CORBA - FTAM/FTPInterworking
Specification

dtc/2001-08-06
Annotated revisionsfrom telcom/00-11-05

Copyright 1999-2001, Ericsson, Siemens AG, Broadcom EireAnn Research, Distributed Systems
Technology Centre (DSTC), Floorboard Software, IONA, Lucent, PrismTech, University of California,
[rvine.

Note —Company list updated

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which alicense may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this
document details an Object Management Group specification in accordance with the license and notices
set forth on this page. This document does not represent a commitment to implement any portion of this
specification in any company’s products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BE ACCURATE, THE
OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICULAR
PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or
cover damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The
copyright holders listed above acknowledge that the Object Management Group (acting itself or through
itsdesignees) isand shall at all times be the sole entity that may authorize devel opers, suppliersand sellers
of computer software to use certification marks, trademarks or other specia designations to indicate
compliance with these materials. Thisdocument contains information which is protected by copyright. All

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form
or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software
Clause at DFARS 252.227.7013 OMG®and Object Management are registered trademarks of the Object
Management Group, Inc. Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities,
CORBAservices, and COSS are trademarks of the Object Management Group, Inc. X/Openisatrademark
of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readersto report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the issue reporting form at http: //www.omg.or g/library/issuer pt.nhtm.

CORBA-FTAM/FTP Interworking Specification, FTF Final Report Draft -3

CORBA-FTAM/FTP Interworking Specification Version 1.0

Note —This is the table of contents from the original specification. The new table of
contents follows

Preface 1
About the Object Management Group 1
What is CORBA? 1
Associated OMG Documents 2
Acknowledgments 3

1. FileTransfer in Telecoms Systems 1
11 File Transfer 1

2. Architectural Overview 1

3. Principal Components 1
3.1 Virtual File System 1
3.2 File Transfer Session 2
3.3 File 6
34 Directory 7

4. Example Scenarios 1
4.1 Introduction 1

4.2 User Login 2
42.1 Description 2
42.2 Code Sample 3
4.2.3 Interaction Diagram for a successful login 4
4.3 Traversing the File System 4
4.3.1 Description 4
4.3.2 Code Sample5
4.3.3 Interaction Diagram for successfully traversing the
file system 7
4.4 Deleting a Remote File 8
4.4.1 Description 8
4.4.2 Code Sample 8
4.4.3 Interaction Diagram for successfully deleting a
remotefile 9
45 Transferring aFile 9
451 Description 9
452 Code Sample 10

45.3 Interaction Diagram for successfully transferring a
file 12

Naming Service: v1.1 Service Description Month Year

Appendix A References1
A.l List of References 1

Appendix B Complete OMG IDL 1
Appendix C Compliancelssues 1

Glossary 1
Glossary of Terms 1

CORBAservices. Common Object Services Specification

Note —This is the new table of contents

Preface 1

About the Object Management Group 1
What is CORBA? 1

Associated OMG Documents 2
Acknowledgments 3

1. ServiceDescription 1

11 File Transfer in Telecoms Systems 1
1.1.1 FileTransfer Capable Network Elements 2

2. ServiceArchitecturel

2.1 Overview 1
2.1.1 File System Servers 1
2.1.2 Principa Components 2
2.1.3 Filesand Directories 2
2.1.4 FileTransfer 3

2.2 File Transfer Protocols 8
2.2.1 Protocol Syntax 8
2.2.2 Transfer Connection Establishment 9
2.2.3 CORBA Transfer Protocol 9
2.2.4 FTP Transfer Protocol 10
2.25 FTAM Transfer Protocol 10

3. Servicelnterfaces1

3.1 CosFileTransfer Module 1
3.1.1 Exceptions1
3.1.2 FileSystem Interface 3
3.1.3 FileSession Interface 5
3.1.4 FileSystemEntry Interface 5
3.1.5 Directory Interface 9
3.1.6 DirEntrylterator Interface 12
3.1.7 Filelnterface 15
3.1.8 TransferEndPoint Interface 18
3.1.9 OctetTransferlterator Interface 23

3.2 Object Lifecycle 26

3.3 Conformance Criteria 26
3.3.1 Interfaces 26
3.3.2 Transfer Protocols 27

CORBA-FTAM/FTP Interworking Specification Version 1.0

Appendix A Complete OMG IDL 1

CORBA-FTAM/FTP Interworking Specification Version 1.0

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization’s charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group’s answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

CORBA-FTAM/FTP Interworking Specification Version 1.0 -1

Associated OMG Documents

The CORBA documentation set includes the following:

Object Management Architecture Guide defines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

CORBAservices. Common Object Services Specification contains specifications for
OMG’s Object Services.

CORBAfacilities: Common Facilities Specification includes OMG’s Common
Facility specifications.

CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA Med: Comprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Acknowledgments

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted parts of this specification:
 Ericsson
s Stemens

CORBA-FTAM/FTP Interworking Specification Version 1.0

CORBA-FTAM/FTP Interworking Specification Version 1.0

1.1 FileFransfer

Retrieving data from a remote Network Element (NE) and maintaining the software
that runs on that node is relatively straightforward but performing the same operations
on potentially thousands of Network Elements presents the telecommunication
operator with a significant challenge. These tasks are currently performed using either
the 1SO specified File Transfer, Access and Maintenance (FTAM) protocol or the File
Transfer Protocol (FTP). Currently Operations Support Systems (OSS) employ either
FTAM or FTP to perform both data retrieval and software maintenance tasks.

This specification describes a single set of IDL interfaces that will allow any OSS to
perform its file management operations on underlying Network Elements regardless of
the type of file management mechanism the underlying node is using. There are a
number of reasons that identify the need for such interfaces:

® (OSSs may be implemented in a large number of programming languages and
deployed in a platform-independent manner. In addition to using existing OSS
systems, telecommunication operators may also employ an alternative, lightweight
OSS client that has all of the features of the legacy systems but performs the
management of Network Elements through the IDL interfaces.

* The complexity of performing data retrieval and file maintenance operations is
hidden from the OSS user by a single set of IDL interfaces. No knowledge of -FTP,
FTAM, or other file access mechanisms is necessary for them to perform their job.

CORBA-FTAM/FTP Interworking Specification Version 1.0 1-1

® The task of extending the set of data retrieval and file maintenance operations is
made easier. New management or retrieval operations to meet changing
reguirements may be exposed to the OSS through a new IDL interface. Existing
OSSs may continue to use the original IDL interfaces without interruption.

® Thetask of migrating a large installed base of OSSs to use a new file management
mechanism will be less complex and take considerably less time to perform since
the same set of IDL interfaces is being used.

There are a number of system configurations that are possible through the deployment
of the proposed interfaces. One such configuration is illustrated in Figure 1-1.

Traditional 088 Access Proposed OS5 Access
Thin Client
P
e FTM i |nop
"' .ITL-I'.P . [.-IL .
h e L
'* | 1A = Intemet

-

.. 'y i W'J i I.'__'L. 3 H:— -.I.-_ ;

1 - o
%, -~ -

N i
. e
._h ;]
—— e

FIF NE FTAM NE

Figure1-1 High-level system overview

Traditionally different file transfer clients were required for each type of fileserver
within the telecoms OSS. By exposing basic file transfer functionality through a set of
IDL interfacesit is possible to develop less complex file transfer clients that are
independent of the underlying file transfer protocols. The use of CORBA allows
remote management of systems over corporate intranets.

CORBA-FTAM/FTP Interworking Specification Version 1.0

1.1.1 File Transfer Capable Network Elements

The primary focus of this specification is defining a file transfer IDL that provides
uniform access to FTAM and FTP NEs. However, the scope and utility of the file
transfer IDL is not limited to use seltey-with only FTAM and FTP. Any NE ean-may
support the file transfer IDL te-transter-nfermationfor data transfer. Clients usihg-the-
fHetranstertbDL-wit-often transfer afiefiles to alocal file system, which itself can be
represented by the IDL. Non-file based information can aso be transferred. For
example, a NE may support access to operational and performance data through
“virtual” filesfiles and directorigsaccessible by the file transfer IDeven-though-the
. TheNE itself may notactuallystore this data im-physicalfilefiles and directories

CORBA-FTAM/FTP Interworking Specification Version 1.0 1-3

CORBA-FTAM/FTP Interworking Specification Version 1.0

2.1 Overview

Architectural- Overview=crvice

Architecture 2

This specificationpropeses-service defines a set of interfaces that #aplement-model a
distributed-simplified virtual fllewansﬁekaee&esﬂand—mamtenanee#ameweitk—ﬁhe

varleus-thtertaees-eoi-this-framewerlinghde:

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-1

Legend :

Ag»- B Acontans B

A —[:> E A inherts from B
A —— B A4 associated with B

-

CosProperty Service: :Property SetDef

Fil eTransferSession

o>

VirtualFileSystem A VirtualFileSystem B
T T

FileTransferSession

<>

FTP Server FTAM Responder

A client obtains

access to afile system by logging in and accessing an initial directory.

A directory provides access to the file system entries that it contains. A file system

entry is a data fi

le or adirectory.

A client may perform basic maintenance tasks on file system entries. A client may also

log on to multiple file systems to transfer files between them. The types of operations

aclient may perform include:

2-2 CORBA-FTAM/FTP Interworking Specification Version 1.0

Copy. insert, or append the contents a file to another file

List the entries in a directory.

Create a new directory.

Remove an existing directory or file.

Query afile or directory for properties such as creation time or size.

An implementation may restrict a client’s access to any particular file, directory,
property, or operation based on the credentials the client used to login to the file
system.

2.1.1 File System Servers

The files and directories a client accesses through the service interfaces are virtual
proxies for entities internal to the service. The specification places no restrictions on
the internal structure or form of these entities.

The service interface is capable of providing virtual file systems for:

® FTP servers

FTAM responders

Local file systems

NESs presenting arbitrary data as virtual files and directories through the service
interfaces.

No details specific to FTAM, FTP, or a specific NE are exposed in the IDL. A clientis
unaware of the underlying service implementation and may transfer files between
services through a CORBA interface or another negotiated transfer protocol such as
FTP

2.1.2 Principal Components

The CosFileTransfer module defines the following primary interfaces:

® FileSystem - The virtual file system the service represents.

FileSession - The login session a client is granted to access the file system.

FileSystemEntry - A base interface providing common operations for files and
directories.

® Directory - A virtual directory that a client can list the entries in.

DirEntrylterator - An iterator to access a list of file system entry properties.

File - A virtual file that can be copied, inserted, or appended to another file.

The following two interfaces provide more advanced transfer control and direct access
to a file's content:

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-3

2-4

TransferEndPoint - An object that represents one end of a file’s transfer connection.
It is used for a single transfer.

OctetTransferlterator - An iterator to read and write file contents.

The above two interfaces are used internally by a service implementation to provide
the basic file transfer operations.

