value's stereotype:

= «FACE_ConceptualEntity», the target metaproperty
must be stereotyped by «kFACE_ConceptualEntity»

= «FACE_Conceptual Association», the target
metaproperty must be stereotyped by one of the
following:

«FACE_Conceptual Entity»
«FACE_Conceptual Association»

= «FACE_LogicalEntity», the target metaproperty must
be stereotyped by «FACE_LogicalEntity»

= «FACE_LogicalAssociationy, the target metaproperty
must be stereotyped by one of the following:

«FACE_LogicalEntity»
«FACE_LogicalAssociation»

= «FACE_PlatformEntity», the target metaproperty
must be stereotyped by «<FACE_PlatformEntity»

= «FACE_ PlatformAssociation», the target
metaproperty must be stereotyped by one of the
following:

«FACE_PlatformEntity»
«FACE_PlatformAssociation»

7.1.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model::ConceptualDataModel

The ConceptualDataModel package of the FACE Profile contains elements that represent the Conceptual Data Model

subpackage as specified in the UDDL metamodel.

FACE_BasisElement
Package: ConceptualDataModel
isAbstract: Yes

Generalization: FACE_ConceptualComposableElement

Description

A conceptual FACE BasisElement is a conceptual data type that is independent of any specific data representation.

FACE Profile v2.0 — beta 1

43

| wstereotypes
| FACE_ConceptualComposableElement
| [Element]

i

xstereotypes
FACE_BasisElement
[Element]

Figure 7-20: abstract FACE_BasisElement

FACE_BasisEntity
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualElement

Extension: Class

Description

A FACE_BasisEntity represents a unique domain concept and establishes a basis from which FACE_ConceptualEntities can
be specialized.

xstereotypes
FACE ConcepiualElement
[Element]
wstereotypes I wstereotypes
metaconstraint
FACE_BasisEntity = — — s et s — FACE_EntityBasis
[Class] fumiRole = "target’} [Generalization]
R wstereotypes
_ wstersotyped generaizations |pacp conceptualEntity
Isterectype = FACE_EntityBasis} [Class]

Figure 7-21: FACE_BasisEntity

FACE_ConceptualAssociation
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE ConceptualEntity

FACE Profile, v2.0 — beta 1 44

Description

A FACE_Conceptual Association represents a relationship between two or more FACE ConceptualEntities. In addition, there
may be one or more conceptual Composable Elements that characterize the relationship. FACE Conceptual Associations are
FACE ConceptualEntities that may also participate in other FACE Conceptual Associations.

wstereotypes
FACE_ConceptualEntity
[Claz=]

b

usf&reutyp-e:u

FACE_ConceptualAssociation w«metaconstraints sstersotypes |
[Clasg] TP TS Sy . o T FACE_ConceptualParticipant
fumiRale = "memberEnd[0].type"} —I A sociatan] |

ametaconstraints | e
o e e — FACE_Realize
{umiRole = "memberEnd] 1] .typ="} | [#==0ociation]
satereptyped azzociations xsierestypes
e e L e e Py FACE_LogicalAssociation
{applied_stereotype = FACE_Realize} [Class]
Figure 7-22: FACE_ConceptualAssociation
FACE Conformance/OCL Constraints
CO1: A FACE Conceptual Association must have at least two
FACE Conceptual Association.hasAtLeastTwoParticipa Participants.
nts

FACE_ConceptualCharacteristic
Package: ConceptualDataModel
isAbstract: Yes

Generalization: FACE ModelElement

Description

A FACE_ ConceptualCharacteristic is a defining feature of a FACE ConceptualEntity. The "name" attribute corresponds to
the UDDL Standard's "rolename" attribute and defines the name of the FACE ConceptualCharacteristic within the scope of
the FACE_ConceptualEntity. The "lowerBound" and "upperBound" attributes define the multiplicity of the composed
Characteristic. An "upperBound" multiplicity of -1 represents an unbounded sequence.

FACE Profile v2.0 — beta 1 45

ustersotypes
FACE_ModelElement
[Element]
wstereotypes
FACE_ConceptualCharacteristic
[Elernent]

| +de=scription : String [1-2 -
| +specializes : FACE_ConceptualCharacteristic [0..1] :

Figure 7-23: abstract FACE_ConceptualCharacteristic

Attributes

description : String [1]

specializes : FACE_ConceptualCharacteristic [0..1]

FACE Conformance/OCL Constraints

Col:
FACE_ConceptualCharacteristic.lowerBoundValid

C02:
FACE_ConceptualCharacteristic.lowerBound LTE Up
perBound

CO03:
FACE_ConceptualCharacteristic.rolenamelsValidldenti
fier

C04:
FACE_ConceptualCharacteristic.specializeCharacteristi
cOnce

CO05:
FACE_ConceptualCharacteristic.upperBoundValid

FACE_ConceptualComposableElement
Package: ConceptualDataModel
isAbstract: Yes

Generalization: FACE ConceptualElement

FACE Profile, v2.0 — beta 1

A FACE_ConceptualCharacteristic's lowerBound must
be greater than or equal to zero.

A FACE ConceptualCharacteristic's lowerBound must
be less than or equal to its upperBound, unless its
upperBound is -1.

The rolename of a FACE_ConceptualCharacteristic
must be a valid identifier.

A FACE_ConceptualCharacteristic must be specialized
no more than once in a generalization hierarchy.

A FACE_ConceptualCharacteristic's upperBound must
be equal to -1 or greater than 1.

46

Description

A FACE_ConceptualComposableElement is a FACE_ConceptualElement that is allowed to participate in a Composition
relationship. In other words, these are the conceptual Elements that may be a characteristic of a FACE_ConceptualEntity.

sstereotypes
| FACE_ConceptualElement
| [Element]

F

wstersotypes L Jrcor e | ustereotypes

FACE_ConceptualComposableElement T Sriies, e —iFAI:E_Conl:eptuaICr:rmp-osition
[Element] {umiRole = "type | [Property] |

Figure 7-24: abstract FACE_ConceptualComposableElement

FACE_ConceptualCompositeQuery
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE ConceptualView

Extension: Class

Description

A FACE_ConceptualCompositeQuery is a collection of two or more FACE_ConceptualQueries. The "isUnion" attribute
specifies whether the composed FACE_ConceptualQueries are intended to be represented as cases in an union or as members
of a struct.

FACE Profile v2.0 — beta 1 47

wstereotypes
FACE_ConceptualView
[Class]

T

astereotypes
FACE_ConceptualCompositeQuery | _ "~

+iglnion : Boolean [1] = false

.:___

Figure 7-25: FACE_ConceptualCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

Col:
FACE_ConceptualCompositeQuery.ownedAttribute

FACE Conformance/OCL Constraints

COl:
FACE_Conceptual CompositeQuery.compositionsHave
UniqueRolenames

FACE Profile, v2.0 — beta 1

xmetaconstraints

[Class] {umiRole = "membsrEnd|1] fyp='} [As=ociation]

xstereotyped associations

{applied sterectype = FACE_Reslize} [Clazs]

smetaconstraints

fumiRole = "class"} [Property]

smetaconstraints

- — — — = — T — =

TumiRole = "ownedAtribute")

sstersotvpes
i {FACE_Realize

wstereotypes
{FACE_LogicalCompositeQuery

ssterectypes
T __ _— | FACE_ConceptualQueryComposition

The values for the ownedAttribute metaproperty must
meet the following criteria:

- must be ordered list

- must be stereotyped
«FACE_ConceptualCompositeQuery» or its
specializations

- must contain 2 or more elements

A FACE_ConceptualQueryComposition's rolename
must be unique within a
FACE_ConceptualCompositeQuery.

48

C02: A FACE ConceptualCompositeQuery may not

FACE_ConceptualCompositeQuery.noCyclesInConstru compose itself.
ction

C03: A FACE_ConceptualCompositeQuery may not
FACE_ConceptualCompositeQuery.viewComposedOn compose the same FACE Conceptual View more than

ce once.

FACE_ConceptualComposition
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE_ConceptualCharacteristic

Extension: Property

Description

A FACE_ConceptualComposition is the mechanism that allows FACE_ConceptualEntity to be constructed from other
FACE_ConceptualComposableElements. The "type" of a FACE_Conceptual Composition is the
FACE_ConceptualComposableElement being used to construct the FACE ConceptualEntity.

wstereotypes
FACE_ConceptualCharacteristic
[Element]

[

wstereotypes
r— — — — - FACE_ConceptualComposition

| tmetaconstraints [Property] emetaconstraints

l{umRnle = "lowrer'} {umiRole = "class"}
=T mmroTTn oo

smetaconstraints

fumiRole = "ownedAtribute'}

«metaconstraints

fumiRole = "uppar'} .
it reiaiieg) xmetaconstraints

wstereotypes
FACE_ConceptualEntity
[Class]

wstereotypes

= FACE_ConcepiualComposableElement

fumiRaole = "type™} [Element]
Figure 7-26: FACE_ConceptualComposition
Constraints
CO01: FACE_ConceptualComposition.class Value for the class metaproperty must be stereotyped

«FACE_ConceptualEntity» or its specializations.

FACE Profile v2.0 — beta 1

49

C02: FACE_ConceptualComposition.lower

C03: FACE_ConceptualComposition.type

C04: FACE_ConceptualComposition.upper

FACE Conformance/OCL Constraints

COlL:
FACE_Conceptual Composition.multiplicityConsistent
WithSpecialization

C02:
FACE_ConceptualComposition.specializationDistinct

CO03:
FACE_ConceptualComposition.typeConsistentWithSpe
cialization

FACE_ConceptualElement
Package: ConceptualDataModel
isAbstract: Yes

Generalization: FACE_DataModelElement

Description

The value for the lower (lower bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1.

Value for the type metaproperty must be stereotyped
«FACE_ConceptualComposableElement» or its
specializations.

The value for the upper (upper bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1

If a FACE ConceptualComposition specializes, its
multiplicity must be at least as restrictive as the
FACE ConceptualComposition it specializes.

If a FACE_ConceptualComposition specializes, its type
or multiplicity must be different from the
FACE_ConceptualComposition it specializes.

If a FACE ConceptualComposition specializes, it
specializes a FACE ConceptualComposition. If

FACE ConceptualComposition "A" specializes
FACE_ConceptualComposition "B", then A's type must
be B's type or a specialization of B's type.

A FACE_ConceptualElement is the root type for defining the conceptual elements of the Data Model Language.

_ ustereotypes
| FACE_DataModeiElement

[Element]
ustereotypes | ametaconstraints
FACE_ConceptualElement |
TumiRole = "owner'}

[Element]
Figure 7-27: abstract FACE_ConceptualElement

FACE Profile, v2.0 — beta 1

wsterentypes

————— == FACE_ConceptualDataModel

[Package]

50

Constraints

CO01: FACE_ConceptualElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_ConceptualDataModel»

FACE Conformance/OCL Constraints

CO01: FACE_ConceptualElement.hasUniqueName Each FACE ConceptualElement must have a unique
name, as determined using case insensitivity.

FACE_ConceptualEntity
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE_ConceptualComposableElement, FACE _SpecializationOwner

Extension: Class
Description

A FACE_ConceptualEntity represents a domain concept in terms of its FACE_Observables and other composed
FACE ConceptualEntities. Since a FACE ConceptualEntity is built only from FACE ConceptualComposableElements, it is
independent of any specific data representation, units, or reference frame.

FACE Profile v2.0 — beta 1 51

wstereotypes
FACE_ConceptualComposableElement

[Element]
o ﬂgtEFEUWFEnIE s . ametaconstraints ustereotypes
_ConceptualEnti T s e e e o S EACE - EndityBasis
miftale = " ! o
[Clazs] i - G [Generalization]
% 1
e _ u_met_aculstrﬂntx—_] astereotypes
[umiFale = "membarEnd[1] type"} FACE_Realize
[A==ociation]
. _ _ _ _cmetaconstraints = astereotypen
{umiRole = "ownedAtiribute") FACE_ConceptualComposition
[Property]
e ametaconstraints
fumiRole = "class"}
wstereotyped generalization» astereotypes
[sterectype = FACE_EntityBasis) FACE_BasisEntity
[Clazz]
e wstereotyped associations astereotypes
fapplied_stersotype = FACE_Realize] FACE_LogicalEntity
[Clasz]
xstereotyped associations ustereotypes
- — — — — — — — — — - FACE_ConceptualEntityTrace
Tapplied_sterectype = FACE_Trac=Entity}
[Clasz]
stereotype
ametaconstraints FAgE TraipEthit}r
{umiRole = "memberEnd|1].type"} [As_.su ciation]

Figure 7-28: FACE_ConceptualEntity

Constraints

CO01: FACE_ConceptualEntity.ownedAttribute

FACE Conformance/OCL Constraints

Co1:

FACE_ConceptualEntity.characteristicsHaveUniqueRol

enames

FACE Profile, v2.0 — beta 1

The value for the ownedAt

tribute metaproperty must be

stereotyped «FACE_Conceptual Compositiony or its

specializations

A Characteristic's rolename must be unique within a

FACE_ConceptualEntity.

C02: FACE_ConceptualEntity.entitylsUnique

C03:
FACE_ConceptualEntity.hasAtlLeastOneLocalCharacte
ristic

C04: FACE_ConceptualEntity.hasUniquelD

CO05:
FACE_ConceptualEntity.noCyclesInSpecialization

Co6:
FACE_ConceptualEntity.observableComposedOnce

C07:
FACE ConceptualEntity.specializingCharacteristicsCo
nsistent

FACE_ConceptualParticipant
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE_ConceptualCharacteristic

Extension: Association

Description

A FACE ConceptualEntity must be unique in a
Conceptual Data Model. (An Entity must be unique if
the set of its Characteristics is different from other
FACE_ConceptualEntities' in terms of type,
lowerBound, upperBound, and path (for Participants)).
NOTE: If a FACE_ConceptualEntity is part of a
specialization cycle, its uniqueness must be undefined.
So, if a FACE_ConceptualEntity must be part of a
specialization cycle, it will not fail entityIsUnique, but
will fail noCyclesInSpecialization.

A FACE_ConceptualEntity must have at least one
Characteristic defined locally (not through
generalization).

A FACE_ConceptualEntity must contain a Composition
whose type is an Observable named 'Identifier'.

A FACE_ConceptualEntity must not be a specialization
of itself, directly or indirectly.

A FACE_ConceptualEntity may not compose the same
FACE_Observable more than once.

If FACE ConceptualEntity A' specializes

FACE ConceptualEntity A, all characteristics in A'
specialize nothing, specialize characteristics from A, or
specialize characteristics from a
FACE_ConceptualEntity that must be a generalization
of A. (If A’ does not specialize, none of its
characteristics specialize.)

A FACE_ConceptualParticipant is the mechanism that allows a FACE_Conceptual Association to be constructed between
two or more FACE_ConceptualEntities. The "type" (target of the directional Association) of a conceptual Participant is the
conceptual Entity being used to construct the conceptual Association. Target multiplicity values represent the
"sourceLowerBound" and "sourceUpperBound" attributes that define the multiplicity of the conceptual Association relative
to the Participant in the UDDL metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent
of a "sourceUpperBound" multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The
"path" attribute of the Participant describes the chain of entity characteristics to traverse to reach the subject of the association
beginning with the entity referenced by the "type" attribute.

FACE Profile v2.0 — beta 1 53

FACE ConceptualParticipant Associations are directional, from a FACE Conceptual Association to a

FACE_ConceptualEntity.

wstereotypes
FACE_ConceptualCharacteristic
[Element]

wstereotypes
FACE_ConceptualParticipant
[A==ociation]

smetaconstraints

TumiRale = "memberEnd[0].type'}

+path : String [1]=
+_importedPathUUIDs : String [0..%]

smetaconstraints
fumiRole = "memberEnd[1] type"}

| «metaconstraints
TumiRaole = "memberEnd-=sza(}"}
e |
| smetaconstraints
|{umRDBE = "memberEnd] 1].name="}
.-_HL e
| smetaconstraints
fumiRaole = "memberEnd] 1]. aggregation™}
_—
| xmetaconstraints
|{uch|he = "memberEnd[0]. multiplicity"}
_—
! wmetaconstraints
I{uchll‘e = "memberEnd[0].is Mavigable™}
PRSSEEE |
smetaconstraints
l{urruRobe = "memberEnd[1].is Mavigable}
.-_HL ==

Figure 7-29: FACE_ConceptualParticipant

Attributes

path : String [1]

FACE Profile, v2.0 — beta 1

wstereotypes
FACE_ConceptualAssociation
[Clas=]

wstereotypes
FACE_ConceptualEntity
[Class]

The "path" property indicates the portion of the target
«FACE_ConceptualEntity» that is participating in the

54

_importedPathUUIDs : String [0..*]

Constraints

«FACE_Conceptual Association» that is the source for the
«FACE_ConceptualParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:

A conceptual PathNode is a single element in a chain that
collectively forms a path specification.

A conceptual ParticipantPathNode is a conceptual PathNode that
selects a Participant that references an Entity. This provides a
mechanism for reverse navigation from an Entity that participates in
an Association back to the Association.

A conceptual CharacteristicPathNode is a conceptual PathNode that
selects a conceptual Characteristic which is directly contained in a
conceptual Entity or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Conceptual CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

CO01: FACE_ConceptualParticipant.memberEnd->size() memberEnd.size() shall be 2

C02:

memberEnd[0].isNavigable shall be false

FACE_ConceptualParticipant.memberEnd[0].isNaviga

ble

FACE Profile v2.0 — beta 1

55

CO03:
FACE_ConceptualParticipant.memberEnd[0].multiplici

ty
C04: FACE_ConceptualParticipant.memberEnd[0].type

CO0s:
FACE_ConceptualParticipant.memberEnd[1].aggregati
on

C06:
FACE_ConceptualParticipant. memberEnd[1].isNaviga
ble

C07:
FACE_ConceptualParticipant.memberEnd[1].name

C08: FACE_ConceptualParticipant. memberEnd[1].type

FACE Conformance/OCL Constraints

COlL:
FACE_ConceptualParticipant.multiplicityConsistentWi
thSpecialization

C02:
FACE_ConceptualParticipant.pathNodeResolvable

C03: FACE_ConceptualParticipant.rolenameDefined

C04:
FACE_ConceptualParticipant.specializationDistinct

CO0s:
FACE_ConceptualParticipant.typeConsistentWithSpeci
alization

FACE_ConceptualQuery
Package: ConceptualDataModel

FACE Profile, v2.0 — beta 1

memberEnd[0].multiplicity shall be 1

Value for the memberEnd[0].type metaproperty must be
stereotyped by «kFACE_Conceptual Association»

memberEnd[1].aggregation shall be none

memberEnd[1].isNavigable shall be true

The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

Value for the memberEnd[1].type metaproperty must be
stereotyped by «kFACE_ConceptualEntity»

If a FACE ConceptualParticipant specializes, its
multiplicity must be at least as restrictive as the
FACE ConceptualParticipant it specializes.

If a FACE_ConceptualParticipant has a path sequence,
the first PathNode in the sequence must be resolvable
from the type of the FACE_ConceptualParticipant.

A FACE ConceptualParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE ConceptualParticipant.

If a FACE_ConceptualParticipant specializes, its type,
PathNode sequence, or multiplicity must be different
from the FACE_ConceptualParticipant it specializes.

If a FACE_ ConceptualParticipant specializes, it
specializes a FACE_ConceptualParticipant. If
FACE_ConceptualParticipant "A" specializes
FACE_ConceptualParticipant "B", then A's type must
be the same or a specialization of B's type, and A's
PathNode sequence is "equal to" or "specializes" B's
PathNode sequence (see "pathIsEqual" and
"pathIsSpecializationOf" helper methods).

56

isAbstract: No

Generalization: FACE ConceptualView

Extension: Class

Description

A FACE_ConceptualQuery is a specification that defines the content of FACE _Conceptual View as a set of
FACE_ConceptualCharacteristics projected from a selected set of related FACE_ConceptualEntities. The "specification'
attribute captures the specification of a Query as defined by the Query grammar in Section 6.1.

sstereotypes
| FACE_ConceptualView

[Class]
L

[-

szterentypes ' O ' wstereotypes |
FACE_ConceptualCluery = — — — — — — — — —FACE_Realize
[Clazg] Sl S S Entl i e [4==ociation]
+SpECifiCﬂ‘til:ll'-l .:. E:tdr-il.'l-g [11=
estereotyped associations . “stEFE?WPEI'
| 12pplied_stersctype = FACE_Reslize] :FACE_IEEELZE]”Q“EW

Figure 7-30: FACE_ConceptualQuery

Attributes

specification : String [1]

FACE_ConceptualQueryComposition
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE ModelElement

Extension: Property

Description

A FACE_ConceptualQueryComposition is the mechanism that allows a FACE_Conceptual CompositeQuery to be
constructed from FACE ConceptualQueries and other FACE Conceptual CompositeQueries. The metatype "name" attribute
represents the UDDL "rolename" attribute that defines the name of the composed conceptual View within the scope of the
composing conceptual CompositeQuery. The "type" of a conceptual QueryComposition is the conceptual View being used to
construct the conceptual CompositeQuery.

FACE Profile v2.0 — beta 1 57

xstereotypes
FACE_ModelElement

[Element]
swetersotypes
FACE_ConceptualQueryComposition ametaconstraints N astersotypes
[Property] T _{umEDE: T FACE_ConceptualCompositeQuery
[Clazs]
ametaconstraints
fumiRole = "ownedAtribute"}
s estersotypes
metaconstraint
e = FAGE_ConceptualView
ol =" [Class]

Figure 7-31: FACE_ConceptualQueryComposition

Constraints

CO01: FACE_ConceptualQueryComposition.class

C02: FACE_ConceptualQueryComposition.type

FACE Conformance/OCL Constraints

Co1:
FACE_ConceptualQueryComposition.rolenamelsValidl
dentifier

FACE_ConceptualView
Package: ConceptualDataModel
isAbstract: Yes

Generalization: FACE ConceptualElement

Extension: Class

Description

Value for the class metaproperty must be stereotyped
«FACE_ConceptualCompositeQuery».

Value for the type metaproperty must be stereotyped
«FACE_Conceptual View» or its specializations.

The rolename of a
FACE_ConceptualQueryComposition must be a valid
identifier.

A FACE_ConceptualView is a FACE_ConceptualQuery or a FACE_Conceptual CompositeQuery.

FACE Profile, v2.0 — beta 1

58

esterentypes
FACE_ConceptualElement

[Elernent]
wstereotypexs
: emetaconstraints ustereotypes
FAGE—‘:“E’ICEP*”E’”‘E“’ & — — — — '— —"— — — — —FACE_AbatractView
[Class] TumiRole = "memberEnd] 1] typa"} [Association]
e wstereotypes
i _us.t_&reit'_.rpid E_SSDEEtEm_ — —|FACE_AbstractConnection
{applied_stersotype = FACE_Abstract\fiew} [Class]
ametaconstraints e R .
=~ — — — — — — — — — — —|FACE_ConceptualQueryComposition
{LJITI-RDE= ‘type} [F'rEIp-EI'l‘y’I
) wstereotypes
et s _“Eatﬂiunitrﬂﬂw_ — — —|FACE_OperationalExchange
fumiFiole = "conveyed] [InformationFlow]
wstereotyped azsociations uster&utype.s:
- — — — — — — — — — — —|FACE ConceptualViewTrace
{applied_stersotype = FACE_TraceView} [Class]
- R wstereotypes
oz oz KCACOOENENNS . - - = [FAEE TraceWiew
{umniRole = "membarEnd[1].typ="} [f=z0ciation]

Figure 7-32: abstract FACE_ConceptualView

FACE_Domain
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE ConceptualFElement

Extension: Class
Description

A FACE_Domain represents a space defined by a set of data model BasisEntities relating to well understood concepts by
practitioners within the domain.

FACE Profile v2.0 — beta 1 59

sstersotypes
FACE ConceptualElement
[Element]

I

wstereotypes
FACE_Domain
[Class]

atinbuies

+basisEntity - FACE_BasisEntity [1.]

Figure 7-33: FACE_Domain

Attributes

basisEntity : FACE BasisEntity [1..*]

FACE_EntityBasis
Package: ConceptualDataModel
isAbstract: No

Extension: Generalization

Description

Used to indicate a specialization between FACE ConceptualEntity types and FACE BasisEntities.

eatersotypes
FACE_EntityBasis - wstereotvpes
= metaconstraint ; g
[Generalization] g T = FACE_BasisEntity = — —
TumiRole = "target"} [Class]
= | xstereotyped generalizations
| fsteraatype = EACE EntityBasis)
I
) sstereotypes |
emetaconsifaints |eace ConceptualEntity | —
TumiRaole = "source"} [Class]
Figure 7-34: FACE_EntityBasis
Constraints
CO01: FACE_EntityBasis.source The value for the source metaproperty must be

stereotyped by «kFACE_ConceptualEntity» or a
specialization of «<FACE_ConceptualEntity».

FACE Profile, v2.0 — beta 1

C02: FACE _EntityBasis.target The value for the target metaproperty must be
stereotyped by «kFACE_BasisEntity».

FACE_Observable
Package: ConceptualDataModel
isAbstract: No

Generalization: FACE BasisElement

Extension: Class
Description

A FACE_Observable is something that can be observed but not further characterized, and is typically quantified through
measurements of the physical world. An observable is independent of any specific data representation, units, or reference
frame. For example, "length" may be thought of as an observable in that it can be measured, but at the conceptual level the
nature of the measurement is not specified.

xstereotypex
| FACE_BasisElameant
[Element]
I R steréutypex- e ametaconstraints [Fiséireéwﬁﬂ
e _- — - — = — — — 4 _Realize
FACE_Observable {umiRole = "memberEnd[1].type"t | [Association]
[I:Iﬂs,s] | BRI A KRR AR S |
wstereotyped associations | EACER :
= — — — — — — — — —FACE_MeasurementAxis
| Iapplied_sterectype = FACE_Reslize]} [Class]
wstereotyped as=ociations [eIl
— — — — — — — — —FACE_Measurement
| {applied_stersctype = FACE_Realize} [Class]

Figure 7-35: FACE_Observable

7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel

The LogicalDataModel package of the FACE Profile contains elements that represent the Logical Data Model subpackage as
specified in the UDDL metamodel.

FACE_AbstractMeasurement
Package: LogicalDataModel
isAbstract: Yes

Extension: Element

FACE Profile v2.0 — beta 1 61

Description

A FACE_AbstractMeasurement is a FACE_Measurement, FACE MeasurementAxis, or a FACE ValueTypeUnit.

R wstereotypexs
% H
FACE Abstracﬂwz.a-surement L - n:Et&EUU_pEd_ﬂSEECiEEUH:O_ — JFACE_P.ratformﬂataType
[Element] {applied_steractype = FACE_Reslizs} | e
) wsterentypes
g oo SmElmCOnstoNtE: - .l encE gealive
| {umifole = "memberEnd[1] type'} . [As=ociation] |

Figure 7-36: abstract FACE_AbstractMeasurement

FACE_AbstractMeasurementSystem
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE LogicalElement

Extension: Class

Description

A FACE_AbstractMeasurementSystem is an abstract parent for FACE StandardMeasurementSystems and
FACE_ MeasurementSystems. It is used for structural simplicity in the metamodel.

| wstereotypex
| FACE_L ogicalElement
! [Element]
wstereotypes
FACE_AbstractiMeasurementSystem
[Clazs]

Figure 7-37: abstract FACE_AbstractMeasurementSystem

FACE_AffineConversion
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_Conversion

Description

A FACE_AffineConversion is a relationship between two FACE_ConvertibleElements in the form mx-+b.

FACE Profile, v2.0 — beta 1

62

wstereotypes
FACE_Conwversion

[Class]
wstereotypes
FACE_AffineConversion
[Class]
+|:un'.-ersinn|;5|:1-u.r-:. Real [1]=0.0

+offzet : Real [1] = 0.0

Figure 7-38: FACE_AffineConversion

Attributes

conversionFactor : Real [1]

offset : Real [1]

FACE_AppliedConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to identify constraints that apply to FACE_MeasurementSystem elements.

FACE Profile v2.0 — beta 1

63

astereotypes
FACE_AbstractAssociation
[Association]

«stereotypes
FACE_AppliedConstraint
[Association]

o
ametaconstraints |
{umiRole = "membarEnd| 1] aggregaticn’} |

=
«metaconstraints |
{umiFtale = “memberEnd[1] muliplicity'} |

I |
ametaconstraints |
{smiRele = ‘membrEnd]] nams} |

«metaconstraints

fumiRole = "membarEnd[0] type"}

wmetaconstraints

fumiRcle = "memberEnd 1] ype"}

wmetaconstraints
{umiRole = "memberEnd[0].type"

wmetaconstraints

{umiRole = "membarEnd[0] type"}

ametaconstraints
JumiRale = "memberEnd[0] fype"}

wmetaconstraints

jumiRale = "memberEnd[0] typs'}

wmetaconstraints
{umiFole = "memberEnd[1] type'}

Figure 7-39: FACE_AppliedConstraint

Constraints

C01: FACE_AppliedConstraint.memberEnd[0].type

C02:

FACE_AppliedConstraint. memberEnd[1].aggregation

C03:

FACE_AppliedConstraint. memberEnd[1].multiplicity

C04: FACE_AppliedConstraint. memberEnd[1].name

FACE Profile, v2.0 — beta 1

= FACE_MeasurementSystemAxis

[Class]

«stereotypes
= FACE_ValueTypelUnit - — —
|
o] | ustereotyped associations
{spplied_stersotype = FACE_ApphecConsraing
«stereotypes |
- FACE_Constraint &= — — —
[Class]
astereotypes
FACE_Measurement |— — — — astoreolyped assgciaioni:]
[Class] {applied_sterectype = FACE_AppliedCons raing
wstereotypes .
FACE MeasurementAxis |- — — _ *Stereotyped associatons
[Class] {applied_stereotype = FAGE_AppliedConstraing
«stereotypen i a5 ot
FACE_MeasurementSystem - — — ereotyped associations 3
[Class] {applied_sterectype = FACE_AppliedConstraing
ssratives «wstereotyped associations N

astereotypes
FACE_MeasurementConstraint
[Class]

The value for the memberEnd[0].type metaproperty
must be stereotyped by a one of the following

stereotypes:

«FACE_ValueTypeUnit»
«FACE_Measurement»

«FACE_MeasurementAxis»

«FACE_MeasurementSystemy
«FACE_MeasurementSystemAxis»

memberEnd[1].aggregation shall be composite

memberEnd[1].multiplicity shall be 0..*

memberEnd[1].name shall be "constraint"

64

C05: FACE_AppliedConstraint. memberEnd[1].type Based on the
FACE_AppliedConstraint. memberEnd[0].type value's

stereotype:

= «FACE_ValueTypeUnit», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Constraint»

= «FACE Measurement», «<FACE MeasurementAxisy,
«FACE_MeasurementSystemy, or
«FACE_MeasurementSystemAxisy, the
memberEnd[1].type metaproperty must be stereotyped
by «<FACE MeasurementConstraint»

FACE_AppliedValueTypeUnit
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to associate FACE_Measurement and FACE MeasurementSystem Axes with the logical descriptions of the data types
that characterize them.

FACE Profile v2.0 — beta 1 65

xstereotypes
FACE_AbstractAssociation

L

-
| «metaconstrainte

l{umlRohe = "memberEnd[1]. multiplicity"}
e

«metaconstraints
{umiRole = "membarEnd]1].name"}

e

Figure 7-40: FACE_AppliedValueTypeUnit

Constraints

Co1:
FACE_AppliedValueTypeUnit.memberEnd[0].type

C02:
FACE_AppliedValueTypeUnit.memberEnd[1].aggregat
ion

CO03:
FACE_AppliedValueTypeUnit.memberEnd[1].multipli
city

FACE Profile, v2.0 — beta 1

[Azsociation]
wstereotypes ustereufypen
FACE_AppliedValueTypeUnit FACE_ValueTypeUnit
hssociton semetaconstraints ESICEOIVINS iati (Clss]
———————— - FACE_MeasurementAxis | _ _ _ solereied deencubons =
{umiFole = "memb=rEnd[0].typ="} [Class] {applied_stereotype = FACE_AppliedvalueTypeUnif}
Schasinohons = g stereotyped association
———————— i L5 *
{urmiRole = "membarEnd[0] typ="] FACE_MeasurementSystemAxis | _ o STEELPEREEERT 5
[Class] fapplied_sterectype = FACE_AppliedValueTypelni]
«metaconstraints £
{umiRole = "memberEnd[1].typa'}
.
| metaconstraints
l{umRoIe = "memberEnd[1] aggregation’™}

The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:

«FACE_MeasurementAxis»
«FACE_MeasurementSystemAxis»

memberEnd[1].aggregation shall be none

Based on the stereotype of the memberEnd[0].type
metaproperty:

= Specialization of «<FACE_MeasurementAxis»,
memberEnd[1].multiplicity is 0..*

= Specialization of «kFACE_MeasurementSystemAxis»,
memberEnd[1].multiplicity is 1..*

66

C04:
FACE AppliedValueTypeUnit.memberEnd[1].name

CO05:
FACE_AppliedValueTypeUnit.memberEnd[1].type

FACE_Axis
Package: LogicalDataModel
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Based on the stereotype of the memberEnd[0].type
metaproperty:

= Specialization of «FACE_MeasurementAxisy,
memberEnd[1].name is "valueTypeUnit"

= Specialization of «kFACE_MeasurementSystemAxisy,
memberEnd[1].name is "defaultValueTypeUnit"

The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_ValueTypeUnity.

Used to associate FACE Measurements, FACE_MeasurementSystems, and FACE CoordinateSystems to the axes that

characterize them.

FACE Profile v2.0 — beta 1

67

wstereotypes

FACE_AbstractAssociation

sstereotyped associations
fapplied_stersotype = FACE_Axis)

| wstersotyped as=ociations
| {applied_sterectype = FACE_Axis}

| xstereotyped associations
|tapplied_stersotype = FACE_Axis)

[A=ssociation]
wstersotypes
FACE_Axis y sstereotypes
[Association] | _ _ _ «metaconstraints = FACE_CoordinateSystem | __ _
fumiRole = "memberEnd]0].typ"} [Class] |
|
. wstereotypes |
it traint
— — MERENEETY 5 FACE_CoordinateSystemAxis o
{umiRole = "memberEnd] 1] type'"} [Class]
’ wstersotypes
1 traint
oo S = FACE_Measurement | — — — —
{umiRcle = "memberEnd[0] typ="} [Clasg]
. wstereotypes
1 traint
iz SUCROINEIRND o -+ FACE_MeasurementAxis |- _ _
{umiRale = "memberEnd[1] type'] [Class]
: wstereotypes
it traint
e e — = FACE_MeasurementSystem | — —
{umiRole = "memberEnd]0].type'} [Class]
ametaconstraints dl astereotypes
_________ FACE_MeasurementSystemAxis
{umiRale = "membsrEnd|1] typa"} o [Class] ¥
[P0
| s«metaconstraints
TumiRolke = "memberEnd] 1] aggregation™}
e _ |
T
| smetacenstraints
{umiRale = "memberEnd] 1].muliplicity'}
P
smetaconstraints
{umiRolke = "memberEnd]1].nam="}
.-_\L e

Figure 7-41: FACE_AXxis

FACE Profile, v2.0 — beta 1

68

Constraints

CO01: FACE_Axis.memberEnd[0].type

C02: FACE Axis.memberEnd[1].aggregation

C03: FACE_Axis.memberEnd[1].multiplicity

C04: FACE_Axis.memberEnd[1].name

C05: FACE_Axis.memberEnd[1].type

FACE Profile v2.0 — beta 1

The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:

«FACE_CoordinateSystem»
«FACE_Measurement
«FACE_MeasurementSystem»

memberEnd[1].aggregation shall be none

Based on the stereotype of the memberEnd[0].type
metaproperty:

= «FACE_CoordinateSystem»,
memberEnd[1].multiplicity is 1..*

= «FACE_Measurementy», memberEnd[1].multiplicity
is 0..*

= «FACE MeasurementSystemy,
memberEnd[1].multiplicity is 0..1

Based on the stereotype of the memberEnd[1].type
metaproperty:

= «FACE_CoordinateSystemAxis»,
memberEnd[1].name is "coordinateSystemAxis"

= «FACE_MeasurementAxis», memberEnd[1].name is
"measurementAxis"

= «FACE_MeasurementSystemAxisy,
memberEnd[1].name is "measurementSystemAxis"

Based on the FACE _Axis.source value's stereotype:

= «FACE_CoordinateSystem», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_CoordinateSystemAxis»

= «FACE_Measurementy, the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_MeasurementAxis»

= «FACE_MeasurementSystemy, the
memberEnd[1].type metaproperty must be stereotyped
by «FACE MeasurementSystemAxis»

69

FACE_Constraint

Package: LogicalDataModel

isAbstract: No

Generalization: FACE DataModelElement

Extension: Class

Description

A FACE_ Constraint limits the set of possible values for the FACE ValueType of a FACE MeasurementSystem or

FACE_Measurement.

wztereotypes

FACE_DataModelElement

[Element]

i

sstersotypes
FACE_Constraint
[Clasz]

-

wmetaconstraints

TumiRole = "memberEnd[1] typa't

«&stereotyped associations

{applied_stersotype = FACE_AppliedConstraing

ametaconstraints

- — — — = - — — — =

sstereotypes
FACE_AppliedConstraint
[A==ociation]

TumiRole = "owner"}

Figure 7-42: FACE_Constraint

Constraints

CO01: FACE_Constraint.owner

FACE_Conversion

sstersotypes
FACE_ValueTypelUnit |
[Clazs]

Elements with this stereotype may only be contained in

(owned by) elements with the stereotype
«FACE_ValueTypeUnit»

Package: LogicalDataModel

isAbstract: No

Generalization: FACE LogicalElement

Extension: Class

Description

A FACE Conversion is a relationship between two FACE ConvertibleElements that describes how to transform measured

quantities between two FACE_Units.

FACE Profile, v2.0 —

beta 1

astereotypes
FACE | ogicalElement
[Element]

wstereotypes
FACE_Conversion
[Claz=]

Frfinbures

+BOUFCE F-‘-‘kCE_-C.I.JI'I.'..'EI'tibl&ElEI'I‘l&l‘l‘t [11
+destination ;: FACE_ConvertibleElement [1]

Figure 7-43: FACE_Conversion

Attributes

destination : FACE_ConvertibleElement [1]

source : FACE ConvertibleElement [1]

FACE_ConvertibleElement
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE_LogicalElement

Description

A FACE_ConvertibleElement is a FACE_Unit.

ustersotypes
FACE_LogicalElement
| [Element]

|

wetereotypes
FACE_ConvertibleElement
[Element]

Figure 7-44: abstract FACE_ConvertibleElement

FACE_CoordinateSystem
Package: LogicalDataModel
isAbstract: No

Generalization: FACE LogicalElement

FACE Profile v2.0 — beta 1

71

Extension: Class

Description

A FACE CoordinateSystem is a system which uses one or more coordinates to uniquely determine the position of a point in
an N-dimensional space. The coordinate system is comprised of multiple FACE CoordinateSystemAxis which completely
span the space. Coordinates are quantified relative to the FACE CoordinateSystemAxis. It is not required that the dimensions

be ordered or continuous.

wstereotypes
FACE_l ogicalElement
[Element]

]

usf&reutype:u
FACE_Coordinate System
[Clazs]

._':_

+axisRelationshipDescription - String [0.1]
+angleEquation : String [0..1]
+distanceEquation : String [0..1]

Figure 7-45: FACE_CoordinateSystem

Attributes

angleEquation : String [0..1]

wmetaconstraints

{umiRale = "memberEnd[0] typ="}

xstereotyped associations

fapplied_sterectype = FACE_Axis)

axisRelationshipDescription : String [0..1]

distanceEquation : String [0..1]

FACE_CoordinateSystemAxis
Package: LogicalDataModel

isAbstract: No

Generalization: FACE LogicalElement

Extension: Class

Description

wstereotypes
FACE_Axis
[&s=ociation]

_:.

wstereotypes
FACE_Coordinate SystemAxis
[Class]

A FACE_CoordinateSystemAxis represents a dimension within a FACE_CoordinateSystem.

FACE Profile, v2.0 — beta 1

72

astereotypes
FACE_LogicalElement
[Element]

|

wstereotypes

[Clazs]

wmetaconstraints

FACE_Coordinate SystemAxis = — — i s i S e

fumiRole = "memberEnd[1].type'}

wstereptypes
FACE_Axis
[As=ociation]

wstereotypes

—————— — —|FACE_Coordinate System

{applied_sterectype = FACE_Axis]

Figure 7-46: FACE_CoordinateSystemAxis

FACE_DefinedReferencePoint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

[Clazs]

Used to identify the reference point that characterizes a Measurement System.

