
CORBA - FTAM/FTP Interworking
Specification

dtc/2001-08-06
Annotated revisions from telcom/00-11-05

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Copyright 1999-2001, Ericsson, Siemens AG, Broadcom EireAnn Research, Distributed Systems
Technology Centre (DSTC), Floorboard Software, IONA, Lucent, PrismTech, University of California,
Irvine.

Note – Company list updated

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this
document details an Object Management Group specification in accordance with the license and notices
set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR
PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or
cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The
copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers
of computer software to use certification marks, trademarks or other special designations to indicate
compliance with these materials. This document contains information which is protected by copyright. All

CORBA-FTAM/FTP Interworking Specification, FTF Final Report Draft -3

Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form
or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software
Clause at DFARS 252.227.7013 OMG®and Object Management are registered trademarks of the Object
Management Group, Inc. Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities,
CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Open is a trademark
of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the issue reporting form at http://www.omg.org/library/issuerpt.htm.

-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

Naming Service: v1.1 Service Description Month Year -1

Note – This is the table of contents from the original specification. The new table of
contents follows

Preface 1

About the Object Management Group 1
What is CORBA? 1

Associated OMG Documents 2

Acknowledgments 3

1. File Transfer in Telecoms Systems 1
1.1 File Transfer 1

2. Architectural Overview 1

3. Principal Components 1
3.1 Virtual File System 1

3.2 File Transfer Session 2

3.3 File 6

3.4 Directory 7

4. Example Scenarios 1
4.1 Introduction 1

4.2 User Login 2
4.2.1 Description 2
4.2.2 Code Sample 3
4.2.3 Interaction Diagram for a successful login 4

4.3 Traversing the File System 4
4.3.1 Description 4
4.3.2 Code Sample 5
4.3.3 Interaction Diagram for successfully traversing the

file system 7

4.4 Deleting a Remote File 8
4.4.1 Description 8
4.4.2 Code Sample 8
4.4.3 Interaction Diagram for successfully deleting a

remote file 9

4.5 Transferring a File 9
4.5.1 Description 9
4.5.2 Code Sample 10
4.5.3 Interaction Diagram for successfully transferring a

file 12

-2 CORBAservices: Common Object Services Specification

Appendix A References 1
A.1 List of References 1

Appendix B Complete OMG IDL 1

Appendix C Compliance Issues 1

Glossary 1

Glossary of Terms 1

CORBA-FTAM/FTP Interworking Specification Version 1.0 -1

Note – This is the new table of contents

Preface 1
About the Object Management Group 1

What is CORBA? 1

Associated OMG Documents 2

Acknowledgments 3

1. Service Description 1

1.1 File Transfer in Telecoms Systems 1
1.1.1 File Transfer Capable Network Elements 2

2. Service Architecture 1

2.1 Overview 1
2.1.1 File System Servers 1
2.1.2 Principal Components 2
2.1.3 Files and Directories 2
2.1.4 File Transfer 3

2.2 File Transfer Protocols 8
2.2.1 Protocol Syntax 8
2.2.2 Transfer Connection Establishment 9
2.2.3 CORBA Transfer Protocol 9
2.2.4 FTP Transfer Protocol 10
2.2.5 FTAM Transfer Protocol 10

3. Service Interfaces 1
3.1 CosFileTransfer Module 1

3.1.1 Exceptions 1
3.1.2 FileSystem Interface 3
3.1.3 FileSession Interface 5
3.1.4 FileSystemEntry Interface 5
3.1.5 Directory Interface 9
3.1.6 DirEntryIterator Interface 12
3.1.7 File Interface 15
3.1.8 TransferEndPoint Interface 18
3.1.9 OctetTransferIterator Interface 23

3.2 Object Lifecycle 26

3.3 Conformance Criteria 26
3.3.1 Interfaces 26
3.3.2 Transfer Protocols 27

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Appendix A Complete OMG IDL 1

CORBA-FTAM/FTP Interworking Specification Version 1.0 -1

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

CORBA-FTAM/FTP Interworking Specification Version 1.0 -3

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted parts of this specification:

• Ericsson

• Siemens

• Siemens AG

• Broadcom Eireann Research

• Distributed Systems Technology Centre

• Floorboard

• IONA

• Lucent

• PrismTech

• University of California, Irvine

-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

CORBA-FTAM/FTP Interworking Specification Version 1.0 1-1

File Transfer in Telecoms Systems

Service Description 1

1.1 File TransferTransfer in Telecoms Systems

Retrieving data from a remote Network Element (NE) and maintaining the software
that runs on that node is relatively straightforward but performing the same operations
on potentially thousands of Network Elements presents the telecommunication
operator with a significant challenge. These tasks are currently performed using either
the ISO specified File Transfer, Access and Maintenance (FTAM) protocol or the File
Transfer Protocol (FTP). Currently Operations Support Systems (OSS) employ either
FTAM or FTP to perform both data retrieval and software maintenance tasks.

This specification describes a single set of IDL interfaces that will allow any OSS to
perform its file management operations on underlying Network Elements regardless of
the type of file management mechanism the underlying node is using. There are a
number of reasons that identify the need for such interfaces:

• OSSs may be implemented in a large number of programming languages and
deployed in a platform-independent manner. In addition to using existing OSS
systems, telecommunication operators may also employ an alternative, lightweight
OSS client that has all of the features of the legacy systems but performs the
management of Network Elements through the IDL interfaces.

• The complexity of performing data retrieval and file maintenance operations is
hidden from the OSS user by a single set of IDL interfaces. No knowledge of FTP,
FTAM, or other file access mechanisms is necessary for them to perform their job.

1-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

1

• The task of extending the set of data retrieval and file maintenance operations is
made easier. New management or retrieval operations to meet changing
requirements may be exposed to the OSS through a new IDL interface. Existing
OSSs may continue to use the original IDL interfaces without interruption.

• The task of migrating a large installed base of OSSs to use a new file management
mechanism will be less complex and take considerably less time to perform since
the same set of IDL interfaces is being used.

There are a number of system configurations that are possible through the deployment
of the proposed interfaces. One such configuration is illustrated in Figure 1-1.

Figure 1-1 High-level system overview

Traditionally different file transfer clients were required for each type of fileserver
within the telecoms OSS. By exposing basic file transfer functionality through a set of
IDL interfaces it is possible to develop less complex file transfer clients that are
independent of the underlying file transfer protocols. The use of CORBA allows
remote management of systems over corporate intranets.

CORBA-FTAM/FTP Interworking Specification Version 1.0 1-3

1

1.1.1 File Transfer Capable Network Elements

The primary focus of this specification is defining a file transfer IDL that provides
uniform access to FTAM and FTP NEs. However, the scope and utility of the file
transfer IDL is not limited to use soley with only FTAM and FTP. Any NE can may
support the file transfer IDL to transfer informationfor data transfer. Clients using the
file transfer IDL will often transfer a file files to a local file system, which itself can be
represented by the IDL. Non-file based information can also be transferred. For
example, a NE may support access to operational and performance data through
“virtual” filesfiles and directories, accessible by the file transfer IDL, even though the
. The NE itself may not actually store this data in a physical filefiles and directories.

1-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

1

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-1

Architectural OverviewService

Architecture 2

2.1 Overview

This specification proposes service defines a set of interfaces that implement model a
distributed simplified virtual file transfer, access and maintenance framework. The
various interfaces of this framework include:system.

• Virtual File Systems – represented by the VirtualFileSystem interface

• File Transfer Sessions – represented by the FileTransferSession interface

• File – represented by the File interface

• Directory – represented by the Directory interface

The VirtualFileSystem interface provides users with a standard interface to a specific
file management system. It facilitates the authentication of the user by establishing a
trusted relationship between them and the remote server. For each successful user
authentication, the VirtualFileSystem provides the user with a
FileTransferSession enabling them to conduct file management operations across
the framework. A different implementation of the FileTransferSession interface is
provided depending on the protocol used by the remote file transfer mechanism. The
FileTransferSession must maintain a direct communication link with the remote file
transfer mechanism. Additionally it must ensure that user operation invocations are
mapped correctly to the appropriate protocol-specific primitives that will be passed to
the remote server or responder. Similarly, the FileTransferSession must ensure that
reply messages returned by the remote server or responder will be translated into non-
protocol specific messages.

2-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

Figure 2-1 An example FIle Transfer Configuration

Figure 2-1 illustrates how FileTransferSession manages a group of File and
Directory references that represent the real files and directories that reside within the
currently active working directory of the file server.

The File interface provides the client with a proxy to a physical file stored on the File
Transfer Server and represents the basic unit of the file system. The Directory
interface is a specialization of the File Interface that maintains information relative to
a physically related group of File objects. Although it is derived from the File
Interface, it also provides the ability to list all File references maintained by the
Directory.

A client obtains access to a file system by logging in and accessing an initial directory.
A directory provides access to the file system entries that it contains. A file system
entry is a data file or a directory.

A client may perform basic maintenance tasks on file system entries. A client may also
log on to multiple file systems to transfer files between them. The types of operations
a client may perform include:

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-3

2

• Copy, insert, or append the contents a file to another file

• List the entries in a directory.

• Create a new directory.

• Remove an existing directory or file.

• Query a file or directory for properties such as creation time or size.

An implementation may restrict a client’s access to any particular file, directory,
property, or operation based on the credentials the client used to login to the file
system.

2.1.1 File System Servers

The files and directories a client accesses through the service interfaces are virtual
proxies for entities internal to the service. The specification places no restrictions on
the internal structure or form of these entities.

The service interface is capable of providing virtual file systems for:

• FTP servers

• FTAM responders

• Local file systems

• NEs presenting arbitrary data as virtual files and directories through the service
interfaces.

No details specific to FTAM, FTP, or a specific NE are exposed in the IDL. A client is
unaware of the underlying service implementation and may transfer files between
services through a CORBA interface or another negotiated transfer protocol such as
FTP.

2.1.2 Principal Components

The CosFileTransfer module defines the following primary interfaces:

• FileSystem - The virtual file system the service represents.

• FileSession - The login session a client is granted to access the file system.

• FileSystemEntry - A base interface providing common operations for files and
directories.

• Directory - A virtual directory that a client can list the entries in.

• DirEntryIterator - An iterator to access a list of file system entry properties.

• File - A virtual file that can be copied, inserted, or appended to another file.

The following two interfaces provide more advanced transfer control and direct access
to a file’s content:

2-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

• TransferEndPoint - An object that represents one end of a file’s transfer connection.
It is used for a single transfer.

• OctetTransferIterator - An iterator to read and write file contents.

The above two interfaces are used internally by a service implementation to provide
the basic file transfer operations.

2.1.3 Files and Directories

Names

FileSystem entries have a simple single component name, EntryName, that is
unique to their immediate parent Directory and a multi-component EntryPath that is
relative to any ancestor Directory.

Basic Maintenance Operations

The basic operations such as get_path, remove, exists, create_directory, are
described starting in Section 3.1 .

Directory Lists

The following pseudo-code illustrates logging in to a FileSystem and listing the
names of the entries.:

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-5

2

...
session = fileSys.login(user, password, lprops, home_dir);

// relative dir path: “sub1/sub2/dir3”
String [] dirPath = {
 “sub1”, “sub2”, “dir3”
}

subDir = home_dir.get_directory(dirPath);

// desired properties: file name and size
String[] dirProps = {
 “name”, “size”
}

entryItor = subDir.list(dirProps);

// Iterate through entries, printing returned properties
offset = 0;
if (entryItor != null){
 do{
 entries = entryItor.next(0,0);
 for(e=0; e<entries.length(); ++e){
 printNameAndSize(entries[e]);
 }
 offset += entries.length();
 }
 while(entries.length()!=0);
}

session.destroy();

2.1.4 File Transfer

The service transfers files between file systems. The protocol used for the transfer is
negotiated when the transfer is initiated. The supported protocols are:

• CORBA - “IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” - mandatory

• FTP - optional

• FTAM - optional

• Additional CORBA interfaces - optional

Clients are coded identically regardless of the transfer protocol used.
OctetTransferIterator support is mandatory to guarantee that any two service
implementations will be able to transfer files if no other common transfer protocol is
available. A service may offer additional CORBA transfer interfaces besides this.