2.1.3 Files and Directories

Names

FileSystem entries have a simple single component name, EntryName, that is
unigue to their immediate parent Directory and a multi-component EntryPath that is
relative to any ancestor Directory.

Basic Maintenance Operations

The basic operations such as get_path, remove, exists, create_directory, are
described starting in Section 3.1 .

Directory Lists
The following pseudo-code illustrates logging in to a FileSystem and listing the
names of the entries.:

CORBA-FTAM/FTP Interworking Specification Version 1.0

session = fil eSys. | ogi n(user, password, |props, hone dir);

/[relative dir path: “sub1/sub2/dir3”
String [] dirPath ={

“subl”, “sub2”, “dir3”
L

subDir = home dir.get directory(dirPath);

/l desired properties: file name and size
String[] dirProps = {

", “size”
L

“name”,
entryltor = subDir.list(dirProps);

/[Iterate through entries, printing returned properties
offset = 0;
if (entryltor = null){
dof
entries = entryltor.next(0,0);
for(e=0; e<entries.length(); ++e){
printNameAndSize(entries[e]);

offset += entries.length();

_r
while(entries.length()!=0);
L

session.destroy();

2.1.4 File Transfer

The service transfers files between file systems. The protocol used for the transfer is
negotiated when the transfer is initiated. The supported protocols are:

® CORBA - “IDL:omg.org/CosFileTransfer/OctetTransferlterator:1.0” - mandatory

FTP_- optional
FTAM- optional
Additional CORBA interfaces - optional

Clients are coded identically regardless of the transfer protocol used.
OctetTransferlterator support is mandatory to guarantee that any two service
implementations will be able to transfer files if no other common transfer protocol is
available. A service may offer additional CORBA transfer interfaces besides this.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-5

Binary File Transfer

All file transfers are binary. This service has no concept of character code-sets and
does not make a distinction between text and binary files as defined by ftp and ftam.

High Level File Transfer Operations

Basic file transfer operations for transferring data from one file system to another are

available on the File interface. The pseudo-code below illustrates logging on to two
file systems and performing the high level transfer operations: copy. append, and
insert. The full IDL descriptions are in Section 3.1, “CosFileTransfer Module”.

fronSess fsFrom | ogi n(userl, passwordl, |propsl, dirFronm;

t oSess fsTo. | ogi n(user2, password2, |props2, dirTo);

String[] fromNane = {
[/l filename is: “from dir name/from file name”

“from dir name”, “from file name”

b

String [] toName = {
/l filename is: “to dir one/to dir two/to file name”

“to_dir one”, “to dir two”, “to file name”

b

fromFile = dirFrom.get file(fromName, true); // must exist
toFile =dirTo.get file(toName, false); // need not

fromFile.copy(toFile);
fromFile.append(toFile);
fromFile.insert(toFile, 1024);

fromSess.destroy();
toSess.destroy();

When the client is finished, the file sessions are destroyed to release all server
resources. Support for the append and insert operations is optional.

File Transfer Implementation

Additional transfer primitives are required for services to implement the high level
transfer operations described above. Clients may also use these primitives to directly
control more advanced transfer operations.

To implement afile transfer, the File interface has a few additional methods. The

interface TransferEndPoint is defined to represent a file’s connection endpoint for

the duration of a single file transfer.

A transfer between tweéiles is carried out in the following steps.

CORBA-FTAM/FTP Interworking Specification Version 1.0

1. Negotiate the protocol to be used for the file transfer:
« Determine a common transfer protocol: ft p, ft am or a cor ba interface.

¢ Determine which end point of the transfer connection will wait for connection,
the passive end point, and which end will actively connect, the active endpoint.

2. Create the appropriate TransferEndPoint objects for each File.

w

The passive endpoint is put in a listening state, awaiting connection.

B

The active endpoint makes the connection.

o

The passive endpoint is notified the active connection has been made.

6. The transfer operation is called on the source endpoint.

These steps are described in more detail in the next sections.

Protocol Negotiation
The method File::get_transfer_protocols returns a preference ordered list of the
transfer protocols supported by the File. Some example return lists are:

“I DL: ong. or g/ CosFi |l eTransfer/COctet Transferlterator:1.0”

“ftp”
This list says that thEile can be transferred using either the specified corba interface
or af t p_data connection in eitherct i ve_or passi ve_mode. Support for the
CosFileTransfer::OctetTransferlterator interface is mandatory. In this case it is
listed to indicate that it is preferred ovierp.

“ftp;active”
‘| DL: ConpanyX. coni Crypt oTr ansf er/ Conpressedlterator:1.0”

“ftam passive”

This list says that thEile can be transferred usirid p_if the File actively makes the
data connection. Ift p_cannot be used, the specified corba interface is the next
preferred transfer protocolFinally, f t ammay be used with this endpoint taking on
the passive role. Since support for thetetTransferlterator interface is mandatory
it is not required to be listed.

To transfer fronFile A to File B, theFiles arequeried for their supported protocals.
This list is examined and a compatible set is chosen. An example being
“ftp;active”for File A and *ft p; passi ve” for File B. If a transfer protocol

string does not specify active or passive, it supports both. This is always the case for
the OctetTransferlterator protocol.

Transfer protocol syntax is specified in Section 2.2.1 .

TransferEndPoint Creation

The methodrile::create_transfer_endpoint is used to create the necessary
TransferEndPoints. It takes arguments that specify whether this endpoint is the
source or a destination of the transfer, the read/write offset intBiltheand whether

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-7

the offset is relative to the beginning or end of the File. These parameters can specify

endpoints usable as the source or sink of copy, append, and insert operations. See
section Section 3.1.7 for details.

Passive Endpoint Listen

The passive TransferEndPoint is put into a wait for connection (listening) state by
cadling go_to_listen. It is then ready to accept a connection from the active
TransferEndPoint. This method returns a TransferDetail describing the passive

endpoint.

Active Endpoint Connection

The active TransferEndPoint completes the connection circuit when

connect _to_peer is caled. The argument to this method is the TransferDetail
returned from go_to_listen. This method returns a TransferDetail string describing

the active endpoint protocol specific details. For some protocols, the returned
TransferDetail may be an empty string.

Passive Endpoint Connect Notify

The last step in the connection establishment is calling set_peer on the passive
endpoint to notify it that the connection has been made. The argument to this method

is the TransferDetail returned from the connect to_peer operation. For some
protocols, set_peer may accept an empty string.

Low L evel Transfer Example

The following example illustrates the execution of an append operation, where the
negotiated protocol isf't p”. The sender ipassi ve_and the receiver igcti ve.

CORBA-FTAM/FTP Interworking Specification Version 1.0

fronfile dirFromget file(fromNane);
toFil e = dirTo.get file(toNane);

fronProtocols fronFil e.get end point protocols();
t oProt ocol s = toFile.get end point protocol s();

/[l Fromthe protocol lists, find a matching
/ protocol set. “ftp” is used for this example,

// the sender will be passive, listening

/[for ftp data connection

fromProtocol = “ftp;passive”;
toProtocol = “ftp;active”;

/] create endpoints to append the file

fromEP =

fromFile.create endpoint(TransferEndPointRole::SOURCE,
FilePos::BEGIN,
0,
fromProtocol);

toEP = fromFile.create endpoint(TransferEndPointRole::SINK,
FilePos::END,
0,
toProtocol);

// establish connection

passiveDetail = fromEP.go to listen();

activeDetail =toEP.connect to peer(passiveDetail);
fromEP.set peer(activeDetail);

fromEP.transfer();

fromEP.destroy();
toEP.destroy();

This example would follow the same form if a different transfer protocol were used. To
change the operation to a copy, the SINK endpoint would have FilePos::BEGIN and
offset of zero. Inserts are performed by specifying a TransferEndPointRole of
SINK_INSERT for the destination endpoint. An implementation may restrict the types
of TransferEndPoints supported.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-9

Direct File Access

To allow direct access to the contents of afile from aclient that cannot provide another
TransferEndPoint or File, the OctetTransferlterator interface can be used to read

and write file contents directly. An example of reading the contents of a “text” file for
display is shown in the pseudo-code below:

protocol =
“IDL:omg.org/CosFileTransfer/OctetTransferlterator:1.0”
fromEP =

fromFile.create endpoint(TransferEndPointRole::SOURCE,
FilePos::BEGIN,

0,

protocol);

/] as the TransferDetail for a corba protocol

corbaDetail = fromEP.go to listen();
octetltorObj = orb.string to object(corbaDetail);
octetltor = OctetTransferlterator.narrow(octetltorObj);

do{_

octetBuf = octetltor.get octet seg(offset, 0);
printBuffer(octetBuf); // print file as text
offset = offset + octetBuf.length();

while(octetBuf.length()!=0);

fromEP.destroy();

2.2 FileTransfer Protocols

This section describes the details of the supported file transfer protocols.

2.2.1 Protocol Syntax

The protocol syntax defines protocol names and protocol specific attributes. The
syntax is extensible to allow new protocols and attributes to be added. The syntax for
the currently supported protocolsiis:

2-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

<ProtocolSpec> ::= <CORBA> | <FTP> | <FTAM> | <NewProtocol>

<CORBA> ::= <OctetTransfer> | <OtherCORBA>
<QctetTransfer> ::=

“IDL:org.omg.CosFileTransfer/OctetTransferlterator:1.0”
<0OtherCORBA> ::= <InterfacelD> [<Options>]

<InterfacelD> ::= Valid Repository ID

<FTP> ::= “ftp” [<ActivePassiveOption>]
<ETAM> ::= “ftam” [<ActivePassiveOption>]

<ActivePassiveOption> ::= “” [“active” | “passive”]
<NewProtocol> ::= <AlphaNumericString> [<Options>]
<Options> ::= “” <Tag>["=" <Value>][<Options>]

<Tag> ::= <AlphaNumericString>
<Value> ::=<AlphaNumericString>

2.2.2 Transfer Connection Establishment

Service implementations and clients using transfer primitives are required to use
connection establishment semantics that are functionally equivalent to the following:

/] protocol independent connection establishnment

passi veDetail = passiveEP.go to listen();

activeDetail = activeEP.connect to peer(passiveDetail);
passi veEP. set peer(activeDetail);

The one exception is if aclient is directly accessing a File using the
OctetTransferlterator interface as described previously in the “Direct File Access”
section. In this case only, it sufficient to call_to_listen and then use the returned
OctetTransferlterator immediately.

2.2.3 CORBA Transfer Protocol

The following is required for a service implementation to suppemraba_transfer
protocol.

File::create_end_point must return a corba awafeansferEndPoint when the
endpoint protocol argument begins with an interface repository ID.

TransferEndPoint::go_to_listen must return a stringified object reference that can
be passed tdransferEndPoint::go_to_listen or used directly by a client.