FACE Profile v2.0 — beta 1

73

ustereotypes
FACE_AbstractAssociation

[Association]
zstereotypen
FACE_DefinedF{?ﬂle rencePoint T wstereotypen

[Associgtion] [_ «meldcOnstdinie = FACE_MeasurementSystem | —

fumiRale = "memberEnd]0] type'} [Class]
|
|

wstereotypes

wmetaconstraints

FACE_ReferencePoint =

fumiRaole = "memberEnd[1].type"}

sstereotyped association:

[Class] {applied_stereotype = FACE_DefinedReferencePoint}

- — 7

| «metaconstraints

Figure 7-47: FACE_DefinedReferencePoint

Constraints

COl:
FACE_DefinedReferencePoint.memberEnd[0].type

Co02:
FACE_DefinedReferencePoint.memberEnd[1].aggregat
ion

C03:
FACE_DefinedReferencePoint. memberEnd[1].multipli
city

C04:
FACE_DefinedReferencePoint. memberEnd[1].name

CO05:
FACE_DefinedReferencePoint. memberEnd[1].type

FACE Profile, v2.0 — beta 1

|{un'|IRDIE = "memberEnd[1].aggregation’}

e —

| emetaconstraints

|{umiRale = "memberEmnd| 1].multiplicity"}
.:_ DU

| «metaconstraints

|{umiRcle = "memberEnd|1].nam="}
E = LS

The value for the memberEnd[0].type metaproperty
must be stereotyped by «FACE MeasurementSystemy.

memberEnd[1].aggregation shall be composite

memberEnd[1].multiplicity shall be 0..*

memberEnd[1].name shall be "referencePoint"

The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_ReferencePoint».

74

FACE_EnumerationConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_Constraint

Description

A FACE_EnumerationConstraint identifies a subset of enumerated values (EnumerationLabel) considered valid for a
FACE_Enumerated value type of a FACE MeasurementAxis.

sstereotypes |
|FACE_Constraint |
[Clasz]
ustereu't:.rpe:: I

FACE_EnumerationConstraint
[Clazs]

|+allowedValue : F.E\C.EI_E H.ﬁrheratinnLﬂt:El [1-%

Figure 7-48: FACE_EnumerationConstraint

Attributes

allowedValue : FACE EnumerationLabel [1..*]

FACE_EnumerationLabel

Package: LogicalDataModel

isAbstract: No

Generalization: FACE DataModelElement

Extension: Property

Description

A FACE_EnumerationLabel defines a named member of a FACE Enumerated value set.

FACE Profile v2.0 — beta 1

75

wstereotvpes :
FACE_DataModelEfement ‘

[Element]
astersotypes ametaconstraints
FACE_EnumerationLabel fumiRole = "class")
[Property]

-
| ametacenstraints
fumiRaole = "type}
= |

B =1

I{umlRDle ="name"}

emetaconstraints

=

Figure 7-49: FACE_EnumerationLabel

Constraints

CO01: FACE_EnumerationLabel.class

C02: FACE_EnumerationLabel.name

C03: FACE EnumerationLabel.type

FACE Conformance/OCL Constraints

Col:
FACE_EnumerationLabel.namelsNotReservedWord

FACE_FixedLengthStringConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_StringConstraint

FACE Profile, v2.0 — beta 1

TumiRale = "ownedAttribute'}

KN «wstereotypes
FACE_LogicalValueType |
[Clas=]

Value for the class metaproperty must be stereotyped
«FACE LogicalValueType»

Value for the name metaproperty must not be null and
must be unique within the owning class.

Value for the type metaproperty must be null. (The
name metaproperty is the only valid information.)

A FACE_EnumerationLabel's name may not be an IDL
reserved word.

76

Description

A FACE_FixedLengthStringConstraint specifies a defined set of meaningful values for a String as with of a specific fixed
length. The "length" attribute defines the fixed length, an integer value greater than 0.

ustéaﬁrp&n
FACE_StringConstraint
[Claz=]

o

I wstereotypes

|FACE_FixedLengthStringConstraint
| [Class]
|

|+length : Integer-[.i] = u ;

Figure 7-50: FACE_FixedLengthStringConstraint

Attributes

length : Integer [1]

FACE Conformance/OCL Constraints

COl: A FACE _FixedLengthStringConstraint's length must be
FACE FixedLengthStringConstraint.nonNegativeLengt greater than zero.
h

FACE_IntegerConstraint
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE Constraint

Description

A FACE _IntegerConstraint specifies a defined set of meaningful values for an Integer or Natural.

wsterentypes
FACE_Constraint
[Class]

|

| wstereotvpes
| FACGE_IntegerGonstraint
[Class]

Figure 7-51: abstract FACE_IntegerConstraint

FACE Profile v2.0 — beta 1 77

FACE_IntegerRangeConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_IntegerConstraint

Description

A FACE _IntegerRangeConstraint specifies a defined range of meaningful values for an Integer or Natural. The upperBound
is greater than or equal to the lowerBound. The defined range is inclusive of the upperBound and lowerBound.

sstereotypen
| FACE_integerConstraint
[Clazs]

f |

usteréctype::
FACE_IntegerRangeConstraint
[Class]
| +lowerBound :.Ii'lte;n;s'r-ﬁ
:TupperEh:lund : Integer [1

Figure 7-52: FACE_IntegerRangeConstraint

Attributes

lowerBound : Integer [1]

upperBound : Integer [1]

FACE_Landmark
Package: LogicalDataModel
isAbstract: No

Generalization: FACE LogicalElement

Extension: Class

Description

A FACE_Landmark represents a described point which relates a FACE_ReferencePoint to a well-known location.

FACE Profile, v2.0 — beta 1 78

astereotvpes
FACE_LogicalElement
[Element]

|

«stereotvpes
FACE_Landmark
[Clazs]

Figure 7-53: FACE_Landmark

FACE_LogicalAssociation

Package: LogicalDataModel
isAbstract: No

Generalization: FACE_LogicalEntity

Description

A FACE_LogicalAssociation represents a relationship between two or more FACE LogicalEntities. In addition, there may
be one or more FACE LogicalComposableElements that characterize the relationship. FACE Logical Associations are
FACE LogicalEntities that may also participate in other FACE LogicalAssociations.

wstereotypes
FACE_LogicalEntity
[Claz=]

I

wstereotypes
FACE_LogicalAssociation
[Class]

%

smetaconstraints

TumiRole = "memberEnd][1].type'}
xmetaconstraints
fumiRole = "memberEnd[0] type't

x&tereotyped associations

{applied_stersotype = FACE_Reslize}

wstereotvped associations
{applied_stersctype = FACE_Reaslize}

smetaconstraints
TumiRole = "memberEnd[0] type'}

Figure 7-54: FACE_LogicalAssociation

FACE Profile v2.0 — beta 1

wstereotypes
FACE_Realize
[As=ociation]

xstereotypes
FACE_ConceptualAssociation
[Clazs]

wetereotypes
FACE_PlatformAssociation
[Clazs]

wetereotypes
FACE_LogicalParticipant
[#==ociation]

79

FACE Conformance/OCL Constraints

Co1:

FACE_Logical Association.participantsConsistentWith

Realization

C02:

FACE_LogicalAssociation.participantsRealizeUniquely

FACE_LogicalCharacteristic
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE ModelElement

Description

FACE_LogicalParticipants in a
FACE_LogicalAssociation must realize
FACE_ConceptualParticipants in the

FACE LogicalAssociation that the

FACE LogicalAssociation realizes.

FACE _LogicalParticipants in a
FACE_LogicalAssociation must realize unique
FACE_ConceptualParticipants.

A FACE_LogicalCharacteristic is a defining feature of a FACE_LogicalEntity. The "name" metatype attribute represents the
data model "rolename" attribute that defines the name of the logical Characteristic within the scope of the logical Entity. The

"lowerBound" and "upperBound" attributes define the multiplicity of the composed Characteristic. An "upperBound"

multiplicity of -1 represents an unbounded sequence.

. wstereotypes
| FAGE_ModelElement

i [Element]
L i

1

| asteraotypes
FACE_l ogicalCharacteristic
[Element]

;-n-d&su:ripti-:ln : Strin g- [11
|+=specializes : FACE_L ogicalCharacteristic [0..1] |
|

Figure 7-55: abstract FACE_LogicalCharacteristic

Attributes

description : String [1]

specializes : FACE_LogicalCharacteristic [0..1]

FACE Profile, v2.0 — beta 1

80

FACE Conformance/OCL Constraints

CO1:
FACE_LogicalCharacteristic.lowerBound LTE Upper
Bound

C02:
FACE_LogicalCharacteristic.rolenamelsValidldentifier

CO03:
FACE_LogicalCharacteristic.specializationConsistent
WithRealization

C04: FACE LogicalCharacteristic.upperBoundValid

FACE_LogicalComposableElement
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE LogicalElement

Description

A FACE_LogicalCharacteristic's lowerBound must be
less than or equal to its upperBound, unless its
upperBound is -1.

The rolename of a FACE LogicalCharacteristic must
be a valid identifier.

If a FACE_LogicalCharacteristic specializes, its
specialization must be consistent with its realization's
specialization.

A FACE LogicalCharacteristic's upperBound must be
equal to -1 or greater than 1.

A FACE LogicalComposableElement is a FACE LogicalElement that is allowed to participate in a FACE Composition
relationship. In other words, these are the FACE LogicalElements that may be a characteristic of a FACE_LogicalEntity.

astereotypes 3
| FACE_LogicalElement
[Element]

=

[ust;aréu'type:: [
| FACE_I ogicalComposableEiement I-E
[Element]

ametaconstraints

fumiRaole = "type"}

[ustea"r;,rp&n
— |FACE_LogicalComposition |
[Froperty]

Figure 7-56: abstract FACE_LogicalComposableElement

FACE_LogicalCompositeQuery
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_LogicalView

Extension: Class

Description

A FACE_LogicalCompositeQuery is a collection of two or more FACE LogicalQueries. The "isUnion" attribute specifies
whether the composed FACE LogicalQueries are intended to be represented as cases in a union or as members of a struct.

FACE Profile v2.0 — beta 1 81

xstereotypes
FACE logicalView

[Clazz]
wstereotypexs ; wstereotypes
FACE_LogicalCompositeQuery | _ _ _“metaconstraints - eacE pealize
[Clagzs] {umniRale = "memberEnd] 1] typa'} [A==ociation]
+iglnion : Bnule;ﬁ [1_--=-fﬂ|SE.‘
wstereotyped associations et Lo
—————————— FACE_CompositeTemplate
Tapplied_sterectype = FACE_Reslize} [Class]
o wstereotypes
stereotyped association
ey ERICOWIGGOESOCEON - FACE_ConceptualCompositetiuery
Tapplied_sterectype = FACE_Realize} [Class]
- ametaconstraints B _“STEEUEFE” ”
e e it _LogicalQueryComposition
fumiRole = "class") [Property]
wmetaconstraints
—————————— -

TumiR ole = "ownedAtiribute'}

Figure 7-57: FACE_LogicalCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

CO01: FACE_LogicalCompositeQuery.ownedAttribute

FACE Profile, v2.0 — beta 1

The values for the ownedAttribute metaproperty must

meet the following criteria:

- must be ordered list

- must be stereotyped
«FACE_LogicalQueryCompositiony or its

specializations

- must contain 2 or more elements

82

FACE Conformance/OCL Constraints

CO1:
FACE_LogicalCompositeQuery.compositionsConsisten
tWithRealization

C02:
FACE_LogicalCompositeQuery.compositionsHaveUni
queRolenames

Co03:
FACE_LogicalCompositeQuery.noCyclesInConstructio
n

C04:
FACE_LogicalCompositeQuery.realizationUnionConsi
stent

CO05:
FACE_ LogicalCompositeQuery.realizedCompositions
HaveDifferentTypes

Co06:
FACE LogicalCompositeQuery.viewComposedOnce

FACE_LogicalComposition
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_LogicalCharacteristic

Extension: Property

Description

FACE_LogicalQueryCompositions in a
FACE_LogicalCompositeQuery must realize
FACE_ConceptualQueryCompositions in the
FACE_ConceptualCompositeQuery that the
FACE LogicalCompositeQuery realizes.

A FACE_LogicalQueryComposition's rolename must
be unique within a FACE_LogicalCompositeQuery.

A FACE_LogicalCompositeQuery must not compose
itself directly or indirectly.

A FACE LogicalCompositeQuery that realizes must
have the same "isUnion" property as the
FACE_LogicalCompositeQuery it realizes.

A FACE_LogicalCompositeQuery must not contain
two FACE LogicalQueryCompositions that realize the
same FACE_ConceptuallQueryComposition.

A FACE LogicalCompositeQuery must not compose
the same FACE LogicalView more than once.

A FACE_LogicalComposition is the mechanism that allows FACE LogicalEntities to be constructed from other

FACE_LogicalComposableElements. The "type" of a Logical Composition is the Logical ComposableElement being used to
construct the logical Entity. The "lowerBound" and "upperBound" define the multiplicity of the composed logical Entity. An

"upperBound" multiplicity of -1 represents an unbounded sequence.

FACE Profile v2.0 — beta 1

83

wstereotypes
FACE_l ogicalCharacteristic
| [Element]

I

wstereotypes
FACE_LogicalComposition
[Property]

buies

+redglizes : FACE_E-E;i'Il::EF.‘-tIJﬂlﬁﬂ mposition [1]

) w2terectypes
oc SOCHCOS NS, . o raCE ogseatatit
TumiRale = "class"} [Class]
smetaconstraints
{umiRole = "gwmedAtribute"}
. astersotypes
_ «metaconstrainte .| FACE_LogicalComposableElement
{umiFole = "type™} [Element]

ametaconstraints
{unTanE = WWEI": |

zmetaconstraints

{umiRaole = "upper

Figure 7-58: FACE_LogicalComposition

Attributes

realizes : FACE_ConceptualComposition [1]

Constraints

CO01: FACE LogicalComposition.class

C02: FACE_LogicalComposition.lower

C03: FACE_LogicalComposition.type

FACE Profile, v2.0 — beta 1

Value for the class metaproperty must be stereotyped
«FACE_LogicalEntity» or its specializations.

The value for the lower (lower bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1.

Value for the type metaproperty must be stereotyped
«FACE_LogicalComposableElement» or its
specializations.

84

C04: FACE LogicalComposition.upper

FACE Conformance/OCL Constraints

Col:
FACE_LogicalComposition.multiplicityConsistentWith
Realization

C02:
FACE_LogicalComposition.multiplicityConsistentWith
Specialization

gg%E_LogicalComposition.typeConsistentWithRealiza
tion

FACE_LogicalElement

Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE DataModelElement

Description

The value for the upper (upper bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1

A FACE_LogicalComposition's multiplicity must be at
least as restrictive as the
FACE_ConceptualComposition it realizes

A FACE LogicalComposition's multiplicity must be at
least as restrictive as the FACE_LogicalComposition of
which it is a specialization.

A FACE_LogicalComposition's type must be consistent
with its realization's type.

A FACE_LogicalElement is the root type for defining the Logical Data Model elements of the Data Model Language.

. wstereotypes
|FACE_DataM odelElement
[Element]

T

usteréut\,rpe::
| FACE_L ogicalElement
[Element]

smetaconstraints

TumiRaole = "owner'}

Figure 7-59: abstract FACE_LogicalElement

Constraints

CO01: FACE_LogicalElement.owner

FACE Profile v2.0 — beta 1

wetereotypes

FACE_LogicalDataModel

[Package]

Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_LogicalDataModel»

85

FACE Conformance/OCL Constraints

CO01: FACE_LogicalElement.hasUniqueName Every FACE_LogicalElement, with the exception of
FACE_Constraint, must have a unique name.

FACE_LogicalEntity
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_LogicalComposableElement, FACE_SpecializationOwner

Extension: Class
Description

A FACE_LogicalEntity "realizes" a FACE_ConceptualEntity in terms of Measurements and other LogicalEntities. Since a
FACE_LogicalEntity is built from logical FACE_Measurements, it is independent of any specific platform data
representation. A FACE LogicalEntity's composition hierarchy is consistent with the composition hierarchy of the
FACE_ConceptualEntity that it realizes. The FACE_LogicalEntity's composed Entities realize one to one the
FACE_ConceptualEntity's composed Entities; the FACE LogicalEntity's composed FACE Measurements realize many to
one the FACE_ConceptualEntity's composed FACE_Observables.

«stereotypes astereotypes
FACE_logicalComposableElement FACE_SpecializationOwirer
[Element] [Class]
T T stereotype

wstereotypes «metaconstraints s typ. 2

FACE LogicalEnti W e s e, e e S FACE_Realize

_LogicalEntity TumiRole = "memberEnd|[1].typ="} [Association]

[Class] = ametaconstraints
TumiRole = "memberEnd[0].type'}
xstersotypes

astereotyped associations
| e e o Moty FACE_PlatformEntity
{applied_sterectype = FACE_Realize} [Class]

«metaconstraints astereotypes
[umiRole = "ownedAtiribute) FACE_L ogicalComposition

& wmetaconstraints [Property]
{umiRole = "class"]
«stereotyped associations ustereotypes
Bt el e e — FACE_ConceptualEntity
{applied_stersctype = FACE_Realize} [Class]
wsterectypes

wstereotyped associations : 1
e FACE_LogicalEntityTrace
{applied_sterectype = FACE_TraceEntity]} [Class]

«metaconstrainte estarantypes
e ey e G FACE_TraceEntity

fumiRale = "membarEnd]1].typs'} [Association]

Figure 7-60: FACE_LogicalEntity

FACE Profile, v2.0 — beta 1

86

Constraints

CO01: FACE LogicalEntity.ownedAttribute

FACE Conformance/OCL Constraints

COl:
FACE_LogicalEntity.characteristicsHaveUniqueRolena
mes

C02:
FACE_LogicalEntity.compositionsConsistentWithReali
zation

CO03:
FACE_LogicalEntity.hasAtlLeastOneLocalCharacteristi
c

C04:
FACE LogicalEntity.realizedCompositionsHaveDiffere
ntTypes

CO05:
FACE_LogicalEntity.specializationConsistentWithReal
ization

FACE_LogicalParticipant

Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalCharacteristic

Extension: Association

Description

The value for the ownedAttribute metaproperty must be
stereotyped «FACE_LogicalComposition» or its
specializations

A FACE_LogicalCharacteristic's rolename must be
unique within a FACE_LogicalEntity.

FACE_LogicalCompositions in a FACE LogicalEntity
must realize FACE ConceptualCompositions in the
conceptual FACE ConceptualEntity that the

FACE LogicalEntity realizes.

A FACE_LogicalEntity must have at least one
Characteristic defined locally (not through
generalization), unless the Entity is in the "middle" of a
generalization hierarchy.

A FACE LogicalEntity may not contain two

FACE LogicalCompositions that realize the same
FACE_ConceptualComposition unless their types are
different FACE_Measurements and their multiplicities
are equal.

If a FACE LogicalEntity specializes, its specialization
must be consistent with its realization's specialization.

A FACE_LogicalParticipant is the mechanism that allows a FACE_LogicalAssociation to be constructed between two or
more FACE LogicalEntities. The "type" (target of the directional Association) of a logical Participant is the logical Entity
being used to construct the logical Association. Target multiplicity values represent the "sourceLowerBound" and
"sourceUpperBound" attributes that define the multiplicity of the logical Association relative to the Participant in the UDDL
metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent of a "sourceUpperBound"
multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The "path" attribute of the
Participant describes the chain of entity characteristics to traverse to reach the subject of the association beginning with the
entity referenced by the "type" attribute.

FACE Profile v2.0 — beta 1 87

FACE_LogicalParticipant Associations are directional, from a FACE LogicalAssociation to a FACE_LogicalEntity.

xstereotypes
FACE | ogicalCharacteristic
[Element]
estereotypes
FACE_:’_fgrca_fI:.artIlcm&nt emetaconstraints wstereotypen
expcigion @ @299 | - - -" - — — — — — — — i iati
st Bk End[0] type'] FACE_LogicalAssociation
affnbuies [Class]
+path : String [1] =
+redlizes | FACE_ConceptualParticipant [1] : o
+_importedPathUUIDs : String [0..%] metaconstraint ESIErS0Typen
e e AUEEAIRTNTR L. L SFACE LogicalEndity
TumiRol= = "memberEnd] 1].type'} [Clazz]

| ametaconstraints
|{umiR|:|ie ="memberEnd->sizef}"}

|_':_

| ametaconstraints

l{umchnl'e = "memberEnd] 1].nam="}
= —

| ametaconstraints

|{umIRul'e = "memberEnd] 1].=ggregation™}
= .

ametaconstraints

l{umﬂnie = "memberEnd[0].multiplicity"}
.-_:_ —

| ametaconstraints

|{umiR ol = "memberEnd[0] is Navigable'}
= —
T &

| ametaconstraints

|{umiRnie = "memberEnd[1].is Mavigable™}
':-T .

Figure 7-61: FACE_LogicalParticipant

Attributes

path : String [1]

FACE Profile, v2.0 — beta 1

The "path" property indicates the portion of the target
«FACE_LogicalEntity» that is participating in the
«FACE Logical Association» that is the source for the

88

realizes : FACE ConceptualParticipant [1]

_importedPathUUIDs : String [0..*]

«FACE LogicalParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:

A logical PathNode is a single element in a chain that collectively
forms a path specification.

A logical ParticipantPathNode is a logical PathNode that selects a
Participant that references an Entity. This provides a mechanism for
reverse navigation from an Entity that participates in an Association
back to the Association.

A logical CharacteristicPathNode is a logical PathNode that selects a
logical Characteristic which is directly contained in a logical Entity
or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Logical CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

Constraints
CO01: FACE_LogicalParticipant. memberEnd->size() memberEnd.size() shall be 2
C02: memberEnd[0].isNavigable shall be false

FACE _ LogicalParticipant.memberEnd[0].isNavigable

FACE Profile v2.0 — beta 1

89

CO03:
FACE_LogicalParticipant. memberEnd[0].multiplicity

C04: FACE_LogicalParticipant. memberEnd[0].type

CO05:
FACE_LogicalParticipant. memberEnd[1].aggregation

Co6:
FACE _ LogicalParticipant.memberEnd[1].isNavigable

C07: FACE_LogicalParticipant. memberEnd[1].name

C08: FACE_LogicalParticipant. memberEnd[1].type

FACE Conformance/OCL Constraints

COl:
FACE_LogicalParticipant.multiplicityConsistentWithR
ealization

C02:
FACE_LogicalParticipant.multiplicityConsistentWithS
pecialization

C03: FACE_LogicalParticipant.rolenameDefined

C04:
FACE_LogicalParticipant.typeConsistentWithRealizati
on

FACE_LogicalQuery
Package: LogicalDataModel
isAbstract: No

Generalization: FACE LogicalView

Extension: Class

FACE Profile, v2.0 — beta 1

memberEnd[0].multiplicity shall be 1

Value for the memberEnd[0].type metaproperty must be
stereotyped by «kFACE_Logical Association»

memberEnd[1].aggregation shall be none

memberEnd[1].isNavigable shall be true

The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE LogicalEntity»

A FACE_LogicalParticipant's multiplicity must be at
least as restrictive as the FACE_ConceptualParticipant
it realizes.

A FACE_LogicalParticipant's multiplicity must be at
least as restrictive as the FACE LogicalParticipant it
specializes.

A FACE_LogicalParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE LogicalParticipant.

If FACE_ LogicalParticipant "A" realizes
FACE_ConceptualParticipant "B", then A's type must
realize B's type, and A's PathNode sequence must
"realize" B's PathNode sequence.

(A PathNode sequence "A" "realizes" a sequence "B" if
the projected element of each PathNode in A realizes
the projected element of the corresponding PathNode in
B.)

90

Description

A FACE_LogicalQuery is a specification that defines the content of FACE LogicalView as a set of
FACE_LogicalCharacteristics projected from a selected set of related FACE LogicalEntities. The "specification" attribute
captures the specification of a Query as defined by the Query grammar.

wstereotypes
FACE_LogicalView
[Claz=]
xstereotypen
2 i xstereotvpen
FACE_LEIgmaIQuerf — uﬂetﬂEuns_trﬂEfn _ — _| FACE Realize
[Class] {umiRiolie = "memberEnd[0] typs"} et
+5peu:iﬁ|:ﬂti|;i'i St_rlng [11=
wmetaconstraints
TumiRole = "memberEnd[1] type'}
4l wstereotypes
__ sstereolyped associations -|FACE_ConceptualQuery
{applied_stereotype = FACE_Realize} [Clazs]
; b b wstereotypes
. _ cestereolyped associations |pace platformQuery
{applied_stersctype = FACE_Reslize} | [Clazs]

Figure 7-62: FACE_LogicalQuery

Attributes

specification : String [1]

FACE_LogicalQueryComposition
Package: LogicalDataModel

isAbstract: No

Generalization: FACE ModelElement

Extension: Property
Description

A FACE_LogicalQueryComposition is the mechanism that allows a FACE_LogicalCompositeQuery to be constructed from
FACE_LogicalQueries and other FACE LogicalCompositeQueries. The "name" metamodel attribute represents the
"rolename" attribute in UDDL that defines the name of the composed FACE_LogicalView within the scope of the composing

FACE Profile v2.0 — beta 1 91

FACE LogicalCompositeQuery. The type of a FACE LogicalQueryComposition is the FACE LogicalView being used to
construct the FACE LogicalCompositeQuery.

i wstersotypes
| FACE_ModelElement
| [Element]
«stereotypen ametaconstraints) xgtereotypes
FACE_LogicalQueryComposition - _{UI_JRD;= el FACE_LogicalCompositeQuery
[Property] ! [Class]
+redlizes FAEE_Euncé ﬁtuﬁlﬁherytumpus'rticn [0..1] ametaconstraints
TumiRaole = "ownedAtribute")
I wstereotypes
metaconstraint
TR cnapy-ruy il R = FACE_LogicalView
fumifole = "type} [Class]

Figure 7-63: FACE_LogicalQueryComposition

Attributes

realizes : FACE_ConceptualQueryComposition [0..1]

Constraints

Value for the class metaproperty must be stereotyped
«FACE_LogicalCompositeQuery».

CO01: FACE_LogicalQueryComposition.class

Value for the type metaproperty must be stereotyped
«FACE_LogicalView» or its specializations.

C02: FACE_LogicalQueryComposition.type

FACE Conformance/OCL Constraints

COl: The rolename of a FACE_LogicalQueryComposition
FACE_LogicalQueryComposition.rolenamelsValidlden must be a valid identifier.

tifier

C02: If FACE_LogicalQueryComposition "A" realizes

FACE_LogicalQueryComposition.typeConsistentWith
Realization

FACE_ConceptualQueryComposition "B", then A's
type must realize B's type.

FACE_LogicalValueType
Package: LogicalDataModel
isAbstract: No

FACE Profile, v2.0 — beta 1

Generalization: FACE LogicalElement

Extension: Class

Description

A ValueType specifies the logical representation of a MeasurementSystem or Measurement. Integer, Real, and String are
examples of logical ValueTypes. This element is the representation for all of the logical data type elements listed in the
UDDL Standard.

wstereotvpes
FACE_LogicalElement
[Element]
wstereotypes wmetaconstraints wstereotypes
FACE_LogicalValueType FR e e e = FACE_EnumerationLabel
[Class] {umiRaole = "ownedAtiribute"} [Froperty]
+valueType : FACE ValueTypeEnum [1] = Boolean e — amelaconstraints |
+enumeratedStandardReference : String [0..1] fumifole = "class"
== — 7
|
|
xzmetaconstraints |
fumiRole = "standardReference"}
Figure 7-64: FACE_LogicalValueType
Attributes
enumeratedStandardReference : String [0..1]
valueType : FACE ValueTypeEnum [1]
Constraints
CO01: FACE_LogicalValueType.ownedAttribute If the valueType is NOT Enumerated, no
ownedAttributes are allowed.
If the valueType is Enumerated, all ownedAttributes
must be stereotyped by «FACE_EnumerationLabel».
C02: FACE LogicalValueType.standardReference standardReference may only have a value if valueType

= Enumerated

FACE Profile v2.0 — beta 1 93

FACE Conformance/OCL Constraints

Co1: If the value type is Enumeration (value type ==

FACE LogicalValueType.enumerationLabelNameUniq FACE_ValueTypeEnum.Enumerated), all owned

ue attribute FACE_EnumerationLabels must have unique
names.

C02: If the value type is Enumeration (value type ==

FACE_ LogicalValueType.namelsNotReservedWord FACE_ValueTypeEnum.Enumerated), the
Enumerated's name must not be an IDL reserved word.

C03: A FACE_LogicalValueType must be named the same
FACE_ LogicalValueType.nameOfValueTypeMatches as its metatype. (e.g. a String must be named "String")
NameOfMetaclass

FACE_LogicalView
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE _LogicalElement

Extension: Class
Description

A FACE LogicalView is a FACE LogicalQuery or a FACE LogicalCompositeQuery.

FACE Profile, v2.0 — beta 1

94

wstereotypes
FACE_[l ogicalElement

[Element]
ustereotypes
: 5 wstereotypes
FACE_[ogicalView i
—[less] . _ _ _ smelaconstrainty _ |raCE AbstractView
{umiRtole = "memberEnd[1].typ="} [A==sociation]
wetereotyped associations «stereotypes .
= - == — — — — — — — — -FACE_AbstractConnection
{applied_sterectype = FACE_AbstraciView} [Class]
3 ametaconstraints wstereotypes
- - — — — — — — — — — -|FACE_lLogicalQueryComposition
fumiRaolke = "type"} [Property]
wmetaconstraints ticriiges
i T S — — — — — 4 FACE_OperationalExchange
framiktate. = oorveyed 3 [InformationFlow]
i wstereotypes
_ estereofyped associations |pacE | ogicalViewTrace
{applied_stereotype = FACE_Trace\iew} [Clazs]
" ametacenstraints FAg:t&'lr'EDtyp;?
————— e _TraceView
TumiRole = "memberEnd]1].type"} [Azzociation]

Figure 7-65: abstract FACE_LogicalView

FACE_Measurement
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_AbstractMeasurement, FACE_LogicalComposableElement

Extension: Class
Description

A FACE_Measurement realizes a FACE_Observable as a set of quantities that can be recorded for each of the axis of a

FACE MeasurementSystem. A FACE Measurement contains the specific implementation details optionally including an
override of the default Unit for each axis as well as the constraints over that space for which the FACE MeasurementSystem
is valid.

FACE Profile v2.0 — beta 1 95

wstereotypes wstereotypes
FACE_logicalComposableElement FACE_AbstractMeasurement

[Element] [Element]
sstereotypes
FACE Measurement
[Clazs]
aitrbutes emetaconstraints Ffé:m;tﬁ:?”
+measurementSystem | FACE_AbstractMeasurementSystem [1] = _{u_nrﬂg; =Tm:ber|:nuﬁ,ry;e"}_ i [Ass;c;fil:::f
wstereotyped associations sHppchTce
____________ - FACE_Observable
{applied_stereotype = FACE_Resalize} [Clags]
-E emetaconstraints «;:g;ut:;&»
____________ _Axis
{umiRole = "memberEnd[0] typ="} [Association]
wstereotyped azsociations sslyedires .
____________ = FACE_MeasurementAxis
{applied_stereotype = FACE_Auxis} [Class]
emetacenstraints e
o o i iy ek G FACE_AppliedConstraint
{umiRoke = "membarEnd(0] typ='} [A==sociation]
wstereotyped associations s=innatypan -
____________ = FACE_MeasurementConstraint
{appled_sterectype = FACE_ApphedConsiraint [Class]
& smetaconstraints
{umiRole = "owner"}
W o imeE cu:l_nstrjint:e_ | wstereotypes
[umiRole = "ownedAtribute FACE_MeasurementAttribute
[Property]
e smetaconstraints
fumiRole = "class"}
e smetaconstraints
{umiRole = "type™)
i e B e L
w_ ametaconstraints _l

fumiRole = "property size{)}

Figure 7-66: FACE_Measurement

Attributes

measurementSystem : FACE AbstractMeasurementSystem [1]

FACE Profile, v2.0 — beta 1

Constraints

CO01: FACE Measurement.ownedAttribute

FACE Conformance/OCL Constraints

Co1:
FACE_ Measurement.enumeratedMeasurementUsesEnu
meratedMeasurementSystem

C02:
FACE_Measurement.measurementAttributesHaveUniq
ueRolenames

CO03:
FACE_ Measurement.measurementConsistentWithMeas
urementSystem

C04: FACE_Measurement.noCyclesInMeasurements

FACE_MeasurementAttribute
Package: LogicalDataModel
isAbstract: No

Generalization: FACE ModelElement

Extension: Property

Description

The values for the ownedAttribute metaproperty must
meet the following criteria:

- referenced elements must be stereotyped
«FACE_MeasurementAttribute» or its specializations

- must contain 2 or more elements

A Measurement that uses an Enumerated ValueType in
any of its axes must be based on the
'AbstractDiscreteSetMeasurementSystem'
MeasurementSystem.

A FACE_Measurement's attributes must have unique
rolenames.

If a FACE Measurement "A" is based on

FACE MeasurementSystem "B", then A and B must
have the same number of axes, and every

FACE MeasurementAxis in A must be based on a
unique FACE MeasurementSystemAxis in B. Ifa
FACE_ Measurement is based on a
FACE_StandardMeasurementSystem, then it must have
no axes.

A FACE_ Measurement may not use itself as a
FACE_MeasurementAttribute.

A FACE_MeasurementAttribute is supplemental data associated with a FACE_Measurement.

FACE Profile v2.0 — beta 1

97

ustereotypes
FACE_ModelElement

[Element]
ustergztype:: emetaconstraints
FACE_MeasurementAttribute jumiRole = "class"}
[Property]

ametaconstraints
fumiRaole = "type}

emetaconstraints

Figure 7-67: FACE_MeasurementAttribute

Constraints

CO01: FACE_MeasurementAttribute.class

C02: FACE_MeasurementAttribute.type

FACE_MeasurementAxis
Package: LogicalDataModel
isAbstract: No

fumiRole = "ownedAtiribute")

— xz&tereotypes
FACE_Measurement
[Class]
— =

Value for the class metaproperty must be stereotyped
«FACE_Measurement»

Value for the type metaproperty must be stereotyped
«FACE_Measurement

Generalization: FACE_AbstractMeasurement, FACE_LogicalElement

Extension: Class

Description

A FACE_MeasurementAxis optionally establishes constraints for a FACE MeasurementSystemAxis and may optionally

override its default units and value types.

FACE Profile, v2.0 — beta 1

98

astereotypes ustereotypes
FAGE_AbstractMeasurement FAGE_l ogicalElement
[Element] [Element]

T

T

sstereotypes
FACE_MeasurementAxis
[Class]

DULES

+measurementSystemasxis I;A _MeazurementSystemaxis [1]

- smetaconstraints Fféir&;tyﬁ?n
____________ _Realize
{umiRole = "memberEnd]0] type"} [A=sociation]
wstereotyped associations N FA;:‘?;EDWI}HH
____________ servable
{applied_sterectype = FACE_ Realize} ‘[Class]
wmetaconstraints P
= - — — — — — — — — — — —FACE_AppliedValueTypeUnit
{umiRole = "memberEnd(0] type"} [Association]
xstereotyped associations b,-FACEﬁ:.tF&rlEDt'}I['DBn Unit
____________ _ValueTypeUni
{applied_stereotype = FACE_AppliedValueTypeUnif [Clasg]
- sxmetacenstraints qu.:::r:ujt:rp_&n
———————————— _Axis
fumiRole = "membarEnd[1] type"} [Association]
I wstereotyped associations FACEEI::FEUWPEW t
g A e A i T g e leasuremen
{applied_sterectype = FAGE_Axis) " [Class]
wmetaconstraints eRErEnlype:
= — — — — — — — — — — — —FACE_AppliedConstraint
fumiRole = "memberEnd(0] type"} [Association]
ustereotyped associations .l astereotypes
{epplied sterectype = FACE, AppiedConstiaing FACE_MeasurementConstraint
[Clazg]
e ametaconstraints

{umiRole = "owner'}

Figure 7-68: FACE_MeasurementAxis

Attributes

measurementSystemAxis : FACE MeasurementSystemAxis [1]

FACE_MeasurementConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

FACE Profile v2.0 — beta 1

99

Description

A FACE_MeasurementConstraint describes the constraints over the axes of a given FACE _MeasurementSystem or
FACE_Measurement or over the value types of a FACE_MeasurementSystemAxis or FACE MeasurementAxis. The

constraints are described in the "constraintText" attribute. The specific format of "constraintText" is undefined.

wetereotypes
FACE_ModeiElement
[Element]

|

esterentypes
FACE_MeasurementConstraint
[Class]

E___ ________

+constraintText ; String [1] =

wmetaconstraints
fumiRaole = "membsrEnd[1] type"}

wstereotypes
FACE_AppliedConstraint
[Ass0ociation]

«5terent'_.rped assoc clatlun b

‘:-T
{applred sterectype = FACE Appﬁedﬂ-uﬂsnalnt}

smetaconstraints
TumiRaole = "owner"}

wstereotypes
—|FACE_MeasurementSystem
[Class]

«stereotyped ass0Ch u:latlun »

{applred sterectype = FACE Apphedﬂﬂnstralnﬁ

wmetaconstraints
TumiRole = "owner'}

wstereotvpes
FACE_MeasurementSystemAxis
[Class]

«stereotyped associations

{applied_sterectype = FACE_AppledConsiraing

emetaconstraints

TumiRale = "owner'}

wstereotypes
FACE_MeasurementAzis
[Class]

mstereutyped associations

{applied_stersotype = FACE_ApphedConsiraing

emetaconstraints

TumiRale = "owner'}

wstereotypes
FACE_Measurement
[Class]

Figure 7-69: FACE_MeasurementConstraint

Attributes

constraintText : String [1]

FACE Profile, v2.0 — beta 1

100

Constraints

CO01: FACE_MeasurementConstraint.owner

FACE_MeasurementConversion
Package: LogicalDataModel
isAbstract: No

Generalization: FACE LogicalElement

Extension: Class

Description

Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:

«FACE_MeasurementSystem»
«FACE_MeasurementSystemAxis»
«FACE_MeasurementAxis»
«FACE_Measurement

A FACE MeasurementConversion is a relationship between two FACE Measurements that describes how to transform
measured quantities between those FACE Measurements. The conversion is captured as a set of equations in the "equation”
attribute. The specific format of "equation" is undefined. The loss introduced by the conversion equations is captured in the
"conversionLossDescription" attribute. The specific format of "conversionLossDescription” is undefined.

sstereotypes
FACE logicalElement
[Element]

|

wsterentypes
FACE_MeasurementConversion
[Class]

|+equation ; String [1..%]

| +conversionLossDescription : String [0..1] =
|+source . FACE_Measurement [1]

+arget : FACE_Meazurement [1]

Figure 7-70: FACE_MeasurementConversion

Attributes

conversionLossDescription : String [0..1]
equation : String [1..*]

source : FACE Measurement [1]

FACE Profile v2.0 — beta 1

101

target : FACE Measurement [1]

FACE_MeasurementSystem
Package: LogicalDataModel
isAbstract: No

Generalization: FACE AbstractMeasurementSystem

Description

A FACE MeasurementSystem relates a FACE CoordinateSystem to an origin and orientation for the purpose of establishing
a common basis for describing points in an N-dimensional space. Defining a FACE_MeasurementSystem establishes

additional properties of the FACE_CoordinateSystem including units and value types for each axis, and a set of reference

points that can be used to establish an origin and indicate the direction of each axis.

ustereotypes
FACE_AbstractMeasurementSystem
[Class]

I

xstereotypes
FACE_MeasurementSystem
[Clazs]

+e:dernal5tandardRefé're-r;u':-é: String [0..1] =
+origntation . String [0..1] =
+coordinateSystem | FACE_CoordinateSystem [1]

=

Fa

Figure 7-71: FACE_MeasurementSystem

FACE Profile, v2.0 — beta 1

wmetacenstraints

{umiRale = "memberEnd[0] typea'}

«stereotyped associations

{applied_sterectype = FACE_Axis)

wmetacenstraints

fumiRale = "me_n'lbe?EndTﬂ].t;pe"}

«stereotyped associations
fapplied_stersotype = FACE_DefinedRefarencePoint}

wmetaconstraints

{umiRole = "owner'}

wmetaconstraints

{umiRale = "memberEnd[0] type'}

ustereotyped associations

{applied_stersotype = FACE_AppliedConstraind

cmetaconstraints

{umiRaole = "owner'}

— == FACE_ReferencePoint

estereotypes
FACE_Axis
[Association]

ustereotypes

— = FACE_MeasurementSystemAxis

[Clazs]

wstersotvpes
FACE_DefinedReferencePoint
[A==ociation]

wstereotypes

[Class]

sstereotypes
FACE_AppliedConstraint
[&==ociation]

wstereotypes
— FACE_MeasurementConstraint
[Class]

102

Attributes

coordinateSystem : FACE CoordinateSystem [1]
externalStandardReference : String [0..1]

orientation : String [0..1]

FACE Conformance/OCL Constraints

COl:
FACE_MeasurementSystem.hasSufficientReferencePoi
nts

C02:
FACE MeasurementSystem.measurementSystemConsi
stentWithCoordinateSystem

CO03:
FACE_MeasurementSystem.onlyOneEnumeratedMeas
urementSystem

C04:
FACE_MeasurementSystem.referencePointPartsConsist
entWithAxes

CO05:
FACE_MeasurementSystem.referencePointPartsCover
AllAxes

FACE_MeasurementSystemAxis
Package: LogicalDataModel
isAbstract: No

Generalization: FACE LogicalElement

Extension: Class

FACE Profile v2.0 — beta 1

If a FACE_MeasurementSystem has
FACE_ReferencePoints, then it must have at least as
many FACE_ReferencePoints as it has axes.

