Date: August 2013

B
OBJECT MANAGEMENT GROUP ™

Semantics of a Foundational Subset for Executable
UML Models (fUML)

Versionl.1l

OMG Document Number: formal/2013-08-06
Standard Document URL: http://www.omg.org/spec/FUML/1.1
Associated File(s):
Normative: http://www.omg.org/spec/FUML/20121019/fUML_Syntax.xmi
http://iwww.omg.org/spec/FUML/20121019/fUML_Semantics.xmi
http://iwww.omg.org/spec/FUML/20121019/fUML_Library.xmi

Copyright © 2012 88Solutions

Copyright © 2012 Atego

Copyright © 2008-2010 California Institute of Technology. United States Government sponsorship acknowledged
Copyright © 2005-2010 CARE Technologies, S.A.

Copyright © 2005-2012 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2005-2012 IBM

Copyright © 2005-2010 Kennedy Carter Ltd.

Copyright © 2005-2012 L ockheed-Martin Corporation

Copyright © 2005-2012 Mentor Graphics Corporation

Copyright © 2008-2013, Object Management Group, Inc.

Copyright © 2012 NexJ Systems

Copyright © 2012 No Magic

Copyright © 2012 Sparx Systems

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in thisdocument details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a honexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OM G specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS"' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.E.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, IOP™ / MOF™ | OMG Interface Definition Language (IDL)™, and OMG
SysML ™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://mwww.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/report_issue.htm).

Table of Contents

S oo oL PP 1
A O0] 01 (0] 14 1F=1 2 (o1 =JRNUTuUT TP 1
2.1 GONEIAL et 1
2.2 CONfOIMANCE LBVEIS . .onieeeeeeee e et 2
2.3 Meaning and Types of CONfOrMAaNCEcccooeieiiiiiiiieeere e 5
2.4 Genericity of the Execution Model ... 8
2.5 CoNfOrMANCE StalEMENT ..oeiiee e et 9

3. NOMALIVE RETEIENCES ..neeeeee et 10
4. Terms and DefiNitiONS ..o e 10
5. SYMDOIS .. 11
6. Aditional INfOrMALION ...oeeee e 12
6.1 Changes to Adopted OMG SpecCifiCationsccoevveiviiiiiiiiiiiieeeeeeeeeee e eeeeeeaenns 12
6.2 On the Semantics of Languages and Modelsuvviiiiiiiiiiiieeeceicceeeeeeiies 12
6.3 On the Semantics Of MetamOUEIScovuiiiiiiiie e 15
6.4 Alignment with the OMG Four Layer Metamodeling Architecture 16
6.5 ACKNOWIEAGMENLS ... e e e e e e e e e e e e eeeeeeeennees 18
LSRRI YU o]0 0111 =] £ PR 18

5.5.2 SUPPOITEIS ...ttt oo e e e e e e et e e et e e et ettt et tataeeteebebe b b e e s s e e s e o e e e e eeaeaeaaaaaaeeeeeeessasnesbnbnrnnns 18

7. ADSIFACT SYNTAX ..ieiiiiiiii et 19
T R OV [=] Y/ 1=\ TR 19
T2 C A S S .ot 21
A T @ 1Y/ Y/ =V PR 21

A =1 1 1= LT 22

A R O VLY Y/ =Y T 22

7.2.2.2 ClasSS DESCIIPLIONSeiieiiiii ittt et e et e e e et er e e e e et baee e e e e aasaee e e e e e aaneeeeaeeeasbbeeeeeaanneneeaeaan 30

WV R X1 Yo Toi = (o] o H TR 30

7.2.2.2.2 BENAVIOTAIFEALUIEi ittt et e e e e e e e e e e e e e e e e e e ae e e e e eeeaaans 30

O T O - 1N 31

W A S O 1= =] 1 1<) T 31

S T O o 1 111 111 o | N 32

N T D T - 5/ 1= 2 PSSP, 32

WV A = 1Y 0 aT=T o | ST 32

7.2.2.2.8 EIEMENTIMPOIT ...oeiiiiiiieee et e et e e e e s st e e e e e e et eeee e e s nnnneaeeeeeesssntneeeeeeeaans 33

A B 10 g 1T = L (o o T 33

7.2.2.2.10 ENUMEIALIONLITEIALene ettt e e et e e e et et e e e s e e e e e e e s erae e e eeeeeaaans 33

Semantics of a Foundational Subset for Executable UML Models, v1.1 i

A A N R =T L (U (= SRS
7.2.2.2.12 GENEIALIZALION ...uuviiiiiie ittt e e e e e e e e e e st e ee e e ee et eaeae e e e et e aeae e e etaeraeeas
7.2.2.2.13 InstanceSpecification
7.2.2.2.14 INSTANCEVAIUE ...oveiiiiieieciite et e et e e e e et e e e e e et e e ee e e e abeaeeeaeseeesataeaeaeeesnsrenaeeas
7.2.2.2.15 LItEralBOOIBANooiiiiiiiiiiie ettt e e et e e e e e st e e e e s et a e e e e e s e e etataeaeaeeesntreaeeeas
7.2.2.2.16 Literalinteger ...
7.2.2.2.17 LiteralNull
7.2.2.2.18 LiteralReal
7.2.2.2.19 LIteralSPeCIfICAtIONccoiiiiiiiieee it e e e e s s e e e e e e n e e et ee s
7.2.2.2.20 LILEIAISTIING ...eeieiiiiieitieee ettt ettt et s bt e ettt e e shb e e e eab bt e e eabe e e eaat e e e nbe e e e nbbeeeanbeaesanneae e
7.2.2.2.21 LiteralUnlimitedNatural . .37
7.2.2.2.22 MultiplicityElement37
7.2.2.2.23 NamedElement38
7.2.2.2.24 NAMESPACEueeetiieieeeiaitie et e ettt e e e a1t et e e e e s e b ettt e e e e e s b e bt et e e e e san e et ee e e s e bbn et ee e nan e reeeeens 38
A A A T © ¢ 1= - 1] o PSR 39
7.2.2.2.26 Package .
7.2.2.2.27 PackageablEEIBMENTooiiiiiiiiiiie ettt ettt e et e e nbb e e e s abb e e e aabe e e sanreae e 40
WA T o= 1ol - Vo 1] 1] o] o (PSR 40
T.2.2.2.29 ParamMEler ..oieiiiiiii ittt e e ettt — et ——te———t—ttea—tte—t bttt bebetraeanaraaes 40
7.2.2.2.30 PrIMILIVETYPE .eeiiiiieie ettt ettt ettt et e et e e e b e e e e b b e e e ebbe e e ehbe e e ansbe e e enbeeeanteeeanneeeean 41
7.2.2.2.31 Property
7.2.2.2.32 RedefiNabIEEIBMENToveiiiiicce e e e e e e e e e s aeaaa s 42
A e X T (o | SR RUR U PSPPSRI 42
7.2.2.2.34 StructuralFeature42
7.2.2.2.35 TYPE .coevvveeennn.43
7.2.2.2.36 TypedElement43
7.2.2.2.37 UNINMILEANGLIUIALoevieeiiiiieii ettt e e e e s e e e s et ee e e s e s nne e eeeeessnneneneeeas 43
7.2.2.2.38 ValUESPECITICALION ...eeiiiiiiiiiiie ittt ettt ettt h et e e st e e e s b e e s e b be e e sbbe e nbeeeanneeeean 44
7.3 COMMON BENAVIOISuuiiiiiiiiiiie et e e e e e e e
A T T @ = V1= PSR

7.3.2 Basic Behaviors
7.3.2.1 Overview

P I A O 1= 11 B =T Yod]) o] o PSP

7.3.221
73222
7.3.2.2.3
73224

122 =] T AV o USSR
BehavioredClassifier
FunctionBehavior
OpaqueBehavior

ARG I 00014 a1 0 ATV T g [[07= 11 T0] 3 1 .

7.3.3.1 Overview
7.3.3.2 Class Descriptions ...

7.3.3.21 Event

7.3.3.2.2 MESSAQEEVENT ...ttt e e e e et e e e e e et e e e e e et e e e e e e et e e e e et neeeas

T T T = (= Tot=T o1 1T PSP UROTPRTUPUP

7.3.3.24 Signal

7.3.3.2.5 SignalEvent ..

S T T ST 4 (o o = OO P TP RUPRN
T4 ACHVILIES ...t e e et e e e e et e e e e e a e e e e e e e aaa s 51
S R Y= T S SESER 51
7.4.2 Intermediate ACTIVITIESeeiiiiiiiiicccccie e e e e e e e e e e aeae e 52
T4, 2.0 OVEIVIEW ...ttt ettt ettt ettt et e et e 4kt e e et et e e ehb e e e bbbt e e abe e e s bt e e s bb e e s nte e e nabee s 52
FA A A O 1= T B 2ol]) o] g R 55
A R o 11 | USSP 55
T.4.2.2.2 ACHVIEYEAGE ...eeiiiiiiieiiie ettt ettt ettt ettt e e b e e et e e bt e eabeem e e e seeesaeeeneeeseesnbeennee e 55
7.4.2.2.3 ACHVIEYFINAINOGEoooeiiiiieiiie et e e e et e e e e e st ee e e e s enneneeeeeas 56

7.4.2.2.4 ActivityNode
7.4.2.2.5 AcCtiVityParameterNOUEcoiuiiiiiiiii ittt ettt ettt ee e e e e se e e sbae e e nneeeaas 56
T.4.2.2.6 CONIOIFIOW ..ottt et e e r et e st e enre e e e e e eee e 57

Semantics of a Foundational Subset for Executable UML Models, v1.1

T.4.2.2.7 CONTOINOGEoviiiiiiieiiiie ettt e e e e e e e e et e e e e e e s e abeaeeeaeeessantaeaeeeessansbesaeeeeaans 57
7.4.2.2.8 DECISIONNOUE ...ooiiiiiiieiiie ittt e et e e e e e e e e e e e e e ee e e e abeaeeeaeeessaataeaaeeesssnsbeaeaeaeaans 57
7.4.2.2.9 FinalNode
7.4.2.2.10 FIOWFINAINOGE ...ttt e e e e e e e e e e e et e e e e e e st aeaeeeeesantbeaaaeeeaaas 58
T.4.2.2.00 FOTKNOGEuiiiiiieieei ittt e ettt e e e e e e e e e e st e et ee e e e etaebeeeaeessaantanaeeeeesansaeaaaeeeaans
7.4.2.2.12 InitiaINode
7.4.2.2.13 JoinNode
7.4.2.2.14 MergeNode ..
7.4.2.2.15 ObjectFlow
7.4.2.2.16 ODJECINOUE ...ttt ettt ekttt e eb et e ekt e e eh bt e e sase e e eabbae e e bbe e e e bbeeeaabeeeanbeeeeannes 60
7.4.3 Complete StruCtured ACHIVILIEScoii i e e e e s e 60
A T R @ V=T V1= P PUTUTU 60
7.4.3.2 Class DESCIPLONS ..uviiiiii ittt et e e et e s e e e e et te e e e e ssaba e e e e e ssatreeeeessatbaeaeesnnraeeeeeaan 61
A T R O - 11 L PSSP, 61
7.4.3.2.2 CoNAItIONAINOGE ...t e e e e e et e e e e e e et e e e e e eesaaabaeaaeeessanbbeaaeeeeaaas 62
7.4.3.2.3 EXECULADIENOE ...t e e e e et e e e e e e et b e ae e e e s sabbeaeaeeeaaas 62
7.4.3.2.4 LoopNode
7.4.3.2.5 SrUCIUrEAACHVIEYNOUEooiiuiiiiiiiiie ettt ettt st et ee e sbb e e e s stbe e e sabe e e anbeeeeannes 63
7.4.4 EXtra StruCtured ACHVITIEScviiiie i e e e e e e s s e e e e e e e e s e s e annenrrneeeees

7.4.4.1 Overview
7.4.4.2 Class Descriptions

74421

7.4.4.2.2
7.5 Actions
7.5.1 Overview

7.5.2 Basic Actions ..
7.5.2.1 Overview

ExpansionNode
ExpansionRegion

7.5.2.2 Class DESCIPLONS ..ouviiiiiiiiiiit et e ettt s et e s e e e e e te e e e e ssabtaeaeeesastaeeeeessstbeeaeesnnraeeeeenan
AT R Yo (o o PSSR
F T A 0% 1| 2 (o] [P ROPPOPPPRT
7.5.2.2.3 CallBehaviorAction
7.5.2.2.4 CallOperationAction ..
7.5.2.2.5 INPULPIN .ottt ettt ekttt e bttt e ekt e e eh bt e e sasb e e e st ae e e abbe e e e abbe e e enbeeeanbeeeeannes
A T [1Y/ Tox- L1 To] oV AY o 1o o PP SURRS
7.5.2.2.7 OutputPin
7.52.2.8 Pin ccoeeeiiiieiiieeen,
7.5.2.2.9 SendSignalAction

7.5.3 Intermediate Actions

T 0 A @ =T = SRS

7.5.3.2 ClasSS DESCIIPLIONSieeiiiei i iee ettt e e ettt e e e e et teee e e e e esnaeeeae e e saneeeeeeasanbneeeeeannnnneaaeaan
7.5.3.2.1 AddStructuralFeatureValueAction 15
7.5.3.2.2 ClearAssociationAction 15
7.5.3.2.3 ClearStructuralFeatureAction 15
7.5.3.2.4 CreateLiNKACHIONcc.eiiieie et e et e e e e e e e e e e s et e e e e e eeeaa b aeaaeeessanbaeaaaeeeaaas 76
7.5.3.2.5 CreateODJECIACIIONvieiiiee et e et e e e e e e e e e s st teee e e e s nantreee e e e e ntneeeeeeeeann 76
7.5.3.2.6 DestroyLinkAction
7.5.3.2.7 DEStrOYODJECIACLIONoiitiiiiiiiie ittt ettt ettt ekt e e eh bt e e ssae e e easbe e e easbeeeanbbeeebeeaeanes 77
7.5.3.2.8 LINKACHONeiiiiiiie ittt e et e e e et e e e e e e e eaaa e e e e ee e e e saeaeeeaeeeassntaeaaeeessansbeseaeeeaans 77
7.5.3.2.9 LinkEndCreationData w17
7.5.3.2.10 LinkEndData78
7.5.3.2.11 LinkEndDestructionData78
7.5.3.2.12 REAALINKACLION ..eiiiiiiiiieie ettt e e s et e e e e e st e e e e e e st eeee e e e ansnaneeeeeessnntneeeeeeeaans 78
7.5.3.2.13 REAASEITACHON ..ooiiiiiiiie ittt e e e e e e e et e e e e e e et e e e e e e eeesa e aeeeeeessanbbeaaaeeeaaas 79
7.5.3.2.14 ReadStructuralFeatureAction79
7.5.3.2.15 RemoveStructuralFeatureValueAction79
7.5.3.2.16 StructuralFeatureActionccceuue80
7.5.3.2.17 TeSAENTILYACLIONeeiiieieie ettt ettt e et e e b et e e e b b e e ekt e e e shbe e e e sabeeeaaabeeesbneaeanes 80
7.5.3.2.18 ValueSpPeCifiCatiONACHONcii it e s e ee e e e s et ee e e e s eneeeeeeeeans 80

Semantics of a Foundational Subset for Executable UML Models, v1.1 i

7.5.3.2.19 WIIELINKACHION ..eiiiiiiii ittt et e e e e e et e e e e e e a e e e e e e s e e saabaeaeeeessansaeaeeeas
7.5.3.2.20 WriteStructuralFeatureAction
7.5.4 COMPIELE ACHONS ...eeeiiiiiieiee ettt e e e e e e e et te e et e e e e e e s e e snnbsbbeeeeeeaaaeaaas
T.5.4.1 OVEIVIEW ...ceeiiiiii i i ittt e et et et e eeeeeeee e e e e e e e s e et s b e bbeeraaeeeeeeeeaeesaeeeaesesssassabsbbbbresaneeenaeeens
FAS R A O 1= T B =T od]) o] USSR
7.5.4.2.1 ACCEPIEVENTACLION ..ouviiiiiieii ettt ettt ettt e bt e e et e eab e e e e st e e e e sae e e e e nbeeeanneeeeas
7.5.4.2.2 ReadExtentActioncc.........
7.5.4.2.3 ReadlsClassifiedObjectAction ...
7.5.4.2.4 ReclassifyObjectAction
7.5.4.2.5 REAUCEACHIONoviiiiieei ettt et e e e e e et e e e e e e st e e aeee e e s sbaaeeeaeseasaataeaeeeensansaenaeeas
7.5.4.2.6 StartClassifierBehaviorAction
7.5.4.2.7 StartObjeCtBENAVIOTACHONc.eiiiiiiiii ittt sttt e e e e beee s
8. EXECUtiON MOAEIoiiiiiieee e
8.1 OVEIVIEW ...ieiiiiii ettt e et e ettt e e e e e e e e e e ee e s e e e e e s ataa e e e e eeeaa e eeeesrannens 87
S JZ2 o T 0! RSO PPPPRPIN 90
S T @ = 1= O REER 90
S 720 X o Yo | R 90
S I R © V=T Y o PP UPURPRN 90
8.2.2.2 ClasSS DESCIPLIONSvviiieiiiiiiieeeeicitie e e e e ettt et e e sttt e e s et e e s s e e e e e e s asanteaeaeesstbeeeeesnstaeeeeesnnees 96
o I R O g o1 (o= 1 = 1= Y PSR 96
8.2.2.2.2 EXECULIONFACIONY ...eeiiuiiiiiiiieeeitiie ettt ettt ettt e et e et e e ekt e e skt e e sh e e e eabeee e asbeeeenaneeeanteeeanbeeeean 96
T2 T = (= To U 1o o] =Yt o o/ I S 100
8.2.2.2.4 Executor .
8.2.2.2.5 FIrStCNOICESIIAIEQY ..oc.uveeeitiieeiiiii ettt ie ettt ettt ettt ettt e e ettt e e et e e e nbee e e e sbeeeeabbeeeanneeeannnes 103
S T o o] 1 SRR 103
8.2.2.2.7 SemanticStrategy106
8.2.2.2.8 SEMANTICVISIEON ...oviiiiieiiiiiiiieee ettt e e e e e e e e et e e e e e e s bbb e e ae e s e esaaaeeeaeeeassnsaeaeeeeesnsnenees 106
S 072 T I o Yo | PSR 107
S T B0 R © V=T Y o PRSP 107
8.2.3.2 Class DESCIIPLONSuuiiiiiiiiiiiee e e s iitieie ettt e e ettt e e e e s st e e s s ta e e e e s sat e e e e e eassnteeeaeeaatbeeaaeans 107
8.2.3.2.1 EXECULIONFACIONYL2eiiiiiieeieiiiieee ettt e e et ee e e sttt e e e e e e s san e ee e e e e nnnneaeeeas 107
S 72 I o Yo | e PSR 110
B.2.4.1 OVEIVIEBW ..eueieeieeeeeeeeee et e e e et e ettt eee e e e e e e e e ee e eete e aaeeeeeeeeeeeesstabaaaaaeeeaessessnsssntanaaaseaaeeeeenes 110
8.2.4.2 Class DESCIIPLONSuuiiiiiiiiiiieeees ittt e ee e e e et e e e e s st e e e s s e et e e s satbe e e e e esssataeeaeeantbereeeaan 111
8.2.4.2.1 EXECULIONFACIONYLIoiiiiiiieiiiiiiieie et e e e e e e e e e s e e e e eessant e ee e e e s nnnneaeeeas 111
SR T 01 1= 11T PRSPPI 113
S0 T R @ L= Y T SRS 113
B.3.2 KBINEL .t e e e e e e e e et aaaaaas 113
B.3.2.1 OVEIVIEW ..eeeieiiiiieieie e e ettt e e et e eeaaeeeae e e e s s s s s aa s aea e sesasaeeeeeaeaaaaaaeaeaaasesanasansnnnnnn 113
8.3.2.2 ClasSS DESCIIPLONSeeiiiiiiiiiiitee ettt ettt e ettt e e e e e bt e e e s e be e e e e s aabaeeaeeeannbeeeaeeannsbeeeaeann 120
8.3.2.2.1 BOOIEANVAIUEeoviiiiieeeie et e e e e e e e e e e e e e e a e e e e e e e r e aeaeeearnnnaes 120
8.3.2.2.2 CompoundValue . 121
8.3.2.2.3 DataValue125
8.3.2.2.4 DispatchStrategy126
8.3.2.2.5 ENUMETAtIONVAIUEcoieieiiiiie ettt ettt e e e et ee e e e s s ee e e e e s et e eeeeesnnnnnenees 126
R I ST A - 1D - U1 T o PRSP 128
8.3.2.2.7 ExtensionalValue128
8.3.2.2.8 FeatureValue129
8.3.2.2.9 InstanceValueEvaluation132
8.3.2.2.10 INEEYEIVAIUE ...ttt ettt ettt ekt e ekt e e e shbe e e e e ee e e bee e e e beeeeabbeeeanneeeannnes
8.3.2.2. 01 LINK 1ttt bbb nh e ettt b et nn e eabe s
8.3.2.2.12 LiteralBooleanEvaluation . .
8.3.2.2.13 LItEralEVAIUALIONooiiiiiiiiiiie ettt e e e e et ae e e e e et ae e e e e e e s eaabaeaeessnnenees
8.3.2.2.14 LiteralintegerEvaluation

Semantics of a Foundational Subset for Executable UML Models, v1.1

8.3.2.2.15
8.3.2.2.16
8.3.2.2.17
8.3.2.2.18
8.3.2.2.19
8.3.2.2.20
8.3.2.2.21
8.3.2.2.22
8.3.2.2.23
8.3.2.2.24
8.3.2.2.25
8.3.2.2.26
8.3.2.2.27

LiteralNUIEVAIUALIONoveiiiieii ettt e e e et e e e e e s et e aeae e s snanaees
LiteralRealEvaluation
LiteralStringEvaluation .
LiteralUnlimitedNaturalEValUAtioncc.eeviieiiiiiiiiiece et e et ae s 143
(@] o] =1 AP UPTUPTU PR 144
PrimitiveValue .
RealValuecccovvveeeiieiiieie e
RedefinitionBasedDispatchStrategy
LS (=1 1] o PSPPSRSO
SEINGVAIUE ..ottt h ettt s a bt e e ittt e et b e e e bt be e e ebbe e e sabeeeenneeeas
StructuredValue
UnlimitedNaturalValue . .
VAIUE oottt ettt e e e ettt e e e e e e ee e e e e e ———eeee e e et ———eaeee e aa——eaeaeeaaraaaaaeaaas

8.4 COMMON BENAVIOIS ..o e eaas

8.4.1 Overview
8.4.2 Basic Behaviors
8.4.2.1 Overview

8.4.2.2 Class DESCHPLONS ...civviiiie ittt e e s s e e e e e e e e e e s atb e e e e e snatbaeeeesasraeeas

8.4.2.2.1
8.4.2.2.2
8.4.2.2.3

L= ol 1 o o PRSPPSO
OpaqUEBENAVIOTEXECULIONueiiiiiiiiiiieie ettt ettt e ettt e et e e eabe e e eaeeeas 165
ParameterVAlUEcooouiiiiiiie ottt e e e e st e e e e e st e e e e e e et ee e e e s e nees 166

Lo R OF0] 0010 418 T (07= 11 o] o F- T 167

8.4.3.1 Overview

8.4.3.2 ClasS DESCHPLIONSieiiiiie ettt et e ettt e e e e et e e e e e e aae e e e e e e nnteeeaeeannebeeaessnnnneeas 170

8.43.21
8.43.2.2
8.43.2.3
8.43.2.4
8.43.25
8.43.2.6

8.5 Activities
8.5.1 Overview

ClassifierBehaVIOTEXECULIONcc.uiiiiiiiai ittt et e e et eeenneeeas 170
EventAccepterccooeevieenn.

FIFOGetNextEventStrategy ...