TransferEndPoint::connect_to_peer must return a stringified object reference that
can be passed firansferEndPoint::set_peer.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-11

The OctetTransferlterator corba protocol does not have a concept of active or
passive, so either endpoint can be used as passive or active. This may not be true for
other corba transfer interfaces. An implementation supporting OctetTransferlterator
may implement the high level transfer operations in a manner similar to the one
outlined by the example in the “Direct File Access” section above.

There is no requirement for an implementation to make use of the stringified object
reference that is passeddet peer for acor ba_transfer protocol.

An implementation must allow theet _peer argument to be an empty string. This
represents the case where a client is usin@etetTransferlterator directly.

2.2.4 FTP Transfer Protocol

The ftp transfer protocol, refers specifically to a file transfer that takes place as if it
were the data connection of an*fgervice transfer. A service implementation need not
use a true ftp server to implement this transfer protocol.

The following is required for a service implementation to supporf the transfer
protocol.

File::create_end_point must return an ftp awafBransferEndPoint when the
endpoint protocol argument an ftp type.

TransferEndPoint::go_to_listen must return a string of the form:
host : port

where host is either a DNS style host name or a dotted decimal IP_address and port
identifies the port number that will accept thiep_data connection.The returned
host : port string is passed tdransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a host:port string identifying the
local end of the ftp data connection that has been established. In some cases this
information may not be available, in which case an empty string is returned. The
returned string is passed ToansferEndPoint::set_peer.

There is no requirement for an implementation to make use dfdase: port thatis
passed tset_peer for thef t p_transfer protocol.

2.2.5 FTAM Transfer Protocol

The following is required for a service implementation to supporf then? transfer
protocol.

2-12

FtETF RFC 959 “File Transfer Protocol (FTP)", J. Postel, J.Reynolds. October 1985

2.1SO/IEC 8571-1,8571-2,8571-3,8571-4 Information Processing Systems - Open Systems
Interconnection - File Transfer, Access, and Management Parts 1 - 4. 1993

CORBA-FTAM/FTP Interworking Specification Version 1.0

File::create_end_point must return an ftam aware TransferEndPoint when the
endpoint protocol argument an ftam type.

TransferEndPoint::go_to_listen must return a string identifying a ftam responder.

The returned r esponder _string is passed to TransferEndPoint::go_to_listen.

TransferEndPoint::connect_to_peer must return a string identifying the ftam
initiator. The returned string is passed to TransferEndPoint::set_peer.

CORBA-FTAM/FTP Interworking Specification Version 1.0 2-13

2-14 CORBA-FTAM/FTP Interworking Specification Version 1.0

Principal Components

|nterfaces 3

CORBA-FTAM/FTP Interworking Specification Version 1.0 31

CORBA-FTAM/FTP Interworking Specification Version 1.0

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 33

34

CORBA-FTAM/FTP Interworking Specification Version 1.0

3.3 CosFileTransfer Module

This chapter describes the CosFileTransfer module in detail.

3.3.1 Exceptions

The following IDL shows the exceptions defined for the service:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 35

typedef short ErrorCode:

const ErrorCode UNSPECIFIED
const ErrorCode UNAVAILABLE
const ErrorCode UNSUPPORTED
const ErrorCode NO_PERMISSION

const ErrorCode ENTRY_EXISTS =4;
const ErrorCode ENTRY_PATH ERROR =5;
const ErrorCode ENTRY IO ERROR =6:
const ErrorCode DIR_NOT_EMPTY =7;

const ErrorCode TRANSFER |10 ERROR = 8;
const ErrorCode TRANSFER _ABORT =09:

exception FileSystemError {
ErrorCode error;
wstring desc:
b

/[Error transferring between two files

exception TransferError {
TransferEndPointRole error_endpoint;
ErrorCode error;
wstring desc:

—k

ErrorCode

The exceptions defined in the CosFileTransfer module contain an ErrorCode field

which identifies the category of the error. The values are:

® UNSPECI FI ED - The error category is none of the below.

® UNAVAI LABLE - The FileSystem is temporarily unavailable. This is only raised
by the FileSystem::login method.

UNSUPPORTED - The operation or the particular parameter values are unsupported

by the implementation.

NO PERM SSI ON - The user credentials are insufficient or invalid for the
requested operation.

ENTRY_PATH_ERROR - A component of the name specified for a File or
Directory isinvalid or the entry does not exist.

ENTRY_ EXI STS - The operation expected the entry not to already exist.

ENTRY_| O ERRCR - There has been an error opening, reading, writing, or closing

aFile or Directory.

CORBA-FTAM/FTP Interworking Specification Version 1.0

DI R NOT EMPTY_-The implementation does not allow removal of a Directory
that is not empty.

TRANSFER | O ERROR - There has been an opening, reading, writing, or closing a
data transfer connection.

® TRANSFER _ABORT - A file transfer operation has been aborted.

Client ErrorCodeHandling
In this chapter, each operation description lists the exceptions raised along with

specific ErrorCode values. A service implementation may use ErrorCode values
other than those specifically listed. A client must handle these values gracefully, at the

very least handling them like UNSPECIFIED.

FileSystemError

This exception is raised when an operation involving asingle CosFileTransfer object
fals. The fields are:

error _- A broad classification of the error.

desc_- Optional text detail about the error.

TransferError

TransferError is raised by operations that involve copying one File's contents to
another. Since there are tW@es involved, the one that raised the exception must be
identified. The fields are:

® error_endpoi nt - Identifies whether the exception originated from the source
or sink of the data transfer.

error _- A broad classification of the error.

desc_- Optional text detail about the error.

3.3.2 FileSystem Interface

The FileSystem interface provides access to the virtual file system represented by the
service. The IDL is:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 37

interface FileSystem {

FileSession login(in wstring user,
in wstring password,
in CosPropertyService::Properties login_properties,
out Directory initial_dir)
raises(FileSystemError):

wstring get_system _id();

—k

login

Before transferring files or performing maintenance operations, a client must provide
credentials to login to the FileSystem to obtain an initial Directory reference. The
FileSystem validates the user credentials in an implementation specific manner.

Parameters
® user - FileSystem specific text string identifying the user.

® passwor d - FileSystem specific text string identifying the user password.

| ogi n_det ai | s_- sequence of FileSystem specific properties providing login
details. A FileSystem implementation may use any property names and values that

are appropriate. The following properties with wstring values are defined:

¢ user - Same value as the user parameter. If this property is present, the user
parameter is ignored.

¢ passwor d_- Same value as the password parameter. If this property is present,
the password parameter is ignored.

¢ account - Many systems have the concept of an account in addition to a user.
® initial dir _-returnstheinitial Directory for the supplied login details.

Return value

This method returns a FileSession (see section 3.1.3) for the supplied login
parameters.

Exceptions
FileSystemError. The following ErrorCode values are defined:

® UNAVAI LABLE - The FileSystem is unavailable for login. In this case, no attempt

has been made to validate the user credentials. A retry by the client may be
successful.

® NO_PERM SSI ON - The supplied user credentials were rejected.

CORBA-FTAM/FTP Interworking Specification Version 1.0

get system id

Returns implementation specific text providing identification of the file system. This
text shall be suitable for display to an end user.

Return value

Returns awstring identifying the file system. This string is for informational purposes
only and cannot be used to determine object identity. An implementation is not
required to make this string globally unigue. An empty string is alegal return value.

3.3.3 FileSession Interface

The FileSession interface controls the lifecycle of all object references obtained from
the server. The IDL is:

interface FileSession {

void destrov():

—k

destroy

The destroy operation terminates the session with the service established by the call
to FileSystem::login. All objects associated with the FileSession such as
Directories, Files, etc. are destroyed. After the destroy method is invoked, further
operations on the FileSession or any of its associated objects will raise an
OBJECT NOT_EXIST.

The status of any file transfers that are in progress at the time of a call to destroy are
undefined.

3.3.4 FileSystemEntry Interface

FileSystemEntry is a base interface that defines operations that are common to the
Directory (Section 3.1.5) and File (Section 3.1.7) interfaces.

Properties

The interface derives from CosProperty::PropertySet. The following properties are
defined:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 39

Table 3-1 FileSystemEntry Properties

Property Name Data Type Property Mode Description
name EntryName mandatory, Simple name relative to
fixed_readonly parentDirectory
path EntryPath optional, Full pathname relative to
fixed_readonly initial FileSession
Directory.
owner wstring optional, If defined, the owner of

creation_time

modification_time

TimeBase::UtcT

fixed_readonly

optional,

the Entry.
If defined, the entry

TimeBase::UtcT optional,

fixed_readonly creation time.

If defined, the last time

fixed_readonly the entry was modified.

3-10

A mandatory property is one that a service implementation must always allow a client

to access. An optional property is one that a service implementation may restrict a

client’s access to, may not provide a value for a partidtilaror Directory, or not
provide at all. For purposes of discussion, the properties from the above list and any
other implementation defined properties that a specific client is allowed access to are
calledclient accessible properties.

The behavior of th€osProperties::PropertySet methods specific to
FileSystemEntry objects are:

define _property

For a read onlylient accessible property, aCosProperties::ReadOnlyProperty
exception will be raised. If the property is not client accessible, a
CosProperties::UnsupportedProperty is raised.

define properties

An implementation will behave as fdefine_property, except that the exception
raised isCosProperties::MultipleExceptions containingPropertyException
structs having aeason codes offead_only _property orunsupported property.

get_ number of properties

An implementation must not include any non client accessible properties in the return
count. The returned count may be less than the total number of properties associated
with the FileSystemEntry.

CORBA-FTAM/FTP Interworking Specification Version 1.0

get_all _property names

An implementation must not include any non client accessible properties in the
returned sequence. The returned sequence size may be less than the total number of
properties associated with the FileSystemEntry.

get_property value

For all client accessible properties that a value is defined for, the property value is
returned. Otherwise the exception PropertyNotFound is raised.

get_properties, get_all_properties

For all client accessible properties that a value is defined for, the property is returned.
All other properties will denote an exception by appearing in the return sequence with
atype of tk_void as described in the CosProperty Service specification.

delete property. delete properties, delete all_properties

For all fixed client accessible properties, an exception denoting fixed _property shall
be raised. For delete_all_properties, client accessible fixed properties will not be
deleted and the operation shall return true.

FileSystemEntry Methods

The next sections describe the methods available on the FileSystemEntry interface.

get_name

Returns the simple name for this FileSystemEntry. This is the same value returned
by the nane_property.

Return Value
EntryName for the FileSystemEntry.

get_path

Returns the pat h_name for this FileSystemEntry relative to the initial Directory
returned from FileSystem::login. This is the same value returned by the pat h_

property.

Return Value
EntryPath for the FileSystemEntry.

Exceptions

A FileSystemError may be raised for an implementation defined reason. No specific
ErrorCode values are defined.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 311

exists

Report the existence of a FileSystemEntry on the FileSystem.

