

Date: May 2010

Fault Tolerant CORBA

Version 1.0

OMG Document Number: formal/2010-05-07
Standard document URL: http://www.omg.org/spec/FT/1.0

This formal specification is the stand-alone version of Fault Tolerant CORBA. Previously, it was chapter 23 of CORBA/
IIOP, v3.0.3 (formal/2004-03-01). The content has not changed.

Copyright © 2010, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE

BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://
www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technology/agree-
ment.htm).

Table of Contents

1 Scope ... 1
1.1 Fault Tolerance for Diverse Applications .. 1

2 Compliance ... 1
2.1 Fault Tolerant CORBA Passive Replication .. 1
2.2 Fault Tolerant CORBA Active Replication ... 1

3 Terms and Definitions ... 1

4 Fault Tolerant CORBA Overview .. 1
4.1 Objectives ... 1

 4.1.1 Basic Concepts .. 2
 4.1.2 Architectural Overview ... 3
 4.1.3 Requirements .. 6
 4.1.4 Limitations .. 9

5 Basic Fault Tolerance Mechanisms .. 11
5.1 Overview ... 11
5.2 Interoperable Object Group References ... 11

 5.2.1 TAG_FT_GROUP Component .. 12
 5.2.2 TAG_FT_PRIMARY Component ... 13

5.3 Interoperable Object Group Reference Operations .. 14
 5.3.1 get_interface .. 14
 5.3.2 is_a .. 14
 5.3.3 is_nil ... 15
 5.3.4 non_existent .. 15
 5.3.5 is_equivalent .. 15
 5.3.6 hash ... 15
 5.3.7 create_request ... 15
 5.3.8 get_policy ... 16
 5.3.9 get_domain_managers .. 16
 5.3.10 set_policy_overrides .. 16

5.4 Modes of Profile Addressing ... 16
 5.4.1 Profiles That Address Object Group Members .. 16
 5.4.2 Profiles That Address Gateways ... 16
 5.4.3 Choice of Profile Addressing Mode ... 16

5.5 Accessing Server Object Groups .. 17
 5.5.1 Access via IIOP Directly to the Primary Member ... 17
 5.5.2 Access via IIOP and a Gateway .. 17
 5.5.3 Access via a Multicast Group Communication Protocol 18

5.6 Extensions to CORBA Failover Semantics ... 18

Fault Tolerant CORBA, v1.0 i

5.7 Most Recent Object Group Reference .. 19
 5.7.1 FT_GROUP_VERSION Service Context ... 19

5.8 Transparent Reinvocation ... 20
 5.8.1 FT_REQUEST Service Context ... 21
 5.8.2 Request Duration Policy .. 22
 5.8.3 Fault Handling for GIOP Messages ... 23

5.9 Transport Heartbeats .. 23
 5.9.1 TAG_FT_HEARTBEAT_ENABLED Component ... 24
 5.9.2 Heartbeat Policy ... 24
 5.9.3 Heartbeat Enabled Policy .. 25

6 Replication Management .. 27
6.1 Overview ... 27
6.2 Fault Tolerance Properties .. 28

 6.2.1 ReplicationStyle ... 28
 6.2.2 MembershipStyle ... 29
 6.2.3 ConsistencyStyle ... 30
 6.2.4 FaultMonitoringStyle .. 30
 6.2.5 FaultMonitoringGranularity ... 31
 6.2.6 Factories .. 31
 6.2.7 InitialNumberReplicas .. 31
 6.2.8 MinimumNumberReplicas .. 32

6.3 FaultMonitoringIntervalAndTimeout .. 32
6.4 CheckpointInterval ... 32
6.5 Common Types ... 33

 6.5.1 Identifiers ... 35
 6.5.2 Exceptions ... 37

6.6 Replication Manager ... 38
 6.6.1 Operations ... 39

6.7 PropertyManager ... 39
 6.7.1 Operations ... 40
 6.7.2 get_properties .. 43

6.8 ObjectGroupManager .. 43
 6.8.1 Operations ... 44

6.9 GenericFactory .. 49
 6.9.1 Identifiers ... 51
 6.9.2 Operations ... 52

6.10 Obtaining the Reference for the Replication Manager 53
 6.10.1 Use Cases ... 53

7 Fault Management .. 59
7.1 Overview ... 59
7.2 Architecture ... 59

 7.2.1 Fault Detection... 60
 7.2.2 Fault Notification .. 61
 7.2.3 Fault Analysis ... 61
 7.2.4 Scalability ... 61
 7.2.5 Deployment of Fault Detectors .. 62
ii Fault Tolerant CORBA, v1.0

7.3 Connecting Fault Detectors to Applications .. 63
 7.3.1 Pull-Based Monitoring.. 63

7.4 Fault Event Types ... 64
 7.4.1 ObjectCrashFault ... 65

7.5 Fault Notifier .. 66
 7.5.1 Identifiers ... 67
 7.5.2 Operations ... 68
 7.5.3 Filtering .. 69
 7.5.4 Mapping of the Fault Notifier to the CosNotification Service 70

7.6 Use Cases ... 71
 7.6.1 The Fault Detector as a Fault Notification Supplier ... 71
 7.6.2 The Replication Manager as a Fault Notification Consumer 72

8 Logging and Recovery Management .. 73
8.1 Overview ... 73
8.2 Logging Mechanism .. 73
8.3 Recovery Mechanism .. 74
8.4 Checkpointable and Updateable Interfaces .. 75

 8.4.1 Identifiers ... 76
 8.4.2 Exceptions ... 76
 8.4.3 Operations ... 76
 8.4.4 set_update ... 77

8.5 Use Case .. 78
 8.5.1 Infrastructure-Controlled Consistency Style .. 78

Annex A - Glossary.. 79
Fault Tolerant CORBA, v1.0 iii

iv Fault Tolerant CORBA, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

Note – This specification is aligned with CORBA 3.0.3.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).
Fault Tolerant CORBA, v1.0 v

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi Fault Tolerant CORBA, v1.0

1 Scope

1.1 Fault Tolerance for Diverse Applications

Many different kinds of applications, developed by the members of the OMG and the users of CORBA, have a need for
fault tolerance. These applications range from very large critical systems (such as air traffic control and defense systems)
to smaller critical systems (such as 911 and medical systems) to embedded applications (such as aircraft instrumentation
and manufacturing control applications) to communication systems (such as telephony and networking systems) to
enterprise applications (such as financial and supply chain applications).

A standard that attempts to meet all of the requirements of this wide spectrum of applications might satisfy many needs
only poorly, or might be too complex to implement. This specification therefore represents a number of compromises. In
particular, to provide full interoperability between the products of different vendors, substantially more interfaces and
protocols would need to be defined than are defined in this specification. Once experience of implementation and use of
the specification has been gained, it might be appropriate to extend the specification to provide greater interoperability
and fault tolerance. In the meantime, some vendors may choose to offer proprietary extensions to satisfy the fault
tolerance needs of specific kinds of applications.

2 Compliance

2.1 Fault Tolerant CORBA Passive Replication

This compliance point requires support of all specifications defined previously. However, the implementation of these
specifications need only support the semantics for the STATELESS, COLD_PASSIVE, and WARM_PASSIVE values of the
ReplicationStyle property.

2.2 Fault Tolerant CORBA Active Replication

This compliance point requires This compliance point requires support of all specifications defined previously. However,
the implementation of these specifications need only support the semantics for the STATELESS and ACTIVE values of the
ReplicationStyle property.

3 Terms and Definitions
Refer to Annex A.

4 Fault Tolerant CORBA Overview

4.1 Objectives

This specification aims to provide robust support for applications that require a high level of reliability, including
applications that require more reliability than can be provided by a single backup server. The specification requires that
there shall be no single point of failure.
Fault Tolerant CORBA, v1.0 1

Fault tolerance depends on entity redundancy, fault detection, and recovery. The entity redundancy by which this
specification provides fault tolerance is the replication of objects. This strategy allows greater flexibility in configuration
management of the number of replicas, and of their assignment to different hosts, compared to server replication.
Replicated objects can invoke the methods of other replicated objects without regard to the physical location of those
objects. Support for redundancy in time is provided by allowing clients to make repeated requests on the server, using the
same or alternative transport paths.

The specification supports

• a range of fault tolerance strategies, including request retry, redirection to an alternative server, passive (primary/
backup) replication, and active replication which provides more rapid recovery from faults. The standard allows the
users to define fault tolerance properties for each replicated object (object group).

• applications that require the Fault Tolerance Infrastructure to control the creation of the application object replicas, as
well as applications that control directly the creation of their own object replicas. It supports applications that require
the Fault Tolerance Infrastructure to maintain Strong Replica Consistency, both under normal conditions and under
fault conditions, as well as applications that provide whatever level of consistency they require.

The standard provides support for fault detection, notification, and analysis for the object replicas. It supports applications
that require the Fault Tolerance Infrastructure to provide automatic checkpointing, logging and recovery from faults, as
well as applications that handle their own fault recovery.

The standard aims for minimal modifications to the application programs, and for transparency to replication and to
faults. It defines minimal modifications to existing ORBs that allow non-replicated clients to derive fault tolerance
benefits when they invoke replicated server objects.

4.1.1 Basic Concepts

4.1.1.1 Replication and Object Groups

To render an object fault-tolerant, several replicas of the object are created and managed as an object group. While each
individual replica of an object has its own object reference, an additional interoperable object group reference (IOGR) is
introduced for the object group as a whole. It is this object group reference that the replicated server publishes for use by
the client objects. The client objects invoke methods on the server object group, and the members of the server object
group execute the methods and return their responses to the clients, just like a conventional object. Because of the object
group abstraction, the client objects are not aware that the server objects are replicated (replication transparency) and are
not aware of faults in the server replicas or of recovery from faults (failure transparency).

4.1.1.2 Fault Tolerance Domains

Many applications that need fault tolerance are quite large and complex. Managing such an application as a single entity
is inappropriate. Consequently, this specification defines fault tolerance domains, as illustrated in Figure 4.1. Each fault
tolerance domain typically contains several hosts and many object groups, and a single host may support several fault
tolerance domains. Existing security policies and mechanisms can be maintained by ensuring that a fault tolerance domain
is entirely contained within a single security domain. All of the objects groups within a fault tolerance domain are created
and managed by a single Replication Manager, but they can invoke and can be invoked by objects within other fault
tolerance domains. The concept of fault tolerance domains allows applications to scale to arbitrary sizes, by allowing a
smaller number of objects to be managed by each Replication Manager.
2 Fault Tolerant CORBA, v1.0

Figure 4.1 - Fault tolerance domains, hosts, and members

Note – Fault tolerance domains are shown lightly shaded, hosts are shown darkly shaded, and members of an object group
are shown unshaded. The members of object group B are denoted B1, B2, and B3, and similarly for object groups C, D, and
E.

4.1.1.3 Fault Tolerance Properties

Each object group has an associated set of fault tolerance properties. Examples of such properties are the ReplicationStyle
(COLD_PASSIVE, WARM_PASSIVE, ACTIVE, etc.), InitialNumberReplicas, MinimumNumberReplicas, etc. It is possible
to define fault tolerance properties that apply to all object groups within a fault tolerance domain or to all object groups
of a specific type. It is also possible to set the properties of an object group when it is created, and to change the
properties dynamically after the object group is created.

4.1.1.4 Strong Replica Consistency

Strong replica consistency requires that the states of the members of an object group remain consistent (identical) as
methods are invoked on the object group and as faults occur. More specifically, for the ACTIVE ReplicationStyle, Strong
Replica Consistency means that, at the end of each method invocation on the object group, all of the members of the
object group have the same state. For the COLD_PASSIVE and WARM_PASSIVE ReplicationStyles, it means that, at the
end of each state transfer, all of the members of the object group have the same state. Strong Replica Consistency requires
Strong Group Membership, as well as Uniqueness of the Primary for passive replication. Strong Group Membership
means that, for each method invocation on an object group, the Fault Tolerance Infrastructures on all hosts have the same
view of the membership of the object group. Uniqueness of the Primary for passive replication means that one and only
one member of the object group executes the methods invoked on the object group.

4.1.2 Architectural Overview

Figure 4.2 presents an architectural overview of a fault-tolerant system, showing an example strategy for implementation
of the specifications for Fault Tolerant CORBA. Other implementation strategies are possible.
Fault Tolerant CORBA, v1.0 3

Figure 4.2 - Architectural overview of a Fault-Tolerant system

At the top of the figure are shown several components of the Fault Tolerance Infrastructure (Replication Manager, Fault
Notifier, Fault Detector), all of which are implemented as CORBA objects. Logically, there is a single instance of the
Replication Manager and Fault Notifier in each fault tolerance domain but, physically, they are replicated to protect
against faults, just as are the application objects. The Replication Manager inherits the PropertyManager,
ObjectGroupManager, and GenericFactory interfaces.

The bottom of the figure shows three hosts, as follows:

• a client application object C on host H 1 that is invoking a replicated server object with two replicas,

• S 1 on host H 2, and

• S 2 on host H 3.

A typical system will contain many such client and server objects.

The figure shows Factory and Fault Detector objects that may be present on each host and are specific to that host. These
host-specific objects are not replicated, unlike the service objects shown at the top of the figure, which are replicated
objects.

The figure also shows the Message Handler and the Logging and Recovery Mechanisms that are present on each host.
These are not CORBA objects but, rather, are a part of the ORB, or are located between the ORB and the operating
system.
4 Fault Tolerant CORBA, v1.0

4.1.2.1 Fault Tolerance Property Management

This specification provides a PropertyManager interface that allows the user to define fault tolerance properties of object
groups. The specification of the PropertyManager interface is designed to allow vendors to develop graphical user
interfaces and to define additional properties should they so desire.

Two properties of particular relevance are the Membership Style and the Consistency Style. The Membership Style
defines whether the membership of an object group is infrastructure-controlled or application-controlled. Similarly, the
Consistency Style defines whether the consistency of the states of the members of an object group is infrastructure-
controlled or application-controlled. Some components of the Fault Tolerance Infrastructure, such as the Logging and
Recovery Mechanisms, are used only for object groups that have the infrastructure-controlled Consistency Style.

4.1.2.2 Replication Management

For the infrastructure-controlled (MEMB_INF_CTRL) Membership Style (6.2.2, ’MembershipStyle’) the replication of
objects is substantially transparent to the application program, which simplifies the development of new application
programs, and allows the continued use of existing application programs.

Using the create_object() operation of the GenericFactory interface, the application program requests the creation of a
replicated object (object group), just as it would an unreplicated object. This operation is invoked on the Replication
Manager, rather than directly on the factory (as it would have been in the unreplicated case). The Replication Manager
then invokes the factories, on the different hosts, where a replica is to be created, using the same create_object()
operation of the GenericFactory interface.

Using the create_member(), add_member(), and remove_member() operations of the ObjectGroupManager interface,
the application can exercise control over the addition and removal, and location, of members of an object group (violating
transparency).

While each individual replica has its own object reference, the object group as a whole has its interoperable object group
reference, which is created by the Replication Manager. This object group reference contains a TAG_FT_GROUP
component for the object group within the profiles of the object group reference. The object group reference is returned
to the application by the Replication Manager, and is published by the server object. The client objects use the object
group reference to invoke methods on the server object group, just as they would have used a conventional object
reference for an unreplicated object.

Because of the object group abstraction, the client objects are not aware that the server objects are replicated (client
transparency to replication), and are not aware of faults in the server replicas or of the recovery of server replicas when a
fault has occurred (client transparency to faults).

4.1.2.3 Fault Detection and Notification

Fault tolerance requires fault detection, and typical systems contain several fault detection mechanisms to detect host
failures, resource exhaustion, etc. This specification defines a simple PullMonitorable interface that the application
objects inherit. The PullMonitorable interface contains the is_alive() operation that a Fault Detector invokes. For
efficiency, the Fault Detector that monitors an application object is typically located on the same host as that object, while
the local Fault Detectors are monitored by a global Fault Detector that is replicated for fault tolerance.
Fault Tolerant CORBA, v1.0 5

The Fault Detector, and other kinds of fault detectors in the system, such as those based on the PUSH Monitoring Style
and those that detect host or network faults, report faults to the Fault Notifier, which passes fault notifications to the
Replication Manager and other objects that have registered for such notifications. An application-specific fault analyzer
may register to receive such notifications, and may condense and filter such notifications into further fault reports that it
returns to the Fault Notifier.

4.1.2.4 Logging and Recovery

For the COLD_PASSIVE and WARM_PASSIVE Replication Styles, under fault-free conditions, only one member of an
object group, the primary member, executes the requests and generates the replies. If the Fault Detector suspects that the
primary member is faulty, the Replication Manager, at its discretion, restarts the current primary member or promotes a
backup member to become the new primary member.

For the application-controlled (CONS_APP_CTRL) Consistency Style, the Replication Manager takes no further recovery
action and the new primary member is responsible for the recovery of its own state.

For the infrastructure-controlled (CONS_INF_CTRL) Consistency Style, the new primary member must start operation
with the appropriate state, and must execute the same sequence of requests that were, or should have been, executed by
the previous primary member, had it not failed. Thus, each GIOP message is passed to the Logging and Recovery
Mechanisms, automatically and invisibly to the application. The Logging Mechanism records the message in a log, from
which the Recovery Mechanism can retrieve the message during recovery.

Periodically, the Logging Mechanism invokes the get_state() operation of the Checkpointable interface, which must be
implemented by every replicated application object, to obtain the state of the object, so that the state can be recorded in a
log. During recovery, the Recovery Mechanism invokes the set_state() operation of the Checkpointable interface of the
new primary to set its state to the state that was recorded in the log.

4.1.3 Requirements

The requirements of the Fault Tolerant CORBA specification are stated below.

CORBA Object Model

For object groups with the infrastructure-controlled (CONS_INF_CTRL) Consistency Style (6.2.3, ’ConsistencyStyle’), the
specification requires that the CORBA object model is preserved. Even though an object is replicated to provide
protection against faults, at all times its behavior shall appear to be the behavior of a single object. In particular, a
replicated object can act as a client or a server or both, and can invoke another replicated object, regardless of the fault
tolerance properties of the two object groups.

CORBA Object Reference Model

The specification introduces three new special tagged components into the CORBA object reference model. The object
group references that are used for fault tolerance contain multiple profiles that contain these components. Even though an
object group reference contains such components in its profiles, an unreplicated object, hosted by an ORB that does not
support fault tolerance, can still use the reference to invoke the methods of the replicated object. Similarly, a replicated
object can use the object reference of an unreplicated object to invoke the methods of the unreplicated object.
6 Fault Tolerant CORBA, v1.0

Transparency to Replication and to Faults

Creating or deleting an object using a Generic Factory, and invoking a method of an object, appear the same for replicated
objects as for unreplicated objects. Similarly, the behavior of a replicated server object when invoked by a client object
appears the same whether or not faults occur, except perhaps for a transient delay if the primary member of a passively
replicated object becomes faulty.

No Single Point of Failure

The specification supports applications that need robust fault tolerance, including applications that require higher
reliability than can be provided by a single backup. The specification requires that there shall be no single points of
failure.

Client Redirection

For a client and a replicated server, the specification defines an interoperable object group reference that allows the client
to connect to the server replicas, by connecting to an alternative server or through an alternative network, when a fault in
a server replica occurs. It defines an additional service context, in request messages, that allows a server to determine if
the object group reference for the server used by a client is obsolete. Transparency to the client application program is
provided, with minimal modifications to the client ORB and simple mechanisms in the server ORB. Typical applications
include desktop client access to enterprise servers.

Transparent Reinvocation

The specification introduces an additional service context in Request messages that ensures that, in the presence of faults,
a client can reinvoke a request on a replicated server and receive a reply to that request, without risk that the operation
will be performed more than once. Typical applications include desktop client access to e-commerce applications.

Infrastructure-Controlled Membership

The infrastructure-controlled (MEMB_INF_CTRL) Membership Style allows the application to direct the Replication
Manager to create an object group. The Replication Manager then invokes the factories at the different locations to create
the object replicas, and then add them to the group. The Replication Manager is responsible for creating the initial number
of replicas and for maintaining the minimum number of replicas, as specified by the fault tolerance properties for the
group. Typical applications include enterprise server applications, such as supply chain applications, and large-scale
critical systems, such as defense applications.

Application-Controlled Membership

The application-controlled (MEMB_APP_CTRL) Membership Style allows the application to create the members of an
object group and to direct the Replication Manager to add them to the group, or to direct the Replication Manager to
create the members of an object group and add them to the group. The application is responsible for maintaining the
initial and minimum number of replicas and the locations of the replicas, both initially and after faults. Application-
controlled membership is particularly important for applications whose different hosts have different capabilities, such as
communication network applications.