2-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

Binary File Transfer

All file transfers are binary. This service has no concept of character code-sets and
does not make a distinction between text and binary files as defined by ftp and ftam.

High Level File Transfer Operations

Basic file transfer operations for transferring data from one file system to another are
available on the File interface. The pseudo-code below illustrates logging on to two
file systems and performing the high level transfer operations: copy, append, and
insert. The full IDL descriptions are in Section 3.1, “CosFileTransfer Module”.

fromSess = fsFrom.login(user1, password1, lprops1, dirFrom);
toSess = fsTo.login(user2, password2, lprops2, dirTo);

String[] fromName = {
 // filename is: “from_dir_name/from_file_name”
 “from_dir_name”, “from_file_name”
};

String [] toName = {
 // filename is: “to_dir_one/to_dir_two/to_file_name”
 “to_dir_one”, “to_dir_two”, “to_file_name”
};

fromFile = dirFrom.get_file(fromName, true); // must exist
toFile = dirTo.get_file(toName, false); // need not

fromFile.copy(toFile);
fromFile.append(toFile);
fromFile.insert(toFile, 1024);

fromSess.destroy();
toSess.destroy();

When the client is finished, the file sessions are destroyed to release all server
resources. Support for the append and insert operations is optional.

File Transfer Implementation

Additional transfer primitives are required for services to implement the high level
transfer operations described above. Clients may also use these primitives to directly
control more advanced transfer operations.

To implement a file transfer, the File interface has a few additional methods. The
interface TransferEndPoint is defined to represent a file’s connection endpoint for
the duration of a single file transfer.

A transfer between two Files is carried out in the following steps.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-7

2

1. Negotiate the protocol to be used for the file transfer:

• Determine a common transfer protocol: ftp, ftam, or a corba interface.

• Determine which end point of the transfer connection will wait for connection,
the passive end point, and which end will actively connect, the active endpoint.

2. Create the appropriate TransferEndPoint objects for each File.

3. The passive endpoint is put in a listening state, awaiting connection.

4. The active endpoint makes the connection.

5. The passive endpoint is notified the active connection has been made.

6. The transfer operation is called on the source endpoint.

These steps are described in more detail in the next sections.

Protocol Negotiation

The method File::get_transfer_protocols returns a preference ordered list of the
transfer protocols supported by the File. Some example return lists are:

“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”

“ftp”

This list says that the File can be transferred using either the specified corba interface
or a ftp data connection in either active or passive mode. Support for the
CosFileTransfer::OctetTransferIterator interface is mandatory. In this case it is
listed to indicate that it is preferred over ftp.

“ftp;active”

“IDL:CompanyX.com/CryptoTransfer/CompressedIterator:1.0”

“ftam;passive”

This list says that the File can be transferred using ftp if the File actively makes the
data connection. If ftp cannot be used, the specified corba interface is the next
preferred transfer protocol. Finally, ftam may be used with this endpoint taking on
the passive role. Since support for the OctetTransferIterator interface is mandatory
it is not required to be listed.

To transfer from File A to File B, the Files are queried for their supported protocols.
This list is examined and a compatible set is chosen. An example being
“ftp;active” for File A and “ftp;passive” for File B. If a transfer protocol
string does not specify active or passive, it supports both. This is always the case for
the OctetTransferIterator protocol.

Transfer protocol syntax is specified in Section 2.2.1 .

TransferEndPoint Creation

The method File::create_transfer_endpoint is used to create the necessary
TransferEndPoints. It takes arguments that specify whether this endpoint is the
source or a destination of the transfer, the read/write offset into the File, and whether

2-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

the offset is relative to the beginning or end of the File. These parameters can specify
endpoints usable as the source or sink of copy, append, and insert operations. See
section Section 3.1.7 for details.

Passive Endpoint Listen

The passive TransferEndPoint is put into a wait for connection (listening) state by
calling go_to_listen. It is then ready to accept a connection from the active
TransferEndPoint. This method returns a TransferDetail describing the passive
endpoint.

Active Endpoint Connection

The active TransferEndPoint completes the connection circuit when
connect_to_peer is called. The argument to this method is the TransferDetail
returned from go_to_listen. This method returns a TransferDetail string describing
the active endpoint protocol specific details. For some protocols, the returned
TransferDetail may be an empty string.

Passive Endpoint Connect Notify

The last step in the connection establishment is calling set_peer on the passive
endpoint to notify it that the connection has been made. The argument to this method
is the TransferDetail returned from the connect_to_peer operation. For some
protocols, set_peer may accept an empty string.

Low Level Transfer Example

The following example illustrates the execution of an append operation, where the
negotiated protocol is “ftp”. The sender is passive and the receiver is active.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-9

2

...
fromFile = dirFrom.get_file(fromName);
toFile = dirTo.get_file(toName);

fromProtocols = fromFile.get_end_point_protocols();
toProtocols = toFile.get_end_point_protocols();

// From the protocol lists, find a matching
// protocol set. “ftp” is used for this example,
// the sender will be passive, listening
// for ftp data connection
...
fromProtocol = “ftp;passive”;
toProtocol = “ftp;active”;

// create endpoints to append the file

fromEP =
fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 fromProtocol);

toEP = fromFile.create_endpoint(TransferEndPointRole::SINK,
 FilePos::END,
 0,
 toProtocol);

// establish connection
passiveDetail = fromEP.go_to_listen();
activeDetail = toEP.connect_to_peer(passiveDetail);
fromEP.set_peer(activeDetail);

fromEP.transfer();

fromEP.destroy();
toEP.destroy();

This example would follow the same form if a different transfer protocol were used. To
change the operation to a copy, the SINK endpoint would have FilePos::BEGIN and
offset of zero. Inserts are performed by specifying a TransferEndPointRole of
SINK_INSERT for the destination endpoint. An implementation may restrict the types
of TransferEndPoints supported.

2-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

Direct File Access

To allow direct access to the contents of a file from a client that cannot provide another
TransferEndPoint or File, the OctetTransferIterator interface can be used to read
and write file contents directly. An example of reading the contents of a “text” file for
display is shown in the pseudo-code below:
...
protocol =
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”
fromEP =
fromFile.create_endpoint(TransferEndPointRole::SOURCE,
 FilePos::BEGIN,
 0,
 protocol);

// go_to_listen returns “IOR:....”
// as the TransferDetail for a corba protocol

corbaDetail = fromEP.go_to_listen();
octetItorObj = orb.string_to_object(corbaDetail);
octetItor = OctetTransferIterator.narrow(octetItorObj);

do{
 octetBuf = octetItor.get_octet_seq(offset, 0);
 printBuffer(octetBuf); // print file as text
 offset = offset + octetBuf.length();
}
while(octetBuf.length()!=0);

fromEP.destroy();

2.2 File Transfer Protocols

This section describes the details of the supported file transfer protocols.

2.2.1 Protocol Syntax

The protocol syntax defines protocol names and protocol specific attributes. The
syntax is extensible to allow new protocols and attributes to be added. The syntax for
the currently supported protocols is:

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-11

2

<ProtocolSpec> ::= <CORBA> | <FTP> | <FTAM> | <NewProtocol>

<CORBA> ::= <OctetTransfer> | <OtherCORBA>
<OctetTransfer> ::=
 “IDL:org.omg.CosFileTransfer/OctetTransferIterator:1.0”
<OtherCORBA> ::= <InterfaceID> [<Options>]
<InterfaceID> ::= Valid Repository ID

<FTP> ::= “ftp” [<ActivePassiveOption>]
<FTAM> ::= “ftam” [<ActivePassiveOption>]

<ActivePassiveOption> ::= “;” [“active” | “passive”]
<NewProtocol> ::= <AlphaNumericString> [<Options>]
<Options> ::= “;” <Tag>[“=” <Value>][<Options>]
<Tag> ::= <AlphaNumericString>
<Value> ::=<AlphaNumericString>

2.2.2 Transfer Connection Establishment

Service implementations and clients using transfer primitives are required to use
connection establishment semantics that are functionally equivalent to the following:

// protocol independent connection establishment
passiveDetail = passiveEP.go_to_listen();
activeDetail = activeEP.connect_to_peer(passiveDetail);
passiveEP.set_peer(activeDetail);

The one exception is if a client is directly accessing a File using the
OctetTransferIterator interface as described previously in the “Direct File Access”
section. In this case only, it sufficient to call go_to_listen and then use the returned
OctetTransferIterator immediately.

2.2.3 CORBA Transfer Protocol

The following is required for a service implementation to support a corba transfer
protocol.

File::create_end_point must return a corba aware TransferEndPoint when the
endpoint protocol argument begins with an interface repository ID.

TransferEndPoint::go_to_listen must return a stringified object reference that can
be passed to TransferEndPoint::go_to_listen or used directly by a client.

TransferEndPoint::connect_to_peer must return a stringified object reference that
can be passed to TransferEndPoint::set_peer.

2-12 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

The OctetTransferIterator corba protocol does not have a concept of active or
passive, so either endpoint can be used as passive or active. This may not be true for
other corba transfer interfaces. An implementation supporting OctetTransferIterator
may implement the high level transfer operations in a manner similar to the one
outlined by the example in the “Direct File Access” section above.

There is no requirement for an implementation to make use of the stringified object
reference that is passed to set_peer for a corba transfer protocol.

 An implementation must allow the set_peer argument to be an empty string. This
represents the case where a client is using an OctetTransferIterator directly.

2.2.4 FTP Transfer Protocol

The ftp transfer protocol, refers specifically to a file transfer that takes place as if it
were the data connection of an ftp1 service transfer. A service implementation need not
use a true ftp server to implement this transfer protocol.

The following is required for a service implementation to support the ftp transfer
protocol.

File::create_end_point must return an ftp aware TransferEndPoint when the
endpoint protocol argument an ftp type.

TransferEndPoint::go_to_listen must return a string of the form:

host:port

where host is either a DNS style host name or a dotted decimal IP address and port
identifies the port number that will accept the ftp data connection.The returned
host:port string is passed to TransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a host:port string identifying the
local end of the ftp data connection that has been established. In some cases this
information may not be available, in which case an empty string is returned. The
returned string is passed to TransferEndPoint::set_peer.

There is no requirement for an implementation to make use of the host:port that is
passed to set_peer for the ftp transfer protocol.

2.2.5 FTAM Transfer Protocol

The following is required for a service implementation to support the ftam2 transfer
protocol.

1. IETF RFC 959 “File Transfer Protocol (FTP)”, J. Postel, J.Reynolds. October 1985

2.ISO/IEC 8571-1,8571-2,8571-3,8571-4 Information Processing Systems - Open Systems
Interconnection - File Transfer, Access, and Management Parts 1 - 4. 1993

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-13

2

File::create_end_point must return an ftam aware TransferEndPoint when the
endpoint protocol argument an ftam type.

TransferEndPoint::go_to_listen must return a string identifying a ftam responder.

The returned responder string is passed to TransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a string identifying the ftam
initiator. The returned string is passed to TransferEndPoint::set_peer.