Return Value
® true_- The FileSystemEntry exists on the FileSystem.

f al se - The FileSystemEntry does not exist on the FileSystem.

Exceptions
A FileSystemError may be raised for an implementation defined reason. No specific

ErrorCode values are defined.

get parent
Returns the par ent Directory for this FileSystemEntry.

Exceptions
A FileSystemError may be raised with an ErrorCode value of:

® NO _PERM SSI ON - If the client is not allowed to access the parent Directory.
Many implementations will raise this exception if get_parent is called on the
initial Directory returned from FileSystem::login.

get_session

Returns the associ at ed FileSession for this FileSystemEntry.

Exceptions
A FileSystemError may be raised with an ErrorCode value of:

® NO PERM SSI ON - If the client is not allowed to access the FileSession from
this FileEntry.

remove

This operation removes the entry from the service. A Directory may only be removed

if it is empty. Once removed an Entry will not appear in a listing of its parent
directory.

Exceptions
A FileSystemError is raised on error. The following ErrorCode values are defined:

® NO PERM SSI ON - If the client is not allowed to r enove_this Entry.
® DIR NOT_EMPTY - If thisis a Directory and contains child entries.
ENTRY PATH ERROR - If the Entry does not exist.

312 CORBA-FTAM/FTP Interworking Specification Version 1.0

destroy

This operation releases the FileSystemEntry object. It does not remove the entry’s
representation from thieileSystem. A client should caldestroy on anEntry when
it has finished with it.

3.3.5 Directory Interface

The Directory interface represents a collectionFofe andDirectory entries. The
interface defines operations to list and obtain references to these entries. The IDL is:

interface Directory: FileSystemEntry {
DirEntrylterator list(in CosPropertyService::PropertyNames listProps)

raises (FileSystemError):;

Directory create_directory(in EntryPath fpath
raises(FileSystemError):

File get_file(in EntryPath fpath. in boolean must_exist)

raises(FileSystemError):

Directory get_directory(in EntryPath fpath
raises(FileSystemError):

void remove_entry(in EntryPath fpath)
raises(FileSystemError):

—k

Directory Properties

In addition to the properties féiileSystemEntry, Directory objects have one
additional property listed in the table below.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-13

Table 3-2 Directory Properties

Property Name Data Type Property Mode Description
num_children DirEntryCount optional, The number of entriesin
fixed_readonly the Directory. In some

cases it is not practical to
providethisvaluedirectly.
In this case the directory
must be iterated through
to count the entries.

list

Thel i st _operation allows a client to iterate through a set of Directory entries and
their properties.

Parameters

® |ist-props_-A sequence containing the names of the desired entry properties. A
service implementation is not required to return all the properties requested.

Return value

A DirEntrylterator (see Section 3.1.6). If the DirEntrylterator value is ni | , there
were no entries to return. If the value is non- ni | _there may or may not be entries to

be retrieved.

An implementation is not required to return sequence members that represent the
current or parent Directory entries.

The properties returned are dependent on client permissions and whether an entry has
avalue for the property. If a client does not have permission to retrieve a property, an
implementation must not raise an exception with an ErrorCode of
NO_PERMISSION. The denied property shall be silently omitted.

Exceptions
FileSystemError. The following ErrorCode value is defined:

® NO_PERMISSION - The client is not permitted to obtain the Directory list.

create directory

This operation creates a child Directory. It is similar to the familiar nkdi r _command.

3-14 CORBA-FTAM/FTP Interworking Specification Version 1.0

Parameters

® dir_path - The Pat h_of the Directory to create. This EntryPath is relative to the
Di r ect ory. If dir_path contains more than one component, the intermediate
directories will be created as well.

Return value
The newly created Directory.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

ENTRY_PATH_ERROR. If any component of the path is invalid or one of the
intermediate components is a File.

NO PERM SSI ON - If the client is not allowed to create or access any component
of the dir_path.

ENTRY EXISTS - If this Directory already exists.

get_file

This operation returns a Fi | e for the specified Pat h._

Parameters
® file path - The File’s Path relative to the Directory .

® must exist -if true, the operation will only succeed if the file already exists on the
FileSystem.

Return value
A File reference for the file.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

ENTRY PATH ERROR - If any component of the path is invalid or one of the
intermediate components is a File. If the must_exist parameter ist r ue_and the
file does not exist.

NO PERM SSI ON - If the client is not allowed to access any component of the
file_path.

get_directory

This operation returns a Directory corresponding to an existing directory.

Parameters
® dir_path - The relative EntryPath for the Directory.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-15

Return value
The requested Directory.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

ENTRY_PATH ERROR. If any component of the path is invalid or one of the
intermediate components is a File, or the Directory does not exist.

. " I ioRE Lo . 3w
NO PERM SSI ON - If the wser-client is not permitted-allowed to access any

component of the destiration-directory-at-the-targettocationdir_path.

remove_entry

This operation removes a File or Directory entry. If the entry is a Directory, it must
be empty before it can be removed.

Parameters
® entry path - The relative EntryPath.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

® ENTRY_PATH ERROCR - If any component of the path is invalid or one of the
intermediate components is a File.

3-16 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

* anHlegalOperationbxeeption isthrown by getfite whenr

- If the user-client is not permitted-allowed to access the-targetfite-oraceessthe
teeation-any component of the target-fHepath

34 Fie

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 317

3.4.1 DirEntrylterator Interface

The DirEntrylterator interface is used to iterate through the results of a
Directory::list operation. The IDL is:

/[Directory listing size and list offset
_tygedef unsigned long long DirEntryCount;
typedef unsigned long long DirEntryOffset;

/[Directory listing Types

typedef short DirEntryType;
const DirEntryType FILE _ENTRY = 0;

const DirEntryType DIR_ENTRY =1;

struct DirEntry {
EntryName name;
DirEntryType type:
CosPropertyService::Properties props;
—k

typedef sequence<DirEntry> DirEntrySeq:

interface DirEntrylterator {

DirEntrySeq next(in DirEntryOffset from_dir_entry,
in DirEntryCount max_dir_entries)
raises (FileSystemError):
void destrov();

—k

Related Types

DirEntryType
This type defines the type of an entry, either DIR_ENTRY, or DIR_FILE.

DirEntry

Directory::list returns FileSystemEntry information in DirEntry structures. The
fields of this struct are:

3-18 CORBA-FTAM/FTP Interworking Specification Version 1.0

nane_- The simple (single component) name of the entry in this Directory.

t ype - The DirEntryType of the entry.

props_- A seguence containing the requested entry properties.

DirEntrySeq represents a sequence of DirEntry.

DirEntryCount, Dir EntryOffset
These types are used to control the iteration through a Directory.

Di r Ent r yCount - The maximum number of entries to return to the client.

Dir Ent ryOf f set - The offset into the Directory’s entry list from which the
DirEntryCount _applies.

See the section “next” below for details on the use of these types.

next

This operation returns a sequencafEntry. TheDirEntrylterator is a recoverable
iterator and allows a client to repeat a failed calhéxt, requesting a smaller
sequence in the event of an exception.

Parameters
e fromentry nunber - return entries starting from the specified entry number.

e max_dir_entries_- The maximum number of entries to return to the client. If
the value is zero value, there is no upper bound.

In normal operation next is called repeatedly until all the directory entries are
returned. The first time next is called, from_entry _number must be zero. For

subsequent calls, the value of from_entry_number is set to its previous value plus
the length of the returned entry sequence.

In the event that a call to next results in an exception indicative of resource exhaustion
on either the client or the server, such as NO_MEMORY, the client can retry the next _
operation by invoking next with the previous from_entry_number and a smaller
max_dir_entries value.

If the next operation fails with amax_dir_entries vaue of one, the iteration cannot
be completed and the client must handle the error.

Return value

A DirEntrySeq with alength of up to max_dir_entries for non-zero values of
max_dir_entries. If max_dir_entries is zero, the returned sequence length is
implementation defined. In either case, an implementation may not return a
DirEntrySeq of length zero unless there are no further entries to retrieve.

Exceptions
A FileSystemError may be raised with following ErrorCode value:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-19

® UNSUPPORTED. If the from_entry_number parameter is illegal for the current
iterator state.

destroy

After aclient is finished with a DirEntrylterator, destroy should be called to release

the internal resources held by the service implementation.

3.4.2 File Interface

The IDL is:

interface File: FileSystemEntry {

void copy(in File dest)
raises(TransferError);

void append(in File dest)
raises(TransferError);

void insert(in File dest, in FileOffset offset)
raises(TransferError);

TransferEndPoint create_end_point(in TransferEndPointRole ep_role,
in FilePos seek.
in FileOffset offset,
in TransferProtocol ep_protocol)
raises (FileSystemError):

TransferProtocolSeqg get_end point_protocols();

—k

File Properties

In addition to the attributes-defined-properties for the-FileSystemEntry. File

taterface there-are-a-numberof fHepropertiestdentified-ob) ects have one additional
property listed in the follewing-tabletable below.

Table3-3 List of properties that can be associated with afile

Property Name Data Type Description

is_directory boolean Indicates whether the file represents a
remote directory.

creator string Indicates the name of the user that created
the file.

3-20 CORBA-FTAM/FTP Interworking Specification Version 1.0

Table 3-3 List of properties that can be associated with afile

size unsigned long Indicates the size of the file in bytes.

modification_time string Indicates the time and date on which the
file was last modified

creation_time string Indicates the time and date on which the
file was created.

access_rights Accesslevel Indicates operations associated with a file
that are available to a user.

name string Indicates the name of the file

complete_file_name FileNameList Indicates the absolute name of the file

num_children long If the file is a directory this property

indicates the number of files associated
with that directory.

3.5 Directory

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 321

Table 3-4 File Properties

Property Name Data Type Property Mode Description
size FileSize Optional, The size of the filein
fixed_readonly octets. In some
implementations it may
not be practical to
determine the size of an
entity being represented
by aFile. In this case the
property is not provided.
copy
The copy operation copies the contents of this File to the destination File. If the
destination File currently exists it is overwritten.
Parameters
® dest - The destination (sink) File.
Exceptions
A TransferError may be raised with following ErrorCode values:
¢ ENTRY_PATH ERRCR. If any component of aFileis invalid or one of the
intermediate components is a File.
® NO_PERM SSI ON - If the client cannot access any component of a file path
¢ ENTRY_I O ERROR - There was an error in opening, closing, reading, or writing a
file
® TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing a data connection.
® TRANSFER ABORT - The transfer was aborted.
append
The append_operation appends the contents of this File to the destination File.
Parameters
® dest - The destination File.
Exceptions
A TransferError may be raised with following ErrorCode values:
3-22 CORBA-FTAM/FTP Interworking Specification Version 1.0

3

ENTRY PATH ERROR. If the sink File does not exist. If any component of a File
isinvalid or one of the intermediate components is a File.

UNSUPPORTED - If the sink File does not allow an append.