GetNextEventStrategy

(O] o] 1T ox 72 1 1Y7= U1 T o PSSR

S To g F= 1 [S 7= L o PP RPRN

8.5.2 INtErMEMIALE ACLVITIES ...evvvee ittt e e e e e e e e e e e e e e et e e e e s eebba e e aesaees

8.5.2.1 Overview

8.5.2.2 Class DESCHPLONS ...cciviiiiieii ittt s st e e s s e e e e e e e e e e s aat e e e e e santbaeeeesnsbaaeas

8.5.2.2.1
8.5.2.2.2
8.5.2.2.3
8.5.2.2.4
8.5.2.25
8.5.2.2.6
8.5.2.2.7
8.5.2.2.8
8.5.2.2.9
8.5.2.2.10
8.5.2.2.11
8.5.2.2.12
8.5.2.2.13
8.5.2.2.14
8.5.2.2.15
8.5.2.2.16
8.5.2.2.17
8.5.2.2.18
8.5.2.2.19

ACHVItYEAQGEINSIANCEeieiieieiiiiiiie et e s e e e e st e e e e s e e aeee s
ActivityExecution
ActivityFinalNodeActivation
ACHVILYNOAEACHIVALIONeeieieeieiiiiiieie ettt e e e et ae e e e s s ae e e e e s enssnneeeeeeessnnnenees
ACiVityNOJEACHVAIONGIOUP ..eotiiieiiiiiie et ie ettt ettt ettt e st e e b e e e s sbee e s sbbeaesanneeeaas 202
ActivityParameterNOGEACHVALIONoiiiiiiiiiie et 210
ControlNodeActivation .
(70 a1 (0] I o] =1 o PSPPSR UPPTN
DeCiSIONNOAEACEIVALION ...iiiiiiiiiiiiieie e e e e e e e e e e s rae e e e e s etaeaeeeas 213
FlowFinalNodeActivation219
ForkedToken
ForkNodeActivation
INIGIRINOTEACHIVALION ...ttt e e e e et e e e e es s et ee e e e s nnneneeeeeas
JOINNOUEACHVALION ...eeeiiieeeeie ittt e e e e e e e e e e s st ee e e e e s st eeeeeessnnnneeeeeeens
MergeNodeActivation ...
ObjectNodeActivation ...
ObjectToken
(01 1= SRS P PPN
101X o SRS

8.5.3 Complete Structured ACHIVITIESoooieiiiiiiiiieie e e e e e e e e e eaneees

8.5.3.1 Overview

Semantics of a Foundational Subset for Executable UML Models, v1.1 Y

Vi

8.5.3.2 ClasSS DESCIIPLONSueiiiiiiiiiiiiee ettt ettt ettt e e e e ettt e e e s s be e e e e s aabaeeeeaaaannbeeeaeeannnaeeaaeann 234

8.5.3.2.1 ClauseActivation234
8.5.3.2.2 ConditionalNodeActivation238
TSI 020 T Mo To] o] (N oo 1= 2 o4 11V U1 T o I PRSP 241
8.5.3.2.4 StructuredActiVityNOEACHVALIONcoiiiiiiiiie ettt 247
B.5.3.2.5 WAIUEBS ..eeiiiiii ittt e e e ee e e e e e e s e et ae e e e naeaeeeas 252
8.5.4 EXtra SIruCtUred ACHIVILIESouuveiiiiiiiiiie et e e e e e et et e e e e e e baaaanss 253

8.5.4.1 Overview
8.5.4.2 Class Descriptions

8.5.4.2.1

8.5.4.2.2

8.5.4.2.3

8.5.4.2.4
8.6 Actions
8.6.1 Overview

8.6.2 Basic Actions ..
8.6.2.1 Overview

ExpansionActivationGroup
ExpansionNodeActivation
ExpansionRegionActivation
TOKENSEL .ttt ettt ettt h e e e s h et e ettt e e e te e e ke e e e ehbe e e e bt e e e enbe e e e nnee e e nraaaan

8.6.2.2 ClasSS DESCIPLONSeeiiiiiiiiiiiee e ettt ettt ettt e e e e ettt e e e s s be e e e e s e bae e e e e e e nneeeeaeeannnbeeaaeann
8.6.2.2.1 ACHONACHVALIONveiiiieiiiiieie e ettt e et e e e e et e e e e e e ettt e ae e e e saaabeeeaeeeseantaeaeeeessnsaenees
8.6.2.2.2 CallACHONACHVALIONeiiiiiiie et e e e e e e ee e e e e et e e e e e e e s saatreeeeesansbeaeeeas
8.6.2.2.3 CallBehaviorActionActivation281
8.6.2.2.4 CallOperationActionActivation282
8.6.2.2.5 InputPinActivation283
8.6.2.2.6 InvocationActionActivation284
8.6.2.2.7 OutputPinActivation284
8.6.2.2.8 PINACHVALIONiiiiiiiiee it e e e e e e s et eee e e e st e e e e e e e e etanaeaeeeenaeaees 285
8.6.2.2.9 SendSignalACtIONACHVALIONcc.ueiiiiieee it ee e e e ee e e e e s st ee e e e e s enenees 286
8.6.3 INtErMEdiate ACLIONSuiiiiiiiiii et e e et e e e e e e et e e e e e e aaa b e e e e e araaanns 287
B.6.3. 1 OVEIVIEW ..oveiiiiiiiiiiie e e e e e ettt et et e teaeaeeaeeeeaa s s s aa st s e atbesaaaeeeeeaaaaaaaaeaeaaasesanaaansnnnnnns 287
8.6.3.2 ClasS DESCIPLONSeeiiiiiiiiiiiie ettt ettt e ettt e e e s et e e e s s be et e e s aabaeeeeaeaannbeeeaeeannnbeeeaaann 290
8.6.3.2.1 AddStructuralFeatureValueActionActivation290
8.6.3.2.2 ClearAssociationActionActivation293
8.6.3.2.3 ClearStructuralFeatureActionActivation294
8.6.3.2.4 CreateLinKACHONACHVALIONcciiiiiiiiiee et e e e e e e s et ae e e e s e naeaees 295
8.6.3.2.5 CreateObjeCtACHONACLVALION ...t ee e e e e e e s et ee e e e e e rneeees 297
8.6.3.2.6 DeStroyLiNKACHONACHVALIONueiiiiiiieiiie ettt ettt e ebbe e e ee e 298
8.6.3.2.7 DestroyObjeCtACHONACHVALIONcoiviiiiiiiiiiiii ettt et eabe e ae e ennes 300
8.6.3.2.8 LinkActionActivation302
8.6.3.2.9 ReadLinkActionActivation304
8.6.3.2.10 ReadSelfActionActivationcccccceeenns305
8.6.3.2.11 ReadStructuralFeatureActionActivation306
8.6.3.2.12 RemoveStructuralFeatureValueActionActivation307
8.6.3.2.13 StructuralFeature ACtIONACHVALIONcccviiiiee e e e et 310
8.6.3.2.14 Testldentity ACtIONACIVALIONc..eveiiiie ettt ee e e e ee e e e e e s e e e e e s snnenees 312
8.6.3.2.15 ValueSpecificatioNACHONACHVALIONcueiiiiiieiiiie et 312
8.6.3.2.16 WIriteLINKACHONACHIVALIONcciiiiiiiiiiiii ettt e e e e e et ae e e e e snaeaeeeas 313
8.6.3.2.17 WriteStructuralFeature ACtiONACHVALIONeiiiiiiiiiiiiiee e e 313
8.6.4 COMPIELE ACHONS ...eeeiiiiiie ettt e e e e e e ettt e et e e e e e e e s e e nb e e areeaaaaaeaans 314
B.6.4.1 OVEIVIEW ..eoeiiiiiiieiiie e e e et et ee et e e et eeeaeeaeaeeeeas s s s aa st ae st besasaeeeeeaeaaaaaaeaeaaasesanaaasnnnnnns 314
8.6.4.2 ClasS DESCIIPLONSeiiiiiiiiiiiie e ittiii ettt e ettt e e e e st e e e s e be et e e s aabae e e e e aanneeeeeeeannsbeeaaeann 317
8.6.4.2.1 AcCCEPtEVENtACHONACIVALIONoiiiiiiiiiiiei ittt ettt et e et e e sbb e e s eabe e e saeeeennnes 317
8.6.4.2.2 AcCepPtEVENtACHONEVENTACCEPIET ..oeeiiiiieeie et e ee e e eeeeas 320
8.6.4.2.3 ReadEXtENtACHONACHVALIONciciiiiiieie et e e e e e e e e s st eeeeessenenees 321
8.6.4.2.4 ReadlsClassifiedObjeCtACHONACLVALIONeiiiiiiiiiiiiee ittt 322
8.6.4.2.5 ReclassifyObjeCtACHONACHVALIONoiiiiiiiiiiiiie et ee e ee e e e e st ee e e e e e eneeees
8.6.4.2.6 RedUCEACHONACHVALIONcoiiiiiiiiiiiiie et ee et e e s ee e e e s s ee e e e e ssaane e aeeeessnnnneaeeeas
8.6.4.2.7 StartClassifierBehaviorActionActivation
8.6.4.2.8 StartObjectBehaviorActionActivation

Semantics of a Foundational Subset for Executable UML Models, v1.1

9. Foundational Model LIDrarycoiiioiiiiiiiieeen e 331

0.1 GENEIAI et 331
0.2 PrIMILIVE TYPES iiiiieieeeeeieeeeeeettt s e s e e e e e e e e e e et et e e e e e ta e aaaeaeaeeeaaaaeeeeeseesnnnnnns 331
9.3 Primitive BERAVIOIS ... ccoueiiiiii e e s 332
S IR T A = T To] (== I U o Uod o] o 333
9.3.2 INtEGEI FUNCHONS ...ttt ettt e e e e e e e e s bbbt e e e e e e e e e e s s annbbeeeeeas 334

S BRI R m =T L W o o] [336
9.3.4 SEHNG FUNCLIONS ...ttt ettt ettt et e e e e e e e e ab bbb e e e e e e e e e e e e e annbbeeaeeeeeas 338
9.3.5 UnlimitedNatural FUNCLIONSoooiiiiiiieee e e e e e e e ee e e 339

S IRC T I 1Yl U g o3 1 o] o 340

L0 IR O o 11 [0 340
S R O =T VT 340
9.4.2 ClasSIfier DESCHPONSci ittt ettt e e e e et e e et e e e e e e s aanbnbeeeaeeaeeas 341
S R I 1S (T o T = ot Y S o o T RS 341

9.4.2.2 NOLIfICAtION (SIGNAI) ..ttt e e e e e s e e e e e e nae e e e e enneeas 341

S RS = LN R (o F= 1= TR 1Y o 1) PRSI 341

9.5 BasSIC INPUL/OULPUL ...ttt e e e e e e e e e e eeeeeenennns 342
ST A I 1= @4 = T T 1= I 1Y o To = S 342
9.5.2 Pre-defined ReadLine and WriteLine BEhaViorsccueveveveeeciiiiciiiieicee e 343
9.5.3 ClasS DESCIIPLIONSuuutieiiiiiieieeeei e i sttt e e e e e e e e e s s s st eeeaeaeesesasannbaaeeareeaeeessaansnnnnnneeees 344
9.5.3.1 ActiveChannel (ACtIVE ClASS)cciiiuiiiiiiiiiiiic et e e 344

9.5.3.2 CRANNEI .eiiiiii ettt e et e e e e e e e e e e e e et ae e e e anraaeas 345

9.5.3.3 INPULCKANNEL ...ttt ettt e e e ettt e e e e e st e e e e e e e nbe e e e e e e annaeeaeeannneas 346

9.5.3.4 OULPULCRANNELoiiiiieiie ettt ettt e e et e e e e et e e e e ennbeee e e e ennneeeas 346

9.5.3.5 StandardIiNPUtCRANNEN e e 347

9.5.3.6 StandardOULPULCNANNEc.viiiie e e s e e e e nnes 347

9.5.3.7 TextINPUICRANNED ... a e e e nees 347

9.5.3.8 TeXtOUIPULCNANNENoiiii it e et e e e e s br e e e eennnes 348
10.BaASE SEMANTICS ...uuiiiiiiiiii e e aaans 351
10.1 DeSIgN RALIONAIEccooeiiiii et e e e e e e e e e eaenes 351
10.2 CONVENLIONS ...oiiiiiiieeieeeiie ettt e e e e ettt e e e e e et e s e e e se et s e e e e s saaa e eeseesraneeeeeeees 351
O TS T 1 1 [(= PPN 352
10.3.1 PriMItIVE TYPES .iitiiiieiee ettt e e e e ettt bttt e e e e e e e e e s e bbb e et e eeaaeae e e e e anbebbnneeeas 352
0T 700 I = 1o To 1 1= - Vo OSSP 352

0 00 2 N 13 1o =Y PSP EEUUURR S 353

10.3.1.3 SEQUENCES ...ceiiiiiiieeaeaee e e ettt ettt teeeeaaaaaaeasaeaaa e an b b bbb s bsbe e e e e eeeeeeeaeaeanaeeeeanaasnnnnnn 357

02 J00 I B 1 o £ PRSPPI 360

10.3.2 Classification and Generalizationccccceeviiiiiiiiiieiie e e e e e aeee e 361
10.3.3 Classifier CardiNalitycceeeiiiiiiiiie e e e e s e e e e e e s e e 362
O TR B0 0T o 1T 1= P 362
O Y=Y o =Y o | PSPPSR 366
10.4.1 Property Value MOGIfIEISccoiiiiiiiiiiie et e e s e e e e e e e e s aneeee s 366
O B] o g o o I =7=] P Y/ T | R 366
10.4.2.1 SYNEAX coveveeeeeeeeeeeeeeeeeeeeeeeeeee e e s e s et ee et et et et ee et ee et seee et et et s st et et s s et et es e e et et e s e et e s e en e 366

Semantics of a Foundational Subset for Executable UML Models, v1.1 Vil

O I B Y= 4 1 F= L (o OO 368

10.4.3 Activity EAQES GENETAIYuvuieiiiiee e e e e e e e e e e e e e e e e e e nnranes 369
10.4.4 Activity NOAES GENETAIYoeueiiiiiee it e e e e e re e e e e e e e e e s snnnnes 370
F0.4.4. L SYNEAX ceeeieiiiei ettt e ettt ettt et e e e e e ea e e e aa s e asaa e b e b e b et e et e e e e et teeeeeeeaeeea e e e e aa e nbnbarernrreeeteeaeaeean 370
10.4.4.2 SEMANLICSviiiiiiiiie ittt ettt ettt e b e e e s h e e st e e b e kb e et e nre e et e 371
10.4.5 Structured NOAES GENEIAYo.oiiiiiiiieee e e eeees 372
10.4.6 EXPANSION REGIONSuuiiiiiiiieieeieae ittt et e e e e e e st bbbt et e e e e e e s e aaaabbbeeaeeaaeaeesa s nnenbeeeeeas 373
O G S V] 1 - O TSP 373
10.4.6.2 SEMANLICSviiiiiiiiie ittt ettt ettt eb ettt b e e e s h e e st e e b nb e e r e nre e e nbe e s 374
10.4.7 CONTOI FIOW .ottt e ettt e et e e e e e e s e aa b b beseeeaaaaaeaesaannnnes 378
10.4.7. 1 TOP 1BVl ACLION ...ttt ettt e e e et e e e e et ae e e e e entbee e e e e ebeeeaaaeanns 378
10.4.7.2 INitial NOGE 10 ACHON ...ttt e ettt e e e et e e e e e satbeeea e e esnbaeeaaeeanes 379
10.4.7.3 Action to Action, general necessary CONAItIONc...eeiiiiiiiiiiei i 379
10.4.7.4 Action to Action, single control flow, optional merge/forkcccovveeiiiiiiiiee e 380
0 T o= o3 = o SRR 381
10.4.8.1 Object node to object node, optional fork/mergeccccovvieiee e 381
10.4.8.2 Object node to object node, decision, optional fork/mergecccccvceeeeiiviiiiee e 382
10.4.8.3 Action with pins, no incoming control flow or one from initialccccooiiiiiiiiniiien, 383
10.4.8.4 Action with pins, one incoming control flow from action, optional fork/merge 384

10.4.8.5 Action with pins, one incoming control flow from action, decision with decision flow from same
action, optional fork/merge 386

10.4.8.6 Action with pins, one incoming control flow from initial, decision with decision flow from initial
action in same, optional fork/merge 387

10.4.9 INVOCALION ACLIONScoi e e e e e e e e e e e e e e et e e e ee e e e e e e eeae et a b e e b e ns 387
F0.4.9.1 SYNEAX oeeieiiiii ittt ettt ettt et e e e e e e e e e e e e s e aa e e b e b e bt ettt e ettt teeaaeeeaeeea e e e e e nnnbarnrnnneaeeeeaeaeaan 387

110.4.9.2 SEMANTICS ...eeeeeeeeiteiieae ettt e ettt e e e e ettt e e e e s e ate et eeaaaateeeeaeaansseeeeaeaannsbeeaeeesasbseeaeeeannnneaaaaanns 389

10.4.10 Object Actions (INtErMEIALE)ceceeeiiiiicirieieee e er e e e e e e e e e e e e e e e e s annnnes 392
10.4.11 Structural FEAtUre ACHIONScciiiiiiiieiiiiieie ettt et et e e st e e e e neeas 393
10.4.12 Object ACtioNS (COMPIELE) ...evveieeii et r e e e e e e e e e e s e e 396
10.4.13 ACCEPE EVENE ACLION ...ttt e e s et e e e e e e e e s s et reeeeaeeeeaesannnnes 396
Annex A: Java to UML Activity Mapping 399
NN A € T= o = - | 399
A2 TYPE NBIMES ..ttt e et e et e e e e e e aa e eeaan 399
A.3 Method DeClarationccooiiiiiiiiiiii e 400
A4 SEALEIMENTS .eiiiiiiii et e e e e et e e e e e e e re e eae 401
A4 L StAtEMENT SEUUENCE ...vuueieiiiieiee e e e e et e e et e e et et ettt et eeeeeae e e aaaas s e aesaseaaaeeaaeaaaeeeererennnnnes 401
A.4.2 Statement Sequence (ISOlAted)cccvuviiiieeieeiir e —————— 402
A.4.3 Local Variable DeCIArationocuuuiioiiiiiieiiiiie et 403
A.4.4 Instance Variable Assignment (NON-liISt)cooiiiiiiiiiiiiii e 403
A.4.5 Instance Variable AsSiIgNment (liSt)oeevreeeiiiiiiiiieiee e 404
A.4.6 Method Call StAtEMENTcoiiiiiii i s snbee s 405
A.4.7 Start ODJECt BENAVIOLuviiiiiieii ittt e e e e e e e s e e e e e e e e s e s nrnerneeeees 406
N B T | F= LS T =1 T OSSP 407

F e B =1 (T 1 1= o PSR PPRRTR 407

y N 0 I T T 71 L= 1 Yo o SO PS 409
Nt I VLo 11 = 1 T o PSS 410

F N A o T g o Yo o I (1 0=T =111/ IR 411
Nt 3 o T g o Yo o I o == 1=) PR 412

viii

Semantics of a Foundational Subset for Executable UML Models, v1.1

R T T o (=151 o] - 413

A.5.1 Local Variable or Method Parameter USEccuueeiiiieeiiiiiiiiiiie e eee e e e e 413
R B0 N 1= - | PR 414
T N SRR 414
L I o TP UTPPPRTPPIPIN 415
F AN T T 0] g 1= 4 11 o (o] O | | PR 415
A.5.6 INStANCE Variable USEcociiiiieie ettt e e e e a e e e e 416
A.5.7 OPErator EXPIrESSIONcccceiiiiiiiteutieeeeeteeeseeiasssteetereresaeeesssassstestaereeraeeasesaansnnsrneeerraaeseesnns 416
A.5.8 TeStiNg FOr EQUANILY ..ccceieiiiiee et e e e e e e e e e s s s an e e e e e e e e e s annnes 417
A.5.9 Testing String EQUALILYoooieiiieie e e e e e e 418
A 300 0 T I =S i o T T AN SRR 418
R 300 I 1 1Y g oY I - 1 S 419
301 1022 S U] =T - | PR 420
A.5.13 Type Cast (NON-PrIMIIVE)cccuueiiiieiiiie e e csicie e e e e e s e s e e e e e e e e e s s s rrreeaeeeaeas 421
A.5.14 Type CaSE (NUMETIC) ieeiiiiiiereiiiieeeie e e et e e s ss ettt e e e e e aeeessssnsee st e e eraeeeseesnsnntnrnanreaeaeesaans 422
ALB LISES e e 422
N Tt 1 B T T PSR 422
N ST I 13 B Yo (o [P PPPPPPTPPPR 423
N ST T 1S B =T 1 o Y= TSR 424
TR o 0]) Y 1 SRR 424
A.B.5 List 0f ONE EIBMENL ...t e e e e e e s s s rrereeeaeeaesannnnes 425
N T T 1S B . PSR 425
N T A 1= A [T 1] T PSSR 426

Semantics of a Foundational Subset for Executable UML Models, v1.1 iX

Semantics of a Foundational Subset for Executable UML Models, v1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG specifications
are available from the OMG website at:

http://mww.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBA/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 Xi

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBAServices
. CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the link cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.

Xii Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

1 Scope

The scope of this specification is the selection of a subset of the UML 2 metamodel that provides a shared foundation for
higher-level UML modeling concepts, as well as the precise definition of the execution semantics of that subset. Given its
fundamental nature, the subset assumes the most general type of system, including physically distributed and concurrent
systems with no assumptions about global synchronization.

Many executable UMLs are conceivable, based on executing use cases, activities, workflow, methods, or state machines
and their combinations. This specification covers the capabilities described in the lower two layers described in Figure
6.1, sub clause 6.2.2 of the UML 2.2 Superstructure Specification. These layers encompass functionalities described as
“structural foundations,” “intra-object behavior base,” “inter-object behavior base,” and “actions’ and are covered

primarily in Clause 7 and Clause 11 of the UML 2.2 Superstructure Specification.

The selected elements are translatable into an implementation such that a specified functional computation is independent
of the control and data structures in which the elements reside. This translatability provides maximum flexibility to
modify the organization of the data without affecting the definition of an algorithm. (The UML 1.5 action metamodel was
designed in this manner for precisely this reason.)

It is not the intent of this specification to define the specification of every higher-level UML construct in terms of
elements from the foundational subset; however, the specification does intend to encourage use of the broadest possible
subset of UML constructs that can be reduced to a small set of elements.

In sum, the foundational subset defines a basic virtual machine for the Unified Modeling Language, and the specific
abstractions supported thereon, enabling compliant models to be transformed into various executable forms for
verification, integration, and deployment.

2 Conformance

2.1 General

This specification defines a subset of UML 2 and specifies foundational execution semantics for it. This subset will be
referred to as Foundational UML or “fUML.” Conformance to this specification has two aspects:

1. Syntactic Conformance: A conforming model must be restricted to the abstract syntax subset defined for fUML.

2. Semantic Conformance: A conforming execution tool must provide execution semantics for a conforming model
consistent with the semantics specified for fUML.

The fUML syntactic subset is defined by the abstract syntax metamodel given in Clause 7. The packages in this
metamodel correspond to similarly named packages in the UML 2 Superstructure metamodel, which act as the basic
language units for the purpose of syntactic conformance. The semantics for fUML is specified by the execution model
given in Clause 8. The packaging structure of the execution model parallels the language unit packaging of the fUML
abstract syntax exactly, except for one additional package called “Loci.”

Asin the UML 2 Superstructure Specification, this specification defines a small number of conformance levels.
Syntactically, each fUML level is a strict subset of the corresponding UML level, including a subset of the language unit
packages placed at that level in the full UML 2 superstructure. Both syntactic and semantic conformance is relative to
these levels.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 1

The following sub clauses define the fUML conformance levels and specify the meaning of conformance relative to those
levels.

2.2 Conformance Levels

There are three conformance levels defined for fUML, corresponding to UML conformance levels L1, L2, and L3
(actually called “compliance levels’ in the UML 2 Superstructure Specification). Asin the UML 2 Superstructure, each
conformance level isformally defined by merging the packages corresponding to the language unitsincluded at that level.
However, for fUML, there are actually two sets of merges: one merge of the abstract syntax packages into a merged
syntactic package for the level and a parallel merge of the corresponding execution model packages into a merged
semantic package for the level. The merged syntactic package is a strict subset of the merged package for the
corresponding UML 2 Superstructure level in the following sense: if the fUML syntactic Ln package is merged into the
UML 2 Superstructure Ln package, the UML 2 Superstructure package is left unchanged.

The goal is to be able to syntactically interchange fUML models simply as UML 2 Superstructure models at the
corresponding conformance level. Therefore, no new overall namespace is formally defined for fUML. The fUML
abstract syntax is simply that portion of the UML 2 abstract syntax for which a corresponding semantic specification has
been provided in this specification. To have a semantic meaning under this specification, a conforming fUML model must
be constructed from the restricted portion of the UML abstract syntax defined for fUML, but it is otherwise interchanged
as any other UML model.

Conformance Level 1 (L1) for fUML merges the following packages:
+ Classes:Kernel
« CommonBehaviors::BasicBehaviors
« CommonBehaviors::Communications
» Loci::LocilL1 (semantics only)

Note that there are separate merges for the syntactic (see Figure 2.1) and semantic packages (see Figure 2.2) with names
as above (except for Loci::LocilL1, for which there is no syntactic package). The syntactic packages being merged are as
they are defined for the fUML abstract syntax in Clause 7. The semantic packages being merged are as they are defined
for the fUML execution model in Clause 8.

UML L1 aso includes BasicActions and Fundamental Activities. But fUML does not have a separate package for
Fundamental Activities, supporting execution semantics only at the level of IntermediateActivities (which is included at
L2). Since BasicActions requires Fundamental Activities, that also cannot be included in fUML L1. As aresult, actions
and activities are not supported at all in fUML L1.

2 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

1
Kernel
(Fram FUML::Syrkax:Classes)
A
1
“merges |
1
1
H
L1
{From FUML::Syntax)
“Mmerges ,"" R = e =1
—| L’:r g_‘
BasicBehaviors Communications
(From FUML::Syntax:: CommonBehawviors) (Fram FUML: :Syntax: : CommonBehaviors)

Figure 2.1 - fUML Syntax Level 1 Package Merges

1

Kernel
{From FUML::Semantics: :Classes)

e

amerges

1 14
Locll lgeeeecemeeeee L1 - BasicBehaviors
{From FUML::Semantics::Loci) (from FUML: :Semantics) (From FUML::Semantics: :CommonBehaviors)

«nErger

1

Communications
{From FUML: :Semantics:: CommonBehaviors)

<.______..

Figure 2.2 - fUML Semantics Level 1 Package Merges

Conformance Level 2 (L2) for fUML adds the following packages (as defined in Clauses 7 and 8) to L1 (see Figure 2.3
and Figure 2.4):

- Activities::IntermediateActivities
- Actions::BasicActions
 Actions::IntermediateActions

» Loci::Locil2 (semantics only)

UML L2 also includes StructuredActivities. But fUML does not have a separate package for StructuredActivities,
supporting execution semantics only at the level of CompleteStructuredActivities and ExtraStructuredActivities (which
are included at L3).

