
Date: December November 20253

UAF FACE Profile
Version 2.0 – beta 21

__

OMG Document Number: dtc/20232025-1205-0902

Standard document URL: https://www.omg.org/spec/FACE/

__
This OMG document replaces the submission document (c41/2023-06-08). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome
and should be directed to issues@omg.org by December 11, 2023.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in September 2024. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/FACE/

ii UAF FACE Profile, v2.0 – beta 12

Copyright © 2023, OMG

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

FACE Profile, v2.0 – beta 1 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

https://www.omg.org/legal/tm_list.htm

iv UAF FACE Profile, v2.0 – beta 12

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

 FACE Profile v2.0 – beta 1 i

Table of Contents

0 Submission-Specific Material ... Error! Bookmark not defined.

0.1 Submission Preface ... Error! Bookmark not defined.
0.2 Copyright Waiver .. Error! Bookmark not defined.
0.3 Submitter Representative .. Error! Bookmark not defined.
0.4 Author Team ... Error! Bookmark not defined.
0.5 Proof of Concept ... Error! Bookmark not defined.

1 Scope .. Error! Bookmark not defined.
1.1 FACE Profile Background .. 1
1.2 Intended Users ... 2

2 Conformance .. 2
2.1 Level A Conformance ... 2
2.2 Level AA Conformance .. 3
2.3 Level AAA Conformance ... 3

3 References .. 3
3.1 Normative References ... 3

3.1.1 OMG Documents (Normative References) .. 3
3.1.2 The Open Group Documents (Normative References) ... 4

3.2 Non-normative References .. 5
4 Terms and Definitions .. 6
5 Symbols .. 7
6 Additional Information ... 7

6.1 Scope of this Specification .. 7
6.2 How to Read this Specification ... 7

6.2.1 Content Notes for this Specification ... 8
6.2.2 Representing Additional Properties and Constraints on Stereotypes 8

6.2.2.1 FACE Conformance/OCL Constraints .. 8
6.2.2.2 Metaconstraint Dependency .. 9

6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotype .. 9
6.2.2.2.2 Example Usage of the Metaconstraint Dependency .. 10

6.2.2.3 Stereotyped Relationship Dependency .. 10
6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotype 10
6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency 11

6.2.2.4 Stereotyped Association Dependency ... 12
6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype 12
6.2.2.4.2 Example Usage of the Stereotyped Association Dependency 13

6.2.2.5 Stereotyped Generalization Dependency Stereotype .. 13
6.2.2.5.1 Definition of the Stereotyped Generalization Dependency 14
6.2.2.5.2 Example Usage of the Stereotyped Generalization Dependency 14

7 FACE Profile .. 16
7.1 FACE_Profile .. 16
FACE_ArchitectureModel ... 16
FACE_Element .. 17

7.1.1 FACE_Profile::FACE Data Architecture ... 18
FACE_AbstractAssociation ... 18
FACE_DataModel ... 20
FACE_EndPoint .. 21
FACE_IntegrationModel ... 24
FACE_MessageType ... 25
FACE_ModelElement ... 27

FACE Profile, v2.0 – beta 1 2

FACE_Realize ... 28
FACE_TraceabilityModel ... 34
FACE_UoPModel .. 35
7.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model 35
FACE_ConceptualDataModel ... 36
FACE_DataModelElement .. 36
FACE_LogicalDataModel ... 38
FACE_PlatformDataModel ... 39
FACE_SpecializationOwner .. 40
FACE_Specialize ... 41

7.1.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data
Model::ConceptualDataModel ... 43
FACE_BasisElement .. 43
FACE_BasisEntity ... 44
FACE_ConceptualAssociation ... 44
FACE_ConceptualCharacteristic ... 45
FACE_ConceptualComposableElement .. 46
FACE_ConceptualCompositeQuery .. 47
FACE_ConceptualComposition ... 49
FACE_ConceptualElement .. 50
FACE_ConceptualEntity .. 51
FACE_ConceptualParticipant .. 53
FACE_ConceptualQuery ... 56
FACE_ConceptualQueryComposition ... 57
FACE_ConceptualView ... 58
FACE_Domain ... 59
FACE_EntityBasis ... 60
FACE_Observable ... 61
7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel 61
FACE_AbstractMeasurement .. 61
FACE_AbstractMeasurementSystem ... 62
FACE_AffineConversion ... 62
FACE_AppliedConstraint .. 63
FACE_AppliedValueTypeUnit .. 65
FACE_Axis .. 67
FACE_Constraint ... 70
FACE_Conversion ... 70
FACE_ConvertibleElement ... 71
FACE_CoordinateSystem .. 71
FACE_CoordinateSystemAxis ... 72
FACE_DefinedReferencePoint .. 73
FACE_EnumerationConstraint .. 75
FACE_EnumerationLabel .. 75
FACE_FixedLengthStringConstraint ... 76
FACE_IntegerConstraint .. 77
FACE_IntegerRangeConstraint ... 78
FACE_Landmark ... 78
FACE_LogicalAssociation... 79
FACE_LogicalCharacteristic ... 80
FACE_LogicalComposableElement .. 81
FACE_LogicalCompositeQuery .. 81
FACE_LogicalComposition ... 83
FACE_LogicalElement .. 85
FACE_LogicalEntity .. 86
FACE_LogicalParticipant .. 87
FACE_LogicalQuery ... 90

 FACE Profile v2.0 – beta 1 3

FACE_LogicalQueryComposition ... 91
FACE_LogicalValueType .. 92
FACE_LogicalView ... 94
FACE_Measurement .. 95
FACE_MeasurementAttribute ... 97
FACE_MeasurementAxis .. 98
FACE_MeasurementConstraint ... 99
FACE_MeasurementConversion ... 101
FACE_MeasurementSystem .. 102
FACE_MeasurementSystemAxis ... 103
FACE_MeasurementSystemConversion .. 104
FACE_RealConstraint .. 105
FACE_RealRangeConstraint ... 106
FACE_ReferencePoint ... 107
FACE_ReferencePointPart... 108
FACE_RegularExpressionConstraint ... 109
FACE_RPPart .. 109
FACE_StandardMeasurementSystem .. 110
FACE_StringConstraint ... 111
FACE_Unit .. 112
FACE_ValueTypeEnum .. 112
FACE_ValueTypeUnit ... 113
7.1.1.1.3 FACE_Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel
 114
FACE_Array .. 114
FACE_Boolean .. 114
FACE_BoundedString ... 115
FACE_Char .. 115
FACE_CharArray .. 116
FACE_CharType.. 116
FACE_Double .. 117
FACE_Enumeration ... 117
FACE_Fixed .. 118
FACE_Float ... 118
FACE_Integer .. 119
FACE_Long ... 119
FACE_LongDouble ... 120
FACE_LongLong ... 120
FACE_Number .. 121
FACE_Octet ... 121
FACE_PlatformAssociation ... 122
FACE_PlatformCharacteristic ... 123
FACE_PlatformComposableElement .. 124
FACE_PlatformCompositeQuery .. 124
FACE_PlatformComposition ... 126
FACE_PlatformDataType .. 128
FACE_PlatformElement .. 130
FACE_PlatformEntity .. 131
FACE_PlatformParticipant .. 132
FACE_PlatformQuery .. 135
FACE_PlatformQueryComposition ... 136
FACE_PlatformView ... 137
FACE_Primitive ... 138
FACE_Real .. 139
FACE_Sequence .. 139
FACE_Short ... 140

FACE Profile, v2.0 – beta 1 4

FACE_String .. 140
FACE_StringType ... 140
FACE_Struct .. 141
FACE_StructMember .. 142
FACE_ULong .. 143
FACE_ULongLong .. 144
FACE_UnsignedInteger ... 144
FACE_UShort .. 145

7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model 145
FACE_IntegrationContext ... 145
FACE_IntegrationElement .. 146
FACE_TransportChannel .. 147
FACE_TransportNode ... 147
FACE_TSNodeConnection ... 149
FACE_TSNodeInputPort ... 151
FACE_TSNodeOutputPort .. 152
FACE_TSNodePort ... 153
FACE_TSNodePortBase ... 154
FACE_UoPEndPoint ... 155
FACE_UoPInputEndPoint ... 156
FACE_UoPInstance ... 157
FACE_UoPOutputEndPoint .. 159
FACE_ViewAggregation ... 159
FACE_ViewFilter .. 160
FACE_ViewSink ... 160
FACE_ViewSource ... 161
FACE_ViewTransformation .. 161
FACE_ViewTransporter .. 162
7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Model 163
FACE_ConceptualEntityTrace .. 163
FACE_ConceptualViewTrace ... 163
FACE_ConnectionTrace .. 164
FACE_ConnectionTraceabilitySet .. 166
FACE_ElementTrace ... 167
FACE_LogicalEntityTrace .. 168
FACE_LogicalViewTrace ... 168
FACE_PlatformEntityTrace .. 169
FACE_PlatformViewTrace ... 169
FACE_TraceabilityElement ... 170
FACE_TraceabilityPoint ... 171
FACE_TraceableElement .. 172
FACE_TraceEntity .. 172
FACE_TraceView ... 174
FACE_UoPTrace ... 176
FACE_UoPTraceabilitySet .. 177
7.1.1.4 FACE_Profile::FACE Data Architecture::UoP Model ... 178
FACE_AbstractConnection ... 178
FACE_AbstractUoP .. 180
FACE_AbstractView ... 181
FACE_BackingComponent ... 182
FACE_BoundQuery .. 183
FACE_ClientServerConnection ... 185
FACE_ClientServerRoleEnum .. 185
FACE_ComponentFramework .. 186
FACE_ComponentTypeEnum ... 186
FACE_CompositeTemplate ... 187

 FACE Profile v2.0 – beta 1 5

FACE_Connection ... 188
FACE_DesignAssuranceLevelEnum ... 190
FACE_DesignAssuranceStandardEnum .. 190
FACE_EffectiveQuery... 191
FACE_LanguageRunTime .. 193
FACE_LifeCycleManagementPort .. 193
FACE_MessageExchangeTypeEnum .. 194
FACE_PartitionTypeEnum .. 195
FACE_ProfileEnum ... 195
FACE_ProgrammingLanguageEnum .. 196
FACE_PubSubConnection .. 196
FACE_QueuingConnection ... 197
FACE_RAMMemoryRequirements .. 198
FACE_RequestView .. 199
FACE_ResponseView ... 201
FACE_SingleInstanceMessageConnection ... 202
FACE_SupportingComponent ... 202
FACE_SynchronizationStyleEnum ... 203
FACE_Template .. 203
FACE_TemplateComposition.. 204
FACE_Thread .. 206
FACE_ThreadTypeEnum .. 207
FACE_UnitOfPortability ... 207
FACE_UoPElement ... 209
FACE_UoPMessageType .. 210
FACE_UoPResource ... 210

7.1.2 FACE_Profile::FACE_Extended_Stereotypes ... 212
FACE_IOEndpoint .. 212
FACE_OperationalExchange ... 214
FACE_ResourceExchange ... 215
FACE_UnitOfConformance .. 216
FACE_UnitOfConformanceEndpoint .. 217
FACE_UnitOfConformanceEndpointTypeEnum .. 219
FACE_UnitOfConformanceTypeEnum... 219
FACE_UoCElement .. 220
FACE_UoCModel ... 220

7.1.3 FACE_Profile::UAF_Extensions ... 221
FACE_Implements .. 221

7.2 View Customizations .. 227
7.2.1 View Specifications::FACE Data Architecture .. 227

7.2.1.1 View Specifications::All FACE Components View ... 227
7.2.1.2 View Specifications::FACE Components Per Segment View 229
7.2.1.3 View Specifications::FACE Logical Interfaces View ... 231
7.2.1.4 View Specifications::FACE Physical Interfaces View ... 232

8 Design Considerations (Non-Normative) ... 234
8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions Enhance Related Architectures 234
8.2 Support for Cyber Security within the System: Security Analysis enhancements from FACE Profile 234
8.3 Combining FACE Profile with MARTE markings to feed AADL analysis 234
8.4 Non-Profile Tool implementation aspects of the FACE Technical Standard 235

8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE Technical Standard 235
8.4.1.1 Level AA Conformance application of FACE OCL Constraints 235
8.4.1.2 Level AAA Conformance application of FACE OCL Constraints 235

8.4.2 Recommended mechanism to generate content into FACE Profile tabular views........ 236
8.4.3 Inclusion of the FACE vertical architecture image in tool implementations 236

A FACE Profile Mapping Tables (Informational / Non-Normative) ... 238
A.1 FACE Metamodel to FACE Profile Mapping .. 238

FACE Profile, v2.0 – beta 1 6

A.1.1 FACE Metamodel path elements .. 238
A.1.2 Full Mapping of FACE Metamodel to FACE Profile ... 238

A.2 FACE Profile to FACE Metamodel Mapping .. 246

 FACE Profile v2.0 – beta 1 vii

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:
https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

 FACE Profile v2.0 – beta 1 1

1 Scope
This specification defines a profile to express The Open Group® Future Airborne Capability Environment (FACE™)1
Technical Standard, Edition 3.1 and associated Meta-Object Facility (MOF) data architecture metamodel in terms of the
Object Management Group’s (OMG) Unified Modeling Language (UML) metamodel, with extensions to connect FACE
elements to appropriate elements of the Unified Architecture Framework (UAF).

Unless otherwise explicitly stated, all references in this document to the FACE Technical Standard shall be interpreted as
references to the Future Airborne Capability Environment (FACE) Technical Standard, Edition 3.1 as listed in the References
section of this document.

The data model portion of the FACE Technical Standard is based upon The Open Group Open Universal Domain Description
Language (Open UDDL™)2, Edition 1.0. As such, this standard also references the Open UDDL Standard. Unless
otherwise explicitly stated, all references in this document to the UDDL Standard shall be interpreted as reference to The
Open Group Open Universal Domain Description Language (Open UDDL), Edition 1.0 as listed in the References section of
this document.

1.1 FACE Profile Background
The FACE Profile v2.0 specification defines a profile to express the FACE Technical Standard and its underlying UDDL
Standard as expressed in their Meta-Object Facility (MOF) data architecture metamodels in terms of the Object Management
Group’s (OMG) Unified Architecture Framework (UAF). This profile is purposefully designed to be loosely coupled with
the UAF standard and expresses FACE metamodel elements as UML with relationships to connect appropriate FACE
metamodel elements to UAF profile elements. The UML portion of this standard can be stand-alone or paired with the UAF-
specific extensions.

The FACE Technical Standard is a software open architecture specification that “defines the software computing
environment intended for the development of portable software components, including requirements for architectural
segments and key interfaces.”3 The focus of the FACE Technical Standard is the support of real-time and safety critical
software beginning with avionics, representing the software elements as modules in a layered architecture with defined
interfaces between the layers. The software elements are meant to be separable and replaceable to fit changing contexts and
requirements. As a result of its focus on portable software components (Units of Portability, or UoPs), the FACE Technical
Standard is primarily concerned with individual components, rather than the larger contexts into which they will be
integrated. Because semantic understanding of message data is so important to integration of system components, The FACE
Technical Standard includes the UDDL Standard to define the data semantics underlying the elements in its message
definitions. The FACE Technical Standard has been used in military and commercial avionics as well as in other industrial
control systems such as power control and communications systems.

“UAF defines ways of representing an enterprise architecture that enables stakeholders to focus on specific areas of interest
in the enterprise while retaining sight of the big picture … to meet the specific business, operational and systems-of-systems
integration needs of commercial and industrial enterprises as well as the U.S. Department of Defense (DoD), the UK
Ministry of Defence (MOD), the North Atlantic Treaty Organization (NATO) and other defense organizations.”4

The UAF standard provides the larger scope to describe the environments into which the FACE-described components fit.
The Open Group UDDL Standard defines the elements, attributes, and associations for the FACE Data Architecture. The
Open Group FACE Technical Standard leverages the FACE Data Architecture and includes descriptions of software
components to be included in larger system-of-systems architectures. The UAF standard provides a mechanism for defining
the larger context in which the FACE components reside. UAF provides representations for defense and non-defense
architectures that can be used to effectively combine FACE software components and other systems components into

1 FACE™ is a trademark of The Open Group®.
2 Open UDDL™ is a trademark of The Open Group®
3 FACE FAQs | The Open Group. (2022). Opengroup.org. Retrieved 28 December 2022, from https://www.opengroup.org/content/future-

airborne-capability-environment-face/faqs
4 “Unified Architecture Framework® (UAF®) | Object Management Group. (2022). omg.org. Retrieved 28 December 2022, from

https://www.omg.org/uaf/index.htm”

FACE Profile, v2.0 – beta 1 2

cohesive systems architectures.

Together, the FACE Profile and its UAF extensions will enable platform and enterprise level acquisition analysis, software
security and cybersecurity analysis, and rapid capability development and deployment. The definition of this profile is the
first step. The implementation and realization of this profile in software and systems engineering tools, followed by
organizational utilization of these tools and standards will be necessary to achieve “the benefits of interoperability,
affordability, portability, increased competition and improved time-to-field”5 promised by the FACE Technical Standard.

1.2 Intended Users
The profile enables the modeling of FACE components, data descriptions, data exchanges, integration elements, and
traceability mechanisms using the UML metamodel and in the context of system-of-systems airframe architectures described
in UAF. It is intended to be used in project and system planning as well as to inform acquisition and integration efforts. This
specification is intended to be used by tools implementors, computer scientists, data scientists, software engineers, systems
engineers, and software systems engineers. For the best application of this profile, users should have some familiarity or
background with UAF and the FACE approach as well as UML and OCL.

2 Conformance
The FACE Profile contains a separable portion that is dependent upon UML, and another portion that is dependent upon UAF
for the connectivity to a larger systems-of-systems architecture. It defines constraints that do not conflict with application of
Unified Architecture Framework (UAF) Profile (UAFP) stereotypes. There are three levels of conformance designated for
the FACE Profile. The requirements for a tool to be considered as conformant with the FACE Profile at each level of
conformance are detailed below.

The Conformance clause identifies which clauses of the RFC are mandatory (or conditionally mandatory) and which are
optional in order for an implementation to claim conformance to the RFC.

2.1 Level A Conformance
Level A is the lowest level of conformance. Level A Conformance provides the basic profile and constraints that are based on
the FACE metamodel, along with enhanced export/import that includes both the FACE and UAF model elements. This is the
minimum implementation that can meet the conformance requirements of this standard.

Table 2-1 Level A Conformance Points
Implementation of profile
stereotypes

All stereotypes, classes, attributes, associations and package structures must exist and
be conformant with this specification. The core UML elements of the profile (the
FACE metamodel expressed as UML) may be separated from the UAF connection
extensions for implementation as two related profiles, with the UAF extension profile
dependent upon both the UAF and FACE/UML profiles

XMI data exchange Provide XMI import and export (.xmi) of the user model and profile, including UML
representations of FACE elements and UAF extensions

Fidelity of XMI exchange Be able to import and export FACE Profile models with 100% fidelity (i.e., no loss or
transforms).

Basic constraints only Application of only “Constraint” constraints (no requirement for FACE
Conformance/OCL Constraints)

FACE Element Aggregation
Tables

Provide a mechanism to generate the specified tabular views that aggregate FACE
constructs

5 FACE FAQs | The Open Group. (2022). Opengroup.org. Retrieved 28 December 2022, from https://www.opengroup.org/content/future-

airborne-capability-environment-face/faqs

 FACE Profile v2.0 – beta 1 3

2.2 Level AA Conformance
Level AA Conformance is a mid-range level of conformance. AA Conformance includes all Level A conformance points
and adds .face file format export and import (round-tripping) in support of external checks for FACE model conformance.
Level AA Conformance provides the minimum support needed by the users of FACE data architecture models in order to use
the authored information in a FACE integration effort.

Table 2-2 Level AA Conformance Points
Level A Conformance Level A conformance criteria met.

.face file XML data
exchange

Provide import and export of FACE elements in the FACE XML (.face) format as
specified in the XMI Specifications for UDDL and FACE delivered with this document
(document c4i/23-05-11)

Fidelity of .face file
exchange

Be able to import and export FACE elements to and from FACE XML models (.face
files) with 100% fidelity (i.e., no loss or transforms).

2.3 Level AAA Conformance
Level AAA Conformance is the highest level of conformance. AAA Conformance supports the rapid development of FACE
architecture, data models, and software development through application of the FACE/OCL Constraints during the
architecture modeling process. By applying these constraints during the model authoring process, the user is spared export of
the data model for conformance testing.

Table 2-3 Level AAA Conformance Points
Level AA Conformance Level AA conformance criteria met (includes Level A).

Basic PLUS FACE
Conformance/OCL
Constraints

All constraints must exist and be conformant with this specification. For details of OCL
Constraints, please refer to the UDDL Standard and the FACE Technical Standard.

FACE Conformance Checks
in tool

FACE Conformance checking in tool using FACE Conformance/OCL Constraints

3 References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

List of normative references.

3.1.1 OMG Documents (Normative References)
Meta Object Facility (MOF), v2.5.1, October 2016, https://www.omg.org/spec/MOF/

FACE Profile, v2.0 – beta 1 4

Unified Modeling Language (UML), v2.5.1, December 2017, http://www.omg.org/spec/UML

Object Constraint Language (OCL), v2.4, February 2014, http://www.omg.org/spec/OCL

System Modeling Language (SysML), v1.6, December 2019, http://www.omg.org/spec/SysML

Diagram Definition (DD), v1.1, August 2015, http://www.omg.org/spec/DD

Unified Architecture Framework (UAF), v1.2, July 2022, https://www.omg.org/spec/UAF/

Interface Definition Language (IDL), v4.2, March 2018, https://www.omg.org/spec/IDL/

UML Profile for MARTE, v1.2, April 2019, https://www.omg.org/spec/MARTE/

3.1.2 The Open Group Documents (Normative References)
While all documents published by The Open Group are freely available for download, The Open Group requires that users
register for and use an Open Group account to download documents. Registration and document access are no-cost.

The Open Group normative references that apply to this standard are:

• FACE Technical Standard, Edition 3.1

o Open Group FACE™ Consortium, The Open Group FACE™ (Future Airborne Capability Environment)
Technical Standard, Edition 3.1, 28 July 2020, accessed 19-May-2023, ISBN: 1-947754-61-4
<https://publications.opengroup.org/standards/face/c207>

o Unless otherwise explicitly stated, all references in this document to the FACE Technical Standard shall be
interpreted as references to the Future Airborne Capability Environment (FACE) Technical Standard,
Edition 3.1.

o The written FACE Technical Standard remains the normative standard FACE Architecture, and most
importantly, conformance. The profile presented in this standard follows the metamodel in section J of the
FACE Technical Standard, including UDDL metamodel referenced by the FACE metamodel. Section J of
the FACE Technical Standard also includes conformance criteria expressed as OCL statements. The FACE
conformance criteria extend the UDDL conformance criteria in addition to introduction of conformance
criteria specific to elements only found in the FACE Technical Standard.

• Open Universal Domain Description Language (Open UDDL), Edition 1.0

o Open Group FACE™ Consortium, The Open Group Standard for the Open Universal Domain Description
Language (Open UDDL), Edition 1.0, 03 July 2019, accessed 19 May 2023, ISBN: 1-947754-32-4,
<https://publications.opengroup.org/standards/face/ c198>

o Unless otherwise explicitly stated, all references in this document to the UDDL Standard shall be
interpreted as reference to The Open Group Open Universal Domain Description Language (Open UDDL),
Edition 1.0.

o The written UDDL standard remains the normative standard for the FACE Technical Standard’s Data
Model Architecture. The purpose of the Universal Domain Description Language (UDDL) is to define a
data modeling language for formally describing, querying, and communicating information. The written
UDDL standard (in conjunction with the FACE Technical Standard) provide both language definition
information and conformance criteria expressed as OCL statements. The profile presented in this standard
follows the metamodel in section 7 of the UDDL Standard for all elements other than the
Conceptual/Logical/Platform CharacteristicPathNode, ParticipantPathNode, and PathNode elements.
Those metamodel elements are represented in the stereotypes FACE_ConceptualParticipant,
FACE_LogicalParticipant, and FACE_PlatformParticipant as strings in the stereotypes' "path" tagged
values. The path strings for these stereotypes use the notation described in Section 3.6.4.1.1.3 of the
Technical Standard for Future Airborne Capability Environment (FACE™), Edition 2.1. The two notations
(elements and string) are interchangeable using a translation algorithm. XMI exchange mechanisms

 FACE Profile v2.0 – beta 1 5

between models using the FACE Profile and the FACE XMI (face) file are required to translate between
the two notations.

• FACE Technical Standard, Edition 2.1

o Open Group FACE™ Consortium, The Open Group FACE™ (Future Airborne Capability Environment)
Technical Standard, Edition 2.1.1, 21 June 2017, accessed 19 May 2023,
<http://www.opengroup.org/library/c176>

o As mentioned in the UDDL Standard discussion, the expression of FACE Path data in this specification
refers to the path notation in the FACE 2.1 Technical Standard. The FACE Technical Standard, Edition 2.1
is referenced in this standard solely for the purpose of simplifying the expression of FACE Path elements.
The profile presented in this standard follows the metamodels in the above-listed UDDL Standard and
FACE Technical Standard for all elements other than the UDDL Conceptual/Logical/Platform
CharacteristicPathNode, ParticipantPathNode, and PathNode elements. Those metamodel elements are
represented in the stereotypes FACE_ConceptualParticipant, FACE_LogicalParticipant, and
FACE_PlatformParticipant as strings in the stereotypes' "path" tagged values. The path strings for these
stereotypes use the notation described in Section 3.6.4.1.1.3 of the Technical Standard for Future Airborne
Capability Environment (FACE™), Edition 2.1. The two notations (elements and string) are
interchangeable using a translation algorithm. XMI exchange mechanisms between models using the
FACE Profile and the FACE XMI (face) file are required to translate between the two notations.

3.2 Non-normative References
List of non-normative references.

• FACE 3rd Party Tools

o Tool listings and links found under URL: https://www.opengroup.org/face/third-party-tools. These tools
are previous proof-of-concept implementations of the FACE metamodel as a UML-based profile. They are
referenced to provide prospective implementers of the profile working examples of the profile.

o MagicDraw / Cameo (NoMagic) Model Tool Integration (MTI) for FACE™ 3.1 Data Modeling NAVAIR
public release 2022-554, accessed 19 May 2023,
<https://archive.isis.vanderbilt.edu/sites/default/files/face_products/MTI/FACE31_MagicDraw_MTI_v202
2_03_1_A.zip> This plug-in is an implementation of most of the UML portion of this standard and serves
as a proof of concept for the standard.

o FACE Edition 2.1 EA Data Model Profile and Plugins NAVAIR Public Release 2015-746, accessed 19
May 2023,
<https://archive.isis.vanderbilt.edu/sites/default/files/face_products/MTI/FACE31_MagicDraw_MTI_v202
2_03_1_A.zip>

o FACE Edition 2.1 Rhapsody Data Model Profile and Plugins NAVAIR Public Release 2015-746, accessed
19 May 2023,
<https://archive.isis.vanderbilt.edu/sites/default/files/face_products/downloads/FACE21RhapsodyPlugins.z
ip>

• FACE Consortium Conformance Publications & Tools

o The conformance publications are listed as assistance to implementers of this profile. The conformance
rules would be implemented by implementers that extend to Level AAA conformance, and the
Conformance Test Suite would be used to verify that a FACE file that the tool considers to be conformant
passes the FACE standard's conformance tests.

o These publications and tools are listed located at URL:
https://www.opengroup.org/face/docsandtools#collapse31, accessed 19 May 2023

o Link to FACE™ Conformance Verification Matrix, Edition 3.1 (Revision A)

https://www.opengroup.org/face/third-party-tools

FACE Profile, v2.0 – beta 1 6

o Link to the FACE Conformance Test Suites page that includes conformance test suites for FACE Edition
3.1

o Link to the FACE Reference Implementation Guide (RIG) for FACE Technical Standard Edition 3.0
Volume 3 (Data Architecture)

• FACE New Users Resources

o These resources available at URL: https://www.opengroup.org/face/softwaresuppliers, accessed 19 May
2023

o Software Suppliers Guide

o Basic Avionics Lightweight Source Archetype (BALSA), a working software example of applications
aligned to the FACE Technical Standard executing in a FACE Reference Architecture (includes data model
in .face format), currently only available to FACE consortium members pending global public release
authorizations, <https://www.opengroup.org/face/balsa>

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Table 4-1 Acronyms in the Specification

AADL Architecture Analysis & Design Language
ARINC Avionics Application Standard Software Interface
BALSA Basic Avionics Lightweight Source Archetype
CTS Conformance Test Suite
CVM Conformance Verification Matrix
DAL Design Assurance Level
DoDAF Department of Defense Architecture Framework
EA (Sparx) Enterprise Architect
EASA European Aviation Safety Agency
EMOF Essential Meta-Object Facility
FAA (U.S.) Federal Aviation Administration
FACE Future Airborne Capability Environment
GCM General Component Model
IOSS Input/Output Services Segment
MARTE Modeling and Analysis of Real-Time and Embedded systems
MODAF (British) Ministry of Defence Architecture Framework
MOF Meta-Object Facility
MTI Model Tool Integration
NATO North Atlantic Treaty Organization
OCL Object Constraint Language
OSS Operating System Segment
PCS Portable Components Segment
PSSS Platform-Specific Services Segment
RFP Request For Proposals
RIG Reference Implementation Guide
RTCA Radio Technical Commission for Aeronautics
STRIDE Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of

privilege
TSS Transport Services Segment
UDDL Open Universal Domain Description Language
UAF Unified Architecture Framework

 FACE Profile v2.0 – beta 1 7

UML Unified Modeling Language
UoC Unit of Conformance (a FACE software component)
UoP Unit of Portability (a cohesive unit that represents a FACE software component)
XMI XML Metadata Interchange
XML eXtensible Markup Language

5 Symbols
No new symbols have been required to create this specification.

6 Additional Information
6.1 Scope of this Specification
This specification covers the entire scope of the FACE Technical Standard metamodel, which includes the UDDL Standard
metamodel. This specification additionally includes references to the FACE Technical Standard and UDDL Standard OCL.

Rationale for complete FACE Metamodel:

• Inclusion of the data model portion of the FACE metamodel enables expression of the semantically rigorous
descriptions of the data being passed in FACE UoP messages

• The FACE Traceability Model is dependent on FACE Data Model elements

• There are existing 3rd-party UML-based profiles and import/export plugins that extend to the entire scope of the
FACE metamodel

• There are existing 3rd-party Import/Export plugins provide exchange between tool-authored data architecture and
“gold standard” FACE XMI format The FACE standard specifies that the file format for storage, exchange, and use
of FACE Data Architecture files conform to the metamodels described in the FACE and UDDL standards. This
“gold standard” format is an XMI file format that describes the data, Units of Conformance (UoPs - FACE software
components) , and optionally integration and traceability information required for deployment of FACE UoPs. The
“.face file XML data exchange” compliance point specified for conformance level AAA of this standard enables
ingestion of .face files into models that use this profile and production of .face files from models that use this profile.
As a result of implementing .face format import/export, FACE data architectures exchanged between different
organizations that conform to the FACE standard can be viewed, modified, and exported between models
implementing this profile and systems that implement the FACE standard.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification. As background for this specification, readers are
encouraged to first read the UDDL Standard and the FACE Technical Standard that are the basis for the elements contained
herein. These specifications include the Data Architecture specifications, Object Constraint Language (OCL) rules, and
EMOF metamodels that govern the FACE artifacts, and from which all elements of this specification have been derived.
After that, the UAF specification provides needed background for understanding the UAF concepts and acts as a reference
when considering the mapping of the FACE standard to the UAF and UML standards. The UAF, UDDL and FACE
standards provide the basic constructs used to define the FACE Profile.

FACE Profile, v2.0 – beta 1 8

6.2.1 Content Notes for this Specification
In the interest of avoiding potential inconsistencies between this specification and the FACE Technical Standard, this
specification adds no information about FACE elements that is not present in that standard. This specification refrains from
providing descriptions of FACE metamodel elements, associations, attributes, and enumeration elements that are not
provided in either the UDDL Standard or the FACE Technical Standard. As such, these unspecified descriptions for
metamodel attributes, relationships, and enumerated values within this specification will appear ‘blank’ where those
descriptions would normally appear.

In the interest of clarity and of avoiding any possible name collisions with other profiles, all stereotypes and enumerations
defined in this specification are prefixed with “FACE_”. Where appropriate, this prefix has also been applied to the
descriptions for stereotypes that correspond to elements in the UDDL and FACE metamodels. The content of those
descriptions otherwise remains unchanged from the corresponding descriptions in the UDDL and FACE metamodels.

This specification introduces some abstract elements not found in the UDDL and FACE metamodels. The additional abstract
elements are provided in support of XMI data interchange with the FACE XMI Schema and/or application of constraints.
They can be considered optional if not otherwise needed for conformant implementation of the profile.

This specification introduces some concrete elements not found in the FACE metamodel. The additional concrete elements
are separated from the FACE Architecture element package and exist to supplement the FACE metamodel with elements that
recognize the larger context of a UAF system-of-systems. The supplemental elements either represent FACE segments that
are not explicitly represented in the FACE metamodel or provide connection between FACE Components and other
components of a system-of-systems.

6.2.2 Representing Additional Properties and Constraints on Stereotypes
The FACE Profile follows the enhanced standard notation used in the UAF Standard to represent metaconstraints graphically.
The FACE Profile has extended the metaconstraint notation to express application of stereotyped Associations and
stereotyped Generalizations. The enhanced standard notation has been used both in this and in the UAF profile diagrams to
improve readability of the profile specifications and overcome limitations of being unable to visualize constraints
diagrammatically in UML.