NO PERM SSI ON - If the client cannot access any component of afile path

ENTRY_| O ERRCR - There was an error in opening, closing, reading, or writing a
file.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing a data connection.

TRANSFER ABORT - The transfer was aborted.

nsert

Thei nsert operation inserts the contents of the File at the specified offset in the
destination File.

Parameters
® dest - The destination File.

file offset - The FileOffset into the destination File.

Exceptions
A TransferError may be raised with following ErrorCode values:

ENTRY_ PATH ERROR. If the sink File does not exist. If any component of a File
path is invalid or one of the intermediate components is a File.

UNSUPPORTED - If the sink File does not allow an insert.

NO PERM SSI ON - If the client cannot access any component of afile path

ENTRY_| O ERRCR - There was an error in opening, closing, reading, or writing a
file or the file offset parameter is larger than the sink File size.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing a data connection.

® TRANSFER ABORT - The transfer was aborted.

create end point

The create_end_point method is used to create a TransferEndPoint (see section
3.1.8), which is used by a service to implement the high level copy, append, and
insert operations. Clients performing more complex transfer operations may also
make use of this method.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-23

3-24

Parameters

® ep_rol e - Specifies whether the role of the TransferEndPoint is to read or write
the Fi | e’s contents. Values arBransferEndPointRole::SOURCE,
TransferEndPointRole::SINK, and TransferEndPointRole::SINK_INSERT.
TransferEndPointRole::SINK will overwrite and truncate to the last written
octet.

fil e_pos_- Specifies whether the data transfer will be relative to the beginning or
end of the File. Values are FilePos::BEGIN and FilePos::END.

offset - The offset from the file_pos to begin reading or writing.

ep_pr ot ocol - Specifies the type of TransferEndPoint to be created. The
specification currently defines transfer protocols using cor ba interfaces, f t p, and
ft am See section 3.1.8 for details.

Return value

TransferEndPoint for use in a single transfer of the Fi | e. The TransferEndPoint
should be destroyed after use.

Exceptions
A TransferError may be raised with following ErrorCode values:

® ENTRY_PATH ERROR - If the SOURCE file does not exist. If any component of a
File path isinvalid or one of the intermediate components is a File.

UNSUPPCORTED - If an unsupported ep_protocol is specified.
NO PERM SSI ON - If the client cannot create the TransferEndPoint.

ENTRY | O ERROR - There was an error in opening, closing, reading, or writing a
file.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing a data connection.

get end point protocols

Obtains a sequence of supported transfer protocols for this File. An implementation is
not required to provide the same transfer protocols for al Files. An implementation
may also change the set of available transfer protocols for a File if there are no
TransferEndPoints for that File in existence at the time of the change.

Return value

TransferProtocolSeq listing supported protocols. The sequence is in preferred
protocol order.

An implementation is not required to return the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferlterator:1.0” since it is mandatory. An
implementation may choose to return it in the list to indicate a preference over other

protocols.

CORBA-FTAM/FTP Interworking Specification Version 1.0

3.5.1 TransferEndPoint Interface

TransferEndPoint objects represent a File during a transfer operation. The IDL is:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-25

interface TransferEndPoint;
typedef wstring TransferProtocol;
typedef sequence<TransferProtocol> TransferProtocolSeq;

typedef short TransferEndPointRole;

const TransferEndPointRole SOURCE = 0;
const TransferEndPointRole SINK =1;
const TransferEndPointRole SINK_INSERT = 2;

/[transfer protocol specific information

typedef wstring TransferDetail;

typedef short TransferState:

const TransferState CREATE = 0O:
const TransferState LISTEN = 1:
const TransferState CONNECT = 2;
const TransferState ACTIVE = 3;
const TransferState COMPLETE = 4.
const TransferState ABORT = 5;

struct TransferStatus {
TransferState state; // current transfer state
FileCount current_count: // current transfer count
FileCount max_count; // expected transfer size bytes/chars

—k

interface TransferEndPoint

A

TransferDetail go_to_listen()
raises(FileSystemError):

TransferDetail connect_to_peer(in TransferDetail passive_detail)
raises(FileSystemError):

void set_peer(in TransferDetail active_detail)
raises(FileSystemError):

TransferStatus get_transfer_status()
raises (FileSystemError):;

void transfer()
raises (FileSystemError):;

void abort()
raises (FileSystemError):;

void destroy():

—k

3-26 CORBA-FTAM/FTP Interworking Specification Version 1.0

Related Types

TransferProtocol

A string type that identifies a transfer protocol suchfasp
is the sequence typedef foransferProtocol.

. TransferProtocolSeq

TransferDetail

This is a string type with a format that is specific to the transfer protocol used. During

connection negotiationtransferEndPoints exchange protocol information in
TransferDetails.

TransferState

An enumeration that provides state information abotitamsferEndPoint. The
defined states are:

® CREATE - Initial state after creation.

® LI STEN - waiting for an active connection, go_to_listen has been called.

CONNECT - connected to its peer, either connect_to_peer, or set_peer has been
called.

ACTI| VE - data transfer has started.
COVPLETE - data transfer completed successfully.
ABORT - data transfer error

TransferStatus

This struct provides information about the progress of a transfer that a
TransferEndPoint isinvolved in. The fields are:

® st at e - the TransferState for the endpoint.

current count - expected transfer size. If this is unknown or not provided by
the service implementation, it is set to zero. This value is usually available from the
source endpoint but not the sink.

max_count - For a source endpoint this is the octets sent. For a sink endpoint this
is the octets received. In the case of atransfer error this value represents the transfer
count before the abort. If the value is unknown or not provided by the service
implementation it is set to zero.

go_to_listen

This method is called on the passive TransferEndPoint to establish the listening side
of a data connection. On return the TransferEndPoint is ready to accept an active
connection. This is the first step in negotiating a transfer connection.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-27

3-28

Return value
TransferDetail describing the passive TransferEndPoint details. For example in the

case of acor ba_protocol transfer, the returned TransferDetail would be an | OR.
string, and for an f t p_transfer, host : port .

Exceptions
A TransferError may be raised with followin&rrorCode values:

¢ ENTRY_PATH ERROCR - If afile does not exist, any component of a File path is
invalid or one of the intermediate components is a File.

UNSUPPORTED - If an invalid active detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

NO PERM SSI ON - If the client does not have the proper credentials to perform the

operation.

ENTRY_| O ERRCR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing the data connection.

connect_to_peer

This method is called on an active TransferEndPoint to make the connection to the
passive TransferEndPoint. This is the second step in negotiating a transfer
connection.

Parameters

® passive detail - This TransferDetail provides the required details to allow the

active TransferEndPoint to connect to the passive TransferEndPoint. This
parameter is set to the return value from the go_to_listen call on the passive
TransferEndPoint.

Return value
TransferDetail describing the active TransferEndPoint details.

Exceptions
A TransferError may be raised with following ErrorCode values:

¢ ENTRY_PATH ERRCR. If afile does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

UNSUPPORTED - If an invalid passive_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

NO PERM SSI ON - If the client does not have the proper credentials to perform the
operation.

CORBA-FTAM/FTP Interworking Specification Version 1.0

3

ENTRY | O ERROR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing the data connection.

set_peer

This method is called on the passive TransferEndPoint to complete the transfer
connection negotiation. It is the final step in negotiating a transfer connection. |t

alows the passive TransferEndPoint to obtain any remaining TransferDetail about
the active end of the connection. The use of this information is protocol dependent.

Parameters

® active detail - This TransferDetail provides information about the active end of
the data connection to the passive TransferEndPoint. The value of this parameter
is set to the result of the connect_to_peer operation.

Exceptions
A TransferError may be raised with following ErrorCode values:

¢ ENTRY_PATH ERRCR. If afile does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

UNSUPPORTED - If an invalid active_detail is specified for those protocols that
use this parameter or this method is called on an active TransferEndPoint.

NO PERM SSI ON - If the client does not have the proper credentials to perform the
operation.

ENTRY_| O ERRCR - There was an error in opening, closing, reading, or writing
the file associated with the TransferEndPoint.

TRANSFER | O ERROR - There was an error in opening, closing, reading, or
writing the data connection.

get transfer status

This method returns the status of the TransferEndPoint.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode valueis
defined.

® UNSUPPORTED - If a service implementation does not provide this information.

transfer

Transfer the File contents between the source and sink TransferEndPoints. This
method is called on the source TransferEndPoint.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-29

Exceptions

A FileSystemError may be raised. The following specific ErrorCode valueis
defined.

® UNSUPPORTED - If this operation is called on a sink TransferEndPoint.

abort

This method causes the TransferEndPoint to terminate the current transfer
operation the transfer at its end of the connection. The other TransferEndPoint will

see the abort an unexpected termination of the transfer operation or connection.

An implementation may not be able to abort a transfer or even respond to the request

until the current transfer is complete.

Exceptions

A FileSystemError may be raised. The following specific ErrorCode values is
defined.

® UNSUPPORTED - If it is not possible to abort the transfer operation.

The system exception BAD _INV_ORDER will beraised if abort is called on a
transfer that has not yet started, is already completed, or has aborted.

destroy

This method closes a transfer, releasing any internal resources the TransferEndPoint

has obtained. Further invocations on this object will receive an
OBJECT NOT_EXIST exception.

3.5.2 OctetTransferlterator Interface

The OctetTransferlterator interface allows for transfer of a File’s contents using
only CORBA calls and without requiring another File object to transfer to or from.
OctetTransferlterator _is a recoverable iterator. It does not provide random access to

a File’s contents.

The IDL is:
typedef unsigned long long FileLength:;
typedef unsigned long long FileOffset;
typedef unsigned long long FileCount:
typedef sequence<octet> FileOctetSeq:

3-30 CORBA-FTAM/FTP Interworking Specification Version 1.0

interface OctetTransferlterator {

FileOctetSeq get_octet_sed(in FileOffset from_octet, in FileCount

max_octets)

raises (FileSystemError):;

void put_octet_seq(in FileOffset to_octet. in FileOctetSeq octetSeq)

raises(FileSystemError);

void destrov()
raises(FileSystemError);

—k

Related Types

FileOffset

This type represents an offset into a File's contents. Normally an
OctetTransferlterator is created by a TransferEndPoint , in which case an
OctetTransferlterator’'s FileOffset values are relative to the FileOffset specified
when the TransferEndPoint was created (File:.create_end_point).

FileCount

This type represents a File octet count. It is used to represent File size and the number
of octets transferred.

FileOctetSeq

An octet sequence representing the binary contents of a File.

get_octet_seq

This operation returns the next unread sequence of File octets.

Parameters
e from oct et - return octets starting from the specified offset.

® max_oct et s - The maximum number of octets to return. If the valueis zero, there
is no upper bound.

In normal operation get_octet_seq is called repeatedly until all File octets are
returned. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of from_octet is set to its previous value plus the length of
the returned sequence of File octets.