2-14 CORBA-FTAM/FTP Interworking Specification Version 1.0

2

CORBA-FTAM/FTP Interworking Specification Version 1.0 3-1

Principal ComponentsService

Interfaces 3

3.1 Virtual File System

A Virtual File System abstracts remote file servers and is described by the IDL
interface VirtualFileSystem. All Virtual File Systems support operations to allow a
user to login to a remote file server without prior knowledge of the underlying
protocols that remote system employs. For example, a user shall call the following
operation on the VirtualFileSystem interface:

FileTransferSession
login(in Istring username, in Istring password,
in Istring account, out Directory root)
raises(SessionException, FileNotFoundException,
IllegalOperationException);

The parameters username and password specify the client’s name and their
password for the remote system associated with the Virtual File System. Similarly the
account parameter determines the specific account at the remote system they are
attempting to login to. The account parameter is optional since some clients may not
have more than one designated account. In this circumstance a client shall invoke the
login() operation with their username, password and an empty string for the
account parameter to indicate the login is for the default user account. If successful,
login() shall return a reference to a FileTransferSession, in addition to a reference
to the starting Directory. The client may then utilize the operations at the remote
system via the FileTransferSession.

The login() operation is capable of throwing three exceptions:

• a SessionException is thrown by login() if it is not possible to establish a
connection with the remote file server represented by the VirtualFileSystem (for
example, if the user’s details have not been validated successfully).

3-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

• a FileNotFoundException is thrown by login() if the root directory at the
remote file server cannot be determined.

• an IllegalOperationException is thrown by login() if the client does not have
permission to access the root directory.

3.2 File Transfer Session

The FileTransferSession interface abstracts a period of communication between a
file transfer client and a remote file transfer server that is maintained by the
framework. A FileTransferSession is created in response to a successful login and
provides the user with an interface to the remote server. When a client chooses to quit
a current session, the FileTransferSession associated with that session is destroyed.
This interface attempts to abstract the complexity associated with either the FTAM or
FTP protocols from the client by providing a set of operations related to generic file
transfer.

The FileTransferSession interface provides the transfer() operation that allows a
file transfer client to transfer a File from a source to a destination file transfer server.

void transfer(in File src, in File dest)
raises(SessionException, TransferException,
 FileNotFoundException, RequestFailureException,
 IllegalOperationException);

The src parameter of the transfer() operation is used to identify the file to be
transferred and the dest parameter is used to specify the destination that the file will
be copied to. The transfer() operation abstracts the complexities associated with the
mechanism for establishing a connection between a source and target
FileTransferSession. Although the client is not concerned with the
protocols_supported attribute exposed by the FileTransferSession interface, it is
provided to enable implementations to establish data connections between source and
target FileTransferSessions during a transfer. A detailed description of this attribute
and its use by one possible implementation of the specification during a transfer is
provided in page 4 ¶ Font>.

The transfer() operation can throw the following exceptions:

• a SessionException is thrown by transfer() when the existing connection with
the remote server is not available for the requested transfer.

• a TransferException is thrown by transfer() when an error occurs with the
current connection between the source and destination FileTransferSessions
during the transfer of data.

• a FileNotFoundException is thrown by transfer() when the file to be
transferred cannot be found at the remote file server.

• a RequestFailureException is thrown by transfer() if the requested transfer
cannot be completed due to an internal problem at the gateway.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-3

3

• an IllegalOperationException is thrown by transfer() if the user does not have
read access for the source file or if the user is not permitted to create the new file at
the target location on the destination file transfer server.

In some circumstances a client may wish to insert the contents of a file into a target file
that resides on the remote system. The FileTransferSession interface provides the
insert() operation to facilitate such a scenario. Invoking the operation requires that the
client provide the following parameters: the src parameter identifies the file to be
added to the remote file, the dest parameter identifies the file that the src file is to be
added to and the offset parameter indicates the location in the dest file where the src
will be added.

void insert (in File src, in File dest, in long offset)
raises(CommandNotImplementedException,
 SessionException,
 TransferException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);

The FileTransferSession interface also provides the append() operation to enable a
client to append the contents of a specified file onto the end of another file.

void append (in File src, in File dest)
raises(CommandNotImplementedException,
 SessionException,
 TransferException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);

Both the insert() and append() operations are capable of throwing the same set of
exceptions:

• a CommandNotImplementedException is thrown by insert() and append()
if the remote server abstracted by the current FileTransferSession does not
implement the insert or append functionality.

• a SessionException is thrown by insert() when the existing connection with the
remote server is not available for the requested insert and by append() when the
existing connection with the remote file server is not available for the requested
append.

• a TransferException is thrown by insert() and append() when an error occurs
with the current connection between the source and destination
FileTransferSessions during the transfer of data.

• a FileNotFoundException is thrown by insert() and append() when the source
file for the operation cannot be found at the remote server or when the destination
file for the operation cannot be found at the target server.

3-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

• a RequestFailureException is thrown by insert() and append() when the
requested insert or append cannot be completed due to an internal problem at the
gateway.

• an IllegalOperationException is thrown by insert() and append() if the user
does not have read access for the source file or if the user is not permitted to write
to the file at the target location on the destination file transfer server.

The FileTransferSession interface also provides the create_directory() operation
that allows a client to create a new directory on the remote server. This returns a
reference to the Directory interface that may be used by the client to obtain
complimentary information pertaining to the directory they have just created.

Directory create_directory (in FileNameList name)
raises(SessionException, FileNotFoundException,
 RequestFailureException, IllegalOperationException);

The create_directory() operation takes the name parameter that specifies the name
of the directory to be created and its full pathname as a sequence of strings. This
operation is independent of the working directory from where it is invoked since the
absolute pathname of the file is specified by the name parameter.

The FileTransferSession interface also defines the create_file() operation that can
be used to create a proxy to a physical file at the remote file server before a transfer of
a file can occur. create_file() is invoked by specifying the name of the file to be
created, and its full pathname using the name parameter. In the same manner as the
create_directory() operation, a client can create a new file at a target location on the
remote server without concern for the current working directory.

File create_file (in FileNameList name)
raises(SessionException, FileNotFoundException,
 RequestFailureException, IllegalOperationException);

Both the create_directory() and create_file() operations can throw the following
exceptions:

• a SessionException is thrown by create_directory() when the existing
connection with the remote server is not available when attempting to create the
new directory and by create_file() when the existing connection with the remote
server is not available when attempting to create the new file.

• a FileNotFoundException is thrown by create_directory() and create_file()
when the pathname of the directory or file to be created, that is specified by the
name parameter, is not found on the remote server. For example, the
FileNotFoundException will be thrown by this operation if any directory in the
specified path (referenced within a FileNameList) does not exist.

• a RequestFailureException is thrown by create_directory() and
create_file() when the request cannot be completed due to an internal problem at
the gateway.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-5

3

• an IllegalOperationException is thrown by create_directory() and
create_file() when the user is not permitted to access the destination directory or
file at the target location.

Another operation typically associated with a file transfer service is for the client to
navigate around the remote file system. When a client attempts to use a reference to a
Directory object for some operation it is not guaranteed that its contents accurately
reflect the contents of the physical directory it mirrors at the remote server. The
FileTransferSession interface defines the set_directory() operation enabling the
client to update or populate the contents of a Directory object specified by the
new_directory parameter.

void set_directory (in Directory new_directory)
raises(SessionException, FileNotFoundException,
 RequestFailureException, IllegalOperationException);

A user application shall invoke create_file() or create_directory() passing a
FileNameList as a parameter. The value of the FileNameList parameter indicates the
absolute pathname of the file or directory that is to be created. Employing the use of
absolute pathnames when invoking create_file() or create_directory() ensures that
the creation of a file or directory is not affected by the invocation of the
set_directory() operation.

The set_directory() operation can throw the following exceptions:

• a SessionException is thrown by set_directory() when the existing connection
with the remote server is not available when attempting to change directory.

• a FileNotFoundException is thrown by set_directory() when the target
directory cannot be found on the remote server.

• a RequestFailureException is thrown by set_directory() when it is not
possible to change directory at the remote server.

3.3 CosFileTransfer Module

This chapter describes the CosFileTransfer module in detail.

3.3.1 Exceptions

The following IDL shows the exceptions defined for the service:

3-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

 typedef short ErrorCode;
 const ErrorCode UNSPECIFIED = 0;
 const ErrorCode UNAVAILABLE = 1;
 const ErrorCode UNSUPPORTED = 2;
 const ErrorCode NO_PERMISSION = 3;

 const ErrorCode ENTRY_EXISTS = 4;
 const ErrorCode ENTRY_PATH_ERROR = 5;
 const ErrorCode ENTRY_IO_ERROR = 6;
 const ErrorCode DIR_NOT_EMPTY = 7;

 const ErrorCode TRANSFER_IO_ERROR = 8;
 const ErrorCode TRANSFER_ABORT = 9;

 exception FileSystemError {
 ErrorCode error;
 wstring desc;
 };

 // Error transferring between two files

 exception TransferError {
 TransferEndPointRole error_endpoint;
 ErrorCode error;
 wstring desc;
 };

 ErrorCode

The exceptions defined in the CosFileTransfer module contain an ErrorCode field
which identifies the category of the error. The values are:

• UNSPECIFIED - The error category is none of the below.

• UNAVAILABLE - The FileSystem is temporarily unavailable. This is only raised
by the FileSystem::login method.

• UNSUPPORTED - The operation or the particular parameter values are unsupported
by the implementation.

• NO_PERMISSION - The user credentials are insufficient or invalid for the
requested operation.

• ENTRY_PATH_ERROR - A component of the name specified for a File or
Directory is invalid or the entry does not exist.

• ENTRY_EXISTS - The operation expected the entry not to already exist.

• ENTRY_IO_ERROR - There has been an error opening, reading, writing, or closing
a File or Directory.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-7

3

• DIR_NOT_EMPTY -The implementation does not allow removal of a Directory
that is not empty.

• TRANSFER_IO_ERROR - There has been an opening, reading, writing, or closing a
data transfer connection.

• TRANSFER_ABORT - A file transfer operation has been aborted.

Client ErrorCode Handling

In this chapter, each operation description lists the exceptions raised along with
specific ErrorCode values. A service implementation may use ErrorCode values
other than those specifically listed. A client must handle these values gracefully, at the
very least handling them like UNSPECIFIED.

 FileSystemError

This exception is raised when an operation involving a single CosFileTransfer object
fails. The fields are:

• error - A broad classification of the error.

• desc - Optional text detail about the error.

TransferError

TransferError is raised by operations that involve copying one File’s contents to
another. Since there are two Files involved, the one that raised the exception must be
identified. The fields are:

• error_endpoint - Identifies whether the exception originated from the source
or sink of the data transfer.

• error - A broad classification of the error.

• desc - Optional text detail about the error.

3.3.2 FileSystem Interface

The FileSystem interface provides access to the virtual file system represented by the
service. The IDL is:

3-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

 interface FileSystem {

 FileSession login(in wstring user,
 in wstring password,
 in CosPropertyService::Properties login_properties,
 out Directory initial_dir)
 raises(FileSystemError);

 wstring get_system_id();
 };

login

Before transferring files or performing maintenance operations, a client must provide
credentials to login to the FileSystem to obtain an initial Directory reference. The
FileSystem validates the user credentials in an implementation specific manner.

Parameters
• user - FileSystem specific text string identifying the user.

• password - FileSystem specific text string identifying the user password.

• login_details - sequence of FileSystem specific properties providing login
details. A FileSystem implementation may use any property names and values that
are appropriate. The following properties with wstring values are defined:

• user - Same value as the user parameter. If this property is present, the user
parameter is ignored.

• password - Same value as the password parameter. If this property is present,
the password parameter is ignored.

• account - Many systems have the concept of an account in addition to a user.

• initial_dir - returns the initial Directory for the supplied login details.