The enhanced notation dependencies (metaconstraint, stereotyped relationship, stereotyped association, stereotyped
generalization) appear in the FACE Profile specification diagrams for visualization purposes only. The representation in the
standard varies by dependency stereotype:

• A metaconstraint is represented in the standard is as a UML constraint, specified in structured English. These
constraints are implementable in a tool, by OCL for example.

• A stereotyped relationship is represented in the standard by a correspondingly named stereotype with metatype
Dependency. These dependencies are implemented using the corresponding stereotype and the constraints
associated with them in the standard.

• A stereotyped association is represented in the standard by a correspondingly named stereotype with metatype
Association. These associations are implemented using the metatypes and constraints associated with them in this
standard.

• A stereotyped generalization is represented in the standard by a correspondingly named stereotype with metatype
Generalization. These generalizations are implemented using the metatypes and constraints associated with them in
this standard.

A simple UML profile defines the enhanced notation.

The following sub clauses detail the enhanced notation profile definition within the FACE Profile.

6.2.2.1 FACE Conformance/OCL Constraints

The FACE Conformance/OCL Constraints represented in this standard are representations of the OCL Constraints listed in
the UDDL Standard and FACE Technical Standard. These constraints are not represented by any graphical notation in

 FACE Profile v2.0 – beta 1 9

diagrams appearing in this standard but are included to provide additional information about the constraints needed for full
conformance to the standard. The UDDL and FACE Conformance/OCL Constraints descriptions have been taken from the
UDDL Standard and FACE Technical Standard, with minor modifications to indicate the intent of the constraint (e.g. “is”
changed to “must be”). For the full Object Constraint Language (OCL) expansions of the UDDL and FACE
Conformance/OCL Constraints, see the appropriate subsections of the UDDL Standard and FACE Technical Standard.

6.2.2.2 Metaconstraint Dependency

«metaconstraint» is a stereotype that extends the Dependency metaclass. It is used to specify constrained elements within the
profile and is not part of the profile itself.

6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotype

metaconstraint
Package: stereotyped dependencies

isAbstract: No

Extension: Dependency

Description

«metaconstraint» is a stereotype that extends the Dependency metaclass. It has been created for the purpose of expressing the
FACE Profile specification and is not part of the profile itself. It is applied to dependencies between stereotypes to visually
model constraints on the stereotypes' underlying UML properties. The umlRole Tag relates to a property of the meta-type for
the source stereotype, and is used in diagrams to provide a visual indication that there is a constraint on the property defined
in the source stereotype for the dependency. To fully understand the «metaconstraint», the reader must review the Constraints
applied to the stereotype that is its source.

Note – When stereotype extends Association or Dependency, the stereotype property umlRole has values " memberEnd[
[0].role" and/or “memberEnd[1].role." The square bracketed number after the memberEnd indicates whether the
metaconstraint applies to the originating end (memberEnd[0]) or the target end (memberEnd[1]) of the relationship. This
convention is consistent with the subscript syntax in the Java and other programming languages.

For example metaconstraint umlRole = “memberEnd[1].multiplicity” with constraint text “memberEnd[1].multiplicity shall
be 1” should be interpreted as the “the multiplicity at the target end of the stereotyped Association shall be constrained to be
exactly 1”.

Figure 6-1: metaconstraint Dependency (specification stereotype)

Attributes

umlRole : String []

UML Role (property) of the source of the Dependency that is to be constrained by a same-named
Constraint applied to the stereotype. If the target of the metaconstraint is a different type than the
source, the property identified by UML Role may be typed by the target type.

FACE Profile, v2.0 – beta 1 10

6.2.2.2.2 Example Usage of the Metaconstraint Dependency
An example of the «metaconstraint» dependency is a diagram for a stereotype extending the Association metaclass.

The diagram shows «Example_Association» with «metaconstraint» Dependencies that indicate constraints on the endpoint
types, and the multiplicity, aggregation, and name properties of memberEnd[1]. The stereotype definition for
«Example_Association» includes applied constraints named to match the metaconstraint umlRole tagged values. The plain-
English constraint definitions for those constraints are shown in the anchored text box in the diagram.

Figure 6-2 Use of «metaconstraint» dependency

6.2.2.3 Stereotyped Relationship Dependency

There are stereotypes in the profile specification that have Metaclass Dependency. While the constraints described for these
stereotypes express the allowed sources and targets of these dependencies, when showing a diagram representing another
stereotype in this profile it is also helpful to see how elements typed by that stereotype could be related to other elements
using these dependencies. The stereotyped relationship dependency is a mechanism to graphically represent the application
of stereotyped dependencies between elements of the FACE Profile and other elements.

6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotype

stereotyped relationship
Package: stereotyped dependencies

isAbstract: No

 FACE Profile v2.0 – beta 1 11

Extension: Dependency

Description

The «stereotyped relationship» stereotype has been created for the purpose of expressing the FACE Profile specification and
is not part of the profile itself. It is applied to dependencies between stereotypes to visually model UML relationships that
the profile explicitly dictates to be possible between model elements to which the stereotypes have been applied. The applied
stereotype tag names the FACE profile stereotype for the dependency that is being expressed. To fully understand the
relationship, the reader must examine the stereotyped relationship named in the tagged value.

Figure 6-3: stereotyped relationship

Attributes

stereotype : Stereotype []

The stereotype that applies to the Dependency depicted by the relationship. The "type"
of Dependency that is being expressed by the depicted relationship.

6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency
The example diagram shows two different representations for a dependency stereotyped by «stereotyped relationship». The
upper image shows how the «stereotyped relationship» would appear in the definition of «Stereotyped_Class_1» that has an
«Example_Dependency» on «Stereotyped_Class_2». This enables readers of this standard to see that an
«Example_Dependency» could be defined between the two types of shown elements.

The lower image shows how the «stereotyped relationship» would look in the diagram for the definition of
«Example_Dependency». In this case the information may be redundant but provides an explicit visual showing that the
«Example_Dependency» relationship is defined as a way to connect the two classes. The Constraints identified in the
«metaconstraint» Dependencies would further refine the «Example_Dependency» relationship between
«Stereotyped_Class_1» and «Stereotyped_Class_2».

FACE Profile, v2.0 – beta 1 12

Figure 6-4 Uses of «stereotyped relationship» dependency

6.2.2.4 Stereotyped Association Dependency

There are several stereotypes in the profile specification that have the Metaclass Association. There is no profiling
mechanism to visually express that the Association between a source and target is characterized by a specific (constrained)
Association stereotype.. As a result, the FACE Profile standard introduces a notation to identify Associations between FACE
Profile elements that are stereotyped by FACE Profile Association Stereotypes. This information is represented using
«stereotyped association» dependencies.

6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype

stereotyped association
Package: stereotyped dependencies

isAbstract: No

Extension: Dependency

Description

«stereotyped association» is a stereotype of Dependency. It has been created for the purpose of expressing the FACE Profile
specification and is not part of the profile itself. It is applied to dependencies between stereotypes to visually model
Associations that the profile explicitly dictates to be possible between model elements to which the stereotypes have been
applied. The applied stereotype tag names the FACE profile stereotype for the association that is being expressed. The
stereotype referenced by the applied stereotype tag further describes the nature of the Association. The stereotyped
association Dependency has nothing to do with creating aggregation between stereotypes (i.e. tagged values). To fully
understand the association, the reader must examine the stereotyped association named in the tagged value.

 FACE Profile v2.0 – beta 1 13

Figure 6-5: stereotyped association

Attributes

applied_stereotype : Stereotype []

The stereotype that applies to the Association depicted by the Dependency.
The "type" of Association that is being expressed by the Dependency.

6.2.2.4.2 Example Usage of the Stereotyped Association Dependency
The example diagram for «stereotyped association» shows two different representations for a dependency stereotyped by
«stereotyped association». The upper image shows how the «stereotyped association» would appear in the definition of
«Stereotyped_Class_1» that has an «Example_Association» with «Stereotyped_Class_2». This enables readers of this
standard to see that an «Example_Association» could be defined between the two types of shown elements. The lower image
shows how the «stereotyped association» would look in the diagram for the definition of «Example_Association». In this
case the information may be redundant, but provides an explicit visual showing that the «Example_Association» relationship
is one way to connect the two classes. The Constraints of «Example_Association» further characterize the defined
relationship between «Stereotyped_Class_1» and «Stereotyped_Class_2».

Figure 6-6 Use of «stereotyped association» dependency

6.2.2.5 Stereotyped Generalization Dependency Stereotype

The FACE Profile defines specific Generalization relationships in its data model. These generalizations are the only
generalizations between elements stereotyped by FACE profile stereotypes that are meaningful to the FACE framework. The
«stereotyped generalization» dependency in this specification is a means of graphical depiction for these generalization-
specialization relationships.

FACE Profile, v2.0 – beta 1 14

6.2.2.5.1 Definition of the Stereotyped Generalization Dependency

stereotyped generalization
Package: stereotyped dependencies

isAbstract: No

Extension: Dependency

Description

The stereotyped generalization stereotype has been created for the purpose of expressing the FACE Profile and is not part of
the profile itself. It is applied to dependencies between stereotypes to visually model specialized Generalizations that the
FACE Profile defines as applicable between model elements. The "stereotype" Tag indicates the FACE Profile stereotype
that is applicable to the Generalization. The stereotype referenced by the "stereotype" tag further describes the nature of the
Generalization. The stereotyped generalization Dependency has nothing to do with creating aggregation between stereotypes
(i.e. tagged values). To fully understand the generalization, the reader must examine the stereotyped generalization named in
the tagged value.

Figure 6-7: stereotyped generalization

Attributes

stereotype : Stereotype []

The name of the stereotype that applies to the Generalization depicted by the
Dependency. The "type" of Generalization that is being expressed by the
Dependency.

6.2.2.5.2 Example Usage of the Stereotyped Generalization Dependency
The example diagram shows two different representations for a generalization stereotyped by «stereotyped generalization».
The upper image shows how the «stereotyped generalization» would appear in the definition of «SemanticallySpecific» that
has a «Constrained_Generalization» with «SemanticallyGeneral». This enables readers of this standard to see that a
«Constrained_Generalization» could be defined between the two types of shown elements. The lower image shows how the
«stereotyped generalization» would look in the diagram for the definition of «Constrained_Generalizatio». In this case the
information may be redundant but provides an explicit visual showing that the «Constrained_Generalization» relationship is
one way to connect the two classes. The Constraints applied to «Constrained_Generalization» further define the
generalization relationship between «SemanticallySpecific» and «SemanticallyGeneral». The anchored note in the lower
diagram shows an example of the sort of constraints that might be applied to the generalization relationship.

 FACE Profile v2.0 – beta 1 15

Figure 6-8 Use of «stereotyped generalization» dependency

FACE Profile, v2.0 – beta 1 16

7 FACE Profile
Although FACE Profile implementations must use the UAF Profile in order to indicate implementation of UAF elements
through dependencies, the FACE Profile itself imports only the UML metamodel.

The FACE Profile is the top-level profile root. The package structure of the FACE Profile is based on the FACE package
structure in the FACE metamodel, as defined in the FACE Technical Standard and its referenced UDDL Standard.

7.1 FACE_Profile
The FACE_Profile package contains the FACE Profile as derived from existing FACE Consortium member UML Profile
contributions and mappings from FACE elements to UAF elements. The underlying UML profile represents a unification of
multiple too-specific UML profiles written to describe the FACE metamodel. After establishing the FACE UML stereotypes,
the UAF stereotypes that best matched the FACE metamodel were applied using stereotyped Dependency relationships. The
package organization of the FACE Profile mimics the FACE metamodel packages.

FACE_ArchitectureModel
Package: FACE_Profile

isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_ArchitectureModel is a container for FACE_DataModels, FACE_UoPModels, FACE_IntegrationModels, and
FACE_TraceabilityModels.

 FACE Profile v2.0 – beta 1 17

Figure 7-1: FACE_ArchitectureModel

Constraints

C01: FACE_ArchitectureModel.owner This element may only be contained in (owned by)
packages or architectures that are not stereotyped by a
FACE stereotype

FACE Conformance/OCL Constraints

C01: FACE_ArchitectureModel.hasUniqueName In the context of the entire FACE Architectural Model,
the name of each element must be unique using case-
insensitive tests.

FACE_Element
Package: FACE_Profile

FACE Profile, v2.0 – beta 1 18

isAbstract: Yes

Generalization: FACE_ModelElement

Description

A FACE_Element is the root type for defining all described elements in the FACE_ArchitectureModel. The description
attribute captures a description for the element.

Figure 7-2: abstract FACE_Element

Attributes

description : String [1]

FACE Conformance/OCL Constraints

C01: FACE_Element.isValidIdentifier An identifier is valid if it consists of alphanumeric
characters.

7.1.1 FACE_Profile::FACE Data Architecture

The FACE Data Architecture package of the FACE Profile contains elements that represent the FACE Data Architecture as
specified in the FACE metamodel. The profile packages within this package are organized to match the organization of the
FACE metamodel.

FACE_AbstractAssociation
Package: FACE Data Architecture

isAbstract: Yes

Extension: Association

Description

The FACE_AbstractAssociation stereotype exists to characterize the constraints that apply to all FACE Association
stereotypes. These constraints and characteristics hold true unless overridden in a subclassed stereotype. By default, all
FACE Stereotypes of metaclass Association are binary Associations (2 endpoints) with no aggregation from the "target"
endpoint (memberEnd[1].aggregation = none) and default to directional (navigable only from memberEnd[0] to

 FACE Profile v2.0 – beta 1 19

memberEnd[1]) . The default constraints can be overridden by constraints specified in specializations of this stereotype.
Directionality and other association memberEnd properties vary and are specified with the Association stereotypes to which
they apply.

This stereotype exists only for specification of constraints that apply to the specialized FACE Profile stereotypes. It is
optional in the implementation of this specification.

Figure 7-3: abstract FACE_AbstractAssociation

Constraints

C01: FACE_AbstractAssociation.memberEnd->size() memberEnd.size() shall be 2

C02:
FACE_AbstractAssociation.memberEnd[0].aggregation

memberEnd[0].aggregation shall be none

C03:
FACE_AbstractAssociation.memberEnd[0].isNavigable

memberEnd[0].isNavigable shall be false

C04:
FACE_AbstractAssociation.memberEnd[0].multiplicity

memberEnd[0].multiplicity shall be 1

C05:
FACE_AbstractAssociation.memberEnd[1].isNavigable

memberEnd[1].isNavigable shall be true

FACE Profile, v2.0 – beta 1 20

FACE_DataModel
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_DataModel is a container for FACE_ConceptualDataModels, FACE_LogicalDataModels, and
FACE_PlatformDataModels.

Figure 7-4: FACE_DataModel

 FACE Profile v2.0 – beta 1 21

Constraints

C01: FACE_DataModel.contains The contained elements must by stereotyped one of the
following:
«FACE_DataModel»
«FACE_ConceptualDataModel»
«FACE_LogicalDataModel»
«FACE_PlatformDataModel»

C02: FACE_DataModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_DataModel»

FACE Conformance/OCL Constraints

C01: FACE_DataModel.hasUniqueName Each FACE Data Model Element must have a unique
name as determined with case insensitivity.

FACE_EndPoint
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to associate the FACE Components (FACE_UnitOfPortability, FACE_AbstractUoP) with FACE_Connections. In
addition to aggregation and multiplicity specifications on memberEnd[1], this association differs from the default
FACE_AbstractAssociation in that it is bi-directionally navigable.

FACE Profile, v2.0 – beta 1 22

Figure 7-5: FACE_EndPoint

Constraints

C01:
FACE_EndPoint.memberEnd
[0].isNavigable

memberEnd[0].isNavigable shall be true

 FACE Profile v2.0 – beta 1 23

C02:
FACE_EndPoint.memberEnd
[0].type

Value for the memberEnd[0].type metaproperty must be stereotyped by one of the
following:
«FACE_UnitofPortability»
«FACE_AbstractUoP»
«FACE_UoPInstance»
A specialization of «FACE_TransportNode»
«FACE_UnitOfConformance»

C03:
FACE_EndPoint.memberEnd
[1].aggregation

memberEnd[1].aggregation shall be composite

C04:
FACE_EndPoint.memberEnd
[1].multiplicity

MemberEnd[1].multiplicity depends on the stereotypes of the values connected by
the association:

memberEnd[0].type memberEnd[1].type memberEn
d[1].multip
licity

«FACE_AbstractUoP» «FACE_AbstractConnection» 0..*

«FACE_UnitOfPortability» specialization of
«FACE_Connection»

1..*

«FACE_UnitOfPortability» «FACE_LifeCycleManageme
ntPort»

0..2

specialization of
«FACE_TransportNode»

«FACE_TSNodeInputPort» 0..*

specialization of
«FACE_TransportNode»

«FACE_TSNodeOutputPort» 0..1

«FACE_UoPInstance» «FACE_UoPInputEndPoint» 0..*

«FACE_UnitOfConformanc
e»

«FACE_UnitOfConformance
Endpoint»

0..*

FACE Profile, v2.0 – beta 1 24

C05:
FACE_EndPoint.memberEnd
[1].name

MemberEnd[1].name depends on the stereotypes of the values connected by the
association:

memberEnd[0].type memberEnd[1].type memberEnd
[1].name

«FACE_AbstractUoP» «FACE_AbstractConnection» connection

«FACE_UnitOfPortability» specialization of
«FACE_Connection»

connection

«FACE_UnitOfPortability» «FACE_LifeCycleManageme
ntPort»

lcmPort

specialization of
«FACE_TransportNode»

«FACE_TSNodeInputPort» inPort

specialization of
«FACE_TransportNode»

«FACE_TSNodeOutputPort» outPort

«FACE_UoPInstance» «FACE_UoPInputEndPoint» input

«FACE_UoPInstance» «FACE_UoPOutputEndPoint» output

«FACE_UnitOfConformanc
e»

«FACE_UnitOfConformance
Endpoint»

endPoint

C06:
FACE_EndPoint.memberEnd
[1].type

Based on the EndPoint.memberEnd[0].type's stereotype:
= «FACE_UnitOfPortability», the memberEnd[1].type metaproperty must be
stereotyped by one of the following:
A specialization of «FACE_Connection»
«FACE_LifeCycleManagementPort»
= «FACE_AbstractUoP», the memberEnd[1].type metaproperty must be
stereotyped by «FACE_AbstractConnection»
= «FACE_UoPInstance», the memberEnd[1].type metaproperty must be
stereotyped by one of the following:
«FACE_UoPInputEndPoint»
«FACE_UoPOutputEndPoint»
= A specialization of «FACE_TransportNode», the memberEnd[1].type
metaproperty must be stereotyped by one of the following:
«FACE_TSNodeInputPort»
«FACE_TSNodeOutputPort»
= «FACE_UnitOfConformance», the memberEnd[1].type metaproperty must be
stereotyped by «FACE_UnitOfConformanceEndpoint»

FACE_IntegrationModel
Package: FACE Data Architecture

 FACE Profile v2.0 – beta 1 25

isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_IntegrationModel is a container for FACE_IntegrationElements.

Figure 7-6: FACE_IntegrationModel

Constraints

C01: FACE_IntegrationModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_IntegrationModel»

FACE_MessageType
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

FACE Profile, v2.0 – beta 1 26

Description

Used to identify the FACE_UoPMessageType that specifies the data to be exchanged through a FACE_Endpoint.

Figure 7-7: FACE_MessageType

Constraints

C01: FACE_MessageType.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by one of the following:
Specialization of «FACE_PubSubConnection»
«FACE_LifeCycleManagementPort»
Specialization of «FACE_TSNodePort»

 FACE Profile v2.0 – beta 1 27

C02: FACE_MessageType.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_MessageType.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 1

C04: FACE_MessageType.memberEnd[1].name Based on the stereotype of the memberEnd[0].type
metaproperty:
= Specialization of «FACE_PubSubConnection»,
memberEnd[1].name is "messageType"
= «FACE_LifeCycleManagementPort»,
memberEnd[1].name is "lcmMessageType"
= Specialization of «FACE_TSNodePort»,
memberEnd[1].name is "view"

C05: FACE_MessageType.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_UoPMessageType».

FACE_ModelElement
Package: FACE Data Architecture

isAbstract: Yes

Extension: Element

Description

An abstract stereotype created specifically for the FACE Profile. Used to represent the unique identity of constructed UDDL
and FACE model elements. Ensures that all FACE elements are identified by a GUID that is stable across all representations
of the model, regardless of tool. Applied directly to FACE elements that are not specified to have a description in the UDDL
or FACE metamodel.

Figure 7-8: abstract FACE_ModelElement

Attributes

_faceUUID : String [1]

The FACE unique identifier for the element. FACE UUIDs are
stable across all imports and exports of the FACE model regardless
of tool, and are maintained as part of the .face file. FACE UUIDs
are generated as GUIDs for new (no previous FACE UUID)

FACE Profile, v2.0 – beta 1 28

FACEModelElements upon export of a new or updated FACE
architecture.

FACE_Realize
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to indicate a FACE element realization of another FACE element.

Figure 7-9: FACE_Realize

 FACE Profile v2.0 – beta 1 29

Figure 7-10: FACE_Realize

FACE Profile, v2.0 – beta 1 30

Figure 7-11: FACE_Realize

 FACE Profile v2.0 – beta 1 31

Constraints

C01: FACE_Realize.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by a one of the following stereotypes:
«FACE_Measurement»
«FACE_MeasurementAxis»
«FACE_LogicalEntity»
«FACE_LogicalAssociation»
«FACE_LogicalQuery»
«FACE_LogicalCompositeQuery»
Specializations of «FACE_PlatformDataType»
«FACE_PlatformAssociation»
«FACE_PlatformEntity»
«FACE_PlatformQuery»
«FACE_PlatformCompositeQuery»
«FACE_CompositeTemplate»
«FACE_UnitOfPortability»
Specializations of «FACE_Connection»
«FACE_UoPInstance»
Specializations of «FACE_UoPEndPoint»

C02: FACE_Realize.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

FACE Profile, v2.0 – beta 1 32

C03: FACE_Realize.memberEnd[1].multiplicity Based on the stereotype of the memberEnd[0].type
metaproperty:

= «FACE_CompositeTemplate»,
«FACE_PlatformQuery»,
«FACE_PlatformCompositeQuery»,
«FACE_UnitOfPortability», or specialization of
«FACE_Connection», memberEnd[1].multiplicity is
0..1
= specialization of «FACE_PlatformDataType»,
«FACE_LogicalAssociation»,
«FACE_LogicalCompositeQuery»,
«FACE_LogicalComposition»,
«FACE_LogicalEntity», «FACE_LogicalQuery»,
«FACE_Measurement», «FACE_MeasurementAxis»,
«FACE_PlatformAssociation»,
«FACE_PlatformEntity», specialization of
«FACE_UoPEndPoint», or «FACE_UoPInstance»,
memberEnd[1].multiplicity is 1

C04: FACE_Realize.memberEnd[1].name memberEnd[1].name shall be "realize"

 FACE Profile v2.0 – beta 1 33

C05: FACE_Realize.memberEnd[1].type Based on the Realize.memberEnd[0].type value's
stereotype:
= «FACE_Measurement», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Observable»
= «FACE_MeasurementAxis», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Observable»
= «FACE_LogicalEntity», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_ConceptualEntity»
= «FACE_LogicalAssociation», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_ConceptualAssociation»
= «FACE_LogicalQuery», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_ConceptualQuery»
= «FACE_LogicalCompositeQuery», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_ConceptualCompositeQuery»
= A specialization of «FACE_PlatformDataType», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «FACE_AbstractMeasurement»
= «FACE_PlatformAssociation», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalAssociation»
= «FACE_PlatformEntity», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_LogicalEntity»
= «FACE_PlatformQuery», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_LogicalQuery»
= «FACE_PlatformCompositeQuery», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalCompositeQuery»
= «FACE_CompositeTemplate», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalCompositeQuery»
= «FACE_UnitofPortability», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_AbstractUoP»
= A specialization of «FACE_Connection», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_AbstractConnection»
= «FACE_UoPInstance», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_UnitOfPortability»

FACE Profile, v2.0 – beta 1 34

= A specialization of «FACE_UoPEndPoint», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «FACE_Connection»

FACE_TraceabilityModel
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_TraceabilityModel is a container for FACE_TraceabilityElements.

Figure 7-12: FACE_TraceabilityModel

Constraints

C01: FACE_TraceabilityModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_TraceabilityModel»

 FACE Profile v2.0 – beta 1 35

FACE_UoPModel
Package: FACE Data Architecture

isAbstract: No

Generalization: FACE_Element

Extension: Package

Description

A FACE_UoPModel is a container for FACE_UoPElements.

Figure 7-13: FACE_UoPModel

Constraints

C01: FACE_UoPModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_UoPModel»

7.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model

The FACE Data Model package of the FACE Profile contains elements that represent the FACE Data Model package as
specified in the FACE metamodel. The FACE metamodel references the UDDL specification for its content. The
subpackages in this package are organized to match the FACE and UDDL metamodel organization.

FACE Profile, v2.0 – beta 1 36

FACE_ConceptualDataModel
Package: FACE Data Model

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Package

Description

A FACE_ConceptualDataModel is a container for FACE_ConceptualElements.

Figure 7-14: FACE_ConceptualDataModel

Constraints

C01: FACE_ConceptualDataModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_DataModel»
«FACE_ConceptualDataModel»

FACE_DataModelElement
Package: FACE Data Model

isAbstract: Yes

Generalization: FACE_ModelElement

 FACE Profile v2.0 – beta 1 37

Description

A FACE_DatamodelElement is the root type for defining the elements of the Data Model Language. The “name” attribute in
the UML metatype captures the name of the Data Model Element in the model. The “description” attribute captures a
description for the Data Model Element.

Figure 7-15: abstract FACE_DataModelElement

Attributes

description : String [1]

FACE Conformance/OCL Constraints

C01: FACE_DataModelElement.isValidIdentifier An identifier is valid if it consists of alphanumeric
characters.

FACE Profile, v2.0 – beta 1 38

C02: FACE_DataModelElement.nonEmptyDescription The following data model elements must have a non-
empty description:
- Observable
- Unit
- Landmark
- ReferencePoint
- MeasurementSystem
- MeasurementSystemAxis
- CoordinateSystem
- CoordinateSystemAxis
- MeasurementSystemConversion
- LogicalValueTypeUnit.value_type == Boolean
- LogicalValueTypeUnit.value_type == Character
- LogicalValueTypeUnit.value_type == Numeric
- LogicalValueTypeUnit.value_type == Integer
- LogicalValueTypeUnit.value_type == Natural
- LogicalValueTypeUnit.value_type ==
NonNegativeReal
- LogicalValueTypeUnit.value_type == Real
- LogicalValueTypeUnit.value_type == String

FACE_LogicalDataModel
Package: FACE Data Model

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Package

Description

A FACE_LogicalDataModel is a container for FACE_LogicalElements (Logical Data Model elements).

 FACE Profile v2.0 – beta 1 39

Figure 7-16: FACE_LogicalDataModel

Constraints

C01: FACE_LogicalDataModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_DataModel»
«FACE_LogicalDataModel»

FACE_PlatformDataModel
Package: FACE Data Model

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Package

Description

A FACE_PlatformDataModel is a container for FACE_PlatformElements (platform Data Model Elements).

FACE Profile, v2.0 – beta 1 40

Figure 7-17: FACE_PlatformDataModel

Constraints

C01: FACE_PlatformDataModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_DataModel»
«FACE_PlatformDataModel»

FACE_SpecializationOwner
Package: FACE Data Model

isAbstract: Yes

Extension: Class

Description

Abstract type to group all FACE stereotypes that can own a «Specialize» generalization. Enables application of constraints
uniformly within specialized elements.

This stereotype exists only for specification of constraints that apply to the specialized FACE Profile stereotypes. It is
optional in the implementation of this specification.

 FACE Profile v2.0 – beta 1 41

Figure 7-18: abstract FACE_SpecializationOwner

Constraints

C01: FACE_SpecializationOwner.generalization The generalization collection may contain no more than
one «FACE_Specialize» generalization.

FACE_Specialize
Package: FACE Data Model

isAbstract: No

Extension: Generalization

Description

Used to indicate a FACE element Specialization of another FACE element.

FACE Profile, v2.0 – beta 1 42

Figure 7-19: FACE_Specialize

Constraints

C01: FACE_Specialize.source The value for the source metaproperty must be
stereotyped by a specialization of
«FACE_SpecializationOwner».

 FACE Profile v2.0 – beta 1 43

C02: FACE_Specialize.target Based on the Specialize.source value's stereotype:
= «FACE_ConceptualEntity», the target metaproperty
must be stereotyped by «FACE_ConceptualEntity»
= «FACE_ConceptualAssociation», the target
metaproperty must be stereotyped by one of the
following:
«FACE_ConceptualEntity»
«FACE_ConceptualAssociation»
= «FACE_LogicalEntity», the target metaproperty must
be stereotyped by «FACE_LogicalEntity»
= «FACE_LogicalAssociation», the target metaproperty
must be stereotyped by one of the following:
«FACE_LogicalEntity»
«FACE_LogicalAssociation»
= «FACE_PlatformEntity», the target metaproperty
must be stereotyped by «FACE_PlatformEntity»
= «FACE_PlatformAssociation», the target
metaproperty must be stereotyped by one of the
following:
«FACE_PlatformEntity»
«FACE_PlatformAssociation»

7.1.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model::ConceptualDataModel
The ConceptualDataModel package of the FACE Profile contains elements that represent the Conceptual Data Model
subpackage as specified in the UDDL metamodel.

FACE_BasisElement
Package: ConceptualDataModel

isAbstract: Yes

Generalization: FACE_ConceptualComposableElement

Description

A conceptual FACE_BasisElement is a conceptual data type that is independent of any specific data representation.

FACE Profile, v2.0 – beta 1 44

Figure 7-20: abstract FACE_BasisElement

FACE_BasisEntity
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualElement

Extension: Class

Description

A FACE_BasisEntity represents a unique domain concept and establishes a basis from which FACE_ConceptualEntities can
be specialized.

Figure 7-21: FACE_BasisEntity

FACE_ConceptualAssociation
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualEntity

 FACE Profile v2.0 – beta 1 45

Description

A FACE_ConceptualAssociation represents a relationship between two or more FACE_ConceptualEntities. In addition, there
may be one or more conceptual Composable Elements that characterize the relationship. FACE_ConceptualAssociations are
FACE_ConceptualEntities that may also participate in other FACE_ConceptualAssociations.

Figure 7-22: FACE_ConceptualAssociation

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualAssociation.hasAtLeastTwoParticipa
nts

A FACE_ConceptualAssociation must have at least two
Participants.

FACE_ConceptualCharacteristic
Package: ConceptualDataModel

isAbstract: Yes

Generalization: FACE_ModelElement

Description

A FACE_ConceptualCharacteristic is a defining feature of a FACE_ConceptualEntity. The "name" attribute corresponds to
the UDDL Standard's "rolename" attribute and defines the name of the FACE_ConceptualCharacteristic within the scope of
the FACE_ConceptualEntity. The "lowerBound" and "upperBound" attributes define the multiplicity of the composed
Characteristic. An "upperBound" multiplicity of -1 represents an unbounded sequence.

FACE Profile, v2.0 – beta 1 46

Figure 7-23: abstract FACE_ConceptualCharacteristic

Attributes

description : String [1]

specializes : FACE_ConceptualCharacteristic [0..1]

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualCharacteristic.lowerBoundValid

A FACE_ConceptualCharacteristic's lowerBound must
be greater than or equal to zero.

C02:
FACE_ConceptualCharacteristic.lowerBound_LTE_Up
perBound

A FACE_ConceptualCharacteristic's lowerBound must
be less than or equal to its upperBound, unless its
upperBound is -1.

C03:
FACE_ConceptualCharacteristic.rolenameIsValidIdenti
fier

The rolename of a FACE_ConceptualCharacteristic
must be a valid identifier.

C04:
FACE_ConceptualCharacteristic.specializeCharacteristi
cOnce

A FACE_ConceptualCharacteristic must be specialized
no more than once in a generalization hierarchy.

C05:
FACE_ConceptualCharacteristic.upperBoundValid

A FACE_ConceptualCharacteristic's upperBound must
be equal to -1 or greater than 1.

FACE_ConceptualComposableElement
Package: ConceptualDataModel

isAbstract: Yes

Generalization: FACE_ConceptualElement

 FACE Profile v2.0 – beta 1 47

Description

A FACE_ConceptualComposableElement is a FACE_ConceptualElement that is allowed to participate in a Composition
relationship. In other words, these are the conceptual Elements that may be a characteristic of a FACE_ConceptualEntity.

Figure 7-24: abstract FACE_ConceptualComposableElement

FACE_ConceptualCompositeQuery
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualView

Extension: Class

Description

A FACE_ConceptualCompositeQuery is a collection of two or more FACE_ConceptualQueries. The "isUnion" attribute
specifies whether the composed FACE_ConceptualQueries are intended to be represented as cases in an union or as members
of a struct.

FACE Profile, v2.0 – beta 1 48

Figure 7-25: FACE_ConceptualCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

C01:
FACE_ConceptualCompositeQuery.ownedAttribute

The values for the ownedAttribute metaproperty must
meet the following criteria:
- must be ordered list
- must be stereotyped
«FACE_ConceptualCompositeQuery» or its
specializations
- must contain 2 or more elements

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualCompositeQuery.compositionsHave
UniqueRolenames

A FACE_ConceptualQueryComposition's rolename
must be unique within a
FACE_ConceptualCompositeQuery.

 FACE Profile v2.0 – beta 1 49

C02:
FACE_ConceptualCompositeQuery.noCyclesInConstru
ction

A FACE_ConceptualCompositeQuery may not
compose itself.

C03:
FACE_ConceptualCompositeQuery.viewComposedOn
ce

A FACE_ConceptualCompositeQuery may not
compose the same FACE_ConceptualView more than
once.