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 331

3-32

If get_octet_seq raises an exception that may be indicative of resource exhaustion
on either the client or server such asNO_MEMORY, the client can retry the failed read

by invoking get_octet seq with the previous from_octet and a smaller
max_octets.

If get_octet_seq fails with a max_octets value of one, the get iteration cannot be
completed and the client must handle the error.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

® ENTRY_PATH ERROR. If afile does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

UNSUPPORTED - If this TransferOctetlterator does not allow reads.
NO PERM SSI ON - If the client does not have the proper credentials to perform the

operation.

ENTRY_| O ERRCR - There was an error in opening, closing, reading, or writing
the file.

TRANSFER ABORT - An associated TransferEndPoint has been aborted.

put_octet seq

This operation writes an octet sequence to a File.

Parameters

® octet_offset - write octets starting at the specified offset.
® octet_seq - The octet sequence to write.

In normal operation put_octet _seq is called repeatedly until all t he File octets are
transferred. The first time get_octet_seq is called, from_octet is set to zero. For
subsequent calls, the value of octet _offset is set to its previous value plus the length

of the previous octet_seq.

If put_octet_seq raises an exception indicative of resource exhaustion on either the
client or server such as NO_MEMORY, the client can retry the operation by invoking

put_octet _seq with the previous octet_offset and a smaller octet_seq.

If put_octet_seq fails with a octet_seq length of one, the put iteration cannot be
completed and the client must handle the error.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

¢ ENTRY_PATH ERRCR. If afile does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

CORBA-FTAM/FTP Interworking Specification Version 1.0

3.6 Object Lifecycle

UNSUPPORTED - If the TransferOctetlterator does not allow writes.

NO PERM SSI ON - If the client does not have the proper credentials to perform the

operation.

ENTRY | O ERROR - There was an error in opening, closing, reading, or writing
the file.

® TRANSFER ABORT - An associated TransferEndPoint has been aborted.

destroy

After a client is finished with an OctetTransferlterator, destroy must be called to
complete the transfer and gracefully release any associated resources held by the
service implementation. Further calls to the iterator will raise an

OBJECT NOT_EXIST.

Exceptions
A FileSystemError may be raised with following ErrorCode values:

ENTRY PATH ERROR. If afile does not exist. If any component of a File path is
invalid or one of the intermediate components is a File.

ENTRY | O ERROR - There was an error in opening, closing, reading, or writing
the file.

If destroy raises a FileSystemError, the OctetTransferlterator is still destroyed.

All of the interfaces except for FileSystem have a destroy operation. After the
destroy method is invoked, any further operations on the object reference will raise
an OBJECT NOT_ EXIST.

A client should invoke destroy on an object after use is complete to allow a service
implementation to reclaim resources. An implementation is free to reap objects at any
time in order to reclaim resources.

Clients should expect that any operation on a CosFileTransfer object may raise an
OBJECT _NOT_EXIST as a server may reclaim an object, particularly if inactive, at

anytime.

3.7 ConformanceCriteria

3.7.1 Interfaces

A service implementation must provide all of the interfaces defined in this
specification. An implementation is not required to support the following operations on
al Files or TransferEndPoints:

CORBA-FTAM/FTP Interworking Specification FTF Final Report Draft 3-33

File::append
Eile::insert

TransferEndPoint::abort

TransferEndPoint::get_transfer_status

If an implementation does not support these operations on a given object it must raise
a FileSystemError exception with an ErrorCode value of UNSUPPORTED.

3.7.2 Transfer Protocols

A service implementation must support transfers using the corba interface
“IDL:omg.org/CosFileTransfer/OctetTransferlterator:1.0". All other protocols are

optional.

CORBA-FTAM/FTP Interworking Specification Version 1.0

4.1

I ntroduction

ExampleScenarios 4

Note —This entire chapter has been deleted. It describes the old IDL interface.

The purpose of this chapter is to clearly illustrate the interactions between an end user
and the components within the framework during a number of scenarios that are
typical of any file transfer mechanism. It is important to note that these scenarios
represent one of many possible implementations of the proposed framework. Each of
the scenarios presented are divided into three sections:

1. A general description of how the scenario is enabled by the CORBA interfaces
defined by the framework.

2. A code sample is provided in the Java™ programming language to further
demonstrate the application of the interfaces.

3. An interaction diagram describing component interactions during each scenario for
one possible implementation of the framework.

Figure 4-1 introduces each of the scenarios using a USE case approach illustrated in
the Unified Modeling Language (UML).

CORBAservices: Common Object Services Specification 4-1

4-2

i \Traverse File System
OSS User

O

User Login

D

Delete a File

O

Transfer a File

4.2 User Login

Figure4-1 Typica scenario the proposed framework must consider

4.2.1 Description

To login to a VirtualFileSystem, it is first necessary for the client to obtain a list of
available VirtualFileSystems. The CORBA Name Service may be used for this
purpose. VirtualFileSystems are registered with a particular Name Service.
VirtualFileSystem objects do not have to reside on the same host. A client first
connects to the Name Service and traverses it to find a particular NamingContext
that contains the entries for each available VirtualFileSystem. A list of those entries
is acquired, and after they have been resolved, the client may attempt to login.

Login details are passed to a selected VirtualFileSystem by invoking its login()
operation. A given VirtualFileSystem may represent one of a number of different
kinds of file transfer servers. These may include FTP servers, FTAM responders, or
variants of either. Each protocol requires different functionality from a
FileTransferSession.

Using the VirtualFileSystem properties (a typical implementation may use the
property indicating the preferred protocol driver! of the VirtualFileSystem) a new
FileTransferSession is instantiated. Using the login details provided by the client,

CORBAservices: Common Object Services Specification

4

an attempt is made to login to the file transfer server. If the attempt is successful, a
reference to the appropriate instantiation of the FileTransferSession interface is
returned to the client. In the event of an unsuccessful login, the operation will throw an
appropriate exception.

4.2.2 Code Sample

The use of the CORBA Name Service alows multiple VirtualFileSystems from
different hosts to be registered and located using one network reference. A
configuration class may be used to instantiate an arbitrary number of
VirtualFileSystems and register them with a Name Service running on a particular
host.

References to VirtualFileSystems should be registered within a specific context in
the Name Service. Clients may inspect the entries in that context, and select a required
VirtualFileSystem to login to.

Virtual Fil eSystemny_Virtual Fil eSystem =
Vi rtual Fi | eSyst enHel per. narr ow(
ny_VFS_cont ext. resol ve(nane_of _VFS));
Fi | eTransfer Session nmy_FTS =
ny_Virtual Fil eSystem | ogi n(user_nane, pass_word,
account, my_DirectoryHol der);

Typically, login details are passed to a Factory object along with the class name of the
preferred FileTransferSession protocol driver implementation. The class name for
these protocol drivers could follow the general format described below to enable a
FileTransferSession instantiation to load protocol drivers from different vendors
based on the properties of the VirtualFileSystem.

<protocol>.<vendor> (e.g., ftam.Foobar)
If the preferred implementation is unavailable, a default one may be utilized.

try {
Class driverdass = Odass.forNane("ftamdefault");
Driver fooDriver =
Driver(driverd ass. new nstance());
Fi | eTransfer Sessi on fooFTS =
new Fi |l eTransf er Sessi on(fooDriver);
} catch (Throwable t) {}

If the login is successful, a valid FileTransferSession reference will be returned to
the client. Otherwise one of the exceptions SessionException,
FileNotFoundException, or lllegalOperationException will be thrown to
indicate why the login request failed.

1. The sample implementations described within this section refer to a protocol driver imple-
mentation that a FileTransferSession instantiation will use to communicate with the
remote file serving mechanism. It is only one implementation approach to enable communi-
cation between aFileTransferSession and aremote server.

Naming Service: v1.1 Service Description Month Year 4-3

4-4

4.2.3 Interaction Diagram for a successful login

Client YirtualFile FTSFactory FileTransfar Control
Sy stem Session Connection
(13 laging |

(& nnstructl%TS (driver_Ty pe) |
L (3a) connectd

3k laging

4 my FTS, rootDir

-

| |

. | |

1 | | |
| | |

| | |

Figure4-2 Login Diagram

1. The login operation is called on an object implementing the VirtualFileSystem
interface, with login details as parameters.

2. The VirtualFileSystem object calls constructFTS() on an object implementing a
Factory interface. In addition to the login details, the class name of the preferred
protocol driver implementation that the FileTransferSession instantiation will
use to communicate with the remote server are used to create the new
FileTransferSession object. This new FileTransferSession object will then
load the appropriate driver class.

3. The FileTransferSession implementation then attempts to login using protocol
specific primitives and operations provided by an appropriate driver for the remote
server:
¢ A connection is first made to the file transfer server.

e A login is attempted.
4.3 TraversingtheFile System

4.3.1 Description

Once a client has logged into a VirtualFileSystem, a reference to a Directory
interface is returned as an out parameter from the login() operation provided by the
VirtualFileSystem interface. The Directory interface represents the “root” directory
of the VirtualFileSystem and is the starting point upon login for any client.

CORBAservices. Common Object Services Specification

4

Since the Directory interface inherits from the File interface, Directory interfaces
may be referenced as File interfaces. To perform an operation on afile (for example,
transfer, delete) it is necessary to obtain an IOR for the File. The proposed framework
provides two different ways to obtain an IOR:

1. The client can obtain an IOR for a File directly by invoking the get_file()
operation if they have knowledge of the full pathname of the file in question. This
operation is independent of the working directory from where it is invoked.

2. Alternatively, aclient can obtain File IORs through a discovery mechanism that
consists of a number of list(), set_directory(), list() iterations. A client may get
the references contained in the FileList sequence through the list() operation
provided by the Directory interface.

When the client has the references contained in the Directory interface’'sFileList
sequence, they may be examined to determine whether any ref@irectory object.
TheFileList contains a number dfileWrapper structs, each of which contain a
reference to &ile and an enumeration that identifies its type.

Having selected a particul@irectory reference, it is then necessary for the client to
ensure that the contents of therectory reference accurately mirrors the physical
directory it represents at the remote server. Séte directory() operation is provided

by theFileTransferSession interface to enable a client to perform this task. At this
stage it may be appropriate for thdeTransferSession to populate thé-ileList
sequence witlrileWrapper references. Any further changes of directory can be made
in the same way.

The references to tHéle interfaces may then be used as parameters in the various file
related operations (for examplgelete(), transfer (), append(), etc.).

4.3.2 Code Sample

The client obtains the initidDirectory reference from the output parameter of the
VirtualFileSystem interface’slogin() operation.