Infrastructure-Controlled Consistency

The infrastructure-controlled (CONS_INF_CTRL) Consistency Style provides Strong Replica Consistency between the
states of the members of an object group. Strong Replica Consistency requires that, even in the presence of faults, as
members of an object group execute a sequence of methods invoked on the object group, the behavior is logically
equivalent to that of a single fault-free object processing the same sequence of method invocations. The Fault Tolerance
Fault Tolerant CORBA, v1.0 7

Infrastructure provides logging, checkpointing, activation, and recovery mechanisms to achieve Strong Replica
Consistency. Strong Replica Consistency is particularly important for financial applications and safety-critical
applications, such as industrial process control and aircraft instrumentation.

Application-Controlled Consistency

The application-controlled (CONS_APP_CTRL) Consistency Style depends on application-specific mechanisms to ensure
whatever consistency is required for the members of an object group. Application-controlled consistency does not depend
on the Fault Tolerance Infrastructure to provide logging, checkpointing or recovery, and does not guarantee Strong
Replica Consistency. Typical applications might include telecommunications applications, and some embedded and real-
time applications.

Passive Replication

The COLD_PASSIVE or WARM_PASSIVE Replication Styles require that, during fault-free operation, only one member of
the object group, the primary member, executes the methods invoked on the group. Periodically, the state of the primary
member is recorded in a log, together with the sequence of method invocations. In the presence of a fault, a backup
member is promoted to be the new primary member of the group. The state of the new primary is restored to the state of
the old primary by reloading its state from the log, followed by reapplying request messages recorded in the log. Passive
replication is useful when the cost of executing a method invocation is larger than the cost of transferring a state, and the
time for recovery after a fault is not constrained. Typical examples include enterprise inventory, logistics applications, and
hospital record keeping.

Active Replication

The ACTIVE Replication Style requires that all of the members of an object group execute each invocation independently
but in the same order, so that they maintain exactly the same state and, in the event of a fault in one member, that the
application can continue with results from another member without waiting for fault detection and recovery. Even though
each of the members of the object group generates each request and each reply, the Message Handling Mechanism detects
and suppresses duplicate requests and replies, and delivers a single request or reply to the destination object(s). Active
replication is useful when the cost of transferring a state is larger than the cost of executing a method invocation, or when
the time available for recovery after a fault is tightly constrained. Typical examples include enterprise electronic trading
applications and safety-critical applications, such as hospital patient monitoring.

Fault Detection and Notification

The Fault Management interfaces allow detection of object crash faults, and provide fault notifications to the entities that
have registered for such notifications. Accuracy of fault detection is impossible in an asynchronous fault-tolerant
distributed system. Occasional false suspicions cause no harm in a robust fault-tolerant system. If a host crashes or an
object hangs, the Fault Detectors are required to detect the fault in a timely manner. However, a Fault Detector must not
continuously suspect all members of an object group, unless all of them are indeed faulty. Most fault-tolerant applications
will use the Fault Management interfaces, but they are particularly important for telecommunications, electric power
distribution and other safety-critical applications.

Logging and Recovery

The Logging and Recovery Mechanisms and Checkpointable and Updateable interfaces allow an application object to
record its state, for use in recovery after a fault or to initialize another replica. Following a fault that damages one or
more, but not all, of the members of an object group, recovery is required to ensure that the continued behavior of the
replicated object after recovery is the same as it would have been in the absence of the fault. A recovering member
executes the same requests in the same order, generates the same replies, invokes the same methods of other objects, and
reaches the same internal state, as if no fault had occurred. If a request is partially executed when a fault occurs, that
8 Fault Tolerant CORBA, v1.0

request is fully executed, at the same position in the sequence of messages, during recovery. If an object invokes a method
of another object and then becomes faulty, that method invocation must not be duplicated during recovery. Because some
objects may be unreplicated, or may be supported by ORBs that do not provide fault tolerance, or may use different
Replication Styles, the recovery of each object must be self-contained and must not depend on the cooperation of any
other object. Applications that employ the infrastructure-controlled Consistency Style will use these mechanisms and
interfaces.

4.1.4 Limitations

The limitations of the Fault Tolerant CORBA specification are given below.

Legacy ORBs

An unreplicated client hosted by a legacy ORB can invoke methods of a replicated server, supported by the Fault
Tolerance Infrastructure. The object group references generated for replicated servers can be used by legacy ORBs,
although the full benefits of fault-tolerant operation are not achieved for an unreplicated client. If a legacy ORB has been
modified to understand object group references and to retry requests at alternative destinations, the unreplicated client
receives the benefits of a higher, but still partial, level of fault tolerance. Special service contexts in the request and reply
messages protect an unreplicated client from a replicated server executing its requests multiple times when the client
retries those requests at alternative destinations.

Common Infrastructure

All of the hosts within a fault tolerance domain must use ORBs from the same vendor and Fault Tolerance Infrastructures
from the same vendor to ensure interoperability and full fault tolerance within that domain. Consequently, the members of
an object group must be hosted by ORBs from the same vendor and Fault Tolerance Infrastructures from the same vendor.
For clients and servers in different fault tolerance domains, both using ORBs and Fault Tolerance Infrastructures from the
same vendors, full fault tolerance can be achieved. Otherwise, the specifications provide a useful improvement over no
fault tolerance but substantially less than full fault tolerance.

Deterministic Behavior

For the infrastructure-controlled Consistency Style, for both active and passive replication, deterministic behavior is
required of the application objects, and of the ORBs, to guarantee Strong Replica Consistency. The inputs to the replicas
of an object must be consistent (identical); this implies that request and reply messages must be delivered in the same
order to each of the replicas of an object. If sources of non-determinism exist, they must be filtered out. Multi-threading
in the application or the ORB may be restricted, or transactional abort/rollback mechanisms may be used.

Network Partitioning Faults

Network partitioning faults separate the hosts of the system into two or more sets, the hosts of each set being able to
operate and to communicate within that set but not with hosts of different sets. The current state-of-the-art does not
provide an adequate solution to network partitioning faults. Thus, network partitioning faults are not addressed in this
specification.

Commission Faults

A commission fault occurs when an object or host generates incorrect results. A Byzantine fault is a commission fault in
which an object or host generates incorrect results maliciously. Algorithms have been devised to detect and protect
against a fairly wide range of Byzantine faults but they are complex and expensive in processing and communication. In
the current state-of-the-art, Byzantine algorithms are seldom appropriate for fault tolerance but might be appropriate for
Fault Tolerant CORBA, v1.0 9

security, to protect a system after one or more of its hosts have been subverted by intruders. The specification provides an
ACTIVE_WITH_VOTING Replication Style. Voting itself is relatively inexpensive, but the communications infrastructure
required to support voting properly is substantially more expensive than that required to tolerate only crash faults.

Correlated Faults

No protection is provided against design or programming faults, or other correlated faults, that cause the same errors in
all replicas of an object, in all ORBs, or in all hosts or their operating systems.
10 Fault Tolerant CORBA, v1.0

5 Basic Fault Tolerance Mechanisms

5.1 Overview

This chapter defines basic fault tolerance mechanisms that must be implemented for Fault Tolerant CORBA. The client-
side mechanisms are intended to be simple light weight extensions to CORBA that will be easy to implement. These
mechanisms enable client-side ORBs to achieve a higher level of reliability by exploiting the fault tolerance mechanisms
defined for server-side ORBs.

In particular, this section defines:

• Interoperable object group reference that contains multiple TAG_INTERNET_IOP profiles, each of which contains the
TAG_FT_GROUP component and one of which may contain a TAG_FT_PRIMARY component. The interoperable
object group reference may contain the TAG_MULTIPLE_COMPONENTS profile, which may contain the
TAG_FT_GROUP component.

• Failover semantics for Fault Tolerant CORBA that extend the failover semantics for the CORBA core.

• Most recent object group reference for a server object group, using the FT_GROUP_VERSION service context in a
client’s request message. The FT_GROUP_VERSION service context allows the server to determine whether the client
is using the most recent object group reference for the server object group.

• Transparent reinvocations of requests, using the FT_REQUEST service context in a client’s request messages, the
client-side Request Duration Policy and the fault handling semantics of GIOP messages. The FT_REQUEST service
context prevents a request from being executed two or more times as a consequence of reinvocation of the request on a
backup server after a fault.

• Heartbeating of the server, using the TAG_FT_HEARTBEAT_ENABLED component of the TAG_INTERNET_IOP
profile, the client-side Heartbeat Policy and the server-side Heartbeat Enabled Policy. This allows the client to detect
failure of the server.

5.2 Interoperable Object Group References

This section extends the definition of an interoperable object reference (IOR) to encompass references to server object
groups. The interoperable object group reference (IOGR) for a server object group is an IOR that contains multiple
TAG_INTERNET_IOP profiles and that may contain a TAG_MULTIPLE_COMPONENTS profile.

Each of the TAG_INTERNET_IOP profiles must contain the TAG_FT_GROUP component, and may contain other
components such as TAG_IIOP_ALTERNATE_ADDRESS components. At most one of the TAG_INTERNET_IOP profiles
may contain the TAG_FT_PRIMARY component. The TAG_MULTIPLE_COMPONENTS profile may also contain the
TAG_FT_GROUP component, which must be used for object groups that have no members. An example is shown in
Figure 5.1

The TAG_FT_GROUP component and TAG_FT_PRIMARY component are described in 5.2.1, ’TAG_FT_GROUP
Component’ and 5.2.2, ’TAG_FT_PRIMARY Component’.
Fault Tolerant CORBA, v1.0 11

Figure 5.1 - An example of the Interoperable Object Group Reference used for Fault Tolerance

Note – The reference is an IOR that contains multiple TAG_INTERNET_IOP profiles, any of which may be used to reach the
server object group. The reference may also contain a TAG_MULTIPLE_COMPONENTS profile. The TAG_FT_GROUP
component is contained in every profile of the reference. The TAG_FT_PRIMARY component is contained in at most one
TAG_INTERNET_IOP profile.

5.2.1 TAG_FT_GROUP Component

The TAG_FT_GROUP component is contained in the profiles of the interoperable object group reference.

module IOP {
const ComponentId TAG_FT_GROUP = 27;

};

module FT {
typedef string FTDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;
12 Fault Tolerant CORBA, v1.0

struct TagFTGroupTaggedComponent { // tag = TAG_FT_GROUP;
GIOP::Version version;
FTDomainId ft_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
};

Object groups have an identity that persists even as the membership of the object group changes. Thus, an object group
requires an identifier that is unique within the context of a fault tolerance domain. Moreover, as the membership of an
object group changes, the object group reference may have different versions. To address these concerns, Fault Tolerant
CORBA introduces the following types.

typedef string FTDomainId;

The identifier of a fault tolerance domain.

typedef unsigned long long ObjectGroupId;

The identifier of an object group.

typedef unsigned long ObjectGroupRefVersion;

The version number of the object group reference.

The TAG_FT_GROUP component contains the fault tolerance domain identifier and object group identifier of the server
object group, which are used to reach the server object group. It also contains the object_group_ref_version, which the
client ORB may put in the FT_GROUP_VERSION service context in the client’s request messages, as described in 5.7.1,
’FT_GROUP_VERSION Service Context’.

const ComponentId TAG_FT_GROUP = 27;

A constant that designates the TAG_FT_GROUP component that is contained in the TAG_INTERNET_IOP profiles and
may be contained in the TAG_MULTIPLE_COMPONENTS profile.

struct TagFTGroupTaggedComponent { // tag = TAG_FT_GROUP;
GIOP::Version version;
FTDomainId ft_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};

The TAG_FT_GROUP component, within the TAG_INTERNET_IOP profiles and TAG_MULTIPLE_COMPONENTS profile,
contains the version of the TAG_FT_GROUP component, the fault tolerance domain identifier, the object group identifier,
and the version number of the object group reference for the server object group. For implementations conforming to this
version of the specification, the value of version.major must be 1 and the value of the version.minor must be 0.

5.2.2 TAG_FT_PRIMARY Component

The TAG_FT_PRIMARY component is contained in at most one of the TAG_INTERNET_IOP profiles of the interoperable
object group reference.
Fault Tolerant CORBA, v1.0 13

module IOP {
const ComponentId TAG_FT_PRIMARY = 28;

};

module FT {
struct TagFTPrimaryTaggedComponent { // tag = TAG_FT_PRIMARY;

boolean primary;
};

};

The profile that contains the TAG_FT_PRIMARY component is used in preference to other profiles to reach the server
object group.

const ComponentId TAG_FT_PRIMARY = 28;

A constant that designates the TAG_FT_PRIMARY component that is contained in at most one of the TAG_INTERNET_IOP
profiles.

struct TagFTPrimaryTaggedComponent { // tag = TAG_FT_PRIMARY;
boolean primary;

};

The TagFTPrimaryTaggedComponent, when present in a TAG_INTERNET_IOP profile, indicates that the profile is to be
used in preference to the other TAG_INTERNET_IOP profiles within the object group reference.

At most one of the profiles in the object group reference contains the TAG_FT_PRIMARY component. A client-side ORB
may use that profile in preference to the other profiles. It is not mandated that the ORB must choose the profile containing
the TAG_FT_PRIMARY component. Moreover, it cannot be guaranteed that the endpoint addressed by the profile
containing the TAG_FT_PRIMARY component is currently the primary endpoint for the object group.

Use of any of the profiles, other than that containing the TAG_FT_PRIMARY component, may result in one or more
LOCATION_FORWARDs and thus reduced efficiency. No requirement is imposed on the particular order in which
the other profiles, that do not contain the TAG_FT_PRIMARY component, must be used.

5.3 Interoperable Object Group Reference Operations

IOGRs are IORs. However, the semantics of several of the operations inherited from CORBA::Object must be adjusted to
account for the group contents of an IOGR.

5.3.1 get_interface

Unchanged. The assembly procedure for an object group guarantees that the interfaces supported by the object group are
supported by all members of the object group.

5.3.2 is_a

Unchanged.
14 Fault Tolerant CORBA, v1.0

5.3.3 is_nil

Essentially unchanged. True if no profiles are present or if is_nil is true for all of the profiles.

5.3.4 non_existent

Essentially unchanged. True if the object group does not exist. Note that the object group might exist even if
non_existent() is true for all of the profiles of the object group reference or even if there are no IOP profiles in the object
group reference. (This occurs when an object group with the application-controlled Membership Style is created with no
members so that the members can be added individually by the application.) A server ORB can obtain an authoritative
determination of non-existence of the object group from the Replication Manager, using the same mechanisms as are used
to obtain the most recent object group reference. The ORB must use those mechanisms to generate a
LOCATION_FORWARD reply when the client’s request contains an obsolete object_group_ref_version field in the
FT_GROUP_VERSION service context.

5.3.5 is_equivalent

There are three cases to consider for checking equivalence:

1. Two non-object group references. The semantics of the operation are unchanged in this case.

2. An object group reference and a non-object group reference. These references are not equivalent.

3. Two object group references. 5.2.1, ’TAG_FT_GROUP Component’ introduces a strong identity for an object group
in its ft_domain_id and object_group_id fields. Two object group references are equivalent if they have the same
ft_domain_id and the same object_group_id fields. Note that the object_group_ref_version field in the
TAG_FT_GROUP component is ignored.

The analysis of these cases collapses the semantics to the following:

• Non-Fault-Tolerant CORBA implementations are essentially unchanged. These implementations might not recognize
certain object group references as representing the same object group. However, that is allowed under the present
semantics.

• Fault Tolerant CORBA implementations compare the values of the corresponding ft_domain_id and object_group_id
fields in the TAG_FT_GROUP components to determine the equivalence of two object group references. Otherwise, the
semantics for is_equivalent are unchanged.

5.3.6 hash

Follows the semantics for is_equivalent(). An interoperable object group reference contains an object group identifier that
is unique and immutable over the lifetime of the object group. For such a reference, the value of hash() shall be derived
from the object group identifier. For references that are not interoperable object group references, the value of hash()
continues to be derived as at present.

5.3.7 create_request

Unchanged.
Fault Tolerant CORBA, v1.0 15

5.3.8 get_policy

Unchanged.

5.3.9 get_domain_managers

Unchanged.

5.3.10 set_policy_overrides

Unchanged.

5.4 Modes of Profile Addressing

The interoperable object group references contain profiles that address server object groups. This section illustrates the
use of these profiles according to one of two modes:

• Profiles that address object group members.

• Profiles that address gateways (technically generic in-line bridges of the type described in the Building Inter-ORB
Bridges chapter of the CORBA specification).

The choice of addressing mode is influenced by the Replication Style of the object group.

5.4.1 Profiles That Address Object Group Members

When using profiles that address members of an object group, the object group reference for a server object group
contains one TAG_INTERNET_IOP profile for each member of that group. Each profile contains a member reference that
can be used to reach an individual member of the object group.

5.4.2 Profiles That Address Gateways

When using profiles that address gateways, the object group reference for a server object group contains one
TAG_INTERNET_IOP profile for each of several alternative gateways to that group. Each profile contains a reference to a
gateway that can forward messages to all members of the server object group possibly using a proprietary multicast group
communication protocol. The group communication protocol may be used for server object groups that support any of the
Replication Styles.

5.4.3 Choice of Profile Addressing Mode

For a server object group having the STATELESS, COLD_PASSIVE, or WARM_PASSIVE Replication Styles (see
“Replication Management” chapter), the Fault Tolerance Infrastructure at the server may create either an object group
reference that contains member profiles, or alternatively, an object group reference that contains gateway profiles.

For a server object group having the ACTIVE and ACTIVE_WITH_VOTING (6.2, ’Fault Tolerance Properties’) Replication
Styles, the client must invoke all of the members of the server object group simultaneously so that the members are
treated as, and behave as, peers in executing the methods invoked on the object group. Therefore, for the ACTIVE and
ACTIVE_WITH_VOTING Replication Styles, the Fault Tolerance Infrastructure at the server can create an object group
reference that contains profiles for gateways that multicast the request to all of the members of the object group.
16 Fault Tolerant CORBA, v1.0

5.5 Accessing Server Object Groups

The interoperable object group references permit alternative implementation strategies for connecting a client to a server
object group. This section illustrates some of these strategies:

• Access via IIOP directly to a member of a server object group.

• Access via IIOP and a gateway.

• Access via a proprietary multicast group communication protocol.

The first of these three options, access directly to a member of a server object group, requires the use of the
LOCATION_FORWARD_PERM exception. As object replicas fail and are replaced by new replicas, a stage may be
reached at which all of the original replicas, cited in the original interoperable object group reference for the object, are
inaccessible. Continued use of the original reference will cause system failure. The LOCATION_FORWARD_PERM
exception allows such a reference to be replaced by an updated reference that contains profiles for the new replacement
replicas. Thus, the LOCATION_FORWARD_PERM exception is not deprecated when it is used to return an
interoperable object group reference. The use of the LOCATION_FORWARD_PERM exception to return a reference
that is not an interoperable object group reference continues to be deprecated.

5.5.1 Access via IIOP Directly to the Primary Member

This strategy may be used to provide access to a fault-tolerant server (server object group) by an unreplicated client or by
a client supported by a Fault Tolerance Infrastructure from a vendor different from the vendor that provided the Fault
Tolerance Infrastructure for the server. Because the access is directly to the primary member, this strategy may be used
only if the server object group has the STATELESS, COLD_PASSIVE, or WARM_PASSIVE Replication Style.

The client ORB extracts an IIOP profile from the object group reference, preferably the profile containing the
TAG_FT_PRIMARY component, and establishes a connection to the endpoint addressed by that profile. If the addressed
endpoint is the primary member of the object group, it accepts the connection and processes the request. Otherwise, it
replies with a LOCATION_FORWARD_PERM that provides the current object group reference, one profile of which
(the one with the TAG_FT_PRIMARY component) contains a profile that addresses the current primary.

5.5.2 Access via IIOP and a Gateway

This strategy may be used to provide access to a fault-tolerant server (server object group) by an unreplicated client
hosted by a non-fault-tolerant ORB and by a client supported by a Fault Tolerance Infrastructure from a vendor different
from the vendor that provided the Fault Tolerance Infrastructure for the server.

The client ORB extracts an IIOP profile from the object group reference and uses that reference to establish a connection
to the endpoint addressed by that profile. If that endpoint is a gateway, it accepts the connection and forwards messages
to the members of the object group, typically using a (proprietary) multicast group communication protocol.

The client ORB and the client application object must be unaware of whether the interoperable object group reference
addressed a gateway or the primary member.