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 3

1
L1
{Fram FUML::Syntax)

M

o merge o

“rmerges “merges

IntermediateActions |- ———----__] L2 - > IntermediateActivities
(From FUML:: Syntax:: Actions) (From FUML::Syntax) (From FUML::Syntax: : Activities)

T
1
1
| EMmerges
1
]
]

A"

BasicActions
(From FUML:: Synta: Actions)

Figure 2.3 - fUML Syntax Level 2 Package Merges

1
L1
(From fL¥AL::Semantics)
I
]
| smergen
wImerge» I ‘ [
Locil2 - Lz L MMEGRY . IntermediateActivities
(Fram fUML: :Semantics::Loci) (From FLML: :Semantics) (from FUML:: Semantics: : Activities)
T, umerges
“merge» RN
[|
BasicActions IntermediateActions
{From FUML: :Semantics: :Actions) {From FUML:: Semantics:: Actions)

Figure 2.4 - fUML Semantics Level 2 Package Merges

Conformance Level 3 (L3) for fUML adds the following packages (as defined in Clauses 7 and 8) to L2 (see Figure 2.5
and Figure 6.1):

» Activities::CompleteStructuredActivities
« Activities::ExtraStructuredActivities
» Actions::CompleteActions

» Loci::LocilL3 (semantics only)

4 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

1

CompleteActions
(From FUML::Synkax: ; Actions)

o merge i

E—— L3

1

L2
(Fram FUML:: Symkas)

N

“merge

1

e

(From FUML:: Synkax)

“merges

.EE_______

1

wrnerges:

ExtraStructuredActivities
(From FUML: :Syntax:: Activities)

Figure 2.5 - fUML Syntax Level 3 Package Merges

1
(From FUML: :Semantics)
J‘:'\
i
| wmerges
1
] . “ITIETgEs l H
Locl3 A —— L3 L
{From FUML: :Semantics: :Loci) (From FUIML ::Semantics)

]
| «mergen

\:"

CompleteActions
(Freem FUML: :Semankics: :Actions)

Figure 2.6 - f{UML Semantics Level 3 Package Merges

1

-4 CompleteStructuredActivities
(From FUML:: Syntax:; Activities)

W e _}

CompleteStructuredActivities
{From FUML: : Semantics: : Activities)

T Hmergens

ey

ExtraStructuredActivities
{From FUML: : Semantics: :Activities)

2.3 Meaning and Types of Conformance

Conformance to a specific fUML conformance level entails both syntactic and semantic conformance. Syntactic

conformance is defined in terms of a conforming model.

 Abstract Syntax Conformance - A UML model conforms to a specific fUML level if it is awell-formed model
constructed from only syntactic elements that are included in the fUML abstract syntax metamodel for that level. A
well-formed model is one that meets all constraints imposed on its syntactic el ements by the UML 2 Superstructure
abstract syntax metamodel and any additional constraints imposed on those elements by the fUML abstract syntax
(givenin Clause 7).

» Mode Library Conformance - In addition, a conforming UML model at any level may make use of elements from the
fUML modd library (see Clause 9). An execution tool is not required to implement any of the model elements defined

in Clause 9, but, if such elements are provided, they must conform to the behavior specified in that clause. An

execution tool may, in addition, make available atool-specific model library for use by conforming models accepted by

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

5

the toal, so long as the execution behavior of el ements of the modelsin that library may be entirely defined in fUML at
the same conformance level as models accepted by the tool.

For a conforming model at a certain level, the fUML specification provides a precise definition of the execution semantics
for the model at that level. Conformance to this semantics is defined in terms of a conforming execution tool (see Clause
4 for the definition of the term “execution tool” as used in this document). If a conforming execution tool is presented
with a conforming model, then it must behave as further described below. On the other hand, if it is presented with a non-
conforming model, then it may react in one of the following three ways.

1. Rejection - It may reject the model and refuse to processit further at all.

2. Satic Partial Acceptance - If thetool isableto statically determine that the non-conforming parts of the model are al
elements of abstract syntax packages that are not included in the fUML subset at all, and that the model elements
from packages included in the fUML subset all conform to fUML, then the tool may accept the model. In this case,
any elementsthat are not included in the fUML subset, and are not instances of metaclasses that are specializations,
directly or indirectly, of metaclassesin the fUML subset, may beignored by the tool. Any elements that are not
included in the fUML subset, but are instances of metaclasses that are specializations of metaclassesin the fUML
subset, must be interpreted asif they are instances of the superclassthat isin the fUML abstract syntax.

3. Dynamic Partial Acceptance -The tool may accept the model for execution and attempt to eval uate or execute any
val ue specification or behavior from the model, interpreting any model elements as in the case of static partial
acceptance. However, if the tool encounters any model element that is defined in an abstract syntax within the fUML
subset, but does not conform to the additional constraints defined for the fUML subset, then the tool must terminate
execution with an error.

A conforming execution tool need not use the same option above in all cases. However, it must be specified for any
conforming tool in which cases each option is used. To further claim conformance for an execution tool at a specific level,
it must be possible to demonstrate the following:

 Abstract Syntax Mapping - An execution tool accepts aUML model for execution in some concrete form. It must be
possible to bidirectionally map this concrete input form to awell-formed representation in terms of instances of the
metaclassesin thefUML abstract syntax at the given conformance level. One standard way to do thisisto usethe XML
Metadata Interchange (XMI) as the input form for the model, in which case the mapping to the UML abstract syntax is
provided by the XMI standard (see Clause 3). However, it is not required that XMI be used as the input form. For
example, atool may provide for direct model input in terms of graphical and or textual notation, so long asthismay be
fully mapped to the fUML abstract syntax.

» Semantic Value Mapping - Runtime inputs and outputs are semantically specified by a model of values (see 8.3).
During the execution of a behavioral model, the model execution will generally take values as inputs and produce
values as outputs. The execution tool must provide a concrete implementation for all such values and demonstrate a
mapping from this implementation to the model of values provided in 8.3. For this mapping, it is only required to
demonstrate the effective implementation of the properties defined for the value classes, showing the corresponding
implementation value for any value instance from the semantic model, and vice versa. It is not required to demonstrate
the implementation of the operations specified for those classes in the execution model. Also, if the execution tool uses
different internal and external forms for values, it is only required to provide a mapping for the external form, so long
asthisis sufficient to demonstrate semantic conformance, as described bel ow.

» Execution Environment Mapping - The fUML execution model provides an abstraction of the execution environment
for amodel in terms of the concept of an execution locus (see 8.2). It must be possible to demonstrate how the actual
execution environment provided by an execution tool corresponds to the locus concept. Specifically, this must include:

« A definition of whether execution takes place at a single locus or may be distributed across multiple loci. If the
|atter, then the tool must provide a mechanism for allocating amodel or a portion of a model to a specific locus.

6 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

« A description of whether and how extensional values (see 8.2 and 8.3) are persisted at alocus across behavior
executions.

« A specification of what objects are pre-instantiated at alocus in order to provide system services (such asinput/
output—see 9.4).

Note that, for an execution tool that, say, compiles a model to some target executable form, the execution environment for
the purposes of this mapping will be the environment in which the target executable runs, rather than the environment of
the tool itself.

Semantic Conformance - Finally, a conforming execution tool must provide an implementation of the interface of the
Executor class from the execution model (see 8.3). Whileiit is not necessary that this be a strict implementation of the
object-oriented operations provided by Executor, it must be possible to demonstrate the following:

« Evaluation - Given awell-formed val ue specification from a conforming model, the tool must be able to produce a
value conforming to the result of the Executor::eval uate operation on the value specification.

« Synchronous Execution - Given awell-formed behavior from a conforming model and valuesfor al input
parameters of the behavior, the tool must be able to execute the behavior in conformance to the effect and results of
the Executor::execute operation.

« Asynchronous Execution - Given abehavior or an active class from a conforming model, the tool must be able to
asynchronoudly start the given behavior in conformance to the effect and results of the Executor::start operation.

Note that, at a given conformance level, a conforming execution tool must semantically conform when presented with any
conforming model at that level. That is, to conform at a certain level, an execution tool must implement all of the fUML
abstract syntax at that level and provide conforming semantics for it.

The above definition of semantic conformance uses the concept of conforming to an operation of the Executor class from
the execution model. This concept is further defined as follows:

Inputs provided to the execution tool must correspond to the input parameters required for the operation.

Using the abstract syntax and semantic value mappings for the tool, map the inputs to the execution tool from their
implementation form to the corresponding representation in terms of instances of abstract syntax and semantic value
classes.

Using the execution environment mapping, map theintended target execution environment to a corresponding model in
terms of execution loci and pre-instantiated extensional values.

Using the specification of the given operation as part of the execution model (or the subset of that model that applies at
acertain conformance level), determine the effect of invoking the operation on the given input val ues using an executor
at a specific execution locus. Thisincludes the generation of output values and any side effects that occur at and
through the execution locus.

Using the execution environment mapping, map any updates to loci to updates to the target execution environment.
Using the semantic value mapping, map any output values to the corresponding implementation form for the tool.

Conformance requires that the actual outputs and environmental changes produced by the execution tool be consistent
with the outputs and changes determined in the two bullets directly above.

The conformance regquirement here is one of consistency rather than equivalence because, as a semantic specification, the
execution model tightly constrains, but does not always fully determine, the exact results of an execution. Thisis
particularly true in the presence of the high degree of concurrency possible with UML activity models, in which different
conforming implementations may produce significantly different resulting executions of the same model due to timing

issues.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 7

This allowance for some flexihility in the conformance requirements is known as the genericity of the execution model,
(discussed in more detail in 2.4). Nevertheless, it is still possible to formalize the conformance requirements even in the
presence of such genericity.

« Clause 10 specifies the base semantics for the execution model. This specification effectively provides for an
interpretation of the execution model as a set of first-order predicates, or axioms, over possible execution traces.

» A specific invocation of an operation in the execution model, as called for in the determination of conformance to the
operation above, results in an execution trace. Any execution trace that satisfies the axioms of the base semanticsisa
legal execution trace.

» Conformance to the operation requires that the execution tool conform to the effect and results of any legal execution
trace of the operation. The tool is alowed to conform to different execution traces for different invocations of the
operation, even on identical inputsin an identical environment.

In essence, the base semantics provides an interpretation of the execution model as a set of constraints on the alowable
execution of well-formed fUML models. A conforming execution tool must produce results that do not violate these
constraints, but there is flexibility for allowing different implementations to provide somewhat different behavior for the
execution of the same well-formed model, within the specified constraints. Ideally, conformance would be demonstrated
by a formal proof that the execution tool implementation meets all the required constraints. In reality, it is expected that
conformance will be demonstrated by a sufficient suite of tests hand checked against the specification, as is the case for,
say, conformance to most major programming language standards.

2.4 Genericity of the Execution Model

To support a variety of different execution paradigms and environments—including a number of widely used commercial
and research variants of executable UML —the specification of the execution model incorporates a degree of genericity.
This is achieved in two ways: (1) by leaving some key semantic elements unconstrained, and (2) by defining explicit
semantic variation points. A particular execution tool can then realize specific semantics by suitably constraining the
unconstrained semantic aspects and providing specifications for any desired variation at semantic variation points.

The semantic areas below are not explicitly constrained by the execution model:

» The semantics of time - The execution model is agnostic about the semantics of time. Thisalows for awide variety of
time models to be supported, including discrete time (such as synchronous time models) and continuous (dense) time.
Furthermore, it does not make any assumptions about the sources of time information and the rel ated mechanisms,
alowing both centralized and distributed time models.

» The semantics of concurrency - The execution model includes an implicit concept of concurrent threading of execution
(seethe discussion in 8.5.1). However, it does not require that a conforming execution tool actually execute such
concurrent threads in a physically parallel fashion and it is agnostic about the actual scheduling of execution of
concurrent threads that are not physically executed in parallel. So long as the execution tool respects the various
creation, termination, and synchronization constraints placed on such threads by the execution model, any sequentially
ordered, or partial or totally parallel, execution of concurrent threads conformsto alegal execution trace.

» The semantics of inter-object communications mechanisms - Thisrefers specifically to communication properties of the
medium through which signals and messages are passed between objects. The execution model is written asif all
communications were perfectly reliable and deterministic. However, thisis not realistic for all execution tool
implementations. Therefore, despite the restrictions that would be imposed by a strict interpretation of the execution
model, conformance of an execution tool to the semantics of inter-object communication is not predicated on any
assumptions about whether or not such communication isreliable (i.e., that signals and messages are never lost or
duplicated), preserves ordering, happens with deterministic or non-deterministic delays, and so on.

8 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Different execution tools may semanticaly vary in the above areas in executing the same model, while still being
conformant to the semantics specified by the execution model for fUML. Additional semantic specifications or constraints
may be provided for a specific execution tool in these areas, so long as it remains, overall, conformant to the execution
model. For instance, a particular tool may be limited to a single centralized time source such that all time measurements
can be fully ordered.

In contrast to the above areas, the items below are explicit semantic variation points. That is, the execution model as
given in this specification by default fully specifies the semantics of these items. However, it is allowable for a
conforming execution tool to define alternate semantics for them, so long as this alternative is fully specified as part of
the conformance statement for the tool.

» Event dispatch scheduling - Asdescribed in 8.4.3, signal instances received by an active object are placed into an event
pool. Theinstances in the pool are then asynchronously dispatched as occurrences of signal events, potentially
triggering waiting accepters of such events. By default, events are dispatched from the pool using afirst-in first-out
(FIFO) rule. However, a conforming execution tool may define an aternative rule for how thisdispatching is scheduled
by providing a specialization of the GetNextEventStrategy class that redefines the dispatchNextEvent operation to
specify the desired rule.

« Polymorphic operation dispatching - Operationsin UML are potentially polymorphic—that is, there may be multiple
methods for any one operation. The determination of which method to use for a given invocation of the operation
depends on the context and target of the invocation. The specification for this determination is provided in the
execution model by the dispatch operation of the Object class, as specified in 8.4.2 (the semantics of operation
dispatching is further discussed in relation to the call operation action in 8.6.2). By default, the method used for an
operation must be associated with a (possibly inherited) member operation of atype of the target object of the operation
invocation that is either the invoked operation or aredefinition (“override”) of it. However, a conforming execution
tool may define an alternative rule for how this dispatching is to take place by providing a specialization of the
DispatchStrategy class that redefines the dispatch operation to specify the desired rule.

If a conforming execution tool wishes to implement a semantic variation in one of the above areas, then a specification
most be provided for this variation via a specialization of the appropriate execution model class as identified above. This
specification must be provided as a fUML model in the “base UML" subset interpretable by the base semantics of Clause
10. Further, it must be defined in what cases the variation is used and, if different variants may be used in different cases,
when each variant applies and/or how what variant to use is to be specified in a conforming model accepted by the
execution tool.

2.5 Conformance Statement

The conformance of an execution tool to the fUML specification may be summarized in a conformance statement for the
tool. Such a statement should include the following items.

» Conformance Level - The conformance level for models accepted by the tool.

« Model Library - Anidentification of what elements of the standard fUML mode library areimplemented by thetool. A
specification of any additional tool-specific model library elements.

» Abstract Syntax Mapping
» Semantic Value Mapping
 Execution Environment Mapping

» Semantic Conformance - A demonstration of semantic conformance in terms of the above mappings.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 9

» Semantic Constraints - A specification of any additional semantic constraints on semantic areas left unconstrained by
the execution model.

« Semantic Variation - For each semantic variation point, a specification of any variation from the default semantics.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification.

The following OMG standards provided the source for the foundational subset.
« UML 2.4.1 Infrastructure Specification (formal/11-08-05)
« UML 2.4.1 Superstructure Specification (formal/11-08-06)
» MOF 2.4.1 Core Specification (formal/11-08-07)
» OCL 2.0 Specification (formal/06-05-01)

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is expected that models
conforming to this specification will be interchanged using XMI.

+ MOF 2.4.1 XMI Mapping Specification (formal/11-08-09)

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Base Semantics

A definition of the execution semantics of those UML constructs used in the execution model, using some formalism
other than the execution model itself. Since the execution model is a UML model, the base semantics are necessary in
order to provide non-circular grounding for the execution semantics defined by the execution model. The base semantics
provide the “meaning” for the execution of just those UML constructs used in the execution model. The execution model
then defines the “meaning” of executing any UML model based on the full foundational subset. Any execution tool that
executes the execution model should reproduce the execution behavior specified for it by the base semantics.

Behavioral Semantics

The denotational mapping of appropriate language elements to a specification of a dynamic behavior resulting in changes
over time to instances in the semantic domain about which the language is making statements.

Compact Subset

For the purposes of this specification, a compact subset of UML is one that includes as small a subset of UML concepts
as is practicable to achieve computational completeness.

10 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Computationally Complete

A computationally complete subset of UML is one that is sufficiently expressive to alow definition of models that can be
automatically executed on a computer by an execution tool.

Execution Model

A model that provides a complete, abstract specification to which a valid execution tool must conform. Such a model
defines the required behavior of a valid execution tool in carrying out its function of executing a UML model and
therefore provides a definition of the semantics of such execution.

Execution Semantics

For the purposes of this specification, the behavioral semantics of UML constructs that specify operational action over
time, describing or constraining allowable behavior in the domain being modeled.

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the foundational subset and expressed as an
instantiation of the UML 2 abstract syntax metamodel. This may involve direct interpretation of UML models and/or
generation of equivalent computer programs from the models through some kind of automated transformations. Such a
tool may also itself be concurrent and distributed.

Foundational Subset

The subset of UML to which execution semantics are given in order to provide a foundation for ultimately defining the
execution semantics of the rest of UML.

Static Semantics

Possible context sensitive constraints that statements of a language must satisfy, beyond their base syntax, in order to be
well-formed.

Structural Semantics

The denotational mapping of appropriate language elements to instances in the semantic domain about which the
|language makes statements.

Syntax

The rules for how to construct well-formed statements in a language or, equivalently, for validating that a proposed
statement is actually well-formed.

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 11

6 Additional Information

6.1 Changes to Adopted OMG Specifications

The Foundational Subset for Executable UML Models specification does not change any adopted OMG specifications.
The semantics defined in this specification are generally a precise definition of a subset of the UML semantics given in
the UML 2 Superstructure Specification. For this subset, the foundational execution semantics are intended to be
consistent with, though sometimes more restrictive than, the less precise textual semantic specification given in the UML
2 Superstructure Specification. Cases where the foundational execution semantics restrict some semantic variability
alowed in the UML 2 Superstructure Specification are noted in the overview discussions in the subclauses of Clause 8,
Execution Semantics.

However, there are a few cases in which the semantic interpretation provided by fUML must be considered to be not
entirely consistent with the semantics as stated in the UML 2 Superstructure Specification. In these cases, the fUML
specification does not change the UML specification, since this would likely require addressing semantic implications
beyond the fUML subset. Instead, an inconsistency simply remains at this time, which may be addressed in future
versions of the full UML specification. Execution tools conforming to fUML are required to provide the semantics as
specified in the Foundational Subset for Executable UML Models standard.

The following areas have been identified as semantic inconsistencies at this time.

» Rather than receiving afull collection on a single token, expansion nodes use the set of all tokens they are holding as
the “collection” referenced by their expansion region (see 8.5.4).

 Test identity actions apply to inputs that are data values, as well as objects, testing data values for equality by value
rather than identity of reference (see 8.6.3).

Note: The foundational subset is based on UML 2.4.1. Particular changes made in UML 2.2 and UML 2.3 over previous
UML versions that are incorporated into the foundational subset include changes to decisions nodes, structural feature
actions and structured activity nodes, the addition of the “isL ocallyReentrant” property to actions and the addition of the
start object behavior action.

6.2 On the Semantics of Languages and Models

In a general sense, a language is a symbolic means for communication. The language provides rules for constructing
statements that communi cate some specific meaning. In a natural language, these rules evolve neurologically and socially
over time. For a formal language, on the other hand, the rules are constructed artificialy in order to create a means of
communication that, for some intended purpose, isin some way more precise than natural language.

A formal language only attaches meaning to statements that are correctly constructed or well formed. The syntax of the
language provides the rules for how to construct well-formed statements or, equivalently, for validating that a proposed
statement is actually well-formed. The semantics of the language then provides the specification of the meaning of well-
formed statements.

It is usually possible to completely specify the syntax of aformal language. This is because syntax has specifically to do
with the form and structure of statements in the language. Semantics is more problematical because it is inherently
extrinsic to the form of the statements themselves. Meaning can only be assigned to a formal statement in relation to
entities in some semantic domain about which the statement is intended to communicate.

12 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

An interpretation of a statement is a mapping of syntactic elements of the language to elements of the semantic domain
such that the truth-value of the statement can be determined, to some level of accuracy. Colloquially, an interpretation of
amodel can be said to give it “meaning” relative to the semantic domain. If this mapping can be inverted, so that
elements of the semantic domain can be mapped to syntactic language elements, then a statement can also be constructed
as arepresentation of some part of the semantic domain, such that the statement is true under the interpretation mapping.

As a somewhat stylized example from natural language, consider the simple statement “Jack owns that house.” Thisis a
syntactically correct statement in the English language. We can interpret the statement in terms of the “real world” as the
semantic domain.

The word “Jack” is a syntactic element that denotes some person in the real world under this interpretation. Similarly, the
phrase “that house” denotes a specific structure in the real world. Finally, the word “owns’ denotes a legal relationship
that may hold between a person and property. If thislegal relationship does exist between the previously identified person
and structure, then we can say that the statement “Jack owns that house” is true under this interpretation. Otherwise it is
false.

Conversdly, suppose we know it to be true that a person named “Jack” has legal ownership of a specific house being
pointed to. Then we can say that the statement “Jack owns that house” is a truthful representation of this situation.

One of the most useful aspects of a formal language is that it can be used to make concrete statements about potentially
abstract elements of the semantic domain. Essentially syntactic manipulations of these statements can then be used to
make deductions about the semantic elements represented by the statements.

A theory is structured set of rules for deducing new statements in a language from existing statements. A theory is
considered correct under a certain interpretation if any statements deduced from true statements under the interpretation
are themselves always true. In this way, the syntactic deduction rules of the theory may be used to make corresponding
actual deductions in the semantic domain.

A model is a set of statements in a modeling language about some domain under study, which provides the semantic
domain for the model. The meaning of statements in the model is then assigned by an interpretation that maps model
elements to elements of that semantic domain.

A model may be used to describe a domain. In this case, the model is considered correct (under some interpretation) if all
statements made in the model are true for the domain. Similarly, a theory is considered correct for this domain if all
statements deduced using the theory from statements in the model are aso true.

Alternatively, a model may be used as a specification for a domain (or for some system within a domain). In this case, a
specific domain is considered valid relative to this specification if no statement in the model is false for the domain.
Similarly, a valid domain conforms to a specific theory if, in addition, no statements deducible using the theory from the
model are false. That is, all statements deducible from the model also effectively become part of the specification.

UML is, of course, a modeling language. “ Statements” in UML are constructed using a combination of (syntactic)
modeling elements, both graphical and textual. The statements made by a UML model can then be interpreted against the
domain being modeled.

For example, consider the simple instance model shown in Figure 6.1. As amode of the “real world,” this can be
interpreted as making the set of statements: “ There is a person whose name is Jack. There is a house. The person is the
owner of the house.”

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 13

p: Person + OWher + hioLises : House
+ name = "Jack”

Figure 6.1 - Simple UML Instance Model

Note that it is an instance model that is interpreted here as making direct statements about the real world. These
statements are what logicians call first order propositions. However, it is more common in UML to model (at least
initialy) at the level of classes. A class model makes second order statements about what kind of first order propositions
are valid for the domain under study.

Consider the class model in Figure 6.2. Structuraly, this model requires that each instance of the class Person have the
properties “name” and “houses.” Further, it requires that the name of an instance of Person have a String value and it
allows the instance to have zero or more houses associated with it.

Person + Cwner + houses House

+ name ; String | 1 *

Figure 6.2 - Simple UML Class Model

Under this interpretation, the relationship between the instance model of Figure 6.2 and the class model of Figure 6.3 is
basically one of consistency. The instance p in Figure 6.2 is declared to have the class Person as its type. It is therefore
required to have a name attribute. It would certainly be possible to construct a UML model of an instance of Person that
does not have a name. However, this would be inconsistent with the class model given in Figure 6.3.

Of course, it is also possible to give a direct interpretation of a class model in terms of the domain under study. For
example, we could take the class Person to denote the set of all people and the class House to denote the set of all houses,
while the association Ownership denotes a relationship between people and houses. The class model of Figure 6.3 then
makes statements about the “real world” such as “Every person has a name” and “Some people own houses” (where the
latter statement reflects the “zero or more” multiplicity of the “houses’ association end).

There is also another common, but very different, interpretation that may be given to the same class model shown in
Figure 6.3. In this interpretation the domain under study is that of computer programs written, say, in the Java
programming language. That is, the class model is interpreted as a model of a Java program in this domain. Each classin
the model is taken to denote a corresponding Java class with each property in the model denoting a corresponding field in
the Java class. If the class model is taken as a specification, then the model will actually exist before the program is
written; the model becomes the design for constructing a valid Java program.

This example points out the fact that the same model may have different “meanings” under different interpretations. In
fact, it may even be useful to have multiple interpretations for a model at the same time. Indeed, under the usual tenets of
object-oriented design, the design model of program should also be interpretable as a model (in a somewhat restricted
sense) of the portion of the real world relevant to the program (the so-called “problem domain™).

14 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

6.3 On the Semantics of Metamodels

A metamodel is often rather loosely defined as “a model of a model.” For our purposes here, however, a more precise
definition is“amodel of amodeling language.” Thus, the UML metamodel is a model with the domain under study being
UML, the language.

Another way to look at thisis to consider the metamodel to be a specification model for a class of “systems’ in the
semantic domain, where each system in the class is itself a valid model expressed in a certain modeling language. The
metamodel therefore makes statements about what can be expressed in the valid models of the modeling language. Since
a metamodel is a specification, a model in the modeling language is valid only if none of these statements are false.

If the interpretation mapping for a metamodel is invertible, one can also uniquely map elements of the modeling language
back to elements of the metamodeling language. In this case, given any model, we can invert the interpretation mapping
to create a metamodel representation of the model; that is, a set of true statements about the model expressed in the
metamodeling language.