Return value

This method returns a FileSession (see section 3.1.3) for the supplied login
parameters.

Exceptions

FileSystemError. The following ErrorCode values are defined:

• UNAVAILABLE - The FileSystem is unavailable for login. In this case, no attempt
has been made to validate the user credentials. A retry by the client may be
successful.

• NO_PERMISSION - The supplied user credentials were rejected.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-9

3

get_system_id

Returns implementation specific text providing identification of the file system. This
text shall be suitable for display to an end user.

Return value

Returns a wstring identifying the file system. This string is for informational purposes
only and cannot be used to determine object identity. An implementation is not
required to make this string globally unique. An empty string is a legal return value.

3.3.3 FileSession Interface

The FileSession interface controls the lifecycle of all object references obtained from
the server. The IDL is:

 interface FileSession {
 void destroy();
 };

destroy

The destroy operation terminates the session with the service established by the call
to FileSystem::login. All objects associated with the FileSession such as
Directories, Files, etc. are destroyed. After the destroy method is invoked, further
operations on the FileSession or any of its associated objects will raise an
OBJECT_NOT_EXIST.

The status of any file transfers that are in progress at the time of a call to destroy are
undefined.

3.3.4 FileSystemEntry Interface

FileSystemEntry is a base interface that defines operations that are common to the
Directory (Section 3.1.5) and File (Section 3.1.7) interfaces.

Properties

The interface derives from CosProperty::PropertySet. The following properties are
defined:

3-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

A mandatory property is one that a service implementation must always allow a client
to access. An optional property is one that a service implementation may restrict a
client’s access to, may not provide a value for a particular File or Directory, or not
provide at all. For purposes of discussion, the properties from the above list and any
other implementation defined properties that a specific client is allowed access to are
called client accessible properties.

The behavior of the CosProperties::PropertySet methods specific to
FileSystemEntry objects are:

define_property

For a read only client accessible property, a CosProperties::ReadOnlyProperty
exception will be raised. If the property is not client accessible, a
CosProperties::UnsupportedProperty is raised.

define_properties

An implementation will behave as for define_property, except that the exception
raised is CosProperties::MultipleExceptions containing PropertyException
structs having a reason codes of read_only_property or unsupported_property.

get_number_of_properties

An implementation must not include any non client accessible properties in the return
count. The returned count may be less than the total number of properties associated
with the FileSystemEntry.

Table 3-1 FileSystemEntry Properties

Property Name Data Type Property Mode Description

name EntryName mandatory,
fixed_readonly

Simple name relative to
parent Directory

path EntryPath optional,
fixed_readonly

Full pathname relative to
initial FileSession
Directory.

owner wstring optional,
fixed_readonly

If defined, the owner of
the Entry.

creation_time TimeBase::UtcT optional,
fixed_readonly

If defined, the entry
creation time.

modification_time TimeBase::UtcT optional,
fixed_readonly

If defined, the last time
the entry was modified.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-11

3

get_all_property_names

An implementation must not include any non client accessible properties in the
returned sequence. The returned sequence size may be less than the total number of
properties associated with the FileSystemEntry.

get_property_value

For all client accessible properties that a value is defined for, the property value is
returned. Otherwise the exception PropertyNotFound is raised.

get_properties, get_all_properties

For all client accessible properties that a value is defined for, the property is returned.
All other properties will denote an exception by appearing in the return sequence with
a type of tk_void as described in the CosProperty Service specification.

delete_property, delete_properties, delete_all_properties

For all fixed client accessible properties, an exception denoting fixed_property shall
be raised. For delete_all_properties, client accessible fixed properties will not be
deleted and the operation shall return true.

FileSystemEntry Methods

The next sections describe the methods available on the FileSystemEntry interface.

get_name

Returns the simple name for this FileSystemEntry. This is the same value returned
by the name property.

Return Value

EntryName for the FileSystemEntry.

get_path

Returns the path name for this FileSystemEntry relative to the initial Directory
returned from FileSystem::login. This is the same value returned by the path
property.

Return Value

EntryPath for the FileSystemEntry.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No specific
ErrorCode values are defined.

3-12 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

exists

Report the existence of a FileSystemEntry on the FileSystem.

Return Value
• true - The FileSystemEntry exists on the FileSystem.

• false - The FileSystemEntry does not exist on the FileSystem.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No specific
ErrorCode values are defined.

get_parent

Returns the parent Directory for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION - If the client is not allowed to access the parent Directory.
Many implementations will raise this exception if get_parent is called on the
initial Directory returned from FileSystem::login.

get_session

Returns the associated FileSession for this FileSystemEntry.

Exceptions

A FileSystemError may be raised with an ErrorCode value of:

• NO_PERMISSION - If the client is not allowed to access the FileSession from
this FileEntry.

remove

This operation removes the entry from the service. A Directory may only be removed
if it is empty. Once removed an Entry will not appear in a listing of its parent
directory.

Exceptions

A FileSystemError is raised on error. The following ErrorCode values are defined:

• NO_PERMISSION - If the client is not allowed to remove this Entry.

• DIR_NOT_EMPTY - If this is a Directory and contains child entries.

• ENTRY_PATH_ERROR - If the Entry does not exist.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-13

3

destroy

This operation releases the FileSystemEntry object. It does not remove the entry’s
representation from the FileSystem. A client should call destroy on an Entry when
it has finished with it.

3.3.5 Directory Interface

The Directory interface represents a collection of File and Directory entries. The
interface defines operations to list and obtain references to these entries. The IDL is:

 interface Directory: FileSystemEntry {

 DirEntryIterator list(in CosPropertyService::PropertyNames listProps)
 raises (FileSystemError);

 Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean must_exist)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };

Directory Properties

In addition to the properties for FileSystemEntry, Directory objects have one
additional property listed in the table below.

3-14 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

list

The list operation allows a client to iterate through a set of Directory entries and
their properties.

 Parameters
• list-props - A sequence containing the names of the desired entry properties. A

service implementation is not required to return all the properties requested.

Return value

A DirEntryIterator (see Section 3.1.6). If the DirEntryIterator value is nil, there
were no entries to return. If the value is non-nil there may or may not be entries to
be retrieved.

An implementation is not required to return sequence members that represent the
current or parent Directory entries.

The properties returned are dependent on client permissions and whether an entry has
a value for the property. If a client does not have permission to retrieve a property, an
implementation must not raise an exception with an ErrorCode of
NO_PERMISSION. The denied property shall be silently omitted.

Exceptions

FileSystemError. The following ErrorCode value is defined:

• NO_PERMISSION - The client is not permitted to obtain the Directory list.

create_directory

This operation creates a child Directory. It is similar to the familiar mkdir command.

Table 3-2 Directory Properties

Property Name Data Type Property Mode Description

num_children DirEntryCount optional,
fixed_readonly

The number of entries in
the Directory. In some
cases it is not practical to
provide this value directly.
In this case the directory
must be iterated through
to count the entries.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-15

3

Parameters
• dir_path - The Path of the Directory to create. This EntryPath is relative to the

Directory. If dir_path contains more than one component, the intermediate
directories will be created as well.

Return value

The newly created Directory.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If any component of the path is invalid or one of the
intermediate components is a File.

• NO_PERMISSION - If the client is not allowed to create or access any component
of the dir_path.

• ENTRY_EXISTS - If this Directory already exists.

get_file

This operation returns a File for the specified Path.

Parameters
• file_path - The File’s Path relative to the Directory .

• must_exist -if true, the operation will only succeed if the file already exists on the
FileSystem.

Return value

A File reference for the file.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of the path is invalid or one of the
intermediate components is a File. If the must_exist parameter is true and the
file does not exist.

• NO_PERMISSION - If the client is not allowed to access any component of the
file_path.

get_directory

This operation returns a Directory corresponding to an existing directory.

Parameters
• dir_path - The relative EntryPath for the Directory.

3-16 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

Return value

The requested Directory.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If any component of the path is invalid or one of the
intermediate components is a File, or the Directory does not exist.

• an IllegalOperationException is thrown by set_directory() when
NO_PERMISSION - If the user client is not permitted allowed to access any
component of the destination directory at the target locationdir_path.

While moving from one directory to another within the remote server a client may
wish to perform typical operations on a file. The specification offers two alternatives
for obtaining a reference to a specific File. If the client has a reference to the File’s
parent directory, they can obtain a reference to the File by invoking the Directory
interface’s list() operation. The get_file() operation is also provided by the
FileTransferSession interface to enable a client to reference a specified file at a
specific location if the absolute pathname of the file is known. The
complete_file_name parameter represents a sequence of strings that identify the file
and its location. Therefore, the get_file() operation is independent of the working
directory from where it is invoked. In both cases a File reference will be returned
within a FileWrapper struct that also contains an enumeration to indicate whether the
file is a directory or not.

The get_file() operation can throw a number of exceptions:

• a SessionException is thrown by get_file() when the existing connection with
the remote server is not available when attempting to reference a remote file.

• a FileNotFoundException is thrown by get_file() when the target file cannot be
found on the remote server.

• a RequestFailureException is thrown by get_file() when it is not possible to
retrieve a reference to the target file due an internal problem at the gateway.

remove_entry

This operation removes a File or Directory entry. If the entry is a Directory, it must
be empty before it can be removed.

Parameters
• entry_path - The relative EntryPath.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If any component of the path is invalid or one of the
intermediate components is a File.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-17

3

• an IllegalOperationException is thrown by get_file() when NO_PERMISSION
- If the user client is not permitted allowed to access the target file or access the
location any component of the target filepath.

A client can also delete a file at the remote server by invoking the delete() operation
specifying the file to delete with the File parameter. delete() may also be used by a
client to delete a directory at the remote system since the Directory interface is a
specialization of the File interface.

void delete(in File file)
raises(SessionException, FileNotFoundException,
 RequestFailureException, IllegalOperationException);

delete() can throw a number of exceptions:

• a SessionException is thrown by delete() when the existing connection with
the remote server is not available when attempting to delete a remote file or
directory.

• a FileNotFoundException is thrown by delete() when the file or directory to be
deleted cannot be found on the remote server.

• a RequestFailureException is thrown by delete() when it is not possible to
delete the target file or directory due an internal problem at the gateway.

• an IllegalOperationException is thrown by delete() when the user is not
permitted to delete the target file or directory or access the location of the target file
or directory.

Finally, the FileTransferSession interface provides the logout() operation to enable
a client to terminate their active session.

void logout ();

3.4 File

The File interface exposes all features that are traditionally associated with a file to the
client and abstracts the complexity of performing protocol-specific operations by
providing a proxy for a physical file on the remote file serving mechanism. The File
interface inherits from the CosPropertyService::PropertySetDef interface. As a
consequence the File interface should implement the
CosPropertyService::PropertySetDef operations to allow a client to get and/or set
attribute values. Additionally, the interface defines three attributes that are always
associated with a file: the file’s name, the absolute pathname of the file, and a
reference to its parent. Both the name and complete_file_name attributes are
defined as readonly. A File Transfer Client can change the name of a file or its
complete file name by accessing the associated properties (see Table 3-1) if they are
supported by the implementation. A FileTransferSession attribute,
associated_session, is also specified since it is ubiquitous for all File references
and is essential for implementations to indicate the FileTransferSession that a File
reference is associated with.