If a FACE MeasurementSystem "A" is based on

FACE CoordinateSystem "B", then A and B must have
the same number of axes, and every

FACE MeasurementSystemAxis in A must be based on
a unique FACE CoordinateSystemAxis in B.

Enumerated FACE LogicalValueTypes are expressed
as FACE MeasurementSystemAxis in a

FACE MeasurementSystem. The name of a

FACE MeasurementSystem expressing an Enumerated
is expected to be
"AbstractDiscreteSetMeasurementSystem", and this
special FACE MeasurementSystem must have only one
FACE_Axis.

A FACE ReferencePoint in a

FACE_ MeasurementSystem contains
FACE_ReferencePointParts. The
FACE_ReferencePointParts must use the same

FACE MeasurementSystemAxes used by the owning
FACE MeasurementSystem.

In a FACE_MeasurementSystem, each
FACE_ReferencePoints' parts must use the same set of
VTUs as the FACE_MeasurementSystem's axes.

103

Description

A FACE_MeasurementSystemAxis establishes additional properties for a FACE CoordinateSystemAxis including units and

value types.

wstereotypes
FACE_LogicalElement
[Element]

I

wstereotypes
FACE_MeasurementSystemAxis
[Clazs]

+coordinateSystemaxis F;!-;.CE_'I.ZBU rdinateSysteméxis [1]

«metaconstraints

fumiftole = "membearEnd[0] type"t

xzstereotyped associations

- emetaconstraints
fumiRole = "memberEnd] 1] type'}
s xstereotyped associations
{applied_stersotype = FACE_Axis)
emetaconstraints
e o - R T Ry D L el L el

{applied_stersotype = FACE_AppliedConstraing

emetaconstraints

fumiRole = "owner'}

Figure 7-72: FACE_MeasurementSystemAxis

Attributes

coordinateSystemAxis : FACE CoordinateSystemAxis [1]

FACE_MeasurementSystemConversion

Package: LogicalDataModel

isAbstract: No

Generalization: FACE LogicalElement

Extension:

FACE

Class

Profile, v2.0 — beta 1

e R e e R S s — — == FACE_WValueTypelUnit
{applied_stersctype = FACE_AppliedValueTypel nif)

wstereotypes
FACE_AppliedValueTypelnit
[A=ssociation]

wstereotypes

[Class]

xstereotypes
FACE_Axis
[~==0ociation]

wstereotypes
FACE_MeasurementSystem
[Class]

wstereotypes
FACE_AppliedConstraint
[Association]

wsteraotypes

E FACE_MeasurementConstraint

[Clazs]

104

Description

A FACE_MeasurementSystemConversion is a relationship between two FACE_MeasurementSystems that describes how to
transform measured quantities between those FACE MeasurementSystems. The conversion is captured as a set of equations
in the "equation" attribute. The specific format of "equation" is undefined. The loss introduced by the conversion equations
is captured in the "conversionLossDescription" attribute. The specific format of "conversionLossDescription" is undefined.

FACE_LogicalElement
[Element]

[

wsterentypes
FACE_MeasurementSystemConversion
[Class]

+equation ; String [1..%]
{+conversionLossDescription : String [0..1] =
| +=source ;: FACE_MeasurementSystem [1]
i+taarg| et . FACE MeasurementSystem [1]

Figure 7-73: FACE_MeasurementSystemConversion

Attributes

conversionLossDescription : String [0..1]
equation : String [1..*]
source : FACE MeasurementSystem [1]
target : FACE MeasurementSystem [1]
FACE_RealConstraint
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE Constraint

Description

A FACE RealConstraint specifies a defined set of meaningful values for a Real or NonNegativeReal.

FACE Profile v2.0 — beta 1 105

wstereotvpes
FACE_Constraint
[Class]

|

«wstereotypes
FACE_RealConstraint
[Clas=]

Figure 7-74: abstract FACE_RealConstraint

FACE_RealRangeConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_RealConstraint

Description

A FACE_RealRangeConstraint specifies a defined range of meaningful values for a Real or NonNegativeReal. The
"upperBound" is greater than or equal to the "lowerBound".

wstereotypes
FACE_RealConstraint
| [Clazs]

|

wstereotypes
FACE_RealRangeConstraint
[Class]

+lowerBound : Real [1] = 0.0
+upperBound : Real[1] = 0.0
+lowerBoundinclusive : Boolean [1] = true
+upperBoundinclusive ; Boolean [1] = true

Figure 7-75: FACE_RealRangeConstraint

Attributes

lowerBound : Real [1]
lowerBoundInclusive : Boolean [1]
upperBound : Real [1]

upperBoundInclusive : Boolean [1]

FACE Profile, v2.0 — beta 1 106

FACE_ReferencePoint

Package: LogicalDataModel

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Class
Description

A FACE_ ReferencePoint is an identifiable point (landmark) that can be used to provide a basis for locating and/or orienting a
MeasurementSystem.

wstersotypes
FACE_DataModelElement
[Element]
wstersotypes . ustersotypes
metaconstraint
FACE ReferencePoint = — — — -0 _| FACE_RPPart |
[Class] {umiRole = "memberEnd0] type} [A==ociation] |
+landmark : I;.;':IKCIE_[EI'IEII'I'IEFH [1]
«stereotyped azsociations mst&reutyp-&x-.
- - - — — — — — — — — — -FACE_ReferencePointPart
{applied_sterectype = FACE_RPPart} [Class]
7 xmetaconstraints
TumiRole = "owner"}
wmetaconstraints -x.st&r&ut'_.rp&n .
R T T i — — — —FACE_DefinedReferencePoint
{UITI;HUE= rrEFrﬂ:erEnd[s]l}pe'} [AS-SI:II:iﬂtiEII‘I]
s s astereotyped associations | wstereotypes
Iapplied_stereotype = FACE_DefinedReferenceFoint} |FACE_MeasurementSystem
[Clazs]
xmetaconstraints
____________ _"_:|
TumiRole = "owner"}

Figure 7-76: FACE_ReferencePoint

Attributes

landmark : FACE Landmark [1]

FACE Profile v2.0 — beta 1 107

Constraints

CO01: FACE_ReferencePoint.owner

FACE Conformance/OCL Constraints

Co1:
FACE ReferencePoint.noAmbiguousVTUReference

FACE_ReferencePointPart
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_MeasurementSystemy

If two ReferencePointParts in a FACE ReferencePoint
refer to the same VTU, then they must refer to distinct
(non-null) axes.

A FACE_ ReferencePointPart is a value for one FACE ValueTypeUnit in a FACE ValueTypeUnit set that is used to identify

a specific point along an axis.

FACE_ModelElement
[Element]

T

wstereotypes
FACE_ReferencePointPart e —
[Class] {umiRo

i uzterentypes
|
|

|+value : String [1) T
| +axis ; FACE_MeasurementSystemaxis [0..1]

{

Figure 7-77: FACE_ReferencePointPart

Attributes

axis : FACE MeasurementSystemAxis [0..1]

value : String [1]

FACE Profile, v2.0 — beta 1

+valueTypeUnit : FACE_ValueTypeUnit[0.1] | _ «stereofyped associations J

wstereotypes
FACE_RPPart
[A=s0ciation]

smetaconstraints
le = "memberEnd] 1] type"}

xstereotypes
— — — — -FACE_ReferencePoint

Tapplied_sterectype = FACE_RPPart} [Clazs]

smetaconstraints

umiRobe = "owner"} |

108

valueTypeUnit : FACE ValueTypeUnit [0..1]

Constraints

CO01: FACE_ReferencePointPart.owner

FACE_RegularExpressionConstraint
Package: LogicalDataModel
isAbstract: No

Generalization: FACE_StringConstraint

Description

This element may only be contained in (owned by)

elements with the stereotype «FACE_ReferencePoint»

A FACE_RegularExpressionConstraint specifies a defined set of meaningful values for a String in the form of a regular

expression.

_ ustereotypes
| FACE_StringConstraint
[Class]

f

wstereotypes
|FACE_RegularExpressionConstraint
[Clazs]

|+expression Et-r.ing: .[-1.:.=

Figure 7-78: FACE_RegularExpressionConstraint

Attributes

expression : String [1]

FACE_RPPart
Package: LogicalDataModel
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to connect the parts of a FACE_ReferencePoint to the owning FACE_ReferencePoint.

FACE Profile v2.0 — beta 1

109

i zstereotypes
| FACE_AbstractAssociation

[As=ociation]
wstereotypes
FTCE_RTPP‘EH ametaconstraints | SeEreOlypc |
[A=sociation] | _ EmeacoiswEamls = FACE_ReferencePoint |— —
fumiRolze = "memberEnd[0] typ="} [Class] | |
| wstereotyped associations
| {applied_sterectype = FACE_RPParf}
; — ustereotypes |
_ _ _ &melaconstamt _ _ 5 FACE_ReferencePointPart e
TumiRole = "memberEnd[1].typ="} [Class]
I _|umetﬂ|:unstraintx-
| {umifzale = "memberEnd| 1] aggregation’}
i
I ametaconstraints
| fumiRole = "memberEnd] 1] multiplicity"}
E —_
r - "
[«metaconstraints
l{umch\le ="membarEnd[1].nam="}
E LS
Figure 7-79: FACE_RPPart
Constraints
CO01: FACE RPPart.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by «<FACE_ReferencePointy.
C02: FACE _RPPart.memberEnd[1].aggregation memberEnd[1].aggregation shall be composite
_ g8reg g8reg
C03: FACE RPPart.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 1..*
C04: FACE_RPPart.memberEnd[1].name memberEnd[1].name shall be "referencePointPart"
C05: FACE_RPPart.memberEnd[1].type The value for the memberEnd[1].type metaproperty

must be stereotyped by «<FACE_ReferencePointPart».

FACE_StandardMeasurementSystem
Package: LogicalDataModel

FACE Profile, v2.0 — beta 1 110

isAbstract: No

Generalization: FACE AbstractMeasurementSystem

Description

A FACE_StandardMeasurementSystem is used to represent an open, referenced measurement system without requiring the
detailed modeling of the measurement system. The reference should be unambiguous and allows for full comprehension of
the underlying measurement system.

| wstereotypes
| FACE_AbstractMeasurementSystem
| [Clazs]

|

| astereotypes

FACE_StandardMeasurementSystem
| [Clazs]
!
I

T

sreferenceStandard - E:t}ing [0.1]=

Figure 7-80: FACE_StandardMeasurementSystem

Attributes

referenceStandard : String [0..1]

FACE_StringConstraint
Package: LogicalDataModel
isAbstract: Yes

Generalization: FACE_Constraint

Description

A FACE_StringConstraint specifies a defined set of meaningful values for a String.

xstereotypes |
FACE_Constraint |
[Clazs]

I

wetereotypes
FACE_StringConstraint
[Clazs]

Figure 7-81: abstract FACE_StringConstraint

FACE Profile v2.0 — beta 1 111

FACE_Unit

Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ConvertibleElement

Extension: Class

Description

A FACE Unit is a defined magnitude of quantity used as a standard for measurement.

I waterentypes

|FACE_ConvertibleElement

[Element]

T

xstereotypes
FACE_Unit
[Clazs]

Figure 7-82: FACE_Unit

FACE_ValueTypeEnum
Package: LogicalDataModel

isAbstract: No

Description

Indicates the logical data type associated with a property of a FACE element. Its enumeration literals are:

Boolean -
Character -

String -

Integer -

Natural -

Real -
NonNegativeReal -
Enumerated -

wenumeration:s

FACE_WValueTypeEnum

Boolean
Character

String

Integer

Natural

Real
NonNegativeReal
Enumerated

Figure 7-83: FACE_ValueTypeEnum

FACE Profile, v2.0 — beta 1

112

FACE_ValueTypeUnit
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractMeasurement, FACE_LogicalElement

Extension: Class

Description

A FACE_ValueTypeUnit defines the logical representation of a FACE MeasurementSystemAxis or
FACE_MeasurementAxis value type in terms of a FACE Unit and FACE_ValueType pair.

wstereotypes

[Element]

FACE_lL ogicalElement

wstereotypex

FACE_AbstractMeasurement

[Element]

I

j

xstereotypes

[Clase]

FACE_ValueTypelnit

sunit: FACE Unit[1]
+valueType : FACE_LogicalValueType [1]

—_ =
{applied_sterectype = FACE_AppledValueTypeUnit}

emetaconstraints

fumiRale = "memberEnd[1] type"}

xstereotypes
FACE_AppliedValueTypeUnit
[As=sociation]

wstereotyped associations

wstereotypes
FACE_MeasurementAxis
[Class]

ustereotyped associations

R
{applied_stereotype = FACE_AppladValueTypel nif

wstereotypes
FACE_MeasurementSystemAxis
[Class]

emetaconstraints
fumiRole = "membarEnd[0].type"}

wstercotyped associations

{applied_sterectype = FACE_AppledConstraind

ametaconstraints

wstereotypes
FACE_AppliedConstraint
[&=s0ciation]

fumiRaole = "owner'}

Figure 7-84: FACE_ValueTypeUnit

Attributes

unit : FACE_Unit [1]

valueType : FACE LogicalValueType [1]

FACE Profile v2.0 — beta 1

wstereotypes
FACE_Constraint
[Class]

113

FACE Conformance/OCL Constraints

CO1: If a FACE ValueTypeUnit "A" contains a
FACE_ValueTypeUnit.appropriateLabelsForEnumerate FACE_EnumerationConstraint, then A's valueType is a
dConstraint FACE_Enumeration, and the constraint's

allowedValues are restricted to
FACE_EnumerationLabels from that
FACE_ Enumeration.

7.1.1.1.3 FACE_Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel

The PlatformDataModel package of the FACE Profile contains elements that represent the Platform Data Model subpackage
as specified in the UDDL metamodel.

FACE_Array
Package: PlatformDataModel
isAbstract: No
Generalization: FACE_Primitive
Description
A FACE_Array is used to represent an array of Octets. This can be used to realize a FACE_StandardMeasurementSystem.
m.stér-éuﬂr.pén
FACE_Primitive
[Class]

f

ustere-:iﬁfpe:a
FACE_Array
[Clazs]

+5ize Ir'teger tE..1E =0 |

Figure 7-85: FACE_Array

Attributes

size : Integer [0..1]

FACE_Boolean

Package: PlatformDataModel
isAbstract: No

Generalization: FACE_Primitive

Description

A FACE Boolean is a data type that represents the values TRUE and FALSE.

FACE Profile, v2.0 — beta 1 114

«stereotypes
FACE_Primitive
[Class]

T

[ustereu.’.r.yp&n
|FACE_Boolean |

[Class]

Figure 7-86: FACE_Boolean

FACE_BoundedString
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_StringType

Description

A BoundedString is a data type that represents a variable length sequence of Char (all 8-bit quantities except NULL). The
length is a non-negative integer, and is available at run-time. The length is maximally bounded.

usié?entyp&n
FACE_StringType
[Clazs]

|

wstereotvpes
FACE_Bounded String
[Class]

sitnbuies

+maxLeng{I:| : 'Il.'lfé-ger [1]=10

Figure 7-87: FACE_BoundedString

Attributes

maxLength : Integer [1]

FACE_Char

Package: PlatformDataModel
isAbstract: No

Generalization: FACE CharType

Description

A FACE Char is a data type that represents characters from any single byte character set.

FACE Profile v2.0 — beta 1 115

wsiereotvpen
FACE CharType
[Clazsz]

]

mstereu:;typ-e:u
FACE_Char

Figure 7-88: FACE_Char

FACE_CharArray
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_StringType

Description

A FACE_CharArray is a data type that represents a fixed length sequence of Char (all 8-bit quantities except NULL). The
length is a positive integer, and is available at run-time. The length is maximally bounded.

wstereotypes
FACE_StringType
[Class]

f

wstereotypes
FACE_CharArray
[Clazs]

+length : Inié.g-a‘r.[.*l-] =1

Figure 7-89: FACE_CharArray

Attributes

length : Integer [1]

FACE_CharType

Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE_Primitive

Description

A FACE CharType is a Char.

FACE Profile, v2.0 — beta 1 116

ustat;typ en
FACE_Primitive
[Class]

|

usterectypes
FACE CharType
[Clazsz]

Figure 7-90: abstract FACE_CharType

FACE_Double

Package: PlatformDataModel
isAbstract: No
Generalization: FACE_Real

Description

A FACE Double is a real data type that represents an IEEE double precision floating-point number.

| ustereotypes
FACE_Real
[Class]

o

| w=tereotypes |
FACE_Double |
[Class]

Figure 7-91: FACE_Double

FACE_Enumeration
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Enumeration is a data type that represents an ordered list of identifiers. A maximum of 232 identifiers may be
specified in an enumeration. The order in which the identifiers are named defines the relative order of the identifiers.

FACE Profile v2.0 — beta 1 117

FACE_Primitive
[Class]

I

astereotypes
| FACE_Enumeration
| [Clazs]

astereotvpes ‘

Figure 7-92: FACE_Enumeration

FACE_Fixed
Package: PlatformDataModel
isAbstract: No
Generalization: FACE Real

Description

A FACE Fixed is a real data type that represents a fixed-point decimal number of up to 31 significant digits. The digits
attribute defines the total number of digits, a non-negative integer value less than or equal to 31. The scale attribute defines
the position of the decimal point in the number, and cannot be greater than digits.

'{ estereotypes

FAGE_Real
[Class]

i

wstereotypes
FACE_Fixed
[Clazs]

+digits - Integer [1] = 0
+scale : Integer [1]1 =0

Figure 7-93: FACE_Fixed

Attributes

digits : Integer [1]

scale : Integer [1]
FACE_Float
Package: PlatformDataModel

isAbstract: No
Generalization: FACE Real

FACE Profile, v2.0 — beta 1 118

Description

A FACE Float is a real data type that represents an IEEE single precision floating-point number.

| «stereotypen
FACE_Real
[Clazss]

f

[-xsterf;ntype:c- 1
FACE_Float
[Class]

Figure 7-94: FACE_Float

FACE_Integer

Package: PlatformDataModel
isAbstract: Yes
Generalization: FACE_Number

Description

A FACE Integer is an abstract meta-class from which all meta-classes representing whole numbers derive.

| ustereotypes |
FACE_Number
[Clazs]

& sté_récitype:a
FACE_Integer
[Class]

Figure 7-95: abstract FACE_Integer

FACE_Long

Package: PlatformDataModel
isAbstract: No
Generalization: FACE Integer

Description

A FACE_Long is an integer data type that represents integer values in the range -2"31 to (2”31 - 1).

FACE Profile v2.0 — beta 1

sstereotypes
FACE_Integer
[Clasz]

I

[usterecitype:u
FACE_Long
[Class]

Figure 7-96: FACE_Long

FACE_LongDouble
Package: PlatformDataModel
isAbstract: No
Generalization: FACE_Real

Description

A FACE_LongDouble is a real data type that represents an IEEE extended double precision floating-point number (having a

signed fraction of at least 64 bits and an exponent of at least 15 bits).

| ustereotypes |
FACE Real
[Clas=s]

I

wstereotypes
|FACE_LongDouble
[Clazs]

Figure 7-97: FACE_LongDouble

FACE_LongLong
Package: PlatformDataModel
isAbstract: No
Generalization: FACE_Integer

Description

A FACE_LongLong is an integer data type that represents integer values in the range -2°63 to (2763 - 1).

FACE Profile, v2.0 — beta 1

120

wstersotypes
FACE_Integer
[Clasz]

|

satersotypes
FACE_LongLong
[Class]

Figure 7-98: FACE_LonglLong

FACE_Number

Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE_Primitive
Description

A FACE_Number is an abstract meta-class from which all meta-classes representing numeric values derive.

FACE_Primitive
[Class]

|

«stereotvpes ‘

usié?&ntyp&n ‘

FACE_Number
[Clazs]

Figure 7-99: abstract FACE_Number

FACE_Octet

Package: PlatformDataModel
isAbstract: No

Generalization: FACE_Primitive
Description

A FACE_Octet is an 8-bit quantity that is guaranteed not to undergo any conversion during transfer between systems.

FACE Profile v2.0 — beta 1 121

sstersotypes
FACE_Primitive
[Clas=]

I

wstereotypes
FACE_Octet
[Class]

Figure 7-100: FACE_Octet

FACE_PlatformAssociation

Package: PlatformDataModel
isAbstract: No

Generalization: FACE_PlatformEntity

Description

A FACE_PlatformAssociation represents a relationship between two or more FACE_PlatformEntities. In addition, there may
be one or more FACE_PlatformComposableElements that characterize the relationship. FACE_PlatformAssociations are
FACE_PlatformEntities that may also participate in other FACE_PlatformAssociations.

«ztereotypes
FACE_PlatformEntity
[Class]

I

«stereotypes
FACE_PlatformAssociation
[Claz=]

|_':_

E

ametaconstraints

TumiRobe = "memberEnd[0].typa'}

wstereotyped associations

{applied_stersctype = FACE_Reslize}

wmetaconstraints

_{urnJ_RDIE = "memberEnd[0] typ="}

Figure 7-101: FACE_PlatformAssociation

FACE Profile, v2.0 — beta 1

[A==s0ciation]

wstereotypes
FACE_Realize

a

wstereotypes
FACE_LogicalAssociation
[Class]

wstereotypes

1FACE_PlatformParticipant

[#==ociation]

122

FACE Conformance/OCL Constraints

Co1: FACE_PlatformParticipants in a
FACE_PlatformAssociation.participantsConsistentWith FACE_PlatformAssociation must realize
Realization FACE_LogicalParticipants in the

FACE LogicalAssociation that the
FACE _PlatformAssociation realizes.

C02: FACE_PlatformParticipants in a
FACE_PlatformAssociation.participantsRealizeUniquel FACE_PlatformAssociation must realize unique
y FACE_LogicalParticipants.

FACE_PlatformCharacteristic
Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE ModelElement

Description

A FACE_PlatformCharacteristic is a defining feature of a FACE_PlatformEntity. The "name" metamodel attribute represents
the FACE "rolename" attribute that defines the name of the platform Characteristic within the scope of the platform Entity.
The "lowerBound" and "upperBound" attributes define the multiplicity of the composed Characteristic. An "upperBound"
multiplicity of -1 represents an unbounded sequence.

wstereotypes
FACGE_ModelElement
[Element]
wstereotypes
FACE_PlatformCharacteristic
[Elerment]

|+description : String [1 =
|+=pecializes : FACE_PlatformCharacteristic [0..1]

Figure 7-102: abstract FACE_PlatformCharacteristic

Attributes

description : String [1]

specializes : FACE_PlatformCharacteristic [0..1]

FACE Profile v2.0 — beta 1 123

FACE Conformance/OCL Constraints

CO1:
FACE_PlatformCharacteristic.lowerBound LTE Uppe
rBound

C02:
FACE PlatformCharacteristic.rolenamelsNotReserved
Word

Co03:
FACE_PlatformCharacteristic.rolenamelsValidldentifie
r

C04:
FACE PlatformCharacteristic.specializationConsistent
WithRealization

C05: FACE_PlatformCharacteristic.upperBoundValid

FACE_PlatformComposableElement
Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE_PlatformElement

Description

A FACE_PlatformCharacteristic's lowerBound must be
less than or equal to its upperBound, unless its
upperBound is -1.

The rolename of a FACE_PlatformCharacteristic must
not be an IDL reserved word.

The rolename of a FACE_PlatformCharacteristic must
be a valid identifier.

If a FACE PlatformCharacteristic specializes, its
specialization must be consistent with its realization's
specialization.

A FACE_PlatformCharacteristic's upperBound must be
equal to -1 or greater than 1.

A FACE_PlatformComposableElement is a FACE_PlatformElement that is allowed to participate in a FACE Composition
relationship. In other words, these are the FACE_PlatformElements that may be a characteristic of a FACE_PlatformEntity.

asterectypes 1
| FACE_PlatformElement
[Element]

I

:.:sterec-lt:.rpe::
| FACE_PlatformComposableElement =
[Element]

i cunstralntn_ |FACE_PlatformComposition |

wstereotypes

[Froperty]

Figure 7-103: abstract FACE_PlatformComposableElement

FACE_PlatformCompositeQuery
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_PlatformView

Extension: Class

FACE Profile, v2.0 — beta 1

124

Description

A FACE_PlatformCompositeQuery is a collection of two or more platform Queries. The "isUnion" attribute specifies
whether the composed platform Queries are intended to be represented as cases in an union or as members of a struct.

«ztereotypes
FACE_PilatformView
[Clazs]

«stereotvpes
FACE_PlatformCompositeQuery
[Clazs]

=St

+iglnion : Boolean [1] = false

ametaconstraints

fumiRole = "memberEnd[0] type"}

wstereotypes
FACE_Realize
[A==ociation]

sstersotyped associations
{applied_sterectype = FACE_Reslize}

- FACE_LogicalCompositeQuery

ustereotypes

[Class]

smetaconstraints

fumiRole = "class"}

ametaconstraints

TumiRale = "ownedAttribute'}

astereotypes
FACE_PlatformQueryComposition
[Property]

Figure 7-104: FACE_PlatformCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

CO01: FACE PlatformCompositeQuery.ownedAttribute

FACE Profile v2.0 — beta 1

The values for the ownedAttribute metaproperty must

meet the following criteria:

- must be ordered list

- referenced elements must be stereotyped
«FACE_PlatformQueryComposition» or its

specializations

- must contain 2 or more elements

125

FACE Conformance/OCL Constraints

Co1:
FACE_PlatformCompositeQuery.compositionsConsiste
ntWithRealization

C02:
FACE_PlatformCompositeQuery.compositionsHaveUn
iqueRolenames:

Co03:
FACE _PlatformCompositeQuery.noCyclesInConstructi
on

C04:
FACE_PlatformCompositeQuery.realizationUnionCons
istent

CO05:
FACE _PlatformCompositeQuery.realizedCompositions
HaveDifferentTypes

Co06:
FACE PlatformCompositeQuery.viewComposedOnce

FACE_PlatformComposition
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_PlatformCharacteristic

Extension: Property

Description

FACE_PlatformQueryCompositions in a
FACE_PlatformCompositeQuery must realize
FACE_LogicalQueryCompositions in the
FACE_LogicalCompositeQuery that the
FACE_PlatformCompositeQuery realizes.

All contained rolenames must be unique within a
FACE_PlatformCompositeQuery.

A FACE_PlatformCompositeQuery must not compose
itself directly or indirectly.

A FACE PlatformCompositeQuery that realizes must
have the same "isUnion" property as the
FACE_PlatformCompositeQuery it realizes.

A FACE PlatformCompositeQuery must not contain
two FACE _PlatformQueryCompositions that realize the
same FACE_LogicalQueryComposition.

A FACE PlatformCompositeQuery must not compose
the same FACE_PlatformView more than once.

A FACE_PlatformComposition is the mechanism that allows platform Entities to be constructed from other
FACE_PlatformComposableElements. The "type" of a FACE PlatformComposition is the

FACE_PlatformComposableElement being used to construct the platform Entity. The "lowerBound" and "upperBound"
define the multiplicity of the composed platform Entity. An "upperBound" multiplicity of -1 represents an unbounded

sequence. If "type" is a Primitive, the "precision" attribute specifies a measure of the detail in which a quantity is captured.

FACE Profile, v2.0 — beta 1

126

ustersotypes
FACE_PlatformCharacteristic
[Element]

1

wstereotvpes
FACE_PlatformComposition
[Property]

+reglizes : FACE-_.Lu.gi;:-a;ICumpc sition [1]
+precision : Real [0..1]

TumiRale = "type"}

" p— «wstereotypes
_ _ umelaconstraile .| FACE_PlatformEntity
{umiRale = "class"} [Cla=g]
zmetaconstraints
fumiRole = "ownedAtribute"}
s estereotypes
metaconstraint
IO O = FACE_PlatformComposableElement

[Element]

TumiRole = "upper'}

Figure 7-105: FACE_PlatformComposition

Attributes

precision : Real [0..1]

realizes : FACE LogicalComposition [1]

Constraints

CO01: FACE PlatformComposition.class

C02:
FACE PlatformComposition.multiplicity.lowerbound

FACE Profile v2.0 — beta 1

Value for the class metaproperty must be stereotyped
«FACE_PlatformEntity» or its specializations.

The value for the multiplicity.lowerBound
metaproperty must be an integer greater than or equal

to -1.

127

CO03:
FACE_PlatformComposition.multiplicity.upperbound

C04: FACE_PlatformComposition.type

FACE Conformance/OCL Constraints

COl:
FACE_PlatformComposition.composedNumberHasPre
cisionSet

C02:
FACE _PlatformComposition.multiplicityConsistentWit
hRealization

C03:
FACE_PlatformComposition.multiplicityConsistentWit
hSpecialization

C04:
FACE_PlatformComposition.typeConsistentWithRealiz
ation

FACE_PlatformDataType
Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE_PlatformComposableElement

Description

The value for the multiplicity.upperBound
metaproperty must be an integer greater than or equal
to -1

Value for the type metaproperty must be stereotyped
«FACE_PlatformComposableElement» or its
specializations.

A FACE_PlatformComposition whose type is a
Number must have a precision greater than zero.

A FACE_PlatformComposition's multiplicity must be at
least as restrictive as the FACE LogicalComposition it
realizes.

A FACE_PlatformComposition's multiplicity must be at
least as restrictive as the FACE_PlatformComposition it
specializes.

A FACE_PlatformComposition's type must be
consistent with its realization's type.

A FACE_PlatformDataType is a FACE Primitive or a FACE_Struct.

FACE Profile, v2.0 — beta 1

128

wetereotypes

FACE_PFlatformComposableElement

[Element]
wstereotypes) ustereotypes
FREE D oo o RO, o | RACE Raliee
" [Element] {umiRole = "memberEnd(0] type'} [Association]
oo xstereotypes
i ed 1
TE -x_ser_eut:,f e = FACE_AbstraciMeasurement
{applied_sterectype = FACE_Realize} ! [Element] |
: wstereotypes
metaconstraint
« — — = 50 _ _| FACE_StructMember
TurniRole = "type"} [Property]

Figure 7-106: abstract FACE_PlatformDataType

FACE Conformance/OCL Constraints

Col:
FACE_PlatformDataType.collectionRealizesStandardM
easurement

C02:
FACE PlatformDataType.platformDataTypeConsistent
lyRealizesMeasurement

FACE Profile v2.0 — beta 1

A FACE_Array or FACE_Sequence must realize a
FACE_Measurement based on a
FACE_StandardMeasurementSystem.

A FACE Measurement must be realized by a

FACE _Struct with one FACE_StructMember per
FACE MeasurementAxis. (Each
FACE_StructMember's type must realize a unique axis
in the FACE_Measurement; every axis must be
realized.)

There are two exceptions:

- If a FACE Measurement has one axis with one
FACE ValueTypeUnit (VTU) and no

FACE MeasurementAttributes, it is realized by a
FACE Primitive .

- If a FACE_Measurement has one axis with multiple
VTUs and no FACE MeasurementAttributes, it is
realized by a FACE_Struct with one
FACE_StructMember for each VTU in the axis.

(Each FACE_StructMember's type must realize a
unique VTU in the axis; every VTU must be realized.)

Each FACE_StructMember's type must be consistent
with the type of the VTU it realizes.

129

CO03:
FACE_PlatformDataType.platformDataTypeConsistent
lyRealizesMeasurementAxis

C04:
FACE_PlatformDataType.vtuRealizedByPrimitive

FACE_PlatformElement

Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_DataModelElement

Description

If a FACE MeasurementAxis has one
FACE_ValueTypeUnit (VTU), then it must be realized
by a FACE_Primitive ; if it has multiple VTUs, then it
must be realized by a FACE_Struct with one
FACE_StructMember per VTU. If FACE_Struct "A"
realizes FACE MeasurementAxis "B", then A must
have the same number of FACE_Compositions as B has
VTUs, and every FACE_StructMember in A must
realize a unique VTU in V.

FACE_PlatformDataTypes that realize
FACE_ValueTypeUnits are FACE Primitives.

A FACE PlatformElement is the root type for defining the platform-level elements of the FACE Data Model Language.

usterentypes
| FACE_DataModelElemeant
[Element]

T

sstersotypes .
typ emetaconstraints

[Element] fumiRole = "owner'}

Figure 7-107: abstract FACE_PlatformElement

Constraints

CO01: FACE _PlatformElement.owner

FACE Conformance/OCL Constraints

CO01: FACE PlatformElement.hasUniqueName

FACE Profile, v2.0 — beta 1

xstereotypen

= FACE_PlatformDataModel

[Package]

Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_PlatformDataModel»

Each FACE_PlatformElement must have a unique
name.

130

C02: A FACE PlatformElement's name may not be an IDL
FACE PlatformElement.namelsNotReservedWord reserved word.

FACE_PlatformEntity
Package: PlatformDataModel
isAbstract: No

Generalization: FACE PlatformComposableElement, FACE SpecializationOwner

Extension: Class

Description

A FACE_PlatformEntity "realizes" a FACE LogicalEntity in terms of FACE PlatformDataTypes and other
FACE_PlatformEntities composed of FACE PlatformDataTypes. A FACE_PlatformEntity's composition hierarchy is
consistent with the composition hierarchy of the FACE LogicalEntity that it realizes. The FACE_PlatformEntity's composed
Entities realize one to one the FACE LogicalEntity's composed Entities; the FACE_PlatformEntity's composed

FACE PlatformDataTypes realize many to one the FACE LogicalEntity's composed FACE Measurements.

«stereotypes «stereotypes
FACE_PiatformComposableElement FACE_SpecializationOwner
[Element] [Clazs]
wstercotypes E———
: stereotype:
— E—P[Lca;f:;mm'w ez MOEISCORSERNGE. . F:C E_Rza[:izne
{umiRole = "memberEnd[0].type"} [Association]
o «stereotypes
_ _ _cetereofyped associations |pacE | ogicalEntity
{applied_stereotype = FACE_Realize} [Class]
_ _ _ _umetaconstraints astereotypes
{umiR ole = "ownedAttribute'} FACE_PlatformComposition
e «Lneta_curEtraEtn_ o [Property]
fumiRoke = "class'"}
i «stersotypes
. vstereobypedassocilions |pack platformEntityTrace |
{applied_sterectype = FACE_TraceEntity} [Class]
«metaconstraints «stereotypes d
R el T N e e T e FACE_TraceEntity
fumiRale = "memberEnd[1].typa"} [Association]
Figure 7-108: FACE_PlatformEntity
Constraints
CO01: FACE_PlatformEntity.ownedAttribute The value for the ownedAttribute metaproperty must be
stereotyped «<FACE_PlatformComposition» or its
specializations

FACE Profile v2.0 — beta 1 131

FACE Conformance/OCL Constraints

Col:
FACE_PlatformEntity.characteristicsHaveUniqueRolen
ames

C02:
FACE PlatformEntity.compositionsConsistentWithRea
lization

CO03:
FACE _PlatformEntity.hasAtLeastOneLocalCharacterist
ic

C04:
FACE_PlatformEntity.realizedCompositionsHaveDiffer
entTypes

CO0s:
FACE PlatformEntity.specializationConsistentWithRea
lization

FACE_PlatformParticipant
Package: PlatformDataModel
isAbstract: No

Generalization: FACE PlatformCharacteristic

Extension: Association

Description

A FACE_PlatformCharacteristic's rolename must be
unique within a FACE_PlatformEntity.

FACE_PlatformCompositions in a

FACE PlatformEntity must realize
FACE_LogicalCompositions in the
FACE_LogicalEntity that the FACE PlatformEntity
realizes.

A FACE PlatformEntity must have at least one
FACE_PlatformCharacteristic defined locally (not
through generalization), unless the

FACE PlatformEntity is in the "middle" of a
generalization hierarchy.

A FACE_PlatformEntity may not contain two
FACE_PlatformCompositions that realize the same
IFACE_LogicalCompositions unless their types are
different PlatformDataTypes and their multiplicities are
equal.

If a FACE PlatformEntity specializes, its specialization
must be consistent with its realization's specialization.

A FACE_PlatformParticipant is the mechanism that allows a FACE_PlatformAssociation to be constructed between two or

more FACE PlatformEntities. The "type" (target of the directional Association) of a platform Participant is the platform
Entity being used to construct the platform Association. Target multiplicity values represent the "sourceLowerBound" and
"sourceUpperBound" attributes that define the multiplicity of the platform Association relative to the Participant in the
UDDL metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent of a
"sourceUpperBound" multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The "path"
attribute of the Participant describes the chain of entity characteristics to traverse to reach the subject of the association
beginning with the entity referenced by the "type" attribute.

FACE _PlatformParticipant Associations are directional, from a FACE PlatformAssociation to a FACE PlatformEntity.

FACE Profile, v2.0 — beta 1 132

wstereotypes
FACE_PlatformCharacteristic
[Element]

T

wstereotypes
FACE_PlatformParticipant
[A==ociation]

spath : String[1]=
+realizes . FACE_LogicalParticipant [1]
+_importedPathUUIDs : String [0..%]

e

._':_

"3

Figure 7-109: FACE_PlatformParticipant

Attributes

path : String [1]

FACE Profile v2.0 — beta 1

«metaconstraints wstereotypes
——————————— = FACE_PlatformAssociation
TumiRale = "memberEnd[0].typa'}
[Clazs]
. wstereotypes
_ _ _ tmelaconsttaty _ _ _ JFACE_PlatformEntity
TumiRole = "memberEnd[1].typa'} [Class]

[smetaconstraints
|{uranbe = "memberEnd->sze()"}

=
| smetaconstraints

l{uch!Fe = "memberEnd[1].nam="}

| emetaconstraints
|{umRu:|Fe = "membarEnd] 1].aggregation™}

-

I smetaconstraints
l{uch-be = "membsarEnd] 0] rmultiplicity'

| smetaconstraints
|{umiR ole = "memberEnd[0] isNavigable}

| smetaconstraints
|{umiRale = "memberEnd] 1].iENavigable}

The "path" property indicates the portion of the target
«FACE_PlatformEntity» that is participating in the
«FACE_PlatformAssociation» that is the source for the
«FACE_PlatformParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

133

realizes : FACE LogicalParticipant [1]

_importedPathUUIDs : String [0..*]

Constraints

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:

A platform PathNode is a single element in a chain that collectively
forms a path specification.

A platform ParticipantPathNode is a platform PathNode that selects
a Participant that references an Entity. This provides a mechanism
for reverse navigation from an Entity that participates in an
Association back to the Association.

A platform CharacteristicPathNode is a platform PathNode that
selects a platform Characteristic which is directly contained in a
platform Entity or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Platform CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

CO01: FACE_PlatformParticipant. memberEnd->size() memberEnd.size() shall be 2

C02:

memberEnd[0].isNavigable shall be false

FACE_PlatformParticipant. memberEnd[0].isNavigable

C03:

memberEnd[0].multiplicity shall be 1

FACE_PlatformParticipant. memberEnd[0].multiplicity

C04: FACE_PlatformParticipant.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be

FACE Profile, v2.0 — beta 1

stereotyped by «kFACE_PlatformAssociation»

134

CO0s:
FACE PlatformParticipant.memberEnd[1].aggregation

C06:
FACE_PlatformParticipant.memberEnd[1].isNavigable

C07: FACE_PlatformParticipant.memberEnd[1].name

C08: FACE _PlatformParticipant.memberEnd[1].type

FACE Conformance/OCL Constraints

COlL:
FACE_PlatformParticipant.multiplicityConsistentWith
Realization

Co02:
FACE _PlatformParticipant.multiplicityConsistentWith
Specialization

C03: FACE PlatformParticipant.rolenameDefined

C04:
FACE _PlatformParticipant.typeConsistentWithRealizat
ion

FACE_PlatformQuery

Package: PlatformDataModel
isAbstract: No

Generalization: FACE PlatformView

Extension: Class

Description

memberEnd[1].aggregation shall be none

memberEnd[1].isNavigable shall be true

The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

Value for the memberEnd[1].type metaproperty must be
stereotyped by «kFACE_PlatformEntity»

A FACE PlatformParticipant's multiplicity must be at
least as restrictive as the FACE_LogicalParticipant it
realizes.