FACE_ConceptualComposition
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualCharacteristic

Extension: Property

Description

A FACE_ConceptualComposition is the mechanism that allows FACE_ConceptualEntity to be constructed from other
FACE_ConceptualComposableElements. The "type" of a FACE_ConceptualComposition is the
FACE_ConceptualComposableElement being used to construct the FACE_ConceptualEntity.

Figure 7-26: FACE_ConceptualComposition

Constraints

C01: FACE_ConceptualComposition.class Value for the class metaproperty must be stereotyped
«FACE_ConceptualEntity» or its specializations.

FACE Profile, v2.0 – beta 1 50

C02: FACE_ConceptualComposition.lower The value for the lower (lower bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1.

C03: FACE_ConceptualComposition.type Value for the type metaproperty must be stereotyped
«FACE_ConceptualComposableElement» or its
specializations.

C04: FACE_ConceptualComposition.upper The value for the upper (upper bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualComposition.multiplicityConsistent
WithSpecialization

If a FACE_ConceptualComposition specializes, its
multiplicity must be at least as restrictive as the
FACE_ConceptualComposition it specializes.

C02:
FACE_ConceptualComposition.specializationDistinct

If a FACE_ConceptualComposition specializes, its type
or multiplicity must be different from the
FACE_ConceptualComposition it specializes.

C03:
FACE_ConceptualComposition.typeConsistentWithSpe
cialization

If a FACE_ConceptualComposition specializes, it
specializes a FACE_ConceptualComposition. If
FACE_ConceptualComposition "A" specializes
FACE_ConceptualComposition "B", then A's type must
be B's type or a specialization of B's type.

FACE_ConceptualElement
Package: ConceptualDataModel

isAbstract: Yes

Generalization: FACE_DataModelElement

Description

A FACE_ConceptualElement is the root type for defining the conceptual elements of the Data Model Language.

Figure 7-27: abstract FACE_ConceptualElement

 FACE Profile v2.0 – beta 1 51

Constraints

C01: FACE_ConceptualElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_ConceptualDataModel»

FACE Conformance/OCL Constraints

C01: FACE_ConceptualElement.hasUniqueName Each FACE ConceptualElement must have a unique
name, as determined using case insensitivity.

FACE_ConceptualEntity
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualComposableElement, FACE_SpecializationOwner

Extension: Class

Description

A FACE_ConceptualEntity represents a domain concept in terms of its FACE_Observables and other composed
FACE_ConceptualEntities. Since a FACE_ConceptualEntity is built only from FACE_ConceptualComposableElements, it is
independent of any specific data representation, units, or reference frame.

FACE Profile, v2.0 – beta 1 52

Figure 7-28: FACE_ConceptualEntity

Constraints

C01: FACE_ConceptualEntity.ownedAttribute The value for the ownedAttribute metaproperty must be
stereotyped «FACE_ConceptualComposition» or its
specializations

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualEntity.characteristicsHaveUniqueRol
enames

A Characteristic's rolename must be unique within a
FACE_ConceptualEntity.

 FACE Profile v2.0 – beta 1 53

C02: FACE_ConceptualEntity.entityIsUnique A FACE_ConceptualEntity must be unique in a
Conceptual Data Model. (An Entity must be unique if
the set of its Characteristics is different from other
FACE_ConceptualEntities' in terms of type,
lowerBound, upperBound, and path (for Participants)).
NOTE: If a FACE_ConceptualEntity is part of a
specialization cycle, its uniqueness must be undefined.
So, if a FACE_ConceptualEntity must be part of a
specialization cycle, it will not fail entityIsUnique, but
will fail noCyclesInSpecialization.

C03:
FACE_ConceptualEntity.hasAtLeastOneLocalCharacte
ristic

A FACE_ConceptualEntity must have at least one
Characteristic defined locally (not through
generalization).

C04: FACE_ConceptualEntity.hasUniqueID A FACE_ConceptualEntity must contain a Composition
whose type is an Observable named 'Identifier'.

C05:
FACE_ConceptualEntity.noCyclesInSpecialization

A FACE_ConceptualEntity must not be a specialization
of itself, directly or indirectly.

C06:
FACE_ConceptualEntity.observableComposedOnce

A FACE_ConceptualEntity may not compose the same
FACE_Observable more than once.

C07:
FACE_ConceptualEntity.specializingCharacteristicsCo
nsistent

If FACE_ConceptualEntity A' specializes
FACE_ConceptualEntity A, all characteristics in A'
specialize nothing, specialize characteristics from A, or
specialize characteristics from a
FACE_ConceptualEntity that must be a generalization
of A. (If A' does not specialize, none of its
characteristics specialize.)

FACE_ConceptualParticipant
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualCharacteristic

Extension: Association

Description

A FACE_ConceptualParticipant is the mechanism that allows a FACE_ConceptualAssociation to be constructed between
two or more FACE_ConceptualEntities. The "type" (target of the directional Association) of a conceptual Participant is the
conceptual Entity being used to construct the conceptual Association. Target multiplicity values represent the
"sourceLowerBound" and "sourceUpperBound" attributes that define the multiplicity of the conceptual Association relative
to the Participant in the UDDL metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent
of a "sourceUpperBound" multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The
"path" attribute of the Participant describes the chain of entity characteristics to traverse to reach the subject of the association
beginning with the entity referenced by the "type" attribute.

FACE Profile, v2.0 – beta 1 54

FACE_ConceptualParticipant Associations are directional, from a FACE_ConceptualAssociation to a
FACE_ConceptualEntity.

Figure 7-29: FACE_ConceptualParticipant

Attributes

path : String [1] The "path" property indicates the portion of the target
«FACE_ConceptualEntity» that is participating in the

 FACE Profile v2.0 – beta 1 55

 «FACE_ConceptualAssociation» that is the source for the
«FACE_ConceptualParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:
A conceptual PathNode is a single element in a chain that
collectively forms a path specification.
A conceptual ParticipantPathNode is a conceptual PathNode that
selects a Participant that references an Entity. This provides a
mechanism for reverse navigation from an Entity that participates in
an Association back to the Association.
A conceptual CharacteristicPathNode is a conceptual PathNode that
selects a conceptual Characteristic which is directly contained in a
conceptual Entity or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Conceptual CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

_importedPathUUIDs : String [0..*]

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

Constraints

C01: FACE_ConceptualParticipant.memberEnd->size() memberEnd.size() shall be 2

C02:
FACE_ConceptualParticipant.memberEnd[0].isNaviga
ble

memberEnd[0].isNavigable shall be false

FACE Profile, v2.0 – beta 1 56

C03:
FACE_ConceptualParticipant.memberEnd[0].multiplici
ty

memberEnd[0].multiplicity shall be 1

C04: FACE_ConceptualParticipant.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_ConceptualAssociation»

C05:
FACE_ConceptualParticipant.memberEnd[1].aggregati
on

memberEnd[1].aggregation shall be none

C06:
FACE_ConceptualParticipant.memberEnd[1].isNaviga
ble

memberEnd[1].isNavigable shall be true

C07:
FACE_ConceptualParticipant.memberEnd[1].name

The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

C08: FACE_ConceptualParticipant.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_ConceptualEntity»

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualParticipant.multiplicityConsistentWi
thSpecialization

If a FACE_ConceptualParticipant specializes, its
multiplicity must be at least as restrictive as the
FACE_ConceptualParticipant it specializes.

C02:
FACE_ConceptualParticipant.pathNodeResolvable

If a FACE_ConceptualParticipant has a path sequence,
the first PathNode in the sequence must be resolvable
from the type of the FACE_ConceptualParticipant.

C03: FACE_ConceptualParticipant.rolenameDefined A FACE_ConceptualParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE_ConceptualParticipant.

C04:
FACE_ConceptualParticipant.specializationDistinct

If a FACE_ConceptualParticipant specializes, its type,
PathNode sequence, or multiplicity must be different
from the FACE_ConceptualParticipant it specializes.

C05:
FACE_ConceptualParticipant.typeConsistentWithSpeci
alization

If a FACE_ConceptualParticipant specializes, it
specializes a FACE_ConceptualParticipant. If
FACE_ConceptualParticipant "A" specializes
FACE_ConceptualParticipant "B", then A's type must
be the same or a specialization of B's type, and A's
PathNode sequence is "equal to" or "specializes" B's
PathNode sequence (see "pathIsEqual" and
"pathIsSpecializationOf" helper methods).

FACE_ConceptualQuery
Package: ConceptualDataModel

 FACE Profile v2.0 – beta 1 57

isAbstract: No

Generalization: FACE_ConceptualView

Extension: Class

Description

A FACE_ConceptualQuery is a specification that defines the content of FACE_ConceptualView as a set of
FACE_ConceptualCharacteristics projected from a selected set of related FACE_ConceptualEntities. The "specification"
attribute captures the specification of a Query as defined by the Query grammar in Section 6.1.

Figure 7-30: FACE_ConceptualQuery

Attributes

specification : String [1]

FACE_ConceptualQueryComposition
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

A FACE_ConceptualQueryComposition is the mechanism that allows a FACE_ConceptualCompositeQuery to be
constructed from FACE_ConceptualQueries and other FACE_ConceptualCompositeQueries. The metatype "name" attribute
represents the UDDL "rolename" attribute that defines the name of the composed conceptual View within the scope of the
composing conceptual CompositeQuery. The "type" of a conceptual QueryComposition is the conceptual View being used to
construct the conceptual CompositeQuery.

FACE Profile, v2.0 – beta 1 58

Figure 7-31: FACE_ConceptualQueryComposition

Constraints

C01: FACE_ConceptualQueryComposition.class Value for the class metaproperty must be stereotyped
«FACE_ConceptualCompositeQuery».

C02: FACE_ConceptualQueryComposition.type Value for the type metaproperty must be stereotyped
«FACE_ConceptualView» or its specializations.

FACE Conformance/OCL Constraints

C01:
FACE_ConceptualQueryComposition.rolenameIsValidI
dentifier

The rolename of a
FACE_ConceptualQueryComposition must be a valid
identifier.

FACE_ConceptualView
Package: ConceptualDataModel

isAbstract: Yes

Generalization: FACE_ConceptualElement

Extension: Class

Description

A FACE_ConceptualView is a FACE_ConceptualQuery or a FACE_ConceptualCompositeQuery.

 FACE Profile v2.0 – beta 1 59

Figure 7-32: abstract FACE_ConceptualView

FACE_Domain
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_ConceptualElement

Extension: Class

Description

A FACE_Domain represents a space defined by a set of data model BasisEntities relating to well understood concepts by
practitioners within the domain.

FACE Profile, v2.0 – beta 1 60

Figure 7-33: FACE_Domain

Attributes

basisEntity : FACE_BasisEntity [1..*]

FACE_EntityBasis
Package: ConceptualDataModel

isAbstract: No

Extension: Generalization

Description

Used to indicate a specialization between FACE_ConceptualEntity types and FACE_BasisEntities.

Figure 7-34: FACE_EntityBasis

Constraints

C01: FACE_EntityBasis.source The value for the source metaproperty must be
stereotyped by «FACE_ConceptualEntity» or a
specialization of «FACE_ConceptualEntity».

 FACE Profile v2.0 – beta 1 61

C02: FACE_EntityBasis.target The value for the target metaproperty must be
stereotyped by «FACE_BasisEntity».

FACE_Observable
Package: ConceptualDataModel

isAbstract: No

Generalization: FACE_BasisElement

Extension: Class

Description

A FACE_Observable is something that can be observed but not further characterized, and is typically quantified through
measurements of the physical world. An observable is independent of any specific data representation, units, or reference
frame. For example, "length" may be thought of as an observable in that it can be measured, but at the conceptual level the
nature of the measurement is not specified.

Figure 7-35: FACE_Observable

7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel
The LogicalDataModel package of the FACE Profile contains elements that represent the Logical Data Model subpackage as
specified in the UDDL metamodel.

FACE_AbstractMeasurement
Package: LogicalDataModel

isAbstract: Yes

Extension: Element

FACE Profile, v2.0 – beta 1 62

Description

A FACE_AbstractMeasurement is a FACE_Measurement, FACE_MeasurementAxis, or a FACE_ValueTypeUnit.

Figure 7-36: abstract FACE_AbstractMeasurement

FACE_AbstractMeasurementSystem
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_AbstractMeasurementSystem is an abstract parent for FACE_StandardMeasurementSystems and
FACE_MeasurementSystems. It is used for structural simplicity in the metamodel.

Figure 7-37: abstract FACE_AbstractMeasurementSystem

FACE_AffineConversion
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_Conversion

Description

A FACE_AffineConversion is a relationship between two FACE_ConvertibleElements in the form mx+b.

 FACE Profile v2.0 – beta 1 63

Figure 7-38: FACE_AffineConversion

Attributes

conversionFactor : Real [1]

offset : Real [1]

FACE_AppliedConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify constraints that apply to FACE_MeasurementSystem elements.

FACE Profile, v2.0 – beta 1 64

Figure 7-39: FACE_AppliedConstraint

Constraints

C01: FACE_AppliedConstraint.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by a one of the following
stereotypes:
«FACE_ValueTypeUnit»
«FACE_Measurement»
«FACE_MeasurementAxis»
«FACE_MeasurementSystem»
«FACE_MeasurementSystemAxis»

C02:
FACE_AppliedConstraint.memberEnd[1].aggregation

memberEnd[1].aggregation shall be composite

C03:
FACE_AppliedConstraint.memberEnd[1].multiplicity

memberEnd[1].multiplicity shall be 0..*

C04: FACE_AppliedConstraint.memberEnd[1].name memberEnd[1].name shall be "constraint"

 FACE Profile v2.0 – beta 1 65

C05: FACE_AppliedConstraint.memberEnd[1].type Based on the
FACE_AppliedConstraint.memberEnd[0].type value's
stereotype:
= «FACE_ValueTypeUnit», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_Constraint»
= «FACE_Measurement», «FACE_MeasurementAxis»,
«FACE_MeasurementSystem», or
«FACE_MeasurementSystemAxis», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_MeasurementConstraint»

FACE_AppliedValueTypeUnit
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to associate FACE_Measurement and FACE_MeasurementSystem Axes with the logical descriptions of the data types
that characterize them.

FACE Profile, v2.0 – beta 1 66

Figure 7-40: FACE_AppliedValueTypeUnit

Constraints

C01:
FACE_AppliedValueTypeUnit.memberEnd[0].type

The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:
«FACE_MeasurementAxis»
«FACE_MeasurementSystemAxis»

C02:
FACE_AppliedValueTypeUnit.memberEnd[1].aggregat
ion

memberEnd[1].aggregation shall be none

C03:
FACE_AppliedValueTypeUnit.memberEnd[1].multipli
city

Based on the stereotype of the memberEnd[0].type
metaproperty:
= Specialization of «FACE_MeasurementAxis»,
memberEnd[1].multiplicity is 0..*
= Specialization of «FACE_MeasurementSystemAxis»,
memberEnd[1].multiplicity is 1..*

 FACE Profile v2.0 – beta 1 67

C04:
FACE_AppliedValueTypeUnit.memberEnd[1].name

Based on the stereotype of the memberEnd[0].type
metaproperty:
= Specialization of «FACE_MeasurementAxis»,
memberEnd[1].name is "valueTypeUnit"
= Specialization of «FACE_MeasurementSystemAxis»,
memberEnd[1].name is "defaultValueTypeUnit"

C05:
FACE_AppliedValueTypeUnit.memberEnd[1].type

The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_ValueTypeUnit».

FACE_Axis
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to associate FACE_Measurements, FACE_MeasurementSystems, and FACE_CoordinateSystems to the axes that
characterize them.

FACE Profile, v2.0 – beta 1 68

Figure 7-41: FACE_Axis

 FACE Profile v2.0 – beta 1 69

Constraints

C01: FACE_Axis.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:
«FACE_CoordinateSystem»
«FACE_Measurement»
«FACE_MeasurementSystem»

C02: FACE_Axis.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_Axis.memberEnd[1].multiplicity Based on the stereotype of the memberEnd[0].type
metaproperty:
= «FACE_CoordinateSystem»,
memberEnd[1].multiplicity is 1..*
= «FACE_Measurement», memberEnd[1].multiplicity
is 0..*
= «FACE_MeasurementSystem»,
memberEnd[1].multiplicity is 0..1

C04: FACE_Axis.memberEnd[1].name Based on the stereotype of the memberEnd[1].type
metaproperty:
= «FACE_CoordinateSystemAxis»,
memberEnd[1].name is "coordinateSystemAxis"
= «FACE_MeasurementAxis», memberEnd[1].name is
"measurementAxis"
= «FACE_MeasurementSystemAxis»,
memberEnd[1].name is "measurementSystemAxis"

C05: FACE_Axis.memberEnd[1].type Based on the FACE_Axis.source value's stereotype:
= «FACE_CoordinateSystem», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_CoordinateSystemAxis»
= «FACE_Measurement», the memberEnd[1].type
metaproperty must be stereotyped by
«FACE_MeasurementAxis»
= «FACE_MeasurementSystem», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_MeasurementSystemAxis»

FACE Profile, v2.0 – beta 1 70

FACE_Constraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Class

Description

A FACE_Constraint limits the set of possible values for the FACE_ValueType of a FACE_MeasurementSystem or
FACE_Measurement.

Figure 7-42: FACE_Constraint

Constraints

C01: FACE_Constraint.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_ValueTypeUnit»

FACE_Conversion
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_Conversion is a relationship between two FACE_ConvertibleElements that describes how to transform measured
quantities between two FACE_Units.

 FACE Profile v2.0 – beta 1 71

Figure 7-43: FACE_Conversion

Attributes

destination : FACE_ConvertibleElement [1]

source : FACE_ConvertibleElement [1]

FACE_ConvertibleElement
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_LogicalElement

Description

A FACE_ConvertibleElement is a FACE_Unit.

Figure 7-44: abstract FACE_ConvertibleElement

FACE_CoordinateSystem
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

FACE Profile, v2.0 – beta 1 72

Extension: Class

Description

A FACE_CoordinateSystem is a system which uses one or more coordinates to uniquely determine the position of a point in
an N-dimensional space. The coordinate system is comprised of multiple FACE_CoordinateSystemAxis which completely
span the space. Coordinates are quantified relative to the FACE_CoordinateSystemAxis. It is not required that the dimensions
be ordered or continuous.

Figure 7-45: FACE_CoordinateSystem

Attributes

angleEquation : String [0..1]

axisRelationshipDescription : String [0..1]

distanceEquation : String [0..1]

FACE_CoordinateSystemAxis
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_CoordinateSystemAxis represents a dimension within a FACE_CoordinateSystem.

 FACE Profile v2.0 – beta 1 73

Figure 7-46: FACE_CoordinateSystemAxis

FACE_DefinedReferencePoint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify the reference point that characterizes a Measurement System.

FACE Profile, v2.0 – beta 1 74

Figure 7-47: FACE_DefinedReferencePoint

Constraints

C01:
FACE_DefinedReferencePoint.memberEnd[0].type

The value for the memberEnd[0].type metaproperty
must be stereotyped by «FACE_MeasurementSystem».

C02:
FACE_DefinedReferencePoint.memberEnd[1].aggregat
ion

memberEnd[1].aggregation shall be composite

C03:
FACE_DefinedReferencePoint.memberEnd[1].multipli
city

memberEnd[1].multiplicity shall be 0..*

C04:
FACE_DefinedReferencePoint.memberEnd[1].name

memberEnd[1].name shall be "referencePoint"

C05:
FACE_DefinedReferencePoint.memberEnd[1].type

The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_ReferencePoint».

 FACE Profile v2.0 – beta 1 75

FACE_EnumerationConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_Constraint

Description

A FACE_EnumerationConstraint identifies a subset of enumerated values (EnumerationLabel) considered valid for a
FACE_Enumerated value type of a FACE_MeasurementAxis.

Figure 7-48: FACE_EnumerationConstraint

Attributes

allowedValue : FACE_EnumerationLabel [1..*]

FACE_EnumerationLabel
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Property

Description

A FACE_EnumerationLabel defines a named member of a FACE_Enumerated value set.

FACE Profile, v2.0 – beta 1 76

Figure 7-49: FACE_EnumerationLabel

Constraints

C01: FACE_EnumerationLabel.class Value for the class metaproperty must be stereotyped
«FACE_LogicalValueType»

C02: FACE_EnumerationLabel.name Value for the name metaproperty must not be null and
must be unique within the owning class.

C03: FACE_EnumerationLabel.type Value for the type metaproperty must be null. (The
name metaproperty is the only valid information.)

FACE Conformance/OCL Constraints

C01:
FACE_EnumerationLabel.nameIsNotReservedWord

A FACE_EnumerationLabel's name may not be an IDL
reserved word.

FACE_FixedLengthStringConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_StringConstraint

 FACE Profile v2.0 – beta 1 77

Description

A FACE_FixedLengthStringConstraint specifies a defined set of meaningful values for a String as with of a specific fixed
length. The "length" attribute defines the fixed length, an integer value greater than 0.

Figure 7-50: FACE_FixedLengthStringConstraint

Attributes

length : Integer [1]

FACE Conformance/OCL Constraints

C01:
FACE_FixedLengthStringConstraint.nonNegativeLengt
h

A FACE_FixedLengthStringConstraint's length must be
greater than zero.

FACE_IntegerConstraint
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_Constraint

Description

A FACE_IntegerConstraint specifies a defined set of meaningful values for an Integer or Natural.

Figure 7-51: abstract FACE_IntegerConstraint

FACE Profile, v2.0 – beta 1 78

FACE_IntegerRangeConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_IntegerConstraint

Description

A FACE_IntegerRangeConstraint specifies a defined range of meaningful values for an Integer or Natural. The upperBound
is greater than or equal to the lowerBound. The defined range is inclusive of the upperBound and lowerBound.

Figure 7-52: FACE_IntegerRangeConstraint

Attributes

lowerBound : Integer [1]

upperBound : Integer [1]

FACE_Landmark
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_Landmark represents a described point which relates a FACE_ReferencePoint to a well-known location.

 FACE Profile v2.0 – beta 1 79

Figure 7-53: FACE_Landmark

FACE_LogicalAssociation
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalEntity

Description

A FACE_LogicalAssociation represents a relationship between two or more FACE_LogicalEntities. In addition, there may
be one or more FACE_LogicalComposableElements that characterize the relationship. FACE_LogicalAssociations are
FACE_LogicalEntities that may also participate in other FACE_LogicalAssociations.

Figure 7-54: FACE_LogicalAssociation

FACE Profile, v2.0 – beta 1 80

FACE Conformance/OCL Constraints

C01:
FACE_LogicalAssociation.participantsConsistentWith
Realization

FACE_LogicalParticipants in a
FACE_LogicalAssociation must realize
FACE_ConceptualParticipants in the
FACE_LogicalAssociation that the
FACE_LogicalAssociation realizes.

C02:
FACE_LogicalAssociation.participantsRealizeUniquely

FACE_LogicalParticipants in a
FACE_LogicalAssociation must realize unique
FACE_ConceptualParticipants.

FACE_LogicalCharacteristic
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_ModelElement

Description

A FACE_LogicalCharacteristic is a defining feature of a FACE_LogicalEntity. The "name" metatype attribute represents the
data model "rolename" attribute that defines the name of the logical Characteristic within the scope of the logical Entity. The
"lowerBound" and "upperBound" attributes define the multiplicity of the composed Characteristic. An "upperBound"
multiplicity of -1 represents an unbounded sequence.

Figure 7-55: abstract FACE_LogicalCharacteristic

Attributes

description : String [1]

specializes : FACE_LogicalCharacteristic [0..1]

 FACE Profile v2.0 – beta 1 81

FACE Conformance/OCL Constraints

C01:
FACE_LogicalCharacteristic.lowerBound_LTE_Upper
Bound

A FACE_LogicalCharacteristic's lowerBound must be
less than or equal to its upperBound, unless its
upperBound is -1.

C02:
FACE_LogicalCharacteristic.rolenameIsValidIdentifier

The rolename of a FACE_LogicalCharacteristic must
be a valid identifier.

C03:
FACE_LogicalCharacteristic.specializationConsistent
WithRealization

If a FACE_LogicalCharacteristic specializes, its
specialization must be consistent with its realization's
specialization.

C04: FACE_LogicalCharacteristic.upperBoundValid A FACE_LogicalCharacteristic's upperBound must be
equal to -1 or greater than 1.

FACE_LogicalComposableElement
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_LogicalElement

Description

A FACE_LogicalComposableElement is a FACE_LogicalElement that is allowed to participate in a FACE_Composition
relationship. In other words, these are the FACE_LogicalElements that may be a characteristic of a FACE_LogicalEntity.

Figure 7-56: abstract FACE_LogicalComposableElement

FACE_LogicalCompositeQuery
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalView

Extension: Class

Description

A FACE_LogicalCompositeQuery is a collection of two or more FACE_LogicalQueries. The "isUnion" attribute specifies
whether the composed FACE_LogicalQueries are intended to be represented as cases in a union or as members of a struct.

FACE Profile, v2.0 – beta 1 82

Figure 7-57: FACE_LogicalCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

C01: FACE_LogicalCompositeQuery.ownedAttribute The values for the ownedAttribute metaproperty must
meet the following criteria:
- must be ordered list
- must be stereotyped
«FACE_LogicalQueryComposition» or its
specializations
- must contain 2 or more elements

 FACE Profile v2.0 – beta 1 83

FACE Conformance/OCL Constraints

C01:
FACE_LogicalCompositeQuery.compositionsConsisten
tWithRealization

FACE_LogicalQueryCompositions in a
FACE_LogicalCompositeQuery must realize
FACE_ConceptualQueryCompositions in the
FACE_ConceptualCompositeQuery that the
FACE_LogicalCompositeQuery realizes.

C02:
FACE_LogicalCompositeQuery.compositionsHaveUni
queRolenames

A FACE_LogicalQueryComposition's rolename must
be unique within a FACE_LogicalCompositeQuery.

C03:
FACE_LogicalCompositeQuery.noCyclesInConstructio
n

A FACE_LogicalCompositeQuery must not compose
itself directly or indirectly.

C04:
FACE_LogicalCompositeQuery.realizationUnionConsi
stent

A FACE_LogicalCompositeQuery that realizes must
have the same "isUnion" property as the
FACE_LogicalCompositeQuery it realizes.

C05:
FACE_LogicalCompositeQuery.realizedCompositions
HaveDifferentTypes

A FACE_LogicalCompositeQuery must not contain
two FACE_LogicalQueryCompositions that realize the
same FACE_ConceptuallQueryComposition.

C06:
FACE_LogicalCompositeQuery.viewComposedOnce

A FACE_LogicalCompositeQuery must not compose
the same FACE_LogicalView more than once.

FACE_LogicalComposition
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalCharacteristic

Extension: Property

Description

A FACE_LogicalComposition is the mechanism that allows FACE_LogicalEntities to be constructed from other
FACE_LogicalComposableElements. The "type" of a Logical Composition is the Logical ComposableElement being used to
construct the logical Entity. The "lowerBound" and "upperBound" define the multiplicity of the composed logical Entity. An
"upperBound" multiplicity of -1 represents an unbounded sequence.

FACE Profile, v2.0 – beta 1 84

Figure 7-58: FACE_LogicalComposition

Attributes

realizes : FACE_ConceptualComposition [1]

Constraints

C01: FACE_LogicalComposition.class Value for the class metaproperty must be stereotyped
«FACE_LogicalEntity» or its specializations.

C02: FACE_LogicalComposition.lower The value for the lower (lower bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1.

C03: FACE_LogicalComposition.type Value for the type metaproperty must be stereotyped
«FACE_LogicalComposableElement» or its
specializations.

 FACE Profile v2.0 – beta 1 85

C04: FACE_LogicalComposition.upper The value for the upper (upper bound of multiplicity)
metaproperty must be an integer greater than or equal
to -1

FACE Conformance/OCL Constraints

C01:
FACE_LogicalComposition.multiplicityConsistentWith
Realization

A FACE_LogicalComposition's multiplicity must be at
least as restrictive as the
FACE_ConceptualComposition it realizes

C02:
FACE_LogicalComposition.multiplicityConsistentWith
Specialization

A FACE_LogicalComposition's multiplicity must be at
least as restrictive as the FACE_LogicalComposition of
which it is a specialization.

C03:
FACE_LogicalComposition.typeConsistentWithRealiza
tion

A FACE_LogicalComposition's type must be consistent
with its realization's type.

FACE_LogicalElement
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_DataModelElement

Description

A FACE_LogicalElement is the root type for defining the Logical Data Model elements of the Data Model Language.

Figure 7-59: abstract FACE_LogicalElement

Constraints

C01: FACE_LogicalElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_LogicalDataModel»

FACE Profile, v2.0 – beta 1 86

FACE Conformance/OCL Constraints

C01: FACE_LogicalElement.hasUniqueName Every FACE_LogicalElement, with the exception of
FACE_Constraint, must have a unique name.

FACE_LogicalEntity
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalComposableElement, FACE_SpecializationOwner

Extension: Class

Description

A FACE_LogicalEntity "realizes" a FACE_ConceptualEntity in terms of Measurements and other LogicalEntities. Since a
FACE_LogicalEntity is built from logical FACE_Measurements, it is independent of any specific platform data
representation. A FACE_LogicalEntity's composition hierarchy is consistent with the composition hierarchy of the
FACE_ConceptualEntity that it realizes. The FACE_LogicalEntity's composed Entities realize one to one the
FACE_ConceptualEntity's composed Entities; the FACE_LogicalEntity's composed FACE_Measurements realize many to
one the FACE_ConceptualEntity's composed FACE_Observables.

Figure 7-60: FACE_LogicalEntity

 FACE Profile v2.0 – beta 1 87

Constraints

C01: FACE_LogicalEntity.ownedAttribute The value for the ownedAttribute metaproperty must be
stereotyped «FACE_LogicalComposition» or its
specializations

FACE Conformance/OCL Constraints

C01:
FACE_LogicalEntity.characteristicsHaveUniqueRolena
mes

A FACE_LogicalCharacteristic's rolename must be
unique within a FACE_LogicalEntity.

C02:
FACE_LogicalEntity.compositionsConsistentWithReali
zation

FACE_LogicalCompositions in a FACE_LogicalEntity
must realize FACE_ConceptualCompositions in the
conceptual FACE_ConceptualEntity that the
FACE_LogicalEntity realizes.

C03:
FACE_LogicalEntity.hasAtLeastOneLocalCharacteristi
c

A FACE_LogicalEntity must have at least one
Characteristic defined locally (not through
generalization), unless the Entity is in the "middle" of a
generalization hierarchy.

C04:
FACE_LogicalEntity.realizedCompositionsHaveDiffere
ntTypes

A FACE_LogicalEntity may not contain two
FACE_LogicalCompositions that realize the same
FACE_ConceptualComposition unless their types are
different FACE_Measurements and their multiplicities
are equal.

C05:
FACE_LogicalEntity.specializationConsistentWithReal
ization

If a FACE_LogicalEntity specializes, its specialization
must be consistent with its realization's specialization.

FACE_LogicalParticipant
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalCharacteristic

Extension: Association

Description

A FACE_LogicalParticipant is the mechanism that allows a FACE_LogicalAssociation to be constructed between two or
more FACE_LogicalEntities. The "type" (target of the directional Association) of a logical Participant is the logical Entity
being used to construct the logical Association. Target multiplicity values represent the "sourceLowerBound" and
"sourceUpperBound" attributes that define the multiplicity of the logical Association relative to the Participant in the UDDL
metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent of a "sourceUpperBound"
multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The "path" attribute of the
Participant describes the chain of entity characteristics to traverse to reach the subject of the association beginning with the
entity referenced by the "type" attribute.

FACE Profile, v2.0 – beta 1 88

FACE_LogicalParticipant Associations are directional, from a FACE_LogicalAssociation to a FACE_LogicalEntity.

Figure 7-61: FACE_LogicalParticipant

Attributes

path : String [1]

The "path" property indicates the portion of the target
«FACE_LogicalEntity» that is participating in the
«FACE_LogicalAssociation» that is the source for the

 FACE Profile v2.0 – beta 1 89

«FACE_LogicalParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:
A logical PathNode is a single element in a chain that collectively
forms a path specification.
A logical ParticipantPathNode is a logical PathNode that selects a
Participant that references an Entity. This provides a mechanism for
reverse navigation from an Entity that participates in an Association
back to the Association.
A logical CharacteristicPathNode is a logical PathNode that selects a
logical Characteristic which is directly contained in a logical Entity
or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Logical CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

realizes : FACE_ConceptualParticipant [1]

_importedPathUUIDs : String [0..*]

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

Constraints

C01: FACE_LogicalParticipant.memberEnd->size() memberEnd.size() shall be 2

C02:
FACE_LogicalParticipant.memberEnd[0].isNavigable

memberEnd[0].isNavigable shall be false

FACE Profile, v2.0 – beta 1 90

C03:
FACE_LogicalParticipant.memberEnd[0].multiplicity

memberEnd[0].multiplicity shall be 1

C04: FACE_LogicalParticipant.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_LogicalAssociation»

C05:
FACE_LogicalParticipant.memberEnd[1].aggregation

memberEnd[1].aggregation shall be none

C06:
FACE_LogicalParticipant.memberEnd[1].isNavigable

memberEnd[1].isNavigable shall be true

C07: FACE_LogicalParticipant.memberEnd[1].name The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

C08: FACE_LogicalParticipant.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_LogicalEntity»

FACE Conformance/OCL Constraints

C01:
FACE_LogicalParticipant.multiplicityConsistentWithR
ealization

A FACE_LogicalParticipant's multiplicity must be at
least as restrictive as the FACE_ConceptualParticipant
it realizes.

C02:
FACE_LogicalParticipant.multiplicityConsistentWithS
pecialization

A FACE_LogicalParticipant's multiplicity must be at
least as restrictive as the FACE_LogicalParticipant it
specializes.

