Date: November 2009

Semantics of a Foundational Subset for
Executable UML Models

FTF Beta 2
with change bars

OMG Document Number: ptc/2009-10-04
Standard document URL: http://www.omg.org/spec/FUML/1.0
Associated File(s): ptc/2009-10-06

http://www.omg.org/spec/FUML/1.0

Copyright © 2005-2008 CARE Technologies, S.A.

Copyright © 2005-2008 Model Driven Solutions

Copyright © 2005-2008 IBM

Copyright © 2005-2008 Kennedy Carter Ltd.

Copyright © 2005-2008 Lockheed-Martin Corporation

Copyright © 2005-2008 Mentor Graphics Corporation.Copyright © 2008, Object Management Group, Inc.
Copyright © 2008 California Institute of Technology. United States Government sponsorship acknowledged

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ |
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/
technology/agreement.)

Table of Contents

1 S O D ittt ittt ettt ettt ettt te ettt es et ttesteteeatateeeaeataeeaeacetetentntnteraeas 1
2 CONT OGN C . ittt ettt ettt ettt ettt st ettt te st aeaesnsaseseaeacasasaseceaens 1
2.1 CoNfOrmMaNCE LEVEIS. ...ttt ittt e e et st st ssseaseasenenss 2
2.2 Meaning and Types of CoONfOMM@NCE. ... cuie ittt eeeeeeeeaeseaeseaenaes 5
2.3 Genericity of the EXecUtion MoOdel.ttt teeeeereaeseaennes 8
2.4 ConformManCe StalEMIENt. .. .ottt ettt ettt ettt teeseaseteaseseasesenseaenseaenes 9

3 Normative RefErE&NCeS. .ou ittt ettt ettt teeeeseieseseaeaeaeasenes 9
4 Terms and DefinitioNsS . .. e ittt ettt et teeeeteeeaeenrerereaearararens 10
D S VMO S . et ittt ittt ettt ettt ettt et ttatsteteetesesesteeeirecacaceteteteseaces 11
6 Additional INformation ..ottt eieeeeeiereaeaeaens 11
6.1 Changes to Adopted OMG SpecificationsS........c.oeeeeiiieiiie e eiieiieeeieeeieaana, 11
6.2 On the Semantics of Languages and ModelS..........cooeieeiiesiiieiiiieiieiesiaaenenes, 12
6.3 On the Semantics of MetamoOdels.ttt eieeieeeeeeaeaenens 14
6.4 Alignment with the OMG Four Layer Metamodeling Architecture.................. 15
6.5 ACKNOWIEAQEMENES. . ittt ettt ettt et ettt et e ettt seessensnseasesesaseaseaenes 17

7/ Abstract Syntaxcccceeieiiiiiiiiiiiiiiiiiie e 18
7] OV BV W, ettt ettt ettt ettt ettt teaeesteassssessessesseessesseeseessessesseessessesseessesces 18
72 G A S . ittt ettt ettt ettt ettt teeteeeseeseessessesseeseessesseessessessesseescescessesesces 20
72 OV IV O W . ettt sttt ettt ettt ettt et teeessessssessssssssssssssesssssssssssssssssssssssssessssssseasseesseaseass 20

012 2 KB sttt ettt et ettt ettt ttestesseessssssessessssessssssesasesssesssesssssssesssessessesseseasescesease 21

T2 2.1 OV IV W, . ittt ettt ettt ee ettt eeete e eeetes e eeeeese e eseseenteetesaateeteenaaaeeenasaarenaass 21

7.2.2.2 Class DeSCriPtiONS. . ouuee ittt ettt ettt ettt ettt et eeieeeeeeieeeeeeeeeeeeees 29

T7.2.2.2.1 ASSOCIATION.eeteeeeeeeeeteeeeeeeeeseeeesaseaaaaaaanssssssseseseesnnnseeesesnnnnnans 29

7.2.2.2.2 BehavIoralFEature. .. ooouuuueiee e e et e ettt tteeaeeeeeeeeeeeieeenaananas 29

7 3 A ettt ettt ettt teeeeeeeeeeeaaateaatetettttaeaatttanaaaas 29

2. 2 A8 IO ettt ettt ettt ettt eeeeeeeeeaeaaeaaaaaaaaaaaaateeeaaaaaas 30

T7.2.2.2.5 COMIMENL, . eiiiiiiitteeeee e et e ettt eeaeeteeeeeetesueesaaaaeeeeeeeeeeeunsnaseeenaeeeenaeeannns 31

T.2.2.2.6 DataT Ve, .ottt ettt et ee e rer e et e ee et eiees 31

2.2 2. BNt ettt eeeeeeeeeeeeeaaaaaasaaaaaaaansesseneeeeenanaaas 31

7.2.2.2 8 Element D Ort . et eitit ittt e ettt ettt ettt eteeeeeeeeeeeeeeeenaaeeeeesereeereenaarennas 32

7.2.2.2.9 FENUMETAION. et ittt e e e e ettt ettt eeeeseeaeeeeeeeseesaaaeeaseeeesaeeennaeeeenaaeennns 32

7.2.2.2.10 EnumerationLiteral.......ooooiiiiiiiiiii ettt eeeeeeeeiiiiiiiaaeeeanas 32

TF.2.2.2. 1] FealUTIC. ittt e et eeeeeeeeeeeaeaaaaaaaaeeeseeeeeeeeeeeeennnaaceseennnnanns 32

Semantics of a Foundational Subset for Executable UML Models, Beta 2 i

7.2.2.2.12 GeNeralization....c.cveeeeeeiieieiieiniieiiiiiiiiiiiiiiiieeeee 33

7.2.2.2.13 InstanceSpecifiCation. . o..eeeeeeeeeeeeiiieeiiieieeeeiieeeeeeeeeeeeeeee 33

7.2.2.2.14 InStanCeValUe. . .oviiiiiiiiieiiiiii ettt eeeiee e eeiee e e eieieeeeeees 33

7.2.2.2.15 LiteralBOOlEaN. .. oeeeeiiiiieieiiie ettt 34

7.2.2.2.16 Literallnte@er. ..o ieeeeieiiieieieee et e et e e e e e e e et eeeeeeeeees 34

7222 17 LateralNULL . ..oiiieiis it eieee e e e eeeeireeeeeeees 34

7.2.2.2.18 Literal SpecifiCation. . ..vueiiieeeeeeieiiieeie e eeieeeeeeieee e eeeeeeeeeeeeeeees 35

7.2.2.2.19 LAteralStrin@. . oo ei ittt s et s e et e e e et e e e e iieeeeees 35

7.2.2.2.20 LiteralUnlimitedNatural...........ccoooovieeiiieiiiiiiiiiiiiiiiiiiiiiieeeeenn 35

7.2.2.2.21 MultiplicityEIemMeNt. .. ieeeeieeiiiiiiiieiiiiiiieeeiiieeeeeeieeeieeeeeeeee 35

7.2.2.2.22 NamedEIEMENt . c.uvvviieeiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeieeeeeieeeee 36

7.2.2.2.23 NAMESPACE . eeuuteriieiiiiieieeieiiiieieeeeeeeeeeeeeteeeeeeeeeeeeeeieeeeeeeieiiieeeeeens 36

7.2.2.2.24 OPEIAtION. ..eiiieeiiieeiiiiiiieeieeeeeeeeieeeeeeeee e 36

7.2.2.2.25 PACKAGE. ..cuvviiieiiieeiieieeeeeeeeeeeeeee e 37

7.2.2.2.26 PackageableElement. . .oeeuveieiiiiiiiiee e 37

7.2.2.2.27 PackagelmMpPOrt. .o.uveiiiiieieiei ittt eeee et e e eeierere et eeeees 38

7.2.2.2.28 Parameter. . oo eeeeeeeeeeteee i e et rererrrer e e 38

7.2.2.2.29 PrimitiVe Ty D€ sttt eeeee e e eee e ee e et eeieeeeees 38

7.2.2.2.30 PrODEItY .. e i iieiiiiee ittt e et et e e e e s ieee et et e ereeeeees 39

7.2.2.2.31 RedefinableElement.ooeuviiiiiiieeiiiiiieeie e 39

T7.2.2.2.32 S1O8uuiiiieiiiiiiiiiiiiieiiiieie et 39

7.2.2.2.33 StructuralFeature......ooeuveiiiieiieeiiiiiiiiiiiiiieiiiiiieeiiiieeieeeeeeeeeeeeeeeeee 40

T.2.2.2. 38 TYPDCu i 40

7.2.2.2.35 TYPEAEICMEN . eiiueiiiieiiiieiiieeiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeen 40

7.2.2.2.36 UnlimitedNatural......c..oooeevevieeiiiieiiiiiiiiiieiieeiiiieieeeeeeeeeeveeeen 41

7.2.2.2.37 ValueSpecificatioN. . .uveeieeeeieeeiiieiiieiieeeieeeeeeeeeeeeeeeeeeen 41

7.3 CommON BENAVIOIS wuuuuiiiiieeiiiiiieeiieeeeeeeeeeeeeeee et 41
T30 OVOIVIBW. ettt ettt e e it e e i e e e i ieeieens 41
7.3.2 BasiC BENaAVIOIS. ...uiiieniiieeiiiiiiieiiiiiieeiieeeeeeee e, 42
T.3.2.0 OVEIVIBW..uuiiiiiiiiiieeeeeee oottt ettt ettt e ettt et e e eeeeeeeeeeeeieeee 42

7.3.2.2 Class DeSCrPtIONS. ...oooiiiiiiieiieeee et 43
7.3.2.2.1 BENAVIOT ceiuviiieueiiiiiiiieiiieeieeeeeeeeeeeeeeeeee e 43

7.3.2.2.2 BehavioredClasSifier.oouuiieeeeiiiiiiiiiiiieiiiieieeeeieeieeeeeeieeee 43

7.3.2.2.3 FunctionBehavior.cvvvieeeiiiieiiiiiiiiiiieeeieeeeeeeeeeeeeee 44

7.3.2.2.4 OpaqueBenaVIOr. ..ooiieeeeiiii i 44

7.3.3 COMMUNICALIONS. toiiieeiiiiiieeiiiieeee ettt ee e eeieeeeens 45
T.3.3. 0 OVEIVIBW. .ottt ettt ettt e e e et ee ettt e eeeeeeeeeeeeeeee 45

7.3.3.2 Class DeSCrPtiONS. ..uueueeeeeieiiiiiiiieiieeiiieie et 46
73320 EVENtiiiitiiiiiiiiiieeeeieeeeeeeeeeeeee e 46

7.3.3.2.2 MeSSAZEEVENt...uuiiiiiuiiiiiiiiiiiiiiiiieiiieeeeeeeee e 47

7.3.3.2.3 RECEDIION. c.uuiiiiiiiietiee sttt e et et e e et et e e beeeereeeeeiereeeeeeeeeeees 47

7.3.3.2.4 SIGNAL..tii ittt et e eeee e 47

7.3.3.2.5 SigNAlEVENT. 0iiii ittt eeee e e e e e e e e i 48

J.3.3.2.60 TGO ittt ettt e et e e st et e e et ee e et e eeeeeeeeeeeeeeeeeees 48

T AV S ittt ettt ettt et ittt ettt ettt tee ettt teteteteteteteareaenes 48
T4 OVEIVIEW. eeeiiiiiiiiieiiiei ettt ettt ettt ettt 48
7.4.2 Intermediate ACtiVIti©S.......oeuueeeeeeeeeiiiiiiiiiiiiiiiiieeiee e 49
4.2 OVEIVIOW.eutueeeieeeiiiiiiiieieieeeeeeeee et ee ettt e e eeeeeeeeeeeeeeeeeeeeeenn, 49

7.4.2.2 Class DeSCrPtiONS. ...uuueeeeeiiiiiiiiiieiiieiiieie e 52
T4.2.2. 1 ACHVIEY .ottt ettt et e e et et et e et e eet e eeeereeeeeeeas 52

7.4.2.2.2 ACtVIEYEAGE. ..ottt 53

7.4.2.2.3 ActiVityFInaINOde.vvviiiiieiiii it 53

7.4.2.2.4 ACtVIEYINOAE. ..ot e et et e e e e eeeeeees 53

7.4.2.2.5 ActivityParameterNOde. . .o.vvvviiiiieeiiiiiiieeie e 54

7.4.2.2.6 CONIOIFIOW.uuiiiiiiiiieiiiiiiiiiiiiiiiiiieeieeeeeee et 54

Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.4.2.2.7 CoNtroINOA@. ...vvvieeeiieeiiiieiiiiiiiieiieeeeeeeeeeeee e 54
7.4.2.2.8 DeCISIONNOAC. ..ooiueiiiieiiiieiiiiieeieiieeieeeeeeeeeeeeeeeeeeeeeeeeenn 55
7.4.2.2.9 FINAINOAE. . .oiiiiieeiii ettt e e e ieeeeeeeeeeeeeeeeeees 55
7.4.2.2.10 FOrKNOAE. . .ooiiiiieiiiiiiiieeie et eeee e e e eeieieeeeeeeeeeeees 55
7.4.2.2. 11 InitialNOdE. .ouveeiiiiiieiiie et e e e e et e eeeeeees 55
7.4.2.2.12 JOINNOAE. ..ot eeee e e e e e e eeeeeeeeeeeeeeeeereeeeees 56
T.4.2.2.13 MEr@ENOAE. ...vviiiiiieieeiii ettt e e e e e eeieeeeeeeeeeeeeeeeeeees 56
7.4.2.2.14 ODJECTEIOW. ..viiieiiiiii ettt s i e s et e e et eeeeeeereeeeeeeeas 56
7.4.2.2.15 ObJECtNOAC. .o cvviiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeee 57
7.4.3 Complete Structured ActiVitieS.......uueeiieeeieiiiieeeeeieieeeeieeeeeeeeeee e 57
T4.3.1 OVEIVIOW.euuueeieeeiiiiiiiiieieeeeeeeeeee ettt ettt ettt ettt eeeeeeeeeeeeennn, 57
7.4.3.2 Class DeSCIPtIONS. ...oiiiiiiiiieeeee et e et e et e ee et eeeeeeeeseeeeseeeiieeeeeeeeeeeenss 58
T4.3.2. 1 ClaUSC. . i iueeeiiii sttt e et eeeeene e eetee e eeeieeeeeeeeeeeeeeeeeees 58
7.4.3.2.2 ConditionaINOdE.ooviieeeeiiiiiiiiie it eeeeieeer e e e i 59
7.4.3.2.3 EXecutableNOd€. .uoiieeiiiieiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee 59
7.4.32.4 T0ODPNOAC ccuviiiieiiiiieiiiiiiiiiieeieeeeeeeeeee e 59
7.4.3.2.5 Structured ACtiVityNOA€. .vvvieeeeiieeiiiiiiiiiiiieiiieeeeeeeeeeeeee 60
7.4.4 Extra Structured ActiVitieS.......ooveeeueiiiieeieiiiieeeeeeeee e 60
T A4 OVEIVIOW. ettt ettt et ettt ieeeeeeeeeeeenn, 60
7.4.4.2 Class DeSCHPtIONS. ..ooiiiiiiiiieeeee et eeeeeeeen 60
7.4.4.2.1 EXPanSiONINOA€. .ocuuiiieeiiiiiiiiiiiiiiiiiiieiiiieiieeeieeeeeeeeeeeeeeeeeeeeeen 60
7.4.4.2.2 EXPANSTONREZION. ..ecueviiiieeiiiiiiiiiiiiiiiiiieieeeiieeeeeeeeeeeeeeeeeeeeeeeeen 61
PN Ao (o] o 1T T T T T T T T T 61
5.1 OV IV O W, et ittt ettt ettt et ee et te ettt teeeeteeeeee et teieesten et teerentareneeas 61
7.5.2 BaSIC ACHONS. .. ettt ettt e ettt it eeieieieiieraiiieareiiiieiiiiieas 62
T.5.2. 0 OVEOIVIBW. ...t e et e e e e et e e eee e eeeeeeeseeeeeeeeeeeeeeeeseeeeesenenaeeeess 62
7.5.2.2 Class DeSCHPtIONS. ..ooiiiiiiiiiieeeei oo eeeeeeeenn 65
T.5.2.2. 1 ACHON. 1ottt ittt eeee et eeee e e e e e e e et ee e e eeieeeeeeeeteeeeeeeees 65
7.5.2.2.2 CaAllACHON. oiiueiiiiiiiiiiiieeiiieieeeieeeeeeeee e 65
7.5.2.2.3 CallBehaViorACHON. .eeuuviiieiiiieeiiiieeiiieeeieeieieeeeeeeeeeeeeeeeeeeeeee 65
7.5.2.2.4 CallOperationA CtiON. c.vvvieeeeeiiieiiieeeieeeeiieieeeieeeeeeeeeeeeeeeeeeeeeenn 66
7.5.2.2.5 INPULPIN. c.vviieeiiiieiiiiieieeeiieeee e 66
7.5.2.2.6 InVOCAIONACHON. ..vvveiieiiieieiiiiieeeiieeeeeeeeeeeeeeeeeeeeeeveeeeene 66
7.5.2.2.7 OUtPULPIN. ceveiiiiiiieeiiiieeeeeeeee e 67
5.2 2 8 Poll. ittt et e e ee e ettt e e et e e ee s 67
7.5.2.2.9 SendSignalACtiON. .. ieereeiiii it 67
7.5.3 Intermediate ACHONS....iivuuiiieeiiiiiieeiiieeieeeeieeei e, 68
7.5.3.1 OVEIVIOW.euuuueeeeeiiiiiiiiiiieieeeieeeie ettt et eeeeeeeeeeeeeeeeeeeeeeeenn, 68
7.5.3.2 Class DeSCrPtiONS. ...uuueeeeeieieiiiiiieiiee i 70
7.5.3.2.1 AddStructuralFeatureValueACtion.oeuvvveeeveeeieiieeieeiieeeieveeeenn 70
7.5.3.2.2 ClearASSOCIAtIONA CHION. 1.oiieeeeriiieiiieeeieeeeeeeeieeeeeeeeeeieeeeeeeeeeeeeieeieeeeeees 71
7.5.3.2.3 ClearStructural Featureé ACtION. . .oouevvviei et 71
7.5.3.2.4 CreatelLinKA CHON. ...oiiieieeeeise i ettt ee i e ereeieeeeeeeeeeeeeeeeees 71
7.5.3.2.5 CreateODIeCtACHION. . oiiriii ittt eee et reeeere i e ieeeereeeeeeees 71
7.5.3.2.6 DestroyLInKACHON. . oereeiiii it eeiee e e e eeeeeees 72
7.5.3.2.7 DeStroyObieCt A CTON. c.vviiieiii ittt iee et eee s eeeeeeees 72
7.5.32. 8 TANKACHON. tvviiiieiiiieiiiiiieieiiieeieeee et 72
7.5.3.2.9 LinkEndCreationData........ccooeeieiiiieiiiiiiiiiiiiiieiiiieiiieieeieeeeeeeee 73
7.5.3.2.10 LinkKENdDAA..oeeveiiieiiiieiiiiiiiiiiiiieieeeeeeeeeee e 73
7.5.3.2.11 LinkEndDestructionData.........co.vevieeiiiieeiiiiiiieeeiiiiiiieiiieeiveeeeen. 73
7.5.3.2.12 ReadlinkKA CION. .cuvveeieeeiiieeiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeen 73
7.5.3.2.13 ReadSelfACtion. ..ueeeeeeeiieeieiiiiieieeeeieeeeeeeeeeeeeeeeeen 74
7.5.3.2.14 ReadStructural Feature ACtION.vvviieeeiieiiieiiei e eeeeeeeeees 74
7.5.3.2.15 RemoveStructuralFeature ValueACtion. . ..o..vveeiieeeeiieiiiiiiiieieeeeeeeeeees 74
7.5.3.2.16 Structural Feature ACtION.vviiii i eeeeeeeee e ee e 74
7.5.3.2.17 TeStIdentity A CUON. ..viiiiieeeeieee et eeiee e e seeeeeeeeeeeeeeeeeeeeeeeeeees 75
Semantics of a Foundational Subset for Executable UML Models, Beta 2 iii

7.5.3.2.18 ValueSpecificatioNACHON. .e.vvvvieeeeeiieiieeeeiiieeeeeeeeeieeeieeeeeeeen 75

7.5.3.2.19 WriteLinKA CtION. ...vvviieeeieiiieeeiiieeeieeeeeeeeeeeeeeeeeeeee e 75

7.5.3.2.20 WriteStructuralFeature ACtION.vvieiieeiiies e eeeeiree e 75

7.5.4 Complete ACHIONS..ouuuuiiiieeeiiiiiee e 76
T.5.4.0 OVEIVIOW..uuuiiiiiiiieeeee oottt ettt e e et e ettt e e e eeeeeeeeeeeeeee 76

7.5.4.2 Class DeSCrPtiONS. ..uuuueeeeeeeiiiiiiiieiiieiiieieeeeeeeeieeeeeee e 79
7.5.4.2.1 AcceptEVENntACHON. oeuviiieeiiiiiiiieiiieieeeeeeeeeeeeeeeeen 79

7.5.4.2.2 ReadEXteNtACtION. .eveeeiiieiiiiiieieieeeeieeeeeeeeeeeeeeeeeeen 79

7.5.4.2.3 ReadlsClassifiedObieCtACHION. . eeeeriieiiiiieiie it 80

7.5.4.2.4 ReclassifyODIECtACHION. c.uvuiiiiieeeieei e et eeeeee e e eeieeeeeeeeeeeeeees 80

7.5.4.2.5 REAUCEACHION. 1. iuereiiisieieeei ettt et e e eeieeeeeeieeeeieeeeeeeeeeeees 80

7.5.4.2.6 StartClassifierBehaviorACtiON. ... uieeeeeieeieieeiee e e eeieeeeee s 81

7.5.4.2.7 StartObjectBehaViorACtON. ...vvi ittt eeeiereeeeeeees 81

8 Execution MOdel.......oenienieieieieeieieie e eeeieeeeee, 81
8.1 OVEIVIBW. ettt ettt ee e ee e eeeiiins 81
B2 L0, ittt ettt e teeeeeiteeiteeieesteeeereseeestiesieceeeceseeestescesceseeseesees 84
82,1 OV IV B W, ettt ettt ettt ettt e ettt e e teee e ete e ee st te e et tee e ee et eeeetsteneetenteerentareneeas 84
8.2.2 Class DeSCIiPtIONS. ettt ittt et eseeteeeetee e teeetteeeeeieeteerestereieeieeeeneeens 89
8.2.2.1 ChoiceStrateqV.ouvveeeeeieiie i 89

8.2.2.2 EXecUtioNFACtOrY.ooiiiiiiiiiiiiieeei e 90

8.2.2. 3 EXOCULO . sttt e et et ee e et eeeeeee e eeeeeeeseree e e et rreeereeeereenes 93

8.2.2.4 FirstChoiceStrateqy.....uuueeeiiiiiiiiiiiiiiiiieii e 94

8.2.2.5 LOCUS. .oeeeeuiieii ittt e e eeenne 95

8.2.2.6 SemanticStrateqy......oueueiiieieiiiiiiii i 97

8.2.2.7 SemantiCViSitOr. . ..oouiieeeeeieee e 97

8.3 ClaSSES. ittt aieeeennn, 98
8.3.1 OVEIVIBW. ...ttt ettt ettt et e et e e e e e eeeeeeeeeeeeenee 98
8.3.2 KEIMELouuuuiiiiiiie ittt eaaans 98
8.3.2.1 OVEIVIOW.euuueeeeeeeiiiiiiiiiieeeeeieeeee ettt ee et et eeeeeeeeeeeeeeeeeeeeeenns 98

8.3.2.2 Class DeSCriptiONS...oooiiiiieeeeeeiieii e 106
8.3.2.2.1 Bo0leanValUe.....oooieueiiiieiiiieiiiieiiiiiiiiieieeeieeeeeeeeeeeeeeee 106

8.3.2.2.2 CompoundValue......couviiieueiiiieiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeen 107

8.3.2.2.3 DataValUe....ooouviiiieiiiieiiiiiiiiieiiiieieeee e 110

8.3.2.2.4 DispatChStrategy. .ooeeueiiieeeiiiiiieeiiieiieieeieeieeeeeeeeeeeeeeeeenn 111

8.3.2.2.5 EnumerationValue.......coveveeeeeieeiiiiiiiiiiiieieeeeeieeeeeeeeeeeeeeeeen 112

8.3.2.2.6 EVAIUALION. ..0eiiiiiieiiiis ettt eeee e e e eeeeeeeeeeieereeeeeeeeees 113

8.3.2.2.7 EXtensionalValue.ooieeeeiiiiiiiiiis et eereeeeeeees 114

8.3.2.2. 8 FeatureValUe.ooiiieeeiiiiiiieiie e e e eeeeeeeeeeeeeeeeees 114

8.3.2.2.9 InstanceValueEvaluation.ooeevviiiiieiiiii i 116

8.3.2.2.10 Inte@erValUe. .. .ooieeeeeiiiiiieiiis et eeeee e e eeiereeeeeeees 118

8.3.2. 2. 11 TANK. . ouviiiieiis ittt e e et e e it e et eee e eeeas 120

8.3.2.2.12 LiteralBooleanEvaluation..........cceuveieeeiiieiiiiiieiiiiiiiiieiieeeeeeenn, 121

8.3.2.2.13 Literal Evaluation.....covviieeiiieiiiiiiiiiiiiiieiiiiiieeeiieeiieeeiieeeen, 122

8.3.2.2.14 LiterallntegerEvaluation........co.oeeeveviieeiiieiiiiiiiiiiiiieiieeeiieeeeeen 122

8.3.2.2.15 LiteralNUlIEVAIUAtION. c..veiieiiiiiiiiieiiiieiieeeiieeieeeeeeeeeee 123

8.3.2.2.16 LiteralStringEvaluation..........coovvveeviiieeiiiieiiieeiiiiiieeeeieeeeeeeenn 123

8.3.2.2.17 LiteralUnlimitedNatural Evaluation.........oooevveiiiieiiieiiieiieeieeieeeeeees 124

8.3.2. 2. 18 OB €0 ittt e ettt e eeeens 124

8.3.2.2.19 PrimitiVeValue.vvviiiiieiiiie i ieei et eee e 126

8.3.2.2.20 RedefinitionBasedDispatchStrategy. ..oo.uveeiieeeeiiiiiiiiiiei i 127

8.3.2.2.21 ReFOICNCE. .uii ittt ee et e e et eeeiieeeeeeeeeeeeees 128

8.3.2.2.22 StrINZVAIUE. ..ottt eet et e e reeens 130

8.3.2.2.23 StructuredValue.cvvveiiiiiiiiiii e 131

Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.3.2.2.24 UnlimitedNaturalValue........coovvveeeeeiiniiiiieiiiiiieeeeiieieeeieeeeeen 133

8.3.2.2.25 VAlUC. cuvviiiiiiiieiiieeeeieeeeee e 134

8.4 CommMON BEhAVIOIS.iiiieeeiiiiieeeeiieeeeeeeeeeeeeeeeeeeeee et 136
841 OVEIVIBW.euuuiiiiieieiiieeee ettt e e e e ee e eeeeenn, 136
8.4.2 BasiC BENaAVIOIS. ..uuiieeniiieeiiiiiiiiiiieiiieeeiieeeieeeeeeeeeeeeeee e 137
8.4.2.1 OVEIVIEW. .uuuuueeiiiiiiiiiiiieiii i ettt ettt s et e i 137

8.4.2.2 Class DeSCriptiONS....ooiuiieeeieeeeie i 137
8.4.2.2. 1 EXCCULION. .eiiueiiieeeiiieiiiiieiiieeeiiieeee e 137

8.4.2.2.2 OpaqueBehaviorEXeCUtioN. . .cuviieeeeeeiieiieeeiiiieieeeeeeeeeeeieeeeeee 140

8.4.2.2.3 ParameterValUe....o..ovveueeeiieiiiieiiiiieiiieieeeeeeeeeeeeeeeeeee 140

8.4.3 COMMUNICAtIONS. ceoiiieeiiiiiieeiiiiieee et eeeeeeenn, 141
8.4.3.1 OVEIVIBW. ..ottt ettt ettt e et e et eeeeeeeeeeeeeanes 141

8.4.3.2 Class DeSCriptiONS....ooiiiieeeeeeei et 144
8.4.3.2.1 ClassifierBehaviorEXeCUtioN......couvvveeeiiiieiiiiiiiieiieieiiieeeieieieeeen 144

8.4.3.2.2 EVENtACCEPLOT M uuiiiiiiiiiiiiiiiiiieiieiieeeeeeeeeeeee e 146

8.4.3.2.3 FIFOGetNextEventStrategy...oo.uueeeieeeiiiiieiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeee 146

8.4.3.2.4 GetNeXtEVentStrategy . uvuueiiiiiiieiiiieiiiiieieeee e ee e, 146

8.4.3.2.5 ObJeCtACHVALION. ..oiieeriiieit ittt ee e et e et e e e e e eeereeeereeeieeass 147

8.4.3.2.6 S1gNAlINSIANCE. ...uvviiiiiiieiiiie i eeeeeiee e e e eeiieeeeeeieeeeeees 150

B0 ACKIVIT IS, ittt ittt ettt ettt et ittt ettt et teete ettt teteteteteteaeaeaenas 151
8.5.1 OVEIVIBW. ...ttt ettt e e e e e e e e eeeeeeeeeeenne, 151
8.5.2 Intermediate ACtVItiesS..........eeiiiereeiiiiiiiieiiiiiiee e 152
8.5.2.1 OVEIVIOW.uuuueueeeeieiiiiiiiiieieee et e ettt et et eeeeeeeeeeeeeenn, 152

8.5.2.2 Class DeSCrPtiONS. ...uuuueeeeiiiiiiiiiiiieieieiiee et 159
8.5.2.2.1 ActivityEdGelNStanCe. . .oeueveieiiieeiiiieeieie et 159

8.5.2.2.2 ACtIVItYEXECULION. 1.vviii it e s eeeeeeeeeeiieeeeeeeeeieeeeeeeeeeeees 161

8.5.2.2.3 ActivityFinalNOdeACHVALION.viiiiieeeiiii e ieeiieeeeeeee e eeeeeeeeeeeeees 163

8.5.2.2.4 ActivityNOdEA CUIVALION. ..uvvviiiiiieiiss et iieieeeeeeieeeeeeeeeeeeeeeeeeeeees 163

8.5.2.2.5 ActivityNodeActivationGroUP.eeweeeeeiiieiiieiiiiiieiieiieeeiieeeeenee 168

8.5.2.2.6 ActivityParameterNOdeA CtVAtION. ...uvvviiiiieiieiie e eeeeeeeeeeeieeeeeeeeess 173

8.5.2.2.7 ControlNOdeA CtIVALION. .vveieeiiiieiiiiiiiiieiiiieiiieeiiieeeeeeeeeiieeeen, 174

8.5.2.2.8 CONIOITOKEN . .ecuviiiieeiiiiiiiiiieiiieiiiieeiiieeieeeieeeeeeeeeeeie e, 174

8.5.2.2.9 DecisioNNOdEA CtIVAtION. ..euvviiiieeiiieeiiieiiiieiieeiieeieeeeeeieeeen 175

8.5.2.2. 10 FOrKedTOKEN. . eevviiiieeiiiiieiiieiiieeeieeeeeieeeeeeeeeeeeeee e 180

8.5.2.2.11 FOrkNOdeACtIVAtION. ..eeeeueiiieeiiiiiiiieieiiieeieeeieeeieeeieeeeeeen 181

8.5.2.2.12 InitialNOAEACtIVALION. c..eeeeeriiieieieieieeeiieeieeeeeeeeeeeeeen 181

8.5.2.2.13 JOINNOAEA CUIVALION. 1.uuvviiiii ittt e eeeee e eeee e eeeireeeeeeeeeeeees 182

8.5.2.2.14 MergeNOdeACHVALION. . .iiiiiiieeeiieeeeieeieee e eeiineieeeieeeeeeieeeeeeeeees 182

8.5.2.2.15 ObjectNOAEA CHVALION. +.oeiii et ieeeeieieeeeeeeeeeeeeieeeeeeeeeeeeees 183

8.5.2.2.16 ObJECtTOKEN. ...ttt ee et eeerseeeeee e e e eeee e 185

8.5.2. 2 17 OF T ittt 186

8.5.2.2. 18 TOKEI . . ettt ittt e e et et e et e e e et e eee e e i eeeeeeess 186

8.5.3 Complete Structured ActiVitieS........ueiiiieeeeiiiiieieiiiiiieeeeeieeeeeeee e, 188
8.5.3.1 OVEIVIOW. .uuuuueeeiieiiiiiiiiieieeeeeee ettt ettt eeeeeeeeeaeen, 188

8.5.3.2 Class DeSCriPtIONS. . ..oiiiiiiieeeeeee et e e i ettt e eieeeeeeeeeeeeeeeeeeesreereeeieeieeezeeeeeenss 191
8.5.3.2.1 ClauSeACHVALION. ..iieeeeieii it eeieee e e eiiiereeeeeeeeeeeeeeeeeeeeeeeees 191

8.5.3.2.2 ConditionalNOAEACtVALION.eiiiieeeiiiii e eeieiieeeeeeeeeeeeeeeiieeeeeeees 194

8.5.3.2.3 LOOPNOAEACHVALION. 1.1iieeeeriieiiiieieee et eseeeieeeeeeeeeseeeeeeeeees 195

8.5.3.2.4 Structured ActivityNOdeACtiVAtION. .eeevviiieiiiiiiiieeiiiiiiiieiiieeeeee 198

8.5.3.2.5 ValUCS.uuiiiiueiiiieiiiieiiieiiieeeeeeeeee e 200

8.5.4 Extra Structured AcCtiVitieS.......oooveeeeeeiiiieeeeeeeeeeeeeeee e 201
8.5.4. 1 OVEOIVIBW. ...t ettt e e et e e eee e e eeeteeesteeeeeeieeeeseeteeeeeeeeeeeeensss 201

8.5.4.2 Class DeSCrPtiONS...ooiiiiiiieieeee it 203
8.5.4.2.1 ExpansionActiVatioNGIrOUD. ... eeeeeeeeiiieieiieiee e ieeieseeeeeeeeeeeeeeeeeess 203

8.5.4.2.2 ExpansionNOdeA CiVAtION. c.uvviieeeiiiiiiiiiiiiiiiiieiiiiieiieeeeeeeeeeeee 204

Semantics of a Foundational Subset for Executable UML Models, Beta 2 Y

vi

8.5.4.2.3 ExpansionRegionACtiVation.eeeeeeeiieeeiiieeeiiieeieeeeeeeeiieeeieeeeeeen 205

8.5.4.2.4 TOKENSC evviiiieiiiiiiieiiieieeeeeeeeeeeeeeeeeeee e 209

oI I Ao ([0 1 1< T T 209
B.8.1 OVEIVIBW.euuuiiiiieeeiiieeeeeeeeeeeeeee ettt e e e e eeeieeeeenn, 209
8.6.2 BASIC ACHONS. .oeuuiieeiiieiiiiiiieeiieeeeee e 210
8.6.2.1 OVEIVIBW. . .iiiiiiiiiieeeee oottt ettt ettt e et eeeeeeeeeeeeeeeeeennes 210

8.6.2.2 Class DeSCriptiONS....ooiiiiieeeeeee it 212
8.6.2.2.1 ACtIONACHVALION. .eevviiiieeiiiiiiiiieiiieeiieeeieeeeeeeeeeeeee e 212

8.6.2.2.2 CallACtIONACHVAION. 1e.vvviiieeiiiieiiiiieiiieieeieieeeeeeeeeeeeeeeeeeeeen 219

8.6.2.2.3 CallBehaviorActionACtiVAtioN.eeeeeveeieeiieeeieiieeeeieeeiieeeeen 221

8.6.2.2.4 CallOperationActionACHVALION. . eoueriieiiiiieiieeeeeieeieereeeeiieeeeeeieieeeeeees 222

8.6.2.2.5 INPUtPINACHVAION. ..viiiiiiseiieee it eeeeeeieee e e eeeeseeeeeeeeees 223

8.6.2.2.6 InvocationACtiONA CHVALION. ..uvvvririiieeiieei i e ieeiieeeeeeeeeeeeieeeeeeeeees 224

8.6.2.2.7 OutpUtPINA CtIVALION. .. iieeeeiieiiiieeies e e s e eeeeeeeeeeieeeeeeeeeieeeieeeeeeees 224

8.6.2.2.8 PINACUVAION. .ooveeiiisiiieeie ettt et eeeeieeeeeeeeeeeeeeeeieeeeeeeeeeeeees 225

8.6.2.2.9 SendSignal ActionACHVAION. . eeurreiiiiiieiieee e eeeiiee e eeeeeeeeeeeeeees 225

8.6.3 Intermediate ACHIONS. ... iiieeeeiiiieee e, 226
8.6.3.1 OVEIVIOW..uuuuueeeiiiiiiiiiiiieieeeeeee ettt ettt eeeeeeeeeaeen, 226

8.6.3.2 Class DeSCriDtiONS. . ..iiiiiiieeeeee et e it eeeeeesee e eeeeeeeeereereeeieeieeezereeeenns 230
8.6.3.2.1 AddStructuralFeatureValue ActionActiVatioN.ooeevveeiieieeeeiieiieeensss 230

8.6.3.2.2 ClearAssociationActioNACHIVALION. .. eeeeveieriieeeiieeieieeieeeeeiieieeeeeeeees 232

8.6.3.2.3 ClearStructuralFeature ActionActiVation. . .oo.evevriiieeeieiieieieeeeeeeeeeeeeees 232

8.6.3.2.4 CreateLinkActioNACHVAtION. ..ecvviieeeiiiiiiiiiiiiiieiiieeieeeeeeeeiieeeen 233

8.6.3.2.5 CreateObjectACtiONACHVAION. .ecuvviiieeiiieiiiiiiiiiiiieeiiieeeiieeeen 235

8.6.3.2.6 DestroyLink ActionACtiVAtiON. ...eeeweieieeiiieiiiiiiiieiieeeiiieiieeeen 235

8.6.3.2.7 DestroyObjectActionACtiVatioN.ovveieeiieeiiiieiiiieiieeiieeiiieeeen 237

8.6.3.2.8 LinkACtiONACtIVALION. ..eviiviiiieiiiiiiiiiiiiiieeieieeeeeeeeeeeeieeeeeeen 238

8.6.3.2.9 ReadLinkAcCtionA CUVALION. . ouvrviesiiiieeieeseieeiiresieeieeieeieeieeeeeeeieeeeees 239

8.6.3.2.10 ReadSelfAcCtioNACHVALION. ...iiiieeeeriies s eeieieereeeeieeeeeeeieeeeeeeees 241

8.6.3.2.11 ReadStructuralFeature ActionACtiVatioN. .. .eeeeveereeeeeiieeiieieieereeeeeess 241

8.6.3.2.12 RemoveStructuralFeature Value Action Activation.......ooeeeeeeeeeeeeeeeeees 242

8.6.3.2.13 StructuralFeature ActioNACHVAION. ...vvviiiiieeeiiieieeeeeieeeeeieeeieeeieeeeess 244

8.6.3.2.14 TestldentityAcCtioNACtIVATION. .. eieeeeeeieeiiiieiie e eeeeeeeeeeeieeeeeeeeees 244

8.6.3.2.15 ValueSpecificationActionACtiVAtION.uvvviiieeeiiiiieiiiiieieeieeeeieeeeeeess 245

8.6.3.2.16 WriteLinkActionA CtiVAtION. c..vveeveiiiiiiiiiiiiiiiiieeieiieieeeiiieieeee 245

8.6.3.2.17 WriteStructuralFeature ACtionActivation........eeeeevieeeeiieiiiiieiiienenn. 245

8.6.4 Complete ACHIONS...euuuiiiieeeeiieeeeee e 246
B.8.4.1 OVEOIVIBW. ...t ee e et e e et e e eee e e eeeteeeseseeeeeeeeeeseeteeeeeeeeeeeeensss 246

8.6.4.2 Class DeSCriPtiONS...oiiiiiiiieeeeeeie e 250
8.6.4.2.1 AcceptEventActioNACHVAION. .. iieeeeiiiiiiieeeie e i eeeieeeeeeeeeieeeeeeees 250

8.6.4.2.2 AcceptEventActionEventAcCepter.....ooeuuiiiiiieeeiiiiiiiiiiiiiiiiieeeeeee 252

8.6.4.2.3 ReadExtentActioNACHVAION. ..eeuviiieeiiiieeiiiiiiiieiiiiiiieiieieeeeeeeen 253

8.6.4.2.4 ReadlsClassifiedObjectActionActivation......oeveeeeeeieeeiiiiiiiiiieeennn 253

8.6.4.2.5 ReclassifyObjectActionACtiVAtion. .o..eveeeeeeeeeieieieieiiiieiieeiiieeeen 255
8.6.4.2.6 ReduceAcCtioNACtIVAtION. ..euveeiieiiieeiieiiiiiiieeeeieeeeeeeeeeeieeeen 257
8.6.4.2.7 StartClassifierBehaviorActionActivation........oeueeeeeeeeeieeeeeeeiiiieeenn.. 258
8.6.4.2.8 StartObjectBehaviorActionACHVAION. ...uvveiiiieiieie e 259

9 Foundational Model Library....o.uoei it ieeeeaeaeaeaeaeaens 260

0.1 PtV Ty DS, ettt et et s et e et e ettt teeeeseeeeseeeseeenseeenseeensseennsenssenssnnsennen 261
9.2 Primitive BeNaVIiOrS. ...ttt ettt e et st etesstaseeteenseensaenazeenseenss 262
9.2.1 B0Olean FUNCHONS.ttt ettt ettt ettt e tteeeeteeeeeenteeenteeeeeieenses 263
9.2.2 INtEQEIr FUNCHONS. .. ittt ettt ettt et et ettt ee et eeeeeeeeeteeeeerenteeeeeeenses 263
9.2.3 StriNG FUNCHONS. . oeeiiee ittt ettt ettt e et eee e tereeee st eeeeeteeeaezienieenses 266

Semantics of a Foundational Subset for Executable UML Models, Beta 2

9.2.4 UnlimitedNatural FUNCHONS. ... i eei e ree e iereeeieeeerenieeenaes 266

9.2.5 List FUNCHIONS......oeuvieiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic i, 267

.3 GO 0N . ettt ettt ettt et ettt et eeeseeseseseeseeseeatean st stenstentententearentearenns 268
0.3, OV IV W, ettt ettt et e et e e et etee e te e eete e eee e teeeetes e ete et terentereteerenteeeaes 268

9.3.2 Classifier DeSCIiDtIONS. ... iee ettt ittt ettt teee ettt eereeterestereaseetenteesieeieenes 268

9.3.2.1 Listener (active ClaSS)......ceuuuuuuiiiiiiiiiiiiiieieeieeieeeeeeeeeeee e 268

9.3.2.2 Notification (SIgNal).....coeeeeeeeeeiiieieiiiiiiiiiiiiiiie e 268

9.3.2.3 Status (data tYP@)...eeeeeiiiiiiiiee ettt e e e ettt ittt eirreeees 268

9.4 BasiC INPUL/OULDUL.eeeiiee i e i e ee i ieeeeeereseeeeentereeeeeeeeeeaennss 269
9.4.1 The ChannNel MOEL. ittt e et ee e eeeeieeteeeeesenteeeeeieenaes 269

9.4.2 Pre-Defined ReadLine and WriteLine BEhaviors..........oeoiveiiieeniiiiiiieeiiiieeiieenees 270

9.4.3 Class DS CIiDtIONS.ttt ittt ete ettt tes e te et tereneeteeeterenteeentzeeeeieenes 272

9.4.3.1 ActiveChannel (aCtiVe ClaSS).......uuiiiiiiiiiiiiiie et ee i e e e e eiieeeeeeeeeeeeees 272

9.4.3.2 CNANNEL. ...ttt et ettt te ettt e et eeeiir it eareeeeens 272

9.4.3.3 INPULCNANNEN . .uuueeeieiiiiiiiiiiiiieeeeieie e 273

9.4.3.4 OutputChanN@l.......oooivieeeeiiiei i 273

9.4.3.5 StandardinputChannel.........ooooiiiieiieiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 274

9.4.3.6 StandardOutputChanNel.........eeieeiiiiiiiieieee e 274

9.4.3.7 TextiNputCRaNNe . euuuueee i 274

9.4.3.8 TextOUtPULCNANNEL. ... it et e e e e e e e e eeeeereeeene, 275

10 Base SemMaNntiCS. .. .cuieniieiieiiiie et ieeeeieieieeses 276
10.1 Design RatioNale.uuieeiiiieiieii ittt ettt eeeieeieeseeeeeeeeieeeeeieeenss 276
10.2 CONVENEIONS. ittt ettt ettt et i eteee s teeeeaeeteeteeteeaeenseenteeaeenseensenns 277
10.3 SHUCHUIE. oottt ettt et e et e teeeeeereeseeesetenstaeenaeenseensennsss 277
10.3.1 Primitive TYDES. ..ttt 278

10.3.1.1 BOOIEAN. ...t eeeanns 278

10.3.1.2 NUMDEIS. ittt et e et e e e eeeeeeeeeeeeseeeeeeeeeeeeeeeeesereeeeteneereennees 278

10.3.1.3 SEQUENCES. ceeuueuiiiiiiiieeeeeee ettt ettt e et e et e e eereens 280

10.3.0.4 S NG, ittt ettt e et e eeeeeettreee e eeteeer e iereerreeees 283

10.3.2 Classification and Generalization............iiieeiiieiiie ittt iee e rereeiieeeeeen, 284

10.3.3 Classifier Cardinality.eiiieiii ittt ettt ettt tte e eerettreteeretereeteeaeeeieeaeens 284

10.3.4 PrOR eI E S, ettt ettt ettt ettt et ettt et ettt tre e rte ettt tere ettt iretrttareiieeeas 285

10.4 BN aVIOT . ittt ettt ettt ettt eetettatteatieatieatesteaieiieaceiinaieaienes 288
10.4.1 Property Value MOIfierS.ttt ettt e i ieeeeretereeieeeeeeeeieeeens 288

10.4.2 COMMON BENAVIO ittt ettt ettt ee e tereeteeeeteeeateeeteeaeenteeeens 289

10.4.2.1 SYNEAX.ceiiiiiiiiiiieeee ettt eeans 289

10.4.2.2 SOMANEICS. ..ttt ettt e ettt e eeeeteeet e e e ieeeeiieeterrr s 290

10.4.3 Activity Edges Generally..........eiiiieeeniiiiieeiiiiiiieeeiiiieeeeiieeeeeeeeeeeeeieeeeeieeienns 291

10.4.4 Activity Nodes Generally........cuuuiiiiieeuiiiiieeiiiiiiieeeiiiiieeieeeeeeeeeeieeeeeeieeeeeeeenns 292

10.4.4. 1 SYNEAX. ottt ettt eeeiiteer e eieetieeirtetereieereairieieees 292

10.4.4.2 SEMANLICS. ...iiiiiiiiiieieee et 293

10.4.5 Structured Nodes Generally......oooueeeiiiieeeiiiiiieeeeiiiiieeeeiiieee e 294

10.4.6 EXPaANSIiON REQIONS. cuuuiiieeiieeiiiiiieeiiieeiieeeeeeeieeeeeeeeeeee e, 295

10.4.6.1 SYNTAX. ciieeeiiiee ittt ettt et ee et et et eere e eere e teeteteereieeereeeenes 295

10.4.6.2 SEMANTICS. ...ttt e e ettt eeeeeeeeeeieeeeeeeeseereee e ieeeeertrrrrrereaeeees 296

10.4.7 CONtrOl FIOW. ..uuiiiiiiiiiieieeee ettt 300

10.4.7.1 Top level aCtioN......oeeueuueeeiiiiiiiiiiiiee e 300

10.4.7.2 Initial NOde t0 ACHION. ...iiveeeiiieei it ee e e e e e i e it eeeeeeeenen, 300

10.4.7.3 Action to Action, general necessary condition.............ooeeeiiieeiieiiieiiiiiiiiiiiieeee 301

10.4.7.4 Action to Action. single control flow, optional merge/fork...........oooeeeeeeeeeiveveennnn.... 301

10.4.8 ODJECt FIOW. ieeuuuiiiiiieniiiiiiiiiiii ettt ieeias 302

Semantics of a Foundational Subset for Executable UML Models, Beta 2 Vi

viii

10.4.8.1 Object node to object node. optional fork/merge............ceeveeeeeeeiiiiiieeieeieeeene.... 302

10.4.8.2 Object node to object node. decision. optional fork/merge.........cooooeveeeveeeeeeenn..... 303
10.4.8.3 Action with pins, no incoming control flow or one from initial..........cccoeevveeiieenn.... 304
10.4.8.4 Action with pins, one incoming control flow from action, optional fork/merge...... 305
10.4.8.5 Action with pins, one incoming control flow from action, decision with decision flow
from same action. optional fork/merge...........ooeeeeieiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 307
10.4.8.6 Action with pins, one incoming control flow from initial, decision with decision flow
from initial action in same, optional fork/merge..............coovveeiiiiiiiiiiiiiiiiiiiiiiiiiieiiieevennns 307
10.4.9 INVOCAtION ACHIONS. .. ittt st e e e ee e tee e eeeeetereeeieeeerentereeeeens 308
10.4.9.1 SYNEAX ceiiiieiiiiii i 308
10.4.9.2 SEMANLICS. ...oiiiiiiiiiiii ettt 310
10.4.10 Object Actions (Intermediate)..........uueiiiieeeniiiiieeieiiiieieeeeeeeeeeeeeeieeeieeieeeens 312
10.4.11 Structural Feature ACtiONS.iie ittt et e it eeieeeeeeieeeeeeens 314
10.4.12 Object Actions (COMPIEE)..uuuuuneeiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e, 316
10.4.13 Accept Event ACtON....oooviiieeeeeieeieeeeeeeeeeeeeeeeee e 317

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog
is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

e UML
e MOF
e XMI
e CWM

* Profile specifications

OMG Middleware Specifications

e CORBA/IIOP

e [DL/Language Mappings

® Specialized CORBA specifications
e CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

e CORBAservices
e CORBAfacilities

Semantics of a Foundational Subset for Executable UML Models, Beta 2 ix

®* OMG Domain specifications
® OMG Embedded Intelligence specifications
® OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult kttp./www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

X Semantics of a Foundational Subset for Executable UML Models, Beta 2

http://www.iso.org/

1 Scope

The scope of this specification is

e the selection of a subset of the UML 2 metamodel that provides a shared foundation for higher-level UML
modeling concepts, as well as

e the precise definition of the execution semantics of that subset.

Given its fundamental nature, the subset assumes the most general type of system, including physically distributed and
concurrent systems with no assumptions about global synchronization.

Many executable UMLs are conceivable, based on executing use cases, activities, workflow, methods, or state machines
—and their combinations. This specification covers the capabilities described in the lower two layers described in Figure
6.1, Subclause 6.2.2 of the UML 2.2 Superstructure Specification. These layers encompass functionalities described as

“structural foundations,” “intra-object behavior base,” “inter-object behavior base” and “actions,” and are covered
primarily in Clause 7 and Clause 11 of the UML 2.2 Superstructure Specification.

The selected elements are translatable into an implementation such that a specified functional computation is independent
of the control and data structures in which the elements reside. This translatability provides maximum flexibility to
modify the organization of the data without affecting the definition of an algorithm. (The UML 1.5 action metamodel was
designed in this manner for precisely this reason.)

It is not the intent of this specification to define the specification of every higher-level UML construct in terms of
elements from the foundational subset; however, the specification does intend to encourage use of the broadest possible
subset of UML constructs that can be reduced to a small set of elements.

In sum, the foundational subset defines a basic virtual machine for the Unified Modeling Language, and the specific
abstractions supported thereon, enabling compliant models to be transformed into various executable forms for
verification, integration, and deployment.

2 Conformance

This specification defines a subset of UML 2 and specifies foundational execution semantics for it. This subset will be
referred to as Foundational UML or “fUML.” Conformance to this specification has two aspects:

1. Syntactic Conformance. A conforming model must be restricted to the abstract syntax subset defined for fUML.
2. Semantic Conformance. A conforming execution tool must provide execution semantics for a conforming model
consistent with the semantics specified for f{UML.

The fUML syntactic subset is defined by the abstract syntax metamodel given in Clause 7. The packages in this
metamodel correspond to similarly named packages in the UML 2 Superstructure metamodel, which act as the basic
language units for the purpose of syntactic conformance. The semantics for f{UML is specified by the execution model
given in Clause 8. The packaging structure of the execution model parallels the language unit packaging of the f{UML
abstract syntax exactly, except for one additional package called “Loci.”

As in the UML 2 Superstructure Specification, this specification defines a small number of conformance levels.
Syntactically, each fUML level is a strict subset of the corresponding UML level, including a subset of the language unit
packages placed at that level in the full UML 2 superstructure. Both syntactic and semantic conformance is relative to
these levels.

The following subclauses define the f{UML conformance levels and specify the meaning of conformance relative to those
levels.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 1

2.1 Conformance Levels

There are three conformance levels defined for f{UML, corresponding to UML conformance levels L1, L2 and L3
(actually called “compliance levels” in the UML 2 Superstructure Specification). As in the UML 2 Superstructure, each
conformance level is formally defined by merging the packages corresponding to the language units included at that
level. However, for f{UML, there are actually two sets of merges: one merge of the abstract syntax packages into a
merged syntactic package for the level and a parallel merge of the corresponding execution model packages into a
merged semantic package for the level. The merged syntactic package is a strict subset of the merged package for the
corresponding UML 2 Superstructure level in the following sense: if the fUML syntactic Lz package is merged into the
UML 2 Superstructure Lz package, the UML 2 Superstructure package is left unchanged.

The goal is to be able to syntactically interchange f{UML models simply as UML 2 Superstructure models at the
corresponding conformance level. Therefore, no new overall namespace is formally defined for f{UML. The fUML
abstract syntax is simply that portion of the UML 2 abstract syntax for which a corresponding semantic specification has
been provided in this specification. To have a semantic meaning under this specification, a conforming fUML model
must be constructed from the restricted portion of the UML abstract syntax defined for fUML, but it is otherwise
interchanged as any other UML model.

Conformance Level 1 (L1) for f{UML merges the following packages:
e (lasses::Kernel
e CommonBehaviors::BasicBehaviors
e CommonBehaviors::Communications
* Loci (semantics only)

Note that there are separate merges for the syntactic (see Figure 1) and semantic packages (see Figure 2) with names as
above (except for Loci, for which there is no syntactic package). The syntactic packages being merged are as they are
defined for the f{UML abstract syntax in Clause 7. The semantic packages being merged are as they are defined for the
fUML execution model in Clause 8.

UML L1 also includes BasicActions and FundamentalActivities. But f{UML does not have a separate package for
Fundamental Activities, supporting execution semantics only at the level of IntermediateActivities (which is included at
L2). Since BasicActions requires Fundamental Activities, that also cannot be included in fUML L1. As a result, actions
and activities are not supported at all in f{UML L1.

1
Kernel
(Fram FUML::Syntas: Classes)
N
1
“merges 1
1
1
i
L1
(From FUML: :Syntax)
“TErges f,z’F ""»H‘ “MErges
—l i,:-:f A_‘
BasicBehaviors Communications
(From FUML: :Syntax: ; CommonBehaviors) (From FUML: ;Syntax: : CommonBehaviors)

2 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Figure 1 - fUML Syntax Level 1 Package Merges

1

Kernel
(Frarm FUML! Semantics: 1 Classas)

((merge i

.
HME] QE e
Loci

PA— L1 ----‘imeilge-’f--} BasicBehaviors

(From FUML::Semantics) (From FUML:: Semantics) (Fram FUML:: Semantics: : CommaonBehaviars)

wmerge»

W

Communications
{From FUML: :Semantics: : CommonBehaviors)

Figure 2 - fUML Semantics Level 1 Package Merges

Conformance Level 2 (L2) for f{UML adds the following packages (as defined in Clauses 7 and 8) to L1 (see Figure 3 and
Figure 4):

e Activities::IntermediateActivities
e Actions::BasicActions
e Actions::IntermediateActions

UML L2 also includes StructuredActivities. But f{UML does not have a separate package for StructuredActivities,
supporting execution semantics only at the level of CompleteStructuredActivities and ExtraStructuredActivities (which
are included at L3).

[]

L1
(Fram FUML: Synkas)

N

“nerges

| “rmerges | “merge»

IntermediateActions |j-———-——-———] L2 - *{ IntermediateActivities
(From FUML: :Synkax:: Actions) (From FUML: :Synkax) (Fram FUML: :Syntax: Activities)

T
1
1
| merges
1
1
1

A

BasicActions
(From FUML: :Synta::Actions)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 3

Figure 3 - fUML Syntax Level 2 Package Merges

1
L1
(From FUML::Semantics)

N

1
1
| «merge»
1
] _ 1! 1
HMerges “merges

IntermediateActions fel---2---— L2 pTEI “= IntermediateActivities
{From FUML::Semantics: :Actions) (From FUML::Semantics) (From FUML; :Semantics: : Activities)

—

BasicActions
{From FUML::Semantics: : Actions)

-:-:merge e

Figure 4 - fUML Semantics Level 2 Package Merges

Conformance Level 3 (L3) for f{UML adds the following packages (as defined in Clauses 7 and 8) to L2 (see Figure 5 and
Figure 6):

e Activities::CompleteStructured Activities
e Activities::ExtraStructuredActivities

* Actions::CompleteActions

1
L2
(Fraem FUML: 1Synkax)
M
| «merges
-:-:merge:-:- : -:-:merge:-:-
CompleteActions S L3 - = CompleteStructuredActivities
(Fram FUML::Synkax: : Actions) (From FUML; :Synkax) (From FUML::Synkax: : Ackivities)
i “ITErges
W

ExtraStructuredActivities
(From FUML: :Syntax:: Activities)

Figure 5 - fUML Syntax Level 3 Package Merges

4 Semantics of a Foundational Subset for Executable UML Models, Beta 2

1
L2
(From FUML:: Semantics)

M
i “merges
i
1 . 1. 1
- “merges “merges o
CompleteActions ke - —m—mm - m - L3 pe---m-EeEEeC = CompleteStructuredActivities
(From FUML: :Semantics: ; Actions) (From FUML:: Semantics) {From FUML::Semantics: ; Activities)
i -:-:merge:-:-
I

ExtraStructuredActivities
{From FUML;: Semantics: ; Activities)

Figure 6 - fUML Semantics Level 3 Package Merges

2.2 Meaning and Types of Conformance

Conformance to a specific fUML conformance level entails both syntactic and semantic conformance. Syntactic
conformance is defined in terms of a conforming model.

Abstract Syntax Conformance. A UML model conforms to a specific f{UML level if it is a well-formed model
constructed from only syntactic elements that are included in the f{UML abstract syntax metamodel for that level.
A well-formed model is one that meets all constraints imposed on its syntactic elements by the UML 2
Superstructure abstract syntax metamodel and any additional constraints imposed on those elements by the fUML
abstract syntax (given in Clause 7).

Model Library Conformance. In addition, a conforming UML model at any level may make use of elements from
the f{UML model library (see Clause 9). An execution tool is not required to implement any of the model
elements defined in Clause 9, but, if such elements are provided, they must conform to the behavior specified in
that clause. An execution tool may, in addition, make available a tool-specific model library for use by
conforming models accepted by the tool, so long as the execution behavior of elements of the models in that
library may be entirely defined in fUML at the same conformance level as models accepted by the tool.

For a conforming model at a certain level, the f{UML specification provides a precise definition of the execution
semantics for the model at that level. Conformance to this semantics is defined in terms of a conforming execution tool
(see Clause 4 for the definition of the term “execution tool” as used in this document). If a conforming execution tool is
presented with a conforming model, then it must behave as further described below. On the other hand, if it is presented
with a non-conforming model, then it may react in one of the following three ways.

Rejection. It may reject the model and refuse to process it further at all.

Static Partial Acceptance. If the tool is able to statically determine that the non-conforming parts of the model are all
elements of abstract syntax packages that are not included in the f{UML subset at all, and that the model elements
from packages included in the f{UML subset all conform to f{UML, then the tool may accept the model. In this case,
any elements that are not included in the f{UML subset, and are not instances of metaclasses that are specializations,
directly or indirectly, of metaclasses in the f{UML subset, may be ignored by the tool. Any elements that are not

Semantics of a Foundational Subset for Executable UML Models, Beta 2 5

included in the fUML subset, but are instances of metaclasses that are specializations of metaclasses in the f{UML
subset, must be interpreted as if they are instances of the superclass that is in the f{UML abstract syntax.

3. Dynamic Partial Acceptance. The tool may accept the model for execution and attempt to evaluate or execute any
value specification or behavior from the model, interpreting any model elements as in the case of static partial
acceptance. However, if the tool encounters any model element that is defined in an abstract syntax within the f{UML
subset, but does not conform to the additional constraints defined for the f{UML subset, then the tool must terminate
execution with an error.

A conforming execution tool need not use the same option above in all cases. However, it must be specified for any
conforming tool in which cases each option is used.

To further claim conformance for an execution tool at a specific level, it must be possible to demonstrate the following.

® Abstract Syntax Mapping. An execution tool accepts a UML model for execution in some concrete form. It must
be possible to bidirectionally map this concrete input form to a well-formed representation in terms of instances
of the metaclasses in the fUML abstract syntax at the given conformance level. One standard way to do this is to
use the XML Metadata Interchange (XMI) as the input form for the model, in which case the mapping to the
UML abstract syntax is provided by the XMI standard (see Clause 3). However, it is not required that XMI be
used as the input form. For example, a tool my provide for direct model input in terms of graphical and or textual
notation, so long as this may be fully mapped to the f{UML abstract syntax.

o Semantic Value Mapping. Runtime inputs and outputs are semantically specified by a model of values (see
Subclause 8.3). During the execution of a behavioral model, the model execution will generally take values as
inputs and produce values as outputs. The execution tool must provide a concrete implementation for all such
values and demonstrate a mapping from this implementation to the model of values provided in Subclause 8.3.
For this mapping, it is only required to demonstrate the effective implementation of the properties defined for the
value classes, showing the corresponding implementation value for any value instance from the semantic model,
and vice versa. It is not required to demonstrate the implementation of the operations specified for those classes
in the execution model. Also, if the execution tool uses different internal and external forms for values, it is only
required to provide a mapping for the external form, so long as this is sufficient to demonstrate semantic
conformance, as described below.

e FExecution Environment Mapping. The fUML execution model provides an abstraction of the execution
environment for a model in terms of the concept of an execution locus (see Subclause 8.2). It must be possible to
demonstrate how the actual execution environment provided by an execution tool corresponds to the locus
concept. Specifically, this must include:

® A definition of whether execution takes place at a single locus or may be distributed across multiple loci. If
the latter, then the tool must provide a mechanism for allocating a model or a portion of a model to a specific
locus.

e A description of whether and how extensional values (see Subclauses 8.2 and 8.3) are persisted at a locus
across behavior executions.

* A specification of what objects are pre-instantiated at a locus in order to provide system services (such as
input/output—see Subclause 9.3).

Note that, for an execution tool that, say, compiles a model to some target executable form, the execution environment
for the purposes of this mapping will be the environment in which the target executable runs, rather than the environment
of the tool itself.

o Semantic Conformance. Finally, a conforming execution tool must provide an implementation of the interface of
the Executor class from the execution model (see Subclause 8.3). While it is not necessary that this be a strict
implementation of the object-oriented operations provided by Executor, it must be possible to demonstrate the
following.

® FEvaluation. Given a well-formed value specification from a conforming model, the tool must be able to
produce a value conforming to the result of the Executor::evaluate operation on the value specification.

e Synchronous Execution. Given a well-formed behavior from a conforming model and values for all input

6 Semantics of a Foundational Subset for Executable UML Models, Beta 2

parameters of the behavior, the tool must be able to execute the behavior in conformance to the effect and
results of the Executor::execute operation.

* Asynchronous Execution. Given a behavior or an active class from a conforming model, the tool must be able
to asynchronously start the given behavior in conformance to the effect and results of the Executor::start
operation.

Note that, at a given conformance level, a conforming execution tool must semantically conform when presented with
any conforming model at that level. That is, to conform at a certain level, an execution tool must implement al/ of the
fUML abstract syntax at that level and provide conforming semantics for it.

The above definition of semantic conformance uses the concept of conforming to an operation of the Executor class from
the execution model. This concept is further defined as follows.

¢ Inputs provided to the execution tool must correspond to the input parameters required for the operation.

e Using the abstract syntax and semantic value mappings for the tool, map the inputs to the execution tool from
their implementation form to the corresponding representation in terms of instances of abstract syntax and
semantic value classes.

* Using the execution environment mapping, map the intended target execution environment to a corresponding
model in terms of execution loci and pre-instantiated extensional values.

e Using the specification of the given operation as part of the execution model (or the subset of that model that
applies at a certain conformance level), determine the effect of invoking the operation on the given input values
using an executor at a specific execution locus. This includes the generation of output values and any side effects
that occur at and through the execution locus.

e Using the execution environment mapping, map any updates to loci to updates to the target execution
environment.

¢ Using the semantic value mapping, map any output values to the corresponding implementation form for the tool.

* Conformance requires that the actual outputs and environmental changes produced by the execution tool be
consistent with the outputs and changes determined in 5 and 6 above.

The conformance requirement here is one of consistency rather than equivalence, because, as a semantic specification,
the execution model tightly constrains, but does not always fully determine, the exact results of an execution. This is
particularly true in the presence of the high degree of concurrency possible with UML activity models, in which different
conforming implementations may produce significantly different resulting executions of the same model due to timing
issues.

This allowance for some flexibility in the conformance requirements is known as the genericity of the execution model,
which is discussed in more detail in Subclause below. Nevertheless, it is still possible to formalize the conformance
requirements even in the presence of such genericity.

® (Clause 10 specifies the base semantics for the execution model. This specification effectively provides for an
interpretation of the execution model as a set of first-order predicates, or axioms, over possible execution traces.

* A specific invocation of an operation in the execution model, as called for in the determination of conformance to
the operation above, results in an execution trace. Any execution trace that satisfies the axioms of the base
semantics is a legal execution trace.

¢ Conformance to the operation requires that the execution tool conform to the effect and results of any legal
execution trace of the operation. The tool is allowed to conform to different execution traces for different
invocations of the operation, even on identical inputs in an identical environment.

In essence, the base semantics provides an interpretation of the execution model as a set of constraints on the allowable
execution of well-formed fUML models. A conforming execution tool must produce results that do not violate these
constraints, but there is flexibility for allowing different implementations to provide somewhat different behavior for the
execution of the same well-formed model, within the specified constraints. Ideally, conformance would be demonstrated
by a formal proof that the execution tool implementation meets all the required constraints. In reality, it is expected that

Semantics of a Foundational Subset for Executable UML Models, Beta 2 7

conformance will be demonstrated by a sufficient suite of tests hand checked against the specification, as is the case for,
say, conformance to most major programming language standards.

2.3 Genericity of the Execution Model

To support a variety of different execution paradigms and environments—including a number of widely used commercial
and research variants of executable UML —the specification of the execution model incorporates a degree of genericity.
This is achieved in two ways: (1) by leaving some key semantic elements unconstrained and (2) by defining explicit
semantic variation points. A particular execution tool can then realize specific semantics by suitably constraining the
unconstrained semantic aspects and providing specifications for any desired variation at semantic variation points.

The semantic areas below are not explicitly constrained by the execution model.

e The semantics of time. The execution model is agnostic about the semantics of time. This allows for a wide
variety of time models to be supported, including discrete time (such as synchronous time models) and
continuous (dense) time. Furthermore, it does not make any assumptions about the sources of time information
and the related mechanisms, allowing both centralized and distributed time models.

® The semantics of concurrency. The execution model includes an implicit concept of concurrent threading of
execution (see the discussion in Subclause 8.5.1). However, it does not require that a conforming execution tool
actually execute such concurrent threads in a physically parallel fashion and it is agnostic about the actual
scheduling of execution of concurrent threads that are not physically executed in parallel. So long as the
execution tool respects the various creation, termination and synchronization constraints placed on such threads
by the execution model, any sequentially ordered, or partial or totally parallel, execution of concurrent threads
conforms to a legal execution trace.

® The semantics of inter-object communications mechanisms. This refers specifically to communication properties
of the medium through which signals and messages are passed between objects. The execution model is written
as if all communications were perfectly reliable and deterministic. However, this is not realistic for all execution
tool implementations. Therefore, despite the restrictions that would be imposed by a strict interpretation of the
execution model, conformance of an execution tool to the semantics of inter-object communication is not
predicated on any assumptions about whether or not such communication is reliable (i.e., that signals and
messages are never lost or duplicated), preserves ordering, happens with deterministic or non-deterministic
delays, and so on.

Different execution tools may semantically vary in the above areas in executing the same model, while still being
conformant to the semantics specified by the execution model for f{UML. Additional semantic specifications or
constraints may be provided for a specific execution tool in these areas, so long as it remains, overall, conformant to the
execution model. For instance, a particular tool may be limited to a single centralized time source such that all time
measurements can be fully ordered.

In contrast to the above areas, the items below are explicit semantic variation points. That is, the execution model as
given in this specification by default fully specifies the semantics of these items. However, it is allowable for a
conforming execution tool to define alternate semantics for them, so long as this alternative is fully specified as part of
the conformance statement for the tool.

® FEvent dispatch scheduling. As described in Subclause 8.4.3, signal instances received by an active object are
placed into an event pool. The instances in the pool are then asynchronously dispatched as occurrences of signal
events, potentially triggering waiting accepters of such events. By default, events are dispatched from the pool
using a first-in first-out (FIFO) rule. However, a conforming execution tool may define an alternative rule for
how this dispatching is scheduled by providing a specialization of the GetNextEventStrategy class that redefines
the dispatchNextEvent operation to specify the desired rule.

® Polymorphic operation dispatching. Operations in UML are potentially polymorphic—that is, there may be
multiple methods for any one operation. The determination of which method to use for a given invocation of the
operation depends on the context and target of the invocation. The specification for this determination is provided
in the execution model by the dispatch operation of the Object class, as specified in Subclause 8.4.2 (the
semantics of operation dispatching is further discussed in relation to the call operation action in Subclause 8.6.2).

8 Semantics of a Foundational Subset for Executable UML Models, Beta 2

By default, the method used for an operation must be associated with a (possibly inherited) member operation of
a type of the target object of the operation invocation that is either the invoked operation or a redefinition
(“override”) of it. However, a conforming execution tool may define an alternative rule for how this dispatching
is to take place by providing a specialization of the DispatchStrategy class that redefines the dispatch operation to
specify the desired rule.

If a conforming execution tool wishes to implement a semantic variation in one of the above areas, then a specification
most be provided for this variation via a specialization of the appropriate execution model class as identified above. This
specification must be provided as a f{UML model in the “base UML” subset interpretable by the base semantics of Clause
10. Further, it must be defined in what cases the variation is used and, if different variants may be used in different cases,
when each variant applies and/or how what variant to use is to be specified in a conforming model accepted by the
execution tool.

2.4 Conformance Statement

The conformance of an execution tool to the fUML specification may be summarized in a conformance statement for the
tool. Such a statement should include the following items.

® Conformance Level. The conformance level for models accepted by the tool.

® Model Library. An identification of what elements of the standard f{UML model library are implemented by the
tool. A specification of any additional tool-specific model library elements.

® Abstract Syntax Mapping

® Abstract Syntax Mapping

¢ Semantic Value Mapping

¢ Execution Environment Mapping

o Semantic Conformance. A demonstration of semantic conformance in terms of the above mappings.

e Semantic Constraints. A specification of any additional semantic constraints on semantic areas left unconstrained
by the execution model.

e Semantic Variation. For each semantic variation point, a specification of any variation from the default semantics.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. The following OMG standards provided the source for the foundational subset.

UML 2.2 RTF report (ptc/08-05-03)

UML 2.2 Infrastructure convenience document (ptc/08-05-04)
UML 2.2 Superstructure convenience document (ptc/08-05-05)
OCL 2.0 Specification (formal/06-05-01)

MOF 2.0 Core Specification (formal/06-01-01)

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is expected that models
conforming to this specification will be interchanged using XMI.

MOF 2.0 XMI Mapping Specification (formal/07-12-01)
XML Metadata Interchange Specification (formal/05-05-06)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 9

Normative XMI and XML Schema for UML 2.2 (in preparation)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Base Semantics

A definition of the execution semantics of those UML constructs used in the execution model, using some formalism
other than the execution model itself. Since the execution model is a UML model, the base semantics are necessary in
order to provide non-circular grounding for the execution semantics defined by the execution model. The base semantics
provide the “meaning” for the execution of just those UML constructs used in the execution model. The execution model
then defines the “meaning” of executing any UML model based on the full foundational subset. Any execution tool that
executes the execution model should reproduce the execution behavior specified for it by the base semantics.

Behavioral Semantics

The denotational mapping of appropriate language elements to a specification of a dynamic behavior resulting in changes
over time to instances in the semantic domain about which the language is making statements.

Compact Subset

For the purposes of this specification, a compact subset of UML is one that includes as small a subset of UML concepts
as is practicable to achieve computational completeness.

Computationally Complete

A computationally complete subset of UML is one that is sufficiently expressive to allow definition of models that can be
automatically executed on a computer by an execution tool.

Execution Model

A model that provides a complete, abstract specification to which a valid execution tool must conform. Such a model
defines the required behavior of a valid execution tool in carrying out its function of executing a UML model and
therefore provides a definition of the semantics of such execution.

Execution Semantics

For the purposes of this specification, the behavioral semantics of UML constructs that specify operational action over
time, describing or constraining allowable behavior in the domain being modeled.

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the foundational subset and expressed as an
instantiation of the UML 2 abstract syntax metamodel. This may involve direct interpretation of UML models and/or
generation of equivalent computer programs from the models through some kind of automated transformations. Such a
tool may also itself be concurrent and distributed.

Foundational Subset

10 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The subset of UML to which execution semantics are given in order to provide a foundation for ultimately defining the
execution semantics of the rest of UML.

Static Semantics

Possible context sensitive constraints that statements of a language must satisfy, beyond their base syntax, in order to be
well formed.

Structural Semantics

The denotational mapping of appropriate language elements to instances in the semantic domain about which the
language makes statements.

Syntax

The rules for how to construct well-formed statements in a language or, equivalently, for validating that a proposed
statement is actually well-formed.

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

6 Additional Information
6.1 Changes to Adopted OMG Specifications

The Foundational Subset for Executable UML Models specification does not change any adopted OMG specifications.
The semantics defined in this specification are generally a precise definition of a subset of the UML semantics given in
the UML 2 Superstructure Specification. For this subset, the foundational execution semantics are intended to be
consistent with, though sometimes more restrictive than, the less precise textual semantic specification given in the UML
2 Superstructure Specification. Cases where the foundational execution semantics restrict some semantic variability
allowed in the UML 2 Superstructure Specification are noted in the overview discussions in the subclauses of Clause 8,
Execution Semantics.

However, there are a few cases in which the semantic interpretation provided by f{UML must be considered to be not
entirely consistent with the semantics as stated in the UML 2 Superstructure Specification. In these cases, the fUML
specification does not change the UML specification, since this would likely require addressing semantic implications
beyond the fUML subset. Instead, an inconsistency simply remains at this time, which may be addressed in future
versions of the full UML specification. Execution tools conforming to fUML are required to provide the semantics as
specified in the Foundational Subset for Executable UML Models standard.

The following areas have been identified as semantic inconsistencies at this time.

¢ Null tokens are not passed to the output pins of an invoking action when the corresponding parameter nodes of an
invoked activity are empty and the activity is terminated (see Subclause 8.5.2).

e Rather than receiving a full collection on a single token, expansion nodes use the set of all tokens they are
holding as the “collection” referenced by their expansion region (see Subclause 8.5.4).

Semantics of a Foundational Subset for Executable UML Models, Beta 2 1

e Test identity actions apply to inputs that are data values, as well as objects, testing data values for equality by
value rather than identity of reference (see Subclause 8.6.3).

NOTE: The foundational subset is based on UML 2.2. Particular changes made in UML 2.2 over the previous UML
2.1.2 version that are incorporated into the foundational subset include changes to decisions nodes and write structural
feature actions and the addition of the start object behavior action.

6.2 On the Semantics of Languages and Models

In a general sense, a language is a symbolic means for communication. The language provides rules for constructing
statements that communicate some specific meaning. In a natural language, these rules evolve neurologically and socially
over time. For a formal language, on the other hand, the rules are constructed artificially in order to create a means of
communication that, for some intended purpose, is in some way more precise than natural language.

A formal language only attaches meaning to statements that are correctly constructed or well formed. The syntax of the
language provides the rules for how to construct well-formed statements or, equivalently, for validating that a proposed
statement is actually well-formed. The semantics of the language then provides the specification of the meaning of well-
formed statements.

It is usually possible to completely specify the syntax of a formal language. This is because syntax has specifically to do
with the form and structure of statements in the language. Semantics is more problematical because it is inherently
extrinsic to the form of the statements themselves. Meaning can only be assigned to a formal statement in relation to
entities in some semantic domain about which the statement is intended to communicate.

An interpretation of a statement is a mapping of syntactic elements of the language to elements of the semantic domain
such that the truth-value of the statement can be determined, to some level of accuracy. Colloquially, an interpretation of
a model can be said to give it “meaning” relative to the semantic domain. If this mapping can be inverted, so that
elements of the semantic domain can be mapped to syntactic language elements, then a statement can also be constructed
as a representation of some part of the semantic domain, such that the statement is true under the interpretation mapping.

As a somewhat stylized example from natural language, consider the simple statement “Jack owns that house.” This is a
syntactically correct statement in the English language. We can interpret the statement in terms of the “real world” as the
semantic domain.

The word “Jack” is a syntactic element that denotes some person in the real world under this interpretation. Similarly, the
phrase “that house” denotes a specific structure in the real world. Finally, the word “owns” denotes a legal relationship
that may hold between a person and property. If this legal relationship does exist between the previously identified person
and structure, then we can say that the statement “Jack owns that house” is true under this interpretation. Otherwise it is
false.

Conversely, suppose we know it to be true that a person named “Jack” has legal ownership of a specific house being
pointed to. Then we can say that the statement “Jack owns that house” is a truthful representation of this situation.

One of the most useful aspects of a formal language is that it can be used to make concrete statements about potentially
abstract elements of the semantic domain. Essentially syntactic manipulations of these statements can then be used to
make deductions about the semantic elements represented by the statements.

A theory is structured set of rules for deducing new statements in a language from existing statements. A theory is
considered correct under a certain interpretation if any statements deduced from true statements under the interpretation
are themselves always true. In this way, the syntactic deduction rules of the theory may be used to make corresponding
actual deductions in the semantic domain.

A model is a set of statements in a modeling language about some domain under study, which provides the semantic
domain for the model. The meaning of statements in the model is then assigned by an interpretation that maps model
elements to elements of that semantic domain.

12 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A model may be used to describe a domain. In this case, the model is considered correct (under some interpretation) if all
statements made in the model are true for the domain. Similarly, a theory is considered correct for this domain if all
statements deduced using the theory from statements in the model are also true.

Alternatively, a model may be used as a specification for a domain (or for some system within a domain). In this case, a
specific domain is considered valid relative to this specification if no statement in the model is false for the domain.
Similarly, a valid domain conforms to a specific theory if, in addition, no statements deducible using the theory from the
model are false. That is, all statements deducible from the model also effectively become part of the specification.

UML is, of course, a modeling language. “Statements” in UML are constructed using a combination of (syntactic)
modeling elements, both graphical and textual. The statements made by a UML model can then be interpreted against the
domain being modeled.