3-18 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

interface File:CosPropertyService::PropertySetDef {
readonly attribute string name;
readonly attribute FileNameList complete_file_name;
readonly attribute Directory parent;
readonly attribute FileTransferSession
associated_session;
};

3.4.1 DirEntryIterator Interface

The DirEntryIterator interface is used to iterate through the results of a
Directory::list operation. The IDL is:
 // Directory listing size and list offset

 typedef unsigned long long DirEntryCount;
 typedef unsigned long long DirEntryOffset;

 // Directory listing Types

 typedef short DirEntryType;
 const DirEntryType FILE_ENTRY = 0;
 const DirEntryType DIR_ENTRY = 1;

 struct DirEntry {
 EntryName name;
 DirEntryType type;
 CosPropertyService::Properties props;
 };

 typedef sequence<DirEntry> DirEntrySeq;

 interface DirEntryIterator {
 DirEntrySeq next(in DirEntryOffset from_dir_entry,
 in DirEntryCount max_dir_entries)
 raises (FileSystemError);
 void destroy();
 };

Related Types

DirEntryType

This type defines the type of an entry, either DIR_ENTRY, or DIR_FILE.

DirEntry

Directory::list returns FileSystemEntry information in DirEntry structures. The
fields of this struct are:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-19

3

• name - The simple (single component) name of the entry in this Directory.

• type - The DirEntryType of the entry.

• props - A sequence containing the requested entry properties.

DirEntrySeq represents a sequence of DirEntry.

DirEntryCount, DirEntryOffset

These types are used to control the iteration through a Directory.

• DirEntryCount - The maximum number of entries to return to the client.

• DirEntryOffset - The offset into the Directory’s entry list from which the
DirEntryCount applies.

See the section “next” below for details on the use of these types.

next

This operation returns a sequence of DirEntry. The DirEntryIterator is a recoverable
iterator and allows a client to repeat a failed call to next, requesting a smaller
sequence in the event of an exception.

Parameters
• from_entry_number - return entries starting from the specified entry number.

• max_dir_entries - The maximum number of entries to return to the client. If
the value is zero value, there is no upper bound.

In normal operation next is called repeatedly until all the directory entries are
returned. The first time next is called, from_entry_number must be zero. For
subsequent calls, the value of from_entry_number is set to its previous value plus
the length of the returned entry sequence.

In the event that a call to next results in an exception indicative of resource exhaustion
on either the client or the server, such as NO_MEMORY, the client can retry the next
operation by invoking next with the previous from_entry_number and a smaller
max_dir_entries value.

If the next operation fails with a max_dir_entries value of one, the iteration cannot
be completed and the client must handle the error.

Return value

A DirEntrySeq with a length of up to max_dir_entries for non-zero values of
max_dir_entries. If max_dir_entries is zero, the returned sequence length is
implementation defined. In either case, an implementation may not return a
DirEntrySeq of length zero unless there are no further entries to retrieve.

Exceptions

 A FileSystemError may be raised with following ErrorCode value:

3-20 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

• UNSUPPORTED. If the from_entry_number parameter is illegal for the current
iterator state.

destroy

After a client is finished with a DirEntryIterator, destroy should be called to release
the internal resources held by the service implementation.

3.4.2 File Interface

The IDL is:

 interface File: FileSystemEntry {

 void copy(in File dest)
 raises(TransferError);

 void append(in File dest)
 raises(TransferError);

 void insert(in File dest, in FileOffset offset)
 raises(TransferError);

 TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
 in FilePos seek,
 in FileOffset offset,
 in TransferProtocol ep_protocol)
 raises (FileSystemError);

 TransferProtocolSeq get_end_point_protocols();
 };

File Properties

In addition to the attributes defined properties for the FileSystemEntry, File
interface there are a number of file properties identified objects have one additional
property listed in the following tabletable below.

Table 3-3 List of properties that can be associated with a file

Property Name Data Type Description

is_directory boolean Indicates whether the file represents a
remote directory.

creator string Indicates the name of the user that created
the file.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-21

3

3.5 Directory

The Directory interface exposes all features that are traditionally associated with a
directory to the client and abstracts the complexity of performing protocol-specific
operations by providing a proxy for a physical directory on the remote file serving
mechanism. In the same manner that a directory on the file system is considered to be
a specialization of a file, the Directory interface defined in the framework is a
specialization of the File interface.

interface Directory : File {
void list(in unsigned long how_many,
 out FileList fl,
 out FileIterator fi);
};

Each Directory provides a list() operation that enables a client to access a designated
number of files associated with the directory. Parameters of the list operation include:

• how_many: used to specify the number of File references that are initially
returned within the FileList parameter.

• fl: A sequence of FileWrapper references associated with the directory.

• fi: A reference to the FileIterator interface used to return subsequent File
references that were not returned in the initial FileList parameter

size unsigned long Indicates the size of the file in bytes.

modification_time string Indicates the time and date on which the
file was last modified

creation_time string Indicates the time and date on which the
file was created.

access_rights AccessLevel Indicates operations associated with a file
that are available to a user.

name string Indicates the name of the file

complete_file_name FileNameList Indicates the absolute name of the file

num_children long If the file is a directory this property
indicates the number of files associated
with that directory.

Table 3-3 List of properties that can be associated with a file

3-22 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

copy

The copy operation copies the contents of this File to the destination File. If the
destination File currently exists it is overwritten.

Parameters
• dest - The destination (sink) File.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If any component of a File is invalid or one of the
intermediate components is a File.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing a
file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

append

The append operation appends the contents of this File to the destination File.

Parameters
• dest - The destination File.

Exceptions

A TransferError may be raised with following ErrorCode values:

Table 3-4 File Properties

Property Name Data Type Property Mode Description

size FileSize Optional,
fixed_readonly

The size of the file in
octets. In some
implementations it may
not be practical to
determine the size of an
entity being represented
by a File. In this case the
property is not provided.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-23

3

• ENTRY_PATH_ERROR. If the sink File does not exist. If any component of a File
is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If the sink File does not allow an append.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing a
file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

insert

The insert operation inserts the contents of the File at the specified offset in the
destination File.

Parameters
• dest - The destination File.

• file_offset - The FileOffset into the destination File.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If the sink File does not exist. If any component of a File
path is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If the sink File does not allow an insert.

• NO_PERMISSION - If the client cannot access any component of a file path

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing a
file or the file_offset parameter is larger than the sink File size.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

• TRANSFER_ABORT - The transfer was aborted.

create_end_point

The create_end_point method is used to create a TransferEndPoint (see section
3.1.8), which is used by a service to implement the high level copy, append, and
insert operations. Clients performing more complex transfer operations may also
make use of this method.

3-24 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

Parameters
• ep_role - Specifies whether the role of the TransferEndPoint is to read or write

the File’s contents. Values are TransferEndPointRole::SOURCE,
TransferEndPointRole::SINK, and TransferEndPointRole::SINK_INSERT.
TransferEndPointRole::SINK will overwrite and truncate to the last written
octet.

• file_pos - Specifies whether the data transfer will be relative to the beginning or
end of the File. Values are FilePos::BEGIN and FilePos::END.

• offset - The offset from the file_pos to begin reading or writing.

• ep_protocol - Specifies the type of TransferEndPoint to be created. The
specification currently defines transfer protocols using corba interfaces, ftp, and
ftam. See section 3.1.8 for details.

Return value

TransferEndPoint for use in a single transfer of the File. The TransferEndPoint
should be destroyed after use.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If the SOURCE file does not exist. If any component of a
File path is invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an unsupported ep_protocol is specified.

• NO_PERMISSION - If the client cannot create the TransferEndPoint.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing a
file.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing a data connection.

get_end_point_protocols

Obtains a sequence of supported transfer protocols for this File. An implementation is
not required to provide the same transfer protocols for all Files. An implementation
may also change the set of available transfer protocols for a File if there are no
TransferEndPoints for that File in existence at the time of the change.

Return value

TransferProtocolSeq listing supported protocols. The sequence is in preferred
protocol order.

An implementation is not required to return the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0” since it is mandatory. An
implementation may choose to return it in the list to indicate a preference over other
protocols.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-25

3

3.5.1 TransferEndPoint Interface

TransferEndPoint objects represent a File during a transfer operation. The IDL is:

3-26 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

 interface TransferEndPoint;
 typedef wstring TransferProtocol;
 typedef sequence<TransferProtocol> TransferProtocolSeq;

 typedef short TransferEndPointRole;

 const TransferEndPointRole SOURCE = 0;
 const TransferEndPointRole SINK = 1;
 const TransferEndPointRole SINK_INSERT = 2;

 // transfer protocol specific information

 typedef wstring TransferDetail;

 typedef short TransferState;
 const TransferState CREATE = 0;
 const TransferState LISTEN = 1;
 const TransferState CONNECT = 2;
 const TransferState ACTIVE = 3;
 const TransferState COMPLETE = 4;
 const TransferState ABORT = 5;

 struct TransferStatus {
 TransferState state; // current transfer state
 FileCount current_count; // current transfer count
 FileCount max_count; // expected transfer size bytes/chars
 };

 interface TransferEndPoint
 {
 TransferDetail go_to_listen()
 raises(FileSystemError);

 TransferDetail connect_to_peer(in TransferDetail passive_detail)
 raises(FileSystemError);

 void set_peer(in TransferDetail active_detail)
 raises(FileSystemError);

 TransferStatus get_transfer_status()
 raises (FileSystemError);

 void transfer()
 raises (FileSystemError);

 void abort()
 raises (FileSystemError);

 void destroy();
 };

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-27

3

Related Types

TransferProtocol

A string type that identifies a transfer protocol such as “ftp”. TransferProtocolSeq
is the sequence typedef for TransferProtocol.

TransferDetail

This is a string type with a format that is specific to the transfer protocol used. During
connection negotiation, TransferEndPoints exchange protocol information in
TransferDetails.

TransferState

An enumeration that provides state information about a TransferEndPoint. The
defined states are:

• CREATE - Initial state after creation.

• LISTEN - waiting for an active connection, go_to_listen has been called.

• CONNECT - connected to its peer, either connect_to_peer, or set_peer has been
called.

• ACTIVE - data transfer has started.

• COMPLETE - data transfer completed successfully.

• ABORT - data transfer error

TransferStatus

This struct provides information about the progress of a transfer that a
TransferEndPoint is involved in. The fields are:

• state - the TransferState for the endpoint.

• current_count - expected transfer size. If this is unknown or not provided by
the service implementation, it is set to zero. This value is usually available from the
source endpoint but not the sink.

• max_count - For a source endpoint this is the octets sent. For a sink endpoint this
is the octets received. In the case of a transfer error this value represents the transfer
count before the abort. If the value is unknown or not provided by the service
implementation it is set to zero.

go_to_listen

This method is called on the passive TransferEndPoint to establish the listening side
of a data connection. On return the TransferEndPoint is ready to accept an active
connection. This is the first step in negotiating a transfer connection.

3-28 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

Return value

TransferDetail describing the passive TransferEndPoint details. For example in the
case of a corba protocol transfer, the returned TransferDetail would be an IOR
string, and for an ftp transfer, “host:port”.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR - If a file does not exist, any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform the
operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.

connect_to_peer

This method is called on an active TransferEndPoint to make the connection to the
passive TransferEndPoint. This is the second step in negotiating a transfer
connection.

Parameters
• passive_detail - This TransferDetail provides the required details to allow the

active TransferEndPoint to connect to the passive TransferEndPoint. This
parameter is set to the return value from the go_to_listen call on the passive
TransferEndPoint.

Return value

TransferDetail describing the active TransferEndPoint details.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid passive_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform the
operation.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-29

3

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.

set_peer

This method is called on the passive TransferEndPoint to complete the transfer
connection negotiation. It is the final step in negotiating a transfer connection. It
allows the passive TransferEndPoint to obtain any remaining TransferDetail about
the active end of the connection. The use of this information is protocol dependent.

Parameters
• active_detail - This TransferDetail provides information about the active end of

the data connection to the passive TransferEndPoint. The value of this parameter
is set to the result of the connect_to_peer operation.