C03: FACE_LogicalParticipant.rolenameDefined A FACE_LogicalParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE_LogicalParticipant.

C04:
FACE_LogicalParticipant.typeConsistentWithRealizati
on

If FACE_LogicalParticipant "A" realizes
FACE_ConceptualParticipant "B", then A's type must
realize B's type, and A's PathNode sequence must
"realize" B's PathNode sequence.
(A PathNode sequence "A" "realizes" a sequence "B" if
the projected element of each PathNode in A realizes
the projected element of the corresponding PathNode in
B.)

FACE_LogicalQuery
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalView

Extension: Class

 FACE Profile v2.0 – beta 1 91

Description

A FACE_LogicalQuery is a specification that defines the content of FACE_LogicalView as a set of
FACE_LogicalCharacteristics projected from a selected set of related FACE_LogicalEntities. The "specification" attribute
captures the specification of a Query as defined by the Query grammar.

Figure 7-62: FACE_LogicalQuery

Attributes

specification : String [1]

FACE_LogicalQueryComposition
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

A FACE_LogicalQueryComposition is the mechanism that allows a FACE_LogicalCompositeQuery to be constructed from
FACE_LogicalQueries and other FACE_LogicalCompositeQueries. The "name" metamodel attribute represents the
"rolename" attribute in UDDL that defines the name of the composed FACE_LogicalView within the scope of the composing

FACE Profile, v2.0 – beta 1 92

FACE_LogicalCompositeQuery. The type of a FACE_LogicalQueryComposition is the FACE_LogicalView being used to
construct the FACE_LogicalCompositeQuery.

Figure 7-63: FACE_LogicalQueryComposition

Attributes

realizes : FACE_ConceptualQueryComposition [0..1]

Constraints

C01: FACE_LogicalQueryComposition.class Value for the class metaproperty must be stereotyped
«FACE_LogicalCompositeQuery».

C02: FACE_LogicalQueryComposition.type Value for the type metaproperty must be stereotyped
«FACE_LogicalView» or its specializations.

FACE Conformance/OCL Constraints

C01:
FACE_LogicalQueryComposition.rolenameIsValidIden
tifier

The rolename of a FACE_LogicalQueryComposition
must be a valid identifier.

C02:
FACE_LogicalQueryComposition.typeConsistentWith
Realization

If FACE_LogicalQueryComposition "A" realizes
FACE_ConceptualQueryComposition "B", then A's
type must realize B's type.

FACE_LogicalValueType
Package: LogicalDataModel

isAbstract: No

 FACE Profile v2.0 – beta 1 93

Generalization: FACE_LogicalElement

Extension: Class

Description

A ValueType specifies the logical representation of a MeasurementSystem or Measurement. Integer, Real, and String are
examples of logical ValueTypes. This element is the representation for all of the logical data type elements listed in the
UDDL Standard.

Figure 7-64: FACE_LogicalValueType

Attributes

enumeratedStandardReference : String [0..1]

valueType : FACE_ValueTypeEnum [1]

Constraints

C01: FACE_LogicalValueType.ownedAttribute If the valueType is NOT Enumerated, no
ownedAttributes are allowed.
If the valueType is Enumerated, all ownedAttributes
must be stereotyped by «FACE_EnumerationLabel».

C02: FACE_LogicalValueType.standardReference standardReference may only have a value if valueType
= Enumerated

FACE Profile, v2.0 – beta 1 94

FACE Conformance/OCL Constraints

C01:
FACE_LogicalValueType.enumerationLabelNameUniq
ue

If the value type is Enumeration (value_type ==
FACE_ValueTypeEnum.Enumerated), all owned
attribute FACE_EnumerationLabels must have unique
names.

C02:
FACE_LogicalValueType.nameIsNotReservedWord

If the value type is Enumeration (value_type ==
FACE_ValueTypeEnum.Enumerated), the
Enumerated's name must not be an IDL reserved word.

C03:
FACE_LogicalValueType.nameOfValueTypeMatches
NameOfMetaclass

A FACE_LogicalValueType must be named the same
as its metatype. (e.g. a String must be named "String")

FACE_LogicalView
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_LogicalView is a FACE_LogicalQuery or a FACE_LogicalCompositeQuery.

 FACE Profile v2.0 – beta 1 95

Figure 7-65: abstract FACE_LogicalView

FACE_Measurement
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractMeasurement, FACE_LogicalComposableElement

Extension: Class

Description

A FACE_Measurement realizes a FACE_Observable as a set of quantities that can be recorded for each of the axis of a
FACE_MeasurementSystem. A FACE_Measurement contains the specific implementation details optionally including an
override of the default Unit for each axis as well as the constraints over that space for which the FACE_MeasurementSystem
is valid.

FACE Profile, v2.0 – beta 1 96

Figure 7-66: FACE_Measurement

Attributes

measurementSystem : FACE_AbstractMeasurementSystem [1]

 FACE Profile v2.0 – beta 1 97

Constraints

C01: FACE_Measurement.ownedAttribute The values for the ownedAttribute metaproperty must
meet the following criteria:
- referenced elements must be stereotyped
«FACE_MeasurementAttribute» or its specializations
- must contain 2 or more elements

FACE Conformance/OCL Constraints

C01:
FACE_Measurement.enumeratedMeasurementUsesEnu
meratedMeasurementSystem

A Measurement that uses an Enumerated ValueType in
any of its axes must be based on the
'AbstractDiscreteSetMeasurementSystem'
MeasurementSystem.

C02:
FACE_Measurement.measurementAttributesHaveUniq
ueRolenames

A FACE_Measurement's attributes must have unique
rolenames.

C03:
FACE_Measurement.measurementConsistentWithMeas
urementSystem

If a FACE_Measurement "A" is based on
FACE_MeasurementSystem "B", then A and B must
have the same number of axes, and every
FACE_MeasurementAxis in A must be based on a
unique FACE_MeasurementSystemAxis in B. If a
FACE_Measurement is based on a
FACE_StandardMeasurementSystem, then it must have
no axes.

C04: FACE_Measurement.noCyclesInMeasurements A FACE_Measurement may not use itself as a
FACE_MeasurementAttribute.

FACE_MeasurementAttribute
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

A FACE_MeasurementAttribute is supplemental data associated with a FACE_Measurement.

FACE Profile, v2.0 – beta 1 98

Figure 7-67: FACE_MeasurementAttribute

Constraints

C01: FACE_MeasurementAttribute.class Value for the class metaproperty must be stereotyped
«FACE_Measurement»

C02: FACE_MeasurementAttribute.type Value for the type metaproperty must be stereotyped
«FACE_Measurement»

FACE_MeasurementAxis
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractMeasurement, FACE_LogicalElement

Extension: Class

Description

A FACE_MeasurementAxis optionally establishes constraints for a FACE_MeasurementSystemAxis and may optionally
override its default units and value types.

 FACE Profile v2.0 – beta 1 99

Figure 7-68: FACE_MeasurementAxis

Attributes

measurementSystemAxis : FACE_MeasurementSystemAxis [1]

FACE_MeasurementConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

FACE Profile, v2.0 – beta 1 100

Description

A FACE_MeasurementConstraint describes the constraints over the axes of a given FACE_MeasurementSystem or
FACE_Measurement or over the value types of a FACE_MeasurementSystemAxis or FACE_MeasurementAxis. The
constraints are described in the "constraintText" attribute. The specific format of "constraintText" is undefined.

Figure 7-69: FACE_MeasurementConstraint

Attributes

constraintText : String [1]

 FACE Profile v2.0 – beta 1 101

Constraints

C01: FACE_MeasurementConstraint.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_MeasurementSystem»
«FACE_MeasurementSystemAxis»
«FACE_MeasurementAxis»
«FACE_Measurement»

FACE_MeasurementConversion
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

Description

A FACE_MeasurementConversion is a relationship between two FACE_Measurements that describes how to transform
measured quantities between those FACE_Measurements. The conversion is captured as a set of equations in the "equation"
attribute. The specific format of "equation" is undefined. The loss introduced by the conversion equations is captured in the
"conversionLossDescription" attribute. The specific format of "conversionLossDescription" is undefined.

Figure 7-70: FACE_MeasurementConversion

Attributes

conversionLossDescription : String [0..1]

equation : String [1..*]

source : FACE_Measurement [1]

FACE Profile, v2.0 – beta 1 102

target : FACE_Measurement [1]

FACE_MeasurementSystem
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractMeasurementSystem

Description

A FACE_MeasurementSystem relates a FACE_CoordinateSystem to an origin and orientation for the purpose of establishing
a common basis for describing points in an N-dimensional space. Defining a FACE_MeasurementSystem establishes
additional properties of the FACE_CoordinateSystem including units and value types for each axis, and a set of reference
points that can be used to establish an origin and indicate the direction of each axis.

Figure 7-71: FACE_MeasurementSystem

 FACE Profile v2.0 – beta 1 103

Attributes

coordinateSystem : FACE_CoordinateSystem [1]

externalStandardReference : String [0..1]

orientation : String [0..1]

FACE Conformance/OCL Constraints

C01:
FACE_MeasurementSystem.hasSufficientReferencePoi
nts

If a FACE_MeasurementSystem has
FACE_ReferencePoints, then it must have at least as
many FACE_ReferencePoints as it has axes.

C02:
FACE_MeasurementSystem.measurementSystemConsi
stentWithCoordinateSystem

If a FACE_MeasurementSystem "A" is based on
FACE_CoordinateSystem "B", then A and B must have
the same number of axes, and every
FACE_MeasurementSystemAxis in A must be based on
a unique FACE_CoordinateSystemAxis in B.

C03:
FACE_MeasurementSystem.onlyOneEnumeratedMeas
urementSystem

Enumerated FACE_LogicalValueTypes are expressed
as FACE_MeasurementSystemAxis in a
FACE_MeasurementSystem. The name of a
FACE_MeasurementSystem expressing an Enumerated
is expected to be
"AbstractDiscreteSetMeasurementSystem", and this
special FACE_MeasurementSystem must have only one
FACE_Axis.

C04:
FACE_MeasurementSystem.referencePointPartsConsist
entWithAxes

A FACE_ReferencePoint in a
FACE_MeasurementSystem contains
FACE_ReferencePointParts. The
FACE_ReferencePointParts must use the same
FACE_MeasurementSystemAxes used by the owning
FACE_MeasurementSystem.

C05:
FACE_MeasurementSystem.referencePointPartsCover
AllAxes

In a FACE_MeasurementSystem, each
FACE_ReferencePoints' parts must use the same set of
VTUs as the FACE_MeasurementSystem's axes.

FACE_MeasurementSystemAxis
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

FACE Profile, v2.0 – beta 1 104

Description

A FACE_MeasurementSystemAxis establishes additional properties for a FACE_CoordinateSystemAxis including units and
value types.

Figure 7-72: FACE_MeasurementSystemAxis

Attributes

coordinateSystemAxis : FACE_CoordinateSystemAxis [1]

FACE_MeasurementSystemConversion
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_LogicalElement

Extension: Class

 FACE Profile v2.0 – beta 1 105

Description

A FACE_MeasurementSystemConversion is a relationship between two FACE_MeasurementSystems that describes how to
transform measured quantities between those FACE_MeasurementSystems. The conversion is captured as a set of equations
in the "equation" attribute. The specific format of "equation" is undefined. The loss introduced by the conversion equations
is captured in the "conversionLossDescription" attribute. The specific format of "conversionLossDescription" is undefined.

Figure 7-73: FACE_MeasurementSystemConversion

Attributes

conversionLossDescription : String [0..1]

equation : String [1..*]

source : FACE_MeasurementSystem [1]

target : FACE_MeasurementSystem [1]

FACE_RealConstraint
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_Constraint

Description

A FACE_RealConstraint specifies a defined set of meaningful values for a Real or NonNegativeReal.

FACE Profile, v2.0 – beta 1 106

Figure 7-74: abstract FACE_RealConstraint

FACE_RealRangeConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_RealConstraint

Description

A FACE_RealRangeConstraint specifies a defined range of meaningful values for a Real or NonNegativeReal. The
"upperBound" is greater than or equal to the "lowerBound".

Figure 7-75: FACE_RealRangeConstraint

Attributes

lowerBound : Real [1]

lowerBoundInclusive : Boolean [1]

upperBound : Real [1]

upperBoundInclusive : Boolean [1]

 FACE Profile v2.0 – beta 1 107

FACE_ReferencePoint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_DataModelElement

Extension: Class

Description

A FACE_ReferencePoint is an identifiable point (landmark) that can be used to provide a basis for locating and/or orienting a
MeasurementSystem.

Figure 7-76: FACE_ReferencePoint

Attributes

landmark : FACE_Landmark [1]

FACE Profile, v2.0 – beta 1 108

Constraints

C01: FACE_ReferencePoint.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_MeasurementSystem»

FACE Conformance/OCL Constraints

C01:
FACE_ReferencePoint.noAmbiguousVTUReference

If two ReferencePointParts in a FACE_ReferencePoint
refer to the same VTU, then they must refer to distinct
(non-null) axes.

FACE_ReferencePointPart
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_ReferencePointPart is a value for one FACE_ValueTypeUnit in a FACE_ValueTypeUnit set that is used to identify
a specific point along an axis.

Figure 7-77: FACE_ReferencePointPart

Attributes

axis : FACE_MeasurementSystemAxis [0..1]

value : String [1]

 FACE Profile v2.0 – beta 1 109

valueTypeUnit : FACE_ValueTypeUnit [0..1]

Constraints

C01: FACE_ReferencePointPart.owner This element may only be contained in (owned by)
elements with the stereotype «FACE_ReferencePoint»

FACE_RegularExpressionConstraint
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_StringConstraint

Description

A FACE_RegularExpressionConstraint specifies a defined set of meaningful values for a String in the form of a regular
expression.

Figure 7-78: FACE_RegularExpressionConstraint

Attributes

expression : String [1]

FACE_RPPart
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect the parts of a FACE_ReferencePoint to the owning FACE_ReferencePoint.

FACE Profile, v2.0 – beta 1 110

Figure 7-79: FACE_RPPart

Constraints

C01: FACE_RPPart.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by «FACE_ReferencePoint».

C02: FACE_RPPart.memberEnd[1].aggregation memberEnd[1].aggregation shall be composite

C03: FACE_RPPart.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 1..*

C04: FACE_RPPart.memberEnd[1].name memberEnd[1].name shall be "referencePointPart"

C05: FACE_RPPart.memberEnd[1].type The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_ReferencePointPart».

FACE_StandardMeasurementSystem
Package: LogicalDataModel

 FACE Profile v2.0 – beta 1 111

isAbstract: No

Generalization: FACE_AbstractMeasurementSystem

Description

A FACE_StandardMeasurementSystem is used to represent an open, referenced measurement system without requiring the
detailed modeling of the measurement system. The reference should be unambiguous and allows for full comprehension of
the underlying measurement system.

Figure 7-80: FACE_StandardMeasurementSystem

Attributes

referenceStandard : String [0..1]

FACE_StringConstraint
Package: LogicalDataModel

isAbstract: Yes

Generalization: FACE_Constraint

Description

A FACE_StringConstraint specifies a defined set of meaningful values for a String.

Figure 7-81: abstract FACE_StringConstraint

FACE Profile, v2.0 – beta 1 112

FACE_Unit
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_ConvertibleElement

Extension: Class

Description

A FACE_Unit is a defined magnitude of quantity used as a standard for measurement.

Figure 7-82: FACE_Unit

FACE_ValueTypeEnum
Package: LogicalDataModel

isAbstract: No

Description

Indicates the logical data type associated with a property of a FACE element. Its enumeration literals are:
Boolean -
Character -
String -
Integer -
Natural -
Real -
NonNegativeReal -
Enumerated -

Figure 7-83: FACE_ValueTypeEnum

 FACE Profile v2.0 – beta 1 113

FACE_ValueTypeUnit
Package: LogicalDataModel

isAbstract: No

Generalization: FACE_AbstractMeasurement, FACE_LogicalElement

Extension: Class

Description

A FACE_ValueTypeUnit defines the logical representation of a FACE_MeasurementSystemAxis or
FACE_MeasurementAxis value type in terms of a FACE_Unit and FACE_ValueType pair.

Figure 7-84: FACE_ValueTypeUnit

Attributes

unit : FACE_Unit [1]

valueType : FACE_LogicalValueType [1]

FACE Profile, v2.0 – beta 1 114

FACE Conformance/OCL Constraints

C01:
FACE_ValueTypeUnit.appropriateLabelsForEnumerate
dConstraint

If a FACE_ValueTypeUnit "A" contains a
FACE_EnumerationConstraint, then A's valueType is a
FACE_Enumeration, and the constraint's
allowedValues are restricted to
FACE_EnumerationLabels from that
FACE_Enumeration.

7.1.1.1.3 FACE_Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel
The PlatformDataModel package of the FACE Profile contains elements that represent the Platform Data Model subpackage
as specified in the UDDL metamodel.

FACE_Array
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Array is used to represent an array of Octets. This can be used to realize a FACE_StandardMeasurementSystem.

Figure 7-85: FACE_Array

Attributes

size : Integer [0..1]

FACE_Boolean
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Boolean is a data type that represents the values TRUE and FALSE.

 FACE Profile v2.0 – beta 1 115

Figure 7-86: FACE_Boolean

FACE_BoundedString
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_StringType

Description

A BoundedString is a data type that represents a variable length sequence of Char (all 8-bit quantities except NULL). The
length is a non-negative integer, and is available at run-time. The length is maximally bounded.

Figure 7-87: FACE_BoundedString

Attributes

maxLength : Integer [1]

FACE_Char
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_CharType

Description

A FACE_Char is a data type that represents characters from any single byte character set.

FACE Profile, v2.0 – beta 1 116

Figure 7-88: FACE_Char

FACE_CharArray
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_StringType

Description

A FACE_CharArray is a data type that represents a fixed length sequence of Char (all 8-bit quantities except NULL). The
length is a positive integer, and is available at run-time. The length is maximally bounded.

Figure 7-89: FACE_CharArray

Attributes

length : Integer [1]

FACE_CharType
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_Primitive

Description

A FACE_CharType is a Char.

 FACE Profile v2.0 – beta 1 117

Figure 7-90: abstract FACE_CharType

FACE_Double
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Real

Description

A FACE_Double is a real data type that represents an IEEE double precision floating-point number.

Figure 7-91: FACE_Double

FACE_Enumeration
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Enumeration is a data type that represents an ordered list of identifiers. A maximum of 2^32 identifiers may be
specified in an enumeration. The order in which the identifiers are named defines the relative order of the identifiers.

FACE Profile, v2.0 – beta 1 118

Figure 7-92: FACE_Enumeration

FACE_Fixed
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Real

Description

A FACE_Fixed is a real data type that represents a fixed-point decimal number of up to 31 significant digits. The digits
attribute defines the total number of digits, a non-negative integer value less than or equal to 31. The scale attribute defines
the position of the decimal point in the number, and cannot be greater than digits.

Figure 7-93: FACE_Fixed

Attributes

digits : Integer [1]

scale : Integer [1]

FACE_Float
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Real

 FACE Profile v2.0 – beta 1 119

Description

A FACE_Float is a real data type that represents an IEEE single precision floating-point number.

Figure 7-94: FACE_Float

FACE_Integer
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_Number

Description

A FACE_Integer is an abstract meta-class from which all meta-classes representing whole numbers derive.

Figure 7-95: abstract FACE_Integer

FACE_Long
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Integer

Description

A FACE_Long is an integer data type that represents integer values in the range -2^31 to (2^31 - 1).

FACE Profile, v2.0 – beta 1 120

Figure 7-96: FACE_Long

FACE_LongDouble
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Real

Description

A FACE_LongDouble is a real data type that represents an IEEE extended double precision floating-point number (having a
signed fraction of at least 64 bits and an exponent of at least 15 bits).

Figure 7-97: FACE_LongDouble

FACE_LongLong
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Integer

Description

A FACE_LongLong is an integer data type that represents integer values in the range -2^63 to (2^63 - 1).

 FACE Profile v2.0 – beta 1 121

Figure 7-98: FACE_LongLong

FACE_Number
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_Primitive

Description

A FACE_Number is an abstract meta-class from which all meta-classes representing numeric values derive.

Figure 7-99: abstract FACE_Number

FACE_Octet
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Octet is an 8-bit quantity that is guaranteed not to undergo any conversion during transfer between systems.

FACE Profile, v2.0 – beta 1 122

Figure 7-100: FACE_Octet

FACE_PlatformAssociation
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformEntity

Description

A FACE_PlatformAssociation represents a relationship between two or more FACE_PlatformEntities. In addition, there may
be one or more FACE_PlatformComposableElements that characterize the relationship. FACE_PlatformAssociations are
FACE_PlatformEntities that may also participate in other FACE_PlatformAssociations.

Figure 7-101: FACE_PlatformAssociation

 FACE Profile v2.0 – beta 1 123

FACE Conformance/OCL Constraints

C01:
FACE_PlatformAssociation.participantsConsistentWith
Realization

FACE_PlatformParticipants in a
FACE_PlatformAssociation must realize
FACE_LogicalParticipants in the
FACE_LogicalAssociation that the
FACE_PlatformAssociation realizes.

C02:
FACE_PlatformAssociation.participantsRealizeUniquel
y

FACE_PlatformParticipants in a
FACE_PlatformAssociation must realize unique
FACE_LogicalParticipants.

FACE_PlatformCharacteristic
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_ModelElement

Description

A FACE_PlatformCharacteristic is a defining feature of a FACE_PlatformEntity. The "name" metamodel attribute represents
the FACE "rolename" attribute that defines the name of the platform Characteristic within the scope of the platform Entity.
The "lowerBound" and "upperBound" attributes define the multiplicity of the composed Characteristic. An "upperBound"
multiplicity of -1 represents an unbounded sequence.

Figure 7-102: abstract FACE_PlatformCharacteristic

Attributes

description : String [1]

specializes : FACE_PlatformCharacteristic [0..1]

FACE Profile, v2.0 – beta 1 124

FACE Conformance/OCL Constraints

C01:
FACE_PlatformCharacteristic.lowerBound_LTE_Uppe
rBound

A FACE_PlatformCharacteristic's lowerBound must be
less than or equal to its upperBound, unless its
upperBound is -1.

C02:
FACE_PlatformCharacteristic.rolenameIsNotReserved
Word

The rolename of a FACE_PlatformCharacteristic must
not be an IDL reserved word.

C03:
FACE_PlatformCharacteristic.rolenameIsValidIdentifie
r

The rolename of a FACE_PlatformCharacteristic must
be a valid identifier.

C04:
FACE_PlatformCharacteristic.specializationConsistent
WithRealization

If a FACE_PlatformCharacteristic specializes, its
specialization must be consistent with its realization's
specialization.

C05: FACE_PlatformCharacteristic.upperBoundValid A FACE_PlatformCharacteristic's upperBound must be
equal to -1 or greater than 1.

FACE_PlatformComposableElement
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_PlatformElement

Description

A FACE_PlatformComposableElement is a FACE_PlatformElement that is allowed to participate in a FACE_Composition
relationship. In other words, these are the FACE_PlatformElements that may be a characteristic of a FACE_PlatformEntity.

Figure 7-103: abstract FACE_PlatformComposableElement

FACE_PlatformCompositeQuery
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformView

Extension: Class

 FACE Profile v2.0 – beta 1 125

Description

A FACE_PlatformCompositeQuery is a collection of two or more platform Queries. The "isUnion" attribute specifies
whether the composed platform Queries are intended to be represented as cases in an union or as members of a struct.

Figure 7-104: FACE_PlatformCompositeQuery

Attributes

isUnion : Boolean [1]

Constraints

C01: FACE_PlatformCompositeQuery.ownedAttribute The values for the ownedAttribute metaproperty must
meet the following criteria:
- must be ordered list
- referenced elements must be stereotyped
«FACE_PlatformQueryComposition» or its
specializations
- must contain 2 or more elements

FACE Profile, v2.0 – beta 1 126

FACE Conformance/OCL Constraints

C01:
FACE_PlatformCompositeQuery.compositionsConsiste
ntWithRealization

FACE_PlatformQueryCompositions in a
FACE_PlatformCompositeQuery must realize
FACE_LogicalQueryCompositions in the
FACE_LogicalCompositeQuery that the
FACE_PlatformCompositeQuery realizes.

C02:
FACE_PlatformCompositeQuery.compositionsHaveUn
iqueRolenames:

All contained rolenames must be unique within a
FACE_PlatformCompositeQuery.

C03:
FACE_PlatformCompositeQuery.noCyclesInConstructi
on

A FACE_PlatformCompositeQuery must not compose
itself directly or indirectly.

C04:
FACE_PlatformCompositeQuery.realizationUnionCons
istent

A FACE_PlatformCompositeQuery that realizes must
have the same "isUnion" property as the
FACE_PlatformCompositeQuery it realizes.

C05:
FACE_PlatformCompositeQuery.realizedCompositions
HaveDifferentTypes

A FACE_PlatformCompositeQuery must not contain
two FACE_PlatformQueryCompositions that realize the
same FACE_LogicalQueryComposition.

C06:
FACE_PlatformCompositeQuery.viewComposedOnce

A FACE_PlatformCompositeQuery must not compose
the same FACE_PlatformView more than once.

FACE_PlatformComposition
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformCharacteristic

Extension: Property

Description

A FACE_PlatformComposition is the mechanism that allows platform Entities to be constructed from other
FACE_PlatformComposableElements. The "type" of a FACE_PlatformComposition is the
FACE_PlatformComposableElement being used to construct the platform Entity. The "lowerBound" and "upperBound"
define the multiplicity of the composed platform Entity. An "upperBound" multiplicity of -1 represents an unbounded
sequence. If "type" is a Primitive, the "precision" attribute specifies a measure of the detail in which a quantity is captured.

 FACE Profile v2.0 – beta 1 127

Figure 7-105: FACE_PlatformComposition

Attributes

precision : Real [0..1]

realizes : FACE_LogicalComposition [1]

Constraints

C01: FACE_PlatformComposition.class Value for the class metaproperty must be stereotyped
«FACE_PlatformEntity» or its specializations.

C02:
FACE_PlatformComposition.multiplicity.lowerbound

The value for the multiplicity.lowerBound
metaproperty must be an integer greater than or equal
to -1.

FACE Profile, v2.0 – beta 1 128

C03:
FACE_PlatformComposition.multiplicity.upperbound

The value for the multiplicity.upperBound
metaproperty must be an integer greater than or equal
to -1

C04: FACE_PlatformComposition.type Value for the type metaproperty must be stereotyped
«FACE_PlatformComposableElement» or its
specializations.

FACE Conformance/OCL Constraints

C01:
FACE_PlatformComposition.composedNumberHasPre
cisionSet

A FACE_PlatformComposition whose type is a
Number must have a precision greater than zero.

C02:
FACE_PlatformComposition.multiplicityConsistentWit
hRealization

A FACE_PlatformComposition's multiplicity must be at
least as restrictive as the FACE_LogicalComposition it
realizes.

C03:
FACE_PlatformComposition.multiplicityConsistentWit
hSpecialization

A FACE_PlatformComposition's multiplicity must be at
least as restrictive as the FACE_PlatformComposition it
specializes.

C04:
FACE_PlatformComposition.typeConsistentWithRealiz
ation

A FACE_PlatformComposition's type must be
consistent with its realization's type.

FACE_PlatformDataType
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_PlatformComposableElement

Description

A FACE_PlatformDataType is a FACE_Primitive or a FACE_Struct.

 FACE Profile v2.0 – beta 1 129

Figure 7-106: abstract FACE_PlatformDataType

FACE Conformance/OCL Constraints

C01:
FACE_PlatformDataType.collectionRealizesStandardM
easurement

A FACE_Array or FACE_Sequence must realize a
FACE_Measurement based on a
FACE_StandardMeasurementSystem.

C02:
FACE_PlatformDataType.platformDataTypeConsistent
lyRealizesMeasurement

A FACE_Measurement must be realized by a
FACE_Struct with one FACE_StructMember per
FACE_MeasurementAxis. (Each
FACE_StructMember's type must realize a unique axis
in the FACE_Measurement; every axis must be
realized.)
There are two exceptions:
- If a FACE_Measurement has one axis with one
FACE_ValueTypeUnit (VTU) and no
FACE_MeasurementAttributes, it is realized by a
FACE_Primitive .
- If a FACE_Measurement has one axis with multiple
VTUs and no FACE_MeasurementAttributes, it is
realized by a FACE_Struct with one
FACE_StructMember for each VTU in the axis.
(Each FACE_StructMember's type must realize a
unique VTU in the axis; every VTU must be realized.)
Each FACE_StructMember's type must be consistent
with the type of the VTU it realizes.

FACE Profile, v2.0 – beta 1 130

C03:
FACE_PlatformDataType.platformDataTypeConsistent
lyRealizesMeasurementAxis

If a FACE_MeasurementAxis has one
FACE_ValueTypeUnit (VTU), then it must be realized
by a FACE_Primitive ; if it has multiple VTUs, then it
must be realized by a FACE_Struct with one
FACE_StructMember per VTU. If FACE_Struct "A"
realizes FACE_MeasurementAxis "B", then A must
have the same number of FACE_Compositions as B has
VTUs, and every FACE_StructMember in A must
realize a unique VTU in V.

C04:
FACE_PlatformDataType.vtuRealizedByPrimitive

FACE_PlatformDataTypes that realize
FACE_ValueTypeUnits are FACE_Primitives.

FACE_PlatformElement
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_DataModelElement

Description

A FACE_PlatformElement is the root type for defining the platform-level elements of the FACE Data Model Language.

Figure 7-107: abstract FACE_PlatformElement

Constraints

C01: FACE_PlatformElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_PlatformDataModel»

FACE Conformance/OCL Constraints

C01: FACE_PlatformElement.hasUniqueName Each FACE_PlatformElement must have a unique
name.

 FACE Profile v2.0 – beta 1 131

C02:
FACE_PlatformElement.nameIsNotReservedWord

A FACE_PlatformElement's name may not be an IDL
reserved word.

FACE_PlatformEntity
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformComposableElement, FACE_SpecializationOwner

Extension: Class

Description

A FACE_PlatformEntity "realizes" a FACE_LogicalEntity in terms of FACE_PlatformDataTypes and other
FACE_PlatformEntities composed of FACE_PlatformDataTypes. A FACE_PlatformEntity's composition hierarchy is
consistent with the composition hierarchy of the FACE_LogicalEntity that it realizes. The FACE_PlatformEntity's composed
Entities realize one to one the FACE_LogicalEntity's composed Entities; the FACE_PlatformEntity's composed
FACE_PlatformDataTypes realize many to one the FACE_LogicalEntity's composed FACE_Measurements.

Figure 7-108: FACE_PlatformEntity

Constraints

C01: FACE_PlatformEntity.ownedAttribute The value for the ownedAttribute metaproperty must be
stereotyped «FACE_PlatformComposition» or its
specializations

FACE Profile, v2.0 – beta 1 132

FACE Conformance/OCL Constraints

C01:
FACE_PlatformEntity.characteristicsHaveUniqueRolen
ames

A FACE_PlatformCharacteristic's rolename must be
unique within a FACE_PlatformEntity.

C02:
FACE_PlatformEntity.compositionsConsistentWithRea
lization

FACE_PlatformCompositions in a
FACE_PlatformEntity must realize
FACE_LogicalCompositions in the
FACE_LogicalEntity that the FACE_PlatformEntity
realizes.

C03:
FACE_PlatformEntity.hasAtLeastOneLocalCharacterist
ic

A FACE_PlatformEntity must have at least one
FACE_PlatformCharacteristic defined locally (not
through generalization), unless the
FACE_PlatformEntity is in the "middle" of a
generalization hierarchy.

C04:
FACE_PlatformEntity.realizedCompositionsHaveDiffer
entTypes

A FACE_PlatformEntity may not contain two
FACE_PlatformCompositions that realize the same
lFACE_LogicalCompositions unless their types are
different PlatformDataTypes and their multiplicities are
equal.

C05:
FACE_PlatformEntity.specializationConsistentWithRea
lization

If a FACE_PlatformEntity specializes, its specialization
must be consistent with its realization's specialization.

FACE_PlatformParticipant
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformCharacteristic

Extension: Association

Description

A FACE_PlatformParticipant is the mechanism that allows a FACE_PlatformAssociation to be constructed between two or
more FACE_PlatformEntities. The "type" (target of the directional Association) of a platform Participant is the platform
Entity being used to construct the platform Association. Target multiplicity values represent the "sourceLowerBound" and
"sourceUpperBound" attributes that define the multiplicity of the platform Association relative to the Participant in the
UDDL metamodel. An upper multiplicity of star (*) on the target of the association is the equivalent of a
"sourceUpperBound" multiplicity of -1 (which represents an unbounded sequence) in the the UDDL metamodel. The "path"
attribute of the Participant describes the chain of entity characteristics to traverse to reach the subject of the association
beginning with the entity referenced by the "type" attribute.

FACE_PlatformParticipant Associations are directional, from a FACE_PlatformAssociation to a FACE_PlatformEntity.

 FACE Profile v2.0 – beta 1 133

Figure 7-109: FACE_PlatformParticipant

Attributes

path : String [1]

The "path" property indicates the portion of the target
«FACE_PlatformEntity» that is participating in the
«FACE_PlatformAssociation» that is the source for the
«FACE_PlatformParticipant» Association. Path strings reference
Entities or Characteristics (properties of Entities). Where the path
string references an Entity, it is considered to be a
ParticipantPathNode. Where the path string references a
Characteristic of an Entity, it is considered to be a
CharacteristicPathNode.