A FACE_PlatformParticipant's multiplicity must be at
least as restrictive as the FACE PlatformParticipant it
specializes.

A FACE PlatformParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE_PlatformParticipant.

If FACE_PlatformParticipant "A" realizes

FACE LogicalParticipant "B", then A's type must
realize B's type, and A's PathNode sequence must
"realize" B's PathNode sequence. (A PathNode
sequence "A" "realizes" a sequence "B" if the projected
element of each PathNode in A realizes the projected
element of the corresponding PathNode in B.)

A FACE_PlatformQuery is a specification that defines the content of FACE PlatformView as a set of

FACE PlatformCharacteristics projected from a selected set of related FACE_PlatformEntities. The "specification" attribute

captures the specification of a Query as defined by the data model Query grammar.

FACE Profile v2.0 — beta 1

135

xstereotypes
FACE_PilatformView
[Clazs]

I

astereotypes
FACE_PlatformQuery = —
[Class]

SINDUIES

+3p-e::|fn::at|n:|n Ctring [1] =

Figure 7-110: FACE_PlatformQuery

Attributes

specification : String [1]

mmeta con: stralntx-

{umJRuie = "memberEnd[0].typa"}

uster&utyp&d assumﬂtlunx-
{applled sterectype = FACE Reallze}

smetaconstraints

fumiRaole = "memberEnd[1] type"}

smetaconstraints

fumiRaole = "memberEnd[1] type"}

-xstereutyped associations

{applied_stersctype = FACE Ec:-und&l..rer_-.'}

-xstereutyped associations

{applied_sterectype = FACE Eﬁectwe:‘uery}

FACE_PlatformQueryComposition

Package: PlatformDataModel
isAbstract: No

Generalization: FACE_ModelElement
Extension: Property

Description

A FACE_PlatformQueryComposition is the mechanism that allows a FACE_PlatformCompositeQuery to be constructed

xstereotypes
FACE_Realize
[A=s=ociation]

estereotypes
FACE_LogicalCluery
[Clazs]

wstereotypes
FACE_BoundCuery
[A==sociation]

xstereotypes
FACE_EffectiveQuery
[As=ociation]

estersotypes
FACE_Template
[Class]

from FACE_PlatformQueries and other FACE_PlatformCompositeQueries. The "rolename" attribute defines the name of the

composed platform View within the scope of the composing platform CompositeQuery. The "type" of a

FACE Profile, v2.0 — beta 1

136

FACE PlatformQueryComposition is the FACE PlatformView being used to construct the

FACE_PlatformCompositeQuery.

wstereotvpes
| FAGE_Model/Element
[Element]
ustereotypes ;
FACE_PlatformQueryComposition S mi:ta-:_un Eﬂﬂ"—@ = 7~.| FACE Plaﬂlf:zlhrrw siteQue
[Property) fumiRole = "class") - - i
i e [Clags]
+redlizes : FACE_LogicalQueryComposition [0..1] o “E"ﬂ‘tﬂ_c':' ”Etrﬂi_”t” 3Eion
TumiRcle = "ownedAtiribute"}
«metaconstraints shcEolyfica :
_______ = FACE_PlatformView
{umiRicle = "type") [Clazs]
—— |

Figure 7-111: FACE_PlatformQueryComposition

Attributes

realizes : FACE_LogicalQueryComposition [0..1]

Constraints

CO01: FACE_PlatformQueryComposition.class

C02: FACE_PlatformQueryComposition.type

FACE Conformance/OCL Constraints

Col:
FACE_PlatformQueryComposition.rolenamelsValidlde
ntifier

C02:
FACE_PlatformQueryComposition.typeConsistentWith
Realization

FACE_PlatformView
Package: PlatformDataModel
isAbstract: Yes

FACE Profile v2.0 — beta 1

Value for class metaproperty must be stereotyped
«FACE_PlatformCompositeQuery».

Value for type metaproperty must be stereotyped
«FACE_PlatformView» or its specializations.

The rolename of a FACE_PlatformQueryComposition
must be a valid identifier.

If FACE_PlatformQueryComposition "A" realizes
FACE_LogicalQueryComposition "B", then A's type
must realize B's type.

137

Generalization: FACE PlatformElement

Extension: Class

Description

A FACE PlatformView is a platform Query or a platform CompositeQuery.

wstereotypexs
FACE_PlatformElement
[Element]
wstereotypes
| —r tereotypes
FACE PlatformView astereotyped associations g
. ©= — — — — — — — — — — — —FACE_PlatformViewTrace
[Class] {applied_sterectype = FACE_TraceView} [Class]
emetaconstraints wiacilyies
= - — — — — — — — — — — — FACE_TraceView
{umiRale = "memberEnd[1].type"} [As=ociation]

Figure 7-112: abstract FACE_PlatformView

FACE_Primitive

Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_PlatformDataType

Extension: Class

Description

A FACE Primitive is a platform realization of a logical FACE AbstractMeasurement,, and represented as a primitive data
type (e.g. Boolean, Char, Float, Double...).

wstereotypes
FACE_PlatformDataType
[Element]

|

«stereotypes
FACE_Primitive
[Class]

Figure 7-113: abstract FACE_Primitive

FACE Profile, v2.0 — beta 1 138

FACE_Real

Package: PlatformDataModel
isAbstract: Yes
Generalization: FACE_Number

Description

A FACE _Real is an abstract meta-class from which all meta-classes representing real / floating-point numbers derive.

i ster&utg.rpe:a
FAGE_Number
[Class]

1

wstereotypes
FACE_Real
[Class]

Figure 7-114: abstract FACE_Real

FACE_Sequence
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Sequence is used to represent a sequence of Octets. This can be used to realize a
FACE_StandardMeasurementSystem.

xstereotypes
FACE Primitive
[C.Iﬂ 5z]

ust&reutype:o
FACE_Sequence
[Claz=]

+mﬂ:-c':|ze IntEger [0..1] ‘

Figure 7-115: FACE_Sequence

Attributes

maxSize : Integer [0..1]

FACE Profile v2.0 — beta 1 139

FACE_Short
Package: PlatformDataModel

isAbstract: No
Generalization: FACE Integer

Description

A FACE_Short is an integer data type that represents integer values in the range -2°15 to (215 - 1).

usteaﬁp&n
FACE_Integer
[Clazs]

1

| stereotypes |
FACE_Short
[Class]

Figure 7-116: FACE_Short

FACE_String
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_StringType

Description

A FACE_String is a data type that represents a variable length sequence of Char (all 8-bit quantities except NULL). The
length is a non-negative integer, and is available at run-time. The length is not maximally bounded.

estereotypes
FACE_StringType
[Clazs]

i

. usteréﬁtype:: 1
FACE_S5tring
[Class]

Figure 7-117: FACE_String

FACE_StringType
Package: PlatformDataModel

FACE Profile, v2.0 — beta 1

140

isAbstract: Yes

Generalization: FACE Primitive

Description

A FACE_StringType is a representation for CharArray, BoundedString, or String.

«ztereotypes
FACE_Primitive
[Class]

|

wstereotvpes
FACE_StringType
[Class]

Figure 7-118: abstract FACE_StringType

FACE_Struct
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformDataType

Extension: Class

Description

A platform FACE_Struct "realizes" a logical FACE_AbstractMeasurement in terms of FACE_Primitives and other

FACE_Structs composed of FACE Primitives. A platform FACE_Struct's composition hierarchy is consistent with the

composition hierarchy of the logical AbstractMeasurement that it realizes. Each composed platform

FACE_PlatformDataType realizes a logical FACE_AbstractMeasurement.

| wstersotypes
| FACE_FlatformDataType
| [Element]

I

wstereotypes
FACE Struct = — —

Figure 7-119: FACE_Struct

FACE Profile v2.0 — beta 1

emetaconstraints

[Class] TumiRaole = "class")

wmetaconstraints

TumiRobe = "ownedAtiribute"}

estereotypes
FACE_StructMember
[Froperty]

141

Constraints

CO01: FACE_Struct.ownedAttribute

FACE Conformance/OCL Constraints

Col:
FACE_Struct.structMembersConsistentlyRealizeMeasu
rementAttributes

FACE_StructMember

Package: PlatformDataModel
isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

The values for the ownedAttribute metaproperty must
meet the following criteria:

- referenced elements must be stereotyped
«FACE_StructMember»

- must contain 2 or more elements

A FACE Measurement with

FACE_ MeasurementAttributes is realized by a
FACE_Struct with one FACE_StructMember per
FACE MeasurementAttribute. (Each
FACE_StructMember (that realizes) must realize a
unique attribute in the FACE_Measurement; every
attribute must be realized.)

A FACE_StructMember is the mechanism that allows FACE_Structs to be constructed from other

FACE_PlatformDataTypes. The "type" property of a FACE_StructMember is the FACE_PlatformDataType being used to

construct the FACE_StructMember. If "type" is a FACE Primitive, the precision attribute specifies a measure of the detail in

which a quantity is captured.

FACE Profile, v2.0 — beta 1

142

i ustereotypes
| FACE_ModelElement

[Element]
ustersotypes :
metaconstraint
FACE_StructMember U s o
e Py |
+realizes : FACE_MeasurementAttribute [0..1] _ wmetaconsraints |
+precision : Real [0..1] JumiRole = "ownedAtiribute")
wmetaconstraints iy’ 9
- — — — — — — -#FACE_PlatformDataType
fumiftole = "type"} [Elemnent]

Figure 7-120: FACE_StructMember

Attributes

precision : Real [0..1]

realizes : FACE MeasurementAttribute [0..1]

Constraints

CO01: FACE_StructMember.class

C02: FACE_StructMember.type

FACE Conformance/OCL Constraints

Co1:
FACE_StructMember.composedNumberHasPrecisionS
et

C02:
FACE_StructMember.typeConsistentWithRealization

FACE_ULong
Package: PlatformDataModel
isAbstract: No

FACE Profile v2.0 — beta 1

Value for the class metaproperty must be stereotyped
«FACE_Struct»

Value for the type metaproperty must be stereotyped by
a specialization of «kFACE_PlatformDataType».

A FACE_StructMember whose type is a Number must
have a precision greater than zero.

If a FACE_StructMember realizes a
FACE_MeasurementAttribute, then the
FACE_StructMember's type must be consistent with its
realization's type.

143

Generalization: FACE UnsignedInteger

Description

A FACE ULong is an integer data type that represents integer values in the range 0 to (232 - 1).

ustereotypes
FACE_Unsignedinteger
[Clazs]

f

[msteréutype» 1
FACE_ULong
[Claz=]

Figure 7-121: FACE_ULong

FACE_ULonglLong
Package: PlatformDataModel
isAbstract: No

Generalization: FACE UnsignedInteger

Description
A FACE ULonglong is an integer data type that represents integer values in the range 0 to (264 - 1).
wstereotypes

FACE_Unsignedinteger
[Clazs]

]

lxstere-:l.type:o
FACE ULonglLong |
[Class] [

Figure 7-122: FACE_ULongLong

FACE_Unsignedinteger
Package: PlatformDataModel
isAbstract: Yes

Generalization: FACE_Integer

Description

A FACE UnsignedInteger is an abstract meta-class from which all meta-classes representing unsigned whole numbers
derive.

FACE Profile, v2.0 — beta 1 144

ustereotypes
FACE_Integer
[Clazs]

f

® steréntypEn
FACE_Unsignedinteger
[Class]

Figure 7-123: abstract FACE_Unsignedinteger

FACE_UShort
Package: PlatformDataModel
isAbstract: No

Generalization: FACE_UnsignedInteger

Description

A FACE_UShort is an integer data type that represents integer values in the range 0 to (2°16 - 1).

i stérEtypEn
FACE_Unsignedinteger
[Class]

f

[wstereotypexs
FACE_UShort
[Class]

Figure 7-124: FACE_UShort

7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model

The Integration Model package of the FACE Profile contains elements that represent the Integration Model subpackage as
specified in the FACE metamodel.

FACE_IntegrationContext
Package: Integration Model
isAbstract: No

Generalization: FACE_IntegrationElement

Extension: Package

Description

A FACE _IntegrationContext is a container used to group a set of FACE TransportNodes and FACE_TSNodeConnections
related to each other by a common, integrator defined context (e.g., collection and distribution of navigation data).

FACE Profile v2.0 — beta 1 145

xstereotypen
FACE IntegrationElement
[Element]

|

xstereotypen
FACE_IntegrationContext
[Package]

emetaconstraints

fumiRole = "owner'}

smetacoenstraints

fumiRaole = "owner'}

Figure 7-125: FACE_IntegrationContext

FACE_IntegrationElement

Package: Integration Model
isAbstract: Yes

Generalization: FACE_Element

Description

A FACE_IntegrationElement is the root type for defining the integration elements of the FACE_ArchitectureModel.

sstersotypes
FACE_Element
[Element]

swetersotypes
FACE_IntegrationElement
[Element]

ametaconstraints

TumiRaole = "owner'}

Figure 7-126: abstract FACE_IntegrationElement

FACE Profile, v2.0 — beta 1

«stereotypes
FACE_TSNodeConnection
[InformationFlow]

wstereotypes
FACE_TransportNode
[Clasz]

—= FACE_IntegrationModel

«wstereotypes

[Package]

146

Constraints

CO01: FACE IntegrationElement.owner

FACE Conformance/OCL Constraints

CO01: FACE _IntegrationElement.hasUniqueName

FACE_TransportChannel
Package: Integration Model
isAbstract: No

Generalization: FACE IntegrationElement

Extension: Class

Description

Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE _IntegrationModel»

All FACE Integration Elements must have a unique
name.

A FACE TransportChannel is a place holder for an integrator supplied configuration between transport end points.

asterzotypes
FACE_IntegrationElament
[Element]

i

ustere-:iﬁfpe:u
FACE_TransportChannel
[Clazs]

Figure 7-127: FACE_TransportChannel

FACE_TransportNode
Package: Integration Model

isAbstract: Yes
Generalization: FACE_Element

Extension: Class

FACE Profile v2.0 — beta 1

147

Description

A FACE_TransportNode is an abstraction of a node that performs a function along a path of communication from source

FACE_UnitOfPortability (UoPs) to destination UoPs.

«wstereotypes
FACE_Elament
[Element]

e

wstereotypes
FACE_TransportNode
[Clazs]

«metaconstraints

= o e U e

fumiRole = "owmner'}

wstereotypes
FACE_IntegrationContext
[Package]

e smetaconstraints
{umiRale = "owmner'}

«stereotypes
FAGCE_TSNodePort
[Clazs]

smetaconstraints

{umguie = "memberEnd[0].typa"}

wstereotypes
FACE_EndPoint
[As=ociation]

xstereotyped associations

lapplied_sterectype = FACE_EndPoint}

wstersotypes

=+ FACE_TSNodelnputPort

[Clas=]

xstereotyped associations

{applied_sterectype = FACE_EndPont}

ustereotypen

= FACE_TSNodeOutputPort

[Class]

Figure 7-128: abstract FACE_TransportNode

Constraints

CO01: FACE_TransportNode.owner

Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned

by) elements stercotyped by
«FACE _IntegrationContext»

FACE Profile, v2.0 — beta 1

148

FACE Conformance/OCL Constraints

CO01: FACE_TransportNode.hasCorrectInputCount

C02: FACE_TransportNode.hasCorrectOutputCount

C03: FACE_TransportNode.noCycles

FACE_TSNodeConnection
Package: Integration Model
isAbstract: No

Generalization: FACE ModelElement

Extension: InformationFlow

Description

A FACE_ ViewSource may have no inputs.

A FACE ViewSink, FACE ViewFilter,
FACE_ ViewTransformation, or
FACE ViewTransporter may have one input.

A FACE ViewAggregation may have more than one
input.

A FACE_ViewSink may have no outputs.

A FACE ViewSource, FACE ViewFilter,
FACE ViewAggregation, FACE ViewTransformation,
or FACE_ViewTransporter may have one output.

An FACE IntegrationContext may contain no cycles.

A FACE_TSNodeConnection represents a connection between two FACE_TransportNodes.

FACE Profile v2.0 — beta 1

149

wstereotypes
FACE _ModelElement

[Element]
wstereotypes
: «metaconstraints mrerciycn
FACE_TSN U'd*_Eﬂ onmechan | FTREROREEN = FACE_IntegrationContext
[InformationFlow] {umiRole = "owner'} [Package]
«metaconstraints EslpTEOYIES
ol A i o e = FACE_UoPMessageType
{umiRole = "conveyed'} [Clags]
wstereotypes

Figure 7-129: FACE_TSNodeConnection

Constraints

CO01: FACE_TSNodeConnection.conveyed

C02: FACE TSNodeConnection.informationSource

FACE Profile, v2.0 — beta 1

ametaconstraints

{umiRole = "informationSource™ [Clazs]
smetaconstraints A
- — — — — — — — — -==FACE TS5NodeOutputPort
{umiRale = "informationScurce"} [Class]
estereotypes

ametaconstraints

fumiRole = "informationTarget"} [Clazs]

emetaconstraints

— — — —=FACE_UoPQutputEndPoint

— — — —=FACE_UoPinputEndPoint

wstereotypexs
— — — —=FACE_TSNodelnputPort

fumiRole = "informationTarget"} [Class]

Value for the conveyed metaproperty must be
stereotyped by a specialization of
«FACE_MessageType».

The value for the informationSource metaproperty must
be stereotyped by one of the following:

«FACE_UoPOutputEndPoint»
«FACE_TSNodeOutputPort»

150

C03: FACE TSNodeConnection.informationTarget

C04: FACE_TSNodeConnection.owner

FACE Conformance/OCL Constraints

Co1:
FACE_TSNodeConnection.connectWithinSameContext

C02: FACE_TSNodeConnection.destinationIsInput

C03: FACE_TSNodeConnection.sourcelsOutput

C04:
FACE_TSNodeConnection.sourceViewMatchesDestina
tionView

C05: FACE_TSNodeConnection.transporterOnPath

FACE_TSNodelnputPort
Package: Integration Model
isAbstract: No

Generalization: FACE_TSNodePort

Description

A FACE_TSNodelnputPort is a specialization of a FACE_TSNodePort providing an endpoint which is used to input data to a

FACE_TransportNode.

FACE Profile v2.0 — beta 1

The value for the informationTarget metaproperty must
be stereotyped by one of the following:

«FACE_UoPInputEndPoint»
«FACE_TSNodelnputPort»

Elements with this stereotype may only be contained in
(owned by) elements stereotyped by
«FACE _IntegrationContext»

A FACE_TSNodeConnection may connect only
FACE TransportNodes that are in the same
FACE IntegrationContext as the

FACE TSNodeConnection.

A FACE_TSNodeConnection's destination must be an
input.

A FACE TSNodeConnection's source must be an
output

A FACE_TSNodeConnection must use the same View
on its source and destination.

There must be at least one FACE_ViewTransporter on
a path between any two FACE_UoPInstances.

151

xstereotypen
FACE_TSNodePort

[Clazsz]
wstereptypes ; wstereotypes .
FACE_TSNodelnputPort | _ _ tmetaconsiraints |FACE_EndPoint |
[Clazz] fumiRole = "memberEnd[1] typa'} _[&EE@E@ __l
e ., AECCEONPET SESOIRIN. . yon cei?f;:lgziuode
{applied_sterectype = FACE_EndPoint} [Clazg]
: wstereotypes
it traint
e . MMEEEmETEN® _ _ |FACE_TSNodeConnection
TumiRole = "informationTarget'} [InfermaticnFlow]
Figure 7-130: FACE_TSNodelnputPort
FACE Conformance/OCL Constraints
CO01: FACE_TSNodelnputPort.onlyOneConnection A FACE_TSNodelnputPort may be the destination of at

most one FACE_TSNodeConnection.

FACE_TSNodeOutputPort
Package: Integration Model
isAbstract: No

Generalization: FACE_TSNodePort

Description

A FACE TSNodeOutputPort is a specialization of a FACE TSNodePort providing an endpoint which is used to output data
from a FACE_TransportNode.

FACE Profile, v2.0 — beta 1 152

' «stereotypes
| FACE_TSNodePort

| [Class]
wstereotypes] sstersotypes
FACE_TSNodeOutputPort A smetaconstraints FACE_EndPoint
[Class] {umiRole = "memberEnd(1] type"} [Association]
_ «stereotyped associations wstereotypes
{applied_stereotype = FACE_EndPoing |FACE_TransportNode
[Class]
. wstereotypes
. _ _ «metaconstaints __ |eacE TSNedeConnection
TumiRole = "informationSource™} [InformationFlow]

Figure 7-131: FACE_TSNodeOutputPort

FACE_TSNodePort

Package: Integration Model

isAbstract: Yes

Generalization: FACE_TSNodePortBase

Description

A FACE_TSNodePort is a port that provides a connection point to a FACE_TransportNode. The type property of a
FACE_TSNodePort is the FACE_UoPMessageType it references.

FACE Profile v2.0 — beta 1 153

xstereotypes
FACE_TS5NodePortBase

[Clazs]
w2tereotypes
FACE_TSNodePort mekrconsisd wstereotypes
[Clazss] — —_ = = il o RN FACE_MessageType
fumiRale = "memberEnd[0].typ="} [A=s0ciation]
«stereotyped azsociations estereotypes
I il ookl oo i SRR
Tapplied_sterectype = FACE_MessageTyps] FAGE HoPMessaelioe
[Class]
. wstereotypes
| . . ewelaconstainls = . |FaCE Transportiode
TumiRole = "owner'} [Class]
Figure 7-132: abstract FACE_TSNodePort
Constraints
CO01: FACE_TSNodePort.owner Elements that are stereotyped by specializations of this

abstract stereotype may only be contained in (owned
by) elements stereotyped by «FACE_TransportNode»

FACE_TSNodePortBase
Package: Integration Model

isAbstract: Yes
Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_TSNodePortBase is a port that can be used to connect a FACE_TransportNode and a FACE_UoPEndPoint together
using a FACE_TSNodeConnection.

FACE Profile, v2.0 — beta 1 154

ustereotypes
FACE_ModeiElement
[Element]

T

swetersotypes
FACE_TSNodePoriBasze
[Class]

Figure 7-133: abstract FACE_TSNodePortBase

FACE Conformance/OCL Constraints

CO01: FACE TSNodePortBase.isConnected A FACE TSNodePortBase must be connected by a
FACE_TSNodeConnection.

FACE_UoPEndPoint

Package: Integration Model

isAbstract: Yes

Generalization: FACE_TSNodePortBase

Description

A FACE UoPEndPoint is a specialization of aFACE TSNodePortBase that allows connections in a UoPInstance to be part
of a FACE_TSNodeConnection. This supports connecting FACE_UnitOfPortability (UoP) input and output end points to
each other and to transport node input and output ports.

FACE Profile v2.0 — beta 1 155

i xstereotypen
| FACE_TSNodePortBase

[Clazsz]
wstereotypes
FACE_UoFPEndFoint ki wstereotypes
o t d t
[Class] - —NSEFEEWE— Y = FACE_Connection
{applied_stersotype = FACE_Realize} [Class]
, astereotype |
t traint
e R _ _ |FACE Realize
TumiRole = "membarEnd[0] type"} [A=ss0ciation]
wmetaconstraints E=ETEDages
————————— -+ FACE_UoPlInstance
fumiRale = "owmer'} [Class]
Figure 7-134: abstract FACE_UoPEndPoint
Constraints
CO01: FACE_UoPEndPoint.owner Elements that are stereotyped by specializations of this

abstract stereotype may only be contained in (owned
by) elements stereotyped by «kFACE_UoPInstance»

FACE_UoPInputEndPoint
Package: Integration Model
isAbstract: No

Generalization: FACE _UoPEndPoint

Description

A FACE UoPInputEndPoint is a specialization of a FACE UoPEndPoint providing an endpoint which is used to input data

to a FACE_UnitOfPortability (UoP).

FACE Profile, v2.0 — beta 1

156

xstereotypes
| FACE_UoPEndPoint
[Clazs]

T

wetersotypes
FACE_UoPlnputEndPoint s astersotypes

[Class] e s — — — — |FACE_EndPoint
TumiRale = "memberEnd[1].typa'} [Association]

«stereotyped as=ociations cHCRyra
< — — — — — — — — — |FACE UoPinstance
{applied_stersotype = FACE_EndPaoint} [Class]
wstereotypes

smetaconstraints)
= — — — — — — — — — |FACE_TSNodeConnection
TumiRale = "infarmationTarget'}

Figure 7-135: FACE_UoPInputEndPoint

FACE Conformance/OCL Constraints

C01: FACE_UoPInputEndPoint.onlyOneConnection A FACE UoPInputEndPoint's may be the destination
of at most one TSNodeConnection.

C02: A FACE_UoPInputEndPoint's connection may be either
FACE_UoPInputEndPoint.uoPEndPointConsistentWith a FACE_ClientServerConnection or a
Realization FACE_PubSubConnection whose

messageExchangeType is OutboundMessage.

FACE_UoPInstance
Package: Integration Model
isAbstract: No

Generalization: FACE_IntegrationElement

Extension: Class
Description

A FACE_UoPInstance represents an instance of a specific FACE_UnitOfPortability (UoP) within the system bounded by an
integration model. An integration model can contain multiple instances of the same UoP.

FACE Profile v2.0 — beta 1 157

wstereotypes
FACGE_IntegrationElement

[Element]
xzstereotypes
0 tereotypes
FACE_UoPlnstance wetereotyped az=ociations -
= i —WE — — — — —=FACE_UnitOfPortability
[(_llf.lﬂ_ﬁ':] {applied_sterectype = FACE_Realize} [Class]
+cnnﬁguratiuﬂtlp:l :.-E-tring [0.1]=
smetaconstraints ustereutypgn
B el T et FACE_Realize

Figure 7-136: FACE_UoPInstance

Attributes

configurationURI : String [0..1]

FACE Conformance/OCL Constraints

Col:
FACE_UoPInstance.endPointsConsistentWithRealizati
on

FACE Profile, v2.0 — beta 1

TumiR ole = "memberEnd[0] typa'}

fapplied_stereotype = FACE_EndPoint}

«stereotyped associations
———————— — FACE_UoPQutputEndPoint
fapplied_sterectype = FACE_EndPoint}

[A==sociation]

wmetaconstraints i -
e — — — — — = — — |FACE_UoPEndPoint
fumiRoke = "owner'} [Class]
wmetaconstraints ustereutyp&:.c-
- — — — — — — — — |FACE EndPoint
fumiRole = "memberEnd[0].type'} [Assnciation]
«stereotyped associations esieranlypes

— FACE_UoPInputEndPaint
[Clas=]

wstereotypes

[Clazs]

If a FACE_UoPInstance "A" realizes a
FACE_UnitOfPortability "B", then A must have one
unique FACE_UoPEndPoint that realizes each of B's
FACE_PubSubConnections, one unique
FACE_UoPInputEndPoint that realizes each of B's
FACE_ClientServerConnections, and one
FACE_UoPOutputEndPoint that realizes each of B's
FACE_ClientServerConnections. A
FACE_UoPInstance may have no additional

FACE UoPEndPoints.

158

FACE_UoPOutputEndPoint
Package: Integration Model
isAbstract: No

Generalization: FACE_UoPEndPoint

Description

A FACE UoPOutputEndPoint is a specialization of a FACE _UoPEndPoint providing an endpoint which is used to output

data from a FACE_UnitOfPortability (UoP).

wstereotypes
FACE_UoPEndPoint
[Class]

|

«stereotvpes
FACE_UoPQutputEndPoint
[Clazsg]

ametaconstraints

smetaconstraints

Figure 7-137: FACE_UoPOutputEndPoint

FACE Conformance/OCL Constraints

Co1:
FACE_UoPOutputEndPoint.uoPEndPointConsistentWi
thRealization

FACE_ViewAggregation
Package: Integration Model
isAbstract: No

Generalization: FACE TransportNode

Description

wstereotvped associatio n» | FACE_UoPInstance

{applied_sterectype = FACE_EndPoint}

TumiRobe = "infarmationSource™}

estersotypes

— — |FACE_EndPoint
TumiRole = "memberEnd[1] type'} |

[As=ociation]

xstereotypes

[Class]

zstereotypes |
FACE_TSNodeConnection
[InformationFlow]

A FACE_UoPInputEndPoint's connection may be either
a FACE_ClientServerConnection or a
FACE_PubSubConnection whose
messageExchangeType is InboundMessage.

A FACE ViewAggregation represents of an instance of aggregation of data from multiple incoming views into a single
outgoing view type, including transformation of input data to that required by the output view type.

FACE Profile v2.0 — beta 1

159

wsterestypes
|FACE_TransportNode
[Class]

T

usteréut\,rpe::
|FACE_ViewAggregation
[Clazs]

Figure 7-138: FACE_ViewAggregation

FACE_ViewfFilter
Package: Integration Model
isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewFilter represents of an instance of a filter of data allowing a view to either pass through a filter, or to be

filtered out (i.e., not passed through). A FACE_ViewFilter performs no transformation of data.

| astereotypes
| FACE_TransportNode
[Clazs]

I

. msteren:fype:u
|FACE_ViewFilter
[Clas=]

Figure 7-139: FACE_ViewFilter

FACE Conformance/OCL Constraints

CO01: FACE_ViewFilter.viewIsConsistent

FACE_ViewSink
Package: Integration Model
isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewFilter must use the same
FACE_PlatformView on its input and output.

A FACE ViewSink is a FACE_TransportNode that only receives a View.

FACE Profile, v2.0 — beta 1

160

[ustat;typ en
| FACGE_TransportNode
[Class]

T

ustereu:-lt:.rpe::
|FACE_ViewSink |
[Claz=]

Figure 7-140: FACE_ViewSink

FACE Conformance/OCL Constraints

Co1:
FACE ViewSink.viewSinkConnectedToUoPOutputEn
dPoint

FACE_ViewSource
Package: Integration Model

isAbstract: No

Generalization: FACE TransportNode

Description

A FACE ViewSink may only be connected to a
FACE_UoPOutputEndPoint.

A FACE_ViewSource is a TransportNode that only provides a View.

| astereotypes
| FACE_TransportNode
[Clags]

I

ustereuglt';pe::
FACE_ViewSource |
[Class]

Figure 7-141: FACE_ViewSource

FACE Conformance/OCL Constraints

Co1:
FACE ViewSource.viewSourceConnectedToUoPInput
EndPoint

FACE_ViewTransformation

Package: Integration Model
isAbstract: No

FACE Profile v2.0 — beta 1

A FACE_ViewSource may only be connected to a
FACE_UoPInputEndPoint.

161

Generalization: FACE TransportNode

Description

A FACE ViewTransformation represents an instance of transformation of data from one view type to another.

wstereotypes
FACE_TransportNode
[Claz=]

|

sstereotypes
FACE ViewTransformation
[Clazs]

Figure 7-142: FACE_ViewTransformation

FACE_ViewTransporter
Package: Integration Model
isAbstract: No

Generalization: FACE TransportNode

Description

A FACE_ViewTransporter represents the use of a TransportChannel with the intent of moving a view over it.

wstereotypes
FACE_TransportNode
[Class]

T

wstereotypes
FACE_ViewTransporter
[Clazs]

P

+channel : FAL".E-_“_:ranspnrtEhannel [1]

Figure 7-143: FACE_ViewTransporter

Attributes

channel : FACE TransportChannel [1]

FACE Profile, v2.0 — beta 1

162

FACE Conformance/OCL Constraints

CO01: FACE_ViewTransporter.viewIsConsistent A FACE_ViewTransporter must use the same
FACE_PlatformView on its input and output.

7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Model

The Traceability Model package of the FACE Profile contains elements that represent the Traceability Model subpackage as
specified in the FACE metamodel.

FACE_ConceptualEntityTrace
Package: Traceability Model
isAbstract: No

Generalization: FACE_TraceableElement, FACE TraceabilityElement
Extension: Class
Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a
Conceptual Entity in the Data Model that has a traceability relationship to some other model.

«wstereotypes
| FACE_TraceableElement
[Element]
ustere-ut:.rpe:a
. | o wstereotypes
FACE_CDHceC;TtuaIEntltl_.rTral:e — a_ster_&utﬂ:-ed_ass_uclﬂ_tluni g, %FACE_CDnceptualEntityr
=] {spplied_stersotype = FACE_ TracsEntity] [Class]
: msi'ereﬁfype:o
it traint |
e T o — —|FACE TraceEntiy
fumiRole = "memberEnd[0] type"} [Aszociation]

Figure 7-144: FACE_ConceptualEntityTrace

FACE_ConceptualViewTrace

Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a
Conceptual View in the Data Model that has a traceability relationship to some other model.

FACE Profile v2.0 — beta 1 163

wstereotypes
FACE_TraceableElement

[Elernent]
wstereotypes
; s estereotypes
FAEE_ConciTtuaIVLewTrace ___ «stereotyped associations | FAGE_ConceptualView
[Class] fapplied_stereotype = FACE. TraceView) [Class]
. setersotypes
metaconstraint
I e e e T R T FACE_TraceView
TumiRole = "memberEnd[0] type'} [#ssociation]

Figure 7-145: FACE_ConceptualViewTrace

FACE_ConnectionTrace
Package: Traceability Model
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_ConnectionTraceabilitySet elements to their associated FACE_Connections.

FACE Profile, v2.0 — beta 1 164

wstereotvpes
FACE_AbstractAssociation
[As=sociation]

I

xstereotypes
FACE_ConnectionTrace
[~=s=ociation]

emetaconstraints

{umiFole = "memberEnd[0] typ="}

emetaconstraints

{umiRaolz = "memberEnd|[1].type"}

smetaconstraints

{fumiRole = "memberEnd|[1].type"}

| smetaconstraints

Figure 7-146: FACE_ConnectionTrace

Constraints

CO01: FACE_ConnectionTrace.memberEnd[0].type

C02:
FACE_ConnectionTrace.memberEnd[1].aggregation

C03:
FACE_ConnectionTrace.memberEnd[1].multiplicity

FACE Profile v2.0 — beta 1

wstereotvpes
FACE_ConnectionTraceability Set
[Class]

wstereotypes
FACE_Connection =
[Clazs]

«stereotypes
FACE_AbstractConnection =
[Class]

| {umiRole = "memberEnd[1].aggregaticn™}

e —_— —_

| emetaconstraints

|{umRole = "memberEnd] 1] multiplicity"}
e —_— _—

| wmetaconstraints

| fumiRolke = "memberEnd|[1].namea"}
e et R

wstereotyped associations

{applied_sterectype = FACE_ConnectionTrace}

«stereotyped associations

The value for the memberEnd[0].type metaproperty

must be stereotyped by

«FACE_ConnectionTraceabilitySet».

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..*

fapplied_stereotype = FACE_CornectionTrace}

165

C04: FACE_ConnectionTrace.memberEnd[1].name

C05: FACE_ConnectionTrace.memberEnd[1].type

FACE_ConnectionTraceabilitySet
Package: Traceability Model
isAbstract: No

Based on the stereotype of the memberEnd[1].type
metaproperty:

= specialization of «KFACE_Connectiony,
memberEnd[1].name is "Connection"

= «FACE_AbstractConnection», memberEnd[1].name
is "abstractConnection"

The value for the memberEnd[1].type metaproperty
must be stereotyped by one of the following:

A specialization of «kFACE_Connection»

«FACE_AbstractConnectiony

Generalization: FACE_TraceabilityElement, FACE TraceableElement

Extension: Class

Description

A FACE ConnectionTraceabilitySet is used to relate a set of FACE Connections and/or FACE_AbstractConnections to a set

of FACE_TraceabilityPoints.

Figure 7-147: FACE_ConnectionTraceabilitySet

FACE Profile, v2.0 — beta 1

wstereotypes wstereotypes
FACE_TraceabilityElement FACE_TraceableFlement
[Element] [Element]
wstereotypes
FACE_ConnectionTraceabilitySet smetaconstraints ustereutyPe:u
[Class] = —- — — = = = = = = — — FACE_ConnectionTrace
fumiRole = "membarEnd[0] typa"} [A==ociation]
wstereotyped associations Seferpnbines
——————————— = FACE_AbstractConnection
{applied_sterectype = FACE_ConnectionTrace} [Class]
L wstereotypes
iz _«st;ereciype_d ﬂisu%t":mn — — =FACE_Connection
{applied_sterectype = FACE_ConnecticnTracs} [Class]

166

FACE_ElementTrace
Package: Traceability Model
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to connect Traceable Elements to Traceability Points.

astereotypes
FACE_AbstractAssociation
[A=zociation]
zstereotypes
FACE_ElementTrace smetaconstraints i
NI o ol = FACE_TraceableElement | 4
{umiRobe = "memberEnd]0].type"} [Element]
I «stereotyped azsociations
| {applied_stersotype = FACE_ElementTrace}
sstereotvpes |
s e mﬂetaEunitrﬂ@x- S FACE_TraceabilityPoint = —
[umiRole = "membarEnd[1] typ="} [Clacs]
T
| «metaconstraints
{umiRale = "memberEnd] 1] aggregation}
P |
Iumetﬂcunstrﬂintn
l{umlRole = "memberEnd] 1] muktiplicity'}
e _ |
lumetﬂcunstrﬂintx-
l{umch\te = "memberEnd[1].name="}
e [—
Figure 7-148: FACE_ElementTrace
Constraints
CO01: FACE_ElementTrace.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be

stereotyped by a specialization of
«FACE TraceableElementy.

FACE Profile v2.0 — beta 1 167

C02: FACE_ElementTrace.memberEnd[1].aggregation = memberEnd[1].aggregation shall be composite

C03: FACE_ElementTrace.memberEnd[1].multiplicity = memberEnd[1].multiplicity shall be 0..*

C04: FACE_ElementTrace.memberEnd[1].name memberEnd[1].name shall be "traceabilityPoint"

C05: FACE_ElementTrace.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_TraceabilityPoint».

FACE_LogicalEntityTrace
Package: Traceability Model

isAbstract: No
Generalization: FACE_TraceableElement, FACE TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Logical
Entity in the Data Model that has a traceability relationship to some other model.

xstereotypes
FACE_TraceableElament
[Element]
wstereotypes =E P wstereotypes
ztereotyped association
FACE. | DAl nbiiEraoe| == o Temoped pesoriiong . . - leaer iomicalaliy
[Clazs] {applied_sterectype = FACE_Tracs=Entity} [Clazs]
" emetaconstraints wstereotypes
____________ FACE_TraceEntity
IRole = "memberEnd[0] typ=")
Al bz EncHOEpe [A==so0ciation]

Figure 7-149: FACE_LogicalEntityTrace

FACE_LogicalViewTrace

Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE TraceabilityElement

Extension: Class

FACE Profile, v2.0 — beta 1 168

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Logical
View in the Data Model that has a traceability relationship to some other model.

wstereotypes
FACE_TraceableElement
[Element]
T wstersotypes
SSIT . | _ _ _stereotyped associatiens | FAGE L ogicalView
FACE_LogicalViewTrace : T E
[Class] lapplied_sterectype = FACE_Trace\isw} [Class]
wxmetaconstraints uster&ut:.rpe.n
= —_- = = = - — — — — — — -FACE_TraceView
TumiRole = "memberEnd[}] type'} [Association]

Figure 7-150: FACE_LogicalViewTrace

FACE_PlatformEntityTrace
Package: Traceability Model
isAbstract: No

Generalization: FACE TraceableElement, FACE TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Platform
Entity in the Data Model that has a traceability relationship to some other model.

xstereotypes
FACE_TraceableElement
[Element]}
T sstersotypes
astereotypes wstereotyped associations ;
FACE_PlatformEntityTrace | — — — — — — — — — — — =FACE PlatformEntity
Iapplied_sterectype = FACE_Trac=Entity} [Claz=]
[Clazs]
] wetereotypes
e o, EMSCONSNERNS | .. |EACE TieccEotily
fumiFole = "memberEnd[0].type'} [A=sociation]

Figure 7-151: FACE_PlatformEntityTrace

FACE_PlatformViewTrace
Package: Traceability Model

FACE Profile v2.0 — beta 1 169

isAbstract: No
Generalization: FACE TraceableElement, FACE TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Platform
View in the Data Model that has a traceability relationship to some other model.

wstereotypes
FACE_TraceableElement
[Element]
wstereotypen Bl ustersotypes
1 d t
SACE Plat oW o < RO RN e e B ity
[Class] {applied_stersotype = FACE_TraceWiew} [Class]
ametaconstraints astereotypes
= — = = — — = — — — |FACE TraceWiew

TumiRole = "memberEnd[0] type'}

[#zs=ociation]

Figure 7-152: FACE_PlatformViewTrace

FACE_TraceabilityElement
Package: Traceability Model
isAbstract: Yes

Generalization: FACE_Element

Description

A FACE_TraceabilityElement is the root type for defining the FACE TraceabilityElements of the FACE Architecture
Model.

estereotypes
FACE_Element
[Element]

| |

xwe2tereotypes | swatersotypes
FACE_TraceabilityElemeant — = FACE_TraceabilityModel
[Element] | fumiRale = "owner' | [Package]

L wmetaconstraints

Figure 7-153: abstract FACE_TraceabilityElement

FACE Profile, v2.0 — beta 1 170

Constraints

CO01: FACE_TraceabilityElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_TraceabilityModel»

FACE Conformance/OCL Constraints

CO01: FACE_TraceabilityElement.hasUniqueName All FACE Traceability Elements must have a unique
name.