For example, consider the simple instance model shown in Figure 7. As a model of the “real world”, this can be
interpreted as making the set of statements: “There is a person whose name is Jack. There is a house. The person is the
owner of the house.”

p: Person + oWner + houses - House
+ name = "Jack”

Figure 7 - Simple UML Instance Model

Note that it is an instance model that is interpreted here as making direct statements about the real world. These
statements are what logicians call first order propositions. However, it is more common in UML to model (at least
initially) at the level of classes. A class model makes second order statements about what kind of first order propositions
are valid for the domain under study.

Consider the class model in Figure 8. Structurally, this model requires that each instance of the class Person have the
properties “name” and “houses”. Further, it requires that the name of an instance of Person have a String value and it
allows the instance to have zero or more houses associated with it.

Person + wner + houses Howse

+ name : string | 1 *

Figure 8 - Simple UML Class Model

Under this interpretation, the relationship between the instance model of Figure 7 and the class model of Figure 8 is
basically one of consistency. The instance p in Figure 7 is declared to have the class Person as its type. It is therefore
required to have a name attribute. It would certainly be possible to construct a UML model of an instance of Person that
does not have a name. However, this would be inconsistent with the class model given in Figure 8.

Of course, it is also possible to give a direct interpretation of a class model in terms of the domain under study. For
example, we could take the class Person to denote the set of all people and the class House to denote the set of all houses,
while the association Ownership denotes a relationship between people and houses. The class model of Figure 8 then
makes statements about the “real world” such as “Every person has a name.” and “Some people own houses” (where the
latter statement reflects the “zero or more” multiplicity of the “houses” association end).

There is also another common, but very different, interpretation that may be given to the same class model shown in
Figure 8. In this interpretation the domain under study is that of computer programs written, say, in the Java
programming language. That is, the class model is interpreted as a model of a Java program in this domain. Each class in
the model is taken to denote a corresponding Java class with each property in the model denoting a corresponding field in
the Java class. If the class model is taken as a specification, then the model will actually exist before the program is
written—the model becomes the design for constructing a valid Java program.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 13

This example points out the fact that the same model may have different “meanings” under different interpretations. In
fact, it may even be useful to have multiple interpretations for a model at the same time. Indeed, under the usual tenets of
object-oriented design, the design model of program should also be interpretable as a model (in a somewhat restricted
sense) of the portion of the real world relevant to the program (the so-called “problem domain™).

6.3 On the Semantics of Metamodels

A metamodel is often rather loosely defined as “a model of a model.” For our purposes here, however, a more precise
definition is “a model of a modeling language.” Thus, the UML metamodel is a model with the domain under study
being UML, the language.

Another way to look at this is to consider the metamodel to be a specification model for a class of “systems” in the
semantic domain, where each system in the class is itself a valid model expressed in a certain modeling language. The
metamodel therefore makes statements about what can be expressed in the valid models of the modeling language. Since
a metamodel is a specification, a model in the modeling language is valid only if none of these statements are false.

If the interpretation mapping for a metamodel is invertible, one can also uniquely map elements of the modeling language
back to elements of the metamodeling language. In this case, given any model, we can invert the interpretation mapping
to create a metamodel representation of the model—that is, a set of true statements about the model expressed in the
metamodeling language.

A theory of a metamodel is a way to deduce new statements about a modeling language from the statements already in a
metamodel of the modeling language. Since a metamodel is a specification, a valid model in the modeling language must
not violate any statement deducible using the theory from the explicit metamodel statements.

One way to look at this is to consider the statements of the metamodel as axioms about the modeling language. Then,
given the metamodel representation of a model, we can deduce, using the theory, whether the representation of the
model is consistent with the metamodel. If it is consistent then the model is valid, otherwise it is not.

The UML Specification document provides a metamodel of UML. That is, it includes a set of statements about UML
models that must not be violated by any valid UML model. Note that, in its entirety, this metamodel can be considered to
include all of the concrete graphical notation, abstract syntax and semantics for UML. However, as defined in the
Specification document, the only part of this metamodel that is formal is the abstract syntax model.

The UML abstract syntax is formalized as a UML class model. It is thus an example of a reflexive metamodel. That is, it
is expressed in the same modeling language that it is defining. This, of course, introduces an inherent circularity.

Since a reflexive metamodel is expressed in the same modeling language as it is describing, its interpretation provides a
mapping of the modeling language onto itself. Generally, this mapping will be from the entire modeling language to a
subset of it. One can then iterate this mapping, each time producing a smaller subset, until one reaches the minimal
reflexive metamodel that maps completely onto itself, rather than a subset. This minimal metamodel contains the smallest
set of modeling elements required in order to specify the modeling language in question.

An interpretation of a minimal reflexive metamodel maps the metamodel onto itself. This means that any statement in the
minimal reflexive metamodel can be represented in terms of elements of the minimal reflexive metamodel. However, the
interpretation of this representation is itself expressed reflexively as a mapping to yet another representation in terms of
the minimal reflexive metamodel. This circularity means that, for a minimal reflexive metamodel, the interpretation
mapping really provides no useful expression of the “meaning” of the metamodel itself. To break this circularity, the
minimal reflexive metamodel must be given a base semantics that is independent of its circular interpretation in terms of
itself.

In the case of UML, the “minimal” reflexive abstract syntax metamodel is the UML Infrastructure (for pragmatic reasons
the Infrastructure is not actually absolutely “minimal,” but it is still just a small subset of the full UML Superstructure).
The Meta-Object Facility (MOF) specification defines a standard meta-metamodel based on the UML Infrastructure that
provides the basic elements required to construct the abstract syntax metamodel for any modeling language.

The MOF specification also attempts to provide an “Abstract Semantics” for the MOF meta-metamodel. However, this
semantics is still defined in terms of a semantic domain that is specified using a UML class model. Thus, the circularity is

14 Semantics of a Foundational Subset for Executable UML Models, Beta 2

not really broken. The only interpretations of the MOF meta-metamodel that are effectively non-circular are those
provided by the standard mappings of the meta-metamodel to other technologies, such as XML Metadata Interchange
(XMI) and Java Metadata Interface (JMI).

It is one of the goals of the Foundational Subset for Executable UML Models specification to provide a true abstract base
semantics for the foundation of UML.

6.4 Alignment with the OMG Four Layer Metamodeling Architecture
OMG modeling language specifications are developed within the framework of a four layer metamodeling architecture.
® MO—The domain under study (the “objects” of the model)
e MI1—The user specification (the model)
® M2—The modeling language specification (the metamodel)
® M3—The reflexive metamodeling language specification (the meta-metamodel)

In terms of the OMG metamodeling layers, interpretation can generally be said to “cross meta-layers.” For example, the
interpretation mapping for UML maps from model elements, considered to be “at layer M1,” to elements of the domain
under study, considered to be “at layer M0.” Similarly, there are interpretation mappings from metamodel elements “at
layer M2” to model elements “at layer M1”” and from meta-metamodel elements “at layer M3” to metamodel elements
“at layer M2.”

On the other hand, a theory is “within a single meta-layer.” For example, a theory of UML allows some models to be
deduced from other models (e.g., instance models from class models), entirely at layer M1. Similarly, a theory of the
UML abstract syntax allows the validity of a UML model to be determined entirely at level M2, after mapping the model
to its metamodel representation.

Note that this view of the meta-layers does not consider elements in one layer to necessarily be “instances of” elements in
the layer above it. For example, consider the particularly simple case of the domain at level MO being Java programs (as
previously discussed in Section 6.2). Typically, the relationship of the model of a class at level M1 to level MO is
considered to be something of the sort given in Figure 9.

<<instanceOf>>
X e] anX
A
M1 I
|
MO |nstar1:\ce of
|
|
anX

Figure 9 - Instance Relationship across Meta-Layers M1 and M0

The view taken here is that the concept of interpretation provides the general relationship between one meta-layer and the
next. Thus, the above situation would be considered as in Figure 10. (Despite the concrete example of a Java class used

Semantics of a Foundational Subset for Executable UML Models, Beta 2 15

here at MO0, the argument applies equally well to other more abstract domains, such as workers and the conceptual classes
of their positions in a company.)

<<inst Oof>>
X ____|_n§a_r|1£e_____ - anX
I I
M1 I “interpr:etation” |
| | |
. \ |
MO "interpretation” I "interpretation”
| | |
v b v
" f“
X.java <____|n_stgrg:e_o____ anX

Figure 10 Interpretation across Meta-Layers M1 and MO

If we now add level M2 to this diagram, the interpretation mapping is between instances of metaclasses at M2 and the
model elements at M1. This is shown in Figure 11.

+classifier L
Class InstanceSpecification
| 7
| |
: <<instanceOf>> :<<instanceOf>>
. +classifier
:Class I : InstanceSpecification
I | I
M2 I “interpretation” |
I I i
M1 "interp retakion" : "interpretarion"
v i b
X k== 5<Ln§ta_|n_ce_Oi>z _____ anXx
M1 : “interpllletation” :
| | I
M0 "interp retakion" : "interpretakion"
v 0 v
Xjava |=-——linstanceof _____| anX

Figure 11 - Interpretation across Meta-Layers M1 and MO

The MOF takes the UML Infrastructure subset from layer M2 and places it in layer M3. The relationship between M2
and M3 is thus essentially the same as between M1 and M2. For example, the Class and InstanceSpecification
metaclasses in layer M2 are represented as instances of the meta-metaclass Class in layer M3.

Now, it is common mental shorthand to identify a model element directly with its metamodel representation (e.g., the
class X with its representation as an instance of the metaclass Class) and loosely refer to the model element as being
directly “an instance of”” the metaclass (e.g., class X “is an instance of” the metaclass Class). However, strictly speaking,
the concept of “instance of” only has meaning within the theory of the metamodeling language. The fact that this concept

16 Semantics of a Foundational Subset for Executable UML Models, Beta 2

is in the metamodeling language at all is merely consequence of the use in OMG of an object-oriented modeling language
for metamodeling, which is not the only possible approach, and is not really fundamental to the relationship between the
meta-layers.

6.5 Acknowledgements
The following companies submitted this specification:

CARE Technologies

International Business Machines Corporation
Kennedy Carter Ltd.

Lockheed-Martin Corporation

Mentor Graphics Corporation

Model Driven Solutions

The following companies supported this specification:

88Solutions Corporation

CEA LIST/LISE

NASA Jet Propulsion Laboratory

U.S. National Institute of Standards and Technology

Semantics of a Foundational Subset for Executable UML Models, Beta 2 17

7 Abstract Syntax

This clause defines the subset of UML for which foundational semantics are specified in Clause 8. This subset is called
Foundational UML or fUML. It is a computationally complete language for executable models.

71 Overview

A fundamental purpose of f{UML is to serve as an intermediary between “surface subsets” of UML used for modeling and
computational platform languages used as the target for model execution. As shown in Figure 12, this generally requires
the ability to translate from the surface subset to fUML and from fUML to the target platform language.

Surface
UML subset °

Surface-to-fUML
franslator
L

Foundational
UML subset

fUML-to-platform
translator

L 4

Platform ;
language

Figure 12 - Translation to and from the foundational UML subset
In this context, the contents of the f{UML subset has been largely determined by three criteria.

® Compactness. The subset should be small to facilitate definition of a clear semantics and implementation of
execution tools.

e Fase of translation. The subset should enable straightforward translation from common surface subsets of UML
to fUML and from fUML to common computational platform languages.

® Action functionality. This specification only specifies how to execute the UML actions as they are currently
defined with primitive functionality. Therefore, the f{UML subset should not include UML functionality requiring
coordinated sets of UML actions to reproduce.

There is, of course, some tension between these criteria.

Suppose that there is a surface feature of UML (say, polymorphic operation dispatching) that also happens to have a
corresponding analog in a certain platform language (say, an object-oriented programming language such as Java), but
which is excluded from fUML (though, in this case, it actually isn’t). It is clearly desirable that the surface UML feature
be translated, ultimately, into the corresponding feature of the platform language. However, if the feature is excluded
from fUML, it is necessary for the surface-to-fUML translator to generate a coordinated set of f{UML elements that has
the same effect as that feature. But then the f{UML-to-platform translator would need to recognize the pattern generated
by the surface-to-fUML generator, in order to map this back into the desired feature of the target language. Compactness
can therefore conflict with ease of translation.

Unfortunately, in practice, such overlaps between desired features in the surface subset of UML used for modeling and
the available features of the target platform language can be significant, especially within a single domain of application.
Further, the specific pattern of elements that might be generated by a surface-to-fUML translator for any given surface
feature is not standardized—and such a standard is not in the scope of this specification. Therefore, a general f{UML-to-
platform translator cannot be optimized to specially handle a standard set of expected patterns.

18 Semantics of a Foundational Subset for Executable UML Models, Beta 2

On the other hand, if a feature of UML is included in fUML to reduce the translation problems described above, it
increases the complexity of the semantics of f{UML and the implementation of execution tools conforming to those
semantics. This might not be so bad for any individual feature, but an accumulation of many such features will eventually
defeat the purpose of having a compact subset.

The subset specified in this clause resolves the choice between compactness and ease of translation based on judgments
about which functionalities in common between UML and computational platforms are more widely used than others.
These judgments have the hazard of making broad generalizations about highly segmented modeling and platform
markets, but once made, they help determine the contents of the foundational subset as follows.

* Widely used functionality in common between UML and platforms should have the simplest translation into and
out of the fUML subset, namely, one-to-one translations. This functionality is included in the foundational subset.
For example, classes with properties and operations are widely used elements of object oriented models and
control and object flows are widely used in activity modeling.

® Moderately used functionality in common between UML and platforms should have a straightforward translation
into and out of the foundational subset. This translation is not one-to-one, so this functionality is not included in
the f{UML subset, but the elements needed to enable straightforward mappings are included. For example,
composite structure and simple state machines are considered moderately used.

e Less used functionality in common between UML and platforms may have a complicated translation into the
fUML subset and is not included in the foundational subset. Little consideration is given to including
functionality to simplify the translation. For example, association qualifiers and interruptible activity regions are
considered less used.

Further, certain modeling features of UML are not directly supported by UML action functionality. For example, the
UML semantics of default attribute values is that the default values are assigned to attributes when the object is created.
However, the UML semantics for create object actions require that objects be created without attribute values being set.
Therefore, making the semantics of UML default values explicit requires coordinated actions for creating objects and
assigning structural feature values, with activity control and object flows between them. Consequently, default attribute
values are not included in the foundational subset. In cases such as this, it is expected that the transformational approach
above will be used to generate the set of actions corresponding to desired surface UML semantics. (Note, for example,
that this is particularly important for embedded systems, where the execution of default actions for initialization purposes
must carefully coordinated with other initialization activities.)

Finally, the f{UML subset also contains some UML elements that have no execution semantics. Examples of this are
comments and packages from Kernel and modeling declarations such as isDeterminate and isAssured on conditional
nodes. These reduce compactness of the subset but not in a way that affects the specification of semantics, the
implementation of execution tools or translator construction.

Clause Organization

The following subclauses define the abstract syntax of the f{UML subset as a subset of the abstract syntax of the UML 2
Superstructure. The package structure parallels the package structure of the UML 2 Superstructure abstract syntax model.
Packages in the UML 2 model that have no corresponding package here are excluded in their entirety. For packages that
are included, some further elements from the UML package may be excluded in the corresponding f{UML package. In
this case, the model presented for the f{UML version of the abstract syntax package shows those elements that are
specifically in fUML and the class descriptions within the subclause specify additional constraints on the class that, via
package merge, which will be combined with constraints already specified in the UML 2 Superstructure for the same
class.

Also, the f{UML abstract syntax model does not use package merge between abstract syntax packages the way the UML 2
Superstructure model does. Instead, each class in the fUML abstract syntax model already has effectively merged into it
all the corresponding merge increments from the subset of the UML 2 Superstructre relevant to fUML. This greatly
simplifies the overall structure of the fUML abstract syntax model, particularly in relation to the semantic model of
Clause 8, by providing a single model element with the full specification of each syntactic metaclass.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 19

However, as a result of this restructuring, the package merge relationships in the UML 2 Superstructure are generally
reflected as package imports in the f{UML abstract syntax. Further, the effective merging in the f{UML model occasionally
requires import relationships between packages that are not related in the UML 2 model.

For example, in the fUML abstract syntax, the CommonBehaviors::Communications::Class merge increment in the UML
2 abstract syntax has already been merged into Classes::Kernel::Class. This results in Classes::Kernel::Class becoming a
specialization of CommonBehaviors::BasicBehaviors::BehavioredClassifier, leading to a package import relationship
between the Kernel and BasicBehaviors package in f{UML. Cases such as this are further noted in the appropriate
subclauses below.

Note that, as discussed in Clause 2, package merge is still used in the fUML abstract syntax model to construct the
conformance level packages L1, L2 and L3. Despite the elimination of the use of package merge otherwise in the f{UML
abstract syntax model, once the merges are performed for L1, L2 and L3, the resulting merged models at each level are,
in fact, strict subsets of the fully merged UML 2 abstract syntax models at each corresponding level.

7.2 Classes

7.21 Overview

The fUML Classes package includes only the single sub-package Kernel. Figure 13 shows the package dependencies of
the fUML Kernel package.

Note that, in the fUML model, the Kernel package imports the BasicBehaviors package from CommonBehaviors. This is
because, in fUML, Classes::Kernel::Class includes the merge increment CommonBehaviors::Communications::Class,
which results in Classes::Kernel::Class being a specialization of
CommonBehaviors::BasicBehaviors::BehavioredClassifier.

The fUML Kernel package is thus dependent on the f{UML BasicBehaviors package, as reflected in the package import
shown in Figure 13.

The following packages from the UML 2 Superstructure are excluded from the fUML abstract syntax.

® AssociationClasses. Association classes, as a modeling construct, add significant semantic complexity and their
effect can be equivalently modeled using regular classes and associations, albeit at the expense of some modeling
convenience. They are therefore not considered fundamental for the fUML subset.

® Dependencies. Dependencies either declare a design intent or express a model-level relationship without
significant execution semantics.

e [Interfaces. Within the fUML subset, the effect of interfaces can be achieved using abstract classes with entirely
abstract operations. (Note that f{UML does not include UML 2 structured classes and ports, which depend
specifically on the use of interfaces.)

® PowerTypes. Power types and generalization sets add significant complexity to the semantics of generalization,
particularly as it relates to typing and polymorphic operation dispatching. Further, the effect of a generalization
set can be equivalently modeled using regular classes and generalizations, albeit at the expense of some modeling
convenience. Power types and generalization sets are therefore not considered fundamental for the f{UML subset.

20 Semantics of a Foundational Subset for Executable UML Models, Beta 2

1
BasicBehaviors
(from fUML: :Syntax: :CommonBehaviors)

«impart»

bonennnenn 3

1
Kernel
(from fUML::Syntax: :Classes)

Figure 13 - Classes Syntax Packages

7.2.2 Kernel

7.2.21 Overview

The classes shown in Figure 14 to Figure 24 are those included in the fUML Classes::Kernel package. The diagrams
correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been excluded
from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Root (see Figure 14):

e Relationship and Directed Relationship. These abstract classes are excluded from fUML because their properties
are all derived and are not needed for model execution.

From Multiplicities (see Figure 15): No exclusions.

‘ Issue 14523 -- Items excluded from Kernel

\ From Namespaces (see Figure 16): No exclusions.

\ From Expressions (see Figure 17):

e Expression. Expressions are excluded from fUML because, in UML, this construct simply captures the parse tree
of an expression whose symbols are otherwise only informally represented as strings and thus cannot be properly
executed.

* OpaqueExpression. Opaque expressions are excluded from fUML because, as defined in the UML Kernel, their
body is not further defined within UML and, thus, not executable. In the UML BasicBehaviors package,
OpaqueExpression is extended to allow for an optional association with a UML behavior. However, this was
considered to be redundant with the ability to directly call behaviors within the context of UML activities, the
primary form of behavior modeling supported in f{UML.

From Constraints (no corresponding fUML diagram):

¢ Constraint. Constraints are excluded from fUML, because they are considered to be design-time annotations that
should already be satisfied by a well-formed model. Otherwise, the general semantics of the run time checking of
constraints is not currently well specified in UML 2, particularly when constraints should be evaluated and what
should happen if they should fail. Further elaboration of the semantics of constraint checking in UML was judged
to be outside the scope of the f{UML specification.

From Instances (see Figure 18):

Semantics of a Foundational Subset for Executable UML Models, Beta 2 21

o [InstanceSpecification::specification. Instance specifications in fUML are only used as part of the value
specification of a structured instance value (see Figure 17), which is specified using slots, or as an enumeration
literal (see Figure 23). Therefore, it is unnecessary provide a separate specification for its value.

From Classifiers (see Figure 19):

® C(Classifier: :redefinedClassifier. Classifier redefinition is excluded from fUML because it was judged to add
significant complexity to resolve during execution, without a fundamental need in the majority of cases.

From Features (see Figure 20):

® BehavioralFeature: raisedException. This is excluded because exceptions are not included in fUML.
From Operations (see Figure 21):

o Operation. raisedException. This is excluded because exceptions are not included in fUML.
From Classes (see Figure 22):

e Property::defaultValue. Setting defaults requires coordination of multiple UML actions, since the create object
action is specified to create objects without default values. Setting defaults in f{UML must be modeled explicitly
by using the appropriate structural feature actions after object creation.

® Property::qualifier. Association qualifiers are excluded from fUML because their effect can be effectively
achieved in models using unqualified associations and so are not considered fundamental. Further, they were
judged not widely used enough to otherwise require inclusion in fUML for ease of implementation of execution
tools and translators.

* Property::substtedProperty. Subsetting is excluded from fUML because subsetting is generally used in static
models and there is no consensus on the execution semantics for this mechanism. (See Subclause 8.1 for further
discussion of conventions related to the handling of subsetting in f{UML execution semantics.)

® Property::redefinedProperty. Property redefinition is excluded from fUML because it was judged to add
significant complexity to the resolution of structural features at runtime, without a fundamental need. (Note, on
the other hand, that operation redefinition is included in f{UML, as shown in Figure 21, because it is necessary for
the default f{UML semantics for polymorphic operation dispatching, as discussed in Subclause 8.3.2.1. Also see
Subclause 8.1 for further discussion of conventions related to the handling of redefinition in f{UML execution
semantics.)

‘ Issue 14523 -- Items excluded from Kernel

‘ Issue 14521 -- A data type should not be allowed to have operations

\ From Data Types (see Figure 23):

\ From Packages (see Figure 24):

® PackageMerge. Package merge is excluded from fUML because it is not considered to be a runtime construct. All
package merges are assumed to have been already carried out before a model is submitted for execution.

Issue 14523 -- Items excluded from Kernel

22 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Element + owningElement + ownedComment Comment
It . + body : String
0.1
+ fownedElement
- + annotatedElerment + comment
L L
0.1 | + Jowner
Figure 14 - Root
Issue 14524 -- Incorrect generalizations in Kernel
il
+ owningUpper + upperyalue - -
MultiplicityElement . ValueSpecification
+ isOrdered ; Boolean = false 0.1 0.1
+ isUnique : Boolean = true
I ,{i-élﬂ.fj:-‘:!. .: Il;qu;I:i.rSEreﬁglaiL]u'il E]..l] = new Unlimitediatural(1) +owninglower + lowerValue
T 0.1 0.1

[}
Lpperyalue must be a
LiteralnlimitedMatural and lowervalue rmust
be a Literallnteger. Both are required.

NamedElement PackageableElement

TypedElement | + typedElement + type Type

Figure 15 - Multiplicities

"

0.1

Issue 14523 -- Items excluded from Kernel

Issue 14524 -- Incorrect generalizations in Kernel

Semantics of a Foundational Subset for Executable UML Models, Beta 2

23

il
“enumeration:
VisibilityKind
NamedElement Dbl y
+ name : String [0..1] private
+ visibility : Visibilitykind [0..1] protected
+ /qualifiedMame : String [0..1] package
| PackageableElement |
+ namespace + fmember o
Namespace > NamedElement |
>
0.1 « [+ fownedMember
+ [namespace
0.1
+ importingNamespace + elementImport ElementImport
1 + | + visibility @ Visibilitykind
+ alias : String [0..1]
+ elementImport |*
I
+ importedElement |1
+ fimportedMember o 7
= PackageableElement
L L
+ importinghamespace + packageImport PackageImport
1 * | + visibility : Visibilitykind
+ packagelmport | *

+ importedPackage | 1

Package

Figure 16 - Namespaces

24 Semantics of a Foundational Subset for Executable UML Models, Beta 2

TypedFlement
)

ValueSpecification

I
T

| LiteralSpecification |
[|

InstanceValue

: |

LiteralBoolean

LiteralString

+ value : Boolean = false

+ value : String [0..1]

LiteralNull

+ instanceValue

+ instance

1

Literallnteger

LiteralUnlimitedNatural

+ value : Integer = 0

+ value : UnlimitedMatural = new UnlimitedMatural(0)

Figure 17 - Expressions

1

= InstanceSpecification

‘ Issue 14525 -- InstanceValue constraint is redundant

NamedElement

ro---- InstanceSpecification

1 |+ instanceSpecification

* | + classifier

Classifier

Either all the classifiers are classes, or there is one classifier that is a data type

Figure 18 - Instances

75
+ owninglnstance + slot st 1 * slot + definingFeature
1 " * 1
0.1 + owningSlot
+ value
ValueSpecification

ﬁ StructuralFeature

Issue 14524 -- Incorrect generalizations in Kernel

Semantics of a Foundational Subset for Executable UML Models, Beta 2

25

[amespace] | ? |

i
RedefinableElement . Classifier o
T Leaf Boolean = ke | | redefinableElement " [+ sAbstract ; Bodlean = fake +general + generalization Generalization
+ isSubstitutable : Boolean [0..1]
-
+ fredefinitionContext 1 *

+ [redefinedElement
+ specific + generalization

+ redefinableElement
+ classifier + finheritedMember

‘}1-J NamedElement
+ fattribute + classifief * *
Property k

-

*

+ classifier * + fgeneral

Figure 19 - Classifiers

RedefinableElement

- y isStatic must be false
+ ffeaturingClassifier + ffeature =
I:ﬂassiﬁar - - [+ isStaticF‘e;E‘DT:an = false «enumeration>:
lﬁﬁ‘ ParameterDirectionKind
in
inout
| TypedElement | | MultiplicityElement ‘ out
return
MultiplicityElement TypedElement
«enumerations
StructuralFeature | CallConcurrencyKind
| +isReadOnly ; Boolean = false] sequential
BehavioralFeature + ownerFormalParam + ownedParameter \J
+ isAbstract : Boolean = false Parameter ‘
+ concurrency : CalConcurrencykind = sequential | 0.1 » 7+ direction : ParameterDirectionkind]

I
i
/

/
concurency must be sequential

Figure 20 - Features

26 Semantics of a Foundational Subset for Executable UML Models, Beta 2

BehavioralFeatura

Operation + operation + ownedParameter EI
+ isQuery : Boolean = false 0.1 " arameter
+ [isCrdered : Boolean = false B
+ fisUnigue : Boolean = true
+ Jlower : Integer [0..1] + operation + ftype
+ fupper : UnlimitedMatural [0..1] Typ
1 0.1
+ operation .
P 1 + | + redefinedOperation
Figure 21 - Operations
‘ Issue 14523 -- Items excluded from Kernel
«enumerations isDerived and isDerivedUnion must be false
AggregationKind
?ﬁ;zd An association must own all its memberEnds.
composite

£

BehavioredClassifier
(from BasicBehaviors)
£

Only an abstract class may have abstract
behavioral features.

Class

+ isAbstract : Boolean = false
+ isActive : Boolean = false

Property

isDerived must be false ".‘
\

,_-""’ + isDerived : Boolean = false " —
- + isReadOnly : Boolean = false b d L Assaciation
+ [superClass + isDerivedUnion : Boolean = false + memberEn: + assaciation [+ isDerived | Boolean = false
+ aggregation : Aggregationkind = nore | 2..* 0.1
- + fisComposite : Boolean = false
N + ownedeEnd + owningAssociation
+ class * 0.1
+ navigableOwnedEnd + association
+ class + ownedAttribute]
* 0.1
0.1 *
* |+ association
+ class + nestedClassifier _ + property |0..1 0.1 + Jopposite
01 = Classifier
1.* |+ fendType
) Type l
+ class + ownedOperation
01 w1 Operation l

Only active classes may have classifier behaviors,

Figure 22 - Classes

Only an active class may specialize an active class,

Semantics of a Foundational Subset for Executable UML Models, Beta 2

27

A
DataType
+ datatype + ownedAttribute
- P Property
0.1 *
T | InstanceSpecification
PrimitiveType Enumeration + enumeration + ownedLiteral [EpymerationLiteral
0.1 .

| Figure 23 - Data Types

Issue 14523 -- Items excluded from Kernel

| Namespace | | PackageableElement

L]

Package

+ owningPackage + packagedElement

| PackageableElement

0.1 1
+ package + [ownedType
Type
0.1 *

+ fnestedPackage

+ nestingPackage | 0..1

Figure 24 - Packages

28 Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.2.2.2 Class Descriptions
72221 Association

Generalizations
e (lassifier

Attributes
e isDerived : Boolean = false

Associations
e endType : Type [1..¥]
e memberEnd : Property [2..*]
* navigableOwnedEnd : Property [0..*]
e ownedEnd : Property [0..*]

Additional Constraints
[1] owns_memberEnds
An association must own all its memberEnds.

self.memberEnd->symmetricDifference(self.ownedEnd)->isEmpty()

[2] no_derivation
isDerived must be false

not self.isDerived
72222 BehavioralFeature

Generalizations
e Feature

Attributes
e concurrency : CallConcurrencyKind = sequential
® isAbstract : Boolean = false

Associations
* method : Behavior [0..*]
e ownedParameter : Parameter [0..¥]

Additional Constraints
[1] sequentiality

concurrency must be sequential

self.concurrency = CallConcurrencyKind::sequential

72223 Class

Issue 14524 -- Incorrect generalizations in Kernel

Generalizations
e BehavioredClassifier

Attributes
e jsAbstract : Boolean = false
e isActive : Boolean = false

Semantics of a Foundational Subset for Executable UML Models, Beta 2

29

‘ Issue 14523 -- Items excluded from Kernel

Associations
¢ nestedClassifier : Classifier [0..*]
e ownedAttribute : Property [0..*]
e ownedOperation : Operation [0..¥]
e ownedReception : Reception [0..*]
[)

superClass : Class [0..*]

Additional Constraints

‘ Issue 14519 -- Active class should not have to have classifier behaviors

l‘ I aCt‘l V. Cie. 6[33

[1] active class_classifier _behavior
Only active classes may have classifier behaviors.

‘ self.classifierBehavior->notEmpty() implies self.isActive

‘ Issue 14520 -- A passive class should not be able to specialize an active class

[2] active_class_specialization
Only an active class may specialize an active class.

| self.parents()->exist(isActive) implies self.isActive

‘ Issue 13882 -- Only abstract classes should be able to have abstract behavioral features

3] abstract_class

Only an abstract class may have abstract behavioral features.

‘ self. member->select(ocllsKindOf(BehavioralFeature))->exists(isAbstract) implies self.isAbstract

| 72224 Classifier

Generalizations
¢ Namespace
e Type

Attributes
e jsAbstract : Boolean = false

Associations
e attribute : Property [0..¥]
feature : Feature [0..¥]
general : Classifier [0..*]
generalization : Generalization [0..*]
inheritedMember : NamedElement [0..*]

30 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Additional Constraints
None

72225 Comment

Generalizations
None

Attributes
® body : String

Associations
e annotatedElement : Element [0..*]

Additional Constraints
None

7.2.2.2.6 DataType

Generalizations
e (lassifier

Attributes
None

Associations

‘ Issue 14521 -- A data type should not be allowed to have operations

e ownedAttribute : Property [0..*]

Additional Constraints
None

72227 Element

Generalizations
None

Attributes
None

Associations
e ownedComment : Comment [0..*]
e ownedElement : Element [0..*]
e owner : Element [0..1]

Additional Constraints
None

‘ Issue 14523 -- Items excluded from Kernel

72228

Semantics of a Foundational Subset for Executable UML Models, Beta 2

31

e FElement

Attributes
e alias : String [0..1]
e visibility : VisibilityKind

Associations
e importedElement : PackageableElement
e importingNamespace : Namespace

Additional Constraints
None

| 72229 Enumeration

Generalizations
e DataType

Attributes
None

Associations
e ownedLiteral : EnumerationLiteral [0..*]

Additional Constraints
None

7.2.2.210 EnumerationLiteral

Generalizations
e InstanceSpecification

Attributes
None

Associations
e enumeration : Enumeration [0..1]

Additional Constraints
None

7.2.2.2.11 Feature

Generalizations
e RedefinableElement

Attributes
e isStatic : Boolean = false

Associations
e featuringClassifier : Classifier [0..*]

32 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Additional Constraints
[1] non_static
isStatic must be false

not self.isStatic
7.2.2.212 Generalization

Generalizations
e Flement

Attributes
e isSubstitutable : Boolean [0..1]

Associations
e general : Classifier

e specific : Classifier

Additional Constraints
None

7.2.2.2.13 InstanceSpecification

Generalizations
e NamedElement

Attributes
None

Associations
e classifier : Classifier [0..*]

e slot: Slot [0..*]

Additional Constraints

‘ Issue 14525 -- InstanceValue constraint is redundant

[1] possible_classifiers

Ol o)

Either all the classifiers are classes. or there is one classifier that is a data type

self.classifier->forAll(oclIsKindOf(Class)) or
self.classifier->size() = 1 and self.classifier->forAll(oclIsKindOf(DataType))

7.2.2.214 InstanceValue

Generalizations
e ValueSpecification

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

33

Associations
® instance : InstanceSpecification

Additional Constraints

‘ Issue 14525 -- InstanceValue constraint is redundant

None.

7.2.2.2.15 LiteralBoolean

Generalizations
e LiteralSpecification

Attributes
e value : Boolean = false

Associations
None

Additional Constraints
None

7.2.2.2.16 Literallnteger

Generalizations
e LiteralSpecification

Attributes
e value: Integer=0

Associations
None

Additional Constraints
None

7.2.2.217 LiteralNull

Generalizations
e LiteralSpecification

Attributes
None

Associations
None

Additional Constraints
None

34 Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.22.2.18 LiteralSpecification

Generalizations
e ValueSpecification

Attributes
None

Associations
None

Additional Constraints
None

7.2.2.219 LiteralString

Generalizations
e LiteralSpecification

Attributes
e value : String [0..1]

Associations
None

Additional Constraints
None

7.2.2.2.20 LiteralUnlimitedNatural

Generalizations
e LiteralSpecification

Attributes
e value : UnlimitedNatural = 0

Associations
None

Additional Constraints
None

7.2.2.2.21 MultiplicityElement

Generalizations
e Flement

Attributes
e isOrdered : Boolean = false
¢ isUnique : Boolean = true
e lower : Integer [0..1] =1
e upper : UnlimitedNatural [0..1] =1

Associations
® lowerValue : ValueSpecification [0..1]

Semantics of a Foundational Subset for Executable UML Models, Beta 2

35

e upperValue : ValueSpecification [0..1]

Additional Constraints

[1] required lower and upper for fUML

upperValue must be a LiteralUnlimitedNatural and lowerValue must be a Literallnteger. Both are required.

self.upperValue->notEmpty() and

self.upperValue->asSequence()->first().oclisKindOf(LiteralUnlimitedNatural) and

self.lowerValue->notEmpty() and

self.lowerValue->asSequence()->first().oclisKindOf(Literallnteger)

7.2.2.2.22 NamedElement

Generalizations
e Flement

Attributes
® name : String [0..1]
e qualifiedName : String [0..1]
e visibility : VisibilityKind [0..1]

Associations
* namespace : Namespace [0..1]

Additional Constraints
None

7.2.2.2.23 Namespace

‘ Issue 14524 -- Incorrect generalizations in Kernel

Generalizations
[]

Attributes
None

Issue 14523 -- Items excluded from Kernel

Associations
e clementlmport : Elementlmport

e importedMember : PackageableElement

e member : NamedElement [0..*]

e ownedMember : NamedElement [0..*]

e packagelmport : Packagelmport

Additional Constraints
None

7.2.2.2.24 Operation

Generalizations
e BehavioralFeature

Attributes
e isOrdered : Boolean = false

36

Semantics of a Foundational Subset for Executable UML Models, Beta 2

® isQuery : Boolean = false

e isUnique : Boolean = true

e lower : Integer [0..1]

e upper : UnlimitedNatural [0..1]

Associations
e class: Class [0..1]

‘ Issue 14521 -- A data type should not be allowed to have operations

e ownedParameter : Parameter [0..*]
¢ redefinedOperation : Operation [0..*]

e type: Type [0..1]
Additional Constraints

[1] zero or one method
If an operation is abstract it must have no method. Otherwise it must have exactly one method.

(self.isAbstract and self.method->isEmpty()) xor (not self.isAbstract and self.method->size() = 1)
7.2.2.2.25 Package

Generalizations
e Namespace

Attributes
None

Associations

Issue 14523 -- Items excluded from Kernel

Additional Constraints
None

7.2.2.2.26 PackageableElement

Generalizations
e NamedElement

Attributes
None

Associations
None

Additional Constraints
None

Issue 14523 -- Items excluded from Kernel

Semantics of a Foundational Subset for Executable UML Models, Beta 2

| 7.2.2.2.27 Packagelmport

Generalizations
e Flement

Attributes
e vigsibility : VisibilityKind

Associations
e importedPackage : Package
e importingNamespace : Namespace

Additional Constraints
None

7.2.2.2.28 Parameter

Generalizations
e MultiplicityElement

e TypedElement

Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes
e direction : ParameterDirectionKind

hJe . d

Associations
e operation : Operation [0..1]

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Additional Constraints

‘ None

7.2.2.2.29 PrimitiveType

Generalizations
e DataType

Attributes
None

38 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
None

Additional Constraints
None

7.2.2.2.30 Property

Generalizations
e StructuralFeature

Attributes
® aggregation : AggregationKind = none
e isComposite : Boolean = false
e isDerived : Boolean = false
e isDerivedUnion : Boolean = false
¢ isReadOnly : Boolean = false

Associations
® association : Association [0..1]
e class: Class [0..1]
e datatype : DataType [0..1]
® opposite : Property [0..1]
® owningAssociation : Association [0..1]

Additional Constraints

[1] no_derivation
isDerived and isDerivedUnion must be false

not self.isDerived and not self.isDerivedUnion
7.2.2.2.31 RedefinableElement

Generalizations
e NamedElement

Attributes
e jsLeaf: Boolean = false

Associations
¢ redefinedElement : RedefinableElement [0..*]

® redefinitionContext : Classifier [0..*]

Additional Constraints
None

722232 Slot

Generalizations
e Flement

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

39

Associations
e definingFeature : StructuralFeature
e owninglnstance : InstanceSpecification
e value : ValueSpecification [0..*]

Additional Constraints
None

7.2.2.2.33 StructuralFeature

Generalizations
e Feature
e MultiplicityElement

e TypedElement

Attributes
¢ isReadOnly : Boolean = false

Associations
None

Additional Constraints
None

722234 Type

Issue 14523 -- Items excluded from Kernel

Issue 14524 -- Incorrect generalizations in Kernel

Generalizations
[]

Attributes
None

Associations
[]

Additional Constraints
None

7.2.2.2.35 TypedElement

Generalizations
e NamedElement

Attributes
None

Associations
e type: Type [0..1]

40 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Additional Constraints
None

7.2.2.2.36 UnlimitedNatural

Generalizations
None

Attributes
® naturalValue : Integer

Associations
None

Additional Constraints
None

7.2.2.2.37 ValueSpecification

Generalizations
e TypedElement

Attributes
None

Associations
None

Additional Constraints

None
7.3 Common Behaviors
7.31 Overview

The fUML CommonBehaviors package includes the following sub-packages:
e BasicBehaviors
e Communications

Figure 25 shows the dependencies of these packages.

The UML 2 Superstructure package SimpleTime is excluded in its entirety from fUML because time events and
constraints are not within the scope of f{UML.

Semantics of a Foundational Subset for Executable UML Models, Beta 2

1
Kernel
(from fUML::Syntax: Classes)

A

!
|

i

. |
«irnport» !
|

|

|

|

.

1
BasicBehaviors
(from fUML: :Syntax: :CommonBehaviors)

«import»

:
Communications
(from fML: :Syntax: :CommonBehaviors)

Figure 25 - Common Behaviors Syntax Packages

7.3.2 Basic Behaviors

7.3.2.1 Overview

The classes shown in Figure 26 are those included in the f{UML CommonBehaviors::BasicBehaviors package. This
diagram corresponds to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Common Behavior (see Figure 26):

® Behavior::redefinedBehavior. Behavior redefinition is excluded from fUML because opaque behaviors are only
used for primitive behaviors in f{UML, and the only other type of behavior provided is activities, the semantics of
redefinition for which is not fully defined in UML 2.

From Expression (no f{UML diagram):
® OpaqueExpression. Opaque expressions are excluded in general from fUML (see Subclause 7.2.2.1).
From Precondition and Postcondition Constraints for Behavior (no fUML diagram):

® Behavior::precondition and Behavior::postcondition. Behavior preconditions and postconditions are excluded
from fUML because constraints, in general, are excluded from fUML (see Subclause 7.2.2.1).

Issue 14522 -- OpaqueBehavior::opaqueBehavior should be OpaqueBehavior::language

42 Semantics of a Foundational Subset for Executable UML Models, Beta 2

An owned behavior must be either the classifier behavior of
or the method for an operation of its behaviored classifier.

Classifier
(From Kernel)

In this specification, an fUML instance model must have Behavior.isReentrant

Behavior

-

+ behavioredClassifier

BehavioredClassifier + behavioredClassifier ~ + classifierBehavior
0.1 0.1
0.1 -
+ fcontext + behavior

+ ownedBehavior

0.1

- + specification
BehavioralFeature

®

+ method

0.1

Operation
(From Kernel)

aI

If an operation is abstract it must have no method.

Otherwise it must have exactly one method.

Figure 26 - Common Behavior
7.3.2.2 Class Descriptions
7.3.2.21 Behavior

Generalizations
e (lass

Attributes
e jsReentrant : Boolean = false

Associations

e context : BehavioredClassifier [0..1]

e ownedParameter : Parameter [0..*]

e specification : BehavioralFeature [0..1]

Additional Constraints
[1] fUML reentrant behavior

+ isReentrant : Boclean = false

0.1 + ownedParameter
> " % Parameter

+ behavior

T‘

OpaqueBehavior

+ body ; String [*]

+ language : String [*]
7

FunctionBehavior

In this specification, an f{UML instance model must have Behavior.isReentrant

self.isReentrant
73222 BehavioredClassifier

Generalizations
e (lassifier

Semantics of a Foundational Subset for Executable UML Models, Beta 2

body and language must be empty

. an opague behavior cannot be active.

43

Attributes
None

Associations
e classifierBehavior : Behavior [0..1]
e ownedBehavior : Behavior [0..%]

Additional Constraints
[1] fUML allowed owned behaviors
An owned behavior must be either the classifier behavior of or the method for an operation of its behaviored classifier.

self.ownedBehavior->forAll(b:Behavior| b = self.classifierBehavior xor self.allFeatures()->includes(b.specification))
7.3.2.2.3 FunctionBehavior

Generalizations
* OpaqueBehavior

Attributes
None

Associations
None

Additional Constraints
None

7.3.2.24 OpaqueBehavior

Generalizations
e Behavior

Attributes
None

‘ Issue 14522 -- OpaqueBehavior::opaqueBehavior should be OpaqueBehavior::language

Associations
® body : String [0..*]
. : String [0..%]

‘ Issue 14522 -- OpaqueBehavior::opaqueBehavior should be OpaqueBehavior::language

Additional Constraints

[1] fUML _empty body and language

body and language must be empty

self. ->isEmpty() and self.body->isEmpty()

[2] fUML inactive
An opaque behavior cannot be active.

not self.isActive

44 Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.3.3 Communications

7.3.3.1 Overview

The classes shown in Figure 27 to Figure 29 are those included in the f{UML Common Behaviors::Communications
package. The diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following
features have been excluded from the fUML subset and are, therefore, not reflected in the f{UML abstract syntax
diagrams.

From Receptions (see Figure 27):
e [Interfaces. Interfaces are excluded in general from fUML (see Subclause 7.2.2.1).
From Extensions to Behavioral Features (no fUML diagram):

® BehavioralFeature: :raisedException. Exceptions are excluded in general in f{UML (see Subclauses 7.5.1 and
7.2.2.1). (Note also that the UML CommonBehaviors::Communications::BehavioralFeature merge increment is
already merged into Classes::Kernel::BehavioralFeature.)

From Triggers (see Figure 28):

® BehavioredClassifier::ownedTriggers. Triggers owned by behaviored classifiers are excluded from fUML
because triggers are only used in f{UML in accept event actions, in which case they are owned by the action.

From Events (see Figure 29):

e TimeEvent and ChangeEvent. These events are excluded from fUML because they imply a background
infrastructure, such as a model of time or a mechanism for monitoring for change. The execution semantics for
this would be complicated to specify and more sophisticated than is necessary for computational completeness of
the foundational subset.

® CallEvent. Call events are excluded from fUML because accept call actions are also excluded from fUML (see
Subclause 7.5.4.1).

® AnyReceiveEvent. Any receive events are excluded because they are largely unnecessary. Only asynchronous
signal events are allowed in fUML.

Classifier BehavioralFeature
(Fram Kernel) (From Kernel)

Signal + signa + reception Reception | + ownedReception + class Class
0.1 * :- 0.1 (From Kernel)

T
1 -

-
1 E
H -

A reception must not have an A reception may not be abstract.
associated method, & reception
must have an associated signal.

0.1 + owningSignal

* + ownedAttribute

Property
(From Kernel)

Figure 27 - Reception

Semantics of a Foundational Subset for Executable UML Models, Beta 2 45

NamedElament
(From Kernel)

I

Trigger | + trigger +event Event
1 1 (From Communications)

Figure 28 - Triggers

‘ Issue 13504 -- Event should be a specialization of PackageableElement

PackageableElement
(From Kernel)

Fi

Event

MessageFvent

- signalEvent + signal

" ::.]-J Signal |

1

SignaI'E!.rent

Figure 29 - Events

7.3.3.2 Class Descriptions

7.3.3.2.1 Event

‘ Issue 13504 -- Event should be a specialization of PackageableElement

Generalizations
‘ .

46 Semantics of a Foundational Subset for Executable UML Models, Beta 2

| Attributes
None

Associations
None

Additional Constraints
None

7.3.3.2.2 MessageEvent

Generalizations
e FEvent

Attributes
None

Associations
None

Additional Constraints
None

7.3.3.2.3 Reception

Generalizations
e BehavioralFeature

Attributes
None

Associations
* signal : Signal [0..1]

Additional Constraints
[1] a signal but no method

A reception must not have an associated method. A reception must have an associated signal.

self. method->isEmpty() and self.signal->notEmpty()

‘ Issue 13883 -- Receptions should never be abstract

7.3.3.24 Signal

Generalizations
¢ (Classifier

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
e ownedAttribute : Property [0..*]

Additional Constraints
None

7.3.3.2.5 SignalEvent

Generalizations
® MessageEvent

Attributes
None

Associations
e signal : Signal

Additional Constraints
None

7.3.3.2.6 Trigger

Generalizations
e NamedElement

Attributes
None

Associations
e cvent: Event

Additional Constraints
None

7.4 Activities

7.41 Overview

The fUML Activities package includes the following sub-packages:
¢ IntermediateActivities
e CompleteStructuredActivities
e ExtraStructuredActivities

Figure 30 shows the dependencies of these packages.

The required capabilities from the UML 2 Superstructure packages Fundamental Activities and BasicActivities are
already merged into the f{UML IntermediateActivities, and the more basic packages are not separately supported in
fUML. Similarly, the capabilities of the StructuredActivities package are already merged into the fUML
CompleteStructuredActivities and Extra StructuredActivities packages and StructuredActivities is not separately
supported in f{UML.

In fUML, the IntermediateActivities package is not dependent on BasicActions. Rather, BasicAction imports
IntermediateActions, so that Actions::BasicActions::Action can be a subclass of
Activities::IntermediateActivities::ExecutableNode (see Subclause 7.5.1). BasicActions is then imported by
CompleteStructuredActivities, since structured activity nodes are always actions in fUML.

438 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The UML 2 Superstructure package CompleteActivities is excluded in its entirety from fUML because it provides
advanced capabilities considered more appropriate for “higher level” process modeling and outside the scope of f{UML.

1
BasicBehaviors
{(from fUML . :Syntax: :CommonBehaviors)

“imports

T

1
IntermediateActivities
(from fUML::Syntax: :Activities)

)

“«imports»

—
BasicActions
(from fUML::Syntax: Actions)

«import»

[]

CompleteStructuredActivities
(from fUML::Syntax: :Activities)

)

i «irmnport»
i

ExtraStructuredActivities
(from fUML::Syntax: Activities)

Figure 30 - Activities Syntax Packages

7.4.2 Intermediate Activities

7.4.21 Overview

The classes shown in Figure 31 to Figure 34 are those included in the fUML Activities::IntermediateActivities package.
The diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have
been excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Nodes (see Figure 31): No exclusions (but note that the UML Activities::Fundamental Activities:: Action merge
increment is already merged into Actions::BasicActions::Action in f{UML).

From Object Nodes (see Figure 32):

e CentralBufferNode. Central buffer nodes are excluded from fUML because they were judged to be unnecessary
to for the computational completeness of f{UML.

From Fundamental Groups in FundamentalActivities and Groups in BasicActivities (no fUML diagram):

Semantics of a Foundational Subset for Executable UML Models, Beta 2 49

e ActivityGroup. The abstract ActivityGroup class is excluded from fUML because the only kinds of activity group
included in fUML are structured activity nodes, and the concrete properties of the abstract syntax classes
representing structured nodes are sufficient.

From Control Nodes (see Figure 33):

® FlowFinalNode. Flow final nodes are not included in fUML because it is generally not necessary to explicitly

terminate an individual flow in an activity. (Activity final nodes are included in fUML in order to terminate the
entire activity.)

From Flows (see Figure 34):

® ActivityEdge: :redefinedEdge. Activity edge redefinition is excluded from fUML because behavior redefinition is
excluded from fUML (see Subclause 7.3.2).

From Partitions (no fUML diagram):

® ActivityPartition. Activity partitions are excluded from fUML because they are a very general modeling construct
in UML activities and their precise execution semantics is unclear.

Issue 13921 -- The superclass of ActvityNode and ActivityEdge should be RedefinableElement

Issue 15527 -- The composition from ObjectNode to TypedElement is incorrect

50 Semantics of a Foundational Subset for Executable UML Models, Beta 2

An activity may be active, but cannot have a classifier behavior,

Figure 31 - Nodes

ObjectNode

il

Pin
(From BasicActions)

ActivityParameterMode

Figure 32 - Object Nodes

1 | + activityParameterhode

1| + parameter

Parameter
(From Kernel)

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Behavior A RedefinableElement
(From BasicBehaviors) o (From Kernel)
lﬁ f"’ ﬂ
Activity + activity + node —
TypedElement + isReadonly ; Boolean = faise (4™ ActivityNode
(From Kernel) 0.1 "'
i
ObjectNode ControlNode ExecutableNode
Afﬁl}n

(From BasicActions)

ControlNode

i

InitialNode FinalNode ForkMNode JoinNode MergeNode

DecisionMode

ActivityFinalNode + decisionNode | 0..1 * |+ decisionhode

0..1 |+ decisionInput
+ decisionInputFlow (0.1 P

ObjectFlow Behavior

{From BasicBehaviors)

Figure 33 - Control Nodes

‘ Issue 13921 -- The superclass of ActvityNode and ActivityEdge should be RedefinableElement

RedefinableElement
(From Kernel)
T & guard is only allowed if the source
B of the edge is a DecisionMode.
Activity k] +edae [activityEdge
0.1 £ Jf’J“
' + outgoing + activityEdge + guard
ActivityNode |+ 50UICE - yeda g ValueSpecification
1 - 1 0.1 (From Kernel)
+ target + incoming
1 M
ControlFlow ObjectFlow

Figure 34 - Flows

52 Semantics of a Foundational Subset for Executable UML Models, Beta 2

74.2.2 Class Descriptions
7.4.221 Activity

Generalizations
e Behavior

Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes
¢ isReadOnly : Boolean = false

Associations
e edge: ActivityEdge [0..*]
* node : ActivityNode [0..*]
e structuredNode : StructuredActivityNode [0..*]

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Additional Constraints

[1]

fUML no_classifier behavior
An activity may be active, but cannot have a classifier behavior.

self.classifierBehavior->isEmpty()
74222 ActivityEdge

Generalizations

‘ Issue 13921 -- The superclass of ActvityNode and ActivityEdge should be RedefinableElement

Attributes
None

Associations
® activity : Activity [0..1]
e guard : ValueSpecification [0..1]
e inStructuredNode : StructuredActivityNode [0..1]
e source : ActivityNode
e target : ActivityNode

Semantics of a Foundational Subset for Executable UML Models, Beta 2

53

Additional Constraints
[1] fUML allowed guards
A guard is only allowed if the source of the edge is a DecisionNode.

self.guard->notEmpty() implies self.source.ocllsKkindOf(DecisionNode)
74223 ActivityFinalNode

Generalizations
e FinalNode

Attributes
None

Associations
None

Additional Constraints
None

7.4224 ActivityNode

Generalizations

‘ Issue 13921 -- The superclass of ActvityNode and ActivityEdge should be RedefinableElement

Attributes
None

Associations
® activity : Activity [0..1]
* incoming : ActivityEdge [0..*]
e inStructuredNode : StructuredActivityNode [0..1]
* outgoing : ActivityEdge [0..*]

Additional Constraints
None

7.4.2.2.5 ActivityParameterNode

Generalizations
e ObjectNode

Attributes
None

Associations
e parameter : Parameter

Additional Constraints
None

54 Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.4.2.2.6 ControlFlow

Generalizations
e ActivityEdge

Attributes
None

Associations
None

Additional Constraints
None

74227 ControlNode

Generalizations
* ActivityNode

Attributes
None

Associations
None

Additional Constraints
None

7.4.2.2.8 DecisionNode

Generalizations
e ControlNode

Attributes
None

Associations
e decisionlnput : Behavior [0..1]
e decisionlnputFlow : ObjectFlow [0..1]

Additional Constraints
None

7.4.2.2.9 FinalNode

Generalizations
e ControlNode

Attributes
None

Associations
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

55

Additional Constraints
None

7.4.2.2.10 ForkNode

Generalizations
e ControlNode

Attributes
None

Associations
None

Additional Constraints
None

7.4.22.1 InitialNode

Generalizations
e ControlNode

Attributes
None

Associations
None

Additional Constraints
None

742212 JoinNode

Generalizations
e ControlNode

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes

Associations
None

Additional Constraints
None

742213 MergeNode

Generalizations
e ControlNode

56

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
None

Additional Constraints
None

7.4.2.214 ObjectFlow

Generalizations
e ActivityEdge

Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes

Associations
None

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Additional Constraints

[

7.4.2.2.15 ObjectNode

‘ Issue 15527 -- The composition from ObjectNode to TypedElement is incorrect

Generalizations
e ActivityNode

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes

None

Issue 15527 -- The composition from ObjectNode to TypedElement is incorrect

Semantics of a Foundational Subset for Executable UML Models, Beta 2 57

Associations
* typedElement—TtypedEtement

None

Additional Constraints

None

743 Complete Structured Activities

7.4.3.1 Overview

The classes shown in Figure 35 are those included in the f{UML Activities::CompleteStructuredActivities package. This
diagram corresponds to similar diagrams in the StructuredActivities and CompleteStructuredAtivities packages of the
UML 2 Superstructure Specification. The following features have been excluded from the f{UML subset and are,
therefore, not reflected in the fUML abstract syntax diagrams.

From Structured Nodes (see Figure 35):

® Jariable. Variables are excluded from fUML because the passing of data between actions can be achieved using
object flows.

e SequenceNode. Sequence nodes are excluded from fUML because the sequencing of actions can be expressed
using control flows.

58 Semantics of a Foundational Subset for Executable UML Models, Beta 2

OutputPin
(From BasicActions)

+ node + inStructuredNode

Action
(From BasicActions)
T

ActivityNode

- 0.1

StructuredActivityNode

ActivityEdge +edge + inStructuredNode
-

0.1

+ mustIsolate : Boolean = false

+ decider *

-

+ bodyOutput

+ result + conditionalNode ConditionalNode
[\ . + IsDeterminate @ Boolean = false
0.1 + Isfssured : Boolean = false

Element
(From Kernel)

1 iF+ conditionalNode

LoopNode

1.* | + clause
* cl
ause + predecessorClause
+ Clause
-
0.1 *
+ clause
+ successorClause
0011 | +rcHasse
** | +tesrly
ExecutableNode

Figure 35 - Structured Nodes

7.4.3.2 Class Descriptions
7.4.3.2.1 Clause
Generalizations

e Flement

Attributes
None

Associations
® body : ExecutableNode [0..*]
® bodyOutput : OutputPin [0..*]
e decider : OutputPin
e predecessorClause : Clause [0..*]
e successorClause : Clause [0..]
e test: ExecutableNode [0..*]

Additional Constraints
None

+ isTestedFirst : Boolean = false

InputPin
(from BasicActions)

=

+ loopNode 0.1 + loopMode 0.1

* + test * |+ bodyPart *

+ loopNode + loopVariableInput
0.1 *
+ loopNode + decider
0.1 1
+ loophode + loopVariable
0.1 *
+ loophode + bodyOutput
-
-
+ loophode + result
0.1
-
+ loopNode

no setupParts in fUML
+ setupPart

ExecutableNode

Semantics of a Foundational Subset for Executable UML Models, Beta 2

OutputPin
(from BasicActions)

59

7.4.3.2.2 ConditionalNode

Generalizations
e StructuredActivityNode

Attributes
e isAssured : Boolean = false
e jsDeterminate : Boolean = false

Associations
* clause : Clause [1..*]
e result : OutputPin [0..*]

Additional Constraints
None

7.4.3.2.3 ExecutableNode

Generalizations
e ActivityNode

Attributes
None

Associations
None

Additional Constraints
None

74324 LoopNode

Generalizations
e StructuredActivityNode

Attributes
e jsTestedFirst : Boolean = false

Associations
® bodyOutput : OutputPin [0..*]
® bodyPart : ExecutableNode [0..*]
e decider : OutputPin
e loopVariable : OutputPin [0..*]
® loopVariablelnput : InputPin [0..*]
e result : OutputPin [0..*]
e setupPart : ExecutableNode [0..*]
e test: ExecutableNode [0..*]

Additional Constraints
[1] noSetupParts_in fUML
no setupParts in f{UML

self.setupPart->isEmpty()

60 Semantics of a Foundational Subset for Executable UML Models, Beta 2

7.4.3.25 StructuredActivityNode

Generalizations
e Action

Attributes
e mustlsolate : Boolean = false

Associations
® activity : Activity [0..1]
e edge: ActivityEdge [0..*]
® node : ActivityNode [0..*]

Additional Constraints
None

7.4.4 Extra Structured Activities

7.4.41 Overview

The classes shown in Figure 36 are those included in the fUML Activities::ExtraStructured Activities package. This
diagrams corresponds to the similar diagram in the UML 2 Superstructure Specification. The following features have
been excluded from the f{UML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Exceptions (no f{UML diagram):

* ExceptionHandler. Exception handlers are not included in fUML because exceptions are not included in fUML
(see Subclaused 7.2.2.1 and 7.5.1).

From Expansion Regions (see Figure 36): No exclusions.

I;cenumg!rat:(u_n:j StructuredActivityNode ObjectNode
Xpansionkin (From CompleteStructuredActivities) (From IntermediateActivities)
parallel
iterative
stream
ExpansionRegion + regionAsInput + inputElement ExpansionNode
+ mode : Expansionkind = iterative
0.1 L
mode cannot be stream
+ regionAsQutput + outputElement
- T 0"1 *
J" ‘.
AR expansion region may not have output pins. Edges may not cross into or out of an expansion region.

Figure 36 - Expansion Regions

7.4.4.2 Class Descriptions
74421 ExpansionNode

Generalizations
® ObjectNode

Semantics of a Foundational Subset for Executable UML Models, Beta 2 61

Attributes
None

Associations
e regionAslnput : ExpansionRegion [0..1]
e regionAsOutput : ExpansionRegion [0..1]

Additional Constraints
None

74422 ExpansionRegion

Generalizations
e StructuredActivityNode

Attributes
¢ mode : ExpansionKind = iterative

Associations
e inputElement : ExpansionNode [1..*]
e outputElement : ExpansionNode [0..*]

Additional Constraints
[1] fUML no_crossing_edges
Edges may not cross into or out of an expansion region.

self.edge->forAll(self.node->includes(source) and self.node->includes(target))

[2] fUML mode cannot be stream
mode cannot be stream

self.mode != ExpansionKind::stream

[3] fUML no output pins
An expansion region may not have output pins.

self.output->isEmpty()

7.5 Actions

7.5.1 Overview

The fUML Actions package includes the following sub-packages:
* BasicActions
¢ IntermediateActions
e CompleteActions

Figure 37 shows the dependencies of these packages.

Note that, in the f{UML model, the BasicActions package imports the IntermediateActivities package from Activities.
This is because, in f{UML, Actions::BasicActions::Actions includes the merge increment

Activities::Structured Activities:: Action, which results in Actions::BasicActions::Action being a specialization of
ExecutableNode. Since ExecutableNode is in Activities::IntermediateActivities in f{UML, the fUML BasicActions
package is dependent on the fUML IntermediateActivities package, as reflected in the package import in Figure 37. Also,

62 Semantics of a Foundational Subset for Executable UML Models, Beta 2

in the f{UML model, IntermediateActions imports BasicBehaviors (see Sublause 7.4.1) which imports Kernel (see
Subclause 7.5.1), so Kernel does not need to be imported directly by BasicActions.

The StructuredActions package from the UML 2 Superstructure is excluded in its entirety from fUML, because variables,
exceptions and action pins are not included in f{UML. The fUML subset is based on a fully flow-based approach to
activity modeling.

1
IntermediateActivities
(from fUML 1 Syntax: Activities)

JT';
«imports :
—
. . i |
BasicActions «import> > Communications
from fUML::Syntax: Actions) [~~~ 7TTTTTTTTTTOE) - LA
(from yntax: :Actions) (from fUML:Syntax: :CommonBehaviors)
M N
«irmports i x‘u\ «irmports»
— ——
Intern‘uediateﬂctiqns CompleteActions
(from fUML ::Syntax: :Actions) (from fUML: :Syntax: :Actions)

Figure 37 - Actions Syntax Packages

7.5.2 Basic Actions

7.5.21 Overview

The classes shown in Figure 38 to Figure 40 are those included in the f{UML Actions::BasicActions package. The
diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the f{UML subset and are, therefore, not reflected in the f{UML abstract syntax diagrams

From Basic Actions (see Figure 38):
® OpaqueAction. Opaque actions are excluded from fUML since, being opaque, they cannot be executed.
From Basic Pins (see Figure 39):

® ValuePin. Value pins are excluded from fUML because they are redundant with using value specifications to
specify values.

From Basic Invocation Actions (see Figure 40): No exclusions.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 63

ExecutableNode

(From CompletestructuredActivities)

Figure 38 - Basic Actions

Action

+ action

1

+ [context [cyassifier
01 (From Kernel)

Issue 14528 -- Pin should be abstract

64

Semantics of a Foundational Subset for Executable UML Models, Beta 2

MultiplicityElement ObjectNode
(From Kernel) (From Intermediatefctivities)

Pin

OutputPin InputPin
t L L

+ foutpu + finput

+ action ‘ 0.1 0.1 + action

| Figure 39 - Basic Pins

InputPin | + finput + action

-

0.1
+ argument + invocationAction
O 01 Signal
(From Communications)
1 | +signal

* | + sendSignalAction

OutputPin |- " 0"101 CallAction | | SendSignalAction
+ result + calaction L+ sSynchronous : Boclean = true |

i
0.1 [+ sendSignalAction |
i
If the behavior has a context, it must be the same as the context i
of the enclosing activity or a (direct or indirect) superclass of it. i
isSynchronous must be true The target input pin must
RN have a type that has a
R reception for the signal.
The behavior may not be active. \‘ =
e ‘\\ '—/’
______________ CallBehaviorAction | | CallOperationAction
issynchronous must be tI'L_.IE! * | + ralBehaviorAction + |+ callOperationAction p,.1 + calOperationAction
1 + behavior 1 + operation 1 + target 1| +target

Behavior Operation InputPin
(From BasicBehaviors) (From Kernel)

Figure 40 - Basic Invocation Actions

Semantics of a Foundational Subset for Executable UML Models, Beta 2 65

7.5.2.2 Class Descriptions
7.5.2.21 Action

Generalizations
e FExecutableNode

Attributes
None

Associations
e context : Classifier [0..1]
e input : InputPin [0..*]
e output : OutputPin [0..*]

Additional Constraints
None

75222 CallAction

Generalizations
e InvocationAction

Attributes
* isSynchronous : Boolean = true

Associations
* result : OutputPin [0..*]

Additional Constraints
None

75223 CallBehaviorAction

Generalizations
e (CallAction

Attributes
None

Associations
e behavior : Behavior

Additional Constraints
[1] is_synchronous
isSynchronous must be true

self.isSynchronous

[2] inactive behavior
The behavior may not be active.

not self.behavior.isActive

Issue 14529 -- OCL incomplete for CallBehaviorAction::proper_context

66 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[3] proper_context
If the behavior has a context, it must be the same as the context of the enclosing activity or a (direct or indirect)
superclass of it.

self.behavior.context->notEmpty() implies
union(self.context.allParents())->includes(self.behavior.context)

75224 CallOperationAction

Generalizations
e CallAction

Attributes
None

Associations
e operation : Operation
e target : InputPin
Additional Constraints

[1] is_synchronous
isSynchronous must be true

self.isSynchronous
75225 InputPin

Generalizations
e Pin

Attributes
None

Associations
None

Additional Constraints
None

7.5.2.2.6 InvocationAction

Generalizations
e Action

Attributes
None

Associations
e argument : InputPin [0..¥]

Additional Constraints
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

75227 OutputPin

Generalizations
e Pin

Attributes
None

Associations
None

Additional Constraints
None

7.5.228 Pin

Generalizations

e MultiplicityElement

* ObjectNode

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Attributes

Associations
None

‘ Issue 14561 -- Attributes introduced in CompleteActivities should not be included in the fUML subset

Additional Constraints

7.5.2.29 SendSignalAction

Generalizations
e InvocationAction

Attributes
None

Associations

® signal : Signal
e target : InputPin

68

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Additional Constraints
[1] target signal reception
The target input pin must have a type that has a reception for the signal.

‘ Issue 13511 -- 7.5.2.2.9 SendSignalAction

self.target.

7.5.3 Intermediate Actions

7.5.3.1 Overview

The classes shown in Figure 41 to Figure 45 are those included in the f{UML Actions::IntermediateActions package. The
diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The only exclusions from this
package are BroadcastSignalAction and SendObjectAction. The sole mechanism for asynchronous invocation in f{UML is
via send signal action. This can be used to achieve the effect of broadcasting and sending objects.

e Jassifier Action
€ diven classiner (from BasicActions)
must be a class.

- - DestroyObjectAction
! ! + isDestroyLinks ; Boolean = fake ReadSelfAction
+ isDestroyOwnedCbjects : Boolean = false I

+ createObjectAction | * 0..1 Y + createObjectAction)
) _ 0..1 T+ readSelfAction
0.1 |+ destroyObjectAction

1 + target)
+ classifier |,1 1 + result L], * resut
Classifier OutputPin (Fr Ir'anu_t?:'_l) OutputPin
(From Kernel) (from BasicActions) rom BasicActions (From BasicActions)
Action
(From BasicActions)
TestIdentityAction | ValueSpecificationAction I

+ testldentityAction | 0.1 0.1 [+ testidentityAction 0..1 | + testldentityAction + valueSpecificationAction ¥0..1 0.1 ¥ + valueSpecificationAction

1 + value

+ first 1 1 + second 1 + result +result |1

InputPin
(from BasicActions)

OutputPin out N i - -
) il putPin ValueSpecification
(from BasicActions) (from Kernel)

Figure 41 - Object Actions

Semantics of a Foundational Subset for Executable UML Models, Beta 2 69

Action
(from BasicActions)

StructuralFeature + structuraFeature + structuralFeatureAction [StructuralFeatureAction | * structuralFeatureAction + object InputPin
(Fram Kernel) 1 * [1 0.1 1 (From BasicActions)

ReadStructuralFeatureAction | | ClearStructuralFeatureAction WriteStructuralFeatureAction

+ readStructuralFeatureAction | 0.1 + dearStructuralFeatureAction | 0.1 + writeStructuralFeatureAction | 0.1
0.1} + writeStructuralFeatureAction

+result | 0.1
+ result 0.1 + result 0.1

OutputPin
(From BasicActions)

| AddStructuralFeatureValueAction | ‘ RemoveStructuralFeatureValueAction |
| + isReplaceAll : Boclean = false | [+ isRemoveDuplicates ; Boolean = fale
+ addStructuralFeatureValueAction | 0.1 + removeStructuralFeatureValueAction T 0..1

+removeAt | 0.1 1 + value
+ insertat [, 0.1

InputPin
(From BasicActions)

Figure 42 - Structural Feature Actions

Action Element
(From BasicAckions) (From Kernel)
+ link:Action + endData y
LinkAction > LinkEndData
1 2.
+ linkAction 0.1 * | 4 linkEndData

+ inkEndData | 0.1

+ inputValue | 1..*

1 |+end
InputPin + value
(From BasicActions) Property
0.1 (From Kernel)

Figure 43 - Link Identification

70 Semantics of a Foundational Subset for Executable UML Models, Beta 2

LinkAction
A

ReadLinkAction + readLinkAction

+ result OutputPin

0.1

Figure 44 - Read Link Actions

(From BasicAckions)

1

Action
(From BasicActions)

f

LinkAction

WriteLinkAction

f

ClearAssociationAction

+ clearAssociationAction 0.1

+ object |1

CreateLinkAction

1 ¥ + createlinkAction

2.* | + endData

LinkEndCreationData
+ isReplaceall : Boolean = false

0.1 [+ nkEndCreationData

1.| + association

InputPin
(From BasicActions)

DestroyLinkAction

Association
(From Kernel)

1 + destroyLinkAction

2.*| +endData

LinkEndDestructionData

+ isDestroyDuplicates : Boolean = false

+ linkEndDestructionData | 0..1

0.1

InputPin

+ insertAt

(from BasicActions)

0.1

+ destroyat

Figure 45 - Write Link Actions

LinkEndData

7.5.3.2 Class Descriptions
7.5.3.2.1 AddStructuralFeatureValueAction
Generalizations

e WriteStructuralFeatureAction

Semantics of a Foundational Subset for Executable UML Models, Beta 2

.1 + clearAssociationAction

71

Attributes
e isReplaceAll : Boolean = false

Associations
* insertAt : InputPin [0..1]

Additional Constraints
None

7.5.3.2.2 ClearAssociationAction

Generalizations
e Action

Attributes
None

Associations
e association : Association
® object : InputPin

Additional Constraints
None

7.5.3.2.3 ClearStructuralFeatureAction

Generalizations
e StructuralFeatureAction

Attributes
None

Associations
e result : OutputPin [0..1]

Additional Constraints
None

75324 CreatelLinkAction

Generalizations
e WriteLinkAction

Attributes
None

Associations
e endData : LinkEndCreationData [2..*]

Additional Constraints
None

7.5.3.2.5 CreateObjectAction

Generalizations

72

Semantics of a Foundational Subset for Executable UML Models, Beta 2

e Action

Attributes
None

Associations
e classifier : Classifier
e result : OutputPin

Additional Constraints
[1] fUML is_class
The given classifier must be a class.

self.classifier.oclisKindOf(Class)
7.5.3.2.6 DestroyLinkAction

Generalizations
e WriteLinkAction

Attributes
None

Associations
e endData : LinkEndDestructionData [2..*]

Additional Constraints
None

7.5.3.2.7 DestroyObjectAction

Generalizations
e Action

Attributes

® isDestroyLinks : Boolean = false
¢ isDestroyOwnedObjects : Boolean = false

Associations
e target : InputPin

Additional Constraints
None

7.5.3.2.8 LinkAction

Generalizations
e Action

Attributes
None

Associations

e endData : LinkEndData [2..%]
e inputValue : InputPin [1..*]

Semantics of a Foundational Subset for Executable UML Models, Beta 2

73

Additional Constraints
None

7.5.3.2.9 LinkEndCreationData

Generalizations
e LinkEndData

Attributes
e isReplaceAll : Boolean = false

Associations
e insertAt : InputPin [0..1]

Additional Constraints
None

7.5.3.210 LinkEndData

Generalizations
e Flement

Attributes
None

Associations
e end : Property
e value : InputPin [0..1]

Additional Constraints
None

7.5.3.2.11 LinkEndDestructionData

Generalizations
e LinkEndData

Attributes
e isDestroyDuplicates : Boolean = false

Associations
e destroyAt : InputPin [0..1]

Additional Constraints
None

7.5.3.212 ReadLinkAction

Generalizations
e LinkAction

Attributes
None

74

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
e result : OutputPin

Additional Constraints
None

7.5.3.213 ReadSelfAction

Generalizations
e Action

Attributes
None

Associations
® result : OutputPin

Additional Constraints
None

7.5.3.214 ReadStructuralFeatureAction

Generalizations
e StructuralFeatureAction

Attributes
None

Associations
e result : OutputPin [0..1]

Additional Constraints
None

7.5.3.2.15 RemoveStructuralFeatureValueAction

Generalizations
e WriteStructuralFeatureAction

Attributes
¢ isRemoveDuplicates : Boolean = false

Associations
e removeAt : InputPin [0..1]

Additional Constraints
None

7.5.3.2.16 StructuralFeatureAction

Generalizations
e Action

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2

75

Associations
® object : InputPin
e structuralFeature : StructuralFeature

Additional Constraints
None

7.5.3.2.17 TestldentityAction

Generalizations
e Action

Attributes
None

Associations
e first: InputPin
* result : OutputPin
e second : InputPin

Additional Constraints
None

7.5.3.2.18 ValueSpecificationAction

Generalizations
e Action

Attributes
None

Associations
¢ result : OutputPin

® value : ValueSpecification

Additional Constraints
None

7.5.3.2.19 WriteLinkAction

Generalizations
e LinkAction

Attributes
None

Associations
None

Additional Constraints
None

7.5.3.2.20 WriteStructuralFeatureAction

Generalizations

76 Semantics of a Foundational Subset for Executable UML Models, Beta 2

e StructuralFeatureAction

Attributes
None

Associations
e result : OutputPin [0..1]
¢ value : InputPin

Additional Constraints
None

754 Complete Actions

7.5.41 Overview

The classes shown in Figure 46 to Figure 48 are those included in the fUML Actions::CompleteActions package. The
diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the f{UML abstract syntax diagrams.

From Accept Event Actions (see Figure 46):

® AcceptCallAction. Accept call actions are excluded from fUML because only signal events are allowed in triggers
in fUML. Operation calls in f{UML are handled solely by the dispatching of operations to methods.

® ReplyAction. Reply actions are excluded from fUML because they are only used in conjunction with accept call
actions for synchronous calls.

® UnmarshallAction. Unmarshall actions are excluded from fUML because it is redundant with unmarshalling a
signal as received by an accept event action.

From Object Actions (see Figure 47): No execlusions.
From Link Identification Actions (no f{UML diagram):

Tablel QualifierValue. Qualifier values are excluded from fUML because association qualifiers are excluded from fUML
(see Subclause 7.2.2).

From Read Link Actions and Write Link Actions (no f{UML diagrams):

TablelReadLinkObjectEndAction, ReadLinkObjectEndQualifierAction and CreateLinkObjectAction. These actions are
excluded from fUML because association classes are excluded from fUML (see Subclause 7.2.1).

From Reduce Action (see Figure 48): No execlusions.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 77

Action

(From BasicActions)

i

AcceptEventAction

+ isbnmarshall @ Boolean = false

'n.
[

+ acceptEventAction + trigger Trigger
0.1 1, (From Communications)
+ acceptBEventAction + result
OutputPin
* (From BasicActions)

[}
F
[
i

[]
¥
]
]

L]
I
]
I
i
]
1
1
1
]
I
1
1
L}
I

0.1

Al triggers must be for signal events.

Figure 46 - Accept Event Actions

78

The context class must have receptions for all triggering signals.

The context of the containing activity of the accept event action must be an active class.

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Action
The classifier must be a class. (from BasicActions)
A"
|
|
|
|
|
|
|
|

':Madatautmtmu StartClassifierBehaviorAction | o..1 + object
[InputPin

startClassifierBehaviorAction © | (From BasicActions)

[}

+

+ readExtentaction | 0.1 0.1 + readExtentAction

Al the old and new ReclassifyObjectAction 0.1 + object
classifiers must be ~77770 g |+ isReplacelll : Boolean = false
Classes. P + reclassifyObjectAction 1
+ reclassifyObjectAction| * * |+ reclassifyObjectAction + object |1
+ oldClassifier | * | 4 newCGassifie + readlsClassifiedObjectAction 0.1
) ReadIsClassifiedObjectAction
+ dassifier N Classifier Lt classifier » [+ isDirect ; Boolean = fake
From K |
1 M 1 + readlsClassifiedObject Action

0..1 | + readlsClassifiedObjectAction
+result | 1 + result

outputPin |
(From BasicActions) 1

CallAction
(From BasicActions)
A

iESynchronous must be false., - - - + startObjectBehaviorAction + object -
,,,,,,,,,,,, J StartObjectBehaviorAction InputPin
[1 (from BasicActions)
1

0.1

Figure 47 - Object Lifecycle Actions

Action
(From BasicActions)

ReduceAction + reducefction + reducer p—
+ is0rdered : Boolean = false N 1 (From BasicBehaviors)
+ reduceAction 0.1 0.17 + reduceAction
+ caollection 1 1 | + result
InputPin OutputPin
(From BasicActions) (From BasicActions)

Figure 48 - Reduce Actions

Semantics of a Foundational Subset for Executable UML Models, Beta 2 79

7.5.4.2 Class Descriptions
7.54.21 AcceptEventAction

Generalizations
e Action

Attributes
e jsUnmarshall : Boolean = false

Associations
® result : OutputPin [0..*]
e trigger : Trigger [1..*]

Additional Constraints
[1] fUML active context
The context of the containing activity of the accept event action must be an active class.

‘ Issue 14531 -- Problems with OCL for AcceptEventAction::fUML_active_context

self.activity-getContextiicontext.oclAsType(Class).isActive

[2] fUML only signal event triggers
All triggers must be for signal events.

self.trigger.event->forAll(oclIsKindOf(SignalEvent))

‘ Issue 14532 -- References to uml::Class in OCL

[3] fUML receive all triggering_signals
The context class must have receptions for all triggering signals.

let cls:Class = self.context.oclAsType(Class) in
let classes:Bag(Class) = cls.allParents()->select(ocllsKindOf(Class))->collect(oclAsType(Class))->union(cls->asBag()) in
classes.ownedReception.signal->includesAll(self.trigger.event->collect(oclAsType(SignalEvent)).signal)

7.54.2.2 ReadExtentAction

Generalizations
e Action

Attributes
None

Associations

e classifier : Classifier
¢ result : OutputPin

80 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Additional Constraints
[1] fUML is_class
The classifier must be a class.

‘ Issue 14532 -- References to uml::Class in OCL

self.classifier.ocllsKind Of(Class)
75423 ReadlsClassifiedObjectAction

Generalizations
e Action

Attributes
e isDirect : Boolean = false

Associations
e classifier : Classifier
® object : InputPin
e result : OutputPin

Additional Constraints
None

75424 ReclassifyObjectAction

Generalizations
e Action

Attributes
e isReplaceAll : Boolean = false

Associations
e newClassifier : Classifier [0..*]
® object : InputPin
e oldClassifier : Classifier [0..*]

Additional Constraints
[1] fUML old new_classes

All the old and new classifiers must be classes.