FACE Profile, v2.0 – beta 1 134

The UDDL metamodel defines PathNode, ParticipantPathNode and
CharacteristicPathNode as follows:
A platform PathNode is a single element in a chain that collectively
forms a path specification.
A platform ParticipantPathNode is a platform PathNode that selects
a Participant that references an Entity. This provides a mechanism
for reverse navigation from an Entity that participates in an
Association back to the Association.
A platform CharacteristicPathNode is a platform PathNode that
selects a platform Characteristic which is directly contained in a
platform Entity or Association.

The strings provided in the "path" tagged value are a representation
of the full set of Platform CharacteristicPathNode,
ParticipantPathNode, and PathNode elements in the path attribute as
specified in the UDDL Standard. The notation used for path string is
described in Section 3.6.4.1.1.3 of the Technical Standard for Future
Airborne Capability Environment (FACE™), Edition 2.1. The two
notations (elements and string) are interchangeable using a
translation algorithm. XMI exchange mechanisms between models
using the FACE Profile and the FACE XMI (face) file are required
to translate between the two notations.

realizes : FACE_LogicalParticipant [1]

_importedPathUUIDs : String [0..*]

This tag is for use by import/export plug-ins in two-way translation
of FACE 3.x paths to and from FACE 2.1 path strings. It is used to
preserve the UUIDs of the paths imported from FACE 3.x paths
when they are translated into FACE 2.1 path strings, so that they can
be reconstituted for subsequent export as FACE 3.x elements.
Because this tag is used exclusively by the plug-ins, its
implementation is optional if a tool either does not import/export
FACE format files or the tool uses an alternate means of
representing and translating FACE Paths.

Constraints

C01: FACE_PlatformParticipant.memberEnd->size() memberEnd.size() shall be 2

C02:
FACE_PlatformParticipant.memberEnd[0].isNavigable

memberEnd[0].isNavigable shall be false

C03:
FACE_PlatformParticipant.memberEnd[0].multiplicity

memberEnd[0].multiplicity shall be 1

C04: FACE_PlatformParticipant.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_PlatformAssociation»

 FACE Profile v2.0 – beta 1 135

C05:
FACE_PlatformParticipant.memberEnd[1].aggregation

memberEnd[1].aggregation shall be none

C06:
FACE_PlatformParticipant.memberEnd[1].isNavigable

memberEnd[1].isNavigable shall be true

C07: FACE_PlatformParticipant.memberEnd[1].name The memberEnd[1].name metaproperty must be an non-
empty alphanumeric name string

C08: FACE_PlatformParticipant.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_PlatformEntity»

FACE Conformance/OCL Constraints

C01:
FACE_PlatformParticipant.multiplicityConsistentWith
Realization

A FACE_PlatformParticipant's multiplicity must be at
least as restrictive as the FACE_LogicalParticipant it
realizes.

C02:
FACE_PlatformParticipant.multiplicityConsistentWith
Specialization

A FACE_PlatformParticipant's multiplicity must be at
least as restrictive as the FACE_PlatformParticipant it
specializes.

C03: FACE_PlatformParticipant.rolenameDefined A FACE_PlatformParticipant must have a rolename,
either projected from a characteristic or defined directly
on the FACE_PlatformParticipant.

C04:
FACE_PlatformParticipant.typeConsistentWithRealizat
ion

If FACE_PlatformParticipant "A" realizes
FACE_LogicalParticipant "B", then A's type must
realize B's type, and A's PathNode sequence must
"realize" B's PathNode sequence. (A PathNode
sequence "A" "realizes" a sequence "B" if the projected
element of each PathNode in A realizes the projected
element of the corresponding PathNode in B.)

FACE_PlatformQuery
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformView

Extension: Class

Description

A FACE_PlatformQuery is a specification that defines the content of FACE_PlatformView as a set of
FACE_PlatformCharacteristics projected from a selected set of related FACE_PlatformEntities. The "specification" attribute
captures the specification of a Query as defined by the data model Query grammar.

FACE Profile, v2.0 – beta 1 136

Figure 7-110: FACE_PlatformQuery

Attributes

specification : String [1]

FACE_PlatformQueryComposition
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

A FACE_PlatformQueryComposition is the mechanism that allows a FACE_PlatformCompositeQuery to be constructed
from FACE_PlatformQueries and other FACE_PlatformCompositeQueries. The "rolename" attribute defines the name of the
composed platform View within the scope of the composing platform CompositeQuery. The "type" of a

 FACE Profile v2.0 – beta 1 137

FACE_PlatformQueryComposition is the FACE_PlatformView being used to construct the
FACE_PlatformCompositeQuery.

Figure 7-111: FACE_PlatformQueryComposition

Attributes

realizes : FACE_LogicalQueryComposition [0..1]

Constraints

C01: FACE_PlatformQueryComposition.class Value for class metaproperty must be stereotyped
«FACE_PlatformCompositeQuery».

C02: FACE_PlatformQueryComposition.type Value for type metaproperty must be stereotyped
«FACE_PlatformView» or its specializations.

FACE Conformance/OCL Constraints

C01:
FACE_PlatformQueryComposition.rolenameIsValidIde
ntifier

The rolename of a FACE_PlatformQueryComposition
must be a valid identifier.

C02:
FACE_PlatformQueryComposition.typeConsistentWith
Realization

If FACE_PlatformQueryComposition "A" realizes
FACE_LogicalQueryComposition "B", then A's type
must realize B's type.

FACE_PlatformView
Package: PlatformDataModel

isAbstract: Yes

FACE Profile, v2.0 – beta 1 138

Generalization: FACE_PlatformElement

Extension: Class

Description

A FACE_PlatformView is a platform Query or a platform CompositeQuery.

Figure 7-112: abstract FACE_PlatformView

FACE_Primitive
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_PlatformDataType

Extension: Class

Description

A FACE_Primitive is a platform realization of a logical FACE_AbstractMeasurement,, and represented as a primitive data
type (e.g. Boolean, Char, Float, Double…).

Figure 7-113: abstract FACE_Primitive

 FACE Profile v2.0 – beta 1 139

FACE_Real
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_Number

Description

A FACE_Real is an abstract meta-class from which all meta-classes representing real / floating-point numbers derive.

Figure 7-114: abstract FACE_Real

FACE_Sequence
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Primitive

Description

A FACE_Sequence is used to represent a sequence of Octets. This can be used to realize a
FACE_StandardMeasurementSystem.

Figure 7-115: FACE_Sequence

Attributes

maxSize : Integer [0..1]

FACE Profile, v2.0 – beta 1 140

FACE_Short
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_Integer

Description

A FACE_Short is an integer data type that represents integer values in the range -2^15 to (2^15 - 1).

Figure 7-116: FACE_Short

FACE_String
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_StringType

Description

A FACE_String is a data type that represents a variable length sequence of Char (all 8-bit quantities except NULL). The
length is a non-negative integer, and is available at run-time. The length is not maximally bounded.

Figure 7-117: FACE_String

FACE_StringType
Package: PlatformDataModel

 FACE Profile v2.0 – beta 1 141

isAbstract: Yes

Generalization: FACE_Primitive

Description

A FACE_StringType is a representation for CharArray, BoundedString, or String.

Figure 7-118: abstract FACE_StringType

FACE_Struct
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_PlatformDataType

Extension: Class

Description

A platform FACE_Struct "realizes" a logical FACE_AbstractMeasurement in terms of FACE_Primitives and other
FACE_Structs composed of FACE_Primitives. A platform FACE_Struct's composition hierarchy is consistent with the
composition hierarchy of the logical AbstractMeasurement that it realizes. Each composed platform
FACE_PlatformDataType realizes a logical FACE_AbstractMeasurement.

Figure 7-119: FACE_Struct

FACE Profile, v2.0 – beta 1 142

Constraints

C01: FACE_Struct.ownedAttribute The values for the ownedAttribute metaproperty must
meet the following criteria:
- referenced elements must be stereotyped
«FACE_StructMember»
- must contain 2 or more elements

FACE Conformance/OCL Constraints

C01:
FACE_Struct.structMembersConsistentlyRealizeMeasu
rementAttributes

A FACE_Measurement with
FACE_MeasurementAttributes is realized by a
FACE_Struct with one FACE_StructMember per
FACE_MeasurementAttribute. (Each
FACE_StructMember (that realizes) must realize a
unique attribute in the FACE_Measurement; every
attribute must be realized.)

FACE_StructMember
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

Description

A FACE_StructMember is the mechanism that allows FACE_Structs to be constructed from other
FACE_PlatformDataTypes. The "type" property of a FACE_StructMember is the FACE_PlatformDataType being used to
construct the FACE_StructMember. If "type" is a FACE_Primitive, the precision attribute specifies a measure of the detail in
which a quantity is captured.

 FACE Profile v2.0 – beta 1 143

Figure 7-120: FACE_StructMember

Attributes

precision : Real [0..1]

realizes : FACE_MeasurementAttribute [0..1]

Constraints

C01: FACE_StructMember.class Value for the class metaproperty must be stereotyped
«FACE_Struct»

C02: FACE_StructMember.type Value for the type metaproperty must be stereotyped by
a specialization of «FACE_PlatformDataType».

FACE Conformance/OCL Constraints

C01:
FACE_StructMember.composedNumberHasPrecisionS
et

A FACE_StructMember whose type is a Number must
have a precision greater than zero.

C02:
FACE_StructMember.typeConsistentWithRealization

If a FACE_StructMember realizes a
FACE_MeasurementAttribute, then the
FACE_StructMember's type must be consistent with its
realization's type.

FACE_ULong
Package: PlatformDataModel

isAbstract: No

FACE Profile, v2.0 – beta 1 144

Generalization: FACE_UnsignedInteger

Description

A FACE_ULong is an integer data type that represents integer values in the range 0 to (2^32 - 1).

Figure 7-121: FACE_ULong

FACE_ULongLong
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_UnsignedInteger

Description

A FACE_ULongLong is an integer data type that represents integer values in the range 0 to (2^64 - 1).

Figure 7-122: FACE_ULongLong

FACE_UnsignedInteger
Package: PlatformDataModel

isAbstract: Yes

Generalization: FACE_Integer

Description

A FACE_UnsignedInteger is an abstract meta-class from which all meta-classes representing unsigned whole numbers
derive.

 FACE Profile v2.0 – beta 1 145

Figure 7-123: abstract FACE_UnsignedInteger

FACE_UShort
Package: PlatformDataModel

isAbstract: No

Generalization: FACE_UnsignedInteger

Description

A FACE_UShort is an integer data type that represents integer values in the range 0 to (2^16 - 1).

Figure 7-124: FACE_UShort

7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model

The Integration Model package of the FACE Profile contains elements that represent the Integration Model subpackage as
specified in the FACE metamodel.

FACE_IntegrationContext
Package: Integration Model

isAbstract: No

Generalization: FACE_IntegrationElement

Extension: Package

Description

A FACE_IntegrationContext is a container used to group a set of FACE_TransportNodes and FACE_TSNodeConnections
related to each other by a common, integrator defined context (e.g., collection and distribution of navigation data).

FACE Profile, v2.0 – beta 1 146

Figure 7-125: FACE_IntegrationContext

FACE_IntegrationElement
Package: Integration Model

isAbstract: Yes

Generalization: FACE_Element

Description

A FACE_IntegrationElement is the root type for defining the integration elements of the FACE_ArchitectureModel.

Figure 7-126: abstract FACE_IntegrationElement

 FACE Profile v2.0 – beta 1 147

Constraints

C01: FACE_IntegrationElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_IntegrationModel»

FACE Conformance/OCL Constraints

C01: FACE_IntegrationElement.hasUniqueName All FACE Integration Elements must have a unique
name.

FACE_TransportChannel
Package: Integration Model

isAbstract: No

Generalization: FACE_IntegrationElement

Extension: Class

Description

A FACE_TransportChannel is a place holder for an integrator supplied configuration between transport end points.

Figure 7-127: FACE_TransportChannel

FACE_TransportNode
Package: Integration Model

isAbstract: Yes

Generalization: FACE_Element

Extension: Class

FACE Profile, v2.0 – beta 1 148

Description

A FACE_TransportNode is an abstraction of a node that performs a function along a path of communication from source
FACE_UnitOfPortability (UoPs) to destination UoPs.

Figure 7-128: abstract FACE_TransportNode

Constraints

C01: FACE_TransportNode.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements stereotyped by
«FACE_IntegrationContext»

 FACE Profile v2.0 – beta 1 149

FACE Conformance/OCL Constraints

C01: FACE_TransportNode.hasCorrectInputCount A FACE_ViewSource may have no inputs.
A FACE_ViewSink, FACE_ViewFilter,
FACE_ViewTransformation, or
FACE_ViewTransporter may have one input.
A FACE_ViewAggregation may have more than one
input.

C02: FACE_TransportNode.hasCorrectOutputCount A FACE_ViewSink may have no outputs.
A FACE_ViewSource, FACE_ViewFilter,
FACE_ViewAggregation, FACE_ViewTransformation,
or FACE_ViewTransporter may have one output.

C03: FACE_TransportNode.noCycles An FACE_IntegrationContext may contain no cycles.

FACE_TSNodeConnection
Package: Integration Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: InformationFlow

Description

A FACE_TSNodeConnection represents a connection between two FACE_TransportNodes.

FACE Profile, v2.0 – beta 1 150

Figure 7-129: FACE_TSNodeConnection

Constraints

C01: FACE_TSNodeConnection.conveyed Value for the conveyed metaproperty must be
stereotyped by a specialization of
«FACE_MessageType».

C02: FACE_TSNodeConnection.informationSource The value for the informationSource metaproperty must
be stereotyped by one of the following:
«FACE_UoPOutputEndPoint»
«FACE_TSNodeOutputPort»

 FACE Profile v2.0 – beta 1 151

C03: FACE_TSNodeConnection.informationTarget The value for the informationTarget metaproperty must
be stereotyped by one of the following:
«FACE_UoPInputEndPoint»
«FACE_TSNodeInputPort»

C04: FACE_TSNodeConnection.owner Elements with this stereotype may only be contained in
(owned by) elements stereotyped by
«FACE_IntegrationContext»

FACE Conformance/OCL Constraints

C01:
FACE_TSNodeConnection.connectWithinSameContext

A FACE_TSNodeConnection may connect only
FACE_TransportNodes that are in the same
FACE_IntegrationContext as the
FACE_TSNodeConnection.

C02: FACE_TSNodeConnection.destinationIsInput A FACE_TSNodeConnection's destination must be an
input.

C03: FACE_TSNodeConnection.sourceIsOutput A FACE_TSNodeConnection's source must be an
output

C04:
FACE_TSNodeConnection.sourceViewMatchesDestina
tionView

A FACE_TSNodeConnection must use the same View
on its source and destination.

C05: FACE_TSNodeConnection.transporterOnPath There must be at least one FACE_ViewTransporter on
a path between any two FACE_UoPInstances.

FACE_TSNodeInputPort
Package: Integration Model

isAbstract: No

Generalization: FACE_TSNodePort

Description

A FACE_TSNodeInputPort is a specialization of a FACE_TSNodePort providing an endpoint which is used to input data to a
FACE_TransportNode.

FACE Profile, v2.0 – beta 1 152

Figure 7-130: FACE_TSNodeInputPort

FACE Conformance/OCL Constraints

C01: FACE_TSNodeInputPort.onlyOneConnection A FACE_TSNodeInputPort may be the destination of at
most one FACE_TSNodeConnection.

FACE_TSNodeOutputPort
Package: Integration Model

isAbstract: No

Generalization: FACE_TSNodePort

Description

A FACE_TSNodeOutputPort is a specialization of a FACE_TSNodePort providing an endpoint which is used to output data
from a FACE_TransportNode.

 FACE Profile v2.0 – beta 1 153

Figure 7-131: FACE_TSNodeOutputPort

FACE_TSNodePort
Package: Integration Model

isAbstract: Yes

Generalization: FACE_TSNodePortBase

Description

A FACE_TSNodePort is a port that provides a connection point to a FACE_TransportNode. The type property of a
FACE_TSNodePort is the FACE_UoPMessageType it references.

FACE Profile, v2.0 – beta 1 154

Figure 7-132: abstract FACE_TSNodePort

Constraints

C01: FACE_TSNodePort.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements stereotyped by «FACE_TransportNode»

FACE_TSNodePortBase
Package: Integration Model

isAbstract: Yes

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_TSNodePortBase is a port that can be used to connect a FACE_TransportNode and a FACE_UoPEndPoint together
using a FACE_TSNodeConnection.

 FACE Profile v2.0 – beta 1 155

Figure 7-133: abstract FACE_TSNodePortBase

FACE Conformance/OCL Constraints

C01: FACE_TSNodePortBase.isConnected A FACE_TSNodePortBase must be connected by a
FACE_TSNodeConnection.

FACE_UoPEndPoint
Package: Integration Model

isAbstract: Yes

Generalization: FACE_TSNodePortBase

Description

A FACE_UoPEndPoint is a specialization of aFACE_ TSNodePortBase that allows connections in a UoPInstance to be part
of a FACE_TSNodeConnection. This supports connecting FACE_UnitOfPortability (UoP) input and output end points to
each other and to transport node input and output ports.

FACE Profile, v2.0 – beta 1 156

Figure 7-134: abstract FACE_UoPEndPoint

Constraints

C01: FACE_UoPEndPoint.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements stereotyped by «FACE_UoPInstance»

FACE_UoPInputEndPoint
Package: Integration Model

isAbstract: No

Generalization: FACE_UoPEndPoint

Description

A FACE_UoPInputEndPoint is a specialization of a FACE_UoPEndPoint providing an endpoint which is used to input data
to a FACE_UnitOfPortability (UoP).

 FACE Profile v2.0 – beta 1 157

Figure 7-135: FACE_UoPInputEndPoint

FACE Conformance/OCL Constraints

C01: FACE_UoPInputEndPoint.onlyOneConnection A FACE_UoPInputEndPoint's may be the destination
of at most one TSNodeConnection.

C02:
FACE_UoPInputEndPoint.uoPEndPointConsistentWith
Realization

A FACE_UoPInputEndPoint's connection may be either
a FACE_ClientServerConnection or a
FACE_PubSubConnection whose
messageExchangeType is OutboundMessage.

FACE_UoPInstance
Package: Integration Model

isAbstract: No

Generalization: FACE_IntegrationElement

Extension: Class

Description

A FACE_UoPInstance represents an instance of a specific FACE_UnitOfPortability (UoP) within the system bounded by an
integration model. An integration model can contain multiple instances of the same UoP.

FACE Profile, v2.0 – beta 1 158

Figure 7-136: FACE_UoPInstance

Attributes

configurationURI : String [0..1]

FACE Conformance/OCL Constraints

C01:
FACE_UoPInstance.endPointsConsistentWithRealizati
on

If a FACE_UoPInstance "A" realizes a
FACE_UnitOfPortability "B", then A must have one
unique FACE_UoPEndPoint that realizes each of B's
FACE_PubSubConnections, one unique
FACE_UoPInputEndPoint that realizes each of B's
FACE_ClientServerConnections, and one
FACE_UoPOutputEndPoint that realizes each of B's
FACE_ClientServerConnections. A
FACE_UoPInstance may have no additional
FACE_UoPEndPoints.

 FACE Profile v2.0 – beta 1 159

FACE_UoPOutputEndPoint
Package: Integration Model

isAbstract: No

Generalization: FACE_UoPEndPoint

Description

A FACE_UoPOutputEndPoint is a specialization of a FACE_UoPEndPoint providing an endpoint which is used to output
data from a FACE_UnitOfPortability (UoP).

Figure 7-137: FACE_UoPOutputEndPoint

FACE Conformance/OCL Constraints

C01:
FACE_UoPOutputEndPoint.uoPEndPointConsistentWi
thRealization

A FACE_UoPInputEndPoint's connection may be either
a FACE_ClientServerConnection or a
FACE_PubSubConnection whose
messageExchangeType is InboundMessage.

FACE_ViewAggregation
Package: Integration Model

isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewAggregation represents of an instance of aggregation of data from multiple incoming views into a single
outgoing view type, including transformation of input data to that required by the output view type.

FACE Profile, v2.0 – beta 1 160

Figure 7-138: FACE_ViewAggregation

FACE_ViewFilter
Package: Integration Model

isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewFilter represents of an instance of a filter of data allowing a view to either pass through a filter, or to be
filtered out (i.e., not passed through). A FACE_ViewFilter performs no transformation of data.

Figure 7-139: FACE_ViewFilter

FACE Conformance/OCL Constraints

C01: FACE_ViewFilter.viewIsConsistent A FACE_ViewFilter must use the same
FACE_PlatformView on its input and output.

FACE_ViewSink
Package: Integration Model

isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewSink is a FACE_TransportNode that only receives a View.

 FACE Profile v2.0 – beta 1 161

Figure 7-140: FACE_ViewSink

FACE Conformance/OCL Constraints

C01:
FACE_ViewSink.viewSinkConnectedToUoPOutputEn
dPoint

A FACE_ViewSink may only be connected to a
FACE_UoPOutputEndPoint.

FACE_ViewSource
Package: Integration Model

isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewSource is a TransportNode that only provides a View.

Figure 7-141: FACE_ViewSource

FACE Conformance/OCL Constraints

C01:
FACE_ViewSource.viewSourceConnectedToUoPInput
EndPoint

A FACE_ViewSource may only be connected to a
FACE_UoPInputEndPoint.

FACE_ViewTransformation
Package: Integration Model

isAbstract: No

FACE Profile, v2.0 – beta 1 162

Generalization: FACE_TransportNode

Description

A FACE_ViewTransformation represents an instance of transformation of data from one view type to another.

Figure 7-142: FACE_ViewTransformation

FACE_ViewTransporter
Package: Integration Model

isAbstract: No

Generalization: FACE_TransportNode

Description

A FACE_ViewTransporter represents the use of a TransportChannel with the intent of moving a view over it.

Figure 7-143: FACE_ViewTransporter

Attributes

channel : FACE_TransportChannel [1]

 FACE Profile v2.0 – beta 1 163

FACE Conformance/OCL Constraints

C01: FACE_ViewTransporter.viewIsConsistent A FACE_ViewTransporter must use the same
FACE_PlatformView on its input and output.

7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Model

The Traceability Model package of the FACE Profile contains elements that represent the Traceability Model subpackage as
specified in the FACE metamodel.

FACE_ConceptualEntityTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a
Conceptual Entity in the Data Model that has a traceability relationship to some other model.

Figure 7-144: FACE_ConceptualEntityTrace

FACE_ConceptualViewTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a
Conceptual View in the Data Model that has a traceability relationship to some other model.

FACE Profile, v2.0 – beta 1 164

Figure 7-145: FACE_ConceptualViewTrace

FACE_ConnectionTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_ConnectionTraceabilitySet elements to their associated FACE_Connections.

 FACE Profile v2.0 – beta 1 165

Figure 7-146: FACE_ConnectionTrace

Constraints

C01: FACE_ConnectionTrace.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by
«FACE_ConnectionTraceabilitySet».

C02:
FACE_ConnectionTrace.memberEnd[1].aggregation

memberEnd[1].aggregation shall be none

C03:
FACE_ConnectionTrace.memberEnd[1].multiplicity

memberEnd[1].multiplicity shall be 0..*

FACE Profile, v2.0 – beta 1 166

C04: FACE_ConnectionTrace.memberEnd[1].name Based on the stereotype of the memberEnd[1].type
metaproperty:
= specialization of «FACE_Connection»,
memberEnd[1].name is "Connection"
= «FACE_AbstractConnection», memberEnd[1].name
is "abstractConnection"

C05: FACE_ConnectionTrace.memberEnd[1].type The value for the memberEnd[1].type metaproperty
must be stereotyped by one of the following:
A specialization of «FACE_Connection»
«FACE_AbstractConnection»

FACE_ConnectionTraceabilitySet
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceabilityElement, FACE_TraceableElement

Extension: Class

Description

A FACE_ConnectionTraceabilitySet is used to relate a set of FACE_Connections and/or FACE_AbstractConnections to a set
of FACE_TraceabilityPoints.

Figure 7-147: FACE_ConnectionTraceabilitySet

 FACE Profile v2.0 – beta 1 167

FACE_ElementTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect Traceable Elements to Traceability Points.

Figure 7-148: FACE_ElementTrace

Constraints

C01: FACE_ElementTrace.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by a specialization of
«FACE_TraceableElement».

FACE Profile, v2.0 – beta 1 168

C02: FACE_ElementTrace.memberEnd[1].aggregation memberEnd[1].aggregation shall be composite

C03: FACE_ElementTrace.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 0..*

C04: FACE_ElementTrace.memberEnd[1].name memberEnd[1].name shall be "traceabilityPoint"

C05: FACE_ElementTrace.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_TraceabilityPoint».

FACE_LogicalEntityTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Logical
Entity in the Data Model that has a traceability relationship to some other model.

Figure 7-149: FACE_LogicalEntityTrace

FACE_LogicalViewTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

 FACE Profile v2.0 – beta 1 169

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Logical
View in the Data Model that has a traceability relationship to some other model.

Figure 7-150: FACE_LogicalViewTrace

FACE_PlatformEntityTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Platform
Entity in the Data Model that has a traceability relationship to some other model.

Figure 7-151: FACE_PlatformEntityTrace

FACE_PlatformViewTrace
Package: Traceability Model

FACE Profile, v2.0 – beta 1 170

isAbstract: No

Generalization: FACE_TraceableElement, FACE_TraceabilityElement

Extension: Class

Description

Because the Data Model (based on UDDL) may not reference any FACE elements, this element exists to identify a Platform
View in the Data Model that has a traceability relationship to some other model.

Figure 7-152: FACE_PlatformViewTrace

FACE_TraceabilityElement
Package: Traceability Model

isAbstract: Yes

Generalization: FACE_Element

Description

A FACE_TraceabilityElement is the root type for defining the FACE_TraceabilityElements of the FACE Architecture
Model.

Figure 7-153: abstract FACE_TraceabilityElement

 FACE Profile v2.0 – beta 1 171

Constraints

C01: FACE_TraceabilityElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_TraceabilityModel»

FACE Conformance/OCL Constraints

C01: FACE_TraceabilityElement.hasUniqueName All FACE Traceability Elements must have a unique
name.

FACE_TraceabilityPoint
Package: Traceability Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_TraceabilityPoint is used to document the relationship between a FACE_TraceableElement and an external model.
The "reference" attribute is a reference to the external model. The "rationale" attribute is used to document the reasoning
behind the Trace.

Figure 7-154: FACE_TraceabilityPoint

Attributes

rationale : String [0..1]

reference : String [0..1]

FACE Profile, v2.0 – beta 1 172

FACE_TraceableElement
Package: Traceability Model

isAbstract: Yes

Extension: Element

Description

A FACE_TraceableElement is used to capture traceability to other models.

Figure 7-155: abstract FACE_TraceableElement

FACE_TraceEntity
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_xxxEntityTraces elements to their associated data model entities.

 FACE Profile v2.0 – beta 1 173

Figure 7-156: FACE_TraceEntity

Constraints

C01: FACE_DMEntityTraceAssoc.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:
«FACE_ConceptualEntityTrace»
«FACE_LogicalEntityTrace»
«FACE_PlatformEntityTrace»

C02:
FACE_DMEntityTraceAssoc.memberEnd[1].aggregati
on

memberEnd[1].aggregation shall be none

FACE Profile, v2.0 – beta 1 174

C03:
FACE_DMEntityTraceAssoc.memberEnd[1].multiplici
ty

memberEnd[1].multiplicity shall be 1

C04:
FACE_DMEntityTraceAssoc.memberEnd[1].name

memberEnd[1].name is "entity"

C05: FACE_DMEntityTraceAssoc.memberEnd[1].type Based on the memberEnd[0].type value's stereotype:
= «FACE_ConceptualEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_ConceptualEntity»
= «FACE_LogicalEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_LogicalEntity»
= «FACE_PlatformEntityTrace», the
memberEnd[1].type metaproperty must be stereotyped
by «FACE_PlatformEntity»

FACE_TraceView
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_xxxViewTraces elements to their associated data model Views.

 FACE Profile v2.0 – beta 1 175

Figure 7-157: FACE_TraceView

Constraints

C01: FACE_DMViewTraceAssoc.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by one of the following:
«FACE_ConceptualViewTrace»
«FACE_LogicalViewTrace»
«FACE_PlatformViewTrace»

FACE Profile, v2.0 – beta 1 176

C02:
FACE_DMViewTraceAssoc.memberEnd[1].aggregatio
n

memberEnd[1].aggregation shall be none

C03:
FACE_DMViewTraceAssoc.memberEnd[1].multiplicit
y

memberEnd[1].multiplicity shall be 1

C04: FACE_DMViewTraceAssoc.memberEnd[1].name memberEnd[1].name is "view"

C05: FACE_DMViewTraceAssoc.memberEnd[1].type Based on the memberEnd[0].type value's stereotype:
= «FACE_ConceptualViewTrace», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «FACE_ConceptualView»
= «FACE_LogicalViewTrace», the memberEnd[1].type
metaproperty must be stereotyped by a specialization of
«FACE_LogicalView»
= «FACE_PlatformViewTrace», the
memberEnd[1].type metaproperty must be stereotyped
by a specialization of «FACE_PlatformView»

FACE_UoPTrace
Package: Traceability Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to connect FACE_UoPTraceabilitySets to their associated FACE_UnitOfPortability (UoPs).

 FACE Profile v2.0 – beta 1 177

Figure 7-158: FACE_UoPTrace

Constraints

C01: FACE_UoPTrace.memberEnd[0].type The value for the memberEnd[0].type metaproperty
must be stereotyped by «FACE_UoPTraceabilitySet».

C02: FACE_UoPTrace.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_UoPTrace.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 0..*

C04: FACE_UoPTrace.memberEnd[1].name memberEnd[1].name shall be "uop"

C05: FACE_UoPTrace.memberEnd[1].type The value for the memberEnd[1].type metaproperty
must be stereotyped by «FACE_UnitOfPortability».

FACE_UoPTraceabilitySet
Package: Traceability Model

FACE Profile, v2.0 – beta 1 178

isAbstract: No

Generalization: FACE_TraceabilityElement, FACE_TraceableElement

Extension: Class

Description

A FACE_UoPTraceabilitySet is used to relate a set of FACE_UnitOfPortability (UoPs) and/or FACE_AbstractUoPs to a set
of FACE_TraceabilityPoints.

Figure 7-159: FACE_UoPTraceabilitySet

7.1.1.4 FACE_Profile::FACE Data Architecture::UoP Model

The UoP Model package of the FACE Profile contains elements that represent the UoP Model subpackage as specified in the
FACE metamodel.

FACE_AbstractConnection
Package: UoP Model

isAbstract: No

Generalization: FACE_Element, FACE_TraceableElement

Extension: Class

Description

A FACE_AbstractConnection captures the input and output characteristics of a FACE_AbstractUoP by specifying data at a
Logical or Conceptual level.

 FACE Profile v2.0 – beta 1 179

Figure 7-160: FACE_AbstractConnection

FACE Profile, v2.0 – beta 1 180

Constraints

C01: FACE_AbstractConnection.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_AbstractUoP»

FACE_AbstractUoP
Package: UoP Model

isAbstract: No

Generalization: FACE_UoPElement, FACE_TraceableElement

Extension: Class

Description

A FACE_AbstractUoP is used to capture the logical specification of a FACE_UnitOfPortability (UoP).

Figure 7-161: FACE_AbstractUoP

FACE Conformance/OCL Constraints

C01:
FACE_AbstractUoP.onlyLogicalOrOnlyConceptual

A FACE_AbstractUoP must be entirely logical or
entirely conceptual. (Its AbstractConnections all have
their logicalView set and conceptualView not set or all
have their conceptualView set and logicalView not set.)

 FACE Profile v2.0 – beta 1 181

FACE_AbstractView
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify the FACE conceptual and FACE_LogicalViews that express the data exchanges for
FACE_AbstractConnection components.

Figure 7-162: FACE_AbstractView

Constraints

C01: FACE_AbstractView.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_AbstractConnection».

FACE Profile, v2.0 – beta 1 182

C02: FACE_AbstractView.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_AbstractView.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 0..1

C04: FACE_AbstractView.memberEnd[1].name Based on the stereotype of the memberEnd[1].type
metaproperty:
= Specialization of «FACE_ConceptualView»,
memberEnd[1].name is "conceptualView"
= Specialization of «FACE_LogicalView»,
memberEnd[1].name is "logicalView"

C05: FACE_AbstractView.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by one of the following:
Specialization of «FACE_ConceptualView»
Specialization of «FACE_LogicalView»

FACE_BackingComponent
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

The FACE_BackingComponent identifies the FACE_SupportingComponents that are required for a
FACE_UnitOfPortability.

 FACE Profile v2.0 – beta 1 183

Figure 7-163: FACE_BackingComponent

Constraints

C01: FACE_BackingComponent.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_UnitOfPortability».

C02:
FACE_BackingComponent.memberEnd[1].aggregation

memberEnd[1].aggregation shall be none

C03:
FACE_BackingComponent.memberEnd[1].multiplicity

memberEnd[1].multiplicity shall be 0..*

C04: FACE_BackingComponent.memberEnd[1].name memberEnd[1].name shall be "supportingComponent"

C05: FACE_BackingComponent.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_SupportingComponent».

FACE_BoundQuery
Package: UoP Model

isAbstract: No

FACE Profile, v2.0 – beta 1 184

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to relate a FACE Template view with the underlying FACE query that is its specification.

Figure 7-164: FACE_BoundQuery

Constraints

C01: FACE_BoundQuery.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_Template».

C02: FACE_BoundQuery.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_BoundQuery.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 0..1

C04: FACE_BoundQuery.memberEnd[1].name memberEnd[1].name shall be "boundQuery"

 FACE Profile v2.0 – beta 1 185

C05: FACE_BoundQuery.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_PlatformQuery».

FACE_ClientServerConnection
Package: UoP Model

isAbstract: No

Generalization: FACE_Connection

Description

A FACE_ClientServerConnection is a Request/Reply Connection as defined in Section 4.7 of the FACE Technical Standard.