A theory of a metamodel is a way to deduce new statements about a modeling language from the statements aready in a
metamodel of the modeling language. Since a metamodel is a specification, a valid model in the modeling language must
not violate any statement deducible using the theory from the explicit metamodel statements.

One way to look at thisis to consider the statements of the metamodel as axioms about the modeling language. Then,
given the metamodel representation of a model, we can deduce, using the theory, whether the representation of the model
is consistent with the metamodel. If it is consistent, then the model is valid, otherwise it is not.

The UML Specification provides a metamodel of UML. That is, it includes a set of statements about UML models that
must not be violated by any valid UML model. Note that, in its entirety, this metamodel can be considered to include all
of the concrete graphical notation, abstract syntax and semantics for UML. However, as defined in the Specification, the
only part of this metamodel that is formal is the abstract syntax model.

The UML abstract syntax is formalized as a UML class model. It is thus an example of areflexive metamodel. That is, it
is expressed in the same modeling language that it is defining. This, of course, introduces an inherent circularity.

Since a reflexive metamodel is expressed in the same modeling language as it is describing, its interpretation provides a
mapping of the modeling language onto itself. Generally, this mapping will be from the entire modeling language to a
subset of it. One can then iterate this mapping, each time producing a smaller subset, until one reaches the minimal
reflexive metamodel that maps completely onto itself, rather than a subset. This minimal metamodel contains the smallest
set of modeling elements required in order to specify the modeling language in question.

An interpretation of a minimal reflexive metamodel maps the metamodel onto itself. This means that any statement in the
minimal reflexive metamodel can be represented in terms of elements of the minimal reflexive metamodel. However, the
interpretation of this representation is itself expressed reflexively as a mapping to yet another representation in terms of
the minimal reflexive metamodel. This circularity means that, for a minimal reflexive metamodel, the interpretation
mapping really provides no useful expression of the “meaning” of the metamodel itself. To break this circularity, the
minimal reflexive metamodel must be given a base semantics that is independent of its circular interpretation in terms of
itself.

In the case of UML, the “minimal” reflexive abstract syntax metamodel is the UML Infrastructure (for pragmatic reasons
the Infrastructure is not actually absolutely “minimal,” but it is still just a small subset of the full UML Superstructure).
The Meta-Object Facility (MOF) specification defines a standard meta-metamodel based on the UML Infrastructure that
provides the basic elements required to construct the abstract syntax metamodel for any modeling language.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 15

The MOF specification also attempts to provide an “Abstract Semantics’ for the MOF meta-metamodel. However, this
semanticsis till defined in terms of a semantic domain that is specified using a UML class model. Thus, the circularity
is not really broken. The only interpretations of the MOF meta-metamodel that are effectively non-circular are those
provided by the standard mappings of the meta-metamodel to other technologies, such as XML Metadata Interchange
(XM1) and Java Metadata Interface (JMI).

It is one of the goals of the Foundational Subset for Executable UML Models specification to provide a true abstract base
semantics for the foundation of UML.

6.4 Alignment with the OMG Four Layer Metamodeling Architecture

OMG modeling language specifications are developed within the framework of a four layer metamodeling architecture.
» MO-The domain under study (the “objects’ of the model)
» M1-The user specification (the model)
» M2-The modeling language specification (the metamodel)
« M3-The reflexive metamodeling language specification (the meta-metamodel)

In terms of the OMG metamodeling layers, interpretation can generally be said to “cross meta-layers.” For example, the
interpretation mapping for UML maps from model elements, considered to be “at layer M1,” to elements of the domain
under study, considered to be “at layer M0.” Similarly, there are interpretation mappings from metamodel elements “at
layer M2” to model elements “at layer M1” and from meta-metamodel elements “at layer M3” to metamodel elements “at
layer M2.”

On the other hand, a theory is “within a single meta-layer.” For example, a theory of UML allows some models to be
deduced from other models (e.g., instance models from class models), entirely at layer M1. Similarly, a theory of the
UML abstract syntax allows the validity of a UML model to be determined entirely at level M2, after mapping the model
to its metamodel representation.

Note that this view of the meta-layers does not consider elements in one layer to necessarily be “instances of” elements
in the layer above it. For example, consider the particularly simple case of the domain at level MO being Java programs.
Typically, the relationship of the model of aclass at level M1 to level MO is considered to be something of the sort given
in Figure 6.3.

X <<instanceOf
.<_ _____________

)
M1 ,
|
MO mstz?nce
I
an

Figure 6.3 - Instance Relationship across Meta-Layers M1 and MO

16 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

The view taken here is that the concept of interpretation provides the general relationship between one meta-layer and the
next. Thus, the above situation would be considered as in Figure 6.4. Despite the concrete example of a Java class used
here at MO, the argument applies equally well to other more abstract domains, such as workers and the conceptual classes

of their positions in a company.

M1

MO

X | <<instanceOf>> | anX
‘ :

| : |

\ | ‘

I |
e | .
interpretation ‘ "mterprétaﬂon"

! v

Xjava instance of” anX

Figure 6.4 - Interpretation across Meta-Layers M1 and MO

If we now add level M2 to this diagram, the interpretation mapping is between instances of metaclasses at M2 and the
model elements at M1. Thisis shown in Figure 6.5.

N2

N1

N1

NMO

+classifier e .
Class InstanceSpecification
i)
‘ <<instanceOf>> ‘ <<instanceOf>>
] +classifier .
: Class ‘ : InstanceSpecification
| |
‘ |
“interpretation” “interpretation”
V/ NV, i
X - _ _<<instanceOf>> __ | . .«
\ ‘ \
"interprptation" ‘ "interprptation"
v Y VY
Xjava |= — —instanceof’ | anx

Figure 6.5- Interpretation across Meta-Layers M1 and MO

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

17

The MOF takes the UML Infrastructure subset from layer M2 and places it in layer M3. The relationship between M2 and
M3 is thus essentially the same as between M1 and M2. For example, the Class and | nstanceSpecification metaclasses in
layer M2 are represented as instances of the meta-metaclass Class in layer M3.

Now, it is common mental shorthand to identify a model element directly with its metamodel representation (e.g., the
class X with its representation as an instance of the metaclass Class) and loosely refer to the model element as being
directly “an instance of” the metaclass (e.g., class X “is an instance of” the metaclass Class). However, strictly speaking,
the concept of “instance of” only has meaning within the theory of the metamodeling language. The fact that this concept
isin the metamodeling language at all is merely consequence of the use in OMG of an object-oriented modeling language
for metamodeling, which is not the only possible approach, and is not really fundamental to the relationship between the
meta-layers.

6.5 Acknowledgments

The following companies submitted and/or supported parts of this specification.
6.5.1 Submitters

» CARE Technologies

« Internationa Business Machines Corporation
» Kennedy Carter Ltd.

» Lockheed-Martin Corporation

« Mentor Graphics Corporation

« Model Driven Solutions
6.5.2 Supporters

» 88 Solutions Corporation
« CEALIST/LISE

NASA Jet Propulsion Laboratory
« U.S Nationa Ingtitute of Standards and Technology

18 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7 Abstract Syntax

7.1 Overview

This clause defines the subset of UML for which foundational semantics are specified in Clause 8. This subset is called
Foundational UML or fUML. It is a computationally complete language for executable models.

A fundamental purpose of fUML isto serve as an intermediary between “ surface subsets’ of UML used for modeling and
computational platform languages used as the target for model execution. As shown in Figure 7.1, this generally requires
the ability to translate from the surface subset to fUML and from fUML to the target platform language.

Surface
UML subset *

Surface-to-fLUML
translator
L]

Foundational
UML subset

fUML-to-platform
translator

L

Platform ¢
language

Figure 7.1 - Translation to and from the foundational UML subset
In this context, the contents of the fUML subset has been largely determined by three criteria.

» Compactness - The subset should be small to facilitate definition of a clear semantics and implementation of execution
tools.

» Ease of trandation - The subset should enable straightforward trand ation from common surface subsets of UML to
fUML and from fUML to common computational platform languages.

« Action functionality - This specification only specifies how to execute the UML actions as they are currently defined
with primitive functionality. Therefore, the fUML subset should not include UML functionality requiring coordinated
sets of UML actions to reproduce.

There is, of course, some tension between these criteria

Suppose that there is a surface feature of UML (say, polymorphic operation dispatching) that also happens to have a
corresponding analog in a certain platform language (say, an object-oriented programming language such as Java), but
which is excluded from fUML (though, in this case, it actually isn’t). It is clearly desirable that the surface UML feature
be translated, ultimately, into the corresponding feature of the platform language. However, if the feature is excluded from
fUML, it is necessary for the surface-to-fUML translator to generate a coordinated set of fUML elements that has the
same effect as that feature. But then the fUML -to-platform translator would need to recognize the pattern generated by the
surface-to-fUML generator, in order to map this back into the desired feature of the target language. Compactness can
therefore conflict with ease of translation.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 19

Unfortunately, in practice, such overlaps between desired features in the surface subset of UML used for modeling and the
available features of the target platform language can be significant, especially within a single domain of application.
Further, the specific pattern of elements that might be generated by a surface-to-fUML translator for any given surface
feature is not standardized-and such a standard is not in the scope of this specification. Therefore, a general fUML-to-
platform translator cannot be optimized to specially handle a standard set of expected patterns.

On the other hand, if a feature of UML isincluded in fUML to reduce the translation problems described above, it
increases the complexity of the semantics of fUML and the implementation of execution tools conforming to those
semantics. This might not be so bad for any individual feature, but an accumulation of many such features will eventually
defeat the purpose of having a compact subset.

The subset specified in this clause resolves the choice between compactness and ease of translation based on judgments
about which functionalities in common between UML and computational platforms are more widely used than others.
These judgments have the hazard of making broad generalizations about highly segmented modeling and platform
markets, but once made, they help determine the contents of the foundational subset as follows:

» Widely used functionality in common between UML and platforms should have the simplest translation into and out of
the fUML subset, namely, one-to-one tranglations. This functionality isincluded in the foundational subset. For
example, classes with properties and operations are widely used elements of object oriented models and control and
object flows are widely used in activity modeling.

» Moderately used functionality in common between UML and platforms should have a straightforward trandlation into
and out of the foundational subset. This translation is not one-to-one, so this functionality is not included in the fUML
subset, but the elements needed to enable straightforward mappings are included. For example, composite structure and
simple state machines are considered moderately used.

 Lessused functionality in common between UML and platforms may have a complicated translation into the fUML
subset and is not included in the foundational subset. Little consideration is given to including functionality to simplify
the trandlation. For example, association qualifiers and interruptible activity regions are considered less used.

Further, certain modeling features of UML are not directly supported by UML action functionality. For example, the
UML semantics of default attribute values is that the default values are assigned to attributes when the object is created.
However, the UML semantics for create object actions require that objects be created without attribute values being set.
Therefore, making the semantics of UML default values explicit requires coordinated actions for creating objects and
assigning structural feature values, with activity control and object flows between them. Consequently, default attribute
values are not included in the foundational subset. In cases such as this, it is expected that the transformational approach
above will be used to generate the set of actions corresponding to desired surface UML semantics. (Note, for example,
that this is particularly important for embedded systems, where the execution of default actions for initialization purposes
must carefully coordinate with other initialization activities.)

Finally, the fUML subset also contains some UML elements that have no execution semantics. Examples of this are
comments and packages from Kernel and modeling declarations such as isDeterminate and isAssured on conditional
nodes. These reduce compactness of the subset but not in a way that affects the specification of semantics, the
implementation of execution tools or translator construction.

Clause Organization

The following sub clauses defines the abstract syntax of the fUML subset as a subset of the abstract syntax of the UML 2
Superstructure. The package structure parallels the package structure of the UML 2 Superstructure abstract syntax model.
Packages in the UML 2 model that have no corresponding package here are excluded in their entirety. For packages that
are included, some further elements from the UML package may be excluded in the corresponding fUML package. In this

20 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

case, the model presented for the fUML version of the abstract syntax package shows those elements that are specifically
in fUML and the class descriptions within the sub clause specify additional constraints on the class that, via package
merge, will be combined with constraints already specified in the UML 2 Superstructure for the same class.

Also, the fUML abstract syntax model does not use package merge between abstract syntax packages the way the UML 2
Superstructure model does. Instead, each class in the fUML abstract syntax model already has effectively merged into it
al the corresponding merge increments from the subset of the UML 2 Superstructure relevant to fUML. This greatly
simplifies the overall structure of the fUML abstract syntax model, particularly in relation to the semantic model of
Clause 8, by providing a single model element with the full specification of each syntactic metaclass.

However, as aresult of this restructuring, the package merge relationships in the UML 2 Superstructure are generally
reflected as package imports in the fUML abstract syntax. Further, the effective merging in the fUML model occasionally
requires import relationships between packages that are not related in the UML 2 model.

For example, in the fUML abstract syntax, the CommonBehaviors::Communications::Class merge increment in the UML
2 abstract syntax has already been merged into Classes::Kernel::Class. This results in Classes::Kernel::Class becoming a
specialization of CommonBehaviors::BasicBehaviors::BehavioredClassifier, leading to a package import relationship
between the Kernel and BasicBehaviors package in fUML. Cases such as this are further noted in the appropriate sub
clauses below.

Note that, as discussed in Clause 2, package merge is still used in the fUML abstract syntax model to construct the
conformance level packages L1, L2, and L3. Despite the elimination of the use of package merge otherwise in the fUML
abstract syntax model, once the merges are performed for L1, L2, and L3 the resulting merged models at each level are,
in fact, strict subsets of the fully merged UML 2 abstract syntax models at each corresponding level.

7.2 Classes

7.2.1 Overview

The fUML Classes package includes only the single sub-package Kernel. Figure 7.2 shows the package dependencies of
the fUML Kernel package.

Note that, in the fUML model, the Kernel package imports the BasicBehaviors package from CommonBehaviors. Thisis
because, in fUML, Classes::Kernel::Class includes the merge increment CommonBehaviors.: Communications:: Class,
which results in Classes::Kernel::Class being a specialization of
CommonBehaviors::BasicBehaviors::BehavioredClassifier.

The fUML Kernel package is thus dependent on the fUML BasicBehaviors package, as reflected in the package import
shown in Figure 7.3.

The following packages from the UML 2 Superstructure are excluded from the fUML abstract syntax.

» AssociationClasses - Association classes, as amodeling construct, add significant semantic complexity and their effect
can be equivalently modeled using regular classes and associations, albeit at the expense of some modeling
convenience. They are therefore not considered fundamental for the fUML subset.

» Dependencies - Dependencies either declare a design intent or express a model-level relationship without significant
execution semantics.

« Interfaces - Within the fUML subset, the effect of interfaces can be achieved using abstract classes with entirely
abstract operations. (Note that fUML does not include UML 2 structured classes and ports, which depend specifically
on the use of interfaces.)

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 21

» PowerTypes - Power types and generalization sets add significant complexity to the semantics of generalization,
particularly asit relates to typing and polymorphic operation dispatching. Further, the effect of a generalization set can
be equivaently modeled using regular classes and generalizations, abeit at the expense of some modeling
convenience. Power types and generalization sets are therefore not considered fundamental for the fUML subset.

1
BasicBehaviors
{(from fUML::Syntax: . CommonBehaviors)

A

1
]
i
| «import»
]
1
]
1

1
Kernel
(from fUML::Syntax: :Classes)

Figure 7.2 - Classes Syntax Packages

7.2.2 Kernel

7.2.2.1 Overview

The classes shown in Figure 7.3 to Figure 7.13 are those included in the fUML Classes::Kernel package. The diagrams
correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been excluded
from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Root (see Figure 7.3):

» Relationship and Directed Relationship - These abstract classes are excluded from fUML because their properties are
all derived and are not needed for model execution.

From Multiplicities (see Figure 7.4): No exclusions.
From Namespaces (see Figure 7.5): No exclusions.
From Expressions (see Figure 7.6):

» Expression - Expressions are excluded from fUML because, in UML, this construct simply capturesthe parse tree of an
expression whose symbols are otherwise only informally represented as strings and thus cannot be properly executed.

» OpaqueExpression - Opaque expressions are excluded from fUML because, as defined in the UML Kernel, their body
is not further defined within UML and, thus, not executable. In the UML BasicBehaviors package, OpaqueExpression
is extended to alow for an optional association with a UML behavior. However, this was considered to be redundant
with the ability to directly call behaviors within the context of UML activities, the primary form of behavior modeling
supported in fUML.

From Constraints (no corresponding fUML diagram):

 Congtraint - Constraints are excluded from fUML, because they are considered to be design-time annotations that
should aready be satisfied by awell-formed model. Otherwise, the general semantics of the run time checking of
constraintsis not currently well specified in UML 2, particularly when constraints should be evaluated and what should
happen if they should fail. Further elaboration of the semantics of constraint checking in UML was judged to be outside
the scope of the fUML specification.

22 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

From Instances (see Figure 7.7):

« InstanceSpecification:: specification - Instance specificationsin fUML are only used as part of the value specification of
a structured instance value (see Figure 7.6), which is specified using slots, or as an enumeration literal (see Figure
7.12). Therefore, it is unnecessary to provide a separate specification for its value.

From Classifiers (see Figure 7.8):

 Classifier::redefinedClassifier - Classifier redefinition is excluded from fUML because it was judged to add significant
complexity to resolve during execution, without a fundamental need in the majority of cases.

From Features (see Figure 7.9):

» Behaviora Feature::raisedException - Thisis excluded because exceptions are not included in fUML.
From Operations (see Figure 7.10):

» Operation::raisedException - Thisis excluded because exceptions are not included in fUML.

» Parameter::defaultValue - Implicitly computing a default value for a behavioral feature (or behavior) would require
coordination of multiple UML actions, since call actions always require explicit inputs or outputs to be provided.

» Parameter::default - Thisis excluded because default values for parameters are not included in fUML.
From Classes (see Figure 7.11):

 Property::defaultVaue - Setting defaults requires coordination of multiple UML actions, since the create object action
is specified to create objects without default values. Setting defaultsin fUML must be modeled explicitly by using the
appropriate structural feature actions after object creation.

 Property::default - Thisis excluded because default values for properties are not included in fUML.

» Property::qualifier - Association qualifiers are excluded from fUML because their effect can be effectively achieved in
models using unqudified associations and so are not considered fundamental. Further, they were judged not widely
used enough to otherwise require inclusion in fUML for ease of implementation of execution tools and translators.

« Property::subsettedProperty - Subsetting is excluded from fUML because subsetting is generally used in static models
and thereis no consensus on the execution semantics for this mechanism. (See 8.1 for further discussion of conventions
related to the handling of subsetting in fUML execution semantics.)

« Property::redefinedProperty - Property redefinition is excluded from fUML because it was judged to add significant
complexity to the resolution of structural features at runtime, without afundamental need. (Note, on the other hand, that
operation redefinition isincluded in fUML, as shown in Figure 7.10, because it is necessary for the default fUML
semantics for polymorphic operation dispatching, as discussed in 8.3.2.1. Also see 8.1 for further discussion of
conventions related to the handling of redefinition in fUML execution semantics.)

From Data Types (see Figure 7.12):

» DataType::ownedOperation - Data types cannot have operations in fUML because they are not behaviored classifiers
and so cannot own behaviors. This means that there is no way to provide executable methods for the operations of a
datatype.

From Packages (see Figure 7.13):

- PackageMerge - Package merge is excluded from fUML becauseit is not considered to be a runtime construct. All
package merges are assumed to have been already carried out before amodel is submitted for execution.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 23

{subsets owner} {subsets downedEIeme £}
Element + owningElement + ownedComment Comment
0.1 " + body : String
{readOnly, union} "
+ fowneJEIement
* + annotatedElement + comment
" ®

0.17 + fowner
{readOnly, union}

Figure 7.3 - Root

i)
{subsets ownedElement}
MultiplicityElement 0.1 + upperyvalue ValueSpecification
+ owningUpper 0.1

+ isOrdered ; Boolean = false

+ isUnigue : Boolean = true {subsets owner}

+ Jupper : Unlimitediatural [0..1] = new Unlimiteddatural (1)
+ Jlower : Integer [0..1] =1 {subsets ownedElerment}
0.1 + loweryalu
7 + owningLower 0.1
! {subsets owner}

uppervalue must be a
LiteralUnlimitediatural and lowervalue must
be a Literallnteger. Both are required,

NamedElement PackageableElement
TypedElement | + typedElement + type Type
" 0.1

Figure 7.4 - Multiplicities

24 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

/'y
+enumerations
VisibilityKind
HamedElement public
+ name : String [0..1] private
+ wisibility : Visibilitykind [0..1] protected
+ Jqualifiediame : String [0..1] {readOnly} package
Fay
PackageableElement
+ visibility : Visibilitykind [0..1] = public {redefines visibility}
{readOnly, union}

{readOnly, union, subsets memberNamespace, subsets owner}

+ [namespace

Namespace + memberNamespace + /member \JT—I
HamedElement
0.1 * !

* | + JownedMember

Figure 7.5 - Namespaces

+ importedPackage, |, 1
Package

0.1
{subsets owner} {subsets ownedElement} P o "
+ importingNamespace + elementmport ementimpor
- + visibility : VisibilityKind
1 + alias : String [0..1]
+ elementImport *
{subsets memberNamespace} {readOnly, subsets member} + importedElement
+ Namespace + fimportedMember
fimp }J.l PackageableFlement
- *
{subsets ownedElement}
e L + packagelmpart PackageImport
+ importingNamespace " + visibility ¢ VisibilityKind
{subsets owner} + packagelmport | *

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Element

{readOnly, union, subsets member, subsets ownedElemeant}

25

TypedElement

Valuespecification

i

- - - + instanceValue + instance
Literalspecification InstanceValue >4 InstanceSpecification
1 1
LiteralBoolean LiteralString LiteralReal
+ value : Boolean = False + value : String [0..1] + value : Real
LiteralInteger LiteralUnlimitedMatural
+ value : Integer =10 + value : UnlimitedNatural = new UnlimitedMatural(0)
Figure 7.6 - Expressions
NamedElement
{subsets owner} {subsets ownadElement}

_____ - - + owninglnstance + slot + slot + deﬁningFeatUI'e
: InstanceSpecification Slot _ .;_]J StructuralFeature
i 1 * 1
1
i 1 |+ instanceSpecification 0.1 Y + owningSlot
! {subsets ownedElernent}

1

1

! . | {ordered, subsets ownedElement}
i * |, + classifier + value

]

i Classifier ValueSpecification |

:

1

Either all the dlassifiers are classes, or there is one classifier that is a data type

Figure 7.7 - Instances

26

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

NamedElement

I\

?'eadOn\y, union}
+ [redefinedElement

RedefinableElement

+ isLeaf : Boolzan = false

+ redefinableElement

| Namespace | | Type |
Hassifier + generalization
+ isAbstract : Boolean = false + general g
+ isFinalspecialization : Boclean = False
1 *

0.1

+ redefinableBlement

"

+ JredefinitionContext

£

Generalization
+ isSubstitutable | Boolean [0..1] = brue

{subsets ownedElement}
+ generalization

+ specific
{subsets owner}

{readOnly, subsets member}

{readOnly, union}
* + finheritedMember
NamedEle t
{subsets redefinitionContext, subsets featuringClassifier} + classifier @
+ classifier {subsets memberNamespace} *
0.1

Property LI.-(*

attrbute

+
{readOnly, union, subsets feature, subsets redefinableElement}

Figure 7.8 - Classifiers

{readOnly, union, subsets memberNamespace}

+ [featuringClassifier

+ [general

* |+ classifier

RedefinableFlement

Feature

"

Classifier [*,

{readOnly, union, subsets member}

+ [feature L isStatic ; Boolean = false

isStatic must be False

TypedElement | | MultiplicityElement
#enumerations
StructuralFeature CallConcurrencyKind
+ isReadOnly : Boolean = False sequential
Behavioralfeature 0.1

Figure 7.9 - Features

+ isAbstract : Boolean = false
+ concurrency @ CallConcurrencykind = sequential
S

/
/

coneurrency must be sequential

{ordered, subsets ownedMember}
+ ownedParameter

«enumer ations
ParameterDirectionKind

in
inout
oLt
refurn

MultiplicityElement | | TypedElement

Parameter

+ ownerFormalParam
{subsets namespace}

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

+ direction : ParameterDirectionkind = in

| BehavioralFeature |

‘T‘ {subsets ownerFormalParam} {ordered, redefines ownedParameter}
Operation + operation + ownedParameter
+isQuery : Boolean = false 01 @
+ lisOrdered : Boolean = False "
+ Jisnique : Boolean = true * {readOnly}
+ [lower : Integer [0..1] '
+ Jupper : Unlimitediatural [0..1] + operation + ftype }'I.l Type
1 0.1
+ operation | 1 * | + redefinedOperation

{subsets redefinableElement} {subsets redefinedElement}

Figure 7.10 - Operations

An aascsiation must avn ol ks memberilns.

| Classifier | ! b
iDestved st be False | \\
(Faim Hamscahanicns) - I ,-'"
) o " {orderad, n.i'mmdl:r"ﬂﬂ‘ﬂffl {,Mmﬂmp]
P —, ¥ Rlrhrod - Bockemn = Talie * + smsoaEen .-nn-.-m.-e: Bockein = 186
- + [operClois + BEsiOnly 1 Boslean = False jroddfines ... N 0.1
s + isDerivedUnon : Boclean = fake
3 -
¥ midive * Baeean = Faie i Wi e~ 0
+ 1D : Bockear = Fabie + il : Bockears = Lok {orderec, Aty frdmts ss
mrmbeEnd, subsols b
cwnacdMamber, subsatt suneats featuringtlastar,
. feature} subsels rarmespace)
& elaas ¥ CravracdEnd o (TR ESOCLItON
Isbsets classdiorh e
{ondened, subsats 0-1
Abute, bt
Ej.i:lls Lo, o 3 [absats awnodeEnd) {absats ownngassaciibon)
B MATaRLE, ramigabeCramedEnd amociation
+ chass + cremediitibute - * *
0.1 M * 0.1
subsats Ramasoaca] povoprty | 9.1 0.1 '+ fopposte + dasociann | *
& Claw
Q.1 + roers beschCharii flas] {ordered, readOnly} | 1..°
{oncherid, subsels ownedMembe) + fendTyne
{aubsats namespace, subsots radafiriticontantant, [Tpe |
RbeRts ‘.nrunqchufnr}
+ clams
ki
et O |
T L, __"_ {onderad, subsats feature, subsots radafirabieFlament,
i ~=—_guosals ownecMember)
I T — o
[B } T .
Oy active clesses mary have dagsifier beharviers, =
Oy arn el class mary sgecialioe an active chiss.