‘ Issue 14532 -- References to uml::Class in OCL

self.oldClassifier->forAll(ocllsKindOf(Class)) and self.newClassifier->forAll(oclIsKind Of(Class))
754.2.5 ReduceAction

Generalizations
e Action

Attributes
e isOrdered : Boolean = false

Associations
e collection : InputPin

Semantics of a Foundational Subset for Executable UML Models, Beta 2

e reducer : Behavior
* result : OutputPin

Additional Constraints
None

7.54.2.6 StartClassifierBehaviorAction

Generalizations
e Action

Attributes
None

Associations
® object : InputPin

Additional Constraints
None

75427 StartObjectBehaviorAction

Generalizations
e (CallAction

Attributes
None

Associations
® object : InputPin

Additional Constraints
[1] fUML is asynchronous
isSynchronous must be false.

not self.isSynchronous

8 Execution Model

8.1 Overview

This clause describes the execution model for fUML. The execution model is itself a model, written in fUML, that
specifies how fUML models are to be executed. This circularity is broken by the separate specification of a base
semantics for the subset of fUML actually used in the execution model (see Clause 10).

Static Semantics and Well Formedness

It is important to distinguish execution semantics from what is sometimes called “static semantics,” a term that comes
from programming language compiler theory.

Typically, the syntax of a programming language is defined using a context-free grammar (e.g., using Backus-Naur Form
productions). However, there are also typically aspects of the language that are context-sensitive, but can still be checked
statically by the compiler. The most common example is static type checking, which requires matching expression types
to declared variable types. The checking of such context-sensitive constraints is known as “static semantics.”

82 Semantics of a Foundational Subset for Executable UML Models, Beta 2

For UML, the abstract syntax is defined as a MOF metamodel. The UML specification also defines additional constraints
that the metamodel representation of a valid UML model is required to meet. These constraints are the equivalent of the
static semantics of UML.

However, since these constraints can all be checked statically, they are not part of the execution semantics of UML.
Indeed, any model that violates one or more of these additional constraints is not actually well formed. Such an ill-
formed model cannot really be assigned any meaning at all.

In this specification, static semantics are not considered to be part of the execution semantics to be specified. That is, any
well-formed model is already presumed to have met all the constraints imposed on the abstract syntax as defined in the
UML Specification. Semantic meaning will only be defined for models that are well formed in this sense.

Conventions on Derivation and Redefinition

In a number of cases in the UML abstract syntax metamodel, constraints express requirements for derived properties
(including the implicit constraints involved in derived unions and subsetting). The values of such properties may be
completely determined from the values of other, non-derived properties using the defining constraints. Thus, for example,
the values of these properties do not need to be included in the interchange representation of the model.

On the other hand, the UML 2 Superstructure specification allows a derived property to be read using a read structural
feature action, just like any other property. In principle, it should be possible to dynamically compute the value of the
derived property in order to read it. However, the f{UML subset does not include constraints (see Subclause 7.2.2.1 for the
rationale for this exclusion) and, therefore, the defining constraints for derived properties are not available in an
executing f{UML model.

As a result, this specification adopts the convention that, when an object is instantiated, explicit values are provided for
all derived properties and that these values are consistent with the defining constraints for the derivation. In the context of
the abstract syntax metamodel, this means that all the implicit and explicit derivation constraints are treated as part of the
conditions for a well-formed model. Consistent with the discussion of well-formedness above, the execution model
therefore assumes that the abstract syntax representation of a model being executed has valid values set for all derived
properties that may be read just like other properties (and that all derived properties keep the same value throughout an
execution). That is, the distinction between derived and non-derived properties essentially disappears at runtime, so far as
the execution model is concerned (since the execution model does not change the value of any properties in the abstract
syntax representation of an input model).

For example, the UML abstract syntax metamodel defines the ownedAttribute property of Class to subset the derived
union Namespace::ownedMember, which, in turn, subsets both Namespace::member and Element::ownedElement. The
fUML execution model assumes that, in the abstract syntax representation of a well-formed model, every ownedAttribute
of the representation of a class will also be explicitly included in the collection of values of the inherited ownedMember,
member and ownedElement properties for that class.

Similarly, an object is considered to have values set for both any redefined property and the property redefinition of it. In
this case, the implicit constraint is that the values must be the same, whether accessed via the redefined property or via
the redefining property. However, the redefining property may also impose additional constraints (such as a narrowing of
the allowed multiplicity, for example) that then effectively also apply to the value of the redefined property.

NOTE: A conforming execution tool is not necessarily required to handle the derived and redefined properties of the
UML abstract syntax metamodel in this way. This is simply the convention for the execution model, which is written
within the constraints of the f{UML subset.

Behavioral Semantics

The execution model is a formal, operational specification of the execution semantics of f{UML. That is, it defines the
operational procedure for the dynamic changes required during the execution of a fUML model. This is in contrast to the
declarative approach used for the base semantics (see Clause 10).

The execution model is itself an executable, object-oriented, f{UML model of a f{UML execution engine. To specify the
behavioral semantics of f{UML completely, the execution model must fully define its own behavior—that is, it must fully

Semantics of a Foundational Subset for Executable UML Models, Beta 2 83

specify every operation method and classifier behavior in it. Since the only kind of user-defined behavior supported in
fUML is the activity, each behavior in the execution model must be modeled as an activity.

Currently, the only UML notation provided for activity modeling is the graphical activity diagram. It would thus be
possible to represent each of the activities in the execution model using such a diagram. For example, Figure 49 gives a
sample activity diagram for just a part of the method specified for the execute operation of the ActivityExecution class in
the execution model. Unfortunately, for significant activities, these diagrams quickly become large, intractable to draw
and hard to comprehend.

Instead of using such cumbersome graphical notation, and rather than defining from scratch a new, non-normative textual
notation for activities, most activities in this specification are written as equivalent code in the Java programming
language. Informally, these code snippets can actually be understood as executable Java code, and the standard Java
semantics for this code is consistent with the behavior to be specified for the activity. For example, Figure 50 shows the
Java code equivalent to the activity model in Figure 49.

Formally, however, any Java code should be understood as just a surface notation for the true, underlying UML activity
model. That is, the code in Figure 50 should be thought of as just another representation of the model given in Figure 49.
Annex A provides the normative mapping from this Java surface notation to UML activity models, for the purposes of the
fUML specification. The formal semantics of the constructs used in activity models mapped from the Java surface
notation is then given by the base semantics in Clause 10.

Clause Organization

The remainder of this clause is organized according to the packaging structure of the execution model. The packaging of
the execution model exactly parallels that of the fUML abstract syntax (see Clause 7), except for the addition of the Loci
package. This package contains elements of the execution model that do not directly correspond to syntactic elements of
fUML. Rather, the elements in this package provide a model of an executor for well-formed fUML models, which can be
considered to be the abstract specification for actual f{UML execution engines.

Subclause 8.2 describes the Loci package, which contains the Locus, Executor and ExecutionFactory classes that model a
fUML execution engine and its environment.

Subclause 8.3 describes the Class package, which itself only contains the Kernel package (in the fUML subset). The
semantic model for the Kernel package provides the structural semantics for f{UML.

Read types [

Read Self [

1 Add activationGroup

 Add activityExecution '

(Create ActivityMode&ctivationGroup |3

Read node [

Call activate

Read edge [

Figure 49 - Partial Activity Model for the ActivityExecution::execute Operation

84 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Activity activity = (fUML.Syntax.Activity) (this.types.getValue(0));
ActivityNodeActivationGroup group = new ActivityNodeActivationGroup () ;
this.activationGroup = group;

group.activityExecution = this;

group.activate (activity.node, activity.edge);

Figure 50 - Java Surface Representation of the Activity Model in Figure 49

The remaining subclauses together define the behavioral semantics for f{UML. Subclause 8.4 describes the Common
Behavior package, including the fundamental models of active objects and behavior execution. Subclause 8.5 provides
the semantic models for activities, the main form of behavior supported by fUML, and Subclause 8.6 provides the model
for the execution of actions within an activity.

Throughout the following subclauses, the terminology of semantic interpretation introduced in Clause 6 will be freely
used to relate the operational semantic specification provided by the execution model to the general semantics approach
used in this specification.

8.2 Loci

8.2.1 Overview

The Loci package includes the model of the key concepts of an execution /ocus and of the executor that provides the
abstract external interface of the execution model. Figure 51 shows the dependencies of this package on other packages.

1 [1]
Kernel Kernel
(From FUML: :Syntax: :Classes) (From FUML: :Semantics: :Classes)
el M
seo_ wimports i
e «imports |
—— - . i
Teal]
) ™ 1
- - wimports !
BasicBehaviors R Loci
(From FUML::Syntax:: CommeonBehaviors) (From FUML: :Semankics)

Figure 51 - Loci Semantics Packages

The Executor and the Execution Locus

The Executor class provides the root abstraction for executing a f{UML model. As shown in Figure 52, it provides three
operations:

® FEvaluate — Evaluate a value specification, returning the specified value.

e FExecute — Synchronously execute a behavior, given values for its input parameters and returning values for its
output behaviors.

e Start— Asynchronously start the execution of a stand-alone or classifier behavior, returning a reference to the
instance of the executing behavior or of the behaviored classifier.

Every execution takes place at a specific locus. A locus is an abstraction of a physical or virtual computer capable of
executing f{UML models. It is a place at which extensional values (objects or links) can exist. The extent of a class or
association is the set of objects or links of that type that exist at a certain locus. Note that this implies that an individual

Semantics of a Foundational Subset for Executable UML Models, Beta 2 85

object is restricted to a single locus; i.e., it cannot span multiple loci (See Subclause 8.3.2.1 for further discussion of
extensional values.)

All objects and links created during an execution are created at the locus of that execution. And, unless an object or link
is explicitly destroyed, it will persist at the locus even after the execution has completed. This means that objects and
links may already exist at a locus before a specific behavior execution begins, providing part of the environment in which
the execution takes place. (The concept of an execution environment is discussed further at the end of this subclause.)

Indeed, an execution locus may provide a set of pre-existing objects as part of the environment of all behavior executions
at that locus, as a means of providing external services to those executions. Given that the appropriate class is known,
such service objects may be discovered using the read extent action (this is the mechanism used for accessing
input/output services, for example — see Subclause 9.4). More sophisticated discovery services may also be provided but
are not defined in this specification.

While the execution of any one behavior takes place at a single locus, an execution at one locus may invoke a behavior
that executes at another locus. To do this, an execution must be able to instantiate, or otherwise obtain a reference to, an
object on the remote locus on which the behavior is to be invoked (or which itself is a behavior instance). However, no
normative mechanism is provided within f{UML for an execution on one locus to obtain references to objects on another
locus. Conformant execution tool implementations may optionally provide a service to discover objects on remote
services or to allow references to be passed between loci using input/output channels (see Subclause 9.4). (With such
extensions it should be possible to support the execution of models that span multiple loci.)

Visitor Classes and the Execution Factory

The model for evaluation and execution is based on the Visitor pattern'. This pattern is used to add behavior to an already
existing class hierarchy. In the case of the execution model, the existing class hierarchy is that of the f{UML subset of the
UML Abstract Syntax (see Clause 7). The intent of the execution model is to provide a specification for the execution of
models represented in terms of instances of abstract syntax metaclasses, without making any change to those metaclasses
as they are given in the UML Superstructure specification.

Using the Visitor Pattern, each abstract syntax metaclass for which behavior is to be added has a corresponding visitor
class in the Execution Model. This visitor class has a unidirectional association to the corresponding abstract syntax
metaclass and operations that effectively provide the behavioral specification of the semantics of model elements
represented by that metaclass. All visitor classes in the execution model are descended, directly or indirectly from the
root SemanticVisitor class (see Figure 52).

There are three types of visitor classes in the Execution Model. Two of them, evaluations and executions, are used by the
Executor.

® FEvaluations — An evaluation visitor is used to evaluate a specific kind of value specification; that is, to return an
instance of the value denoted by the value specification. There is an evaluation visitor class corresponding to
each concrete subclass of ValueSpecification included in the fUML subset (see Subclause 8.3.2). The name of the
visitor class is the same as the name of the corresponding abstract syntax metaclass with the word “Evaluation”
appended. For example, the evaluation visitor class for the abstract syntax metaclass LiteralString is called
LiteralStringEvaluation. (See Subclause 8.3.2.1 for further discussion of evaluation classes.)

e Executions — An execution visitor is used to execute a specific kind of behavior. There is an execution visitor
class corresponding to each concrete subclass of Behavior included in the fUML subset (see Subclauses 8.5 and
8.6). The name of the visitor class is the same as the name of the corresponding abstract syntax metaclass with
the word “Execution” appended. The primary kind of UML behavior included in fUML is the activity with a
corresponding visitor class called ActivityExecution. There are also OpaqueBehaviorExecution and
FunctionBehaviorExecution visitor classes corresponding to OpaqueBehavior and FunctionBehavior. (See
Subclause 8.4 for a general discussion of execution classes and Subclause 8.5 for specific discussion of activity
execution.)

The behavior of the Executor evaluate and execute operations is to create an instance of the corresponding evaluation or
execution visitor class and then use that visitor instance to carry out the required evaluation or execution. To create a

' For a description of the Visitor pattern, see Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Publishing, 1994.

86 Semantics of a Foundational Subset for Executable UML Models, Beta 2

corresponding visitor instance, the Executor uses an instance of the ExecutionFactory class located at the execution locus
(see Figure 52). The ExecutionFactory class provides createEvaluation and createExecution operations that take,
respectively, value specification and behavior abstract syntax instances and return, respectively, instances of the
evaluation or execution class corresponding to the concrete class of the input abstract syntax object.

The third type of visitor class is an activation. An activation visitor is used to model the semantics of a specific kind of
activity node within the execution of a containing activity. Such activation instances are created as part of the
construction of the execution object for an activity. Therefore, they are further described in Subclause 8.5.2.1 as part of
the discussion of activity execution.

Strategy Classes and Semantic Variation Points

There are two semantic variation points defined for f{UML (see Subclause 2.3): event dispatch scheduling and
polymorphic operation dispatching. In both of these cases, the execution model Imits the semantic variability to the
behavior of a single operation: ObjectActivation::getNextEvent (see Subclause 8.4.3.1) in the case of event dispatching
and Object::dispatch in the case of operation dispatching (see Subclause 8.3.2.1). The execution model uses the Strategy
pattern” in order to allow for possible variation in the behavior of these operations.

The Strategy pattern involves defining a abstract base strategy class for an operation whose behavior is to be allowed to
vary. This base class defines an abstract operation corresponding to the original operation, to which the original operation
is delegated. Different concrete subclasses of the base strategy class can then define different concrete behaviors for the
operation, and selecting a specific behavior (or strategy) corresponds to using an instance of a specific concrete strategy
class.

In the execution model, all strategy classes ultimately descend, directly or indirectly, from the class SemanticStrategy
(see Figure 51). The SemanticStrategy class provides a common operation for getting the “name” of a strategy, which
identifies to which semantic variation point a strategy instance applies. The standard strategy names used in the execution
model correspond to the names of the operations whose behavior is being provided: “getNextEvent” and “dispatch”.

The strategy to be used for a semantic variation point is determined by the strategy instance that is registered with the
execution factory (using the setStrategy operation) at a given locus under the corresponding strategy name. There must
be exactly one strategy instance, of the appropriate subclass, registered for each semantic variation point. The execution
factory getStrategy operation provides a lookup mechanism for retrieving a strategy instance to be used for a specific
named semantic variation.

For further discussion of the strategy classes related to each semantic variation point, as well as the default strategies
provided in the execution model, see Subclause 8.4.3.1 and Subclause 8.3.2.1.

NOTE: While there are currently only two semantic variation points defined for f{UML, the strategy mechanism has
intentionally been made general enough to accommodate the possible need for additional variation points in future
extensions to the specification of the execution semantics for larger subsets of UML.

Specifying Nondeterministic Behavior

There are a number of cases in which the UML 2 Superstructure specification specifically indicates that the execution
semantics in a certain area are nondeterministic—that is, the semantic specification does not prescribe which one of a
number of possible choices is taken during an actual execution. A legal execution may take any one of the allowed
choices. For example, if more than one clause of a conditional node has a successful test, then only one of the clause
bodies will be executed, but it is nondeterministic which one is actually executed.

In order to model nondeterministic behavior in the execution model, a special case of the Strategy pattern is used. A
choice strategy is one with the name “choice” that provides a single operation called choose. This operation takes a
single integer argument size (which must be greater than zero) and returns an integer value from 1 to the given size.

The ChoiceStrategy class (see Figure 52) is the abstract base strategy class for all choice strategies. A single instance of a
concrete subclass of ChoiceStrategy is registered with the execution factory at each locus. Whenever a behavior
specification within the execution model is required to make a non-deterministic choice between some number of
options, this choice is made by getting the registered choice strategy and using its choose operation.

2 For a description of the Strategy pattern, see Gamma et al., ibid.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 87

The key point is that it a legal execution may use any choice strategy at all, so long as the choose operation always
returns a selection from 1 to the required number of choices. Since any choice strategy is legal, no restriction is placed
on a conforming execution tool as to how such choices are actually made in its specific implementation. In this way, the
concept of nondeterminism is operationally interpreted in the execution model.

For completeness, the execution model includes a single concrete default choice strategy class, FirstChoiceStrategy (see
Figure 52). The choose operation of this class always returns 1, which corresponds to always picking the first of a list of
possible options. It is important to understand that, while this specific strategy is deterministic, the effective
nondeterminism of allowed behavior comes about because any other choice strategy might also be used, whether it is
some other simple algorithm, totally random or just based on what is most convenient for the internal implementation of
some execution tool.

NOTE: There is no requirement that a conforming execution tool provide a formal specification of what its effective
choice strategy is, as this may be entirely implicit in the way the tool is implemented. On the other hand, a specific choice
strategy may be formally specified by defining a new subclass of ChoiceStrategy. This may be useful, for example, if the
implementation target is in a domain (such as life critical systems) in which fully determinable behavior is desirable or if
it is desirable to be able to specify some sort of fair or parameterized distribution of how choices are made.

Primitive Behaviors and Primitive Types

The execution factory at each locus maintains the set of primitive behaviors available to be called by executions at a
specific locus. In fUML, primitive behaviors are defined syntactically as instances of OpaqueBehavior. For each
OpaqueBehavior instance representing a primitive behavior, the execution factory maintains a corresponding prototype
instance of OpaqueBehaviorExecution. When an instance of OpaqueBehavior is passed to the execution factory
createExecution operation, the corresponding prototype opaque behavior execution is looked up. A copy of this prototype
execution instance is then returned as the result of the createExecution call.

Subclause 9.2 specifies the basic library of primitive behaviors that must be provided by any conforming execution tool.
However, specific execution tools may also provide additional primitive behaviors. These are modeled as additional
opaque behavior execution prototypes added to the standard list required to be maintained by any execution factory.

Finally, the execution factory also maintains a list of built-in primitive types for which there are corresponding literal
value specifications. Note that this is a list of instances of the PrimitiveType metaclass—that is, representations of the
MI-level types from the fUML model library (see Subclause 9.1). During the evaluation of a literal value specification,
the appropriate evaluation class looks up by name the proper primitive type to attach to the resulting value (see Subclause
8.3). Since fUML includes literal value specifications for Boolean, Integer, String and UnlimitedNatural (see Subclause
7.2.2), the list of built-in types must include at least these types.

Configuring the Execution Environment at a Locus

While the Executor class provides the basic interface for evaluating value specifications and executing behaviors, the
preceding discussion in this subclause indicates that more than just an instance of an executor is required in order to even
begin to perform such evaluations and executions. Instead, it is necessary to instantiate a set of collaborating objects
(largely from classes within the execution model) that provide the initial execution environment. The configuration of this
initial environment in terms of the execution model is an abstraction of the capabilities that a conforming execution tool
must actually provide in order to execute a fUML model.

The following items are required as part of the execution environment at a specific locus.
* Asingle instance of class Locus (see Subclause 8.2.2.5)
* Asingle instance of class Executor, linked to the locus (se e Subclause 8.2.2.3)
* Asingle instance of class ExecutionFactory, also linked to the locus (see Subclause 8.2.2.2)

¢ Instances of PrimitiveType for each of the primitive types Boolean, Integer, String and UnlimitedNatural, as
defined in the Foundational Model Library (see Subclause 9.1), registered with the execution factory as built-in

types

88 Semantics of a Foundational Subset for Executable UML Models, Beta 2

e Single instances of concrete subclasses of ChoiceStrategy (see Subclause 8.2.2.1), DispatchStrategy (see
Subclause 8.3.2.2.4) and GetNextEventStrategy (see Subclause 8.4.3.2.6), all registered with the execution
factory

The following items are also permitted as part of the execution environment at a specific locus.

¢ Instances of concrete subclasses of OpaqueBehaviorExecution registered with the execution factory as primitive
behavior prototypes (these may include some or all of the primitive behaviors from the Foundational Model
Library—see Subclause 9.2)

e Instances of Object representing discoverable services, instantiated as existential values at the locus (these may
include singleton instances of the basic input/output classes StandardInputChannel and StandardOutputChannel
—see Subcluase 9.4)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 89

fUML ::Semantics::Classes::Kernel::ExtensionalValue

0.

* | + extensionalyalues

1 + locus

Locus

+ setExecutor [executor

¢ Executor)

+ setFactory (factory : ExecutionFactory) + locus

+ getBxtent [classifier : Classifier) : ExtensionalValue [*] g

+ add (value : Extensionalvalue)
+ remove (value : Extensionalvalue)
+ instantiate (type : Class) Object_

+ conforms (type : Classifier, classifier : Classifier) : Boolean

0.1

+ locus 0.1

+ executor | 0.1

Executor

+ execute (behavior | Behavior, context : Object_ [0..1], inputs : Parametervalue [*]) ;| Parametervalue [*]
+ evaluate (specification : ValueSpecification) : Value
+ start (type : Class, inputs : Parametervalue [*]) : Reference

ExecutionFactory

0.1

+ createExecution [behavior : Behavior, context : Object_ [0..1]) : Execution
+ createEvaluation (specification : ValueSpecification) : Evaluation

+ instantiateVisitor (element : Element) : SemanticVisitor
+ instantiateCpagueBehaviorExecution | behavior : OpaqueBehavior) : OpagueBehaviorExecution
+ addPrimitiveBehaviorPrototype (execution | OpagqueBehaviorExecution) -
+ addBuiltInType (type : PrimitiveType)
+ getBuiltInType (name : String) : PrimitiveType [0..1]
+ setStrategy (strategy : SemanticStrategy)
+ getStrateagy (name : String) : SemanticStrategy [0..1]
+ getStrategyIndex (name : String) : Integer

+ factory

+ bultInTypes

SemanticVisitor

Figure 52 - Loci

1 -
fUML::Syntax::Classes::Kernel::PrimitiveType |
* | + strategies
* | + primitiveBehaviorPrototypes
SemanticStrategy
+ gethame [) 5ting fUML ::Semantics::CommonBehaviors::BasicBehaviors::0paqueBehaviorExecution |
ay
ChoiceStrategy

+ gethMame () String
+ choose (size ! Integer) ! Integer

FirstChoiceStrategy

+ choose (size @ Integer) @ Integer

8.2.2 Class Descriptions

8.2.2.1 ChoiceStrategy

A choice strategy is used to represent the behavior of making an arbitrary non-deterministic choice.
A valid execution may use ANY choice strategy for choosing one element from a given set.

90

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Generalizations
e SemanticStrategy

Attributes
None

Associations
None

Operations
[1] choose (in size : Integer) : Integer

Choose an integer from 1 to the given size.
[The size must be greater than 0.]

[2] getName () : String
// The name of a choice strategy is always "choice".

return "choice";

8.2.2.2 ExecutionFactory

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value
specification or the activation of an activity node.

Generalizations
None

Attributes
None

Associations
® builtinTypes : PrimitiveType [0..*]

The set of primitive types that have corresponding literal value specifications.
Must include Integer, Boolean, String and UnlimitedNatural.

* Jocus: Locus [0..1]

The locus at which this factory resides.
e primitiveBehaviorPrototypes : OpaqueBehaviorExecution [0..*]

The set of opaque behavior executions to be used to execute the primitive behaviors known to the factory.
e strategies : SemanticStrategy [0..*]

‘Ednoﬁalchange

Operations
[1] addBuiltInType (in type : PrimitiveType)

// Add the given primitive type as a built-in type.
// Precondition: No built-in type with the same name should already exist.

this.builtInTypes.addValue (type) ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 91

[2] addPrimitiveBehaviorPrototype (in execution : OpaqueBehaviorExecution)

// Add an opaque behavior execution to use as a prototype for instantiating the
corresponding primitive opaque behavior.

// Precondition: No primitive behavior prototype for the type of the given execution

should already exist.

this.primitiveBehaviorPrototypes.addValue (execution) ;

[3] createEvaluation (in specification : ValueSpecification) : Evaluation

// Create an evaluation object for a given value specification.
// The evaluation will take place at the locus of the factory.

Evaluation evaluation = (Evaluation) (this.instantiateVisitor (specification,"Evaluation"));
evaluation.specification = specification;
evaluation.locus = this.locus;

return evaluation;

[4] createExecution (in behavior : Behavior, in context : Object [0..1]) : Execution

// Create an execution object for a given behavior.
// The execution will take place at the locus of the factory in the given context.
// If the context is empty, the execution is assumed to provide its own context.

Execution execution;

if (behavior instanceof OpaqueBehavior) {
execution = this.instantiateOpaqueBehaviorExecution ((OpaqueBehavior)behavior);
}
else {
execution = (Execution) (this.instantiateVisitor (behavior, "Execution"));
execution.types.addValue (behavior) ;
execution.createFeatureValues () ;

this.locus.add (execution);

if (context == null) {
execution.context = execution;
}
else {
execution.context = context;

}

return execution;

[5] getBuiltInType (in name : String) : PrimitiveType [0..1]
// Return the built-in type with the given name.

PrimitiveType type = null;

int 1 = 1;

while (type == null & i <= this.builtInTypes.size()) {
PrimitiveType primitiveType = this.builtInTypes.getValue (i-1);
if (primitiveType.name.equals (name)) {

92 Semantics of a Foundational Subset for Executable UML Models, Beta 2

type = primitiveType;

return type;

[6] getStrategy (in name : String) : SemanticStrategy [0..1]
// Get the strategy with the given name.

‘ Issue 13454 -- ExecutionFactory::getStrategy doesn't follow conventions

int 1 = this.getStrategyIndex (name) ;

SemanticStrategy strategy null;

if (i <= this.strategies.s
strategy = thi
£ — .
T 1y < CITIS<ST S
strategy—=t
1 etse—+
F—etse—tf
s ul
CL Al J T =

return strategy;

[7] getStrategyIndex (in name : String) : Integer

// Get the index of the strategy with the given name.
// If there is not such strategy, return the size of the strategies list.

SemanticStrategylList strategies = this.strategies;

int 1 = 1;
boolean unmatched = true;
while (unmatched & (i <= strategies.size())) {
if (strategies.getValue(i-1) .getName () .equals (name)) {
unmatched = false;
} else {
i=1+1;

return 1i;

[8] instantiateOpaqueBehaviorExecution (in behavior : OpaqueBehavior) : OpaqueBehaviorExecution

// Return a copy of the prototype for the primitive behavior execution of the given
opaque behavior.

OpaqueBehaviorExecution execution = null;

int 1 = 1;

while (execution == null & i <= this.primitiveBehaviorPrototypes.size()) {
// Debug.println("[instantiateOpaqueExecution] Checking " +

this.primitiveBehaviorPrototypes.getValue (i) .objectId() + "...");
OpaqueBehaviorExecution prototype = this.primitiveBehaviorPrototypes.getValue (i-1);
if (prototype.getBehavior() == behavior) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 93

execution = (OpaqueBehaviorExecution) (prototype.copy()):;

if (execution == null) {
Debug.println (" [instantiateOpaqueExecution] No prototype execution found for " +
behavior.name + ".");

}

return execution;

[9] instantiateVisitor (in element : Element, in suffix : String) : SemanticVisitor

// Instantiate a visitor object for the given element, appending the given suffix to the
class name.

String elementClassName = element.getClass () .getName () ;

// Strip off "fUML.Syntax."

int dotIndex = elementClassName.indexOf (".");
elementClassName = elementClassName.substring (dotIndex+1) ;
dotIndex = elementClassName.indexOf (".");

elementClassName = elementClassName.substring (dotIndex+1) ;

// Debug.println (" [instantiateVisitor] Stripped name = " + elementClassName) ;
String visitorClassName = "fUML.Semantics." + elementClassName + suffix;
try {

return (SemanticVisitor) (Class.forName (visitorClassName) .newInstance()) ;
} catch (Exception e) {

Debug.println (" [instantiateVisitor] Error: " + e);

return null;

[10] setStrategy (in strategy : SemanticStrategy)

// Set the strategy for a semantic variation point. Any existing strategy for the same SVP
is replaced.

int i = this.getStrategyIndex (strategy.getName());
if (i <= this.strategies.size()) {

this.strategies.removeValue (i-1);

}

this.strategies.addValue (strategy);

8.2.2.3 Executor
An executor is used to execute behaviors and evaluation value specifications.

Generalizations
None

Attributes
None

94 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
e locus: Locus [0..1]

The locus at which this executor resides.
Operations

[1] evaluate (in specification : ValueSpecification) : Value
// Evaluate the given value specification, returning the specified value.

// Debug.println("[evaluate] Start...");
return this.locus.factory.createEvaluation (specification) .evaluate();

[2] execute (in behavior : Behavior, in context : Object [0..1], in inputs : ParameterValue [0..*]) : ParameterValue [0..*]

// Execute the given behavior with the given input values in the given context, producing
the given output values.

// There must be one input parameter value for each input (in or in-out) parameter of the
behavior.

// The returned values include one parameter value for each output (in-out, out or return)
parameter of the behavior.

// The execution instance is destroyed at completion.

Execution execution = this.locus.factory.createExecution (behavior, context);
for (int i = 0; 1 < inputs.size(); 1i++) {
execution.setParameterValue (inputs.getValue (1))
}
execution.execute () ;
ParameterValuelist outputValues = execution.getOutputParameterValues ()

execution.destroy () ;

return outputValues;

[3] start (in type : Class, in inputs : ParameterValue [0..*]) : Reference

// Instantiate the given class and start any behavior of the resulting object.

// (The behavior of an object includes any classifier behaviors for an active object or
the class of the object itself, if that is a behavior.)

Debug.println (" [start] Starting " + type.name + "...");

Object object = this.locus.instantiate (type);

Debug.println("[start] Object = " + object);
object.startBehavior (type, inputs);

Reference reference = new Reference();
reference.referent = object;

return reference;

8.2.24 FirstChoiceStrategy

Generalizations
e ChoiceStrate

Semantics of a Foundational Subset for Executable UML Models, Beta 2 95

Attributes
None

Associations
None

Operations
[1] choose (in size : Integer) : Integer
// Always choose one.

return 1;

8.2.2.5 Locus

A locus is a place at which extensional values (objects or links) can exist. The extent of a class or association is the set of
objects or links of that type that exist at a certain locus.

A locus also has an executor and a factory associated with it, used to execute behaviors as a result of requests dispatched
to objects at the locus.

Generalizations
None

Attributes
None

Associations
e executor : Executor [0..1]

The executor to be used at this locus.
* cxtensionalValues : Extensional Value [0..*]

The set of values that are members of classifier extents at this locus.
e factory : ExecutionFactory [0..1]

The factory to be used at this locus.

Operations

[1] add (in value : Extensional Value)
// Add the given extensional value to this locus

value.locus = this;
this.extensionalValues.addValue (value) ;

[2] conforms (in type : Classifier, in classifier : Classifier) : Boolean

// Test if a type conforms to a given classifier, that is, the type is equal to or a
descendant of the classifier.

boolean doesConform = false;

if (type == classifier) {
doesConform = true;

} else {
int 1 = 1;

96 Semantics of a Foundational Subset for Executable UML Models, Beta 2

while (!doesConform & i1 <= type.general.size()) {
doesConform = this.conforms (type.general.getValue(i-1), classifier);
i =1+ 1;

}

return doesConform;

[3] getExtent (in classifier : Classifier) : ExtensionalValue [0..*]

// Return the set of extensional values at this locus which have the given classifier as a
type.

ExtensionalValuelList extent = new ExtensionalValuelList ();

ExtensionalValuelist extensionalValues = this.extensionalValues;

for (int i1 = 0; 1 < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue (i) ;
ClassifierlList types = value.getTypes();

boolean conforms = false;

int 3 = 1;

while (!conforms & j <= types.size()) {
conforms = this.conforms (types.getValue(j-1), classifier);
j=3+1;

}

if (conforms) {
extent.addValue (value) ;

return extent;

[4] instantiate (in type : Class) : Object

// Instantiate the given class at this locus.
Object object = null;

if (type instanceof Behavior) {

object = this.factory.createExecution ((Behavior)type, null);
}
else {

object = new Object ();

object.types.addValue (type) ;

object.createFeatureValues() ;

this.add (object) ;
}

return object;

[5] remove (in value : Extensional Value)

// Remove the given extensional value from this locus.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 97

value.locus = null;

boolean notFound = true;

int 1 = 1;
while (notFound & i <= this.extensionalValues.size()) {
if (this.extensionalValues.getValue(i-1l) == value) {

this.extensionalValues.remove (i-1);
notFound = false;

[6] setExecutor (in executor : Executor)
// Set the executor for this locus.

this.executor = executor;
this.executor.locus = this;

[7] setFactory (in factory : ExecutionFactory)
// Set the factory for this locus.

this.factory = factory;
this.factory.locus = this;

8.2.2.6 SemanticStrategy

The common base class for semantic strategy classes. A semantic strategy class specifies the behavior to be used at a
specific semantic variatio point.

Generalizations
None

Attributes
None

Associations
None

Operations

[1] getName () : String

Return the name of this strategy, as defined for the semantic variation point to which the
strategy applies.

8.2.2.7 SemanticVisitor
The common base class for semantic visitor classes.

Generalizations
None

Attributes
None

98 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
None

Operations

[1] _beginlsolation ()

Debug.println (" [beginIsolation] Begin isolation.");

[2] _endIsolation ()

Debug.println (" [endIsolation] End isolation.");

8.3 Classes

8.3.1 Overview

Within the Classes package, all the UML constructs included in fUML are from the Kernel package (see Subclause
7.2.2). Figure 52 shows the dependencies of the semantics Kernel packages on other packages.

——
Communications
(from fUML::Semantics:: CommonBehaviors) BasicBehaviors
(from fUML: :Semantics: :CommonBehaviors)
E‘:x
. 7
. -
«import» ™, ,
™ " «import»
«imports - «import»

Kernel P —— Kernel e > Loci

(from fuML::Syntax: :Classes) (from fUML::Semantics::Classes) (from fUML: :Semantics)

.~ "«impart»

-

1 el
BasicBehaviors
(from fUML::Syntax::CommonBehaviors)

Figure 53 - Classes Semantics Packages

8.3.2 Kernel

8.3.2.1 Overview

Values

As discussed in Subclause 6.2, a model is interpreted to make statements about some semantic domain. First order
statements are actually made on instances in the semantics domain. The structural semantics of UML provides the
denotational mapping of appropriate UML model elements to such semantic instances.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 99

The term instance is often used to mean an object of a specific class. However, in UML, this needs to be generalized to
the concept of an instance of any classifier. The appropriate UML model elements for representing this generalized
concept are value specifications.

Figure 17 in Subclause 7.2.2.1 shows the subset of the abstract syntax of UML value specifications that is included in
fUML. This subset includes the syntax for model elements representing literals of primitive types such as integers and
Booleans, as well as instances of structured types, which include non-primitive data types and classes.

The denotation of a value specification is given formally by the evaluate operation of the Executor class (see Subclause
8.2). This operation maps an instance of the abstract syntax type ValueSpecification to an instance of the semantic type
Value. Just as the abstract syntax of UML can itself be modeled in UML, the semantic domain for UML can also be
modeled in UML. Figure 56 shows this model for Value.

Clearly, literal specifications map to primitive values: literal integers to integer values, literal Booleans to Boolean
values, etc. The mapping for instance values is not so straightforward. An instance value is the specification of a value as
an instance of a non-primitive classifier. The classifier may be an enumeration, a structured data type or a class. Such
value specifications map to enumeration and structured values.

Consider, for example, the simple instance model from Figure 1 in Subclause 6.2. Figure 54 gives the representation of
this model in terms of the abstract syntax of ValueSpecification. The result of the operation evaluate acting on the
instance value v (a kind of ValueSpecification) in Figure 54 is then the object j (a kind of structured value) given in
Figure 55.

: PrimitiveType [+ type : LiteralString
+ name = "String” + value = "Jack"”
+ type + value

+ owningSlot

: Property + definingFeature : Slot
+ name = "name"
+ ownedAttribute + slot
+ class + owninglnstance
: Class + Classifier : InstanceSpecification + instance v : InstanceValue

+ name = "Person”

+ class _
+ owninglnstance
+ ownedAttribute + slot
: Property definingFeature - slot
+ name = "houses”
+ owningSlot
+ value

: InstanceValue

+ type .
+ instance

: Class Classifier : InstanceSpecification
+ name = "House"

Figure 54 - Abstract Syntax Representation of a Simple Instance Model

100 Semantics of a Foundational Subset for Executable UML Models, Beta 2

: PrimitiveType + type : StringValue

+ name = "String” + value = "lack"”
+ type + values
: Property + feature : FeatureValue

+ name = "name"”

+ ownedAttribute + featureValues

+ class

: Class + types
+ name = "Person”

+ class
+ ownedAttribute + featurevalues
: Propert + feature _ FeatureValue

+ name = "houses”

+ type + values

: Class + types _: Object
+ name = "House"

Figure 55 - Semantic Interpretation of a Simple Instance Model

Extensional values

Every classifier has an intension, that is, the set of all possible values that may have that classifier as a type. Other than
for enumerations, for which this set is explicitly specified, the intension of a classifier is conceptually infinite (though, of
course, actually finite in any real implementation). In fact, one semantic mapping for a classifier is to have it specifically
denote its intension.

However, there is a fundamental difference between the intensions of data types and classes. The possible values of a
data type are essentially fully determined by the definition of the type. For example, the intension of the primitive type
Integer is the mathematical set of integers. While this set is infinite, it is completely specified by its mathematical
definition. One cannot “create” a “new” instance of Integer that does not denote an integer value already in the set. In
some sense, all the possible instances of Integer are considered to already exist, even though, of course, only a small
finite subset of them will be denoted in any given model.

The UML syntax highlights this difference for primitive types by providing distinguished /iteral specifications to denote
primitive values, rather than using instance specifications. However, the semantic difference also exists for structured

Semantics of a Foundational Subset for Executable UML Models, Beta 2 101

data types (that is a data type that is not a primitive or an enumeration, but which has structural features), even though the
same UML syntax is used for denoting instances of structured data types and classes.

An instance value of a structured data type maps to a data value, as shown in Figure 57. A data value is a kind of
structured value, which associates values with the attributes of the data type. The equality of two data values of the same
type is determined by the equality of the values of their attributes. They have no identity separately from their value and
are, therefore, semantically akin to non-structured data types.

An instance of a class, on the other hand, is an object. Unlike a data value, an object has an identity separate from the
values of its attributes. Two objects can have the same values for their attributes, and still be distinct objects. Further, the
values of the attributes of an object may change over time, independently of how the attribute values of any other object
change.

Actually, an instance value of a class does not map directly to an object but, rather, to a reference to an object, as shown
in Figure 57. This is because an object, once created, has an independent existence and there may be multiple references
to that same object. Changes to the object made via one reference are visible via any other reference.

Objects are thus examples of extensional values, as are links, which are instances of associations. In addition to their
intension, classes and associations have an extension, that is, the set of instances of the class or association that exist at
any one point in time. This leads, however, to the issue of managing the scope of such extension sets.

This is particularly important for associations. There are actually no actions that return links as values. (Foundational
UML does not contain association actions, so it does not provide semantics for link objects.) Rather, a read link action
actually queries the current extension of the association for matching links.

But, pragmatically, how does one bound what is to be included in the actual extension set? Certainly links created during
the execution of a model should be accessible later in the execution of that model. But what about other executions of the
same model, perhaps widely physically distributed? What about other models that may reuse the same association?

In order to deal with this issue, the f{UML semantic model introduces the concept of a locus, as shown in Figure 57 and
described in Subclause 8.2. An existential value is created at a specific such locus and remains there during its life. The
extent of a class or association is its extension at a specific locus.

For executions at a certain locus, the extension of a class or association is always limited to the extent at that locus.
Therefore, a read link action will only query the specified association extent at the locus at which it is executing.
Similarly, a read extent action will only return (references to) the set of currently extant objects in the specified class
extent at the locus at which it is executing.

Evaluations

An evaluation is a kind of visitor class used to evaluate value specifications (see Subclause 8.2 for a general discussion of
visitor classes). As shown in Figure 58, there is an evaluation class corresponding to each concrete subclass of the
abstract syntax metaclass ValueSpecification.

To evaluate a value specification, the executor uses the execution factory to create an instance of the appropriate
evaluation class (see Subclause 8.2), with a reference to the representation of the value specification to be evaluated.
Evaluation is actually carried out by calling the evaluate method on the evaluation object, which then returns a value of
the appropriate type.

An evaluation object is also created with a reference to the execution locus. This provides access to the execution factory
at the locus in order to obtain the proper primitive type to use for the value resulting from a literal evaluation.

Polymorphic Operation Dispatching

Operations in UML are potentially polymorphic—that is, there may be multiple methods for any one operation.
Polymorphic operation dispatching is the determination of which method to use for a given invocation of the operation,
depending on the context and target of the invocation. The specification for this determination is provided in the
execution model by the dispatch operation of the Object class, as shown in Figure 57 (the semantics of operation
dispatching is further discussed in relation to the call operation action in Subclause 8.6.2).

102 Semantics of a Foundational Subset for Executable UML Models, Beta 2

However, the exact behavior to be specified for polymorphic operation dispatching is a semantic variation point in
fUML. (See Clause 2.3 for a full discussion of semantic variation within f{UML.) Following the general approach of
using the Strategy Pattern to model semantic variation points (see Clause 8.2.1), the variability of operation dispatching
is captured by using strategy classes for the Object::dispatch operation. DispatchStrategy provides the abstract base class
for this type of strategy (see Figure 57). The default dispatching behavior is given by the concrete class
RedefinitionBasedDispatchStrategy.

The default redefinition based dispatch strategy requires that every concrete fUML operation has an associated method.
In order to override an operation inherited from a superclass, the subclass must declare the redefining operation as a
redefinition of the inherited operation. This is interpreted as meaning that any calls made to the original superclass
operation, for objects that are instances of the subclass or any of its descendants, will be dispatched to the method of the
redefining operation, rather than to the method of the original operation.

A conforming execution tool may define an alternative rule for how this dispatching is to take place by defining a new
DispatchStrategy subclass specifying whatever rule is desired. An instance of this alternate strategy must then be
registered with the execution factory at a given locus, rather than the default strategy.

To simplify the specification of new concrete dispatch strategy subclasses, the abstract base DispatchStrategy class
provides a generally applicable method for its dispatch operation using an abstract getMethod operation. The getMethod
operation takes the same arguments as dispatch (the target object and the operation to dispatched) and is required to
return the operation method chosen to be executed for the operation by a specific dispatch strategy. The dispatch
operation then creates an execution for the chosen method at the locus of the target object on which the operation is
being invoked and returns that execution object.

Issue 14521 -- A data type should not be allowed to have operations

The UML Superstructure allows data types to own operations. as well as classes. However, data types are not behaviored
classifiers. so they cannot own behaviors to be used as methods for their operations. Since fUML requires that every non-
abstract operation have a method. it would thus only be possible to have abstract operations on data types. which would
not be very useful. Therefore, data types are prohibited from having operations at all in f{UML (see the constraint in
Subclause 7.2.2.2.6).

It is thus not possible to use owned operations to define the primitive behaviors of a data type. Instead. the Foundational
Model Library defines a set of primitive function behaviors that take values of primitive data types as their argcuments.
Rather than being operations of the primitive types. these primitive behaviors are grouped into library packages
corresponding to the appropriate types (e.g.. IntegerFunctions for type Integer. etc.). Implementations for these behaviors

are then registered with the execution factory as part of the configuration of the execution environment (see Subclause

8.2.1).

Not being operations. such primitive behaviors are, of course. not polymorphic. They are called using call behavior
actions. rather than call operation actions.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 103

fUML ::Semantics::L oci::SemanticVisitor

Value

#Fnew_():

+ specify {)
+ equals { othervalue : Value) : Boolean
+ copy () Value

+ getTypes () : Classifier [*]

+ hasType (type : Classifier) : Boolean
+ toStiing () : String

+ objectld () : String

ValueSpecification

Value

fUML ::Syntax::Classes::Kernel::EnumerationLiteral

+ literal | 1
+ enumeration | 0..1

StructuredValue

+ spedfy () ValueSpecification

+ getFeatureValue (feature ; ShuctwalFeatwe) ; FeatureValue
+ setFeatweValue [featwe ! StructwalFeature, values @ Value [*], position ! Integer [0..1])
+ getFeatureValues |) : FeatureValue [*]

+ createFeatureValues ()

PrimitiveValue

+ copy () Value
+ getTypes () : Classifier [*]

BooleanValue

StringValue

+ value : Boclean

+ value : String

+ copy () Value
#Fnew_(): Value
+ toString () : String

+ specify () ValueSpecification
+ equals { othervalue : Value) : Boolean

+copy) Value
#Fnew_ () Value
+ toString () @ String

+ specify ()@ ValueSpecification
+ equals [othervalue : Value) : Boolean

+ type 1

EnumerationValue

+ specify () : ValueSpecification

+ equals { othervalue : Value) : Boolean
+ copy () Value

#Fnew_(): vValue

+ getTypes () : Classifier [*]

+ tosString () : String

fUML::Syntax::Classes::Kernel::PrimitiveType

Figure 56 - Values

104

IntegerValue

UnlimitedNaturalValue

+ value : Integer

+ spedfy () ValueSpecification

+ equals { othervalue : Value) : Boolean
+ copy () Value

#Frnew_(): Value

+ toString () : String

+ value : Unlimitedatural

+ specify () : ValueSpecification

+ equals [othervalue : Value) : Boolean
+ copy () Value

#Fnew_ () value

+ toString () : String

+ ownedLiteral

+ type 1 0
fUML::Syntax::Classes::Kernel::Enumeration |

Semantics of a Foundational Subset for Executable UML Models, Beta 2

fUML ::Syntax::Classes::Kernel::StructuralFeature

1 |+ feature

*

FeatureValue

+ featureValues

fUML::Semantics::Classes::Kernel::StructuredValue

+ position @ Integer [0..1]
+ hasEqualvalues { other : FeatureValue) : Boolgan
+ copy [) : FeatureValue

0.1

* |, + values

fUML ::Semantics::Classes::Kernel::Value ‘

CompoundValue

+copy () Value

+ setFeatureValue [feature

+ toStiing () : String

+ equals [otherValue : Value) : Boolean

+ getFeatureValue (feature : StructuralFeature) : FeatureValue

: StructuralFeature, values @ Value [*], position : Integer [0..1])

+ getFeatureValues () : FeatureValue [*]
+ removeFeatureValues (classifier : Classifier)

Reference

+ startBehavior (classifier : Class [0..1], inputs : Parametervalue [*])
+ dispatch (operation : Operation) ; Execution

+ send (signallnstance : Signallnstance)

+ destroy ()

+ equals { othervalue : Value) ; Boolean

+copy () Value

#Fnew_ () Vaue

+ getTypes () 1 Classifier [*]

+ getFeatureValue (feature : StructuralFeature) : FeatureValue

+ setFeaturevalue (feature ; StructuralFeature, values : Value [*], position : Integer [0..1])
+ getFeatureValues () : FeatureValue [*]

+ toString () : String

DataValue
Extenstonalvalue + extensionalvalues + locus
. - T
: f;g\“(p)es &a)mglasmﬁa el + destroy () fUML::Semantics::Loci:Locus
#new_ () Value + copy () : Value l 0.1
"
I referent
+ type 1 |
fUML ::Syntax::Classes:Kernel::DataType Object
+ startBehavior (classifier : Class [0..1], inputs : Parametervalue [*])
+ dispatch (operation : Operation) ; Execution
Link + send (signallnstance : Signallnstance)
- + destroy ()
+ destroy () + register (accepter : EventAccepter)
+copy () Value + unregister (accepter : EventAccepter)
#new_ (] vaue + copy () Value
+ getTypes () : Classifier [*] ¥ newf_() Val\ue -
+ setFeatureValue (feature : StrypturalFeature, values @ Value [*], position @ Integer [0..1]) + getTypes (] : Classifier [*]
1 |+ object
-
+bype |, 0.1 + types 0.1 |+ objectActivation

fuML::Syntax::Classes::Kernel::Association

Figure 57 - Structured Values

Semantics of a Foundational Subset for Executable UML Models, Beta 2

fuML::Syntax::Classes::Kernel::Class |

I fUML::Semantics::CommonBehaviors::Communications::ObjectActivation I

| fUML ::Semantics::L oci::SemanticStrategy

DispatchStrategy

+ getMame () : String
+ dispatch (object : Object, operation : Operation) : Execution
+ getMethod (object : Object, operation : Operation) : Behavior

RedefinitionBasedDispatchStrategy

+ getMethod (object : Object, operation : Operation) : Behavior
+ operationsMatch (ownedOperation : Operation, baseOperation : Operation) : Boolean

105

fUML ::Semantics::Loci::SemanticVisitor |

Phi specification Evaluation + locus
fUML ::Syntax::Classes::Kernel::ValueSpecification S " %I fUML::Semantics::Loci::Locus
1 + evaluate () : Value [0..1] | * 1

InstanceValueEvaluation LiteralEvaluation
+ evaluate () : value [0..1] + getType (builtInTypeMame @ String) @ PrimitiveType
LiteralNullEvaluation LiterallntegerEvaluation LiteralunlimitedNaturalEvaluation
+ evaluate () : Value [0..1] + evaluate [) @ Value [0..1] + evaluate [) Value [0..1]
LiteralBooleanEvaluation LiteralStringEvaluation
+ evaluate () : value [0..1] + evaluate () : Value [0..1]

Figure 58 - Evaluations

8.3.2.2 Class Descriptions

8.3.2.21 BooleanValue

A boolean value is a primitive value whose type is Boolean.

Generalizations
e PrimitiveValue

Attributes
e value : Boolean

The actual Boolean value.

Associations
None

Operations

[1] copy () : Value

// Create a new boolean value with the same value as this boolean value.
BooleanValue newValue = (BooleanValue) (super.copy()):;

newValue.value = this.value;
return newValue;
[2] equals (in otherValue : Value) : Boolean

// Test if this boolean value is equal to the otherValue.
// To be equal, the otherValue must have the same value as this boolean value.

boolean isEqual = false;

106 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (otherValue instanceof BooleanValue) {
isEqual = ((BooleanValue)otherValue).value == this.value;

}

return isEqual;

[3]new_ () : Value

// Return a new boolean value with no value.

return new BooleanValue();

[4] specify () : ValueSpecification

// Return a literal boolean with the value of this boolean value.
LiteralBoolean literal = new LiteralBoolean();

literal.type = this.type;
literal.value = this.value;

return literal;

[5] toString () : String

‘ Issue 13455 -- BooleanValue::toString uses Java String.valueOf

8.3.2.2.2 CompoundValue

A compound value is a structured value with by-value semantics. Values are associated with each structural feature
specified by the type(s) of the compound value.

Generalizations

e StructuredValue

Attributes
None

Associations
e featureValues : FeatureValue [0..*]

Operations

[1] copy () : Value

Semantics of a Foundational Subset for Executable UML Models, Beta 2 107

// Create a new data value with the same featureValues as this data value.

CompoundValue newValue = (CompoundValue) (super.copy());

FeatureValuelist featureValues = this.featureValues;

for (int 1 = 0; 1 < featureValues.size(); 1i++) {
FeatureValue featureValue = featureValues.getValue (i) ;
newValue. featureValues.addValue (featureValue.copy())

return newValue;

[2] equals (in otherValue : Value) : Boolean

// Test if this data value is equal to the otherValue.
// To be equal, the otherValue must also be a compund value with the same types and equal

values for each feature.

Issue 13456 -- CompoundValue::equals does not conform to Annex A conventions

//_Debug.println("[equals] othervalue instanceof CompoundValue = " + (otherValue
instanceof CompoundValue)) ;

Debug.println ("[equals] super.equals (otherValue) = " + super.equals (otherValue));
boolean isFqual = otherValue instanceof CompoundValue;

if (isEqual) {

CompoundValue otherCompoundValue = (CompoundValue)otherValue;
// Debug.println("[equals] " + this.featureValues.size() + " feature(s).");
isEqual = super.equals (otherValue) & otherCompoundValue.featureValues.size () ==

this.featureValues.size();

int i = 1;
while (isEqual & i <= this.featureValues.size()) {
FeatureValue thisFeatureValue = this.featureValues.getValue(i-1);
boolean matched = false;
int § = 1;
while (!matched & j <= otherCompoundValue.featureValues.size()) {
FeatureValue otherFeatureValue = otherCompoundValue.featureValues.getValue (]-
1)
if (thisFeatureValue.feature == otherFeatureValue.feature) {
matched = thisFeatureValue.hasFEgqualValues (otherFeatureValue) ;
1=3 + 1;
isEqual = matched;
i =14+ 1;
Il o 7 n = 1 r ul 1 Fal | ul 11
t TUCTIT.prIircrirt reguarsT ompounTavaroe T e . S/
hmY 1 o | N .r l ul =l 1 o 4= £ Fal 1 l 1] 1 L i l
U L/u\j t.)L TITCTIT LC\.iL,(GlL 7 O TC1T pe a L 1T CalITCTULT ULL[tJ\JuilLA [emmvL o T VO TCITITL a1 acT
JLLI tail\,cuf Cumyuuud aluc[T r
hmY 1 o | N .r l ul l L i l \ 11 I 1 =l 1 \
U Mu\j.thLllL_;il\ LC\.iL,(GlL 7 ut./ L.C\iuCAL VO TCITITL aIucTy o T utJCL. \.iua; (U TIT pe a L T T
=4 1) ul n 4 £ o 1 il il i il
- . \ \OUCIITT [cEmULS] 1T CallCTULD \/umb/uuuu [eEmvLSy) [Ca<d DUPCL -C\iu(lL (O CTITT [eEmvLSy) [Ca<d
L Al 1 i l \ £ 4= l o T £ = 1 o L) \ =
T\ \JlHtJUullu a L VA =S [SENCLTY PR e RSP I [cemmvL . E. <=7/ . CIiTT En aCuLrtT™ a L . . \WAA LT T CULIT
fatses

o k] 1 e o k] k]
ompotnavarae oclercompotnavarae —

1 k] L T 1 =
oooTrealr rSodguar - crucy

108

e
1T

o k] 1 k]
tcompotunavaracyoclervaracy

Semantics of a Foundational Subset for Executable UML Models, Beta 2

1o T | nor h B | BT 1 L on n
DeoUgTPrInTIirt reguarsS] TS Treattt aroesSTSTIZe) reacaore sy T
= = 7
Tt Y D 1 o 1 ‘
Trre (rsooguatr & T =—TCIlIrS. reacurevaruges.srze (/)1
™ & 1 N kil 4 _ £ 4 & 1
reacat aroe—Cclirrsreacuarevara CITT reacarevara TgeTvaroe Tt/
1o 1 ed—— .1
oo reaMmatcnet—=—"Taz 7
RN 1
T = Ly
AN 1 relbad < o —_ LN u| 1 £ & 1 : (
T {—hatene Bj =—oTrrercompounavart Tea Tttt aroeSTSTIZe)1
k) + 1 o k) + 1 o yal < 1 £ + 1 + 1 O
reacturevaruge otnerreacurevarue — ocrrertompounavarue T, reacurevaruesTgetvatue (J 1t/ 7
L~ L NP - & 1 £ 4 J— N kil 4 1 £ & e
imp tcIrrSreacat aroeT reacuare == oCchnerreacarevara reacare 1
P I | FEL A -} + 1 o o 1 1 VN - + 1
M TChea — Clirrsreacurevarage: nasrguarvaraes{otrerreacarevaruceyy
g |
T 17
P 1 Ll ad
TSTroftaT maccrety
g g |
I T L7

return isEqual;

[3] getFeatureValue (in feature : StructuralFeature) : FeatureValue
// Get the value(s) of the member of featureValues for the given feature.

FeatureValue featureValue = null;

int 1 = 1;
while (featureValue == null & i1 <= this.featureValues.size()) {
if (this.featureValues.getValue (i-1).feature == feature) {
featureValue = this.featureValues.getValue (i-1);

}
i =1+ 1;
return featureValue;

[4] getFeatureValues () : FeatureValue [0..*]
// Return the feature values for this compound value.

return this.featurevValues;

[5] removeFeatureValues (in classifier : Classifier)

// Remove all feature values for features whose type is the given classifier.

int 1 = 1;
while (i <= this.featureValues.size()) {
if (this.featureValues.getValue (i-1).feature.typedElement.type == classifier) {

this.featureValues.remove (i-1);

}
else {
i =1+ 1;

}

Semantics of a Foundational Subset for Executable UML Models, Beta 2

109

[6] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])
// Set the value(s) of the member of featureValues for the given feature.
FeatureValue featureValue = this.getFeatureValue (feature);

if (featureValue == null) {

featureValue = new FeatureValue () ;
this.featureValues.addValue (featureValue) ;

}

featureValue.feature = feature;
featureValue.values = values;
featureValue.position = position;

[7] toString () : String
String buffer = " (" + this.objectId() + ":";

ClassifierlList types = this.getTypes|();

int 1 = 1;
while (i1 <= types.size()) {
buffer = buffer +" " + types.getValue(i-1) .name;

i =1+ 1;

}

int k = 1;
while (k <= this.featureValues.size()) {
FeatureValue featureValue = this.featureValues.getValue (k-1);

buffer = buffer + "\n\t\t" + featureValue.feature.name + "[" + featureValue.position
+ ll] :ll;

int 3 = 1;
while (j <= featureValue.values.size()) {
buffer = buffer + " " + featureValue.values.getValue(j-1).toString();
J =3+ 1
}
k =k + 1;
}
return buffer + ")";

8.3.2.2.3 DataValue
A data value is a compund value whose (single) type is a data type other than a primitive type or an enumeration.

Generalizations
e CompoundValue

Attributes
None

Associations
e type: DataType

The type of this data value. This must not be a primitive or an enumeration.

110 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Operations

[1] copy () : Value

// Create a new data value with the same type and feature values as this data value.
DataValue newValue = (DataValue) (super.copy()):

newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single type of this data value.

ClassifierlList types = new ClassifierList();
types.addValue (this.type);

return types;

[3]new_ () : Value

// Create a new data value with no type or feature values.

return new DataValue();
8.3.2.24 DispatchStrategy

A dispatch strategy is a semantic strategy for the polymorphic dispatching of an operation to an execution of a method for
that operation.

Generalizations
e SemanticStrategy

Attributes
None

Associations
None

Operations
[1] dispatch (in object : Object, in operation : Operation) : Execution

// Get the behavior for the given operation as determined by the type(s) of the given
object, compile the behavior at the locus of the object, and return the resulting
execution object.

return object.locus.factory.createExecution (this.getMethod (object, operation), object);
[2] getMethod (in object : Object, in operation : Operation) : Behavior
// Get the method that corresponds to the given operation for the given object.

[3] getName () : String

Semantics of a Foundational Subset for Executable UML Models, Beta 2 111

// Dispatch strategies are always named "dispatch".

return "dispatch";

8.3.2.2.5 EnumerationValue

Editorial change

An enumeration value is a value whose (single) tvpe is an enumeration.
It's literal must be an owned literal of it's type.

Generalizations
e Value

Attributes
None

Associations
e literal : EnumerationLiteral

The literal value of this enumeration value.
* type : Enumeration

Operations

[1] copy () : Value
// Create a new enumeration value with the same literal as this enumeration value.
EnumerationValue newValue = (EnumerationValue) (super.copy());

newValue.type = this.type;
newValue.literal = this.literal;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this enumeration value is equal to the otherValue.
// To be equal, the otherValue must also be an enumeration value with the same literal as

this enumeration value.

boolean isEqual = false;

112 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (otherValue instanceof EnumerationValue) {

isEqual = ((EnumerationValue)otherValue).literal == this.literal;

}

return isEqual;

[3] getTypes () : Classifier [0..*]

// Return the single type of this enumeration value.

ClassifierlList types = new ClassifierList();
types.addValue (this.type);

return types;

[4] new_ () : Value

// Create a new enumeration value with no literal.

return new EnumerationValue () ;

[5] specify () : ValueSpecification
// Return an instance value with literal as the instance.

InstanceValue instanceValue = new InstanceValue();
InstanceSpecification instance = new InstanceSpecification();

‘ Issue 13457 -- EnumerationValue::specify missing a "this"

instanceValue.type = this.type;
instanceValue.instance = literal;

return instanceValue;

[6] toString () : String

return literal.name;

8.3.2.2.6 Evaluation
An evaluation is used to evaluate a value specification to produce a value.

Generalizations
e SemanticVisitor

Attributes
None

Associations
e Jocus : Locus

The locus at which this evaluation is taking place.

e specification : ValueSpecification

Semantics of a Foundational Subset for Executable UML Models, Beta 2

113

The value specification to be evaluated.
Operations

[1] evaluate () : Value [0..1]

Evaluate the specification, returning the resulting value.

8.3.2.2.7 ExtensionalValue
An extensional value is a data value that is part of the extent of some classifier at a specific locus.

Generalizations
e CompoundValue

Attributes
None

Associations
e locus : Locus [0..1]

The locus of the extent of which this value is a member. (If the value has been destroyed, it has no locus.)
Operations

[1] copy () : Value

// Create a new extensional value with the same feature values at the same locus as this
one.

ExtensionalValue newValue = (ExtensionalValue) (super.copy());
if (this.locus != null) {

this.locus.add (newValue) ;

}

return newValue;

[2] destroy ()
// Remove this value from its locus (if it has not already been destroyed).

if (this.locus != null) {
this.locus.remove (this);

}

8.3.2.2.8 FeatureValue

A feature value gives the value(s) that a single structural feature has in a specific structured value.

Generalizations
None

Attributes
® position : Integer [0..1]

114 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The position of this feature value in a set of ordered values for a feature of an association.
[This is only relevant if the feature value is for a link and the feature is ordered.]

Associations
e feature : StructuralFeature

The structural feature being given value(s).
e values : Value [0..*]

The values of for the feature. Zero or more values are possible, as constrained by the multiplicity of the
feature.

Operations

[1] copy () : FeatureValue
// Create a copy of this feature value.
FeatureValue newValue = new FeatureValue();

newValue.feature = this.feature;
newValue.position = this.position;

ValueList values = this.values;

for (int i = 0; i1 < values.size(); i ++) {
Value value = values.getValue (i);
newValue.values.addValue (value.copy());

}

return newValue;

[2] hasEqualValues (in other : FeatureValue) : Boolean

// Determine if this feature value has an equal set of values as another feature value.
// If the feature is ordered, then the values also have to be in the same order.

boolean equal = true;
if (this.values.size() != other.values.size()) {
equal = false;
} else {
// Debug.println (" [hasEqualValues] feature = " + this.feature.name + ", " +
this.values.size () + " value(s).");

if (this.feature.multiplicityElement.isOrdered) {

int 1 = 1;
while (equal & i <= this.values.size()) {
equal = this.values.getValue(i-1) .equals(other.values.getValue (i-1));
i=1+ 1;
}
} else {

Issue 13458 -- FeatureValue::hasEqualValues does not follow Annex A conventions

otherFeatureValues is used here solely as a holder for a copy of the list

since the Java to UML mapping conventions do not allow "remove" on a local 1list

Semantics of a Foundational Subset for Executable UML Models, Beta 2 115

FeatureValue otherFeatureValues = new FeatureValue();
Valuelist values = other.values;
for (int i=0; i < values.size(); i++) {
Value value = values.getValue (i) ;
otherFeatureValues.values.addValue (value) ;

1}
int 1 = 1;
while (equal & i <= this.values.size()) {
Debug.println (" [hasEqualValues] This value [" + (i-1) + "] "+
this.values.getValue (i-1));
boolean matched = false;
int 7 = 1;
while (!matched & j <= otherFeatureValues.values.size()) {
if (this.values.getValue (i-
1) .equals (otherFeatureValues.values.getValue (j=1))) {
Debug.println (" [hasEqualValues] Other value [" + (j-1) +

"]

otherFeatureValues.values.getValue (3-1));
matched = true;
otherFeatureValues.values.remove (j-1);

h k| T4 ek LN 71 h k| T e ()
aroeoI St octaervarac =—T1TcW aroeoI St/
7 e k| N k]
aIroeoIST groesS—— OtTrer arocsSy
4 Fa k| 2 L) L Id
TOr— (It T—9, T aroe TZe 7T)1
7.1 k| k| Tz]
art art = groesTgectvaroe T/,
1 PADRLE SN | k| \
oTtnervargeSagavarage{varacsy
. il
I T — L7
AN | h : IS P h : \ Id
wWhrrre (egtaTr—« T =—CcharS-varageSTSTIZe€{T)1
ool LR | nworl] 1371 1 _mi s k] rw T IR] n
DeoUgT PrIITCIIT ¢ frasoguarvaraesS T TIrrsS aroe T T T T
S P k| 7o S Y
chrrS—varaesS-getvarae (T T/ /7
el £ 7
OLOoCTeaT maccet— tTarsSty
S il
T — L7
| ! NI, SR | LN 3 k| ‘
wWrrre (~Hacchneo <« J =—OoTracrvarat ITZeT 1
=) S] k| Tz] | k] 1 . IR
ITT (ChrsSTvargesSTgetvaroe (T T/ - cguars{otaervaraesTgetvarac(T
Dals LSS | FAIEEN k] 13 k| LN n__ L 1 1
DeoOgT P TrInCIIiT T (astguarvaraeST CTIcT aroe T T =7 T
Obhefvaides-gebvaidef })) v
NI, SR | .
macchnet—Ccroey
1 k] DR TR
oThervaroesST remove (<17

equal = matched;
i=1+ 1;

return equal;

8.3.2.2.9 InstanceValueEvaluation
An instance value evaluation is an evaluation whose specification is an instance value.

Generalizations
e Evaluation

116 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
None

Operations

[1] evaluate () : Value [0..1]

// If the instance specification is for an enumeration, then return the identified
enumeration literal.

// If the instance specification is for a data type (but not a primitive value or an
enumeration), then create a data value of the given data type.

// If the instance specification is for an object, then create an object at the current
locus with the specified types.

// Set each feature of the created value to the result of evaluating the value
specifications for the specified slot for the feature.

// Debug.println (" [evaluate] InstanceValueEvaluation...");
InstanceSpecification instance = ((InstanceValue)this.specification).instance;
ClassifierList types = instance.classifier;

Classifier myType = types.getValue (0);
Debug.println (" [evaluate] type = " + myType.name);

Value value;

if (instance instanceof EnumerationLiteral) {
// Debug.println("[evaluate] Type is an enumeration.");
EnumerationValue enumerationValue = new EnumerationValue() ;
enumerationValue.type = (Enumeration)myType;
enumerationValue.literal = (EnumerationLiteral)instance;
value = enumerationValue;

}

else {

Issue 13459 -- InstanceValueEvaluation::evaluate does not initialize local variables

StructuredvValue structuredValue = null;

if (myType instanceof DataType) {

// Debug.println ("[evaluate] Type is a data type.");
DataValue dataValue new DataValue () ;
dataValue.type = (DataType)myType;
structuredValue = dataValue;
1
else
Object object = null;
if (myType instanceof Behavior) {
// Debug.println ("[evaluate] Type is a behavior.");
object = this.locus.factory.createExecution ((Behavior)myType, null) ;
_
else {
// Debug.println (" [evaluate] Type is a7
i =4 inal . e = PDade ol L
i I I PC TITO CalICTOULr Uactal L/'C[1
D,bqg.t};thlu\"[rc atrat -f T e +s—a—cata—t PC-"/r
Pade o171 P S, i P | Pade o171
DatCavalrucT Jdatavarac — I DatavarucT (/)
=] . I ul . — hmY . m m
aaca aLruacT . C L_/C Uacarl L_/C/ll. I P«,
strocturedVatve—detavVea e
—

Semantics of a Foundational Subset for Executable UML Models, Beta 2 117

'\/k ‘JV‘L l,i «,Ak JV‘L T
+f (g TA':,(rstarceot :(havLJL/ t
- ',kJu.p'\WtT\H\"[w Eﬂuét'] : e s—a—behaviol s
Ji’)J‘(ct—tht Enviere; facf\uA cereateh T ,l\\E»\,ha.rLL};),uATA':,(, ,luil/,
_—
tse—
; yebugprintintifevatoatet—Fype—+ts—=an class.");
object = new Object ();
for (int 1 = 0; i < types.size(); 1i++) {
Classifier type = types.getValue(i);
object.types.addValue ((Class_)type);
}
}
this.locus.add (object);
Reference reference = new Reference();
reference.referent = object;
structuredValue = reference;
}
structuredValue.createFeatureValues () ;
// Debug.println (" [evaluate] " + instance.slot.size() + " slot(s).");
SlotList instanceSlots = instance.slot;
for (int i = 0; i < instanceSlots.size(); i++) {
Slot slot = instanceSlots.getValue (i) ;
Valuelist values = new Valuelist();
// Debug.println("[evaluate] feature = " + slot.definingFeature.name + ", " +
slot.value.size () + " value(s).");
ValueSpecificationList slotValues = slot.value;
for (int j = 0; j < slotValues.size(); j++) {
ValueSpecification slotValue = slotValues.getValue (j);
// Debug.println("[evaluate] Value = " + slotValue.getClass().getName())

values.addValue (this.locus.executor.evaluate (slotValue)) ;

}

structuredValue.setFeatureValue (slot.definingFeature, values, 0);

value = structuredValue;

return value;

8.3.2.2.10 IntegerValue
An integer value is a primitive value whose type is Integer.

Generalizations
e PrimitiveValue

Attributes
e value : Integer

The actual Integer value.

Associations
None

118 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Operations

[1] copy () : Value
// Create a new integer value with the same value as this integer value.
IntegerValue newValue = (IntegerValue) (super.copy()):;

newValue.value = this.value;
return newValue;
[2] equals (in otherValue : Value) : Boolean

// Test if this integer value is equal to the otherValue.
// To be equal, the otherValue must have the same value as this integer value.

boolean isEqual = false;
if (otherValue instanceof IntegerValue) {
isEqual = ((IntegerValue)otherValue).value == this.value;

}

return isEqual;

[3]new_ () : Value

// Create a new integer value with no value.

return new IntegerValue();

[4] specify () : ValueSpecification
// Return a literal integer with the value of this integer value.
LiteralInteger literal = new Literallnteger();

literal.type = this.type;
literal.value = this.value;

return literal;

[5] toString () : String

‘ Issue 13460 -- IntegerValue::toString uses Java String.valueOf

ww o,
V4

String stringValue =

0) {
" f“ "
0";

positiveValue = this.value;

int digit = posi

if (digit == 0) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 119

stringValue = "Q0" + stringValue;
} else if (digit == 1) {
stringValue = "1" + stringValue;
} else if (digit == 2) {
stringValue = "2" + stringValue;
} else if (digit == 3) {
stringValue = "3" + stringValue;
} else if (digit == 4) {
stringValue = "4" + stringValue;
} else if (digit == 5) {
stringValue = "5" + stringValue;
} else if (digit == 6) {
stringValue = "6" + stringValue;
} else if (digit == 7) {
stringValue = "7" + stringValue;
} else if (digit == 8) {
stringValue = "8" + stringValue;
} else if (digit == 9) {
stringValue = "9" + stringValue;
1}
positiveValue = positiveValue 10;
} while (positiveValue > 0);
if (this.value < 0) |
stringValue = "-" + stringValue;
1
1
return stringValue;

‘ J_CtuJ_ll tJ_Jl_il\j. alu
| 8.3.22.11 Link

A link is an extensional value whose (single) type is an association. (However, if the link has been destroyed, then it has

no type.)
A link must at have most one feature value for each structural feature owned by its type.

Generalizations
e Extensional Value

Attributes
None

Associations
® type: Association [0..1]

The type of this link.
Operations

[1] copy () : Value

// Create a new link with the same type, locus and feature values as this link.

Link newValue (Link) (super.copy());
newValue.type = this.type;

return newValue;

120 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[2] destroy ()

// Remove the type of this link and destroy it.

this.type = null;
super.destroy () ;

[3] getTypes () : Classifier [0..*]

// Return the single type of this link (if any).

‘ Issue 13461 -- Link::getTypes does not initialize a local variable

ClassifierList types_= null;
if (this.type == null) {

types = new ClassifierList();
} else {

types = new ClassifierList();
types.addValue (this.type);

return types;

[4] new_ () : Value
// Create a new link with no type or properies.

return new Link () ;

[5] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])

// If a position is given, before setting the given feature value,
values of the ends of other links for this same feature.

if (position > 0) {
ExtensionalValuelist extent = this.locus.getExtent (this.type);
for (int i = 0; 1 < extent.size(); i++) {
ExtensionalValue value = extent.getValue(i);
FeatureValue featureValue = value.getFeatureValue (feature);

if (featureValue.position >= position) {
featureValue.position = featureValue.position + 1;

}

super.setFeatureValue (feature, values, position);

8.3.2.2.12 LiteralBooleanEvaluation
A boolean evaluation is an evaluation whose specification is a literal boolean.

Generalizations
e [iteralEvaluation

Semantics of a Foundational Subset for Executable UML Models, Beta 2

adjust the position

121

Attributes
None

Associations
None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal boolean, producing a boolean value.
LiteralBoolean literal = (LiteralBoolean)specification;
BooleanValue booleanValue = new BooleanValue();
booleanValue.type = this.getType ("Boolean");
booleanValue.value = literal.value;

return booleanValue;

8.3.2.2.13 LiteralEvaluation
A literal evaluation is an evaluation whose specification is a Literal Specification.

Generalizations
e FEvaluation

Attributes
None

Associations
None

Operations
[1] getType (in builtInTypeName : String) : PrimitiveType

// Get the type of the specification. If that is null, then use the built-in type of the
given name.

PrimitiveType type = (PrimitiveType) (this.specification.type);

if (type == null) {
type = this.locus.factory.getBuiltInType (builtInTypeName) ;

return type;

8.3.2.2.14 LiterallntegerEvaluation
A literal integer evaluation is an evaluation whose specification is a literal integer.

Generalizations
e LiteralEvaluation

122 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
None

Operations
[1] evaluate () : Value [0..1]

// Evaluate a literal integer, producing an integer value.

LiteralInteger literal = (LiterallInteger)specification;
IntegerValue integerValue = new IntegerValue();
integerValue.type = this.getType ("Integer");
integerValue.value = literal.value;

return integerValue;

8.3.2.2.15 LiteralNullEvaluation
A literal null evaluation is an evaluation whose specification is a literal null.

Generalizations
e LiteralEvaluation

Attributes
None

Associations
None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal null, returning nothing (since a null represents an "absence of any
value") .

return null;

8.3.2.2.16 LiteralStringEvaluation
A literal string evaluation is an evaluation whose specification is a literal string.

Generalizations
e LiteralEvaluation

Attributes
None

Associations
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2 123

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal string, producing a string value.
LiteralString literal = (LiteralString)specification;
StringValue stringValue = new StringValue();
stringValue.type = this.getType ("String");
stringValue.value = literal.value;

return stringValue;

8.3.2.2.17 LiteralUnlimitedNaturalEvaluation
A literal unlimited natural evaluation is an evaluation whose specification is a literal unlimited natural.

Generalizations
e LiteralEvaluation

Attributes
None

Associations
None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal unlimited natural producing an unlimited natural value.

LiteralUnlimitedNatural literal = (LiteralUnlimitedNatural)specification;
UnlimitedNaturalValue unlimitedNaturalValue = new UnlimitedNaturalValue() ;
unlimitedNaturalValue.type = this.getType ("UnlimitedNatural");
unlimitedNaturalValue.value = literal.value;

return unlimitedNaturalValue;

8.3.2.2.18 Object

An object is an extensional value that may have multiple types, all of which must be classes. (Note that a destroyed
object has no types.)

An object has a unique identity. Usually, references to objects are manipulated, rather than the objects themselves, and
there may be multiple references to the same object.

If an object is active, it has an object activation that handle the execution of its classifier behavior(s).

Generalizations
e ExtensionalValue

Attributes
None

Associations
® objectActivation : ObjectActivation

124 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The object activation handling the active behavior of this object.
e types: Class
The classes under which this object is currently classified. (A destroyed object has no types.)

Operations

[1] copy () : Value
// Create a new object that is a copy of this object at the same locus as this object.
// However, the new object will NOT have any object activation (i.e, its classifier
behaviors will not be started).
Object newObject = (Object) (super.copy()):;
Class_List types = this.types;
for (int 1 = 0; 1 < types.size(); i++) {
Class_ type = types.getValue(i);
newObject.types.addValue (type) ;
}

return newObject;

[2] destroy ()

// Stop the object activation (if any), clear all types and destroy the object as an
extensional value.

Debug.println (" [destroy] object = " + this.objectId());
if (this.objectActivation != null) {
this.objectActivation.stop();
this.objectActivation = null;

}

this.types.clear();
super.destroy() ;

[3] dispatch (in operation : Operation) : Execution
// Dispatch the given operation to a method execution, using a dispatch strategy.

return ((DispatchStrategy)this.locus.factory.getStrategy("dispatch")) .dispatch(this,
operation);

[4] getTypes () : Classifier [0..*]

// Return the types of this object.
ClassifierlList types = new ClassifierList();
Class List myTypes = this.types;

for (int i = 0; 1 < myTypes.size(); 1i++) {

Class_ type = myTypes.getValue (1i);
types.addValue (type) ;

return types;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 125

[S]new_(): Value

// Create a new object with no type, feature values or locus.

return new Object ();

[6] register (in accepter : EventAccepter)
// Register the given accept event accepter to wait for a dispatched signal event.

if (this.objectActivation != null) {
this.objectActivation.register (accepter);

[7] send (in signallnstance : Signallnstance)

// If the object is active, add the given signal instance to the event pool and signal
that a new signal instance has arrived.

if (this.objectActivation != null) {
this.objectActivation.send(signalInstance) ;

[8] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])

// Create an object activation for this object (if one does not already exist) and start
its behavior(s).

// Debug.println (" [startBehavior] On object...");
if (this.objectActivation == null) {
this.objectActivation = new ObjectActivation();

this.objectActivation.object = this;
}

// Debug.println (" [startBehavior] objectActivation = " + objectActivation);

this.objectActivation.startBehavior (classifier, inputs);

[9] unregister (in accepter : EventAccepter)
// Remove the given event accepter for the list of waiting event accepters.

if (this.objectActivation != null) {
this.objectActivation.unregister (accepter);

8.3.2.2.19 PrimitiveValue
A primitive value is a value whose (single) type is a primitive type.

Generalizations
e Value

126 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
® type : PrimitiveType
Operations

[1] copy () : Value

// Create a new value that is equal to this primitive value.

PrimitiveValue newValue = (PrimitiveValue) (super.copy()):;

newValue.type = this.type;
return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single primitive type of this value.
ClassifierlList types = new ClassifierList();

types.addValue (this.type);
return types;

8.3.2.2.20 RedefinitionBasedDispatchStrategy

A redefinition-based dispatch strategy is one that requires:
- each non-abstract operation to have exactly one method

- an overriding subclass operations to explicitly redefine the overridden superclass operation.