Figure 7-165: FACE_ClientServerConnection

Attributes

role : FACE_ClientServerRoleEnum [1]

FACE_ClientServerRoleEnum
Package: UoP Model

isAbstract: No

FACE Profile, v2.0 – beta 1 186

Description

Indicates the component role in a Client/Server communication pattern. Its enumeration literals are:
Client -
Server -

Figure 7-166: FACE_ClientServerRoleEnum

FACE_ComponentFramework
Package: UoP Model

isAbstract: No

Generalization: FACE_SupportingComponent

Extension: Class

Description

A FACE_ComponentFramework is a component framework as defined in Section 4.2.4 of the FACE Technical Standard.

Figure 7-167: FACE_ComponentFramework

FACE_ComponentTypeEnum
Package: UoP Model

isAbstract: No

Description

Indicates the FACE-Specific component type of the component. Its enumeration literals are:
PortableComponent -
PlatformSpecificComponent -

 FACE Profile v2.0 – beta 1 187

Figure 7-168: FACE_ComponentTypeEnum

FACE_CompositeTemplate
Package: UoP Model

isAbstract: No

Generalization: FACE_UoPMessageType

Extension: Class

Description

A FACE_CompositeTemplate is a collection of two or more FACE_Templates. The "isUnion" attribute specifies whether the
composed Templates are to be represented as cases in an IDL union or as members of an IDL struct.

Figure 7-169: FACE_CompositeTemplate

Attributes

isUnion : Boolean [1]

FACE Profile, v2.0 – beta 1 188

Constraints

C01: FACE_CompositeTemplate.ownedAttribute The values for the ownedAttribute metaproperty must
meet the following criteria:
- must be ordered list
- referenced elements must be stereotyped
«FACE_TemplateComposition» or its specializations
- must contain 2 or more elements

FACE Conformance/OCL Constraints

C01:
FACE_CompositeTemplate.compositionsConsistentWit
hRealization

FACE_TemplateCompositions in a platform
FACE_CompositeTemplate must realize
FACE_QueryCompositions in the
FACE_LogicalCompositeQuery that the platform
FACE_CompositeTemplate realizes.

C02:
FACE_CompositeTemplate.compositionsHaveUniqueR
olenames

A FACE_TemplateComposition's rolename must be
unique within a FACE_CompositeTemplate.

C03:
FACE_CompositeTemplate.noCyclesInConstruction

A FACE_CompositeTemplate must not compose itself,
directly or indirectly.

C04:
FACE_CompositeTemplate.realizationUnionConsistent

A FACE_CompositeTemplate that realizes must have
the same "isUnion" property as the
FACE_CompositeQuery it realizes.

C05:
FACE_CompositeTemplate.realizedCompositionsHave
DifferentTypes

A FACE_CompositeTemplate may not contain two
FACE_TemplateCompositions that realize the same
FACE_QueryComposition.

C06: FACE_CompositeTemplate.viewComposedOnce A FACE_CompositeTemplate must not compose the
same FACE_Template more than once.

FACE_Connection
Package: UoP Model

isAbstract: Yes

Generalization: FACE_Element, FACE_TraceableElement

Extension: Class

Description

A FACE_Connection is a communication endpoint on a FACE_UnitOfPortability (UoP). A FACE_Connection is either a
Publisher, Subscriber, Client, or Server. The metatype's "type" attribute represents the FACE "messageType" attribute that

 FACE Profile v2.0 – beta 1 189

specifies the FACE_MessageType that is transmitted through the endpoint. If "period" is not specified, the endpoint is
aperiodic. If "period" is specified, the value is the period of the endpoint in seconds.

Figure 7-170: abstract FACE_Connection

Attributes

period : Real [1]

synchronizationStyle : FACE_SynchronizationStyleEnum [1]

Constraints

C01: FACE_Connection.owner Elements that are stereotyped by specializations of this
stereotype may only be contained in (owned by)
elements with the stereotype
«FACE_UnitOfPortability»

FACE Profile, v2.0 – beta 1 190

FACE Conformance/OCL Constraints

C01: FACE_Connection.realizationTypeConsistent If a FACE_Connection realizes an
FACE_AbstractConnection, its requestType or
responseType or both (for
FACE_ClientServerConnections) or its messageType
(for FACE_PubSubConnections) must realize either the
FACE_AbstractConnection's logicalView or a logical
View that must realize the FACE_AbstractConnection's
conceptualView.

FACE_DesignAssuranceLevelEnum
Package: UoP Model

isAbstract: No

Description

Indicates the safety and hazard Design Assurance Level (DAL) assigned to a component. Its enumeration literals are:
A -
B -
C -
D -
E -

Figure 7-171: FACE_DesignAssuranceLevelEnum

FACE_DesignAssuranceStandardEnum
Package: UoP Model

isAbstract: No

Description

Indicates the FACE-pertinent safety-critical Design Assurance Standard that applies to a component. Its enumeration literals
are:

DO_178B_ED_12B -
DO_178C_ED_12C -

 FACE Profile v2.0 – beta 1 191

Figure 7-172: FACE_DesignAssuranceStandardEnum

FACE_EffectiveQuery
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

A FACE_EffectiveQuery is a Query that can produce the desired or intended data needed to develop the Platform
FACE_Template data structures. Effective Queries are used as an optional notational reference for the modeler to help when
a FACE_Template is utilizing other FACE_Templates and the resulting Query may be a complex combination of
FACE_BoundQueries.

FACE Profile, v2.0 – beta 1 192

Figure 7-173: FACE_EffectiveQuery

Constraints

C01: FACE_EffectiveQuery.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_Template».

C02:
FACE_EffectiveQuery.memberEnd[1].aggregation

memberEnd[1].aggregation shall be none

C03:
FACE_EffectiveQuery.memberEnd[1].multiplicity

memberEnd[1].multiplicity shall be 0..1

C04: FACE_EffectiveQuery.memberEnd[1].name memberEnd[1].name shall be "effectiveQuery"

C05: FACE_EffectiveQuery.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_PlatformQuery».

 FACE Profile v2.0 – beta 1 193

FACE_LanguageRunTime
Package: UoP Model

isAbstract: No

Generalization: FACE_SupportingComponent

Extension: Class

Description

A FACE_LanguageRunTime is a language run-time as defined in Section 4.2.3 of the FACE Technical Standard.

Figure 7-174: FACE_LanguageRunTime

FACE_LifeCycleManagementPort
Package: UoP Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_LifeCycleManagementPort is used to define the life-cycle interface for the component. The
"messageExchangeType" attribute defines the direction of the life-cycle message relative to the FACE_UnitOfPortability
(UoP).

FACE Profile, v2.0 – beta 1 194

Figure 7-175: FACE_LifeCycleManagementPort

Attributes

messageExchangeType : FACE_MessageExchangeTypeEnum [1]

Constraints

C01: FACE_LifeCycleManagementPort.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_MessageExchangeTypeEnum
Package: UoP Model

isAbstract: No

Description

The FACE_MessageExchangeTypeEnum enumeration captures the options for the message exchange type of a
FACE_UnitOfPortability (UoP) port as defined by the TS Interface. Its enumeration literals are:

InboundMessage -
OutboundMessage -

 FACE Profile v2.0 – beta 1 195

Figure 7-176: FACE_MessageExchangeTypeEnum

FACE_PartitionTypeEnum
Package: UoP Model

isAbstract: No

Description

The FACE_PartitionTypeEnum enumeration captures the OS API types for a FACE_UnitOfPortability (UoP) as defined by
the FACE Operating System Segment (OSS). Its enumeration literals are:

POSIX -
ARINC653 -

Figure 7-177: FACE_PartitionTypeEnum

FACE_ProfileEnum
Package: UoP Model

isAbstract: No

Description

The FACE_FaceProfileEnum enumeration captures the OS API subsets for a FACE_UnitOfPortability (UoP) as defined by
the Operating System Segment (OSS). Its enumeration literals are:

GeneralPurpose -
Security -
SafetyBase -
SafetyExtended -

FACE Profile, v2.0 – beta 1 196

Figure 7-178: FACE_ProfileEnum

FACE_ProgrammingLanguageEnum
Package: UoP Model

isAbstract: No

Description

The FACE_ProgrammingLanguageEnum enumeration captures the options for programming language API bindings as
defined by Section 4.14 of the FACE Technical Standard. Its enumeration literals are:

C -
CPP -
Java -
Ada -

Figure 7-179: FACE_ProgrammingLanguageEnum

FACE_PubSubConnection
Package: UoP Model

isAbstract: Yes

Generalization: FACE_Connection

Description

A FACE_PubSubConnection is a FACE_QueuingConnection or a FACE_SingleInstanceMessageConnection. The
messageExchangeType attribute defines the direction of the message relative to the FACE_UnitOfPortability (UoP).

 FACE Profile v2.0 – beta 1 197

Figure 7-180: abstract FACE_PubSubConnection

Attributes

messageExchangeType : FACE_MessageExchangeTypeEnum [1]

FACE_QueuingConnection
Package: UoP Model

isAbstract: No

Generalization: FACE_PubSubConnection

Description

A FACE_QueuingConnection is a FACE_PubSubConnection that supports buffering/queuing as defined in Section 4.8 of the
FACE Technical Standard.

Figure 7-181: FACE_QueuingConnection

Attributes

depth : Integer [1]

FACE Profile, v2.0 – beta 1 198

FACE Conformance/OCL Constraints

C01: FACE_QueuingConnection.depthValid A FACE_QueuingConnection's queue depth must be
greater than zero.

FACE_RAMMemoryRequirements
Package: UoP Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_RAMMemoryRequirements defines memory resources required by a FACE_UnitOfPortability (UoP).

Figure 7-182: FACE_RAMMemoryRequirements

Attributes

bssMax : Integer [0..1]

dataMax : Integer [0..1]

heapStackMax : Integer [0..1]

heapStackMin : Integer [0..1]

heapStackTypical : Integer [0..1]

 FACE Profile v2.0 – beta 1 199

roDataMax : Integer [0..1]

textMax : Integer [0..1]

Constraints

C01: FACE_RAMMemoryRequirements.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_RequestView
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify the FACE_PlatformView that specifies the request message for a FACE Client/Server connection.

FACE Profile, v2.0 – beta 1 200

Figure 7-183: FACE_RequestView

Constraints

C01: FACE_RequestView.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_ClientServerConnection».

C02: FACE_RequestView.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_RequestView.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 1

C04: FACE_RequestView.memberEnd[1].name memberEnd[1].name shall be "requestType"

 FACE Profile v2.0 – beta 1 201

C05: FACE_RequestView.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_MessageType».

FACE_ResponseView
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

Used to identify the FACE_PlatformView that specifies the expected response message for a FACE Client/Server
connection.

Figure 7-184: FACE_ResponseView

FACE Profile, v2.0 – beta 1 202

Constraints

C01: FACE_ResponseView.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_ClientServerConnection».

C02: FACE_ResponseView.memberEnd[1].aggregation memberEnd[1].aggregation shall be none

C03: FACE_ResponseView.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 1

C04: FACE_ResponseView.memberEnd[1].name memberEnd[1].name shall be "responseType"

C05: FACE_ResponseView.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by a specialization of
«FACE_MessageType».

FACE_SingleInstanceMessageConnection
Package: UoP Model

isAbstract: No

Generalization: FACE_PubSubConnection

Description

A FACE_SingleInstanceMessageConnection is a FACE_PubSubConnection that supports single instance messaging as
defined in Section 4.8 of the FACE Technical Standard.

Figure 7-185: FACE_SingleInstanceMessageConnection

FACE_SupportingComponent
Package: UoP Model

isAbstract: Yes

Generalization: FACE_UoPElement

Extension: Class

 FACE Profile v2.0 – beta 1 203

Description

A FACE_SupportingComponent is a LanguageRunTime or ComponentFramework. The version attribute is the version of the
FACE_SupportingComponent.

Figure 7-186: abstract FACE_SupportingComponent

Attributes

version : String [1]

FACE_SynchronizationStyleEnum
Package: UoP Model

isAbstract: No

Description

The FACE_SynchronizationStyleEnum enumeration captures the options for the synchronization style of a
FACE_UnitOfPortability (UoP) port as defined by the Transport Services (TS) Interface. Its enumeration literals are:

Blocking -
NonBlocking -

Figure 7-187: FACE_SynchronizationStyleEnum

FACE_Template
Package: UoP Model

FACE Profile, v2.0 – beta 1 204

isAbstract: No

Generalization: FACE_UoPMessageType

Extension: Class

Description

A FACE_Template is a specification that defines a structure for Characteristics projected by its "boundQuery" or its
"effectiveQuery". The "specification" attribute captures the specification of a Template as defined by the Template grammar
in Appendix J.4 of the FACE Technical Standard.

Figure 7-188: FACE_Template

Attributes

specification : String [1]

FACE_TemplateComposition
Package: UoP Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Property

 FACE Profile v2.0 – beta 1 205

Description

A FACE_TemplateComposition is the mechanism that allows a FACE_CompositeTemplate to be constructed from
FACE_Templates and other FACE_CompositeTemplates. The "name" property represents the "rolename" attribute that
defines the name of the composed platform View within the scope of the composing CompositeTemplate. The “type” of a
TemplateComposition is the platform View being used to construct the CompositeTemplate.

Figure 7-189: FACE_TemplateComposition

Attributes

realizes : FACE_LogicalQueryComposition [0..1]

Constraints

C01: FACE_TemplateComposition.class Value for class metaproperty must be stereotyped
«FACE_CompositeTemplate».

C02: FACE_TemplateComposition.type Value for type metaproperty must be stereotyped
«FACE_MessageType» or its specializations.

FACE Conformance/OCL Constraints

C01:
FACE_TemplateComposition.rolenameIsNotReserved
Word

The rolename of a FACE_TemplateComposition may
not be an IDL reserved word.

C02:
FACE_TemplateComposition.rolenameIsValidIdentifie
r

The rolename of a FACE_TemplateComposition must
be a valid identifier.

FACE Profile, v2.0 – beta 1 206

C03:
FACE_TemplateComposition.typeConsistentWithReali
zation

If FACE_TemplateComposition "A" realizes
FACE_LogicalQueryComposition "B", then if A's type
is a FACE_CompositeTemplate, then A's type must
realize B's type, and if A's type is a FACE_Template
and defines an effectiveQuery, then A's type's
effectiveQuery must realize B's type.

FACE_Thread
Package: UoP Model

isAbstract: No

Generalization: FACE_ModelElement

Extension: Class

Description

A FACE_Thread defines the properties for the scheduling of a thread.

Figure 7-190: FACE_Thread

Attributes

period : Real [1]

relativeCoreAffinity : Integer [1]

relativePriority : Integer [1]

threadType : FACE_ThreadTypeEnum [1]

timeCapacity : Real [1]

 FACE Profile v2.0 – beta 1 207

Constraints

C01: FACE_Thread.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfPortability»

FACE_ThreadTypeEnum
Package: UoP Model

isAbstract: No

Description

Indicates the thread runtime foreground/background characteristic for a component. Its enumeration literals are:
Foreground -
Background -

Figure 7-191: FACE_ThreadTypeEnum

FACE_UnitOfPortability
Package: UoP Model

isAbstract: No

Generalization: FACE_UoPElement, FACE_TraceableElement

Extension: Class

Description

A FACE_UnitOfPortability is a PlatformSpecificComponent or PortableComponent.

FACE Profile, v2.0 – beta 1 208

Figure 7-192: FACE_UnitOfPortability

Attributes

componentType : FACE_ComponentTypeEnum [1]

designAssuranceLevel : FACE_DesignAssuranceLevelEnum [0..1]

 FACE Profile v2.0 – beta 1 209

designAssuranceStandard : FACE_DesignAssuranceStandardEnum
[0..1]

faceProfile : FACE_ProfileEnum [1]

partitiontype : FACE_PartitionTypeEnum [1]

transportAPILanguage : FACE_ProgrammingLanguageEnum [1]

FACE Conformance/OCL Constraints

C01:
FACE_UnitOfPortability.connectionsConsistentWithU
oPRealization

If a FACE_UnitOfPortability "A" realizes a
FACE_AbstractUoP "B", then A and B must have the
same number of connections, and every
FACE_Connection in A must realize a unique
FACE_AbstractConnection in B.
If a FACE_UnitOfPortability does not realize a
FACE_AbstractUoP, none of its FACE_Connections
may realize.

FACE_UoPElement
Package: UoP Model

isAbstract: Yes

Generalization: FACE_Element

Description

A FACE_UoPElement is the root type for defining the component elements of the UoPMode lthe FACE ArchitectureModel.

Figure 7-193: abstract FACE_UoPElement

FACE Profile, v2.0 – beta 1 210

Constraints

C01: FACE_UoPElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_UoPModel»

FACE Conformance/OCL Constraints

C01: FACE_UoPElement.hasUniqueName All FACE UoP Elements must have a unique name.

FACE_UoPMessageType
Package: UoP Model

isAbstract: Yes

Generalization: FACE_UoPElement, FACE_TraceableElement

Extension: Class

Description

A UoP Message Type is a UoP Template or a UoP CompositeTemplate.

Figure 7-194: abstract FACE_UoPMessageType

FACE Conformance/OCL Constraints

C01:
FACE_UoPMessageType.nameIsNotReservedWord

A UoP's Message name may not be an IDL reserved
word.

FACE_UoPResource
Package: UoP Model

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

 FACE Profile v2.0 – beta 1 211

Description

Used to identify system requirements for FACE_UnitOfPortability (UoP) components.

Figure 7-195: FACE_UoPResource

Constraints

C01: FACE_UoPResource.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_UnitOfPortability».

C02: FACE_UoPResource.memberEnd[1].aggregation memberEnd[1].aggregation shall be composite

FACE Profile, v2.0 – beta 1 212

C03: FACE_UoPResource.memberEnd[1].multiplicity Based on the EndPoint.memberEnd[1].type value's
stereotype:
= «FACE_RAMMemoryRequirements»,
memberEnd[1].multiplicity must be 1
= «FACE_Thread», memberEnd[1].multiplicity must
be 1..*

C04: FACE_UoPResource.memberEnd[1].name Based on the EndPoint.memberEnd[1].type value's
stereotype:
= «FACE_RAMMemoryRequirements»,
memberEnd[1].name must be "memoryRequirements"
= «FACE_Thread», memberEnd[1].name must be
"thread"

C05: FACE_UoPResource.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by one of the following:
«FACE_RAMMemoryRequirements»
«FACE_Thread»

7.1.2 FACE_Profile::FACE_Extended_Stereotypes
This package contains stereotypes for elements not found in the FACE metamodel, but supplement the FACE metamodel
with elements that recognize the larger context of a system-of-systems. The supplemental elements either represent FACE
segments that are not explicitly represented in the FACE metamodel or provide connection between FACE Components and
other components of the system-of-systems.

FACE_IOEndpoint
Package: FACE_Extended_Stereotypes

isAbstract: No

Generalization: FACE_AbstractAssociation

Extension: Association

Description

The FACE standard states that Platform-Specific Services Segment (PSSS) Components may exchange information with the
Input-Output Segment (IOS) Components, but the FACE metamodel does not include a mechanism to express the
connection. This association provides additional connections through FACE_UnitOfConformanceEndpoint elements through
which PSSS FACE_UnitOfPortability elements may exchange information with IOS FACE_UnitOfConformance
components elements.

 FACE Profile v2.0 – beta 1 213

In addition to aggregation and multiplicity specifications on memberEnd[1], this association differs from the default
FACE_AbstractAssociation in that it is bi-directionally navigable.

Figure 7-196: FACE_IOEndpoint

Constraints

C01: FACE_IOEndpoint.memberEnd[0].isNavigable memberEnd[1].isNavigable shall be true

C02: FACE_IOEndpoint.memberEnd[0].type Value for the memberEnd[0].type metaproperty must be
stereotyped by «FACE_UnitOfPortability» and
memberEnd[0].componentType must be
PlatformSpecificComponent.

C03: FACE_IOEndpoint.memberEnd[1].aggregation memberEnd[1].aggregation shall be composite

C04: FACE_IOEndpoint.memberEnd[1].multiplicity memberEnd[1].multiplicity shall be 0..*

C05: FACE_IOEndpoint.memberEnd[1].name memberEnd[1].name shall be "ioEndpoint"

C06: FACE_IOEndpoint.memberEnd[1].type Value for the memberEnd[1].type metaproperty must be
stereotyped by «FACE_SystemComponentEndpoint»
and memberEnd[1].endPointType must be
IOSEndpoint.

FACE Profile, v2.0 – beta 1 214

FACE_OperationalExchange
Package: FACE_Extended_Stereotypes

isAbstract: No

Extension: InformationFlow

Description

A type of OperationalExchange that asserts information exchange between two FACE_AbstractConnections. This has no
corresponding metatype in the FACE Technical Standard because the FACE standard represents components without system
context. This exchange enables expression of information exchanges between FACE elements at the system-of-systems
level.

Figure 7-197: FACE_OperationalExchange

Constraints

C01: FACE_OperationalExchange.conveyed Value for the conveyed metaproperty must be
stereotyped by either the specialization of
«FACE_ConceptualView» or the specialization of
«FACE_LogicalView».

C02: FACE_OperationalExchange.exchangeKind Value for the exchangeKind attribute defaults to
"InformationExchange".

C03: FACE_OperationalExchange.informationSource Value for the informationSource metaproperty must be
stereotyped by «FACE_AbstractConnection».

 FACE Profile v2.0 – beta 1 215

C04: FACE_OperationalExchange.informationTarget Value for the informationTarget metaproperty must be
stereotyped by «FACE_AbstractConnection».

FACE_ResourceExchange
Package: FACE_Extended_Stereotypes

isAbstract: No

Extension: InformationFlow

Description

A type of ResourceExchange that asserts information exchange and among FACE_UnitOfPortability (via subclass of
Connection) and FACE_UnitOfConformance Transport Services Segment (TSS) elements (via
UnitOfConformanceEndpoint). This has no corresponding metatype in the FACE Technical Standard because the FACE
standard represents components without system context. This exchange enables expression of information exchanges
between FACE elements at the system-of-systems level.

Figure 7-198: FACE_ResourceExchange

FACE Profile, v2.0 – beta 1 216

Constraints

C01: FACE_ResourceExchange.conveyed Value for the conveyed metaproperty must be
stereotyped by the specialization of
«FACE_MessageType».

C02: FACE_ResourceExchange.exchangeKind Value for the exchangeKind attribute defaults to
"FACEResourceCommunication".

C03: FACE_ResourceExchange.informationSource Value for the informationSource metaproperty must be
stereotyped by «FACE_LifeCycleManagementPort», a
specialization of «FACE_Connection», or a
«FACE_UnitOfConformanceEndpoint» that has
endPointType = TSSEndpoint.

C04: FACE_ResourceExchange.informationTarget Value for the informationSource metaproperty must be
stereotyped by «FACE_LifeCycleManagementPort», a
specialization of «FACE_Connection», or a
«FACE_UnitOfConformanceEndpoint» that has
endPointType = TSSEndpoint.

FACE_UnitOfConformance
Package: FACE_Extended_Stereotypes

isAbstract: No

Generalization: FACE_UoCElement

Extension: Class

Description

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) for every segment in the
FACE Data Architecture, but the FACE metamodel includes only Portable Component Segment (PCS) and Platform-Specific
Services Segment (PSSS) components. This stereotype represents FACE Components (UoCs) that are that are pertinent to a
system-of-systems architecture and are allocated to segments of the FACE standard that are not represented in the FACE
metamodel.

 FACE Profile v2.0 – beta 1 217

Figure 7-199: FACE_UnitOfConformance

Attributes

componentType :
FACE_UnitOfConformanceTypeEnum [1]

The component type that corresponds to a segment in the FACE
segment architecture. Indicates the segment into which the
described Component is intended to be placed. For more details,
see the enumerated type descriptions for
UnitOfConformanceTypeEnum.

designAssuranceLevel :
FACE_DesignAssuranceLevelEnum [0..1]

The design assurance level attributed to safety/security sensitive
components. Indicates the impact of a failure condition of the
described component.

designAssuranceStandard :
FACE_DesignAssuranceStandardEnum [0..1]

The design assurance standard that applies to a safety/security
sensitive system and that by which the design and testing of the
system is judged to be safety or security certified.

faceProfile : FACE_ProfileEnum [1]

The criticality designation used by FACE to tailor the operating
system to be deployed for a set of components. For more
information about the details of each potential designation, please
refer to the FACE Technical Standard.

partitionType : FACE_PartitionTypeEnum [1]

The operating system type for which the described component was
developed.

transportAPILanguage :
FACE_ProgrammingLanguageEnum [1]

The programming language to be used for the component's
communications.

FACE_UnitOfConformanceEndpoint
Package: FACE_Extended_Stereotypes

isAbstract: No

Extension: Class

FACE Profile, v2.0 – beta 1 218

Description

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) but the FACE metamodel
does not include components for every segment. This stereotype represents an aspect of component in a segment of the
FACE standard that is pertinent to a system-of-systems architecture but is not represented in the FACE metamodel.

A FACE_UnitOfConformanceEndpoint is a communication endpoint on a FACE component that is part of the Transport
Services, IOServices, or Operating Services segments in FACE. These endpoints are the conduits through which information
flows between FACE components in designated segments. The communication paths for FACE components are strictly
governed by the FACE standard and are reflected in related stereotypes in this standard.

Figure 7-200: FACE_UnitOfConformanceEndpoint

Attributes

endPointType :
FACE_UnitOfConformanceEndpointTypeEnum
[1]

The component type that corresponds to the segment in the FACE
architecture with which this endpoint is intended to connect. For
more details, see the enumerated type descriptions for
UnitOfConformanceEndpointTypeEnum.

 FACE Profile v2.0 – beta 1 219

Associations

messageType : The classifier that describes the
information/resource being exchanged through
the endpoint. Characterized as Classifier because,
depending on the endPointType, the exchange
could be characterized in a variety of ways.
Multiplicity of [0..1] because the exchange might
not be characterized at this time.

Constraints

C01: FACE_UnitOfConformanceEndpoint.owner Elements with this stereotype may only be contained in
(owned by) elements with the stereotype
«FACE_UnitOfConformance»

FACE_UnitOfConformanceEndpointTypeEnum
Package: FACE_Extended_Stereotypes

isAbstract: No

Description

This Enumeration provides types for the endpoints/connections owned by FACE components that are described in the FACE
Technical Standard but are not part of the FACE metamodel. Each FACE component has 1 or more connections to other
FACE components. The intended FACE segment for that communication is indicated by the this enumerated type. Its
enumeration literals are:

TSSEndpoint - Indicates that the endpoint represents FACE Transport Services Segment (TSS) communications.
IOSEndpoint - Indicates that the endpoint represents a communications conduit between a FACE Input/Output

Services Segment (IOSS) element and a FACE Platform-Specific Segment (PSSS) element.
DeviceEndPoint - Indicates a communications conduit between an Input/Output Services Segment (IOSS) element

and a device or device driver. The target of communications from a Device endpoint may not be FACE
component.

FACE_UnitOfConformanceTypeEnum
Package: FACE_Extended_Stereotypes

isAbstract: No

Description

The FACE Technical Standard discusses segments and component Units of Conformance (UoCs) but the FACE metamodel
does not include components for every segment. This stereotype represents an aspect of a component in a segment of the
FACE standard that is pertinent to a system-of-systems architecture but is not represented in the FACE metamodel.

This enumeration represents the FACE component types that are part of the FACE Data Architecture but are not represented
in the FACE metamodel.

 Its enumeration literals are:

FACE Profile, v2.0 – beta 1 220

TransportServiceComponent - Indicates that a component is a FACE Transport Services Segment (TSS)
Component. TSS components provide communication between and among FACE Portable Components
Segment (PCS) and Platform-Specific Services Segment (PSSS) components.

IOServiceComponent - Indicates that a component is a FACE Input/Output Services Segment (IOSS) Component.
IOSS components provide the interface between vendor-supplied device drivers (hosted in the Operating
System Segment/OSS) and the Platform-Specific Services Segment (PSSS) components.

OperatingSystemComponent - Indicates that a component is a FACE Operating System Segment (OSS)
Component. OSS components include operating system services, device drivers, and other vendor-supplied
software. An OSS component provides and controls access to the computing platform itself.

FACE_UoCElement
Package: FACE_Extended_Stereotypes

isAbstract: Yes

Extension: Element

Description

A FACE_UoCElement is the root type for defining the non-metamodel system elements of the ArchitectureModel.

Figure 7-201: abstract FACE_UoCElement

Constraints

C01: FACE_UoCElement.owner Elements that are stereotyped by specializations of this
abstract stereotype may only be contained in (owned
by) elements with the following stereotypes:
«FACE_UoCModel»

FACE_UoCModel
Package: FACE_Extended_Stereotypes

isAbstract: No

Extension: Package

Description

This package holds descriptions of FACE components that are called for in the FACE Technical Standard but that are not
represented in the FACE metamodel. These descriptions are separated from the rest of the FACE model elements to
differentiate them from metamodel-represented elements.

 FACE Profile v2.0 – beta 1 221

Figure 7-202: FACE_UoCModel

Constraints

C01: FACE_UoCModel.owner Elements with this stereotype may only be contained in
(owned by) elements with the following stereotypes:
«FACE_ArchitectureModel»
«FACE_UoCModel»

7.1.3 FACE_Profile::UAF_Extensions
This package contains stereotypes for representing FACE elements in a UAF context. The connection between the FACE
Profile and UAF is loosely coupled and accomplished using a dependency between FACE elements and UAF elements. The
FACE_Implements «stereotyped relationship» dependencies in the stereotype definitions express the correspondence between
FACE and UAF metatypes, with additional constraints for the application of FACE stereotypes. The FACE_Implements have
been omitted from the FACE element diagrams outside of this section to prevent confusion about the scope of their
implementation. These relationships are meant to be implemented only for a separable UAF extension to the FACE Profile.

FACE_Implements
Package: UAF_Extensions

isAbstract: No

Extension: Dependency

Description

This dependency indicates that the referencing FACE element is an implementation of the referenced UAF architectural
element. This dependency and its constraints constitute the mapping from FACE stereotyped elements to UAF stereotyped
elements.

The allowed dependencies in this stereotype include some implementation relationships that cross metatypes. Because the
profile for the FACE adheres as closely as possible to the FACE metamodel, the type of a FACE profile element might differ

FACE Profile, v2.0 – beta 1 222

from its corresponding application in a UAF context. The use of Dependency relationships to indicate implementation
enables the representation of the intent of the FACE element correctly in the UAFP context.

Figure 7-203: FACE_Implements

 FACE Profile v2.0 – beta 1 223

Figure 7-204: FACE_Implements

FACE Profile, v2.0 – beta 1 224

 FACE Profile v2.0 – beta 1 225

Figure 7-205: FACE_Implements

Constraints

C01: FACE_Implements.client Value for the client metaproperty must be stereotyped
by one of the following:
«FACE_AbstractUoP»
«FACE_AbstractConnection»
«FACE_UnitOfPortability»
«FACE_UnitOfConformance»
«FACE_UoPInstance»
Specializations of «FACE_TransportNode»
«FACE_TransportChannel»
Specializations of «FACE_Connection»
«FACE_LifeCycleManagementPort»
Specializations of «FACE_TSNodePortBase»
«FACE_UnitOfConformanceEndpoint»
Specializations of «FACE_ConceptualView»
Specializations of «FACE_LogicalView»
«FACE_OperationalExchange»
Specializations of «FACE_PlatformView»
«FACE_PlatformQuery»
«FACE_TSNodeConnection»
«FACE_ResourceExchange»

FACE Profile, v2.0 – beta 1 226

C02: FACE_Implements.supplier Based on the stereotype of the client metaproperty:

= «FACE_AbstractUoP», the supplier metaproperty
must be stereotyped by (UAF::Operational::Structure)
«OperationalPerformer»

= «FACE_AbstractConnection», the supplier
metaproperty must be stereotyped by
(UAF::Operational::Structure) «OperationalPort»

= «FACE_UnitOfPortability»,
«FACE_UnitOfConformance», «FACE_UoPInstance»,
a specialization of «FACE_TransportNode», or
«FACE_TransportChannel», the supplier metaproperty
must be stereotyped by (UAF::Resources::Taxonomy)
«Software»

= A specialization of «FACE_Connection»,
«FACE_LifeCycleManagementPort», a specialization
of «FACE_TSNodePortBase», or
«FACE_UnitOfConformanceEndpoint», the supplier
metaproperty must be stereotyped by
(UAF::Resources::Structure) «ResourcePort»

= A specialization of «FACE_ConceptualView», or a
specialization of «FACE_LogicalView», the supplier
metaproperty must be stereotyped by
(UAF::Operational::Information)
«InformationElement»

= «FACE_OperationalExchange», the supplier
metaproperty must be stereotyped by
(UAF::Operational::Connectivity)
«OperationalExchange»

= a specialization of «FACE_PlatformView», or
«FACE_PlatformQuery», the supplier metaproperty
must be stereotyped by (UAF::Resources::Information)
«DataElement»

= «FACE_ResourceExchange», the supplier
metaproperty must be stereotyped by
(UAF::Resources::Connectivity) «ResourceExchange»

= «FACE_TSNodeConnection», the supplier
metaproperty must be stereotyped by
(UAF::Resources::Connectivity) «ResourceConnector»

 FACE Profile v2.0 – beta 1 227

7.2 View Customizations
This section addresses the requirements from the RFP that call for tables that aggregate FACE Constructs. The tables called
for include:

• All FACE Components (Units of Conformance (UoCs)/Units of Portability (UoPs) elements)
• All FACE Components (UoC/UoP elements) that reside in a particular FACE Segment (PCS, PSSS, IOSS, …)
• All usages of particular FACE Interfaces or FACE Data Exchanges

In addition, the RFP calls for specific information to be included in the tables. This is detailed below:
• Safety/Security Stance (DAL and/or FACE Profile) for all FACE UoC/UoP
• FOR ALL TABLES INCLUDING UoCs/UoPs in the PSSS layer, include target layer for exchange
• FOR ALL TABLES INCLUDING MULTIPLE FACE LAYERS, include source layer of data exchange

This specification further identifies the properties of the FACE elements that it expects to see detailed in the provided tables.
While this information is included in the individual view specifications, it is summarized below:

• Tables specifying only UnitOfPortability elements (with no data exchange information): UnitOfPortability Name,
Layer = FACE Segment (PCS/PSSS/TSS/IOSS/OSS) , TransportAPILanguage, FACEProfile,
DesignAssuranceStandard, DAL Level, PartitionType (POSIX/ARINC)

• Tables specifying message flows between FACE UnitsOfPortability or AbstractUoPs: Element Name, Connection
Name (if any), MessageType, and MessageDirection (Inbound/Outbound)

Because the FACE Profile specifies FACE implementation of portions of a UAF architecture but is not comprised of UAF
elements, the views specified in this section are not expressed as UAF views.