FACE_TraceabilityPoint

Package: Traceability Model
isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE TraceabilityPoint is used to document the relationship between a FACE TraceableElement and an external model.
The "reference" attribute is a reference to the external model. The "rationale" attribute is used to document the reasoning
behind the Trace.

xstereotypes ’
FACE ModelElement
[Element]
wztersotypes] wstereotypes
metaconstraint
FACE_TraceabilityPoint |« — — — - 0=40% _ _ |FACE ElementTrace
[Clazs] {umiRole = "memberEnd[1].type'} [Association]
+rationale : EtFii‘ig-flj 1-
+reference : String [0..1] = xstereotypen
stereotyped association
= — — g _WF'_ i FACE_TraceableElament
{applied_stersotype = FACE_ElementTrace} [Element]

Figure 7-154: FACE_TraceabilityPoint

Attributes

rationale : String [0..1]

reference : String [0..1]

FACE Profile v2.0 — beta 1 171

FACE_TraceableElement
Package: Traceability Model

isAbstract: Yes
Extension: Element
Description

A FACE_TraceableElement is used to capture traceability to other models.

xstereotypes
FAGE_TraceableElement wmetaconstraints | s s e |
k= — — — — — — — — — — -4FACE_ElementTrace |
IElewend] {umiRole = "memberEnd(0] type"} {Assoteknn)

_— i wstereotypes |
| _ wslereotyped associalions_ paCE TraceabilityPoint |
{applied_sterectype = FACE_FElementTrace} [Clags] |

Figure 7-155: abstract FACE_TraceableElement

FACE_TraceEntity
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_xxxEntityTraces elements to their associated data model entities.

FACE Profile, v2.0 — beta 1 172

wstersotvpes
FACE_AbstractAssociation

[&==ociation]

wstereotypes wstereotypes
FACE_TraceEntity wmetaconstraints FACE_ConceptualEntityTrace | —

Associabon] ™ 0| S STralELl R] Class |

[1 {umiRale = "memberEnd[0].typa"} { ! wstereotyped associations

" feaint xstereotypes {applied_sterectype = FACE_TraceEntity}
_ o MmeEconsraAm: _ LFACE ConceptualEntity ke — —
fumiRcle = "memberEnd[1].typa"} [Class]
wstersotypes

wmetaconstraints

fumiRole = "memberEnd[0] typa"}

= FACE_LogicalEntityTrace

[Clazs] | #stereotyped associations

wmetaconstraints
fumiRole = "memberEnd[1] fype"}

|{applied_stereotype = FACE_TraceEntity}
ustereotypes
FACE_LogicalEntity —
[Clazs]

gy i |

wmetaconstraints

fumiRole = "memberEnd[0].type"}

xmetaconstraints

wstereotypes
FACE_PlatformEntityTrace
[Class]

wstereotyped azsociations

{applied_stereotype = FACE_TraceEntity}

wstereotypes
FACE_PlatformEntity

fumiRole = "memberEnd[1] typa"}

| «metaconstraints

Figure 7-156: FACE_TraceEntity

Constraints

CO01: FACE DMeEntityTraceAssoc.memberEnd[0].type

C02:
FACE_DMEntityTraceAssoc.memberEnd[1].aggregati
on

FACE Profile v2.0 — beta 1

IF___|

[Clazg]

= T
s«metaconstraints
l{umRuFe = "memberEnd] 1].aggregation’}
oo o
"~ |ametaconstraints
|fumiRole = "membarEnd[1] multiplicity}
e

|fumiRole = "membarEnd[1] nama"

The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:

«FACE_ConceptualEntityTrace»
«FACE_LogicalEntityTrace»
«FACE_PlatformEntityTrace»

memberEnd[1].aggregation shall be none

173

C03: memberEnd[1].multiplicity shall be 1
FACE_DMEntityTraceAssoc.memberEnd[1].multiplici

ty

C04: memberEnd[1].name is "entity"
FACE_DMEntityTraceAssoc.memberEnd[1].name
C05: FACE_DMEntityTraceAssoc.memberEnd[1].type Based on the memberEnd[0].type value's stereotype:

= «FACE_ConceptualEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_ConceptualEntity»

= «FACE_LogicalEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «<FACE_LogicalEntity»

= «FACE_PlatformEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE PlatformEntity»

FACE_TraceView
Package: Traceability Model
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association
Description

Used to connect FACE xxxViewTraces elements to their associated data model Views.

FACE Profile, v2.0 — beta 1

174

xsiereotypes

[Az=sociation]

FACE_AbstractAssociation

T

wstereotypes
FACE_TraceView
[A==ociation]

ametaconstraints 4
{umiRole = "memberEnd[0] typ="}

wstereotyvpes
FACE_ConceptualViewTrace | |
[Clazs]

[wstereotyped as=ociations

ametaconstraints

= — A
{umiRole = "memberEnd[1] typ="}

stereotypex |{app|ied_sta‘eoiype = FACE_Trace\fiew}
FACE_ConceptualView SO [
[Clazs]

«metaconstraints

fumiRale = "memberEnd[0].type"}

A

wstereotypes
FACE_LogicalViewTrace | ~ |
[Class]

| wstereotyped aszociations

emetaconstraints -
{umiRole = "memberEnd[1].typ="}

applied_sterectype = FACE_Trac=Wiew
wstereotyvpes | {=pplied_; i iz !

FACE lLogicalView &= — — — |
[Classg]

ametaconstraints
{umiRole = "memixerEnd[0].type"}

wstereotypes
FACE_PlatformViewTrace | — — 4
[Class]

|wstereotyped associations

smetaconstraints

_{u_ch-ie = "n'herrTberEnd['f].type"}

|{applied_stereotype = FACE_TracsView}
wslereotypes

= FACE_PlatformView | _ _ _ |

[Classg]

| emetaconstraints

e

.:_ i)
| ametaconstraints

| emetaconstraints

Figure 7-157: FACE_TraceView

Constraints

CO01: FACE_DMViewTraceAssoc.memberEnd[0].type

FACE Profile v2.0 — beta 1

__ |[{umiRole = "memberEnd[1] aggregation’}

| fumiRale = "memberEnd] 1] multipliciy?

|fumiRole = "membarEnd[1] name'?

The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:

«FACE_ConceptualViewTrace»
«FACE LogicalViewTrace»
«FACE PlatformViewTrace»

175

C02:
FACE_DMViewTraceAssoc.memberEnd[1].aggregatio
n

C03:
FACE_DMViewTraceAssoc.memberEnd[1].multiplicit

y
C04: FACE_DMViewTraceAssoc.memberEnd[1].name

C05: FACE_DMViewTraceAssoc.memberEnd[1].type

FACE_UoPTrace
Package: Traceability Model
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 1

memberEnd[1].name is "view"

Based on the memberEnd[0].type value's stereotype:

= «FACE_ConceptualViewTrace», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «KFACE_ Conceptual View»

= «FACE_LogicalViewTrace», the memberEnd[1].type
metaproperty must be stereotyped by a specialization of
«FACE_LogicalView»

= «FACE_PlatformViewTrace», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «KFACE_PlatformView»

Used to connect FACE_UoPTraceabilitySets to their associated FACE _UnitOfPortability (UoPs).

FACE Profile, v2.0 — beta 1

176

wstereotypes
FACE_AbstractAssociation
[A==ociation]

|

«stereotypes
FACE_UoPTrace
[Association]

emetaconstraints
fumiRole = "memberEnd[0].typ="}

«metaconstraints

Figure 7-158: FACE_UoPTrace

Constraints

CO01: FACE_UoPTrace.memberEnd[0].type

C02: FACE_UoPTrace.memberEnd[1].aggregation

C03: FACE_UoPTrace.memberEnd[1].multiplicity

C04: FACE_UoPTrace.memberEnd[1].name

C05: FACE_UoPTrace.memberEnd[1].type

FACE_UoPTraceabilitySet
Package: Traceability Model

FACE Profile v2.0 — beta 1

wstereotypes
FACE_UoPTraceabilitySet | —
[Class] |

| «sterectyped associations
| {applied_sterectype = FACE_UoPTrace)

wstereotypes I
FACE_UnitOfPortability == —
[Class]

«metaconstraints

l{umlRDle = "memberEnd] 1].aggregation’}

TumiRole = "memberEnd] 1].multiplicity'}

e — FrL) — My
| :
smetaconstraints
e —e P —— 2. %
_____ | .
«metaconstraints
|
.E e PSP gt

| TumiRole = "memberEnd] 1].mame"}

The value for the memberEnd[0].type metaproperty
must be stereotyped by «FACE_UoPTraceabilitySet».

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..*

memberEnd[1].name shall be "uop"

The value for the memberEnd[1].type metaproperty
must be stereotyped by «<FACE_UnitOfPortability».

177

isAbstract: No
Generalization: FACE TraceabilityElement, FACE TraceableElement

Extension: Class

Description

A FACE_UoPTraceabilitySet is used to relate a set of FACE_UnitOfPortability (UoPs) and/or FACE_AbstractUoPs to a set
of FACE TraceabilityPoints.

wsterentypes «stereotypes
FACE_TraceabilityElement FACE_TraceableElament
[Element] [Element]
T T [stercotypen |
wslersotypes ametaconstraints [|
|FACE_UoPT [
FACE UoPTraceabilitySet & — — — — — — — — — AT
{umiRale = "memberEnd|[0].type"} —| [A=sociation] |
[Clasz] LT e i S
i | tereotypes
sterectyped as=ociation | 7
| sstereolyped assocltols _ lrACE_unitOfPortability
{applied_sterectype = FACE_UoPTracs) | [Class]

Figure 7-159: FACE_UoPTraceabilitySet

7.1.1.4 FACE_Profile::FACE Data Architecture::UoP Model

The UoP Model package of the FACE Profile contains elements that represent the UoP Model subpackage as specified in the
FACE metamodel.

FACE_AbstractConnection

Package: UoP Model

isAbstract: No

Generalization: FACE_Element, FACE TraceableElement

Extension: Class
Description

A FACE_AbstractConnection captures the input and output characteristics of a FACE_AbstractUoP by specifying data at a
Logical or Conceptual level.

FACE Profile, v2.0 — beta 1 178

wstereotypes wstereotypes
FACE_Element FACE_TraceableElement

[Element] [Element]
wetersotypes
FACE_AbstractConnection «metaconstraints wztereotypes
[Class] e _mR_ ieT" _mb:En_dl}_ — — T|FACE_AbstractView
{umiRole = "memberEnd(0].type'} [A=s=ociation]
wstereotyped associations «stereotypes
el e e e _— = FACE_ConceptualView
{applied_stersotype = FACE_AbstraciView] [Class]
sstereotyped associations aStereotypes
——————————— = FACE_Il ogicalView
{applied_stersotype = FACE_AbstraciView}
[Class]
smetaconstraints ustereotypes

A vy v S FACE_EndPoint
fumiRole = "memberEnd[1].type"}

[A==sociation]
wstereotyped associations astereotypen
{applied_stereotype = FACE_EndPoint} FACE_AbstractUoP
swmetaconstraints) [Clasz]
TumiRale = "owner'}
smetaconstraints wstereotypes

P it i FACE_ConnectionTrace
fumiRtole = "memberEnd[1].typ="} [A==ociation]

estereotyped associations mStEFIEUtYPE» 1
T e T r FACE_ConnectionTraceability Set
{applied_sterectype = FACE_ConnectionTrace]} [Clazsg]

smetaconstraints mStE'FE.‘Dtb"E‘F‘»
e P e o s — FACE_Realize
fumiRole = "memberEnd] 1] type"} [Association]

wstereotyped associations ust&rent';pew.
M —_—_= — — —|FACE Connection
Tapplied_sterectype = FACE_Resalize} [Class]

. smetaconstraints wstereotypes
{umiRole = "infarmationSource’} CACE- e AR XE Do
[InfarmationFlow]
smetaconstraints

TumiRole = "infarmationTarget'}

Figure 7-160: FACE_AbstractConnection

FACE Profile v2.0 — beta 1 179

Constraints

CO01: FACE_AbstractConnection.owner

FACE_AbstractUoP
Package: UoP Model
isAbstract: No

Elements with this stereotype may only be contained in
(owned by) elements with the stereotype

«FACE_AbstractUoP»

Generalization: FACE_UoPElement, FACE TraceableElement

Extension: Class

Description

A FACE_AbstractUoP is used to capture the logical specification of a FACE_UnitOfPortability (UoP).

sstersotypes wstersotypes
FACE_UoPElement FACE_TraceableElement
[Element] [Element]

I

I

astereotypes
FACE_AbstractUoP
[Class]

Figure 7-161: FACE_AbstractUoP

FACE Conformance/OCL Constraints

Co1:

FACE_AbstractUoP.onlyLogicalOrOnlyConceptual

FACE Profile, v2.0 — beta 1

xstereotyped associations
{applied_sterectype = FACE_EndPgint}
swmetaconstraints

TumiRaole = "owner'}

smetaconstraints
TumiRole = "memberEnd[0].typ="}

xstereotyped associations

{applied_stersotype = FACE_Reslize}

ametaconstraints
TumiRole = "memberEnd[1].typ="}

wstereotypes
FACE_AbstractConnection
[Class]

| astersotypes

FACE_EndPoint |

astereotypes
FACE_UnitOfPortability
[Claz=]

«stercotypes

FACE_Realize
[As=sociation]

A FACE AbstractUoP must be entirely logical or
entirely conceptual. (Its AbstractConnections all have
their logicalView set and conceptual View not set or all
have their conceptual View set and logicalView not set.)

180

FACE_AbstractView
Package: UoP Model
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to identify the FACE conceptual and FACE LogicalViews that express the data exchanges for
FACE_AbstractConnection components.

wstereotypes

[A==ociation]

FACE_AbstractAssociation

I

wstereotypes
FACE_AbstractView
[A==0ciation]

«metaconstraints

TumiRcle = "memberEnd[0].typa'"}

wstereotypes

[Clazz]

FACE_AbstractConnection I

smetaconstraints

="
TumiRole = "memberEnd] 1].typa'"}

wstereotypes

[Clazz]

FACE_ConceptualView

e — - |
xstereotyped associations
Tapplied_sterectype = FACE_AbsiraciView]} l

smetaconstraints

TumiRole = "memberEnd] 1].type'"}

o

wstereotypes

FACE_lLogicalView

[Class]

E

______ 1

Figure 7-162: FACE_AbstractView

Constraints

CO01: FACE_AbstractView.memberEnd[0].type

FACE Profile v2.0 — beta 1

| «metaconstraints
| fumiRole = "memberEnd] 1].multiplicity"}

| emetaconstraints
- |{umch\Pe ="memberEnd[1].aggregation™}

smetaconstraints

_l{umbRnFe = "memberEnd[1].name"}

xstereotyped associations
{applied_sterectype = FACE_Abstraci\iew}

Value for the memberEnd[0].type metaproperty must be
stereotyped by «kFACE_AbstractConnectiony.

181

C02: FACE_AbstractView.memberEnd[1].aggregation

C03: FACE_AbstractView.memberEnd[1].multiplicity

C04: FACE_AbstractView.memberEnd[1].name

C05: FACE_AbstractView.memberEnd[1].type

FACE_BackingComponent
Package: UoP Model
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..1

Based on the stereotype of the memberEnd[1].type
metaproperty:

= Specialization of «<FACE_ConceptualView»,
memberEnd[1].name is "conceptual View"

= Specialization of «<FACE_LogicalView»,
memberEnd[1].name is "logical View"

Value for the memberEnd[1].type metaproperty must be
stereotyped by one of the following:

Specialization of «kFACE Conceptual View»
Specialization of «<FACE_LogicalView»

The FACE BackingComponent identifies the FACE SupportingComponents that are required for a

FACE_UnitOfPortability.

FACE Profile, v2.0 — beta 1

182

ustereotypes
FACE_AbstractAssociation

wmetaconstraints

{umiRole = "memberEnd[1].type"}

[A==ociation]
astereotypes i
FACE_BackingComponent = estereotypes
[Association] _ _ emetaconstrainty _ |pacE unitOfPortability — — — 1
{fumiRole = "memberEnd(0].type'} [Class] |
Iaster&utyp&d aseociations
{applied_stersotype = FACE_BadkingComponent}
|
wstereotypes

________ = FACE_SupportingComponent = I

[Clazs]

smetaconstraints

b —d

«metacenstraints

e —e

| smetacenstraints
| fumiRole = "memberEnd|1].name="}
e — J

Figure 7-163: FACE_BackingComponent

Constraints

CO01: FACE_ BackingComponent.memberEnd[0].type

C02:
FACE_BackingComponent.memberEnd[1].aggregation

CO03:
FACE_BackingComponent.memberEnd[1 |.multiplicity

C04: FACE_BackingComponent.memberEnd[1].name

C05: FACE BackingComponent.memberEnd[1].type

FACE_BoundQuery
Package: UoP Model
isAbstract: No

FACE Profile v2.0 — beta 1

{umiRole = "memberEnd] 1] aggregation’}

I TumiRole = "memberEnd|1].multiplicity'}

Value for the memberEnd[0].type metaproperty must be
stereotyped by «kFACE_UnitOfPortability».

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..*

memberEnd[1].name shall be "supportingComponent"

Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_SupportingComponenty.

183

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to relate a FACE Template view with the underlying FACE query that is its specification.

FACE_AbstractAssociation
[&=zociation]

f

astereotypes
FACE_BoundQuery
[A==ociation]

i sstereotypes
|
|

wmetacenstraints

_ustereutype:u |
_________ = FACE_Template
{umiRole = "membarEnd[0].typa"} [Class]

| xstereotyped associations
|{applbed_stereo‘ty;:ue = FACE_BoundQusry}

: astereotypes |
L = FACE_PlatformQuery . _ _ _ _ |
{umiRole = "memberEnd] 1] typ="} [Class]

emetaconstraints

I
—

{fumiRole = "membarEnd| 1].aggregation™}

| kmetaconstraints
|{urnIRc|Ie = "memberEnd[1].multiplicity'}
E — i |

| «metaconstraints

| fumiRole = "memberEnd[1] nam="}
é —_——

Figure 7-164: FACE_BoundQuery

Constraints

C01: FACE_BoundQuery.memberEnd[0].type

C02: FACE_BoundQuery.memberEnd[1].aggregation

C03: FACE_BoundQuery.memberEnd[1].multiplicity

C04: FACE_BoundQuery.memberEnd[1].name

FACE Profile, v2.0 — beta 1

Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_Template».

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..1

memberEnd[1].name shall be "boundQuery"

184

C05: FACE_BoundQuery.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «kFACE_PlatformQuery».

FACE_ClientServerConnection
Package: UoP Model
isAbstract: No

Generalization: FACE Connection

Description

A FACE _ ClientServerConnection is a Request/Reply Connection as defined in Section 4.7 of the FACE Technical Standard.

ust&reutyp&n. zenumerations
FACGE_Connection FACE_ClientServerRoleEnum
[Class] eniamerilion Heraks
Client
Server
estereotypes] estereotypes
FACE_ClientServerConnection s =ooos _smetaconstraints |FACE RequestView
[Class] {umiRole = "memberEnd[0].typa"} [&s=ociation]
+role : FACE_ClientServerRoleEnum [1] = Client
xstereotvped associations e
e o e bl e e L e WO = FACGE_UoPMessage
{applied_stersotype = FACE_ReguestView] Type
[Class]
sstersotypes
ERESae _emetaconstraints |FACE ResponseView
fumiRole = "memberEnd[0].bype'"} [A=sociation]
wstereotvped azsociations s2berenbyyes
- — — — — — — — — — -=FACE UoPMessageType
{applied_sterectype = FACE_Response\View) [Class]

Figure 7-165: FACE_ClientServerConnection

Attributes

role : FACE ClientServerRoleEnum [1]

FACE_ClientServerRoleEnum
Package: UoP Model
isAbstract: No

FACE Profile v2.0 — beta 1 185

Description

Indicates the component role in a Client/Server communication pattern. Its enumeration literals are:

Client -
Server -

wenumerations
FACE_ClientServerRoleEnum

ENLATETS ifers

Client
Server

Figure 7-166: FACE_ClientServerRoleEnum

FACE_ComponentFramework
Package: UoP Model
isAbstract: No

Generalization: FACE_SupportingComponent

Extension: Class

Description

A FACE_ComponentFramework is a component framework as defined in Section 4.2.4 of the FACE Technical Standard.

xstereotypes
FAGE_SupportingGComponent
[Class]

| estoreotypes
|FACE_ComponentFramework
| [Class]

Figure 7-167: FACE_ComponentFramework

FACE_ComponentTypeEnum
Package: UoP Model
isAbstract: No

Description

Indicates the FACE-Specific component type of the component. Its enumeration literals are:

PortableComponent -
PlatformSpecificComponent -

FACE Profile, v2.0 — beta 1 186

wenumerations
FACE_ComponentTypeEnum

PortableComponent
PlatformSpecificComponent

Figure 7-168: FACE_ComponentTypeEnum

FACE_CompositeTemplate
Package: UoP Model
isAbstract: No

Generalization: FACE_UoPMessageType

Extension: Class

Description

A FACE_CompositeTemplate is a collection of two or more FACE_Templates. The "isUnion" attribute specifies whether the

composed Templates are to be represented as cases in an IDL union or as members of an IDL struct.

wetereotypes
FACE_UoPMessageType
[Clazs]

i

sstersotypes
FACE CompositeTemplate
[Clazs=]

+igUnion : EII.ZI.IZI|EHI'I-[1] = falze

smetaconstraints

TumiR ale = "memberEnd[0] typ="}

estereotyped associations
Tapplied_sterectype = FACE_Realize]}

smetaconstraints
TumiRcle = "class"}

smetaconstraints
TumiRole = "ownedAttribute'}

Figure 7-169: FACE_CompositeTemplate

Attributes

isUnion : Boolean [1]

FACE Profile v2.0 — beta 1

xstereotypen
FACE_Realize
[A==ociation]

xstereotypes

=|FACE_LogicalCompositeQuery

[Clazs]

xstereotypes
FACE TemplateComposition

[Property]

187

Constraints

CO01: FACE_CompositeTemplate.ownedAttribute

FACE Conformance/OCL Constraints

Co1:
FACE_CompositeTemplate.compositionsConsistentWit
hRealization

C02:
FACE_CompositeTemplate.compositionsHaveUniqueR
olenames

CO03:
FACE_CompositeTemplate.noCyclesInConstruction

C04:
FACE_CompositeTemplate.realizationUnionConsistent

C05:
FACE_CompositeTemplate.realizedCompositionsHave
DifferentTypes

C06: FACE_CompositeTemplate.viewComposedOnce

FACE_Connection
Package: UoP Model
isAbstract: Yes

The values for the ownedAttribute metaproperty must
meet the following criteria:

- must be ordered list

- referenced elements must be stereotyped
«FACE_TemplateComposition» or its specializations

- must contain 2 or more elements

FACE_TemplateCompositions in a platform
FACE_CompositeTemplate must realize
FACE_QueryCompositions in the
FACE_LogicalCompositeQuery that the platform
FACE_CompositeTemplate realizes.

A FACE TemplateComposition's rolename must be
unique within a FACE CompositeTemplate.

A FACE_CompositeTemplate must not compose itself,
directly or indirectly.

A FACE CompositeTemplate that realizes must have
the same "isUnion" property as the
FACE CompositeQuery it realizes.

A FACE_CompositeTemplate may not contain two
FACE_TemplateCompositions that realize the same
FACE_QueryComposition.

A FACE CompositeTemplate must not compose the
same FACE Template more than once.

Generalization: FACE Element, FACE TraceableElement

Extension: Class

Description

A FACE_Connection is a communication endpoint on a FACE_UnitOfPortability (UoP). A FACE_ Connection is either a
Publisher, Subscriber, Client, or Server. The metatype's "type" attribute represents the FACE "messageType" attribute that

FACE Profile, v2.0 — beta 1 188

specifies the FACE MessageType that is transmitted through the endpoint. If "period" is not specified, the endpoint is
aperiodic. If "period" is specified, the value is the period of the endpoint in seconds.

«enumerations
astereotypes ustereotypes FACE_Synchronization StyleEnum
FACE_Element FACE_TraceableElement on Harals
[Element] [Element] Blocking
::f. NonBlocking
sstereotypes
FACE_Connection . wstereotypes
[Class] e — — _umﬂacglstr_alntl — — — |FACE_Realize emetaconstraints
+period - Real[1] = 1.0 il = dmemberEnd (L bpe) [Association] | {umRole = membs

{umiRole = "n'hembqrEnd[‘-.].rype"}
|

+zynchronizationStyle | FACE_SynchronizationStyleEnum [1] = NonBlocking

wstereotyped associations ssferentypes. . |
—————————— = FACE_AbstractConnection e —
{applied_stereotype = FACE_Reslize] [Class]
smetaconstraints esteraotypes ametaconstraints
e e i FACE_ConnectionTrace | ~ — " 1 :
{umiRole = "membearEnd] 1] type'} [Association] {umiRole = ﬂ'IVEﬂ"hn‘erl'*d[El]-rwE T
|

«stereotyped associations o:ster_eutypen 2 1
oo e e R FACE_ConnectionTraceabilitySet [~
{applied_stersotype = FACE_ConnectionTrace}

[Class]
astereotypen

e — — _ume_tﬂcﬂ'lstl’_ﬂll‘lti — — — |FACE_EndPoint ametaconstraints

{umiRole = "memberEnd[1].type'} [Association] | fumiRale = "mEmberEnd0] type}

«stersotyped associations

__________ zstersotypes |
{=pplied_stersotype = FACE_EndFoin} FACE_UnitOfPortability .=
ametaconstraints 5 [Class]
fumiRole = "gwner'}
wstereotypes

o — _ melecorstiaih _ _ _|pACE Realize | AMetaconsiraints

{wmitals = membarEad 1] pe'y [Association] | {umiRole = "membarEnd(0].type'}
|

«stereotyped associations sstereotypes = |
e e i FACE_UoPEndPoint = —
{applied_stereotype = FACE_Realize] [Class]
i _smetaconstraints astereotypes
IumiRale = "information Target} FACE_ResourceExchange

emetaconstraints [InformationFlow]

{umiRole = "informationSource™}

Figure 7-170: abstract FACE_Connection

Attributes

period : Real [1]

synchronizationStyle : FACE SynchronizationStyleEnum [1]

Constraints

CO01: FACE_Connection.owner Elements that are stereotyped by specializations of this
stereotype may only be contained in (owned by)
elements with the stereotype
«FACE_UnitOfPortability»

FACE Profile v2.0 — beta 1 189

FACE Conformance/OCL Constraints

CO01: FACE_Connection.realizationTypeConsistent If a FACE_Connection realizes an
FACE_AbstractConnection, its requestType or
responseType or both (for
FACE_ClientServerConnections) or its messageType
(for FACE_PubSubConnections) must realize either the
FACE_AbstractConnection's logicalView or a logical
View that must realize the FACE AbstractConnection's
conceptual View.

FACE_DesignAssurancelLevelEnum
Package: UoP Model
isAbstract: No

Description

Indicates the safety and hazard Design Assurance Level (DAL) assigned to a component. Its enumeration literals are:

A -
B -
C-
D -
E -

swenumerations
FACE_DesignAssurancelevelEnum

Mo m e

Figure 7-171: FACE_DesignAssurancelLevelEnum

FACE_DesignAssuranceStandardEnum
Package: UoP Model
isAbstract: No

Description
Indicates the FACE-pertinent safety-critical Design Assurance Standard that applies to a component. Its enumeration literals
are:

DO 178B_ED 12B -
DO _178C_ED_12C -

FACE Profile, v2.0 — beta 1 190

wenumeration:
FACE_DesignAssurance StandardEnum

DO_1738_ED 12B
DO_178C_ED_12C

Figure 7-172: FACE_DesignAssuranceStandardEnum

FACE_EffectiveQuery
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

A FACE _EffectiveQuery is a Query that can produce the desired or intended data needed to develop the Platform
FACE_Template data structures. Effective Queries are used as an optional notational reference for the modeler to help when
a FACE Template is utilizing other FACE Templates and the resulting Query may be a complex combination of

FACE BoundQueries.

FACE Profile v2.0 — beta 1 191

wstereotypes
FACE_AbstractAssociation
[A=sociation]

i

«stereotypes
FACE_EffectiveQuery
[A=s=ociation]

wmetaconstraints

fumiRole = "memberEnd[0] typa'?

wmetaconstraints

{fumiRole = "memberEnd[1] typa"}

= &=
| wmetaconstraints

= — -

| emetaconstraints

_ — —

T

| «metaconstraints

e — —

Figure 7-173: FACE_EffectiveQuery

Constraints

CO01: FACE_EffectiveQuery.memberEnd[0].type

C02:
FACE_EffectiveQuery.memberEnd[1].aggregation

CO03:
FACE_EffectiveQuery.memberEnd[1].multiplicity
C04: FACE_EffectiveQuery.memberEnd[1].name

C05: FACE_EffectiveQuery.memberEnd[1].type

FACE Profile, v2.0 — beta 1

wstereotypes
FACE_Template | — —

[Clazs] l

| wstereotyped associations

| {applied_sterectype = FACE_EffectiveQuery}

zstereotypes |
FACE_PlatformQuery = -
[Class]

| fumiRaole = "memberEnd[1].eggregation™}

| fumiRole = "memberEnd] 1].multiplcity"}

| {fumiRoke = "memberEnd]1].namsa"}

Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_Template».

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 0..1

memberEnd[1].name shall be "effectiveQuery"

Value for the memberEnd[1].type metaproperty must be
stereotyped by «<FACE_PlatformQuery».

192

FACE_LanguageRunTime
Package: UoP Model
isAbstract: No

Generalization: FACE SupportingComponent

Extension: Class

Description

A FACE LanguageRunTime is a language run-time as defined in Section 4.2.3 of the FACE Technical Standard.

wsterentypes
FACE_UoPElament
[Element]

|

wsterentypes

FACE_SupportingCompaonent
S 7 & «metaconstraints iy StE.r&IJt';.pr:o
[Class] = —_ - - — — — — — — — — — FACE_BackingComponent

fumiR gle = "memberEnd]1].typ="} [A==0ociation]

wstereotyped associations uste.reutyp&n -
e . FACE_UnitOfPortability
{=pplied_stereotype = FACE_BadingComponent} [Class]

Figure 7-174: FACE_LanguageRunTime

FACE_LifeCycleManagementPort
Package: UoP Model

isAbstract: No

Generalization: FACE ModelElement

Extension: Class

Description

A FACE_LifeCycleManagementPort is used to define the life-cycle interface for the component. The
"messageExchangeType" attribute defines the direction of the life-cycle message relative to the FACE UnitOfPortability
(UoP).

FACE Profile v2.0 — beta 1 193

estereotypes senumerations
FACE_ModelElement FACE_MessageExchangeTypeEnum
[E Iement] enumerstion fiterals
InboundMessage
‘T‘ OutboundMessage
xstereotypes
FACE_LifeCycleManagementPort
[Class] 5 «metaconstraints ustereotypes
+messageExchangeType : FACE MessageExchangeTypeEnum [1] = InboundMessage {umiRtalie = "memberEnd(0] type") FACE_Mes;a_geType
[A=z=zociation]
wsterectyped associations | ESIETRIE
Y Shls b et adiois a4 FACE_UoFMessageType
{applied_sterectype = FACE MessageType] [Class]
emetaconstraints sstersotypes
i e iR S s | EACE el Rloind
{umiRole = "memberEnd] 1].type'} [Association]
e _mst_ereu_typid Eisuiiatiﬂm =] wstereotypes
{applied_sterectype = FACE_EndPazing FACE_UnitOfPortability
«metaconstraints 3 [Class]
{umiRale = "owner'}
P _ «metaconstraints | xstereotypes
TumiRole = "informationTarget} FACE_ResourceExchange
smetaconstraints [InformationFlow]
O st ot ot S
{umiRole = "informationSourc="}
Figure 7-175: FACE_LifeCycleManagementPort
Attributes
messageExchangeType : FACE MessageExchangeTypeEnum [1]
Constraints
CO01: FACE _LifeCycleManagementPort.owner Elements with this stereotype may only be contained in

(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_MessageExchangeTypeEnum
Package: UoP Model
isAbstract: No

Description

The FACE MessageExchangeTypeEnum enumeration captures the options for the message exchange type of a
FACE_UnitOfPortability (UoP) port as defined by the TS Interface. Its enumeration literals are:

InboundMessage -
OutboundMessage -

FACE Profile, v2.0 — beta 1 194

wenumerations
FACE_MessageExchangeTypeEnum
Inbuundr.1es:ﬁg;3. .
OutboundMessage

Figure 7-176: FACE_MessageExchangeTypeEnum

FACE_PartitionTypeEnum
Package: UoP Model

isAbstract: No

Description

The FACE_PartitionTypeEnum enumeration captures the OS API types for a FACE UnitOfPortability (UoP) as defined by
the FACE Operating System Segment (OSS). Its enumeration literals are:

POSIX -
ARINC653 -

wenumerations
FACE_PartitionTypeEnum

POSIK
ARINCES3

Figure 7-177: FACE_PartitionTypeEnum

FACE_ProfileEnum
Package: UoP Model
isAbstract: No

Description

The FACE_FaceProfileEnum enumeration captures the OS API subsets for a FACE UnitOfPortability (UoP) as defined by
the Operating System Segment (OSS). Its enumeration literals are:

GeneralPurpose -

Security -

SafetyBase -

SafetyExtended -

FACE Profile v2.0 — beta 1 195

wenumerations
FACE_ProfileEnum

GeneralPurpose
Security
SafetyBaze
SafetyExtended

Figure 7-178: FACE_ProfileEnum

FACE_ProgramminglLanguageEnum

Package: UoP Model
isAbstract: No

Description

The FACE_ProgramminglLanguageEnum enumeration captures the options for programming language API bindings as
defined by Section 4.14 of the FACE Technical Standard. Its enumeration literals are:

C-

CPP -
Java -
Ada -

senumerations
FACE_ProgrammingLanguageEnum

C
CPP
Java
Ada

Figure 7-179: FACE_ProgrammingLanguageEnum

FACE_PubSubConnection
Package: UoP Model
isAbstract: Yes

Generalization: FACE Connection

Description

A FACE_PubSubConnection is a FACE_QueuingConnection or a FACE_SinglelnstanceMessageConnection. The
messageExchangeType attribute defines the direction of the message relative to the FACE UnitOfPortability (UoP).

FACE Profile, v2.0 — beta 1

196

SIS senumerations
& bl
FACE_M Exch TypeEl
FACE_Connection = es?afemi ange JECETI
[Class] InboundMeszage
‘T Outboundiessage
astereotypes) xstereotypes
FACE_PubSubConnection e _ _ smefaconstraints - |FACE_MessageType
[Class] {umiRole = "memberEnd[0] type'"} [Association]

+messagebxchangeType | FACE_MessageExchangeTypeEnum [1] = InboundMessage

zstereotyped associations astereotypes

—————————— =
{applied_stersctype = FACE_MessageType} FACE_UOET::‘:TBQET”E

Figure 7-180: abstract FACE_PubSubConnection

Attributes

messageExchangeType : FACE MessageExchangeTypeEnum [1]

FACE_QueuingConnection
Package: UoP Model

isAbstract: No

Generalization: FACE_PubSubConnection

Description

A FACE_QueuingConnection is a FACE_PubSubConnection that supports buffering/queuing as defined in Section 4.8 of the
FACE Technical Standard.

wstereotypes
FACE_PubSubConnection
[Class]

T

wstereotypes
FACE_QueuingConnection
[Class]

+depth : Integer [1] =0

Figure 7-181: FACE_QueuingConnection

Attributes

depth : Integer [1]

FACE Profile v2.0 — beta 1 197

FACE Conformance/OCL Constraints

CO01: FACE_QueuingConnection.depthValid

A FACE_QueuingConnection's queue depth must be

greater than zero.

FACE_RAMMemoryRequirements

Package: UoP Model
isAbstract: No

Generalization: FACE ModelElement

Extension: Class

Description

A FACE RAMMemoryRequirements defines memory resources required by a FACE _UnitOfPortability (UoP).

wstereotypes
FACE_ModelElament

[Element]
P

estereotypes
FACE_RAMMemoryRequirements
[Class]

ametaconstraints

+heapStackMin : Integer [0..1] = 0

+heapStackMax : Integer [0..1]=0

+heapStackTypical : Integer [0.1] =0
+textiMax : Integer [0..1] =0
+roDataMax : Integer [0..1] =
+dataMax : Integer [0..1] =10
+bezMax : Integer [0..1] = 0

0

TumiRole = "memberEnd] 1].type'}

sstersotyped associations

Tapplied_sterectype = FACE_UoPResouwrce}

ametaconstraints

- — - = —— = — — >

TumiRole = "pwmer'}

Figure 7-182: FACE_RAMMemoryRequirements

Attributes

bssMax : Integer [0..1]
dataMax : Integer [0..1]
heapStackMax : Integer [0..1]
heapStackMin : Integer [0..1]

heapStackTypical : Integer [0..1]

FACE Profile, v2.0 — beta 1

{FACE_UoPResource

wstereotypes

[A=s0ciation]

wstereotypes

{FACE_UnitOfPortability

[Class]

198

roDataMax : Integer [0..1]

textMax : Integer [0..1]

Constraints

C01: FACE_ RAMMemoryRequirements.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_RequestView
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify the FACE_PlatformView that specifies the request message for a FACE Client/Server connection.

FACE Profile v2.0 — beta 1 199

ustersotypes

FACE_AbstractAssociation

[A==ociation]

T

«stereotvpes
FACE_RequestView
[A==ociation]

smetaconstraints
TumiRole = "memberEnd[0].typ="}

wstereotypes
________ == FACE_ClientServerConnection

smetaconstraints

ustereotypes

________ = FACE UoPMessageType
{umiRole = "memberEnd[1].type'} [Class]

ametaconstraints

|{umchul-e = "memberEnd| 1].aggregation™}

Figure 7-183: FACE_RequestView

Constraints

CO01: FACE_RequestView.memberEnd[0].type

C02: FACE RequestView.memberEnd[1].aggregation

C03: FACE_RequestView.memberEnd[1].multiplicity

C04: FACE RequestView.memberEnd[1].name

FACE Profile, v2.0 — beta 1

.:_ — —

| :

ametaconstraints

|{uml‘Ruie = "memberEnd[1].multiplicity}
e — — |

| ametaconstraints

|{LJITIlREl|E = "memberEnd[1].nam="}
L SR |

Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_ClientServerConnectiony.

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 1

memberEnd[1].name shall be "requestType"

200

C05: FACE_RequestView.memberEnd[1].type

FACE_ResponseView
Package: UoP Model
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

Description

Used to identify the FACE_PlatformView that specifies the expected response message for a FACE Client/Server

connection.

i wstereotypes

FACGE_AbstractAzsociation
| [As=ociation]

I

sstersotypes
FACE_ResponseView

|_':__I

|_':__I

e |

Figure 7-184: FACE_ResponseView

FACE Profile v2.0 — beta 1

[A==ocigtion] @ — — — — — —
fumiRale = "memberEnd[0] typa'}

ametaconstraints

| smetaconstraints
l{umlRole ="memberEnd[1].aggregation’}

| ametaconstraints
|{uch|Fe = "memberEnd[1].multiplicity'}

| emetaconstraints
| furmiRole = "memberEnd[1].namea"

Value for the memberEnd[1].type metaproperty must be

stereotyped by a specialization of
«FACE_MessageType».