Figure 7.11 - Classes

28 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

A
{subsets namespace, {ordered, subsets attribute,
DataType subsets classifier} subsets ownadMamber}
+ datatype + ownedAttribute
e Property
0.1 *
,_“3 | InstanceSpecification
{ordered, subsets
{subsets namespace} ownedviemnber}
+ enumeration + ownedLiteral
PrimitiveType Enumeration e EnumerationLiteral
0.1 *
1 *®
+ [classifier + enumerationLiteral

{redefines classifier} {redefines instanceSpecification}

Figure 7.12 - Data Types

| Namespace || PackageableFlement |

{subsets namespace} {subsets ownedMember}

Package + owningPackage +packagedEIemen§d
+URI : String [0..1]{id} ‘to 1 Y PackageableElement |

{subsets owningPackage} {subsets packagedElement}

+ package + fownedType
el " =|| Type

0.1

{subsets owningPackage}
+ nestingPackage

0.1

*

+ [nestedPackage
{subsets packagedElermnent}

Figure 7.13 - Packages

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.2.2.2 Class Descriptions
7.2.2.2.1 Association

Generalizations

» “Classifier” on page 31

Attributes

« isDerived : Boolean = false

Associations
« endType: Type[l..*]
« memberEnd : Property [2..*]
+ navigableOwnedEnd : Property [0..*]
» ownedEnd : Property [0..*]

Additional Constraints

¢ [1] owns_memberEnds
An association must own all its memberEnds.
self. memberEnd->symmetricDifference(self.ownedEnd)->isEmpty()

¢ [2] no_derivation
isDerived must be false
not self.isDerived

7.2.2.2.2 BehavioralFeature

Generalizations

« “Feature’” on page 34
Attributes
« concurrency : CallConcurrencyKind = sequential
 isAbstract : Boolean = false
Associations
» method : Behavior [0..*]

» ownedParameter : Parameter [0..*]

Additional Constraints

e [1] sequentiality
concurrency must be sequential
self.concurrency = CallConcurrencyKind::sequential

30 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.2.2.2.3 Class

Generalizations

» “BehavioredClassifier” on page 46

Attributes

- isActive: Boolean = false
Associations

+ nestedClassifier : Classifier [0..*]

» ownedAttribute : Property [0..*]

« ownedOperation : Operation [0..*]

» ownedReception : Reception [0..*]

» superClass: Class[0..*]

Additional Constraints

e [1] active _class classifier_behavior
Only active classes may have classifier behaviors.
self.classifierBehavior->notEmpty() implies self.isActive

e [2] active_class _specialization
Only an active class may specialize an active class.
self.parents()->exist(isActive) implies self.isActive

e [3] abstract_class
Only an abstract class may have abstract behavioral features.
self.member->select(oclisKindOf(BehavioralFeature))->exists(isAbstract) implies self.isAbstract

7.2.2.2.4 Classifier
Generalizations
« Namespace
« “Type” on page 43
Attributes
» isAbstract : Boolean = false
« isFinal Specialization : Boolean = false
Associations
- attribute : Property [0..*]
- feature: Feature[0..*]

» generd : Classifier [0..*]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

31

» generaization : Generaization [0..*]

« inheritedMember : NamedElement [0..*]

Additional Constraints

None
7.2.2.2.5 Comment

Generalizations

None

Attributes
 body : String

Associations

« annotatedElement : Element [0..*]

Additional Constraints

None

7.2.2.2.6 DataType

Generalizations

» “Classifier” on page 31

Attributes

None

Associations

« ownedAttribute : Property [0..*]

Additional Constraints

None
7.2.2.2.7 Element

Generalizations

None

Attributes

None

Associations

« ownedComment : Comment [0..*]

32

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

» ownedElement : Element [0..*]

« owner : Element [0..1]

Additional Constraints

None

7.2.2.2.8 Elementimport

Generalizations

» “Element” on page 32

Attributes

« dias: String [0..1]

« visihility : VisibilityKind
Associations

» importedElement : Packageabl eElement
« importingNamespace : Namespace

Additional Constraints

None
7.2.2.2.9 Enumeration

Generalizations

- “Datalype” on page 32

Attributes

None

Associations
e ownedLiteral : EnumerationLiteral [0..*]

Additional Constraints

None

7.2.2.2.10 EnumerationLiteral

Generalizations

» “InstanceSpecification” on page 34

Attributes

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

33

Associations

« classifier : Enumeration

« enumeration : Enumeration

Additional Constraints

None
7.2.2.2.11 Feature

Generalizations

» “RedefinableElement” on page 42

Attributes
o [sStatic : Boolean = false

Associations
e featuringClassifier : Classifier [0..*]

Additional Constraints
¢ [1] non_static
isStatic must be false
not self.isStatic
7.2.2.2.12 Generalization

Generalizations

« “Element” on page 32

Attributes
 isSubgtitutable : Boolean [0..1] =true

Associations
» generd : Classifier
 gpecific : Classifier
Additional Constraints

None

7.2.2.2.13 InstanceSpecification

Generalizations

» “NamedElement” on page 38

Attributes

None

34 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations
« classifier : Classifier [0..*]
« dot: Slot[0..*]

Additional Constraints

e [1] possible classifiers

Either al the classifiers are classes, or thereis one classifier that is a data type

self.classifier->forAll(oclIsKindOf(Class)) or
self.classifier->size() = 1 and self.classifier->forAll(oclisKindOf(DataType))

7.2.2.2.14 InstanceValue

Generalizations

» “ValueSpecification” on page 44

Attributes

None

Associations

« instance : InstanceSpecification

Additional Constraints

None.

7.2.2.2.15 LiteralBoolean

Generalizations

» “Literal Specification” on page 36

Attributes

« value: Boolean = false

Associations

None

Additional Constraints

None

7.2.2.2.16 Literalinteger

Generalizations

» “Literal Specification” on page 36

Attributes

« value: Integer =0

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

35

Associations

None

Additional Constraints

None
7.2.2.2.17 LiteralNull

Generalizations

» “Literal Specification” on page 36

Attributes

None

Associations

None

Additional Constraints

None
7.2.2.2.18 LiteralReal

Generalizations

 “Literal Specification” on page 36

Attributes
« vaue: Red

Associations

None

Additional Constraints

None

7.2.2.2.19 LiteralSpecification

Generalizations

» “ValueSpecification” on page 44

Attributes

None

Associations

None

36

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.2.2.2.20 LiteralString

Generalizations

» “Literal Specification” on page 36

Attributes
« value: String [0..1]

Associations

None

Additional Constraints

None

7.2.2.2.21 LiteralUnlimitedNatural

Generalizations
 “Literal Specification” on page 36
Attributes

« value: UnlimitedNatural =0

Associations

None

Additional Constraints

None

7.2.2.2.22 MultiplicityElement

Generalizations

« “Element” on page 32
Attributes
« isOrdered : Boolean = false
« isUnique: Boolean = true
« lower : Integer [0..1] =1
« upper : UnlimitedNatural [0..1] =1

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

37

Associations

» lowerValue : ValueSpecification [0..1]
 upperVaue : ValueSpecification [0..1]

Additional Constraints

[1] required lower_and upper_for fUML

upperValue must be a LiteralUnlimitedNatural and lowerValue must be a Literal Integer. Both are required.

self.upperValue->notEmpty() and

self.upperValue->asSequence()->first().oclisKindOf(LiteralUnlimitedNatural) and

self.lowerValue->notEmpty() and

self.lowerValue->asSequence()->first().oclisKindOf(LiteralInteger)

7.2.2.2.23 NamedElement

Generalizations

« “Element” on page 32

Attributes

« name: String [0..1]
» quaifiedName: String [0..1]
- visihility : VisibilityKind [0..1]

Associations

» namespace : Namespace [0..1]

Additional Constraints

None

7.2.2.2.24 Namespace

Generalizations

» “NamedElement” on page 38

Attributes

None

Associations

38

» elementimport : ElementImport [0..*]

 importedMember : PackageableElement [0..*]

« member : NamedElement [0..*]

» ownedMember : NamedElement [0..*]

« packagelmport : Packagelmport [0..*]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.2.2.2.25 Operation

Generalizations

- “BehavioralFeature” on page 30
Attributes

« isOrdered : Boolean = false

» isQuery : Boolean = false

« isUnique: Boolean = true

» lower : Integer [0..1]

» upper : UnlimitedNatural [0..1]
Associations

» class: Class[0..1]

» ownedParameter : Parameter [0..*]

« redefinedOperation : Operation [0..*]

» type: Type[0..1]

Additional Constraints

e [1] zero_or_one _method
If an operation is abstract it must have no method. Otherwise it must have exactly one method.
(self.isAbstract and self.method->isEmpty()) xor (not self.isAbstract and self.method->size() = 1)

7.2.2.2.26 Package
Generalizations

« “Namespace” on page 38

 PackageableElement
Attributes

« URI: String [0..1] {id}
Associations

» nestedPackage : Package [0..*]

» nestingPackage : Package[0..1]

« ownedType: Type[0..*]

» packagedElement : PackageableElement [0..*]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

39

Additional Constraints

None
7.2.2.2.27 PackageableElement

Generalizations

» “NamedElement” on page 38
Attributes

- vigihility : VisibilityKind = public
Associations

None

Additional Constraints

None

7.2.2.2.28 Packagelmport

Generalizations

« “Element” on page 32
Attributes

- vishility : VisibilityKind
Associations

 importedPackage : Package

« importingNamespace : Namespace

Additional Constraints

None

7.2.2.2.29 Parameter

Generalizations

« “MultiplicityElement” on page 37
» “TypedElement” on page 43

Attributes

« direction : ParameterDirectionKind = i

Associations

 operation : Operation [0..1]

40

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None

7.2.2.2.30 PrimitiveType

Generalizations

“DataType’ on page 32

Attributes

None

Associations

None

Additional Constraints

None

7.2.2.2.31 Property

Generalizations

“Structural Feature” on page 42

Attributes

aggregation : AggregationKind = none
isComposite : Boolean = false
isDerived : Boolean = false
isDerivedUnion : Boolean = false

isld : Boolean = false

isReadOnly : Boolean = false

Associations

association : Association [0..1]
class: Class[0..1]

datatype : DataType[0..1]
opposite : Property [0..1]

owningAssociation : Association [0..1]

Additional Constraints
¢ [1] no_derivation

isDerived and isDerivedUnion must be false

not self.isDerived and not self.isDerivedUnion

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

41

7.2.2.2.32 RedefinableElement

Generalizations

» “NamedElement” on page 38

Attributes
» isLedf : Boolean = false

Associations

« redefinedElement : RedefinableElement [0..*]

« redefinitionContext : Classifier [0..*]

Additional Constraints

None
7.2.2.2.33 Slot

Generalizations

« “Element” on page 32

Attributes

None
Associations
« definingFeature : Structural Feature
« owninglnstance : InstanceSpecification
« value: ValueSpecification [0..*]
Additional Constraints
None
7.2.2.2.34 StructuralFeature
Generalizations
« “Feature’ on page 34
« “MultiplicityElement” on page 37
» “TypedElement” on page 43

Attributes
 isReadOnly : Boolean = false

Associations

None

42

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.2.2.2.35 Type

Generalizations

 “PackageableElement” on page 40

Attributes

None

Associations

» package : Package[0..1]

Additional Constraints

None

7.2.2.2.36 TypedElement

Generalizations

» “NamedElement” on page 38

Attributes

None

Associations
» type: Type[0..1]

Additional Constraints

None

7.2.2.2.37 UnlimitedNatural

Generalizations

None

Attributes

« naturaValue: Integer

Associations

None

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.2.2.2.38 ValueSpecification

Generalizations

» “TypedElement” on page 43

Attributes

None

Associations

None

Additional Constraints

None

7.3 Common Behaviors

7.3.1 Overview

The fUML CommonBehaviors package includes the following sub-packages:
+ BasicBehaviors
« Communications

Figure 7.14 shows the dependencies of these packages.

The UML 2 Superstructure package SimpleTime is excluded in its entirety from fUML because time events and
constraints are not within the scope of fUML.

1
Kernel
(from LML Syntax: :Classes)

A

1

i

. 1
“lmports |
1

1

1

1

1

1

|
BasicBehaviors
{from fUML::Syntax: :CommonBehaviors)

«irnports

] i
Communications
{from fUML::Syntax: :CommonBehaviors)

Figure 7.14 - Common Behaviors Syntax Packages

44 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.3.2 Basic Behaviors

7.3.2.1 Overview

The classes shown in Figure 7.15 are those included in the fUML CommonBehaviors::BasicBehaviors package. This
diagram corresponds to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Common Behavior (see Figure 7.15):

» Behavior::redefinedBehavior. Behavior redefinition is excluded from fUML because opaque behaviors are only used
for primitive behaviorsin fUML, and the only other type of behavior provided is activities, the semantics of
redefinition for which is not fully defined in UML 2.

From Expression (no fUML diagram):
» OpaqueExpression. Opague expressions are excluded in general from fUML (see 7.2.2.1).
From Precondition and Postcondition Constraints for Behavior (no fUML diagram):

» Behavior::precondition and Behavior::postcondition. Behavior preconditions and postconditions are excluded from
fUML because constraints, in general, are excluded from fUML (see 7.2.2.1).

An owned behavior must be either the classifier behavior of or the In this specification, an FUML instance model must have Behavior.isReentrant
method For an operation of its behaviored classifier.

-\"-.__ Classifier Class "
‘-_\ (From Kernel) (From Kernel) ;.-’
-.__ 1_"}. [r

A .
{redefines Eeﬂavicregciassiger} {subsetis owﬁnedBﬁhavicr {

+ behavioredClassifier + classifierBehavior i

Behaviored(lassifier Behavior
0.1 0.1 + isReentrant : Boolean = true
+ fcontext + behavior
*
0.1 {readOnly} {ordered, subsets ownedMember}
0.1 + ownedParameter :I
Parameter
{subsets namespace} {subsets ownedMember} ¢+ behavior -
+ behavioredClassifier + ownedBehavior
. {subsets namespace}
0.1 *
BehavioralFeature + specification + method
0.1 * T
Operation OpaqueBehavior
(From Kernel) + body : String [*] {ordered, nonunique} [| bedy and language must be empty
e + language : String [*] {ordered}
. A =

If an operation is abstract it must have no method. Otherwise B An opaque behavior cannot be active.

it musk have exactly one method.

FunctionBehavior

Figure 7.15 - Common Behavior

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 45

7.3.2.2 Class Descriptions
7.3.2.2.1 Behavior

Generalizations

» “Class’ on page 31

Attributes

+ isReentrant : Boolean = true

Associations
» context : BehavioredClassifier [0..1]
» ownedParameter : Parameter [0..*]
 gpecification : BehavioralFeature [0..1]

Additional Constraints

e [1] fUML_reentrant_behavior
In this specification, afUML instance model must have Behavior.isReentrant
self.isReentrant

7.3.2.2.2 BehavioredClassifier

Generalizations

» “Classifier” on page 31

Attributes

None

Associations

« classifierBehavior : Behavior [0..1]
» ownedBehavior : Behavior [0..*]

Additional Constraints

e [1] fUML_allowed_owned behaviors
An owned behavior must be either the classifier behavior of or the method for an operation of its behaviored
classifier.
self.ownedBehavior->forAll(b:Behavior|b = self.classifierBehavior xor self.allFeatures()->includes(b.specification))

7.3.2.2.3 FunctionBehavior

Generalizations

» “OpagueBehavior” on page 47

Attributes

None

46 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations

None

Additional Constraints

None

7.3.2.2.4 OpaqueBehavior

Generalizations

» “Behavior” on page 46

Attributes

None

Associations
« body : String [0..*]
» language : String [0..*]

Additional Constraints

e [1] fUML_empty body and language
body and language must be empty
self.language->isEmpty() and self.body->iSEmpty()

e [2] fUML _inactive
An opaque behavior cannot be active.
not self.isActive

7.3.3 Communications

7.3.3.1 Overview

The classes shown in Figure 7.16 to Figure 7.18 are those included in the fUML Common Behaviors::Communications
package. The diagrams correspond to similar diagramsin the UML 2 Superstructure Specification. The following features
have been excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Receptions (see Figure 7.16):
« Interfaces. Interfaces are excluded in general from fUML (see 7.2.2.1).
From Extensions to Behavioral Features (no fUML diagram):

» BehavioraFeature::raisedException - Exceptions are excluded in general in fUML (see 7.5.1 and 7.2.2.1). (Note also
that the UML CommonBehaviors::Communications::Behavioral Feature merge increment is already merged into
Classes::Kernel::Behaviora Feature.)

From Events (see Figure 7.18):

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 47

» TimeEvent and ChangeEvent - These events are excluded from fUML because they imply abackground infrastructure,
such asamodel of time or a mechanism for monitoring for change. The execution semantics for this would be
complicated to specify and more sophisticated than is necessary for computational completeness of the foundational
subset.

» CalEvent - Call events are excluded from fUML because accept call actions are also excluded from fUML (see
7.5.4.1).

» AnyReceiveEvent - Any receive events are excluded because they are largely unnecessary. Only asynchronous signal
events are allowed in fUML.

Classifier BehavioralFeature
(From Kernel) (From Kernel)
A i _
{subsets ownedMember, {subsets memberNamespace,
subsets feature} subsets featuringClassifier}
Signal + signal + reception Reception + ownedReception + class Class
1 " " 0.1 (From Kernel)

0..1| + owningSignal

{subsets namespace, i A reception must not have an A reception may not be abstract,
subsets featuringClassifier, | ssociated method.

subsets classifier}

{ordered, subsets attribute,
subsets ownadMember}

* |+ ownedAttribute

Property
(From Kernel)

Figure 7.16 - Reception

NamedElement
(From Kernel)
Trigger + trigger + event Event
1 1 (From Communications)

Figure 7.17 - Triggers

48 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

PackageableElement
(From Kernel)

iy

Event

MessageEvent

T

SignaI.Event

t signalEvent + signal

}J] Signal
£

1

Figure 7.18 - Events
7.3.3.2 Class Descriptions
7.3.3.2.1 Event

Generalizations

 “PackageableElement” on page 40

Attributes

None

Associations

None

Additional Constraints

None

7.3.3.2.2 MessageEvent

Generalizations

- “Event” on page 49

Attributes

None

Associations

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

49

Additional Constraints

None
7.3.3.2.3 Reception

Generalizations

- “BehavioralFeature” on page 30

Attributes

None

Associations

» signal : Signa

Additional Constraints
¢ [1] no_method

A reception must not have an associated method.

self.method->isEmpty()
* [2] not_abstract

A reception may not be abstract.

not self.isAbstract
7.3.3.2.4 Signal

Generalizations

» “Classifier” on page 31

Attributes

None

Associations

« ownedAttribute : Property [0..*]

Additional Constraints

None

7.3.3.2.5 SignalEvent

Generalizations

» “MessageEvent” on page 49

Attributes

None

50

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations

« signa : Signa

Additional Constraints

None
7.3.3.2.6 Trigger

Generalizations

» “NamedElement” on page 38

Attributes

None

Associations

* event: Event

Additional Constraints

None

7.4 Activities

7.4.1 Overview

The fUML Activities package includes the following sub-packages:
« IntermediateActivities
« CompleteStructuredActivities
« ExtraStructuredActivities

Figure 7.19 shows the dependencies of these packages.

The required capabilities from the UML 2 Superstructure packages Fundamental Activities and BasicActivities are already
merged into the fUML IntermediateActivities, and the more basic packages are not separately supported in fUML.
Similarly, the capahilities of the StructuredActivities package are already merged into the fUML
CompleteStructuredActivities and Extra StructuredActivities packages and StructuredActivities is not separately
supported in fUML.

In fUML, the IntermediateActivities package is not dependent on BasicActions. Rather, BasicAction imports
IntermediateActions, so that Actions::BasicActions::Action can be a subclass of
Activities::IntermediateActivities:: ExecutableNode (see 7.5.1). BasicActions is then imported by
CompleteStructuredActivities, since structured activity nodes are always actions in fUML.

The UML 2 Superstructure package CompleteActivities is excluded in its entirety from fUML because it provides
advanced capabilities considered more appropriate for “higher level” process modeling and outside the scope of fUML.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 51

——
BasicBehaviors
(from fuUML: :Syntax:: CommonBehaviors)

A

i «import»

1
IntermediateActivities
(fraom fUML: :Syntax: :Activities)

A

«IMports

i
BasicActions
(from fUML: :Syntax::Actions)

e

b
«irmports

!
CompleteStructuredActivities
(from fUML: :Syntax: Activities)

AN

i «irmports
:

ExtraStructuredActivities
(from fUML: :Syntax: Activities)

Figure 7.19 - Activities Syntax Packages
7.4.2 Intermediate Activities

7.4.2.1 Overview

The classes shown in Figure 7.20 to Figure 7.23 are those included in the fUML Activities::IntermediateActivities
package. The diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features
have been excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Nodes (see Figure 7.20): No exclusions (but note that the UML Activities::Fundamental Activities::Action merge
increment is aready merged into Actions;:BasicActions::Action in fUML).

From Object Nodes (see Figure 7.21):

» CentralBufferNode - Central buffer nodes are excluded from fUML because they were judged to be unnecessary to for
the computational completeness of fUML.

From Fundamental Groups in Fundamental Activities and Groups in BasicActivities (no fUML diagram):

« ActivityGroup - The abstract ActivityGroup classis excluded from fUML because the only kinds of activity group
included in fUML are structured activity nodes, and the concrete properties of the abstract syntax classes representing
structured nodes are sufficient.

From Flows (see Figure 7.23):

- ActivityEdge::redefinedEdge - Activity edge redefinition is excluded from fUML because behavior redefinition is
excluded from fUML (see 7.3.2).

52 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

From Partitions (no fUML diagram):

» ActivityPartition - Activity partitions are excluded from fUML because they are a very general modeling construct in
UML activities and their precise execution semanticsis unclear.

An activity ray be active, but cannot have a classifier behaviar,

Behavior yd RedefinableElement
(From BasicBehaviors) < (From Kernel)
‘T‘ J,»’f {subsets ownedElement} ‘T‘
Activity 0.1 +node | ActivityNode
TypedElement T sReadOnly _ iy "
i y : Boolean = false + activity

(from Kernel) {subsets ownrer})

ObjectNode ControiNode ExecutableNode

Arﬁon
(From BasicActions)

Figure 7.20 - Nodes

ObjectNode

Al

Pin ActivityParameterNode
(From BasicActions)

1 | + activityParameterhode

1 | + parameter

Parameter
(From Kernel)

Figure 7.21 - Object Nodes

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 53

A
InitialNode Finalflode ForkNode JoinNode MergeMode
Fa
DecisionNode
ActivityFinalNode FlowFinalNode + decisionbode (0.1 * |+ decisionhode
+ decisionInputFlow (0.1 0..1 | + dedsioninput
ObjectFlow Behavior
(From BasicBehaviors)
Figure 7.22 - Control Nodes
RedefinableElement
(From Kernel)
A guard is only allowed if the source of the
{subsets owner} {subsets ownadElement} edge is a DecisionMode.
Activity .&ad'"'t" +edie [) tivityedge
0.1 *
~" {subsets owner} {subsets ownedElement}
. + outgoing + activityEdge + guard
Activityliode + source - ValueSpecification

1 * 1 0.1 (From Kernel)
+ target + incoming

1 *

ControlFlow ObjectFlow

Figure 7.23 - Flows

54 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.4.2.2 Class Descriptions
7.4.2.2.1 Activity

Generalizations

» “Behavior” on page 46

Attributes
+ isReadOnly : Boolean = false

Associations
» edge: ActivityEdge[0..*]
» node: ActivityNode[0..*]
« structuredNode : StructuredActivityNode [0..*]

Additional Constraints

e [1] fUML_no_classifier_behavior
An activity may be active, but cannot have a classifier behavior.
self.classifierBehavior->isEmpty/()

7.4.2.2.2 ActivityEdge

Generalizations
 “RedefinableElement” on page 42

Attributes

None

Associations
« activity : Activity [0..1]
» guard : ValueSpecification [0..1]
« inStructuredNode : StructuredActivityNode [0..1]
» source: ActivityNode
- target : ActivityNode

Additional Constraints

e [1] fUML_allowed guards
A guard is only allowed if the source of the edge is a DecisionNode.
self.guard->notEmpty() implies self.source.oclisKindOf(DecisionNode)

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

55

7.4.2.2.3 ActivityFinalNode

Generalizations

» “FinalNode’ on page 58

Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.4 ActivityNode

Generalizations

 “RedefinableElement” on page 42

Attributes

None

Associations
« activity : Activity [0..1]
» incoming: ActivityEdge[0..*]
« inStructuredNode : StructuredActivityNode [0..1]
« outgoing : ActivityEdge [0..*]
Additional Constraints

None

7.4.2.2.5 ActivityParameterNode

Generalizations

» “ObjectNode” on page 60

Attributes

None

Associations

e parameter : Parameter

56 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.4.2.2.6 ControlFlow

Generalizations

- “ActivityEdge’ on page 55

Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.7 ControlNode

Generalizations

« “ActivityNode’ on page 56

Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.8 DecisionNode

Generalizations

« “ControlNode” on page 57

Attributes

None

Associations
« decisionlnput : Behavior [0..1]

« decisionlnputFlow : ObjectFlow [0..1]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

57

Additional Constraints

None
7.4.2.2.9 FinalNode

Generalizations

» “ControlNode” on page 57

Attributes

None

Associations

None

Additional Constraints

None

7.4.2.2.10 FlowFinalNode

Generalizations

» “FinalNode’ on page 58

Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.11 ForkNode

Generalizations

» “ControlNode” on page 57

Attributes

None

Associations

None

Additional Constraints

None

58

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.4.2.2.12 InitialINode

Generalizations

» “ControlNode” on page 57

Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.13 JoinNode

Generalizations

« “ControlNode” on page 57

Attributes

None

Associations

None

Additional Constraints

None

7.4.2.2.14 MergeNode

Generalizations

» “ControlNode” on page 57

Attributes

None

Associations

None

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.4.2.2.15 ObjectFlow
Generalizations

« “ActivityEdge’ on page 55
Attributes

None

Associations

None

Additional Constraints

None
7.4.2.2.16 ObjectNode
Generalizations
« “ActivityNode” on page 56
» TypedElement

Attributes

None

Associations

None

Additional Constraints

None

7.4.3 Complete Structured Activities

7.4.3.1 Overview

The classes shown in Figure 7.24 are those included in the fUML Activities::CompleteStructuredActivities package. This
diagram corresponds to similar diagrams in the StructuredActivities and Compl eteStructuredActivities packages of the
UML 2 Superstructure Specification. The following features have been excluded from the fUML subset and are,
therefore, not reflected in the fUML abstract syntax diagrams.