Exceptions

A TransferError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

• NO_PERMISSION - If the client does not have the proper credentials to perform the
operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

• TRANSFER_IO_ERROR - There was an error in opening, closing, reading, or
writing the data connection.

get_transfer_status

This method returns the status of the TransferEndPoint.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode value is
defined.

• UNSUPPORTED - If a service implementation does not provide this information.

transfer

Transfer the File contents between the source and sink TransferEndPoints. This
method is called on the source TransferEndPoint.

3-30 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

Exceptions

A FileSystemError may be raised. The following specific ErrorCode value is
defined.

• UNSUPPORTED - If this operation is called on a sink TransferEndPoint.

abort

This method causes the TransferEndPoint to terminate the current transfer
operation the transfer at its end of the connection. The other TransferEndPoint will
see the abort an unexpected termination of the transfer operation or connection.

 An implementation may not be able to abort a transfer or even respond to the request
until the current transfer is complete.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode values is
defined.

• UNSUPPORTED - If it is not possible to abort the transfer operation.

The system exception BAD_INV_ORDER will be raised if abort is called on a
transfer that has not yet started, is already completed, or has aborted.

destroy

This method closes a transfer, releasing any internal resources the TransferEndPoint
has obtained. Further invocations on this object will receive an
OBJECT_NOT_EXIST exception.

3.5.2 OctetTransferIterator Interface

The OctetTransferIterator interface allows for transfer of a File’s contents using
only CORBA calls and without requiring another File object to transfer to or from.
OctetTransferIterator is a recoverable iterator. It does not provide random access to
a File’s contents.

The IDL is:
 typedef unsigned long long FileLength;
 typedef unsigned long long FileOffset;
 typedef unsigned long long FileCount;
 typedef sequence<octet> FileOctetSeq;

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-31

3

 interface OctetTransferIterator {

 FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount
max_octets)
 raises (FileSystemError);

 void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)
 raises(FileSystemError);

 void destroy()
 raises(FileSystemError);

 };

Related Types

FileOffset

This type represents an offset into a File’s contents. Normally an
OctetTransferIterator is created by a TransferEndPoint , in which case an
OctetTransferIterator’s FileOffset values are relative to the FileOffset specified
when the TransferEndPoint was created (File::create_end_point).

FileCount

This type represents a File octet count. It is used to represent File size and the number
of octets transferred.

FileOctetSeq

An octet sequence representing the binary contents of a File .

get_octet_seq

This operation returns the next unread sequence of File octets.

Parameters
• from_octet - return octets starting from the specified offset.

• max_octets - The maximum number of octets to return. If the value is zero, there
is no upper bound.

In normal operation get_octet_seq is called repeatedly until all File octets are
returned. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of from_octet is set to its previous value plus the length of
the returned sequence of File octets.

3-32 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

If get_octet_seq raises an exception that may be indicative of resource exhaustion
on either the client or server such as NO_MEMORY, the client can retry the failed read
by invoking get_octet_seq with the previous from_octet and a smaller
max_octets.

If get_octet_seq fails with a max_octets value of one, the get iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• UNSUPPORTED - If this TransferOctetIterator does not allow reads.

• NO_PERMISSION - If the client does not have the proper credentials to perform the
operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associated TransferEndPoint has been aborted.

put_octet_seq

This operation writes an octet sequence to a File.

Parameters

• octet_offset - write octets starting at the specified offset.

• octet_seq - The octet sequence to write.

In normal operation put_octet_seq is called repeatedly until all the File octets are
transferred. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of octet_offset is set to its previous value plus the length
of the previous octet_seq.

If put_octet_seq raises an exception indicative of resource exhaustion on either the
client or server such as NO_MEMORY, the client can retry the operation by invoking
put_octet_seq with the previous octet_offset and a smaller octet_seq.

If put_octet_seq fails with a octet_seq length of one, the put iteration cannot be
completed and the client must handle the error.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-33

3

• UNSUPPORTED - If the TransferOctetIterator does not allow writes.

• NO_PERMISSION - If the client does not have the proper credentials to perform the
operation.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

• TRANSFER_ABORT - An associated TransferEndPoint has been aborted.

destroy

After a client is finished with an OctetTransferIterator, destroy must be called to
complete the transfer and gracefully release any associated resources held by the
service implementation. Further calls to the iterator will raise an
OBJECT_NOT_EXIST.

Exceptions

A FileSystemError may be raised with following ErrorCode values:

• ENTRY_PATH_ERROR. If a file does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

• ENTRY_IO_ERROR - There was an error in opening, closing, reading, or writing
the file.

If destroy raises a FileSystemError, the OctetTransferIterator is still destroyed.

3.6 Object Lifecycle

All of the interfaces except for FileSystem have a destroy operation. After the
destroy method is invoked, any further operations on the object reference will raise
an OBJECT_NOT_EXIST.

A client should invoke destroy on an object after use is complete to allow a service
implementation to reclaim resources. An implementation is free to reap objects at any
time in order to reclaim resources.

Clients should expect that any operation on a CosFileTransfer object may raise an
OBJECT_NOT_EXIST as a server may reclaim an object, particularly if inactive, at
anytime.

3.7 Conformance Criteria

3.7.1 Interfaces

A service implementation must provide all of the interfaces defined in this
specification. An implementation is not required to support the following operations on
all Files or TransferEndPoints:

3-34 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

• File::append

• File::insert

• TransferEndPoint::abort

• TransferEndPoint::get_transfer_status

If an implementation does not support these operations on a given object it must raise
a FileSystemError exception with an ErrorCode value of UNSUPPORTED.

3.7.2 Transfer Protocols

A service implementation must support transfers using the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferIterator:1.0”. All other protocols are
optional.

CORBAservices: Common Object Services Specification 4-1

Example Scenarios 4

Note – This entire chapter has been deleted. It describes the old IDL interface.

4.1 Introduction

The purpose of this chapter is to clearly illustrate the interactions between an end user
and the components within the framework during a number of scenarios that are
typical of any file transfer mechanism. It is important to note that these scenarios
represent one of many possible implementations of the proposed framework. Each of
the scenarios presented are divided into three sections:

1. A general description of how the scenario is enabled by the CORBA interfaces
defined by the framework.

2. A code sample is provided in the Java™ programming language to further
demonstrate the application of the interfaces.

3. An interaction diagram describing component interactions during each scenario for
one possible implementation of the framework.

Figure 4-1 introduces each of the scenarios using a USE case approach illustrated in
the Unified Modeling Language (UML).

4-2 CORBAservices: Common Object Services Specification

4

Figure 4-1 Typical scenario the proposed framework must consider

4.2 User Login

4.2.1 Description

To login to a VirtualFileSystem, it is first necessary for the client to obtain a list of
available VirtualFileSystems. The CORBA Name Service may be used for this
purpose. VirtualFileSystems are registered with a particular Name Service.
VirtualFileSystem objects do not have to reside on the same host. A client first
connects to the Name Service and traverses it to find a particular NamingContext
that contains the entries for each available VirtualFileSystem. A list of those entries
is acquired, and after they have been resolved, the client may attempt to login.

Login details are passed to a selected VirtualFileSystem by invoking its login()
operation. A given VirtualFileSystem may represent one of a number of different
kinds of file transfer servers. These may include FTP servers, FTAM responders, or
variants of either. Each protocol requires different functionality from a
FileTransferSession.

Using the VirtualFileSystem properties (a typical implementation may use the
property indicating the preferred protocol driver1 of the VirtualFileSystem) a new
FileTransferSession is instantiated. Using the login details provided by the client,

User Login

Traverse File System

Delete a File

Transfer a File

OSS User

Naming Service: v1.1 Service Description Month Year 4-3

4

an attempt is made to login to the file transfer server. If the attempt is successful, a
reference to the appropriate instantiation of the FileTransferSession interface is
returned to the client. In the event of an unsuccessful login, the operation will throw an
appropriate exception.

4.2.2 Code Sample

The use of the CORBA Name Service allows multiple VirtualFileSystems from
different hosts to be registered and located using one network reference. A
configuration class may be used to instantiate an arbitrary number of
VirtualFileSystems and register them with a Name Service running on a particular
host.

References to VirtualFileSystems should be registered within a specific context in
the Name Service. Clients may inspect the entries in that context, and select a required
VirtualFileSystem to login to.

VirtualFileSystem my_VirtualFileSystem =
VirtualFileSystemHelper.narrow(

my_VFS_context.resolve(name_of_VFS));
FileTransferSession my_FTS =

my_VirtualFileSystem.login(user_name, pass_word,
account, my_DirectoryHolder);

Typically, login details are passed to a Factory object along with the class name of the
preferred FileTransferSession protocol driver implementation. The class name for
these protocol drivers could follow the general format described below to enable a
FileTransferSession instantiation to load protocol drivers from different vendors
based on the properties of the VirtualFileSystem.

<protocol>.<vendor> (e.g., ftam.Foobar)

If the preferred implementation is unavailable, a default one may be utilized.

try {
Class driverClass = Class.forName("ftam.default");

Driver fooDriver =
Driver(driverClass.newInstance());

FileTransferSession fooFTS =
new FileTransferSession(fooDriver);

} catch (Throwable t) {}

If the login is successful, a valid FileTransferSession reference will be returned to
the client. Otherwise one of the exceptions SessionException,
FileNotFoundException, or IllegalOperationException will be thrown to
indicate why the login request failed.

1. The sample implementations described within this section refer to a protocol driver imple-
mentation that a FileTransferSession instantiation will use to communicate with the
remote file serving mechanism. It is only one implementation approach to enable communi-
cation between a FileTransferSession and a remote server.

4-4 CORBAservices: Common Object Services Specification

4

4.2.3 Interaction Diagram for a successful login

Figure 4-2 Login Diagram

1. The login operation is called on an object implementing the VirtualFileSystem
interface, with login details as parameters.

2. The VirtualFileSystem object calls constructFTS() on an object implementing a
Factory interface. In addition to the login details, the class name of the preferred
protocol driver implementation that the FileTransferSession instantiation will
use to communicate with the remote server are used to create the new
FileTransferSession object. This new FileTransferSession object will then
load the appropriate driver class.

3. The FileTransferSession implementation then attempts to login using protocol
specific primitives and operations provided by an appropriate driver for the remote
server:

• A connection is first made to the file transfer server.

• A login is attempted.

4.3 Traversing the File System

4.3.1 Description

Once a client has logged into a VirtualFileSystem, a reference to a Directory
interface is returned as an out parameter from the login() operation provided by the
VirtualFileSystem interface. The Directory interface represents the “root” directory
of the VirtualFileSystem and is the starting point upon login for any client.

Naming Service: v1.1 Service Description Month Year 4-5

4

Since the Directory interface inherits from the File interface, Directory interfaces
may be referenced as File interfaces. To perform an operation on a file (for example,
transfer, delete) it is necessary to obtain an IOR for the File. The proposed framework
provides two different ways to obtain an IOR:

1. The client can obtain an IOR for a File directly by invoking the get_file()
operation if they have knowledge of the full pathname of the file in question. This
operation is independent of the working directory from where it is invoked.

2. Alternatively, a client can obtain File IORs through a discovery mechanism that
consists of a number of list(), set_directory(), list() iterations. A client may get
the references contained in the FileList sequence through the list() operation
provided by the Directory interface.

When the client has the references contained in the Directory interface’s FileList
sequence, they may be examined to determine whether any refer to a Directory object.
The FileList contains a number of FileWrapper structs, each of which contain a
reference to a File and an enumeration that identifies its type.

Having selected a particular Directory reference, it is then necessary for the client to
ensure that the contents of the Directory reference accurately mirrors the physical
directory it represents at the remote server. The set_directory() operation is provided
by the FileTransferSession interface to enable a client to perform this task. At this
stage it may be appropriate for the FileTransferSession to populate the FileList
sequence with FileWrapper references. Any further changes of directory can be made
in the same way.