Generalizations
e DispatchStrategy

Attributes
None

Associations
None

Operations

[1] getMethod (in object : Object, in operation : Operation) : Behavior

// Get the method that corresponds to the given operation for the given object.
// [If there is more than one type with a method for the operation,

arbitrarily chosen.]

Behavior method = null;

int 1 = 1;

while (method == null & i <= object.types.size()) {
Class_ type = object.types.getValue(i-1);
NamedElementList members = type.member;
int §j = 1;
while (method == null & j <= members.size()) {

NamedElement member = members.getValue(j-1);

Semantics of a Foundational Subset for Executable UML Models, Beta 2

then the first one is

127

if (member instanceof Operation) {
Operation memberOperation = (Operation)member;
if (this.operationsMatch (memberOperation, operation)) {
method = memberOperation.method.getValue (0);

}

J =3+ 1

return method;

[2] operationsMatch (in ownedOperation : Operation, in baseOperation : Operation) : Boolean

// Check if the owned operation is equal to or a redefinition (directly or indirectly)
the base operation.

boolean matches = false;
if (ownedOperation == baseOperation) {
matches = true;
} else {
int 1 = 1;
while (!matches & i <= ownedOperation.redefinedOperation.size()) {
matches = this.operationsMatch (ownedOperation.redefinedOperation.getvValue(i-1),
baseOperation) ;
i=1+ 1;

}
}

return matches;

8.3.2.2.21 Reference

A reference is an access path to a specific object. There may be multiple references to the same object.
As a structured value, the reference acts just the same as its referentee in terms of type, features, operations, etc.

Generalizations
e StructuredValue

Attributes
None

Associations
e referent : Object

Operations

[1] copy () : Value

// Create a new reference with the same referent as this reference.
Reference newValue = (Reference) (super.copy());

newValue.referent = this.referent;

return newValue;

of

128 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[2] destroy ()

// Destroy the referent.

this.referent.destroy();

[3] dispatch (in operation : Operation) : Execution
// Dispatch the given operation to the referent object.

return this.referent.dispatch (operation);

[4] equals (in otherValue : Value) : Boolean

// Test if this reference is equal to the otherValue.
// To be equal, the otherValue must also be a reference, with the same referent as this
reference.

boolean isEqual = false;
if (otherValue instanceof Reference) {
isEqual = (((Reference)otherValue).referent == this.referent);

}

return isEqual;

[5] getFeatureValue (in feature : StructuralFeature) : FeatureValue
// Get the feature value associated with the given feature in the referent object.

return this.referent.getFeatureValue (feature);

[6] getFeatureValues () : FeatureValue [0..*]
// Return the feature values of the referent.

return this.referent.getFeatureValues();

[7] getTypes () : Classifier [0..*]
// Get the types of the referent object.

return this.referent.getTypes();

[8] new () : Value
// Create a new reference with no referent.

return new Reference();

[9] send (in signallnstance : Signallnstance)

// Send the given signal instance to the referent object.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 129

this.referent.send(signallnstance) ;

[10] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])
// Set the values associated with the given feature in the referent object.

this.referent.setFeatureValue (feature, values, position);

[11] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])
// Asynchronously start the behavior of the given classifier for the referent object.

this.referent.startBehavior (classifier, inputs);

[12] toString () : String

return "Reference to " + this.referent.toString();

8.3.2.2.22 StringValue
A string value is a primitive value whose type is String.

Generalizations
e PrimitiveValue

Attributes
e value : String

Associations
None

Operations

[1] copy () : Value
// Create a new string value with the same value as this string value.
StringValue newValue = (StringValue) (super.copy());

newValue.value = this.value;
return newValue;
[2] equals (in otherValue : Value) : Boolean

// Test if this string value is equal to the otherValue.
// To be equal, the otherValue must have the same value as this string value.

boolean isEqual = false;
if (otherValue instanceof StringValue) {
isEqual = ((StringValue)otherValue) .value.equals(this.value);

}

return isEqual;

130 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[3]new_ () : Value

// Create a new string value with no value.

return new StringValue();

[4] specify () : ValueSpecification
// Return a literal string with the value of this string value.
LiteralString literal = new LiteralString();

literal.type = this.type;
literal.value = this.value;

return literal;
[5] toString () : String
return value;

8.3.2.2.23 StructuredValue

A structured value is a Value whose type has structural features: a data type (but not a primitive type or enumeration), a

class or an association.

Generalizations
e Value

Attributes
None

Associations
None

Operations

[1] createFeatureValues ()

// Create empty feature values for all structural features, direct and inherited,
types of this structured value.

ClassifierList types = this.getTypes|();
for (int i = 0; i < types.size(); i++) {
Classifier type = types.getValue(i);
NamedElementList members = type.member;
for (int j = 0; j < members.size(); Jj++) {
NamedElement member = members.getValue(]);

if (member instanceof StructuralFeature) {
this.setFeatureValue ((StructuralFeature)member, new ValueList (), 0);

[2] getFeatureValue (in feature : StructuralFeature) : FeatureValue

Semantics of a Foundational Subset for Executable UML Models, Beta 2

of the

131

Get the feature value associated with the given feature.
The given feature must be a structural feature of the type of the structured value.

[3] getFeatureValues () : FeatureValue [0..*]

Return the feature values associated with this structural value.

[4] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])

Set the value(s) and, optionally, the position index associated with the given feature.
The given feature must be a structural feature of the type of the structured value.

[5] specify () : ValueSpecification
// Return an instance value that specifies this structured value.
// Debug.println (" [specify] Structuredvalue...");

InstanceValue instanceValue = new InstanceValue () ;
InstanceSpecification instance = new InstanceSpecification();

instanceValue.type = null;
instanceValue.instance = instance;

instance.classifier = this.getTypes();

FeatureValuelist featureValues = this.getFeatureValues();
// Debug.println("[specify] " + featureValues.size() + " feature(s).");
for (int i = 0; 1 < featureValues.size(); 1i++) {

FeatureValue featureValue = featureValues.getValue (i) ;

Slot slot = new Slot();

slot.definingFeature = featureValue.feature;
// Debug.println (" [specify] feature = " + featureValue.feature.name + ", " +
featureValue.values.size () + " value(s).");
Valuelist values = featureValue.values;
for (int j = 0; j < values.size(); j++) {
Value value = values.getValue (j);
// Debug.println (" [specify] value = " + value);
slot.value.addValue (value.specify());

instance.slot.addValue (slot) ;

}

return instanceValue;

8.3.2.2.24 UnlimitedNaturalValue
An unlimited natural value is a primitive value whose type is UnlimitedNatural.

Generalizations
e PrimitiveValue

132 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
e value : UnlimitedNatural

The actual unlimited natural value.

Associations
None

Operations

[1] copy () : Value

// Create a new unlimited natural value with the same value as this value.
UnlimitedNaturalValue newValue = (UnlimitedNaturalValue) (super.copy()):;

newValue.value = this.value;
return newValue;
[2] equals (in otherValue : Value) : Boolean

// Test if this unlimited natural value is equal to the otherValue.
// To be equal, the otherValue must have the same value as this unlimited natural value.

boolean isEqual = false;
if (otherValue instanceof UnlimitedNaturalValue) {
isEqual = ((UnlimitedNaturalValue)otherValue) .value == this.value;

}

return isEqual;

[3]new_(): Value
// Create a new unlimited natural value with no value.

return new UnlimitedNaturalValue () ;

[4] specify () : ValueSpecification
// Return a literal unlimited natural with the value of this unlimited natural value.
LiteralUnlimitedNatural literal = new LiteralUnlimitedNatural ():;

literal.type = this.type;
literal.value = this.value;

return literal;

[5] toString () : String

‘ Issue 13462 -- UnlimitedNaturalValue::toString does not follow Annex A conventions

String stringValue = "*";

Semantics of a Foundational Subset for Executable UML Models, Beta 2 133

8.3.2.2.25 Value

A value is an instance of one or more classifiers, which are its types. A value is always representable using a value
specification.

[Note: Value specializes Semantic Visitor to allow the Execution subclass to be a semantic visitor, without requiring
multiple generalization of Execution.]

Generalizations
e SemanticVisitor

Attributes
None

Associations
None

Operations

[1] copy () : Value

// Create a new value that is equal to this value.

// By default, this operation simply creates a new value with empty properties.

// It must be overridden in each Value subclass to do the superclass copy and then
appropriately set properties defined in the subclass.

return this.new ();

[2] equals (in otherValue : Value) : Boolean

// Test if this value is equal to otherValue. To be equal, this value must have the same
type as otherValue.

// This operation must be overridden in Value subclasses to check for equality of
properties defined in those subclasses.

ClassifierList myTypes = this.getTypes();
ClassifierList otherTypes = otherValue.getTypes();

boolean isEqual = true;
// Debug.println("[equals] Value...");
// Debug.println("[equals] this has " + myTypes.size() + "types, other has " +
otherTypes.size() + ".");
if (myTypes.size() != otherTypes.size()) {
isEqual = false;
} else {
// Debug.println (" [equals] " + myTypes.size() + " type(s).");
int 1 = 1;

while (isEqual & i <= myTypes.size()) {

134 Semantics of a Foundational Subset for Executable UML Models, Beta 2

// Debug.println("[equals] this type = " + myTypes.getValue (i-1) .name) ;

boolean matched = false;

int 3 = 1;

while (!matched & j <= otherTypes.size()) {
// Debug.println("[equals] other type = " + otherTypes.getValue (j-1) .name);
matched = (otherTypes.getValue(j-1) == myTypes.getValue(i-1));
j=3+ 1L

}

isEqual = matched;
i=1+ 1;

}
return isEqual;
[3] getTypes () : Classifier [0..*]

Gets all the classifiers under which this value is currently classifier.

[4] hasType (in type : Classifier) : Boolean
// Check if this object has the given classifier as a type.
ClassifierlList types = this.getTypes|();

boolean found = false;

int 1 = 1;

while (!found & i <= types.size()) {
found = (types.getValue(i-1) == type);
i=1+ 1;

}

return found;

[S]new_(): Value
Create a new value of the same Value subclass as this value, with all properties empty
(even if this violates multiplicity constraints).

This operation must be defined in each concrete Value subclass to create an instance of
that subclass.

[6] objectld () : String

// Return an identifier for this object.
// [Non-normative.]

return super.toString();

[7] specify () : ValueSpecification

Return a value specification whose evaluation gives a value equal to this wvalue.

[8] toString () : String

Semantics of a Foundational Subset for Executable UML Models, Beta 2 135

Return a string representation of this value.

8.4 Common Behaviors

8.4.1 Overview

As discussed in Subclause 8.3, the structural semantics of UML provide an interpretation for the structural models of
instances. Behavioral semantics, on the other hand, provide an interpretation for models of behavior, that is,
specifications of how instances change over time. The foundation for the behavioral semantics of fUML is the semantic
specification for the CommonBehaviors classes.

The CommonBehavior package is divided into sub-packages in a way that parallels the package structure of the
corresponding syntactic CommonBehavior packages. Figure 59 shows the dependencies of these sub-packages.

Subclause 8.4.2 describes the basic model for behavioral execution in f{UML. This model is then further elaborated in
Subclause 8.5, Activities, and Subclause 8.6, Actions. Subclause 8.4.3 describes the semantic model for active objects
and how asynchronous communications between such objects are dispatched to behaviors attached to them.

]
Kernel
(from fUML::Semantics: :Classes)
I
I «imports»
| «imports» |
BasicBehaviors N — BasicBehaviors
(from fUML: :Syntax:CommonBehaviors) (from fUML::Semantics: :CommonBehaviors)
7
| «irmports»
| «imports» | :_ -
Communications S — Communications
(from fUML: :Syntax :CommonBehaviors) (from fUML::Semantics: :CommonBehaviors)

Figure 59 - Common Behaviors Semantics Packages

8.4.2 Basic Behaviors

8.4.2.1 Overview

In UML, a behavior is actually a kind of class, and it may, therefore, have instances. An instance of a behavior is called
an execution, as shown in Figure 60. An instance value with a behavior type thus evaluates to an execution object.

136 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The abstract Execution class has two concrete subclasses: OpaqueBehaviorExecution (shown in Figure 60) and
ActivityExecution (see Subclause 8.5). These subclasses act as visitor classes for OpaqueBehavior and Activity,
respectively (see Subclause 8.2 for a general discussion of visitor classes). (Since function behaviors are basically just
opaque behaviors with certain additional restrictions, OpaqueBehaviorExecution also acts as the visitor class for
FunctionBehavior.)

To execute a behavior, the executor uses the execution factory to create an instance of the appropriate execution class
(see Subclause 8.2). The behavior to be executed becomes the type of the instantiated execution object. The executor then
sets the parameter values for the input parameters (i.e., those with direction in and in-out) of the behavior (if any) and
calls the execute operation on the execution object.

The Execution::execute operation provides the fundamental specification of behavior in fUML. It acts on the initial set of
input parameter values and creates parameter values for any output parameters (i.e., those with direction in-out and out),
as specified by the behavior. The execute operation is actually defined as an abstract operation on the Execution class,
since its detailed specification depends on the kind of behavior being executed. See Subclause 8.5 for a specific
discussion of the execution of activities, which provide the means for user modeling of behavior in fUML.

Note that, as a kind of object itself, an execution is an extensional value. As discussed in Subclause 8.3, this means that
any execution effectively takes place at a specific locus. Thus, an object created during an execution will exist at the
locus of the execution. Unless this new object is explicitly destroyed later in the execution, it will continue to exist in the
extent of its class at the execution locus, even after the behavior that created it has completed its execution.

+ types
fuML::Syntax::Classes::Kernel::Class Ll-(I fUML::Semantics::Classes::Kernel::Object
) * * " I y »
1] + context fUML ::Semantics::Classes::Kernel::Value
* | + values
-
Execution
0.1
- » ehaviors:-BasicBehaviors::Behavi + execute)
fUML ::Syntax::CommonBehaviors::BasicBehaviors::Behavior + terminate [)
+copy () Value + parametervalues. ParameterValue
+new_ () Value -
+ setParametervalue { parametervalue : Parametervalue) 1 + copy () : Parametervalue
+ getParameteralue (parameter : Parameter) @ Parametervalue *
+ getOutputParametervalues [) : Parametervalue [*]
+ getBehavior () : Behavior
+ parameter | 1
fUML ::Syntax::CommonBehaviors::BasicBehaviors::0paqueBehavior fUML ::Syntax::Classes::Kernel::Parameter
OpaqueBehaviorExecution
+ execute ()
+ doBody (inputParameters : ParameterValue [*], outputParameters : ParameterValue [*])

Figure 60 - Executions

8.4.2.2 Class Descriptions
84.2.2.1 Execution

An execution is used to execute a specific behavior. Since a behavior is a kind of class, an execution is an object with the
behavior as its type.

Generalizations
® Object

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2 137

Associations

e context : Object

The object that provides the context for this execution.
The type of the context of the execution must be the context of the type (behavior) of the execution.

e parameterValues : ParameterValue [0..*]

Operations

The parameterValues for this execution. All parameterValues must have a parameter that is a parameter of
the type of this execution.
The values of all input (in and in-out) parameters must be set before the execution is executed.

[1] copy () : Value

// Create a new execution that has the same behavior and parameterValues as this
execution.

// Debug.println (" [Copy] execution = " + this);

Execution newValue = (Execution) (super.copy());

newValue.context = this.context;

ParameterValuelist parameterValues = this.parameterValues;

for (int 1 = 0; i < parameterValues.size(); i++) {

ParameterValue parameterValue = parameterValues.getValue (i) ;
newValue.parameterValues.addValue (parameterValue.copy());

}

// Debug.println (" [Copy] Done.");

return newValue;

[2] execute ()

Execute the behavior given by the type of this execution.

The parameterValues for any input (in or in-out) parameters of the behavior should be set
before the execution.

The parameteValues for any output (in-out, out or return) parameters of the behavior will

be set by

the execution.

[3] getBehavior () : Behavior

// Get the behavior that is the type of this execution.

return (Behavior) (this.getTypes () .getValue (0));

[4] getOutputParameterValues () : ParameterValue [0..*]

// Return

the parameter values for output (in-out, out and return) parameters.

ParameterValuelList outputs = new ParameterValuelList();
ParameterValuelist parameterValues = this.parameterValues;

for (int 1

= 0; 1 < parameterValues.size(); i++) {

ParameterValue parameterValue = parameterValues.getValue (i) ;
Parameter parameter = parameterValue.parameter;

if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {

138

Semantics of a Foundational Subset for Executable UML Models, Beta 2

outputs.addValue (parameterValue) ;

return outputs;

[5] getParameterValue (in parameter : Parameter) : ParameterValue

// Get the parameter value of this execution corresponding to the given parameter (if
any) .

ParameterValue parameterValue = null;

int 1 = 1;
while (parameterValue == null & i <= this.parameterValues.size()) {
if (this.parameterValues.getValue (i-1) .parameter == parameter) {
parameterValue = this.parameterValues.getValue(i-1);
}
i =1+ 1;

return parameterValue;

[6] new_ () : Value

Create a new execution with no behavior or parameterValues.

[7] setParameterValue (in parameterValue : ParameterValue)

// Set the given parameter value for this execution.
// If a parameter value already existed for the parameter of the given parameter value,
then replace its value.

// Debug.println (" [setParameterValue] parameter = " + parameterValue.parameter.name + "
with " + parameterValue.values.size() + " values");

ParameterValue existingParameterValue = this.getParameterValue (parameterValue.parameter) ;
if (existingParameterValue == null) {

this.parameterValues.addValue (parameterValue) ;

}
else {
existingParameterValue.values = parameterValue.values;

[8] terminate ()
// Terminate an ongoing execution. By default, do nothing.

return;

84222 OpaqueBehaviorExecution

An opaque execution is an execution for an opaque behavior.
Opaque behaviors are used to define primitive behaviors.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 139

The actual definition of the primitive behavior should be given in a concrete subclass of OpaqueBehaviorExecution.

Generalizations
e FExecution

Attributes
None

Associations
None

Operations

[1] doBody (in inputParameters : ParameterValue [0..*], in outputParameters : ParameterValue [0..*])
The actual definition of the behavior of an Opaque Behavior should be given in a concrete
subclass that defines this operation.

The values of the inputParameters are set when the operation is called.
The values of the outputParmezters should be set during the execution of the operation.

[2] execute ()

// Execute the body of the opaque behavior.

Debug.println (" [execute] Opaque behavior " + this.getBehavior().name + "...");
ParameterList parameters = this.getBehavior () .ownedParameter;

ParameterValuelist inputs = new ParameterValuelList();
ParameterValuelist outputs = new ParameterValuelList();

for (int i = 0; 1 < parameters.size(); i++) {
Parameter parameter = parameters.getValue (i)

if ((parameter.direction == ParameterDirectionKind.in) |
(parameter.direction == ParameterDirectionKind.inout)) {
inputs.addValue (this.getParameterValue (parameter)) ;

if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {

ParameterValue parameterValue = new ParameterValue();
parameterValue.parameter = parameter;
this.setParameterValue (parameterValue) ;
outputs.addValue (parameterValue) ;

}

this.doBody (inputs, outputs);

8.4.2.2.3 ParameterValue
A parameter value gives the value(s) for a specific parameter.

Generalizations
None

140 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
® parameter : Parameter

e values : Value [0..*]

The values of for the parameter. Zero or more values are possible, as constrained by the multiplicity of the
parameter.

Operations

[1] copy () : ParameterValue

// Create a new parameter value for the same parameter as this parameter value, but with
copies of the values of this parameter value.

ParameterValue newValue = new ParameterValue();

newValue.parameter = this.parameter;
Valuelist values = this.values;
for (int i = 0; i < values.size(); i++) {

Value value = values.getValue (i);
newValue.values.addValue (value.copy());

}

return newValue;

8.4.3 Communications

8.4.3.1 Overview

Active Objects

An active object is one that has one or more classifiers that are active classes—that is, they are classes with a classifier
behavior. (In fUML, an active class must either be a behavior or have a classifier behavior and only active classes may be
behaviored classifiers — see Subclause 7.3.2). After an active object is instantiated, a start object behavior action (see
Subclause 7.5.4.2.7) is used to start one or more of its classifier behaviors. Note that an object may also become active if
it has an active class added to it using a reclassify object action (see Subclause 7.5.4.2.4). In this case, a start object
behavior action must still be used to start the classifier behavior of the newly added class.

Once started, classifier behaviors then run asynchronously from whatever behavior executed the start object behavior
action. This allows the active object to autonomously send communications to and react to communications from other
objects. The points at which an active object responds to asynchronous communications from other objects is determined
solely by the behavior of the active object.

Active objects in fUML communicate asynchronously via signals. A signal is a kind of classifier (see Subclause 7.3.3).
Therefore, an instance of a signal is a value. Since a signal may have attributes, a signal instance is a kind of compound
value (see Figure 61). This is an extension to the basic value model described in Subclause 8.3.

The semantic model for an active object itself is also an extension to the basic value model for objects. An active object
still has the same structural semantics as a passive object, but it adds the behavioral semantics of the execution of
classifier behaviors and the handling of asynchronous communication.

When the active behavior of an active object is started, an object activation is created for that object. The object
activation further maintains a classifier behavior execution for each executing classifier behavior. Despite its name, the

Semantics of a Foundational Subset for Executable UML Models, Beta 2 141

ClassifierBehaviorExecution class is not actually a subclass of Execution. Rather, it provides an association between a
specific active class and the execution object for the classifier behavior of that class in the context of the active object
whose activation is being modeled.

Note also that ClassifierBehaviorExecution is itself an active class. Thus, each classifier behavior execution instance runs
“in its own thread,” modeling the autonomous execution of the classifier behaviors of an active object. Within the
execution model, the concurrent execution semantics for such active objects are given by the base semantics (see Clause
10).

Event Dispatching

An object activation also handles the dispatching of asynchronous communications received by its active object. A signal
instance is sent to an active object using a send signal action (see Subclause 7.5.2.2.9). The delivery of this signal to the
active object is modeled in the Execution Model by the send operation on Object. This operation accepts a signal instance
and passes it to the object activation for the active object, which places it in the event pool of received signal instances
waiting to be dispatched. At this point, the delivery of the signal is complete and the signal sender may continue
execution asynchronously to the eventual dispatching (or not) of the signal by the receiving active object.

In order to decouple the reception of a signal from its dispatching, ObjectActivation is also an active class. The classifier
behavior for ObjectActivation (see Figure 62) is a simple dispatch loop. When a signal instance arrives,
ObjectActiviation sends an ArrivalSignal to itself after the received signal instance is placed in the event pool. The
dispatch loop waits for a signal arrival and, when this happens, calls the dispatchNextEvent operation. This operation
dispatches a single signal instance from the event pool. Once this is complete (“run to completion semantics” for
dispatched events), the dispatch loop returns to waiting for another signal to arrive.

It is important to carefully note the two semantic levels in the above description. At the level of the execution of a user
model, the execution model is modeling the reception of a signal instance (of a signal defined in the user model) and the
dispatching of that signal instance to an executing classifier behavior (which is also defined in the user model). However,
this semantic model itself also uses active classes (i.e., ObjectActivation and ClassifierBehaviorExecution) and signals
(e.g., ArrivalSignal). The semantics for active classes and signals, as use in the execution model, are given by the base
semantics for those model constructs (see Clause 10; also see Clause 6 for a general discussion of f{UML execution
semantics versus base semantics).

Now, while an event is being dispatched, it is possible that the active object will receive additional signal instances. In
this case, these instances will be concurrently placed into the event pool for the active object and an ArrivalSignal will be
generated for each arriving event. When the dispatch loop is ready to accept another event, it will accept exactly one
pending ArrivalSignal, causing another event to be dispatched. The dispatch loop will continue to dispatch events, one at
a time, until there are no more pending ArrivalSignals (or until the active object is destroyed).

Which event is actually dispatched out of the event pool is not determined by the ArrivalSignal but, rather, by the
dispatchNextEvent operation. However, the exact behavior to be specified for this operation is a semantic variation point
in fUML. (See Clause 2.3 for a full discussion of semantic variation within f{UML.)

Following the general approach of using the Strategy Pattern to model semantic variation points (see Clause 8.2.1), the
variability of event dispatching is captured by using strategy classes for the ObjectActivation::getNextEvent operation.
GetNextEventStrategy provides the abstract base class for this type of strategy. The default dispatching behavior is given
by the concrete FIFOGetNextEventStrategy, which dispatches events on a first-in first-out (FIFO queue) basis. Any
variant behavior must be fully specified by overriding the behavioral specification of the dispatchNextEvent operation

A conforming execution tool may define an alternative rule for how this dispatching is to take place by defining a new
GetNextEventStrategy subclass specifying whatever rule is desired. An instance of this alternate strategy must then be
registered with the execution factory at a given locus, rather than the default strategy.

Once an event is selected for dispatch, it is matched against the list of waiting event accepters for the active object. If a
match is found, the signal instance is passed to the event accepter using its accept operation. If no matching event
acceptor is found, the signal instance is not returned to the event pool and is lost. (Note that deferred events are not
included in the f{UML subset.)

142 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The event accepters for an active object are points within the executing classifier behaviors of the object that are waiting
for certain (signal reception) events. An executing classifier behavior may register an event accepter for itself using the
Object::registerForEvent operation. The event accepter is then added to the list of waiting event accepters for the object
and any matching signal instance is passed back to the executing classifier behavior via the accept operation of the event
accepter. (Currently in f{UML, event accepters are defined only for accept event actions—see Subclause 8.6.4.)

| fuML ::semantics::Classes::Kernel::CompoundVvalue

Signallﬁstance

+ getTypes [) : Classifier [*]
+ rnew_ () Value
+ copy () Value

"

1| + type

fUML::Syntax::CommonBehaviors::Communications::Signal

Figure 61 - Signal Instances

Semantics of a Foundational Subset for Executable UML Models, Beta 2 143

i EventDispatchLoop

i ClassifierBehaviorExecutionActivity

+ types
fUML::Semantics::Classes::Kernel::0bject I H fUML::Syntax::Classes::Kernel::Class
o
E]
1 + object
1 | + classifier
0..1 | + objectActivation
+ objectActivation
DbjectActivation C
0.1
+ startBehavior { classifier : Class [0..1], inputs : Parametervalue [*])
+stop ()
+ register (accepter : EventAccepter) . ») *
+ unregister (accepter : EventAccepter) + dassifierBehaviorExecutions | «
+ send (signallnstance : Signallnstance)
+ dispatchNextEvent [) ClassifierBehaviorExecution |
+ getMextEvent () : Signallnstance
+ _startObjectBehavior () + execute | classifier : Class, iNpuUts ; Parametervalue [7])
+ send | 5|gr_'|al : _ArrwaIS|gnaI) + terminate ()
«signal» + ArrivalSignal {) + _startObjectBehavior ()
—
’ 0.1 0.1
0.1
ArrivalSignal 1 | + execution
fUML ::Semantics::CommonBehaviors::BasicBehaviors::Execution
* |4+ waitingEventAccepters
EventAccepter
+ gccept { signallnstance : Signallnstance
+ match (signallnstance : Signallnstance) : Boolean fUML ::Semantics::Loci::SemanticStrategy
o
+ eventPool
fUML ::Semantics::CommonBehaviors::Communications::Signallnstance GetNextEveﬁtStrategy

Figure 62 - Active Objects

8.4.3.2 Class Descriptions

8.4.3.21

ClassifierBehaviorExecution

+ getMame () String
+ getiNextEvent (objectActivation : Objectictivation) : Signallnstance

FIFOGetNextEventStrategy

+ getMextEvent (objectActivation : ObjectActivation) : Signallnstance

A classifier behavior execution executes the classifier behavior from a specific active class.

Generalizations
None

Attributes
None

144

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
e classifier : Class

The classifier whose behavior is being executed. (This must be an active class.)
e execution : Execution

The execution of the associated classifier behavior for a certain object.
® objectActivation : ObjectActivation [0..1]

The object activation that owns this classifier behavior execution.

Operations

[1] execute (in classifier : Class, in inputs : ParameterValue [0..*])

// Set the classifier for this classifier behavior execution to the given class.

// If the given class is a behavior, set the execution to be the object of the object
activation of the classifier behavior execution.

// Otherwise the class must be an active class, so get an execution object for the
classifier behavior for the class.

// Set the input parameters for the execution to the given values.

// Then start the active behavior of this ClassifierBehaviorExecution object, which will
execute the execution object on a separate thread of control.

// Debug.println (" [execute] Executing behavior for " + classifier.name + "...");

this.classifier = classifier;
Object object = this.objectActivation.object;

if (classifier instanceof Behavior) {

this.execution = (Execution)object;
} else {

this.execution = object.locus.factory.createExecution(classifier.classifierBehavior,
object) ;
}
if (inputs != null) {

for (int 1 = 0; 1 < inputs.size(); i++) {

ParameterValue input = inputs.getValue(i);

this.execution.setParameterValue (input) ;

_startObjectBehavior();

[2] terminate ()

// Terminate the associated execution.
// If the execution is not itself the object of the object activation, then destroy it.

//Debug.println (" [terminate] Terminating behavior for " + classifier.name + "...");
this.execution.terminate () ;

if (this.execution != this.objectActivation.object) {
this.execution.destroy();

[3] _startObjectBehavior ()

Semantics of a Foundational Subset for Executable UML Models, Beta 2 145

// *** This should start the asynchronous ClassifierBehaviorExecutionActivity to do the
following. ***
this.execution.execute () ;

8.4.3.2.2 EventAccepter

An event accepter handles signal reception events.
This is an abstract class intended to provide a common interface for different kinds of event accepters.

Generalizations
None

Attributes
None

Associations
None

Operations

[1] accept (in signallnstance : Signallnstance)

Accept a signal occurance for the given signal instance.

[2] match (in signallnstance : Signallnstance) : Boolean

Determine if the given signal instance matches a trigger of this event accepter.
8.4.3.2.3 FIFOGetNextEventStrategy
A FIFO get next event strategy gets events in first-in first-out order.

Generalizations
e GetNextEventStrategy

Attributes
None

Associations
None

Operations

[1] getNextEvent (in objectActivation : ObjectActivation) : Signallnstance
// Get the first event from the given event pool. The event is removed from the pool.
SignallInstance signallnstance = objectActivation.eventPool.getValue (0);

objectActivation.eventPool.removeValue (0) ;
return signallInstance;

8.4.3.2.4 GetNextEventStrategy

‘Edﬂoﬁalchange

A get next event strategy is a semantic strategy that determines the order in which signal instances are retrieved from the

event pool of an object activation.

146 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Generalizations
e SemanticStrategy

Attributes
None

Associations
None

Operations

[1] getName () : String

// Get next event strategies are always named "getNextEvent".

return "getNextEvent";

[2] getNextEvent (in objectActiveation : ObjectActivation) : Signallnstance
Get the next event from the

event is removed from the pool.

8.4.3.2.5 ObjectActivation
An object activation handles the active behavior of an active object.

Generalizations
None

Attributes
None

Associations
e classifierBehaviorExecutions : ClassifierBehaviorExecution [0..*]

The executing classifier behaviors for this object activation.
e cventPool : Signallnstance [0..*]

The pool of signals sent to the object of this object activation, pending dispatching as events.
(All the data values in the pool must be signal instances -- that is, they must have a single type that is a

signal.)
e object : Object

The object whose active behavior is being handled by this active object.

e waitingEventAccepters : EventAccepter [0..*]

The set of event accepters waiting for signals to be received by the object of this object activation.

Operations

[1] dispatchNextEvent ()

// Get the next signal instance out of the event pool.

// If there is one or more waiting event accepters with triggers that match the signal
instance, then dispatch it to exactly one of those waiting accepters.

if (this.eventPool.size() > 0) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2

The

147

SignalInstance signallInstance = this.getNextEvent () ;
Debug.println (" [dispatchNextEvent] signallnstance = " + signallnstance);

intList matchingEventAccepterIndexes = new intList();
EventAccepterlList waitingEventAccepters = this.waitingEventAccepters;
for (int i = 0; i < waitingEventAccepters.size(); 1i++) {
EventAccepter eventAccepter = waitingEventAccepters.getValue (i) ;
if (eventAccepter.match(signallInstance)) {
matchingEventAccepterIndexes.addValue (1) ;

if (matchingEventAccepterIndexes.size() > 0) {
// *** Choose one matching event accepter non-deterministically. ***
int j =

((ChoiceStrategy)this.object.locus.factory.getStrategy("choice")) .choose (matchingEventAcce
pterIndexes.size());
EventAccepter selectedEventAccepter = this.waitingEventAccepters.getValue(j-1);
this.waitingEventAccepters.removeValue (j-1);
selectedEventAccepter.accept (signallnstance) ;

[2] getNextEvent () : Signallnstance

// Get the next event from the event pool, using a get next event strategy.
return

((GetNextEventStrategy)this.object.locus.factory.getStrategy ("getNextEvent")) .getNextEvent
(this);

[3] register (in accepter : EventAccepter)

// Register the given event accepter to wait for a dispatched signal event.

Debug.println (" [register] object = " + this.object);
Debug.println (" [register] accepter = " + accepter);

this.waitingEventAccepters.addValue (accepter) ;

[4] send (in signallnstance : Signallnstance)

// Add the given signal instance to the event pool and signal that a new signal instance
has arrived.

this.eventPool.addValue ((SignalInstance) (signalInstance.copy()));
_send (new ArrivalSignal());

[5] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..¥])

// Start the event dispatch loop for this object activation (if it has not already been
started) .

// If a classifier is given that is a type of the object of this object activation and
there is not already a classifier behavior execution for it,

// then create a classifier behavior execution for it.

148 Semantics of a Foundational Subset for Executable UML Models, Beta 2

// Otherwise, create a classifier behavior execution for each of the types of the object
of this object activation which has a classifier behavior or which is a behavior itself
// and for which there is not currently a classifier behavior execution.

// Start EventDispatchLoop
_startObjectBehavior();

if (classifier == null) {
Debug.println (" [startBehavior] Starting behavior for all classifiers...");
// *** Start all classifier behaviors concurrently. ***
Class List types = this.object.types;

for (Iterator i = types.iterator(); i.hasNext();) {
Class_ type = (Class)i.next();
if (type instanceof Behavior | type.classifierBehavior != null) {

this.startBehavior (type, new ParameterValueList());

}
else {
Debug.println (" [startBehavior] Starting behavior for " + classifier.name + "...");

boolean notYetStarted = true;

int 1 = 1;
while (notYetStarted & i1 <= this.classifierBehaviorExecutions.size()) {
notYetStarted = (this.classifierBehaviorExecutions.getValue(i-1).classifier !=

classifier);
i =1+ 1;

if (notYetStarted) {
ClassifierBehaviorExecution newExecution = new ClassifierBehaviorExecution();
newExecution.objectActivation = this;
this.classifierBehaviorExecutions.addValue (newExecution) ;
newExecution.execute (classifier, inputs);

[6] stop ()
// Stop this object activation by terminating all classifier behavior executions.

ClassifierBehaviorExecutionList classifierBehaviorExecutions =

this.classifierBehaviorExecutions;

for (int 1 = 0; 1 < classifierBehaviorExecutions.size(); i++) {
ClassifierBehaviorExecution classifierBehaviorExecution =

classifierBehaviorExecutions.getValue (i) ;
classifierBehaviorExecution.terminate () ;

}

[7] unregister (in accepter : EventAccepter)
// Remove the given event accepter for the list of waiting event accepters.

Debug.println (" [unregister] object = " + this.object);
Debug.println (" [unregister] accepter = " + accepter);

boolean notFound = true;

int 1 = 1;
while (notFound & i <= this.waitingEventAccepters.size()) {
if (this.waitingEventAccepters.getValue(i-1) == accepter) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 149

this.waitingEventAccepters.remove (i-1);
notFound = false;

[8] _send (in signal : ArrivalSignal)
// Signal the arrival of a new signal instance in the event pool.
// *** This should send an ArrivalSignal to the EventDispatchLoop to do the following

asynchronously. ***
this.dispatchNextEvent () ;

[9] startObjectBehavior ()
// *** This should start the EventDispatchLoop ***
return;

8.4.3.2.6 Signallnstance

Generalizations
e CompoundValue

Attributes
None

Associations
* type: Signal

Operations

[1] copy () : Value

// Create a new signal instance with the same type and feature values as this signal
instance.

SignallInstance newValue = (Signallnstance) (super.copy());
newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single type of this signal instance.
ClassifierlList types = new ClassifierList();
types.addValue (this.type);

return types;

150 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[3]new_ () : Value

// Create a new signal instance with no type or feature values.

return new Signallnstance();

8.5 Activities

8.5.1 Overview

Activities are the only concrete sort of user behavior model included in fUML. (Opaque behaviors are also included in
fUML, but only for specifying primitive behaviors.) The package structure for the semantic Activities sub-packages
parallels that of the syntactic Activities sub-packages (see Subclause 7.3.1). Figure 63 shows the dependencies of these
sub-packages.

Subclause 7.4.2 includes the top level diagrams of the abstract syntax for activities. The elements of this syntax are that
activities are composed of activity nodes with control flow and object flow activity edges connecting the nodes.

Subclause 8.5.2 describes the basic semantics of activity execution in terms of activations of the activity nodes in the
activity. Subclause 8.5.3 then provides the further semantics of structured activity nodes and Subclause 8.5.4 covers
expansion regions. The semantics for actions, which are a kind of activity node, are given in Subclause 8.6.

1
BasicBehaviors
(from fUML::Semantics: :CommonBehaviors)
N
i «rnport»
— —

i PP “irmports — A
%I?tezlllr:i*l-!_l:ﬂt_iﬂ'l-ltllv!t_'t?f'_ S ot IntermediateActivities
(fram eyntEX:ACTvIties) (from fUML : :Semantics: :Activities)

7N
I «import»
—
BasicActions
(from fUML: :Semantics: :Actions)
N
i «import»
— — |
E— E— PP «import» :
U-"?Tlil_-f|Etﬂelaffl'}!*-tt["‘t‘}!ﬁ_\t‘_—t_;_‘{'_t.'e‘-“ LIRS CompleteStructuredActivities
(irom safniax GACTiVITes) (from fUML::Semantics: :Activities)
7N
I «import»
] «irmport» i
ExtraStructuredActivities (&—-----—------mm oo ExtraStructuredActivities
(from fUML::Syntax:: Activities) (from fUML::Semantics: :Activities)

Figure 63 - Activities Semantics Packages

Semantics of a Foundational Subset for Executable UML Models, Beta 2 151

8.5.2 Intermediate Activities

8.5.2.1 Overview

Activity Node Activation

As shown in Figure 68, the activity execution model is an extension of the general behavior execution model from
Subclause 8.4.2. In addition to activity executions themselves, the model includes activity node activations that specify
the behavior of activity nodes during a specific activity execution. These node activations are then interconnected by
activity edge instances corresponding to the activity edges in the activity.

Activity node activations are semantic visitor classes, like evaluations and executions (see Subclause 8.2.1 for a
discussion of semantic visitor classes in general). There is an activation visitor class corresponding to each concrete
subclass of ActivityNode. The name of the visitor class is the same as the name of the corresponding abstract syntax
metaclass with the word “Activation” appended. For example, the activation visitor class for the abstract syntax
metaclass JoinNode is called JoinNodeActivation. Note that actions are activity nodes, so that the semantics of actions
are specified using activation visitor classes (see Subclause 8.6).

Activity node activations are always created within an activity node activation group. This concept is introduced in the
execution model to handle nested groups within an activity. The activity itself is considered to implicitly be the top-level

group.

Token and Offer Flow

Note that, consistent with the overall use of the Visitor Pattern (see Subclause 8.2.1), the activity execution model
intentionally has a largely parallel structure to the abstract syntax model from Subclause 7.4. However, there are concepts
introduced in the semantic model for which there is no explicit syntax in UML. In this case, the most important such
concepts are those of token and offer:

Consider the simple activity model shown in Figure 64. Figure 65 shows the abstract syntax representation of this model,
which may then be given the semantic interpretation shown in Figure 66.

Simple Activity

ﬁ

Figure 64 - A Simple Activity Model

152 Semantics of a Foundational Subset for Executable UML Models, Beta 2

+ ownedParameter
: Parameter

: Activity

+ ownedParameter

: Parameter

+ direction = in

+ activity

+ parameter + activify

: ActivityParameterNode

+ s0Urce

+ outgoing + foutput + finput

+ activity

+ direction = out

+ node

+ parameter

: ActivityParameterMode

+ edge

: ObjectFlow I

: InputPin | | : OutputPin

+ incoming + target

Figure 65 - Abstract Syntax Representation of a Simple Activity Model

Semantics of a Foundational Subset for Executable UML Models, Beta 2

+ s0urce + outgoing

+ target

+ incoming

: ObjectFlow

153

+ node | + nodeActivations
: ActivityParameterNode |< | ActivityParameterNodeActivation
+ holder
+ source
+nods + heldTokens
+ offeredTokens
+ outgoingEdges
+ offers
+ edge | : ActivityEdgeInstance |ﬂ
. + group
+ activity + incoming + incomingEdges
+ activityExecution Fivationar *
| : ActivityExecution |¢ + activationbroup | : ActivityNodeActivationGroup
+ target + target

+ gfoup +|group

+ activity

le]
: InputPin + node i : InputPinActivation

+ pinActivations

+ Jinput

+ actionActivation + nodeActivations

d
AL I : ActionActivation

+ actionActivation

+ foutput + pinActivations

: OutputPin |[< node i : OutputPinActivation
+ source + S0Urce
+ edge .)
+ outgoing + ouUtgoingEdges + edgelnstances
d
: ObjectFlow |< =L I ; ActivityEdgeInstance |

+ incoming + incomingEdges

+ node

+ target + targst

+ node I

: ActivityParameterNode |< |

: ActivityParameterNodeActivation

+ nodeActivations

Figure 66 - Semantic Interpretation of a Simple Activity Model at the Start of Execution

So far, the interpretation shown in Figure 66 provides essentially just the structural semantics of activities, in which an
activity execution is interpreted as an instance of the activity considered as a classifier. To truly capture the behavior
semantics, the interpretation needs to further define how the execution of the activity proceeds over time. The UML 2
Superstructure Specification defines the behavior of an activity in terms of fokens that may be held by nodes and offers
made between nodes for the movement of these tokens.

The execute operation on an activity execution object places tokens on the input activity parameter nodes of the activity.
Figure 66 shows an early stage in the execution of the activity from Figure 64, in which the input activity parameter node
holds an object token corresponding to the input parameter value for the activity execution and this node is offering the
token to the input pin of the action. The behavioral semantic rules of UML activity execution then determine if and when
the action will accept the offered token to its input pin.

154 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Presuming that the input pin has multiplicity of 1 and a token for a single value has been offered, the action will accept
the offer, receive the offered token on its input pin and fire its own behavior. A token with the result value from this
behavior will then be placed on the output pin of the action and subsequently offered to the output parameter node.
Figure 67 shows the semantic interpretation of this successor to the earlier stage of execution shown in Figure 66. The
execution of this activity then concludes with the output activity parameter node accepting the offered token. At the end
of the execution of an activity, the execute operation then places the values in tokens held by any output activity
parameter nodes onto the corresponding output parameters of the activity.

NOTE: In the UML abstract syntax, pins are multiplicity elements with optional ordering and so are parameters.
However, while activity parameter nodes may be typed, they are not multiplicity elements and they cannot be specifically
identified as ordered. Nevertheless, the fUML semantics interprets an output activity parameter node as effectively
having the ordering specified for its associated parameter. Thus, when multiple tokens flow from an ordered output pin to
an output activity parameter node, this ordering is preserved when the values on the tokens are ultimately placed on the
corresponding output parameter.

+ node
: ActivityParameterNode |< | : ActivityParameterNodeActivation |_+ NodeActivations
+ source
+ niode
+ outgoing + outgoingEdges
: ObjectFlow + edge I : ActivityEdgeInstance
+ activity + Incarming + incomingEdiges + group
| + activityExecution + activationGroup | ‘
= ActivityExecution |« | = ActivityNodeActivationGroup |
+ target + target ’
. _ . + node . - -
+ activity : InputPin | 2 InputPinActivation + gloup
+ finput + pinActivations

+ actionActivation + nodeActivations

ol
£ Thoce I : ActionActivation ‘
+ actionActivation
+ foutput + pinActivations
N + node [- A + heldTolens
: OutputPin : OutputPinActivation .
l l + holder |_T:)—ken
*souree + source + offeredTokens
+ edge))
+ autgaoing + outgoingEdges + edgelnstances
d +offers
: ObjectFlow R I : ActivityEdgeInstance | 2| i0ffer
+ incoming + incomingEdges
+ node
+ target + target
: ActivityParameterNode |< + node | : ActivityParameterNodeActivation ‘ N
| + nodeActivations

Figure 67 - Semantic Interpretation of a Simple Activity Model Just Prior to Completion of Execution

Threading Model

Semantics of a Foundational Subset for Executable UML Models, Beta 2 155

The execution semantics for activities in UML places no restriction on the concurrent activation of activity nodes within
an activity, other than that imposed by the semantics of token and offer flow across the activity edges connecting the
nodes. The execution model captures this concurrent execution semantics through an implicit concept of threading.

When an activity node activation produces tokens and is ready to offer them to downstream activations, it calls the
sendOffer operation on outgoing activity edge instances. The edge instance sendOffer operation, in turn, signals to the
target activity node activation that an offer is available by calling the receiveOffer operation. The target activity node
activation then checks if its execution prerequisites are satisfied (encoded in the method of the isReady operation for each
kind of activity node activation) and, if so, it accepts the pending offers made to it using its takeOfferedTokens operation
and then calls its fire operation.

Note that, in the execution model, the self-calls to the isReady operation and, if the activation is ready, to the
takeOfferedTokens operation happen within a single isolated region—that is, a structured activity node with mustIsolate
= true. This ensures that, if the takeOfferedTokens operation is invoked, then any offers checked by the isReady
operation cannot be accepted by any other activity node activation before the takeOfferedTokens operation completes.
The invocation of the fire operation, however, does not occur within this isolated region, in order to not block continued
concurrency with other activity node activations. (See Subclause 8.5.3.1 for a discussion of the semantics of structured
activity nodes with mustlsolate = true.)

The method of the fire operation for an activity node activation captures the execution behavior of the corresponding
activity node, which may then cause new offers to be sent further downstream. While there is no explicit class for it in
the Execution Model, an extended chain of sendOffer—receiveOffer—fire—sendOffer calls can be considered to be a single
thread of execution through an activity.

When an activity begins execution, a control token is implicitly placed on each enabled node. Enabled nodes include
initial nodes, input activity parameter nodes and actions with no incoming control nodes or input pins. If such an enabled
node is immediately ready to fire, then it begins an execution thread within the activity execution. If there is more than
one enabled node that fires, then each one begins a concurrent thread within the activity execution.

NOTE: The UML 2 Superstructure Specification (Subclause 12.3.31) states that “In addition [to initial nodes], when an
activity starts, a control token is placed at each action...that has no incoming edges....” However, if an action has input
pins, at least one of which has a multiplicity lower bound greater than zero, then the action will still not be able to fire
until it is offered the appropriate number of object tokens. On the other hand, if the action has input pins, but they all
have multiplicity lower bounds of zero, then placing a control token on the action will cause it to fire immediately.
However, this is likely not to be the expected behavior, since, having input pins, the presumption is that the modeler
expected the action to have at least some input. Therefore, f{UML requires that an action with input pins have an offer on
at least one of the pins before it fires, even if all the input bins have zero multiplicity lower bound.

It is also possible for a thread to split. This occurs whenever the same offer is made to multiple outgoing edges, such as
when there are multiple edges leaving an output pin, fork node or action. Again, each outgoing thread executes
concurrently—which is modeled by requiring that the sendOffer calls on outgoing edges are all made concurrently.

NOTE: This model of execution concurrency does not require the implementation of actual parallelism in a conforming
execution tool. It simply means that such parallelism is allowed and that the execution semantics provide no further
restriction on the serialization of execution across concurrent threads.

A thread ends when a target activity node activation does not accept an offer passed to it along the thread. In this case, the
receiveOffer operation on the target node activation returns without calling the fire operation, and the chain of calls
making up the thread terminates. For example, the input pin of an action cannot accept an offer unless its action as a
whole is ready to execute (see Subclause 8.6.2.1). Therefore, if an action has several input pins with non-zero multiplicity
lower bound, then offers need to be delivered to every input pin before the action can execute. Thus, all the threads
delivering these offers, except the last one, will terminate at the action input pin activations. Only the thread delivering
the final offer (assuming all the other offered tokens are still available) will result in the action firing, with the action
execution continuing on that thread.

The execution of an activity terminates when all threads within it have ended. Such termination may happen naturally
when, for example, all tokens are consumed by nodes that do not produce any new offers, or it may be forced by an
activity final node. When an activity final node fires, it causes its enclosing activity execution to call the terminate

156 Semantics of a Foundational Subset for Executable UML Models, Beta 2

operation on all activity node activations within it. Once a node activation is terminated, it will no longer accept any
offers and, as a result, all executing threads will eventually end, resulting in the termination of the activity execution.

NOTE: The UML 2 Superstructure Specification (Subclause 12.3.6) states that, when an activity is terminated by an
activity final node, “The content of output activity parameter nodes are passed out of the containing activity, using the
null token for object nodes that have nothing in them.” This applies when the activity has been invoked by a synchronous
call behavior or call operation action with output pins corresponding to the output parameters of the activity. However, in
general, fUML does not provide for the creation of null tokens. Therefore, the execution model does not actually
generate null tokens in this case, and the empty output parameter at the end of activity execution simply results in no
tokens at all being placed on the corresponding output pin of the calling action. Unlike having at least a null token,
having no tokens on the output pin means that it makes no offers that might trigger subsequent actions.

+ outgoing + source
fUML ::Syntax::Activities: IntermediateActivities::ActivityEdge 1 fUML ::Syntax::Activities::IntermediateActivities::ActivityNode
+ incoming + target
"
1
0.1 +node| 0.1
+ edge fUML ::Semantics::Loci::SemanticVisitor
" "
— + outgoingEdges + source — ——
ActivityEdgeInstance ActivityNodeActivation

+ countOfferedTal

+ getMextOffer {

+ sendOffer (tokens : Token [*])
+ takeOfferedTokens ()@ Token [*]
sans () ¢ Integer
+ hasOffer () : Boolean

+ getOfferedTokens () Token [*] | «

+ incomingEdges

1 + running : Boolean

+run i)
+ receiveOffer ()

+ target

: Offer [0..1]

0.1

"

+ offers

Offer

+ countOfferedTokens () : Integer
+ getOfferedTokens () : Token [*]

+ removeWithdrawnTolens ()

0.1

"

+ offeredTokens

Token

-

+ terminate ()
+ isReady () : Boolean
+ isRunning () Boolean

+ createNodeActivations ()
+ createEdgelnstances ()

+ getExecutionLocus () @ Locus

+ addToken (token : Token)

+ withdraw ()

+copy () Token

+ iswWithdrawn () : Boolean
+ isControl {) : Boolean

+ getValue ()

+ equals (other : Tolen) :

+ transfer (holder @ ActivityNodeActivation) : Tolen

Boolean

Value [0..1]

+ heldTokens

ControlToken

ObjectToken

+ equals [other ; Tolken) : Boolean
+copy () Token

+isControl () : Boolean

+ getValue () : Value [0..1]

+ equals (other ; Token) : Boolean
+ copy ()¢ Token

+ isControl () : Boolean
+ getValue () : Value [0..1]

1

0.1 | + value

‘ fUML ::Semantics::Classes::Kernel::Value

Figure 68 - Activity Executions

+ takeOfferedTokens () : Token [*]
+ fire { incomingTolens : Token [*])
1 |+ sendOffers (tokens : Token [*])

+ addOutgoingEdge (edge : ActivityEdgelnstance)
+ addIncomingEdge (edge : ActivityEdgelnstance)

+ isSourceFor { edgelnstance : ActivityEdgelnstance) : Boolean
+ getActivityExecution () @ ActivityExecution
+ getExecutionContext () : Object

+ gethodeActivation { node @ ActivityMode) @ ActivityNodeActivation [0..1]

+ removeToken (token : Token) @ Integer
+ addTaokenrs (tokens : Token [*])

+ holder + takeTokens () : Token [*]
+ clearTolens ()
0.1 + getTokens () @ Token [*]
ObjectNodeActivation ControlNedeActivation
+ offeredTolenCount : Integer _ _
T () + fire (incomingTokens @ Token [*])

+ terminate ()

+ addToken (token : Token)

+ removeToken (token : Token) @ Integer
+ clearTokens ()

+ sendUnofferedTolens ()

+ countUnofferedTolens () 1 Integer

+ getUnofferedTokens () Token [*]

+ takelnofferedTokens () : Token [*]

ActivityParameterNodeActivation

+ fire { incomingTokens @ Token [*])
+ clearTokens ()

Semantics of a Foundational Subset for Executable UML Models, Beta 2

157

+ outgoing + source

fUML ::Syntax::Activities:: IntermediateActivities::ActivityEdge I fUML ::Syntax::Activities::IntermediateActivities::ActivityNode
+ incoming + target
-
1
0.1 +node| 0.1
+ edge fUML ::Semantics:Loci::SemanticVisitor
- -
— + outgoingEdges + source
ActivityEdgeInstance ActivityNodeActivation

]

+ sendOffer (tokens @ Token [*1)
+ takeOfferedTokens () : Token [*]
+ countOfferedTokens {) : Integer

1 + running : Boolean

+run ()

+ receiveOffer ()

+ takeOfferedTokens () @ Token [*]

+ getOfferedTokens () : Token [*] "
+ getMNextOffer [) : Offer [0..1]

0.1

* | + offers

Offer

+ countOfferedTolens [) : Integer
+ getOfferedTokens () : Token [*]
+ removeWithdrawnTokens ()

0.1

* s+ offeredTokens
Token

+ hasOffer {) : Boolean + incomingEdges +target |+ fire (incomingTolkens : Tolen [*])
)

1 |+ sendOffers (tokens : Token [*]

+ terminate ()

+ isReady () : Boolean

+ isRunning () @ Boolean

+ addOutgoingEdge (edge : ActivityEdgelnstance)

+ addIncomingEdge (edge : ActivityEdgelnstance)

+ createNodefctivations ()

+ createEdgelnstances ()

+ isSourceFor (edgelnstance : ActivityEdgelnstance) : Boolean
+ getActivityExecution () @ ActivityExecution

+ getExecutionContext {) : Object

+ getExecutionLocus () @ Locus

+ gethodectivation (node : ActivityMode) @ ActivityNodeActivation [0..1]
+ addToken (token : Token)

+ removeTaolen (tolen : Token) : Integer

+ addTolens (tokens : Token [*])

+ transfer (holder : ActivityNodeActivation) : Token
+ withdraw ()

+ equals { other : Tolen) ! Boolean

+copy () Token

+ isWithdrawn () : Boolean

+ isControl {) : Boolean

+ getValue |) Value [0..1]

* + holder + takeTokens ()@ Token [*]
+ clearTokens ()
+ heldTokens 0.1 |+ getTokens () : Token [*]
ObjectNodeActivation ControlNodeActivation
+ offeredTokenCount : Integer _ _
() + fire (incomingTokens : Token [*])

+ terminate ()
+ addToken (token : Token)

+ removeTaolen (tolen : Token) : Integer

+ clearTolens ()

Boolean + senduUnofferedTolens ()

+ countUnofferedTokens () @ Integer

+ getUnofferedTokens () Token [*]

+ takelUnofferedTokens () Token [*]

ControlToken ObjectToken
+ equals [other : Token) : Boolean + equals (other : Token) :
+copy () : Token + copy () : Token
+ isControl {) Boolean + isControl () : Boolean
+ getvalue () : Value [0..1] + getValue () : value [0..1]
1

0.1 | + value

ActivityParameterNodeActivation

fUML ::Semantics::Classes::Kernel-:Value

+ fire (incomingTokens : Token [*])

Figure 69 - Node Activations

158

+ clearTolkens ()

Semantics of a Foundational Subset for Executable UML Models, Beta 2

fUML ::Semantics::Activities::IntermediateActivities::ControiNodeActivation

[

InitialNodeActivation o P
JoinNodeActivation MergeNodeActivation
+ fire (incorningTokens : Token [*]) + Ready (] ; Bodlean
ForkNodeActivation ActivityFinalNodeActivation
+ fire [incomingTokens @ Token [*]) + fire [incomingTokens @ Token [*])
fUML ::Semantics::Activities::IntermediateActivities:: Token | DecisionNodeActivation
1 | + baseTaoken + fire [incomingTolens : Token [*])
+ getDecisionValues (incomingTokens : Token [*])@ Value [*]
+ executeDedsionInputBehavior (inputValue : Value [0..1], dedisionlnputyalue @ Value [0..1]) : Value
+ terminate {)
" + isReady () : Boolean
—— FcrrkedTolken - + takeOfferedTolens () Token [*]
+ \emaln.\ngofflm sCount : Integer + getDecisionInputFlowValue () Value [0..1]
* |t \s(_ZDhr?jt!ol () : Boolean + getDecisionInputFlowInstance () : ActivityEdgelnstance [0..1]
+ witl raw ()I' + test (guard : ValueSpecification, value : Value) : Boolean
+copy () Tolen I) + removeloinedContralTokens (incomingTokens : Token [*]) @ Token [*]
+ equals (otherTolen : Token) : Boclean + hasObjectFlowlnput [) : Boolsan
+ getValue () ¢ value [0..1]

1

0..1 | + decisioninputExecution

fUML ::Semantics::CommonBehaviors::BasicBehaviors::Execution

Figure 70 - Control Node Activations
8.5.2.2 Class Descriptions
8.5.2.21 ActivityEdgelnstance

An activity edge instance is a connection between activity node activations corresponding to an edge between the
corresponding nodes of those activations

Generalizations
None

Attributes
None

Associations
e edge: ActivityEdge [0..1]

The activity edge of which this is an instance.
[This is optional to allow for an implicit fork node execution to be connected to its action execution by an
edge instance which does not have a corresponding node in the model.]

* group : ActivityNodeActivationGroup
The activity group that contains this activity edge instance.
e offers : Offer [0..*]

e source : ActivityNodeActivation

The source of this activity edge instance.
The node of the source must be the same as the source of the edge of this edge instance.

e target : ActivityNodeActivation

Semantics of a Foundational Subset for Executable UML Models, Beta 2 159

The target of this activity edge instance.
The node of the target must be the same as the target of the edge of this edge instance.

Operations

[1] countOfferedTokens () : Integer

// Return the number of tokens being offered.
// Remove any tokens that have already been consumed and don't include them in the count.

Offer offer = this.getNextOffer();

int count = 0;
if (offer != null) {
count = offer.countOfferedTokens();

return count;

[2] getNextOffer () : Offer [0..1]

// Return the next offer on this edge instance that still has tokens that are not
withdrawn.
// Remove any empty offers before the one returned.

Offer nextOffer = null;

while (nextOffer == null & this.offers.size() > 0) {
Offer offer = this.offers.getValue (0);
offer.removeWithdrawnTokens () ;

if (offer.countOfferedTokens () == 0) {
this.offers.remove (0) ;
} else {

nextOffer = offer;
}
}

return nextOffer;

[3] getOfferedTokens () : Token [0..*]

// Get the offered tokens (after which the tokens will still be offered).
Offer nextOffer = this.getNextOffer();

TokenList offeredTokens = new TokenList();

if (nextOffer != null) {

offeredTokens = nextOffer.getOfferedTokens () ;
}

return offeredTokens;

[4] hasOffer () : Boolean
// Return true if there are any pending offers.

return this.getNextOffer() != null;

[5] sendOffer (in tokens : Token [0..*])

160 Semantics of a Foundational Subset for Executable UML Models, Beta 2

// Send an offer from the source to the target.

// Keep the offered tokens until taken by the target.

// (Note that any one edge should only be handling either all object tokens or all control
tokens.)

Offer offer = new Offer();

for (int 1 = 0; 1 < tokens.size(); i++) {
Token token = tokens.getValue(i);
// Debug.println (" [sendOffer] token value = " + token.getValue());

offer.offeredTokens.addValue (token) ;
}

this.offers.addvValue (offer);

this.target.receiveOffer();

[6] takeOfferedTokens () : Token [0..*]

// Take all the offered tokens and return them.
TokenList tokens = this.getOfferedTokens();

if (this.hasOffer()) {

this.offers.removeValue (0);

}

return tokens;

8.5.2.2.2 ActivityExecution

An activity execution is used to execute a specific activity. The type of the activity execution must be an activity.
When executed, the activity execution creates activity edge instances for all activity edges, activity node activations for
all activity nodes and makes offers to all nodes with no incoming edges.

Execution terminates when either all node activations are complete, or an activity final node is executed.

Generalizations
e FExecution

Attributes
None

Associations
e activationGroup : ActivityNodeActivationGroup

The group of activations of the activity nodes of the activity.
Operations

[1] copy () : Value

// Create a new activity execution that is a copy of this execution.
// [Note: This currently Jjust returns a non-executing execution for the same
activitybehavior as this execution.]

return super.copy();

Semantics of a Foundational Subset for Executable UML Models, Beta 2 161

[2] execute ()

// Execute the activity for this execution by creating an activity node activation group
and activating all the activity nodes in the activity.

// When this is complete, copy the values on the tokens offered by output parameter nodes
to the corresponding output parameters.

Activity activity = (Activity) (this.getTypes () .getValue (0));

Debug.println (" [execute] Activity " + activity.name + "...");
// Debug.println (" [execute] context = " + this.context.objectId()):;

this.activationGroup = new ActivityNodeActivationGroup () ;
this.activationGroup.activityExecution = this;
this.activationGroup.activate (activity.node, activity.edge);

// Debug.println (" [execute] Getting output parameter node activations...");

ActivityParameterNodeActivationList outputActivations =
this.activationGroup.getOutputParameterNodeActivations () ;

// Debug.println (" [execute] There are " + outputActivations.size() + " output parameter
node activations.");

for (int i = 0; i < outputActivations.size(); i++) {
ActivityParameterNodeActivation outputActivation = outputActivations.getValue (i) ;

ParameterValue parameterValue = new ParameterValue();

parameterValue.parameter = ((ActivityParameterNode) (outputActivation.node)) .parameter;
TokenList tokens = outputActivation.getTokens();
for (int j = 0; j < tokens.size(); j++) {

Token token = tokens.getValue (j);

Value value = ((ObjectToken)token) .value;

if (value != null) {

parameterValue.values.addValue (value) ;

}

this.setParameterValue (parameterValue) ;

Debug.println (" [execute] Activity " + activity.name + " completed.");

[3]new_(): Value
// Create a new activity execution with empty properties.

return new ActivityExecution();

[4] terminate ()

// Terminate all node activations (which will ultimately result in the activity execution
completing) .

this.activationGroup.terminateAll () ;

162 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.5.2.2.3 ActivityFinalNodeActivation
An activity final node activation is a control node activation for a node that is an activity final node.

Generalizations
e ControlNodeActivation

Attributes
None

Associations
None

Operations

[1] fire (in incomingTokens : Token [0..*])

// T erminate the group containing this
activation.

Debug.println("[fire] Activity final node " + this.node.name + "...");

this.group.terminateAll () ;

8.5.2.24 ActivityNodeActivation

An activity node activation is used to define the behavior of an activity node in the context of a containing activity or
structured activity node.

Generalizations
e SemanticVisitor

Attributes
® running : Boolean

If true, this node activation is enabled for execution once all its other prerequesites are satisfied.

Associations
* group : ActivityNodeActivationGroup

The group that contains this activity node activation.
e heldTokens : Token [0..¥]

¢ incomingEdges : ActivityEdgelnstance [0..*]
The set of activity edge instances for the incoming edges of the node.
e node : ActivityNode [0..1]

The activity node being activated by this activity node activation. The node must be owned by the activity
(type) of the activity execution of this node activation.

[This is optional, to allow for fork node edge queues and implicit fork and join node activations for actions
to not have nodes in the model.]

e outgoingEdges : ActivityEdgelnstance [0..*]

The set of activity edge instances for the outgoing edges of the node.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 163

Operations

[1] addIncomingEdge (in edge : ActivityEdgelnstance)

// Add an activity edge instance as an incoming edge of this activity node activation.
edge.target = this;

this.incomingEdges.addValue (edge) ;

[2] addOutgoingEdge (in edge : ActivityEdgelnstance)

// Add an activity edge instance as an outgoing edge of this activity node activation.
edge.source = this;

this.outgoingEdges.addValue (edge) ;

[3] addToken (in token : Token)

// Transfer the given token to be held by this node.

if (this.node == null) {
Debug.println (" [addToken] ...");
} else {
Debug.println (" [addToken] node = " + this.node.name);
}
Token transferredToken = token.transfer (this);
// Debug.println (" [addToken] Adding token with value = " + transferredToken.getValue());

this.heldTokens.addValue (transferredToken) ;

[4] addTokens (in tokens : Token [0..*])

// Transfer the given tokens to be the held tokens for this node.

// 1f (this.node == null) {

// Debug.println (" [addTokens] ...");

// } else {

// Debug.println (" [addTokens] node = " + this.node.name);
/7

for (int 1 = 0; i < tokens.size(); i++) {

Token token = tokens.getValue(i);
this.addToken (token) ;

[5] clearTokens ()

// Remove all held tokens.

‘ Issue 13308 -- ActivityNodeActivation::clearTokens incorrect

while (this.heldTc

),

oke

164 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[6] createEdgelnstances ()

// Create edge instances for any edge instances owned by the node for this activation.
// For most kinds of nodes, this does nothing.

return;

[7] createNodeActivations ()

// Create node activations for any subnodes of the node for this activation.
// For most kinds of nodes, this does nothing.

return;

[8] fire (in incomingTokens : Token [0..*])

Carry out the main behavior of this activity node.

[9] getActivityExecution () : ActivityExecution

// Return the activity execution that contains this activity node activation, directly or
indirectly.

return this.group.getActivityExecution() ;

[10] getExecutionContext () : Object
// Get the context object for the containing activity execution.

return this.getActivityExecution () .context;

[11] getExecutionLocus () : Locus
// Get the locus of the containing activity execution.

return this.getActivityExecution() .locus;

[12] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Get the activity node activation corresponding to the given activity node, in the
context of this activity node activation.

// By default, return this activity node activation, if it is for the given node,
otherwise return nothing.

ActivityNodeActivation activation = null;
if (node == this.node) {
activation = this;

return activation;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 165

[13] getTokens () : Token [0..*]

// Get the tokens held by this node activation.

// Debug.println (" [getTokens] node = " + this.node.name) ;

TokenList tokens = new TokenList () ;

TokenList heldTokens = this.heldTokens;

for (int i1 = 0; 1 < heldTokens.size(); i++) {
Token heldToken = heldTokens.getValue (i) ;
// Debug.println (" [getTokens] token value = " + heldTokens.getValue());
tokens.addValue (heldToken) ;

}

return tokens;

[14] isReady () : Boolean

// Check if all the prerequisites for this node have been satisfied.
// By default, check that this node is running.

return this.isRunning() ;

[15] isRunning () : Boolean

// Test whether this node activation is running.

return this.running;

[16] isSourceFor (in edgelnstance : ActivityEdgelnstance) : Boolean
// Check if this node activation is the effective source for the given edge instance.

return edgelInstance.source == this;

[17] receiveOffer ()

// Receive an offer from an incoming edge.
// Check if all prerequisites have been satisfied. If so, fire.

if (this.node != null) {

Debug.println (" [receiveOffer] node = " + this.node.name);
}
_beginIsolation();

boolean ready = this.isReady();
TokenList tokens = new TokenList();
if (ready) {
Debug.println (" [receiveOffer] Firing.");
tokens = this.takeOfferedTokens () :;
}

_endIsolation();

if (ready) {

166 Semantics of a Foundational Subset for Executable UML Models, Beta 2

this.fire (tokens);

[18] removeToken (in token : Token) : Integer
// Remove the given token, if it is held by this node activation.
// Return the position (counting from 1) of the removed token (0 if there is none

removed) .

boolean notFound = true;

int 1 = 1;
while (notFound & 1 <= this.heldTokens.size()) {
if (this.heldTokens.getValue (i-1) == token) {
if (this.node == null) {
Debug.println (" [removeToken] ...");
} else {
Debug.println (" [removeToken] node = " + this.node.name);

}
this.heldTokens.remove (i-1);
notFound = false;

Issue 13450 -- Error in return value of ActivityNodeActivation::removeToken

if (notFound) {

[19] run ()

// Run the activation of this node.

if (this.node !'= null) {
Debug.println (" [run] node = " + this.node.name);
} else {

Debug.println (" [run] Anonymous activation of type " + this.getClass () .getName());
}

this.running = true;

[20] sendOffers (in tokens : Token [0..*])

// Send offers for the given set of tokens over all outgoing edges (if there are any
tokens actually being offered).

if (tokens.size()>0) {

// *** Send all outgoing offers concurrently. ***
ActivityEdgeInstancelist outgoingEdges = this.outgoingEdges;
for (Iterator i = outgoingEdges.iterator(); i.hasNext();) {
ActivityEdgeInstance outgoingEdge = (ActivityEdgeInstance)i.next();
// Debug.println (" [sendOffers] Sending offer to " + outgoingEdge.target.node.name

Semantics of a Foundational Subset for Executable UML Models, Beta 2 167

+ " . ") ;
outgoingEdge.sendOffer (tokens) ;
}

[21] takeOfferedTokens () : Token [0..*]

// Get tokens from all incoming edges.

TokenList allTokens = new TokenList();

ActivityEdgeInstancelist incomingEdges = this.incomingEdges;

for (int i = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance incomingEdge = incomingEdges.getValue (i) ;
TokenList tokens = incomingEdge.takeOfferedTokens() ;
for (int j = 0; j < tokens.size(); J ++) {

Token token = tokens.getValue (J);
allTokens.addValue (token) ;

}

return allTokens;

[22] takeTokens () : Token [0..*]
// Take the tokens held by this node activation.

TokenList tokens = this.getTokens();
this.clearTokens () ;

return tokens;

[23] terminate ()
// Terminate the activation of this node.

if (this.running) {

if (this.node != null) {
Debug.println (" [terminate] node = " + this.node.name);
} else {
Debug.println (" [terminate] Anonymous activation of type " +

this.getClass () .getName()) ;
}
}

this.running = false;

8.5.2.25 ActivityNodeActivationGroup

An activity node group is a group of nodes that are activated together, either directly in the context of an activity
execution, or in the context of

Generalizations
None

168 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
e activityExecution : ActivityExecution [0..1]

The activity execution to which this group belongs.
(This will be empty if the group is for a structured activity node activation.)

e containingNodeActivation : StructuredActivityNodeActivation [0..1]

The structured activity node activation to which this group belongs.
(This will be empty if the group is for an activity execution.)

e edgelnstances : ActivityEdgelnstance [0..*]

The set of activity edge instances for this group.
* nodeActivations : ActivityNodeActivation [0..*]

The set of activity node executions for this group.

Operations
[1] activate (in nodes : ActivityNode [0..*], in edges : ActivityEdge [0..*])

// Activate and run the given set of nodes with the given set of edges, within this
activation group.

this.createNodeActivations (nodes) ;
this.createEdgeInstances (edges) ;

this.run (this.nodeActivations) ;

// Debug.println("[activate] Exiting.");

[2] addEdgelnstance (in instance : ActivityEdgelnstance)
// Add the given edge instance to this group.

instance.group = this;
this.edgelInstances.addValue (instance) ;

[3] addNodeActivation (in activation : ActivityNodeActivation)
// Add the given node activation to this group.

activation.group = this;
this.nodeActivations.addValue (activation);

[4] createEdgelnstances (in edges : ActivityEdge [0..*%])

// Create instance edges for the given activity edges, as well as for edge instances
within any nodes activated in this group.

for (int i = 0; i < edges.size(); i++) {
ActivityEdge edge = edges.getValue(i);

Debug.println (" [createEdgeInstances] Creating an edge instance from " +
edge.source.name + " to " + edge.target.name + ".");

ActivityEdgelInstance edgelnstance = new ActivityEdgelInstance();
edgelInstance.edge = edge;

Semantics of a Foundational Subset for Executable UML Models, Beta 2

169

this.addEdgeInstance (edgelnstance) ;
this.getNodeActivation (edge.source) .addOutgoingEdge (edgeInstance) ;
this.getNodeActivation (edge.target) .addIncomingEdge (edgeInstance) ;

// Debug.println (" [createEdgeInstances] Edge instance created...");

}

ActivityNodeActivationList nodeActivations = this.nodeActivations;

for (int i = 0; i1 < nodeActivations.size(); i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue (i);
nodeActivation.createEdgeInstances () ;

}

// Debug.println (" [createEdgeInstances] Done creating edge instances.");

[5] createNodeActivation (in node : ActivityNode) : ActivityNodeActivation

// Create an activity node activation for a given activity node in this activity node
activation group.

ActivityNodeActivation activation = (ActivityNodeActivation)
(this.getActivityExecution () .locus.factory.instantiateVisitor (node, "Activation"));
activation.node = node;

activation.running = false;

this.addNodeActivation (activation) ;

activation.createNodeActivations () ;

return activation;

[6] createNodeActivations (in nodes : ActivityNode [0..*])

// Add activity node activations for the given set of nodes to this group and create edge
instances between them.

for (int 1 = 0; 1 < nodes.size(); i++) {
ActivityNode node = nodes.getValue (i) ;

Debug.println (" [createNodeActivations] Creating a node activation for " + node.name +

" vv).
.« e ’

this.createNodeActivation (node) ;

[7] getActivityExecution () : ActivityExecution
// Return the activity execution to which this group belongs, directly or indirectly.
ActivityExecution activityExecution = this.activityExecution;

if (activityExecution == null) {
activityExecution = this.containingNodeActivation.group.getActivityExecution() ;

}
// Debug.println (" [getActivityExecution] activityExecution = " + activityExecution);

return activityExecution;

170 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[8] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Return the node activation (if any) in this group, or any nested group, corresponding
to the given activity node.

ActivityNodeActivation activation = null;

int 1 = 1;
while (activation == null & i <= this.nodeActivations.size()) {
activation = this.nodeActivations.getValue (i-1) .getNodeActivation (node) ;

i =1+ 1;

return activation;

[9] getOutputParameterNodeActivations () : ActivityParameterNodeActivation [0..*]

// Return the set of all activations in this group of activity parameter nodes for output
(inout, out and return) parameters.

ActivityParameterNodeActivationList parameterNodeActivations = new
ActivityParameterNodeActivationList () ;

ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int 1 = 0; 1 < nodeActivations.size(); 1i++) {

ActivityNodeActivation activation = nodeActivations.getValue (i) ;
if (activation instanceof ActivityParameterNodeActivation) {
ParameterDirectionKind direction = ((ActivityParameterNode)
(activation.node)) .parameter.direction;
if ((direction.equals (ParameterDirectionKind.inout)) |
(direction.equals (ParameterDirectionKind.out)) |
(direction.equals (ParameterDirectionKind.return))) {
parameterNodeActivations.addValue ((ActivityParameterNodeActivation)activation)

return parameterNodeActivations;

[10] run (in activations : ActivityNodeActivation [0..*])

// Run the given node activations and then (concurrently) send an offer to all activations
for nodes with no incoming edges within the given set.

for (int 1 = 0; 1 < activations.size(); i++) {
ActivityNodeActivation activation = activations.getValue (i) ;
activation.run () ;
}
Debug.println (" [run] Checking for enabled nodes...");
ActivityNodeActivationList enabledActivations = new ActivityNodeActivationList();
for (int 1 = 0; 1 < activations.size(); 1i++) {
ActivityNodeActivation activation = activations.getValue (i) ;
ActivityEdgeInstancelist incomingEdges = activation.incomingEdges;
Debug.println (" [run] Checking node " + activation.node.name + "...");
boolean isEnabled;

if (activation instanceof ActionActivation) {
isEnabled = ((Action)activation.node) .input.size() == 0;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 171

} else {
isEnabled = (activation instanceof ControlNodeActivation) | (activation instanceof
ActivityParameterNodeActivation) ;

}

int 3 = 1;
while (j <= incomingEdges.size() & isEnabled) {
int k = 1;

while (k <= activations.size() & isEnabled) {
if (activations.getValue (k-1) .isSourceFor (incomingEdges.getValue (j-1))) {
isEnabled = false;

J—

J =3+ 1

if (isEnabled) {
Debug.println (" [run] Node " + activation.node.name + " is enabled.");
enabledActivations.addValue (activation) ;

}
// Debug.println("[run] " + enabledActivations.size() + " node(s) are enabled.");

// *** Send offers to all enabled nodes concurrently. ***

for (Iterator i1 = enabledActivations.iterator(); i.hasNext();) {
ActivityNodeActivation activation = (ActivityNodeActivation)i.next();
Debug.println (" [run] Sending offer to node " + activation.node.name + ".");

activation.receiveOffer();

[11] runNodes (in nodes : ActivityNode [0..*])
// Run the node activations associated with the given nodes in this activation group.
ActivityNodeActivationList nodeActivations = new ActivityNodeActivationList();
for (int 1 = 0; 1 < nodes.size(); i++) {
ActivityNode node = nodes.getValue (i) ;
ActivityNodeActivation nodeActivation = this.getNodeActivation (node) ;
if (nodeActivation != null) {

nodeActivations.addValue (nodeActivation) ;

}

this.run (nodeActivations) ;

[12] terminateAll ()

// Terminate all node activations in the group.

Debug.println (" [terminateAll] Terminating activation group for " +
(this.activityExecution != null? "activity " +
this.activityExecution.getTypes () .getValue (0) .name: "node " +

this.containingNodeActivation.node.name) +

" n) .
. ’

ActivityNodeActivationList nodeActivations = this.nodeActivations;

for (int 1 = 0; 1 < nodeActivations.size(); 1i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue (i) ;
nodeActivation.terminate () ;

172 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.5.2.2.6 ActivityParameterNodeActivation
An activity parameter node activation is an object node activation for a node that is an activity parameter node.

Generalizations
e ObjectNodeActivation

Attributes
None

Associations
None

Operations

[1] clearTokens ()

// Clear all held tokens only if this is an input parameter node.

if (this.node.incoming.size() == 0) {
super.clearTokens () ;

[2] fire (in incomingTokens : Token [0..*])

// If there are no incoming edges, this is an activation of an input activity parameter
node.

// Get the values from the input parameter indicated by the activity parameter node and
offer those values as object tokens.

if (this.node.incoming.size() == 0) {
Debug.println("[fire] Input activity parameter node " + this.node.name + "...");
Parameter parameter = ((ActivityParameterNode) (this.node)) .parameter;
ParameterValue parameterValue =
this.getActivityExecution () .getParameterValue (parameter) ;

// Debug.println("[fire] parameter = " + parameter.name);
if (parameterValue != null) {
Debug.println (" [fire] Parameter has " + parameterValue.values.size() + "
value(s).");
TokenList tokens = new TokenList ();
Valuelist values = parameterValue.values;
for (int 1 = 0; i < values.size(); i++) {

Value value = values.getValue (i)
ObjectToken token = new ObjectToken();
token.value = value;
this.addToken (token) ;

}

this.sendUnofferedTokens () ;

}

// If there are one or more incoming edges, this is an activation of an output activity
parameter node.

// Take the tokens offered on incoming edges and add them to the set of tokens being
offered.

// [Note that an output activity parameter node may fire multiple times, accumulating

Semantics of a Foundational Subset for Executable UML Models, Beta 2 173

tokens offered to it.]

else {
Debug.println("[fire] Output activity parameter node " + this.node.name + "...");
this.addTokens (incomingTokens) ;

8.5.2.2.7 ControlNodeActivation
A control node activation is an activity node activation for a node that is a control node.