From Structured Nodes (see Figure 7.24):

» Variable - Variables are excluded from fUML because the passing of data between actions can be achieved using object
flows.

» SequenceNode - Sequence nodes are excluded from fUML because the sequencing of actions can be expressed using
control flows.

60 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Actiom
(Froarm Brie s e

frmmdCinky, whasly o) decelires ey}

+ +aciwty "
+ muntlociate - Bockean = fae * fd
(it cwnecilemart L [nbsets wner) {mbeets pwnar} {ubsets pemedflement}
: & node + inSaructurediiede & St tupidods e |_|.
¥ 3 pall ¥ .
{subsets ation) {rubsets acton]
+ SuctunadACt vy Modn P """‘“"d'm"'m
u..1‘ o
o
{indswets rut}
Jordhr i, reschetran *| & sinenrachindainet
dmtiodea}l | e el | {oubtats sucturedActttonl shuciur bt
ot winehradindalutout} +loophcde + loooanablelnout BnputFin
CustpaitFin + redl 1] Condilivealiode Loophode - e I 5l
[l I ry + EDherminats © Rockasn = fns + Tegtacdu - Bockan = faks al -
1 [sibsets strurtndAciwhyhiode] .ﬂﬁﬂﬂ.w:lﬁ_
4 1|+ eodvoutps 1 W+ corditonaicds
{eeciernct} 4 + nghicte R T
.1 (]
{ordered)
+ leophinga + leopiiarabin
ol .
bt oamnCERemIn) i
L. | + rlaga + oaphode * hm"
. b srrenoCann "
-
+ LD "
{oubsets structunidas wlyhiodih
o + [ooiiode Ll
L
+ e . o T
il e {orderad,
0.1 + dause 0.1 | o« cluss »

G0 felooghiode 0.1| + lcophiode B.1 +|=;ﬂ=.ﬂ.\

!L."..r Bt . i+ ==
G ——
1.#| + e | ssetuppat * |+ bodveat o sehupats i LML
- ¥

Figure 7.24 - Structured Nodes

7.4.3.2 Class Descriptions
7.4.3.2.1 Clause

Generalizations

« “Element” on page 32

Attributes
None

Associations
» body : ExecutableNode[0..*]
« bodyOQutput : OutputPin [0..*]
+ decider : OutputPin

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 61

» predecessorClause : Clause [0..*]
« successorClause : Clause[0..*]

» test: ExecutableNode[1..*]

Additional Constraints

None

7.4.3.2.2 ConditionalNode

Generalizations

« “StructuredActivityNode’ on page 63

Attributes

» isAssured : Boolean = false

« isDeterminate : Boolean = false

Associations

» clause: Clause[1..*]

« result : OutputPin [0..*]

Additional Constraints

None

7.4.3.2.3 ExecutableNode

Generalizations

« “ActivityNode’ on page 56

Attributes

None

Associations

None

Additional Constraints

None
7.4.3.2.4 LoopNode

Generalizations

« “StructuredActivityNode’ on page 63

62

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Attributes
« isTestedFirst : Boolean = false

Associations
+ bodyOutput : OutputPin [0..*]
» bodyPart : ExecutableNode [0..*]
« decider : OutputPin
 loopVariable : OutputPin [0..*]
« loopVariablelnput : InputPin [0..*]
« result : OutputPin [0..*]
» setupPart : ExecutableNode [0..*]
- test: ExecutableNode [1..*]

Additional Constraints

¢ [1] noSetupParts in fUML
no setupPartsin fUML
self.setupPart->isEmpty()

7.4.3.2.5 StructuredActivityNode

Generalizations

- “Action” on page 68

Attributes

« mustlisolate : Boolean = false
Associations

« activity : Activity [0..1]

» edge: ActivityEdge[0..*]

» node: ActivityNode[0..*]

« structuredNodelnput : InputPin [0..%]

« structuredNodeOutput : OutputPin [0..*]

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

63

7.4.4 Extra Structured Activities

7.4.4.1 Overview

The classes shown in Figure 7.25 are those included in the fUML Activities::ExtraStructuredActivities package. This
diagram corresponds to the similar diagram in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Exceptions (no fUML diagram):

» ExceptionHandler - Exception handlers are not included in fUML because exceptions are not included in fUML (see
7.2.2.1and 7.5.1).

From Expansion Regions (see Figure 7.25): No exclusions.

Serumer a"’%"“d StructuredActivityNode ObjectNode
ExpansionKin (From CompleteStructuredActivities) (from IntermediateActivities)
parallel
iterative
stream
ExpansionRegion + regionAsInput + inputElement ExpansionNode
+ mode : Expansionkind = iterative
0.1 i
mode cannot be stream
+ regionAsQutput + outputElement
- T 0' ! 1 *
An expansion region may not have output pins, Edges may not cross into or out of an expansion region.

Figure 7.25 - Expansion Regions
7.4.4.2 Class Descriptions
7.4.4.2.1 ExpansionNode

Generalizations

» “ObjectNode” on page 60

Attributes

None

Associations
« regionAslnput : ExpansionRegion [0..1]
« regionAsOutput : ExpansionRegion [0..1]

64 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.4.4.2.2 ExpansionRegion

Generalizations

« “StructuredActivityNode” on page 63

Attributes
« mode : ExpansionKind = iterative
Associations
« inputElement : ExpansionNode [1..*]
« outputElement : ExpansionNode [0..*]

Additional Constraints

e [1] fUML_no _crossing_edges
Edges may not crossinto or out of an expansion region.
self.edge->forAll(self.node->includes(source) and self.node->includes(target))

¢ [2] fUML_mode _cannot_be stream
mode cannot be stream
self.mode != ExpansionKind::stream

e [3] fUML_no_output_pins
An expansion region may not have output pins.
self.output->isEmpty()

7.5 Actions

7.5.1 Overview

The fUML Actions package includes the following sub-packages:
« BasicActions
« IntermediateActions
» CompleteActions

Figure 7.26 shows the dependencies of these packages.

Note that, in the fUML model, the BasicActions package imports the IntermediateActivities package from Activities. This
is because, in fUML, Actions::BasicActions::Action includes the merge increment
Activities::StructuredActivities::Action, which results in Actions::BasicActions::Action being a specialization of
ExecutableNode. Since ExecutableNode is in Activities::IntermediateActivities in fUML, the fUML BasicActions
package is dependent on the fUML IntermediateActivities package, as reflected in the package import in Figure 7.26.
Also, in the fUML model, IntermediateActions imports BasicBehaviors (see 7.4.1) which imports Kernel (see 7.5.1), so

Kernel does not need to be imported directly by BasicActions.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

The StructuredA ctions package from the UML 2 Superstructure is excluded in its entirety from fUML, because variables,
exceptions, and action pins are not included in fUML. The fUML subset is based on a fully flow-based approach to
activity modeling.

1
IntermediateActivities
(from fUML : :Syntax: | Activities)

.
«imports i
E

- . i
BasicActions «irmpart»

., [(O = Communications
(from fUML ::Syntax: :Actions) (fram fUML::Syntax: :CommonBehaviors)
I s
«imports | “‘\“ «import»
—| i '
IntermediateActions CompleteActions
(from fUML:: Syntax: Actions) (from fUML : :Syntax: :Actions)

Figure 7.26 - Actions Syntax Packages

7.5.2 Basic Actions

7.5.2.1 Overview

The classes shown in Figure 7.27 to Figure 7.29 are those included in the fUML Actions::BasicActions package. The
diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Basic Actions (see Figure 7.27):
» OpaqueAction - Opague actions are excluded from fUML since, being opaque, they cannot be executed.
From Basic Pins (see Figure 7.28):

» VauePin - Value pins are excluded from fUML because they are redundant with using val ue specifications to specify
values.

From Basic Invocation Actions (see Figure 7.29): No exclusions.

66 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

ExecutableNode
{From CompletestructuredActivities)

{readOnly}
Action + action + fcontext Classifier
+ isLocallyReentrant : Boolean = false | 1 0.1 (from Kernel)
Figure 7.27 - Basic Actions
MultiplicityElement Objectiiode
(From Kernel) (From IntermediateActivities)
Fim

{ordered, readCnly, union,

subsets ownedElement} + foutput™|” «'['+ finput {ordered, readOnly, union,

subsets ownedElement}

{subsets owner}+ action g 0..1 0..1 4 + action {subsets owner}

| Action |

Figure 7.28 - Basic Pins

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

{ordered, readOnly, union, subsets ownedElement} {subsets owner}
Inputpin | + finput + action

0.1

+ argument + invocationAction

3 Bl
{ordered, subsets input} {subsets action}

Signal
(from Communications)

[y

+ signal

+

+ sendSignalaction

"
OutputPin ||=< 0. 1_. CallAction | SendSignalAction |
+ result + calAction |+ isSynchronous : Boolean = trug ’

{ordered, subsets output} {subsets action} 0..1 | + sendSignalAction
{subsets action}

. I the behavior has a context, it must be the same as the context of the = _
| enclosing activity or a (direct or indirect) superclass of it E

isSynchronous must be true The target input pin must
. have a type that has a
E E 1 | reception For the signal.
h N, /.» i
The behavior may not be active, ... _ , P
, e L Ve
________________ ‘I CallBehaviorAction | | CalloperationAction |
1 * | + calBehaviorAction * |+ calOperationAction g 1 + callOperationAction
isSynchronous must be true {subsets action}
| |
1., + behavior 1 - {subsets input} {subsets input}
+ operation 1 + target 1|, + target
Behavior Operation
(From BasicBehaviors) (From Kernel) | InputPin |

Figure 7.29 - Basic Invocation Actions
7.5.2.2 Class Descriptions
7.5.2.2.1 Action

Generalizations

» “ExecutableNode” on page 62

Attributes
« isLocallyReentrant : Boolean = false

Associations
 context : Classifier [0..1]
« input: InputPin [0..*]
« output : OutputPin [0..*]
Additional Constraints

None

68 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.2.2.2 CallAction

Generalizations

» “InvocationAction” on page 70

Attributes

« isSynchronous : Boolean = true

Associations

« result : OutputPin [0..*]

Additional Constraints

None
7.5.2.2.3 CallBehaviorAction

Generalizations

« “CalAction” on page 69

Attributes

None

Associations

« behavior : Behavior

Additional Constraints

e [1] is_synchronous
isSynchronous must be true
self.isSynchronous

e [2] inactive _behavior
The behavior may not be active.
not self.behavior.isActive

e [3] proper_context
If the behavior has a context, it must be the same as the context of the enclosing activity or a (direct or indirect)
superclass of it.
self.behavior.context->notEmpty() implies
union(self.context.allParents())->includes(self.behavior.context)

7.5.2.2.4 CallOperationAction

Generalizations

» “CalAction” on page 69

Attributes

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations
» operation : Operation
- target: InputPin

Additional Constraints

e [1] is_synchronous

isSynchronous must be true

self.isSynchronous
7.5.2.2.5 InputPin

Generalizations

« “Pin” onpage 71

Attributes

None

Associations

None

Additional Constraints

None

7.5.2.2.6 InvocationAction

Generalizations

« “Action” on page 68

Attributes

None

Associations

« argument : InputPin [0..*]

Additional Constraints

None

7.5.2.2.7 OutputPin

Generalizations

« “Pin” onpage 71

Attributes

None

70

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations

None

Additional Constraints

None

7.5.2.2.8 Pin

Generalizations
« “MultiplicityElement” on page 37
» ObjectNode

Attributes

None

Associations

None

Additional Constraints

None
7.5.2.2.9 SendSignalAction

Generalizations

» “InvocationAction” on page 70

Attributes

None

Associations
» signa : Signd
- target: InputPin

Additional Constraints

e [1] target_signa_reception
The target input pin must have atype that has areception for the signal.
self.target.type.oclAsType(Classifier).allFeatures()->select(ocllsKindOf(Reception))->exists(f: Feature|self.
signal.conformsTo(f.oclAsType(Reception).signal))

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.3 Intermediate Actions

7.5.3.1 Overview

The classes shown in Figure 7.30 to Figure 7.34 are those included in the fUML Actions::IntermediateActions package.

The diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The only exclusions from this
package are BroadcastSignal Action and SendObjectAction. The sole mechanism for asynchronous invocation in fUML is
via send signal action. This can be used to achieve the effect of broadcasting and sending objects.

Action
From BasicActi
The given classifier (from BasicActions)
must be a class. ‘?
DestroyObjectAction -
+ isDestroyLinks ; Boolean = false ReadselfAction
+ createObjectAction | * 0.1 T + createCbjectAction + isDestroyOwnedObjects : Boolean = false)
) 0..1 T+ readSelfAction
{subsets action} 0.1 | + destroyObjectAction {subsets action}
{subsets action}
{subsets output} {sub;ets input} {subsets output}
. i 1 |+ target 1 | +result
+ classifier W1 1 + result
Classifier OutputPin InputPin OutputPin
(From Kernel) (From BasicActions) (From BasicActions) (From BasicActions)
Action
(From BasicActions)
TestIdentityAction | ValueSpecificationAction |
_ _ + valueSpecificationAction 10..1 0.1 T + valueSpecificationAction
testidentityAction | 0..10..1| * testidentityAction ¢ 1 T . testidentityAction {subsets action} {subsets owner}
{subsets action} {subsets action} {subsets action}
. {subsets ownedElement}
{subsets input} {subsets input} {subsets output} {subsets OUFDUE' 1 1 | +vaue
+ first 1 1y +second 1 + result + resd
InputPin OutputPin OutputPin Valuespecification
(From BasicActions) (From BasicActions) (From BasicActions) (From Kernel)

Figure 7.30 - Object Actions

72 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Action
(From BasicActions)

| ‘ {subsets action} {subsets input}
+ structuralFeature + structuraFeatureAction + structuralFeatureAction + object
ﬂnt-‘FfFWz’F_faE“’E - StructuralFeatureAction ! InputPin
rom k.erne 1 0.1 1 (from BasicActions)
ReadStructuralFeatureAction | ‘ ClearStructuralFeatureAction ‘ WritestructuralfeatureAction |
+ teadStructuraFeatureAction | 5 4 + clearStructuraFeaturection | 0.1 + wiiteStructuralFeatureAction | 0..1
{subsets action} {subsets action} {subsets action} 0.11 + writeStructuralFeatureAction
{subsets action}
{subsets output} + result | 0..1 {subsets output} {subsets output}
+result 01 + result 0.1

OutputPin
(from BasicActions)

| AddStructuralFeatureValueAction RemovestructuralFeatureValueAction
+ isReplacedll : Boolean = false + isRemoveDuplicates : Boolzan = false

+ addStructuralFeatureValueAction | 0.1 + I'emOveStl‘ucturaIFeaturegaILtJeActt_ion 0.1
{subsets action} subsets action}
{subsets input} {subsets input}

{subsets input} +removeAt | 0.1 0..1| + value
+insertAt y 0.1

InputPin
(From BasicActions)

Figure 7.31 - Structural Feature Actions

- Element
Action (From Kernel)

(From BasicActions)

{subsets owner} {subsets ownedFlement}
+ linkAction + endData

1 ek LinkEndData

+ linkAction , * |+ linkEndData

{subsets action} + inkEndData 0.1
{subsets input}

+ inputvalue | 1..* 1 [+end

+ value
InputPin Property
(From BasicActions) 0.1 (From Kernel)

Figure 7.32 - Link Identification

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 73

{subsets action} {subsets output}

+readlinkAction + result OutputPin
(From BasicActions)

ReadLinkAction

0.1 1

Figure 7.33 - Read Link Actions

Action
(From BasicActions)

f

| ClearAssociationAction

+ clearAssociationAction 0.1 0..1 | + clearAssociationAction
{subsets action}

WritelinkAction
A

{subsets input}

+ object |1 1., + association
InputPin Association
DestroyLinkAction (From BasicActions) (From Kernel)
1 ¥ + createlinkAction 1 ¥ + destroyLinkAction
{redefines linkAction} {redefines inkAction}
{redefines endData} {redefines endData}
2..* | + endData 2..*| + endData
LinkEndCreationData LinkEndDestructionData
+ isReplacell : Boolean = False + isDestroyDuplicates : Boolean = False

0.1 |+ lrkEndCreationData + linkEndDestructionData | 0.1

0.1 InputPin 0.1

(From BasicActions)

+ insertAt

+ destroyAt

LinkEndData

Figure 7.34 - Write Link Actions

74 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.3.2 Class Descriptions
7.5.3.2.1 AddStructuralFeatureValueAction

Generalizations

» “WriteStructural FeatureAction” on page 81

Attributes

« isReplaceAll : Boolean = false

Associations

« insertAt: InputPin[0..1]

Additional Constraints

None
7.5.3.2.2 ClearAssociationAction

Generalizations

» “Action” on page 68

Attributes

None

Associations
« association : Association

» object : InputPin

Additional Constraints

None
7.5.3.2.3 ClearStructuralFeatureAction

Generalizations

» “StructuralFeatureAction” on page 80

Attributes

None

Associations

« result : OutputPin [0..1]

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.3.2.4 CreateLinkAction

Generalizations

« “WriteLinkAction” on page 81

Attributes

None

Associations

« endData: LinkEndCreationData [2..*]

Additional Constraints

None

7.5.3.2.5 CreateObjectAction

Generalizations

» “Action” on page 68

Attributes

None

Associations
« classifier : Classifier
« result : OutputPin

Additional Constraints
e [1] fUML_is class
The given classifier must be aclass.
self.classifier.oclisKindOf(Class)
7.5.3.2.6 DestroyLinkAction

Generalizations

» “WriteLinkAction” on page 81

Attributes

None

Associations

« endData: LinkEndDestructionData [2..*]

Additional Constraints

None

76 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.3.2.7 DestroyObjectAction

Generalizations

« “Action” on page 68

Attributes

« isDestroyLinks: Boolean = false
« isDestroyOwnedObjects : Boolean = false

Associations

« target: InputPin

Additional Constraints

None
7.5.3.2.8 LinkAction

Generalizations

- “Action” on page 68

Attributes

None

Associations

» endData: LinkEndData[2..*]
« inputValue: InputPin [1..*]

Additional Constraints

None
7.5.3.2.9 LinkEndCreationData

Generalizations

» “LinkEndData’ on page 78

Attributes

« isReplaceAll : Boolean =false

Associations

« insertAt: InputPin[0..1]

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

77

7.5.3.2.10 LinkEndData

Generalizations

» “Element” on page 32

Attributes

None

Associations
« end: Property
« value: InputPin[0..1]

Additional Constraints

None

7.5.3.2.11 LinkEndDestructionData

Generalizations

» “LinkEndData’ on page 78

Attributes

« isDestroyDuplicates : Boolean = false

Associations

» destroyAt : InputPin [0..1]

Additional Constraints

None
7.5.3.2.12 ReadLinkAction

Generalizations

» “LinkAction” on page 77

Attributes

None

Associations

« result : OutputPin

Additional Constraints

None

78

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

7.5.3.2.13 ReadSelfAction

Generalizations

« “Action” on page 68

Attributes

None

Associations

« result : OutputPin

Additional Constraints

None
7.5.3.2.14 ReadStructuralFeatureAction

Generalizations

» “StructuralFeatureAction” on page 80

Attributes

None

Associations

« result : OutputPin [0..1]

Additional Constraints

None
7.5.3.2.15 RemoveStructuralFeatureValueAction

Generalizations

» “WriteStructural FeatureAction” on page 81

Attributes

« isRemoveDuplicates : Boolean = false

Associations

» removeAt : InputPin [0..1]

Additional Constraints

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

79

7.5.3.2.16 StructuralFeatureAction

Generalizations

» “Action” on page 68

Attributes

None

Associations
« object : InputPin
« structuralFeature : Structural Feature

Additional Constraints

None

7.5.3.2.17 TestldentityAction

Generalizations

» “Action” on page 68

Attributes

None

Associations
« first: InputPin
 result : OutputPin
» second : InputPin

Additional Constraints

None
7.5.3.2.18 ValueSpecificationAction

Generalizations

- “Action” on page 68

Attributes

None

Associations

 result : OutputPin
» value: ValueSpecification

80 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

None
7.5.3.2.19 WriteLinkAction

Generalizations

» “LinkAction” on page 77

Attributes

None

Associations

None

Additional Constraints

None

7.5.3.2.20 WriteStructuralFeatureAction

Generalizations

» “StructuralFeatureAction” on page 80

Attributes

None

Associations
« result : OutputPin [0..1]
« vaue: InputPin[0..1]

Additional Constraints

None

7.5.4 Complete Actions

7.5.4.1 Overview

The classes shown in Figure 7.35 to Figure 7.37 are those included in the fUML Actions::CompleteActions package. The
diagrams correspond to similar diagrams in the UML 2 Superstructure Specification. The following features have been
excluded from the fUML subset and are, therefore, not reflected in the fUML abstract syntax diagrams.

From Accept Event Actions (see Figure 7.35):

» AcceptCallAction - Accept call actions are excluded from fUML because only signal events are allowed in triggersin
fUML. Operation callsin fUML are handled solely by the dispatching of operations to methods.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 81

» ReplyAction - Reply actions are excluded from fUML because they are only used in conjunction with accept call
actions for synchronous calls.

« UnmarshalAction - Unmarshall actions are excluded from fUML because it is redundant with unmarshalling a signal
asreceived by an accept event action.

From Object Actions (see Figure 7.36): No exclusions.
From Link Identification Actions (no fUML diagram):

» Table 1 - QualifierValue - Qualifier values are excluded from fUML because association qualifiers are excluded from
fUML (see 7.2.2).

From Read Link Actions and Write Link Actions (no fUML diagrams):

« Table1 - ReadLinkObjectEndAction, ReadLinkObjectEndQualifierAction and Createl inkObjectAction. These
actions are excluded from fUML because association classes are excluded from fUML (see 7.2.1).

From Reduce Action (see Figure 7.37): No exclusions.

Action
(From BasicActions)
‘T‘ {subsets owner} {subsets ownedElemeant}
+ acceptEventAction + trigger
AcceptEventAction - g 99 Trigger
e | R R
+ isUnmarshall : Boalean = false 0.1 1. (From Communications)
{subsets action} _ {subsets output}
+ acceptEventAction + result
OutputPin
0.1 * {from BasicActions)

All triggers must be For signal events,
|' H The context class must have receptions For all triggering signals.
The cantext of the containing activity of the accept event action must be an active class.

An accept event action may not be contained directly or indirectly in the test part of a clause or loop node.