5.5.3 Access via a Multicast Group Communication Protocol

Some vendors may choose to use a proprietary multicast group communication protocol within a fault tolerance domain,
or even between fault tolerance domains supported by a Fault Tolerance Infrastructure from the same vendor.
Fault Tolerant CORBA, v1.0 17

The fault tolerance domain identifier and object group identifier contained in the TAG_FT_GROUP component of the
profiles of the object group reference could be used to establish a connection using the proprietary multicast group
communication protocol. The details of connection establishment, and recovery from faults during connection
establishment, for the multicast group communication protocol are not defined in this specification.

The use of a proprietary multicast group communication protocol must, however, be invisible to both the client
application object and the server application object.

5.6 Extensions to CORBA Failover Semantics

The failover semantics for Fault Tolerant CORBA extend the failover semantics for the CORBA core, and are
summarized in Table 5.1. Note that the Fault Tolerant CORBA failover semantics permit reinvocation of requests even
when a prior invocation yielded COMPLETED_MAYBE, whereas the CORBA failover semantics permit reinvocation
only if all prior attempts yielded COMPLETED_NO. The permissible failover behaviors are determined by whether
the IOR contains the TAG_FT_GROUP component (defined in 5.2.1, ’TAG_FT_GROUP Component’) and whether the
client ORB includes an FT_REQUEST service context (defined in 5.8.1, ’FT_REQUEST Service Context’) in its request,
as well as by the completion status returned and by the exception raised.

The temporal scope of the replacement reference provided by LOCATION_FORWARD_PERM is ORB lifetime or
the next LOCATION_FORWARD_PERM. It is safe, and appropriate, for an ORB to replace any reference that
contains the same fault tolerance domain identifier, the same object group identifier, and a smaller value of the version of
the object group reference.

If a client tries to establish a connection to an endpoint that cannot handle the request, the client ORB might receive a
reply containing a LOCATION_FORWARD_PERM response, which provides the most recent object group reference
for the group (as described in 5.7, ’Most Recent Object Group Reference’), or it might receive a
SYSTEM_EXCEPTION.

Each time a client ORB attempts to establish a connection, it must not abandon the attempt and raise an exception to the
client application until it has tried to invoke the server using all of the alternative IIOP addresses in the IOR, and has
failed to establish a connection within the request_duration_policy_value (defined in 5.8.2, ’Request Duration Policy’).
It must then return a SYSTEM_EXCEPTION to the client application. Alternative addresses include all of the host/
port pairs in all of the TAG_INTERNET_IOP profiles within the interoperable object group reference, and all of the
TAG_ALTERNATE_IIOP_ADDRESS components.

Each time a client ORB attempts to invoke a method, it must not abandon the invocation and raise an exception to the
client application until it has tried to invoke the server using all of the alternative IIOP addresses in the interoperable
object group reference, or has received a “non-failover” condition, or the request duration has expired.

No order is prescribed for the use of the addresses present in an interoperable object group reference (including the
TAG_ALTERNATE_IIOP_ADDRESS). If a failover condition arises, an ORB may retry with the same address, or may
immediately retry with other addresses - this is a quality of implementation issue.
18 Fault Tolerant CORBA, v1.0

This behavior specifies the minimum failover semantics that an ORB must implement. An ORB may also retry in other
conditions not stated above, but this is not mandated. Under all failover conditions, at most once semantics must be
guaranteed.

5.7 Most Recent Object Group Reference

This section defines a mechanism that allows the server to determine whether the client is using the most recent object
group reference for the server object group when the client issues a request. The mechanism consists of an
FT_GROUP_VERSION service context that a client may include in its request messages.

5.7.1 FT_GROUP_VERSION Service Context

The FTGroupVersionServiceContext struct contains the version of the object group reference for the server object group,
which allows the server to determine whether the client is using an obsolete object group reference. When encoded in a
request or reply message header, the context_data component of the ServiceContext struct shall contain a CDR
encapsulation of the FTGroupVersionServiceContext struct, which is defined below.

module IOP {
const ServiceId FT_GROUP_VERSION = 12;

};

module FT {
struct FTGroupVersionServiceContext { //context_id = FT_GROUP_VERSION;

ObjectGroupRefVersion object_group_ref_version;
};

};

If the server determines that the client is using an obsolete object group reference, the server returns a
LOCATION_FORWARD_PERM response that contains the most recent object group reference for the server object
group.

const ServiceId FT_GROUP_VERSION = 12;

A constant that designates the FT_GROUP_VERSION service context.

struct FTGroupVersionServiceContext{ //context_id = FT_GROUP_VERSION;
ObjectGroupRefVersion object_group_ref_version;

};

Table 5.1 -

Completion Status CORBA Exception

Without Transparent Reinvocation COMPLETED_NO COMM_FAILURE
TRANSIENT
NO_RESPONSE
OBJ_ADAPTER

With Transparent
Reinvocation

COMPLETED_NO
COMPLETED_MAYBE

COMM_FAILURE
TRANSIENT
NO_RESPONSE
OBJ_ADAPTER
Fault Tolerant CORBA, v1.0 19

A structure that contains the same object_group_ref_version that is in the TAG_FT_GROUP component of each of the
TAG_INTERNET_IOP profiles of the object group reference for the server object group, which allows the server ORB to
determine whether the object group reference being used by the client is obsolete.

When the Replication Manager generates a new object group reference for the server object group, because the
membership of the server object group has changed, it updates the object_group_ref_version in the reference for the new
membership.

If the highest object_group_ref_version known to the server ORB is greater than that contained in the request from the
client, the server ORB must return a LOCATION_FORWARD_PERM response to the client containing the most
recent reference for the server object group.

If the object_group_ref_version known to the server ORB is equal to that contained in the request from the client and the
server ORB supports the primary member of the server object group, the server ORB invokes the member to process the
request. If the object_group_ref_version known to the server ORB is equal to that contained in the request from the
client and the server ORB supports a backup member, the server ORB returns a TRANSIENT exception with
completion status COMPLETION_NO to the client ORB. The client ORB can then reinvoke the request using another
profile from the object group reference.

If the most recent object_group_ref_version known to the server ORB is less than that contained in the request from the
client, the server ORB must obtain the current reference for the server object group. If the object_group_ref_version in
the object group reference returned by the Replication Manager is greater than that contained in the request from the
client, the server ORB must return a LOCATION_FORWARD_PERM response to the client containing the most
recent reference for the server object group. If the object_group_ref_version in the object group reference returned by
the Replication Manager is less than that contained in the request from the client, the server ORB returns an
INV_OBJREF exception to the client.

5.8 Transparent Reinvocation

This section defines mechanisms that provide transparent reinvocation of methods contained in request messages. The
mechanisms handle failure of the primary member of a server object group that has the COLD_PASSIVE or
WARM_PASSIVE Replication Styles and provide redirection of the client’s outstanding request to a backup server. In the
absence of such mechanisms, the failure of the primary server could cause a client’s request to be executed two (or more)
times, once by the original primary and once by a backup that became the new primary, without the client or the server
being aware of the repetition, possibly producing erroneous results.

These specifications do not change the current at-most-once invocation semantics of the CORBA object model. At the
level of the application, a client makes a request once only and that request is executed at most once. At the transport
level, however, a fault-tolerant client ORB can transparently retransmit a request message to a fault-tolerant server, to
mask faults including both object and link faults, thus providing higher reliability. Transparent reinvocation is permitted
only under the completion status and system exception conditions listed in Table 5.1, and provided that both the IOP
profile used for the existing request and the IOP profile used for the reinvocation contain a TAG_FT_GROUP component.
Both the existing request message and the reinvocation request message must contain an FT_REQUEST service context.
Neither the client application nor the server application is aware of such retransmissions. The server application executes
the request at most once with no special application programming to handle repeated requests, and the client application
receives its reply with no special application programming to handle exceptions. (For replicated clients communicating
with replicated servers, use of a multicast group communication protocol may be appropriate because such a protocol
provides stronger acknowledgment and retransmission mechanisms.)

The mechanisms defined here consist of the FT_REQUEST service context, which a client may include in its request
messages, and the Request Duration Policy.
20 Fault Tolerant CORBA, v1.0

5.8.1 FT_REQUEST Service Context

The FTRequestServiceContext is used to ensure that a request is not executed more than once under fault conditions.
When encoded in a request or reply message header, the context_data component of the ServiceContext struct shall
contain a CDR encapsulation of the FTRequestServiceContext struct, which is defined below.

module IOP {
const ServiceId FT_REQUEST = 13;

};

module FT {
struct FTRequestServiceContext { // context_id = FT_REQUEST;

string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};
};

The FT_REQUEST service context contains a unique client_id for the client, a retention_id for the request, and an
expiration_time for the request. The client_id and retention_id serve as a unique identifier for the client’s request and
allow the server ORB to recognize that the request is a repetition of a previous request. If the request is a repetition of a
previous request that the server has already executed, the server (which may be a new primary) does not re-execute the
request but rather returns the reply that was generated by the prior execution (possibly by a previous primary that failed).
The expiration_time serves as a garbage collection mechanism. It provides a lower bound on the time until which the
server must honor the request and, therefore, retain the request and corresponding reply (if any) in its log.

const ServiceId FT_REQUEST = 13;

A constant that designates the FT_REQUEST service context.

struct FTRequestServiceContext { // context_id = FT_REQUEST;
string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};

A structure that contains the client identifier, retention identifier, and the expiration time of the request. Each repetition of
a request must carry the same client_id, retention_id, and expiration_time as the original request. These fields are
defined as follows:

• The client_id uniquely identifies the client, so that repeated requests from the same client can be recognized. No
mechanisms are defined for generating this unique identifier.

• The retention_id uniquely identifies the request within the scope of the client and the expiration_time. The client
ORB can reuse the retention_id provided that it guarantees uniqueness.

• The expiration_time defines a lower bound on the time when the request will expire. Typically, the expiration_time is
obtained by adding the request_duration_policy_value defined by the Request Duration Policy, to the local clock
value of the client ORB.
Fault Tolerant CORBA, v1.0 21

If a server is unable to support the expiration_time, it may throw an INVALID_POLICY exception. Otherwise, the
server must retain each request and its reply until the time (at the server) defined by the expiration_time. Until that time,
the server must recognize requests that are repetitions of requests that have already been executed, and must return the
reply to the original request rather than reinvoking the method. After that time, the server must return either the reply to
the original request or a BAD_CONTEXT exception, but all replicas of the server must make the same decision about
which reply to return so that the client receives only one reply.

The client ORB that has issued the request may reissue the request to the same or a different member of the server object
group, but must use the FT_REQUEST service context with the same retention_id and same expiration_time as it used in
its original request.

Before the server returns the reply for a request to the client, the Fault Tolerance Infrastructure must log the request and
the reply. A backup that has become the new primary must not reply to the client until its state has been updated to
include replies generated by other members of the object group, using the messages in the log.

Both the establishment of connections and the retention of requests are bounded by the expiration_time, or the client
ORB’s current clock value plus the request_duration_policy_value if no expiration_time has been established. If a
current connection fails, a new connection may be needed so that the request can be retransmitted to an alternative
member of the server object group. The establishment of the new connection must be bounded by the expiration_time
determined for the prior request.

5.8.2 Request Duration Policy

The Request Duration Policy determines how long a request, and the corresponding reply, should be retained by a server
to handle reinvocation of the request under fault conditions.

module FT {
const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;

interface RequestDurationPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT request_duration_policy_value;

};
};

The Request Duration Policy, applied at the client, defines the time interval over which a client’s request to a server
remains valid and must be retained by the server ORB to detect repeated requests.

The policy is defined by:

const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;

A constant that designates the REQUEST_DURATION_POLICY.

interface RequestDurationPolicy : CORBA::Policy {
readonly attribute TimeBase::TimeT request_duration_policy_value;

};

The request_duration_policy_value is added to the client ORB’s current clock value to obtain the expiration_time that is
included in the FT_REQUEST service context for the request.
22 Fault Tolerant CORBA, v1.0

5.8.3 Fault Handling for GIOP Messages

The standard semantics of GIOP messages include definitions of fault conditions for messages of different types, and
provisions for handling of faults by the ORBs. Fault Tolerant CORBA does not modify those semantics in normal (fault-
free) conditions. For some types of GIOP messages, an ORB may attempt to retransmit the message or transmit the
message to alternative destinations or over alternative transports. Such attempts are invisible to the client and server
application and are bounded in time by the request_duration_policy_value defined for the client by the Request Duration
Policy. We discuss below those GIOP messages for which fault handling is modified.

LocateRequest

If a client ORB loses an IIOP connection with a server while issuing a LocateRequest, or before receiving a
corresponding LocateReply, or if it does not receive a LocateReply in a timely manner, then the client ORB may attempt
to retransmit the message or to transmit the message to alternative destinations or over alternative transports. If the client
ORB is unable to obtain a reply within the request_duration_policy_value of the Request Duration Policy, the client
ORB must return a COMM_FAILURE system exception to the client application. It may return a COMM_FAILURE
system exception before the end of that duration.

Request

If a client ORB loses the connection with a server or incurs some other kind of transport fault, the ORB may attempt to
retransmit the request message, or retransmit the request message to an alternative destination or using an alternative
transport, up to the expiration_time.

If a client invokes a fault-tolerant server (as indicated by the presence of the TAG_FT_GROUP component in the
TAG_INTERNET_IOP profiles of the server’s object group reference), the client ORB may retransmit a request if it would
have otherwise returned a COMM_FAILURE, TRANSIENT, NO_RESPONSE, or OBJ_ADAPTER exception
with a COMPLETED_NO or COMPLETED_MAYBE completion status to the client application. The client is
protected against repeated execution by the inclusion of an FT_REQUEST service context in the request message, as
described in 5.8.1, ’FT_REQUEST Service Context’.

If a client invokes a non-fault-tolerant server (as indicated by the absence of a TAG_FT_GROUP component in the
TAG_INTERNET_IOP profiles of its reference), the client ORB may retransmit the request only if it would have otherwise
returned a COMM_FAILURE, TRANSIENT, NO_RESPONSE, or OBJ_ADAPTER exception with a
COMPLETED_NO completion status to the client application.

LocateReply and Reply

Retransmission of a LocateReply or Reply message may occur either because the server ORB has not received a transport-
level acknowledgment for a previous transmission or because the server ORB has received a repetition of a previous
LocateRequest or Request message.

Fragment

Fragmented Request and Reply messages are handled like unfragmented Request and Reply messages.

5.9 Transport Heartbeats

With IIOP (TCP/IP), a problem can arise when a client invokes a method on a server, the host on which the server resides
fails or the link fails, and the client ORB does not detect the TCP/IP problem and receives no reply. Typically, this
problem is solved by using round-trip timeouts in the client application. Setting a timeout at the application level for each
Fault Tolerant CORBA, v1.0 23

request is laborious, even if one knew approximately how long a particular method will take. An alternative solution
proposed here is to send another request message on the same connection that takes a known (short) time to execute; that
is, a kind of no op.

This section therefore defines a new TAG_FT_HEARTBEAT_ENABLED component of the TAG_INTERNET_IOP profile,
and adds two new policies: Heartbeat and HeartbeatEnabled.

5.9.1 TAG_FT_HEARTBEAT_ENABLED Component

The TAG_FT_HEARTBEAT_ENABLED component in a TAG_INTERNET_IOP profile indicates that the addressed endpoint
supports heartbeating.

module IOP {
const ComponentId TAG_FT_HEARTBEAT_ENABLED = 29;

};

module FT {
struct TagFTHeartbeatEnabledTaggedComponent {

// tag =TAG_FT_HEARTBEAT_ENABLED
boolean heartbeat_enabled;
};

};

The TAG_FT_HEARTBEAT_ENABLED component contains only a boolean.

const ComponentId TAG_FT_HEARTBEAT_ENABLED = 29;

A constant that designates the TAG_FT_HEARTBEAT_ENABLED component that is contained in a TAG_INTERNET_IOP
profile.

struct TagFTHeartbeatEnabledTaggedComponent {
// tag =TAG_FT_HEARTBEAT_ENABLED

boolean heartbeat_enabled;
};

The TAG_FT_HEARTBEAT_ENABLED component may be included in a TAG_INTERNET_IOP profile to indicate that the
endpoint is heartbeat_enabled.

5.9.2 Heartbeat Policy

The Heartbeat Policy, applied at the client, allows the client to request heartbeating of its connections to servers, using the
heartbeat_interval and heartbeat_timeout.

module FT {
const CORBA::PolicyType HEARTBEAT_POLICY = 48;

struct HeartbeatPolicyValue {
boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;

};
24 Fault Tolerant CORBA, v1.0

interface HeartbeatPolicy : CORBA::Policy {
readonly attribute HeartbeatPolicyValue heartbeat_policy_value;

};
};

When the Heartbeat Policy is applied at a client ORB, the ORB is responsible for taking the following steps. While a
connection exists to a remote server, the ORB sends a request message over the connection at least as often as was
requested by the heartbeat_interval of the Heartbeat Policy of any client connected to a server over that connection. The
request message is equivalent to an invocation of the method:

void FT_HB ();

on any one of the server objects accessed by the connection. The FT_HB() operation name is reserved in CORBA for this
purpose, and IDL compilers use the standard escape techniques if IDL specifications contain operations with this name.

If the corresponding reply message does not arrive at the client ORB within the heartbeat_timeout of the Heartbeat
Policy of a client connected to a server over that connection, the ORB closes the connection for that client. The
connection may remain open for other clients whose Heartbeat Policy define a larger value for the heartbeat_timeout.

The policy is defined by:

const CORBA::PolicyType HEARTBEAT_POLICY = 48;

A constant that designates the Heartbeat Policy for the client.

struct HeartbeatPolicyValue {
boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;

};

The HeartbeatPolicyValue consists of a boolean that indicates whether the client ORB supports heartbeating, a
heartbeat_interval that determines the frequency with which the client ORB pings the server, and a heartbeat_timeout
that indicates the time by which the client ORB must receive a reply from the server before it closes the connection. Both
the heartbeat_interval and the heartbeat_timeout use the standard TimeBase::TimeT representation, which uses a unit of
100 nanoseconds.

interface HeartbeatPolicy : CORBA::Policy {
readonly attribute HeartbeatPolicyValue heartbeat_policy_value;

};

A server ORB must respond to requests that contain the FT_HB() operation by immediately sending a reply message. The
contents of the reply message are not defined. The request id of the reply message must match the request_id of the
request message.

A server ORB must not involve POAs or servants on receipt or reply of the FT_HB() message.

5.9.3 Heartbeat Enabled Policy

Because heartbeating can generate significant network traffic, and can use significant server resources, the heartbeating
capability is explicitly enabled or disabled using the Heartbeat Enabled Policy.
Fault Tolerant CORBA, v1.0 25

module FT {
const CORBA::PolicyType HEARTBEAT_ENABLED_POLICY = 49;

interface HeartbeatEnabledPolicy : Policy {
readonly attribute boolean heartbeat_enabled_policy_value;

};
};

The Heartbeat Enabled Policy allows the heartbeating of a server endpoint. If the Heartbeat Enabled Policy is enabled for
a server endpoint, the TAG_INTERNET_IOP profile for that endpoint contains the TAG_FT_HEARTBEAT_ENABLED
component to indicate to the client that the server endpoint is heartbeat_enabled.

The policy is defined by:

const PolicyType HEARTBEAT_ENABLED_POLICY = 49;

A constant that designates the Heartbeat Enabled Policy for the server.

interface HeartbeatEnabledPolicy : CORBA::Policy
readonly attribute boolean heartbeat_enabled_policy_value;

};

The heartbeat_enabled_policy_value determines whether the server endpoint supports heartbeats.

If a client attempts to apply the Heartbeat Policy to a server for which the Heartbeat Enabled Policy is not enabled; that
is, heartbeat_enabled_policy_value is false, then an INVALID_POLICIES exception is thrown. The Heartbeat
Enabled Policy can be checked using validate_policies().
26 Fault Tolerant CORBA, v1.0

6 Replication Management

6.1 Overview

The Replication Manager is an important component of the Fault Tolerance Infrastructure that interacts with other
components of the infrastructure. Typically, the Replication Manager is replicated for fault tolerance, though not
necessarily on every host within the fault tolerance domain; however, logically, there is a single Replication Manager for
each fault tolerance domain.

The Replication Manager inherits three application program interfaces: PropertyManager, GenericFactory, and
ObjectGroupManager.

The PropertyManager interface allows properties of the object groups to be set, such as the ReplicationStyle,
MembershipStyle, ConsistencyStyle, InitialNumberReplicas, MinimumNumberReplicas, etc. These properties may be
set statically as defaults for the fault tolerance domain or for a particular type, or may be set or changed dynamically
while the application is executing.

The GenericFactory interface is used by the application to create object groups, as shown in Figure 6.1. It is also used by
the Replication Manager to create individual members of an object group.