Generalizations
e ActivityNodeActivation

Attributes
None

Associations
None

Operations

[1] fire (in incomingTokens : Token [0..*])
// By default, offer all tokens on all outgoing edges.

if (this.node != null) {
Debug.println("[fire] Control node " + this.node.name + "...");

}

this.sendOffers (incomingTokens) ;

8.5.2.2.8 ControlToken
A control token represents the passing of control along a control flow edge.

Generalizations
e Token

Attributes
None

Associations
None

Operations

[1] copy () : Token

// Return a new control token.

return new ControlToken();

174 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[2] equals (in other : Token) : Boolean

// Return true if the other token is a control token, because control tokens are
interchangable.

return other instanceof ControlToken;

[3] getValue () : Value [0..1]

// Control tokens do not have values.

return null;

[4] isControl () : Boolean
// Return true for a control token.

return true;
8.5.2.2.9 DecisionNodeActivation

Generalizations
e ControlNodeActivation

Attributes
None

Associations
e decisionInputExecution : Execution [0..1]

The current execution of the decision input behavior (if any).
Operations

[1] executeDecisionInputBehavior (in inputValue : Value [0..1], in decisionInputValue : Value [0..1]) : Value

// Create the decision input execution from the decision input behavior.

// If the behavior has input parameter (s), set the input parameter (s) of the execution to
the given value(s).

// Execute the decision input execution and then remove it.

// Return the value of the output parameter of the execution.

// If there is no decision input behavior, the decision input value is returned, if one is
given, otherwise the input value is used as the decision wvalue.

Debug.println (" [executeDecisionBehavior] inputValue = " + inputValue);
Behavior decisionInputBehavior = ((DecisionNode) (this.node)) .decisionInput;
Value decisionInputResult = null;
if (decisionInputBehavior == null) {
if (decisionInputValue != null) {
decisionInputResult = decisionInputValue;
} else {
decisionInputResult = inputValue;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 175

} else {

this.decisionInputExecution =
this.getExecutionLocus () .factory.createExecution (decisionInputBehavior,
this.getExecutionContext ()) ;

int 1 = 1;
int 3 = 0;
while ((3J == | (j == 1 & decisionInputValue != null)) & i <=

decisionInputBehavior.ownedParameter.size()) {
Parameter parameter = decisionInputBehavior.ownedParameter.getValue (i-1);
if (parameter.direction.equals (ParameterDirectionKind.in) |
parameter.direction.equals (ParameterDirectionKind.inout)) ({
ParameterValue inputParameterValue = new ParameterValue();
inputParameterValue.parameter = parameter;

jo=3 +L;

if (j == 1 && inputValue != null) {
inputParameterValue.values.addValue (inputValue) ;

} else {

inputParameterValue.values.addValue (decisionInputValue) ;

}

this.decisionInputExecution.setParameterValue (inputParameterValue) ;

this.decisionInputExecution.execute () ;

ParameterValuelist outputParameterValues =
this.decisionInputExecution.getOutputParameterValues () ;
decisionInputExecution.destroy();

decisionInputResult = outputParameterValues.getValue (0) .values.getValue (0);

}

return decisionInputResult;

[2] fire (in incomingTokens : Token [0..*])

// Get the decision values and test them on each guard.
// Forward the offer over the edges for which the test succeeds.

Debug.println("[fire] Decision node " + this.node.name + "...");

//TokenList incomingTokens = this.takeOfferedTokens() ;
TokenList removedControlTokens = this.removeJoinedControlTokens (incomingTokens) ;
Valuelist decisionValues = this.getDecisionValues (incomingTokens) ;

ActivityEdgeInstancelist outgoingEdges = this.outgoingEdges;

for (int i = 0; i < outgoingEdges.size(); i++) {
ActivityEdgeInstance edgelnstance = outgoingEdges.getValue (i) ;
ValueSpecification guard = edgelnstance.edge.guard;

TokenlList offeredTokens = new TokenList();
for (int j = 0; j < incomingTokens.size(); j++) {
Token incomingToken = incomingTokens.getValue (3j);
Value decisionValue = decisionValues.getValue(j);
if (this.test(guard, decisionValue)) {
offeredTokens.addValue (incomingToken) ;

176 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (offeredTokens.size() > 0) {
for (int j = 0; j < removedControlTokens.size(); J++) {
Token removedControlToken = removedControlTokens.getValue (J);
offeredTokens.addValue (removedControlToken) ;

}

edgelInstance.sendOffer (offeredTokens) ;

[3] getDecisionInputFlowInstance () : ActivityEdgelnstance [0..1]

// Get the activity edge instance for the decision input flow, if any.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
ActivityEdgeInstance edgelInstance = null;
if (decisionInputFlow != null) {
int 1 = 1;
while (edgelInstance == null & i <=this.incomingEdges.size()) {
ActivityEdgeInstance incomingEdge = this.incomingEdges.getValue (i-1);
if (incomingEdge.edge == decisionInputFlow) {
edgeInstance = incomingEdge;

return edgelnstance;

[4] getDecisionInputFlowValue () : Value [0..1]

// Take the next token available on the decision input flow, if any, and return its value.

ActivityEdgeInstance decisionInputFlowInstance = this.getDecisionInputFlowInstance () ;
Value value = null;
if (decisionInputFlowInstance != null) {
TokenList tokens = decisionInputFlowInstance.takeOfferedTokens();
if (tokens.size() > 0) {
value = ((ObjectToken) (tokens.getValue(0))) .value;

return value;

[5] getDecisionValues (in incomingTokens : Token [0..*]) : Value [0..*]

// If there is neither a decision input flow nor a decision input behavior, then return
the set of values from the incoming tokens.

// [In this case, the single incoming edge must be an object flow.]

// If there is a decision input flow, but no decision input behavior, then return a list
of the decision input values equal in size to the number of incoming tokens.

// If there is both a decision input flow and a decision input behavior, then execute the
decision input behavior once for each incoming token and return the set of resulting
values.

// If the primary incoming edge is an object flow, then the value on each object token

Semantics of a Foundational Subset for Executable UML Models, Beta 2 177

is passed to the decision input behavior, along with the decision input flow value, if
any.

// If the primary incoming edge is a control flow, then the decision input behavior
only receives the decision input flow, if any.

Value decisionInputValue = this.getDecisionInputFlowValue () ;
Valuelist decisionValues = new ValueList();
for (int 1 = 0; i < incomingTokens.size(); i++) {
Token incomingToken = incomingTokens.getValue (i) ;
Value value = this.executeDecisionInputBehavior (incomingToken.getValue (),

decisionInputValue) ;
decisionValues.addValue (value) ;

}

// Debug.println (" [getDecisionValues] " + decisionValues.size() + " decision value(s):");
for (int i = 0; 1 < decisionValues.size(); i++) {

Value decisionValue = decisionValues.getValue (i) ;

Debug.println (" [getDecisionValues] decisionValues[" + 1 + "] = " + decisionValue);

}

return decisionValues;

[6] hasObjectFlowInput () : Boolean

// Check that the primary incoming edge is an object flow.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
boolean isObjectFlow = false;
int 1 = 1;

while (!isObjectFlow & 1 <= this.incomingEdges.size()) {
ActivityEdge edge = this.incomingEdges.getValue (i-1) .edge;
isObjectFlow = edge != decisionInputFlow & edge instanceof ObjectFlow;
i =1+ 1;

return isObjectFlow;

[7] isReady () : Boolean

// Check that all incoming edges have sources that are offering tokens.
// [This should be at most two incoming edges, if there is a decision input flow.]

int 1 = 1;
boolean ready = true;
while (ready & i <= this.incomingEdges.size()) {

ready = this.incomingEdges.getValue (i-1) .hasOffer();
i =1+ 1;

return ready;

[8] removeJoinedControlTokens (in incomingTokens : Token [0..*]) : Token [0..*]
// If the primary incoming edge is an object flow, then remove any control tokens from the

incoming tokens and return them.
// [Control tokens may effectively be offered on an object flow outgoing from a join node

178 Semantics of a Foundational Subset for Executable UML Models, Beta 2

that has both control and object flows incoming.]
TokenList removedControlTokens = new TokenList();

if (this.hasObjectFlowInput()) {

int 1 = 1;
while (i <= incomingTokens.size()) {
Token token = incomingTokens.getValue (i-1);

if (token.isControl()) {
removedControlTokens.addValue (token) ;
incomingTokens.removeValue (i-1);
i=1-1;

return removedControlTokens;

[9] takeOfferedTokens () : Token [0..*]

// Get tokens from the incoming edge that is not the decision input flow.

ObjectFlow decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
TokenList allTokens = new TokenList();
ActivityEdgeInstancelist incomingEdges = this.incomingEdges;
for (int i = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance edgelnstance = incomingEdges.getValue (i) ;
if (edgelnstance.edge != decisionInputFlow) {
TokenList tokens = edgelnstance.takeOfferedTokens();
for (int j = 0; j < tokens.size(); Jj++) {

allTokens.addValue (tokens.getValue (3));

return allTokens;

[10] terminate ()
// Terminate the decision input execution, if any, and then terminate this activation.

if (this.decisionInputExecution != null) {
this.decisionInputExecution.terminate () ;

super.terminate () ;

[11] test (in guard : ValueSpecification, in value : Value) : Boolean

// Test if the given value matches the guard. If there is no guard, return true.

boolean guardResult = true;

if (guard != null) {
Value guardValue = this.getExecutionLocus () .executor.evaluate (guard) ;
guardResult = guardValue.equals (value);

return guardResult;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 179

8.5.2.2.10 ForkedToken

A forked token is a proxy for a token that has been offered through a fork node. If the token is accepted through the fork
node, then the original token is withdrawn from its holder, but the forked token remains held by the fork node activation
until all outstanding offers on all outgoing edges are accepted.

Generalizations
e Token

Attributes
¢ remainingOffersCount : Integer

The remaining number of outstanding offers for this token on outgoing edges of the fork node.

Associations
e baseToken : Token

Operations

[1] copy () : Token

// Return a copy of the base token.

return this.baseToken.copy();

[2] equals (in otherToken : Token) : Boolean
// Test if this token is equal to another token.

return this == otherToken;

[3] getValue () : Value [0..1]
// Return the value of the base token.

return this.baseToken.getValue () ;

[4] isControl () : Boolean
// Test if the base token is a control token.

return this.baseToken.isControl();

[5] withdraw ()

// If the base token is not withdrawn, then withdraw it.
// Decrement the remaining offers count.
// When the remaining number of offers is zero, then remove this token from its holder.

if (!'this.baseToken.isWithdrawn()) {
this.baseToken.withdraw () ;

}

180 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (this.remainingOffersCount > 0) {
this.remainingOffersCount = this.remainingOffersCount - 1;

}

if (this.remainingOffersCount == 0) {
super.withdraw() ;

8.5.2.2.11 ForkNodeActivation

A fork node activation is a control node activation for a node that is a fork node.

Generalizations
e ControlNodeActivation

Attributes
None

Associations
None

Operations

[1] fire (in incomingTokens : Token [0..*])

// Create forked tokens for all incoming tokens and offer them on all outgoing edges.

if (this.node == null) {
Debug.println("[fire] Anonymous fork node.");
} else {
Debug.println("[fire] Fork node " + this.node.name + "...");

}

ActivityEdgeInstancelist outgoingEdges = this.outgoingEdges;
int outgoingEdgeCount = outgoingEdges.size();

TokenList forkedTokens = new TokenList () ;

//TokenList tokens = this.takeOfferedTokens () ;

for (int i = 0; i < incomingTokens.size(); i++) {
Token token = incomingTokens.getValue (i) ;
ForkedToken forkedToken = new ForkedToken () ;
forkedToken.baseToken = token;
forkedToken.remainingOffersCount = outgoingEdgeCount;
forkedTokens.addValue (forkedToken) ;

}

this.addTokens (forkedTokens) ;

Issue 13307 -- Sending offers from ForkNodeActivation::fire

8.5.2.212 InitialINodeActivation

An initial node activation is a control node activation for a node that is an initial node.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 181

Generalizations
e ControlNodeActivation

Attributes
None

Associations
None

Operations

[1] fire (in incomingTokens : Token [0..*])
// Create a single token and send offers for it.
TokenList tokens = new TokenList () ;

tokens.addValue (new ControlToken());
this.addTokens (tokens) ;

‘ Issue 13309 -- InitialNodeActivation::fire should use sendOffers

(tokens) ;

8.5.2.2.13 JoinNodeActivation
A join node activation is a control node activation for a node that is a join node.

Generalizations
e ControlNodeActivation

Attributes
None

Associations
None

Operations

[1] isReady () : Boolean
// Check that all incoming edges have sources that are offering tokens.
boolean ready = true;
int i = 1;
while (ready & i <=this.incomingEdges.size()) {
ready = this.incomingEdges.getValue (i-1) .hasOffer();
i =1+ 1;

}

return ready;

8.5.2.2.14 MergeNodeActivation
A merge node activation is a control node activation for a node that is a merge node.

Generalizations

182 Semantics of a Foundational Subset for Executable UML Models, Beta 2

e ControlNodeActivation

Attributes
None

Associations
None

Operations
None

8.5.2.2.15 ObjectNodeActivation
An object node activation is an activity node activation for a node that is an object node.

Generalizations
e ActivityNodeActivation

Attributes
e offeredTokenCount : Integer

The number of held tokens that have already been offered.

Associations
e unofferedTokens : ObjectToken [0..*]

Tokens held by this node activation that have not yet been offered.
Operations

[1] addToken (in token : Token)

// Transfer the given token to be held by this node only if it is an object token.
// If it is a control token, consume it without holding it.

if (token.isControl()) {
token.withdraw () ;
} else {

super.addToken (token) ;
}

[2] clearTokens ()

// Remove all held tokens.
super.clearTokens () ;
this.offeredTokenCount = 0;

[3] countUnofferedTokens () : Integer

// Return the number of unoffered tokens that are to be offered next.
// (By default, this is all unoffered tokens.)

if (this.heldTokens.size () == 0) {
this.offeredTokenCount = 0;
}

return this.heldTokens.size () - this.offeredTokenCount;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 183

[4] getUnofferedTokens () : Token [0..*]

// Get the next set of unoffered tokens to be offered and return it.

// [Note: This effectively treats all object flows as if they have weight=*, rather than
the weight=1 default in the current superstructure semantics.]

TokenList tokens = new TokenList();

int 1 = 1;

while (i <= this.countUnofferedTokens ()) {

tokens.addValue (this.heldTokens.getValue (this.offeredTokenCount + i - 1));
i=1+ 1;

return tokens;

[5] removeToken (in token : Token) : Integer
// Remove the given token, if it is held by this node activation.
int i = super.removeToken (token);

if (1 > 0 & 1 <= this.offeredTokenCount) {
this.offeredTokenCount = this.offeredTokenCount - 1;

return 1i;

‘ Issue 13312 -- ObjectNodeActivation::offeredTokenCount is not initialized

[6] run ()

// Initialize the offered token count to zero.

U,

7] sendUnofferedTokens ()

// Send offers over all outgoing edges, if there are any tokens to be offered.

TokenList tokens = this.getUnofferedTokens();
this.offeredTokenCount = this.offeredTokenCount + tokens.size():;

this.sendOffers (tokens) ;

‘ Issue 13310 -- An action can consume more tokens from a pin than the allowed multiplicity upper bound

FA18] takeUnofferedTokens () : Token [0..*]

// Take the next set of unoffered tokens to be offered from this node activation and
return them.
okenList tokens = this. fferedTokens () ;
f (int 1 = 0; i1 < tokens.size(); i++) {
Token token = tokens.getValue (i)

token.withdraw

O

184 Semantics of a Foundational Subset for Executable UML Models, Beta 2

terminate ()
// Remove any offered tokens and terminate.
this.clearTokens () ;

super.terminate () ;

8.5.2.2.16 ObjectToken
An object token represents the passing of data along an object flow edge.

Generalizations
e Token

Attributes
None

Associations
e value : Value [0..1]

The value carried by this token. A token may have no value, in which case it is a "null token".
Operations

[1] copy () : Token

// Return a new object token with the same value as this token.
// [Note: the holder of the copy is not set.]

ObjectToken copy = new ObjectToken () ;
copy.value = this.value;

return copy;

[2] equals (in other : Token) : Boolean
// Test if this object token is the same as the other token.

return this == other;

[3] getValue () : Value [0..1]
// Return the value of this object token.

return this.value;

[4] isControl () : Boolean

// Return false for an object token.

return false;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 185

8.6.2.217 Offer

Generalizations
None

Attributes
None

Associations
e offeredTokens : Token [0..*]

Operations

[1] countOfferedTokens () : Integer
// Return the number of tokens being offered.

return this.offeredTokens.size();

[2] getOfferedTokens () : Token [0..*]
// Get the offered tokens.

TokenList tokens = new TokenList () ;

TokenList offeredTokens = this.offeredTokens;

for (int 1 = 0; 1 < this.offeredTokens.size() ; 1i++) {
Token offeredToken = offeredTokens.getValue (i) ;
// Debug.println (" [getOfferedTokens] token value = " + offeredToken.getValue());
tokens.addValue (offeredToken) ;

}

return tokens;

[3] removeWithdrawnTokens ()
// Remove any tokens that have already been consumed.
TokenList offeredTokens = this.offeredTokens;
int 1 = 1;
while (i <= this.offeredTokens.size()) {
if (this.offeredTokens.getValue (i-1) .isWithdrawn()) {

this.offeredTokens.remove (i-1);
i=1i-1;

8.5.2.2.18 Token
A token is an individual element of data or control that may flow across an activity edge.

Generalizations
None

186 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Attributes
None

Associations
® holder : ActivityNodeActivation [0..1]

Operations

[1] copy () : Token

// Make a copy of this token.

[2] equals (in other : Token) : Boolean

Test if this token is equal to another token.

[3] getValue () : Value [0..1]

Get the value associated with this token (if any).

[4] isControl () : Boolean

Test whether this is a control token.

[5] isWithdrawn () : Boolean
// Test if this token has been withdrawn.

return this.holder == null;

[6] transfer (in holder : ActivityNodeActivation) : Token

// if this token does not have any holder, make the given holder its holder.
// Otherwise, remove this token from its holder and return a copy of it transfered to a
new holder.

Token token = this;

if (this.holder != null) {
this.withdraw () ;
token = this.copy();

}

token.holder = holder;
return token;

[7] withdraw ()
// Remove this token from its holder, withdrawing any offers for it.
if ('this.isWithdrawn()) {
// Debug.println (" [withdraw] Taking token with value = " + this.getValue());

this.holder.removeToken (this);
this.holder = null;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 187

8.5.3 Complete Structured Activities

8.5.3.1 Overview

The fUML subset includes base structured activity nodes and the specialized conditional and loop nodes (see Subclause
7.4.3). However, since fUML does not support variables and, therefore, requires the use of pins and object flows, only the
full Complete Structured Activities abstract syntax is supported as a conformance level in f{UML (see Clause 2). The
basic Structured Activities syntax is not supported on its own.

Structured Activity Node Activation

In the Complete Structure Activities abstract syntax, structure activity nodes actually become kinds of actions. Therefore,
as shown in Figure 71, their semantics are specified using action activations (see Subclause 8.6.2.1 for a general
discussion of action activation semantics). However, unlike other kinds of nodes, structured activity nodes have nested
activity nodes within them. The activation of the nested activity nodes is handled by an activity node activation group
associated with the structured activity node activation (see Subclause 8.5.2 for the specification of

ActivityNodeA ctivationGroup).

Note that all structured activity node activations have exactly one activation group which covers the activation of all
nested activity nodes. However, how nested activity nodes are actually activated varies depending on the kind of
structured activity node.

For the base structured activity node, which simply groups its nested activity nodes, execution proceeds much as in the
case of an overall activity. All nested activity nodes are activated, and subsequent behavior is determined by the flow of
offers and tokens between activations.

For a conditional node, however, the test part is activated first. Depending on the result of the test, additional nodes are
activated depending on which conditional clause is selected.

For a loop node, the loop test and body parts are repeatedly activated (with the test coming before or after the body,
depending on the isTestedFirst attribute of the loop node). The same activity node activation group is used for every
iteration of the loop, but the group is cleared of node activations between iterations.

Isolation

If a structured activity node has the property mustlsolate = true, then its activity node activations run in isolation from
activity node activation external to it. The UML Superstructure Specification (Subclause 12.3.48) defines this behavior as
follows:

If the mustlsolate flag is true for an activity node, then any access to an object by an action within the node must not
conflict with access to the object by an action outside the node. A conflict is defined as an attempt to write to the
object by one or both of the actions. If such a conflict potentially exists, then no such access by an action outside the
node may be interleaved with the execution of the node.

For the purposes of f{UML, however, it is important to define this important optional behavior somewhat more
completely.

The following definitions apply for the purposes of this discussion.
® An execution trace provides timing for all the events in the execution of a model.

® The duration of a firing of an action activation is the time interval from the event of the action activation firing to
the event of the action activation offering tokens on outgoing control flows (even if there are no outgoing control
flows, the duration ends at that point in time at which the firing of the action activation is “complete” and would
offer control tokens if there were flows.) A legal execution trace is one that is permitted by the behavioral
semantics specified for executing the model. Note that there can, and generally will, be multiple possible legal
execution traces for any given model.

188 Semantics of a Foundational Subset for Executable UML Models, Beta 2

* Two action activation firings overlap if their durations are not disjoint.

® An action activation A is serializable with respect to another action activation B if, for any legal execution trace
in which one or more of the firings of A and B overlap, there is another legal execution trace in which none of
their firings overlap but for which the execution behavior of the firings of B are identical to that of the first trace.
(Note that the behavior of A does not have to be preserved in the second trace. This means that A being
serializable with respect to B does not necessarily imply that B is serializable with respect to A.)

® The scope of control of an activity execution or a structured activity node activation firing is defined to be the set
of activity node activations covered by the following:

1. For a structured activity node activation, that activation itself.

2. All activations of nested activity nodes with the activity or structured activity node that are run as a result
of that specific activity execution or structured activity node activation firing. (In the execution model,
this is called the “activity node activation group”.)

3. The scope of control of the firing of any nested structured activity node activations.

4. The scope of control of any activity executions resulting from the firing of any nested call (behavior or
operation) actions (which, in f{UML, are always synchronous).

The rule for isolation can now be stated fairly simply: Let S be a structured activity node with mustlsolate=true. Then
any action activation not in the scope of control of S must be serializable with respect to any action activation that is
within the scope of control of S.

Basically, under this rule, any action behavior not under the control of S, even if it physically happens in parallel with an
execution of S, has the same effect on S as if it occurred entirely before or entirely after the execution of S. In particular,
any actions that write to objects read within S must either have their effect visible throughout the execution of S (“as if it
occurred entirely before the execution of S”) or their effect must not be visible at all within the execution of S (“as if it
occurred entirely after the execution of S”). (This is similar to the way that “isolation” is defined for database
transactional semantics.)

Note that the asymmetric definition of “serializable” above means that, in general, an action activation not under the
control of S can see into intermediate results produced by S (in database terminology, this is known as a “dirty read”) ,
unless it, too, is part of some other structured activity node with mustlsolate=true. For two structured activity nodes to
run in complete isolation with respect to each other, both must specify mustlsolate=true.

Note also that the above rule does not allow certain deadlock conditions that can occur due to specific implementation
techniques, such as locking. For example, there is the archetypical case in which two concurrent threads are each holding
locks which the other needs, and so neither can proceed. However, in most such cases, there is a legal execution trace in
which these threads could have successfully executed (e.g., if they were run sequentially instead of concurrently). The
intent is that the execution trace leading to deadlock would not be legal at all, since it is only the locking implementation
that leads to the deadlock, not anything specified by the behavioral semantics. In particular, this means that, if an
execution tool uses locking to implement isolation, then it also must provide some means to detect implementation-
specific deadlock conditions and recover from them (again, this is typically what is done in database transaction
implementations).

On the other hand, there are cases in which deadlock cannot be avoided. For example, suppose a structured activity node
with mustlsolate = true contains just two read actions. The first read action has an outgoing control flow that crosses out
of the structured activity node to a write action on the outside that writes to the object read by the read actions. If the
write action then has an outgoing control flow that crosses back into the structured activity node to the second read
action, it is impossible to satisfy both the control flow constraints and the isolation rule. Such a model has o legal
control flows. Per the UML Superstructure Specification, it is actually ill-formed and has no execution semantics.

NOTE: The above semantics for mustlsolate = true are intended to allow the simple implementation of approach of
serializing the execution of all structured activity nodes with mustIsolate = true—that is, running them sequentially, one
at a time, with nothing else running at the same time. One subtlety here is the case when an execution of one or more of
the isolated structured activity nodes does not terminate, due to, say, an infinite loop. In this case, there may not be any
finite execution trace in which all isolated structured activity nodes can complete sequentially. However, since there are

Semantics of a Foundational Subset for Executable UML Models, Beta 2 189

no particular requirements in the f{UML semantics for liveliness or fairness in concurrent execution, it is generally
permissible in any case for an implementation to allow a concurrent thread that does not terminate to continue to use all
resources and not allow any other threads to run. Therefore, the rule above for isolation is not meant to disallow a fully
serialized implementation.

The above rule for isolation is part of the base semantics of the modeling subset used to write the execution model itself
(see Subclause 10.4.5). Therefore, structured activity nodes with mustlsolate = true may be used within the execution
model. For fUML user models being executed by the execution model, the effect of mustlsolate = true is achieved by
activating the body of the f{UML structured activity node within a structured activity node in the execution mode with
mustlsolate = true. This results in the body of the structured activity node being run in isolation from other threads
running within the executing fUML activity, resulting in the base isolation behavior being elevated to f{UML.

In order to accommodate this optional isolation behavior, the class StructuredActivityNodeActivation provides a method
for the operation doAction in terms of an operation called doStructuredActivity. The operation StructuredActivity
Activcation::doAction checks the mustlsolate flag for the structured activity node being executed. If it is true, then
doAction calls doStructuredActivity within a structuredActivityNode with mustloslate = true. If mustlsolate = false, then
doAction still calls doStructuredActivity, but not within an isolated structured activity node.

The classes ConditionalNodeActivation and LoopNodeActivation specialize StructuredActivityNodeAcivation (see
Figiure 71)). They both override the operation doStructuredActivity to specify the behavior specific to conditional nodes
and loop nodes. However, they do not override the doAction operation, and, therefore, they inherit the basic isolation
behavior from StructuredActivityNode behavior.

190 Semantics of a Foundational Subset for Executable UML Models, Beta 2

4 node + node
4‘ fUML ::Syntax::Activities::IntermediateActivities::ActivityNode F\%' fUML ::Semantics::Activities::.IntermediateActivities::ActivityNodeActivation
" 0.1 " ~

+ nodeActivations |

fUML::Syntax::A rtiw'tjes::Emm)leteStmctilredArtjwties::Executab.‘a'\lode

+goup |1

| fUML ::Semantics::Activities::IntermediateActivif :ActivityNodeActivationGroup

fUML ::Syntax::Actions::BasicActions::Action ‘ 171 +group 1 | + activationGroup
A
* | + edgelnstances
fUML::Semantics::Activities:IntermediateActivities::ActivityEdgeInstance | | FUML ::Semantics::Actions::BasicActions::ActionActivation
-
0.1 | +edge 0.1 | + contaningNodeActivation
fUML ::Syntax::Activities::IntermediateActivities::ActivityEdge
- StructuredActivityNodeActivation
+ edge
0..1 | + inStructuredode + doAction ()
0..1| +instructurediode + doStructuredactivity ()
+ terminate ()
+ getNodeActivation { node @ Activityhode) @ ActivityNodeActivation [0..1]
| fUML::Syntax::Activities::CompleteStructuredActivities::StructuredActivityNode + makeActivityNodeList { nodes : ExecutableNode [*]) @ ActivityNode [*]
+ getPinValues [pin : CutputPin) @ Value [*]
? + putPinValues { pin : OutputPin, values : Value [*])
+ createModeActivations ()
| + createEdgelnstances ()
‘ fUML::Syntax::Activities::CompleteStructuredActivities::LoopNode ?

| fUML ::Syntax::Activities::CompleteStructuredActivities::ConditionalNode

1 + conditionalNode

ConditionalNodeActivation LoopNodeActivation
1.* | + clause
+ selectedClauses + doStructuredActivity {) + doStructuredActivity [)
fUML ::Syntax::Activities::CompleteStructuredActivities::Clause | + getClauseActivation (clause : Clause) : ClauseActivation +1unTest (] : Boolean
1 |+ runTest (clause ; Clause) + runBady ()
+ selectBody (clause ; Clause) + runLoopVariables ()
1| + clause + createNodeActivations ()
1 + conditionalModeActivation + makeLoopyariableList {) @ ActivityNode [*]
0.1

* + clauseActivations

ClauseActivation + bodyOutputLists

Values
+ receiveControl {)
* + isReady () : Boolean

=

+runTest () *

+ selectBody ()

+ getDecision {) : BooleanValue [0..1] + values

+ getPredecessors () @ ClauseActivation [*] *

+ getSuccessars () : ClauseActivation [*] fUML ::Semantics::Classes::Kernel::Value

Figure 71 - Structured Node Activations

8.5.3.2 Class Descriptions
8.5.3.2.1 ClauseActivation

A clause activation defines the behavior of a clause within the context of a specific activation of the conditional node
containing the clause.

Generalizations
None

Attributes
None

Associations
e clause : Clause

e conditionalNodeActivation : ConditionalNodeActivation

Semantics of a Foundational Subset for Executable UML Models, Beta 2 191

The activation of the conditional node that contains the clause for this clause activation.
Operations

[1] getDecision () : BooleanValue [0..1]
// Get the value (if any) on the decider pin of the clause for this clause activation.

ValuelList deciderValues =
this.conditionalNodeActivation.getPinValues (this.clause.decider);

BooleanValue deciderValue = null;
if (deciderValues.size () > 0) {
deciderValue = (BooleanValue) (deciderValues.getValue(0));

return deciderValue;

[2] getPredecessors () : ClauseActivation [0..*]

// Return the clause activations for the predecessors of the clause for this clause
activation.

ClauseActivationList predecessors = new ClauseActivationList();

ClauselList predecessorClauses = this.clause.predecessorClause;
for (int i = 0; 1 < predecessorClauses.size(); 1i++) {

Clause predecessorClause = predecessorClauses.getValue (i) ;

predecessors.addValue (this.conditionalNodeActivation.getClauseActivation (predecessorCl
ause)) ;

}

return predecessors;

[3] getSuccessors () : ClauseActivation [0..¥]

// Return the clause activations for the successors of the clause for this clause
activation.

ClauseActivationList successors = new ClauseActivationList ()
ClauselList successorClauses = this.clause.successorClause;
for (int i = 0; i < successorClauses.size(); i++) {
Clause successorClause = successorClauses.getValue (i) ;
successors.addValue (this.conditionalNodeActivation.getClauseActivation (successorClause
))
}

return successors;

[4] isReady () : Boolean

// Test 1f all predecessors to this clause activation have failed.

ClauseActivationList predecessors = this.getPredecessors();
boolean decision = true;
int 1 = 1;

192 Semantics of a Foundational Subset for Executable UML Models, Beta 2

while (decision & 1 <= predecessors.size()) {
ClauseActivation predecessor = predecessors.getValue(i-1);
BooleanValue decisionValue = predecessor.getDecision();

// Note that the decision will be null if the predecessor clause has not run yet.

if (decisionValue == null) {
decision = false;
} else {

decision = decisionValue.value;

return decision;

[5] receiveControl ()

// If all predecessors to the clause for this activation have run their tests and failed,
then run the test for this clause.

// If the test succeeds, then terminate any other clauses that may be running and run the
body of this clause.

// If the test fails, then pass control to successor clauses.

if (this.isReady()) {
this.runTest () ;

BooleanValue decision = this.getDecision();

// Note that the decision may be null if the test was terminated before completion.

if (decision != null) {
if (decision.value == true) {
this.selectBody () ;
} else {
ClauseActivationList successors = this.getSuccessors();

// *** Give control to all successors concurrently. ***

for (Iterator i1 = successors.iterator(); i.hasNext();) {
ClauseActivation successor = (ClauseActivation)i.next();
successor.receiveControl () ;

[6] runTest ()

// Run the test of the clause for this clause activation.

this.conditionalNodeActivation.runTest (this.clause);

[7] selectBody ()

// Select the body of the clause for this clause activation.

this.conditionalNodeActivation.selectBody (this.clause);

Semantics of a Foundational Subset for Executable UML Models, Beta 2 193

8.56.3.2.2 ConditionalNodeActivation
A conditional node activation is a structured activity node activation for a node that is a conditional node.

Generalizations
e StructuredActivityNodeActivation

Attributes
None

Associations
e clauseActivations : ClauseActivation [0..*]

The activations for each clause in the conditional node for this node activation.
e selectedClauses : Clause [0..%]

The set of clauses which meet the conditions to have their bodies activated.
Operations

[1] doStructuredActivity ()

// Activate all clauses in the conditional node and pass control to those that are ready
(i.e., have no predecessors).

// If one or more clauses have succeeded in being selected, choose one non-
deterministically and run its body, then copy the outputs of that clause to the output
pins of the node.

ConditionalNode node = (ConditionalNode) (this.node);
this.clauseActivations.clear () ;

Clauselist clauses = node.clause;

for (int 1 = 0; 1 <clauses.size(); i++)
Clause clause = clauses.getValue (i),
ClauseActivation clauseActivation =
clauseActivation.clause = clause;
this.clauseActivations.addValue (clauseActivation);

{

new ClauseActivation();

this.selectedClauses.clear () ;

ClauseActivationList readyClauseActivations = new ClauseActivationList();
for (int 1 = 0; 1 < this.clauseActivations.size(); 1i++) {
ClauseActivation clauseActivation = this.clauseActivations.getValue (i) ;
if (clauseActivation.isReady()) {
readyClauseActivations.addValue (clauseActivation) ;

}

// *** Give control to all ready clauses concurrently. ***

for (Iterator i = readyClauseActivations.iterator(); i.hasNext() ;) {
ClauseActivation clauseActivation = (ClauseActivation)i.next();
clauseActivation.receiveControl () ;

this.activationGroup.terminateAll () ;

if (this.selectedClauses.size() > 0 & this.isRunning()) {
// *** If multiple clauses are selected, choose one non-deterministically. ***
int 1 =
((ChoiceStrategy) this.getExecutionLocus () .factory.getStrategy ("choice")) .choose (this.selec

tedClauses.size());

194 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Clause selectedClause = this.selectedClauses.getValue (i-1);
this.activationGroup.runNodes (this.makeActivityNodelList (selectedClause.body));
OutputPinList resultPins = node.result;
OutputPinlist bodyOutputPins = selectedClause.bodyOutput;
for (int k = 0; k < resultPins.size(); k++) {

OutputPin resultPin = resultPins.getValue (k) ;

OutputPin bodyOutputPin = bodyOutputPins.getValue (k) ;
this.putTokens (resultPin, this.getPinValues (bodyOutputPin))

[2] getClauseActivation (in clause : Clause) : ClauseActivation
// Get the clause activation corresponding to the given clause.

ClauseActivation selectedClauseActivation = null;

int 1 = 1;
while ((selectedClauseActivation == null) & i1 <= this.clauseActivations.size()) {
ClauseActivation clauseActivation = this.clauseActivations.getValue(i-1);
if (clauseActivation.clause == clause) {
selectedClauseActivation = clauseActivation;
}
i=1+ 1;

return selectedClauseActivation;

[3] runTest (in clause : Clause)
// Run the test for the given clause.

if (this.isRunning()) {
this.activationGroup.runNodes (this.makeActivityNodelist (clause.test));

[4] selectBody (in clause : Clause)
// Add the clause to the list of selected clauses.

this.selectedClauses.addValue (clause);

8.5.3.2.3 LoopNodeActivation
A loop node activation is a structured activity node activation for a node that is a loop node.

Generalizations
e StructuredActivityNodeActivation

Attributes
None

Issue 13464 -- LoopNodeActivation::doStructuredActivity uses a Java array

Semantics of a Foundational Subset for Executable UML Models, Beta 2 195

Associations
e bodyOutputLists : Values [0..*]

None
Operations

[1] createNodeActivations ()

// In addition to creating activations for contained nodes, create activations for any
loop variables.

super.createNodeActivations () ;
this.activationGroup.createNodeActivations (this.makeLoopVariableList ());

[2] doStructuredActivity ()

// Set the loop variables to the values of the loop variable input pins.

// If isTestedFirst is true, then repeatedly run the test part and the body part of the
loop, copying values from the body outputs to the loop variables.

// If isTestedFirst is false, then repeatedly run the body part and the test part of the
loop, copying values from the body outputs to the loop variables.

// When the test fails, copy the values of the loop variables to the loop outputs.

LoopNode loopNode = (LoopNode) (this.node);
this.runLoopVariables () ;

InputPinlList loopVariableInputs = loopNode.loopVariableInput;
OutputPinlList loopVariables = loopNode.loopVariable;
for (int i = 0; 1 < loopVariables.size(); i++) {
OutputPin loopVariable = loopVariables.getValue (i)
InputPin loopVariableInput = loopVariablelInputs.getValue (i) ;
this.putPinValues (loopVariable, this.takeTokens (loopVariablelnput));

1
boolean continuing = true;
do {
if (loopNode.isTestedFirst) {
continuing = this.runTest ();
if (continuing) {
this.runBodv () ;
1
1

this.runBodv () ;
continuing = this.runTest () ;

—

if (continuing) f{

Issue 13464 -- LoopNodeActivation::doStructuredActivity uses a Java array

this.activationGroup.terminateAll () ;

this.bodyOutputlLists.clear();

QutputPinlist bodyOutputs = loopNode.bodyOutput;
for (int i = 0; i < bodyOutputs.size(); i++) {

196 Semantics of a Foundational Subset for Executable UML Models, Beta 2

OutputPin bodyOutput = bodyOutputs.getValue (i) ;

Values bodyOutputlList = new Values();
bodyOutputlist.values = this.getPinValues (bodyOutput) ;
this.bodyOutputlists.addValue (bodyOutputList) ;

- 1

this.runloopVariables () ;

for (int i = 0; i < loopVariables.size(); i++) {
QutputPin loopVariable = loopVariables.getValue (i) ;
Values bodyOutputlist = this.bodyOutputlists.getValue (i)

: - : emo (1 1 P I 5 FEERY
ValuelList values = bod OutDUtLlSt.VaerS\jchuJ\cu {rooPpvarraorernpac) 7
1 k| i : .
vooTreair contInTurng = Ccroey
= k| Nl : FEBREE ! PR
IT (ToopNoOTOe T ISt Cear TSt 1
L : PR m SRR
cofrc It ng=tarS-rafrestt)7
= i : N
IT (cConTITorTg 1
P e
TS~ ronooay {7
P e
TS~ ronooay {7
i : L] m FEVAY
conTINuInTg = ChorsS. rairs T 7
s e P : N
(ot IaaTrag
L s L o : + 134
thrrS—actrvacronorotp-cermInatcterT {7
7o Toee v = 7o k| T4 Nl el = . : (1
FroeTTIStT T poayotuTpaTvarae =—Trew FTrae oISt T rooPNoOae T ooayouTPt-STZze)17
= LD T o b = . bl el LI . &
TPt oISt OoayouTpttT =—TOo0PNOCeET OO TPty
= f e o n : : | & . : - ‘
TOr—({Irat T = U7 T ToayouTPutTtSTSTzZze ()7 T 1
= FEE o] el = . LI . = 7o s
TTPO Tt it DoayoutPoT =900 gtptutSgetvarte)~
: | & 7o] rs A PR k| : | & FEEN
ToayouTPUTvaTt [T = Cthors>getrinvaroestooayouaTpat) s
P T 1 s o AN
TS~ o ooopvaranresS<)
£ f e o o : bl 1 s o : L ‘
TOr—(Irht =07 T TroopvarrapresSTSTIZze ()7 T
& PR k| 7 s ol k| T 7o] :
CoTPpUtr I roopvariIapre — IToopvarraor TgeTvarae Iy
7o T bl LI . = 1 rs1.
e TSt aTroe =00 gtpttvarteSTI T/

this.putPinValues (loopVariable, values);

} while (continuing);

OutputPinList resultPins = loopNode.result;

for (int i = 0; i < loopVariables.size(); i++) {
OutputPin loopVariable = loopVariables.getValue (i) ;
OutputPin resultPin = resultPins.getValue (i) ;
this.putTokens (resultPin, this.getPinValues (loopVariable));

[3] makeLoopVariableList () : ActivityNode [0..*]

// Return an activity node list containing the loop variable pins for the loop node of
this activation.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 197

LoopNode loopNode = (LoopNode) (this.node);
ActivityNodeList nodes = new ActivityNodeList () ;

OutputPinlist loopVariables = loopNode.loopVariable;
for (int i = 0; i < loopVariables.size(); i++) {
OutputPin loopVariable = loopVariables.getValue (i) ;

nodes.addValue (loopVariable) ;
}

return nodes;

[4] runBody ()

// Run the body part of the loop node for this node activation.

this.activationGroup.runNodes (this.makeActivityNodeList (((LoopNode)
(this.node)) .bodyPart)) ;

[5] runLoopVariables ()

// Run the loop variable pins of the loop node for this node activation.

this.activationGroup.runNodes (this.makeLoopVariableList());

[6] runTest () : Boolean

// Run the test part of the loop node for this node activation.
// Return the value on the decider pin.

LoopNode loopNode = (LoopNode) (this.node);
this.activationGroup.runNodes (this.makeActivityNodelList (loopNode.test));

return ((BooleanValue) (this.getPinValues (loopNode.decider) .getValue(0))) .value;

8.5.3.24 StructuredActivityNodeActivation
A structured activity node activation is an action activation for an action that is a structured activity node.

Generalizations
e ActionActivation

Attributes
None

Associations
* activationGroup : ActivityNodeActivationGroup

The group of activations of the activity nodes contained in the structured activity node.
Operations

[1] createEdgelnstances ()

198 Semantics of a Foundational Subset for Executable UML Models, Beta 2

// Create instances for all edges owned by this node.

this.activationGroup.createEdgeInstances (((StructuredActivityNode) (this.node)) .edge);

[2] createNodeActivations ()

// Create an activation group and create node activations for all the nodes within the
structured activity node.

this.activationGroup = new ActivityNodeActivationGroup () ;
this.activationGroup.containingNodeActivation = this;
this.activationGroup.createNodeActivations (((StructuredActivityNode) (this.node)) .node) ;

[3] doAction ()

// If the structured activity node has mustIsolate=true, then carry out its behavior with
isolation.
// Otherwise just activate it normally.

if (((StructuredActivityNode) (this.node)) .mustIsolate) {
_beginlIsolation();
this.doStructuredActivity() ;
_endIsolation();

} else {
this.doStructuredActivity() ;

[4] doStructuredActivity ()
// Run all activations of contained nodes. When this is complete, return.
// (This is the default behavior for a structured activity node used simply as a group. It

is overridden for the execution of conditional and loop nodes.)

this.activationGroup.run(this.activationGroup.nodeActivations);

[5] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// If this structured activity node activation is not for the given node, then check if
there is an activation for the node in the activation group.

ActivityNodeActivation thisActivation = super.getNodeActivation (node) ;

ActivityNodeActivation activation;

if (thisActivation != null) {
activation = thisActivation;
} else {
activation = this.activationGroup.getNodeActivation (node) ;

}

return activation;
[6] getPinValues (in pin : OutputPin) : Value [0..*]

// Return the values of the tokens on the pin activation corresponding to the given pin in
the internal activation group for this node activation.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 199

PinActivation pinActivation = (PinActivation)
(this.activationGroup.getNodeActivation (pin));
TokenlList tokens = pinActivation.getTokens();

Valuelist values = new Valuelist();

for (int 1 = 0; 1 < tokens.size(); i++) {
Token token = tokens.getValue(i);
Value value = ((ObjectToken)token) .value;
if (value != null) {

values.addValue (value) ;

return values;

[7] makeActivityNodeList (in nodes : ExecutableNode [0..*]) : ActivityNode [0..*]
// Return an activity node list containing the given list of executable nodes.
ActivityNodeList activityNodes = new ActivityNodeList () ;
for (int 1 = 0; 1 < nodes.size(); 1i++) {
ActivityNode node = nodes.getValue (i) ;
activityNodes.addValue ((ActivityNode)node) ;
}

return activityNodes;

[8] putPinValues (in pin : OutputPin, in values : Value [0..*])

// Place tokens for the given values on the pin activation corresponding to the given
output pin on the internal activation group for this node activation.

PinActivation pinActivation = (PinActivation)
(this.activationGroup.getNodeActivation (pin));

for (int 1 = 0; i < values.size(); i++) {
Value value = values.getValue (1i);
ObjectToken token = new ObjectToken();
token.value = value;
pinActivation.addToken (token) ;

[9] terminate ()

// Terminate the execution of all contained node activations (which completes the
performance of the structured activity node activation).

this.activationGroup.terminateAll () ;
super.terminate () ;

‘Issue13464--LoopNodeAcﬁvaﬁon:doShucnnedAcﬁvnyusesaJavaan?y

| 85.3.25 \Values

‘ Generalizations

200 Semantics of a Foundational Subset for Executable UML Models, Beta 2

| 8.5.4 Extra Structured Activities
8.5.4.1 Overview

Collections

The fUML subset includes only expansion regions from the Extra Structure Activities abstract syntax package (see
Subclause 7.4.4).

The UML 2 Superstructure Specification (Subclause 12.3.27) defines the semantics of expansion regions in which “each
input is a collection of values.” However, neither the f{UML subset nor the Foundation Model Library provide a standard
set of collection types. Instead, fUML relies on the use of properties with multiplicity upper bounds greater than zero to
provide the ability to model collections.

Therefore, rather than an expansion node being expected to receive a single token with a collection value, in f{UML the
“collection” is made up of the values on a set of tokens accepted by the expansion node. An expansion region fires when
its input expansion node accepts an offer for such a collection of tokens. If the region has more than one input expansion
region, then all must accept the same number of tokens for the region to fire.

Similarly, the output expansion nodes of the region (if any) collect tokens generated during the iterations of the body of
the region. When the expansion region completes, the tokens on its output expansion nodes are offered downstream in
the normal fashion.

Expansion Region Activation

An expansion region is a kind of structured activity node and, therefore, a kind of action. However, because the
semantics of expansion regions are rather different than those of other structured activity nodes,
ExpansionRegionActivation does not specialize StructuredActivityNodeActivation but, rather, directly specializes
ActionActivation (see Figure 72). There is also an ExpansionNodeActivation class to capture the specialized semantics
of expansion nodes.

Unlike other structured activity nodes (as described in Subclause 8.5.3), an expansion region activation may have
multiple activity node activation groups. This is to allow for the possible parallel activation of the body of the expansion
region, if so specified for the expansion region. In addition, the activity node activation groups for an expansion region
activation are all instances of the specialized ExpansionActivationGroup. This specialization handles the semantic
relationship between the pins and expansion nodes of the expansion region and the nested activity nodes in the body of
the expansion region.

Note, in particular, that an expansion activation group defines output pin activations corresponding to the input pins and
expansion nodes of the expansion region. This is to allow these output pin activations to be connected to input pin
activations within the expansion activation group. Tokens are placed on the output pin activations for input values to be
sent into the group and they then flow to the appropriate input pins within the group via the normal token/offer semantics.

An expansion activation group also defines output pin activations on which the outputs of the group are placed,
corresponding to the output expansion nodes of the expansion region. (An expansion region in fUML is not allowed to
have output pins—see Subclause 7.4.4.)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 201

Since an expansion region is syntactically a kind of structured activity node, it includes the option of running its body in
isolation (i.e., with mustlsolate = true). However, since ExpansionRegionActivation does not specialize

Structured ActivityNodeActivation, it does not automatically inherit the behavior defined in

Structured ActivityNodeActivation for isolation (see Subclause 8.5.2.1). Nevertheless, the class
ExpansionRegionActivation uses a similar pattern to StructuredActivityActiation to handle isolation. That is,
ExpansionRegionActivation::doAction checks whether mustlIsolate = true for the associated expansion region and, if so,
it calls ExpansionRegionActivation::doStructuredActivity within a structured activity node with mustlsolate = true.
Otherwise it calls doStructuredActivity with no isolation.

+ node
‘ fUML ::Semantics::Activities::IntermediateActivities::ActivityNodeActivation I%} fUML ::Syntax::Activities::IntermediateActivities::ActivityNode |
- 0.1
| fUML ::Semantics::Activities::IntermediateActivities::ObjectNodeActivation ‘ | fUML ::Syntax::Activities::IntermediateActivities::ObjectNode |
Ex|JansionNodeActivation fUML::Syntax::Activities::ExtraStructuredActivities::ExpansionNode
+ fire (incomingTokens @ Token [*])
+ receiveOffer ()
+isReady () : Boolean
+ countUnofferedTokens () : Integer
+ getExpansionRegionActivation () @ ExpansionRegionActivation
fUML ::Semantics::Activities::IntermediateActivities::Token fUML ::Semantics::Actions::BasicActions::ActionActivation
*| + tokens
* ExpansionRegionActivation
TokenSet |, + takeOfferedTaokens () : Tolen [*]

+ doAction ()

+ doStructuredActivity)

+ terminate ()

- + isReady [) : Boolean

L. 1 |+ sendOffers ()

- + activateGroup (activationGroup : ExpansionActivationGroup)

+ getExpansionModeActivation [node @ ExpansionMode) @ ExpansionModeAc. .,
+ numberOfyvalues () : Integer

H inputTokens

f inputExpansionTokens

+ regionActivation 1

fUML::Semantics::Activities::IntermediateActivities::ActivityNodeActivationGroup |

+ activationGroups | *

EleaI'ISiOI'IﬂCt.antiOI'IGI‘OlIIJ

+ gethodelctivation [node @ ActivityNode) @ ActivityNodeActivation

0.1 0.1 0.1

+ regioninputs | = + groupInputs |1..* + groupQutputs | *

fUML.::Semantics::nctions::Basicﬂctions::DthputPinActivatibn

Figure 72 - Expansion Region Activation

8.5.4.2 Class Descriptions
8.54.21 ExpansionActivationGroup

An expansion activation group is an activity node activation group used for activating nodes inside an expansion region.
It functions just like a normal activation group, except it has output pin activations corresponding to the input pins and

202 Semantics of a Foundational Subset for Executable UML Models, Beta 2

the expansion nodes of the expansion region.
Instances of edges from nodes inside the expansion region that connect to region input pins, input expansion nodes or
nmn

output expansion nodes are redirected to connect to the corresponding "region input", "group input" or "group output"
pin, respectively.

Generalizations
e ActivityNodeA ctivationGroup

Attributes
None

Associations
e grouplnputs : OutputPinActivation [1..*]

Output pin activations corresponding, in order, to the input expansion nodes of the expansion region of this
activation group.

e groupOutputs : OutputPinActivation [0..*]

Output pin activations corresponding, in order, to the output expansion nodes of the expansion region of this
activation group.

* regionActivation : ExpansionRegionActivation

e regionlnputs : OutputPinActivation [0..*]
Output pin activations corresponding, in order, to the input pins of the expansion region of this activation
group.

Operations

[1] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation

// If the given node is an input pin of the expansion region, then return the
corresponding region-input output-pin activation.

// If the given node is an input expansion node of the expansion region, then return the
corresponding group-input output-pin activation.

// If the given node is an output expansion node of the expansion region, then return the
corresponding group-output output-pin activation.

// Otherwise return the node activation from the activation group, as usual.

ExpansionRegion region = (ExpansionRegion) (this.regionActivation.node);

InputPinlList inputs = region.input;
ActivityNodeActivation activation = null;

int 1 = 1;
while (activation == null & i <= region.input.size()) {
if (node == region.input.getValue(i-1)) {
activation = this.regionInputs.getValue(i-1);
}
i=1+ 1;
}
int 3 = 1;
while (activation == null & j <= region.inputElement.size()) {
if (node == region.inputElement.getValue(j - 1)) {

activation = this.groupInputs.getValue(j - 1);
}
j=3+1;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 203

int k = 1;
while (activation == null & k <= region.outputElement.size()) {
if (node == region.outputElement.getValue(k - 1)) {
activation = this.groupOutputs.getValue(k - 1);

}
k=%k + 1;

}
if (activation == null) {
activation = super.getNodeActivation (node) ;

}

return activation;

85422 ExpansionNodeActivation

Generalizations
e ObjectNodeActivation

Attributes
None

Associations
None

Operations

[1] countUnofferedTokens () : Integer

// Count the number of tokens being offered to the expansion node.

int totalTokenCount = super.countUnofferedTokens() ;
int 1 = 1;
while (i <= this.incomingEdges.size()) {

totalTokenCount = totalTokenCount + this.incomingEdges.getValue (i-
1) .countOfferedTokens () ;
i=1i+1;

}

return totalTokenCount;

[2] fire (in incomingTokens : Token [0..*])
// Take tokens from all incoming edges.
Debug.println("[fire] Expansion node " + this.node.name + "...");

this.addTokens (incomingTokens) ;

[3] getExpansionRegionActivation () : ExpansionRegionActivation

// Return the expansion region activation corresponding to this expansion node, in the
context of the activity node activation group this expansion node activation is in.

ExpansionNode node = (ExpansionNode) (this.node);

ExpansionRegion region = node.regionAsInput;

204 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (region == null) {
region = node.regionAsOutput;

return (ExpansionRegionActivation) (this.group.getNodeActivation (region));

[4] isReady () : Boolean

// An expansion node is always fired by its expansion region.

return false;

[5] receiveOffer ()

// Forward the offer on to the expansion region.

this.getExpansionRegionActivation () .receiveOffer();

8.54.23 ExpansionRegionActivation

An expansion region activation is an action activation for a node that is an expansion region.
[Note that even though an expansion region is a structured activity node, an expansion region activation is not a
structured activity activation because of the special nature of expansion region behavior.]

Generalizations
e ActionActivation

Attributes
None

Associations
e activationGroups : ExpansionActivationGroup [0..*]

¢ inputExpansionTokens : TokenSet [1..*]

e inputTokens : TokenSet [0..*]

Operations

[1] activateGroup (in activationGroup : ExpansionActivationGroup)

// Activate the given group (which must be one of the groups for this region activation)
and then fire the group outputs.

ExpansionRegion region = (ExpansionRegion) (this.node);
activationGroup.activate (region.node, region.edge);

OutputPinActivationList groupOutputs = activationGroup.groupOutputs;
for (int i = 0; i < groupOutputs.size(); i++) {
OutputPinActivation groupOutput = groupOutputs.getValue (i) ;
groupOutput.fire (groupOutput.takeOfferedTokens());
}

activationGroup.terminateAll () ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 205

[2] doAction ()

// If the expansion region has mustIsolate=true, then carry out its behavior with
isolation.
// Otherwise just activate it normally.

if (((StructuredActivityNode) (this.node)) .mustIsolate) {
_beginlIsolation();
this.doStructuredActivity() ;
_endIsolation();
} else {

this.doStructuredActivity() ;

[3] doStructuredActivity ()

// Activate the body of the region in each group, either iteratively or in parallel.
// Add the outputs of each activation group to the corresonding output expansion node
activations.

ExpansionRegion region = (ExpansionRegion) (this.node);
ExpansionActivationGrouplList activationGroups = this.activationGroups;

if (region.mode == ExpansionKind.iterative) {
for (int i = 0; i < activationGroups.size(); i++) {
ExpansionActivationGroup activationGroup = activationGroups.getValue (i) ;
this.activateGroup (activationGroup) ;
}
}

else if (region.mode == ExpansionKind.parallel) {
// *** Activate all groups concurrently. ***
for (Iterator i1 = activationGroups.iterator();

; 1.hasNext ();) {
ExpansionActivationGroup activationGroup = (ExpansionActivationGroup)i.next();

this.activateGroup (activationGroup) ;

}
ExpansionNodeList outputElements = region.outputElement;

for (int i = 0; 1 < activationGroups.size(); i++) {
ExpansionActivationGroup activationGroup = activationGroups.getValue (i) ;
OutputPinActivationList groupOutputs = activationGroup.groupOutputs;
for (int j = 0; j < groupOutputs.size(); j++) {
OutputPinActivation groupOutput = groupOutputs.getValue (j);
ExpansionNode outputElement = outputElements.getValue(j);
this.getExpansionNodeActivation (outputElement) .addTokens (groupOutput.takeTokens ())

[4] getExpansionNodeActivation (in node : ExpansionNode) : ExpansionNodeActivation
// Return the expansion node activation corresponding to the given expansion node, in the

context of the activity node activation group this expansion region activation is in.
// [Note: Expansion regions do not own their expansion nodes. Instead, they are own as

206 Semantics of a Foundational Subset for Executable UML Models, Beta 2

object nodes by the enclosing activity or group.

// Therefore, they will already be activated along with their expansion region.]

return (ExpansionNodeActivation) (this.group.getNodeActivation (node));

[5] isReady () : Boolean

// In addition to the usual ready checks for an action, check that all expansion nodes

have the same number of inputs (greater than zero).
ExpansionRegion region = (ExpansionRegion) (this.node);

boolean ready = false;
if (super.isReady()) {

int n = this.numberOfValues(); // This gets the number of values on the first

expansion node.

if (n < 1) {
ready = false;

}

else {
int 1 = 1;
while (ready & i<= region.inputElement.size()) {
ready = (this.getExpansionNodeActivation (region.inputElement.getValue (i-
1)) .countUnofferedTokens () == n);

i=1+ 1;

return ready;

[6] numberOfValues () : Integer

// Return the number of values on the first input expansion node of the expansion region

of this activation.
// (The region is required to have at least one input expansion node.)

ExpansionRegion region = (ExpansionRegion) (this.node);
return
this.getExpansionNodeActivation (region.inputElement.getValue (0)) .countUnofferedTokens () ;

[7] sendOffers ()

// Fire all output expansion nodes and send offers on all outgoing control flows.

ExpansionRegion region = (ExpansionRegion) (this.node);

// *** Send offers from all output expansion nodes concurrently. ***

ExpansionNodeList outputElements = region.outputElement;
for (Iterator i1 = outputElements.iterator(); i.hasNext();) {
ExpansionNode outputElement = (ExpansionNode)i.next();

this.getExpansionNodeActivation (outputElement) .sendUnofferedTokens () ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2

207

// Send offers on all outgoing control flows.
super.sendOffers();

[8] takeOfferedTokens () : Token [0..*]

// Create a number of expansion region activation groups equal to the number of values
expanded in the region, setting the region inputs and group inputs for each group.

ExpansionRegion region = (ExpansionRegion) (this.node);
InputPinlist inputPins = region.input;
ExpansionNodeList inputElements = region.inputElement;

this.inputTokens.clear();
this.inputExpansionTokens.clear();

for (int i = 0; i < inputPins.size(); i++) {
InputPin inputPin = inputPins.getValue (i) ;
TokenSet tokenSet = new TokenSet () ;
tokenSet.tokens = this.getPinActivation (inputPin) .takeTokens ()
this.inputTokens.addValue (tokenSet) ;
}

for (int i = 0; i1 < inputElements.size(); i++) {
ExpansionNode inputElement = inputElements.getValue (i) ;
ExpansionNodeActivation expansionNodeActivation =
this.getExpansionNodeActivation (inputElement) ;
expansionNodeActivation. fire (expansionNodeActivation.takeOfferedTokens())
TokenSet tokenSet = new TokenSet () ;
tokenSet.tokens = expansionNodeActivation.takeTokens () ;
this.inputExpansionTokens.addValue (tokenSet) ;

}

int k = 1;

int n = this.numberOfvValues/();

while (k <= n) {
ExpansionActivationGroup activationGroup = new ExpansionActivationGroup() ;
activationGroup.regionActivation = this;
this.activationGroups.addValue (activationGroup) ;

TokenSetList inputTokens = this.inputTokens;

for (int j = 0; j < inputTokens.size(); J++) {
TokenSet tokenSet = inputTokens.getValue (j);
OutputPinActivation regionInput = new OutputPinActivation();
regionInput.addTokens (tokenSet.tokens) ;
activationGroup.regionInputs.addValue (regionInput) ;

TokenSetList inputExpansionTokens = this.inputExpansionTokens;

for (int j = 0; J < inputExpansionTokens.size(); Jj++) {
TokenSet tokenSet = inputExpansionTokens.getValue(j);
OutputPinActivation grouplInput = new OutputPinActivation();
groupInput.addToken (tokenSet.tokens.getValue (k));
activationGroup.groupInputs.addValue (groupInput) ;

return new TokenList () ;

208 Semantics of a Foundational Subset for Executable UML Models, Beta 2

[9] terminate ()

// Terminate the execution of all contained node activations (which completes the
performance of the expansion region activation).

ExpansionActivationGrouplList activationGroups = this.activationGroups;
for (int 1 = 0; i < activationGroups.size(); i++) {
ExpansionActivationGroup activationGroup = this.activationGroups.getValue (i) ;

activationGroup.terminateAll () ;

}

super.terminate () ;
85424 TokenSet

Generalizations
None

Attributes
None

Associations
e tokens : Token

Operations
None

8.6 Actions

8.6.1 Overview

This section describes the semantics of actions, which are the basic units out of which most non-trivial kinds of behavior
are created in fUML. Actions are kinds of activity nodes, so they are always executed in the context of an activity, which
is the overall behavioral construct (see Subclause 8.5 for the general semantics of activities).

The package structure for the semantic sub-packages for Actions parallel those of the syntactic Action package. Figure
73 shows the dependencies of the Action sub-packages.

Subclause 8.6.2 describes the semantics of Basic Actions (see Subclause 7.5.2). The semantic model for Basic Actions
includes the fundamental activation semantics for actions and pins, as well as the specific semantics for basic invocation
actions included in f{UML.

Subclause 8.6.3 and 8.4.4 describe the semantics of Intermediate and Complete Actions (see Subclauses 7.3.3 and 7.3.4).
This covers the semantics of most of the rest of the actions included in f{UML, such as object actions, structural feature
actions and link actions.

In fUML, structured activity nodes are also actions. However, the UML abstract syntax organizes the syntax of structured
activity nodes into the Activities package. Therefore, the semantics for structured activity nodes are described with the
semantics of actions (see Subclause 8.5.2).

Semantics of a Foundational Subset for Executable UML Models, Beta 2 209

I
IntermediateActivities

(from fUML::Semantics: :Activities)
«import»
«import» «irmpart»
BasicActions BasicActions Communications
(from fUML: :Syntax::Actions) (from fUML::Semantics: :Actions) (from fUML: :Semantics : :CommonBehaviors)
«import»
«lmports» «import»
IntermediateActions IntermediateActions
(from fUML: :Syntax::Actions) (from fUML::Semantics: :Actions)
1
- - «import» -
CompleteActions CompleteActions
(from fUML: :Syntax::Actions) (from fUML::Semantics: :Actions)

Figure 73 - Actions Semantics Packages

8.6.2 Basic Actions

8.6.2.1 Overview

Action Activation

Since actions are kinds of activity node, the semantic visitor classes for actions are kinds of activity node activations (see
Subclause 8.5.2.1). In addition, the pins on actions are also kinds of activity nodes—specifically, object nodes—so there
are also visitor classes for input and output pins that are kinds of object node activation. Pin activations are associated
with an action activation in a parallel way to the association of the corresponding pins with their action (see Figure 74).

The ActionActivation class provides a method for the abstract fire operation inherited from ActivityNodeActivation and
overrides the takeOfferedTokens operation. In general, the fire operation for an activity node activation is called
whenever the prerequisites for execution of the node have been satisfied, as determined by the isReady operation, after
accepted tokens are obtained using takeOfferedTokens (see Subclause 8.5.2.1). For an action activation, these operations
are specialized to model the particular semantic requirements of action execution in terms of the offers received by the
pins of the action.

When an input pin activation receives an offer, via a call to its receiveOffer operation, it passes the offer on by calling the
receiveOffer operation of its action activation. The isReady operation of the action activation then checks whether all its

input pin activations are ready. If so, then it fires al/l of the input pin activations at once, accepting all the offers that have
been made to them and moving the accepted tokens to the input pins.

NOTE: The UML 2 Superstructure Specification (Subclause 12.3.2) states that “The object flow prerequisite is satisfied
when all of the input pins are offered all necessary tokens and accept them all at once, precluding them from being
consumed by any other actions. “ In the execution model, the calls to the isReady and takeOfferedTokens operations from
the ActivityNodeActivation::receiveOffer operation are made within an isolated region (see Subclause 8.5.2.1). This
means that the source node activations of any offers to an action activation cannot be modified while the action activation
is checking for, and possibly accepting, offers to its input pins. This prevents contention for the offers during this period,
as required by the UML 2 semantics. (See Subclause 8.5.3 for more on the semantics of isolated regions—that is,
structured activity nodes with mustlsolate = true.)

210 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The above behavior is specified in the takeOfferedTokens method for ActionActivation and is generic to all action
activations. The actual specific behavior of each kind of action is factored into the doAction operation. This operation is
called from the ActionActivation fire operation after all the input pin activations have fired. Once the doAction operation
is complete, all the output pin activations of the action are fired, which causes them to send offers on any outgoing edges
(assuming they have tokens to offer), and a control token is offered on all control flows outgoing from the action.

The semantics of the offering of a token on control flows outgoing from an action are those of an “implicit fork” (see
Subclause 12.3.2 of the UML 2 Superstructure Specification). Therefore, in order that the semantic model for control
flows from an action be identical to those of a fork, if an action has outgoing control flows, an anonymous fork node
activation is also created along with the action activation for the action. The action activation is then connected to the
fork node activation, and the activity edge instances corresponding to the control flows outgoing the action are connected
to the fork node activation. When the action activation completes its behavior, it creates a control token and offers it to
the fork node activation which, per the semantics of fork nodes, in turn offers it on all outgoing activity edge instances.

Invocation Actions

The BasicActions abstract syntax package also includes basic invocation actions, including send signal, call operation
and call behavior actions (see Subclause 7.5.2). The corresponding activation classes are specializations of
ActionActivation (see Figure 74).

Of these, the behavior of a send signal action activation is the simplest. When it fires, it takes values from its argument
input pin activations, constructs a signal instance with slots filled in with those values and sends the signal via the object
reference obtained from its target input pin activation. The signal instance is actually sent by calling the sendSignal
operation on the target object (see Subclause 8.4.3). This results in the signal instance being placed in the event pool for
the target object, at which point the sendSignal call returns and the thread on which the send signal action is executing
can continue (as appropriate). As discussed in Subclause 8.4.3, signal instances in the event pool are dispatched
asynchronously by the event dispatching loop of the object activation for the target object.

In contrast to sending signals, call behavior and operation actions in fUML are always synchronous (see Subclause
7.5.2). This basic synchronous calling behavior is modeled in the doAction method of the CallActionActivation class.
Associated with this class is an Execution object that represents the invocation of the called behavior. Other than for how
this execution object is instantiated, the semantics of call behavior and call operation actions are the same: values of
argument input pin activations are passed as input parameter values to the execution object, the execute operation is
called on the execution and then any output parameter values are placed on result output pin activations. Once execution
is complete, the execution object is destroyed.

NOTE: The fUML execution model interprets the semantics of called behaviors as requiring that the execution object
instantiated by a synchronous call action be destroyed when the call returns. Otherwise, repeated calls would result in a
potentially large number of anonymous, completed called executions accumulating at any execution locus.

Instantiating the execution object for a call behavior action is straightforward: an instance of the referenced behavior is
simply instantiated at the execution locus of the call action. Instantiating the execution object for an operation call, on the
other hand, requires that a potentially polymorphic operation be dispatched in order to determine which method should
act as its behavior. This dispatching is carried by calling the dispatch operation on the target object. (See Subclause
8.3.2.1 for further discussion of polymorphic operation dispatching.)

Unlike the case of a call behavior action, the default behavior of polymorphic operation dispatching is for the execution
object for the operation method to be instantiated at the locus of the target object, not the locus of the action execution.
Thus, if an operation call is made on an object at a remote locus, then the operation will be executed on that locus. While
fUML does not provide a normative means for passing object references between loci, a specific execution tool may
implement such a means, in which case the semantics of operation calls across inter-locus references is specified
normatively. (See Subclause 8.2.1 for a discussion of loci.)

NOTE: As described in Subclause 8.3.2.1, polymorphic operation dispatching is a semantic variation point. The default
semantics for operation calls acts as described above for references to objects on other loci, and it would generally be
expected that any alternative dispatching strategy would have a similar behavior. However, a conforming execution tool
is allowed to define a dispatching strategy that would prescribe, for example, that a// operation executions are performed
on the local locus, regardless of where the target object resides.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 211

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation ‘

-

+ node
| fUML ::Syntax::Activities::IntermediateActivities::ActivityNode %‘ fUML ::Semantics::Activities::IntermediateActivities::ActivityNodeActivation

‘T‘

| fUML ::Syntax::Activities::CompleteStructuredActivities::ExecutableNode |

f

‘ fUML ::Syntax::Actions::BasicActions::Action

fUML::Semantics::Activities::IntermediateActivities::ObjectNodeActivation

ActionActivation

+run ()
+ takeOfferedTokens () : Token [*]
+ fire (incomingTokens : Token [*])

+ terminate () + actionActivation * PinActivation
+ isReady () : Boolean
+ doAction () 1 + pinActivations | + fire (incomingTaokens : Token [*])

+ sendOffers ()

+ createlodeActivations ()

+ addOutgoingEdge (edge : ActivityEdgelnstance)
+ addPinActivation | pinActivation ; PinActivation) |

+ getPinActivation (pin : Pin) @ PinActivation

+ putTolen (pin @ OutputPin, value @ Value)

+ putTokens [pin @ OUtpUtPIn, values @ Value [*]) InputPinActivation OutputPinActivation

+ getTokens (pin : InputPin) ; Value [*] _ _

+ taleTakens (pin : INpUtPin) ; Value [*] + receiveOffer () +isReady () : Bookean .
+ isSourceFor { edgelnstance : ActivityEdgelnstance) : Boolean +isReady () Eoulean) + fire (incomingTokens : Token [*])
+ valueParticipatesInLinl: { value : Value, linl: ; Link:) : Boolean + countUnofferedTolens () : Integer

+ malkeBooleanyalue (value : Boolean) : BooleanValue

InvocationActionActivation

? fUML ::Semantics::CommonBehaviors::BasicBehaviors::Execution

* '+ calExecutions

SendSignalActionActivation CallActionActivation
+ doAction + doAction () P —
Ll + getCalExecution () : Execution 0.1
+ terminate ()
+ removeCalExecution (execution : Execution)

CallOperationActionActivation CallBehaviorActionActivation

+ getCalExecution () | Execution + getCallExecution () : Execution

Figure 74 - Basic Action Activations

8.6.2.2 Class Descriptions
8.6.2.2.1 ActionActivation
An action activation is an activity node activation for a node that is an action.

Generalizations
e ActivityNodeActivation

Attributes
None

Associations
® pinActivations : PinActivation [0..*]

212 Semantics of a Foundational Subset for Executable UML Models, Beta 2

The activations of the pins owned by the action of this action activation.
Operations
[1] addOutgoingEdge (in edge : ActivityEdgelnstance)

// If there are no outgoing activity edge instances, create a single activity edge
instance with a fork node execution at the other end.

// Add the give edge to the fork node execution that is the target of the activity edge
instance out of this action execution.

// [This assumes that all edges directly outgoing from the action are control flows, with
an implicit fork for offers out of the action.]

ActivityNodeActivation forkNodeActivation;

if (this.outgoingEdges.size () == 0) {
forkNodeActivation = new ForkNodeActivation () ;
ActivityEdgeInstance newEdge = new ActivityEdgelnstance();
super.addOutgoingEdge (newEdge) ;
forkNodeActivation.addIncomingEdge (newEdge) ;

}

else {
forkNodeActivation = this.outgoingEdges.getValue (0) .target;

}

forkNodeActivation.addOutgoingEdge (edge) ;

[2] addPinActivation (in pinActivation : PinActivation)
// Add a pin activation to this action activation.

this.pinActivations.addValue (pinActivation) ;
pinActivation.actionActivation = this;

[3] createNodeActivations ()

// Create node activations for the input and output pins of the action for this
activation.

// [Note: Pins are owned by their actions, not by the enclosing activity (or group), so
they must be activated through the action activation.]

Action action = (Action) (this.node);

ActivityNodeList inputPinNodes = new ActivityNodelList () ;
InputPinList inputPins = action.input;
for (int i = 0; 1 < inputPins.size(); i++) {
InputPin inputPin = inputPins.getValue (i) ;
inputPinNodes.addValue (inputPin) ;
}

this.group.createNodeActivations (inputPinNodes) ;
for (int i = 0; i1 < inputPinNodes.size(); i++) {

ActivityNode node = inputPinNodes.getValue (i)
this.addPinActivation ((PinActivation) (this.group.getNodeActivation (node)));

ActivityNodeList outputPinNodes = new ActivityNodeList () ;
OutputPinlist outputPins = action.output;
for (int 1 = 0; 1 < outputPins.size(); i++) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 213

OutputPin outputPin = outputPins.getValue(i);
outputPinNodes.addValue (outputPin) ;
}
this.group.createNodeActivations (outputPinNodes) ;
for (int i = 0; 1 < outputPinNodes.size(); i++) {

ActivityNode node = outputPinNodes.getValue (i) ;
this.addPinActivation ((PinActivation) (this.group.getNodeActivation (node))) ;

[4] doAction ()

Do the required action behavior.

[5] fire (in incomingTokens : Token [0..*])

// Do the main action behavior then oncurrently fire all output pin activations and offer
a single control token.

Debug.println("[fire] Action " + this.node.name + "...");

this.doAction () ;
this.sendOffers();

Issue 13311 -- The call to receiveOffer at the end of ActionActivation::fire could cause an infinite recursion

// Activate the action again, 1if tokens have been left on input pins and the action has no

incoming control flows.

Debug.println("[fire] Checking if "™ + this.node.name + " should fire again...");
if (((Action) (this.node)) .input.size() > 0 & this.node.incoming.size () == 0) {
boolean fireAgain = true;
InputPinlist inputPins = ((Action) (this.node)) .input;
int] = 1;
while (fireAgain & J <= inputPins.size()) {
PinActivation inputPinActivation = this.getPinActivation (inputPins.getValue (1-1));
fireAgain = inputPinActivation.isReady () &
inputPinActivation.countUnofferedTokens () > 0;
1 =3+ 1;
1

if (fireAgain) {
this.fire (new TokenIlist ()

)

ra
WL RN B A 1 R | 1 b = : + :
Trea (=€ 7 WIS CORCSIIS ave OeeiT €Tt Ot IIIput pTirST—

VAL N

4o =] : + :

CIO) {CHIIS- Hoge) - rtHput.stze {7 T
L
\

: : £ VAN
TrsTreceIrveorrrer (/7

[6] getPinActivation (in pin : Pin) : PinActivation

// Precondition: The given pin is owned by the action of the action activation.
// Return the pin activation corresponding to the given pin.

PinActivation pinActivation = null;

int 1 = 1;
while (pinActivation == null & i <= this.pinActivations.size()) {

214 Semantics of a Foundational Subset for Executable UML Models, Beta 2

PinActivation thisPinActivation = this.pinActivations.getvValue(i-1);
if (thisPinActivation.node == pin) {
pinActivation = thisPinActivation;

}
i =1+ 1;

return pinActivation;

[7] getTokens (in pin : InputPin) : Value [0..*]

// Precondition: The action execution has fired and the given pin is owned by the
action of the action execution.

Issue 13310 -- An action can consume more tokens from a pin than the allowed multiplicity upper bound

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

// Get any tokens held by the pin activation corresponding to the given input pin and
return them
// (but lec

the tokens on the pin).

Debug.println (" [getTokens] node = " 4+ this.node.name + ", pin =" + pin.name);
PinActivation pinActivation = this.getPinActivation (pin);
Tokenlist tokens = pinActivation.getUnofferedFfeake—any—tokensfetdPy—thepin—activation
coTrre E;}',L/L'L\',A,Lilij to—the gIvern LLlL/th L/Lu arcreturr—thern
[\,,L)uij .}L‘Lutll (” ‘ij +Foken J o — U —+—+thitsrode Tramey
PirActtveattorpinActivattor——thts .LJC,T,PL'J;,LT,L Ferttor (}LL'L) 7
Fokenbist—tokenrs oraAct vationtakeTokens () ;
ValueList values = new ValueList () ;
for (int i = 0; 1 < tokens.size(); i++) {

Token token = tokens.getValue(i);

Value value = ((ObjectToken)token).value;

if (value != null) {

values.addValue (value) ;

}

}

return values;

[8] isReady () : Boolean

// In addition to the default condition, check that the sources of all incoming edges
(control flows) have offers and all input pin activations are ready.
// [This assumes that all edges directly incoming to the action are control flows.]

boolean ready = super.isReady();
int 1 = 1;
while (ready & i <= this.incomingEdges.size()) {

ready = this.incomingEdges.getValue (i-1) .hasOffer();
i=1i+ 1;

InputPinList inputPins = ((Action) (this.node)) .input;
int 3 = 1;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 215

while (ready & j <= inputPins.size()) {
ready = this.getPinActivation (inputPins.getValue(j-1)) .isReady();
j =3+ 1

return ready;

[9] isSourceFor (in edgelnstance : ActivityEdgelnstance) : Boolean

// If this action has an outgoing fork node, check that the fork node is the source of the
given edge instance.

Issue 13463 -- ActionActivation::isSourceFor does not initialize a local variable

boolean isSource = fa
if (this.outgoingEdg

= Ll o TSN U .k DR
i (TS oTtgoIngnages

Hh

TrsSource—

+—etse {

arsey

isSource = this.outgoingEdges.getValue (0) .target.isSourceFor (edgelnstance);

}

return isSource;

[10] makeBooleanValue (in value : Boolean) : BooleanValue

// Make a Boolean value using the built-in Boolean primitive type.
// [This ensures that Boolean values created internally are the same as the default used
for evaluating Boolean literals.]

LiteralBoolean booleanliteral = new LiteralBoolean();
booleanLiteral.value = value;
return (BooleanValue) (this.getExecutionLocus () .executor.evaluate (booleanLiteral));

[11] putToken (in pin : OutputPin, in value : Value)

// Precondition: The action execution has fired and the given pin is owned by the action
of the action execution.

// Place a token for the given value on the pin activation corresponding to the given
output pin.

Debug.println (" [putToken] node = " + this.node.name);

ObjectToken token = new ObjectToken();
token.value = value;

PinActivation pinActivation = this.getPinActivation (pin);

pinActivation.addToken (token) ;

// Precondition: The action execution has fired and the given pin is owned by the action
of the action execution.

// Place a token for the given value on the pin activation corresponding to the given
output pin.

Debug.println (" [putToken] node = " + this.node.name);
ObjectToken token = new ObjectToken();

token.value = value;

216 Semantics of a Foundational Subset for Executable UML Models, Beta 2

PinActivation pinActivation = this.getPinActivation (pin);
pinActivation.addToken (token) ;

[12] putTokens (in pin : OutputPin, in values : Value [0..*])

// Precondition: The action execution has fired and the given pin is owned by the action
of the action execution.

// Place tokens for the given values on the pin activation corresponding to the given
output pin.

// Debug.println (" [putTokens] node = " + this.node.name);

for (int 1 = 0; 1 < values.size(); i++) {
Value value = values.getValue (i) ;
this.putToken (pin, wvalue);

[13] run ()
// Run this action activation and any outoging fork node attached to it.
super.run() ;

if (this.outgoingEdges.size() > 0) {
this.outgoingEdges.getValue (0) .target.run() ;

[14] sendOfters ()

// Fire all output pins and send offers on all outgoing control flows.
Action action = (Action) (this.node);

// *** Fire all output pins concurrently. ***

OutputPinlist outputPins = action.output;

for (Iterator i1 = outputPins.iterator(); i.hasNext();) {
OutputPin outputPin = (OutputPin)i.next();
PinActivation pinActivation = this.getPinActivation (outputPin);
pinActivation.fire (pinActivation.takeOfferedTokens());

}

// Send offers on all outgoing control flows.

if (this.outgoingEdges.size() > 0) {
TokenList tokens = new TokenList();
tokens.addValue (new ControlToken ())
this.addTokens (tokens) ;
this.outgoingEdges.getValue (0) .sendOffer (tokens) ;

[15] takeOfferedTokens () : Token [0..*]

// Take any incoming offers of control tokens, then concurrently fire all input pin
activations.