TumiRole = "memberEnd[1] typa'"}

=

wsterentypes
FACE_ClientServerConnection
[Class]

=

xstereotypes
FACGE_UoPMessageType
[Clas=s]

201

Constraints

CO01: FACE_ResponseView.memberEnd[0].type

C02: FACE_ResponseView.memberEnd[1].aggregation

C03: FACE_ResponseView.memberEnd[1].multiplicity

C04: FACE_ResponseView.memberEnd[1].name

C05: FACE_ResponseView.memberEnd[1].type

FACE_SinglelnstanceMessageConnection
Package: UoP Model

isAbstract: No

Generalization: FACE PubSubConnection

Description

A FACE_SinglelnstanceMessageConnection is a FACE_PubSubConnection that supports single instance messaging as

defined in Section 4.8 of the FACE Technical Standard.

astereotypes
| FACE_PubSubConnection
[Class]

f

swstersotypes
|FACE_SinglelnstanceMessageConnection
[Clazs]

Figure 7-185: FACE_SinglelnstanceMessageConnection

FACE_SupportingComponent
Package: UoP Model

isAbstract: Yes

Generalization: FACE_UoPElement

Extension: Class

FACE Profile, v2.0 — beta 1

Value for the memberEnd[0].type metaproperty must be
stereotyped by «<FACE_ClientServerConnectiony.

memberEnd[1].aggregation shall be none

memberEnd[1].multiplicity shall be 1

memberEnd[1].name shall be "responseType"

Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_MessageType».

202

Description

A FACE_SupportingComponent is a LanguageRunTime or ComponentFramework. The version attribute is the version of the
FACE_SupportingComponent.

wsterentypes
FACE_UoPElement
[Element]
«stereotypes
FACE_SuppeortingComponent smetaconstraints e
[Class] e s S FACE_BackingComponent
ST ol = et Endi T hpe s [Association]
+Wersion : Etri-ng [1j-=
L wstereotypes
. _ _ _‘stereolyped associafions _ |FACE_unitOfPortability
{applied_sterectype = FACE_BadkingComponent} [Class]

Figure 7-186: abstract FACE_SupportingComponent

Attributes

version : String [1]

FACE_SynchronizationStyleEnum
Package: UoP Model
isAbstract: No

Description
The FACE_SynchronizationStyleEnum enumeration captures the options for the synchronization style of a
FACE_UnitOfPortability (UoP) port as defined by the Transport Services (TS) Interface. Its enumeration literals are:

Blocking -
NonBlocking -

wenumerations
FACE_SynchronizationStyleEnum

EMUANEra0GN Meras

Blocking
NonBlocking

Figure 7-187: FACE_SynchronizationStyleEnum

FACE_Template
Package: UoP Model

FACE Profile v2.0 — beta 1 203

isAbstract: No

Generalization: FACE UoPMessageType

Extension: Class

Description

A FACE_Template is a specification that defines a structure for Characteristics projected by its "boundQuery" or its

"effectiveQuery". The "specification" attribute captures the specification of a Template as defined by the Template grammar
in Appendix J.4 of the FACE Technical Standard.

| wstereotypes
FACE_UoPMessageType
[Class]
Tl ; wstereotvpes
F;gtEerfutwallnt . _ _ _wmetaconsiraints __|FACE_BoundQuery
T {umiRole = "membarEnd|0] typ="} [~=sociation]
[Class]
ifi tét_ 11 =
+zpecification : String [1] estereotypen

Figure 7-188: FACE_Template

Attributes

specification : String [1]

e__

ametaconstraints

TumiRole = "memberEnd[0] typa'}

FACE_EffectiveQuery
[“s=ociation]

xetereotyped associations

fapplied_sterectype = FACE_BoundQuery}

wstereotyped associations

{applied_stersotype = FACE_Effectiveluery]

wstereotypes
FACE_PlatformQuery
[Clas=]

FACE_TemplateComposition

Package: UoP Model
isAbstract: No

Generalization: FACE ModelElement

Extension: Property

FACE Profile, v2.0 — beta 1

204

Description

A FACE_TemplateComposition is the mechanism that allows a FACE _CompositeTemplate to be constructed from
FACE_Templates and other FACE CompositeTemplates. The "name" property represents the "rolename" attribute that
defines the name of the composed platform View within the scope of the composing CompositeTemplate. The “type” of a
TemplateComposition is the platform View being used to construct the CompositeTemplate.

i astereotypes
| FAGE_ModelElement
| [Element]
wsterentypes .
FACE TemplateComposition s “Eatﬂ_m"itrﬂﬂtn — ustereut.ype:u
Froperty] [umiRgle = "dass"] FACE_CompositeTemplate
sttules [Clasg]
+redlizes . FAI:E_Ll:ugi_ﬁﬁldﬁ;a-r}anmpnsﬂiun [0.1] = _unEtac_unsﬁai@ M.
TumiRole = "ownedAtiribute')
Lo ERUENERNT ivaar L§;E$;;erme
TumiRobe = "type"} = [Clazg]
Figure 7-189: FACE_TemplateComposition
Attributes
realizes : FACE_LogicalQueryComposition [0..1]
Constraints
CO01: FACE_TemplateComposition.class Value for class metaproperty must be stereotyped
«FACE_CompositeTemplate».
C02: FACE TemplateComposition.type Value for type metaproperty must be stereotyped

«FACE_MessageType» or its specializations.

FACE Conformance/OCL Constraints

Co1: The rolename of a FACE_TemplateComposition may
FACE_TemplateComposition.rolenamelsNotReserved ~ not be an IDL reserved word.

Word

C02: The rolename of a FACE TemplateComposition must

FACE TemplateComposition.rolenamelsValidldentifie be a valid identifier.
r

FACE Profile v2.0 — beta 1 205

CO03:
FACE_TemplateComposition.typeConsistentWithReali
zation

FACE_Thread

Package: UoP Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

If FACE TemplateComposition "A" realizes
FACE_LogicalQueryComposition "B", then if A's type
is a FACE_CompositeTemplate, then A's type must
realize B's type, and if A's type is a FACE Template
and defines an effectiveQuery, then A's type's
effectiveQuery must realize B's type.

A FACE Thread defines the properties for the scheduling of a thread.

swenumerations

xslerectypes FACE_ThreadTypeEnum
FACE_ModelElement T e
[Element] Forsground
T Background
sstereotypes
FACE_Thread ; wsterectypes
[Class] o _ _ cwmefaconsiraints __|FACE_UoPResource
+period : Real [1] = 0.0 fumiRoke = "memberEnd[1] type"} [A=sociation]
+timeCapacity : Real [1] = 0.0
+relativePriority : Integer [1] =0 . o
+relativeCoreAffinity : Integer [11=0 e “EIETE0TY ER
+threadType : FACE_ThreadTypeEnum [1] = Foreground | — u_stez&ut@&d_asE Dlﬂmni — —FACE_UnitOfPortability
{applied_sterectype = FACE_UoPResource} [Class]
emetaconstraints
—————————— -
TumiRale = "owner'}

Figure 7-190: FACE_Thread

Attributes

period : Real [1]

relativeCoreAffinity : Integer [1]
relativePriority : Integer [1]

threadType : FACE ThreadTypeEnum [1]
timeCapacity : Real [1]

FACE Profile, v2.0 — beta 1

206

Constraints

CO01: FACE_Thread.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_ThreadTypeEnum
Package: UoP Model
isAbstract: No

Description

Indicates the thread runtime foreground/background characteristic for a component. Its enumeration literals are:

Foreground -
Background -

wenumeration:s
FACE_ThreadTypeEnum

Furegru:;un-d- -
Background

Figure 7-191: FACE_ThreadTypeEnum

FACE_UnitOfPortability

Package: UoP Model

isAbstract: No

Generalization: FACE_UoPElement, FACE TraceableElement

Extension: Class

Description

A FACE UnitOfPortability is a PlatformSpecificComponent or PortableComponent.

FACE Profile v2.0 — beta 1 207

«enumerations
FACE_ComponentTypeEnum

PortableComponent
PlatformSpecificComponent

wstereotypes
FACE_UoPElement
[Element]

wstereotypes
FACE_TraceableElement
[Element]

i

i

«stereotypes

FACE_UnitOfPortability

[Class]

+componentType : FACE_ComponentTypeEnum [1] = PortableComponent

+transportAPlLanguage | FAC

E_ProgramminglLanguageEnum [1]=C

+designAssurancelevel . FACE_DesignAssurancelevelEnum [0..1]

+partitiontype : FACE_Parttion
ek and

«enumerations
FACE_ProgrammingLanguageEnum

C
CcPP
Java
Ada

«wenumeration»
FACE_DesignAssurancelevelEnum

Moo mE

«enumerations
FACE_PartitionTypeEnum

POSIX
ARINCES3

«enumerations
FACE DesignA

num

DO_1788_ED_128
DO_178C_ED_12C

«enumerations
FACE_ProfileEnum

GeneralPurpose
Security
SafetyBase
SafetyExtended

TypeEnum [1] = ARINCES3

d : FACE_DesignAssuranceStandardEnum [0..1]

anc
+face=PrufiLe: FACE_ProfileEnum [1] = SafetyExtended

{applied_sterectyps = FACE_IOEndpoint}

L «metaconstraints cataraotyios
{umiRale = "memberEnd(0] typ=} FACE_Realize
e ametaconstraints [Association]
{umiRole = "memberEnd| 1] type'}
wstereotyped associations «sterectypes
- — — — — — — — — — -AFACE_AbstractUoP
{applied_sterectype = FACE_Realize} [Class]
astereotyped associations wstereotypen
T s e B — — {FACE_UoPinstance
{=spplied_ster=otype = FACE_Realize} [Class]
smetaconstraints ustereotypen
TEEE TE FACE_BackingComponent
{umiRale = "memberEnd[0] typs'} [Association]
«stereotyped associations «stereotypes
T o S I e TS - FACE_SupportingComponent
applied_sterectype = FACE_BadkingComponent) [Class]
ametaconstraints «stereotypes
R W W Wt Wil FACE_EndPoint
fumiRale = "membarEnd[0] typ="} Sl
I wstereotypes
_ _ wstersotypsdassocietions __|FACE_LifeCycleManagementPort
ispplied_stersotype = FACE_EndPaing [Class]
= _«s_terﬁtyiedissgzlﬂtl_nnn_ — wstereotypen
{=pplied_stersotype = FACE_EndPoint} FACE_Connection
le ametaconstraints [Class]
fumiRale = "owner"}
ametaconstraints astereotypes
< — — — — — — — — — — FACE lloPResource
{umiRale = "membarEnd[0] type'} Encocion]
.. wsterenypedassnciafions: =) asteraotypes
{=pplied_stereotype = FACE_UoPResource] | FACE_RAMMemoryRequirements
L «metaconstraints [Class]
fumiRale = "owner"}
| _ _ wstereotyped associations = xstereotypes
{applied_stersotype = FACE_UoPResource} FACE_Thread
& «metaconstraints [Class]
{umiRale = "owner"}
ametaconstraints ustersotypes
__________ FACE_UoPTrace
{fumiRole = "memberEnd[1] type'} [Association]
xstereotyped associations ustereotypes
1applied_stersolype = FACE_UoPTrace) FACE—”""[E;?;;“‘“‘Y%‘
«metaconstraints ustereotypes
FERE, = FACE_IOEndpoint
g [Association]
wstereotyped associations «stereotypes

> FACE_UnitOfConformanceEndpoint

[Class]

Figure 7-192: FACE_UnitOfPortability

Attributes

componentType : FACE ComponentTypeEnum [1]

designAssuranceLevel : FACE DesignAssuranceLevelEnum [0..1]

FACE Profile, v2.0 — beta 1

208

designAssuranceStandard : FACE DesignAssuranceStandardEnum
[0..1]

faceProfile : FACE ProfileEnum [1]
partitiontype : FACE PartitionTypeEnum [1]

transportAPILanguage : FACE ProgrammingLanguageEnum [1]

FACE Conformance/OCL Constraints

COl: If a FACE_UnitOfPortability "A" realizes a
FACE_UnitOfPortability.connectionsConsistentWithU =~ FACE_AbstractUoP "B", then A and B must have the
oPRealization same number of connections, and every

FACE_Connection in A must realize a unique
FACE_AbstractConnection in B.

If a FACE UnitOfPortability does not realize a
FACE_AbstractUoP, none of its FACE Connections
may realize.

FACE_UoPElement
Package: UoP Model
isAbstract: Yes

Generalization: FACE Element

Description

A FACE UoPElement is the root type for defining the component elements of the UoPMode Ithe FACE ArchitectureModel.

ustere-:l’.r.ype:u
FACE_Element
[Element]

wstereotypes T xstereotypes

!FAGE_U&PE.rement = sswasmaiirmea - FACE_UoPModel |
[[Element] | {umRole="osmer} | package]

Figure 7-193: abstract FACE_UoPElement

FACE Profile v2.0 — beta 1 209

Constraints

CO01: FACE UoPElement.owner

FACE Conformance/OCL Constraints

CO01: FACE_UoPElement.hasUniqueName

FACE_UoPMessageType
Package: UoP Model
isAbstract: Yes

Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_UoPModel»

All FACE UoP Elements must have a unique name.

Generalization: FACE UoPElement, FACE TraceableElement

Extension: Class

Description

A UoP Message Type is a UoP Template or a UoP CompositeTemplate.

wstereotypes «stereotypes

| FACE_UoPElemeant
[Element] [[Element]

|

|Fa CE_TraceableElement

wstereotypes
FACE_UoPMessageType
[Class]

Figure 7-194: abstract FACE_UoPMessageType

FACE Conformance/OCL Constraints

Co1:
FACE_UoPMessageType.namelsNotReservedWord

FACE_UoPResource
Package: UoP Model
isAbstract: No

Generalization: FACE AbstractAssociation

Extension: Association

FACE Profile, v2.0 — beta 1

A UoP's Message name may not be an IDL reserved
word.

210

Description

Used to identify system requirements for FACE _UnitOfPortability (UoP) components.

wstereotypes

[Association]

FACE_AbstractAssociation

[

astereotypes
FACE_UoPResource
[A==ociation]

.

=

<

wmetaconstraints

{umiRole = "memberEnd|[0].type'}

smetaconstraints

{umiRole = "memberEnd| 1].type'}

xmetaconstraint»

{umiRole = "memberEnd|1].typa'}

| kmetaconstraints

wstereotypes
FACE_UnitOfPortability
[Class]

astereotypes
FACE_RAMMemoryRequirements
[Class]

wsterzotypes
FACE_Thread
[Clasz]

|{umlRole ="memberEnd[1].aggregation™}

| emetaconstraints

|fumiRale = "memberEnd] 1] multiplicity}

| «metaconstraints

|fumiRcle = "memberEnd] 1].nama"}

Figure 7-195: FACE_UoPResource

Constraints

CO01: FACE_UoPResource.memberEnd[0].type

C02: FACE UoPResource.memberEnd[1].aggregation

FACE Profile v2.0 — beta 1

xstereotyped azsociations

«stereotyped associations |

lapplied_stersotype = FACE_UoPResodres}

{applied_stereotype = FACE_UoPResource}

Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_UnitOfPortability».

memberEnd[1].aggregation shall be composite

211

C03: FACE _UoPResource.memberEnd[1].multiplicity =~ Based on the EndPoint.memberEnd[1].type value's
stereotype:

= «FACE_RAMMemoryRequirementsy,
memberEnd[1].multiplicity must be 1

= «FACE_Thread», memberEnd[1].multiplicity must
be 1..*

C04: FACE_UoPResource.memberEnd[1].name Based on the EndPoint.memberEnd[1].type value's
stereotype:

= «FACE_RAMMemoryRequirements»,
memberEnd[1].name must be "memoryRequirements"

= «FACE_Thread», memberEnd[1].name must be
"thread"

C05: FACE _UoPResource.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by one of the following:

«FACE_RAMMemoryRequirements»
«FACE_Thread»

7.1.2 FACE_Profile::FACE_Extended_Stereotypes

This package contains stereotypes for elements not found in the FACE metamodel, but supplement the FACE metamodel
with elements that recognize the larger context of a system-of-systems. The supplemental elements either represent FACE
segments that are not explicitly represented in the FACE metamodel or provide connection between FACE Components and
other components of the system-of-systems.

FACE_IOEndpoint
Package: FACE_ Extended Stereotypes
isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

The FACE standard states that Platform-Specific Services Segment (PSSS) Components may exchange information with the
Input-Output Segment (I0S) Components, but the FACE metamodel does not include a mechanism to express the
connection. This association provides additional connections through FACE UnitOfConformanceEndpoint elements through
which PSSS FACE UnitOfPortability elements may exchange information with IOS FACE UnitOfConformance
components elements.

FACE Profile, v2.0 — beta 1 212

In addition to aggregation and multiplicity specifications on memberEnd[1], this association differs from the default
FACE_AbstractAssociation in that it is bi-directionally navigable.

' wstereotypes

[Association]

FACE_AbstractAssociation

T

[TR TEenn hesmaTEeaT T wstereotypes

ametaconstraints FACE_IOEndpoint

|:ziomitole = mbrberE el Tl dame). - [Association]

| xmetaconstraints
| fumiRaole = "memiberEnd] 1].aggregation™}

Figure 7-196: FACE_IOEndpoint

Constraints

CO01: FACE_IOEndpoint.memberEnd[0].isNavigable

C02: FACE IOEndpoint.memberEnd[0].type

C03: FACE_IOEndpoint.memberEnd[1].aggregation

C04: FACE_IOEndpoint.memberEnd[1].multiplicity

C05: FACE_IOEndpoint.memberEnd[1].name

C06: FACE_IOEndpoint.memberEnd[1].type

FACE Profile v2.0 — beta 1

________ = FACE_UnitOfPortability

. | astersotypes
«metaconstraints | typ

{umiRale = "memberEnd|0].type"t | [Class]

; wstereotypes
wmetaconsztraints ‘ typ

________ = FACE_UnitOfConformanceEndpoint

fumiRole = "memberEnd| 1].typa"} | [Class]

memberEnd[1].isNavigable shall be true

Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_UnitOfPortability» and
memberEnd[0].componentType must be
PlatformSpecificComponent.

memberEnd[1].aggregation shall be composite

memberEnd[1].multiplicity shall be 0..*

memberEnd[1].name shall be "ioEndpoint"

Value for the memberEnd[1].type metaproperty must be
stereotyped by «<FACE_SystemComponentEndpoint»
and memberEnd[1].endPointType must be
IOSEndpoint.

213

FACE_OperationalExchange
Package: FACE_ Extended Stereotypes
isAbstract: No

Extension: InformationFlow
Description

A type of OperationalExchange that asserts information exchange between two FACE_AbstractConnections. This has no
corresponding metatype in the FACE Technical Standard because the FACE standard represents components without system
context. This exchange enables expression of information exchanges between FACE elements at the system-of-systems
level.

wstereotypexs PR
A L] b
FACE‘E:;F::F?:E';?IUEEMHQE __ umetaconstraints -, FACE_AbstractConnection
TumiRole = "infermationTarget'} [Class]
ametacenstraints 5
TumiRole = "infarmationSource"}
emetacaonstraints ustereotypes
———————— = FACE ConceptualView
TumiR ole = "comveyed"} [Class]
smetaconstraints EslerEohpes
———————— = FACE_L ogicalView
TumiRole = "comveyed") [Class]
Figure 7-197: FACE_OperationalExchange
Constraints
CO01: FACE_OperationalExchange.conveyed Value for the conveyed metaproperty must be
stereotyped by either the specialization of
«FACE_ConceptualView» or the specialization of
«FACE_LogicalView».
C02: FACE_OperationalExchange.exchangeKind Value for the exchangeKind attribute defaults to

"InformationExchange".

C03: FACE_OperationalExchange.informationSource Value for the informationSource metaproperty must be
stereotyped by «kFACE_AbstractConnectiony.

FACE Profile, v2.0 — beta 1 214

C04: FACE OperationalExchange.informationTarget

FACE_ResourceExchange
Package: FACE Extended Stereotypes

isAbstract: No

Extension: InformationFlow

Description

Value for the informationTarget metaproperty must be
stereotyped by «kFACE_AbstractConnectiony.

A type of ResourceExchange that asserts information exchange and among FACE_UnitOfPortability (via subclass of
Connection) and FACE UnitOfConformance Transport Services Segment (TSS) elements (via
UnitOfConformanceEndpoint). This has no corresponding metatype in the FACE Technical Standard because the FACE
standard represents components without system context. This exchange enables expression of information exchanges
between FACE elements at the system-of-systems level.

wsterentypes
FACE_ResourceExchange
[InformationFlow]

smetaconstraints

TumiRobe = "infarmationTarget'}

ametaconstraints

TumiRole = "informationSource"}

smetaconstraints

TumiRoke = "informationTarget'}

smetaconstraints

TumiR ole = "informationSource"}

ametacoenstraints

TumiR ole = "informationSource"}

smetacoenstraints

TumiRale = "infarmationTarget'}

smetaconstraints

TumiRale = "comeyed"}

Figure 7-198: FACE_ResourceExchange

FACE Profile v2.0 — beta 1

sstereotypes
={ FACE_Connection
[Class]
wstereotypes

= FACE_LifeCycleManagementPort

[Claz=]
:‘-.

wstereotypes
= FACE_UnitCfConformanceEndpoint
[Clas=]
:‘-.
ustereotypen
= FACE_UoPMessageType
[Class]

215

Constraints

CO01: FACE_ ResourceExchange.conveyed

C02: FACE ResourceExchange.exchangeKind

C03: FACE ResourceExchange.informationSource

C04: FACE ResourceExchange.informationTarget

FACE_UnitOfConformance
Package: FACE Extended Stereotypes
isAbstract: No

Generalization: FACE_UoCFElement

Extension: Class

Description

Value for the conveyed metaproperty must be
stereotyped by the specialization of
«FACE_MessageType».

Value for the exchangeKind attribute defaults to
"FACEResourceCommunication".

Value for the informationSource metaproperty must be
stereotyped by «kFACE_LifeCycleManagementPort», a
specialization of «<FACE_Connection», or a
«FACE_UnitOfConformanceEndpoint» that has
endPointType = TSSEndpoint.

Value for the informationSource metaproperty must be
stereotyped by «kFACE_LifeCycleManagementPort», a
specialization of «<FACE_Connectiony, or a
«FACE_UnitOfConformanceEndpoint» that has
endPointType = TSSEndpoint.

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) for every segment in the
FACE Data Architecture, but the FACE metamodel includes only Portable Component Segment (PCS) and Platform-Specific
Services Segment (PSSS) components. This stereotype represents FACE Components (UoCs) that are that are pertinent to a

system-of-systems architecture and are allocated to segments of the FACE standard that are not represented in the FACE

metamodel.

FACE Profile, v2.0 — beta 1

216

o st;ec;typen
FACE_UoCElament
[Element]

T

«enumerations
FACE_UnitOfConformanceTypeEnum

Transpo rtSe-rv-ic.e.E‘:t.l I'.I'||:-EI-I'—I e_n-t
I0ServiceComponent
OperatingSystemComponent

sstereotypes
FACE_UnitOfConformance

xmetaconstraints |1 eaterentynes

[Class]

| #transportaPlLanguage ; FACE_ProgramminglanguageEnum [1] = C
| +designAssurancelevel : FACE_DesignAssurancelevelEnum [0..1]
+parttionType : FACE_PartitionTypeEnum [1] = ARINCE53

+faceProfile : FACE_ProfileEnum [1] = SafetyExtended

+compenentType FACE_Un'rtDchnfurman-c.e"—';‘.r';;e-Enum [1] = TransportServiceComponent

+designAssuranceStandard | FACE_DesignAssuranceStandardEnum [0..1]

i R R L FACE_EndPoint |
{umiRole ="memberEnd[0] type"} [Association]

«ztereotyped associations

e e - wsterectypes
{zpplied_sterectype = FACE_EndPoinf |FACE UnitOfConformanceEndpoint
emetaconstraints [Class]

{fumiRaole = "owner'} L

Figure 7-199: FACE_UnitOfConformance

Attributes

componentType :
FACE_UnitOfConformanceTypeEnum [1]

designAssurancelLevel :
FACE_DesignAssuranceLevelEnum [0..1]

designAssuranceStandard :
FACE DesignAssuranceStandardEnum [0..1]

faceProfile : FACE ProfileEnum [1]

partitionType : FACE PartitionTypeEnum [1]

transportAPILanguage :
FACE_ProgrammingLanguageEnum [1]

FACE_UnitOfConformanceEndpoint
Package: FACE_ Extended Stereotypes
isAbstract: No

Extension: Class

FACE Profile v2.0 — beta 1

The component type that corresponds to a segment in the FACE
segment architecture. Indicates the segment into which the
described Component is intended to be placed. For more details,
see the enumerated type descriptions for
UnitOfConformanceTypeEnum.

The design assurance level attributed to safety/security sensitive
components. Indicates the impact of a failure condition of the
described component.

The design assurance standard that applies to a safety/security
sensitive system and that by which the design and testing of the
system is judged to be safety or security certified.

The criticality designation used by FACE to tailor the operating
system to be deployed for a set of components. For more
information about the details of each potential designation, please
refer to the FACE Technical Standard.

The operating system type for which the described component was
developed.

The programming language to be used for the component's
communications.

217

Description

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) but the FACE metamodel
does not include components for every segment. This stereotype represents an aspect of component in a segment of the
FACE standard that is pertinent to a system-of-systems architecture but is not represented in the FACE metamodel.

A FACE_UnitOfConformanceEndpoint is a communication endpoint on a FACE component that is part of the Transport
Services, [OServices, or Operating Services segments in FACE. These endpoints are the conduits through which information
flows between FACE components in designated segments. The communication paths for FACE components are strictly
governed by the FACE standard and are reflected in related stereotypes in this standard.

) astereotypes) wenumerations
FACE_UnitOfConformanceEndpoint FACE_UnitOfConformanceEndpointTypeEnum
[Clazs] ERE T

aifnbuies TSSEndpoint
+endPointType : FACE_UnitOfConformanceEndpointTypeEnum [1] = TSSEndpoint I0SEndpoint
DeviceEndPoint

: | wstereotypes
e, o GmomCOnStERR | __|FACE EsdPoint
{umiRale = "memberEnd] 1] type'} | [&=s0ciation]
e _oleeatypedassoibone. «stersotypes
{applied_sterectype = FACE_EndPoinf; |FACE_UnitOfConformance
ametaconstraints N [Class]
fumiRole = "owner'}
. wstereotypes
e _ _ emeidconsitaits _ |racE joEndpoint
{umiRale = "membarEnd]1] typea'} [Association]
L astereotypes
o _ vsterectyped associations _ \pace ynitofPortability
{applied_sterectype = FACE_IOEndpoint} [Class)

messageType | «Metaclasss
0.1 Classifier
emetaconstraints
M e e R R U R g astereotypes

{umiRole = "informationScurce"} FACE_ResourceExchange
[InformationFlow]

ametaconstraints

{umiR ok = "information Targed"}

Figure 7-200: FACE_UnitOfConformanceEndpoint

Attributes
endPointType : The component type that corresponds to the segment in the FACE
FACE_UnitOfConformanceEndpointTypeEnum architecture with which this endpoint is intended to connect. For
[1] more details, see the enumerated type descriptions for

UnitOfConformanceEndpointTypeEnum.

FACE Profile, v2.0 — beta 1 218

Associations

messageType : The classifier that describes the
information/resource being exchanged through
the endpoint. Characterized as Classifier because,
depending on the endPointType, the exchange
could be characterized in a variety of ways.
Multiplicity of [0..1] because the exchange might
not be characterized at this time.

Constraints

C01: FACE_UnitOfConformanceEndpoint.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfConformance»

FACE_UnitOfConformanceEndpointTypeEnum
Package: FACE Extended Stereotypes
isAbstract: No

Description

This Enumeration provides types for the endpoints/connections owned by FACE components that are described in the FACE
Technical Standard but are not part of the FACE metamodel. Each FACE component has 1 or more connections to other
FACE components. The intended FACE segment for that communication is indicated by the this enumerated type. Its
enumeration literals are:
TSSEndpoint - Indicates that the endpoint represents FACE Transport Services Segment (TSS) communications.
IOSEndpoint - Indicates that the endpoint represents a communications conduit between a FACE Input/Output
Services Segment (IOSS) element and a FACE Platform-Specific Segment (PSSS) element.
DeviceEndPoint - Indicates a communications conduit between an Input/Output Services Segment (I0SS) element
and a device or device driver. The target of communications from a Device endpoint may not be FACE
component.

FACE_UnitOfConformanceTypeEnum
Package: FACE_ Extended Stereotypes
isAbstract: No

Description

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) but the FACE metamodel
does not include components for every segment. This stereotype represents an aspect of a component in a segment of the
FACE standard that is pertinent to a system-of-systems architecture but is not represented in the FACE metamodel.

This enumeration represents the FACE component types that are part of the FACE Data Architecture but are not represented
in the FACE metamodel.

Its enumeration literals are:

FACE Profile v2.0 — beta 1 219

TransportServiceComponent - Indicates that a component is a FACE Transport Services Segment (TSS)
Component. TSS components provide communication between and among FACE Portable Components
Segment (PCS) and Platform-Specific Services Segment (PSSS) components.

I0ServiceComponent - Indicates that a component is a FACE Input/Output Services Segment (I0OSS) Component.
I0SS components provide the interface between vendor-supplied device drivers (hosted in the Operating
System Segment/OSS) and the Platform-Specific Services Segment (PSSS) components.

OperatingSystemComponent - Indicates that a component is a FACE Operating System Segment (OSS)
Component. OSS components include operating system services, device drivers, and other vendor-supplied
software. An OSS component provides and controls access to the computing platform itself.

FACE_UoCElement
Package: FACE Extended Stereotypes
isAbstract: Yes
Extension: Element
Description
A FACE_UoCElement is the root type for defining the non-metamodel system elements of the ArchitectureModel.
ssterectypes cmetaconstraints | *Stereotypes
FACE UaCElement | — — — — — = FACE_UoCMaodel
[Element] A= o Er [Package]

Figure 7-201: abstract FACE_UoCElement

Constraints

C01: FACE_UoCElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:

«FACE_UoCModel»

FACE_UoCModel

Package: FACE_ Extended Stereotypes
isAbstract: No

Extension: Package

Description

This package holds descriptions of FACE components that are called for in the FACE Technical Standard but that are not
represented in the FACE metamodel. These descriptions are separated from the rest of the FACE model elements to
differentiate them from metamodel-represented elements.

FACE Profile, v2.0 — beta 1 220

estereotypes : : «stereotypes

FACE_UoCModel | «metaconstraints |eacp architectureModel
[Package] fumiRole = "owner'} [Package]
ametaconstraints | SEotiica
— — — — — — = FACE_UoCElement
TfumiRole = "owmer'} [[Element]
~ =
' |
|
L «metaconstraints |
TumiRole = "owner'}
Figure 7-202: FACE_UoCModel
Constraints
CO01: FACE_UoCModel.owner Elements with this stereotype may only be contained in

(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_UoCModel»

7.1.3 FACE_Profile::UAF_Extensions

This package contains stereotypes for representing FACE elements in a UAF context. The connection between the FACE
Profile and UAF is loosely coupled and accomplished using a dependency between FACE elements and UAF elements. The
FACE Implements «stereotyped relationship» dependencies in the stereotype definitions express the correspondence between
FACE and UAF metatypes, with additional constraints for the application of FACE stereotypes. The FACE Implements have
been omitted from the FACE element diagrams outside of this section to prevent confusion about the scope of their
implementation. These relationships are meant to be implemented only for a separable UAF extension to the FACE Profile.

FACE_Implements
Package: UAF_Extensions
isAbstract: No

Extension: Dependency
Description

This dependency indicates that the referencing FACE element is an implementation of the referenced UAF architectural
element. This dependency and its constraints constitute the mapping from FACE stereotyped elements to UAF stereotyped
elements.

The allowed dependencies in this stereotype include some implementation relationships that cross metatypes. Because the
profile for the FACE adheres as closely as possible to the FACE metamodel, the type of a FACE profile element might differ

FACE Profile v2.0 — beta 1 221

from its corresponding application in a UAF context. The use of Dependency relationships to indicate implementation

enables the representation of the intent of the FACE element correctly in the UAFP context.

One of 3 diagrams for FACE_Implements
This diagram shows only the constraints between FACE elements and UAF Operaticnal Structure elements

wstereotypes

[Dependency]

FACE_Implements

emetaconstraints

TumiRale = "s upplier™}

emetaconstraints

TumiRole = "dient'}

wmetacenstraints

TumiRale = "s upplier"}

smetacenstraints

TfumiRole = "dient'

Figure 7-203: FACE_Implements

FACE Profile, v2.0 — beta 1

wstereotypes

UAF::Operaticnal::Structure::

OperationalPerformer

[Clazs]

= FACE_AbstractUoP

wstereotypes

[Clazs]

sstereotypes

= UAF::Operational::Structure::
OperationalPort

[Port]

=

wstereotypes

= FACE_AbstractConnection

[Class]

=)

—

«&stereotyped relationships
fstereatype = FACE_Implements}

xstereotvped relationships
Istereatype = FACE_Implements]

222

One of 3 diagrams for FACE_Implements
This diagram shows only the constraints between FACE elements and UAF Rezource Structure elements

sstereotypes
FACE_Implements
[ependency]

wmetacaonstraints

TumiR ole = "supplier"}

wmetaconstraints

{fumiRole = "dclient"}

«metacenstraints

{umiRole = "client'}

ametacenstraints

{umiRole = "dlient'}

wmetacanstraints

{fumiRole = "dlient'}

xmetaconstraints

{fumiRole = "client'}

emetaconstraints

{fumiRole = "supplier'}

emetaconstraints

{umiRale = "client}

emetaconstraints

{umiRale = "client}

«metacenstraints

{fumiRole = "client'}

emetaconstraints

fumiRale = "client}

Figure 7-204: FACE_Implements

FACE Profile v2.0 — beta 1

FACE_UoPinstance | — — — — — — — — — —

[Clazs]

xstereotypes

FACE_TransportNode - — — — — — — — — — —
«stereotyped relationships

= FACE_Connection

il Istereatype = FACE_Implements}
ustereotypes
FACE TrangportChanpnel|f — — — — — — — — — — —
Cl «stereotyped relationships
[Class] [stereatype = FACE_Implements)
ustereotypes M S T R R R R R S R e
UAF::Resources: Structure: e — — — — — — — — —
ResourcePort R
[Pori] & i)
|
«stereotypes

[Class]

xstereotyped relationships
{stereotype = FACE_Implemenis}

esterectyped relationships
{sterectype = FACE_Implements)

asterectypes

FACE_LifeCycleManagementPort- — — — — — |

[Class]

sstereotypes
FACE_TSNodePortBase
[Class]

xsterectyped relationships
{sterectype = FACE_Implemenis}

ustereotypes

FACE_UnitOfConformanceEndpoint

[Class]

sstereotyped relationships
{sterectype = FACE_Implemenis}

wstereotypes e - — — = - = — = — —
UAF::R&SUUrces::Taxunurrr:.r::i R e
Software -
[Class] - — — _I |
I [
zstereotypes |
> i P R S S r e 1
DR IR Sy wstereotyped relationships
[Class] stereotype = FACE_Implemenis} |
[
wstereotypes |
FACE_UnitOfConformance isterentyped relafonshipn
[Class] [stereatype = FACE_Implements)
astersotypes

estereotyped relationships
{sterectype = FACE_Implemenis}

223

One of 3 diagrams for FACE_Implements
This diagram shows only the constraints between FACE elements and UAF data and connection related elements

estereotypes
FACE_Implements) o:ste.reutype;o _ e — — |
[Dependency] _ «metaconstraints) UAF::Operational::Information::
JumiRole = "supplier'} InformationElement |
[Class] e | |
! |
ametaconstraints SEierCOpe; | |
—————— = FACE_ConceptualView | — — — — —
TumiRale = "client'? [Clasz] xstereotyped relationships |
{stereatype = FACE_Implementis] |
; wstereotypes [
e CMRNY FAEE I BaealV:| =t
fumiRale = "client'} [Class] wstereotyped relationships
{sterectype = FACE_Implements}
ustereotypes
_ «metaconstraints | UAF:Operational:Connectiviy:: .
JumiRole = "supplier'} OperationalExchange 1
[InformationFlow] |
[
«metaconstraints SEIEOIbITes |

————— — - FACE_OperationalExchange | — — — — — — —
fumiRale = "cliznt'} [informationFlow] estereotyped relationship»

Istereatype = FACE_Implements]

wstereotypes = - - — — — — -
«metaconstraints UAF:Resources::Information:: |
[umiRole = "supplier} DataElement P —— |
[Class] |
| I
emetaconstraints ustereotypes [!
— — — — — — -AFACE_PlatformView | — — — — — — |
TumiRole = "dient'? cl wstereotyped relationshipe
[Class] fstereotype = FACE_|Implements) |
[
! usterectypes
i traint
IO s o S 2 S DR O
[umiRole = "cliznt} [Class] «stereotyped relationzhip
{stereatype = FACE_Implements}
wstereotypes
«metaconstraints UAF::Resources::Connectivity::
[umiRale = "supplisr} ResourceExchange |
[InformationFlow]
[
y wstereotypes |
. TEECDE’“E“”_ = FACE_ResourceExchange - S e e Lo 7
fumiRole = "client] [informationFiow] wstersotyped relatienships
Isterectype = FACE_Implements}
estereotypes
_ «metaconstraints _|UAF:ResourcesuConnectivity: .
fumiRole = "supplier} ResourceConnector |
[Connector] |
1 wstereotypes |
metaconstraint
I FACE TENDMECONRECHon | i e o e

sstereotyped relationships
{stereatype = FACE_Implements]

{umiRole = "client’} [InformationFlow]

FACE Profile, v2.0 — beta 1 224

Figure 7-205: FACE_Implements

Constraints

CO01: FACE Implements.client

FACE Profile v2.0 — beta 1

Value for the client metaproperty must be stereotyped

by one of the following:
«FACE_AbstractUoP»
«FACE_AbstractConnectiony
«FACE_UnitOfPortability»
«FACE_UnitOfConformance»
«FACE_UoPInstance»

Specializations of «<FACE_TransportNode»
«FACE_TransportChannel»

Specializations of «kFACE Connection»
«FACE_LifeCycleManagementPort»
Specializations of «<FACE_TSNodePortBase»
«FACE_UnitOfConformanceEndpoint»
Specializations of «<FACE_Conceptual View»
Specializations of «<FACE LogicalView»
«FACE_OperationalExchange»
Specializations of «kFACE_PlatformView»
«FACE_PlatformQuery»
«FACE_TSNodeConnection»
«FACE_ResourceExchange»

225

C02: FACE Implements.supplier

FACE Profile, v2.0 — beta 1

Based on the stereotype of the client metaproperty:

= «FACE_AbstractUoPy, the supplier metaproperty
must be stereotyped by (UAF::Operational::Structure)
«OperationalPerformer»

= «FACE_AbstractConnectiony, the supplier
metaproperty must be stereotyped by
(UAF::Operational::Structure) «OperationalPort»

= «FACE_UnitOfPortability»,
«FACE_UnitOfConformance», «<KFACE UoPInstance»,
a specialization of «KFACE_TransportNode», or
«FACE_TransportChannel», the supplier metaproperty
must be stereotyped by (UAF::Resources::Taxonomy)
«Software»

= A specialization of «kFACE_Connection»,
«FACE_LifeCycleManagementPort», a specialization
of «<KFACE_ TSNodePortBase», or
«FACE_UnitOfConformanceEndpoint», the supplier
metaproperty must be stereotyped by
(UAF::Resources::Structure) «ResourcePort»

= A specialization of «<FACE_Conceptual View», or a
specialization of «<FACE_LogicalView», the supplier
metaproperty must be stereotyped by
(UAF::Operational::Information)
«InformationElement»

= «FACE_OperationalExchange», the supplier
metaproperty must be stereotyped by
(UAF::Operational::Connectivity)
«OperationalExchange»

= a specialization of «<FACE_PlatformView», or
«FACE_PlatformQuery», the supplier metaproperty
must be stereotyped by (UAF::Resources::Information)
«DataElement»

= «FACE_ResourceExchange», the supplier
metaproperty must be stereotyped by
(UAF::Resources::Connectivity) «ResourceExchange»

= «FACE_TSNodeConnectiony, the supplier
metaproperty must be stereotyped by
(UAF::Resources::Connectivity) «ResourceConnector

226

7.2 View Customizations

This section addresses the requirements from the RFP that call for tables that aggregate FACE Constructs. The tables called
for include:

e All FACE Components (Units of Conformance (UoCs)/Units of Portability (UoPs) elements)

e All FACE Components (UoC/UoP elements) that reside in a particular FACE Segment (PCS, PSSS, IOSS, ...)

e All usages of particular FACE Interfaces or FACE Data Exchanges

In addition, the RFP calls for specific information to be included in the tables. This is detailed below:
o Safety/Security Stance (DAL and/or FACE Profile) for all FACE UoC/UoP
e FOR ALL TABLES INCLUDING UoCs/UoPs in the PSSS layer, include target layer for exchange
e FOR ALL TABLES INCLUDING MULTIPLE FACE LAYERS, include source layer of data exchange

This specification further identifies the properties of the FACE elements that it expects to see detailed in the provided tables.
While this information is included in the individual view specifications, it is summarized below:

e Tables specifying only UnitOfPortability elements (with no data exchange information): UnitOfPortability Name,
Layer = FACE Segment (PCS/PSSS/TSS/IOSS/OSS) , TransportAPILanguage, FACEProfile,
DesignAssuranceStandard, DAL Level, PartitionType (POSIX/ARINC)

e Tables specifying message flows between FACE UnitsOfPortability or AbstractUoPs: Element Name, Connection
Name (if any), MessageType, and MessageDirection (Inbound/Outbound)

Because the FACE Profile specifies FACE implementation of portions of a UAF architecture but is not comprised of UAF
elements, the views specified in this section are not expressed as UAF views.