Figure 7.35 - Accept Event Actions

82 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Action

[:% {from Basix Actiors)
The classifier musk be a class. !
{subsits mput) Inpathin
Readixtenthction | [startClassiferDehaviorhction |_._D"1 ¥ ctject rom o)
* s'.-lﬂmfuliﬂmklum 1
{sbsets ation
+ readExterithetion | 0.1 0..1| + raadExtentaction
{subsets action} {mubsats nout}
[ReclassifyObjectastion ol + oiject
Al ok o reem + BReplaceAl | Backean = faise e
dattifisrg must be + neclasity b L tion 1
clisbtes {adrals acton}
| i recssfObjactaction| * * |+ reclissdyObjectAction « ohiect "y
{subsats irput}
. . {skmots acton)
+ oldClassfiar + newClassiter + radistiashedObjectacton | 0.1
i i
il pree + classifier . HeadlsClassifiedObjectaction |
1 (From emel) 1 + readisDlssedtbjectAction IE ulﬂrnl:ﬂu:;m-lh |
{rbsats cutout}
4 rl.ul.il,r, 1 i — 0.1 & readlsClrmshedObiec LA laon
e R {mubsats action)
[Frewn Buasie Actioes] 1
Calide i
(from Basx Ak)
7 {eubgats action) {rubsats nput)
T, + partObjectiehancrAction + chject
wiyrichronous must b fass, ————| StartObpectBehaviennction [)_ o e
0.1 1
Figure 7.36 - Object Lifecycle Actions
Action
(from BasicActions)
- + reducefction + reducer
. ReduceAction Behavior
+ isOrdered : Boolean = false . 1 (From BasicBehaviors)

+ reduceAction 0.1 0.1 + reducefction

{subsets input}
+ collection 1

{subsets output}
+ result

InputPin
(From BasicActions)

OutputPin

(From BasicActions)

Figure 7.37 - Reduce Actions

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

83

7.5.4.2 Class Descriptions
7.5.4.2.1 AcceptEventAction

Generalizations

« “Action” on page 68

Attributes

« isUnmarshal : Boolean = false

Associations
 result : OutputPin [0..*]

« trigger : Trigger [1..%]

Additional Constraints

e [1] fUML_active _context
The context of the containing activity of the accept event action must be an active class.
self.context.oclAsType(Class).isActive
« [2] fUML_only_signal_event_triggers
All triggers must be for signal events.
self.trigger.event->forAll(oclisKindOf(SignalEvent))
e [3] fUML_receive all_triggering_signals
The context class must have receptions for al triggering signals.
let cls:Class = self.context.oclAsType(Class) in
let classes:Bag(Class) = cls.allParents()->select(ocllsKindOf(Class))->collect(oclAsType(Class))->union(cls->asBag()) in
classes.ownedReception.signal->includesAll(self.trigger.event->collect(oclAsType(SignalEvent)).signal)
e [4] fUML_no_accept event action_in tests
An accept event action may not be contained directly or indirectly in the test part of a clause or loop node.
self->closure(inStructuredNode.oclAsType(ActivityNode))->forAll(n |
let s : StructuredActivityNode = n.inStructuredNode in
s->notEmpty() implies
(s.ocllsTypeOf(ConditionalNode) implies s.oclAsType(ConditionalNode).clause.test->

excludes(n.oclAsType(ExecutableNode)) and
s.ocllsTypeOf(LoopNode) implies s.oclAsType(LoopNode).test->excludes(n.oclAsType(ExecutableNode))))

7.5.4.2.2 ReadExtentAction

Generalizations

- “Action” on page 68

Attributes

None

Associations
« classifier : Classifier

« result : OutputPin

84 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Additional Constraints

e [1] fUML_is class
The classifier must be aclass.
self.classifier.oclisKindOf(Class)

7.5.4.2.3 ReadlsClassifiedObjectAction

Generalizations

- “Action” on page 68

Attributes
« isDirect : Boolean = false

Associations
- classifier : Classifier
» object : InputPin
 result : OutputPin

Additional Constraints

None

7.5.4.2.4 ReclassifyObjectAction

Generalizations

» “Action” on page 68

Attributes

« isReplaceAll : Boolean = false
Associations

» newClassifier : Classifier [0..*]

» object : InputPin

+ oldClassifier : Classifier [0..*]

Additional Constraints
e [1] fUML_old new_classes
All the old and new classifiers must be classes.
self.oldClassifier->forAll(ocliskKindOf(Class)) and self.newClassifier->forAll(oclisKindOf(Class))
7.5.4.2.5 ReduceAction

Generalizations

- “Action” on page 68

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Attributes
« isOrdered : Boolean = false

Associations
« collection : InputPin
« reducer : Behavior
« result : OutputPin

Additional Constraints

None

7.5.4.2.6 StartClassifierBehaviorAction

Generalizations

» “Action” on page 68

Attributes

None

Associations
« object : InputPin
Additional Constraints

None

7.5.4.2.7 StartObjectBehaviorAction

Generalizations

« “CallAction” on page 69

Attributes

None
Associations
» object : InputPin

Additional Constraints

¢ [1] fUML_is asynchronous
isSynchronous must be false.
not self.isSynchronous

86 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8 Execution Model

8.1 Overview

This clause describes the execution model for fUML. The execution model is itself a model, written in fUML, that
specifies how fUML models are to be executed. This circularity is broken by the separate specification of a base
semantics for the subset of fUML actually used in the execution model (see Clause 10).

Static Semantics and Well Formedness

It is important to distinguish execution semantics from what is sometimes called “ static semantics,” a term that comes
from programming language compiler theory.

Typically, the syntax of a programming language is defined using a context-free grammar (e.g., using Backus-Naur Form
productions). However, there are also typically aspects of the language that are context-sensitive, but can still be checked
statically by the compiler. The most common example is static type checking, which requires matching expression types
to be declared variable types. The checking of such context-sensitive constraints is known as “static semantics.”

For UML, the abstract syntax is defined as a MOF metamodel. The UML specification also defines additional constraints
that the metamodel representation of a valid UML model is required to meet. These constraints are the equivalent of the
static semantics of UML.

However, since these constraints can all be checked statically, they are not part of the execution semantics of UML.
Indeed, any model that violates one or more of these additional constraints is not actually well formed. Such an ill-formed
model cannot really be assigned any meaning at all.

In this specification, static semantics are not considered to be part of the execution semantics to be specified. That is, any
well-formed model is aready presumed to have met al the constraints imposed on the abstract syntax as defined in the
UML Specification. Semantic meaning will only be defined for models that are well formed in this sense.

Conventions on Derivation and Redefinition

In a number of cases in the UML abstract syntax metamodel, constraints express requirements for derived properties
(including the implicit constraints involved in derived unions and subsetting). The values of such properties may be
completely determined from the values of other, non-derived properties using the defining constraints. Thus, for example,
the values of these properties do not need to be included in the interchange representation of the model.

On the other hand, the UML 2 Superstructure specification allows a derived property to be read using a read structural
feature action, just like any other property. In principle, it should be possible to dynamically compute the value of the
derived property in order to read it. However, the fUML subset does not include constraints (see 7.2.2.1 for the rationale
for this exclusion) and, therefore, the defining constraints for derived properties are not available in an executing fUML
model.

As a result, this specification adopts the convention that, when an object is instantiated, explicit values are provided for
all derived properties and that these values are consistent with the defining constraints for the derivation. In the context of
the abstract syntax metamodel, this means that all the implicit and explicit derivation constraints are treated as part of the
conditions for a well-formed model. Consistent with the discussion of well-formedness above, the execution model
therefore assumes that the abstract syntax representation of a model being executed has valid values set for all derived
properties that may be read just like other properties (and that all derived properties keep the same value throughout an

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 87

execution). That is, the distinction between derived and non-derived properties essentially disappears at runtime, so far as
the execution model is concerned (since the execution model does not change the value of any properties in the abstract
syntax representation of an input model).

For example, the UML abstract syntax metamodel defines the ownedAttribute property of Class to subset the derived
union Namespace::ownedMember, which, in turn, subsets both Namespace::member and Element::ownedElement. The
fUML execution model assumes that, in the abstract syntax representation of a well-formed model, every ownedAttribute
of the representation of a class will also be explicitly included in the collection of values of the inherited ownedMember,
member and ownedElement properties for that class.

Similarly, an object is considered to have values set for both any redefined property and the property redefinition of it. In
this case, the implicit constraint is that the values must be the same, whether accessed via the redefined property or via
the redefining property. However, the redefining property may also impose additional constraints (such as a narrowing of
the allowed multiplicity, for example) that then effectively aso apply to the value of the redefined property.

Note: A conforming execution tool is not necessarily required to handle the derived and redefined properties of the UML
abstract syntax metamodel in this way. Thisis simply the convention for the execution model, which is written within the
constraints of the fUML subset.

Behavioral Semantics

The execution model is a formal, operational specification of the execution semantics of fUML. That is, it defines the
operational procedure for the dynamic changes required during the execution of afUML model. Thisis in contrast to the
declarative approach used for the base semantics (see Clause 10).

The execution model is itself an executable, object-oriented, fUML model of a fUML execution engine. To specify the
behavioral semantics of fUML completely, the execution model must fully define its own behavior-that is, it must fully
specify every operation method and classifier behavior in it. Since the only kind of user-defined behavior supported in
fUML is the activity, each behavior in the execution model must be modeled as an activity.

Currently, the only UML notation provided for activity modeling is the graphical activity diagram. It would thus be
possible to represent each of the activities in the execution model using such a diagram. For example, Figure 8.1 gives a
sample activity diagram for just a part of the method specified for the execute operation of the ActivityExecution classin
the execution model. Unfortunately, for significant activities, these diagrams quickly become large, intractable to draw
and hard to comprehend.

Instead of using such cumbersome graphical notation, and rather than defining from scratch a new, non-normative textual
notation for activities, most activities in this specification are written as equivalent code in the Java programming
language. Informally, these code snippets can actually be understood as executable Java code, and the standard Java
semantics for this code is consistent with the behavior to be specified for the activity. For example, Figure 8.3 shows the
Java code equivalent to the activity model in Figure 8.1.

Formally, however, any Java code should be understood as just a surface notation for the true, underlying UML activity
model. That is, the code in Figure 8.2 should be thought of asjust another representation of the model given in Figure 8.1.
Annex A provides the normative mapping from this Java surface notation to UML activity models, for the purposes of the
fUML specification. The formal semantics of the constructs used in activity models mapped from the Java surface
notation is then given by the base semantics in Clause 10.

88 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Clause Organization

The remainder of this clause is organized according to the packaging structure of the execution model. The packaging of
the execution model exactly parallels that of the fUML abstract syntax (see Clause 7), except for the addition of the Loci
package. This package contains elements of the execution model that do not directly correspond to syntactic elements of
fUML. Rather, the elements in this package provide a model of an executor for well-formed fUML models, which can be
considered to be the abstract specification for actual fUML execution engines.

Sub clause 8.2 describes the Loci package, which contains the Locus, Executor, and ExecutionFactory classes that model
afUML execution engine and its environment.

Sub clause 8.3 describes the Class package, which itself only contains the Kernel package (in the fUML subset). The
semantic model for the Kernel package provides the structural semantics for fUML.

Read types |

Add activationGroup '

Add actiivityExecution '

(Create ActivityNodeActivationGroup P

Read node [

Call activate

Read edge 2

Figure 8.1 - Partial Activity Model for the ActivityExecution::execute Operation

Activity activity = (fUML.Syntax.Activity) (this.types.getValue(0)) ;
ActivityNodeActivationGroup group = new ActivityNodeActivationGroup () ;
this.activationGroup = group;

group.activityExecution = this;

Figure 8.2 - Java Surface Representation of the Activity Model in Figure 8.1

The remaining sub clauses together define the behavioral semantics for fUML. Sub clause 8.4 describes the Common
Behavior package, including the fundamental models of active objects and behavior execution. Sub clause 8.4 provides
the semantic models for activities, the main form of behavior supported by fUML, and Sub clause 8.6 provides the model
for the execution of actions within an activity.

Throughout the following sub clauses, the terminology of semantic interpretation introduced in Clause 6 will be freely
used to relate the operational semantic specification provided by the execution model to the general semantics approach
used in this specification.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 89

8.2 Loci

8.2.1 Overview

The Loci package includes the model of the key concepts of an execution locus and of the executor that provides the
abstract external interface of the execution model. The package has three subpackages corresponding to the three fUML
conformance levels (see sub clause 2.2). The subpackage LociL 1 contains the majority of the classes. The subpackages
LociL2 and LociL 3 each contain only a single class, specialized execution factories that are used to instantiate semantic
visitor classes corresponding to executable syntactic elements at the corresponding conformance levels (the concept of
semantic visitors is discussed below). Figure 8.3 shows the dependencies of the Loci packages on other packages.

]
“mports
Kernel TR [3 ___________
{Frar L SyntaiClasses)
Fiers
q‘_"‘--._hgimnur:n
— cimports
I ¥
| Intermediateactions L - _I‘E?E
F 1 FLI ynbae i Achions
wimports
" IntermediateActivi
(Fram FUML Synta Activities
]
Completections
o FLPMILS s Syntax sActions
e _simporte
— | S e e eimpoorte
CompleteStructuredActivities e oooua.. :”'f ____________
y 1 LML Svnbae s Ackivitie wimpcrte

ExtraStructuredactivities
From FLIML::Symka Hiwitie

Figure 8.3 - Loci Semantics Packages

8.2.2 LociLl

8.2.2.1 Overview

itBel

~ Basi ‘
LRI, S nimangalzvist
ifports
: almparts !
Locil.1 I | Kernel
FLPIL: S=mantics: il
~
Eit'mp:ut»
: or.'ncl-f,:,"_‘_’- Uram FLML: nE
T H wifiparts]
——— Locil.2 - _— | IntermediateActions
- n Lrom FLML: SemanticsfAchions
- £ e gimports
] "‘—-..__‘
| |I'||'='I!'|'|l=.|!i.|t-".'-'-l'|i'\-‘i'iﬂk
(Fram FURIL: S=mantics: Activitias
’ | mports i
H Completenctions
H | CFrom FURL: Semantics: hetions
H -<'r:'4:|t:|l:7-'__..7
i t e —
Locil3 _.__.__.:Tfl.f_._;.; CompletaStructuredActivities |
“““““ . "-.___:?'FDCITP 1 FLML: Semantics:: Activitie
..__“5

ExtraStructuredactivities

| Chram FLRIL Semantis: Activities

The LociL 1 package contains the majority of the model related to execution loci (see Figure 8.4). It also includes an
execution factory for instantiating semantic visitors for executable syntactic elements at f{UML Conformance Level 1. The
execution factory is extended for Conformance Levels 2 and 3 in the packages LociL2 and LociL3 (see 8.2.3 and 8.2.4).

90

Semantics o

f a Foundational Subset for Executable UML Models (FUML), v1.1

The Executor and the Execution Locus

The Executor class provides the root abstraction for executing a fUML model. As shown in Figure 8.4, it provides three
operations:

1. Evauate- Evauate avalue specification, returning the specified value.

2. Execute - Synchronously execute abehavior, given values for its input parameters and returning values for its output
behaviors.

3. Start - Asynchronously start the execution of a stand-alone or classifier behavior, returning areference to the instance
of the executing behavior or of the behaviored classifier.

Every execution takes place at a specific locus. A locus is an abstraction of a physical or virtual computer capable of
executing fUML models. It is a place at which extensional values (objects or links) can exist. The extent of a class or
association is the set of objects or links of that type that exist at a certain locus. Note that this implies that an individual
object is restricted to asingle locus; i.e., it cannot span multiple loci (see 8.3.2.1 for further discussion of extensional
values.)

All objects and links created during an execution are created at the locus of that execution. And, unless an object or link
is explicitly destroyed, it will persist at the locus even after the execution has completed. This means that objects and
links may already exist at alocus before a specific behavior execution begins, providing part of the environment in which
the execution takes place. (The concept of an execution environment is discussed further at the end of this sub clause.)

Indeed, an execution locus may provide a set of pre-existing objects as part of the environment of all behavior executions
at that locus, as a means of providing external services to those executions. Given that the appropriate class is known,
such service objects may be discovered using the read extent action (this is the mechanism used for accessing input/output
services, for example - see 9.5). More sophisticated discovery services may also be provided but are not defined in this
specification.

While the execution of any one behavior takes place at a single locus, an execution at one locus may invoke a behavior
that executes at another locus. To do this, an execution must be able to instantiate, or otherwise obtain a reference to, an
object on the remote locus on which the behavior is to be invoked (or which itself is a behavior instance). However, no
normative mechanism is provided within fUML for an execution on one locus to obtain references to objects on another
locus. Conformant execution tool implementations may optionally provide a service to discover objects on remote
services or to allow references to be passed between loci using input/output channels (see 9.5). (With such extensions it
should be possible to support the execution of models that span multiple loci.)

Visitor Classes and the Execution Factory

The model for evaluation and execution is based on the Visitor pattern. This pattern is used to add behavior to an already
existing class hierarchy. In the case of the execution model, the existing class hierarchy is that of the fUML subset of the
UML Abstract Syntax (see Clause 7). The intent of the execution model is to provide a specification for the execution of
models represented in terms of instances of abstract syntax metaclasses, without making any change to those metaclasses
as they are given in the UML Superstructure specification.

Using the Visitor Pattern, each abstract syntax metaclass for which behavior is to be added has a corresponding visitor
class in the Execution Model. This visitor class has a unidirectional association to the corresponding abstract syntax
metaclass and operations that effectively provide the behavioral specification of the semantics of model elements
represented by that metaclass. All visitor classes in the execution model are descended, directly or indirectly from the root
SemanticVisitor class (see Figure 8.4).

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 91

There are three types of visitor classes in the Execution Model. Two of them, evaluations and executions, are used by the
Executor.

» Evaluations - An evaluation visitor is used to evaluate a specific kind of value specification; that is, to return an
instance of the value denoted by the val ue specification. Thereis an evaluation visitor class corresponding to each
concrete subclass of ValueSpecification included in the fUML subset (see 8.3.2). The name of the visitor classisthe
same as the name of the corresponding abstract syntax metaclass with the word “Evaluation” appended. For example,
the evaluation visitor class for the abstract syntax metaclass Litera String is called Literal StringEvaluation. (See
8.3.2.1 for further discussion of evaluation classes.)

» Executions - An execution visitor is used to execute a specific kind of behavior. There is an execution visitor class
corresponding to each concrete subclass of Behavior included in the fUML subset (see 8.5 and 8.6). The name of the
vigitor class is the same as the name of the corresponding abstract syntax metaclass with the word “ Execution”
appended. The primary kind of UML behavior included in fUML is the activity with a corresponding visitor class
called ActivityExecution. There are al so OpagueBehaviorExecution and FunctionBehaviorExecution visitor classes
corresponding to OpagueBehavior and FunctionBehavior. (See 8.4 for a general discussion of execution classes and
8.5 for specific discussion of activity execution.)

The behavior of the Executor evaluate and execute operations is to create an instance of the corresponding evaluation or
execution visitor class and then use that visitor instance to carry out the required evaluation or execution. To create a
corresponding visitor instance, the Executor uses an instance of the ExecutionFactory class located at the execution locus
(see Figure 8.4). The ExecutionFactory class provides createEvaluation and createExecution operations that take,
respectively, value specification and behavior abstract syntax instances and return, respectively, instances of the
evaluation or execution class corresponding to the concrete class of the input abstract syntax object.

The third type of visitor class is an activation. An activation visitor is used to model the semantics of a specific kind of
activity node within the execution of a containing activity. Such activation instances are created as part of the construction
of the execution object for an activity. Therefore, they are further described in 8.5.2.1 as part of the discussion of activity
execution.

All three types of visitor classes are ultimately instantiated using the instantiateVisitor operation of the ExecutionFactory
class. This operation is actually abstract in the ExecutionFactory base class, with concrete methods for it provided in
subclasses of ExecutionFactory. The LociL 1 package includes the concrete ExecutionFactoryL 1 class (see Figure 8.5),
which provides a method for instantiateVisitor that only handles the instantiation of visitors for the relevant syntactic
elements found at fUML Conformance Level 1. Further extensions for higher conformance levels are provided in
packages LociL2 and LociL3 (see 8.2.3 and 8.2.4).

Strategy Classes and Semantic Variation Points

There are two semantic variation points defined for fUML (see 2.4): event dispatch scheduling and polymorphic operation
dispatching. In both of these cases, the execution model Imits the semantic variability to the behavior of a single
operation: ObjectActivation::getNextEvent (see 8.4.3.1) in the case of event dispatching and Object::dispatch in the case
of operation dispatching (see 8.3.2.1). The execution model uses the Strategy pattern in order to allow for possible
variation in the behavior of these operations.

The Strategy pattern involves defining an abstract base strategy class for an operation whose behavior is to be alowed to
vary. This base class defines an abstract operation corresponding to the original operation, to which the original operation
is delegated. Different concrete subclasses of the base strategy class can then define different concrete behaviors for the
operation, and selecting a specific behavior (or strategy) corresponds to using an instance of a specific concrete strategy
class.

92 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

In the execution model, all strategy classes ultimately descend, directly or indirectly, from the class SemanticStrategy (see
Figure 8.4). The SemanticStrategy class provides a common operation for getting the “name” of a strategy, which
identifies to which semantic variation point a strategy instance applies. The standard strategy names used in the execution
model correspond to the names of the operations whose behavior is being provided: “getNextEvent” and “dispatch.”

The strategy to be used for a semantic variation point is determined by the strategy instance that is registered with the
execution factory (using the setStrategy operation) at a given locus under the corresponding strategy name. There must be
exactly one strategy instance, of the appropriate subclass, registered for each semantic variation point. The execution
factory getStrategy operation provides a lookup mechanism for retrieving a strategy instance to be used for a specific
named semantic variation.

For further discussion of the strategy classes related to each semantic variation point, as well as the default strategies
provided in the execution model, see 8.4.3.1 and 8.3.2.1.

Note: While there are currently only two semantic variation points defined for fUML, the strategy mechanism has
intentionally been made general enough to accommodate the possible need for additional variation points in future
extensions to the specification of the execution semantics for larger subsets of UML.

Specifying Nondeterministic Behavior

There are a number of cases in which the UML 2 Superstructure specification specifically indicates that the execution
semantics in a certain area are nondeterministic-that is, the semantic specification does not prescribe which one of a
number of possible choices is taken during an actual execution. A legal execution may take any one of the allowed
choices. For example, if more than one clause of a conditional node has a successful test, then only one of the clause
bodies will be executed, but it is nondeterministic which one is actually executed.

In order to model nondeterministic behavior in the execution model, a special case of the Strategy pattern is used. A
choice strategy is one with the name “choice” that provides a single operation called choose. This operation takes a single
integer argument size (which must be greater than zero) and returns an integer value from 1 to the given size.

The ChoiceStrategy class (see Figure 8.4) is the abstract base strategy class for all choice strategies. A single instance of
a concrete subclass of ChoiceStrategy is registered with the execution factory at each locus. Whenever a behavior
specification within the execution model is required to make a non-deterministic choice between some number of options,
this choice is made by getting the registered choice strategy and using its choose operation.

The key point is that a legal execution may use any choice strategy at al, so long as the “choose operation” always
returns a selection from 1 to the required number of choices. Since any choice strategy islegal, no restriction is placed on
a conforming execution tool as to how such choices are actually made in its specific implementation. In this way, the
concept of nondeterminism operationally is interpreted in the execution model.

For completeness, the execution model includes a single concrete default choice strategy class, FirstChoiceStrategy (see
Figure 8.4). The choose operation of this class always returns 1, which corresponds to always picking the first of alist of
possible options. It is important to understand that, while this specific strategy is deterministic, the effective
nondeterminism of allowed behavior comes about because any other choice strategy might also be used, whether it is
some other simple algorithm, totally random or just based on what is most convenient for the internal implementation of
some execution tool.

Note: Thereis no requirement that a conforming execution tool provide aformal specification of what its effective choice
strategy is, as this may be entirely implicit in the way the tool is implemented. On the other hand, a specific choice
strategy may be formally specified by defining a new subclass of ChoiceStrategy. This may be useful, for example, if the
implementation target isin a domain (such as life critical systems) in which fully determinable behavior is desirable or if
it is desirable to be able to specify some sort of fair or parameterized distribution of how choices are made.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 93

Primitive Behaviors and Primitive Types

The execution factory at each locus maintains the set of primitive behaviors available to be called by executions at a
specific locus. In fUML, primitive behaviors are defined syntactically as instances of OpaqueBehavior. For each
OpagueBehavior instance representing a primitive behavior, the execution factory maintains a corresponding prototype
instance of OpaqueBehaviorExecution. When an instance of OpagueBehavior is passed to the execution factory
createExecution operation, the corresponding prototype opaque behavior execution is looked up. A copy of this prototype
execution instance is then returned as the result of the createExecution call.

Sub clause 9.3 specifies the basic library of primitive behaviors that must be provided by any conforming execution tool.
However, specific execution tools may also provide additional primitive behaviors. These are modeled as additional
opague behavior execution prototypes added to the standard list required to be maintained by any execution factory.

Finally, the execution factory also maintains a list of built-in primitive types for which there are corresponding literal
value specifications. Note that this is alist of instances of the PrimitiveType metaclass-that is, representations of the M 1-
level types from the fUML model library (see 9.2). During the evaluation of a literal value specification, the appropriate
evaluation class looks up by name the proper primitive type to attach to the resulting value (see 8.3). Since fUML
includes literal value specifications for Boolean, Integer, Real, String, and UnlimitedNatural (see 7.2.2), the list of built-
in types must include at least these types.

Configuring the Execution Environment at aLocus

While the Executor class provides the basic interface for evaluating value specifications and executing behaviors, the
preceding discussion in this sub clause indicates that more than just an instance of an executor is required in order to even
begin to perform such evaluations and executions. Instead, it is necessary to instantiate a set of collaborating objects
(largely from classes within the execution model) that provide the initial execution environment. The configuration of this
initial environment in terms of the execution model is an abstraction of the capabilities that a conforming execution tool
must actually provide in order to execute afUML model.

The following items are required as part of the execution environment at a specific locus.
» A singleinstance of class Locus.
« A singleinstance of class Executor, linked to the locus.

» A singleinstance of asubclass of class ExecutionFactory for the appropriate conformance level, also linked to the locus
(see8.2.2.2.2,8.2.2.2.3,84.3.2.1,and 8.6.4.2.1).

« Instances of PrimitiveType for each of the primitive types Boolean, Integer, String and UnlimitedNatural, as defined in
the Foundational Model Library (see 9.2), registered with the execution factory as built-in types.

« Singleinstances of concrete subclasses of ChoiceStrategy (see 8.2.2.2.1), DispatchStrategy (see 8.3.2.2.4) and
GetNextEventStrategy (see 8.4.3.2.4), al registered with the execution factory.

The following items are also permitted as part of the execution environment at a specific locus.

« Instances of concrete subclasses of OpagueBehaviorExecution registered with the execution factory as primitive
behavior prototypes (these may include some or all of the primitive behaviors from the Foundational Model Library
(see9.3).

« Instances of Object representing discoverable services, instantiated as existential values at the locus (these may include
singleton instances of the basic input/output classes StandardinputChannel and StandardOutputChannel (see 9.5).