For the infrastructure-controlled Membership Style, the Replication Manager invokes the individual factories, for the
appropriate locations, to create the members of the object group, both initially to satisfy the InitialNumberReplicas
property, and after the loss of a member because of a fault to satisfy the MinimumNumberReplicas property. The
Replication Manager adds the members to the object group and creates the object group reference. Subsequently, the
Replication Manager removes members, if necessary.

For the application-controlled Membership Style, the ObjectGroupManager interface allows the application to create a
member of an object group, to add an existing object to an object group, or to remove a member from an object group,
citing the location of the member to be created, added, or removed. It also allows the application to define the primary
member of an object group and to query the locations of the members of an object group and the primary member.
Fault Tolerant CORBA, v1.0 27

Figure 6.1 - The Replication Manager and the Creation of an Object Group

6.2 Fault Tolerance Properties

Each object group has an associated set of properties that are set as defaults for the fault tolerance domain, that are set for
the type of the object, that are set when the object group is created, or that are set subsequently while the application
executes. The names and values of the specified properties are given below. Vendor implementations may define
additional properties and may extend the property values.

6.2.1 ReplicationStyle

For the STATELESS Replication Style, the behavior of the object group is unaffected by its history of invocations. A
typical example is a server that provides read-only access to a database.

For the COLD_PASSIVE or WARM_PASSIVE Replication Styles, only a single member, the primary member, executes
the methods that have been invoked on the object group. The object group contains additional backup members for
recovery after a fault.

Name org.omg.ft.ReplicationStyle

Value FT::STATELESS
FT::COLD_PASSIVE
FT::WARM_PASSIVE
FT::ACTIVE
FT::ACTIVE_WITH_VOTING
28 Fault Tolerant CORBA, v1.0

For the COLD_PASSIVE Replication Style, the state of the primary is extracted from a log and loaded into a backup
member when needed for recovery.

For the WARM_PASSIVE Replication Style, the state of the primary member is loaded into one or more backup members
periodically during normal operation.

For the ACTIVE Replication Style, all of the members of the object group independently execute the methods invoked on
the object, so that if a fault prevents one member from operating correctly, the other members will produce the required
replies without the delay required for recovery. Duplicate requests and duplicate replies, generated by multiple members
of the object group, are detected and suppressed. The ACTIVE Replication Style typically requires the use of a multicast
group communication system that provides reliable totally-ordered message delivery and group membership services in a
model of virtual synchrony (see the Glossary).

For a source object group that has the ACTIVE_WITH_VOTING Replication Style, the requests (replies) from the members
of the source object group are voted, and are delivered to the members of the destination object group only if a majority
of the requests (replies) are identical (match exactly). A vote on a specific request or reply must be performed using the
same voting membership at each host where that vote is performed. This Replication Style requires protection against
commission faults both in the objects and in the network infrastructure. The ACTIVE_WITH_VOTING Replication Style is
not supported in the current specification, but is an anticipated extension. It should be understood that voting itself is
computationally inexpensive but that the communication required to support voting properly is substantially more
expensive than that required to tolerate only crash faults.

6.2.2 MembershipStyle

If the value of the MembershipStyle is MEMB_APP_CTRL, the application may create an object itself and then invoke the
add_member() operation of the ObjectGroupManager interface to cause the Replication Manager to add the object to the
object group. Alternatively, the application may invoke the create_member() operation of the ObjectGroupManager
interface to cause the Replication Manager to create the member and add it to the object group. The application is
responsible for enforcing the InitialNumberReplicas and MinimumNumberReplicas properties. The Replication Manager
initiates monitoring of the members for faults, according to the FaultMonitoringStyle, and registers with the Fault Notifier
to receive notifications of faults. Likewise, the application may register for fault notifications for the members of the
object group.

At most one member of an object group can exist at a given location. Therefore, if the application attempts to create or
add a second member to an object group at the given location, a MemberAlreadyPresent exception is raised.

If the value of the MembershipStyle is MEMB_INF_CTRL, the Replication Manager invokes the individual factories, for
the appropriate locations, to create the members of the object group, both initially to satisfy the InitialNumberReplicas
property, and after the loss of a member because of a fault to satisfy the MinimumNumberReplicas property. The
Replication Manager initiates monitoring of the members for faults, according to the FaultMonitoringStyle, and registers
with the Fault Notifier to receive notifications of faults.

Name org.omg.ft.MembershipStyle

Value FT::MEMB_APP_CTRL
FT::MEMB_INF_CTRL
Fault Tolerant CORBA, v1.0 29

6.2.3 ConsistencyStyle

If the value of the ConsistencyStyle is CONS_APP_CTRL, the application is responsible for checkpointing, logging,
activation and recovery, and for maintaining whatever kind of consistency is appropriate for the application.

If the value of the ConsistencyStyle is CONS_INF_CTRL, the Fault Tolerance Infrastructure is responsible for
checkpointing, logging, activation and recovery, and for maintaining Strong Replica Consistency, Strong Membership
Consistency, and Uniqueness of the Primary for the COLD_PASSIVE and WARM_PASSIVE Replication Styles. The
CONS_INF_CTRL Consistency Style requires the object to inherit the Checkpointable interface.

For the COLD_PASSIVE and WARM_PASSIVE Replication Styles, Strong Replica Consistency requires that, at the end of
each state transfer, each of the members of an object group has, or has access to, the same state and the same requests the
primary replica had, or had not, processed when it created that state. It requires that requests and replies are not lost in the
event of a fault and that duplicate requests and duplicate replies, generated during recovery, are suppressed.

For the ACTIVE and ACTIVE_WITH_VOTING Replication Styles, Strong Replica Consistency requires that, at the end of
each method invocation on the object group, the members of the object group have the same state, and that no requests or
replies are lost or duplicated.

For the ACTIVE, COLD_PASSIVE, and WARM_PASSIVE Replication Styles, the behavior of each member of an object
group must be deterministic and each member must start in the same state. If the same sequence of requests are then
applied, in the same order, to each member of the group, Strong Replica Consistency will be maintained. Strong Replica
Consistency simplifies the application programming, but requires strong mechanisms within the Fault Tolerance
Infrastructure to do so. In particular, the ACTIVE and ACTIVE_WITH_VOTING Replication Styles, and perhaps also the
WARM_PASSIVE Replication Style, typically employ a multicast group communication protocol that provides reliable
totally-ordered delivery of messages and group membership services to maintain Strong Replica Consistency.

Strong Membership Consistency requires that, for each method invocation on an object group, the Fault Tolerance
Infrastructures on all hosts have the same view of the membership of the object group. For the COLD_PASSIVE and
WARM_PASSIVE Replication Styles, Uniqueness of the Primary requires that there is exactly one primary member of the
object group at each logical point in time.

6.2.4 FaultMonitoringStyle

For the PULL FaultMonitoringStyle, the Fault Monitor interrogates the monitored object periodically to determine
whether it is alive. The PULL FaultMonitoringStyle requires that the object inherits the PullMonitorable interface.

For the PUSH FaultMonitoringStyle, the monitored object periodically reports to the fault monitor to indicate that it is
alive. The PUSH FaultMonitoringStyle is not supported in the current specification, but is an anticipated extension.

Name org.omg.ft.ConsistencyStyle

Value FT::CONS_APP_CTRL
FT::CONS_INF_CTRL

Name org.omg.ft.FaultMonitoringStyle

Value FT::PULL
FT::PUSH
FT::NOT_MONITORED
30 Fault Tolerant CORBA, v1.0

6.2.5 FaultMonitoringGranularity

For the MEMB FaultMonitoringGranularity, each individual member of this object group is monitored. This is the default.

For the LOC FaultMonitoringGranularity and for a member of this object group at a particular location, if no other object
at that location is already being monitored, then the member of this object group at that location is monitored. This
member acts as a “fault monitoring representative” for the members of the other objects groups at that location. If another
object at that location is already being monitored, then that object acts as the “fault monitoring representative” for the
member of this object group at that location. If the “fault monitoring representative” at a particular location ceases to exist
due to a fault, then the Replication Manager regards all objects at that location to have failed and performs recovery for
all objects at that location. If the “fault monitoring representative” ceases to exist because the member was removed from
the group but had not actually failed, then the Replication Manager selects another object at that location as the “fault
monitoring representative.”

For the LOC_AND_TYPE FaultMonitoringGranularity and for a member of this object group at a particular location, if no
other object of the same type at that location is already being monitored, then the member of this object group at that
location is monitored. This member acts as a “fault monitoring representative” for the members of the other object groups
of the same type at that location. If another object of the same type at that location is already being monitored, then that
object acts as the “fault monitoring representative” for the member of this object group at that location. If the “fault
monitoring representative” at a particular location for a particular type ceases to exist due to a fault, then the Replication
Manager regards all objects at that location of that type to have failed and performs recovery for all objects of that type
at that location. If the “fault monitoring representative” ceases to exist because the member was removed from the group
but had not actually failed, then the Replication Manager selects another object at that location of that type as the “fault
monitoring representative.”

6.2.6 Factories

A factory is an object, the purpose of which is to create other objects. FactoryInfos is a sequence of FactoryInfo, where
FactoryInfo contains the reference to the factory, the location at which the factory is to create a member of the object
group and criteria that the factory is to use to create the member.

6.2.7 InitialNumberReplicas

The number of replicas of an object to be created initially.

Name org.omg.ft.FaultMonitoringGranularityStyle

Value FT::MEMB
FT::LOC
FT::LOC_AND_TYPE

Name org.omg.ft.Factories

Value FactoryInfos

Name org.omg.ft.InitialNumberReplicas

Value An unsigned short
Fault Tolerant CORBA, v1.0 31

6.2.8 MinimumNumberReplicas

The smallest number of replicas of an object needed to maintain the desired fault tolerance.

6.3 FaultMonitoringIntervalAndTimeout

The value is a struct that contains the interval of time between successive pings of an object, and the time allowed for
subsequent responses from the object to determine whether it is faulty. TimeBase::TimeT is a long long, and the value is
in units of 100 nanoseconds. FaultMonitoringInterval requires that the object inherits the PullMonitorable interface.

6.4 CheckpointInterval

An interval of time between writing the full state of the object to the log. TimeBase::TimeT is a long long, and the value
is in units of 100 nanoseconds. CheckpointInterval requires that the object inherits the Checkpointable interface.

Note that some of these properties are incompatible, such as the STATELESS ReplicationStyle and CheckpointInterval or
the CONS_APP_CTRL ConsistencyStyle and CheckpointInterval.

Name org.omg.ft.MinimumNumberReplicas

Value An unsigned short

Name org.omg.ft.FaultMonitoringIntervalAndTimeout

Value TimeBase::TimeT
TimeBase::TimeT

Name org.omg.ft.CheckpointInterval

Value TimeBase::TimeT

Table 6.1 - Fault Tolerance Properties

Default Type Creation Dynamically

ReplicationStyle * * *
MembershipStyle * * *
ConsistencyStyle * *
FaultMonitoringStyle * *
FaultMonitoringGranularity * * * *
Factories * * *
InitialNumberReplicas * * *
MinimumNumberReplicas * * * *
FaultMonitoringInterval * * * *
CheckpointInterval * * * *
32 Fault Tolerant CORBA, v1.0

Table 6.1 shows the Fault Tolerance Properties and when they may be set. Properties of object groups that are set as
defaults apply to all object groups of all types within a fault tolerance domain. Properties of object groups that are set for
a particular type apply to all object groups of that type within the fault tolerance domain, and override the properties that
are set as defaults for that type. Properties of an object group that are set at creation time are set when the particular
object group is created, and override the properties that are set as defaults or for the type of the object group. Properties
of an object group that are set dynamically are set while the application is executing, and override the properties that are
set as defaults or for the type of the object group or when the object group is created.

6.5 Common Types

module FT {
interface GenericFactory;
interface FaultNotifier;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;

typedef CosNaming::Name Name;
typedef any Value;
struct Property {

Name nam;
Value val;

};
typedef sequence<Property> Properties;

typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;
struct FactoryInfo {

GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};
typedef sequence<FactoryInfo> FactoryInfos;

typedef unsigned short ReplicationStyleValue;
const ReplicationStyleValue STATELESS = 0;
const ReplicationStyleValue COLD_PASSIVE = 1;
const ReplicationStyleValue WARM_PASSIVE = 2;
const ReplicationStyleValue ACTIVE = 3;
const ReplicationStyleValue ACTIVE_WITH_VOTING = 4;

typedef unsigned short MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

typedef unsigned short ConsistencyStyleValue;
const ConsistencyStyleValue CONS_APP_CTRL = 0;
const ConsistencyStyleValue CONS_INF_CTRL = 1;
Fault Tolerant CORBA, v1.0 33

typedef unsigned short FaultMonitoringStyleValue;
const FaultMonitoringStyleValue PULL = 0;
const FaultMonitoringStyleValue PUSH = 1;
const FaultMonitoringStyleValue NOT_MONITORED = 2;

typedef unsigned short FaultMonitoringGranularityValue;
const FaultMonitoringGranularityValue MEMB = 0;
const FaultMonitoringGranularityValue LOC = 1;
const FaultMonitoringGranularityValue LOC_AND_TYPE = 2;

typedef FactoryInfos FactoriesValue;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

struct FaultMonitoringIntervalAndTimeoutValue {
TimeBase::TimeT monitoring_interval;
TimeBase::TimeT timeout;

};

typedef TimeBase::TimeT CheckpointIntervalValue;
exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception PrimaryNotSet {};
exception UnsupportedProperty {

Name nam;
Value val;

};
exception InvalidProperty {

Name nam;
Value val;

};
exception NoFactory {

Location the_location;
TypeId type_id;

};
exception InvalidCriteria {

Criteria invalid_criteria;
};
exception CannotMeetCriteria {

Criteria unmet_criteria;
};

};
34 Fault Tolerant CORBA, v1.0

6.5.1 Identifiers

typedef Object ObjectGroup;

A reference to an object group.

typedef CosNaming::Name Name;

The name of a property

typedef any Value;

The value of a property.

struct Property {
Name nam;
Value val;

};

The name-value pair for a property. The name may be hierarchical.

typedef sequence<Property> Properties;

A sequence of properties.

typedef Name Location;

The name for a fault containment region, host, device, cluster of hosts, etc., which may be hierarchical. For example, the
kind field of the name might be “HostIP” which defines a particular format for the address in the id field. The id field
would then contain an IP address for a host. For each object group and each location, only one member of that object
group may exist at that location.

typedef sequence<Location> Locations;

A sequence of locations of the members of an object group.

typedef Properties Criteria;

Criteria is a sequence of property; that is, name-value pair. Examples of criteria are initialization values, constraints on an
object, preferred location of the object, and fault tolerance properties of an object group.

Two names are reserved for criteria: org.omg.ft.ObjectLocation and org.omg.ft.FTProperties. The
org.omg.ft.ObjectLocation name tags a location value at which an object is to be created by a factory. The
org.omg.ft.FTProperties name tags a sequence of name-value pairs that represent fault tolerance properties for an object
group. All other criteria are implementation-specific and are interpreted only by the factory.

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

A structure that contains the reference to a factory and the location and the criteria that the factory uses to create an object
at the given location using the given criteria, such as initialization values, constraints on the object, etc.
Fault Tolerant CORBA, v1.0 35

typedef sequence<FactoryInfo> FactoryInfos;

A sequence of FactoryInfos.

typedef unsigned short ReplicationStyleValue;
const ReplicationStyleValue STATELESS = 0;
const ReplicationStyleValue COLD_PASSIVE = 1;
const ReplicationStyleValue WARM_PASSIVE = 2;
const ReplicationStyleValue ACTIVE = 3;
const ReplicationStyleValue ACTIVE_WITH_VOTING = 4;

The values of the ReplicationStyle property.

typedef unsigned short MembershipStyleValue;
const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

The values of the MembershipStyle property.

typedef unsigned short ConsistencyStyleValue;
const ConsistencyStyleValue CONS_APP_CTRL = 0;
const ConsistencyStyleValue CONS_INF_CTRL = 1;

The values of the ConsistencyStyle property.

typedef unsigned short FaultMonitoringStyleValue;
const FaultMonitoringStyleValue PULL = 0;
const FaultMonitoringStyleValue PUSH = 1;
const FaultMonitoringStyleValue NOT_MONITORED = 2;

The values of the FaultMonitoringStyle property.

typedef unsigned short FaultMonitoringGranularityValue;
const FaultMonitoringGranularityValue MEMB = 0;
const FaultMonitoringGranularityValue LOC = 1;
const FaultMonitoringGranularityValue LOC_AND_TYPE = 2;

The values of the FaultMonitoringGranularity property.

typedef FactoryInfos FactoriesValue;

The value of the Factories property.

typedef unsigned short InitialNumberReplicasValue;

The value of the InitialNumberReplicas property.

typedef unsigned short MinimumNumberReplicasValue;

The value of the MinimumNumberReplicas property.
36 Fault Tolerant CORBA, v1.0

struct FaultMonitoringIntervalAndTimeoutValue {
TimeBase::TimeT monitoring_interval;
TimeBase::TimeT timeout;

};

The value of the FaultMonitoringIntervalAndTimeout property. Each field is of type TimeBase::TimeT, which is a long
long, and is in units of 100 nanoseconds.

typedef TimeBase::TimeT CheckpointIntervalValue;

The value of the CheckpointInterval property. TimeBase::TimeT is a long long, and the value is in units of 100
nanoseconds.

6.5.2 Exceptions

exception InterfaceNotFound {};

The object with the given interface is not found by the Replication Manager.

exception ObjectGroupNotFound {};

The object group with the given identifier is not found by the Replication Manager.

exception MemberNotFound {};

No member of the object group exists at the given location.

exception ObjectNotFound {};

The object is not found by the Replication Manager.

exception MemberAlreadyPresent {};

A member of the object group already exists at the given location.

exception BadReplicationStyle {};

The ReplicationStyle of the object group is inappropriate.

exception ObjectNotCreated {};

The GenericFactory did not create the object.

exception ObjectNotAdded {};

The Replication Manager did not add the object to the object group.

exception PrimaryNotSet {};

The Replication Manager did not set the primary member of the object group.

exception UnsupportedProperty {
Name nam;
Value val;

};
Fault Tolerant CORBA, v1.0 37

A property named in the property sequence is not supported.

exception InvalidProperty {
Name nam;
Value val;

};

A property value in the property sequence is not valid either in itself (for example, because the number of replicas is
negative) or because it conflicts with another property in the sequence or with other properties already in effect that are
not overridden.

exception NoFactory {
Location the_location;
TypeId type_id;

};

The factory cannot create an object at the given location with the given repository identifier.

exception InvalidCriteria {
Criteria invalid_criteria;

};

The factory does not understand the given criteria.

exception CannotMeetCriteria {
Criteria unmet_criteria;

};

The factory understands the given criteria, but cannot satisfy the criteria.

6.6 Replication Manager

The Replication Manager inherits three application program interfaces: PropertyManager, ObjectGroupManager, and
GenericFactory. The methods inherited from the PropertyManager interface allow definition of properties associated
with object groups created by the Replication Manager. The operations inherited from the ObjectGroupManager interface
allow an application to exercise control over the addition, removal, and location of members of an object group. The
operations inherited from the GenericFactory interface allow the Replication Manager to create and delete object groups.

The ReplicationManager interface provides operations that allow the Fault Notifier to register with the Replication
Manager and that allow the application or Fault Tolerance Infrastructure to get the reference of the Fault Notifier
subsequently. This interface may be extended with similar methods for other components of the Fault Tolerance
Infrastructure by the vendors of the Fault Tolerance Infrastructure.

Note that the ReplicationManager interface does not contain register_fault_monitor() or get_fault_monitor() operations.
The reason is that typically there will be several fault monitors (detectors) within a fault tolerance domain, for example,
a fault detector on each of the individual hosts that monitors the objects on that host, and a fault detector for the fault
tolerance domain that monitors the fault detectors and the hosts within that domain. Therefore, the means of obtaining the
references to the fault monitors is not specified. The Naming Service or Trader Service could be used to obtain the
references to the various fault monitors.
38 Fault Tolerant CORBA, v1.0

module FT {
interface ReplicationManager : PropertyManager, ObjectGroupManager,

GenericFactory {
void register_fault_notifier(in FaultNotifier fault_notifier);

FaultNotifier get_fault_notifier()
raises (InterfaceNotFound);

};
};

6.6.1 Operations

register_fault_notifier

This operation registers the Fault Notifier with the Replication Manager.

void register_fault_notifier(in FaultNotifier fault_notifier);

Parameters

get_fault_notifier

This operation returns the reference of the Fault Notifier.

FaultNotifier get_fault_notifier()
raises (InterfaceNotFound);

Return Value

The reference of the Fault Notifier.