7.2.1 View Specifications::FACE Data Architecture

7.2.1.1 View Specifications::All FACE Components View

Stakeholders: Systems Engineers, Software Engineers
Concerns: Identification of FACE Components
Definition: Allows identification of all FACE Components in a UAF architecture and their characteristics
Recommended Implementation: Tabular Format
Characteristics to Display: For all «UAF::Resources::Taxonomy::Software» stereotyped elements in user-selected scope, if
«Software» is the supplier for a «FACE_Implements» relationship and the client is stereotyped by
«FACE_UnitOfPortability» or «FACE_UnitOfConformance», display the following attributes of the client
«FACE_UnitOfPortability» or «FACE_UnitOfConformance»::
<element>.name
<element>.componentType
<element>.transportAPILanguage
<element>.faceProfile
<element>.designAssuranceStandard
<element>.designAssuranceLevel
<element>.PartitionType

FACE Profile, v2.0 – beta 1 228

Figure 7-206: All FACE Components View

Elements

• FACE_ComponentTypeEnum
• FACE_DesignAssuranceLevelEnum
• FACE_DesignAssuranceStandardEnum
• FACE_PartitionTypeEnum
• FACE_ProfileEnum
• FACE_ProgrammingLanguageEnum
• FACE_UnitOfConformance
• FACE_UnitOfConformanceTypeEnum

 FACE Profile v2.0 – beta 1 229

• FACE_UnitOfPortability
• Software

7.2.1.2 View Specifications::FACE Components Per Segment View

Stakeholders: Systems Engineers, Software Engineers
Concerns: Categorization of FACE Components
Definition: Allows identification and characterization of all FACE Components in a specific FACE Segment (of a specific
ComponentType) of a UAF architecture
Recommended Implementation: Tabular Format
Characteristics to Display: For all «UAF::Resources::Taxonomy::Software» stereotyped elements in user-selected scope, if
«Software» is the supplier for a «FACE_Implements» relationship and the «FACE_Implements».client is stereotyped by
«FACE_UnitOfPortability» or «FACE_UnitOfConformance» AND the client <element>.componentType matches the user-
specified ComponentTypeEnum or UnitOfConformanceTypeEnum value, display for the client element:
<element>.name
<element>.componentType
<element>.transportAPILanguage
<element>.faceProfile
<element>.designAssuranceStandard
<element>.designAssuranceLevel
<element>.PartitionType

FACE Profile, v2.0 – beta 1 230

Figure 7-207: FACE Components Per Segment View

Elements

• FACE_ComponentTypeEnum
• FACE_DesignAssuranceLevelEnum
• FACE_DesignAssuranceStandardEnum
• FACE_PartitionTypeEnum
• FACE_ProfileEnum
• FACE_ProgrammingLanguageEnum
• FACE_UnitOfConformance
• FACE_UnitOfConformanceTypeEnum

 FACE Profile v2.0 – beta 1 231

• FACE_UnitOfPortability
• Software

7.2.1.3 View Specifications::FACE Logical Interfaces View

Stakeholders: Systems Architects, Systems Engineers
Concerns: Identifies logical interfaces between FACE Abstract components identified as part of a UAF architecture
Definition: Shows the connections between abstract FACE Components in a UAF architecture
Recommended Implementation: Tabular Format
Desired information is found by navigating from OperationalExchanges in the selected UAF scope and navigation to
«FACE_OperationalExchange» elements via «FACE_Implements» relationships:
For each OperationalExchange in the selected UAF scope, for each «FACE_Implements» relationship in which the
ResourceExchange is the supplier and a «FACE_OperationalExchange» element is the client, desired information for the
«FACE_OperationalExchange» client of the «FACE_Implements» relationship:
(Source UoP Name) <FACE_OperationalExchange>.informationSource->(AbstractConnection).EndPoint-
>memberEnd[0].type->(AbstractUop).name
(Target UoP Name) <FACE_OperationalExchange>.informationTarget->(AbstractConnection).EndPoint-
>memberEnd[0].type->(AbstractUop).name
(MessageType) <FACE_OperationalExchange>.conveyed.type
Message direction is implied by the Operational Exchange direction

Figure 7-208: FACE Logical Interfaces View

Elements

• FACE_AbstractConnection
• FACE_AbstractUoP
• FACE_ConceptualView
• FACE_EndPoint
• FACE_LogicalView
• FACE_OperationalExchange

FACE Profile, v2.0 – beta 1 232

• OperationalExchange

7.2.1.4 View Specifications::FACE Physical Interfaces View

Stakeholders: Systems Architects, Systems Engineers
Concerns: Identifies resource-level interfaces between FACE components identified as part of a UAF architecture
Definition: Shows the connections between FACE Components in a UAF architecture and identifies the layered segments in
which the source and targets of the interactions reside.
Recommended Implementation: Tabular Format
Desired information is based on ResourceExchanges in the selected UAF scope and navigation via
«FACE_Implements» relationship:
For each ResourceExchange in the selected UAF scope, for each «FACE_Implements» relationship in which the
ResourceExchange is the supplier and a «FACE_ResourceExchange» element is the client, desired information for the
«FACE_ResourceExchange» client of the «FACE_Implements» relationship:
(Source Component Name) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).name
(Source Component Layer) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).componentType
(Target Component Name) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).name
(Target Component Layer) <FACE_ResourceExchange>.informationSource->(<connection element>).EndPoint-
>memberEnd[0].type->(UnitOfPortability/UnitOfConformance).componentType
(MessageType) <FACE_ResourceExchange>.conveyed->name
Message direction is implied by the FACE_ResourceExchange direction

 FACE Profile v2.0 – beta 1 233

Figure 7-209: FACE Physical Interfaces View

Elements

• FACE_ComponentTypeEnum
• FACE_Connection
• FACE_EndPoint
• FACE_LifeCycleManagementPort
• FACE_ResourceExchange
• FACE_UnitOfConformance
• FACE_UnitOfConformanceEndpoint
• FACE_UnitOfConformanceTypeEnum
• FACE_UnitOfPortability
• FACE_UoPMessageType
• ResourceExchange

FACE Profile, v2.0 – beta 1 234

8 Design Considerations (Non-Normative)
This section addresses the items in section 6.7 (Issues to be discussed) of the FACE™ Profile for UAF Request For Proposal
(RFP), OMG document c4i-18-09-03.

8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions
Enhance Related Architectures

This section responds to the RFP section 6.7.1 Relationships to UAF profile, which requests that the specification discuss
how inclusion of FACE Profile elements in UAF models enhance general architecture, such as Department of Defense
Architecture Framework (DoDAF), The British Ministry of Defence Architecture Framework (MODAF), and NATO
Architecture models.

The FACE technical standard defines a layered architecture that is separated into several segments: PCS - Portable
Component Segment (presentation-layer applications), TSS - Transport Services Segment (middleware), PSSS - Platform-
Specific Software Segment (platform-specific services), IOSS - Input/Output Services Segment (hardware device drivers),
and OSS - Operating Systems Segment (foundational system services and vendor-supplied software). This is a level of
granularity that is not specified in the UAF metamodel and which can be of value when specifying requirements for
individual components within a system-of-systems. By linking the FACE profile’s differentiations between layers and the
information-transform representations of the FACE Integration Model, the extensions to the UML portion of the FACE
Profile, coupled with the UAF extensions enhance the representation of layered architecture elements and the flow of
information throughout a system of systems. AAA Conformance also supports the modeling of data sent and received by
avionics components to improve interoperability.

This specification enables the development of tools that make it easier for modelers to create more detailed and accurate
models, as well as enable model sharing across the general architecture models.

8.2 Support for Cyber Security within the System: Security Analysis
enhancements from FACE Profile

Just as UAF supports systems of systems modeling, additional views for safety and cybersecurity are supported. Because the
FACE Profile allows the representation of software components, data models, and integration models, additional
cybersecurity modeling Frameworks such as STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of
service, and Elevation of privilege) can be applied with respect to avionics across a system of systems. Likewise, this can
facilitate the development of cybersecurity solutions that can be developed conformant with the FACE technical standard in
way such that the solution may be applied across disparate air, space, land, and sea platforms.

The FACE standard addresses the specification of avionics systems components with respect to safety, security, partitioning,
integration, and semantic documentation of information exchanges. The FACE profile brings this enhanced specification
information to UAF architectures. Further, by enabling expression of FACE components using OMG technologies, FACE
components can be further elaborated within an architecture through the application of the MARTE profile (Modeling and
Analysis of Real-Time and Embedded systems). The FACE Profile’s UAF extensions along with the MARTE profile will
enable architects to associate information within the UAF database with implementation mechanisms that express the
architecture in terms of layers, connectivity, partitioning strategy and hardware/software typing. The MARTE specification
General Component Model (GCM) includes detailed information of components. The FACE Profile enables the development
of model-based artifacts to support the Radio Technical Commission for Aeronautics (RTCA) DO-178 (Software
Considerations in Airborne Systems and Equipment Certification) and DO-331 (the Model-Based Development and
Verification Supplement to DO-178C and DO-278A) used for safety of flight certification by the U.S. Federal Aviation
Administration (FAA) and the European Aviation Safety Agency (EASA). The MARTE profile complements the FACE
profile by providing detailed specification of any Design Assurance Standard and Design Assurance Level (DAL) associated
with a FACE-profile component, as well as introducing other analysis-related attributes to the architecture.

8.3 Combining FACE Profile with MARTE markings to feed AADL analysis
The mapping of FACE elements into a UAF architecture enables finer-grained description of real-time avionics systems
components with respect to safety, security, partitioning, integration, and semantic documentation of information exchanges.

 FACE Profile v2.0 – beta 1 235

FACE Profile facilitates the development of models and artifacts to support compliance with security standards such as
Standard IEC 62443 - Cybersecurity for Industry, RTCA DO-326A Airworthiness Security Process Specification, and its
supplement Airworthiness Security Methods and Considerations. Within the context of a combined FACE and UAF model,
the combination of the FACE profile with the MARTE will enable architects to associate information within the UAF
database with implementation mechanisms that express the architecture in terms of layers, connectivity, partitioning strategy
and hardware/software typing. There are mechanisms by which information can then be transferred from a UAF-FACE
combined model that uses MARTE to an Architecture Analysis & Design Language (AADL) modeling tool to support safety
analysis using AADL tool capabilities. MARTE provides many of the tagging keys which are used by AADL to support the
proper transfer of information. The MARTE profile combined with the structuring information provided by a FACE profile
gives identified structure and meaning needed by an AADL safety analysis tool to generate such information as (Avionics
Application Standard Software Interface) ARINC 653 partition parameters needed to meet safety requirements needed for
proper timing design.

8.4 Non-Profile Tool implementation aspects of the FACE Technical
Standard

This section discusses non-Profile tool implementation aspects of the specification, to address tool implementation of aspects
the FACE Technical Specification that are outside the bounds of a profile but may be implemented using tool-specific
capabilities. It discusses approaches to implementation of Conformance levels AA and AAA described earlier in this
specification, as well as implementation of tabular views described above and a recommended inclusion of a FACE segment
architecture view for user reference..

8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE
Technical Standard

The application of OCL constraints from the FACE Technical Standard is not a requirement of this specification’s profile
itself, nor is it a requirement for Level A conformance to this standard. Application of FACE OCL constraints is required for
Conformance levels AA and AAA of this specification. This section describes possible approaches by which
implementations of this standard at higher levels of conformance might implement and possibly enforce these constraints.

8.4.1.1 Level AA Conformance application of FACE OCL Constraints

Level AA Conformance provides the minimum support needed by the users of FACE data architecture models in order to use
the authored information in a FACE integration effort. There is no requirement to implement the FACE OCL Constraints
directly in the modeling tool at Level AA Conformance. Conformance Level AA enables the use of FACE Consortium
conformance checking tools that ensure model OCL correctness. This is enabled by the export/import of the FACE model
elements to/from the FACE XML format as specified in the normative UDDL and FACE Technical Standards.

The recommended approach for application of FACE OCL Constraints under Level AA Conformance is to export the model
to the FACE XML-formatted (.face) file format and direct the user to the FACE Conformance Test Suite (CTS) for OCL
constraint checking. The notional steps in this process are listed below:

1) Ensure that all FACE Elements are contained in the FACE Architecture Package

2) Provide mechanism to perform export of FACE Architecture to FACE XML (.face) format using plug-ins

3) Direct the user to independently use the FACE Conformance Test Suite to check model adherence to OCL
constraints

4) User modifies model in tool to address issues

5) User would repeat export-test-modify as needed to address all FACE conformance model issues

8.4.1.2 Level AAA Conformance application of FACE OCL Constraints

Level AAA Conformance supports the rapid development of FACE architecture, data models, and software development
through application of the FACE/OCL Constraints during the architecture modeling process. Level AAA Conformance of
this specification includes implementation of FACE OCL Constraints directly in the modeling tool. There are a few different
approaches that an implementer of the standard at Level AAA Conformance might wish to consider in the implementation of

FACE Profile, v2.0 – beta 1 236

these constraints. The potential approaches listed below are suggestions for application of the constraints and are not meant
to exclude alternate approaches. Possible approaches include:

1) Apply the OCL Constraints from the FACE Technical Standard to check the entire set of FACE Model Elements in
the tool. Add a plug-in to perform all FACE OCL Constraint checks upon request and provide the constraint check
results to the user. The user addresses issues in the model and repeats the constraint test as needed.
The benefit of this approach is that it minimizes rework of FACE OCL Constraints that apply to the entire FACE
model, minimizes lag due to long-running constraint checks, and provides user control over when constraint
checking will occur.

2) Apply the OCL Constraints from the FACE Technical Standard to each FACE Model Element individually in the
tool. Perform OCL Constraint checks for each element upon modification. The user addresses the constraint
violations as they are identified.
The benefit of this approach is that it minimizes the time between authoring a model element and notification of
constraint violation.

3) Apply the OCL Constraints from the FACE Technical Standard to FACE Model Elements in a hybrid fashion. This
is a combination of approaches 2 and 3. Apply constraints that are highly-localized (quick running) on an element-
by-element basis and a plug-in to perform all FACE OCL Constraint checks upon request and provide the constraint
check results to the user.
This approach combines the benefits of both approaches 2 and 3.

8.4.2 Recommended mechanism to generate content into FACE Profile tabular views
Users of the FACE Profile might wish to see tables of elements that support specific FACE Profile enumerated types
(General, Safety-Base, Safety-Extended, Security). Most modeling tools provide a mechanism to generate tabular views of
selected information from the model and to display it with or without filters. The steps below outline one possible
mechanism for implementers of the profile to provide tables of FACE-stereotyped components to users:
1) Use the Tool-Native Table and plug-in extension capabilities

2) Provide FACE-profile-specific table as selection option in “New Diagram” menu(s).

3) For each FACE UoP or Abstract UoP in the (singleton) FACE Architecture package, plug-in identifies the FACE
security stance and places the name and security stance in a table as appropriate to the intended table contents. Tables
may be created containing all FACE modules or may be specific to a single security stance selected by the user. Tool-
native filtering and sorting may be applied by the user after table creation, as can extension of module properties
displayed in the table.

8.4.3 Inclusion of the FACE vertical architecture image in tool implementations
For reference purposes, FACE Profile users might need access to a graphical view of the general FACE vertical architecture.
The FACE Technical Standard contains an image of the FACE Vertical Architecture, labeled “FACE Architectural
Segments” in the standard. Figure 8-1 shows that image, and informational files included with this standard provide
additional details. Tools that implement the FACE profile could include a copy of the image as/in a diagram that users
request via plug-in support menus.

 FACE Profile v2.0 – beta 1 237

Figure 8-1: FACE Technical Interchange Meeting Architectural Diagram Template Example

FACE Profile, v2.0 – beta 1 238

A FACE Profile Mapping Tables (Informational / Non-
Normative)

This chapter provides information about the relationship between the FACE Consortium FACE Metamodel elements, the
FACE Profile elements, and the UAF elements in tabular form. It is meant to provide this information in an easy-to-consume
format for enhanced understanding of these relationships.

A.1 FACE Metamodel to FACE Profile Mapping
This section provides the mapping between the FACE metamodel elements and the corresponding FACE Profile elements in
tabular form. The order of the metamodel elements in the table corresponds to their order in in the FACE Technical
Standard. The FACE elements are generally implemented using a single stereotype to represent the element itself, with
additional stereotypes listed if used to represent attributes or associations from the FACE metamodel.

A.1.1 FACE Metamodel path elements
The FACE Metamodel path elements named CharacteristicPathNode, Participant, ParticipantPathNode, and PathNode have
an alternate-syntax representation called a CharacteristicProjection. This notation is described in Section 3.6.4.1.1.3 of the
Technical Standard for Future Airborne Capability Environment (FACE™), Edition 2.1 and fully expresses the paths as
described using the FACE path metamodel elements. The two notations (elements and string) are interchangeable using a
translation algorithm. The CharacteristicProjection syntax is used in the FACE Profile instead of the corresponding FACE
Metamodel elements. XMI exchange mechanisms between models using the FACE Profile and the FACE XMI (.face) file
are required to translate between the two notations.

The following table shows the FACE metamodel path elements and their corresponding CharacteristicPathNode-syntax
FACE Profile elements.

Table A-1 FACE Metamodel Path Elements mapping to FACE Profile Stereotype containing equivalent string syntax

FACE Metamodel Package FACE Metamodel Element Names FACE Profile Stereotype
face.datamodel.conceptual Participant

CharacteristicPathNode
ParticipantPathNode
PathNode

FACE_ConceptualParticipant [Association]

face.datamodel.logical Participant
CharacteristicPathNode
ParticipantPathNode
PathNode

FACE_LogicalParticipant [Association]

face.datamodel.platform Participant
CharacteristicPathNode
ParticipantPathNode
PathNode

FACE_PlatformParticipant [Association]

A.1.2 Full Mapping of FACE Metamodel to FACE Profile
The table below shows the FACE metamodel elements as listed in the FACE Technical Standard (with embedded UDDL
Standard elements) and their mapping to stereotypes that, in part or whole, realize the metamodel element and its
relationships in the FACE Profile. Elements in the face.datamodel package correspond to elements in the UDDL Standard.
The order of the elements in the table corresponds to the order of the metamodel elements in the FACE Technical Standard
and, by reference from the FACE Technical Standard, the UDDL Standard.

 FACE Profile v2.0 – beta 1 239

Table A-2 FACE Metamodel to FACE Profile element mapping
FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)

face ArchitectureModel FACE_ArchitectureModel [Package]
face Element FACE_Element [Element]

FACE_ModelElement [Element]
face DataModel FACE_DataModel [Package]
face.datamodel Element FACE_DataModelElement [Element]
face.datamodel ConceptualDataModel FACE_ConceptualDataModel [Package]
face.datamodel LogicalDataModel FACE_LogicalDataModel [Package]
face.datamodel PlatformDataModel FACE_PlatformDataModel [Package]
face.datamodel.conceptual Element FACE_ConceptualElement [Element]
face.datamodel.conceptual ComposableElement FACE_ConceptualComposableElement

[Element]
face.datamodel.conceptual BasisElement FACE_BasisElement [Element]
face.datamodel.conceptual BasisEntity FACE_BasisEntity [Class]
face.datamodel.conceptual Domain FACE_Domain [Class]
face.datamodel.conceptual Observable FACE_Observable [Class]
face.datamodel.conceptual Characteristic FACE_ConceptualCharacteristic [Element]
face.datamodel.conceptual Entity FACE_ConceptualComposition [Property]

FACE_ConceptualEntity [Class]
FACE_EntityBasis [Generalization]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.conceptual Composition FACE_ConceptualComposableElement
[Element]
FACE_ConceptualComposition [Property]

face.datamodel.conceptual Association FACE_ConceptualAssociation [Class]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.conceptual Participant FACE_ConceptualParticipant [Association]
face.datamodel.conceptual PathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual ParticipantPathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual CharacteristicPathNode FACE_ConceptualParticipant [Association]
face.datamodel.conceptual View FACE_ConceptualView [Class]
face.datamodel.conceptual Query FACE_ConceptualQuery [Class]
face.datamodel.conceptual CompositeQuery FACE_ConceptualCompositeQuery [Class]

FACE_ConceptualQueryComposition [Property]
face.datamodel.conceptual QueryComposition FACE_ConceptualQueryComposition [Property]

FACE_ConceptualView [Class]
face.datamodel.logical Element FACE_LogicalElement [Element]
face.datamodel.logical ConvertibleElement FACE_ConvertibleElement [Element]
face.datamodel.logical Unit FACE_Unit [Class]
face.datamodel.logical Conversion FACE_Conversion [Class]
face.datamodel.logical AffineConversion FACE_AffineConversion [Class]
face.datamodel.logical ValueType FACE_ValueTypeEnum
face.datamodel.logical String FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Character FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Boolean FACE_LogicalValueType [Class]

FACE_ValueTypeEnum

FACE Profile, v2.0 – beta 1 240

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.datamodel.logical Numeric FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Integer FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Natural FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Real FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical NonNegativeReal FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical Enumerated FACE_LogicalValueType [Class]

FACE_ValueTypeEnum
face.datamodel.logical EnumerationLabel FACE_EnumerationLabel [Property]
face.datamodel.logical CoordinateSystem FACE_AbstractAssociation [Association]

FACE_Axis [Association]
FACE_CoordinateSystem [Class]

face.datamodel.logical CoordinateSystemAxis FACE_CoordinateSystemAxis [Class]
face.datamodel.logical AbstractMeasurementSystem FACE_AbstractMeasurementSystem [Class]
face.datamodel.logical StandardMeasurementSystem FACE_StandardMeasurementSystem [Class]
face.datamodel.logical Landmark FACE_Landmark [Class]
face.datamodel.logical MeasurementSystem FACE_AbstractAssociation [Association]

FACE_AppliedConstraint [Association]
FACE_Axis [Association]
FACE_DefinedReferencePoint [Association]
FACE_MeasurementSystem [Class]

face.datamodel.logical MeasurementSystemAxis FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AppliedValueTypeUnit [Association]
FACE_MeasurementSystemAxis [Class]

face.datamodel.logical ReferencePoint FACE_AbstractAssociation [Association]
FACE_RPPart [Association]
FACE_ReferencePoint [Class]

face.datamodel.logical ReferencePointPart FACE_ReferencePointPart [Class]
face.datamodel.logical ValueTypeUnit FACE_AbstractAssociation [Association]

FACE_AppliedConstraint [Association]
FACE_ValueTypeUnit [Class]

face.datamodel.logical Constraint FACE_Constraint [Class]
face.datamodel.logical IntegerConstraint FACE_IntegerConstraint [Class]
face.datamodel.logical IntegerRangeConstraint FACE_IntegerRangeConstraint [Class]
face.datamodel.logical RealConstraint FACE_RealConstraint [Class]
face.datamodel.logical RealRangeConstraint FACE_RealRangeConstraint [Class]
face.datamodel.logical StringConstraint FACE_StringConstraint [Class]
face.datamodel.logical RegularExpressionConstraint FACE_RegularExpressionConstraint [Class]
face.datamodel.logical FixedLengthStringConstraint FACE_FixedLengthStringConstraint [Class]
face.datamodel.logical EnumerationConstraint FACE_EnumerationConstraint [Class]
face.datamodel.logical MeasurementConstraint FACE_MeasurementConstraint [Class]
face.datamodel.logical MeasurementSystemConversion FACE_MeasurementSystemConversion [Class]
face.datamodel.logical AbstractMeasurement FACE_AbstractMeasurement [Element]

 FACE Profile v2.0 – beta 1 241

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.datamodel.logical Measurement FACE_AbstractAssociation [Association]

FACE_AppliedConstraint [Association]
FACE_Axis [Association]
FACE_Measurement [Class]
FACE_Realize [Association]

face.datamodel.logical MeasurementAxis FACE_AbstractAssociation [Association]
FACE_AppliedConstraint [Association]
FACE_AppliedValueTypeUnit [Association]
FACE_MeasurementAxis [Class]
FACE_Realize [Association]

face.datamodel.logical MeasurementAttribute FACE_MeasurementAttribute [Property]
face.datamodel.logical MeasurementConversion FACE_MeasurementConversion [Class]
face.datamodel.logical ComposableElement FACE_LogicalComposableElement [Element]
face.datamodel.logical Characteristic FACE_LogicalCharacteristic [Element]
face.datamodel.logical Entity FACE_AbstractAssociation [Association]

FACE_LogicalComposition [Property]
FACE_LogicalEntity [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.logical Composition FACE_LogicalComposableElement [Element]
FACE_LogicalComposition [Property]

face.datamodel.logical Association FACE_AbstractAssociation [Association]
FACE_LogicalAssociation [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.logical Participant FACE_LogicalParticipant [Association]
face.datamodel.logical PathNode FACE_LogicalParticipant [Association]
face.datamodel.logical ParticipantPathNode FACE_LogicalParticipant [Association]
face.datamodel.logical CharacteristicPathNode FACE_LogicalParticipant [Association]
face.datamodel.logical View FACE_LogicalView [Class]
face.datamodel.logical Query FACE_AbstractAssociation [Association]

FACE_LogicalQuery [Class]
FACE_Realize [Association]

face.datamodel.logical CompositeQuery FACE_AbstractAssociation [Association]
FACE_LogicalCompositeQuery [Class]
FACE_LogicalQueryComposition [Property]
FACE_Realize [Association]

face.datamodel.logical QueryComposition FACE_LogicalQueryComposition [Property]
FACE_LogicalView [Class]

face.datamodel.platform Element FACE_PlatformElement [Element]
face.datamodel.platform ComposableElement FACE_PlatformComposableElement [Element]
face.datamodel.platform PlatformDataType FACE_AbstractAssociation [Association]

FACE_PlatformDataType [Element]
FACE_Realize [Association]

face.datamodel.platform Primitive FACE_Primitive [Class]
face.datamodel.platform Boolean FACE_Boolean [Class]
face.datamodel.platform Octet FACE_Octet [Class]
face.datamodel.platform CharType FACE_CharType [Class]

FACE Profile, v2.0 – beta 1 242

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.datamodel.platform Char FACE_Char [Class]
face.datamodel.platform StringType FACE_StringType [Class]
face.datamodel.platform String FACE_String [Class]
face.datamodel.platform BoundedString FACE_BoundedString [Class]
face.datamodel.platform CharArray FACE_CharArray [Class]
face.datamodel.platform Enumeration FACE_Enumeration [Class]
face.datamodel.platform Number FACE_Number [Class]
face.datamodel.platform Integer FACE_Integer [Class]
face.datamodel.platform Short FACE_Short [Class]
face.datamodel.platform Long FACE_Long [Class]
face.datamodel.platform LongLong FACE_LongLong [Class]
face.datamodel.platform Real FACE_Real [Class]
face.datamodel.platform Double FACE_Double [Class]
face.datamodel.platform LongDouble FACE_LongDouble [Class]
face.datamodel.platform Float FACE_Float [Class]
face.datamodel.platform Fixed FACE_Fixed [Class]
face.datamodel.platform UnsignedInteger FACE_UnsignedInteger [Class]
face.datamodel.platform UShort FACE_UShort [Class]
face.datamodel.platform ULong FACE_ULong [Class]
face.datamodel.platform ULongLong FACE_ULongLong [Class]
face.datamodel.platform Sequence FACE_Sequence [Class]
face.datamodel.platform Array FACE_Array [Class]
face.datamodel.platform Struct FACE_Struct [Class]
face.datamodel.platform StructMember FACE_StructMember [Property]
face.datamodel.platform Characteristic FACE_PlatformCharacteristic [Element]
face.datamodel.platform Entity FACE_AbstractAssociation [Association]

FACE_PlatformComposition [Property]
FACE_PlatformEntity [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.platform Composition FACE_PlatformComposableElement [Element]
FACE_PlatformComposition [Property]

face.datamodel.platform Association FACE_AbstractAssociation [Association]
FACE_PlatformAssociation [Class]
FACE_Realize [Association]
FACE_SpecializationOwner [Class]
FACE_Specialize [Generalization]

face.datamodel.platform Participant FACE_PlatformParticipant [Association]
face.datamodel.platform PathNode FACE_PlatformParticipant [Association]
face.datamodel.platform ParticipantPathNode FACE_PlatformParticipant [Association]
face.datamodel.platform CharacteristicPathNode FACE_PlatformParticipant [Association]
face.datamodel.platform View FACE_PlatformView [Class]
face.datamodel.platform Query FACE_AbstractAssociation [Association]

FACE_PlatformQuery [Class]
FACE_Realize [Association]

face.datamodel.platform CompositeQuery FACE_AbstractAssociation [Association]
FACE_PlatformCompositeQuery [Class]
FACE_PlatformQueryComposition [Property]
FACE_Realize [Association]

 FACE Profile v2.0 – beta 1 243

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.datamodel.platform QueryComposition FACE_PlatformQueryComposition [Property]

FACE_PlatformView [Class]
face UoPModel FACE_UoPModel [Package]
face.uop ClientServerRole FACE_ClientServerRoleEnum
face.uop FaceProfile FACE_ProfileEnum
face.uop DesignAssuranceLevel FACE_DesignAssuranceLevelEnum
face.uop DesignAssuranceStandard FACE_DesignAssuranceStandardEnum
face.uop MessageExchangeType FACE_MessageExchangeTypeEnum
face.uop PartitionType FACE_PartitionTypeEnum
face.uop ProgrammingLanguage FACE_ProgrammingLanguageEnum
face.uop SynchronizationStyle FACE_SynchronizationStyleEnum
face.uop ThreadType FACE_ThreadTypeEnum
face.uop Element FACE_UoPElement [Element]
face.uop SupportingComponent FACE_SupportingComponent [Class]
face.uop LanguageRunTime FACE_LanguageRunTime [Class]
face.uop ComponentFramework FACE_ComponentFramework [Class]
face.uop AbstractUoP FACE_AbstractUoP [Class]

FACE_EndPoint [Association]
face.uop AbstractConnection FACE_AbstractAssociation [Association]

FACE_AbstractConnection [Class]
FACE_AbstractView [Association]

face.uop UnitOfPortability FACE_AbstractAssociation [Association]
FACE_BackingComponent [Association]
FACE_ComponentTypeEnum
FACE_DesignAssuranceLevelEnum
FACE_DesignAssuranceStandardEnum
FACE_EndPoint [Association]
FACE_PartitionTypeEnum
FACE_ProfileEnum
FACE_ProgrammingLanguageEnum
FACE_Realize [Association]
FACE_UnitOfPortability [Class]
FACE_UoPResource [Association]

face.uop PortableComponent FACE_ComponentTypeEnum
FACE_UnitOfPortability [Class]

face.uop PlatformSpecificComponent FACE_ComponentTypeEnum
FACE_UnitOfPortability [Class]

face.uop Thread FACE_Thread [Class]
face.uop RAMMemoryRequirements FACE_RAMMemoryRequirements [Class]
face.uop Connection FACE_AbstractAssociation [Association]

FACE_Connection [Class]
FACE_Realize [Association]

face.uop ClientServerConnection FACE_AbstractAssociation [Association]
FACE_ClientServerConnection [Class]
FACE_RequestView [Association]
FACE_ResponseView [Association]

face.uop PubSubConnection FACE_AbstractAssociation [Association]
FACE_MessageExchangeTypeEnum
FACE_MessageType [Association]
FACE_PubSubConnection [Class]

FACE Profile, v2.0 – beta 1 244

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.uop QueuingConnection FACE_QueuingConnection [Class]
face.uop SingleInstanceMessageConnection FACE_SingleInstanceMessageConnection

[Class]
face.uop LifeCycleManagementPort FACE_AbstractAssociation [Association]

FACE_LifeCycleManagementPort [Class]
FACE_MessageType [Association]

face.uop MessageType FACE_UoPMessageType [Class]
face.uop CompositeTemplate FACE_AbstractAssociation [Association]

FACE_CompositeTemplate [Class]
FACE_Realize [Association]
FACE_TemplateComposition [Property]

face.uop TemplateComposition FACE_TemplateComposition [Property]
FACE_UoPMessageType [Class]

face.uop Template FACE_AbstractAssociation [Association]
FACE_BoundQuery [Association]
FACE_EffectiveQuery [Association]
FACE_Template [Class]

face IntegrationModel FACE_IntegrationModel [Package]
face.integration Element FACE_IntegrationElement [Element]
face.integration IntegrationContext FACE_IntegrationContext [Package]

FACE_TSNodeConnection [InformationFlow]
FACE_TransportNode [Class]

face.integration TSNodeConnection FACE_TSNodeConnection [InformationFlow]
face.integration TSNodePortBase FACE_TSNodeConnection [InformationFlow]

FACE_TSNodePortBase [Class]
face.integration UoPInstance FACE_AbstractAssociation [Association]

FACE_EndPoint [Association]
FACE_Realize [Association]
FACE_UoPInstance [Class]

face.integration UoPEndPoint FACE_AbstractAssociation [Association]
FACE_Realize [Association]
FACE_UoPEndPoint [Class]

face.integration UoPInputEndPoint FACE_UoPInputEndPoint [Class]
face.integration UoPOutputEndPoint FACE_UoPOutputEndPoint [Class]
face.integration TransportNode FACE_AbstractAssociation [Association]

FACE_EndPoint [Association]
FACE_TransportNode [Class]

face.integration TSNodePort FACE_AbstractAssociation [Association]
FACE_MessageType [Association]
FACE_TSNodePort [Class]

face.integration TSNodeInputPort FACE_TSNodeInputPort [Class]
face.integration TSNodeOutputPort FACE_TSNodeOutputPort [Class]
face.integration ViewAggregation FACE_ViewAggregation [Class]
face.integration ViewFilter FACE_ViewFilter [Class]
face.integration ViewSource FACE_ViewSource [Class]
face.integration ViewSink FACE_ViewSink [Class]
face.integration ViewTransformation FACE_ViewTransformation [Class]
face.integration ViewTransporter FACE_ViewTransporter [Class]
face.integration TransportChannel FACE_TransportChannel [Class]
face TraceabilityModel FACE_TraceabilityModel [Package]

 FACE Profile v2.0 – beta 1 245

FACE Metamodel Package FACE Metamodel Element Name FACE Profile Stereotype(s)
face.traceability Element FACE_Connection [Class]

FACE_TraceabilityElement [Element]
face.traceability TraceableElement FACE_AbstractAssociation [Association]

FACE_ElementTrace [Association]
FACE_TraceableElement [Element]

face.traceability TraceabilityPoint FACE_TraceabilityPoint [Class]
face.traceability UoPTraceabilitySet FACE_AbstractAssociation [Association]

FACE_UoPTrace [Association]
FACE_UoPTraceabilitySet [Class]

face.traceability ConnectionTraceabilitySet FACE_AbstractAssociation [Association]
FACE_ConnectionTrace [Association]
FACE_ConnectionTraceabilitySet [Class]

face.traceability ConceptualEntityTrace FACE_AbstractAssociation [Association]
FACE_ConceptualEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability ConceptualViewTrace FACE_AbstractAssociation [Association]
FACE_ConceptualViewTrace [Class]
FACE_TraceView [Association]

face.traceability LogicalEntityTrace FACE_AbstractAssociation [Association]
FACE_LogicalEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability LogicalViewTrace FACE_AbstractAssociation [Association]
FACE_LogicalViewTrace [Class]
FACE_TraceView [Association]

face.traceability PlatformEntityTrace FACE_AbstractAssociation [Association]
FACE_PlatformEntityTrace [Class]
FACE_TraceEntity [Association]

face.traceability PlatformViewTrace FACE_AbstractAssociation [Association]
FACE_PlatformViewTrace [Class]
FACE_TraceView [Association]

Not from the Metamodel,
created for System-of-
Systems

<Derived from FACE Technical
Standard>

FACE_IOEndpoint [Association]
FACE_UnitOfConformance [Class]
FACE_UnitOfConformanceEndpoint [Class]
FACE_UnitOfConformanceEndpointTypeEnum
FACE_UnitOfConformanceTypeEnum
FACE_UoCElement [Element]
FACE_UoCModel [Package]

Not from the Metamodel,
created for System-of-
Systems

<Created for System-of-Systems
Connectivity>

FACE_OperationalExchange [InformationFlow]
FACE_ResourceExchange [InformationFlow]

Not from the Metamodel,
created for UAF Mapping

<Created for UAF Mapping> FACE_Implements [Dependency]

 246 Title

A.2 FACE Profile to FACE Metamodel Mapping

This section provides a tabular description of the mapping between the FACE Profile elements to their corresponding FACE and UDDL metamodel elements as well as showing the profile element mappings to UAF elements. (The
UAF Mappings are represented by the «FACE_Implements» [Dependency] stereotype and its constraints.) The order of the profile elements in the table corresponds to the package organization of the FACE Profile specification. The
FACE metamodel elements shown are realized in whole or part by the listed FACE Profile element. The UAF element shown represents the mapping from the FACE Profile element to a corresponding UAF stereotype in the UAFP.
The bracketed strings following the UAF element names are the metatype of the UAFP element and the UAFP package in which the UAF element resides.