ActivityEdgeInstancelist incomingEdges = this.incomingEdges;
for (int i = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance incomingEdge = incomingEdges.getValue (i) ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 217

TokenList tokens = incomingEdge.takeOfferedTokens () ;
for (int j = 0; j < tokens.size(); Jj++) {
Token token = tokens.getValue(j);
token.withdraw () ;

}
Action action = (Action) (this.node);
// Debug.println("[fire] Firing pins...");

// *** Fire all input pins concurrently. ***

InputPinList inputPins = action.input;
for (Iterator i1 = inputPins.iterator(); i.hasNext();) {
InputPin pin = (InputPin) (i.next());

PinActivation pinActivation = this.getPinActivation(pin);
pinActivation.fire (pinActivation.takeOfferedTokens());

}

return new TokenList () ;

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

[16] takeTokens (_in pin : InputPin) : Value [0..*]

// Precondition: The action execution has fired and the given pin is owned by the action
of the action execution.

// Take any tokens held by the pin activation corresponding to the given input pin and
return them.

Debug.println (" [takeTokens] node = " + this.node.name + ", pin = " + pin.name);

PinActivation pinActivation = this.getPinActivation (pin);
TokenlList tokens = pinActivation.takeUnofferedTokens();
Valuelist values = new Valuelist ();
for (int i = 0; i < tokens.size(); i++) {

Token token = tokens.getValue (i) ;

Value value = ((ObjectToken) token) .value;

if (value !'= null) {

values.addValue (value) ;

1
1

return values;

17] terminate ()

// Terminate this action activation and any outgoing fork node attached to it.
super.terminate () ;

if (this.outgoingEdges.size() > 0) {
this.outgoingEdges.getValue (0) .target.terminate () ;

[187] valueParticipatesInLink (in value : Value, in link : Link) : Boolean

// Test 1f the given value participates in the given link.

218 Semantics of a Foundational Subset for Executable UML Models, Beta 2

FeatureValuelist linkFeatureValues = link.getFeatureValues();

boolean participates = false;
int 1 = 1;
while (!participates & i <= linkFeatureValues.size()) {
participates = linkFeatureValues.getValue (i-1) .values.getValue(0) .equals (value);

i =1+ 1;

return participates;

8.6.2.2.2 CallActionActivation

A call action activation is an invocation action activation for a call action.

Generalizations
e InvocationActionActivation

Attributes
None

‘Issue13313--CaHAcﬁonAcﬁvaﬁoncannothandh|norethanoneconcunentcau

Associations
e callExecutions : Execution [0..*

The set of execution object for currently ongoing calls made through this call action activationexeeution

Operations

[1] doAction ()

// Get the call execution object, set its input parameters from the argument pins and
execute it.

// Once execution completes, copy the values of the output parameters of the call
execution to the result pins of the call action execution, then destroy the execution.

Issue 13313 -- CallActionActivation cannot handle more than one concurrent call

Execution callExecution = this.getCallExecution();

if (callExecution != null) {
this.callExecutions.addValue (callExecution) ;

CallAction callAction = (CallAction) (this.node);

InputPinlist argumentPins = callAction.argument;

OutputPinlist resultPins = callAction.result;

ParameterlList parameters = callExecution.getBehavior () .ownedParameter;

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

int pinNumber = 1;
int 1 = 1;
while (i <= parameters.size()) {
Parameter parameter = parameters.getValue (i-1);
if (parameter.direction == ParameterDirectionKind.in |

Semantics of a Foundational Subset for Executable UML Models, Beta 2 219

parameter.direction ==

ParameterDirectionKind.inout) {

ParameterValue parameterValue =

new ParameterValue() ;

parameterValue.parameter =

parameter;

parameterValue.values =

this.takeTokens (arqumentPins.getValue (pinNumber-1)) ;

callExecution.setParameterValue (parameterValue) ;

pinNumber = pinNumber + 1;

callExecution.execute () ;

ParameterValuelist outputParameterValues =

callExecution.getOutputParameterValues () ;

for (int 7 = 0;

4 < outputParameterValues.size();

i++) |

ParameterValue outputParameterValue =

outputParameterValues.getValue (3);

QutputPin resultPin =

resultPins.getValue (J);

this.putTokens (resultPin,

outputParameterValue.values) ;

1

Issue 13313 -- CallActionActivation cannot handle more than one concurrent call

callExecution.destroyv () ;

3 : |] 13 I el s PR B -~ I
thls.removeCallExecutlon(callExecutlon)Lu; TCaIrnXeCUTtIoOir — Ctirs.gettarrnXecutIon{)
i =4 i 1 11 e 1 11 L
IT (oIS CcCarrnXecutcIor = Tt 1
o 1 1 7 e 11 . Vol 11 . i 1
T TraACCIon Carractroir — (CarractIony (oIS~ noae)
T S I 4= S 1 1 1 4o .
J_llb}ul,[J_llJ_lJ_ T GLHMJIICLAL[LLA o k,aJ_J_nbl,J_Ull.aJ_‘julHClll,(
e P . R 1lep 13 I 14
OotPu Tt I oISt resSuTrtrITs — Carraccro. resturcy
b . I o . . i 111 . =1 1o . 1D .
rarameteroIsSt parameters — Clirs. carrnXecutron-getoenaviort) - ownredraramecter;
L. NN] 1 1
T praNumoer— 17
L -
S 1 e S
| : e : L
wrrre (T =—parameterssIze{) 1
D . . . 4= ul L= ha
rarameTter parameter = paramectersTgetvarae (1)
= e 3 I n . oo I 1o R I
T (paramecer - arrectIoir == rarameterorrectromIna I |
. 1 i D 4= hm W i 17 = l - . L
PGLGHLCL\:L.&AJ_J_C&,L_J_U“ . AL dllT CT LI U T TC TIUITIVIITU . TITOT T 1
b . 1 . 37 ul b . 1
rarametervaruae paramecervarue — new raramecervarae)y
. 1 4= 4=
ParameTervarge s paramecter = paramecery
. 1 1 T il 1 . . 1 . AL 1 |
PerametervarueT varue =—Cthrs.getrorerrs{argumentrns-getvarue{pIraNumoer——1I/)77

el 131 4o D + 1 ‘ & 1
CIIrST-CarrnXectuctrotfr. Setrarametervaruac (paramecervarucy
i DT 1 i DT 1 P
pIroaNtmmoer — priNaimoer o L,
: P
I — I T Iy
el 131 4o el
CIrIrST-CcCarrnXectucrotr-exXxecuace (77

—FParameterveatuvebistoutputParametervatves—

0 . 7

£ = 4= - al s . =1 . 1 : L I Y L

TOoOr—{(roc—J — U7 J ooTputraramectervaraesSTSsTIze{ 5 LAY A
b . 1 . . . 37 ul . de D . 1 . 1 -
rarametervarue outputraramectervaruae — outputraramectervarues.gectvatue(J /)7

. i W 1L Do 1L Do 4= ul L=

Uul,tJl/LL_J:J_lL 1< T CT TIT o 1< T CT TIT -‘jcl_ [cEmvLe \J/ 12
T il 1 1D . de D . 1 1
CIIIS-PUCIOREIIS({resSurtr I, outputraramectervartuae. vartucesy),

i 1 11 4o <l . L

ChrsSTCcCarrnXecucron - aeSTroy (7

I 11 2 1.

CIIrSTCarrnXecucIolT o,

[2] getCallExecution () : Execution

220 Semantics of a

Foundational Subset for Executable UML Models, Beta 2

Get the execution object for the called behavior.

‘Issue13313--CaHAcﬁonAcﬁvaﬁoncannothandh|norethanoneconcunentca"

[3] removeCallExecution (_in execution : Execution)
/ Remove the given execution from the current list of call executions.

boolean notFound = true;
int 4 = 1;
while (notFound & i <= this.callExecutions.size()) {
if (this.callExecutions.getValue (i-1) == execution) {
this.callExecutions.removeValue (i-1);
notFound = false;

| —termirate—t

irr : = =1 1 G LR, =1 e . = =l 11 s e e
I LTITTCITacT Tl CaLr T COCTIUIT T LT LT 1T p Ere] OIS CITCTIT CCTLITTITIacT 1T cCaLr T aC CTITUIT aCTTI I CLTUIT
tsetfH—
A P 4 o] 11 L
- T CITLTS —a L Io CcCCUOCIUIT T LIar) 1
=l 11 e = : =
Cirm S .. CarlrTo CcCC O CIUITSC TIrrIrace /)y
. e . aa . e va
JLALJEA . CCLITTITacCT)

‘ Issue 13313 -- CallActionActivation cannot handle more than one concurrent call

[4] terminate ()

// Terminate all call executions (if any), then terminate the call action activation

self).

for (int i = 0; i < this.callExecutions.size(); i++) {
Execution execution = this.callExecutions.getValue (i) ;
execution.terminate () ;

1

super.terminate () ;

8.6.2.2.3 CallBehaviorActionActivation

A call behavior action activation is a call action activation for a call behavior action.

Generalizations
e (CallActionActivation

Attributes
None

Associations
None

Operations

[1] getCallExecution () : Execution

// Create and execution for the given behavior at the current locus and return the

Semantics of a Foundational Subset for Executable UML Models, Beta 2 221

resulting execution object.

// If the given behavior is in the context of a classifier, then pass the current context
object as the context for the call.

// Otherwise, use a null context.

// [Note that this requires the behavior context to be compatible with the type of the
current contect object.]

Behavior behavior = ((CallBehaviorAction) (this.node)) .behavior;

Object context;

if (behavior.context == null) {
context = null;

} else {
// Debug.println("[getCallExecution] behavior context = " + behavior.context.name);
context = this.getExecutionContext () ;

}

// Debug.println("[getCallExecution] context = " + context);

return this.getExecutionLocus () .factory.createExecution (behavior, context);

86.224 CallOperationActionActivation
A call operation action activation is a call action activation for a call operation action.

Generalizations
e (CallActionActivation

Attributes
None

Associations
None

Operations

[1] getCallExecution () : Execution

// If the value on the target input pin is a reference, dispatch the operation to it and
return the resulting execution object.

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

CallOperationAction action = (CallOperationAction) (this.node);
Value target = this.takegetTokens (action.target) .getValue(0);

Execution execution;
if (target instanceof Reference) {

execution = ((Reference)target) .dispatch(action.operation);
}
else {

execution = null;

}

return execution;

222 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.6.2.25 InputPinActivation
An input pin activation is a pin activation for an input pin.

Generalizations
e PinActivation

Attributes
None

Associations
None

Operations

[1] countUnofferedTokens () : Integer

// Limit the number of tokens to be offered to no more than the upper multiplicity of the
pin.

int count = super.countUnofferedTokens();

int upper = ((Pin) (this.node)) .multiplicityElement.upper.naturalValue;

// Note that upper < 0 indicates an unbounded upper multiplicity.
int limitedCount = upper;
if (upper < 0 | count <= upper) {

limitedCount = count;

}

return limitedCount;

[2] isReady () : Boolean

// Return true if the total number of tokens already being offered by this pin plus those
being offered by the sources of incoming edges is at least equal to the minimum
multiplicity of the pin.

boolean ready;

if (!super.isReady()) {
ready = false;
} else {
int totalTokenCount = this.countUnofferedTokens () ;
int 1 = 1;
while (i <= this.incomingEdges.size()) {

totalTokenCount = totalTokenCount + this.incomingEdges.getValue (i-
1) .countOfferedTokens () ;
i =1+ 1;

}

int minimum = ((Pin) (this.node)) .multiplicityElement.lower;
ready = totalTokenCount >= minimum;

}

return ready;

[3] receiveOffer ()

Semantics of a Foundational Subset for Executable UML Models, Beta 2 223

// Forward the offer to the action activation. [When all input pins are ready, the action
will fire them.]

this.actionActivation.receiveOffer();

8.6.2.2.6 InvocationActionActivation
An invocation action activation is an action activation of an invocation action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations
None

8.6.2.2.7 OutputPinActivation
An output pin activation is a pin activation for an output pin.

Generalizations
e PinActivation

Attributes
None

Associations
None

Operations

‘ Issue 13310 -- An action can consume more tokens from a pin than the allowed multiplicity upper bound

[1]

// Always return false. [The pin will be fired by its associated action.]

return false;

224 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.6.2.2.8 PinActivation
A pin activation is an object node activation for a node that is a pin.

Generalizations
e ObjectNodeActivation

Attributes
None

Associations
e actionActivation : ActionActivation

The activation of the action that owns the pin for this pin activation.
Operations

[1] fire (in incomingTokens : Token [0..*])

‘ Issue 13310 -- An action can consume more tokens from a pin than the allowed multiplicity upper bound

// Add all incoming tokens to the pin.
// [Note that a pin will c
multiplicity upper bound, but will only offer tokens up to

nsume all tokens offered to it, than the

Debug.println ("[fire] Pin " + this.node.name + "...");

this.addTokens (incomingTokens) ;

Mo ol IS 11 e ens o e

TaRtT CORTITS L OUTIT [puug I I'CUINTTITY CUgtTSoS

L/ [1 TR P B | = 13 ol = £ N 4 3 4 3 R § q el 1
[NOTEe CHat & pPIir wrilrl colstuMe arr CoOReNS oOrrfered ToO Tty ©velr I L CIrL TS—mhoT cran cthne

h I I N, B D » S PRI, R PRI B | I I~ ~ - o I N RSN A]

T C \f}\ TCTC u:_/fj\, L OO TITC oOC W I T Ol U1 < c > [=) u:_/ cO ClTaCc »Jf}:_/’:i I WAGAPSSLW Iy |
- I TSR T =~ 1 Do w1 L n

\’C‘LJUJ A_/f CITCT I Y [A= g I T CIlirS ITOTICE Ialre T T r

el 1Mo D2 SN ESNDY - . DG

CIlirS AdUUTURTITS (L ICUOT \\\:1\\47\\,\\.)} 12

4=l Shl c L > ianl] 2

CIrrs. SenaunorrerearorRers{/)

8.6.2.2.9 SendSignalActionActivation
A send signal action activation is an invocation action activation for a send signal action.

Generalizations
e InvocationActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value from the target pin. If the value is not a reference, then do nothing.
// Otherwise, construct a signal using the values from the argument pins and send it to
the referent object.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 225

Issue

13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

SendSignalAction action = (SendSignalAction) (this.node);
Value target = this.takeTokens (action.target) .getValue (0);

if (tar

Q4

signallInstance = new SignalInstance();

signalInstance.type = signal;

Propertylist attributes
InputPinlist ar

for (int i = 0;
Property attribute = attr
InputPin argu ntPin = argumentPi
ValuelList values = this.takeget® getVatueto)

g as 1 Tt - I I = Lo o
ance—STgharrirstance Tew—sTrghnarrasTance

: =1 . 4 : =1
STgnarrirscarice.s cype — SIglat,

D, 4 : -1 - R NI A
ST IO TteS — SIgnar-ownedaccrITouce
4

o T ~ L T IR - et
Cr riTotr ST arguieircr 1S gecTIo-argumeircy

. U] fa\ g PR A
or—(It —Ir—0U,— I gcCcrIot

L

Pac oo ool L P L
TIroperTy actcrIouce aTC

T P P P L & S TN :
TIpucr it argulfeIrcr rir — arguielicr rirs.gecvartac (/7

}

Vatuwebist—vatues = this-getTokens (argumentPin) ;
signallnstance.setFeatureValue (attribute, wvalues, 0);

((Reference) target) .send(signallInstance) ;

8.6.3 Intermediate Actions

8.6.3.

1 Overview

Object Actions

At the
model

226

intermediate level, f{UML includes the following object actions (see Figure 75 for the corresponding activation

).

Create Object Action. In fUML, the classifier specified by a create object action must be a class (see Subclause
7.5.3). Therefore, the instance created really is an object, as the action name indicates. The object becomes part
of the extent of the specified class at the execution locus of the activity execution that contains the action
activation. (See Subclauses 8.2 and 8.3 for more on loci and extents.)

Destroy Object Action. This action accepts an object reference and destroys the referenced object. Destruction
involves terminating the object activation (if any), removing all of the objects types and removing the object from
the extent at the execution locus. Note that the f{UML semantics do not preclude references continuing to exist to
destroyed objects. However, since such objects do not have any types, they will have neither attributes nor
behaviors. Note also that only objects can be destroyed in fUML—attempting to destroy a data value will have no
effect.

Test Identity Action. This action tests whether its two input values are “identical”. If the input values are both data
values, then “identical” means that they are either the same primitive value or they have the same compound
type, with identical values for all corresponding attributes. If the input values are both object references, then

Semantics of a Foundational Subset for Executable UML Models, Beta 2

“identical” means that they reference the same object. That is, for data values equality is testing “by value”, while
for objects it is tested “by reference.”

NOTE: The UML 2 Superstructure Specification (Subclause 11.3.49) describes the behavior of test identity
actions as “This action returns true if the two input values are the same identity, false if they are not.” Typically,
“same identity” would be interpreted as meaning “reference to the same object.” However, the fUML semantics
for test identity actions goes beyond this, also providing for the comparison of data values for equality by value.
This extends the action to provide a general equality test for all kinds of values.

® Read Self Action. This action reads the context object of the activity activation that contains the action activation.
If the activity is associated with a class (as a method or a classifier behavior), then the context object will be an
instance of that class. Otherwise, the context object will be the execution object of the activity itself.

o JValue Specification Action. This action evaluates a given value specification and outputs the resulting value. The
value specification is evaluated using the evaluate operation of the executor at the execution locus of the activity
execution that contains the action activation (see Subclause 8.2).

Structural Feature Actions

fUML includes actions for accessing the structural features of both objects and data types (see Figure 76 for the
corresponding activation model).

NOTE: In fUML, association ends are always owned by the association and never by the types of the ends (see
Subclause 7.2.2). Therefore, it is not possible to navigate a link in f{UML using a structural feature action. Nevertheless, a
classifier may have a structural feature whose type is a class, in which case the value of that feature will be an object
reference, and reading it will have much the same effect as navigating a binary association link. The semantics of the
creation and destruction of links, though, is rather different in fUML than the semantics of setting such a referential
structural feature (see below).

NOTE: For an ordered structural feature, the UML Superstructure Specification (Subclause 11.3.5) defines the effect of
“insertAt” to be: “A positive integer less than or equal to the current number of values means to insert the new value at
that position in the sequence of existing values, with the integer one meaning the new value will be first in the sequence.
A value of unlimited for insertAt means to insert the new value at the end of the sequence. ”” For f{UML, this behavior is
assumed to mean that the new value is inserted into the required position without replacing any of the previously existing
values in the structural feature, which retain the same relative ordering as before the insertion of the new value.

Link Actions

In fUML, a link is an extensional value that exists at a specific execution locus (see Subclause 8.3). Unlike objects,
however, there are no explicit references to links. Rather, links may be thought of as tuples of values, one for each
association end, and a link of a specific association can be identified by giving such a tuple. Note that this identification
is not necessarily unique, though, unless all the ends of the association are specified as being unique.

fUML includes the following actions for manipulating links (see Figure 77 for the corresponding activation model).

e Create Link Action. Given a value for each association end, this action normally creates a link with those values.
This link becomes a member of the extent of the association at the execution locus of the activity activation that
contains the action activation. However, if a link already exists in the association extent with the same tuple of
values, and all the ends of the association are specified as unique, then no new link is actually created (though
this is not an error). Since, in f{UML, an association always owns its ends (see Subclause 7.2.2), each of the
values for the link are represented as structural feature values for the link (see Subclause 8.3.2.1 for more on the
representation of the structure of links). If an association end is ordered, then the link also maintains the position
of its value for that association end relative to the value provided by other links in the extent of the association.

® Destroy Link Action. Given a value for each association end, this action destroys all links that match the link end
destruction data in the extent of the given association at the execution locus of the activity activation that contains
the action activation. Destroying a link means simply removing it from the extent of the association. Matching
links are determined as follows.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 227

¢ For unique ends, or non-unique ends for which isDestroyDuplicates is true, match links with a matching

value for that end.

* For non-unique, ordered ends for which isDestroyDuplicates is false, match links with an end value at the

given destroyAt position.

¢ For non-unique, non-ordered ends for which isDestroyDuplicates is false, pick one matching link (if any)

nondeterministically.

NOTE: The behavior in this third class when there is more that one matching link is not explicitly stated in
the UML 2 Superstructure specification (Subclause 11.3.17). f{UML provides an interpretation of
nondeterministic choice in this case.

® Read Link Action. This action provides a means for querying the extent of an association at the execution locus of
the activity activation that contains the action activation. The action specifies values for all ends of the
association but one—the open end (see Subclause 7.5.3). This link end data identifies a subset of matching links
from the association extent that have the specified end values. The action outputs the set of values on the open

ends of these matching links.

® (lear Association Action. This action destroys all the links in the extent of the given association (at the execution
locus of the activity activation that contains the action activation) that has the input value of the action as an end

value.

| fUML ::Semantics::Actions::BasicActions::ActionActivation |

i

ValueSpecificationActionActivation

CreateObjectActionActivation TestIdentityActionActivation

+ doAction ()

+ doAction ()

+ doAction ()

ReadSelfActionActivation

DestroyObjectActionActivation

+ dofction ()

Figure 75 - Object Action Activations

228

+ dofction ()
+ destroyObject (value : Value, isDestroyLinks : Boolean, isDestroyOwnedObjects : Boolean)
+ objectlsComposite (reference : Reference, link : Link) : Boclean

Semantics of a Foundational Subset for Executable UML Models, Beta 2

fUML ::Semantics::Actions::BasicActions::ActionActivation

StructuralFeatureActionActivation

ClearStructuralFeatureActionActivation

+ dodction ()

WriteStructuralFeatureActionActivation

+ position [value :

Value, list © Value [*], startAt : Integer) @ Integer

ReadStructuralFeatureActionActivation

+ dofction ()

AddStructuralFeatureValueActionActivation

+ dodction [)

Figure 76 - Structural Feature Action Activations

RemoveStructuralFeatureValueActionActivation

+ dosction ()

fUML ::Semantics::Actions::BasicActions::ActionActivation

]

ClearAssociationActionActivation

LinkActionActivation

+ dobction [)

Figure 77 - Link Action Activations

+ linkMatchesEndData (linl: : Link;, endDatalist @ LinkEndData [*]) ¢ Boclean
+ endMatchesEndData (linl: @ Link, endData : LinkEndData) @ Boolean

+ getAssociation () @ Association
ReadLinkActionActivation WritelLinkActionActivation
+ dolction [)
Y
CreateLinkActionActivation DestroyLinkActionActivation

+ dofction [)

+ dofiction [)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 229

8.6.3.2 Class Descriptions
8.6.3.2.1 AddStructuralFeatureValueActionActivation

An add structural feature action value activation is a write structural feature action activation for an add structural feature
value action.

Generalizations
e WriteStructuralFeatureActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value of the object input pin. If it is not a structural value, do nothing.
Otherwise do the following.

// Get the value on the value input pin.

// If isReplaceAll is true, set the appropriate feature of the input object to the input
values.

// Otherwise, get the current values of the feature and insert the input value at the
position given by the value of the insertAt pin.

AddStructuralFeatureValueAction action = (AddStructuralFeatureValueAction) (this.node);

‘ Value value = this.takeTokens (action.object) .getValue (0);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

if (value instanceof StructuredValue) {
StructuredValue structuredValue = (StructuredValue)value;
ValuelList inputValues = this.takeTokens (action.value);

if (action.isReplaceAll) {
structuredValue.setFeatureValue (action.structuralFeature, inputValues, 0):;
} else |
FeatureValue featureValue =
structuredvValue.getFeatureValue (action.structuralFeature) ;

int insertAt = 1;
if (featureValue.values.size() > 0) {
if (action.insertAt == null) {
// *** Tf there is no insertAt pin, then the structural feature must be
unordered, and the insertion position is immaterial. ***

insertAt =
((ChoiceStrategy) this.getExecutionlLocus () .factory.getStrategy ("choice")) .choose (featureVal
ue.values.size());

} else {

insertAt =
((UnlimitedNaturalValue)this.takeTokens (action.insertAt) .getValue (0)) .value.naturalValue;
-}
_ 1

// NOTE: Multiplicity of the value input pin is required to be 1..1.
Value inputValue = inputValues.getValue (0);

230 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (action.structuralFeature.multiplicityFElement.isUnique) {
Remove any existing value that duplicates the input value
int j = position (inputValue, featureValue.values, 1);
if (3> 0) {
featureValue.values.remove (j-1) ;
if (insertAt > 0 & J < insertAt) {

insertAt = insertAt - 1;
}
R
1
if (insertAt < 0) { This indicates an unlimited value of "*"
featureValue.values.addValue (inputValue) ;
} else {
featureValue.values.addValue (insertAt - 1, inputValue);

S
1

Issue 13314 -- The result pin of clear and write structural feature actions can be optional

if (action.result != null) {
this.putToken (action.result, value);

| getFokenrstactionobjecti—getVatue o+

=) 1 : . £ o4 = k] k] \ L
TT (varac IIISctaltceor ocruacturcavaracy 1
o = Iy 7. 1 = = Iy 7. 1 i . k] k] k]
oCcrgcrtorecavaruac cructurcavaruac — (ocructurcavaruc)/yvaracy,
1 T4 e = k] T em o] L . 1
arocorsCc Tripacvarac = ClIIS.gCcCIORCIIS{acTtIor.vartac/y
=) s (PR oY 1 217 ‘
T (adCCrIOoll. roSnepracezrirrI) 1
= = Iy 7. 1 T . 171 s . . 1 . . . k] fa)
Cruocturedvaruc.secreacurevarae (actcrolfl. scructararreacare, rhpacvaracesy, 9/ 7

1z

= 1
T aroac —

.
cacurc

- . - 4= N\ 3 1
TITC 1T LT CaCT o T
i =4 £ . 1 1 . ral L
TIT (reacurevarue. varuaes.srze(/ o)1
L= L 4o : . . 11 L
T (AT TITUIT . TIT 1T T . 1T 1
Sk ok T £ i . . de I\ Ao . i el . . ul £ . . i)
TT CIIere IS IO IIISerTAC pIir, CIiICIr Cie Structurar reacure must oT
l l <l d=lo : 4o . o - : 4= - ul Sk ok
TdITOLTTUTLI T, [=esywy CIT 1T CTLT CTITUIT tJL) T CTTUIT T T C T T T .

NS bV IS, I £ L1 1 : & : : : g 1n il 1
NI T MUrcrprrCcTT O T aroc TIIpuUt pPTrir T reguorred Tto O T .
T 7ad : " 1 : T 7ad etz fa
aroc ripuacvarge - Ifpacvartges.gecvarac (Jv/)
= 4o " " 1 " kI IR . | FECEDN £] ‘
ITT (adcCtIol.Structurarreacure.murcrprrcrcynreielIt. rovirrgue) 1
n Lt 1 I S | 14 & FL N : & 1
nemove aiT CXTITSTIG aruc Ctirat ouprrcacte CITS IIIputT arue
AN iy o : etz = " e 1 1
TITc J - posIcroirtripucvaruac, rLeacturcvaruce.varuacesy L7
=S fa e
RN | v
£ . 1 1 L
reagturevaruge . varuoes .. remove tJ L/ 7
=R Pk Ao o : L e
T {TITSeIrTEC U J IIrSerTrxt) 1
: L : . 1
TIISTertzic — Illser Ctzic 7

Semantics of a Foundational Subset for Executable UML Models, Beta 2 231

8.6.3.2.2 ClearAssociationActionActivation
A clear association action activation is an action activation for a clear association action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the extent, at the current execution locus, of the given association.
// Read the object input pin. Destroy all links in which the object participates.

ClearAssociationAction action = (ClearAssociationAction) (this.node);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

ExtensionalValuelist extent = this.getExecutionLocus () .getExtent (action.association);
Value objectValue = this. Tokens (action.object) .getValue (0) ;

for (int 1 = 0; 1 < extent.size(); i++) {
Link link = (Link) (extent.getValue(i));

if (this.valueParticipatesInLink(objectValue, link)) {
link.destroy();

8.6.3.2.3 ClearStructuralFeatureActionActivation
A clear structural feature action activation is a structural feature action activation for a clear structural feature action.

Generalizations
e StructuralFeatureActionActivation

Attributes
None

Associations
None

232 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Operations

[1] doAction ()

// Get the value of the object input pin. If it is not a structured value, then do
nothing.

// Otherwise, set the appropriate feature of the input value to be empty.

ClearStructuralFeatureAction action = (ClearStructuralFeatureAction) (this.node);

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value value = this.takeTokens (action.object) .getValue (0) ;

if (value instanceof StructuredValue) {
((Structure alue)value) .setFeaturel

Value (action.structuralFeature, new ValuelList (),

if (action.result != null) {
this.putToken (action.result, wvalue);
fg(,tTL)J‘\k,Llé \{ithLL)Ll B f)bJ ect)— :Jk,t'faixu, \C/ 7

2 L = = 3 ada = o Qe cns e 2 AN 7o 1 L
IT {vVarge InStanceor otructureavaruae) 1
I . SR SN o] I . LS I P P, . 1o . L& S IR SR

T {oC OC TULITUVaOIOT) VvaITudT) ..o CrcacurlrTvaraT (aC TIUIT.OC OCTCTULrIaIrIrcacuartTy ITCTV vaTOaT OIS T ()
\
4 4

S A SR, DA R o N 1.

L\l\‘j.’\JJL\L/V\C IMTaC TCTTIUIT. T ToUIrCy varac<) Ty

8.6.3.24 CreateLinkActionActivation

A create link action activation is a write link action activation for a create link action.

Generalizations
e WriteLinkActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the extent at the current execution locus of the association for which a link is
being created.

// Destroy all links that have a value for any end for which isReplaceAll is true.

// Create a new link for the association, at the current locus, with the given end data
values, inserted at the given insertAt position (for ordered ends).

CreatelLinkAction action = (CreateLinkAction) (this.node);
LinkEndCreationDatal.ist endDatal.ist = action.endData;

Issue 13544 -- [FUML] 8.6.3.2.4 CreateLinkActionActivation.doAction()

Association linkAssociation = this.getAssociation();
ExtensionalValuelist extent = this.getExecutionLocus () .getExtent (l1inkAssociation);
for (int i = 0; i < extent.size(); i++) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 233

ExtensionalValue value = extent.getValue(i);
Link link = (Link)value;

boolean noMatch = true;
int § = 1;
while (noMatch & j <= endDatalist.size()) {
LinkEndCreationData endData = endDatalist.getValue (j-1);
if (endData.isReplaceAll & this.endMatchesEndData (link, endData)) f{
link.destroy();

noMatch = false;

1

i=3 + 1;
1
1
Link newlLink = new Link();
newlLink.type = linkAssociation;
for (int i = 0; i < endDatalist.size(); i++) |

LinkEndCreationData endData = endDatalist.getValue (i) ;

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

int insertAt;

if (endData.insertAt == null) {
insertAt = 0;
} else |
insertAt = ((UnlimitedNaturalValue)
(this.takeTokens (endData.insertAt) .getValue (0))) .value.naturalValue;
newlLink.setFeatureValue (endData.end, this.takebFxtenrsiomatvatuebist—extent—
=l o =T 4 o I L =T = NI A P = o e L \
CIiTT -\jCL.J_J CC O CIUITOUTT \WJ -\jCL.J_J CTITC (CITTT -chb oCTatcTITuUIT) Ty
L 4= fal = 4= L\ L\ L
TOT {TIrc T = U, T CTXCCITC TZe () T 17 T
P ST B PR T
jan) CTITS TUITA T [emmvLS [CEmTLS o <= L,CllL,.\jCL, [SIE SR LS g ay
I 1 l 1 LT 1 1
O TITIN T T1ITIRC o (O ITITRY [cmmv L
) l A = 1 =
DO ITAIT 1TTOUTIA T CTIT T CL T,
L~ ,
e J - LI7
s 1 L DA 4= 1 o 11 4= I = L \ L
WIrTrre (ITOTIacCIT & J = cCclldadcabolroC.oLrze (/) / 1
I 1T AWal . hmY 4 1 4 1 4 i . . il ha
D TITRITOITUC T TaC TTUlITDaCTCa 1T oaca — ClIIUDatCao ot \jCL, [CEmTLS _J T r
o L 11 4= o 11 T 1N 4= 1 I~ 11 4= L1 1 11 4= \ L
J - (ClITaDatTa L T Cb}LabC J o CIiTT . CLIUTTa CCUITT DITUDOTa TLIITITRS, cITaoatTa;)7 1
T
TIMR-OEeSTIroOY {7
A = 1 £
1TTOUTIA T CTIT o A <7
. . I
J — J T T
I3 1 I 2 1 I o 1 L\
TOTITIR TTCTWIOTITR o TTCTW TTITR U
£ L= fal o 11 4= I = 1 L
TOT (IrIrc T — Uy I CclidrDacanoroC.oLrze (/s LT T 17 1
e 1T AWal . hmY 4 1 4 i . . il
D TITRTOITUC T TaC TTUlITDacTa cliiaoatca — CLIUUGLGMLDL.\jCL [SIE SR LS g ay
n . n 4o 7\ 4
1TC 1T oL C T
L =y L 11 4= o 4= 4= 1 7.\ L
J - (ClITaUatcTa . ITIT C L CIAT . 1T I 1
n 4o 7\ 4 fal
1T oL C |y o \var

rewbink—setPFeature aluc(cudData.cud, - .gctTokens(endData.value), insertAt);

234 Semantics of a Foundational Subset for Executable UML Models, Beta 2

this.getExecutionLocus () .add (newLink) ;

8.6.3.2.5 CreateObjectActionActivation
A create object action activation is an action activation for a create object action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Create an object with the given classifier (which must be a class) as its type, at the
same locus as the action activation.
// Place a reference to the object on the result pin of the action.

CreateObjectAction action = (CreateObjectAction) (this.node);

Reference reference = new Reference();
reference.referent = this.getExecutionLocus () .instantiate((Class_) (action.classifier));

this.putToken (action.result, reference);

8.6.3.2.6 DestroyLinkActionActivation
A destroy link action activation is a write link action activation for a destroy link action.

Generalizations
e WriteLinkActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the extent, at the current execution locus, of the association for which links are
being destroyed.

// Destroy all links that match the given link end destruction data.

// For unique ends, or non-unique ends for which isDestroyDuplicates is true, match links
with a matching value for that end.

// For non-unique, ordered ends for which isDestroyDuplicates is false, match links with
an end value at the given destroyAt position. [Must a value be given, too, in this case?]

Semantics of a Foundational Subset for Executable UML Models, Beta 2 235

// For non-unique, non-ordered ends for which isDestroyDuplicates is false, pick one
matching link (if any) non-deterministically. [The semantics of this case is not clear
from the current spec.]

DestroyLinkAction action = (DestroyLinkAction) (this.node);
LinkEndDestructionDatalist destructionDatalist = action.endData;

boolean destroyOnlyOne = false;

int 3 = 1;

while (!destroyOnlyOne & J <= destructionDatalist.size()) {
LinkEndDestructionData endData = destructionDatalist.getValue (j-1);

destroyOnlyOne = !endData.end.multiplicityElement.isUnique & !
endData.end.multiplicityElement.isOrdered & !endData.isDestroyDuplicates;
j=73 + 1;

}

LinkEndDatalList endDatalist = new LinkEndDatalList ()

for (int i = 0; i1 < destructionDatalist.size(); i++) {
LinkEndDestructionData endData = destructionDatalist.getValue (i);
endDataList.addValue (endData) ;

}

ExtensionalValuelist extent = this.getExecutionLocus () .getExtent (this.getAssociation());
ExtensionalValuelList matchingLinks = new ExtensionalValueList();
for (int i = 0; 1 < extent.size(); i++) {

ExtensionalValue value = extent.getValue(i);

Link link = (Link)value;

if (this.linkMatchesEndData (link, endDatalList)) {
matchingLinks.addValue (1ink) ;

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

// Now that matching is done, ensure that all tokens on end data input pins

// are consumed.

for (int i = 0; i < destructionDatalist.size(); i++) {
LinkEndDestructionData endData = destructionDatalist.getValue (i) ;
Property end = endData.end;
if (!endData.isDestroyDuplicates

-

& l'end.multiplicityElement.isUnigque & end.multiplicityvElement.isOrdered) {
this.takeTokens (endData.destroyAt) ;

1

this.takeTokens (endData.value) ;

1

if (destroyOnlyOne) {
// *** If there is more than one matching link, non-deterministically choose one. ***
if (matchingLinks.size() > 0) {
int 1 =
((ChoiceStrategy)this.getExecutionLocus () .factory.getStrategy ("choice")) .choose (matchingLi
nks.size());
matchingLinks.getValue (i-1) .destroy () ;
}
} else {
for (int 1 = 0; 1 < matchingLinks.size(); i++) {
ExtensionalValue matchingLink = matchingLinks.getValue (i) ;
matchingLink.destroy () ;

236 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.6.3.2.7 DestroyObjectActionActivation
A destroy object action activation is an action activation for a destroy object action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] destroyObject (in value : Value, in isDestroyLinks : Boolean, in isDestroyOwnedObjects : Boolean)

// If the given value is a reference, then destroy the referenced object, per the given
destroy action attribute values.

// Debug.println (" [destroyObject] object = " + value.objectId()):;

if (value instanceof Reference) {
Reference reference = (Reference)value;

if (isDestroyLinks | isDestroyOwnedObjects) {
Debug.println (" [destroyObject] Destroying links...");
ExtensionalValuelList extensionalValues =
this.getExecutionLocus () .extensionalValues;

for (int 1 = 0; 1 < extensionalValues.size(); 1i++) {
ExtensionalValue extensionalValue = extensionalValues.getValue (i);
if (extensionalValue instanceof Link) {
Link link = (Link)extensionalValue;
if (this.valueParticipatesInLink(reference, 1link)) {
if (isDestroyLinks | this.objectIsComposite (reference, link)) {

// Debug.println("[destroyObject] Destroying link " +
link.objectId());
link.destroy();

}

if (isDestroyOwnedObjects) {

Debug.println (" [destroyObject] Destroying owned objects...");
FeatureValuelist objectFeatureValues = reference.getFeatureValues();
for (int i = 0; 1 < objectFeatureValues.size(); i++) {
FeatureValue featureValue = objectFeatureValues.getValue (i),
if (((Property) featureValue.feature) .aggregation == AggregationKind.composite)
{
Valuelist values = featureValue.values;
for (int j = 0; j < values.size(); Jj++) {

Value ownedValue = values.getValue (j);
this.destroyObject (ownedValue, isDestroylLinks, isDestroyOwnedObjects);

}

reference.destroy () ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 237

[2] doAction ()

// Get the value on the target input pin.

// If the value is not a reference, then the action has no effect. Otherwise, do the
following.

// If isDestroylLinks is true, destroy all links in which the referent participates.
// If isDestroyOwnedObjects is true, destroy all objects owned by the referent via
composition links.

// Destroy the referent object.

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

DestroyObjectAction action = (DestroyObjectAction) (this.node);
Value value = this. Tokens (action.target) .getValue (0) ;

this.destroyObject (value, action.isDestroylLinks, action.isDestroyOwnedObjects) ;

[3] objectlsComposite (in reference : Reference, in link : Link) : Boolean
// Test whether the given reference participates in the given link as a composite.
FeatureValuelist linkFeatureValues = link.getFeatureValues();
boolean isComposite = false;
int i = 1;
while (!isComposite & 1 <= linkFeatureValues.size()) {

FeatureValue featureValue = linkFeatureValues.getValue(i-1);

if (!featureValue.values.getValue(0).equals (reference) &

((Property) featureValue.feature) .aggregation == AggregationKind.composite) {
isComposite = true;

}

return isComposite;

8.6.3.2.8 LinkActionActivation
A link action activation is an action activation for a link action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] endMatchesEndData (in link : Link, in endData : LinkEndData) : Boolean

// Test whether the appropriate end of the given link matches the given end data.

238 Semantics of a Foundational Subset for Executable UML Models, Beta 2

boolean matches = false;

if (endData.value == null) {
matches = true;
} else {
Property end = endData.end;
FeatureValue linkFeatureValue = link.getFeatureValue (end);

Value endValue = this.getTokens (endData.value).getValue (0);
if (endData instanceof LinkEndDestructionData) {
if (! ((LinkEndDestructionData)endData) .isDestroyDuplicates & !
end.multiplicityElement.isUnique & end.multiplicityElement.isOrdered) {
int destroyAt = ((UnlimitedNaturalValue)
(this.getTokens (((LinkEndDestructionData)endData) .destroyAt) .getValue (0))) .value.naturalVa
lue;

matches = linkFeatureValue.values.getValue (0).equals (endvValue) &&
linkFeatureValue.position == destroyAt;
} else {
matches = linkFeatureValue.values.getValue (0).equals (endValue);
}
} else {
matches = linkFeatureValue.values.getValue (0).equals (endValue);

}
}

return matches;

[2] getAssociation () : Association
// Get the association for the link action of this activation.

return (Association) (((LinkAction) (this.node)) .endData.getValue(0) .end.association);

[3] linkMatchesEndData (in link : Link, in endDataList : LinkEndData [0..*]) : Boolean
// Test whether the given link matches the given end data.
boolean matches = true;
int 1 = 1;
while (matches & 1 <= endDatalist.size()) {
matches = this.endMatchesEndData (link, endDatalist.getValue(i-1));

i=1+ 1;

}

return matches;

8.6.3.2.9 ReadLinkActionActivation
A read link action activation is a link action activation for a read link action.

Generalizations
e LinkActionActivation

Attributes
None

Associations
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2 239

Operations

[1] doAction ()

// Get the extent, at the current execution locus, of the association to which the action
applies.

// For all links that match the link end data, place the value of the remaining "open" end
on the result pin.

ReadLinkAction action = (ReadLinkAction) (this.node);

LinkEndDatalist endDatalist = action.endData;
LinkEndData openkEnd = null;

Issue 13869 -- Error in ReadLinkActionActivation

int 1 = 1;
while ((openEnd == null) & 1 <= endDatalist.size()) {
if (endDatalist.getValue(i-1) .value == null) {
openkEnd = endDatalist.getValue (i-1);

ExtensionalValuelist extent = this.getExecutionLocus () .getExtent (this.getAssociation());

for (dnt 7 = 0; j < extent.size(); J++) {
ExtensionalValue value = extent.getValue (]);
Link link = (Link)value;
if (this.linkMatchesEndData(link, endDatalist)) {
Value resultValue = link.getFeatureValue (openEnd.end) .values.getValue (0);
this.putToken (action.result, resultValue);

.
1

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Now that matching is done, ensure that all tokens on end data input pins
// are consumed.
for (int k=0; k<endDataliist.size(); k++) {
LinkEndData endData = endDatalist.getValue (k) ;
if (endData.value !'= null) {
this.takeTokens (endData.value) ;

) 13 14
e vara ==—ITar I\
k] R~ S i k] :
openmiTa— nmapataorsSt.getvartuce (/7
. . 4
I T L7
Teed : k| k| k. . 4 el) 4o T N . B NN, M) 4 s)
mXTEenSTIOoNarvaruaeorSt C©XCeIIt — CcirSTgetH T CITOoTD oS- ge Tt XTerrc({tirrsS~-getT TacIron {7
= ' Fa g 4 .) LRI ‘
TOr— (It J — 97 J ceIrc T \V A2 L ARt
T 1 k] k] . i i k]
mXTersSTIonatrvarue aroce — cXtenc.getvarzuae(J /s
le 7 1 T 1 k|
TIORK IRk — (OIfR)yvaraey
= el s k] TR S| T TN 4 1 1 R~ S ‘
ITT—(CIiTT TIITRIMIE CCIT oD ata (T IRy Mo oDatanoIrSTT) 1
k| 14 k| k| 1 T . k| T ol 1)\ k| . k| Fa
arto resStrovart = IIrirK.gectreacuor groc (openmia e~ vata TgeTvaroe oy
el s oo e 14 14 k]
CITT PoTIoReT{actIon ort,; * grcvaruc)y

240 Semantics of a Foundational Subset for Executable UML Models, Beta 2

8.6.3.2.10 ReadSelfActionActivation
A read self action activation is an action activation for a read self action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the context object of the activity execution containing this action activation and
place a reference to it on the result output pin.

// Debug.println (" [ReadSelfActionActivation] Start...");

Reference context = new Reference();
context.referent = this.getExecutionContext () ;

Debug.println (" [ReadSelfActionActivation] context object = " + context.referent);

OutputPin resultPin = ((ReadSelfAction) (this.node)) .result;
this.putToken (resultPin, context);

8.6.3.2.11 ReadStructuralFeatureActionActivation
A read structural feature action activation is an action activation for a read structural feature action.

Generalizations
e StructuralFeatureActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value of the object input pin. If the value is not a structural value, do
nothing.

// Otherwise, get the values of the appropriate feature of the input value and place them
on the result output pin.

ReadStructuralFeatureAction action = (ReadStructuralFeatureAction) (this.node);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value value = this. Tokens (action.object) .getValue (0) ;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 241

if (value instanceof StructuredvValue) {
// Debug.println (" [ReadStructuralFeatureActionActivation] value = " + value +",
structural feature = " 4+ action.structuralFeature.name);
ValueList resultValues =
((StructuredValue)value) .getFeatureValue (action.structuralFeature) .values;
this.putTokens (action.result, resultValues);

}

8.6.3.2.12 RemoveStructuralFeatureValueActionActivation

A remove structural feature action activation is a write structural feature action activation for a remove structural feature
value action.

Generalizations
e WriteStructuralFeatureActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value of the object input pin. If it is not a structural value, do nothing.
Otherwise do the following.

// Get the values of the appropriate feature of the input object. Get the value of the
value input pin.

// If isRemoveDuplicates is true, then remove all feature values equal to the input
value.

// If isRemoveDuplicates is false and there is no removeAt input pin, remove any one
feature value equal to the input value (if there are any that are equal).

// If isRemoveDuplicates is false, there is a removeAt input pin and the feature value at
the removeAt position is equal to the input value, remove that feature value.

// Set the appropriate feature of the input object to have the modified set of values.

RemoveStructuralFeatureValueAction action = (RemoveStructuralFeatureValueAction)
(this.node);

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value value = this.takeTokens (action.object) .getValue (0) ;

if (value instanceof StructuredvValue) {
Value inputValue = this.takeTokens (action.value) .getValue (0);
FeatureValue featureValue =

((StructuredvValue)value) .getFeatureValue (action.structuralFeature) ;

if (action.isRemoveDuplicates) {

this.position (value, featureValue.values, 1);

int j

.remove (j-1) ;
ion (value, featureValue.values, Jj);

removeAt == null) {

242 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Valuelist values = featureValue.values;
intList positions = new intList ()
for (int i = 0; i < values.size(); i ++) {
Value thisValue = values.getValue(i);
if (thisValue.eguals (inputValue)) {
positions.addValue (i+1) ;

- 1}
- 1}

if (positions.size()>0) {
*** Nondeterministically choose which value to remove. ***

int j =
((ChoiceStrateqgy)this.getExecutionlocus () .factory.getStrategy ("choice")) .choose (positions.
size());
featureValue.values.remove (positions.getValue (j-1) - 1);
R
} else |
int removeAt = ((UnlimitedNaturalValue)
(this.takeTokens (action.removeAt) .getValue(0))) .value.naturalValue;
if (featureValue.values.getValue (removeAt-1) .equals (inputValue)) {
featureValue.values.remove (removeAt-1) ;
1
I
if (action.result != null) {
this.putToken (action.result, value);
t t 0 3 0 7

=) s (R oY o R = \
T LT (aCCIos rSnemoveDuprrcacesS/

H
-
~

P I A 4 L kil £ + Ay
ITITc - Cirt PoSTTIoOTtvarae,; rteaturevarae.varaesSy

| ’
wWirrre

k] k]
evargeTvargesSTEremoS

. L / 1
TTrSTpoSTICcIoirivaracy,

) k] = . i 17
T erSe— I {acTIonremovernt = 1TuT) T

71 kP k] £ 4 71
TS oI ST [cEmvLS) =—Treacarevaruac

de e T 2oy (I P T 2 VA
ITTOIST POSTCIONS — IewW IfIcorsSt (/)7

£ Lo Fa : h :
TOTr—(IITT =—U7 aroesSTSTzZze T, T T 1

. 1 JARERY
Trsvarac — arocsS.getvarac (/)
(
1

: kil kil] Y kil
T aroeTeguarsS{TIrapucvarae))

LR ARA & | VAR T
poSTTIOnSTadavarac (Lt r /),

s L e o s VAN Famy
IT (POSTCIonsS-STIze ()~

dde kAT u]

+ : : ok
NoaeTermIITE

17 I k] 4
TCaTT CIToOCSe— Wi CIT Jroe— o remove=

L1

4 P I [TAY T L P4
rategy T CcnoTrce /- CHooSe(POSTTIONTS

= o T k] k] L LR exz o] VAR TR
Tcatcturecvaroc.varuaces. remove (PpoSTeIoir S getvatac () L7/

He
~

—F—etse—+

Semantics of a Foundational Subset for Executable UML Models, Beta 2 243

8.6.3.2.13 StructuralFeatureActionActivation

A structural feature action activation is an action activation for a structural feature action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations
None

8.6.3.2.14 TestldentityActionActivation
A test identity action activation is an action activation for a test identity action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the values from the first and second input pins and test if they are equal. (Note
the equality of references is defined to be that they have identical referents.)

// If they are equal, place true on the pin execution for the result output pin, otherwise
place false.

TestIdentityAction action = (TestIdentityAction) (this.node);

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value firstValue = this.t
Value ondValue = this \ et)
Fetuesecondavatue —cthrsogetTokens (action.second) .get

Value (0) ;

L& S | e
eTvarae vy

Value (0);

mTS{aCcTtTIon- T

244 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Value testResult = this.makeBooleanValue (firstValue.equals (secondValue)) ;
this.putToken (action.result, testResult);

8.6.3.2.15 ValueSpecificationActionActivation
A value specification action activation is an action activation for a value specification action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Evaluate the value specification for the action and place the result on the result pin
of the action.

ValueSpecificationAction action = (ValueSpecificationAction) (this.node);

Value value = this.getExecutionLocus () .executor.evaluate (action.value);
this.putToken (action.result, value);

8.6.3.2.16 WriteLinkActionActivation
A write link action activation is a link action activation for a write link action.

Generalizations
e LinkActionActivation

Attributes
None

Associations
None

Operations
None

8.6.3.2.17 WriteStructuralFeatureActionActivation
A write structural feature action activation is a structural feature action activation for a write structural feature action.

Generalizations
e StructuralFeatureActionActivation

Attributes
None

Semantics of a Foundational Subset for Executable UML Models, Beta 2 245

Associations

None

Operations

[1] position (in value : Value, in list : Value [0..*], in startAt : Integer) : Integer

// Return the position (counting from 1) of the first occurance of the given value in the
given list at or after the starting index, or 0 if it is not found.

boolean found = false;
int i = startAt;
while (!found & i <= list.size()) {

}
if

}

found = list.getValue(i-1) .equals(value);
i =1+ 1;

(!found) {
i=1;

return i1 - 1;

8.6.4 Complete Actions

8.6.4.1 Overview

Object Classification Actions

At the Complete Actions level, f{UML includes three additional actions related to object classification (see Figure 78 for
the corresponding activation model).

Read Extent Action. This action is used to obtain the extent of a class at the execution locus of the activity
activation containing the action activation. The action outputs references to each of the objects in the extent. Note
that the extent of a class is considered to also include the instances of all subclasses of the identified class. In
fUML, the classifier associated with this action must be a class (see Subclause 7.5.4).

Read Is Classified Object Action. This action is used to test whether its input value is of a given type. The input
value does not actually have to be an object reference but can also be a data value. The action produces a true
output if the input has the given classifier as one of its types (objects may have multiple types). If isDirect is
false, then the action also outputs true of any type of the input value is a specialization (directly or indirectly) of
the given classifier. Otherwise, the action outputs false.

Reclassify Object Action. This action is used to change the type(s) of an object. In f{UML, the input value must be
a reference to an object and all the classifiers associated with the action must be classes (see Subclause 7.5.4). Per
the semantics of UML 2 for reclassification (see Subclause 11.3.9 of the UML 2 Superstructure Specification),
this action removes the indicated old classifiers as types of the input object and adds the new classifiers, taking
into account cases in which a classifier my be in both sets. Note that, if a classifier with a classifier behavior is
removed, then any execution the input object may have for this behavior is terminated (see also Subclause 8.5.3).
However, if a classifier is added with a classifier behavior, this behavior is nof started until an explicit start object
behavior action is performed (see below).

Start Object Behavior Action

At the Complete Actions level, f{UML also adds the start object behavior action. This action is used to start the execution
of an instantiated behavior or a classifier behavior of an active object.

246

Semantics of a Foundational Subset for Executable UML Models, Beta 2

In general UML, a start object behavior action is a kind of call action and its behavior invocation may be either
synchronous or asynchronous. However, in f{UML, only asynchronous invocation is supported (see Subclause 7.5.2).
Therefore, StartObjectBehaviorActionActivation is a subclass of InvocationAction rather than CallActionActivation (see
Figure 78), since CallActionActivation only provides synchronous call semantics (see Subclause 8.6.2).

If the input object to the action activation is an active object of the type of the input pin of the start object behavior
action, then the effect of the action is to start the classifier behavior associated with that type. The start object behavior
activation doAction method calls the startBehavior operation on the input object, passing as parameter values the values
on the argument input pin activations for the action activation. This results in the input object having an object activation
with a classifier behavior execution for that classifier behavior (see Subclause 8.4.3). Once the classifier behavior
execution starts, it executes concurrently, so the execution thread of the start object behavior action activation can
continue without blocking. If the classifier behavior for the indicated type already has an execution for the given object,
then the action has no effect.

If the input pin to the start object behavior action activation does not have a type, then the effect of the action is to start
the classifier behaviors for all types of the input object that have classifier behaviors that are not already executing. Note
that, in this case, it is not possible to specify input parameter values for the classifier behaviors.

If the input object to the action activation is itself an execution object (i.e., an instance of a behavior), then the effect is to
start the execution of the behavior (if it isn’t already executing). However, since the execution most proceed
asynchronously to the execution of the start object behavior action, it is necessary to start a new execution thread. This is
achieved in the execution model by starting the execution of the behavior in the same way as a classifier behavior. That
is, the input execution object is given an object activation with a classifier behavior execution that provides a new
execution thread for the execution object itself. The execute operation for the input execution object is called on this new
thread, so that the thread of the start object behavior action activation can continue without blocking. (See also Subclause
8.4.3))

NOTE: fUML also includes the start classifier behavior action. This acts similarly to a start object behavior action, but it
only handles active objects with classifier behaviors and it does not provide a mechanism for specifying input
parameters. Start classifier behavior actions are supported in f{UML for compatibility with past practice, but they should
be considered deprecated in favor of start object behavior actions.

Accept Event Action

An accept event action is used in an activity to wait for the occurrence of a specific event. In fUML, the only events that
such an action can wait for are signal events (see Subclause 7.5.4).

To wait for the dispatching of a signal event, the accept event action activation must register itself as an event accepter
with its context object. Actually, the action activation does not directly register itself, but, instead, it creates an accept
event action event accepter object, which is a kind of event accepter (see Subclause 8.4.3), and registers this with the
context object (see Figure 79). This registration happens when the accept event action activation fires (the only
prerequisites for this action are that it receives a control token), and the doAction operation is not called in this case.

Instead, the behavior of the action is triggered when a signal instance is dispatched from the event pool of the context
object that matches the trigger specification of the accept event action. In this case, the object activation dispatchEvent
operation calls the accept operation on the accept event action event accepter object (see Subclause 8.6.3). The event
accepter then forwards the call to the accept operation of the accept event action activation, starting a new thread within
the activity containing the start object behavior action.

Reduce Action

Finally, the Complete Actions level also includes the reduce action. This action calls a reducer behavior repeatedly in
order to reduce a set of input values to a single value. Similarly to a call action, the reduce action activation creates an
execution object for the reducer behavior (see Figure 80). A new execution object is created for each call and is destroyed
at the end of the call.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 247

fUML ::Semantics::Actions::BasicActions::ActionActivation

ReadExtentActionActivation ReadIsClassifiedObjectActionActivation
+ dodction) + doAction [)
+ checkalParents (type : Classifier, classifier @ Classifier) : Boolean

ReclassifyObjectActionActivation StartClassifierBehaviorActionActivation

+ doAction () + doAction ()

| fUML ::Semantics::Actions::BasicActions::InvocationActionActivation |

StartDhjectBeIlaviér.ﬁ.ctionnctivation

+ dobction [)

Figure 78 - Object Action Activations

248 Semantics of a Foundational Subset for Executable UML Models, Beta 2

fUML ::Semantics::Actions::BasicActions::ActionActivation

AcceptEventActionActivation
+ waiting : Boolean
+run i)
+ fire { incomingTolkens : Token [*])
+ isReady [) : Boolean
+ dobction ()
+ accept (signallnstance © Signallnstance)
+ match (signallnstance : Signallnstance) : Boolean
+ terminate ()

+ actionActivation | 1

+ eventAccepter |0..1

AcceptEventActionEventAccepter

+ accept [signallnstance : Signallnstance)
+ match [signallnstance @ Signallnstance) : Boolean

fUML ::Semantics::CommonBehaviors::Communications::EventAccepter

Figure 79 - Accept Action Activations

fUML ::Semantics::Actions::BasicActions::ActionActivation

ReduceActionActivation

+ dobction ()
+ terminate

(
0.1

)

0..1 |+ currentExecution

fUML ::Semantics::CommonBehaviors ::BasicBehaviors::Execution

Figure 80 - Reduce Action Activations

Semantics of a Foundational Subset for Executable UML Models, Beta 2

249

8.6.4.2 Class Descriptions
8.6.4.2.1 AcceptEventActionActivation
An accept event action activation is an action activation for an accept event action.

Generalizations
e ActionActivation

Attributes
* waiting : Boolean

Associations
e cventAccepter : AcceptEventActionEventAccepter [0..1]

If the accept event action activation is waiting for an event, then this is the accepter it has registered for the
event.

Operations

[1] accept (in signallnstance : Signallnstance)

‘ Issue 13546 -- 8.6.4.2.1 [5]AcceptEventActionActivation::accept(in signalIlnstance:SignalInstance)

// Accept a signal occurance for the given signal instance.
// If the action does not unmarshall, then place the signal instance on the result pin;—+f—
anry.

/ If the action does unmarshall, then get the feature values of the signal instance, and
place the values for each feature on the corresponding output pin,if any.

/ Concurrently fire all output pins while offering a single control token.
// If there are no incoming edges, then re-register this accept event action execution
with the context object.

AcceptEventAction action = (AcceptEventAction) (this.node) ;
OutputPinlist resultPins = action.result;
Debug.println (" [accept] action = " + action.name + ", signalinstance = " +

signalInstance);

if (this.running) {
if (laction.isUnmarshall) {
Valuelist result = new ValuelList ();
result.addValue (signalInstance) ;

Issue 13546 -- 8.6.4.2.1 [5]AcceptEventActionActivation::accept(in signallnstance:SignalInstance)

if (resultPins.size() > 0) {
this.putTokens (resultPins.getValue (0), result);

b I T PR Kl - R B | i N § F=D.] £ : o1 : 4 -]
T T ClT acCtIrolr goTsS umarsitarLt, Cclicil get CtlIc rcacare arucsS oL ClIc SIgIar Irirscarrce, arra
1 N k] c It 4 sl A 4 L :
pPrac TIT araoesS—ror—eacir—reacur OIr—Tthe CoOrresSponarng output PIirs
| =] ~ 11 4 + : o1 Walie) : - : k] + I
ConmcCorrenccT TITre arr oucput prirs Trre OrrcrIntg a SIfgrec COIIcror CORTIT.
il = : . A sl L e P L L L L
Trr—Tcnner ar To— T ITrComIITg ageSy; CThacir r&e—regTrSTter TS acceptT T —aCcTIomr—EXeCuTI oI
R W ¥ + 4 1o +
LT CIT CITC CUITCTAT U JTTT,
T + 4 PR T + 4 el o)
CCTP L VTITCAC T TUIT aC tTUIT — (ACCTPLOVEITCAT T IUIT) (UITES T ITOUT
L D I & et IS L 14
gTpPpuCcr ITorST reSurcrIirsS — actcrIofr-resurcy
Dale (NN VAT o1 L no L] : 1= 4 no
DeougT P rITcIir{t— (accep Tt actIoir — —acTIonT I ame—r 7 Igrrarrirscatce — T

250 Semantics of a Foundational Subset for Executable UML Models, Beta 2

L L -
STroTarrirSTance sy

CITT ST o iTgy 1

ITT—
S~ Lot o — 1 PP PP . e
T . aC CTUIT, TOUTIIIA [=F ¥ o i g ny 1
i | T = i PPN 1 3= - 3L 1 - 4=
varuaToror ITTouUrCc - TITW vaIraToTroCT () s
SN, IS, [P & & S | _ 1T S
cCoadrLrC T A\U,\Q\g\\d\ TS CTalTCT
i ot o le oo o > P S et 7]l oo o a) a T
CITITS L TCTORTITS \L\“')ALL,Lll:;.\jk cvVvaTracT (o, rTcouarc),
} else {
FeatureValuelist featureValues = signallnstance.getFeatureValues() ;
for (int i = 0; i < featureValues.size(); i++) {
FeatureValue featureValue = featureValues.getValue (i) ;
OutputPin resultPin = resultPins.getValue (i) ;

this.putTokens (resultPin, featureValue.values);

}

this.sendOffers();

this.waiting = false;

Debug.println("[fire] Checking if " + this.node.name + " should fire again...");
// if (this.isReady()) {
// this.fire();
// }

this.receiveOffer();

[2] doAction ()
// Do nothing. [This will never be called.]

return;

[3] fire (in incomingTokens : Token [0..*])

// Register the event accepter for this accept event action activation with the context
object of the enclosing activity execution

// and wait for an event to be accepted.

Debug.println("[fire] Action " + this.node.name + "...");

this.getExecutionContext () .register (this.eventAccepter);
this.waiting = true;

[4] isReady () : Boolean

// An accept event action activiation is ready to fire only if it is not already waiting
for an event.

boolean ready;
if (this.waiting) {
ready = false;
} else {
ready = super.isReady();

return ready;

Semantics of a Foundational Subset for Executable UML Models, Beta 2 251

[5] match (in signallnstance : Signallnstance) : Boolean

// Return true if the given signal instance matches a trigger of the accept action of this
activation.

AcceptEventAction action = (AcceptEventAction) (this.node);

TriggerList triggers = action.trigger;

Signal signal = signallnstance.type;

boolean matches = false;

int 1 = 1;

while (!matches & i1 <= triggers.size()) {
matches = ((SignalEvent) (triggers.getValue (i-1) .event)) .signal == signal;
i =1+ 1;

}

return matches;
[6] run ()
// Create an event accepter and initialize waiting to false.

super.run() ;

this.eventAccepter = new AcceptEventActionEventAccepter();
this.eventAccepter.actionActivation = this;

this.waiting = false;

[7] terminate ()

// Terminate this action and unregister its event accepter.
super.terminate () ;

if (this.waiting) {

this.getExecutionContext () .unregister (this.eventAccepter);
this.waiting = false;

8.6.4.2.2 AcceptEventActionEventAccepter

An accept event action event accepter handles signal reception events on the behalf of a specific accept event action
activation.

Generalizations
e EventAccepter

Attributes
None

Associations
* actionActivation : AcceptEventActionActivation

The accept event action activation on behalf of which this event accepter is waiting.
Operations

[1] accept (in signallnstance : Signallnstance)

252 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Accept a signal occurance for the given signal instance.

// Accept a signal occurance for the given signal instance.
// Forward the signal occuranceto the action activation.

this.actionActivation.accept (signallnstance);
[2] match (in signallnstance : Signallnstance) : Boolean

Determine if the given signal instance matches a trigger of the accept action of the
action activation.

// Return true if the given signal instance matches a trigger of the accept action of the
action activation.

return this.actionActivation.match(signalInstance);

8.6.4.2.3 ReadExtentActionActivation
A read extent action activation is an action activation for a read extent action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the extent, at the current execution locus, of the classifier (which must be a
class) identified in the action.
// Place references to the resulting set of objects on the result pin.

ReadExtentAction action = (ReadExtentAction) (this.node);
ExtensionalValuelList objects = this.getExecutionLocus () .getExtent (action.classifier);
// Debug.println (" [doAction] " + action.classifier.name + " has " + objects.size() + "
instance(s).");
Valuelist references = new ValuelList();
for (int i = 0; 1 < objects.size(); i++) {

Value object = objects.getValue(i);

Reference reference = new Reference();

reference.referent = (Object)object;

references.addValue (reference) ;

this.putTokens (action.result, references);

8.6.4.24 ReadlsClassifiedObjectActionActivation

A read-is-classified object activation is an action activation for a read-is-classified object action.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 253

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] checkAllParents (in type : Classifier, in classifier : Classifier) : Boolean

// Check if the given classifier matches any of the direct or indirect ancestors of a
given type.

ClassifierList directParents = type.general;
boolean matched = false;
int 1 = 1;
while (!matched & i <= directParents.size()) {
Classifier directParent = directParents.getValue (i-1);
if (directParent == classifier) {
matched = true;
} else {

matched = this.checkAllParents (directParent, classifier);

}
i =1+ 1;
return matched;

[2] doAction ()

// Get the value on the object input pin and determine if it is classified by the
classifier specified in the action.

// If the isDirect attribute of the action is false, then place true on the result output
pin if the input object has the specified classifier or of one its (direct or indirect)
descendants as a type.

// If the isDirect attribute of the action is true, then place true on the result output
pin if the input object has the specified classifier as a type.

// Otherwise place false on the result output pin.

ReadIsClassifiedObjectAction action = (ReadIsClassifiedObjectAction) (this.node);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value input = this.takegetTokens (action.object) .getValue (0);
ClassifierList types = input.getTypes();

boolean result = false;
int 1 = 1;
while (!result & i <= types.size()) {

Classifier type = types.getValue (i-1);

if (type == action.classifier) {
result = true;
}
else if (l!action.isDirect) {
result = this.checkAllParents (type, action.classifier);

254 Semantics of a Foundational Subset for Executable UML Models, Beta 2

ValueList values = new ValuelList();
values.addValue (this.makeBooleanValue (result)) ;

this.putTokens (action.result, wvalues);

8.6.4.2.5 ReclassifyObjectActionActivation
A reclassify object activation is an action activation for a reclassify object action.

Generalizations
e ActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value of the object input pin. If it is not a reference, then do nothing.
Otherwise, do the following.

// Remove all types from the referent object that are in the set of old classifiers but
not the set of new classifiers (or just all types that are not new classifiers, if
isReplaceAll is true).

// Remove the feature values from the referent object for all classifiers that are
removed.

// Add all new classifiers as types of the referent object that are not already types.
// Add (empty) feature values to the referent object for the structural features of all
added classifiers.

ReclassifyObjectAction action = (ReclassifyObjectAction) (this.node);
ClassifierlList newClassifiers = action.newClassifier;
ClassifierlList oldClassifiers = action.oldClassifier;

Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value input = this.takeTokens (action.object) .getValue (0);

if (input instanceof Refere
Object oblect =

rerer

ent;

int 1 = 1;
while (i <= object.types.size()) {
g S type = oblect.types.getV

Removed = true;

if (toBeRemoved & 'action.isReplaceAll) {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 255

boolean notInOld = true;

int k = 1;
while (notInOld & k <= oldClassifiers.size()) {
notInOld = (type !'= oldClassifiers.getValue(k-1));
k =k + 1;
R
toBeRemoved = !'notInQOld;

- 1

if (toBeRemoved) {
object.types.removeValue (i-1) ;
object.removeFeatureValues (type) ;
} else {
i =414+ 1;

- 1
-1

Issue 13315 -- Bug in ReclassifyObjectActionActivation::doAction

1 = . F P | 4o h R) i+ 1 Taly
fO]f (ll’lt n = O, ngecroxenrs{accror-ooJect)/ - getvartuae (U
L= L= . - 4= £ n £ \ L
T \Lllt.)uk, 1T CalITCTUT T . . 1ITCTT 1
1 - . i) - . n el . . £ .
OJeCTT OO0 JeCT — ((heferenceraputc)/ - rererernec,
i q
T T = I7
N |) 4= 4= VAN L
WiITT T T = OO0 JCCT.-CYyP ES \WA 1
Vol i) . . . ul . ha
Tras T = o0 Ject.typesS-getvatue (L /)7

) 1 FEEE 3 .
vooTreair toBeRemoveT — truey
L .
TS5 —— =
et PR 3 : ~ = : ‘
wirrre—{tobeRemovea & J = IewCTrassIrrers-sIzet))1
famean 3 " I ~ - . k] RN
tODeRemoveT = (TyP —rewcTra TrrrersTgetvaraet T
: . a
TT— T+
= FEREY | I 4 13 ‘
TT—(ToDerRemo & FCTIon - ISReEPpTracerhrIrI) 1
: 1 o 14
ovooTreair notInora——truey
PR 1
Tk —=I7
DR e 14] 1 a0 = : ‘
wWIrrre (ot InoTra K <—oratCIrassSIrIers-sSIzZze{)r)1
o 14 " I 1300 - . k] le T\
ot oTra—<TyP —oTatTa rrrersTgetvarae{ K=
i et 1
Rk +—1
FEEE 3 I o 14
toBeRemovea——rotInorcy
-SRI S 3 ‘
T toBeRemoveT) 1
e PR 1 s 4
oopJectTtypesTremovevaruaetI—1
s " L bl "
oo eCtTreEmo reaturevart cyper~
) 1 ‘
TeTrse 1
: L -
Tt
- L A . C s . .
for—(imt—rm—06;—% < newClassifiers.size(); n++) {

Classifier classifier = newClassifiers.getValue (n);

boolean toBeAdded = true;

int 3 = 1;

while (toBeAdded & j <= object.types.size()) {
toBeAdded = (classifier != object.types.getValue(j-1));
j=3+1;

256 Semantics of a Foundational Subset for Executable UML Models, Beta 2

if (toBeAdded) {
object.types.addValue ((Class)classifier);
NamedElementList members = classifier.member;
for (int k = 0; k < members.size(); k++) {
NamedElement member = members.getValue (k) ;
if (member instanceof StructuralFeature) ({
object.setFeatureValue ((StructuralFeature)member, new ValueList(), O0);

8.6.4.2.6 ReduceActionActivation
A reduce action activation is an action activation for a reduce action.

Generalizations
e ActionActivation

Attributes
None

Associations
e currentExecution : Execution [0..1]

The current execution of the reducer behavior.
Operations

[1] doAction ()

// Get the values of the collection input pin.

// If the input pin has no values, then do nothing. Otherwise, do the following.

// Repeatedly invoke the reducer behavior on successive pairs to reduce the collection to
a single value, and place that value on the result pin.

// To invoke the reducer behavior, compile it to create an execution, make the execution
the current execution, place the appropriate values on its input parameters, and execute
it.

ReduceAction action = (ReduceAction) (this.node) ;

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

ValueList values = this.takegetTokens (action.collection);

if (values.size() > 0) {
ParameterList parameters = action.reducer.ownedParameter;
Parameter inputl = null;
Parameter input?2 null;
Parameter output null;

int 1 = 1;
while (i <= parameters.size()) {
Parameter parameter = parameters.getValue (i-1);
if (parameter.direction == ParameterDirectionKind.in) {
if (inputl != null) {
inputl = parameter;
}

else {

Semantics of a Foundational Subset for Executable UML Models, Beta 2 257

input2 = parameter;
}
}

else if (parameter.direction == ParameterDirectionKind.out) {
output = parameter;
}
i =1+ 1;
ParameterValue parameterValuel = new ParameterValue();
parameterValuel .parameter = inputl;

parameterValuel.values = new ValuelList();
parameterValuel.values.addValue (values.getValue (0));

int 3 = 2;
while (j <= values.size()) {
this.currentExecution =
this.getExecutionLocus () .factory.createExecution (action.reducer,
this.getExecutionContext ()) ;

this.currentExecution.setParameterValue (parameterValuel) ;
ParameterValue parameterValue2 = new ParameterValue();
parameterValue2.parameter = input2;
parameterValue2.values = new ValuelList();
parameterValue2.values.addValue (values.getValue (j-1));
this.currentExecution.setParameterValue (parameterValue?) ;
this.currentExecution.execute () ;

parameterValuel = this.currentExecution.getParameterValue (output);

J =3+ 1
}

this.putTokens (action.result, parameterValuel.values);

[2] terminate ()
// If there is a current execution, terminate it. Then terminate self.

if (this.currentExecution != null) {
this.currentExecution.terminate () ;

super.terminate () ;

8.6.4.2.7 StartClassifierBehaviorActionActivation

A start classifier behavior action activation is an action activation for a start classifier behavior action.

Generalizations
e ActionActivation

Attributes
None

258 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Associations
None

Operations

[1] doAction ()

// Get the value on the object input pin. If it is not a reference, then do nothing.

// Start the classifier behavior of the referent object for the classifier given as the
type of the object input pin.

// If the object input pin has no type, then start the classifier behaviors of all types
of the referent object. [The required behavior in this case is not clear from the spec.]

StartClassifierBehaviorAction action = (StartClassifierBehaviorAction) (this.node);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value object = this. Tokens (action.object) .getValue (0) ;
if (object instanceof Reference) {
((Reference)object) .startBehavior ((Class) (action.object.typedElement.type), new

ParameterValueList ());

}

8.6.4.2.8 StartObjectBehaviorActionActivation
A start behavior action activation is an action activation for a start behavior action.

Generalizations
e InvocationActionActivation

Attributes
None

Associations
None

Operations

[1] doAction ()

// Get the value on the object input pin. If it is not a reference, then do nothing.

// Start the behavior of the referent object for the classifier given as the type of the
object input pin, with parameter values taken from the argument input pins.

// If the object input pin has no type, then start the classifier behaviors of all types
of the referent object.

StartObjectBehaviorAction action = (StartObjectBehaviorAction) (this.node);

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

Value object = this. Tokens (action.object) .getValue (0) ;

if (object instanceof Reference) {
Class_ type = (Class_) (action.object.typedElement.type);
InputPinlList argumentPins = action.argument;

ParameterValuelist inputs = new ParameterValuelList();

Semantics of a Foundational Subset for Executable UML Models, Beta 2 259

if (type != null) {
Behavior behavior;

if (type instanceof Behavior) {

behavior = (Behavior)type;
} else {

behavior = type.classifierBehavior;
}
if (behavior != null) {

ParameterlList parameters = behavior.ownedParameter;

int pinNumber = 1;
int 1 = 1;
while (i <= parameters.size()) {
Parameter parameter = parameters.getValue (i-1);

int j = pinNumber;
if (parameter.direction == ParameterDirectionKind.in |
parameter.direction == ParameterDirectionKind.inout) {

ParameterValue parameterValue = new ParameterValue();
parameterValue.parameter = parameter;

‘ Issue 13873 -- FUML: 8.6.2.2.1 ActionActivation, 8.6.3.2.4 CreateLinkActionActivation and 8.6.3.2.8 LinkActionActivation

‘ parameterValue.values = this. Tokens (argumentPins.getValue (-
1));
inputs.addValue (parameterValue) ;
j=3+1;
}
pinNumber = j;

i =1+ 1;

}

((Reference)object) .startBehavior (type, inputs);

9 Foundational Model Library

This clause defines the basic Foundational Model Library for f{UML. This is a library of user-level model elements that
can be referenced in a f{UML model. These capabilities are provided in an overall package called
FoundationalModelLibrary, with the sub-packages shown in Figure 81 and described in the following subclauses.

260 Semantics of a Foundational Subset for Executable UML Models, Beta 2

I]
UML: :AuxiliaryConstructs:: Common
PrimitiveTypes
N 7
aimports : «irnr:u:u'tni
— I—
PrimitiveBehaviors BasicInputOutput

Figure 81 - Foundation Model Library packages

9.1 Primitive Types

Note in Figure 81 that the PrimitiveBehaviors package imports the AuxiliaryConstructs::PrimitiveTypes package from
the UML 2 metamodel (see Subclause 17.4 of the UML 2 Superstructure Specification). This package defines the
primitive types Boolean, Integer, String and UnlimitedNatural. These are the types for which corresponding literal values
can be specified in f{UML (see Subclause 7.2.1). Since they are used in the construction of literal values, these types must
all be registered with the execution factory at every locus (see Subclause 8.2.1). By importing the
AuxiliaryConstructs::PrimitiveTypes package from UML, a user model may also directly reference these types.

Table 1 describes the value domains of these primitive types as they are provided in f{UML. In the f{UML execution
model, values of these primitive types are represented by the various subclasses of PrimitiveValue (see Subclause
8.3.2.1). Each of these subclasses defines a value attribute, which is, itself, typed by a similarly named primitive type
(e.g., the type of BooleanValue::value is Boolean). However, the semantics for the primitive types used within the
execution model are given by the base semantics in Clause 10. The formalizations of these types in the base semantics
provides the grounding for the semantics of the corresponding primitive types as used in f{UML models.

Table 1 - Primitive Types

Type Name Description

Boolean The Boolean type has two literal values, true and false. Note, however, that
Boolean is defined as a primitive type, not an enumeration.

Integer The Integer type has literal values in the (infinite) set of integers (...-2, -1, 0, 1,
2...). However, a conforming implementation may limit the supported values
to a finite set.

String The String type has literal values that are sequences of zero or more characters.
The actual character set used is not specified in this standard and the maximum
string size is unbounded.

UnlimitedNatural The UnlimitedNatural type has literal values in the (infinite) set of integers (0,
1, 2...) plus the additional value “unbounded”. If a conforming implementation
limits the set of integers supported, then the set of unlimited natural values
supported (other than “unbounded”) must be exactly the same as the supported

Semantics of a Foundational Subset for Executable UML Models, Beta 2 261

set of non-negative integer values.

9.2 Primitive Behaviors

The FoundationalModelLibrary::PrimitiveBehaviors package contains a set of primitive behaviors that operation on the
primitive data types defined in Subclause 9.1. As shown in Figure 82, the package is divided into sub-packages for each
primitive type.

1 1 1
BooleanFunctions IntegerFunctiuns StringFunctiuns
1
UnlimitedMaturalFunctions ListFunctions

Figure 82 - Foundation Model Library PrimitiveBehaviors package

Within each of the sub-packages shown in Figure 82, the primitive behaviors are modeled as function behaviors with no
side effects. If implemented in the execution environment of a conforming execution tool, implementations for these
behaviors are considered to be registered at the locus of execution that models that environment (see Subclause 8.2.1).
They may be called from user models using the call behavior action (see Subclause 8.4.2).

The primitive behaviors provided in the Foundation Model Library for Boolean, Integer and String have been largely
based on the operations provided for the corresponding primitive types in OCL 2.0 (see Subclauses 11.4 and 11.5 of the
OCL 2.0 Specification). However, while OCL uses an object-oriented operational style for primitive functions (e.g., in
binary arithmetic operations, one of the arguments acts as the “target” of the operation invocation), the corresponding
behaviors in the Foundation Model Library are invoked more traditionally as functions of all their arguments
(particularly since fUML does not allow operations on data types—see Subclause 7.2). Other substantive differences
from the OCL operations are noted below in the descriptions of the Foundation Model Library behaviors.