Raises

InterfaceNotFound if the Fault Notifier is not found.

6.7 PropertyManager

The PropertyManager interface provides operations that set properties for object groups, such as the ReplicationStyle,
MembershipStyle, ConsistencyStyle, InitialNumberReplicas, MinimumNumberReplicas, etc. It may set these properties
statically as defaults for the fault tolerance domain or for a particular type, or may set or change the properties
dynamically while the application is executing.

module FT {
interface PropertyManager {

void set_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

fault_notifier The reference of the Fault Notifier that is to be
registered.
Fault Tolerant CORBA, v1.0 39

Properties get_default_properties();

void remove_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

void set_type_properties(in TypeId type_id,
in Properties overrides)

raises (InvalidProperty,
UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties(in TypeId type_id,
in Properties props)

raises (InvalidProperty,
UnsupportedProperty);

void set_properties_dynamically(in ObjectGroup object_group,
in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

};
};

6.7.1 Operations

set_default_properties

This operation sets the default properties for all object groups that are to be created within the fault tolerance domain.

void set_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid. UnsupportedProperty if one or more of
the properties in the sequence is not supported.

props The properties to be set for all newly created object groups within the fault tolerance
domain.
40 Fault Tolerant CORBA, v1.0

get_default_properties

This operation returns the default properties for the object groups within the fault tolerance domain.

Properties get_default_properties();

Return Value

The default properties that have been set for the object groups.

remove_default_properties

This operation removes the given default properties.

void remove_default_properties(in Properties props)
raises (InvalidProperty,

UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid. UnsupportedProperty if one or more of
the properties in the sequence is not supported.

set_type_properties

This operation sets the properties that override the default properties of the object groups, with the given type identifier,
that are created in the future.

void set_type_properties(in TypeId type_id,
in Properties overrides)

raises (InvalidProperty,
UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.

UnsupportedProperty if one or more of the properties in the sequence is not supported.

props The properties to be removed.

type_id The repository id for which the properties, that are to override the existing properties, are
set.

overrides The overriding properties.
Fault Tolerant CORBA, v1.0 41

get_type_properties

This operation returns the properties of the object groups, with the given type identifier, that are created in the future.
These properties include the properties determined by set_type_properties(), as well as the default properties that are not
overridden by set_type_properties().

Properties get_type_properties(in TypeId type_id);

Parameters

Return Value

The effective properties for the given type identifier.

remove_type_properties

This operation removes the given properties, with the given type identifier.

void remove_type_properties(in TypeId type_id,
in Properties props)

raises (InvalidProperty,
UnsupportedProperty);

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is not valid.

UnsupportedProperty if one or more of the properties in the sequence is not supported.

set_properties_dynamically

This operation sets the properties for the object group with the given reference dynamically while the application
executes. The properties given as a parameter override the properties for the object when it was created which, in turn,
override the properties for the given type which, in turn, override the default properties.

void set_properties_dynamically(in ObjectGroup object_group,
 in Properties overrides)

raises(ObjectGroupNotFound,
InvalidProperty,
UnsupportedProperty);

type_id The repository id for which the properties, that are to override the existing properties, are
set.

type_id The repository id for which the given properties are to be removed.

props The properties to be removed.
42 Fault Tolerant CORBA, v1.0

Parameters

Raises

InvalidProperty if one or more of the properties in the sequence is invalid.

UnsupportedProperty if one or more of the properties in the sequence is not supported.

6.7.2 get_properties

This operation returns the current properties of the given object group. These properties include those that are set
dynamically, those that are set when the object group was created but are not overridden by
set_properties_dynamically(), those that are set as properties of a type but are not overridden by create_object() and
set_properties_dyamically(), and those that are set as defaults but are not overridden by set_type_properties(),
create_object(), and set_properties_dyamically().

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

The set of current properties for the object group with the given reference.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

6.8 ObjectGroupManager

The ObjectGroupManager interface provides operations that allow an application to exercise control over the addition,
removal and locations of members of an object group and to obtain the current reference and identifier for an object
group.

module FT {
interface ObjectGroupManager {

ObjectGroup create_member(in ObjectGroup object_group,
in Location the_location,
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,

object_group The reference of the object group for which the overriding properties are set.

overrides The overriding properties.

object_group The reference of the object group for which the properties are to be returned.
Fault Tolerant CORBA, v1.0 43

InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound);
PrimaryNotSet,
BadReplicationStyle);

Locations locations_of_members(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Object get_member_ref(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound,
MemberNotFound);

};
};

6.8.1 Operations

create_member

The create_member() operation allows the application to exercise explicit control over the creation of a member of an
object group, and to determine where the member is created.

ObjectGroup create_member(in ObjectGroup object_group,
in Location the_location,
in TypeId type_id,
in Criteria the_criteria)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);
44 Fault Tolerant CORBA, v1.0

Parameters

Return Value

The object group reference of the object group with the member added. This reference may be the same as that passed in
as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

MemberAlreadyPresent if a member of the object group already exists at the given location.

NoFactory if the Replication Manager cannot find a factory that is capable of constructing a member of the object group
with the given type_id and at the given location.

ObjectNotCreated if the factory or the Replication Manager cannot create the member and add it to the object group.

InvalidCriteria if the factory does not understand the criteria.

CannotMeetCriteria if the factory understands the criteria but cannot satisfy it.

add_member

The add_member() operation allows an application to exercise explicit control over the addition of an existing object to
an object group at a particular location.

ObjectGroup add_member(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises(ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

object_group The object group reference for the object group to which the member is to be added.

the_location The physical location; that is, a fault containment region, host, cluster of hosts, etc. at
which the new member is to be created. There is at most one member of an object group
at each location.

type_id The repository identifier for the type of the object.

the_criteria Parameters to be passed to the factory, which the factory evaluates before creating the
object. The criteria are implementation-specific and are not defined in this
specification. Examples of criteria are initialization values, constraints on the member,
etc. The criteria passed in as a parameter to create_member(), if any, override the
criteria set in the FactoryInfos property of the given object group for the given location.
Fault Tolerant CORBA, v1.0 45

Parameters

Return Value

The object group reference for the object group with the object added. This reference may be the same as that passed in
as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

MemberAlreadyPresent if a member of the object group already exists at the given location.

ObjectNotAdded if the Replication Manager cannot add the object to the object group.

remove_member

The remove_member() operation allows an application to exercise explicit control over the removal of a member from an
object group at a particular location.

If the application invoked the create_object() operation of the GenericFactory interface to create the member object and
used the add_member() operation to add the object to the object group, when the application invokes remove_member(),
the Replication Manager removes the member from the group but does not delete it. Deletion of the object is the
responsibility of the application.

If the application invoked the create_member() operation to create the member object, when the application invokes the
remove_member() operation to remove the member from the object group, the Replication Manager first removes the
member from the object group and then invokes the delete_object() operation of the GenericFactory interface to delete
the object.

If the Replication Manager invoked the create_object() operation of the GenericFactory interface to create the member
object, when the application invokes the remove_member() operation to remove the member, the Replication Manager
first removes the member from the group and then invokes the delete_object() operation of the GenericFactory interface
to delete the object.

If the MembershipStyle is MEMB_INF_CTRL, the application invokes the remove_member() operation and the number of
members of the object group falls below the MinimumNumberReplicas, then the Replication Manager starts up a new
member at another location.

ObjectGroup remove_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound};

object_group The object group reference of the object group to which the existing object is to be
added.

the_location The physical location; that is, a fault containment region, host, cluster of hosts, etc.
of the object to be added. There is at most one member of an object group at each
location.

member The reference of the object to be added.
46 Fault Tolerant CORBA, v1.0

Parameters

Return Value

The object group reference for the object group with the member removed. This reference may be the same as that passed
in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

MemberNotFound if the Replication Manager cannot find a member of the object group at the given location.

set_primary_member

The set_primary_member() operation allows the application to exercise explicit control over the selection of the member
of the object group that is to be the primary.

ObjectGroup set_primary_member(in ObjectGroup object_group,
in Location the_location)

raises(ObjectGroupNotFound,
MemberNotFound,
PrimaryNotSet,
BadReplicationStyle)

Parameters

Return Value

The object group reference of the object group with the primary member at the given location. This reference may be the
same as that passed in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

MemberNotFound if the Replication Manager cannot find a member of the object group at that location.

PrimaryNotSet if the Replication Manager cannot set the primary member of the object group.

BadReplicationStyle if the ReplicationStyle of the given group is not COLD_PASSIVE or WARM_PASSIVE.

object_group The object group reference of the object group from which the member is to be
removed.

the_location The physical location; that is, a fault containment region, host, cluster of hosts, etc.
of the member to be removed.

object_group The object group reference of the object group whose primary is to be determined.

the_location The physical location of the member that is to become the primary.
Fault Tolerant CORBA, v1.0 47

locations_of_members

The locations_of_members() operation allows the application to determine the locations of the members of the given
object group, and the location of the primary member of the group.

Locations locations_of_members(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

A sequence of locations at which the members of the object group currently exist. If the object group has the
COLD_PASSIVE or WARM_PASSIVE Replication Style, the first location in the sequence is the location of the primary.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

get_object_group_id

The get_object_group_id() operation takes a reference for an object group as an in parameter, and returns the identifier
of the object group.

ObjectGroupId get_object_group_id(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

Return Value

The object group identifier for the object group.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

get_object_group_ref

The get_object_group_ref() operation takes a reference for an object group as an in parameter, and returns the current
reference for the object group.

ObjectGroup get_object_group_ref(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

object_group The object group reference of the object group.

object_group The object group reference for the object group.
48 Fault Tolerant CORBA, v1.0

Parameters

Return Value

The current object group reference for the object group. The returned reference may be the same as the reference passed
in as a parameter.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

get_member_ref

The get_member_ref() operation takes a reference for an object group and a location as in parameters, and returns a
reference for the member.

Object get_member_ref(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound,
MemberNotFound);

Parameters

Return Value

The reference for the member.

Raises

ObjectGroupNotFound if the object group is not found by the Replication Manager.

MemberNotFound if the member is not found by the Replication Manager.

6.9 GenericFactory

The GenericFactory interface is generic in that it allows the creation of replicated objects (object groups), replicas
(members of object groups), and unreplicated objects. It is inherited by the Replication Manager to allow the application
to invoke the Replication Manager to create replicated objects. It is implemented by the application’s local factory objects
on the various hosts to allow the Replication Manager to invoke the local factory objects of the application to create
individual members of an object group and to allow the application to invoke the local factory objects to create individual
(unreplicated) objects.

The GenericFactory interface, inherited by the Replication Manager, is programmed by the vendor of the Fault Tolerance
Infrastructure. In contrast, the local factory objects, that implement the GenericFactory interface, are programmed by the
application programmer, rather than by the vendor of the Fault Tolerance Infrastructure; they can be regarded in the same
light as the Monitorable, Checkpointable, and Updateable interfaces.

object_group An object group reference for the object group.

object_group An object group reference for the object group.

loc The location of the member.
Fault Tolerant CORBA, v1.0 49

The GenericFactory interface provides create_object() and delete_object() operations for creating and deleting objects
and object groups.

The application program invokes the create_object() operation of the GenericFactory interface inherited by the
Replication Manager to create an object group, whether it is application-controlled or infrastructure-controlled, and
similarly for the delete_object() operation.

If the MembershipStyle is MEMB_INF_CTRL, the Replication Manager in turn invokes the create_object() operation of
the GenericFactory interface of the appropriate local factories to create the members of the object group and then adds
them to the group.

If the MembershipStyle is MEMB_APP_CTRL, the application or an application-level manager may invoke the
create_member() operation of the ObjectGroupManager interface which, in turn, causes the Replication Manager to
invoke the create_object() operation of the GenericFactory interface of the local factory, using the given location and
criteria, and then to add the member to the group. Alternatively, the application or an application-level manager itself may
invoke the create_object() operation of the GenericFactory interface of the local factory to create the object and may
then invoke the add_member() operation of the ObjectGroupManager interface to cause the Replication Manager to add
the object to the group.

To create an unreplicated object, the application invokes the create_object() operation of the GenericFactory interface of
a specific local factory.

module FT {
interface GenericFactory {

typedef any FactoryCreationId;
Object create_object(in TypeId type_id,

in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

void delete_object(in FactoryCreationId factory_creation_id)
raises (ObjectNotFound);

};
};

There may be multiple different implementations of the GenericFactory interface. Each such factory implementation may
create objects of one or more types at one or more locations.

The create_object() operation takes a type_id as an in parameter. It also takes the_criteria as an in parameter, which
allows a user to specify additional criteria, such as initialization values for the object implementation, constraints on the
object, or preferred location of the object. The type_id and the_criteria in parameters of the create_object() operation
contribute to the genericity and the flexibility of the GenericFactory interface.

The create_object() operation of the GenericFactory interface, implemented by the application’s local factory objects,
accepts a criterion with the reserved name org.omg.ft.ObjectLocation. The value of this criterion instructs the factory
where to create the object.
50 Fault Tolerant CORBA, v1.0

The create_object() operation of the GenericFactory interface, inherited by the Replication Manager, accepts fault
tolerance properties within the_criteria parameter. These fault tolerance properties are contained in a single criterion with
the reserved name org.omg.ft.FTProperties. Such properties, if any, override the corresponding fault tolerance properties
that are specified as defaults or based on the type of the object. The Replication Manager removes the
org.omg.ft.FTProperties criterion from the_criteria passed to it by the application in the create_object() operation and
adds the org.omg.ft.ObjectLocation criterion to the criteria before passing the_criteria as a parameter of the
create_object() operation to the application’s local factory.

The create_object() operation of the GenericFactory interface, implemented by the application’s local factory objects,
returns an object reference as a result.

The create_object() operation of the GenericFactory interface, inherited by the Replication Manager, returns an object
group reference as a result. If the MembershipStyle is MEMB_APP_CTRL, the Replication Manager creates an object
group with no members. Consequently, the returned object group reference contains no TAG_INTERNET_IOP profiles but,
instead, contains a TAG_MULTIPLE_COMPONENTS profile with the TAG_FT_GROUP component in it.

The create_object() operation has an out parameter, factory_creation_id, that is retained by the entity that invoked the
method so that it can later invoke the delete_object() operation of the factory using the factory_creation_id as an in
parameter, to cause the factory to delete the object. The factory must also retain this identification information so that it
can actually delete the object.

Because the factory retains the identification information that is needed to delete an object that it created, the factory has
state. The local factories that create the members of an object group are not replicas of one another. To protect each of
these local factories against faults, the application deployer either may replicate each of the factories using the
COLD_PASSIVE ReplicationStyle, or may assume that the failure of a local factory at a location (for example, process or
host) is equivalent to the failure of that location.

The application deployer registers a sequence of factories with the Property Manager as the Factories property of the
object group, which contains a sequence of factory reference, the_location and the_criteria, which determine where the
facbershipStyle is MEMB_INF_CTRL, the Replication Manager uses the locations to choose one or more factories from
the Factories sequence and uses the factory references to invoke the create_object() operation of the GenericFactory
interface that the factories implement to create the members of the object group.

If the MembershipStyle is MEMB_APP_CTRL and the application itself invokes the create_member() operation of the
ObjectGroupManager interface, citing a location that it selected, the Replication Manager invokes the create_object()
operation of the GenericFactory interface implemented by the factory (provided by the Factories property) for that
location to create the new member of the object group at that location.

If the MembershipStyle is MEMB_APP_CTRL and the application invokes the create_object() operation of the
GenericFactory interface for a particular factory to create an object, it may then invoke the add_member() operation of
the ObjectGroupManager interface to add the object to the group.

Similarly, to create an unreplicated object, the application may invoke the create_object() operation of the
GenericFactory interface of one of its own factories.

6.9.1 Identifiers

typedef any FactoryCreationId;

An identifer that is assigned to an object by the factory that creates the object and that is used by the factory to delete the
object subsequently.
Fault Tolerant CORBA, v1.0 51

6.9.2 Operations

create_object

This operation of the GenericFactory interface creates an object, using the type_id parameter to determine which type of
object to create and the_criteria parameter to determine restrictions on how and where to create the object. The out
parameter, factory_creation_id, allows the entity that invoked the factory, and the factory itself, to identify the object for
subsequent deletion.

If the application or the Replication Manager invokes the create_object() operation on the GenericFactory interface,
implemented by the application’s local factory object, then it creates a single object.

If the application invokes the create_object() operation on the GenericFactory interface, inherited by the Replication
Manager, then it creates an object group. For an object group with the MEMB_APP_CTRL MembershipStyle, the
Replication Manager returns an object group reference containing only the TAG_MULTIPLE_COMPONENTS profile with
the TAG_FT_GROUP component in it.

One of the name-value pairs in the_criteria, passed to the Replication Manager as a parameter of create_object(), may
have the name org.omg.ft.FTProperties (which is reserved for specifying fault tolerance properties). The Replication
Manager removes that entry of the sequence, adds the org.omg.ft.ObjectLocation entry (which is reserved for specifying
the location at which the factory is to create the object), and appends any location-specific criteria (specified in the
Factories property for the particular location) before it invokes create_object() operation on the application’s local factory
object.

Object create_object(in TypeId type_id,
in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory,
ObjectNotCreated,
InvalidCriteria,
InvalidProperty,
CannotMeetCriteria);

Parameters

Return Value

The reference to the object created by the GenericFactory. When the GenericFactory interface is implemented by the
application’s local factory object, the create_object() operation returns an object reference as a result. When the
GenericFactory interface is inherited by the Replication Manager, the create_object() operation returns an object group
reference as a result.

type_id The repository identifier of the object to be created by the factory.

the_criteria Information passed to the factory, which the factory evaluates before creating the
object. Examples of criteria are initialization values, constraints on the object,
preferred location of the object, fault tolerance properties for an object group, etc.

factory_creation_id An identifier that allows the factory to delete the object subsequently.
52 Fault Tolerant CORBA, v1.0

Raises

NoFactory if the object cannot be created. When the GenericFactory interface is implemented by the application’s local
factory object, the raised exception indicates that the factory cannot create an individual object of the type_id at the
location. When the GenericFactory interface is inherited by the Replication Manager, the raised exception indicates that
the Replication Manager cannot create the object group because it cannot find a factory that is capable of constructing a
member of the object group of the type_id at the location.

ObjectNotCreated if the factory cannot create the object.

InvalidCriteria if the factory does not understand the criteria.

InvalidProperty if a property passed in as criteria is invalid.

CannotMeetCriteria if the factory understands the criteria but cannot satisfy it.

delete_object

This operation deletes the object with the given identifier. If the application or the Replication Manager invokes this
operation on the GenericFactory interface, implemented by the application’s local factory object, then it deletes a single
object.

If the application invokes this operation on the GenericFactory interface, inherited by the Replication Manager, then it
deletes an object group. When this operation is invoked on it, the Replication Manager must first remove each of the
members from the object group, and delete each of them, before it deletes the object group itself.

void delete_object(in FactoryCreationId factory_creation_id)
raises(ObjectNotFound);

Parameters

Raises

ObjectNotFound if the object cannot be found.

6.10 Obtaining the Reference for the Replication Manager

The application may obtain a reference to the Replication Manager for its Fault Tolerance Domain by invoking
resolve_initial_references() with an ObjectId of “ReplicationManager” and narrowing to the appropriate type.

6.10.1 Use Cases

6.10.1.1 Infrastructure-Controlled Membership Style

1. The application obtains a reference to the Replication Manager by invoking resolve_initial_references() and
narrowing the result.

2. To create a replicated object (object group), the application invokes the create_object() operation of the
GenericFactory interface inherited by the Replication Manager, supplying the type_id and the_criteria. The
create_object() operation returns (at Step 11) the object group reference and the object group identifier as the

factory_creation_id An identifier for the object that is to be deleted.
Fault Tolerant CORBA, v1.0 53

factory_creation_id, which is recorded by the application to permit it to subsequently request the GenericFactory to
delete the object group.

3. The Replication Manager obtains the fault tolerance properties for the object group from the Property Manager of the
type defined by the type_id parameter. If additional fault tolerance properties are defined in an entry named
org.omg.ft.FTProperties of the_criteria parameter, those properties override the properties obtained from the
Property Manager.

4. Using the InitialNumberReplicas property and the Factories property (a sequence of factory, location at which the
factory is to create the object and criteria that the factory is to use in creating the object), the Replication Manager
decides the locations at which to create the members of the object group.

5. For each member, the Replication Manager invokes the create_object() operation of the GenericFactory interface of
the requisite factory provided by the application for the location of the member, passing in as parameters the type_id
and the_criteria obtained from the Factories property, as shown in Figure 6.2. The operation returns the reference of
the member and its factory_creation_id, which is unique within the context of the factory. The factory and the
Replication Manager record this information to allow the Replication Manager to invoke the delete_object()
operation of the GenericFactory interface of the same local factory to delete the member subsequently.