Di rect oryHol der dh = new DirectoryHol der ();
try {
Fil eTransferSession nmy fits =
my_VFS. | ogin (user, pass, acct, dh);
} catch(Throwable t) {}
Directory root _dir = dh.val ue;

The references to thele interfaces contained within tHairectory interface
implementation may be accessed througlanparameter of th®irectory
interface’slist() operation. An integer is passed asimmparameter to specify how
many references to return initially. TiRélelterator object is used to retrieve
subsequent references.

Naming Service: v1.1 Service Description Month Year 4-5

Fil eLi stHol der flh = new Fil eListHolder ();
FilelteratorHolder fi = new FilelteratorHolder ();
i nt how many = 20;
root _dir.list (how many, flh, fi);
FileWapper [] ny_list = flh.val ue;
Vector directory |list = new Vector ();
Directory test _dir;
for (int i =0; i<ny_list.length; i++) {
if(my_list[i].file_type == FileType.directory)
directory |ist.addEl enent (
DirectoryHel per.narrow(ny_list[i]);

}

Having obtained areference to a particular Directory, it is then necessary to update its
contents. The operation set_directory() in the FileTransferSession interface
provides this functionality and can be invoked in the following manner:

Directory newdir = (Directory)directory_list.elenentAt (0);
my_fts.set _directory(new. dir);

Typically the File references returned from the list() operation can be used as
parameters in various file related operations provided by the FileTransferSession
interface.

File ny file = nmy _list[0].the file;
File another file = nmy_list[1].the file;
my fts.append(ny _file, another file);
nmy fts.delete(nmy file);

It is also possible for a client to obtain areference to a specific File viathe get_file()
operation provided by the FileTransferSession interface if the location of the fileis
known.

String[] fullPathNane = new String [3];

fullPathName[0] = new String(“my”);

fullPathName[1] = new String(“path”);

fullPathName[2] = new String (“any.txt”);

FileWrapper file_reference =
my_fts.get_file(fullPathName);

File reference = file_reference.the_file;

CORBAservices. Common Object Services Specification

4.3.

3 Interaction Diagram for successfully traversing the file system
VitualFile FileTransfer Directory
Sy stem Session

{17 laging

my FTS, raatDir

{2 rootDir st

fileb rapperSequenc e

-]

(3 checkForDirectony O

(4) set_directany

|
|
|
|
:
:
! |
S
| |
| |

Figure4-3 Traversing the File System Diagram

This interaction diagram illustrates the communication between the various framework
components when a client wishes to traverse the file system’s hierarchy.

1. Thelogin() operation is called on an object implementing WhualFileSystem
interface, with login details as parameters. An object reference of type
FileTransferSession is returned, or an appropriate exception is thrown. A
reference to the root directory is also returned througbuarparameter.

2. The reference to the root directory can be used by the client to invokistthe
operation provided by thBirectory interface to obtain a list dfile references, in
the form of a sequence BfleWrappers, associated with that directory.

3. The client iterates through the listBfleWrapper references returned by 2) to
identify Directory interfaces.

4. The client can choose the new workiDigectory reference from the list of
availableDirectory interfaces. Theet_directory() operation is used to update or
populate théirectory reference ensuring that its contents accurately mirror that of
the physical directory at the remote server.

Naming Service: v1.1 Service Description Month Year 4-7

4

4-8

4.4 Deletinga RemoteFile

4.4.1 Description

The deletion of a remote file would seem to be a straightforward matter. A user must
first have the appropriate permissions to complete such a command. An inspection of
the access rights within the File object determines that. Alternatively, the file transfer
server itself can decide whether a user could complete such an action. In either case a
client will send the appropriate primitive or set of primitives to the file transfer server.

However, although this would delete the actua file stored on the server, it is aso
necessary for the appropriate File and Directory objects to be updated. Each File
object contains a reference to the parent Directory object. This may be used to call the
list() operation that will return the sequence of FileWrapper objects. The appropriate
File is removed from the sequence, and the updated version passed back to the
Directory object. The File object is then discarded.

Although the Directory object would be up to date, a mechanism has to be employed
to let any clients know that a change has taken place, and that the list() operation
should be invoked once more. The Event Service could be used to achieve this.

4.4.2 Code Sample

Once afile has been selected for deletion, the client invokes the operation:

try {

my_Fil eTransferSession. delete(file_for_deletion);
} catch (SessionException e) {

} catch (Fil eNotfoundException e) {

} catch (RequestFail ureException Exception e) {

} catch (Il1egal Operati onException e) {

}

wherefile_for_deletion isthe reference to the File object representing that file. From
the File object, the FileTransferSession determines the absolute path name of the
file, and then sends the appropriate primitive to the file transfer server. Assuming that
the client has the appropriate permissions and the operation is a success, it is necessary
to update the parent Directory object. This may be done by resetting the sequence of
File objects contained within the Directory interface.

At this point, the Directory object is aware of the change, but any client with a
reference to that object is not. A number of approaches may be used to address this.
The simplest is to ignore it, and only update when the user calls an action on the
object. Alternatively, the CORBA Event Service could be used to signify to all clients
that the object has been changed, or the client could implement an interface that allows
callbacks.

CORBAservices. Common Object Services Specification

4.4.3 Interaction Diagram for successfully deleting a remote file

Client Directory FileTransfar Diriver
Session

1 | |

(1 deIEtIE(FiIE}{l |

3 Update File sequence

|
. |
| |
| (2 delete(Filek)

|)
| |

f

| |
! |
| |
| |
| |

Figure 4-4 Deleting a Remote File Diagram

1. The delete() operation is called by the client on a FileTransferSession object.
The File object representing the file to be deleted is passed as a parameter.

2. The appropriate primitive or set of primitives is sent to the file transfer server, with
the absolute pathname of the file to be deleted, and the physical file at the remote
server is removed.

3. The Directory object’s sequence ¢file references is then updated.
4.5 TransferringaFile

4.5.1 Description

To transfer a file between a source and destinafiotualFileSystem a client must

be logged into botWirtualFileSystems in order to obtain references to a source and
destinationFileTransferSession. A client will invoke thetransfer() operation on a
sourceFileTransferSession, which is determined by the fact that it is the
FileTransferSession that contains a reference to the physical file to be transferred to
a target location. The client will pass tWwde references as part of theansfer()
invocation: a reference to the soufiée and a reference to the destinatkite at the
targetFileTransferSession?. During the transfer of data, it is always the source
FileTransferSession that assumes control of the transfer.

Naming Service: v1.1 Service Description Month Year 4-9

4-10

By examining the attributes of the source File reference passed by the client to its
transfer() operation, a FileTransferSession can determine whether it is to initiate
the transfer of afile or to receive a file. A source FileTransferSession will then
establish a connection with the target FileTransferSession using the value of its own
protocols_supported attribute and that of the target FileTransferSession.

The source FileTransferSession will initiate data transfer by invoking the

transfer() operation on the target FileTransferSession and sending an appropriate
retrieval primitive to its associated file transfer server using its preferred protocol

driver. When the destination FileTransferSession’s transfer() operation is invoked,

it can determine that it will be receiving data by examining the properties of the source
File parameter, and will send an appropriate storage primitive to its file transfer server
using its preferred protocol driver.

4.5.2 Code Sample

To transfer files between twieileTransferSession objects, a connection must be
established between the two. Establishing this connection and initiating the transfer of
data across this connection is of no concern to the client but is related to the
protocols_supported attribute exposed as part of thBeTransferSession

interface. A client will invoke théransfer() operation with references to the source

File to be transferred and the destinatkite at the targeFileTransferSession.

However, an implementation of tikéleTransferSession interface will use the

values of its own, and the destinatiBile TransferSession’s,

protocols_supported attribute to establish a connection when attempting to transfer
the source file to its destination.

Since theprotocols_supported attribute is a sequence BfotocolSupport structs,

struct ProtocolSupport { string protocol_name;
ProtocolAddressList addresses; };

each struct will contain the name of the protocol supported by the
FileTransferSession and a sequence of addresses and ports (for example, TCP/IP,
255.255.255.1:8001) where a connection from a pdefiransferSession can be
established using sockets. An implementation should ensure that the protocol
supported by the source and destinatdleTransferSessions are the same before
attempting to create a socket connection. The code sample that follows illustrates how
this connection may be established.

2. A new File reference must be created by the client by invoking the create_file() operation
on thetarget FileTransferSession, prior to caling the transfer() operation.

CORBAservices. Common Object Services Specification

String my_protocol = “TCP/IP”;
ProtocolSupport[Jprot =
secondaryFTS.protocols_supported();
int index = -1;
for (int k=0; (k<prot.length&&index == -1); k++)
if (prot[k].protocol_name.compareTo(my_protocol)==0)
index = k;
if (index == -1)
throw new TransferException (“Unsupported Protocols”);
String[] addresses = prot[index].addresses;
boolean connected = false;
for (int k = 0; (k<addresses.length&&!connected); k++ {
String address = addresseslK];
try {
StringTokenizer toke =
new StringTokenizer (address, “");
host = toke.nextToken();
port = Integer.parseint(toke.nextToken());
transfer_socket = new Socket (host, port);
connected = true;
} catch (Exception e) { }

}

Once the source FileTransferSession has established a socket connection with the

target it will invoke the target FileTransferSession’s transfer() operation. The code
sample below illustrates that this may be implemented asynchronously to enable the
sourceFileTransferSession to continue initializing its side of the file transfer.

Thread peer_thread = new Thread {

public void run () {

try {

secondaryFTS.transfer(src_file, dest _file);
cat ch(Sessi onException e) {
cat ch(Transfer Exception e) {
cat ch(Fi | eNot FoundException e) {
cat ch(Request Fai | ur eException e) {
catch(Il1 egal Operati onException e) {

e e e o

}
}

peer _thread.start();

The sourcerileTransferSession will then establish a buffered queue that will write
data to the socket connection with the tafgiéTransferSession. It will then send
an appropriate retrieval primitive or set of primitives to its associated remote file
server by invoking the appropriate operation on its preferred protocol driver.

At the same time, the targeétleTransferSession has determined from the properties
of the source and destinatidile parameters, that it will be receiving data during the
transfer. It establishes a buffered queue that will read data from the socket connection

Naming Service: v1.1 Service Description Month Year 4-11

with the source FileTransferSession. It also sends an appropriate storage primitive
or set of primitives to its associated remote file server by invoking an appropriate
operation on its preferred protocol driver.

4.5.3 Interaction Diagram for successfully transferring a file

Client FileTransfer Connection FileTransfer Connection
Session A Manaier A Session A Mananer B

| {13 transfer{sre_file, dest_filg) |

{2) hind(sre_file, dest_file)

]

(3 transfer(sre_file, dest_file)

(4. 1) streamrite), retievel)

|
|
|
|
|
|
|
i4.7) streamRead(), store) Llrl
|
|
|

|
:
|

Figure4-5 Transferring a File between two FileTransferSession Objects Diagram

1. The client invokes the transfer() operation of the source FileTransferSession
(the FileTransferSession that has a reference to the file to be transferred).