NOTE: An equality function is not provided as a primitive behavior, since this functionality is provided by the test
identity action, which tests by value for primitive data types (see Subclause 8.4.3). In particular, since strings are
primitive values, the equality test on strings is by value.

In the following descriptions, if the behavior of a primitive behavior can be described in terms of other primitive
behaviors, then this is formalized by giving a post-condition for the first behavior. The semantics of primitive behaviors
for which no post-condition is given are to be considered to be specified directly by the axioms of the base semantics (see
Clause 10).

In some case, pre-conditions are also specified for primitive behaviors. In this case, if the pre-condition is violated, then
the behavior completes execution, but produces no output value. The result parameters for such behaviors are specified to
have multiplicity 0..1 to allow for this.

NOTE: For readability of the pre- and post-condition expressions in the following, an infix notation is used to denote the
invocation of binary function behaviors. For example the invocation of the “And” behavior is written “x And y,” not
“And(x,y).” However, this is still intended to denote the result of the invocation of the named Foundational Model
Library primitive behavior on the given arguments. An infix notation “x =y” is also used for equality, with the intended
semantics being those of a test identity action on data value arguments (see Subclause 8.4.3).

262 Semantics of a Foundational Subset for Executable UML Models, Beta 2

9.2.1 Boolean Functions

Table 2 lists the function behaviors that are included in the package BooleanFunctions. The naming is consistent with
OCL, except that names are capitalized, per the usual convention for behaviors (as kinds of classes). The Foundation
Model Library also provides ToString and ToBoolean functions not found in OCL.

Table 2 - Foundation Model Library Boolean Functions

Function Signature Description

Or(x: Boolean, y: Boolean): Boolean True if either x or y is true.

Post: if x then result = true else result =y endif

Xor(x: Boolean, y: Boolean): Boolean True if either x or y is true, but not both.

Post: result = (x Or y) And Not(x And y)

And(x: Boolean, y: Boolean):Boolean True if both x and y are true.

Post: if x then result = y else result = true endif

Not(x: Boolean): Boolean True is x is false.

Post: if x then result = false else result = true endif

Implies(x: Boolean, y: Boolean): True if x is false, or if x is true and y is true.

Boolean
Post: result = Not(x) Or (x And y)

ToString(x: Boolean): String Converts x to a String value.

Post: if x then result = “true” else result = “false” endif

ToBoolean(x: String): Boolean[0..1] Converts x to a Boolean value.
Pre: (lower(x) = “true”) or (lower(x) = “false”)
Post: if lower(x) = “true” then result = true else result = false endif

Note: The notation “lower(x)” above is not intended to be an
invocation of a Foundation Model Library primitive behavior but,
rather, is intended to denote that value of the string x with any
uppercase letters converted to the corresponding lowercase letters.

9.2.2 Integer Functions

Table 3 lists the function behaviors that are included in the package IntegerFunctions. The naming is consistent with
OCL, including the use of the conventional symbols for arithmetic functions, except that the negation function is named
“Neg,” rather than overloading the symbol “-, and alphabetic names are capitalized, per the usual convention for
behaviors (as kinds of classes). The OCL “/”” operation is not included, since this returns a Real value, and the
Foundational Model Library does not support a Real primitive type. The Foundation Model Library also provides
ToString and ToUnlimitedNatural functions not found in OCL. The Tolnteger function does correspond to an OCL
operation, though, in OCL, it is a String operation.

Table 3 - Foundation Model Library Integer Functions

Semantics of a Foundational Subset for Executable UML Models, Beta 2 263

Function Signature

Description

Neg(x: Integer): Integer

The negative value of x.

+(x: Integer, y: Integer): Integer

The value of the addition of x and y.

-(x: Integer, y: Integer): Integer

The value of the subtraction of x and y.

Post: result +y =x

*(x:Integer, y:Integer): Integer

The value of the multiplication of x and y.

Post:

if y < 0 then result =Neg (x * Neg(y))
else if y = 0 then result = 0

else result = (x * (y-1)) +x

endif endif

Abs(x: Integer): Integer

The absolute value of x.

Post: if x < 0 then result = Neg(x) else result = x endif

Div(x: Integer, y: Integer): Integer[0..1]

The number of times that y fits completely within x.
Pre: y<>0

Post:
if (x ¥*y) >= 0 then
((result * y) <= x) And ((result+1) *y) >x)
else
((Neg(result) * y) <= Neg(x)) And ((Neg(result)+1) * y) > Neg(x))

endif

Mod(x: Integer, y: Integer): Integer

The result is x modulo y.

Post: result =x— (x Divy) *y

Max(x: Integer, y: Integer): Integer

The maximum of x and y.

Post: if x >=y then result = x else result = y endif

Min(x: Integer, y: Integer): Integer

The minimum of x and y.

Post: if x <=y then result = x else result = y endif

<(x: Integer, y: Integer): Boolean

True if x is less than y.

>(x: Integer, y: Integer): Boolean

True if x is greater than y.

Post: result = Not(x <=y)

<=(Integer, Integer): Boolean

True if x is less than or equal to y.

Post: result = (x =y) Or (x <y)

>=(Integer, Integer): Boolean

True if x is greater than or equal to y.

Post: result = (x =y) Or (x > y)

ToString(x: Integer): String

Converts x to a String value.

264

Semantics of a Foundational Subset for Executable UML Models, Beta 2

Post: Tolnteger(result) = x

ToUnlimitedNatural(x: Integer): Converts x to an UnlimitedNatural value.

UnlimitedNatural[0..1] P 0
re: x >=

Post: Tolnteger(result) = x

Tolnteger(x: String): Integer[0..1] Converts x to an Integer value.

Pre: x has the form of a legal integer value

9.2.3 String Functions

Table 4 function behaviors are included in the package StringFunctions. The naming is consistent with OCL, except that
names are capitalized, per the usual convention for behaviors (as kinds of classes). In the Foundation Model Library,
Tolnteger is provided as an integer function rather than a string operation, and ToReal is not provided because the
Foundation Model Library does not support a Real primitive type.

Table 4 - Foundation Model Library String Functions

Function Signature Description

Concat(x: String, y: String):String The concatenation of x and y.

Post:

(Size(result) = Size(x) + Size(y)) And
(Substring(result, 1, Size(x)) = x) And
(Substring(result, Size(x)+1, Size(result)) = y)

Size(x: String):Integer

The number of characters in x.

String[0..1]

Substring(x: String, lower: Integer, upper: Integer):

to and including character number upper. Character
numbers run from 1 to Size(x).

Pre:

(1 <= lower) And
(lower <= upper) And
(upper <= Size(x))

The substring of x starting at character number lower, up

9.24 UnlimitedNatural Functions

Table 5 list the function behaviors that are included in the package UnlimitedNaturalFunctions. Only comparison and

conversion functions are provided. Arithmetic can be performed on UnlimitedNatural values by converting them to

Integers. (Arithmetic on the “unbounded” value is thus not defined.)

Table 5 - Foundation Model Library UnlimitedNatural Functions

Function Signature

Description

Max(x: UnlimitedNatural, y: UnlimitedNatural):
UnlimitedNatural

The maximum of x and y.

Post: if x >=y then result = x else result = y endif

Min(x: UnlimitedNatural, y: UnlimitedNatural):
UnlimitedNatural

The minimum of x and y.

Post: if x <=y then result = x else result = y endif

Semantics of a Foundational Subset for Executable UML Models, Beta 2

265

<(x: UnlimitedNatural, y: UnlimitedNatural):
Boolean

True if x is less than y. Every value other than “unbounded”
is less than “unbounded”.

>(x: UnlimitedNatural, y: UnlimitedNatural):
Boolean

True if x is greater than y.

Post: result = Not(x <=y)

<=(UnlimitedNatural, UnlimitedNatural): Boolean

True if x is less than or equal to y.

Post: result = (x =y) Or (x <y)

>=(UnlimitedNatural, UnlimitedNatural): Boolean

True if x is greater than or equal to y.

Post: result = (x =y) Or (x > y)

ToString(x: UnlimitedNatural): String

Converts x to a String value. The value “unbounded” is
represented by the string “*”.

Post: ToUnlimitedNatural(result) = x

Tolnteger(x: UnlimitedNatural): Integer[0..1]

Converts x to an Integer value.

Pre: x <> unbounded

ToUnlimitedNatural(x: String): Integer[0..1]

Converts x to an Integer value.
Pre: (x has the form of a legal integer value) Or (x = “*”)

Post:
if x = “*” then result = unbounded
else result = ToUnlimitedNatural(Tolnteger(x))

9.2.5 List Functions

Table 6 lists the function behaviors that are included in the ListFunctions package. These are convenience functions for
querying values with multiplicity [*]. Note that the /ist argument for both list functions is untyped and that the result of

ListGet is also untyped.

NOTE: The functionality of the list functions could actually be implemented as activities using expansion regions.
However, it is generally much more convenient to be to invoke this simple functionality as if it was primitive behavior,

rather than having to model it explicitly.

NOTE: The list functions are also used in the Java to UML Activity Model mapping (see Annex A).

Table 6 - Foundational Model Library List Functions

Function Signature

Description

ListSize(list[*]): Integer

Returns cardinality of the input values in the Jist.

ListGet(list[*]{ordered}, index: Integer) [0..1]

Returns the value at the position given by index in the ordered
list. Positions run from 1 to ListSize(list).

Pre: (index > 0) And (index <= ListSize(list))

266

Semantics of a Foundational Subset for Executable UML Models, Beta 2

9.3 Common

9.3.1 Overview

The FoundationModelLibrary::Common package contains classifiers shown in Figure 83. These classifiers are currently
only used in the basic input/output model (see Subclause 9.3.2.1). However, they are considered potentially usable in a
wider context in the future, so they have been separated into their own sub-package. They are further described below in
Subclause9.3.2.

“sigrals wdataTypes
MNotification Status
+ content [0..1] + context : String

+ code : Integer
+ description @ 5tring

Listener

«signals» + Motification [content)

Figure 83 - Foundation Model Library Common package
9.3.2 Classifier Descriptions

9.3.2.1 Listener (active class)

A listener is an active class that can asynchronously receive a notification.

Generalization
None

Receptions

¢ Notification(content[0..1])
The Listener class declares its ability to receive a Notification signal. Any concrete subclass of Listener should
have a classifier behavior that can accept such a signal.

9.3.2.2 Notification (signal)

A notification is a signal used to asynchronously send content to a listener.

Generalization
None

Attributes

e content [0..1]
An optional value (of any type) sent as the content of the notification.

9.3.2.3 Status (data type)

The Status data type provides a common structure for reporting the normal or error status of a service such as a channel.
Operations whose execution may cause an error condition have an optional error status output parameter to report this
condition (exceptions are not included in the fUML subset). This output is generated only if there is an error condition—

Semantics of a Foundational Subset for Executable UML Models, Beta 2 267

if the operation completes normally, no value is produced. A service may also have an operation to report its current
status as of the execution of the last operation on it.
Generalization

None

Attributes

® context: String
A name (generally a class name) indicating the context in which the status is defined.

® code: Integer
A numeric status code. A value of zero is the default for normal operation. A value less than zero indicates an
error condition. A value greater than zero indicates an informational status condition. Status codes must be
unique within a given context, but not necessarily across contexts.

e description: String
A textual description of the status condition.

9.4 Basic Input/Output

This subclause defines basic capabilities for input and output, provided by set of classes that can be directly referenced
from a user model. While this is thus a library of user-model classes, not classes within the execution model itself, the
methods implementing the operations of these classes must be provided as primitive capabilities as part of any actual
implementation of the library model.

The goal of the basic library defined here is to primarily provide a simple semantic foundation for what it means to
receive input into and send output from an executing model. It is not intended to be a complete input/output library, but,
rather, to act as the underpinning for more sophisticated future library. Nevertheless, in additional to the foundational
input/output mechanism, it does also include a basic set of standard capabilities that allow the expected baseline of
textual input and output.

9.4.1 The Channel Model

Within the context of a single model, all communication is between known source and target elements within the model.
In this sense, an executing model is a “closed universe.” Input and output is, in effect, a controlled means for providing
“openings” in this universe for communications in which the actual source or target is not known within the model.

The fundamental abstraction providing for making these “openings” is that of the channel. The basic library model of
channels is provided in the package FoundationalModelLibrary::BasicInputOutput. Figure 84 shows the classifiers
included in this package, which are further described in Subclause.

An input channel provides a means for receiving values into an executing model from outside of it. Conversely, an
output channel is a means for sending values out of an executing model. An active channel is like an input channel,
except that it allows clients to receive input values asynchronously, instead of requesting them synchronously. In addition
to the fundamental channel classes, specializations are provided for basic textual input and output capabilities.

Note that all the classes in this model are abstract. They are not intended to be directly instantiated by a user model.
Instead, channels must be made available as or by “services” available at the current execution locus (see Subclause 8.2
for a discussion of loci and system services). For example, there may be at most one instance of the class
StandardInputChannel and one instance of the class StandardOutputChannel “pre-instantiated” at each locus. Or a locus
may provide a file service that is used to obtain channels that connect to an external file system.

268 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Channel

+ getiame () Sting
+ open (enrorStatus ¢ Stafus [0..1])
+ close emovStatus @ Status [0..1])
+ i50pen () Boolean
+ getStatus () : Status

Py

ActiveChannel Inputchannel
OutputChannel
+ register (listener ; Listener) + hasMove () : Boolean
-+ urregister (listener ; Listener) +read (value [0..1], enorStatus ; Status [0..1]) + wiite (value, errorStatus @ Status [0..1])
+ peek (value [0..1], errorStatus ¢ Statws [0..1]) + isFull () : Boolean
TextInputChannel TextOutputChannel
+ readCharacter { errorStatus : Status [0..1])+ String [0..1] + wiiteString (value : String, errorstatus ; Status [0..1])
+ peel:(_:haracter { errorStatus ; Status [0..1] _) » String [00,1] + wiiteNewLine (errorStatus : Status [0..17)
+ readLine (errorStatus @ Status [0..1]) : String + writeLine (value : String, errarStatus : Status [0..1])
+ readInteger (errorStatus @ Status [0..1]) : Integer [0..1] + writeInteger { value : Integer, errorStatus : Status [0..1])
+ readBoolean (ervorStatus @ Status [0..1]) : Boclean [0..1] + wiiteBoclean (value : Boolean, errorStatus : Status [0.,.1])
+ readUnlimitediatural (errorStatus : Status [0..1]) : Unlimitedatural [0..1] + writeUnlimitedMatural { value : UnlimitedMatural, errorStatus ; Status [0..1])
StandardinputChannel StandardOutputChannel

Figure 84 - Foundation Model Library BasiclnputOutput Package: Channel Model

9.4.2 Pre-Defined ReadLine and WriteLine Behaviors

The BasicInputOutput package also includes two predefined convenience behaviors, ReadLine and WriteLine, which
simplify textual input and output to the standard input and output channels. These behaviors may be called using the call
behavior action (see Subclause 8.4.2). Both of these behaviors may be formally defined as activities in terms of the
functionality provided by the standard channel classes. Figure 85 shows an activity definition for ReadLine, and Figure
86 shows the definition for WriteLine. However, a conforming implementation may alternatively provide these as
primitive behaviors with equivalent functionality.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 269

ReadLinEJ

=1 result : Strin
>] g

! String
errorStatus | Status

readLine] errorStatus : Status

4

' TextInputChannel

: StandardInputChannel

[Standardlmputchan nel]

Figure 85 - An Activity Definition for the ReadLine behavior

WriteLineJ

errorstatus ;| Status errarstatus ;| Status

1]

value : String value © String

: TextOutputChannel

: StandardOutputChannel

[Standard@utputchannel J

Figure 86 - An Activity Definition for the WriteLine behavior

270 Semantics of a Foundational Subset for Executable UML Models, Beta 2

9.4.3 Class Descriptions

9.4.3.1 ActiveChannel (active class)

An active channel is similar to an input channel, in that it is used to receive input into a model. However, instead of
providing input in response to synchronous requests of clients, it allows clients to register as listeners for asynchronous
notification of input as it arrives. As each input value arrives, it is sent as the content of a Notification signal to all
registered listeners.

Generalization
Channel

Additional Operations

e register(listener: Listener)
The register operation is used to register a listener with an active channel. If the listener is already registered,
then the operation has no effect.

e unregister(listener: Listener)
The unregister operation is used to remove the registration of a listener with an active channel. If the given
listener is not registered with the channel, then the operation has no effect.

9.4.3.2 Channel

A channel is a means for receiving or sending values. A channel object within an executing model represents the end of
the channel accessible to that model. What is at the other end of the channel—that is the source for input or the target for
output—depends on the implementation of a specific channel and is not defined by the library model.

Two standard status codes are defined for every channel, as given in the table below. Additional status codes may be
defined for specific kinds of channels (for example, see the descriptions below of the subclasses of Channel). In all cases,
the name of the class in which the status is defined below is used as the context for the status code.

Code Description Definition
0 Normal The default for normal operation of the channel.
-1 Not open The last operation performed on the channel required the channel to be open, but the

channel was closed. (All read and write operations of any sort on a channel require the
channel to be open.)

Generalization
None

Operations

e getName(): String
Each channel has a name. How the name of a channel is determined depends on the implementation of a specific
channel, but every channel instantiated at a given locus is required to have a different name. The getName
operation returns the name of the channel.

* open([out] errorStatus: Status[0..1])
A channel may be either open or closed. Attempting to receive input or send output on a closed channel has no
effect. The open operation is used to open a channel that is closed. Opening a channel that is already open leaves
the channel open and has no other effect.

* close([out] errorStatus: Status[0..1])
The close operation closes a channel that is open. Closing a channel that is already closed leaves the channel
closed and has no other effect.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 271

* isOpen(): Boolean
The isOpen operation returns true if a channel is open and false if it is closed.

e getStatus(): Status
The getStatus operation returns the current status of a channel (see the description of Status below).

9.4.3.3 InputChannel

An input channel is a channel for receiving input values into a model. The following additional status code is defined for
input channels.

Code Description Definition
-2 No input A read operation was attempted, but no more input is currently available on this
channel.
Generalization
Channel
Additional Operations

¢ hasMore(): Boolean
The hasMore operation returns true if there is a value available to be read from an input channel and false if there
is not. The operation returns false if the channel is not open. It is an error to attempt to read from an input channel
that does not have an available input.

e read([out] value[0..1], [out] errorStatus: Status[0..1])
The read operation is used to obtain an input value from an input channel. The operation has a value out
parameter that has no type, which means that it may return a value of any type. If the read operation completes
without producing an output value, then the error status is required to have an error value indicating the reason
for this.

NOTE: The read operation uses an out parameter rather than a return result because there is no UML surface syntax
for displaying an operation with a return parameter that does not have a type.

* peek([out] value[0..1], [out] errorStatus: Status[0..1])
The peek operation has the same behavior as read, except that the value returned is not consumed from the input
channel. That is, if the channel has an available value, multiple sequential peek calls will continue to return that
same value, without removing it from the channel, until the read operation is called.

9.4.3.4 OutputChannel

An output channel is a channel for sending output values out of a model. The following additional status codes are
defined for output channels.

Code Description Definition
-2 Full A write operation was attempted, but the channel is not able to accept any further
output.
-3 Type not supported | A write operation was attempted for a value of a type that is not supported by the
channel.
Generalization
Channel
Additional Operations

272 Semantics of a Foundational Subset for Executable UML Models, Beta 2

e isFull(): Boolean
The isFull operation returns false if an output channel is able to accept more output values and true if it is not.

The operation returns true if the channel is not open. It is an error to attempt to write to an output channel that is
full.

e write(value, [out] errorStatus: Status[0..1])
The write operation is used to send an output value on an output channel. The operation has a single parameter.
This parameter has no type, which means that it may be a value of any type. If the channel is full, then attempting
a write operation is an error condition, but the operation is still required to complete its execution (which will
have no other effect then to return the appropriate error status).

9.4.3.5 StandardinputChannel

A standard input channel is a text input channel that may be provided as a pre-instantiated service at a locus. Any locus
may have at most one instance of the StandardInputChannel class, with the name “StandardInput.” Since there can be at
most one instance, this instance, if it exists, can be easily obtained by executing a Read Extent action on the
StandardInputChannel class.

Generalization
TextInputChannel

Additional Operations
None

9.4.3.6 StandardOutputChannel

A standard output channel is a text output channel that may be provided as a pre-instantiated service at a locus. Any locus
may have at most one instance of the StandardOutputChannel class, with the name “StandardOutput.” Since there can be
at most one instance, this instance, if it exists, can be easily obtained by executing a Read Extent action on the
StandardOutputChannel class.

Generalization
TextOutputChannel

Additional Operations
None

9.4.3.7 TextlnputChannel

A text input channel is an input channel whose values are text characters. A read operation on a text input channel will
always return a string value which contains a single character. The additional operations on a text input channel provide
convenient capabilities for reading longer strings of characters and, in some cases, treating them as representations of
other primitive values. The following additional status code is defined for text input channels.

Code Description Definition

-3 Cannot convert An attempt was made to read an integer, Boolean or unlimited natural, but the
characters available from the channel do not conform to the required syntax.

Generalization
InputChannel

Additional Operations

Semantics of a Foundational Subset for Executable UML Models, Beta 2 273

readCharacter([out] errorStatus: Status[0..1]): String[0..1]
The readCharacter operation reads the next value from a text input channel and returns it as a string of a single
character. No value is returned if none is available from the channel. This is an error condition.

peekCharacter([out] errorStatus: Status[0..1]): String[0..1]

The peekCharacter operation has the same behavior as readCharacter, except that the character returned is not
consumed from the text input channel. That is, if a character is available on the channel, multiple peekCharacter
calls will continue to return that character without removing it from the channel, until some read operation is
called.

readLine([out] errorStatus: Status[0..1]): String

The readLine operation continues to read characters from the input channel until the end of a line is reached or
there are no more characters available from the channel. The characters read are returned, in order, as a string
value. The character encoding of a new line is not defined in this specification. Nevertheless, the new line
character(s) are required to be consumed by the readLine operation, but they are not included in the returned
string. Note that if no character is available from the channel when the operation is called, or if the only
character(s) read are the new line character(s), then the operation returns the empty string. This is not an error.

readInteger([out] errorStatus: Status[0..1]): Integer[0..1]

The readlnteger operation is used to read a textual representation of an integer and return it as an integer value.
The textual syntax for an integer is defined to be an optional ‘+’ or ‘-’ character followed by a string of one or
more digits ‘0’ through °9.” All characters are read up to (but not including) the first character that does not
conform to the required syntax or until no more characters are available. No value is returned if no characters are
available from the channel or if the available characters do not begin with a string that conforms to the required
syntax, in which case no values are read from the channel. This is an error condition.

readBoolean([out] errorStatus: Status[0..1]): Boolean[0..1]

The readBoolean operation is used to read a textual representation of a Boolean and return it as a Boolean value.
The textual syntax for a Boolean is defined to be either the string “true” or the string “false,” or any string
obtained by capitalizing some or all of the characters of these strings. All characters are read up to (but not
including) the first character that does not conform to the required syntax or until no more characters are
available. No value is returned if no characters are available from the channel or if the available characters do not
begin with a string that conforms to the required syntax, in which case no values are read from the channel. This
is an error condition.

readUnlimitedNatural([out] errorStatus: Status[0..1]): UnlimitedNatural[0..1]

The readUnlimitedNatural operation is used to read a textual representation of an unlimited natural number and
return it as an integer value. The textual syntax for an unlimited natural is defined to be either the single character
“*? or string of one or more digits ‘0’ through ‘9.” All characters are read up to (but not including) the first
character that does not conform to the required syntax or until no more characters are available. No value is
returned if no characters are available from the channel or if the available characters do not begin with a string
that conforms to the required syntax, in which case no values are read from the channel. This is an error
condition.

9.4.3.8 TextOutputChannel

A text output channel is an output channel whose values are text characters. A write operation on a text output channel
always places characters onto the channel.

274

For a string value, each of the characters in the string is sequentially written to the channel.

Primitive values of types Integer, Boolean and UnlimitedNatural are written using the syntax given for the
writelnteger, writeBoolean and writeUnlimitedNatural operations as described below.

Enumeration values are written using the names of the corresponding enumeration literal.

No standard textual representation is defined for other kinds of values, but it is not an error to attempt to write
them. The actual representation of such values is determined by the specific implementation of the channel.

Semantics of a Foundational Subset for Executable UML Models, Beta 2

If, during the execution of any write operation on a text output channel, the channel becomes full, then the operation
returns immediately. This is an error condition, but, if the operation was writing multiple characters, all characters up to
the point the channel became full will have been successfully output to the channel.

Generalization
OutputChannel

Additional Operations

e writeString(value: String, [out] errorStatus: Status[0..1])
The writeString operation sequentially writes each of the characters in the given string value to a text output
channel.

e writeNewLine([out] errorStatus: Status[0..1])
The writeNewLine operation writes the character(s) encoding a new line to a text output channel. The character
encoding of a new line is not defined in this specification, but is determined by the implementation of a specific
channel.

e writeLine(value: String, [out] errorStatus: Status[0..1])
The writeLine operation writes the given string value to a text output channel, followed by a new line.

e writeInteger(value: Integer, [out] errorStatus: Status[0..1])
The writeInteger operation is used to write a textual representation of an integer. The textual syntax for an integer
is defined to be an optional ‘-’ character (for a negative integer) followed by a string of one or more digits 0’
through ‘9’ (note that no ‘+’ is included for a positive integer).

e writeBoolean(value: Boolean, [out] errorStatus: Status[0..1])
The writeBoolean operation is used to write a textual representation of a Boolean. The textual syntax for a
Boolean is defined to be either the string “true” or the string “false.”

e writeUnlimitedNatural(value: UnlimitedNatural, [out] errorStatus: Status[0..1])
The writeUnlimitedNatural operation is used to write a textual representation of an unlimited natural number.
The textual syntax for an unlimited natural is defined to be either the single character “*’ (for the “unbounded”
value) or string of one or more digits ‘0’ through 9.’

10 Base Semantics

10.1 Design Rationale

This clause gives semantics for the portion of fUML used in the Java to Activity mapping in Annex A (known as “base
UML” or bUML, with semantics known as the “base semantics”). Base UML is expressive enough to define the
execution model and must be used when specializing the execution model through explicit variation. The base semantics
specifies when particular executions conform to a model defined in bUML. It does not generate executions. In
particular, the base semantics does not define a virtual machine to execute models directly. The base semantics is
expressed in axioms of first order logic. This has the advantage of being completely explicit, rather than using text to
explain the behavior of a virtual machine. This enables automatic determination of whether an execution conforms to the
execution model. It has the disadvantage of requiring axioms for the semantic interpretation of all syntactic patterns used
in the execution model.

This clause assumes familiarity with these background documents:
e Common Logic Interchange Format (CLIF), the language in which the axioms are written.’

® Process Specification Language (PSL), a foundational axiomitization of processes.*

3 1SO 24707, http://standards.iso.org/ittf/Publicly AvailableStandards/c039175_ISO_IEC 24707 _2007(E).zip.
4 1SO 18629, see http://www.conradbock.org/#PSL for introductory material, and http://www.nist.gov/psl for downloads and other
material.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 275

http://www.nist.gov/psl
http://www.conradbock.org/#PSL
http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007(E).zip

This clause uses an embedded approach to axiomitization, which enables syntax and semantics to be explicitly related
through additional axioms, as compared to a translation that depends on a separate translation language.® The clause
gives axioms for semantics and any additional syntax needed just for the formalization. The semantic axioms identify a
particular syntactical pattern used in the execution model and give it a semantic interpretation. The semantic
interpretation is grounded in PSL.

10.2 Conventions

Naming conventions for relations used in this clause are:

¢ buml: Prefixed names are those of metaclasses and metaproperties in bUML. Metaclasses are formalized as
unary predicates that are satisfied when applied to an instance of the metaclass. For example, buml:Activity is a
predicate satisfied by activities in the execution model. Metaproperties are formalized as binary predicates that
are satisfied when applied to two elements linked by the property, with the first being an instance of the owner of
the property and the second being the value. For example, buml:activity is a binary predicate satisfied by a node
in an activity, and an activity containing the node, in that order.®

e psl: Prefixed names are PSL relations.
e form: Prefixed names are relations introduced only for the formalization.
This clause assumes multiple generalization in bUML.

Basic additions to PSL used in this clause are:’
(forall (s occ)
(iff (form:subactivity-occurrence-neqg s occ)
(and (psl:subactivity occurrence s occ)
(not (= s occSuper)))))

(forall (f s)
(iff (form:priorA f s)
(exists (sRoot)
(and (psl:root occ sRoot s)
(psl:prior £ sRoot)))))

(forall (f s)
(1ff (form:holdsA f s)
(exists (sLeaf)
(and (psl:leaf occ sLeaf s)
(psl:holds f sLeaf)))))

(forall (sl s2 a)
(iff (form:min-precedesA sl s2 a)
(exists (slLeaf s2Root)
(and (psl:leaf occ slLeaf sl)
(psl:root _occ s2Root s2)
(psl:min precedes slLeaf s2Root a)))))

10.3 Structure

This subclause covers the structural aspects of the base semantics.

> More about this at http://www.ihmc.us/users/phayes/CL/SW2SCL.html and http://www.w3.org/TR/daml+oil-axioms.
¢ This clause assumes the execution model conforms to the abstract syntax of bUML, including constraints.

7 These are drawn from http://www.mel.nist.gov/msidlibrary/doc/NISTIR _7348.pdf.

276 Semantics of a Foundational Subset for Executable UML Models, Beta 2

http://www.mel.nist.gov/msidlibrary/doc/NISTIR_7348.pdf
http://www.w3.org/TR/daml+oil-axioms
http://www.ihmc.us/users/phayes/CL/SW2SCL.html

10.3.1 Primitive Types

This subclause covers primitive types in bUML: Boolean, UnlimitedNatural, Integer, and String, as well as other kinds of
numbers and sequences introduced for the formalization.

10.3.1.1 Boolean

(forall (x)
(1f (buml:Boolean x)
(or (= x form:true)
(= x form:false))))

(not (= form:true form:false))

(forall (x vy)
(if (form:not x y)
(and (buml:Boolean x)
(buml:Boolean vy))))

(forall (x vy)
(if (form:not x V)
(not (= x vy))))
(forall (x y 2z)
(if (form:and x y z)
(and (buml:Boolean x)
(buml:Boolean vy)
(buml:Boolean z))))

(forall (x y 2z)
(if (form:and x y z)
(and (iff (= z form:false)
(or (= x form:false)
(= y form:false)))
(1ff (= z form:true)
(and (= x form:true)
(= v form:true))))))

10.3.1.2 Numbers

The add-one relation.
(forall (x vy)
(if (form:add-one x vy)
(and (form:Number x)
(form:Number y))))

(forall (x yl y2)
(if (and (form:add-one x yl)
(form:add-one x y2))

(= vl v2)))

(forall (x)
(1f (form:Number x)
(exists (y)
(form:add-one x y))))

The add relation.
(forall (x y z)
(if (form:add x y z)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 277

(and (form:Number x)
(form:Number vy)
(form:Number z))))

(forall (x y zl z2)
(if (and (form:add x y zl)
(form:add x y z2))

(= z1 z2)))

(forall (x vy)
(1f (and (form:Number x)
(form:Number vy))
(exists (z)
(form:add x y z))))

(forall (y vyl x zl z)
(if (and (form:add-one y yl)
(form:add x yl zl)
(form:add x y z))
(form:add-one z z1)))

Basic numeric constants.

(form:Number form:0)
(form:add-one form:0 form:1)
(form:add-one form:-1 form:0)

The less-than relation.
(forall (x vy)
(if (form:less-than x vy)
(and (form:Number x)
(form:Number vy))))

(forall (x vy)
(iff (form:less-than x vy)
(exists (z)
(and (form:Number 2z)
(not (= z form:0))
(form:add x z y)))))

Specialized numbers: whole, natural, unlimited natural, and integers.
(forall (x)
(iff (form:WholeNumber x)
(or (= x form:1)
(exists (y)
(and (form:WholeNumber vy)
(form:add-one y x))))))

(forall (x)
(1ff (form:NaturalNumber x)
(or (= x form:0)
(form:WholeNumber x))))

(forall (x)

(if (buml:UnlimitedNatural x)
(or (form:NaturalNumber x)

278 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(= x buml:*))))
(forall (x)
(1f (form:NaturalNumber x)
(buml:Integer x)))

(forall (x)
(iff (buml:Integer x)
(or (= x form:-1)
(exists (y)
(and (buml:Integer vy)
(or (form:add-one y x)
(form:add-one x y)))))))
(forall (x vy)
(iff (form:negate x vy)
(form:add x y form:0)))

10.3.1.3 Sequences

Sequences are a finite series of things, where the same thing can appear more than once in the series.. The serial aspect is
represented by positions, each of which identifies exactly one thing. This thing can be the same as ones identified by
other positions in the series.

The in-sequence relation links sequences to their postions.
(forall (s pt)
(if (form:in-sequence s pt)
(and (form:Sequence s)
(form:Position pt))))

(forall (sl s2 pt)
(if (and (form:in-sequence sl pt)
(form:in-sequence s2 pt))
(= sl s2)))

(forall (pt)
(if (form:Position pt)
(exists (s)
(form:in-sequence s pt))))

The before-in-sequence relation serializes positions.
(forall (s ptl pt2)
(if (form:before-in-sequence s ptl pt2)
(and (buml:Sequence s)
(form:Position ptl)
(form:Position pt2))))

(forall (s ptl pt2)
(if (form:before-in-sequence s ptl pt2)
(and (form:in-sequence s ptl)
(form:in-sequence s pt2))))

(not (exists (s ptl pt2)
(and (form:before-in-sequence s ptl pt2)
(form:before-in-sequence s pt2 ptl))))

(forall (s ptl pt2 ptll pt22)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 279

(if (and (form:before-in-sequence s ptl pt2)
(form:before-in-sequence s ptll pt22))
(iff (= ptl ptll)
(= pt2 pt22))))
(forall (s)
(if (form:Sequence s)
(if (exists (pt)
(form:in-sequence s pt))
(and (exists (ptl)
(not (exists (pt2)
(form:before-in-sequence s ptl pt2))))
(exists (pt2)
(not (exists (ptl)
(form:before-in-sequence s ptl pt2))))))))
(forall (s ptl ptll)
(if (and (form:Sequence s)
(not (exists (pt2)
(form:before-in-sequence s ptl pt2)))
(not (exists (pt2)
(form:before-in-sequence s ptll pt2))))
(= ptl ptll)))
(forall (s)
(if (form:Sequence s)
(exists (pt2)
(not (exists (ptl)
(form:before-in-sequence s ptl pt2))))))
(forall (s pt2 pt22)
(if (and (form:Sequence s)
(not (exists (ptl)
(form:before-in-sequence s ptl pt2)))
(not (exists (ptl)
(form:before-in-sequence s ptl pt22))))
(= pt2 pt22)))
An empty sequence has no positions.
(forall (s)
(if (form:empty-sequence s)
(form:Sequence s)))
(forall (s)
(if (form:Sequence s)

(iff (form:empty-sequence s)
(not (exists (pt)

(form:in-sequence s pt))))))

The position-count relation links positions to how far they are along in the sequence.

(forall (s pt n)
(if (form:position-count s pt n)

(and (form:Sequence s)
(form:Position pt)
(buml:UnlimtedNatural n))))

(forall (s pt nl n2)
(if (and (form:position-count s pt nl)

(form:position-count s pt n2))

280 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(= nl n2)))

(forall (s pt)
(if (form:in-sequence s pt)
(exists (n)
(form:position-count s pt n))))

(forall (s pt2)
(if (and (form:Sequence s)
(not (exists (ptl)

(form:before-in-sequence s ptl pt2))))
(form:position-count s pt2 form:1)))

(forall (s ptl nl pt2 n2)

(if (and (form:position-count s ptl nl)
(form:before-in-sequence s ptl pt2)
(form:position-count s pt2 n2))

(form:add-one nl n2)))

The sequence-length relation links sequences to how many positions they have.
(forall (s n)

(if (form:sequence-length s n)
(and (form:Sequence s)
(buml:UnlimtedNatural n))))

(forall (s n)
(iff (form:sequence-length s n)
(or (and (form:empty-sequence s)
(= n form:0))
(exists (ptl)
(and (not (exists (pt2)
(form:before-in-sequence s ptl pt2)))
(form:position-count s ptl n))))))

The in-position relation links positions to things they identify. Each position identifies exactly one thing.
(forall (pt x)

(if (form:in-position pt x)
(form:Position pt)))

(forall (pt x1 x2)
(if (and (form:in-position pt x1)
(form:in-position pt x2))

(= x1 x2)))

(forall (pt)
(if (form:Position pt)
(exists (x)
(form:in-position pt x))))

The in-position-count relation links sequences to a thing based on how far along the position is in the sequence.

(forall (s n Xx)
(if (form:in-position-count s n x)
(and (buml:Sequence s)
(form:NaturalNumber n))))

(forall (s n x)
(iff (form:in-position-count s n x)

Semantics of a Foundational Subset for Executable UML Models, Beta 2

281

(exists (pt)
(and (form:in-position pt x)
(form:position-count s pt n)))))

The same-sequence relation is true for sequences that identify the same things in the same order.
(forall (sl s2)
(if (form:same-sequence sl s2)
(and (form:Sequence sl)
(form:Sequence s2))))

(forall (sl s2)
(iff (form:same-sequence sl s2)
(forall (x n)
(iff (form:in-position-count sl n x)
(form:in-position-count s2 n x)))))

10.3.1.4 Strings

Strings are sequences of characters.
(forall (s)
(if (buml:String s)
(form:Sequence s)))

(forall (s pt x)

(if (and (buml:String s)
(form:in-sequence s pt)
(form:in-position pt x))

(form:Character x)))

The string-index-character relation links strings to a character based on how far along the position is in the sequence.
(forall (s n ch)
(if (form:string-index-character s n ch)
(and (buml:String s)
(form:WholeNumber n)
(form:Character ch))))

(forall (s n ch)
(if (buml:String s)
(iff (form:string-index-char s n ch)
(form:in-position-count s n ch))))

The string-length relation links strings to how many positions they have.
(forall (s n)
(if (form:string-length s n)
(and (buml:String s)
(form:NaturalNumber n))))

(forall (s)
(if (buml:String s)
(forall (n)
(iff (form:string-length s n)
(form:sequence-length s n)))))

The same-string relation is true for string that identify the same characters in the same order.
(forall (sl s2)
(if (form:same-string sl s2)
(and (buml:String sl)
(buml:String s2))))

282 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(forall (sl s2)
(if (and (buml:String sl)
(buml:String s2))
(iff (form:same-string sl s2)
(form:same-sequence sl s2))))

10.3.2 Classification and Generalization

Classification links classifiers to the the things they classify. Classifiers are categories into which things fall.
(forall (c o f)

(1f (form:classifies c o f)
(and (buml:Classifier c)
(psl:state £))))

A classifier is more general than another when the things classified by the specialized classifier are classified by the
general classifier.

(forall (csub csuper o f)
(1ff (buml:general csub csuper)
(if (form:classifies csub o f)
(form:classifies csuper o f))))

Classification applies in all PSL states prior to legal occurrences or to none. In PSL, states holding after an occurrence
are the same as states prior to legal successor occurrences, so this constaint applies to states holding after occurrences as
well as prior.
(forall (occ f c o)

(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior £ occ)
(form:classifies ¢ o f))
(forall (f2)

(if (psl:prior f2 occ)

(form:classifies c o £2)))))

10.3.3 Classifier Cardinality

Classifier cardinality is the number of things classified by a classifier in a PSL state.
(forall (c card f)
(if (form:classifier-cardinality c card f)
(and (buml:Classifier c)
(form:NaturalNumber card)
(psl:state £))))

(forall (cl c2)
(1f (and (buml:Classifier cl)
(buml:Classifier c2))
(buml:Classifier (form:union cl c2))))

(forall (cl c2 o f)
(1ff (form:classifies (form:union cl c2) o f)
(or (form:classifies cl o f)
(form:classifies c2 o f))))

(forall (cl c2 clCard ol f clCardl)

(if (and (buml:Classifer cl)
(form:NaturalNumber clCard)
(form:classifer-cardinality cl clCard f)
(not (form:classifies cl ol f))
(buml:Classifier c2)
(forall (02)

(1ff (form:classifies c2 o2 f)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 283

(= ol 02)))
(form:add-one clCard clCardl))
(form:classifier-cardinality (form:union cl c2) clCardl f)))

10.3.4 Properties

Properties link things to other things in a certain PSL state.
(forall (o p v f)
(if (form:property-value o p v f)
(and (buml:Property p)
(psl:state £f))))

Property values apply in all PSL states prior to legal occurrences or to none. In PSL, states holding after an occurrence
are the same as states prior to legal successor occurrences, so this constaint applies to states holding after occurrences as
well as prior.
(forall (occ £ o p v)

(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior £ occ)
(form:property-value o p v £f))
(forall (£2)

(if (psl:prior f2 occ)

(form:property-value o p v £2)))))

Things with property values must be classified by the class owning the property (classes are classifiers in UML).
(forall (¢ p occ f o v)
(if (and (buml:ownedAttribute c p)
psl:occurrence occ)
psl:legal occ)
psl:prior f occ)
(form:property-value o p v £f))
(exists (f2)
(and (psl:prior f2 occ)
(form:classifies c o £2)))))

— e~ o~ —~

Property values must be classified by the type of the property.
(forall (p ¢ occ f o v)

(if (and (buml:type p c)
(psl:occurrence occ)
(psl:legal occ)
(psl:prior f occ)
(form:property-value o p v f))
(exists (£f2)

(and (psl:prior f2 occ)

(form:classifies c v £2)))))

The achieves-property-value relation links objects, properties, and values to occurrences that give the property the value..
The property does not have the achieved value before the occurrence and does after.
(forall (o p v occ)
(iff (form:achieves-property-value o p v occ)
(and (forall (f)
(if (form:priorA f occ)
(not (form:property-value o p v f))))
(exists (f)
(and (form:holdsA f occ)
(form:property-value o p v £))))))

Property value cardinality is number of values of a property on a particular thing.
(forall (o p n f)

284 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(if (form:property-value-cardinality o p n f)
(and (buml:Property p)
(psl:state f)
(form:NaturalNumber n))))

(forall (occ £ o p n)
(if (and (psl:occurrence occ)
(psl:legal occ)
(psl:prior f occ)
(form:property-value-cardinality o p n f))
(exists (fv fp fvc vc)
(and (psl:prior fv occ)
(psl:prior fp occ)
(psl:prior fvc occ)
(forall (v)
(1ff (form:classifies vc v fv)
(form:property-value o p v fp)))
(form:classifier-cardinality vc n fvc)))))

Property value cardinality is constrained by the multiplicity of the property, but when the constraints are enforced is not
defined in UML. For example, when an object is created, it will violate non-zero lower multiplicities on its properties.
(forall (p m ¢ occ fc o n fp)

(if (and (buml:lower p m)
(buml:ownedAttribute c p)
(psl:occurrence occ)
(psl:1legal occ)
(psl:prior fc occ)
(form:classifies c o fc)
(psl:prior fp occ)
(form:property-value-cardinality o p n fp))
(or (= m n)

(form:less—-than m n))))

(forall (p m ¢ occ fc o n fp)

(if (and (buml:upper p m)
buml :ownedAttribute c p)
psl:occurrence occ)
psl:legal occ)
psl:prior fc occ)
form:classifies ¢ o fc)
psl:prior fp occ)
form:property-value-cardinality o p n fp))
(or (= m n)

(form:less—-than n m))))

—~ o~~~ o~~~

Composite properties collectively do not have values that form cycles. Destruction propagation is not formalized
because the execution model does not destroy things.
(forall (x y f)
(iff (form:composite-link-trans x y f)
(forall (occ)
(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior £ occ))
(or (exists (f2 p)

(and (psl:prior f2 occ)
(form:property-value y p x £f2)
(buml:aggregation p buml:composite)))
(

(exists (f2 p z £3)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 285

(and (psl:prior £f2 occ)
(form:property-value z p x £f2)
(buml:aggregation p buml:composite)
(psl:prior £3 occ)
(form:composite-link-trans z y £3))))))))
(forall (occ)
(iff (and (psl:occurrence occ)
(psl:legal occ))
(not (exists (x f)
(and (psl:prior f occ)
(form:composite-link-trans x x f))))))

Properties in bUML are ordered and nonunique, which means the values are ordered, and the same value can appear
more than once in the order. The property-value-sequence gives the sequence of values of a property in a PSL state.
(forall (o p s f)
(if (form:property-value-sequence o p s f)
(and (buml:Property p)
(form:Sequence s)
(psl:state £f))))

Property values sequences apply in all PSL states prior to legal occurrences or to none. In PSL, states holding after an
occurrence are the same as states prior to legal successor occurrences, so this constaint applies to states holding after
occurrences as well as prior.
(forall (occ £ o p s)

(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior f occ)
(form:property-value-sequence o p s f))
(forall (£2)

(if (psl:prior f£2 occ)

(form:property-value-sequence o p s £2)))))

(forall (occ fl1 f2 o p sl s2)

(if (and (psl:occurrence occ)
(psl:legal occ)
(psl:prior f1 occ)
(psl:prior f2 occ)
(form:property-value-sequence o p sl f1)
(form:property-value-sequence o p s2 £f2))
(= s1 s2)))

(forall (occ f)
(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior £ occ))
(forall (o p V)
(1ff (form:property-value o p v f)
(exists (f2 s pt)
(and (psl:prior f2 occ)
(form:property-value-sequence o p s £f2)
(form:in-sequence s pt)
(form:in-position pt v)))))))
(forall (occ f)
(if (and (psl:occurrence occ)
(psl:1legal occ)
(psl:prior £ occ))
(forall (o p)
(1ff (not (exists (v)

286 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(form:property-value o p v £)))
(or (not (exists (f2 s)
(and (psl:prior f2 occ)
(form:property-value-sequence o p s £f2))))

(
(psl:prior f£2 occ)
(form:property-value-sequence o p s £f2)
(form:empty-sequence s))))))))

104 Behavior

This subclause covers the behavioral aspects of the base semantics.

10.4.1 Property Value Modifiers

This subclause specifies PSL activities that modify property values.
(forall (o p v a)
(if (or (form:add-property-value o p v a)
(form:remove-property-value o p v a))
(and (buml:Property p)
(psl:activity a))))

(forall (o p v a aocc)
(if (and (form:add-property-value o p v a)
(psl:occurrence of aocc a))
(exists (f)
(and (psl:holds f aocc)
(form:property-value o p v £f)))))

(forall (a o p v aocc)
(if (and (form:remove-property-value o p v a)
(psl:occurrence of aocc a))
(forall (f)
(and (psl:holds f aocc)
(not (form:property-value o p v £))))))

(forall (o p s a aocc)
(if (and (form:set-property-value-sequence o p s a)
(psl:occurrence of aocc a))
(exists (f s2)
(and (psl:holds f aocc)
(form:property-value-sequence o p s2 f)
(form:same-sequence s s2)))))

(forall (o p a aocc)
(if (and (form:clear-property-value-sequence o p a)
(psl:occurrence of aocc a))
(exists (f s)
(and (psl:holds f aocc)
(form:property-value-sequence o p s f)
(form:empty-sequence s)))))

Semantics of a Foundational Subset for Executable UML Models, Beta 2 287

10.4.2 Common Behavior

This subclause covers the semantics of elements used in all behaviors. It includes Operations, which appear the bUML
Kernel, rather than Common Behavior.

10.4.2.1 Syntax
Behaviors are classes of executions, as in UML. Behaviors specify constraints on their valid executions.

Operations are formalized as abstract behaviors that specify only inputs and outputs. More details about the executed
behavior are not determined until runtime, when the operation is called on a particular object and a more detailed
behavior is selected (“dispatch”). Operations are not formalized as features or properties on classes because they have no
values at runtime. This subclause adds a generalization of bml:Behavior and buml:Operation that parameterizes them
(form:ProcessDefinition).

(forall (pd)
(if (form:ProcessDefinition pd)
(and (buml:Class pd)
(psl:activity pd))))

(forall (x)
(1f (or (buml:Behavior x)
(buml:Operation x))
(form:ProcessDefinition x)))

(forall (op b ¢)
(if (form:method op b c¢)
(and (buml:Operation op)
(buml :Behavior b)
(buml:Class c))))

Parameters are formalized as properties. The value of a parameter as a property on an execution is the value of the
parameter for that execution in a particular PSL state. This assumes no inout parameters.
(forall (p)
(if (buml:Parameter p)
(buml:Property p)))

(forall (pd p)
(if (form:ownedParameter pd p)
(and (form:ProcessDefinition pd)
(buml:Parameter p))))

(forall (po p)
(if (buml:ownedParameter po p)
(form:ownedParameter po p)))

(forall (pol p po2)
(if (and (form:ownedParameter pol p)
(form:ownedParameter poZ2 p))

(= pol po2)))
(forall (p)
(if (buml:Parameter p)

(exists (po)
(form:ownedParameter po p))))

(forall (po p)

288 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(if (form:ownedParameter po p)
(buml:ownedAttribute po p)))

(forall (p dk)
(iff (form:InputParameter p)
(and (buml:direction p dk)

(= dk buml:in))))
(forall (p)
(iff (form:OutputParameter p)
(forall (dk)
(and (buml:direction p dk)
(or (= dk buml:out)

(= dk buml:return))))))

10.4.2.2 Semantics

Behaviors are classes of executions. Behaviors specify constraints on their valid executions. Executions are interpreted
as PSL activity occurrences, which represent one of potentially many possible traces that might transpire when the
execution model is executing. Behaviors classify their executions independently of PSL state (the classifies relation on
behaviors is never used with PSL states that are constrained against occurrences), and similarly for property values of
occurrences when the values are also occurrences.
(forall (pd x £f)
(if (and (form:ProcessDefinition pd)
(form:classifies pd x f))
(form:execution x)))

(forall (pd x £f)
(if (and (form:ProcessDefinition pd)
(form:classifies pd x f))
(forall (£2)
(form:classifies pd x £f2))))

The rest of the axioms in this subclause relate PSL occurrences to executions to support multiple classification of
executions.
(forall (x occ)
(if (form:execution-occ x occ)
(and (form:execution x)
(psl:activity occurrence occ))))

(forall (x1 x2 occ)
(1f (and (form:execution-occ x1 occ)
(form:execution-occ x2 occ))

(= x1 x2)))

(forall (x occl occ?2)
(if (and (form:execution-occ x occl)
(form:execution-occ x occ2))
(form:same-suboccs occl occ2)))

(forall (occl occ?2 subocc)
(1ff (form:same-suboccs occl occ2)
(iff (form:subactivity-occurrence-neq subocc occl)
(form:subactivity-occurrence-neq subocc occ2))))

(forall (x)

(if (form:execution x)
(and (psl:activity occurrence x)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 289

(exists (xocc)
(and (form:execution-occ x xocc)
(= x xocc))))))

(forall (pd x £f)
(if (and (form:ProcessDefinition pd)
(form:classifies pd x f)
(not (psl:atomic pd)))
(exists (occ)
(and (form:execution-occ X occ)
(psl:occurrence of occ pd)))))

(forall (pd x f£f)
(if (and (form:ProcessDefinition pd)
(form:classifies pd x f)
(psl:atomic pd))
(exists (occ cab)
(and (form:execution-occ x occ)

(form:complex-atomic cab pd)
(psl:occurrence of occ cab)))))

(forall (b cab)
(iff (form:complex-atomic cab b)
(and (not (psl:atomic cab))
(atomic b)
(forall (cabocc)
(1f (psl:occurrence of cabocc cab)
(exists (bocc)

(and (psl:occurrence of bocc b)
(psl:root occ bocc cabocc)
(psl:leaf occ bocc cabocc))))))))

10.4.3 Activity Edges Generally

This subclause specifies additional syntactic relations on activity edges for the formalization, including a generalization
of activity edges that generalizes activity nodes also (form:ActivityElement), see Subclause.
(forall (x)
(if (buml:ActivityEdge x)
(form:ActivityElement x)))

(forall (n)
(if (buml:ActivityNode n)
(iff (form:max-one-incoming-edge-node n)
(forall (el e2)
(if (and (buml:incoming n el)
(buml:incoming n e2))
(= el e2))))))

(forall (n)
(iff (form:no-incoming-edge n)
(not (exists (e)

(buml:incoming n e)))))

(forall (n)

290 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(iff (form:no-outgoing-edge n)
(not (exists (e)
(buml:outgoing n e)))))
(forall (n)
(iff (form:max-one-incoming-edge n)
(forall (el e2)
(if (and (buml:incoming n el)
(buml:incoming n e2))
(= el e2)))))

(forall (n)
(iff (form:max-one-outgoing-edge n)
(forall (el e2)
(if (and (buml:outgoing n el)
(buml:outgoing n e2))
(= el e2)))))

10.4.4 Activity Nodes Generally

10.4.41 Syntax

This subclause specifies additional syntactic relations on activity edges for the formalization, including a generalization
of activity nodes that generalizes activity edges also (form:ActivityElement), see Subclause 10.4.3
(forall (x)
(if (buml:ActivityNode x)
(form:ActivityElement x)))

Executable nodes and object nodes are formalized as properties (executable nodes generalize actions and structured
nodes, and object nodes generalize pins and activity parameter nodes). Execution nodes are properties of the activities
that contain them, typed by behaviors that vary according by the particular executable node. The value of an execution
node as a property on an activity execution is the execution of that node. The value of an object node as a property on an
activity execution is the value in that object node in a particular PSL state.®®
(forall (n)
(1f (or (buml:ExecutableNode n)
(buml :0bjectNode n))
(buml:Property n)))

The activity relation in the formalization links activity elements to the activity that contains them, regardless of
intervening structured nodes.
(forall (ae a)
(if (form:activity ae a)
(and (form:ActivityElement ae)
(buml:Activity a))))

(forall (ae al a2)
(if (and (form:activity ae al)
(form:activity ae az2))

(= al a2)))

(forall (ae)
(if (form:ActivityElement ae)

8 This happens to give multiplicities to parameter nodes, which do not have them in bUML. The formalization does not use

multiplicities on parameter nodes.

® The semantics of property multiplicity (constraints on number of property values) differs from the semantics of pin multiplicity
(constraints on the number of input and output values for each execution), but the upper multiplicities do not conflict in the base
semantics because the execution engine does not offer more tokens to input pins than an action can accept in one execution, and

lower multiplicities are not enforced, see Subclause 10.3.4.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 291

(exists (a)
(form:activity ae a))))

(forall (ae a)
(if (buml:activity ae a)
(form:activity ae a)))

(forall (n a)
(if (and (or (buml:ExecutableNode n)
(buml :0ObjectNode n))
(form:activity n a))
(buml:ownedAttribute a n)))

Executable nodes as properties have exactly one type, which is a behavior (UML allows at most one type per property).
(forall (n b)

(1f (and (buml:ExecutableNode n)
(buml:type n b))
(buml :Behavior b)))

(forall (n)
(if (buml:ExecutableNode n)
(exists (b)
(buml:type n b))))

10.4.4.2 Semantics

Executions that are values of executable nodes as properties of activity executions are PSL subactivity occurrences of the
the activity execution. PSL subactivity occurrences happen during their superoccurrences.
(forall (n a xa f xn)
(1f (and (buml:ExecutableNode n)
(form:activity n a)
(form:classifies a xa f)
(form:property-value xa n xn f))
(form:subactivity occurrence-neq xn xa)))

Executions that are values of executable nodes as properties of activity executions are values in all PSL states or none.
PSL states are not used to formalize the state of execution.
(forall (n a xa f xn)
(1f (and (buml:ExecutableNode n)
(form:activity n a)
(form:classifies a xa f)
(form:property-value xa n xn f))
(forall (£2)
(form:property-value xa n xn £2))))

(forall (n a xal xaz2 f xn rxal rxa?2)

(if (and (buml:ExecutableNode n)
(form:activity n a)
(form:classifies a xal f)
(form:classifies a xa2 f)
(form:property-value xal n xn f)
(form:property-value xa2 n xn f)
(psl:root occ rxal xal)

(psl: root_occ rxa?2 xa2?))
(= rxal rxaZ2)))

292 Semantics of a Foundational Subset for Executable UML Models, Beta 2

10.4.5 Structured Nodes Generally

Executions that are values of structured nodes as properties of activity executions are PSL subactivity occurrences of the
structured node execution. PSL subactivity occurrences happen during their superoccurrences.
(forall (n sn a xa f xn xsn)
(1f (and (buml:inStructuredNode n sn)
(buml :ExecutableNode n)
(form:activity n a)
(form:classifies a xa f)
(form:property-value xa n xn f)
(form:property-value xa sn xsn f))
(form:subactivity occurrence-neq Xn xsn)))

(forall (ip a)
(if (and (buml:InputPin ip)
(form:activity ip a))
(iff (form:required-inputpin ip)
(forall (ipmin)
(if (buml:lower ip ipmin)
(not (= ipmin form:0)))))))
(forall (n)
(iff (form:executable-without-input n)
(and (buml:ExecutableNode n)
(form:no-incoming-edge n)
(forall (ip)

(if (buml:input n ip)
(not (or (form:required-inputpin ip)
(exists (e)
(buml:incoming ip e€)))))))))

This constraint applies to the syntactic pattern of a structured activity node containing executable nodes that have no
incoming control flows, no incoming object flows to any pins, and no required inputs. It requires the contained nodes to
execute when the structured node does.
(forall (sn n a)
(1f (and (buml:inStructuredNode sn n)
(form:executable-without-input n)
(form:activity n a))
(forall (xa f xsn)
(if (and (form:classifies a xa f)
(form:property-value xa sn xsn f))
(exists (xn)
(form:property-value xa n xn f))))))

(forall (a xa sn xsn)
(iff (form:move-structured-pin-values a xa sn xsn)
(and (forall (ip on2 fxsn sip xsnroot asnroot)

(if (and (buml:input sn ip)
(form:structured-input-or-output ip on2)
(form:flows-trans-fork-merge ip on2)
(form:priorA fxsn xsn)
(form:property-value-sequence xa ip sip fxsn)

(psl:root occ xsnroot xsn)
(psl:occurrence of xsnroot asnroot))

Semantics of a Foundational Subset for Executable UML Models, Beta 2 293

(form:set-property-value-sequence xa on2 sip asnroot)))
(forall (op on2 xsnleaf asnleaf fxsnleaf son2)

(if (and (buml:output sn op)
(form:structured-input-or-output on2 op)
(form:flows-trans-fork-merge on2 op)

(psl:leaf occ xsnleaf xsn)

(psl:occurrence of xsnleaf asnleaf)

(form:priorA fxsnleaf xsnleaf)
(form:property-value-sequence xa on2 son2 fxsnleaf))
(form:clear-property-value-sequence xa on2 asnleaf)
(form:set-property-value-sequence xa op sonz2

(and

asnleaf)))))))

This constraint requires values of structured node pins to be transferred in and out of the structured node when the node
execution begins and ends respectively.
(forall (sn a)
(1f (and (buml:StructuredNode sn)
(form:activity sn a))
(forall (xa f xsn)
(if (and (form:classifies a xa f)
(form:property-value xa sn xsn f))
(form:move-structured-pin-values a xa sn xsn)))))

This constraint ensures executions of isolated structured nodes do not read objects modified by external executions
during the execution of the structured node.
(forall (sn a)
(if (and (buml:StructuredNode sn)
(buml:isMustIsolate sn form:true)
(form:activity sn a))
(forall (xa f xsn xacrsf xa2 acrsf oip o fxacrsf)
(1f (and (form:classifies a xa f)
(form:property-value xa sn xsn f)
(form:subactivity occurrence-neq xacrsf xsn)
(psl:subactivity occurrence xa2 xsn)
(form:property-value xa2 acrsf xacrsf f)
(buml :ReadStructuralFeatureAction acrsf)
(buml:object acrsf oip)
(form:priorA xacrsf fxacrsf)
(form:property-value xa2 oip o fxacrsf))
(exists (xout p V)
(and (not (form:subactivity occurrence-neq xout xsn))
(form:achieves-property-value o p v xout))))))))

10.4.6 Expansion Regions

10.4.6.1 Syntax

Expansion regions are formalized as call actions, where the activity called is constructed from the nodes in the region.
The activity has parameter nodes corresponding to the pins of the expansion region, including the expansion nodes. "’
(forall (n)
(if (buml:ExpansionRegion n)
(buml:CallAction n)))

The expansion-activity relation links expansion regions to the constructed activity it calls.
(forall (ac a)

10 A separate behavior is needed to group multiple executions of the region into a single execution for reuse of the generic flow

semantics outside the region. The called behavior is used at exactly one expansion region.

294 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(if (form:expansion-activity ac a)
(and (buml:ExpansionRegion ac)
(buml:Activity a))))

(forall (ac a)
(if (form:expansion-activity ac a)
(form:called ac a)))

(forall (acl ac2 a)
(if (and (form:expansion-activity acl a)
(form:expansion-activity ac2 a))

(= acl ac2)))

Expansion nodes are formalized as pins.
(forall (n)
(if (buml:ExpansionNode n)
(buml:Pin n)))

10.4.6.2 Semantics

All the values of input expansion nodes are taken as a single collection, whereas in UML each value is taken as a separate
collection."" It is assumed edges do not cross expansion region boundaries and expansion regions are not nested.

The expansion-input-value-xcall relation links executions of expansion region actions (the xac variable) and positions
(pt) in a property value sequence of an input expansion node with executions of its constructed activity (xcall) (in the
execution model, all input expansion nodes have the same number of values at the beginning of region execution). For
each expansion region action executions, this relation is one-to-one between positions and executions of the constructed
activity, see the necessary condition on expansion region executions at the end of this subclause.
(forall (xac pt xcall)
(if (form:expansion-input-value-xcall xac pt xcall)
(and (form:execution xac)

(form:Position pt)

(form:execution xcall))))
(forall (xac ptl xcalll pt2 xcall2)

(if (and (form:expansion-input-value-xcall xac ptl xcalll)
(form:expansion-input-value-xcall xac pt2 xcall?))
(iff (= ptl pt2)
(

= xcalll xcall?))))

The expanded-value-to-fill relation links expansion region actions (the xac variable) under activity executions (xa),
executions of the expansion region constructed activity (xcall) to input expansion nodes of the region (ip) and a value
of the expansion node (v) to pass to a constructed activity execution. It uses expansion-input-value-xcall to link each
value of the expansion node to one of the constructed activity executions.
(forall (xa xac xcall ip v)
(iff (form:expanded-value-to-fill xa xac xcall ip v)
(forall (ptindex sindex n)
(if (and (form:expansion-input-value-xcall xac ptindex xcall)
(form:position-count sindex ptindex n))
(exists (fxac s pt)
(and (form:priorA fxac xac)

(form:property-value-sequence xa ip s fxac)
(form:position-count s pt n)
(form:in-position pt v)))))))

The fill-input-parameter-node relation ensures executions of expansion region actions (the xac variable) transfer values
from an input pin of the expansion region (ip) to the corresponding input parameter nodes of the executions of the

""" This does not support queuing of collections, but the execution model does not use token queuing.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 295

constructed activity (xcall). It assumes input pins never have more tokens than the action can accept in one execution,
and input pin multiplicity upper is one or unlimited (ipmax) .
(forall (xa xac xcall ip ipmax)
(iff (form:fill-input-parameter-node xa xac xcall ip ipmax)
(forall (srootxac arootxac p pnode a)
(if (and (psl:root occ srootxac xac)

(psl:occurrence of srootxac arootxac)

(form:pin-parameter-match ip p)

(buml :parameter pnode p)

(form:activity pnode a)

(form:activity ip a))

(or (and (= ipmax form:1)
(forall (v)
(if (and (if (buml:ExpansionNode ip)
(form:expanded-value-to-fill xa xac xcall ip v))
(if (not (buml:ExpansionNode ip))
(exists (fxac)
(and (form:priorA fxac xac)
(form:property-value xa ip v fxac)))))
(form:add-property-value xcall pnode v arootxac))))
(and (= ipmax buml:*)
(forall (fxac s)
(if (and (form:priorA fxac xac)
(form:property-value-sequence xa ip s fxac))
(form:set-property-value-sequence xcall pnode s
arootxac)))))))))

The empty-output-parameter-node relation ensures executions of expansion region action (the xac variable) transfer
values from an outut parameter node of the executions of the constructed activity (xcall) to the corresponding output
pin of the expansion region (op). It assumes output pin multiplicity upper (opmax) is one or unlimited. This does not
put null tokens in output pins when output parameter nodes are empty, as in UML.
(forall (xa xac xcall op opmax)
(iff (form:empty-output-parameter-node xa xac xcall op opmax)
(forall (sleafxac aleafxac p pnode a fxcall)
(if (and (psl:leaf occ sleafxac xac)
(psl:occurrence of sleafxac aleafxac)
(form:pin-parameter-match op p)
(buml :parameter pnode p)
(form:activity pnode a)
(form:activity op a)
(form:holdsA fxcall xcall))
and (= opmax form:1)
(forall (v)
(1f (form:property-value xcall pnode v fxcall)
(form:add-property-value xa op v aleafxac))))
(and (= opmax buml:*)
(forall (s)
(if (form:property-value-sequence xcall pnode s
fxcall)
(form:set-property-value-sequence xa oOp s
aleafxac))))))))

)

The fill-empty-parameter-node relation combines the fill-input-parameter-node relation and empty-output-parameter-
node relations.
(forall (a xa ac xac xcall)
(iff (form:fill-empty-parameter-node a xa ac xac xcall)
(and (forall (ip ipmax)
(if (and (buml:input ac ip)
(not (buml:ExpansionNode ip))

296 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(buml :upper ip ipmax))
(form:fill-input-parameter-node xa xac xac 1ip ipmax)))
(forall (op opmax)
(if (and (buml:output ac op)
(not (buml:ExpansionNode op))
(buml :upper op opmax))
(form:empty-output-parameter-node xa xac xac op opmax))))))

The expansion-input-value-output relation links two sequences and their positions. The relation is one-to-one, except
not all positions in the first sequence are necessarily in the second sequence. The relation preserves the ordering of the
sequences.
(forall (sl ptl s2 pt2)
(if (form:expansion-input-value-output sl ptl s2 pt2)
(and (form:Sequence sl)
(form:Position ptl)
(form:in-sequence sl ptl)
(form:Sequence s2)
(form:Position pt2)
(form:in-sequence s2 pt2))))
(forall (sl ptl ptl2 s2 pt2l pt22)
(if (and (form:expansion-input-value-output sl ptl s2 ptl2)
(form:expansion-input-value-output sl pt2l s2 pt22))
(1ff (= ptl pt21l)
(= ptl2z pt22))))
(forall (sl ptl ptl2 s2 pt2 pt22)
(if (and (form:expansion-input-value-output sl ptl s2 pt2)
(form:expansion-input-value-output sl ptl2 s2 pt22))
(1ff (forall (nl n2)

(and (form:position-count sl ptl nl)
(form:position-count sl ptl2 n2)
(form:less—-than nl n2)))

(forall (nl n2)

(and (form:position-count s2 pt2 nl)
(form:position-count s2 pt22 n2)
(form:less—-than nl n2))))))

The contracted-sequence-to-empty relation links executions of expansion region actions (the xac variable) and
executions of its constructed activity (xcall) with property value sequences (s) of an output pin (op). It assumes each
execution of the body of the expansion region supplies no more than one value to each output expansion node. It ensures
the value of the output parameter node of the constructed activity execution, if any, is in the output expansion node in the
proper order. It uses the expansion-input-value-output relation for output value ordering.
(forall (xa xac xcall op sout)
(i1ff (form:contracted-sequence-to-empty xa xac xcall op sout)
(forall (ptin sin n pnode p a)
(if (and (form:expansion-input-value-xcall xac ptin xcall)
(form:position-count sin ptin n)
(form:pin-parameter-match op p)
(buml :parameter pnode p)
(form:activity pnode a)
(form:activity op a))
(and (forall (v fxcallv)
(if (and (form:holdsA fxcallv xcall)
(form:property-value xcall pnode v fxcallv))
(exists (ptout)
(and (form:in-sequence sout ptout)
(form:in-position ptout v)
(form:expansion-input-value-output sin ptin sout
ptout)))))
(1f (not (exists (v fxcallv)
(and (form:holdsA fxcallv xcall)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 297

(form:property-value xcall pnode v fxcallv))))
(not (exists (ptout)
(form:expansion-input-value-output sin ptin sout ptout))))
(forall (ptout)
(iff (form:in-sequence sout ptout)
(exists (ptin2)

(form:expansion-input-value-output sin ptin2 sout

ptout)))))))))

This is a necessary condition on executions of expansion region actions that its constructed activity execute as many
times as there are input values in the input expansion nodes (in the execution model, all input expansion nodes have the
same number of values at the beginning of region execution), that values are transferred between pins of the action and
parameter nodes of the contructed activity execution, and if the region mode is iterative that the executions are ordered in
time in the same way as the input values (see the three conditions in the large conjunction). This assumes parallel
expansion nodes have no output expansion nodes.
(forall (ac a acall)
(if (and (buml:ExpansionRegion ac)
(form:activity ac a)
(form:expansion-activity ac acall))
(forall (xa xac f)
(if (and (form:classifies a xa f)
(form:property-value xa ac xac f))
(and (forall (ipindex fxac s pt)
(if (and (buml:input ac ipindex)
(buml :ExpansionNode ipindex)
(form:priorA fxac xac)
(form:property-value-sequence xa ipindex s fxac)
(form:in-sequence s pt))
(exists (xcall)
(and (form:classifies acall xcall f)
(form:subactivity occurrence-neq xcall xac)
(form:expansion-input-value-xcall xac pt xcall)))))
(forall (ptany xcall)
(if (form:expansion-node-value-xcall xac ptany xcall)
(and (form:fill-empty-parameter-node a xa ac xac xcall)
(forall (ip)
(if (and (buml:input ac ip)
(buml :ExpansionNode ip))
(form:fill-input-parameter-node xa xac xcall ip
form:1)))
(forall (op)
(if (and (buml:output ac op)
(buml :ExpansionNode op))
(and (form:empty-output-parameter-node xa xac xcall op
form:1)
(exists (s2 fxacs)
(and (form:contracted-sequence-to-empty xa xac
xcall op s2)
(form:holdsA fxacs xac)
(form:property-value-sequence xa op s2
fxacs)))))))

(forall (ptanyl xcalll ptany2 xcall2)

(if (and (buml:mode ac buml:iterative)
(form:expansion-node-value-xcall xac ptanyl xcall2)
(form:expansion-node-value-xcall xac ptany2 xcall2)

(not (= xcalll xcall2)))
(forall (xcalllroot xcalllleaf xcall2root xcall2leaf)
(1f (and (form:expansion-input-value-xcall xac ptanyl xcall2)
(form:expansion-input-value-xcall xac ptany2 xcall2)
(not (= xcalll xcall?))
(psl:root occ xcalllroot xcalll)
(psl:leaf occ xcalllleaf xcalll)

298 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(psl:root occ xcallZ2root xcall2)
(psl:leaf occ xcall2leaf xcall2))

(or (psl:earlier xcalllroot xcall2leaf)
(psl:earlier xcalllleaf xcall2root)))))))))))

10.4.7 Control Flow

This section gives sufficient conditions for existence of action execution due to control flow, except for Subclause
10.4.7.3, which gives a necessary condition. The syntactic patterns of this subclause do not include any object flows.

10.4.7.1 Top level action

This subclause applies to the syntactic pattern of an action directly contained in an activity that requires no input to start.
The constraint requires the action to execute for every execution of the containing activity.
(forall (n a)
(if (and (buml:activity n a)
(form:executable-without-input n))
(forall (xa f)
(if (form:classifies a xa f)
(exists (xn)
(form:property-value xa n xn £))))))

10.4.7.2 Initial Node to Action

This subclause applies to the syntactic pattern of a control flow from an initial node to an action, with no more than one
edge going out of the initial node, no more than one edge coming into the action, and no pins on the action (for example,
see Statement Sequence pattern in Annex A.3.1). It requires the action to execute for every execution of the containing
activity
(forall (nl n2)
(iff (form:same-syntactic-container nl n2)
(exists (c)

(or (and (buml:inStructuredNode nl c)
(buml:inStructuredNode n2 c))
(and (buml:activity nl c)
(

buml:activity n2 c))))))

(forall (i e ac a)
(1f (and (buml:InitialNode 1)
form:max-one-outgoing-edge 1i)
buml:target e ac)
form:same-syntactic-container i ac)
buml:Action ac)
not (exists (ip)
(buml:input ac ip)))
(form:activity i a))
(forall (xa sn xsn f)
(if (and (form:classifies a xa f)
(or (not (buml:inStructuredNode i sn))
(form:property-value xa sn xsn f)))
(exists (xac)
(form:property-value xa ac xac f))))))

(
(
(
(
(
(

Semantics of a Foundational Subset for Executable UML Models, Beta 2 299

10.4.7.3 Action to Action, general necessary condition

This subclause applies to syntactic pattern of a control flow between actions, with any intervening and chained control
nodes, and regardless of any other flows. It requires each target action execution to follow no more than one source
action execution, and each source action execution to be followed by no more than one source action execution. It does
not require the target action to execute.'
(forall (nl n2)
(1ff (form:flow-trans-control-node nl n2)
(exists (e)
(and (buml:outgoing nl e)
(or (buml:target e n2)
(exists (nt)
(and (buml:target e nt)
(buml:ControlNode nt)
(form:flow-trans—-control-node nt n2))))))))

The follows relation links two PSL occurrences (s1 and s2 variables)under an execution of an activity (a), where the
first occurrence happens sometime before the second. The follows relation is used in sufficient conditions for the
existence of action executions due to control flow from other actions, for example in Subclause.
(forall (sl s2 a)
(1f (form:follows sl s2 a)
(form:min-precedesA sl s2 a)))

(forall (acl ac2 a)

(if (and (buml:Action acl)

(buml:Action ac?)
(form:flow-trans-control-node acl ac2)
(form:activity acl a))

(forall (xa f xacl xac2 xacl2 xac22)

(1f (and (form:classifies a xa f)
(form:property-value xa acl xacl f)
(form:property-value xa ac2 xac2 f)
(form:property-value xa acl xacl2 f)
(form:property-value xa ac2 xac22 f)
(form:follows xacl xac2 a)
(form:follows xacl2 xac22 a))

(= xacl xacl2)
(= xac2 xac22))))))

(1ff

10.4.7.4 Action to Action, single control flow, optional merge/fork

This subclause applies to the syntactic pattern of a control flow between actions, with any intervening and chained fork
and merge nodes (for example, see the Statement Sequence pattern in Annex A.3.1). The target action has no other
incoming control flows and no input pins. The constraint requires the target action to execute after the source action
does.

The flow-trans-fork-merge links activity nodes that have a control or object flow between them (the n1 variable as
source, n2 as target), possibily with intervening and chained fork and merge nodes. The flow will be a control flow if the
nodes are actions and an object flow if the nodes are object nodes.
(forall (nl n2)
(iff (form:flow-trans-fork-merge nl n2)
(exists (e)
(and (buml:outgoing nl e)
(or (buml:target e n2)
(exists (nt)

12 This constraint does not apply to forks followed by merges, or decision nodes followed by joins, but the execution model does not
use these syntactic patterns.

300 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(and (buml:target e nt)
(or (buml:ForkNode nt)
(buml :MergeNode nt))
(form:flow-trans-fork-merge nt n2))))))))
(forall (acl ac2 a)
(1f (and (buml:Action acl)
(buml:Action ac?)
(form:max-one-incoming-edge ac2)
(form:flow-trans-fork-merge acl ac2)
(not (exists (ip)
(buml:input ac ip)))
(form:activity acl a))
(forall (xa f xacl)
(1f (and (form:classifies a xa f)
(form:property-value xa acl xacl f))
(exists (xac?2)
(and (form:property-value xa ac2 xac2 f)
(form:follows xacl xac2 a)))))))

10.4.8 Object Flow

This section gives sufficient conditions for the presence of values in object nodes in Subclauses 10.4.8.1 and 10.4.8.2 and
for the existence of action execution due to object flow in Subclauses 10.4.8.3 through 10.4.8.6, and also control flow in
Subclauses 10.4.8.4 through 10.4.8.6. The syntactic patterns of this subclause do not have object nodes with more than
one outgoing edge (no token competition).

10.4.8.1 Object node to object node, optional fork/merge

This subclause applies to the syntactic pattern of object flow between object nodes, with any intervening and chained
fork and merge nodes, where the flow is not into or out of a structured node pin (for example, see the two Instance
Variable Assignment patterns in Annex A.3.4 and A.3.5). The source object node has exactly one outgoing object flow.
The constraints require values in the source object node be transferred to the target object node.
(forall (n sn)
(iff (form:inStructuredNode-trans n sn)
(or (buml:inStructuredNode n sn)
(exists (nt)
(and (buml:inStructuredNode n nt)
(form:inStructuredNode-trans nt sn))))))

The structured-input-or-output relation links input pins (the on1 variable) or output pins (on2) of structured nodes with
object nodes in the structured node.
(forall (onl on2)
(iff (form:structured-input-or-output onl on2)
(exists (sn)
(and (buml:StructuredNode sn)
(or (and (buml:input sn onl)
(form:inStructuredNode-trans on2 sn))
(and (buml:output sn on2)
(form:inStructuredNode-trans onl sn)))))))
(forall (onl on2 a)
(if (and (buml:0ObjectNode onl)
(buml:0ObjectNode on2)
(not (form:structured-input-or-output onl on2))
(form:max-one-outgoing-edge onl)
(form:flows-trans-fork-merge onl on2)
(form:activity onl a))
(forall (xa f xsub v fonls sonl)
(1f (and (form:classifies a xa f)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 301

(form:subactivity occurrence-neqg xsub xa)
(form:achieves-property-value xa sonl v xsub)
(psl:holds fonls xsub)
(form:property-value-sequence xa onl sonl fonls))
(exists (amove)
(and (form:clear-property-value-sequence xa onl amove)
(form:set-property-value-sequence xa on2 sonl amove)
(form:subactivity occurrence-neq
(psl:successor amove xsub) xa)))))))

10.4.8.2 Object node to object node, decision, optional fork/merge

This subclause applies to the syntactic pattern of object flow between object nodes, with any intervening and chained
fork and merge nodes, one intervening decision node, where the flow is not into or out of a structured node pin (for
example, see the Do-While Loop pattern in Annex A.3.10). The decision input flow comes from an output pin on the
same action as the output pin providing the decision input. The source object node has exactly one outgoing object flow.
The constraints require the values in the source object node to be transferred to the target object node if the decision input
matches the guard.

The flow-trans-fork-merge-decision relation links activity nodes that have a control or object flow between them (the n1
variable as source, n2 as target), where the flow is not into or out of a structured node pin, possibily with intervening and
chained fork and merge nodes. The flow has one intervening decision node with a decision input flow from an output pin
(dip), possibily with intervening and chained fork and merge nodes, and a guard specification (g). The flow will be a
control flow if the nodes (n1 and n2) are actions and an object flow if the nodes are object nodes.