6. The Replication Manager determines the identifier of the object group, and constructs the TAG_FT_GROUP
component containing the fault tolerance domain identifier, the object group identifier and the object group version
that allow the object group to be addressed. The Replication Manager then constructs the object group reference.

7. For each gateway:

a. The Replication Manager constructs a TAG_INTERNET_IOP profile for the gateway containing its host
and port, and a TAG_FT_GROUP component that allows the object group to be addressed.

b. The Replication Manager then augments the object group reference with the gateway profile.

8. The Replication Manager records the object group reference for the object group against the object group identifier.

9. For each member:

a. The Replication Manager adds the member to the object group.

b. Depending on the Replication Style, the Replication Manager activates the member.

c. The Replication Manager checks the Replication Style, Fault Monitoring Style, Fault Monitoring
Granularity to determine whether to initiate fault monitoring of the member.

d. The Replication Manager registers itself, or a fault consumer object that it has created, with the Fault
Notifier to receive notifications of faults for the member.

10. For the COLD_PASSIVE or WARM_PASSIVE Replication Styles, the Replication Manager determines the primary
member of the group and includes the TAG_FT_PRIMARY component in the profile for that member.

11. The Replication Manager returns to the application the object group reference for the object group, as constructed in
Step 7, and the object_group_id as the out parameter, factory_creation_id, of the create_object() operation.
54 Fault Tolerant CORBA, v1.0

Figure 6.2 - The Creation of an Object Group with the Infrastructure-controlled MembershipStyle

6.10.1.2 Application-Controlled Membership Style

1. The application obtains a reference to the Replication Manager by invoking resolve_initial_references().

2. The application obtains the fault tolerance properties from the Property Manager, including the
InitialNumberReplicas.

3. To create a replicated object (object group), the application invokes the create_object() operation of the
GenericFactory interface inherited by the Replication Manager, supplying the type_id and the_criteria, as shown in
Figure 6.3.

4. The Replication Manager determines the identifier of the object group, and constructs the TAG_FT_GROUP
component containing the fault tolerance domain identifier, the object group identifier and the object group version.
The Replication Manager then constructs the object group reference, containing the
TAG_MULTIPLE_COMPONENTS profile with the TAG_FT_GROUP component in it.

5. The Replication Manager returns to the application, as the reply to create_object(), the object group reference and
the object group identifer as the factory_creation_id, which allows the application to delete the object group
subsequently.

6. For each member:

a. If the application has already created the object that is to become the member, the application invokes
the add_member() operation of the ObjectGroupManager interface, citing the object group reference,
location and member reference.
Fault Tolerant CORBA, v1.0 55

b. If instead the application wants the infrastructure to create the member, the application invokes the
create_member() operation of the ObjectGroupManager interface, citing the object group reference,
location, type_id and the_criteria, as shown in Figure 6.3.

The Replication Manager obtains the object reference for the factory, the_location, and the_criteria
from the Factories property. The Replication Manager takes the_criteria passed to it by
create_member(), appends the property with the name org.omg.ft.ObjectLocation and the_location
value passed to it by create_member(), and appends the_criteria from the Factories property for the
particular location. It then invokes the create_object() operation of the GenericFactory interface of the
factory provided by the application to create a member at that location, passing in the type_id and
the_criteria.

The factory returns the object reference and the factory_creation_id for the new member, and records
this identification information. The Replication Manager records the factory_creation_id, which allows
it subsequently to invoke the delete_object() operation of the GenericFactory interface of the local
factory to delete the member.

c. The Replication Manager constructs a new object group reference, taking the new member into account.
The new object group reference may be the same as the existing object group reference.

d. The Replication Manager checks the FaultMonitoringStyle, FaultMonitoringGranularity, and
FaultMonitoringInterval properties and initiates monitoring of the new member.

e. The Replication Manager registers itself, or a fault consumer object that it has created, with the Fault
Notifier to receive fault reports about the new member.

f. The Replication Manager returns the new object group reference to the application in case (a) as the
return value of add_member() and in case (b) as the return value of create_member().

7. For the COLD_PASSIVE or WARM_PASSIVE Replication Managers, the application determines which of the
members is to be the primary and invokes the set_primary_member() operation of the ObjectGroupManager
interface. The Replication Manager puts the TAG_FT_PRIMARY component in the appropriate profile of the object
group reference and returns the object group reference to the application as the return value of
set_primary_member().
56 Fault Tolerant CORBA, v1.0

Figure 6.3 - The Creation of a Member of an Object Group with the Application-controlled Membership Style

6.10.1.3 Unreplicated Object Creation and Deletion

Creation

1. The application obtains a reference to the local factory.

2. The application invokes the create_object() operation of the GenericFactory interface of the local factory, supplying
the type_id and the_criteria.

3. The factory creates the object and returns the object reference and the factory_creation_id to the application, as the
result of create_object(). The factory_creation_id is unique within the context of the factory. The application and
the factory record this identification information, which they can use subsequently to delete the object.

Deletion

1. The application invokes the delete_object() operation of the GenericFactory interface of the local factory, supplying
the factory_creation_id.

2. The factory associates the factory_creation_id with the recorded information and deletes the object.
Fault Tolerant CORBA, v1.0 57

58 Fault Tolerant CORBA, v1.0

7 Fault Management

7.1 Overview

In a fault-tolerant system, fault management encompasses the following activities:

• Fault detection - detecting the presence of a fault in the system and generating a fault report.

• Fault notification - propagating fault reports to entities that have registered for such notifications.

• Fault analysis/diagnosis - analyzing a (potentially large) number of related fault reports and generating condensed or
summary reports.

In the Fault Tolerance Infrastructure, Fault Detectors detect faults in the objects, and report faults to the Fault Notifier.
The Fault Notifier receives fault reports from the Fault Detectors, filters the reports, and propagates the filtered reports as
fault event notifications to consumers that have subscribed for them. The Fault Analyzer reasons about the fault reports
that it has received, and produces aggregate or summary fault reports that it propagates back to the Fault Notifier for
dissemination to other consumers.

A fault-tolerant system typically has several Fault Detectors, including those provided by the infrastructure to monitor
objects, and other fault detectors provided by the infrastructure or the application. Each Fault Detector belongs to a
particular fault tolerance domain, and is not shared across fault tolerance domains. Most implementations of Fault
Detectors are based on timeouts, and use either pull- or push-based monitoring. This section defines an interface for pull-
based monitoring, the PullMonitorable interface, that application objects inherit, and that is invoked by a Fault Detector
within the Fault Tolerance Infrastructure.

The section also defines a FaultNotifier interface. The Fault Notifier receives fault reports from the Fault Detectors. The
Fault Notifier filters the reports to eliminate unnecessary or duplicate reports. It then sends fault event notifications to the
consumers. The Replication Manager is such a consumer, as is the Fault Analyzer. The application can also subscribe to
receive fault event notifications. Logically, there is one Fault Notifier per fault tolerance domain, although typically it is
replicated for fault tolerance. The Fault Notifier belongs to a particular fault tolerance domain and is not shared across
domains.

A fault-tolerant system may also have one or more Fault Analyzers. Each Fault Analyzer collects fault reports and
performs event correlation, analysis, and diagnosis. It may condense a large number of related fault reports into a single
fault report (e.g., the crash of a host can cause fault reports for all objects on that host, as well as a fault report for the host
itself). The analysis of fault reports is application-dependent; thus, this chapter does not define a Fault Analyzer interface,
but allows an application developer to hook in Fault Analyzers as consumers of fault reports generated by the Fault
Notifier.

A problem with fault notification is the potential for a large number of notifications to be generated by a single fault. This
problem is addressed by filtering within the Fault Notifier, by Fault Analyzers, and by the FaultMonitoringGranularity.

7.2 Architecture

Figure 7.1 shows the interaction between the Fault Detectors, Fault Notifier, Fault Analyzer, and Replication Manager in
a relatively simple system. The fault management specification defines interfaces that allow interaction of:

• A Fault Detector with a pull-monitored object within a fault tolerance domain

• A Fault Detector with the Fault Notifier within a fault tolerance domain
Fault Tolerant CORBA, v1.0 59

• The Fault Notifier with the Replication Manager, a Fault Analyzer, or other application objects within a fault tolerance
domain.

Figure 7.1 - Interactions between the Fault Detectors, Fault Notifier, Fault Analyzer, and Replication Manager

7.2.1 Fault Detection

In the Fault Tolerance Infrastructure, fault detection is initiated by the Replication Manager for members of object groups
having either application-controlled or infrastructure-controlled MembershipStyles (see 6.2, ’Fault Tolerance
Properties’). Because the fault management specification focuses on monitoring and timeout-based fault detection, the
terms monitor and detector are used interchangeably.

There are two common styles of fault monitoring: PULL and PUSH. These two fault monitoring styles differ in the
direction in which fault information flows in the system. Because push-based monitoring depends on characteristics of the
application, it is not defined in this specification.

The fault management specification defines the interaction between a pull-based Fault Detector and application objects. It
defines a PullMonitorable interface that the application objects inherit. Other kinds of system-specific (for example, host,
network) and application-specific Fault Detectors may be present in the system, but they are not defined.
60 Fault Tolerant CORBA, v1.0

7.2.2 Fault Notification

This section defines a FaultNotifier interface that contains operations that allow a Fault Detector or Fault Analyzer to
push fault reports to the Fault Notifier. It also defines operations that allow the Replication Manager, a Fault Analyzer or
other application object to register as consumers of fault event notifications. The Fault Notifier filters fault reports that it
has received from the Fault Detectors, and propagates fault reports to the entities that have registered for such
notifications.

7.2.3 Fault Analysis

The Fault Analyzer registers with the Fault Notifier as a consumer of fault reports. The Fault Analyzer correlates fault
reports and generates condensed fault reports. Because these activities are specific to the application or the environment,
the application developer is responsible for the analysis/diagnosis algorithm employed by the Fault Analyzer. The Fault
Analyzer may use the Fault Notifier to disseminate its condensed fault reports.

7.2.4 Scalability

The fault management specification does not limit the number or arrangement of Fault Detectors in a fault tolerance
domain. In a large system spanning many hosts with each host supporting many objects, arranging the Fault Detectors in
a hierarchical structure would be more scalable and efficient.

For example, consider a system where all objects at a given location (say, a process) are monitored by a local object-level
Fault Detector, as shown in Figure 7.2. The set of object-level Fault Detectors might be monitored by a process-level
Fault Detector. The set of process-level Fault Detectors might be monitored by a host-level Fault Detector. The
Replication Manager, or a consumer object created by the Replication Manager, might be implemented to consume either
object-level, process-level, or host-level fault reports. If it is implemented to consume only object-level fault reports, a
Fault Analyzer that translates object-level fault reports into process- or host-level fault reports can be attached to the Fault
Notifier.

Monitoring at the process level can be achieved by monitoring a single proxy object in the process. The proxy object
would be responsible for ensuring that all of the other objects in the process are alive, and would monitor those objects
through the use of application-specific facilities or private Fault Notifier channels provided by the infrastructure.
Fault Tolerant CORBA, v1.0 61

Figure 7.2 - Hierarchical Fault Detection

This example shows the generality of the Fault Tolerance Infrastructure in handling different types of arrangements of
Fault Detectors. Other organizations are possible and useful.

7.2.5 Deployment of Fault Detectors

Fault Detectors can be as varied as the applications they monitor and, for these diverse applications, Fault Detectors can
be deployed in several different ways:

• Statically Deployed Fault Detectors. In an operating environment with a relatively static configuration, location-
specific Fault Detectors will typically be created when the Fault Tolerance Infrastructure is installed. For example,
these stand-alone Fault Detectors could be implemented as daemon processes that are installed with the Fault Tolerance
Infrastructure. These Fault Detectors could be registered in a manner internal to the Fault Tolerance Infrastructure,
allowing the infrastructure to include them in every fault-tolerant application within the fault tolerance domain in a
transparent manner.

• Infrastructure Created Fault Detectors. The Fault Tolerance Infrastructure may create instances of Fault Detectors to
meet the needs of the applications. For example, to implement the MEMB FaultMonitoringGranularity, the Fault
Tolerance Infrastructure must create Fault Detectors sufficient to ping every member of the object group. Because these
Fault Detectors are created (or, at least, configured) by the Fault Tolerance Infrastructure, their identities need only be
known to the infrastructure.

• Application Created Fault Detectors. It might be necessary or advantageous for applications to create their own Fault
Detectors. For example, applications might have unique knowledge of their operating environment, such as access to
hardware indicators of faults within the operating environment. However, unlike the other types of Fault Detectors,
application-created Fault Detectors are not inherently known to the Fault Tolerance Infrastructure. They can propagate
62 Fault Tolerant CORBA, v1.0

their fault information to an application-specific Fault Analyzer through the Fault Notifier provided by the
infrastructure. The Fault Analyzer can interpret these application-specific fault reports, generate reports that can be
understood by the Replication Manager, and propagate them to the Replication Manager through the Fault Notifier, as
shown in Figure 7.3.

7.3 Connecting Fault Detectors to Applications

The Fault Notifier provides flexible event-based connection of Fault Detectors to the Replication Manager, Fault
Analyzer, and other application objects. Fault Detectors, from whatever source, push fault reports onto Fault Notifier
channels. The Replication Manager, Fault Analyzer, or application objects registers as a consumer of fault reports. The
Fault Notifier provides the channel for fault reports in an indirect manner, thus allowing the decoupling of the identity and
configuration of the Fault Detectors from the application. The process of connecting the Fault Detectors to the Replication
Manager, Fault Analyzer, or application objects thus devolves to a process of finding the Fault Notifier with which to
register for fault notifications.

Obtaining a reference to the Fault Notifier for a fault tolerance domain involves two steps:

1. Obtain a reference to the Replication Manager, which may be done using resolve_initial_references(), as described
in 6.10, ’Obtaining the Reference for the Replication Manager’.

2. Query the Replication Manager for the registered Fault Notifier, which may be done using the get_fault_notifier()
operation of the ReplicationManager interface, given in 6.6, ’Replication Manager’.

The use cases in 6.10.1, ’Use Cases’ provide further details.

7.3.1 Pull-Based Monitoring

Based on the MEMB FaultMonitoringGranularity and the PULL FaultMonitoringStyle, the Replication Manager chooses a
pull-based Fault Detector to monitor a member of the object group. The pull-based Fault Detector periodically pings the
member by invoking the is_alive() operation of the PullMonitorable interface that the member of the object group
inherits. The period of the ping is determined by the FaultMonitoringInterval for the object group. The pull-based Fault
Detector uses the monitoring interval as a hint (in contrast to maintaining the exact value) to optimize monitoring across
a number of objects.

7.3.1.1 PULL Fault Monitoring Style

In the PULL FaultMonitoringStyle, the Fault Detector periodically invokes the object to check its liveness; the monitored
object responds to these liveness requests. The monitored object must inherit the PullMonitorable interface. The Fault
Detector invokes the is_alive() operation of this interface to check the liveness of the object.

Figure 7.3 shows the interactions between the monitored object represented by the PullMonitorable interface and the Fault
Detector for the PULL FaultMonitoringStyle, and the interactions with the Fault Notifier and the Replication Manager.
Fault Tolerant CORBA, v1.0 63

Figure 7.3 - PULL FaultMonitoring Style

7.3.1.2 PullMonitorable Interface

module FT {
interface PullMonitorable

boolean is_alive();
};

};

is_alive

This operation informs the pull-based Fault Detector whether the object is able to accept requests and produce replies.
The monitored object may return true directly to indicate its liveness, or it may perform an application-specific “health”
check (for example, assertion check) within the operation and return false if the test shows that the object is in an
inconsistent state.

boolean is_alive();

Return Value

Returns true if the object is alive and ready to take further requests, and false otherwise.

7.4 Fault Event Types

Fault reports are conveyed to the Fault Notifier by the Fault Detectors and by the Fault Notifier to the entities that have
registered for such notifications. The Fault Detectors and Fault Notifier use a well-defined event type to convey a given
fault event. This specification defines a set of fault event types that are understood by the Fault Tolerance Infrastructure.
Vendors or the OMG may extend these fault event types to include other types of fault events.
64 Fault Tolerant CORBA, v1.0

To align the Fault Tolerant CORBA specification with the CosNotification Service, the fault event types are mandated to
be either CosNotification::StructuredEvent or CosNotification::EventBatch (sequence of StructuredEvent). Fault events
flow from the Fault Detectors to the Fault Notifier to the consumers according to one of these two formats.

7.4.1 ObjectCrashFault

The fault management specification defines one event type: ObjectCrashFault. As the name suggests, this event is
generated by a Fault Detector when it detects that an object has crashed. The definition for the event type is as follows:

CosNotification::StructuredEvent fault_event;
fault_event.header.fixed_header.event_type.domain_name = "FT_CORBA";
fault_event.header.fixed_header.event_type.type_name = "ObjectCrashFault";
fault_event.filterable_data_length(2);
fault_event.filterable_data[0].name = "FTDomainId";
fault_event.filterable_data[0].value = /* Value of FTDomainId bundled into any */;
fault_event.filterable_data[1].name = “Location”;
fault_event.filterable_data[1].value = /* Value of Location bundled into any */;
if (all objects at a given location have failed)

{} /* do nothing */
else {

fault_event.filterable_data.length(3);
fault_event.filterable_data[2].name = "TypeId";
fault_event.filterable_data[2].value = /* Value of TypeId bundled into any */;
if (all objects of a given type at a given location have failed)

{} /* do nothing */
else {

fault_event.filterable_data.length(4);
fault_event.filterable_data[3].name = "ObjectGroupId";
fault_event.filterable_data[3].value =

/* Value of ObjectGroupId bundled into any */;
};

};

The filterable_data part of the event body contains the identity of the crashed object as four name-value pairs: the fault
tolerance domain identifier, the member’s location identifier, the repository identifier and the object group identifier. The
Fault Notifier filters events based on the domain_name, the type_name, and the four identifiers. All other fields of the
structured event may be set to null.

The Fault Detector always sets the following fault event fields: domain_name, type_name, FTDomainId, and Location.
The fault detector may or may not set the TypeId and ObjectGroupId fields with the following interpretations:

• Neither is set if all objects at the given location have failed.

• TypeId is set and ObjectGroupId is not set if all objects at the given location with the given type have failed.

• Both are set if the member with the given ObjectGroupId at the given location has failed.
Fault Tolerant CORBA, v1.0 65

7.5 Fault Notifier

The Fault Notifier takes the fault reports generated by the Fault Detectors or the Fault Analyzers, filters them, and
propagates them to entities that have registered for fault notifications, such as the Replication Manager, the Fault
Analyzer, or other application objects.

The Fault Notifier provides a small subset of the functionality of the CosNotification Service. The CosNotification
Service is complex, and an implementation of the full specification might be difficult to render fault tolerant. The Fault
Notifier assumes that the notification channel used for propagating fault reports has the following properties:

• Push-based event communication model.

• Support for propagating CosNotification::StructuredEvent and CosNotification::EventBatch (Sequence of
StructuredEvent) types.

• Forwarding filter framework at the consumer.

A notification channel that provides the above properties and that can be made fault-tolerant is a good candidate for
implementing the Fault Notifier.

The Fault Notifier uses the existing CosNotification StructuredEvent and EventBatch formats, forwarding filter
framework, and consumer end interfaces. The default constraint grammar is the same as that supported by the
CosNotification Service (see telecom/98-11-01).

Figure 7.4 - Fault Report Propagation through the Fault Notifier

Figure 7.4 shows the interaction between the Fault Notifier and the fault event suppliers and consumers during fault
propagation.

Any fault event supplier (Fault Detector) may obtain the reference to the Fault Notifier and send fault reports to it. It does
not need to register explicitly with the Fault Notifier. The FaultNotifier interface provides two operations,
push_structured_fault() and push_sequence_fault(), for fault event suppliers to push fault events of the form
CosNotification::StructuredEvent and CosNotification::EventBatch to the Fault Notifier.