7.2.1 View Specifications::FACE Data Architecture

7.21.1 View Specifications::All FACE Components View

Stakeholders: Systems Engineers, Software Engineers

Concerns: Identification of FACE Components

Definition: Allows identification of all FACE Components in a UAF architecture and their characteristics
Recommended Implementation: Tabular Format

Characteristics to Display: For all «<UAF::Resources::Taxonomy::Software» stereotyped elements in user-selected scope, if
«Softwarey is the supplier for a «kKFACE Implements» relationship and the client is stereotyped by
«FACE_UnitOfPortability» or «kFACE_UnitOfConformance», display the following attributes of the client
«FACE_UnitOfPortability» or «FACE_UnitOfConformance»::

<element>.name

<element>.componentType

<element>.transportAPILanguage

<element>.faceProfile

<element>.designAssuranceStandard

<element>.designAssuranceLevel

<element>.PartitionType

FACE Profile v2.0 — beta 1 227

Stereotypes of elements and relationships to use when constructing All FACE Components View

wenumerations
FACE_ComponentTypeEnum

PortableComponent
PlatformSpecificComponent

wstersotypes
FACE_UnitOfPortability
[Class]

arinbwies
+componentType - FACE_ComponentTypeEnum [1] = PortableComponent
+transportAPlLanguage | FACE_ProgrammingLanguageEnum[1]=C
+designassurancelevel : FACE_DesignassurancelevelEnum [0..1]
+partitiontype : FACE_PartitionTypeEnum [1] = ARINCE53
+designassuranceStandard | FACE_DesignAssuranceStandardEnum [0..1]
+faceProfile : FACE_ProfileEnum [1] = SafetyExtended

I
wstereotyped relationships
fsterectype = FACE_Implements)

e
xstereotypes
UAF::Resources:: Taxonomy::
Software
[Class]

L

| wstereotyped relationships
{sterectype = FACE_Implemenis)

FACE_UnitOfConformanceTypeEnum

wenumerations

estereotypes
FACE_UnitOfConformance
[Clazz]

enumerztion fersls

2Lnhues

+componentType : FACE UnitOfConformanceTypeEnum [1] = TransportServiceComponent

TransportServiceComponent
I0ServiceComponent
OperatingSystemComponent

wenumerations
FACE_ProfileEnum
ERIMNER LN dLerafs
GeneralPurpose
Security
SafetyBase
SafetyExtended

+transportAPlLanguage : FACE_ProgramminglanguageEnum [1] = C
+designAssurancelevel : FACE DesignAssurancelevelEnum [0..1]
+partitionType : FACE_PartitionTypeEnum [1] = ARIMCES3
+designAssuranceStandard | FACE_DesignAssuranceStandardEnum [0..1]
+faceProfile : FACE_ProfileEnum [1] = SafetyExtended

wenumerations

wenumerations FACE_DesignAssurancelLevelEnum

FACE_ProgrammingLanguageEnum enumeration literals

enumeration [iterafs A
c B
CPP C
Java o
Ada E

aenumerations wenumerations

FACE_PartitionTypeEnum

FACE_DesignAssurance StandardEnum

pion Irerals

ARINCES3

0O_178B_ED_12B
DO_178C_ED_12C

Figure 7-206: All FACE Components View

Elements

FACE_ComponentTypeEnum

FACE_DesignAssurancelevelEnum

FACE_DesignAssuranceStandardEnum

FACE_PartitionTypeEnum

FACE_ProfileEnum

FACE Programmingl.anguageEnum

FACE UnitOfConformance

FACE UnitOfConformanceTypeEnum

FACE Profile, v2.0 — beta 1

228

o FACE_UnitOfPortability
e Software

7.21.2 View Specifications::FACE Components Per Segment View

Stakeholders: Systems Engineers, Software Engineers

Concerns: Categorization of FACE Components

Definition: Allows identification and characterization of all FACE Components in a specific FACE Segment (of a specific
ComponentType) of a UAF architecture

Recommended Implementation: Tabular Format

Characteristics to Display: For all «<UAF::Resources::Taxonomy::Software» stereotyped elements in user-selected scope, if
«Softwarey is the supplier for a «KFACE Implements» relationship and the «<FACE Implementsy.client is stereotyped by
«FACE_UnitOfPortability» or «FACE_UnitOfConformance» AND the client <element>.componentType matches the user-
specified ComponentTypeEnum or UnitOfConformanceTypeEnum value, display for the client element:

<element>.name

<element>.componentType

<element>.transportAPILanguage

<element>.faceProfile

<element>.designAssuranceStandard

<element>.designAssurancelLevel

<element>.PartitionType

FACE Profile v2.0 — beta 1 229

Stereotypes of elements and relationships to use when constructing FACE Components Per Segment View

wstersotypes
FACE_UnitOfPortability
wenumerations [Class]
FACE_ComponentTypeEnum aftnbutes

enmerailon ILersks
PortableComponent
PlatformSpecificComponent

+componentType . FACE_ComponentTypeEnum [1] = PortableComponent
+fransportAPlLanguage | FACE_ProgramminglLanguageEnum [1] =C
+designAssurancelevel . FACE_DesignAssurancelevelEnum [0..1]
+partitiontype . FACE_ParitionTypeEnum [1] = ARINCE53

xenumerations
FACE_UnitOfConformanceTypeEnum

enumeration literals
TransportServiceComponent
I0ServiceComponent
OperatingSystemComponent

wenumerations
FACE_ProfileEnum

enrumeraiion fierals
GeneralPurpose
Security
SafetyBase
SafetyExtended

+designAssuranceStandard | FACE_DesignAssuranceStandardEnum [0..1]
+faceProfile . FACE_ProfileEnum [1] = SafetyExtended

|
wstereotyped relationships
| s terectype = FACE Implements)

il
wstereotypes
UAF::Resources: Taxonomy::
Software
[Class]

e

i xstereotyped relationships
{sterectype = FACE_Implemenis)
|

estereotypes
FACE_UnitOfConformance
[Class]

+componeniType : FACE_UnitOfConformanceTypeEnum [1] = TransportServiceComponent
+transport&PlLanguage : FACE_ProgramminglanguageEnum [1] = C
+designAssurancelevel : FACE_DesignAssurancelevelEnum [0..1]

+partitionType | FACE_PartitionTypeEnum [1] = ARINCE53

+designAssuranceStandard : FACE_DegignAssuranceStandardEnum [0, 1]

+faceProfile : FACE_ProfileEnum [1] = SafetyExtended

wenumerations
wenumerations FACE_DesignAssurancelevelEnum

FACE_ProgrammingLanguageEnum enumeration lierals

Enlmerstion iferals A
3] B
CFP C
Java o
Ada E

wenumerations
FACE_DesignAssurance StandardEnum

enumersiion iferals

wenumerations
FACE_PartitionTypeEnum

enumeraion lierals

POSEE DO_178B_ED_12B
ARINCESS DO_178C_ED_12C

Figure 7-207: FACE Components Per Segment View

Elements

FACE ComponentTypeEnum

FACE DesignAssurancelLevelEnum

FACE_DesignAssuranceStandardEnum

FACE_PartitionTypeEnum

FACE_ProfileEnum

FACE_Programmingl anguageEnum
FACE_UnitOfConformance

FACE UnitOfConformanceTypeEnum

FACE Profile, v2.0 — beta 1

230

e FACE UnitOfPortability
e Software

7.21.3 View Specifications::FACE Logical Interfaces View

Stakeholders: Systems Architects, Systems Engineers

Concerns: Identifies logical interfaces between FACE Abstract components identified as part of a UAF architecture
Definition: Shows the connections between abstract FACE Components in a UAF architecture

Recommended Implementation: Tabular Format

Desired information is found by navigating from OperationalExchanges in the selected UAF scope and navigation to
«FACE_OperationalExchange» elements via «<FACE_Implements» relationships:

For each OperationalExchange in the selected UAF scope, for each «FACE Implements» relationship in which the
ResourceExchange is the supplier and a «<FACE_OperationalExchange» element is the client, desired information for the
«FACE_OperationalExchange» client of the «FACE Implements» relationship:

(Source UoP Name) <FACE_OperationalExchange>.informationSource->(AbstractConnection).EndPoint-
>memberEnd[0].type->(AbstractUop).name

(Target UoP Name) <FACE_OperationalExchange>.informationTarget->(AbstractConnection).EndPoint-
>memberEnd[0].type->(AbstractUop).name

(MessageType) <FACE_OperationalExchange>.conveyed.type

Message direction is implied by the Operational Exchange direction

Stereotypes of elements and relationships to use when constructing FACE Logical Interfaces View

zstereotypes |
UAF::Operational;:.Connectivity:: |
OperationalExchange
[InfermationFlow]
™ «stereotyped relationships
| Isterectype = FACE_Implemenis}
|
stereotypes
astereotypes | s .
FACE_OperationalExchange _{um_JRo;— Fm:ﬁa[;ns;m;} = ERE E_Abstaactc o astereotypes
[InformationFiow] : ‘ [Class] FACE_AbstractUoP
[Class]
________ a ’
{umiRaole = "informationTarget"} | T
| . |
|{urniR0le = "memberEnd[1] type'] |{umiRole = "memierEnd[0] type'}
|
| ustereotypes
FACE_EndPoint
[Az=sociation]
| «stereotypes
———————— == FACE_ConceptualView
{umiRole = "conveyed"} | [Clazs]
astereotypes
———————— = FACE_LogicalVWiew
{umiRole = "comveyed'} [Class]

Figure 7-208: FACE Logical Interfaces View
Elements

FACE_AbstractConnection
FACE_AbstractUoP
FACE_ConceptualView
FACE EndPoint

FACE LogicalView

FACE_OperationalExchange

FACE Profile v2.0 — beta 1 231

e OperationalExchange

7.21.4 View Specifications::FACE Physical Interfaces View

Stakeholders: Systems Architects, Systems Engineers

Concerns: Identifies resource-level interfaces between FACE components identified as part of a UAF architecture
Definition: Shows the connections between FACE Components in a UAF architecture and identifies the layered segments in
which the source and targets of the interactions reside.

Recommended Implementation: Tabular Format

Desired information is based on ResourceExchanges in the selected UAF scope and navigation via
«FACE_Implements» relationship:

For each ResourceExchange in the selected UAF scope, for each «FACE Implements» relationship in which the
ResourceExchange is the supplier and a «<FACE_ResourceExchange» element is the client, desired information for the
«FACE_ResourceExchange» client of the «KFACE Implements» relationship:

(Source Component Name) <FACE ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).name

(Source Component Layer) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).componentType

(Target Component Name) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).name

(Target Component Layer) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).component Type

(MessageType) <FACE_ResourceExchange>.conveyed->name

Message direction is implied by the FACE ResourceExchange direction

FACE Profile, v2.0 — beta 1 232

Stereotypes of ements and relationships to use when constructing FACE Physical Interfaces View

sstercotypen

UAF::Resources::Connectivity::
ResourceExchange

[InformationFlow]

)'l\

|«5tereutyped relationships
{stereotype = FACE_Implemenis)
|

xstersotypen

[InformationFlow]

FACE_ResourceExchange

I I I
I I I
| {umiRole | "informationSource™} |
I I I
|{umiRole = "conveyed") |

I I I
I I I
o W W

{umiRale = "ir’fa’mtionSauree"}

[umiRald = informationTarget |

I I I
I I I
| {urchlier VinformationSourcs"} |
I I

fumiRole =/ informationTarget

W . A o
xstereotypen xstereotypes wstereotypes wstereotypes
FACE_UoPMessageType FACE_Connection FACE_LifeCycleManagementPort FACE_UnitOfConformanceEndpoint
[Class] [Class] [Class] [Class]
L ™ ki

|{uch|ie ="membsrEnd[1].typ="}

|{um|Rore = "memberEnd]1] type'} |

|
|
| [umFole = informistion Target'}
|

xstereotypen
FACE_EndPoint
[Association]

| jumiRcle = "membarEnd[0] type'}

|fumiRole = "membarEnd[0] type'}

L W
xstersotypes wstereatypes
FACE_UnitOfPortability FACE_UnitOfConformance
[Class] [Class]

+componentType | FACE_ComponentTypeEnum [1] = PortableComponent
+franspert&PlLanguage | FACE_ProgramminglanguageEnum [1]=C
+designAssurancelevel . FACE_DesignAssurancelevelEnum [0..1]
+partitiontype : FACE_PartitionTypeEnum [1] = ARINCSS3
+designAssuranceStandard : FACE_DesignAssuranceStandardEnum [0..1]
+faceProfile : FACE_ProfieEnum [1] = SafetyExtended

+componentType : FACE_UnitOfConformanceTypeEnum [1] = TransportServiceComponent
+franspertaPlLanguage | FACE_ProgramminglanguageEnum [1]=C
+designAssurancelevel . FACE_DesignAssurancelevelEnum [0..1]

+partitionType : FACE_PartitionTypeEnum [1] = ARINCES3

+designAssuranceStandard : FACE_DesignAssuranceStandardEnum [0..1]

+faceProfile : FACE_ProfieEnum [1] = SafetyExtended

«gnumerations
FACE_ComponentTypeEnum
Porta DIE_CE‘lmpDI'IEIﬂ -
PlatformSpecificComponent

Figure 7-209: FACE Physical Interfaces View
Elements

FACE_ComponentTypeEnum
FACE_Connection
FACE_EndPoint
FACE_LifeCycleManagementPort
FACE_ResourceExchange
FACE_UnitOfConformance
FACE_UnitOfConformanceEndpoint
FACE_UnitOfConformanceTypeEnum
FACE_UnitOfPortability
FACE_UoPMessageType
ResourceExchange

FACE Profile v2.0 — beta 1

«Enumerations
FACE_UnitOfConformanceTypeEnum

Tra nsportSe}vmeCol:npn n en_t
I0ServiceComponent

OperatingSystemComponent

{umiRole = "memberEnd[1] type"}

233

8 Design Considerations (Non-Normative)

This section addresses the items in section 6.7 (Issues to be discussed) of the FACE™ Profile for UAF Request For Proposal
(RFP), OMG document c4i-18-09-03.

8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions
Enhance Related Architectures

This section responds to the RFP section 6.7.1 Relationships to UAF profile, which requests that the specification discuss
how inclusion of FACE Profile elements in UAF models enhance general architecture, such as Department of Defense
Architecture Framework (DoDAF), The British Ministry of Defence Architecture Framework (MODAF), and NATO
Architecture models.

The FACE technical standard defines a layered architecture that is separated into several segments: PCS - Portable
Component Segment (presentation-layer applications), TSS - Transport Services Segment (middleware), PSSS - Platform-
Specific Software Segment (platform-specific services), IOSS - Input/Output Services Segment (hardware device drivers),
and OSS - Operating Systems Segment (foundational system services and vendor-supplied software). This is a level of
granularity that is not specified in the UAF metamodel and which can be of value when specifying requirements for
individual components within a system-of-systems. By linking the FACE profile’s differentiations between layers and the
information-transform representations of the FACE Integration Model, the extensions to the UML portion of the FACE
Profile, coupled with the UAF extensions enhance the representation of layered architecture elements and the flow of
information throughout a system of systems. AAA Conformance also supports the modeling of data sent and received by
avionics components to improve interoperability.

This specification enables the development of tools that make it easier for modelers to create more detailed and accurate
models, as well as enable model sharing across the general architecture models.

8.2 Support for Cyber Security within the System: Security Analysis
enhancements from FACE Profile

Just as UAF supports systems of systems modeling, additional views for safety and cybersecurity are supported. Because the
FACE Profile allows the representation of software components, data models, and integration models, additional
cybersecurity modeling Frameworks such as STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege) can be applied with respect to avionics across a system of systems. Likewise, this can
facilitate the development of cybersecurity solutions that can be developed conformant with the FACE technical standard in
way such that the solution may be applied across disparate air, space, land, and sea platforms.

The FACE standard addresses the specification of avionics systems components with respect to safety, security, partitioning,
integration, and semantic documentation of information exchanges. The FACE profile brings this enhanced specification
information to UAF architectures. Further, by enabling expression of FACE components using OMG technologies, FACE
components can be further elaborated within an architecture through the application of the MARTE profile (Modeling and
Analysis of Real-Time and Embedded systems). The FACE Profile’s UAF extensions along with the MARTE profile will
enable architects to associate information within the UAF database with implementation mechanisms that express the
architecture in terms of layers, connectivity, partitioning strategy and hardware/software typing. The MARTE specification
General Component Model (GCM) includes detailed information of components. The FACE Profile enables the development
of model-based artifacts to support the Radio Technical Commission for Aeronautics (RTCA) DO-178 (Software
Considerations in Airborne Systems and Equipment Certification) and DO-331 (the Model-Based Development and
Verification Supplement to DO-178C and DO-278A) used for safety of flight certification by the U.S. Federal Aviation
Administration (FAA) and the European Aviation Safety Agency (EASA). The MARTE profile complements the FACE
profile by providing detailed specification of any Design Assurance Standard and Design Assurance Level (DAL) associated
with a FACE-profile component, as well as introducing other analysis-related attributes to the architecture.

8.3 Combining FACE Profile with MARTE markings to feed AADL analysis

The mapping of FACE elements into a UAF architecture enables finer-grained description of real-time avionics systems
components with respect to safety, security, partitioning, integration, and semantic documentation of information exchanges.

FACE Profile, v2.0 — beta 1 234

FACE Profile facilitates the development of models and artifacts to support compliance with security standards such as
Standard IEC 62443 - Cybersecurity for Industry, RTCA DO-326A Airworthiness Security Process Specification, and its
supplement Airworthiness Security Methods and Considerations. Within the context of a combined FACE and UAF model,
the combination of the FACE profile with the MARTE will enable architects to associate information within the UAF
database with implementation mechanisms that express the architecture in terms of layers, connectivity, partitioning strategy
and hardware/software typing. There are mechanisms by which information can then be transferred from a UAF-FACE
combined model that uses MARTE to an Architecture Analysis & Design Language (AADL) modeling tool to support safety
analysis using AADL tool capabilitiecs. MARTE provides many of the tagging keys which are used by AADL to support the
proper transfer of information. The MARTE profile combined with the structuring information provided by a FACE profile
gives identified structure and meaning needed by an AADL safety analysis tool to generate such information as (Avionics
Application Standard Software Interface) ARINC 653 partition parameters needed to meet safety requirements needed for
proper timing design.

8.4 Non-Profile Tool implementation aspects of the FACE Technical
Standard

This section discusses non-Profile tool implementation aspects of the specification, to address tool implementation of aspects
the FACE Technical Specification that are outside the bounds of a profile but may be implemented using tool-specific
capabilities. It discusses approaches to implementation of Conformance levels AA and AAA described earlier in this
specification, as well as implementation of tabular views described above and a recommended inclusion of a FACE segment
architecture view for user reference..

8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE
Technical Standard

The application of OCL constraints from the FACE Technical Standard is not a requirement of this specification’s profile
itself, nor is it a requirement for Level A conformance to this standard. Application of FACE OCL constraints is required for
Conformance levels AA and AAA of this specification. This section describes possible approaches by which
implementations of this standard at higher levels of conformance might implement and possibly enforce these constraints.

8.4.1.1 Level AA Conformance application of FACE OCL Constraints

Level AA Conformance provides the minimum support needed by the users of FACE data architecture models in order to use
the authored information in a FACE integration effort. There is no requirement to implement the FACE OCL Constraints
directly in the modeling tool at Level AA Conformance. Conformance Level AA enables the use of FACE Consortium
conformance checking tools that ensure model OCL correctness. This is enabled by the export/import of the FACE model
elements to/from the FACE XML format as specified in the normative UDDL and FACE Technical Standards.

The recommended approach for application of FACE OCL Constraints under Level AA Conformance is to export the model
to the FACE XML-formatted (.face) file format and direct the user to the FACE Conformance Test Suite (CTS) for OCL
constraint checking. The notional steps in this process are listed below:

1) Ensure that all FACE Elements are contained in the FACE Architecture Package

2) Provide mechanism to perform export of FACE Architecture to FACE XML (.face) format using plug-ins

3) Direct the user to independently use the FACE Conformance Test Suite to check model adherence to OCL
constraints

4) User modifies model in tool to address issues

5) User would repeat export-test-modify as needed to address all FACE conformance model issues

8.41.2 Level AAA Conformance application of FACE OCL Constraints

Level AAA Conformance supports the rapid development of FACE architecture, data models, and software development
through application of the FACE/OCL Constraints during the architecture modeling process. Level AAA Conformance of
this specification includes implementation of FACE OCL Constraints directly in the modeling tool. There are a few different
approaches that an implementer of the standard at Level AAA Conformance might wish to consider in the implementation of

FACE Profile v2.0 — beta 1 235

these constraints. The potential approaches listed below are suggestions for application of the constraints and are not meant
to exclude alternate approaches. Possible approaches include:

1) Apply the OCL Constraints from the FACE Technical Standard to check the entire set of FACE Model Elements in
the tool. Add a plug-in to perform all FACE OCL Constraint checks upon request and provide the constraint check
results to the user. The user addresses issues in the model and repeats the constraint test as needed.

The benefit of this approach is that it minimizes rework of FACE OCL Constraints that apply to the entire FACE
model, minimizes lag due to long-running constraint checks, and provides user control over when constraint
checking will occur.

2) Apply the OCL Constraints from the FACE Technical Standard to each FACE Model Element individually in the
tool. Perform OCL Constraint checks for each element upon modification. The user addresses the constraint
violations as they are identified.

The benefit of this approach is that it minimizes the time between authoring a model element and notification of
constraint violation.

3) Apply the OCL Constraints from the FACE Technical Standard to FACE Model Elements in a hybrid fashion. This
is a combination of approaches 2 and 3. Apply constraints that are highly-localized (quick running) on an element-
by-element basis and a plug-in to perform all FACE OCL Constraint checks upon request and provide the constraint
check results to the user.

This approach combines the benefits of both approaches 2 and 3.

8.4.2 Recommended mechanism to generate content into FACE Profile tabular views

Users of the FACE Profile might wish to see tables of elements that support specific FACE Profile enumerated types
(General, Safety-Base, Safety-Extended, Security). Most modeling tools provide a mechanism to generate tabular views of
selected information from the model and to display it with or without filters. The steps below outline one possible
mechanism for implementers of the profile to provide tables of FACE-stereotyped components to users:

1) Use the Tool-Native Table and plug-in extension capabilities

2) Provide FACE-profile-specific table as selection option in “New Diagram” menu(s).

3) For each FACE UoP or Abstract UoP in the (singleton) FACE Architecture package, plug-in identifies the FACE
security stance and places the name and security stance in a table as appropriate to the intended table contents. Tables
may be created containing all FACE modules or may be specific to a single security stance selected by the user. Tool-
native filtering and sorting may be applied by the user after table creation, as can extension of module properties
displayed in the table.

8.4.3 Inclusion of the FACE vertical architecture image in tool implementations

For reference purposes, FACE Profile users might need access to a graphical view of the general FACE vertical architecture.
The FACE Technical Standard contains an image of the FACE Vertical Architecture, labeled “FACE Architectural
Segments” in the standard. shows that image, and informational files included with this standard provide
additional details. Tools that implement the FACE profile could include a copy of the image as/in a diagram that users
request via plug-in support menus.

FACE Profile, v2.0 — beta 1 236

é FACE Boundary

o e)
System Portable Components Segment
Segment
Type-Specific
Configuration
Capability
N
Type Abstraction
Platform Specific Services Segment e :p":h‘:'hﬂ;"""
Platform Device Services Platform Common Services Graphics Services
Distribution
Capability
System Level Health Monitoring
m m (Centralized Configuration) C@ Capabilty
omponent omponent
> i Service Senvice Configuration
Capability
° GPU H
API Component State
Persistence
omponent State
Operating Persistence
System Capabil
1/0 Service 1/0 Service Configuration
Capability
Language Q J
Runtime

/

Interface Hardware
(e.g., MIL-STD-1553, Ethernet)

Component || Configuration || Health Device Driver (" craphics Driver
Framework ||~ Senvices || Monitoring
\ 1 !
1 t

[l l

Platform Platform Platform
Displays Sensors Devices

Figure 8-1: FACE Technical Interchange Meeting Architectural Diagram Template Example

FACE Profile v2.0 — beta 1

KEY
«(O)= FACE Defined Interface
—— External Interface
‘@ Non-Conformant Interface]

237

A FACE Profile Mapping Tables (Informational / Non-
Normative)

This chapter provides information about the relationship between the FACE Consortium FACE Metamodel elements, the
FACE Profile elements, and the UAF elements in tabular form. It is meant to provide this information in an easy-to-consume
format for enhanced understanding of these relationships.

A.1 FACE Metamodel to FACE Profile Mapping

This section provides the mapping between the FACE metamodel elements and the corresponding FACE Profile elements in
tabular form. The order of the metamodel elements in the table corresponds to their order in in the FACE Technical
Standard. The FACE elements are generally implemented using a single stereotype to represent the element itself, with
additional stereotypes listed if used to represent attributes or associations from the FACE metamodel.

A.1.1 FACE Metamodel path elements

The FACE Metamodel path elements named CharacteristicPathNode, Participant, ParticipantPathNode, and PathNode have
an alternate-syntax representation called a CharacteristicProjection. This notation is described in Section 3.6.4.1.1.3 of the
Technical Standard for Future Airborne Capability Environment (FACE™), Edition 2.1 and fully expresses the paths as
described using the FACE path metamodel elements. The two notations (elements and string) are interchangeable using a
translation algorithm. The CharacteristicProjection syntax is used in the FACE Profile instead of the corresponding FACE
Metamodel elements. XMI exchange mechanisms between models using the FACE Profile and the FACE XMI (.face) file
are required to translate between the two notations.

The following table shows the FACE metamodel path elements and their corresponding CharacteristicPathNode-syntax
FACE Profile elements.

Table A-1 FACE Metamodel Path Elements mapping to FACE Profile Stereotype containing equivalent string syntax

FACE Metamodel Package = FACE Metamodel Element Names FACE Profile Stereotype
face.datamodel.conceptual | Participant FACE_ConceptualParticipant [Association]
CharacteristicPathNode
ParticipantPathNode
PathNode

face.datamodel.logical Participant FACE_LogicalParticipant [Association]
CharacteristicPathNode
ParticipantPathNode
PathNode
face.datamodel.platform Participant FACE_PlatformParticipant [Association]
CharacteristicPathNode
ParticipantPathNode
PathNode

A.1.2 Full Mapping of FACE Metamodel to FACE Profile

The table below shows the FACE metamodel elements as listed in the FACE Technical Standard (with embedded UDDL
Standard elements) and their mapping to stereotypes that, in part or whole, realize the metamodel element and its
relationships in the FACE Profile. Elements in the face.datamodel package correspond to elements in the UDDL Standard.
The order of the elements in the table corresponds to the order of the metamodel elements in the FACE Technical Standard
and, by reference from the FACE Technical Standard, the UDDL Standard.

FACE Profile, v2.0 — beta 1 238

Table A-2 FACE Metamodel to FACE Profile element mapping
FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)

face ArchitectureModel FACE_ArchitectureModel [Package]
face Element FACE_Element [Element]
FACE_ModelElement [Element]
face DataModel FACE_DataModel [Package]
face.datamodel Element FACE_DataModelElement [Element]

face.datamodel

ConceptualDataModel

FACE_ConceptualDataModel [Package]

face.datamodel

LogicalDataModel

FACE_LogicalDataModel [Package]

face.datamodel

PlatformDataModel

FACE_PlatformDataModel [Package]

face.datamodel.conceptual

Element

FACE_ConceptualElement [Element]

face.datamodel.conceptual

ComposableElement

FACE_ConceptualComposableElement
[Element]

face.datamodel.conceptual

BasisElement

FACE_BasisElement [Element]

face.datamodel.conceptual | BasisEntity FACE_BasisEntity [Class]
face.datamodel.conceptual | Domain FACE_Domain [Class]
face.datamodel.conceptual | Observable FACE_Observable [Class]
face.datamodel.conceptual | Characteristic FACE_ConceptualCharacteristic [Element]
face.datamodel.conceptual | Entity FACE_ConceptualComposition [Property]

FACE_ConceptualEntity [Class]
FACE_EntityBasis [Generalization]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.conceptual

Composition

FACE_ConceptualComposableElement
[Element]
FACE_ConceptualComposition [Property]

face.datamodel.conceptual | Association FACE_ConceptualAssociation [Class]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]
face.datamodel.conceptual | Participant FACE_ConceptualParticipant [Association]
face.datamodel.conceptual | PathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual | ParticipantPathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual | CharacteristicPathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual | View FACE_ConceptualView [Class]
face.datamodel.conceptual | Query FACE_ConceptualQuery [Class]

face.datamodel.conceptual

CompositeQuery

FACE_ConceptualCompositeQuery [Class]
FACE_ConceptualQueryComposition [Property]

face.datamodel.conceptual

QueryComposition

FACE_ConceptualQueryComposition [Property]
FACE_ConceptualView [Class]

face.datamodel.logical Element FACE_LogicalElement [Element]
face.datamodel.logical ConvertibleElement FACE_ConvertibleElement [Element]
face.datamodel.logical Unit FACE_Unit [Class]
face.datamodel.logical Conversion FACE_Conversion [Class]
face.datamodel.logical AffineConversion FACE_AffineConversion [Class]
face.datamodel.logical ValueType FACE_ValueTypeEnum
face.datamodel.logical String FACE_LogicalValueType [Class]
FACE_ValueTypeEnum
face.datamodel.logical Character FACE_LogicalValueType [Class]
FACE_ValueTypeEnum
face.datamodel.logical Boolean FACE_LogicalValueType [Class]

FACE_ValueTypeEnum

FACE Profile v2.0 — beta 1

239

FACE Metamodel Package
face.datamodel.logical

FACE Metamodel Element Name
Numeric

FACE Profile Stereotype(s)
FACE_LogicalValueType [Class]
FACE_ValueTypeEnum

face.datamodel.logical Integer FACE_LogicalValueType [Class]
FACE_ValueTypeEnum

face.datamodel.logical Natural FACE_LogicalValueType [Class]
FACE_ValueTypeEnum

face.datamodel.logical Real FACE_LogicalValueType [Class]

FACE_ValueTypeEnum

face.datamodel.logical

NonNegativeReal

FACE_LogicalValueType [Class]
FACE_ValueTypeEnum

face.datamodel.logical

Enumerated

FACE_LogicalValueType [Class]
FACE_ValueTypeEnum

face.datamodel.logical

EnumerationLabel

FACE_EnumerationlLabel [Property]

face.datamodel.logical

CoordinateSystem

FACE_AbstractAssociation [Association]
FACE_AXxis [Association]
FACE_CoordinateSystem [Class]

face.datamodel.logical

CoordinateSystemAxis

FACE_CoordinateSystemAxis [Class]

face.datamodel.logical

AbstractMeasurementSystem

FACE_AbstractMeasurementSystem [Class]

face.datamodel.logical

StandardMeasurementSystem

FACE_StandardMeasurementSystem [Class]

face.datamodel.logical

Landmark

FACE_Landmark [Class]

face.datamodel.logical

MeasurementSystem

FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AXxis [Association]
FACE_DefinedReferencePoint [Association]
FACE_MeasurementSystem [Class]

face.datamodel.logical

MeasurementSystemAxis

FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AppliedValueTypeUnit [Association]
FACE_MeasurementSystemAxis [Class]

face.datamodel.logical

ReferencePoint

FACE_AbstractAssociation [Association]
FACE_RPPart [Association]
FACE_ReferencePoint [Class]

face.datamodel.logical

ReferencePointPart

FACE_ReferencePointPart [Class]

face.datamodel.logical

ValueTypeUnit

FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_ValueTypeUnit [Class]

face.datamodel.logical

Constraint

FACE_Constraint [Class]

face.datamodel.logical

IntegerConstraint

FACE_IntegerConstraint [Class]

face.datamodel.logical

IntegerRangeConstraint

FACE_IntegerRangeConstraint [Class]

face.datamodel.logical

RealConstraint

FACE_RealConstraint [Class]

face.datamodel.logical

RealRangeConstraint

FACE_RealRangeConstraint [Class]

face.datamodel.logical

StringConstraint

FACE_StringConstraint [Class]

face.datamodel.logical

RegularExpressionConstraint

FACE_RegularExpressionConstraint [Class]

face.datamodel.logical

FixedLengthStringConstraint

FACE_FixedLengthStringConstraint [Class]

face.datamodel.logical

EnumerationConstraint

FACE_EnumerationConstraint [Class]

face.datamodel.logical

MeasurementConstraint

FACE_MeasurementConstraint [Class]

face.datamodel.logical

MeasurementSystemConversion

FACE_MeasurementSystemConversion [Class]

face.datamodel.logical

AbstractMeasurement

FACE_AbstractMeasurement [Element]

FACE Profile, v2.0 — beta 1

240

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.datamodel.logical Measurement FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AXxis [Association]
FACE_Measurement [Class]
FACE_Realize [Association]

face.datamodel.logical MeasurementAxis FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AppliedValueTypeUnit [Association]
FACE_MeasurementAxis [Class]
FACE_Realize [Association]

face.datamodel.logical MeasurementAttribute FACE_MeasurementAttribute [Property]
face.datamodel.logical MeasurementConversion FACE_MeasurementConversion [Class]
face.datamodel.logical ComposableElement FACE_LogicalComposableElement [Element]
face.datamodel.logical Characteristic FACE_LogicalCharacteristic [Element]
face.datamodel.logical Entity FACE_AbstractAssociation [Association]

FACE_LogicalComposition [Property]
FACE_LogicalEntity [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.logical Composition FACE_LogicalComposableElement [Element]
FACE_LogicalComposition [Property]
face.datamodel.logical Association FACE_AbstractAssociation [Association]

FACE_LogicalAssociation [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.logical Participant FACE_LogicalParticipant [Association]
face.datamodel.logical PathNode FACE_LogicalParticipant [Association]
face.datamodel.logical ParticipantPathNode FACE_LogicalParticipant [Association]
face.datamodel.logical CharacteristicPathNode FACE_LogicalParticipant [Association]
face.datamodel.logical View FACE_LogicalView [Class]
face.datamodel.logical Query FACE_AbstractAssociation [Association]

FACE_LogicalQuery [Class]
FACE_Realize [Association]

face.datamodel.logical CompositeQuery FACE_AbstractAssociation [Association]
FACE_LogicalCompositeQuery [Class]
FACE_LogicalQueryComposition [Property]
FACE_Realize [Association]

face.datamodel.logical QueryComposition FACE_LogicalQueryComposition [Property]
FACE_LogicalView [Class]
face.datamodel.platform Element FACE_PlatformElement [Element]
face.datamodel.platform ComposableElement FACE_PlatformComposableElement [Element]
face.datamodel.platform PlatformDataType FACE_AbstractAssociation [Association]

FACE_PlatformDataType [Element]
FACE_Realize [Association]

face.datamodel.platform Primitive FACE_Primitive [Class]
face.datamodel.platform Boolean FACE_Boolean [Class]
face.datamodel.platform Octet FACE_Octet [Class]
face.datamodel.platform CharType FACE_CharType [Class]

FACE Profile v2.0 — beta 1 241

FACE Metamodel Package
face.datamodel.platform

FACE Metamodel Element Name
Char

FACE Profile Stereotype(s)
FACE_Char [Class]

face.datamodel.platform StringType FACE_StringType [Class]
face.datamodel.platform String FACE_String [Class]
face.datamodel.platform BoundedString FACE_BoundedString [Class]
face.datamodel.platform CharArray FACE_CharArray [Class]
face.datamodel.platform Enumeration FACE_Enumeration [Class]
face.datamodel.platform Number FACE_Number [Class]
face.datamodel.platform Integer FACE_Integer [Class]
face.datamodel.platform Short FACE_Short [Class]
face.datamodel.platform Long FACE_Long [Class]
face.datamodel.platform LonglLong FACE_Longlong [Class]
face.datamodel.platform Real FACE_Real [Class]
face.datamodel.platform Double FACE_Double [Class]
face.datamodel.platform LongDouble FACE_LongDouble [Class]
face.datamodel.platform Float FACE_Float [Class]
face.datamodel.platform Fixed FACE_Fixed [Class]
face.datamodel.platform UnsignedInteger FACE_UnsignedInteger [Class]
face.datamodel.platform UShort FACE_UShort [Class]
face.datamodel.platform Ulong FACE_ULong [Class]
face.datamodel.platform ULonglong FACE_ULonglLong [Class]
face.datamodel.platform Sequence FACE_Sequence [Class]
face.datamodel.platform Array FACE_Array [Class]
face.datamodel.platform Struct FACE_Struct [Class]
face.datamodel.platform StructMember FACE_StructMember [Property]
face.datamodel.platform Characteristic FACE_PlatformCharacteristic [Element]
face.datamodel.platform Entity FACE_AbstractAssociation [Association]

FACE_PlatformComposition [Property]
FACE_PlatformEntity [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.platform

Composition

FACE_PlatformComposableElement [Element]
FACE_PlatformComposition [Property]

face.datamodel.platform Association FACE_AbstractAssociation [Association]
FACE_PlatformAssociation [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]
face.datamodel.platform Participant FACE_PlatformParticipant [Association]
face.datamodel.platform PathNode FACE_PlatformParticipant [Association]
face.datamodel.platform ParticipantPathNode FACE_PlatformParticipant [Association]
face.datamodel.platform CharacteristicPathNode FACE_PlatformParticipant [Association]
face.datamodel.platform View FACE_PlatformView [Class]
face.datamodel.platform Query FACE_AbstractAssociation [Association]

FACE_PlatformQuery [Class]
FACE_Realize [Association]

face.datamodel.platform

CompositeQuery

FACE_AbstractAssociation [Association]
FACE_PlatformCompositeQuery [Class]
FACE_PlatformQueryComposition [Property]
FACE_Realize [Association]

FACE Profile, v2.0 — beta 1

242

FACE Metamodel Package
face.datamodel.platform

FACE Metamodel Element Name
QueryComposition

FACE Profile Stereotype(s)
FACE_PlatformQueryComposition [Property]
FACE_PlatformView [Class]

face UoPModel FACE_UoPModel [Package]

face.uop ClientServerRole FACE_ClientServerRoleEnum

face.uop FaceProfile FACE_ProfileEnum

face.uop DesignAssurancelevel FACE_DesignAssuranceLevelEnum

face.uop DesignAssuranceStandard FACE_DesignAssuranceStandardEnum

face.uop MessageExchangeType FACE_MessageExchangeTypeEnum

face.uop PartitionType FACE_PartitionTypeEnum

face.uop ProgramminglLanguage FACE_ProgramminglLanguageEnum

face.uop SynchronizationStyle FACE_SynchronizationStyleEnum

face.uop ThreadType FACE_ThreadTypeEnum

face.uop Element FACE_UoPElement [Element]

face.uop SupportingComponent FACE_SupportingComponent [Class]

face.uop LanguageRunTime FACE_LanguageRunTime [Class]

face.uop ComponentFramework FACE_ComponentFramework [Class]

face.uop AbstractUoP FACE_AbstractUoP [Class]
FACE_EndPoint [Association]

face.uop AbstractConnection FACE_AbstractAssociation [Association]
FACE_AbstractConnection [Class]
FACE_AbstractView [Association]

face.uop UnitOfPortability FACE_AbstractAssociation [Association]
FACE_BackingComponent [Association]
FACE_ComponentTypeEnum
FACE_DesignAssurancelevelEnum
FACE_DesignAssuranceStandardEnum
FACE_EndPoint [Association]
FACE_PartitionTypeEnum
FACE_ProfileEnum
FACE_ProgramminglLanguageEnum
FACE_Realize [Association]
FACE_UnitOfPortability [Class]
FACE_UoPResource [Association]

face.uop PortableComponent FACE_ComponentTypeEnum
FACE_UnitOfPortability [Class]

face.uop PlatformSpecificComponent FACE_ComponentTypeEnum
FACE_UnitOfPortability [Class]

face.uop Thread FACE_Thread [Class]

face.uop RAMMemoryRequirements FACE_RAMMemoryRequirements [Class]

face.uop Connection FACE_AbstractAssociation [Association]
FACE_Connection [Class]
FACE_Realize [Association]

face.uop ClientServerConnection FACE_AbstractAssociation [Association]
FACE_ClientServerConnection [Class]
FACE_RequestView [Association]
FACE_ResponseView [Association]

face.uop PubSubConnection FACE_AbstractAssociation [Association]