2. The source FileTransferSession has determined, from the properties associated
with the src_file, that it is to be the source for the transfer and will control the
internal operations concerning a file transfer. It then creates a data connection with
the target FileTransferSession using the associated_session property
associated with the src_file and dest_file references.

3. The source FileTransferSession then invokes the transfer() operation on the
target FileTransferSession.

4. The data connection between the two FileTransferSessions is used to transfer
data:

4-12 CORBAservices. Common Object Services Specification

4

* The source FileTransferSession will invoke a streamWrite() method on its
associated ConnectionManager object, that will create an output stream for
writing data to the data connection. It will also invoke aretrieve() method on its
preferred protocol driver that will attempt to retrieve the requested file from the
remote file transfer server.

» The destination FileTransferSession will invoke a streamRead() method on
its associated ConnectionManager object, that will create an input stream for
reading data from the data connection. It will also invoke astore() method on its
preferred protocol driver that will request the remote file transfer server to store
the file it will be sending.

If each of these steps occur successfully, the source file’s data should be transferred
from the sourcd-ileTransferSession’s remote server, onto the connection with the
destinationFileTransferSession and onwards to the destination
FileTransferSession’s remote file server.

Naming Service: v1.1 Service Description Month Year 4-13

4-14 CORBAservices: Common Object Services Specification

References 5

Note —This appendix was removed, the references are listed in footnotes where used
in the new document.

0.1 Listof References

[1]IETF RFC 959 “File Transfer Protocol (FTP)”, J. Postel, J. Reynolds.
October 1985.

[2]IETF RFC 1415 “FTP-FTAM Gateway Specification”, J. Mindel, R. Slaski.
January 1993.

[UML]M. Fowler, S. Kendall, “UML Distilled — Applying the Standard Object
Modeling Language”, ISBN 0-201-32563-2.

CORBAservices: Common Object Services Specification 51

5-2

CORBAservices: Common Object Services Specification

Complete OMG IDL 4

i

%

m

CORBA-FTAM/FTP Interworking Specification Version 1.0 4-1

4-2

CORBA-FTAM/FTP Interworking Specification Version 1.0

Naming Service: v1.1 Service Description Month Year 4-3

4-4

e RS e - e—sre R e-ge s
FASeSSessie R reepte
—FraRsterEeeptens
—leheHEe e Ereapters
—Pegresaire B esaptens
—HegeloperaterEreepteri:
el p e e e g e-gle s
FRASeSCerR R et et tererted S reepters
—Sessien=septens
—FraRsterEeeptens
—leheHEe e Ereapters
—Pegresaire B esaptens
—HegeloperaterEreepters
e GHR—— e e e-Elesi—
— in-leng-eisel
FRASeSCerR R et et tererted S reepters
—Sessten=iseptien-
—reRSersreeRHe s

. o
—HegeloperaterEreepters
yete-le- et
k
Hereee e R e Syatera—f
eRr-tetveRite SysteraRmae-f
AN
]
MNATRME
k
FERE-S Ry e e e R e Sy she R s e—le—oystern—Heer
e eeiseat-eRee =S Rte Rt e Rt
ARy e~ S e R e R S SR R e e e SR e R e et
FlerarsterSessier-
R R SR SRR R B R SR R RS e
— -l stER e se i e Rireste et
X e O haas
-Silehletmerrd S reepEers
-HegeloperatienEeapters
k
k
fepdi—COSFIEETRANSRERDL—

CORBA-FTAM/FTP Interworking Specification Version 1.0

[[File: CosFileTransferEFTFE.idl

#ifndef COS_FILE TRANSFER_IDL
#define COS_FILE TRANSFER_IDL

#include <CosProperty.idl>

#pragma prefix “omg.org”
module CosFileTransfer {

—_J/ FileEntry types

interface Directory:
interface File;

/[FileSystem login session

interface FileSession;

/[Filesystem entries, Files and Directories,
/[have multi-component path names

typedef wstring EntryName;
typedef sequence<EntryName> EntryPath;:

/| File size, offset, octet count. and contents

typedef unsigned long long FileLength:
typedef unsigned long long FileOffset:
typedef unsigned long long FileCount;
typedef sequence<octet> FileOctetSeq;:

typedef short FilePos:

const FilePos BEGIN = 0: // FileOffset is relative to beqginning of File
const FilePos END = 1:// FileOffset is relative to end of File

/[Directory listing size and list offset
ty[:)edef unsigned long long DirEntryCount;
typedef unsigned long long DirEntryOffset;

/[Directory listing Types

typedef short DirEntryType:

const DirEntryType FILE_ENTRY = 0;
const DirEntryType DIR_ENTRY = 1;

struct DirEntry {

Naming Service: v1.1 Service Description Month Year 4-5

EntryName name;

DirEntryType type:

CosPropertyService::Properties props:
—k

typedef sequence<DirEntry> DirEntrySeaq;

interface DirEntrylterator;

/[l TransferEndPoint Types

interface TransferEndPoint;
typedef wstring TransferProtocol;
typedef sequence<TransferProtocol> TransferProtocolSeq;

typedef short TransferEndPointRole;

const TransferEndPointRole SOURCE = 0;
const TransferEndPointRole SINK =1:
const TransferEndPointRole SINK_INSERT = 2;

/[transfer protocol specific information

typedef wstring TransferDetail;

typedef short TransferState;

const TransferState CREATE = 0://the end point has been created (initial
state)

const TransferState LISTEN = 1: //the end point is awaiting active
connection

const TransferState CONNECT = 2: //the end point is connected to its
peer

const TransferState ACTIVE = 3; //the transfer is in progress

const TransferState COMPLETE = 4; // transfer has completed succesfully

const TransferState ABORT = 5: // transfer has been aborted

struct TransferStatus {

TransferState state; /[current transfer state

FileCount current_count; //current transfer count

FileCount max_count; /| expected transfer size bytes/chars
b

/[Exceptions

typedef short ErrorCode;

const ErrorCode UNSPECIFIED = 0; // Error category not defined

const ErrorCode UNAVAILABLE =1:// The service is not available at
this time

const ErrorCode UNSUPPORTED = 2./l operation not supported,

CORBA-FTAM/FTP Interworking Specification Version 1.0

illegal parameter value
const ErrorCode NO_PERMISSION = 3: //No permission to perform the
operation

const ErrorCode ENTRY_EXISTS =4: /[Entry should not already exist
for operation

const ErrorCode ENTRY_PATH ERROR =5: // Entry path component
missing or invalid

const ErrorCode ENTRY_IO_ERROR = 6: // error openind, reading.
writing, closing file

const ErrorCode DIR_NOT EMPTY =7:// (rmdir required empty

directory)
_const ErrorCode TRANSFER 10 ERROR = 8: // error openind,

transferring, or closing connections
const ErrorCode TRANSFER ABORT _=09:

exception FileSystemError {

ErrorCode error;
wstring desc:
—L

/[Error transferring between two files

exception TransferError {

TransferEndPointRole error_endpoint;
ErrorCode error;
wstring desc:

—k

/[FileSystem provided by service
interface FileSystem {
FileSession login(in wstring user,

in wstring password,
in CosPropertyService::Properties login_properties.
out Directory initial_dir)

raises(FileSystemError):

wstring get_system _id();

—k

/[FileSession client obtains by logging in to FileSystem

interface FileSession {

void destrov():

—k

/| Common File system entry methods

Naming Service: v1.1 Service Description Month Year 4-7

interface FileSystemEntry: CosPropertyService::PropertySet {

EntryName get_name()
raises (FileSystemError):;

EntryPath get_path()
raises (FileSystemError):;

boolean exists()
raises (FileSystemError):;

void remove()
raises (FileSystemError):;

Directory get_parent()
raises (FileSystemError):;

FileSession get_session()
raises (FileSystemError):;

void destroy():

—k

interface File;

/[Directory manipulation and listing

interface Directory: FileSystemEntry {

DirEntrylterator list(in CosPropertyService::PropertyNames listProps)
raises (FileSystemError):;

Directory create_directory(in EntryPath fpath)
raises(FileSystemError):

File get_file(in EntryPath fpath, in boolean create)
raises(_ FileSystemError):

Directory get_directory(in EntryPath fpath)
raises(_ FileSystemError):

void remove_entry(in EntryPath fpath)
raises(_ FileSystemError):

—k

/[1terator to retrieve results of Directory list

interface DirEntrylterator {
DirEntrySeq next(in DirEntryOffset from_dir_entry,
in DirEntryCount max_dir_entries)

4-8 CORBA-FTAM/FTP Interworking Specification Version 1.0

raises (FileSystemError):;
void destrov():

—k

/[File manipulation and basic transfer

interface File: FileSystemEntry {

void copy(in File dest)
raises(TransferError);

void append(in File dest)

raises(TransferError);

void insert(in File dest, in FileOffset offset)
raises(TransferError);

TransferEndPoint create_end_point(in TransferEndPointRole ep_role
in FilePos seek.
in FileOffset offset,
in TransferProtocol ep_protocol)
raises (FileSystemError):

TransferProtocolSeq get_end point_protocols();
b

/| File transfer

interface TransferEndPoint

-

TransferDetail go_to_listen()
raises(FileSystemError);

TransferDetail connect_to_peer(in TransferDetail passive_detail
raises(FileSystemError):;

void set_peer(in TransferDetail active detail
raises(FileSystemError):;

TransferStatus get_transfer_status()

raises (FileSystemError):;

void transfer()
raises (FileSystemError):;

void abort()
raises (FileSystemError):

void destrov():

Naming Service: v1.1 Service Description Month Year 4-9

—k

/[Eile transfer using an iterator

interface OctetTransferlterator {

FileOctetSeq get_octet_seq(in FileOffset from_octet, in FileCount

max_octets)

raises (FileSystemError):;

void put_octet_seq(in FileOffset to_octet. in FileOctetSeq octetSeq)
raises(FileSystemError):

void destroy()
raises(FileSystemError):

_k
E
#endif //_COS_FILE _TRANSFER_IDL

4-10 CORBA-FTAM/FTP Interworking Specification Version 1.0

Compliance | ssues !

Note —This appendix has been removed. Specific compliance points such as optional
operation and transfer protocol support are described fully in Section 3.2 Conformance
Criteriain the current specification. Details on support of property values is described
in detail in Chapter 3.

CORBAservices: Common Object Services Specification 7-1

7-2

CORBAservices: Common Object Services Specification

Glossary of Terms

Glossary

Note —This glossary has been removed from the specification

File Transfer Client: Any reference within this response to a File Transfer Client
should be read as FTP client or FTAM Initiator.

File Transfer Server. Any reference within this response to a File Transfer Server
should be read as FTP server or FTAM responder.

Network Element: Any piece of software or hardware in the network that can be
independently addressed.

CORBAservices: Common Object Services Specification

CORBAservices: Common Object Services Specification