A fault event consumer, such as the Replication Manager or a consumer object created by the Replication Manager, must
register with the Fault Notifier to receive fault event notifications, as shown in Figure 7.5. The FaultNotifier interface
provides two operations for registering consumers: connect_structured_fault_consumer() for consumers that accepts
only structured events and connect_sequence_fault_consumer() for consumers that accept a sequence of structured
events. A consumer that wishes to receive structured events must support the
CosNotifyComm::StructuredPushConsumer interface and a consumer that wishes to receive a sequence of structured
must support the CosNotifyComm::SequencePushConsumer interface.
66 Fault Tolerant CORBA, v1.0

Figure 7.5 - Connection Setup between the Consumer and the Fault Notifier

The Fault Notifier propagates all events of a given format to all consumers that accept that format. While a consumer is
connected to the Fault Notifier, it may use the operation replace_constraint() to replace a constraint for a given sequence
of event types.

module FT {
interface FaultNotifier {

typedef unsigned long long ConsumerId;
void push_structured_fault(

in CosNotification::StructuredEvent event);

void push_sequence_fault(
in CosNotification::EventBatch events);

ConsumerId connect_structured_fault_consumer(
in CosNotifyComm:StructurePushConsumer
push_consumer);

ConsumerId connect_sequence_fault_consumer(
in CosNotifyComm:StructurePushConsumer
push_consumer);

void disconnect_consumer (in ConsumerId connection)
raises(CosEventComm::Disconnected);

void replace_constraint (in ConsumerID connection,
in CosNotification::EventTypeSeq event_types,
in string constr_expr);

};
};

7.5.1 Identifiers

typedef unsigned long long ConsumerId;

The identifier used to identify the consumer of notifications uniquely within the Fault Notifier.
Fault Tolerant CORBA, v1.0 67

7.5.2 Operations

push_structured_fault

The supplier of a fault report creates a structured event containing the fault report and invokes this operation with the
structured event as an in parameter. The Fault Notifier then pushes a fault notification to the consumers that have
registered for such notifications.

void push_structured_fault(in CosNotification::StructuredEvent event);

Parameters

push_sequence_fault

The supplier of a fault report creates a sequence of structured event containing the fault reports and invokes this operation
with the sequence of structured event as an in parameter. The Fault Notifier then pushes a fault notification to the
consumers that have registered for such notifications.

void push_sequence_fault(in CosNotification::EventBatch events);

Parameters

connect_structured_fault_consumer

This operation accepts as an in parameter the reference to a consumer that wishes to receive structured events from the
Fault Notifier and returns an identifier that uniquely identifies the consumer within the context of the Fault Notifier. The
consumer must use this identifier in all of its subsequent interactions with the Fault Notifier. The operation establishes a
logical connection between the Fault Notifier and the consumer, and allows the Fault Notifier to push fault events to the
consumer, using the push_structured_event() operation of the CosNotifyComm::StructuredPushConsumer interface.

ConsumerId connect_structured_fault_consumer(
in CosNotifyComm::StructuredPushConsumer push_consumer);

Parameters

Return Value

An identifier that uniquely identifies the consumer within the context of the Fault Notifier and is used by the consumer in
subsequent interactions with the Fault Notifier.

connect_sequence_fault_consumer

This operation accepts as an in parameter the reference to a consumer that wishes to accept a sequence of structured
events from the Fault Notifier and returns an identifier that uniquely identifies the consumer within the context of the
Fault Notifier. The consumer must use this identifier in all of its subsequent interactions with the Fault Notifier. The

event The fault event that is to be delivered to the consumer.

event The fault event that is to be delivered to the consumer.

push_consumer The reference to the consumer object that is registering for fault notifications.
68 Fault Tolerant CORBA, v1.0

operation establishes a logical connection between the Fault Notifier and the consumer, and allows the Fault Notifier to
push fault events to the consumer using the push_sequence_event() operation of the
CosNotifyComm::SequencePushConsumer interface.

ConsumerId connect_sequence_fault_consumer(
in CosNotifyComm::SequencePushConsumer push_consumer);

Parameters

Return Value

An identifier that uniquely identifies the consumer within the context of the Fault Notifier and that is used by the
consumer in subsequent interactions with the Fault Notifier.

disconnect_consumer

This operation is invoked by the consumer to disconnect itself from the Fault Notifier. The operation takes as an in
parameter the ConsumerId identifying the disconnecting consumer.

void disconnect_consumer(in ConsumerId connection)
raises(CosEventComm::Disconnected);

Parameters

Raises

CosEventComm::Disconnected if the Fault Notifier is not currently connected to any consumer identifier by the given
ConsumerId.

7.5.3 Filtering

Filtering is done by the Fault Notifier based on the constraints provided by the consumer.

Because Location is of type CosNaming::Name, a location can be described using a hierarchical location scheme. For
example, an object “objA” located in process “procB” on host “hostC” can be described as follows:

Location object_location;
object_location.length(3);
object_location[0].id = "hostC";
object_location[0].kind = "hostname";
object_location[1].id = "procB";
object_location[1].kind = "processname";
object_location[2].id = "objA";
object_location[2].kind = "objectname";

push_consumer The reference to the consumer object that is registering for fault notifications.

connection The ConsumerId identifying the particular consumer that wishes to be disconnected.
Fault Tolerant CORBA, v1.0 69

To facilitate hierarchical fault detection and reporting, the Fault Detector may omit some trailing Location entries. For
example, if all objects on a host fail, then a Fault Detector may send a fault report with only the leading Location entry,
which identifies the failed host.

The Fault Notifier may also filter events based on a subset of the Location entries. For example, if a consumer of fault
events wishes to subscribe to notifications of faults of type ObjectCrashFault on a particular host, the filtering selects
faults based on the leading entry of Location, which identifies the host.

The Extended Trader Constraint Language is used to filter fault events, as illustrated below.

For example, to register for all fault events in ftdom0 on hostC, use the filter string "$event_type.domain_name ==
‘FT_CORBA’ and $event_type.type_name == ‘ObjectCrashFault’ and $FTDomainId == ‘ftdom0’ and $Location[0].id ==
‘hostC’".

To register for fault events for a member of an object group, identified by (ftdom0, group1, type2, hostC, procB), where
the object itself crashed or the process containing the object crashed or the host supporting the process crashed, use the
filter string "$event_type.domain_name == ‘FT_CORBA’ and $event_type.type_name == ‘ObjectCrashFault’ and
$FTDomainId == ‘ftdom0’ and (not exists $ObjectGroupId or $ObjectGroupId == ‘group1’) and (not exists $TypeId or
$TypeId == ‘type2’) and $Location[0].id == ‘hostC’ and (not exists $Location[1] or $Location[1].id == ‘procB’)".

7.5.4 Mapping of the Fault Notifier to the CosNotification Service

This section is intended as an informational, rather than a mandatory, part of the specification. It is intended for vendors
that want to use the CosNotification service, in place of the FaultNotifier interface that has been defined in this
specification. Such a vendor must use an implementation of the CosNotification service that can be rendered fault-
tolerant and that is compatible with the rest of the Fault Tolerance Infrastructure. The six operations of the FaultNotifier
interface map directly or indirectly to one or more of the operations of the CosNotification service.

Initialization

The Fault Notifier first creates a notification channel and registers itself both as a structured event supplier and a sequence
of structured event supplier with the notification channel. To register itself as a supplier of structured events, the Fault
Notifier goes through the following steps:

1. It invokes CosNotifyChannelAdmin::EventChannel::default_supplier_admin() and gets the reference to the Cos-
NotifyChannelAdmin::SupplierAdmin interface.

2. It invokes obtain_notification_push_consumer() on the SupplierAdmin interface and gets a reference to the Cos-
NotifyChannelAdmin::ProxyConsumer interface, which it narrows to CosNotifyChannelAdmin::Structured-
ProxyPushConsumer.

3. It invokes connect_structured_push_supplier() on the StructuredProxyPushConsumer to connect itself as a sup-
plier of structured events.

The Fault Notifier follows similar steps to register itself as a supplier of a sequence of structured events.

Supplier End Operations

The supplier end methods push_structured_fault() and push_sequence_fault() map to
CosNotifyComm::StructuredProxyPushConsumer::push_structured_event() and
CosNotifyComm::SequenceProxyPushConsumer::push_sequence_event().
70 Fault Tolerant CORBA, v1.0

Consumer End Operations

A consumer, such as the Replication Manager or a consumer object created by the Replication Manager, connect to the
Fault Notifier through the connect_structured_fault_consumer() and connect_sequence_fault_consumer() operations.
The consumer sets the constraints for a given sequence of event types using the replace_constraint() operation.

In response to the connect_structured_fault_consumer() invocation, the Fault Notifier goes through the following
sequence of steps to set up the connection between the consumer and the notification channel.

1. It invokes CosNotifyChannelAdmin::EventChannel::default_consumer_admin() and gets the reference to the
CosNotifyChannelAdmin::ConsumerAdmin interface.

2. It invokes obtain_notification_push_supplier() on the ConsumerAdmin and gets a reference to the CosNotify-
ChannelAdmin::ProxySupplier interface which it narrows to CosNotifyChannelAdmin::StructuredProxyPush-
Supplier.

3. It invokes connect_structured_push_consumer() on the StructuredProxyPushSupplier and passes it the refer-
ence to the connecting consumer. This sets up a connection capable of propagating structured fault events between
the notification channel and the push consumer.

7.6 Use Cases

7.6.1 The Fault Detector as a Fault Notification Supplier

1. The Replication Manager wishes to monitor an object O1 with reference O1_ref. The object belongs to the fault toler-
ance domain “acme.com” and object group “1” and location “object_location.” Based on the PULL FaultMonitoring-
Style and the location of the object, the Replication Manager chooses a pull-based Fault Detector and informs it to
start monitoring the object with the value of the FaultMonitoringInterval given as a property.

2. The pull-based Fault Detector periodically invokes is_alive() on O1_ref.

3. If Object O1 fails to respond to the is_alive() messages of the Fault Detector, the Fault Detector may declare the
object to have crashed. It then takes the following actions:

• It creates a StructuredEvent data structure with the following data.

Location object_location;
object_location.length(1);
object_location[0].id = "myhost.acme.com";
object_location[0].kind = "hostname";
CosNotification::StructuredEvent fault_event;
fault_event.header.fixed_header.event_type.domain_name = "FT_CORBA";
fault_event.header.fixed_header.event_type.type_name = "ObjectCrashFault";
fault_event.filterable_data.length(4);
fault_event.filterable_data[0].name = "FTDomainId";
fault_event.filterable_data[0].value <<= "acme.com";
fault_event.filterable_data[1].name = "Location";
fault_event.filterable_data[1].value <<= object_location;
fault_event.filterable_data[2].name = “TypeId”;
fault_event.filterable_data[2].value <<= object_type;
fault_event.filterable_data[3].name = "ObjectGroupId";
fault_event.filterable_data[3].value <<= 1;
Fault Tolerant CORBA, v1.0 71

• It invokes push_structured_event(fault_event) on the Fault Notifier.

7.6.2 The Replication Manager as a Fault Notification Consumer

1. The Replication Manager wishes to be notified when object O1 crashes.

2. The Replication Manager invokes connect_structured_fault_consumer() with a push consumer reference as an in
parameter. The Fault Notifier returns a consumer identifier to the Replication Manager.

3. The Replication Manager creates a sequence of event types and their corresponding constraint expressions, as fol-
lows:

CosNotification::EventTypeSeq event_types;
event_types.length(1);
event_types[0].domain_name = "FT_CORBA";
event_types[0].type_name = "ObjectCrashFault";

const CORBA::string constraint_expr;
constraint_expr = "$FTDomainId == ‘acme.com’

and $ObjectGroupId == 1
and $Location[0].id ==‘myhost.acme.com’";

4. The Replication Manager invokes replace_constraint(consumer_id, event_types, constraint_expr) on the filter
object returned in Step 2. The above constraints allow the Replication Manager to register for ObjectCrashFault of a
member of object group 1 occurring on host “myhost.acme.com”.

5. When the Replication Manager is no longer interested in fault reports for O1, it invokes replace_constraints() on the
filter object with suitable constraint values.

6. If the Replication Manager does not wish to receive any more notifications, it disconnects from the Fault Notifier by
invoking disconnect_consumer(c_id) on it.
72 Fault Tolerant CORBA, v1.0

8 Logging and Recovery Management

8.1 Overview

The Fault Tolerance Infrastructure includes Logging and Recovery Management Mechanisms that support the
infrastructure-controlled ConsistencyStyle. During normal operation, the Logging Mechanism records the state and
actions of the primary member of a passively replicated object group in a log. After a fault, the Recovery Mechanism
retrieves these records from the log and uses them to restore the state of a backup member of the object group, so that it
can continue the service provided by the primary member that failed. The Logging and Recovery Mechanisms are also
used to activate a new member of an actively replicated object group. No interfaces are defined for the Logging and
Recovery Mechanisms because these mechanisms are never invoked directly by the application program.

This chapter defines two interfaces that objects of the application program inherit: Checkpointable and Updateable. An
application object that needs to have its state logged and restored must inherit the Checkpointable interface. In addition,
it may inherit the Updateable interface, which allows state changes to be logged and restored incrementally.

8.2 Logging Mechanism

During normal operation, the Logging Mechanism records the state and actions of a member of an object group in a log,
as shown in Figure 8.1. The state and actions correspond to messages sent and received by the member of the object
group. Conceptually, the Fault Tolerance Infrastructure maintains a distinct log for each object group, although it may
record the logs for many object groups within the same physical log. The log may be distributed, in which case it is
maintained in local volatile storage at each member of the object group that is the destination of the message. The
distributed logging strategy typically employs a reliable totally-ordered multicast protocol to deliver the messages to all
of the members of the object group. Alternatively, particularly for passively replicated object groups, the log may be
written to shared stable storage by the primary member of the object group that is the source of the message. To be sound,
the shared logging strategy requires that each message is forced to the log on stable storage before it is transmitted, which
may have an adverse effect on performance.

The format of the log is not specified in this specification. Typically, the information recorded in the log consists of
request and reply messages, and states and updates in the form of get_state() and get_update() request and reply
messages, as shown in Figure 8.1. The log must preserve the order in which messages were received by the members of
the object group, so that they can be replayed in the correct order during recovery. States and updates must be positioned
logically in the message sequence at the point at which they were requested by the get_state() or get_update() request
message, even though the state or update may be contained in a reply message that is sent at a later time. A complete state
consists of the get_state() request message and the reply to that request. A complete update is defined similarly.

To conserve memory, the Logging Mechanism must prune the log of records that the Recovery Mechanism will not
subsequently require for recovery. Thus, if the log contains a complete state, the Logging Mechanism can discard all log
records prior to the get_state() request message for that state. Similarly, if a log contains a complete update, the Logging
Mechanism can discard all request and reply messages, other than those associated with the logging of a state or update,
that precedes the get_update() request message for that update. If, however, a request contains an FT_REQUEST service
context, which defines an expiration time for the request, the request and its matching reply must be retained until that
expiration time.
Fault Tolerant CORBA, v1.0 73

8.3 Recovery Mechanism

The Recovery Mechanism sets the state of a member, either after a fault when a backup member of an object group is
promoted to the primary member, or alternatively when a new member is introduced into an object group. The Recovery
Mechanism processes the log and applies messages from the log to the member to bring that member to the correct
current state, so that it can start to process messages normally, as shown in Figure 8.1.

The messages in the log are not necessarily in the order required for recovery. The Recovery Mechanism processes the
log, discarding irrelevant messages to form a complete log. A complete log for an object group contains:

• The most recent complete state in the log. Prior complete states are ignored and can be discarded from the log.
Subsequent incomplete states are ignored but are retained in the log so that they can be completed.

• All complete updates that occur after the most recent complete state. Complete updates that occur prior to the most
recent complete state are ignored and can be discarded from the log. Subsequent incomplete updates are ignored but are
retained in the log so that they can be completed.

Figure 8.1 - Operation of the Logging and Recovery Mechanisms for a server object group having the
 WARM_PASSIVE REplication Style, during normal operation, during the recording of a
 checkpoint, and during recovery
74 Fault Tolerant CORBA, v1.0

• All request and reply messages that occur in the log after the most recent complete state and after the most recent
complete update, if present. Request and reply messages are ignored and can be discarded from the log if they occur
before the complete state or complete update and if they are not the most recent request and reply messages in the
sequence of request and reply messages for a client object group’s invocations of this object group.

For a backup member of an object group with the COLD_PASSIVE ReplicationStyle that is being promoted to primary
member, or for a new member of an object group with the ACTIVE ReplicationStyle, the Recovery Mechanism must
apply the entire complete log to the member.

For a backup member of an object group with the WARM_PASSIVE ReplicationStyle that is being promoted to primary
member, the member has already received states and updates during normal operation. The Recovery Mechanism applies
to the member, only messages in the complete log that follow the most recent state or update applied to the member
during normal operation.

For a new backup member of an object group with the WARM_PASSIVE ReplicationStyle, the Recovery Mechanism
applies only the state and update messages in the complete log to the member.

8.4 Checkpointable and Updateable Interfaces

An application object inherits the Checkpointable interface, which provides get_state() and set_state() operations, to
enable the Logging and Recovery Mechanisms to record and restore its state. The Logging Mechanism obtains the value
of the CheckpointInterval from the Property Manager, which determines the interval between successive invocations of
the get_state() operation.

An application object may also inherit the Updateable interface, which provides get_update() and set_update()
operations, to enable the Logging and Recovery Mechanisms to record and restore updates. An update is the set of
changes in the state of an object since the most recent invocation of get_state() or get_update().

The Logging Mechanism invokes the get_state() operation on a member of an object group to obtain its state. In addition,
for the WARM_PASSIVE ReplicationStyle, the Logging Mechanism invokes the get_state() operation on the primary
member to obtain the state needed to update the backup members in order to speed up the failover process in case the
primary fails. The Recovery Mechanism invokes the set_state() operation on the new or recovering member of the object
group, and on the backups for the WARM_PASSIVE ReplicationStyle.

The Logging Mechanism invokes the get_update() operation on a member of an object group to obtain data that
represents the change (delta) between the previous state and the current state. The “previous” state is the state at the
moment of the most recent invocation of get_state() or get_update(). The state of the backup is typically updated using
the most recent state plus the following updates. The Recovery Mechanism invokes the set_update() operation on the
new or recovering member of the object group, and on the backups for the WARM_PASSIVE ReplicationStyle.

module FT {
typedef sequence<octet> State;

exception NoStateAvailable {};
exception InvalidState {};
exception NoUpdateAvailable {};
exception InvalidUpdate {}; get_update

interface Checkpointable {
State get_state()

raises(NoStateAvailable);
Fault Tolerant CORBA, v1.0 75

void set_state(in State s)
raises(InvalidState);

};

interface Updateable : Checkpointable {
State get_update()

raises(NoUpdateAvailable);

void set_update(in State s)
raises(InvalidUpdate);

};
};

8.4.1 Identifiers

typedef sequence<octet> State;

The state or partial state (update) of an object.

8.4.2 Exceptions

8.4.3 Operations

get_state

This operation obtains the state of the application object on which it is invoked. The operation is invoked by the Logging
Mechanism. The CheckpointInterval obtained from the Property Manager determines the interval between invocations of
get_state().

When the Logging Mechanism invokes get_state(), the application object returns the state. For each retrieval of a state,
the Logging Mechanism invokes get_state() only once, and the state that is returned is the state at the time get_state() is
invoked.

State get_state()
raises(NoStateAvailable);

Return Value

The state of the application object on which the operation is invoked.

NoStateAvailable {} This exception is thrown if the state of the object is not available.

InvalidState {}; This exception is thrown if the state being supplied to the object is not a valid
state for the object. The Fault Tolerance Infrastructure then assumes that the
object has failed.

NoUpdateAvailable {}; This exception is thrown if an update for the object is not available.

InvalidUpdate {}; This exception is thrown if the update being supplied to the object is not a valid
update for the object. The Fault Tolerance Infrastructure then assumes that the
object has failed.
76 Fault Tolerant CORBA, v1.0

Raises

NoStateAvailable if the state is not available.

set_state

This operation sets the state of the application object on which it is invoked. The operation is invoked by the Recovery
Mechanism. When the Recovery Mechanism invokes set_state(), it transfers the state to the application object.

void set_state(in State s)
raises(InvalidState);

Parameters

Raises

InvalidState if the parameter s is not a valid state. If the exception is raised, the Fault Tolerance Infrastructure assumes
that the application object has failed.

get_update

This operation obtains an update from the application object on which it is invoked. The get_update() operation is
invoked by the Logging Mechanism.

When the the Logging Mechanism invokes get_update(), the application object returns the update. For each retrieval of
an update, the Logging Mechanism invokes get_update() only once, and the update that is returned is the update at the
time get_update() is invoked.

State get_update()
raises(NoUpdateAvailable);

Return Value

An update for the application object on which the operation is invoked.

Exception

NoUpdateAvailable if an update is not available.