FACE_MessageExchangeTypeEnum
FACE_MessageType [Association]
FACE_PubSubConnection [Class]

FACE Profile v2.0 — beta 1

243

FACE Metamodel Package
face.uop

FACE Metamodel Element Name
QueuingConnection

FACE Profile Stereotype(s)
FACE_QueuingConnection [Class]

face.uop

SinglelnstanceMessageConnection

FACE_SinglelnstanceMessageConnection
[Class]

face.uop

LifeCycleManagementPort

FACE_AbstractAssociation [Association]
FACE_LifeCycleManagementPort [Class]
FACE_MessageType [Association]

face.uop

MessageType

FACE_UoPMessageType [Class]

face.uop

CompositeTemplate

FACE_AbstractAssociation [Association]
FACE_CompositeTemplate [Class]
FACE_Realize [Association]
FACE_TemplateComposition [Property]

face.uop

TemplateComposition

FACE_TemplateComposition [Property]
FACE_UoPMessageType [Class]

face.uop

Template

FACE_AbstractAssociation [Association]
FACE_BoundQuery [Association]
FACE_EffectiveQuery [Association]
FACE_Template [Class]

face

IntegrationModel

FACE_IntegrationModel [Package]

face.integration

Element

FACE_IntegrationElement [Element]

face.integration

IntegrationContext

FACE_IntegrationContext [Package]
FACE_TSNodeConnection [InformationFlow]
FACE_TransportNode [Class]

face.integration

TSNodeConnection

FACE_TSNodeConnection [InformationFlow]

face.integration

TSNodePortBase

FACE_TSNodeConnection [InformationFlow]
FACE_TSNodePortBase [Class]

face.integration

UoPInstance

FACE_AbstractAssociation [Association]
FACE_EndPoint [Association]
FACE_Realize [Association]
FACE_UoPInstance [Class]

face.integration

UoPEndPoint

FACE_AbstractAssociation [Association]
FACE_Realize [Association]
FACE_UoPEndPoint [Class]

face.integration

UoPInputEndPoint

FACE_UoPInputEndPoint [Class]

face.integration

UoPOutputEndPoint

FACE_UoPOQutputEndPoint [Class]

face.integration TransportNode FACE_AbstractAssociation [Association]
FACE_EndPoint [Association]
FACE_TransportNode [Class]

face.integration TSNodePort FACE_AbstractAssociation [Association]

FACE_MessageType [Association]
FACE_TSNodePort [Class]

face.integration

TSNodelnputPort

FACE_TSNodelnputPort [Class]

face.integration TSNodeOutputPort FACE_TSNodeOutputPort [Class]
face.integration ViewAggregation FACE_ViewAggregation [Class]
face.integration ViewFilter FACE_ViewfFilter [Class]
face.integration ViewSource FACE_ViewSource [Class]
face.integration ViewSink FACE_ViewsSink [Class]

face.integration

ViewTransformation

FACE_ViewTransformation [Class]

face.integration

ViewTransporter

FACE_ViewTransporter [Class]

face.integration

TransportChannel

FACE_TransportChannel [Class]

face

TraceabilityModel

FACE_TraceabilityModel [Package]

FACE Profile, v2.0 — beta 1

244

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)

face.traceability Element FACE_Connection [Class]
FACE_TraceabilityElement [Element]
face.traceability TraceableElement FACE_AbstractAssociation [Association]

FACE_ElementTrace [Association]
FACE_TraceableElement [Element]

face.traceability TraceabilityPoint FACE_TraceabilityPoint [Class]

face.traceability UoPTraceabilitySet FACE_AbstractAssociation [Association]
FACE_UoPTrace [Association]
FACE_UoPTraceabilitySet [Class]

face.traceability ConnectionTraceabilitySet FACE_AbstractAssociation [Association]
FACE_ConnectionTrace [Association]
FACE_ConnectionTraceabilitySet [Class]

face.traceability ConceptualEntityTrace FACE_AbstractAssociation [Association]
FACE_ConceptualEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability ConceptualViewTrace FACE_AbstractAssociation [Association]
FACE_ConceptualViewTrace [Class]
FACE_TraceView [Association]

face.traceability LogicalEntityTrace FACE_AbstractAssociation [Association]
FACE_LogicalEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability LogicalViewTrace FACE_AbstractAssociation [Association]
FACE_LogicalViewTrace [Class]
FACE_TraceView [Association]

face.traceability PlatformEntityTrace FACE_AbstractAssociation [Association]
FACE_PlatformEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability PlatformViewTrace FACE_AbstractAssociation [Association]
FACE_PlatformViewTrace [Class]
FACE_TraceView [Association]

Not from the Metamodel, <Derived from FACE Technical FACE_IOEndpoint [Association]
created for System-of- Standard> FACE_UnitOfConformance [Class]
Systems FACE_UnitOfConformanceEndpoint [Class]

FACE_UnitOfConformanceEndpointTypeEnum
FACE_UnitOfConformanceTypeEnum
FACE_UoCElement [Element]
FACE_UoCModel [Package]

Not from the Metamodel, <Created for System-of-Systems FACE_OperationalExchange [InformationFlow]
created for System-of- Connectivity> FACE_ResourceExchange [InformationFlow]
Systems

Not from the Metamodel, <Created for UAF Mapping> FACE_Implements [Dependency]

created for UAF Mapping

FACE Profile v2.0 — beta 1 245

A.2 FACE Profile to FACE Metamodel Mapping

This section provides a tabular description of the mapping between the FACE Profile elements to their corresponding FACE and UDDL metamodel elements as well as showing the profile element mappings to UAF elements. (The
UAF Mappings are represented by the «FACE_Implements» [Dependency] stereotype and its constraints.) The order of the profile elements in the table corresponds to the package organization of the FACE Profile specification. The
FACE metamodel elements shown are realized in whole or part by the listed FACE Profile element. The UAF element shown represents the mapping from the FACE Profile element to a corresponding UAF stereotype in the UAFP.
The bracketed strings following the UAF element names are the metatype of the UAFP element and the UAFP package in which the UAF element resides.

Table A-3 FACE Profile Elements -to- FACE Metamodel Mappings

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile FACE_ArchitectureModel Package face.ArchitectureModel
FACE_Profile FACE_Element Element face.Element
FACE_Profile.FACE Data Architecture FACE_EndPoint Association face.integration.TransportNode

face.integration.UoPInstance
face.uop.AbstractUoP
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture FACE_DataModel Package face.DataModel
FACE_Profile.FACE Data Architecture FACE_ModelElement Element face.Element
FACE_Profile.FACE Data Architecture FACE_IntegrationModel Package face.IntegrationModel
FACE_Profile.FACE Data Architecture FACE_MessageType Association face.integration.TSNodePort

face.uop.LifeCycleManagementPort
face.uop.PubSubConnection

246 Title

FACE Profile Package
FACE_Profile.FACE Data Architecture

Profile Element Name
FACE_Realize

Metaclass
Association

FACE Metamodel Element(s)
face.datamodel.logical.Association
face.datamodel.logical.CompositeQuery
face.datamodel.logical.Entity
face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementAxis
face.datamodel.logical.Query
face.datamodel.platform.Association
face.datamodel.platform.CompositeQuery
face.datamodel.platform.Entity
face.datamodel.platform.PlatformDataType
face.datamodel.platform.Query
face.integration.UoPEndPoint
face.integration.UoPInstance
face.uop.CompositeTemplate
face.uop.Connection
face.uop.UnitOfPortability

UAF Mapping

FACE_Profile.FACE Data Architecture

FACE_TraceabilityModel

Package

face.TraceabilityModel

FACE_Profile.FACE Data Architecture

FACE_UoPModel

Package

face.UoPModel

FACE Profile v2.0 — beta 1

247

FACE_Profile.FACE Data Architecture

FACE_AbstractAssociation

Association

face.datamodel.logical.Association
face.datamodel.logical.CompositeQuery
face.datamodel.logical.CoordinateSystem
face.datamodel.logical.Entity
face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementAxis
face.datamodel.logical.MeasurementSystem
face.datamodel.logical.MeasurementSystemAxis
face.datamodel.logical.Query
face.datamodel.logical.ReferencePoint
face.datamodel.logical.ValueTypeUnit
face.datamodel.platform.Association
face.datamodel.platform.CompositeQuery
face.datamodel.platform.Entity
face.datamodel.platform.PlatformDataType
face.datamodel.platform.Query
face.integration.TSNodePort
face.integration.TransportNode
face.integration.UoPEndPoint
face.integration.UoPInstance
face.traceability.ConceptualEntityTrace
face.traceability.ConceptualViewTrace
face.traceability.ConnectionTraceabilitySet
face.traceability.LogicalEntityTrace
face.traceability.LogicalViewTrace
face.traceability.PlatformEntityTrace
face.traceability.PlatformViewTrace
face.traceability.TraceableElement
face.traceability.UoPTraceabilitySet
face.uop.AbstractConnection
face.uop.ClientServerConnection
face.uop.CompositeTemplate
face.uop.Connection
face.uop.LifeCycleManagementPort
face.uop.PubSubConnection
face.uop.Template
face.uop.UnitOfPortability

248

Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualDataModel Package face.datamodel.ConceptualDataModel
Data Model

FACE_Profile.FACE Data Architecture.FACE |FACE_DataModelElement Element face.datamodel.Element

Data Model

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalDataModel Package face.datamodel.LogicalDataModel
Data Model

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformDataModel Package face.datamodel.PlatformDataModel
Data Model

FACE_Profile.FACE Data Architecture.FACE |FACE_Specialize Generalization face.datamodel.conceptual.Association
Data Model face.datamodel.conceptual.Entity

face.datamodel.logical.Association
face.datamodel.logical.Entity
face.datamodel.platform.Association
face.datamodel.platform.Entity
FACE_Profile.FACE Data Architecture.FACE |FACE_SpecializationOwner Class face.datamodel.conceptual.Association
Data Model face.datamodel.conceptual.Entity
face.datamodel.logical.Association
face.datamodel.logical.Entity
face.datamodel.platform.Association
face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE |FACE_BasisElement Element face.datamodel.conceptual.BasisElement
Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_BasisEntity Class face.datamodel.conceptual.BasisEntity

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualAssociation Class face.datamodel.conceptual.Association

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualCharacteristic |Element face.datamodel.conceptual.Characteristic
Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualComposableEle |Element face.datamodel.conceptual.ComposableElement
Data Model.ConceptualDataModel ment face.datamodel.conceptual.Composition
FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualCompositeQue |Class face.datamodel.conceptual.CompositeQuery
Data Model.ConceptualDataModel ry

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualComposition |Property face.datamodel.conceptual.Composition
Data Model.ConceptualDataModel face.datamodel.conceptual.Entity
FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualElement Element face.datamodel.conceptual.Element

Data Model.ConceptualDataModel

FACE Profile v2.0 — beta 1 249

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualEntity Class face.datamodel.conceptual.Entity

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualParticipant Association face.datamodel.conceptual.CharacteristicPathNode

Data Model.ConceptualDataModel face.datamodel.conceptual.Participant
face.datamodel.conceptual.ParticipantPathNode
face.datamodel.conceptual.PathNode

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualQuery Class face.datamodel.conceptual.Query

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualQueryComposi |Property face.datamodel.conceptual.CompositeQuery

Data Model.ConceptualDataModel tion face.datamodel.conceptual.QueryComposition

FACE_Profile.FACE Data Architecture.FACE |FACE_ConceptualView Class face.datamodel.conceptual.QueryComposition InformationElement [Class]

Data Model.ConceptualDataModel face.datamodel.conceptual.View

FACE_Profile.FACE Data Architecture.FACE |FACE_Domain Class face.datamodel.conceptual.Domain

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_EntityBasis

Generalization

face.datamodel.conceptual.Entity

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Observable Class face.datamodel.conceptual.Observable

Data Model.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_AbstractMeasurement Element face.datamodel.logical.AbstractMeasurement

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_AbstractMeasurementSyst |Class face.datamodel.logical.AbstractMeasurementSystem

Data Model.LogicalDataModel em

FACE_Profile.FACE Data Architecture.FACE |FACE_AffineConversion Class face.datamodel.logical.AffineConversion

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_AppliedConstraint Association face.datamodel.logical.Measurement

Data Model.LogicalDataModel face.datamodel.logical.MeasurementAxis
face.datamodel.logical.MeasurementSystem
face.datamodel.logical.MeasurementSystemAxis
face.datamodel.logical.ValueTypeUnit

FACE_Profile.FACE Data Architecture.FACE |FACE_AppliedValueTypeUnit Association face.datamodel.logical.MeasurementAxis

Data Model.LogicalDataModel face.datamodel.logical.MeasurementSystemAxis

FACE_Profile.FACE Data Architecture.FACE |FACE_Axis Association face.datamodel.logical.CoordinateSystem

Data Model.LogicalDataModel face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementSystem

FACE_Profile.FACE Data Architecture.FACE |FACE_Constraint Class face.datamodel.logical.Constraint

250

Title

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Conversion Class face.datamodel.logical.Conversion

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ConvertibleElement Element face.datamodel.logical.ConvertibleElement
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_CoordinateSystem Class face.datamodel.logical.CoordinateSystem
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_CoordinateSystemAxis Class face.datamodel.logical.CoordinateSystemAxis
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_DefinedReferencePoint Association face.datamodel.logical.MeasurementSystem
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_EnumerationConstraint Class face.datamodel.logical.EnumerationConstraint
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_EnumerationLabel Property face.datamodel.logical.EnumerationLabel
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_FixedLengthStringConstrai |Class face.datamodel.logical.FixedLengthStringConstraint
Data Model.LogicalDataModel nt

FACE_Profile.FACE Data Architecture.FACE |FACE_IntegerConstraint Class face.datamodel.logical.IntegerConstraint
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_IntegerRangeConstraint |Class face.datamodel.logical.IntegerRangeConstraint
Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Landmark Class face.datamodel.logical.Landmark

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalAssociation Class face.datamodel.logical.Association

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalCharacteristic Element face.datamodel.logical.Characteristic

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalComposableElemen |Element face.datamodel.logical.ComposableElement
Data Model.LogicalDataModel t face.datamodel.logical.Composition
FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalCompositeQuery [Class face.datamodel.logical.CompositeQuery

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalComposition Property face.datamodel.logical.Composition

Data Model.LogicalDataModel face.datamodel.logical.Entity
FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalElement Element face.datamodel.logical.Element

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalEntity Class face.datamodel.logical.Entity

FACE Profile v2.0 — beta 1

251

UAF Mapping

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

Data Model.LogicalDataModel

ersion

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalParticipant Association face.datamodel.logical.CharacteristicPathNode

Data Model.LogicalDataModel face.datamodel.logical.Participant
face.datamodel.logical.ParticipantPathNode
face.datamodel.logical.PathNode

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalQuery Class face.datamodel.logical.Query

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalQueryComposition |Property face.datamodel.logical.CompositeQuery

Data Model.LogicalDataModel face.datamodel.logical.QueryComposition

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalValueType Class face.datamodel.logical.Boolean

Data Model.LogicalDataModel face.datamodel.logical.Character
face.datamodel.logical.Enumerated
face.datamodel.logical.Integer
face.datamodel.logical.Natural
face.datamodel.logical.NonNegativeReal
face.datamodel.logical.Numeric
face.datamodel.logical.Real
face.datamodel.logical.String

FACE_Profile.FACE Data Architecture.FACE |FACE_LogicalView Class face.datamodel.logical.QueryComposition InformationElement [Class]

Data Model.LogicalDataModel face.datamodel.logical.View

FACE_Profile.FACE Data Architecture.FACE |FACE_Measurement Class face.datamodel.logical.Measurement

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementAttribute Property face.datamodel.logical.MeasurementAttribute

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementAxis Class face.datamodel.logical.MeasurementAxis

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementConstraint |Class face.datamodel.logical.MeasurementConstraint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementConversion |Class face.datamodel.logical.MeasurementConversion

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementSystem Class face.datamodel.logical.MeasurementSystem

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementSystemAxis |Class face.datamodel.logical.MeasurementSystemAxis

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_MeasurementSystemConv |Class face.datamodel.logical.MeasurementSystemConversion

252

Title

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_RealConstraint Class face.datamodel.logical.RealConstraint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_RealRangeConstraint Class face.datamodel.logical.RealRangeConstraint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ReferencePoint Class face.datamodel.logical.ReferencePoint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ReferencePointPart Class face.datamodel.logical.ReferencePointPart

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_RegularExpressionConstrai|Class face.datamodel.logical.RegularExpressionConstraint

Data Model.LogicalDataModel nt

FACE_Profile.FACE Data Architecture.FACE |FACE_RPPart Association face.datamodel.logical.ReferencePoint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_StandardMeasurementSys |Class face.datamodel.logical.StandardMeasurementSystem

Data Model.LogicalDataModel tem

FACE_Profile.FACE Data Architecture.FACE |FACE_StringConstraint Class face.datamodel.logical.StringConstraint

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Unit Class face.datamodel.logical.Unit

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ValueTypeEnum Enumeration face.datamodel.logical.Boolean

Data Model.LogicalDataModel face.datamodel.logical.Character
face.datamodel.logical.Enumerated
face.datamodel.logical.Integer
face.datamodel.logical.Natural
face.datamodel.logical.NonNegativeReal
face.datamodel.logical.Numeric
face.datamodel.logical.Real
face.datamodel.logical.String
face.datamodel.logical.ValueType

FACE_Profile.FACE Data Architecture.FACE |FACE_ValueTypeUnit Class face.datamodel.logical.ValueTypeUnit

Data Model.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Boolean Class face.datamodel.platform.Boolean

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Char Class face.datamodel.platform.Char

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_CharType Class face.datamodel.platform.CharType

FACE Profile v2.0 — beta 1

253

UAF Mapping

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Double Class face.datamodel.platform.Double

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Enumeration Class face.datamodel.platform.Enumeration
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Fixed Class face.datamodel.platform.Fixed

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Float Class face.datamodel.platform.Float

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Array Class face.datamodel.platform.Array

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_BoundedString Class face.datamodel.platform.BoundedString
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_CharArray Class face.datamodel.platform.CharArray
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_StructMember Property face.datamodel.platform.StructMember
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Integer Class face.datamodel.platform.Integer

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Number Class face.datamodel.platform.Number

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Primitive Class face.datamodel.platform.Primitive

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Real Class face.datamodel.platform.Real

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Sequence Class face.datamodel.platform.Sequence
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Struct Class face.datamodel.platform.Struct

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformDataType Element face.datamodel.platform.PlatformDataType
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Unsignedinteger Class face.datamodel.platform.UnsignedInteger
Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Long Class face.datamodel.platform.Long

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_LongDouble Class face.datamodel.platform.LongDouble

254

Title

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Longlong Class face.datamodel.platform.LonglLong

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_Octet Class face.datamodel.platform.Octet

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformAssociation Class face.datamodel.platform.Association

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformCharacteristic Element face.datamodel.platform.Characteristic

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformComposableElem [Element face.datamodel.platform.ComposableElement

Data Model.PlatformDataModel ent face.datamodel.platform.Composition

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformComposition Property face.datamodel.platform.Composition

Data Model.PlatformDataModel face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformElement Element face.datamodel.platform.Element

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformEntity Class face.datamodel.platform.Entity

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformParticipant Association face.datamodel.platform.CharacteristicPathNode

Data Model.PlatformDataModel face.datamodel.platform.Participant
face.datamodel.platform.ParticipantPathNode
face.datamodel.platform.PathNode

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformQuery Class face.datamodel.platform.Query DataElement [Class]

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformView Class face.datamodel.platform.QueryComposition DataElement [Class]

Data Model.PlatformDataModel face.datamodel.platform.View

FACE_Profile.FACE Data Architecture.FACE |FACE_Short Class face.datamodel.platform.Short

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |[FACE_String Class face.datamodel.platform.String

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_StringType Class face.datamodel.platform.StringType

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ULong Class face.datamodel.platform.ULong

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_ULonglLong Class face.datamodel.platform.ULonglLong

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_UShort Class face.datamodel.platform.UShort

FACE Profile v2.0 — beta 1

255

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformCompositeQuery |Class face.datamodel.platform.CompositeQuery

Data Model.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE |FACE_PlatformQueryCompositio |Property face.datamodel.platform.CompositeQuery

Data Model.PlatformDataModel n face.datamodel.platform.QueryComposition

FACE_Profile.FACE Data FACE_IntegrationContext Package face.integration.IntegrationContext

Architecture.Integration Model

FACE_Profile.FACE Data FACE_IntegrationElement Element face.integration.Element

Architecture.Integration Model

FACE_Profile.FACE Data FACE_TransportChannel Class face.integration.TransportChannel Software [Class]
Architecture.Integration Model

FACE_Profile.FACE Data FACE_TransportNode Class face.integration.IntegrationContext Software [Class]

Architecture.Integration Model

face.integration.TransportNode

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodeConnection

InformationFlow

face.integration.IntegrationContext
face.integration.TSNodeConnection
face.integration.TSNodePortBase

ResourceConnector [Connector]

FACE_Profile.FACE Data FACE_TSNodelnputPort Class face.integration.TSNodelnputPort

Architecture.Integration Model

FACE_Profile.FACE Data FACE_TSNodeOutputPort Class face.integration.TSNodeOutputPort

Architecture.Integration Model

FACE_Profile.FACE Data FACE_TSNodePort Class face.integration.TSNodePort

Architecture.Integration Model

FACE_Profile.FACE Data FACE_TSNodePortBase Class face.integration.TSNodePortBase ResourcePort [Port]
Architecture.Integration Model

FACE_Profile.FACE Data FACE_UoPEndPoint Class face.integration.UoPEndPoint

Architecture.Integration Model

FACE_Profile.FACE Data FACE_UoPInputEndPoint Class face.integration.UoPInputEndPoint

Architecture.Integration Model

FACE_Profile.FACE Data FACE_UoPInstance Class face.integration.UoPInstance Software [Class]
Architecture.Integration Model

FACE_Profile.FACE Data FACE_UoPOutputEndPoint Class face.integration.UoPOutputEndPoint

Architecture.Integration Model

FACE_Profile.FACE Data FACE_ViewAggregation Class face.integration.ViewAggregation

Architecture.Integration Model

FACE_Profile.FACE Data FACE_ViewfFilter Class face.integration.ViewFilter

Architecture.Integration Model

256

Title

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

FACE_Profile.FACE Data FACE_ViewsSink Class face.integration.ViewSink
Architecture.Integration Model

FACE_Profile.FACE Data FACE_ViewSource Class face.integration.ViewSource
Architecture.Integration Model

FACE_Profile.FACE Data FACE_ViewTransformation Class face.integration.ViewTransformation
Architecture.Integration Model

FACE_Profile.FACE Data FACE_ViewTransporter Class face.integration.ViewTransporter
Architecture.Integration Model

FACE_Profile.FACE Data FACE_ConnectionTrace Association face.traceability.ConnectionTraceabilitySet
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_ConnectionTraceabilitySet |Class face.traceability.ConnectionTraceabilitySet
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_ElementTrace Association face.traceability.TraceableElement
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_TraceabilityElement Element face.traceability.Element
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_TraceabilityPoint Class face.traceability.TraceabilityPoint
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_TraceableElement Element face.traceability.TraceableElement
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_UoPTrace Association face.traceability.UoPTraceabilitySet
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_UoPTraceabilitySet Class face.traceability.UoPTraceabilitySet
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_ConceptualEntityTrace Class face.traceability.ConceptualEntityTrace
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_ConceptualViewTrace Class face.traceability.ConceptualViewTrace
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_LogicalEntityTrace Class face.traceability.LogicalEntityTrace
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_LogicalViewTrace Class face.traceability.LogicalViewTrace
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_PlatformEntityTrace Class face.traceability.PlatformEntityTrace
Architecture.Traceability Model

FACE_Profile.FACE Data FACE_PlatformViewTrace Class face.traceability.PlatformViewTrace

Architecture.Traceability Model

FACE Profile v2.0 — beta 1

257

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

FACE_Profile.FACE Data FACE_TraceEntity Association face.traceability.ConceptualEntityTrace

Architecture.Traceability Model face.traceability.LogicalEntityTrace
face.traceability.PlatformEntityTrace

FACE_Profile.FACE Data FACE_TraceView Association face.traceability.ConceptualViewTrace

Architecture.Traceability Model face.traceability.LogicalViewTrace
face.traceability.PlatformViewTrace

FACE_Profile.FACE Data Architecture.UoP |FACE_AbstractConnection Class face.uop.AbstractConnection OperationalPort [Port]

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_AbstractUoP Class face.uop.AbstractUoP OperationalPerformer [Class]

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_AbstractView Association face.uop.AbstractConnection

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_BackingComponent Association face.uop.UnitOfPortability

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_BoundQuery Association face.uop.Template

Model

FACE_Profile.FACE Data Architecture.UoP |[FACE_ClientServerConnection |Class face.uop.ClientServerConnection

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ClientServerRoleEnum Enumeration face.uop.ClientServerRole

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ComponentFramework Class face.uop.ComponentFramework

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ComponentTypeEnum Enumeration face.uop.PlatformSpecificComponent

Model face.uop.PortableComponent
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP |FACE_CompositeTemplate Class face.uop.CompositeTemplate

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_Connection Class face.traceability.Element ResourcePort [Port]

Model face.uop.Connection

FACE_Profile.FACE Data Architecture.UoP |FACE_DesignAssurancelLevelEnu |Enumeration face.uop.DesignAssurancelevel

Model m face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP |FACE_DesignAssuranceStandard |Enumeration face.uop.DesignAssuranceStandard

Model Enum face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP |FACE_EffectiveQuery Association face.uop.Template

Model

258

Title

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ProfileEnum Enumeration face.uop.FaceProfile

Model face.uop.UnitOfPortability
FACE_Profile.FACE Data Architecture.UoP |FACE_LanguageRunTime Class face.uop.LanguageRunTime
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_LifeCycleManagementPort |Class face.uop.LifeCycleManagementPort ResourcePort [Port]
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_MessageExchangeTypeEn |Enumeration face.uop.MessageExchangeType
Model um face.uop.PubSubConnection
FACE_Profile.FACE Data Architecture.UoP |FACE_PartitionTypeEnum Enumeration face.uop.PartitionType

Model face.uop.UnitOfPortability
FACE_Profile.FACE Data Architecture.UoP |FACE_ProgramminglLanguageEn |Enumeration face.uop.ProgramminglLanguage
Model um face.uop.UnitOfPortability
FACE_Profile.FACE Data Architecture.UoP |FACE_PubSubConnection Class face.uop.PubSubConnection
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_QueuingConnection Class face.uop.QueuingConnection
Model

FACE_Profile.FACE Data Architecture.UoP FACE_RAMMemoryRequirement |Class face.uop.RAMMemoryRequirements
Model s

FACE_Profile.FACE Data Architecture.UoP |FACE_RequestView Association face.uop.ClientServerConnection
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ResponseView Association face.uop.ClientServerConnection
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_SingleInstanceMessageCo |Class face.uop.SingleInstanceMessageConnection
Model nnection

FACE_Profile.FACE Data Architecture.UoP |FACE_SupportingComponent Class face.uop.SupportingComponent
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_SynchronizationStyleEnum |Enumeration face.uop.SynchronizationStyle
Model

FACE_Profile.FACE Data Architecture.UoP |FACE_Template Class face.uop.Template

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_TemplateComposition Property face.uop.CompositeTemplate
Model face.uop.TemplateComposition
FACE_Profile.FACE Data Architecture.UoP |FACE_Thread Class face.uop.Thread

Model

FACE_Profile.FACE Data Architecture.UoP |FACE_ThreadTypeEnum Enumeration face.uop.ThreadType

FACE Profile v2.0 — beta 1

259

FACE Profile Package

Profile Element Name

Metaclass

FACE Metamodel Element(s)

UAF Mapping

FACE_Profile.FACE Data Architecture.UoP |FACE_UnitOfPortability Class face.uop.PlatformSpecificComponent Software [Class]
Model face.uop.PortableComponent
face.uop.UnitOfPortability
FACE_Profile.FACE Data Architecture.UoP |FACE_UoPElement Element face.uop.Element
Model
FACE_Profile.FACE Data Architecture.UoP |FACE_UoPResource Association face.uop.UnitOfPortability
Model
FACE_Profile.FACE Data Architecture.UoP |FACE_UoPMessageType Class face.uop.MessageType
Model face.uop.TemplateComposition
FACE_Profile.FACE_Extended_Stereotypes |FACE_IOEndpoint Association Not from the Metamodel, created for System-of-

Systems.<Derived from FACE Technical Standard>

FACE_Profile.FACE_Extended_Stereotypes

FACE_OperationalExchange

InformationFlow

Not from the Metamodel, created for System-of-
Systems.<Created for System-of-Systems Connectivity>

OperationalExchange [InformationFlow]

FACE_Profile.FACE_Extended_Stereotypes

FACE_ResourceExchange

InformationFlow

Not from the Metamodel, created for System-of-
Systems.<Created for System-of-Systems Connectivity>

ResourceExchange [InformationFlow]

FACE_Profile.FACE_Extended_Stereotypes [FACE_UnitOfConformance Class Not from the Metamodel, created for System-of- Software [Class]
Systems.<Derived from FACE Technical Standard>
FACE_Profile.FACE_Extended_Stereotypes |FACE_UnitOfConformanceEndpo |Class Not from the Metamodel, created for System-of- ResourcePort [Port]
int Systems.<Derived from FACE Technical Standard>
FACE_Profile.FACE_Extended_Stereotypes |FACE_UnitOfConformanceEndpo [Enumeration Not from the Metamodel, created for System-of-
intTypeEnum Systems.<Derived from FACE Technical Standard>
FACE_Profile.FACE_Extended_Stereotypes |FACE_UnitOfConformanceTypeE |Enumeration Not from the Metamodel, created for System-of-
num Systems.<Derived from FACE Technical Standard>
FACE_Profile.FACE_Extended_Stereotypes |FACE_UoCElement Element Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>
FACE_Profile.FACE_Extended_Stereotypes |FACE_UoCModel Package Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>
FACE_Profile.UAF_Extensions FACE_Implements Dependency Not from the Metamodel, created for UAF

Mapping.<Created for UAF Mapping>

260

Title

FACE Profile v2.0 — beta 1 261

	1 Scope
	1.1 FACE Profile Background
	1.2 Intended Users

	2 Conformance
	2.1 Level A Conformance
	2.2 Level AA Conformance
	2.3 Level AAA Conformance

	3 References
	3.1 Normative References
	3.1.1 OMG Documents (Normative References)
	3.1.2 The Open Group Documents (Normative References)

	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Scope of this Specification
	6.2 How to Read this Specification
	6.2.1 Content Notes for this Specification
	6.2.2 Representing Additional Properties and Constraints on Stereotypes
	6.2.2.1 FACE Conformance/OCL Constraints
	6.2.2.2 Metaconstraint Dependency
	6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotype
	6.2.2.2.2 Example Usage of the Metaconstraint Dependency

	6.2.2.3 Stereotyped Relationship Dependency
	6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotype
	6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency

	6.2.2.4 Stereotyped Association Dependency
	6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype
	6.2.2.4.2 Example Usage of the Stereotyped Association Dependency

	6.2.2.5 Stereotyped Generalization Dependency Stereotype
	6.2.2.5.1 Definition of the Stereotyped Generalization Dependency
	6.2.2.5.2 Example Usage of the Stereotyped Generalization Dependency

	7 FACE Profile
	7.1 FACE_Profile
	FACE_ArchitectureModel
	FACE_Element
	7.1.1 FACE_Profile::FACE Data Architecture
	FACE_AbstractAssociation
	FACE_DataModel
	FACE_EndPoint
	FACE_IntegrationModel
	FACE_MessageType
	FACE_ModelElement
	FACE_Realize
	FACE_TraceabilityModel
	FACE_UoPModel
	7.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model
	FACE_ConceptualDataModel
	FACE_DataModelElement
	FACE_LogicalDataModel
	FACE_PlatformDataModel
	FACE_SpecializationOwner
	FACE_Specialize
	7.1.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model::ConceptualDataModel
	FACE_BasisElement
	FACE_BasisEntity
	FACE_ConceptualAssociation
	FACE_ConceptualCharacteristic
	FACE_ConceptualComposableElement
	FACE_ConceptualCompositeQuery
	FACE_ConceptualComposition
	FACE_ConceptualElement
	FACE_ConceptualEntity
	FACE_ConceptualParticipant
	FACE_ConceptualQuery
	FACE_ConceptualQueryComposition
	FACE_ConceptualView
	FACE_Domain
	FACE_EntityBasis
	FACE_Observable
	7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel
	FACE_AbstractMeasurement
	FACE_AbstractMeasurementSystem
	FACE_AffineConversion
	FACE_AppliedConstraint
	FACE_AppliedValueTypeUnit
	FACE_Axis
	FACE_Constraint
	FACE_Conversion
	FACE_ConvertibleElement
	FACE_CoordinateSystem
	FACE_CoordinateSystemAxis
	FACE_DefinedReferencePoint
	FACE_EnumerationConstraint
	FACE_EnumerationLabel
	FACE_FixedLengthStringConstraint
	FACE_IntegerConstraint
	FACE_IntegerRangeConstraint
	FACE_Landmark
	FACE_LogicalAssociation
	FACE_LogicalCharacteristic
	FACE_LogicalComposableElement
	FACE_LogicalCompositeQuery
	FACE_LogicalComposition
	FACE_LogicalElement
	FACE_LogicalEntity
	FACE_LogicalParticipant
	FACE_LogicalQuery
	FACE_LogicalQueryComposition
	FACE_LogicalValueType
	FACE_LogicalView
	FACE_Measurement
	FACE_MeasurementAttribute
	FACE_MeasurementAxis
	FACE_MeasurementConstraint
	FACE_MeasurementConversion
	FACE_MeasurementSystem
	FACE_MeasurementSystemAxis
	FACE_MeasurementSystemConversion
	FACE_RealConstraint
	FACE_RealRangeConstraint
	FACE_ReferencePoint
	FACE_ReferencePointPart
	FACE_RegularExpressionConstraint
	FACE_RPPart
	FACE_StandardMeasurementSystem
	FACE_StringConstraint
	FACE_Unit
	FACE_ValueTypeEnum
	FACE_ValueTypeUnit
	7.1.1.1.3 FACE_Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel
	FACE_Array
	FACE_Boolean
	FACE_BoundedString
	FACE_Char
	FACE_CharArray
	FACE_CharType
	FACE_Double
	FACE_Enumeration
	FACE_Fixed
	FACE_Float
	FACE_Integer
	FACE_Long
	FACE_LongDouble
	FACE_LongLong
	FACE_Number
	FACE_Octet
	FACE_PlatformAssociation
	FACE_PlatformCharacteristic
	FACE_PlatformComposableElement
	FACE_PlatformCompositeQuery
	FACE_PlatformComposition
	FACE_PlatformDataType
	FACE_PlatformElement
	FACE_PlatformEntity
	FACE_PlatformParticipant
	FACE_PlatformQuery
	FACE_PlatformQueryComposition
	FACE_PlatformView
	FACE_Primitive
	FACE_Real
	FACE_Sequence
	FACE_Short
	FACE_String
	FACE_StringType
	FACE_Struct
	FACE_StructMember
	FACE_ULong
	FACE_ULongLong
	FACE_UnsignedInteger
	FACE_UShort

	7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model
	FACE_IntegrationContext
	FACE_IntegrationElement
	FACE_TransportChannel
	FACE_TransportNode
	FACE_TSNodeConnection
	FACE_TSNodeInputPort
	FACE_TSNodeOutputPort
	FACE_TSNodePort
	FACE_TSNodePortBase
	FACE_UoPEndPoint
	FACE_UoPInputEndPoint
	FACE_UoPInstance
	FACE_UoPOutputEndPoint
	FACE_ViewAggregation
	FACE_ViewFilter
	FACE_ViewSink
	FACE_ViewSource
	FACE_ViewTransformation
	FACE_ViewTransporter
	7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Model
	FACE_ConceptualEntityTrace
	FACE_ConceptualViewTrace
	FACE_ConnectionTrace
	FACE_ConnectionTraceabilitySet
	FACE_ElementTrace
	FACE_LogicalEntityTrace
	FACE_LogicalViewTrace
	FACE_PlatformEntityTrace
	FACE_PlatformViewTrace
	FACE_TraceabilityElement
	FACE_TraceabilityPoint
	FACE_TraceableElement
	FACE_TraceEntity
	FACE_TraceView
	FACE_UoPTrace
	FACE_UoPTraceabilitySet
	7.1.1.4 FACE_Profile::FACE Data Architecture::UoP Model
	FACE_AbstractConnection
	FACE_AbstractUoP
	FACE_AbstractView
	FACE_BackingComponent
	FACE_BoundQuery
	FACE_ClientServerConnection
	FACE_ClientServerRoleEnum
	FACE_ComponentFramework
	FACE_ComponentTypeEnum
	FACE_CompositeTemplate
	FACE_Connection
	FACE_DesignAssuranceLevelEnum
	FACE_DesignAssuranceStandardEnum
	FACE_EffectiveQuery
	FACE_LanguageRunTime
	FACE_LifeCycleManagementPort
	FACE_MessageExchangeTypeEnum
	FACE_PartitionTypeEnum
	FACE_ProfileEnum
	FACE_ProgrammingLanguageEnum
	FACE_PubSubConnection
	FACE_QueuingConnection
	FACE_RAMMemoryRequirements
	FACE_RequestView
	FACE_ResponseView
	FACE_SingleInstanceMessageConnection
	FACE_SupportingComponent
	FACE_SynchronizationStyleEnum
	FACE_Template
	FACE_TemplateComposition
	FACE_Thread
	FACE_ThreadTypeEnum
	FACE_UnitOfPortability
	FACE_UoPElement
	FACE_UoPMessageType
	FACE_UoPResource

	7.1.2 FACE_Profile::FACE_Extended_Stereotypes
	FACE_IOEndpoint
	FACE_OperationalExchange
	FACE_ResourceExchange
	FACE_UnitOfConformance
	FACE_UnitOfConformanceEndpoint
	FACE_UnitOfConformanceEndpointTypeEnum
	FACE_UnitOfConformanceTypeEnum
	FACE_UoCElement
	FACE_UoCModel

	7.1.3 FACE_Profile::UAF_Extensions
	FACE_Implements

	7.2 View Customizations
	7.2.1 View Specifications::FACE Data Architecture
	7.2.1.1 View Specifications::All FACE Components View
	7.2.1.2 View Specifications::FACE Components Per Segment View
	7.2.1.3 View Specifications::FACE Logical Interfaces View
	7.2.1.4 View Specifications::FACE Physical Interfaces View

	8 Design Considerations (Non-Normative)
	8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions Enhance Related Architectures
	8.2 Support for Cyber Security within the System: Security Analysis enhancements from FACE Profile
	8.3 Combining FACE Profile with MARTE markings to feed AADL analysis
	8.4 Non-Profile Tool implementation aspects of the FACE Technical Standard
	8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE Technical Standard
	8.4.1.1 Level AA Conformance application of FACE OCL Constraints
	8.4.1.2 Level AAA Conformance application of FACE OCL Constraints

	8.4.2 Recommended mechanism to generate content into FACE Profile tabular views
	8.4.3 Inclusion of the FACE vertical architecture image in tool implementations
	A FACE Profile Mapping Tables (Informational / Non-Normative)
	A.1 FACE Metamodel to FACE Profile Mapping
	A.1.1 FACE Metamodel path elements
	A.1.2 Full Mapping of FACE Metamodel to FACE Profile

	A.2 FACE Profile to FACE Metamodel Mapping