The references to the File interfaces may then be used as parameters in the various file
related operations (for example, delete(), transfer (), append(), etc.).

4.3.2 Code Sample

The client obtains the initial Directory reference from the output parameter of the
VirtualFileSystem interface’s login() operation.

DirectoryHolder dh = new DirectoryHolder ();
try {

FileTransferSession my_fits =
my_VFS.login (user, pass, acct, dh);

} catch(Throwable t) {}
Directory root_dir = dh.value;

The references to the File interfaces contained within the Directory interface
implementation may be accessed through an out parameter of the Directory
interface’s list() operation. An integer is passed as an in parameter to specify how
many references to return initially. The FileIterator object is used to retrieve
subsequent references.

4-6 CORBAservices: Common Object Services Specification

4

FileListHolder flh = new FileListHolder ();
FileIteratorHolder fi = new FileIteratorHolder ();
int how_many = 20;
root_dir.list (how_many, flh, fi);
FileWrapper [] my_list = flh.value;
Vector directory_list = new Vector ();
Directory test_dir;
for (int i = 0; i< my_list.length; i++) {

if(my_list[i].file_type == FileType.directory)
directory_list.addElement (

DirectoryHelper.narrow(my_list[i]);
}

Having obtained a reference to a particular Directory, it is then necessary to update its
contents. The operation set_directory() in the FileTransferSession interface
provides this functionality and can be invoked in the following manner:

Directory new_dir = (Directory)directory_list.elementAt (0);
my_fts.set_directory(new_dir);

Typically the File references returned from the list() operation can be used as
parameters in various file related operations provided by the FileTransferSession
interface.

File my_file = my_list[0].the_file;
File another_file = my_list[1].the file;
my_fts.append(my_file, another_file);
my_fts.delete(my_file);

It is also possible for a client to obtain a reference to a specific File via the get_file()
operation provided by the FileTransferSession interface if the location of the file is
known.

String[] fullPathName = new String [3];
fullPathName[0] = new String(“my”);
fullPathName[1] = new String(“path”);
fullPathName[2] = new String (“any.txt”);
FileWrapper file_reference =

my_fts.get_file(fullPathName);
File reference = file_reference.the_file;

Naming Service: v1.1 Service Description Month Year 4-7

4

4.3.3 Interaction Diagram for successfully traversing the file system

Figure 4-3 Traversing the File System Diagram

This interaction diagram illustrates the communication between the various framework
components when a client wishes to traverse the file system’s hierarchy.

1. The login() operation is called on an object implementing the VirtualFileSystem
interface, with login details as parameters. An object reference of type
FileTransferSession is returned, or an appropriate exception is thrown. A
reference to the root directory is also returned through an out parameter.

2. The reference to the root directory can be used by the client to invoke the list()
operation provided by the Directory interface to obtain a list of File references, in
the form of a sequence of FileWrappers, associated with that directory.

3. The client iterates through the list of FileWrapper references returned by 2) to
identify Directory interfaces.

4. The client can choose the new working Directory reference from the list of
available Directory interfaces. The set_directory() operation is used to update or
populate the Directory reference ensuring that its contents accurately mirror that of
the physical directory at the remote server.

4-8 CORBAservices: Common Object Services Specification

4

4.4 Deleting a Remote File

4.4.1 Description

The deletion of a remote file would seem to be a straightforward matter. A user must
first have the appropriate permissions to complete such a command. An inspection of
the access rights within the File object determines that. Alternatively, the file transfer
server itself can decide whether a user could complete such an action. In either case a
client will send the appropriate primitive or set of primitives to the file transfer server.

However, although this would delete the actual file stored on the server, it is also
necessary for the appropriate File and Directory objects to be updated. Each File
object contains a reference to the parent Directory object. This may be used to call the
list() operation that will return the sequence of FileWrapper objects. The appropriate
File is removed from the sequence, and the updated version passed back to the
Directory object. The File object is then discarded.

Although the Directory object would be up to date, a mechanism has to be employed
to let any clients know that a change has taken place, and that the list() operation
should be invoked once more. The Event Service could be used to achieve this.

4.4.2 Code Sample

Once a file has been selected for deletion, the client invokes the operation:

try {
my_FileTransferSession.delete(file_for_deletion);
} catch (SessionException e) {
} catch (FileNotfoundException e) {
} catch (RequestFailureException Exception e) {
} catch (IllegalOperationException e) {
}

where file_for_deletion is the reference to the File object representing that file. From
the File object, the FileTransferSession determines the absolute path name of the
file, and then sends the appropriate primitive to the file transfer server. Assuming that
the client has the appropriate permissions and the operation is a success, it is necessary
to update the parent Directory object. This may be done by resetting the sequence of
File objects contained within the Directory interface.

At this point, the Directory object is aware of the change, but any client with a
reference to that object is not. A number of approaches may be used to address this.
The simplest is to ignore it, and only update when the user calls an action on the
object. Alternatively, the CORBA Event Service could be used to signify to all clients
that the object has been changed, or the client could implement an interface that allows
callbacks.

Naming Service: v1.1 Service Description Month Year 4-9

4

4.4.3 Interaction Diagram for successfully deleting a remote file

Figure 4-4 Deleting a Remote File Diagram

1. The delete() operation is called by the client on a FileTransferSession object.
The File object representing the file to be deleted is passed as a parameter.

2. The appropriate primitive or set of primitives is sent to the file transfer server, with
the absolute pathname of the file to be deleted, and the physical file at the remote
server is removed.

3. The Directory object’s sequence of File references is then updated.

4.5 Transferring a File

4.5.1 Description

To transfer a file between a source and destination VirtualFileSystem a client must
be logged into both VirtualFileSystems in order to obtain references to a source and
destination FileTransferSession. A client will invoke the transfer() operation on a
source FileTransferSession, which is determined by the fact that it is the
FileTransferSession that contains a reference to the physical file to be transferred to
a target location. The client will pass two File references as part of the transfer()
invocation: a reference to the source File and a reference to the destination File at the
target FileTransferSession2. During the transfer of data, it is always the source
FileTransferSession that assumes control of the transfer.

4-10 CORBAservices: Common Object Services Specification

4

By examining the attributes of the source File reference passed by the client to its
transfer() operation, a FileTransferSession can determine whether it is to initiate
the transfer of a file or to receive a file. A source FileTransferSession will then
establish a connection with the target FileTransferSession using the value of its own
protocols_supported attribute and that of the target FileTransferSession.

The source FileTransferSession will initiate data transfer by invoking the
transfer() operation on the target FileTransferSession and sending an appropriate
retrieval primitive to its associated file transfer server using its preferred protocol
driver. When the destination FileTransferSession’s transfer() operation is invoked,
it can determine that it will be receiving data by examining the properties of the source
File parameter, and will send an appropriate storage primitive to its file transfer server
using its preferred protocol driver.

4.5.2 Code Sample

To transfer files between two FileTransferSession objects, a connection must be
established between the two. Establishing this connection and initiating the transfer of
data across this connection is of no concern to the client but is related to the
protocols_supported attribute exposed as part of the FileTransferSession
interface. A client will invoke the transfer() operation with references to the source
File to be transferred and the destination File at the target FileTransferSession.
However, an implementation of the FileTransferSession interface will use the
values of its own, and the destination FileTransferSession’s,
protocols_supported attribute to establish a connection when attempting to transfer
the source file to its destination.

Since the protocols_supported attribute is a sequence of ProtocolSupport structs,

struct ProtocolSupport { string protocol_name;
ProtocolAddressList addresses; };

each struct will contain the name of the protocol supported by the
FileTransferSession and a sequence of addresses and ports (for example, TCP/IP,
255.255.255.1:8001) where a connection from a peer FileTransferSession can be
established using sockets. An implementation should ensure that the protocol
supported by the source and destination FileTransferSessions are the same before
attempting to create a socket connection. The code sample that follows illustrates how
this connection may be established.

2. A new File reference must be created by the client by invoking the create_file() operation
on the target FileTransferSession, prior to calling the transfer() operation.

Naming Service: v1.1 Service Description Month Year 4-11

4

String my_protocol = “TCP/IP”;
ProtocolSupport[]prot =

secondaryFTS.protocols_supported();
int index = -1;
for (int k=0; (k<prot.length&&index == -1); k++)

if (prot[k].protocol_name.compareTo(my_protocol)==0)
index = k;

if (index == -1)
throw new TransferException (“Unsupported Protocols”);

String[] addresses = prot[index].addresses;
boolean connected = false;
for (int k = 0; (k<addresses.length&&!connected); k++ {

String address = addresses[k];
try {

StringTokenizer toke =
new StringTokenizer (address, “:”);

host = toke.nextToken();
port = Integer.parseint(toke.nextToken());
transfer_socket = new Socket (host, port);
connected = true;

} catch (Exception e) { }
}

Once the source FileTransferSession has established a socket connection with the
target it will invoke the target FileTransferSession’s transfer() operation. The code
sample below illustrates that this may be implemented asynchronously to enable the
source FileTransferSession to continue initializing its side of the file transfer.

Thread peer_thread = new Thread {
public void run () {

try {
secondaryFTS.transfer(src_file, dest_file);

} catch(SessionException e) {
} catch(TransferException e) {
} catch(FileNotFoundException e) {
} catch(RequestFailureException e) {
} catch(IllegalOperationException e) {
}

}
}
peer_thread.start();

The source FileTransferSession will then establish a buffered queue that will write
data to the socket connection with the target FileTransferSession. It will then send
an appropriate retrieval primitive or set of primitives to its associated remote file
server by invoking the appropriate operation on its preferred protocol driver.

At the same time, the target FileTransferSession has determined from the properties
of the source and destination File parameters, that it will be receiving data during the
transfer. It establishes a buffered queue that will read data from the socket connection

4-12 CORBAservices: Common Object Services Specification

4

with the source FileTransferSession. It also sends an appropriate storage primitive
or set of primitives to its associated remote file server by invoking an appropriate
operation on its preferred protocol driver.

4.5.3 Interaction Diagram for successfully transferring a file

Figure 4-5 Transferring a File between two FileTransferSession Objects Diagram

1. The client invokes the transfer() operation of the source FileTransferSession
(the FileTransferSession that has a reference to the file to be transferred).

2. The source FileTransferSession has determined, from the properties associated
with the src_file, that it is to be the source for the transfer and will control the
internal operations concerning a file transfer. It then creates a data connection with
the target FileTransferSession using the associated_session property
associated with the src_file and dest_file references.

3. The source FileTransferSession then invokes the transfer() operation on the
target FileTransferSession.

4. The data connection between the two FileTransferSessions is used to transfer
data:

Naming Service: v1.1 Service Description Month Year 4-13

4

• The source FileTransferSession will invoke a streamWrite() method on its
associated ConnectionManager object, that will create an output stream for
writing data to the data connection. It will also invoke a retrieve() method on its
preferred protocol driver that will attempt to retrieve the requested file from the
remote file transfer server.

• The destination FileTransferSession will invoke a streamRead() method on
its associated ConnectionManager object, that will create an input stream for
reading data from the data connection. It will also invoke a store() method on its
preferred protocol driver that will request the remote file transfer server to store
the file it will be sending.

If each of these steps occur successfully, the source file’s data should be transferred
from the source FileTransferSession’s remote server, onto the connection with the
destination FileTransferSession and onwards to the destination
FileTransferSession’s remote file server.

4-14 CORBAservices: Common Object Services Specification

4

CORBAservices: Common Object Services Specification 5-1

References 5

Note – This appendix was removed, the references are listed in footnotes where used
in the new document.