8.4.4 set_update

This method applies an update to the application object on which it is invoked. The operation is invoked by the Recovery
Mechanism. When the Recovery Mechanism invokes set_update(), it transfers the update to the application object.

void set_update(in State s)
raises(InvalidUpdate);

s The state to be used to set the state of the application object on which the operation is invoked.
Fault Tolerant CORBA, v1.0 77

Parameters

Exception

InvalidUpdate if the parameter s is not a valid update.

8.5 Use Case

8.5.1 Infrastructure-Controlled Consistency Style

For the COLD_PASSIVE ReplicationStyle and the PULL FaultMonitoringStyle, the interactions between the various
components of the Fault Tolerance Infrastructure are typically as follows:

1. The Pull Monitor invokes is_alive() on the primary member of the object group and the primary responds.

2. The primary fails.

3. The Pull Monitor invokes is_alive() on the primary member of the object group and the primary does not respond.

4. The Pull Monitor incurs a timeout and reports to the Fault Notifier that the primary is faulty.

5. The Fault Notifier notifies the Replication Manager that the primary is faulty.

6. The Replication Manager determines the object group containing the primary, and the Replication Style of the object
group.

7. The Replication Manager invokes the Fault Tolerance Infrastructure to remove the failed primary from the object
group.

8. If the number of members of the object group is now less than the minimum number of replicas for this object group,
the Replication Manager initiates the creation of a new member of the object group.

9. If the backup is not yet loaded, the Replication Manager invokes an operation of the Fault Tolerance Infrastructure to
load the backup.

10. The Replication Manager then invokes an operation of the Fault Tolerance Infrastructure to set the new primary for
the object group.

11. The Replication Manager invokes an operation of the Recovery Mechanism to activate the new primary.

12. The Recovery Mechanism accesses the log and extracts the most recent state message for the previous primary and
the subsequent request and reply messages.

13. The Recovery Mechanism invokes set_state() from the request and reply messages on the new primary.

14. The Recovery Mechanism returns a reply to the Replication Manager’s invocation of activate.

The Replication Manager invokes the Pull Monitor to start monitoring the new primary.

s The update to be applied to the application object on which the operation is invoked. If the exception
is raised, the Fault Tolerance Infrastructure assumes that the application object has failed.
78 Fault Tolerant CORBA, v1.0

Annex A - Glossary

Active Replication All of the members of an object group independently execute the methods
invoked on the object, so that if a fault prevents one replica from operating
correctly, the other replicas will produce the required results without the
delay incurred by recovery.

Active Replication with Voting Active replication where the requests (replies) from the members of a client
(server) object group are voted, and are delivered to the members of the
server (client) object group only if a majority of the requests (replies) are
identical.

Application-Controlled
Consistency

A ConsistencyStyle in which the application is responsible for
checkpointing, logging, activation and recovery, and for maintaining
whatever kind of consistency is appropriate for the application.

Application-Controlled
Membership

A MembershipStyle in which the application, or an application-level
manager, can create a member of the object group and then invoke the
add_member() operation of the ObjectGroupManager interface to cause the
Replication Manager to add the member to the group. Alternatively, the
application can invoke the create_member() operation of the
ObjectGroupManager interface to cause the Replication Manager to create
the member and add it to the object group. The application is responsible for
enforcing the InitialNumberReplicas and MinimumNumberReplicas
properties.

Backup Member In passive replication, a member of an object group that does not execute the
methods invoked on the object group but is available to assume the role of
the primary member in the event of a fault.

Byzantine Fault A form of commission fault that occurs when an object or host generates
incorrect results maliciously.

Causal Order Causal order ensures that if a multicast message m1 could have caused,
possibly indirectly, a message m2 then no object receives m2 before it
receives m1. The causally precedes relation is the transitive closure of:
• If message m1 is delivered to object replica O before O sends message m2,

then m1 causally precedes m2.
• If object replica O sends message m1 before message m2, then m1 causally

precedes m2.
• If both m1 and m2 are delivered to object replica O, and m1 causally pre-

cedes m2, then m1 is delivered to O before m2.

Checkpoint A snapshot of the state of an object.

Checkpoint Interval An interval of time (in seconds and nanoseconds) between writing the full
state of an object to a log.

Cold Passive Replication A form of passive replication in which only one replica, the primary replica,
in the object group executes the methods invoked on the object. The state of
the primary replica is extracted from the log and is loaded into the backup
replica when needed for recovery.
Fault Tolerant CORBA, v1.0 79

Commission Fault A commission fault occurs when an object or host generates incorrect results.
Commission faults must be handled by active replication with majority
voting.

ConsistencyStyle The value of the ConsistencyStyle is either CONS_INF_CTRL or
CONS_APP_CTRL.

Distributed Logging A logging strategy in which a co-located log is maintained for each replica of
an object.

Duplicates Duplicate requests and duplicate replies can arise in active replication and in
passive replication when the primary fails and a new primary is introduced.
To maintain exactly once semantics and strong replica consistency, the Fault
Tolerance Infrastructure provides mechanisms to detect and suppress
duplicates.

Failure A failure is the event of a system’s generating a result that does not satisfy
the system specification or not generating a result that is required by the
system specification. A failure is defined by the system specification, without
reference to any enclosing system of which the system is a component.

Fault A fault is behavior of a component of a system that causes incorrect behavior
of the system. A fault is the external manifestation of a failure of the
component.

Fault Analyzer A component of the Fault Tolerance Infrastructure that registers for fault
notifications and aggregates multiple related fault notifications into a single
fault report.

Fault Containment Region One or more locations that can be affected by a single fault. Each member of
an object group is assigned to a different fault containment region to ensure
that, if one member incurs a fault, the other members are not affected.

Fault Monitor A component of the system, also known as a Fault Detector, that monitors the
occurrence of faults in other entities, such as objects, hosts, processes, and
networks. Fault detectors are typically based on timeouts and are unreliable
(inaccurate) because they cannot determine whether an entity has failed or is
merely slow.

FaultMonitoringGranularity The value of the FaultMonitoringGranularity of an object group is either
MEMB, LOC, or LOC_AND_TYPE. The FaultMonitoringGranularity provides
a means of scalably monitoring the members of many object groups.

FaultMonitoringIntervalAndTimeout The value of the FaultMonitoringIntervalAndTimeout is a structure that
contains an interval of time between successive pings of an object, and the
time allowed for subsequent responses from the object to determine whether
it is faulty.

FaultMonitoringStyle The value of the FaultMonitoringStyle is either PULL, PUSH, or
NOT_MONITORED.

Fault Tolerance The ability to provide continuous service, unperturbed by the presence of
faults. In contrast, with high availability, existing operations can be disrupted
by a fault but subsequent new operations, or retired existing operations, are
serviced.
80 Fault Tolerant CORBA, v1.0

Fault Tolerance Domain For scalability, large applications are divided into multiple fault tolerance
domains, each managed by a single Replication Manager. The members of an
object group are located within a single fault tolerance domain but can
invoke, or can be invoked by, objects of other fault tolerance domains. A host
can support objects from multiple fault tolerance domains.

Fault Transparency A server object group is fault transparent to a client object if, in the presence
of a faulty server replica, the server object group interacts with the client
object as if there were no faults.

Gateway A gateway provides access into a fault tolerance domain for objects outside
that domain, and provides protocol conversion between the IIOP protocol
used outside the fault tolerance domain and the group communication
protocol used inside that domain.

GenericFactory An interface of the Replication Manager that creates object groups, as well as
individual members of object groups.

Group Communication Protocol A protocol that provides communication between object groups, typically
multicasting, reliable delivery, causal ordering, total ordering, group
membership, and virtual synchrony.

Group Membership The set of members of a group, which may change dynamically in time, as
members fail and are removed from the group and as new and recovered
members are added.

FT_GROUP_VERSION Service
Context

A service context, included in a request message, that allows a server to
determine whether the client is using an obstacle object group reference and,
if so, to return a LOCATION_FORWARD_PERM response that contains
the most recent object reference for the server object group.

HEARTBEAT_POLICY A client-side policy that allows a client to request heartbeating to determine
that its connection to a server has failed.

HEARTBEAT_ENABLED_POLICY A server-side policy that allows a client to determine that its connection to a
server has failed.

Incremental State Transfer A form of state transfer that is used for transferring large states of an object
in fragments.

Infrastructure-Controlled
Consistency

A ConsistencyStyle in which the Fault Tolerance Infrastructure is
responsible for checkpointing, logging, activation and recovery and for
maintaining Strong Replica Consistency.

Infrastructure-Controlled
Membership

A MembershipStyle in which the application directs the Replication Manager
to create the object group and the Replication Manager invokes the individual
factories, for the appropriate locations, to create the members of the object
group both initially to satisfy the InitialReplicas property and after the loss of
a member because of a fault to satisfy the MinimumNumberReplicas
property.

InitialNumberReplicas The InitialNumberReplicas property of an object group specifies the number
of replicas of the object to be created when the object group is first created.

Location A set of hosts that form a single fault containment region. Members of object
groups are created at different locations.

Log A record of messages and object states that is created to ensure that recovery
is possible after a fault.
Fault Tolerant CORBA, v1.0 81

LoggingMechanism A component of the Fault Tolerance Infrastructure that records all of the
actions of an object group in a log.

MembershipStyle The value of the MembershipStyle of an object group is either
MEMB_INF_CTRL or MEMB_APP_CTRL.

Membership Handling
Mechanism

A component of the Fault Tolerance Infrastructure that ensures that GIOP
messages addressed to object groups are delivered to the appropriate
members of those groups. It detects and suppresses duplicate messages,
passes messages to the Logging Mechanism to put into the log, and applies to
the objects messages that the Recovery Mechanism has retrieved from the
log.

MinimumNumberReplicas The MinimumNumberReplicas property of an object group specifies the
smallest number of replicas of the object needed to maintain the desired fault
tolerance. The application or the Replication Manager creates additional
replicas of the object to ensure that the number of replicas does not fall below
the specified minimum number.

Multicasting For replicated client and server objects, messages are originated by a client
(server) within a client (server) object group and are multicast to the client
and server object groups. Messages are delivered to the members of both the
client and server object groups to facilitate the detection and suppression of
duplicates.

Object Group A set of member objects, each of which implements the same set of interfaces
and has the same implementation code.

ObjectGroupManager An interface of the Replication Manager that contains operations for creating
a member of an object group at a particular location, adding a member to an
object group at a particular location, removing a member from an object
group at a particular location, getting the locations of the members of an
object group, and setting the primary member of a passively replicated object
group.

Object Group Reference An interoperable object reference that contains multiple TAG_INTERNET_IOP
profiles that represent primary and backup members of a passively replicated
object group or that represent gateways. All of the TAG_INTERNET_IOP
profiles contain a TAG_FT_GROUP component that contains the fault
tolerance domain identifier, object group identifier, and object group
reference version number for the server object group. If the profiles are those
of members of a passively replicated server object group, then one of the
profiles contains the TAG_FT_PRIMARY component for the profile that
addresses the primary member of the server object group.

Passive Replication Only the primary member of an object group executes the methods that have
been invoked on the object group. The object group contains additional
backup replicas.

Primary Member In passive replication, the member of an object group that executes the
methods invoked on the object group.

Property Manager An interface of the Replication Manager that contains operations for setting
and getting the fault tolerance properties.

Pull Monitor A Fault Monitor that interrogates the monitored object periodically to
determine whether it is alive.
82 Fault Tolerant CORBA, v1.0

Push Monitor A Fault Monitor to which the monitored object periodically reports that it is
alive.

Recovery The restoration of the state of a member of an object group so that it can
continue the operation of the object group.

Recovery Mechanism A component of the Fault Tolerance Infrastructure that sets the state of a
member of an object group, either when a backup member is promoted to be
the primary member after a fault occurs, or alternatively when a new member
is introduced into the group.

Reliable Delivery Every message addressed to a group, or originated by a group, is delivered to
every member of the group, except for members suspected of being faulty.

Replica Determinism Replica determinism requires that two or more members of an object group,
when presented with the same sequence of requests and replies, behave in
exactly the same manner.

Replication The fundamental technique used in building fault-tolerant systems.

Replication Manager A component of the Fault Tolerance Infrastructure that provides access to the
Fault Notifier and that inherits three interfaces. PropertyManager,
GenericFactory and ObjectGroupManager. Logically, there is one
Replication Manager per fault tolerance domain. The Replication Manager
interacts with the Fault Monitors and Fault Notifier, and with the Logging
and Recovery Mechanisms of the Fault Tolerance Infrastructure.

ReplicationStyle The value of the ReplicationStyle of an object group is either STATELESS,
COLD_PASSIVE, WARM_PASSIVE, ACTIVE, or ACTIVE_WITH_VOTING.

Replication Transparency A client object is unaware that it is interacting with a group of server objects,
but rather ‘‘thinks’’ that it is interacting with an individual server object.

Repository Identifier The identifier of a type within the Interface Repository.

REQUEST_DURATION_POLICY A client-side policy that defines the time interval over which a client’s
request to a server remains valid and should be retained by the server ORB to
detect repeated requests.

FT_REQUEST Service Context A service context, included in a request message, that allows a server to
detect and suppress duplicate requests and to garbage collect requests that are
obsolete.

Shared Logging A logging strategy in which the primary member of an object group logs its
state by writing the log records onto stable storage.

State Transfer In both passive and active replication, when a new or recovered member of
an object group is activated, a state transfer is required to transfer the state of
the object to the new or recovered member, so that the new or recovered
member will have the same state as the other members of the object group.

Stateless Object The behavior of a stateless object is unaffected by its history of invocations.
A typical example of a stateless object is a server that provides read-only
access to a database.

Strong Membership
Consistency

Strong Membership Consistency means that, for each method invocation on
an object group, the Fault Tolerance Infrastructure on all hosts agree on the
membership of the object group.
Fault Tolerant CORBA, v1.0 83

Strong Replica Consistency For passive replication, Strong Replica Consistency means that, at the end of
each state transfer, each of the members of the object group have the same
state. For active replication, Strong Replica Consistency means that, at the
end of each method invocation on the object group, each of the members of
the object group have the same state.

TAG_FT_GROUP Component A component of all of the profiles of the Object Group Reference that
contains the fault tolerance domain identifier, object group identifier, and
object group reference version number of the server object group with that
reference.

TAG_FT_HEARTBEAT_ENABLED
Component

A component of a TAG_INTERNET_IOP profile of an object group reference
that indicates that a member of a server object group, or gateway, is heartbeat
enabled.

TAG_FT_PRIMARY Component A component of one of the TAG_INTERNET_IOP profiles of an object group
reference that is intended to address the primary member of the object group,
and that indicates that this TAG_INTERNET_IOP profile should be used in
preference to other TAG_INTERNET_IOP profiles within the object group
reference.

Total Order The ordered before relation is the transitive closure of:
• If message m1 is delivered to object replica O before message m2 is deliv-

ered to O, then m1 is ordered before m2.
• If message m1 precedes message m2, then m1 is ordered before m2.
• If both m1 and m2 are delivered to object replica O, and m1 is ordered be-

fore m2, then m1 is delivered to O before m2 is delivered to O.

The ordered before relation is acyclic.

Unique Primary Replica For passive replication, one and only one member of the object group
executes the methods invoked on the object group.

Unreplicated Client Object An unreplicated client object communicates with a replicated server object
using IIOP. The client may communicate directly with a member of the server
object group or, if multicasting is provided, the client may communicate with
a gateway, which then multicasts the message to the server object group.

Virtual Synchrony If object replicas O1 and O2 are in the same view of the object group
membership M and they transition together to the next view of the object
group membership M’, then the same messages are delivered to O1 and O2
while they are members of M. Virtual synchrony is used to ensure that a state
transfer to initialize a new member of object group membership M occurs at
the point in the message order corresponding to a membership change. Thus,
at the start of the next view of the object group membership M’, all of the
members in M’ will have the same state.

Warm Passive Replication A form of passive replication in which only the primary member executes the
methods invoked on the object group by the client objects. Several other
members operate as backups. The backups do not execute the methods
invoked on the object group; rather, the state of the primary is transferred to
the backups periodically.
84 Fault Tolerant CORBA, v1.0

	1 Scope
	1.1 Fault Tolerance for Diverse Applications

	2 Compliance
	2.1 Fault Tolerant CORBA Passive Replication
	2.2 Fault Tolerant CORBA Active Replication

	3 Terms and Definitions
	4 Fault Tolerant CORBA Overview
	4.1 Objectives
	4.1.1 Basic Concepts
	4.1.1.1 Replication and Object Groups
	4.1.1.2 Fault Tolerance Domains
	4.1.1.3 Fault Tolerance Properties
	4.1.1.4 Strong Replica Consistency

	4.1.2 Architectural Overview
	4.1.2.1 Fault Tolerance Property Management
	4.1.2.2 Replication Management
	4.1.2.3 Fault Detection and Notification
	4.1.2.4 Logging and Recovery

	4.1.3 Requirements
	4.1.4 Limitations

	5 Basic Fault Tolerance Mechanisms
	5.1 Overview
	5.2 Interoperable Object Group References
	5.2.1 TAG_FT_GROUP Component
	5.2.2 TAG_FT_PRIMARY Component

	5.3 Interoperable Object Group Reference Operations
	5.3.1 get_interface
	5.3.2 is_a
	5.3.3 is_nil
	5.3.4 non_existent
	5.3.5 is_equivalent
	5.3.6 hash
	5.3.7 create_request
	5.3.8 get_policy
	5.3.9 get_domain_managers
	5.3.10 set_policy_overrides

	5.4 Modes of Profile Addressing
	5.4.1 Profiles That Address Object Group Members
	5.4.2 Profiles That Address Gateways
	5.4.3 Choice of Profile Addressing Mode

	5.5 Accessing Server Object Groups
	5.5.1 Access via IIOP Directly to the Primary Member
	5.5.2 Access via IIOP and a Gateway
	5.5.3 Access via a Multicast Group Communication Protocol

	5.6 Extensions to CORBA Failover Semantics
	5.7 Most Recent Object Group Reference
	5.7.1 FT_GROUP_VERSION Service Context

	5.8 Transparent Reinvocation
	5.8.1 FT_REQUEST Service Context
	5.8.2 Request Duration Policy
	5.8.3 Fault Handling for GIOP Messages

	5.9 Transport Heartbeats
	5.9.1 TAG_FT_HEARTBEAT_ENABLED Component
	5.9.2 Heartbeat Policy
	5.9.3 Heartbeat Enabled Policy

	6 Replication Management
	6.1 Overview
	6.2 Fault Tolerance Properties
	6.2.1 ReplicationStyle
	6.2.2 MembershipStyle
	6.2.3 ConsistencyStyle
	6.2.4 FaultMonitoringStyle
	6.2.5 FaultMonitoringGranularity
	6.2.6 Factories
	6.2.7 InitialNumberReplicas
	6.2.8 MinimumNumberReplicas

	6.3 FaultMonitoringIntervalAndTimeout
	6.4 CheckpointInterval
	6.5 Common Types
	6.5.1 Identifiers
	6.5.2 Exceptions

	6.6 Replication Manager
	6.6.1 Operations

	6.7 PropertyManager
	6.7.1 Operations
	6.7.2 get_properties

	6.8 ObjectGroupManager
	6.8.1 Operations

	6.9 GenericFactory
	6.9.1 Identifiers
	6.9.2 Operations

	6.10 Obtaining the Reference for the Replication Manager
	6.10.1 Use Cases
	6.10.1.1 Infrastructure-Controlled Membership Style
	6.10.1.2 Application-Controlled Membership Style
	6.10.1.3 Unreplicated Object Creation and Deletion

	7 Fault Management
	7.1 Overview
	7.2 Architecture
	7.2.1 Fault Detection
	7.2.2 Fault Notification
	7.2.3 Fault Analysis
	7.2.4 Scalability
	7.2.5 Deployment of Fault Detectors

	7.3 Connecting Fault Detectors to Applications
	7.3.1 Pull-Based Monitoring
	7.3.1.1 PULL Fault Monitoring Style
	7.3.1.2 PullMonitorable Interface

	7.4 Fault Event Types
	7.4.1 ObjectCrashFault

	7.5 Fault Notifier
	7.5.1 Identifiers
	7.5.2 Operations
	7.5.3 Filtering
	7.5.4 Mapping of the Fault Notifier to the CosNotification Service

	7.6 Use Cases
	7.6.1 The Fault Detector as a Fault Notification Supplier
	7.6.2 The Replication Manager as a Fault Notification Consumer

	8 Logging and Recovery Management
	8.1 Overview
	8.2 Logging Mechanism
	8.3 Recovery Mechanism
	8.4 Checkpointable and Updateable Interfaces
	8.4.1 Identifiers
	8.4.2 Exceptions
	8.4.3 Operations
	8.4.4 set_update

	8.5 Use Case
	8.5.1 Infrastructure-Controlled Consistency Style

	Annex A - Glossary