(forall (nl n2 dip g)

(iff (form:flow-trans-fork-merge-decision nl n2 dip g)
(exists (dn)

(and (buml:DecisionNode dn)
(form:flow-trans-fork-merge nl dn)
(form:flow-trans-fork-merge dn n2)
(exists (edn nt gvs)

(and (buml:outgoing dn edn)

(buml:target edn nt)

(or (= nt n2)
(form:flow-trans-fork-merge nt n2))
(buml:guard edn gvs)

(buml:value gvs g)))
(form:flow-trans-fork-merge dip dn)
(buml:OutputPin dip)

(exists (edn nt)

(and (buml:incoming dn edn)
(buml:decisionNodeInputFlow dn edn)

(buml :source edn nt)

(or (= nt dip)
(form:flow-trans-fork-merge dip nt))))))))

This assumes the output pin providing the decision input has exactly one value.
(forall (onl on2 ac dip g a)

(if (and (buml:0ObjectNode onl)
(buml :0ObjectNode on2)
(not (form:structured-input-or-output onl on2))
(buml:Action ac)
(buml:output ac onl)
(buml:output ac dip)
(form:max-one-outgoing-edge onl)
(form:max-one-outgoing-edge dip)

302 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(form:flow-trans-fork-merge-decision onl on2 dip qg)
(form:activity onl a))
(forall (xa f xac fxac vdip sonl)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:holdsA fxac xac)
(form:property-value xa dip vdip fxac)
(= vdip g)
(m:property-value-sequence xa onl sonl fxac))
(exist
(an

for
s (amove occmove)

d (form:remove-property-value xa dip vdip amove)
(form:clear-property-value-sequence xa onl amove)
(form:set-property-value-sequence xa on2 sonl amove)
(psl:occurrence of occmove amove)

(

psl:next subocc xac occmove a)))))))

10.4.8.3 Action with pins, no incoming control flow or one from initial

This subclause applies to the syntactic pattern of an action with pins, and no incoming control flow or one from an initial
node (for example, see the Testing String Equality pattern in Annex A.4.9). It requires the action to execute for every
execution of the activity when the input pins are provided enough values to meet their lower multiplicity.

The action-input-pins-satisfied links actions (the ac variable) under executions of their containing activities (xa), with
other executions (xsub) after which the values in the action’s pins meet their lower multiplicity. An incoming control
flow is required if all input pins are optional (lower multiplicity of zero). It assumes that the input pin multiplicity lower
bound is zero or one.
(forall (ac xa xsub)
(1ff (form:action-input-pins-satisfied ac xa xsub)
(and (forall (ip ipmin)
(if (and (buml:input ac ip)
(buml:lower ip ipmin))
(or (= ipmin form:0)
(and (= ipmin form:1)
(exists (v f)
(and (form:holdsA f xsub)
(form:property-value xa ip v £)))))))
(or (exists (e)
(buml:target e ac))
(exists (ip)
(and (buml:input ac ip)
(exists (v f)
(and (form:holdsA f xsub)
(form:property-value xa ip v £)))))))))

The action-pin-trigger relation links actions (the ac variable) under executions of their containing activities (xa), with
other executions (xsub) under the activity execution before which the action input pins are not satisfied and after which
they are.
(iff (form:action-pin-trigger ac xsub xa)
(and (form:subactivity occurrence-neq xsub xa)
(forall (xlsub alsub)
(1f (and (psl:leaf occ xlsub xsub)
(psl:occurrence of xlsub alsub))
(exists (xbsub)
(and (= xlsub (psl:successor xbsub alsub))

(not (form:action-input-pins-satisfied ac xa xbsub))
(form:action-input-pins-satisfied ac xa xlsub))))))))

Semantics of a Foundational Subset for Executable UML Models, Beta 2 303

The take-input relation ensures that executions (the xac variable) remove values from input pins that are values just after
another execution is complete (xsub). The other execution brings about pin satisfaction, see action-pin-trigger above.
It assumes that the input pin multiplicity upper bound is one or unlimited.
(forall (xac ac xa xsub)
(iff (form:take-input xac ac xa xsub)
(forall (srootxac arootxac ip ipmax)
(1f (and (psl:root occ srootxac xac)
(psl:occurrence of srootxac arootxac)
(buml:input ac ip)
(buml:upper ip ipmax))
(or (and (= ipmax form:1)
(forall (fxsubh v)
(1f (and (form:holdsA fxsubh xsub)
(form:property-value xa ip v fxsubh))
(form:remove-property-value xa ip v arootxac))))
(and (= ipmax buml:*)
(forall (fxsubh v)
(1f (and (form:holdsA fxsubh xsub)
(form:property-value xa ip v fxsubh))
(form:remove-property-value xa ip v

arootxac)))))))))
(forall (n)

(iff (form:no-incoming-edge-or-one-from-initial n)
(and (forall (el e2)
(if (and (buml:incoming el n)
(buml:incoming e2 n))
(= -el e2)))
(forall (n2)
(if (form:flow-trans-fork-merge n2 n)
(buml:InitialNode n2))))))

(forall (ac a ip)
(if (and (buml:Action ac)
(form:no-incoming-edge-or-one-from-initial ac)
(buml:input ac ip)
(form:activity ac a))
(forall (xa f xsub)
(1f (and (form:classifies a xa f)
(form:action-pin-trigger ac xsub xa))
(exists (xac)
(and (form:property-value xa ac xac f)
(psl:min precedes xsub xac a)
(form:take-input xac ac xa xsub)))))))

10.4.8.4 Action with pins, one incoming control flow from action, optional fork/merge

This subclause applies to the syntactic pattern of an action with pins, and one incoming control flow from another action
with any intervening and chained fork and merge nodes (for example, see the Method Call pattern in Annex A.4.11). It
requires the target action to execute after the source action when the input pins are provided enough values to meet their
lower multiplicity.

The joinable-control-input relation links actions and their executions (the acO and xac0 variables respectively) under
executions of their containing activities (xa and a, respectively), with other executions (xsub) under the activity
execution that satisfy the pins of a target action (ac). The action executions (xac0) and the other pin-satisfying
executions (xsub) are paired one-to-one in time order. The pairing begins with action executions and pin-satisfying
executions that have no other ones before them (the first part of the disjunctioin), and the pairs after that are in time order
(the second part of the disjunction).

304 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(forall (xacO xsub xa a acO)
(iff (form:joinable-control-input ac0O0 xac0O0 xsub ac a xa)
(forall (f)

(or (and (not (exists (

(and (form:property-value xa ac0O xac00 f)

(psl:min precedes xac00 xac0 a))))

(not (exists (
(

(and

xsub0)
form:action-pin-trigger ac xsub0 xa)
(psl:min _precedes xsub0 xsub a)))))
(exists (xac02 xsub?)
(and (form:joinable-control-input ac0 xac02 xsub2 ac a xa)
(not (exists (xac00)
(and (form:property-value xa ac0O xac00 f)
(psl:min precedes xac02 xac00 a)
(psl:min precedes xac00 xac0 a))))
(not (exists (xsubO0)
(and (form:action-pin-trigger acO0 xsub0 xa)
(psl:min precedes xsub2 xsubO a)
(psl:min precedes xsub0 xsub a))))))))))

The joined-follows relation links PSL occurrences where two of the occurrences (the s1 and s2 variables) happen
before the third (s3) under execution of an activity (a). The third occurrence is constrained to follow no more than one
pair of the other two occurrences, and each pair of the other two occurrences to be followed by no more than one of the
third (compare to the follows relation in Subclause 10.4.7.3).
(forall (sl s2 s3 a)
(if (form:joined-follows sl s2 s3 a)
(and (form:min precedesA sl s3 a)
(form:min precedesA s2 s3 a))))

(forall (sl s2 s3 sl2 s22 s32 a)
(if (and (form:joined-follows sl s2 s3 a)
(form:joined-follows sl12 s22 s32 a))

(1ff (and (= sl sl12)
(= s2 s22))
(= s3 s32))))

The joined-action-execution-exists relation establishes existence of executions of actions (the ac variable) under activity
exections (xa, an execution of activity a) where an action execution happens after its input pins are satisfied, and after
another action execution completes (xacO0, an execution of action ac0). An earlier constraint requires the source of
control flow (xac0) to execute before the target action (ac), see Subclause 10.4.7.3. The constraint below addresses the
remaining cases, one where the input pins are satisfied at the time the source of control flow is completed (the first part of
the disjunction), and another where the input pins are satisfied sometime after the source of control flow is completed
(the second part of the disjunction), see action-pin-trigger and joinable-control-input.
(forall (ac acO xac0O a xa)
(iff (form:joined-action-execution-exists ac acO xac0O a xa)
(forall (f)
(or (and (form:action-input-pins-satisfied ac xa xacO)
(exists (xac)
(and (form:property-value xa ac xac f)
(form:take-input xac ac xa xac0))))
(and (not (form:action-input-pins-satisfied ac xa xac0))
(forall (xsub)
(if (and (form:action-pin-trigger ac xsub xa)

(form:joinable-control-input acO0 xacO xsub ac a

xa))
(exists (xac)
(and (form:property-value xa ac xac f)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 305

(form:follows xac0O xac a)
(form:joined-follows xac0O xsub xac a)
(form:take-input xac ac xa xsub))))))))))
(forall (acO ac a)
(if (and (buml:Action acO)
(buml:Action ac)
(form:max-one-incoming-edge ac)
(form:flow-trans-fork-merge acO ac)
(form:activity ac a))
(forall (xa f xacO)
(if (and (form:classifies a xa f)
(form:property-value xa ac0O xacO f))
(form:joined-action-execution-exists ac acO xacO a xa)))))

10.4.8.5 Action with pins, one incoming control flow from action, decision with decision flow from
same action, optional fork/merge

This subclause applies to the syntactic pattern an action with pins, and one incoming control flow from another action
with any intervening and chained fork and merge nodes, and one intervening decision node in both the object flows and
control flows (for example, see the Do-While pattern in Annex A.3.10). The decision inputs come from output pins on
the same action as the source of the control flow. It requires the target action to execute after the source action when the
input pins are provided enough values to meet their lower multiplicity.

The guarded-joined-action-execution-exists relation augments the joined-action-execution-exists relation for a syntactic
pattern that has a decision node with a decision input from an output pin (the dip variable) and guard value (g). It
assumes the output pin has exactly one value, and the guard is a literal value specification. It ensures the value of the
output pin is removed.
(forall (ac acO dip g a)
(iff (form:guarded-joined-action-execution-exists ac acO dip g a)
(forall (xa f xacO vdip fxacO)
(if (and (form:classifies a xa f)
(form:property-value xa acO xacO f)
(form:holdsA fxacO0 xacO)
(form:property-value xa dip vdip fxacO)
(= vdip 9g))
(form:joined-action-execution-exists ac ac0 xacO a xa)
(exists (amove occmove)
(and

(and

(form:remove-property-value xa dip vdip amove)
(psl:occurrence of occmove amove)
(psl:next subocc xacO occmove a))))))))
(forall (acO ac dip g a)

(if (and (buml:Action acO0)
(buml:Action ac)
(form:max-one-incoming-edge ac)
(form:flow-trans-fork-merge-decision acO ac dip qg)
(buml:output acO dip)

(form:activity ac a))

(form:guarded-joined-action-execution-exists ac acO dip g a)))

10.4.8.6 Action with pins, one incoming control flow from initial, decision with decision flow from
initial action in same, optional fork/merge

This subclause applies to the syntactic pattern an action with pins, and one incoming control flow from and intial node
with any intervening and chained fork and merge nodes, and one intervening decision node the control flow (for
example, see the If Statement pattern in Annex A.3.9). The decision inputs come from output pins on the same action as
the source of the control flow. It requires the target action to execute for every execution of the activity when the input
pins are provided enough values to meet their lower multiplicity.

306 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(forall (i ac dip g acO a)
(1f (and (buml:InitialNode 1)
buml:Action ac)
form:max-one-incoming-edge ac)

form:flow-trans-fork-merge-decision i ac dip g)

(
(
(
(buml:output acO dip)
(form:executable-without-input acO)
(form:same-syntactic-container i ac)
(form:same-syntactic-container i acO0)
(form:activity ac a))

(form:guarded-joined-action-execution-exists

10.4.9 Invocation Actions

10.4.9.1 Syntax

ac ac0 dip g a)))

This subclause specifies additional syntax for invocation actions. The called relation links call actions to behaviors and

operations that are called.
(forall (ac pd)
(if (form:called ac pd)
(and (buml:CallAction ac)
(form: ProcessDefinition pd))))

(forall (ac pol po2)
(if (and (form:called ac pol)
(form:called ac po2))

(= pol po2)))

(forall (ac)
(if (buml:CallAction ac)
(exists (po)
(form:called ac po))))

The pin-parameter-match relation links pins and called parameters as derived from pin and parameter ordering in the

model.
(forall (pn p)
(if (form:pin-parameter-match pn p)
(and (buml:Pin pn)
(buml:Parameter p))))

(forall (pnl pl pn2 p2)

(if (and (form:pin-parameter-match pnl pl)
(form:pin-parameter-match pn2 p2))

(iff (= pnl pn2)

(= pl p2))))

(forall (pn p)
(if (form:pin-parameter-match pn p)
(and (if (form:InputParameter p)
(buml:InputPin pn))
(if (form:OutputParameter p)
(buml:OutputPin pn)))))

(forall (pn p)
(if (form:pin-parameter-match pn p)
(forall (m)
(and (iff (buml:lower pn m)

Semantics of a Foundational Subset for Executable UML Models, Beta 2

307

:lower p m))

()
(iff (buml:upper pn m)
(buml :upper p m))
(iff (buml:type pn m)
(buml:type p m))))))
(forall (pn p)
(1f (form:pin-parameter-match pn p)
(forall (t)
(iff (buml:type pn t)
(buml:type p t)))))
(forall (ac po)
(1f (and (buml:CallAction ac)
(form:called ac po))
(forall (pn p)
(iff (and (form:put ac pn)
(form:pin-parameter-match pn p))
(form:ownedParameter po p)))))
(forall (ac b)
(if (buml:behavior ac b)

(buml:type ac b)))

(forall
(i1f

(ac b)
(buml :behavior ac b)
(form:called ac b)))

(forall
(1f

(ac op)
(buml:operation ac op)
(form:called ac op)))

(forall
(if

(ac op)
(buml:operation ac op)
(buml:type ac op)))

The pin-property-match relation links pins and properties as derived from pin and signal property ordering in the model.
(forall (pn p)

(if (form:pin-property-match pn p)
(and (buml:Pin pn)
(buml:Property p))))
(forall (pnl pl pn2 p2)
(if (and (form:pin-property-match pnl pl)
(form:pin-property-match pn2 p2))
(iff (= pnl pn2)
(= pl p2))))
(forall (pn p)
(if (form:pin-property-match pn p)
(forall (m)
(and (iff (buml:lower pn m)
(buml:lower p m))
(iff (buml:upper pn m)
(buml :upper p m))
(iff (buml:type pn m)
(buml:type p m))))))
(forall (ac siqg)

308 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(if (and (buml:SendSignalAction ac)
(form:signal ac sig))
(forall (pn p)
(iff (and (form:argument ac pn)
(form:pin-property-match pn p))
(buml:ownedAttribute sig p)))))

10.4.9.2 Semantics

This subclause gives necessary conditions on executions of invocation actions as used in the execution engine
(CallBehaviorAction, CallOpertationAction, and SendSignal Action).

The change-only-pin relation links actions and their executions under the activity executions, where the action executions
only affect spins of the action.
(forall (ac xac xa)
(iff (form:change-only-pin ac xac xa)
(forall (xsub o p v)
(1f (and (form:subactivity occurrence-neq xsub xac)
(form:achieves-property-value o p v xsub))
(and (= o xa)
(or (buml:input ac p)
(buml:input ac p)))))))

This ensures activities invoked with call behavior actions transfer values between pins and parameter nodes, and that
called function behaviors only affect pins of their calling actions.
(forall (ac a b)
(if (and (buml:CallBehaviorAction ac)
(form:activity ac a)
(buml:type ac b))
(forall (xa xac f)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f))
(and (if (buml:Activity Db)
(form:fill-empty-parameter-node a xa ac xac xac))
(1f (buml:FunctionBehavior b)
(form:change-only-pin ac xac xa)))))))

The dispatch relation links links objects to operations and behaviors in a PSL states. It is used to determine more detailed
behavior (method) based on the thing on which an operation is invoked. It assumes multiple generalization does not
affect the choice of method.
(forall (o op b f)
(if (form:dispatch o op b f)
(and (buml:Operation op)
(buml :Behavior b)
(psl:state £))))

(forall (o op b f)
(if (form:dispatch o op b f)
(exists (c)

(and (form:classifies c o f)
(form:method op b c)
(not (exists (c2 b2)

(and (not (= c c2))
(buml:general c2 c)
(form:method op b2 c)
(form:classifies c2 o £))))))))

The execution-performer relation links executions to things performing those executions.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 309

(forall (x o)
(if (form:execution-performer x o)
(form:execution x)))

(forall (x ol 02)
(if (and (form:execution-performer x ol)
(form:execution-performer x 02))

(= ol 02)))

This ensures activities invoked with call operation actions transfer values between pins and parameter nodes, and that
called function behaviors only affect pins of their calling actions.
(forall (ac a op b tip)
(if (and (buml:CallOperationAction ac)
(form:activity ac a)
(buml:operation ac op)
(buml:target ac tip))
(forall (xa xac f fxac to)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa tip to fxac)
(form:dispatch to op b fxac))
(and (form:classifies b xac f)
(form:execution-performer xac to)
(form:fill-empty-parameter-node a xa ac xac xac))))))

The new-object relation links things to PSL occurrences before which the object does not exist.
(forall (o occ)
(if (form:new-object o occ)
(psl:occurrence occ)))

(forall (o occ)
(if (form:new-object o occ)
(and (forall (locc occ2)
(1f (and (psl:leaf occ locc occ)
(psl:earlierEqg occ2 locc))
(not (exists (f p s 02 c)
(and (psl:prior f occ2)
(or (form:property-value-sequence o p s f)
(form:property-value-sequence 02 p o f)
(form:classifies c o £)))))))
(exists (f p s 02 c)
(and (psl:holdsA f occ)
(or (form:property-value-sequence o p s f)
(form:property-value-sequence 02 p o f)
(form:classifies c o f)))))))

The fill-signal-property relation links signal objects to input pins that have values for properties of the signal. It assumes
input pin multiplicity upper is one or unlimited.
(forall (osig ip ipmax xa xac)
(iff (form:fill-signal-property osig ip ipmax xa xac)
(forall (srootxac arootxac p fxac)

(if (and (psl:root occ srootxac xac)
(psl:occurrence of srootxac arootxac)
(form:pin-property-match ip p)
(form:priorA fxac xac))

(or (and (= ipmax buml:*)
(forall (s)

310 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(if (form:property-value-sequence xa ip s fxac)
(form:set-property-value-sequence osig p s
arootxac))))
(and (= ipmax form:1)
(forall (v)
(if (form:property-value xa ip v fxac)
(form:add-property-value osig p v arootxac)))))))))

The event-pool relation links things to collections of events sent to them and waiting to be processed.
(forall (o osig f)
(if (form:event-pool o osig f)
(psl:state £f)))

This ensures ensures send signal action executions transfer values between pins and signal properties, and that the signal
is in the event pool of the target.
(forall (ac a sig tip)
(if (and (buml:SendSignalAction ac)
(form:activity ac a)
(buml:signal ac sig)
(buml:target ac tip))
(forall (xa xac f fxac to)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa tip to fxac))

(exists (fxac2 osig)
(and (form:holdsA fxac2 xac)

(form:classifies sig osig fxac2)
(form:new-object osig xac)
(forall (ip ipmax)

(if (and (buml:argument ac 1ip)

(buml :upper ip ipmax))
(form:fill-signal-property osig ip ipmax xa xac)))

(form:event-pool to osig fxac2)))))))

10.4.10 Object Actions (Intermediate)

This subclause specifies necessary conditions on executions of intermediate object actions as used in the execution
engine (CreateObjectAction, TestldentityAction, ReadSelfAction, and ValueSpecificationAction).
(forall (ac a c op)
(if (and (buml:CreateObjectAction ac)

(form:activity ac a)

(buml:classifier ac c)

(buml:result ac op))

(forall (xa xac f)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f))
(exists (fxac o)
(and (form:holdsA fxac xac)

(form:classifies ¢ o fxac)
(form:new-object o xac)
(form:property-value xa op o fxac)))))))

This covers testing equivalence of datatype values, which the UML TestldentityAction does not.
(forall (ac a ipl ip2 op)
(if (and (buml:TestIdentityAction ac)
(form:activity ac a)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 311

(buml:first ac ipl)
(buml:first ac ip2)
(buml:result ac op))
(forall (xa xac f vl v2 fxac)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa ipl vl fxac)
(form:property-value xa ip2 v2 fxac))
(exists (fxac2)
(and (form:holdsA fxac2 xac)
(if (or (= vl v2)
(form:same-string vl v2))
(form:property-value xa op form:true fxac2))
(1f (not (= vl v2))
(form:property-value xa op form:false fxac2))))))))
(forall (ac a op)
(1f (and (buml:ReadSelfAction ac)
(form:activity ac a)
(buml:result ac op))
(forall (xa xac f xsuper o)
(if (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:subactivity occurrence-neq xac xsuper)
(form:execution-performer o xsuper)
(not (exists (xsuper2 o2)
(and (form:subactivity occurrence-neqg xac xsuper2)
(form:subactivity occurrence-neq XsuperZ xsuper)
(form:execution-performer o2 xsuper2?)))))
(exists (fxac)
(and (form:holdsA fxac xac)
(form:property-value xa op o fxac)))))))
(forall (ac a vs op)
(if (and (buml:ValueSpecificationAction ac)
(form:activity ac a)
(buml:value ac vs)
(buml:result ac op))
(forall (xa xac f)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f))
(exists (fxac)
(and (form:holdsA fxac xac)
(forall (v)
(if (buml:value vs V)
(form:property-value xa op v fxac)))

(if (buml:LiteralNull vs)

(form:property-value xa op form:null fxac))
(1f (buml:InstanceValue vs)

(

forall (i)
(if (buml:instance vs 1)
(form:property-value xa op i fxac))))))))))

10.4.11 Structural Feature Actions

This subclause specifies necessary conditions on executions of intermediate object actions as used in the execution model
(ReadStructuralFeatureAction, ClearStructuralFeatureAction, AddStructuralFeatureAction,
RemoveStructuralFeatureAction).

312 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(forall (ac a p oi
(1f (and (buml:
(form:

(buml:

(buml :

(buml :

(forall (xa

(if (and

(exi

(

(forall (ac a p oi
(1f (and (buml:
(form:

(buml :

(buml:

(buml:

(forall (xa

(if (and

(and

(forall (ac a p oi
(if (and (buml:

P op)
ReadStructuralFeatureAction ac)
activity ac a)
structuralFeature ac p)
object ac oip)
result ac op))
xac £ o fxac v)
(form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa oip o fxac)
(form:property-value o p v fxac))
sts (fxac?2)
and (form:holdsA fxac2 xac)
(form:property-value xa op v fxac2)))))))
p op)
ClearStructuralFeatureAction ac)
activity ac a)
structuralFeature ac p)
object ac oip)
result ac op))
xac £ o fxac)
(form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa oip o fxac))
(not (exists (fxac2 v)
(and (form:holdsA fxac2 xac)
(form:property-value o p v fxac2))))
(exists (fxac2)
(and (form:holdsA fxac?2 xac)
(form:property-value xa op o fxac2))))))))

p vip)
AddStructuralFeatureAction ac)

(form:activity ac a)
(buml:structuralFeature ac p)
(buml:object ac oip)
(buml:value ac vip))

(forall (xa xac f o fxac v)

(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa oip o fxac)
(form:property-value xa vip v fxac))

(and (form:property-value o p v fxac)
(

forall (iraip irav)

(if (and (buml:isReplaceAll ac iraip)
form:property-value xa iraip irav fxac)
= iraip form:true))
exists

(
(
(

(not (fxac2 v2)
(and (form:holdsA fxac2 xac)
(form:property-value o p v2 fxac2)
(not (= v v2)))))))
(forall (iaip iav s sl sll n)

(if (and (buml:insertAt ac iaip)
(form:property-value xa iaip iav fxac)

Semantics of a Foundational Subset for Executable UML Models, Beta 2

313

(form:property-value-sequence o p s fxac)
(form:sequence-length s sl)
(form:add-one sl sll)
(1f (= i1av buml:¥*)
(= n sll))
(1f (not (= iav buml:*))
(= n iav)))
(exists (fxac2 s2)
(and (or (= iav buml:*)
(and (form:WholeNumber iav)
(form:less-than iav sll)))
(form:holdsA fxac?2 xac)
(form:property-value-sequence o p s2 fxac2)
(form:in-position-count s2 v n)
(forall (nless v2)

(1f (and (form:WholeNumber nless)
(form:less—-than nless n)
(form:in-position-count s v2 nless))

(form:in-position-count s2 v2 nless)))
(if (form:WholeNumber iav)
(forall (nmore v2 nmorel)
(if (and (form:WholeNumber nmore)
(form:less-than n nmore)
(form:less-than nmore sll)
(form:in-position-count s v2
nmore)
(form:add-one nmore nmorel))
(form:in-position-count s2 v2
nmorel))))))))))))
)

This assumes isRemoveDuplicates on the action is false.
(forall (ac a p oip vip)

(if (and (buml:RemoveStructuralFeatureAction ac)

(form:activity ac a)
(buml:structuralFeature ac p)
(buml:object ac oip)
(buml:value ac vip))

(forall (xa xac f o fxac v)

(if (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa oip o fxac)
(form:property-value xa vip v fxac))

(if (not (exists (raip)
(buml:insertAt ac raip)))
(not (exists (fxac2)
(and (form:holdsA fxac2 xac)
(form:property-value o p v fxac)))))
(forall (raip n s sl sll)

(if (and (buml:removeAt ac raip)
(form:property-value xa raip n fxac)
(form:property-value-sequence o p s fxac)
(form:sequence-length s sl)

(form:add-one sl sl1ll))
(exists (fxac2 s2)
(and (form:holds fxac2 xac)
(form:property-value-sequence o p s2 fxac2)

(and

314 Semantics of a Foundational Subset for Executable UML Models, Beta 2

(form:WholeNumber n)
(form:less—-than n sll)
(forall (nless v2)

(1f (and (form:WholeNumber nless)
(form:less-than nless n)
(form:in-position-count s v2

nless))
(form:in-position-count s2 v2 nless)))
(forall (nmore v2 nmorel)

(if (and (form:WholeNumber nmore)
(form:less-than n nmore)
(form:less—-than nmore sll)
(form:in-position-count s v2 nmore)
(form:add-one nmorel nmore))

(form:in-position-count s2 v2
nmorel)))))))))))

10.4.12 Object Actions (Complete)

This subclause specifies necessary conditions on executions of complete object actions as used in the execution model
(ReadlIsClassifiedObjectAction and StartObjectBehaviorAction).

This assumes the isDirect attribute on the action is false.
(forall (ac a ip c op)
(if (and (buml:ReadIsClassifiedObjectAction ac)
(form:activity ac a)
(buml:object ac ip)
(buml:classifier ac c)
(buml:result ac op))
(forall (xa xac f o fxac)
(if (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa ip o fxac))
(exists (fxac?)
(and (form:holdsA fxac2 xac)
(1f (form:classifies c o fxac)
(form:property-value xa op form:true fxac2))
(1f (not (form:classifies c o fxac))
(form:property-value xa op form:false fxac2))))))))

This assumes the object input is not a behavior, that no arguments are passed, and the action is not synchronous.
(forall (ac a ip)
(if (and (buml:StartObjectBehaviorAction ac)
(form:activity ac a)
(buml:object ac ip))
(forall (xa xac f o fxac c b)
(if (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:priorA fxac xac)
(form:property-value xa ip o fxac)
(form:classifies ¢ o fxac)
(buml:classifierBehavior c b))
(exists (xb srootxb)
(and (form:classifies b xb f)
(form:execution-performer xb 0)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 315

(psl:root occ srootxb xb)
(form:subactivity occurrence-neq srootxb xac)))))))

10.4.13 Accept Event Action

This subclause specifies necessary conditions on executions of AcceptEventAction. The getNextEvent relation links
things and triggers with signal objects in the thing’s event pool in a PSL state.
(forall (o osig tr f)
(if (form:getNextEvent o osig tr f)
(exists (ev sig)
(and (form:event-pool o osig f)
(buml:event tr ev)
(buml:signal ev sig)
(form:classifies sig osig f)))))
(forall (o osigl tr osig2 f)
(if (and (form:getNextEvent o osigl tr f)
(form:getNextEvent o osig2 tr f))
(= osigl osig2)))

(forall (ac)
(if (buml:AcceptEventAction ac)
(buml:type ac form:AcceptEventBehavior)))

(forall (ac a tr op)
(if (and (buml:AcceptEventAction ac)
(form:activity ac a)
(buml:trigger ac tr)
(buml:result ac op))
(forall (xa xac f o xlac fxlac)
(1f (and (form:classifies a xa f)
(form:property-value xa ac xac f)
(form:execution-performer xac o)
(psl:leaf occ xlac xac)
(form:priorA fxlac xlac))
(exists (osig)
(and (form:getNextEvent o osig tr fxlac)
(exists (fxac?)
(and (psl:holds fxac2 xac)
(not (form:event-pool o osig fxac2))
(form:property-value xa op osig fxac2)))
(not (exists (xac2 1lxac?)
(and (form:classifies form:AcceptEventBehavior xac2

(form:execution-performer xac2 o)
(not (= xac2 xac))

(psl:leaf occ lxac2 xac2)
(psl:leaf occ 1lxac2 xac))))))))))

316 Semantics of a Foundational Subset for Executable UML Models, Beta 2

Annex A
Java to UML Activity Mapping

The specifications for the methods of operations in the execution model in Clause 8 are written as Java code. However, as
discussed in Subclause 8.1, this Java code is to be interpreted as a surface syntax for UML activity model. This annex
defines the normative mapping from the Java syntax used in the execution model to UML activity models.

Subclause A.1 defines the correspondence between type names in the Java code and types in UML. The remaining
subclauses map Java behavioral code to UML activity models. In each case, the mapping is giving in terms of a pattern of
Java code and the pattern for the corresponding UML activity model (except for the case of a Java while loop, which is
mapped to an equivalent Java do-while loop and, from that, to a UML activity model—see Subclause 10.4.13). The rules
for the mapping are also described textually. The textual rules are intended to be used in conjunction with the graphical
depiction of the mapping.

This mapping does not cover the entire Java language. Rather, there are specific conventions, noted in the following
subclauses, which must be followed in the Java code in order to allow it to be mapped to UML. Further, the result of this
mapping is only subset of the full set of possible UML activity models. This subset is defines the behavioral modeling
capabilities included in the Base UML (or “bUML”) subset of f{UML that is used to write the f{UML execution model.
Clause 10 gives the base semantics for the bUML subset.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 317

A.1 Type Names
Table 7 defines the mapping from type names mentioned in the Java code to corresponding UML types.

Note that Java variables typed by a class are always allowed to have the empty value “null”. This is considered to
correspond, in UML, to the empty case of no values. Thus, all Java types are mapped to UML multiplicity elements with
a lower bound of 0.

Further, types with names of the form “...List” map to UML multiplicity elements with an unlimited upper bound. See
Subclause 10.4.13 for more on list types.

Table 7 - Java to UML Type Name Mapping

Java | UML

Primitive types
int Integer
boolean Boolean
String String
fUML.Syntax.UnlimitedNatural UnlimitedNatural

Classes

<class name> <class name> [0..1]

<package name>.<class name>
<package name>::<class name> [0..1]

€, .

(Note: “.” separators are replaced by “::” in the package
name)

Lists

<type name>List

<type name> [*] {ordered, non-unique}

318 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.2

Java

Method Declaration

{

}

public <type> <method>

(<type 1> <param 1>, ..)

<body>
return <expression>;

A method with a non-void type must have a single return statement at the end of its body. A void method may not
have any return statements, except that a method with no other statements may have a single “return” statement
in its body.

UML
<method=>

.'"«structured» ‘":

<param 1> i T -result

 <type 1> ! i ' : <type>
r <body> — | <expression>[—H{]

] 1]
1 1]

-~

’
et

4
I

A method maps to an activity with the corresponding operation as its specification.

The parameters of the method map to input parameters of the activity, with corresponding activity parameter
nodes. The result type of the method, of other than void, maps to a single result parameter of the activity, with a
corresponding activity parameter node. If the method has a void type, the activity has no result parameter.

The body of the method is mapped as a sequence of statements (see Subclause 10.4.13).

Each input activity parameter node is connected by an object flow to a fork node. A use of a method parameter in
the body maps to an object flow from the fork node connected to the corresponding input activity parameter node
into the mapping of the body.

A return statement (with an expression) maps to a structured activity node containing the mapping of the return
expression (see Subclause A.4), with a control flow dependency on the mapping of the final statement of the
body (unless this is empty). Object flows may flow from within the mapping of the body into the mapping of the
expression. An object flow connects the result pin of the expression to the result activity parameter node. (A
return statement for an otherwise empty method is not mapped to anything.)

Semantics of a Foundational Subset for Executable UML Models, Beta 2 319

A.3 Statements

The following mappings are for statements and sequences of statements that appear in the bodies of methods and
structured statements. Statements often have embedded expressions, which are mapped according to the mappings given
in Subclause A 4.

A.3.1 Statement Sequence

Java

<statement 1>;
<statement 2>;

<statement n>;

* Allowable statements include only those with a form that has a mapping defined in the remainder of this
subclause.

UML

------------------------- -

" «structured»

!

<statement 1>

'

<statement 2> :

<statement n>

¢ The mapping of a sequence of statements consists of a structured activity node that contains the mapping of each
statement (as given in the remainder of this subclause).

® The mapping of the first statement in the sequence has an incoming control flow from an initial node. The
mapping of each subsequent statement has a control flow from the mapping of the previous statement. The
mapping of the last statement has an outgoing control flow to an activity final node. (An empty sequence maps to
a structured activity node with an initial node connected directly to a final node.)

® Object flows from within the mapping of one statement may flow into the mapping of a subsequent statement.

Notes

® The actual sources and targets of the control flows within the statement mappings are noted in the mapping for
each kind of statement.

320 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.3.2 Statement Sequence (isolated)
Java

_beginIsolation();
<statement 1>;
<statement 2>;

<statement n>;
_endIsolation();

* A set of statements the must run in “isolation” are represented by a sequence of statements, the first statement of
which is a call to the “_beginlsolation()” method and the last statement is a call to the “_endIsolation()”” method.

® Auser class may not define methods called “ beginlsolation” or “ endIsolation”.

" «structured»
{mustlsolate=true}

?

<statement 1>

'

<statement 2>

<statement n>

>,

U

* The sequence of statements in the block is mapped in exactly the same way as for a normal sequence of
statements (see Subclause 10.4.13), but the enclosing structured activity node has mustIsolate=true.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 321

A.3.3 Local Variable Declaration
Java

<type> <variable> =
<expression>;

® Alocal variable declaration is required to have an initialization expression.

e Itis not permitted to reassign the value of a local variable, except as specifically allowed in the context of an if
statement or loop (see Subclauses 10.4.13 and 10.4.13).

]
E <variable>
]
]

® Alocal variable declaration maps to fork node that receives an object flow from the result of the mapping of the
initialization expression (see Subclause A.4).

® The mapping of the initialization expression is nested inside a structured activity node. Incoming and outgoing
control flows (if any) attach to the structured activity node.

Notes
® The use of the fork node models the ability to read the value of a local variable multiple times.

e Ifthe local variable is re-assigned as part of a subsequent if statement or loop, then uses of the variable after that
point will be mapped to flows from a different fork node than the one resulting from the mapping of the variable
declaration (see Subclauses 10.4.13 and 10.4.13).

322 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.3.4 Instance Variable Assignment (non-list)
Java

‘<object>.<variable> = <expression>;

UML

«structureds

<object> [

Add Structural Feature
Value <variable=
{isReplaceAll = true}

1

® The assignment of a non-list instance variable maps to an add structural feature value action with isReplaceAll =
true. (For instance variables of a list type, see 10.4.13.)

<expression> [

® The object and assigned expressions map as given in Subclause A.4. Their mappings are nested in a structured
activity node.

® The object input pin of the add structural feature value action is connected by an object flow to the result pin of
the mapping of the object expression.

e The value pin of the add structure feature value action is connected by an object flow to the result pin of the
mapping of the assigned expression.

* An incoming control flow (if any) attaches to the structured activity node containing the expression mappings.
An outgoing control flow (if any) attaches to the add structural feature action.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 323

A.3.5 Instance Variable Assignment (list)
Java

‘<object>.<variable> = <expression>;

_______________________________ b

ustructureds=

Clear Structural Feature
<variahle=

<object> [SR l --------- -
«iterative»"

Add Structural
Feature Value

<variable> E
{isReplaceAll = !

-

<expression> [FH

false}

- inserfAt

* The assignment of a list instance variable maps to a clear structural feature action followed by an expansion
region containing an add structural feature value action with isReplaceAll = false. (For assignment of an instance
variable of a non-list type, see Subclause 10.4.13.)

® The object and assigned expressions map as given in Subclause A.4.

® The object input pin of the clear structure feature action and an input pin (multiplicity [1..1]) of the expansion
region are connected by object flows to a fork node that is connected by an object flow to the result pin of the
mapping of the object expression.

* An input expansion node on the expansion region is connected by an object flow to the result pin of the mapping
of the assigned expression.

¢ An input pin on the expansion region is connected by an object flow to the result ping of a value specification
action that produces an unlimited natural * (unbounded) value.

¢ Inside the expansion region, the object input pin of the add structural feature value action is connection by an
object flow to the object input pin of the expansion region, its value pin is connected by an object flow to the
expansion node and its insertAt pin is connected by an object flow to the insertAt input pin of the expansion
region.

* The expression mappings, clear structural feature action and expansion region are all nested in a structured
activity node. Incoming and outgoing control flows (if any) attach to the structured activity node.

324 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.3.6 Method Call Statement

Java

‘<object>.<method>(<argument 1>,..);

.

«Structured:

Mapping of
method call

* A statement containing only a method call maps as a method call expression (see Subclause 10.4.13). The result
pin of the mapping (if any) has no outgoing object flow.

e The mapping of the method call is nested inside a structured activity node. Incoming and outgoing control flows
(if any) attach to the structured activity node.

* A statement containing only a super call maps in a similar manner, but with a super call expression (see
Subclause 10.4.13) rather than a method call expression.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 325

A.3.7 Start Object Behavior

Java

‘_startObjectBehavior();

* A class may not define a user operation called “_startObjectBehavior”.

e The startObjecttBehavior method may not be called explicitly on any other object.

|

Read Self

UML

object] giant Object

Behavior

e A startObjectBehavior call maps to a start object behavior action.

* The object input pin of the start object behavior action is connected by an object flow to the result pin of a read
self action.

* An incoming control flow (if any) attaches to the read self action. An outgoing control flow (if any) attaches to
the start object behavior action.

Notes

* An object can have at most one classifier behavior. The _startObjectBehavior method starts this in a separate
thread and returns immediately.

¢ This mapping is an exception to the normal “Method Call Statement” mapping of Subclause 10.4.13.

326 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.3.8 Signal Send

Java

‘ _send(new <signal>());

¢ The constructor for a signal may not have any arguments. (Signals with attributes are not allowed.)

UML

target Send Signal

<signal>

e A send method call maps to a send signal action for the constructed signal.

Read Self

* The target input pin of the send signal operation is connected by an object flow to the result pin of a read self
action.

* An incoming control flow (if any) attaches to the read self action. An outgoing control flow (if any) attaches to
the send signal action.

Notes
e This is an exception to the normal “Method Call Statement” mapping of Subclause 10.4.13.

® The classifier behavior of the class containing the method making the send call must have an accept event action
for the signal.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 327

A.3.9 If Statement

Java

if (<test>) {
<body 1>
<var 1> = <expr 1.1>;

} else {
<body 2>
<var 1> = <expr 2.1>;

e Atthe end of the body of each branch of the if statement, there may be assignment statements for local variables
declared outside the if statement.

UML
=var 1> ,-""“““““““'“::::::::::::::::IL.

I 1 «structure»
E <body 1>

l ' <tests> Y
i 1
E «decisionhputFlow» & T
[}
' Ammeemmsssmsssmsssssssssssssssssssssssssssss
i :
! <body 2>
[}

* Anif statement maps to a decision node with two outgoing control flows, one with the guard “true” and one with
the guard “false” and an incoming control flow from an initial node.

e The decision node has a “decision input” data flow from the result pin of the mapping of the test expression (see
Subclause A.4).

e Each body maps as a structured activity node containing the mapping of a sequence of statements (see Subclause
10.4.13). The “true” control flow from the decision node connects to the structured activity node for the first
body. The “false” control flow similarly connects to the structured activity node for the second (“else”) body.

e The structured activity nodes for each branch have input and output pins corresponding to the variables assigned
in either branch. Object flows connect the source for each variable to the corresponding input pins and each input
pin to a fork node within the structured activity node for the branch. Object flows connect the two output pins

328 Semantics of a Foundational Subset for Executable UML Models, Beta 2

corresponding to a variable (one from each branch) to a merge node, which then has an object flow to a fork
node. The fork node is acts as the source for all uses of the variable subsequently to the if statement.

e Each variable assignment maps to a structured activity node containing the mapping of the assigned expression.
The first structured activity node has a control flow dependency on the mapping of the last statement of the
branch body (if any) and each subsequent node has a control flow dependency on the previous node. The result
pin of each expression has an object flow to the output pin for the branch corresponding to the variable being
assigned. If a variable is not assigned in a branch, then the input pin for the variable is connect by an object flow
directly to the output pin, within the structured activity node for the branch. If a variable is used in a subsequent
assignment expression, then a fork node must be inserted to fork the object flow out of the expression result to
both the branch output pin and any subsequent variable use(s).

® The input pins of a structured activity node for a branch act as the source for all uses of the corresponding
variables within the branch. For any other variable uses, object flows may flow directly into the mappings of the
parts of the if statement. Object flows from within the mapping of the body may flow into the mappings of the
expressions.

e Ifthe if statement has no else branch, but there are variable assignments in the “true” branch, then there is still a
structured activity node for the “false” branch, with all input pins connected to output pins. If there is no else
branch and no variable assignments, then the “false” branch structured activity node may be replaced by an
activity final node.

* Incoming and outgoing control flows (if any) attach to the outermost structured activity node.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 329

A.3.10 Do-While Loop

Java

do

{
<body>
<var 1> = <expr 1>;

} while (<test>)

UML

<var 1=

330

A do-while loop may contain variable assignments at the end of its body for local variables declared outside the
loop.

[true] <var 1>
[false]

I =decisioninputFlow

I sdecisioninputFlow:
[false]

[true]

A do-while loop maps to a structured activity node with a looping control structure outside it, as shown above.
An incoming control flow comes into the merge node shown on the left, and the outgoing control flow is the
“false” flow out of the decision node shown on the bottom right.

The body of the do-while loop maps as a sequence of statements (see Subclause 10.4.13).

Every variable referenced in the body of the while loop (whether it is assigned or not) has corresponding input
and output pins on the structured activity node for the loop. The input pin for the variable is connected by an
object flow to the mapping for the variable from before the loop. Inside the structured activity node for the loop,
each loop variable input pin is connected by an object flow to a fork node. This fork node is used as the source
for the mapping of all uses of the variable within the loop (unless, possibly, if the variable is re-assigned within
the loop — see below).

Each variable assignment maps to a structured activity node containing the mapping of the assigned expression.
The first structured activity node has a control flow dependency on the mapping of the loop body and each
subsequent node has a control flow dependency on the previous node. The result pin of each expression is
connected by an object flow to a fork node which then has an object node to the output pin of the outer structured
activity node corresponding to the variable being assigned. (If there is no assignment for a variable within the
loop, then there is an object flow that connects directly from the fork node for the variable within the loop’s
structured activity node to the output pin for the variable.)

Semantics of a Foundational Subset for Executable UML Models, Beta 2

e The test expression maps to a structured activity node containing the mapping of the expression. There is a
control flow from the structured activity node for the mapping of the last variable assignment expression to the
structured activity node for the test expression. (If there are no variable assignments, the control flow comes from
the mapping of the body.) The result pin of the test expression is connected by an object flow to an output pin of
the outer structured activity node for the loop.

e [Ifan assignment or test expression uses a variable previously assigned, then that use maps to an object flow from
the fork node attached to the result pin of the assignment expression, rather than the fork node attached to the
loop input pin.

* The test result output pin of the structured activity node for the loop is connected to a fork node outside the
structured activity node, which is then connected by an object flow to the decision input flow of the loop control
decision node. The output pin for each loop variable is connected by an object flow to a decision node. The
decision input flow for the decision node is an object flow from the test result fork node. The “true” outgoing
flow from the decision node connects back to the corresponding input pin and the false flow connects to a fork
node, which is used as the source of the variable for all mappings of expressions after the while loop.

A.3.11 While Loop

Java

while (<test>) {
<body>
<var 1> = <expr 1>;

}

¢ A while loop may contain variable assignments at the end of its body for local variables declared outside the
loop.

Equivalent Java

if (<test>) {
do {
<body>
<var 1> = <expr 1>;

} while (<test>)

}

* A while loop maps as if it was coded as a do-while loop (see Subclause 10.4.13) nested in an if statement (see
Subclause 10.4.13), as shown above.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 331

A.3.1 For Loop (iterative)

Java

<output type 1> <output 1> = new <output type 1>();

for (int <index> = 0;
<index> < <input 1>.size(); i++) {
<type 1> <var 1> = <input 1>.getValue (<index>);

<body>
}

* An iterative for loop must have a locally declared index variable of type “int” that is sequentially incremented
(see also Subclause 10.4.13).

¢ The body of the for loop must begin with one or more loop variable declarations, each initialized by an access to
a different list variable with the loop index variable. The list variables must be declared outside the loop and all
have list types (see Subclause 10.4.13). The loop index variable may not otherwise be used in the body of the
loop.

® The for loop must be indexed based on the size of the first list variable, as shown above.
e The for loop must not have any assignment statements at the end of its body.

® The body of the for loop may include nested statements of the form “<output n>.addValue(...)”, where “<output
n>"is a variable of a list type declared outside the loop and initialized to an empty list of the appropriate type.
UML

{input 1= I

«iteratives

2
&
v

e L (1 "

<putput 1>

® A for loop with the structure given above is mapped to an iterative expansion region.

® The local loop variables map to input expansion nodes on the expansion region. The expansion node for the
variable is connected outside the expansion region by an object flow to the mapping for the corresponding list
variable from before the loop. It is connected inside the expansion region to a fork node. A reference to a loop
variable within the loop body maps to an object flow from the fork node connected to the corresponding
expansion node.

e For any variable declared outside the loop and referenced within the body of the loop, other than the local loop
variables as defined above, there is a corresponding input pin on the expansion region. The input pin is connected

332 Semantics of a Foundational Subset for Executable UML Models, Beta 2

outside the expansion region by an object flow to the fork node corresponding to the variable. The input pin is
connected inside the expansion region to a fork node, which is then used as the source for references to the
variable within the mapping of the body of the loop.

® The body of the loop maps as a sequence of statements (see Subclause 10.4.13) nested in the expansion region.

e If'there are any “addValue” statements within the body of the loop, then there is an output expansion node for
each referenced output list variable. Each “addValue” statement maps to an object flow from the result of the
argument expression of the “addValue” call to the appropriate output expansion node. Each output expansion
node is connected by an object flow to a fork node that is used as the source for references to the corresponding
output list variable in any subsequent statements.

Notes

* The mapping for the element variables is an exception to the normal rules for list indexing (see Subclause
10.4.13) and for variable use (see Subclause 10.4.13).

Semantics of a Foundational Subset for Executable UML Models, Beta 2 333

A.3.2 For Loop (parallel)

Java

for (Iterator <iter> = <list>.iterator();
<iter>.hasNext ();) {
<type> <var> = (<type) (<list>.next());

<body>
}

e A parallel for loop must be indexed by an iterator based on a list variable (see Subclause 10.4.13). The list
variable must be declared outside the loop and have a list type (see Subclause 10.4.13).

¢ The body of the for loop must begin with exactly one variable declaration, initialized by an access to the loop
iterator.

® The for loop must not have any assignment statements at the end of its body.

¢ The behavior of the body must not depend on the specific order in which list items are returned.

<]igt> m—

S

<var> «parallel»

__

e A for loop with the structure given above is mapped to a parallel expansion region.

¢ The local loop variable maps to a single input expansion node on the expansion region. (There are no output
expansion nodes.) The expansion node for the variable is connected outside the expansion region by an object
flow to the mapping for the corresponding list variable from before the loop. It is connected inside the expansion
region to a fork node. A reference to a loop variable within the loop body maps to an object flow from the fork
node connected to the corresponding expansion node.

e For any variable declared outside the loop and referenced within the body of the loop, other than the local loop
variables as defined above, there is a corresponding input pin on the expansion region. The input pin is connected
outside the expansion region by an object flow to the fork node corresponding to the variable. The input pin is
connected inside the expansion region to a fork node, which is then used as the source for references to the
variable within the mapping of the body of the loop.

* The body of the loop maps as a sequence of statements (see Subclause 10.4.13).

Notes

® The Java code will execute the body iterations in a specific sequential order, but the behavior of the Java is not
allowed to depend on what that order actually is.

* The mapping for the element variables is an exception to the normal rules for list indexing (see Subclause
10.4.13) and for variable use (see Subclause 10.4.13).

334 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.4 Expressions

The following mappings are for expressions that are embedded within statements. Each expression maps to a fragment of
an activity model that has a distinguished “result pin” (with the exception of the mapping of Subclause 10.4.13, “Local
Variable or Method Parameter Use”). It is this result pin to which an object flow may be connected to obtain the output of
the expression.

A.4.1 Local Variable or Method Parameter Use

Java

‘<variable>

UML

<variables

| .
|

¢ The use of a local variable or method parameter in an expression maps to an object flow from the fork node
corresponding to the variable or parameter to an input pin of the mapping of the remainder of the enclosing
expression.
Notes

¢ The fork node may result from the mapping of a method parameter, directly from the mapping of the declaration
of the variable (see Subclause 10.4.13), from the mapping of the output of an if statement or a loop (see
Subclauses 10.4.13 and 10.4.13) or from the mapping of the loop variable of a fork node.

A.4.2 Literal

Java

‘<1itera1>

¢ The literal must be an integer, a boolean, a string or an UnlimitedNatural.

¢ An UnlimitedNatural literal is created using a constructor expression of the form
“new fUML.Syntax.UnlimitedNatural(n)”, where n is a non-negative integer or -1 (used to represent “*”).

e The integer value of an UnlimitedNatural value “x” is obtained by an expression of the form “x.value.”

UML

Value
Specification
<iteral>

* Aliteral is mapped to a value specification action with a corresponding literal value. The result output pin of the
value specification action becomes the result pin of the mapping.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 335

A.4.3 Null

Java

‘null

* A null value may not be used for a list type.
UML

Value
Specification
(Literal Null)

¢ A null value maps to a value specification action for a literal null. The result output pin of the value specification
action becomes the result pin of the mapping.
Notes

e All class types in Java allow “null” values. Such types map to types with “optional” multiplicity [0..1] in UML
(see Subclause A.1). Java “null” is used to represent the case of “no value” (0 cardinality) allowed by this
multiplicity. A value specification for a literal null places no values on its output pin when it executes,
corresponding to the 0 cardinality case.

e Since a Java “null” maps to “no value” in UML, testing for a null value requires a special mapping (see
Subclause 10.4.13).

¢ For the mapping of an empty list, see Subclause 10.4.13.

A.4.4 This

Java

‘this

UML

Read Self

* Ause of “this” maps to a read self action whose result pin is the result pin for the expression mapping.

336 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.4.5 Constructor Call

Java

‘new <class> ()

* Constructor calls are not allowed to have arguments.
UML

Create Object
<class>

* A constructor call maps to a create object action for the named class. The result output pin of the create object
action becomes the result pin for the mapping.
Notes

¢ This mapping does not apply to the case of the class being a list type (see Subclause 10.4.13 for the construction
of an empty list).

e This mapping does not apply to the case of creating an UnlimitedNatural value (see Subclause 10.4.13).

A.4.6 Instance Variable Use

Java

‘<object>.<variable>

UML

object | Read Structural
<object> Feature
<variable>

* The use of an instance variable within an expression maps to a read structural feature action for the attribute
corresponding to the instance variable. The result output pin of the read structural feature action becomes the
result pin for the mapping.

® The object input pin of the read structural feature action is connected by an object flow to the result pin of the
mapping of the expression evaluating to the target object.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 337

A.4.7 Operator Expression

Java

‘<expression 1> <operator> <expression 2>

¢ The operator must be an integer arithmetic operator or a boolean relational operator other than equals or not
equals (for testing equality, see Subclauses 10.4.13 and 10.4.13).
UML

<expression 1> [

Call Behavior result
<operator>

<expression 2> [

* An infix operator expression maps to a call behavior action for the primitive behavior corresponding to the
operator (chosen from the Foundational Model Library, see Subclause 9.2). The result output pin of the call
behavior action becomes the result pin of the mapping.

® The first argument input pin of the call behavior action is connected by an object flow to the result pin of the
mapping of the left sub-expression. The second argument input pin of the call behavior action is connected by an
object flow to the result pin of the mapping of the right sub-expression.

* A prefix operator is mapped similarly, except that there is only one sub-expression and only one argument input
pin to the call behavior action.

338 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.4.8 Testing For Equality

Java

‘<expression 1> == <expression 2>

UML

Neither expression may evaluate to null (for testing for null, see Subclause 10.4.13).

For UnlimitedNatural values, their integer values must be compared, not the object themselves (see also
Subclause 10.4.13).

The expressions may not be of type String (for testing string equality, see Subclause 10.4.13).

The expressions may not have list types (for more on lists, see Subclause 10.4.13).

<expression 1> [

result : Boolean

Test |dentity

<expression 2> [

second

An equality test maps to a test identity action. The result output pin of the test identity action becomes the result
pin of the mapping.

The first argument input pin of the test identity action is connected by an object flow to the result pin of the
mapping of the left sub-expression. The second argument input pin of the test identity action is connected by an
object flow to the result pin of the mapping of the right sub-expression.

The expression “<expression 1> != <expression 2> is mapped as if it was “!(<expression 1> == <expression
2>)”.

Notes

For primitive values, the test identity action tests for equality of value. For object references, it tests the identity
of the referent objects.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 339

A.4.9 Testing String Equality

Java

‘<string expression 1>.equals(<string expression 2>)

e Strings are never tested for equality using “==".

UML

<string expression 1> .
first

result : Boolean
Test |dentity

<string expression 2> sacond

* A string equality test maps to a test identity action. The result output pin of the test identity action becomes the
result pin of the mapping.

® The first argument input pin of the test identity action is connected by an object flow to the result pin of the
mapping of the left sub-expression. The second argument input pin of the test identity action is connected by an
object flow to the result pin of the mapping of the right sub-expression.

Notes

e InJava String is a class, and testing string values using “==""tests the identity of the string objects being tested,

not equality of their values. In UML String is a primitive type, and the test identity action tests for equality of
value for strings.

340 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.4.10 Testing For Null

Java

‘<expression> == null

The expression being tested may not have a list type (see Subclause A.5).

UML

] list[*]

. Call Behavior

<expression= ListSize
result : Integer
first
L1
Value second
Specification Test Identity result : Boolean

0

A test for null is mapped to a test for whether the result of the mapping of the expression has a list size of zero.

The result pin of the mapping of the expression is connected by an object flow to the argument pin of a call
behavior action for the ListSize behavior (with multiplicity *).

The call behavior action has a control flow from the action owning the result pin of the mapping of the list
expression.

The result output pin of the call behavior action is connected by an object flow to the first argument pin of a test
identity action. The second argument pin of the test identity action is connected by an object flow to the result pin
of a value specification action for the integer value “0”. The result output pin of the test identity action becomes
the result pin for the mapping.

The expression “<expression> !=null” is mapped as if it was “!(<expression> == null)”.

Notes

Java null is used to represent the case of “no value” for a class type with multiplicity [0..1] (see Subclause A.4.3).

The ListSize behavior is provided in the Foundational Model Library (see Subclause 9.2; see also Subclause
10.4.13).

Since the input pin to the call behavior action has a multiplicity lower bound of 0, the control flow is necessary to
ensure that the call does not happen before the completion of execution of the mapping of the list expression.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 341

A.4.11 Method Call

Java

‘ <object>.<method> (<argument 1>,..)

UML

<object> C

result

Call Operation
<method>

<argument 1> [argument 1

¢ A method call maps to a call operation action for the operation corresponding to the named method. The result
output pin of the call operation action becomes the result pin of mapping. (If the method has a void return type,
then there is no result pin.)

* The target input pin of the call operation action is connected by an object flow to the result pin of the mapping of
the object expression.

e Each argument input pin (if any) of the call operation action is connected by an object flow to the result pin of the
mapping of the corresponding argument expression (in order).

e Unless an argument is of a primitive type, the call operation action has a control flow from the action that owns
the result pin of the mapping of the argument expression.

Notes

e Since all non-primitive types map to UML types with multiplicity [0..1] or [*] (see Subclause 10.4.13), the
control flows are necessary to ensure that the call operation action does not start executing before the arguments
are computed.

342 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.4.12 Super Call

Java

‘ super.<method> (<argument 1>,..)

UML

Call Behavior

result
<method=

<argument 1> [

argument 1

A super call maps to a call behavior action for the UML method (the behavior, not the operation) that implements
the UML operation corresponding to the Java method in the superclass. The result output pin of the call behavior
action becomes the result pin of mapping. (If the method has a void return type, then there is no result pin.)

Each argument input pin (if any) of the call behavior action is connected by an object flow to the result pin of the
mapping of the corresponding argument expression (in order).

Unless an argument is of a primitive type, the call operation action has a control flow from the action that owns
the result pin of the mapping of the argument expression.

Notes

Since all non-primitive types map to UML types with multiplicity [0..1] or [*] (see Subclause 10.4.13), the
control flows are necessary to ensure that the call operation action does not start executing before the arguments
are computed.

This is different than the normal mapping of a method call (see Subclause 10.4.13), but it is not really an
exception, since “super” is not actually a proper expression in Java.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 343

A.4.13 Type Cast

Java

‘(<type>)<expression>

® The expression being cast cannot be of a primitive type.

® The expression being cast cannot be a list.

UML

<expression>

* Atype cast is mapped to a structured activity node that simply copies its input to its output. The input pin of the
node is un-typed. The output pin of the node is given the result type of the cast, and it becomes the result pin of
the mapping.

® The input pin of the structured activity node is connected by an object flow to the result pin of the mapping of the
expression being cast.

e The action that owns the result pin of the mapping of the expression is connected by a control flow to the
structured activity node.

Note

e This mapping presumes that the cast is legal. Its behavior is not defined if the result of the expression cannot be
cast to the given type.

344 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.5 Lists

Classes with names of the form <base type>List are used to represent lists of values of the type <base type>. List classes
are mapped to UML multiplicity elements of the form <base type>[*]{ordered, non-unique} (see Subclause 10.4.13).
Lists of lists are not allowed.

Calls to methods on list classes have special mappings. Calls to the clear, addValue and removeValue methods map as
statements. These methods can only be used on instance variables. A list constructor and calls to the size and get methods
map as expressions.

A.5.1 List Clear

Java

‘<object>.<variab1e>.clear();

UML

object | Clear Structural

<object> } Feature
<variable>

e A call to the list clear method maps to a clear structural feature action on the attribute corresponding to the list
variable.

* The object input pin of the clear structural feature action has an object flow connection to the result pin of the
mapping of the object expression.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 345

A.5.2 List Add

Java

‘<object expr>.<variable>.addValue (<index expr> - 1, <value expr>)

® The value expression must not evaluation to null.
UML

<object expr>

Add Structural
Feature Value
<variable>
{isReplaceAll = false}

<value expr>

<index expr> insertAt

® A call to the list add method maps to an add structural feature value action with isReplaceAll = false.

e The object input pin of the add structural feature value action is connected to the result pin of the mapping of the
object expression.

® The value input pin of the add structural feature value action is connected to the result pin of the mapping of the
value expression.

e The insertAt input pin of the add structural feature value is connected to the result pin of the mapping of the
index expression. If the call does not include an index expression, then the insertAt pin is connected to the result
output pin of a value specification action for the UnlimitedNatural value “*”.

Note
e The Java method indexes from 0, but the add structural feature action indexes from 1.

* Adding a single value to an empty list is an exception to this mapping (see Subclause 10.4.13 below).

346 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.5.3 List Remove

Java

‘<object expr>.<variable>.removeValue (<index expr> - 1)

UML

<object expr>

]

object
[!

Read Structural

Remove Structural
Feature Value
<variable>

Feature list Call Behavior

<variable> index ListGet

result value

{isRemoveDuplicates = false}

<index expr> [:] —I
1
1

| removeAt

Note

A call to the list add method maps to a remove structural feature value action with isRemoveDuplicates = false.

The result pin of the mapping of the object expression is connected by an object flow to a fork node, which, in
turn, is connected to the object input pin of the remove structural feature value action and the object input pin of a
read structural feature action.

The result output pin of the read structural feature action is connected to the list input pin of a call behavior action
calling the ListGet behavior (see Subclause 10.4.13). There is also a control flow from the read structural feature
action to the call behavior action.

The result pin of the mapping of the index expression is connected by an object flow to a fork node, which, in
turn, is connected to the index input pin of the call behavior action and the removeAt pin of the remove structural
feature value action.

The result output pin of the call behavior action is connected by an object flow to the value input pin of the
remove structural feature value action.

The Java method indexes from 0, but the remove structural feature action indexes from 1.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 347

A.5.4 Empty List

Java

‘new <base type>List();

UML

Value <base type>[*]
Specification
(Literal Null)

® A constructor expression for a list type maps to a value specification action for a literal null.

Notes

® A value specification for a literal null places no values on its output pin when it executes, corresponding to the 0
cardinality case of the multiplicity [*].

e This is an exception to the normal rule for mapping “addValue” calls (see Subclause 10.4.13).

A.5.5 List of One Element

Java

<base type>List <var> = new <base type>List();
<var>.addValue (<expression>);

UML

<base type>[*]
<expression> []

e Alist variable initialized by an empty list, immediately followed by adding a single value to that list, maps to the
mapping for the expression that is the argument to the “addValue”, but with the output pin given multiplicity [*].

Notes

e Since in UML a single element (cardinality 1) conforms to the multiplicity “*”, it is not necessary to use an
explicit add structural feature value in this case to create the effective mapping of a “list of one element”.

e This is an exception to the normal rule for mapping constructor calls (see Subclause 10.4.13).

348 Semantics of a Foundational Subset for Executable UML Models, Beta 2

A.5.6 List Size

Java

‘<list expr>.size ()

UML

i list[*]

Call Behavior result : Integer

<list expr> ListSize

e A call to the list size method maps to a call behavior action for the ListSize behavior. The result output pin
becomes the result pin for the mapping.

¢ The argument input pin of the call behavior action (with multiplicity *) is connected by an object flow to the
result pin of the mapping of the list expression.

® The call behavior action has a control flow from the action owning the result pin of the mapping of the list
expression.

Notes

e The ListSize behavior is provided as part of the Foundational Model Library (see Subclause 9.2). (It can also be
defined as an activity, so it does not have to be primitive.)

e Since the input pin to the call behavior action has a multiplicity lower bound of 0, the control flow is necessary to
ensure that the call does not happen before the completion of execution of the mapping of the list expression.

Semantics of a Foundational Subset for Executable UML Models, Beta 2 349

A.5.7 List Indexing

Java

‘<list expr>.getValue (<index expr> - 1)

UML

distexpr> [

Call Behavior result[0..1]
ListGet

<index expr> i index : Integer[1..1]

A call to the list get operation maps to a call behavior action for the ListGet behavior. The result output pin of the
call behavior action becomes the result pin of the mapping.

The list argument input pin of the call behavior action is connected to the result pin for the mapping of the list
expression.

The index argument input pin of the call behavior action is connected by an object flow to the result pin for the
mapping of the index expression.

The call behavior action has a control flow from the action that owns the result pin of the mapping of the list
expression.

Notes

350

The ListGet behavior is provided as part of the Foundational Model Library (see Subclause 9.2). (It can be
defined as an activity and so does not have to be primitive.)

Since the input pin to the call behavior action has a multiplicity lower bound of 0, the control flow is necessary to
ensure that the call does not happen before the completion of execution of the mapping of the list expression.

The Java method indexes from 0, but the ListGet behavior indexes from 1. If the input index value is less than 1
or greater than the size of the input list, no result is generated.

Semantics of a Foundational Subset for Executable UML Models, Beta 2

	1 Scope
	2 Conformance
	2.1 Conformance Levels
	2.2 Meaning and Types of Conformance
	2.3 Genericity of the Execution Model
	2.4 Conformance Statement

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 On the Semantics of Languages and Models
	6.3 On the Semantics of Metamodels
	6.4 Alignment with the OMG Four Layer Metamodeling Architecture
	6.5 Acknowledgements

	7 Abstract Syntax
	7.1 Overview
	7.2 Classes
	7.2.1 Overview
	7.2.2 Kernel
	7.2.2.1 Overview
	7.2.2.2 Class Descriptions
	7.2.2.2.1 Association
	7.2.2.2.2 BehavioralFeature
	7.2.2.2.3 Class
	7.2.2.2.4 Classifier
	7.2.2.2.5 Comment
	7.2.2.2.6 DataType
	7.2.2.2.7 Element
	7.2.2.2.8 ElementImport
	7.2.2.2.9 Enumeration
	7.2.2.2.10 EnumerationLiteral
	7.2.2.2.11 Feature
	7.2.2.2.12 Generalization
	7.2.2.2.13 InstanceSpecification
	7.2.2.2.14 InstanceValue
	7.2.2.2.15 LiteralBoolean
	7.2.2.2.16 LiteralInteger
	7.2.2.2.17 LiteralNull
	7.2.2.2.18 LiteralSpecification
	7.2.2.2.19 LiteralString
	7.2.2.2.20 LiteralUnlimitedNatural
	7.2.2.2.21 MultiplicityElement
	7.2.2.2.22 NamedElement
	7.2.2.2.23 Namespace
	7.2.2.2.24 Operation
	7.2.2.2.25 Package
	7.2.2.2.26 PackageableElement
	7.2.2.2.27 PackageImport
	7.2.2.2.28 Parameter
	7.2.2.2.29 PrimitiveType
	7.2.2.2.30 Property
	7.2.2.2.31 RedefinableElement
	7.2.2.2.32 Slot
	7.2.2.2.33 StructuralFeature
	7.2.2.2.34 Type
	7.2.2.2.35 TypedElement
	7.2.2.2.36 UnlimitedNatural
	7.2.2.2.37 ValueSpecification

	7.3 Common Behaviors
	7.3.1 Overview
	7.3.2 Basic Behaviors
	7.3.2.1 Overview
	7.3.2.2 Class Descriptions
	7.3.2.2.1 Behavior
	7.3.2.2.2 BehavioredClassifier
	7.3.2.2.3 FunctionBehavior
	7.3.2.2.4 OpaqueBehavior

	7.3.3 Communications
	7.3.3.1 Overview
	7.3.3.2 Class Descriptions
	7.3.3.2.1 Event
	7.3.3.2.2 MessageEvent
	7.3.3.2.3 Reception
	7.3.3.2.4 Signal
	7.3.3.2.5 SignalEvent
	7.3.3.2.6 Trigger

	7.4 Activities
	7.4.1 Overview
	7.4.2 Intermediate Activities
	7.4.2.1 Overview
	7.4.2.2 Class Descriptions
	7.4.2.2.1 Activity
	7.4.2.2.2 ActivityEdge
	7.4.2.2.3 ActivityFinalNode
	7.4.2.2.4 ActivityNode
	7.4.2.2.5 ActivityParameterNode
	7.4.2.2.6 ControlFlow
	7.4.2.2.7 ControlNode
	7.4.2.2.8 DecisionNode
	7.4.2.2.9 FinalNode
	7.4.2.2.10 ForkNode
	7.4.2.2.11 InitialNode
	7.4.2.2.12 JoinNode
	7.4.2.2.13 MergeNode
	7.4.2.2.14 ObjectFlow
	7.4.2.2.15 ObjectNode

	7.4.3 Complete Structured Activities
	7.4.3.1 Overview
	7.4.3.2 Class Descriptions
	7.4.3.2.1 Clause
	7.4.3.2.2 ConditionalNode
	7.4.3.2.3 ExecutableNode
	7.4.3.2.4 LoopNode
	7.4.3.2.5 StructuredActivityNode

	7.4.4 Extra Structured Activities
	7.4.4.1 Overview
	7.4.4.2 Class Descriptions
	7.4.4.2.1 ExpansionNode
	7.4.4.2.2 ExpansionRegion

	7.5 Actions
	7.5.1 Overview
	7.5.2 Basic Actions
	7.5.2.1 Overview
	7.5.2.2 Class Descriptions
	7.5.2.2.1 Action
	7.5.2.2.2 CallAction
	7.5.2.2.3 CallBehaviorAction
	7.5.2.2.4 CallOperationAction
	7.5.2.2.5 InputPin
	7.5.2.2.6 InvocationAction
	7.5.2.2.7 OutputPin
	7.5.2.2.8 Pin
	7.5.2.2.9 SendSignalAction

	7.5.3 Intermediate Actions
	7.5.3.1 Overview
	7.5.3.2 Class Descriptions
	7.5.3.2.1 AddStructuralFeatureValueAction
	7.5.3.2.2 ClearAssociationAction
	7.5.3.2.3 ClearStructuralFeatureAction
	7.5.3.2.4 CreateLinkAction
	7.5.3.2.5 CreateObjectAction
	7.5.3.2.6 DestroyLinkAction
	7.5.3.2.7 DestroyObjectAction
	7.5.3.2.8 LinkAction
	7.5.3.2.9 LinkEndCreationData
	7.5.3.2.10 LinkEndData
	7.5.3.2.11 LinkEndDestructionData
	7.5.3.2.12 ReadLinkAction
	7.5.3.2.13 ReadSelfAction
	7.5.3.2.14 ReadStructuralFeatureAction
	7.5.3.2.15 RemoveStructuralFeatureValueAction
	7.5.3.2.16 StructuralFeatureAction
	7.5.3.2.17 TestIdentityAction
	7.5.3.2.18 ValueSpecificationAction
	7.5.3.2.19 WriteLinkAction
	7.5.3.2.20 WriteStructuralFeatureAction

	7.5.4 Complete Actions
	7.5.4.1 Overview
	7.5.4.2 Class Descriptions
	7.5.4.2.1 AcceptEventAction
	7.5.4.2.2 ReadExtentAction
	7.5.4.2.3 ReadIsClassifiedObjectAction
	7.5.4.2.4 ReclassifyObjectAction
	7.5.4.2.5 ReduceAction
	7.5.4.2.6 StartClassifierBehaviorAction
	7.5.4.2.7 StartObjectBehaviorAction

	8 Execution Model
	8.1 Overview
	8.2 Loci
	8.2.1 Overview
	8.2.2 Class Descriptions
	8.2.2.1 ChoiceStrategy
	8.2.2.2 ExecutionFactory
	8.2.2.3 Executor
	8.2.2.4 FirstChoiceStrategy
	8.2.2.5 Locus
	8.2.2.6 SemanticStrategy
	8.2.2.7 SemanticVisitor

	8.3 Classes
	8.3.1 Overview
	8.3.2 Kernel
	8.3.2.1 Overview
	8.3.2.2 Class Descriptions
	8.3.2.2.1 BooleanValue
	8.3.2.2.2 CompoundValue
	8.3.2.2.3 DataValue
	8.3.2.2.4 DispatchStrategy
	8.3.2.2.5 EnumerationValue
	8.3.2.2.6 Evaluation
	8.3.2.2.7 ExtensionalValue
	8.3.2.2.8 FeatureValue
	8.3.2.2.9 InstanceValueEvaluation
	8.3.2.2.10 IntegerValue
	8.3.2.2.11 Link
	8.3.2.2.12 LiteralBooleanEvaluation
	8.3.2.2.13 LiteralEvaluation
	8.3.2.2.14 LiteralIntegerEvaluation
	8.3.2.2.15 LiteralNullEvaluation
	8.3.2.2.16 LiteralStringEvaluation
	8.3.2.2.17 LiteralUnlimitedNaturalEvaluation
	8.3.2.2.18 Object
	8.3.2.2.19 PrimitiveValue
	8.3.2.2.20 RedefinitionBasedDispatchStrategy
	8.3.2.2.21 Reference
	8.3.2.2.22 StringValue
	8.3.2.2.23 StructuredValue
	8.3.2.2.24 UnlimitedNaturalValue
	8.3.2.2.25 Value

	8.4 Common Behaviors
	8.4.1 Overview
	8.4.2 Basic Behaviors
	8.4.2.1 Overview
	8.4.2.2 Class Descriptions
	8.4.2.2.1 Execution
	8.4.2.2.2 OpaqueBehaviorExecution
	8.4.2.2.3 ParameterValue

	8.4.3 Communications
	8.4.3.1 Overview
	8.4.3.2 Class Descriptions
	8.4.3.2.1 ClassifierBehaviorExecution
	8.4.3.2.2 EventAccepter
	8.4.3.2.3 FIFOGetNextEventStrategy
	8.4.3.2.4 GetNextEventStrategy
	8.4.3.2.5 ObjectActivation
	8.4.3.2.6 SignalInstance

	8.5 Activities
	8.5.1 Overview
	8.5.2 Intermediate Activities
	8.5.2.1 Overview
	8.5.2.2 Class Descriptions
	8.5.2.2.1 ActivityEdgeInstance
	8.5.2.2.2 ActivityExecution
	8.5.2.2.3 ActivityFinalNodeActivation
	8.5.2.2.4 ActivityNodeActivation
	8.5.2.2.5 ActivityNodeActivationGroup
	8.5.2.2.6 ActivityParameterNodeActivation
	8.5.2.2.7 ControlNodeActivation
	8.5.2.2.8 ControlToken
	8.5.2.2.9 DecisionNodeActivation
	8.5.2.2.10 ForkedToken
	8.5.2.2.11 ForkNodeActivation
	8.5.2.2.12 InitialNodeActivation
	8.5.2.2.13 JoinNodeActivation
	8.5.2.2.14 MergeNodeActivation
	8.5.2.2.15 ObjectNodeActivation
	8.5.2.2.16 ObjectToken
	8.5.2.2.17 Offer
	8.5.2.2.18 Token

	8.5.3 Complete Structured Activities
	8.5.3.1 Overview
	8.5.3.2 Class Descriptions
	8.5.3.2.1 ClauseActivation
	8.5.3.2.2 ConditionalNodeActivation
	8.5.3.2.3 LoopNodeActivation
	8.5.3.2.4 StructuredActivityNodeActivation
	8.5.3.2.5 Values

	8.5.4 Extra Structured Activities
	8.5.4.1 Overview
	8.5.4.2 Class Descriptions
	8.5.4.2.1 ExpansionActivationGroup
	8.5.4.2.2 ExpansionNodeActivation
	8.5.4.2.3 ExpansionRegionActivation
	8.5.4.2.4 TokenSet

	8.6 Actions
	8.6.1 Overview
	8.6.2 Basic Actions
	8.6.2.1 Overview
	8.6.2.2 Class Descriptions
	8.6.2.2.1 ActionActivation
	8.6.2.2.2 CallActionActivation
	8.6.2.2.3 CallBehaviorActionActivation
	8.6.2.2.4 CallOperationActionActivation
	8.6.2.2.5 InputPinActivation
	8.6.2.2.6 InvocationActionActivation
	8.6.2.2.7 OutputPinActivation
	8.6.2.2.8 PinActivation
	8.6.2.2.9 SendSignalActionActivation

	8.6.3 Intermediate Actions
	8.6.3.1 Overview
	8.6.3.2 Class Descriptions
	8.6.3.2.1 AddStructuralFeatureValueActionActivation
	8.6.3.2.2 ClearAssociationActionActivation
	8.6.3.2.3 ClearStructuralFeatureActionActivation
	8.6.3.2.4 CreateLinkActionActivation
	8.6.3.2.5 CreateObjectActionActivation
	8.6.3.2.6 DestroyLinkActionActivation
	8.6.3.2.7 DestroyObjectActionActivation
	8.6.3.2.8 LinkActionActivation
	8.6.3.2.9 ReadLinkActionActivation
	8.6.3.2.10 ReadSelfActionActivation
	8.6.3.2.11 ReadStructuralFeatureActionActivation
	8.6.3.2.12 RemoveStructuralFeatureValueActionActivation
	8.6.3.2.13 StructuralFeatureActionActivation
	8.6.3.2.14 TestIdentityActionActivation
	8.6.3.2.15 ValueSpecificationActionActivation
	8.6.3.2.16 WriteLinkActionActivation
	8.6.3.2.17 WriteStructuralFeatureActionActivation

	8.6.4 Complete Actions
	8.6.4.1 Overview
	8.6.4.2 Class Descriptions
	8.6.4.2.1 AcceptEventActionActivation
	8.6.4.2.2 AcceptEventActionEventAccepter
	8.6.4.2.3 ReadExtentActionActivation
	8.6.4.2.4 ReadIsClassifiedObjectActionActivation
	8.6.4.2.5 ReclassifyObjectActionActivation
	8.6.4.2.6 ReduceActionActivation
	8.6.4.2.7 StartClassifierBehaviorActionActivation
	8.6.4.2.8 StartObjectBehaviorActionActivation

	9 Foundational Model Library
	9.1 Primitive Types
	9.2 Primitive Behaviors
	9.2.1 Boolean Functions
	9.2.2 Integer Functions
	9.2.3 String Functions
	9.2.4 UnlimitedNatural Functions
	9.2.5 List Functions

	9.3 Common
	9.3.1 Overview
	9.3.2 Classifier Descriptions
	9.3.2.1 Listener (active class)
	9.3.2.2 Notification (signal)
	9.3.2.3 Status (data type)

	9.4 Basic Input/Output
	9.4.1 The Channel Model
	9.4.2 Pre-Defined ReadLine and WriteLine Behaviors
	9.4.3 Class Descriptions
	9.4.3.1 ActiveChannel (active class)
	9.4.3.2 Channel
	9.4.3.3 InputChannel
	9.4.3.4 OutputChannel
	9.4.3.5 StandardInputChannel
	9.4.3.6 StandardOutputChannel
	9.4.3.7 TextInputChannel
	9.4.3.8 TextOutputChannel

	10 Base Semantics
	10.1 Design Rationale
	10.2 Conventions
	10.3 Structure
	10.3.1 Primitive Types
	10.3.1.1 Boolean
	10.3.1.2 Numbers
	10.3.1.3 Sequences
	10.3.1.4 Strings

	10.3.2 Classification and Generalization
	10.3.3 Classifier Cardinality
	10.3.4 Properties

	10.4 Behavior
	10.4.1 Property Value Modifiers
	10.4.2 Common Behavior
	10.4.2.1 Syntax
	10.4.2.2 Semantics

	10.4.3 Activity Edges Generally
	10.4.4 Activity Nodes Generally
	10.4.4.1 Syntax
	10.4.4.2 Semantics

	10.4.5 Structured Nodes Generally
	10.4.6 Expansion Regions
	10.4.6.1 Syntax
	10.4.6.2 Semantics

	10.4.7 Control Flow
	10.4.7.1 Top level action
	10.4.7.2 Initial Node to Action
	10.4.7.3 Action to Action, general necessary condition
	10.4.7.4 Action to Action, single control flow, optional merge/fork

	10.4.8 Object Flow
	10.4.8.1 Object node to object node, optional fork/merge
	10.4.8.2 Object node to object node, decision, optional fork/merge
	10.4.8.3 Action with pins, no incoming control flow or one from initial
	10.4.8.4 Action with pins, one incoming control flow from action, optional fork/merge
	10.4.8.5 Action with pins, one incoming control flow from action, decision with decision flow from same action, optional fork/merge
	10.4.8.6 Action with pins, one incoming control flow from initial, decision with decision flow from initial action in same, optional fork/merge

	10.4.9 Invocation Actions
	10.4.9.1 Syntax
	10.4.9.2 Semantics

	10.4.10 Object Actions (Intermediate)
	10.4.11 Structural Feature Actions
	10.4.12 Object Actions (Complete)
	10.4.13 Accept Event Action