Table A-3 FACE Profile Elements -to- FACE Metamodel Mappings

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile FACE_ArchitectureModel Package face.ArchitectureModel
FACE_Profile FACE_Element Element face.Element
FACE_Profile.FACE Data Architecture FACE_EndPoint Association face.integration.TransportNode

face.integration.UoPInstance
face.uop.AbstractUoP
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture FACE_DataModel Package face.DataModel
FACE_Profile.FACE Data Architecture FACE_ModelElement Element face.Element
FACE_Profile.FACE Data Architecture FACE_IntegrationModel Package face.IntegrationModel
FACE_Profile.FACE Data Architecture FACE_MessageType Association face.integration.TSNodePort

face.uop.LifeCycleManagementPort
face.uop.PubSubConnection

 FACE Profile v2.0 – beta 1 247

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture FACE_Realize Association face.datamodel.logical.Association

face.datamodel.logical.CompositeQuery
face.datamodel.logical.Entity
face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementAxis
face.datamodel.logical.Query
face.datamodel.platform.Association
face.datamodel.platform.CompositeQuery
face.datamodel.platform.Entity
face.datamodel.platform.PlatformDataType
face.datamodel.platform.Query
face.integration.UoPEndPoint
face.integration.UoPInstance
face.uop.CompositeTemplate
face.uop.Connection
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture FACE_TraceabilityModel Package face.TraceabilityModel
FACE_Profile.FACE Data Architecture FACE_UoPModel Package face.UoPModel

 248 Title

FACE_Profile.FACE Data Architecture FACE_AbstractAssociation Association face.datamodel.logical.Association
face.datamodel.logical.CompositeQuery
face.datamodel.logical.CoordinateSystem
face.datamodel.logical.Entity
face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementAxis
face.datamodel.logical.MeasurementSystem
face.datamodel.logical.MeasurementSystemAxis
face.datamodel.logical.Query
face.datamodel.logical.ReferencePoint
face.datamodel.logical.ValueTypeUnit
face.datamodel.platform.Association
face.datamodel.platform.CompositeQuery
face.datamodel.platform.Entity
face.datamodel.platform.PlatformDataType
face.datamodel.platform.Query
face.integration.TSNodePort
face.integration.TransportNode
face.integration.UoPEndPoint
face.integration.UoPInstance
face.traceability.ConceptualEntityTrace
face.traceability.ConceptualViewTrace
face.traceability.ConnectionTraceabilitySet
face.traceability.LogicalEntityTrace
face.traceability.LogicalViewTrace
face.traceability.PlatformEntityTrace
face.traceability.PlatformViewTrace
face.traceability.TraceableElement
face.traceability.UoPTraceabilitySet
face.uop.AbstractConnection
face.uop.ClientServerConnection
face.uop.CompositeTemplate
face.uop.Connection
face.uop.LifeCycleManagementPort
face.uop.PubSubConnection
face.uop.Template
face.uop.UnitOfPortability

 FACE Profile v2.0 – beta 1 249

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_ConceptualDataModel Package face.datamodel.ConceptualDataModel

FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_DataModelElement Element face.datamodel.Element

FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_LogicalDataModel Package face.datamodel.LogicalDataModel

FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_PlatformDataModel Package face.datamodel.PlatformDataModel

FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_Specialize Generalization face.datamodel.conceptual.Association
face.datamodel.conceptual.Entity
face.datamodel.logical.Association
face.datamodel.logical.Entity
face.datamodel.platform.Association
face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model

FACE_SpecializationOwner Class face.datamodel.conceptual.Association
face.datamodel.conceptual.Entity
face.datamodel.logical.Association
face.datamodel.logical.Entity
face.datamodel.platform.Association
face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_BasisElement Element face.datamodel.conceptual.BasisElement

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_BasisEntity Class face.datamodel.conceptual.BasisEntity

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualAssociation Class face.datamodel.conceptual.Association

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualCharacteristic Element face.datamodel.conceptual.Characteristic

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualComposableEle
ment

Element face.datamodel.conceptual.ComposableElement
face.datamodel.conceptual.Composition

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualCompositeQue
ry

Class face.datamodel.conceptual.CompositeQuery

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualComposition Property face.datamodel.conceptual.Composition
face.datamodel.conceptual.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualElement Element face.datamodel.conceptual.Element

 250 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualEntity Class face.datamodel.conceptual.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualParticipant Association face.datamodel.conceptual.CharacteristicPathNode
face.datamodel.conceptual.Participant
face.datamodel.conceptual.ParticipantPathNode
face.datamodel.conceptual.PathNode

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualQuery Class face.datamodel.conceptual.Query

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualQueryComposi
tion

Property face.datamodel.conceptual.CompositeQuery
face.datamodel.conceptual.QueryComposition

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_ConceptualView Class face.datamodel.conceptual.QueryComposition
face.datamodel.conceptual.View

 InformationElement [Class]

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_Domain Class face.datamodel.conceptual.Domain

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_EntityBasis Generalization face.datamodel.conceptual.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.ConceptualDataModel

FACE_Observable Class face.datamodel.conceptual.Observable

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_AbstractMeasurement Element face.datamodel.logical.AbstractMeasurement

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_AbstractMeasurementSyst
em

Class face.datamodel.logical.AbstractMeasurementSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_AffineConversion Class face.datamodel.logical.AffineConversion

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_AppliedConstraint Association face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementAxis
face.datamodel.logical.MeasurementSystem
face.datamodel.logical.MeasurementSystemAxis
face.datamodel.logical.ValueTypeUnit

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_AppliedValueTypeUnit Association face.datamodel.logical.MeasurementAxis
face.datamodel.logical.MeasurementSystemAxis

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Axis Association face.datamodel.logical.CoordinateSystem
face.datamodel.logical.Measurement
face.datamodel.logical.MeasurementSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Constraint Class face.datamodel.logical.Constraint

 FACE Profile v2.0 – beta 1 251

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Conversion Class face.datamodel.logical.Conversion

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_ConvertibleElement Element face.datamodel.logical.ConvertibleElement

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_CoordinateSystem Class face.datamodel.logical.CoordinateSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_CoordinateSystemAxis Class face.datamodel.logical.CoordinateSystemAxis

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_DefinedReferencePoint Association face.datamodel.logical.MeasurementSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_EnumerationConstraint Class face.datamodel.logical.EnumerationConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_EnumerationLabel Property face.datamodel.logical.EnumerationLabel

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_FixedLengthStringConstrai
nt

Class face.datamodel.logical.FixedLengthStringConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_IntegerConstraint Class face.datamodel.logical.IntegerConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_IntegerRangeConstraint Class face.datamodel.logical.IntegerRangeConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Landmark Class face.datamodel.logical.Landmark

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalAssociation Class face.datamodel.logical.Association

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalCharacteristic Element face.datamodel.logical.Characteristic

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalComposableElemen
t

Element face.datamodel.logical.ComposableElement
face.datamodel.logical.Composition

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalCompositeQuery Class face.datamodel.logical.CompositeQuery

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalComposition Property face.datamodel.logical.Composition
face.datamodel.logical.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalElement Element face.datamodel.logical.Element

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalEntity Class face.datamodel.logical.Entity

 252 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalParticipant Association face.datamodel.logical.CharacteristicPathNode
face.datamodel.logical.Participant
face.datamodel.logical.ParticipantPathNode
face.datamodel.logical.PathNode

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalQuery Class face.datamodel.logical.Query

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalQueryComposition Property face.datamodel.logical.CompositeQuery
face.datamodel.logical.QueryComposition

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalValueType Class face.datamodel.logical.Boolean
face.datamodel.logical.Character
face.datamodel.logical.Enumerated
face.datamodel.logical.Integer
face.datamodel.logical.Natural
face.datamodel.logical.NonNegativeReal
face.datamodel.logical.Numeric
face.datamodel.logical.Real
face.datamodel.logical.String

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_LogicalView Class face.datamodel.logical.QueryComposition
face.datamodel.logical.View

 InformationElement [Class]

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Measurement Class face.datamodel.logical.Measurement

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementAttribute Property face.datamodel.logical.MeasurementAttribute

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementAxis Class face.datamodel.logical.MeasurementAxis

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementConstraint Class face.datamodel.logical.MeasurementConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementConversion Class face.datamodel.logical.MeasurementConversion

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementSystem Class face.datamodel.logical.MeasurementSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementSystemAxis Class face.datamodel.logical.MeasurementSystemAxis

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_MeasurementSystemConv
ersion

Class face.datamodel.logical.MeasurementSystemConversion

 FACE Profile v2.0 – beta 1 253

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_RealConstraint Class face.datamodel.logical.RealConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_RealRangeConstraint Class face.datamodel.logical.RealRangeConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_ReferencePoint Class face.datamodel.logical.ReferencePoint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_ReferencePointPart Class face.datamodel.logical.ReferencePointPart

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_RegularExpressionConstrai
nt

Class face.datamodel.logical.RegularExpressionConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_RPPart Association face.datamodel.logical.ReferencePoint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_StandardMeasurementSys
tem

Class face.datamodel.logical.StandardMeasurementSystem

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_StringConstraint Class face.datamodel.logical.StringConstraint

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_Unit Class face.datamodel.logical.Unit

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_ValueTypeEnum Enumeration face.datamodel.logical.Boolean
face.datamodel.logical.Character
face.datamodel.logical.Enumerated
face.datamodel.logical.Integer
face.datamodel.logical.Natural
face.datamodel.logical.NonNegativeReal
face.datamodel.logical.Numeric
face.datamodel.logical.Real
face.datamodel.logical.String
face.datamodel.logical.ValueType

FACE_Profile.FACE Data Architecture.FACE
Data Model.LogicalDataModel

FACE_ValueTypeUnit Class face.datamodel.logical.ValueTypeUnit

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Boolean Class face.datamodel.platform.Boolean

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Char Class face.datamodel.platform.Char

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_CharType Class face.datamodel.platform.CharType

 254 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Double Class face.datamodel.platform.Double

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Enumeration Class face.datamodel.platform.Enumeration

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Fixed Class face.datamodel.platform.Fixed

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Float Class face.datamodel.platform.Float

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Array Class face.datamodel.platform.Array

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_BoundedString Class face.datamodel.platform.BoundedString

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_CharArray Class face.datamodel.platform.CharArray

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_StructMember Property face.datamodel.platform.StructMember

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Integer Class face.datamodel.platform.Integer

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Number Class face.datamodel.platform.Number

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Primitive Class face.datamodel.platform.Primitive

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Real Class face.datamodel.platform.Real

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Sequence Class face.datamodel.platform.Sequence

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Struct Class face.datamodel.platform.Struct

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformDataType Element face.datamodel.platform.PlatformDataType

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_UnsignedInteger Class face.datamodel.platform.UnsignedInteger

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Long Class face.datamodel.platform.Long

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_LongDouble Class face.datamodel.platform.LongDouble

 FACE Profile v2.0 – beta 1 255

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_LongLong Class face.datamodel.platform.LongLong

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Octet Class face.datamodel.platform.Octet

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformAssociation Class face.datamodel.platform.Association

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformCharacteristic Element face.datamodel.platform.Characteristic

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformComposableElem
ent

Element face.datamodel.platform.ComposableElement
face.datamodel.platform.Composition

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformComposition Property face.datamodel.platform.Composition
face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformElement Element face.datamodel.platform.Element

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformEntity Class face.datamodel.platform.Entity

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformParticipant Association face.datamodel.platform.CharacteristicPathNode
face.datamodel.platform.Participant
face.datamodel.platform.ParticipantPathNode
face.datamodel.platform.PathNode

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformQuery Class face.datamodel.platform.Query DataElement [Class]

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformView Class face.datamodel.platform.QueryComposition
face.datamodel.platform.View

 DataElement [Class]

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_Short Class face.datamodel.platform.Short

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_String Class face.datamodel.platform.String

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_StringType Class face.datamodel.platform.StringType

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_ULong Class face.datamodel.platform.ULong

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_ULongLong Class face.datamodel.platform.ULongLong

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_UShort Class face.datamodel.platform.UShort

 256 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformCompositeQuery Class face.datamodel.platform.CompositeQuery

FACE_Profile.FACE Data Architecture.FACE
Data Model.PlatformDataModel

FACE_PlatformQueryCompositio
n

Property face.datamodel.platform.CompositeQuery
face.datamodel.platform.QueryComposition

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_IntegrationContext Package face.integration.IntegrationContext

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_IntegrationElement Element face.integration.Element

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TransportChannel Class face.integration.TransportChannel Software [Class]

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TransportNode Class face.integration.IntegrationContext
face.integration.TransportNode

 Software [Class]

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodeConnection InformationFlow face.integration.IntegrationContext
face.integration.TSNodeConnection
face.integration.TSNodePortBase

 ResourceConnector [Connector]

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodeInputPort Class face.integration.TSNodeInputPort

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodeOutputPort Class face.integration.TSNodeOutputPort

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodePort Class face.integration.TSNodePort

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_TSNodePortBase Class face.integration.TSNodePortBase ResourcePort [Port]

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_UoPEndPoint Class face.integration.UoPEndPoint

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_UoPInputEndPoint Class face.integration.UoPInputEndPoint

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_UoPInstance Class face.integration.UoPInstance Software [Class]

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_UoPOutputEndPoint Class face.integration.UoPOutputEndPoint

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewAggregation Class face.integration.ViewAggregation

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewFilter Class face.integration.ViewFilter

 FACE Profile v2.0 – beta 1 257

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewSink Class face.integration.ViewSink

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewSource Class face.integration.ViewSource

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewTransformation Class face.integration.ViewTransformation

FACE_Profile.FACE Data
Architecture.Integration Model

FACE_ViewTransporter Class face.integration.ViewTransporter

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_ConnectionTrace Association face.traceability.ConnectionTraceabilitySet

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_ConnectionTraceabilitySet Class face.traceability.ConnectionTraceabilitySet

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_ElementTrace Association face.traceability.TraceableElement

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_TraceabilityElement Element face.traceability.Element

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_TraceabilityPoint Class face.traceability.TraceabilityPoint

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_TraceableElement Element face.traceability.TraceableElement

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_UoPTrace Association face.traceability.UoPTraceabilitySet

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_UoPTraceabilitySet Class face.traceability.UoPTraceabilitySet

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_ConceptualEntityTrace Class face.traceability.ConceptualEntityTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_ConceptualViewTrace Class face.traceability.ConceptualViewTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_LogicalEntityTrace Class face.traceability.LogicalEntityTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_LogicalViewTrace Class face.traceability.LogicalViewTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_PlatformEntityTrace Class face.traceability.PlatformEntityTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_PlatformViewTrace Class face.traceability.PlatformViewTrace

 258 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_TraceEntity Association face.traceability.ConceptualEntityTrace
face.traceability.LogicalEntityTrace
face.traceability.PlatformEntityTrace

FACE_Profile.FACE Data
Architecture.Traceability Model

FACE_TraceView Association face.traceability.ConceptualViewTrace
face.traceability.LogicalViewTrace
face.traceability.PlatformViewTrace

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_AbstractConnection Class face.uop.AbstractConnection OperationalPort [Port]

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_AbstractUoP Class face.uop.AbstractUoP OperationalPerformer [Class]

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_AbstractView Association face.uop.AbstractConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_BackingComponent Association face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_BoundQuery Association face.uop.Template

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ClientServerConnection Class face.uop.ClientServerConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ClientServerRoleEnum Enumeration face.uop.ClientServerRole

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ComponentFramework Class face.uop.ComponentFramework

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ComponentTypeEnum Enumeration face.uop.PlatformSpecificComponent
face.uop.PortableComponent
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_CompositeTemplate Class face.uop.CompositeTemplate

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_Connection Class face.traceability.Element
face.uop.Connection

 ResourcePort [Port]

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_DesignAssuranceLevelEnu
m

Enumeration face.uop.DesignAssuranceLevel
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_DesignAssuranceStandard
Enum

Enumeration face.uop.DesignAssuranceStandard
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_EffectiveQuery Association face.uop.Template

 FACE Profile v2.0 – beta 1 259

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ProfileEnum Enumeration face.uop.FaceProfile
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_LanguageRunTime Class face.uop.LanguageRunTime

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_LifeCycleManagementPort Class face.uop.LifeCycleManagementPort ResourcePort [Port]

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_MessageExchangeTypeEn
um

Enumeration face.uop.MessageExchangeType
face.uop.PubSubConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_PartitionTypeEnum Enumeration face.uop.PartitionType
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ProgrammingLanguageEn
um

Enumeration face.uop.ProgrammingLanguage
face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_PubSubConnection Class face.uop.PubSubConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_QueuingConnection Class face.uop.QueuingConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_RAMMemoryRequirement
s

Class face.uop.RAMMemoryRequirements

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_RequestView Association face.uop.ClientServerConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ResponseView Association face.uop.ClientServerConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_SingleInstanceMessageCo
nnection

Class face.uop.SingleInstanceMessageConnection

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_SupportingComponent Class face.uop.SupportingComponent

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_SynchronizationStyleEnum Enumeration face.uop.SynchronizationStyle

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_Template Class face.uop.Template

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_TemplateComposition Property face.uop.CompositeTemplate
face.uop.TemplateComposition

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_Thread Class face.uop.Thread

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_ThreadTypeEnum Enumeration face.uop.ThreadType

 260 Title

FACE Profile Package Profile Element Name Metaclass FACE Metamodel Element(s) UAF Mapping
FACE_Profile.FACE Data Architecture.UoP
Model

FACE_UnitOfPortability Class face.uop.PlatformSpecificComponent
face.uop.PortableComponent
face.uop.UnitOfPortability

 Software [Class]

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_UoPElement Element face.uop.Element

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_UoPResource Association face.uop.UnitOfPortability

FACE_Profile.FACE Data Architecture.UoP
Model

FACE_UoPMessageType Class face.uop.MessageType
face.uop.TemplateComposition

FACE_Profile.FACE_Extended_Stereotypes FACE_IOEndpoint Association Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

FACE_Profile.FACE_Extended_Stereotypes FACE_OperationalExchange InformationFlow Not from the Metamodel, created for System-of-
Systems.<Created for System-of-Systems Connectivity>

 OperationalExchange [InformationFlow]

FACE_Profile.FACE_Extended_Stereotypes FACE_ResourceExchange InformationFlow Not from the Metamodel, created for System-of-
Systems.<Created for System-of-Systems Connectivity>

 ResourceExchange [InformationFlow]

FACE_Profile.FACE_Extended_Stereotypes FACE_UnitOfConformance Class Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

 Software [Class]

FACE_Profile.FACE_Extended_Stereotypes FACE_UnitOfConformanceEndpo
int

Class Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

 ResourcePort [Port]

FACE_Profile.FACE_Extended_Stereotypes FACE_UnitOfConformanceEndpo
intTypeEnum

Enumeration Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

FACE_Profile.FACE_Extended_Stereotypes FACE_UnitOfConformanceTypeE
num

Enumeration Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

FACE_Profile.FACE_Extended_Stereotypes FACE_UoCElement Element Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

FACE_Profile.FACE_Extended_Stereotypes FACE_UoCModel Package Not from the Metamodel, created for System-of-
Systems.<Derived from FACE Technical Standard>

FACE_Profile.UAF_Extensions FACE_Implements Dependency Not from the Metamodel, created for UAF
Mapping.<Created for UAF Mapping>

 FACE Profile v2.0 – beta 1 261

	1 Scope
	1.1 FACE Profile Background
	1.2 Intended Users

	2 Conformance
	2.1 Level A Conformance
	2.2 Level AA Conformance
	2.3 Level AAA Conformance

	3 References
	3.1 Normative References
	3.1.1 OMG Documents (Normative References)
	3.1.2 The Open Group Documents (Normative References)

	3.2 Non-normative References

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Scope of this Specification
	6.2 How to Read this Specification
	6.2.1 Content Notes for this Specification
	6.2.2 Representing Additional Properties and Constraints on Stereotypes
	6.2.2.1 FACE Conformance/OCL Constraints
	6.2.2.2 Metaconstraint Dependency
	6.2.2.2.1 Definition of the Metaconstraint Dependency Stereotype
	6.2.2.2.2 Example Usage of the Metaconstraint Dependency

	6.2.2.3 Stereotyped Relationship Dependency
	6.2.2.3.1 Definition of the Stereotyped Relationship Dependency Stereotype
	6.2.2.3.2 Example Usage of the Stereotyped Relationship Dependency

	6.2.2.4 Stereotyped Association Dependency
	6.2.2.4.1 Definition of the Stereotyped Association Dependency Stereotype
	6.2.2.4.2 Example Usage of the Stereotyped Association Dependency

	6.2.2.5 Stereotyped Generalization Dependency Stereotype
	6.2.2.5.1 Definition of the Stereotyped Generalization Dependency
	6.2.2.5.2 Example Usage of the Stereotyped Generalization Dependency

	7 FACE Profile
	7.1 FACE_Profile
	FACE_ArchitectureModel
	FACE_Element
	7.1.1 FACE_Profile::FACE Data Architecture
	FACE_AbstractAssociation
	FACE_DataModel
	FACE_EndPoint
	FACE_IntegrationModel
	FACE_MessageType
	FACE_ModelElement
	FACE_Realize
	FACE_TraceabilityModel
	FACE_UoPModel
	7.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model
	FACE_ConceptualDataModel
	FACE_DataModelElement
	FACE_LogicalDataModel
	FACE_PlatformDataModel
	FACE_SpecializationOwner
	FACE_Specialize
	7.1.1.1.1 FACE_Profile::FACE Data Architecture::FACE Data Model::ConceptualDataModel
	FACE_BasisElement
	FACE_BasisEntity
	FACE_ConceptualAssociation
	FACE_ConceptualCharacteristic
	FACE_ConceptualComposableElement
	FACE_ConceptualCompositeQuery
	FACE_ConceptualComposition
	FACE_ConceptualElement
	FACE_ConceptualEntity
	FACE_ConceptualParticipant
	FACE_ConceptualQuery
	FACE_ConceptualQueryComposition
	FACE_ConceptualView
	FACE_Domain
	FACE_EntityBasis
	FACE_Observable
	7.1.1.1.2 FACE_Profile::FACE Data Architecture::FACE Data Model::LogicalDataModel
	FACE_AbstractMeasurement
	FACE_AbstractMeasurementSystem
	FACE_AffineConversion
	FACE_AppliedConstraint
	FACE_AppliedValueTypeUnit
	FACE_Axis
	FACE_Constraint
	FACE_Conversion
	FACE_ConvertibleElement
	FACE_CoordinateSystem
	FACE_CoordinateSystemAxis
	FACE_DefinedReferencePoint
	FACE_EnumerationConstraint
	FACE_EnumerationLabel
	FACE_FixedLengthStringConstraint
	FACE_IntegerConstraint
	FACE_IntegerRangeConstraint
	FACE_Landmark
	FACE_LogicalAssociation
	FACE_LogicalCharacteristic
	FACE_LogicalComposableElement
	FACE_LogicalCompositeQuery
	FACE_LogicalComposition
	FACE_LogicalElement
	FACE_LogicalEntity
	FACE_LogicalParticipant
	FACE_LogicalQuery
	FACE_LogicalQueryComposition
	FACE_LogicalValueType
	FACE_LogicalView
	FACE_Measurement
	FACE_MeasurementAttribute
	FACE_MeasurementAxis
	FACE_MeasurementConstraint
	FACE_MeasurementConversion
	FACE_MeasurementSystem
	FACE_MeasurementSystemAxis
	FACE_MeasurementSystemConversion
	FACE_RealConstraint
	FACE_RealRangeConstraint
	FACE_ReferencePoint
	FACE_ReferencePointPart
	FACE_RegularExpressionConstraint
	FACE_RPPart
	FACE_StandardMeasurementSystem
	FACE_StringConstraint
	FACE_Unit
	FACE_ValueTypeEnum
	FACE_ValueTypeUnit
	7.1.1.1.3 FACE_Profile::FACE Data Architecture::FACE Data Model::PlatformDataModel
	FACE_Array
	FACE_Boolean
	FACE_BoundedString
	FACE_Char
	FACE_CharArray
	FACE_CharType
	FACE_Double
	FACE_Enumeration
	FACE_Fixed
	FACE_Float
	FACE_Integer
	FACE_Long
	FACE_LongDouble
	FACE_LongLong
	FACE_Number
	FACE_Octet
	FACE_PlatformAssociation
	FACE_PlatformCharacteristic
	FACE_PlatformComposableElement
	FACE_PlatformCompositeQuery
	FACE_PlatformComposition
	FACE_PlatformDataType
	FACE_PlatformElement
	FACE_PlatformEntity
	FACE_PlatformParticipant
	FACE_PlatformQuery
	FACE_PlatformQueryComposition
	FACE_PlatformView
	FACE_Primitive
	FACE_Real
	FACE_Sequence
	FACE_Short
	FACE_String
	FACE_StringType
	FACE_Struct
	FACE_StructMember
	FACE_ULong
	FACE_ULongLong
	FACE_UnsignedInteger
	FACE_UShort

	7.1.1.2 FACE_Profile::FACE Data Architecture::Integration Model
	FACE_IntegrationContext
	FACE_IntegrationElement
	FACE_TransportChannel
	FACE_TransportNode
	FACE_TSNodeConnection
	FACE_TSNodeInputPort
	FACE_TSNodeOutputPort
	FACE_TSNodePort
	FACE_TSNodePortBase
	FACE_UoPEndPoint
	FACE_UoPInputEndPoint
	FACE_UoPInstance
	FACE_UoPOutputEndPoint
	FACE_ViewAggregation
	FACE_ViewFilter
	FACE_ViewSink
	FACE_ViewSource
	FACE_ViewTransformation
	FACE_ViewTransporter
	7.1.1.3 FACE_Profile::FACE Data Architecture::Traceability Model
	FACE_ConceptualEntityTrace
	FACE_ConceptualViewTrace
	FACE_ConnectionTrace
	FACE_ConnectionTraceabilitySet
	FACE_ElementTrace
	FACE_LogicalEntityTrace
	FACE_LogicalViewTrace
	FACE_PlatformEntityTrace
	FACE_PlatformViewTrace
	FACE_TraceabilityElement
	FACE_TraceabilityPoint
	FACE_TraceableElement
	FACE_TraceEntity
	FACE_TraceView
	FACE_UoPTrace
	FACE_UoPTraceabilitySet
	7.1.1.4 FACE_Profile::FACE Data Architecture::UoP Model
	FACE_AbstractConnection
	FACE_AbstractUoP
	FACE_AbstractView
	FACE_BackingComponent
	FACE_BoundQuery
	FACE_ClientServerConnection
	FACE_ClientServerRoleEnum
	FACE_ComponentFramework
	FACE_ComponentTypeEnum
	FACE_CompositeTemplate
	FACE_Connection
	FACE_DesignAssuranceLevelEnum
	FACE_DesignAssuranceStandardEnum
	FACE_EffectiveQuery
	FACE_LanguageRunTime
	FACE_LifeCycleManagementPort
	FACE_MessageExchangeTypeEnum
	FACE_PartitionTypeEnum
	FACE_ProfileEnum
	FACE_ProgrammingLanguageEnum
	FACE_PubSubConnection
	FACE_QueuingConnection
	FACE_RAMMemoryRequirements
	FACE_RequestView
	FACE_ResponseView
	FACE_SingleInstanceMessageConnection
	FACE_SupportingComponent
	FACE_SynchronizationStyleEnum
	FACE_Template
	FACE_TemplateComposition
	FACE_Thread
	FACE_ThreadTypeEnum
	FACE_UnitOfPortability
	FACE_UoPElement
	FACE_UoPMessageType
	FACE_UoPResource

	7.1.2 FACE_Profile::FACE_Extended_Stereotypes
	FACE_IOEndpoint
	FACE_OperationalExchange
	FACE_ResourceExchange
	FACE_UnitOfConformance
	FACE_UnitOfConformanceEndpoint
	FACE_UnitOfConformanceEndpointTypeEnum
	FACE_UnitOfConformanceTypeEnum
	FACE_UoCElement
	FACE_UoCModel

	7.1.3 FACE_Profile::UAF_Extensions
	FACE_Implements

	7.2 View Customizations
	7.2.1 View Specifications::FACE Data Architecture
	7.2.1.1 View Specifications::All FACE Components View
	7.2.1.2 View Specifications::FACE Components Per Segment View
	7.2.1.3 View Specifications::FACE Logical Interfaces View
	7.2.1.4 View Specifications::FACE Physical Interfaces View

	8 Design Considerations (Non-Normative)
	8.1 Relationships to UAF profile: How the FACE Profile UAF Extensions Enhance Related Architectures
	8.2 Support for Cyber Security within the System: Security Analysis enhancements from FACE Profile
	8.3 Combining FACE Profile with MARTE markings to feed AADL analysis
	8.4 Non-Profile Tool implementation aspects of the FACE Technical Standard
	8.4.1 Suggested Approaches for Enforcement of OCL Constraints from FACE Technical Standard
	8.4.1.1 Level AA Conformance application of FACE OCL Constraints
	8.4.1.2 Level AAA Conformance application of FACE OCL Constraints

	8.4.2 Recommended mechanism to generate content into FACE Profile tabular views
	8.4.3 Inclusion of the FACE vertical architecture image in tool implementations
	A FACE Profile Mapping Tables (Informational / Non-Normative)
	A.1 FACE Metamodel to FACE Profile Mapping
	A.1.1 FACE Metamodel path elements
	A.1.2 Full Mapping of FACE Metamodel to FACE Profile

	A.2 FACE Profile to FACE Metamodel Mapping