0.1 List of References

[1]IETF RFC 959 “File Transfer Protocol (FTP)”, J. Postel, J. Reynolds.
October 1985.

[2]IETF RFC 1415 “FTP-FTAM Gateway Specification”, J. Mindel, R. Slaski.
January 1993.

[UML]M. Fowler, S. Kendall, “UML Distilled – Applying the Standard Object
Modeling Language”, ISBN 0-201-32563-2.

5-2 CORBAservices: Common Object Services Specification

5

CORBA-FTAM/FTP Interworking Specification Version 1.0 4-1

Complete OMG IDL 4

//File: CosFileTransfer.idl
#ifndef _COS_FILE_TRANSFER_IDL_
#define _COS_FILE_TRANSFER_IDL_

#include <CosPropertyService.idl>

#pragma prefix "omg.org"

module CosFileTransfer {
typedef string Istring;
typedef Istring ProtocolAddress;
typedef long ContentType;
const ContentType FTAM_1 = 1;
const ContentType FTAM_2 = 2;
const ContentType FTAM_3 = 3;
const ContentType FTAM_4 = 4;
const ContentType FTAM_5 = 5;
const ContentType NBS_9 = 6;
const ContentType INTAP_1 = 7;

exception CommandNotImplementedException {
Istring reason;
};

exception SessionException {
Istring reason;
};

exception TransferException {
Istring reason;
};

exception FileNotFoundException {

4-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

Istring reason;
};

exception RequestFailureException {
Istring reason;
};

exception IllegalOperationException {
Istring reason;
};

interface VirtualFileSystem;

struct AccessLevel {
boolean read;
boolean insert;
boolean replace;
boolean extend;
boolean erase;
boolean read_attr;
boolean change_attr;
boolean delete;
};

typedef sequence<ProtocolAddress> ProtocolAddressList;

struct ProtocolSupport {
Istring protocol_name;
ProtocolAddressList addresses;
};

typedef sequence<ProtocolSupport> SupportedProtocolAddresses;

interface Directory;

interface FileTransferSession;

typedef Istring FileName;

typedef sequence<FileName> FileNameList;

interface File:CosPropertyService::PropertySetDef {
readonly attribute FileName name;
readonly attribute FileNameList
complete_file_name;
readonly attribute Directory parent;
readonly attribute FileTransferSession
associated_session;
};

Naming Service: v1.1 Service Description Month Year 4-3

4

enum FileType {nfile, ndirectory};

struct FileWrapper {
File the_file;
FileType file_type;
};

typedef sequence<FileWrapper> FileList;

interface FileIterator;

interface Directory : File {
void list(in unsigned long how_many,
out FileList fl,
out FileIterator fi);
};

interface FileIterator {
boolean next_one(out FileWrapper f);
boolean next_n(in unsigned long how_many,
 out FileList fl);
void destroy();
};

interface FileTransferSession {
readonly attribute SupportedProtocolAddresses protocols_supported;
void set_directory(in Directory new_directory)
raises(SessionException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
File create_file(in FileNameList name)
raises(SessionException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
Directory create_directory(in FileNameList name)
raises(SessionException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
FileWrapper get_file (in FileNameList complete_file_name)
raises(SessionException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
void delete(in File file)
raises(SessionException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);

4-4 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

void transfer(in File src, in File dest)
raises(SessionException,
 TransferException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
void append(in File src, in File dest)
raises(CommandNotImplementedException,
 SessionException,
 TransferException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
void insert(in File src, in File dest,
 in long offset)
raises(CommandNotImplementedException,
 SessionException,
 TransferException,
 FileNotFoundException,
 RequestFailureException,
 IllegalOperationException);
void logout();
};

interface VirtualFileSystem {
enum NativeFileSystemType {
FTAM,
FTP,
NATIVE
};
readonly attribute NativeFileSystemType file_system_type;
typedef sequence<ContentType> ContentList;
readonly attribute ContentList supported_content_types;

FileTransferSession
login(in Istring username, in Istring password,
 in Istring account, out Directory root)
raises(SessionException,
 FileNotFoundException,
 IllegalOperationException);
};
};

#endif //_COS_FILE_TRANSFER_IDL_

Naming Service: v1.1 Service Description Month Year 4-5

4

//File: CosFileTransferFTF.idl

#ifndef _COS_FILE_TRANSFER_IDL_
#define _COS_FILE_TRANSFER_IDL_
#include <CosProperty.idl>

#pragma prefix “omg.org”

module CosFileTransfer {

 // FileEntry types

 interface Directory;
 interface File;

 // FileSystem login session

 interface FileSession;

 // Filesystem entries, Files and Directories,
 // have multi-component path names

 typedef wstring EntryName;
 typedef sequence<EntryName> EntryPath;

 // File size, offset, octet count, and contents

 typedef unsigned long long FileLength;
 typedef unsigned long long FileOffset;
 typedef unsigned long long FileCount;
 typedef sequence<octet> FileOctetSeq;

 typedef short FilePos;
 const FilePos BEGIN = 0; // FileOffset is relative to beginning of File
 const FilePos END = 1; // FileOffset is relative to end of File

 // Directory listing size and list offset

 typedef unsigned long long DirEntryCount;
 typedef unsigned long long DirEntryOffset;

 // Directory listing Types

 typedef short DirEntryType;
 const DirEntryType FILE_ENTRY = 0;
 const DirEntryType DIR_ENTRY = 1;

 struct DirEntry {

4-6 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

 EntryName name;
 DirEntryType type;
 CosPropertyService::Properties props;
 };

 typedef sequence<DirEntry> DirEntrySeq;

 interface DirEntryIterator;

 // TransferEndPoint Types

 interface TransferEndPoint;
 typedef wstring TransferProtocol;
 typedef sequence<TransferProtocol> TransferProtocolSeq;

 typedef short TransferEndPointRole;

 const TransferEndPointRole SOURCE = 0;
 const TransferEndPointRole SINK = 1;
 const TransferEndPointRole SINK_INSERT = 2;

 // transfer protocol specific information

 typedef wstring TransferDetail;

 typedef short TransferState;
 const TransferState CREATE = 0; // the end point has been created (initial
state)
 const TransferState LISTEN = 1; // the end point is awaiting active
connection
 const TransferState CONNECT = 2; // the end point is connected to its
peer
 const TransferState ACTIVE = 3; // the transfer is in progress
 const TransferState COMPLETE = 4; // transfer has completed succesfully
 const TransferState ABORT = 5; // transfer has been aborted

 struct TransferStatus {
 TransferState state; // current transfer state
 FileCount current_count; // current transfer count
 FileCount max_count; // expected transfer size bytes/chars
 };

 // Exceptions

 typedef short ErrorCode;
 const ErrorCode UNSPECIFIED = 0; // Error category not defined
 const ErrorCode UNAVAILABLE = 1; // The service is not available at
this time
 const ErrorCode UNSUPPORTED = 2; // operation not supported,

Naming Service: v1.1 Service Description Month Year 4-7

4

illegal parameter value
 const ErrorCode NO_PERMISSION = 3; // No permission to perform the
operation

 const ErrorCode ENTRY_EXISTS = 4; // Entry should not already exist
for operation
 const ErrorCode ENTRY_PATH_ERROR = 5; // Entry path component
missing or invalid
 const ErrorCode ENTRY_IO_ERROR = 6; // error opening, reading,
writing, closing file
 const ErrorCode DIR_NOT_EMPTY = 7; // (rmdir required empty
directory)

 const ErrorCode TRANSFER_IO_ERROR = 8; // error opening,
transferring, or closing connections
 const ErrorCode TRANSFER_ABORT = 9;

 exception FileSystemError {
 ErrorCode error;
 wstring desc;
 };

 // Error transferring between two files

 exception TransferError {
 TransferEndPointRole error_endpoint;
 ErrorCode error;
 wstring desc;
 };

 // FileSystem provided by service

 interface FileSystem {

 FileSession login(in wstring user,
 in wstring password,
 in CosPropertyService::Properties login_properties,
 out Directory initial_dir)
 raises(FileSystemError);

 wstring get_system_id();
 };

 // FileSession client obtains by logging in to FileSystem

 interface FileSession {
 void destroy();
 };

 // Common File system entry methods

4-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

 interface FileSystemEntry: CosPropertyService::PropertySet {

 EntryName get_name()
 raises (FileSystemError);

 EntryPath get_path()
 raises (FileSystemError);

 boolean exists()
 raises (FileSystemError);

 void remove()
 raises (FileSystemError);

 Directory get_parent()
 raises (FileSystemError);

 FileSession get_session()
 raises (FileSystemError);

 void destroy();
 };

 interface File;

 // Directory manipulation and listing

 interface Directory: FileSystemEntry {

 DirEntryIterator list(in CosPropertyService::PropertyNames listProps)
 raises (FileSystemError);

 Directory create_directory(in EntryPath fpath)
 raises(FileSystemError);

 File get_file(in EntryPath fpath, in boolean create)
 raises(FileSystemError);

 Directory get_directory(in EntryPath fpath)
 raises(FileSystemError);

 void remove_entry(in EntryPath fpath)
 raises(FileSystemError);
 };

 // Iterator to retrieve results of Directory list

 interface DirEntryIterator {
 DirEntrySeq next(in DirEntryOffset from_dir_entry,
 in DirEntryCount max_dir_entries)

Naming Service: v1.1 Service Description Month Year 4-9

4

 raises (FileSystemError);
 void destroy();
 };

 // File manipulation and basic transfer

 interface File: FileSystemEntry {

 void copy(in File dest)
 raises(TransferError);

 void append(in File dest)
 raises(TransferError);

 void insert(in File dest, in FileOffset offset)
 raises(TransferError);

 TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
 in FilePos seek,
 in FileOffset offset,
 in TransferProtocol ep_protocol)
 raises (FileSystemError);

 TransferProtocolSeq get_end_point_protocols();
 };

 // File transfer

 interface TransferEndPoint
 {
 TransferDetail go_to_listen()
 raises(FileSystemError);

 TransferDetail connect_to_peer(in TransferDetail passive_detail)
 raises(FileSystemError);

 void set_peer(in TransferDetail active_detail)
 raises(FileSystemError);

 TransferStatus get_transfer_status()
 raises (FileSystemError);

 void transfer()
 raises (FileSystemError);

 void abort()
 raises (FileSystemError);

 void destroy();

4-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

4

 };

 // File transfer using an iterator

 interface OctetTransferIterator {

 FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount
max_octets)
 raises (FileSystemError);

 void put_octet_seq(in FileOffset to_octet, in FileOctetSeq octetSeq)
 raises(FileSystemError);

 void destroy()
 raises(FileSystemError);

 };
};
#endif //_COS_FILE_TRANSFER_IDL_

CORBAservices: Common Object Services Specification 7-1

Compliance Issues 7

Note – This appendix has been removed. Specific compliance points such as optional
operation and transfer protocol support are described fully in Section 3.2 Conformance
Criteria in the current specification. Details on support of property values is described
in detail in Chapter 3.

In order to comply with this specification, all of the interfaces described must be
supported and implemented. The specification defines a set of standard file properties
associated with implementations of the File interface, that must at least be understood
(but not necessarily implemented) by all conformant implementations.

7-2 CORBAservices: Common Object Services Specification

7

CORBAservices: Common Object Services Specification -1

Glossary

Note – This glossary has been removed from the specification

Glossary of Terms

File Transfer Client: Any reference within this response to a File Transfer Client
should be read as FTP client or FTAM Initiator.

File Transfer Server: Any reference within this response to a File Transfer Server
should be read as FTP server or FTAM responder.

Network Element: Any piece of software or hardware in the network that can be
independently addressed.

-2 CORBAservices: Common Object Services Specification