94 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

fuML ::Semantics::Classes::Kernel::ExtensionalValue

* | + extensionalvalues

0.1 + locus

Locus

+ setExecutor (executor ; Executor)

+ setFactory (factory ; ExecutionFactary) + locus
+ getExtent (classifier ; Classifier) : ExtensionalValue [*] jweie
+ add (value ; Extensionalvalue) 0.1

+ remove (value ; Extensionalvalue)
+ instantiate (type ; Class) : Object
+ conforms (type : Classifier, classifier ; Classifier) : Boolean

+locus | g1

+ executor 0.1

Executor

+ execute (behavior : Behavior, context : Object [0..1], inputs : Parameteryalue [*]) : Parametervalue [*]
+ evaluate { specification : ValueSpecification | : Value
+ start (type : Class, inputs : Parameteryalue [*]) Reference

ExecutionFactory 0.1

+ createExecution (behavior ; Behavior, context : Object [0..1]) : Execution + factory

+ createBEvaluation ({ specification : ValueSpecification) @ Evaluation

+ instantiateVisitor (element : Blement) | Semantic\Visitor

+ instantiateOpagqueBehaviorExecution (behavior : OpagueBehavior) @ OpaqueBehaviorExecution
+ addPrimitiveBehaviorPrototype | execution : OpaqueBehaviorExecution) *
+ addBuiltnType (type : PrimitiveType)

+ getBuitinType (name : String) : PrimitiveType [0..1]
+ setStrategy (strategy : SemanticStrategy)

+ getStrategy { name : String) ¢ SemanticStrategy [0..1]
+ getStrategyIndex (name : String) @ Integer

+ builtInTypes

1 *
fUML::Syntax::Classes::Kernel::PrimitiveType I
+ strategies | * « | + primitiveBehaviorPrototypes
SemanticVisitor SemanticStrategy fUML ::Semantics::CommonBehaviors::BasicBehaviors::0paqueBehaviorExecution |

+ getName () : String
fa

ChoiceStrategy

+ getMame [) ; String
+ choose (size . Integer) : Integer

FirstChoiceStrategy

+ choose (size : Integer) Integer

Figure 8.4 - Loci

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

fuML ::Semantics::Loci::Locil 1::ExecutionFactory

T

ExecutionFactorylLl

+ instantiateVisitor { elernent : Element) SermanticVisitor

Figure 8.5 - Execution Factory for L1
8.2.2.2 Class Descriptions
8.2.2.2.1 ChoiceStrategy

A choice strategy is used to represent the behavior of making an arbitrary non-deterministic choice.
A valid execution may use ANY choice strategy for choosing one element from a given set.
Generalizations

» “SemanticStrategy” on page 106

Attributes

None

Associations

None

Operations
[1] choose (in size: Integer) : Integer
Choose an integer from 1 to the given size.

[The size must be greater than 0.]

[2] getName () : String
// The name of a choice strategy is always "choice".

return "choice";
8.2.2.2.2 ExecutionFactory

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value
specification or the activation of an activity node.

Generalizations

None

96 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Attributes

None

Associations

builtinTypes : PrimitiveType[0..*]
The set of primitive types that have corresponding literal value specifications.
Must include Integer, Boolean, String, and UnlimitedNatural.

e locus: Locus[0..1]
Thelocus at which this factory resides.

« primitiveBehaviorPrototypes : OpaqueBehaviorExecution [0..*]
The set of opaque behavior executions to be used to execute the primitive behaviors known to the factory.

e dtrategies: SemanticStrategy [0..*]
The set of semantic strategies currently registered with this execution factory.
Operations
[1] addBuiltinType (in type : PrimitiveType)
// Add the given primitive type as a built-in type.

// Precondition: No built-in type with the same name should already exist.

this.builtInTypes.addValue (type) ;

[2] addPrimitiveBehaviorPrototype (in execution : OpagqueBehaviorExecution)

// Add an opaque behavior execution to use as a prototype for instantiating the
corresponding primitive opaque behavior.

// Precondition: No primitive behavior prototype for the type of the given execution should
already exist.

this.primitiveBehaviorPrototypes.addValue (execution) ;

[3] createEvaluation (in specification : ValueSpecification) : Evaluation
// Create an evaluation object for a given value specification.

// The evaluation will take place at the locus of the factory.

Evaluation evaluation = (Evaluation) (this.instantiateVisitor(specification));
evaluation.specification = specification;
evaluation.locus = this.locus;

return evaluation;

[4] createExecution (in behavior : Behavior, in context : Object [0..1]) : Execution
// Create an execution object for a given behavior.

// The execution will take place at the locus of the factory in the given context.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 97

// If the context is empty, the execution is assumed to provide its own context.

Execution execution;

if (behavior instanceof OpaqueBehavior) {

execution = this.instantiateOpaqueBehaviorExecution ((OpaqueBehavior)behavior) ;
else
execution = (Execution) (this.instantiateVisitor (behavior)) ;

execution. types.addValue (behavior) ;

execution.createFeatureValues () ;

this.locus.add (execution) ;

if (context == null) {
execution.context = execution;
else {
execution.context = context;

return execution;

[5] getBuiltinType (in name : String) : PrimitiveType [0..1]

// Return the built-in type with the given name.

PrimitiveType type = null;

int i = 1;

while (type == null & i <= this.builtInTypes.size()) ({
PrimitiveType primitiveType = this.builtInTypes.getValue(i-1);
if (primitiveType.name.equals (name))

type = primitiveType;

return type;

[6] getStrategy (in name : String) : SemanticStrategy [0..1]

// Get the strategy with the given name.

98 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

int 1 = this.getStrategyIndex (name) ;

SemanticStrategy strategy = null;
if (i <= this.strategies.size()) {

strategy = this.strategies.getValue(i-1);

return strategy;

[7] getStrategylndex (in name : String) : Integer
// Get the index of the strategy with the given name.

// If there is no such strategy, return the size of the strategies list.

SemanticStrategylList strategies = this.strategies;
int 1 = 1;
boolean unmatched = true;
while (unmatched & (i <= strategies.size()))
if (strategies.getValue(i-1) .getName () .equals (name)) {
unmatched = false;
} else {
i =1 + 1;

return 1i;

[8] instantiateOpaqueBehaviorExecution (in behavior : OpagueBehavior) : OpagueBehaviorExecution

// Return a copy of the prototype for the primitive behavior execution of the given opaque
behavior.

OpaqueBehaviorExecution execution = null;
int 1 = 1;
while (execution == null & i <= this.primitiveBehaviorPrototypes.size()) {

// Debug.println (" [instantiateOpaqueExecution] Checking " +
this.primitiveBehaviorPrototypes.getValue (i) .objectId() + "...");

OpaqueBehaviorExecution prototype = this.primitiveBehaviorPrototypes.getValue(i-1);
if (prototype.getBehavior() == behavior) {

execution = (OpaqueBehaviorExecution) (prototype.copy()) ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 99

if (execution == null) {

Debug.println (" [instantiateOpaqueExecution] No prototype execution found for " +
behavior.name + ".");

}

return execution;

[9] instantiateVisitor (in element : Element, in suffix : String) : SemanticVisitor

Instantiate a visitor object for the given element.

[10] setStrategy (in strategy : SemanticStrategy)

// Set the strategy for a semantic variation point. Any existing strategy for the same SVP
is replaced.

int i = this.getStrategyIndex(strategy.getName()) ;

if (i <= this.strategies.size()) {

this.strategies.removeValue (i-1) ;

this.strategies.addValue (strategy) ;
8.2.2.2.3 ExecutionFactoryL1

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value
specification, or the activation of an activity node. This class only handles elements available at Conformance Level 1.

Generalizations

» “ExecutionFactory” on page 96

Attributes

None

Associations

None

Operations
[1] instantiateVisitor (in element : Element) : SemanticVisitor

// Instantiate a visitor object for the given element (at Conformance Level 1)

SemanticVisitor visitor = null;

if (element instanceof LiteralBoolean) {

visitor = new LiteralBooleanEvaluation () ;

100 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

else 1f (element instanceof fUML.Syntax.Classes.Kernel.LiteralString) {

visitor = new LiteralStringEvaluation() ;

else 1f (element instanceof fUML.Syntax.Classes.Kernel.LiteralNull) {

visitor = new LiteralNullEvaluation() ;

else 1f (element instanceof fUML.Syntax.Classes.Kernel.InstanceValue) {

visitor = new InstanceValueEvaluation () ;

else 1f (element instanceof fUML.Syntax.Classes.Kernel.LiteralUnlimitedNatural) {

visitor = new LiteralUnlimitedNaturalEvaluation () ;

else 1f (element instanceof fUML.Syntax.Classes.Kernel.LiterallInteger) {

visitor = new LiterallIntegerEvaluation() ;

else if (element instanceof fUML.Syntax.Classes.Kernel.LiteralReal) {

visitor = new LiteralRealEvaluation() ;

return visitor;
8.2.2.2.4 Executor
An executor is used to execute behaviors and evaluation value specifications.

Generalizations

None

Attributes

None

Associations

e locus: Locus[0..1]
The locus at which this executor resides.

Operations

[1] evaluate (in specification : ValueSpecification) : Value

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 101

// Evaluate the given value specification, returning the specified wvalue.

// Debug.println (" [evaluate] Start...");

return this.locus.factory.createEvaluation(specification) .evaluate() ;

[2] execute (in behavior : Behavior, in context : Object [0..1], in inputs : ParameterValue [0..*]) : ParameterValue [0..*]

// Execute the given behavior with the given input values in the given context, producing
the given output values.

// There must be one input parameter value for each input (in or in-out) parameter of the
behavior.

// The returned values include one parameter value for each output (in-out, out or return)
parameter of the behavior.

// The execution instance is destroyed at completion.
Execution execution = this.locus.factory.createExecution (behavior, context) ;
for (int i = 0; 1 < inputs.size(); i++) {

execution.setParameterValue (inputs.getValue(i)) ;

execution.execute() ;
ParameterValueList outputValues = execution.getOutputParameterValues() ;

execution.destroy () ;

return outputValues;

[3] start ((in type : Class, in inputs : ParameterValue [0..*]) : Reference
// Instantiate the given class and start any behavior of the resulting object.

// (The behavior of an object includes any classifier behaviors for an active object or the
class of the object itself, if that is a behavior.)

Debug.println (" [start] Starting " + type.name + "...");

Object object = this.locus.instantiate(type);

Debug.println (" [start] Object = " + object);

object.startBehavior (type, inputs);

Reference reference = new Reference() ;

reference.referent = object;

return reference;

102 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.2.2.2.5 FirstChoiceStrategy

Generalizations

» “ChoiceStrategy” on page 96

Attributes

None

Associations

None

Operations

[1] choose (in size: Integer) : Integer

// Always choose one.

return 1;

8.2.2.2.6 Locus

A locusis a place at which extensional values (objects or links) can exist. The extent of a class or association is the set of

objects or links of that type that exist at a certain locus.

A locus a'so has an executor and a factory associated with it, used to execute behaviors as a result of requests dispatched

to objects at the locus.

Generalizations

None

Attributes

None

Associations

e executor : Executor [0..1]
The executor to be used at thislocus.

e extensionalVaues: ExtensionalVaue[0..*]
The set of values that are members of classifier extents at this locus.

« factory : ExecutionFactory [0..1]
The factory to be used at this locus.

Operations

[1] add (in value : ExtensionalValue)

// Add the given extensional value to this locus

value.locus = this;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

103

this.extensionalValues.addValue (value) ;

[2] conforms (in type : Classifier, in classifier : Classifier) : Boolean

// Test if a type conforms to a given classifier, that is, the type is equal to or a
descendant of the classifier.

boolean doesConform = false;
if (type == classifier) {
doesConform = true;
} else {
int 1 = 1;

while (!doesConform & 1 <= type.general.size()) {
doesConform = this.conforms(type.general.getValue(i-1), classifier);

i =1 + 1;

return doesConform;

[3] getExtent (in classifier : Classifier) : Extensional Value [0..*]

// Return the set of extensional values at this locus which have the given classifier as
a type.

ExtensionalValuelList extent = new ExtensionalValuelList () ;

ExtensionalValuelList extensionalValues = this.extensionalValues;
for (int 1 = 0; 1 < extensionalValues.size(); i++) {
ExtensionalValue value = extensionalValues.getValue (i) ;

ClassifierList types = value.getTypes();

boolean conforms = false;
int j = 1;
while (!conforms & j <= types.size()) {

conforms = this.conforms (types.getValue(j-1), classifier);

if (conforms) {

extent.addValue (value) ;

104 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

return extent;

[4] instantiate (in type : Class) : Object

// Instantiate the given class at this locus.

Object object = null;

if (type instanceof Behavior) {

object = this.factory.createExecution((Behavior)type,

}

else {

object = new Object ();

object.types.addValue (type) ;
object.createFeatureValues () ;

this.add (object) ;

return object;

[5] remove (in value : ExtensionalValue)

// Remove the given extensional value from this locus.

value.locus = null;

boolean notFound = true;

int 1 = 1;

while (notFound & 1 <= this.extensionalValues.size()) {
if (this.extensionalValues.getValue(i-1) == value) {

this.extensionalValues.remove (i-1) ;

notFound = false;

[6] setExecutor (in executor : Executor)

// Set the executor for this locus.

this.executor = executor;

this.executor.locus = this;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

105

[7] setFactory (in factory : ExecutionFactory)

// Set the factory for this locus.

this.factory = factory;

this.factory.locus = this;
8.2.2.2.7 SemanticStrategy

The common base class for semantic strategy classes. A semantic strategy class specifies the behavior to be used at a
specific semantic variation point.
Generalizations

None

Attributes

None

Associations

None

Operations
[1] getName () : String

Return the name of this strategy, as defined for the semantic variation point to which the
strategy applies.

8.2.2.2.8 SemanticVisitor
The common base class for semantic visitor classes.

Generalizations

None

Attributes

None

Associations

None

Operations
[1] _beginlsolation ()
Debug.println("[beginIsolation] Begin isolation.");

[2] _endisolation ()

Debug.println("[endIsolation] End isolation.");

106 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.2.3 LocilL2

8.2.3.1 Overview

As shown in Figure 8.6, the LociL 2 package contains the class ExecutionFactoryL 2, which provides for the instantiation
of semantic visitors for all appropriate syntactic elements at Conformance Level 2.

fUML ::Semantics::iLoci::Locil 1::ExecutionFactoryL 1

|

ExecutionFactorylL2

+ instantiateVisitor { elerment : Element) | SemanticVisitor

Figure 8.6 - Execution Factory for L2
8.2.3.2 Class Descriptions
8.2.3.2.1 ExecutionFactoryL?2

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value
specification or the activation of an activity node. This class only handles elements available at Conformance Level 2.

Generalizations

» “ExecutionFactoryL 1" on page 100

Attributes

None

Associations

None

Operations
[1] instantiateVisitor (in element : Element) : SemanticVisitor

// Instantiate a visitor object for the given element (at Conformance
// Level 2)

SemanticVisitor wvisitor = null;

if (element instanceof Activity) ({
visitor = new activityExecution () ;

else if (element instanceof ActivityParameterNode) ({

visitor = new ActivityParameterNodeActivation() ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 107

else if (element instanceof InitialNode) {

visitor = new InitialNodeActivation() ;

else if (element instanceof ActivityFinalNode)

visitor = new ActivityFinalNodeActivation() ;

else if (element instanceof FlowFinalNode) {

visitor = new FlowFinalNodeActivation() ;

else if (element instanceof JoinNode) ({

visitor = new JoinNodeActivation() ;

else if (element instanceof MergeNode)

visitor = new MergeNodeActivation() ;

else if (element instanceof ForkNode) ({

visitor = new ForkNodeActivation() ;

else if (element instanceof DecisionNode) ({

visitor = new DecisionNodeActivation() ;

else if (element instanceof InputPin) ({

visitor = new InputPinActivation() ;

else if (element instanceof OutputPin)

visitor = new OutputPinActivation() ;

else if (element instanceof CallBehaviorAction)

visitor = new CallBehaviorActionActivation() ;

108 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

else if (element instanceof CallOperationAction) ({

visitor = new CallOperationActionActivation() ;

else if (element instanceof SendSignalAction) {

visitor = new SendSignalActionActivation() ;

else if (element instanceof ReadSelfAction) {

visitor = new ReadSelfActionActivation() ;

else if (element instanceof TestIdentityAction)

visitor = new TestIdentityActionActivation() ;

else if (element instanceof ValueSpecificationAction) {

visitor = new ValueSpecificationActionActivation() ;

else if (element instanceof CreateObjectAction)

visitor = new CreateObjectActionActivation() ;

else if (element instanceof DestroyObjectAction) ({

visitor = new DestroyObjectActionActivation() ;

else if (element instanceof ReadStructuralFeatureAction) (

visitor = new ReadStructuralFeatureActionActivation() ;

else if (element instanceof ClearStructuralFeatureAction)

visitor = new ClearStructuralFeatureActionActivation() ;

else if (element instanceof AddStructuralFeatureValueAction)

visitor = new AddStructuralFeatureValueActionActivation() ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 109

else if (element instanceof RemoveStructuralFeatureValueAction) {

visitor = new RemoveStructuralFeatureValueActionActivation() ;

else if (element instanceof ReadLinkAction) {

visitor = new ReadLinkActionActivation() ;

else if (element instanceof ClearAssociationAction) {

vigsitor = new ClearAssociationActionActivation() ;

else if (element instanceof CreateLinkAction) {

vigitor = new CreateLinkActionActivation() ;

else if (element instanceof DestroyLinkAction)

visitor = new DestroyLinkActionActivation() ;
else
visitor = super.instantiateVisitor(element) ;

return visitor;

8.2.4 LociL3

8.2.4.1 Overview

As shown in Figure 8.7 the LociL 3 package contains the class ExecutionFactoryL 3, which provides for the instantiation
of semantic visitors for all appropriate syntactic elements at Conformance Level 3.

fUML::Semantics :Loci::Locil 2 ;:ExecutionFactoryL2

T

ExecutionFactoryL3

+ instantiateVisitor | element ; Blement) SemanticVisitor

Figure 8.7 - Execution Factory for L3

110 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.2.4.2 Class Descriptions

8.2.4.2.1 ExecutionFactoryL3

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value

specification or the activation of an activity node. This class only handles elements available at Conformance Level 3.

Generalizations

» “ExecutionFactoryL2” on page 107

Attributes

None

Associations

None

Operations

[1] instantiateVisitor (in element : Element) : SemanticVisitor

// Instantiate a visitor object for the given element (at Conformance Level 3)

SemanticVisitor wvisitor = null;
if (element instanceof ConditionalNode) {

visitor = new ConditionalNodeActivation() ;

else if (element instanceof LoopNode) {

visitor = new LoopNodeActivation() ;

else if (element instanceof ExpansionRegion)

visitor = new ExpansionRegionActivation() ;

// Note: Since ConditionalNode, LoopNode and ExpansionRegion are subclasses of

// StructuredActivityNode, element must be tested against the three subclasses before

// the superclass
else 1f (element instanceof StructuredActivityNode) {

visitor = new StructuredActivityNodeActivation() ;

else 1f (element instanceof ExpansionNode) {

visitor = new ExpansionNodeActivation() ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

111

else if (element instanceof ReadExtentAction) {

visitor = new ReadExtentActionActivation() ;

else if (element instanceof ReadIsClassifiedObjectAction) {

visitor = new ReadIsClassifiedObjectActionActivation() ;

else if (element instanceof ReclassifyObjectAction) {

visitor = new ReclassifyObjectActionActivation() ;

else if (element instanceof StartObjectBehaviorAction) {

visitor = new StartObjectBehaviorActionActivation() ;

else if (element instanceof StartClassifierBehaviorAction) {

visitor = new StartClassifierBehaviorActionActivation() ;

else if (element instanceof AcceptEventAction) {

visitor = new AcceptEventActionActivation();

else if (element instanceof ReduceAction) {

visitor = new ReduceActionActivation() ;
else {
visitor = super.instantiateVisitor (element) ;

return visitor;

112 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.3 Classes

8.3.1 Overview

Within the Classes package, al the UML constructs included in fUML are from the Kernel package (see 7.2.2). Figure 8.8
shows the dependencies of the semantics Kernel packages on other packages.

«amports=

aimports £ «import=
Kernel »
(from fUML: -Semantics: :Classes)

L "".II'IT‘HT"

Figure 8.8 - Classes Semantics Packages

8.3.2 Kernel
8.3.2.1 Overview

Values

As discussed in 6.2, a model is interpreted to make statements about some semantic domain. First order statements are
actually made on instances in the semantics domain. The structural semantics of UML provides the denotational mapping
of appropriate UML model elements to such semantic instances.

The term instance is often used to mean an object of a specific class. However, in UML, this needs to be generalized to
the concept of an instance of any classifier. The appropriate UML model elements for representing this generalized
concept are value specifications.

Figure 7.3 in sub clause 7.2.2.1 shows the subset of the abstract syntax of UML value specifications that is included in
fUML. This subset includes the syntax for model elements representing literals of primitive types such as integers and
Booleans, as well as instances of structured types, which include non-primitive data types and classes.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 113

The denotation of a value specification is given formally by the evaluate operation of the Executor class (see 8.2). This
operation maps an instance of the abstract syntax type ValueSpecification to an instance of the semantic type Value. Just
as the abstract syntax of UML can itself be modeled in UML, the semantic domain for UML can also be modeled in
UML. Figure 8.9 shows this model for Value.

Clearly, litera specifications map to primitive values: literal integers to integer values, literal Booleans to Boolean val ues,
etc. The mapping for instance values is not so straightforward. An instance value is the specification of a value as an
instance of a non-primitive classifier. The classifier may be an enumeration, a structured data type or a class. Such value
specifications map to enumeration and structured val ues.

Consider, for example, the simple instance model from Figure 6.1 in sub clause 6.2. Figure 8.7 gives the representation of
this model in terms of the abstract syntax of ValueSpecification. The result of the operation evaluate acting on the
instance value v (a kind of ValueSpecification) in Figure 8.7 is then the object j (a kind of structured value) given in
Figure 8.8.

: PrimitiveType |+ type : LiteralString
+ name = "String” + value = "Jack”
+ type + value

‘+ owningSlot

: Property + definingFeature : Slot
+ name = "name"
+ ownedAttribute + slot
+ class + owninglnstance
: Class + classifier : InstanceSpecification + instance v : InstanceValue

+ name = "Person”

+ class]
+ owninglnstance

+ ownedAttribute + slot

: Property definingFeature - Slot

+ name = "houses”
+ owningSlot
+ value

: InstanceValue

+ type _
+ instance
: Class classifier : InstanceSpecification

+ name = "House"

Figure 8.9 - Abstract Syntax Representation of a Simple Instance Model

114 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

: PrimitiveType + type : StringValue

+ name = "String” + value = "Jack”
M
+ type + values

: Property + feature : FeatureValue

+ name = "name"
+ ownedAttribute + featurevalues
+ class
: Class + types

+ name = "Person”

+ class

+ ownedAttribute + featureValues
: Property + feature _t FeatureValue

+ name = "houses”

+ type + values

: Class + types _: Object
+ name = "House"

Figure 8.10 - Semantic Interpretation of a Simple Instance Model

Extensional values

Every classifier has an intension, that is, the set of all possible values that may have that classifier as a type. Other than
for enumerations, for which this set is explicitly specified, the intension of a classifier is conceptually infinite (though, of
course, actudly finite in any real implementation). In fact, one semantic mapping for a classifier is to have it specifically
denote its intension.

However, there is a fundamental difference between the intensions of data types and classes. The possible values of a data
type are essentially fully determined by the definition of the type. For example, the intension of the primitive type Integer
is the mathematical set of integers. While this set isinfinite, it is completely specified by its mathematical definition. One
cannot “create” a“new” instance of Integer that does not denote an integer value already in the set. In some sense, all the
possible instances of Integer are considered to aready exist, even though, of course, only a small finite subset of them
will be denoted in any given model.

The UML syntax highlights this difference for primitive types by providing distinguished literal specifications to denote
primitive values, rather than using instance specifications. However, the semantic difference also exists for structured data
types (that is a data type that is not a primitive or an enumeration, but which has structural features), even though the
same UML syntax is used for denoting instances of structured data types and classes.

An instance value of a structured data type maps to a data value, as shown in Figure 8.7. A data value is a kind of
structured value, which associates values with the attributes of the data type. The equality of two data values of the same
type is determined by the equality of the values of their attributes. They have no identity separately from their value and
are, therefore, semantically akin to non-structured data types.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 115

An instance of a class, on the other hand, is an object. Unlike a data value, an object has an identity separate from the
values of its attributes. Two objects can have the same values for their attributes, and still be distinct objects. Further, the
values of the attributes of an object may change over time, independently of how the attribute values of any other object
change.

Actually, an instance value of a class does not map directly to an object but, rather, to a reference to an object, as shown
in Figure 8.10. Thisis because an object, once created, has an independent existence and there may be multiple references
to that same object. Changes to the object made via one reference are visible via any other reference.

Objects are thus examples of extensional values, as are links, which are instances of associations. In addition to their
intension, classes and associations have an extension, that is, the set of instances of the class or association that exist at
any one point in time. This leads, however, to the issue of managing the scope of such extension sets.

This is particularly important for associations. There are actually no actions that return links as values. (Foundational
UML does not contain association actions, so it does not provide semantics for link objects.) Rather, a read link action
actually queries the current extension of the association for matching links.

But, pragmatically, how does one bound what is to be included in the actual extension set? Certainly links created during
the execution of a model should be accessible later in the execution of that model. But what about other executions of the
same model, perhaps widely physically distributed? What about other models that may reuse the same association?

In order to deal with thisissue, the fUML semantic model introduces the concept of alocus, as shown in Figure 8.10 and
described in 8.2. An existential value is created at a specific such locus and remains there during its life. The extent of a
class or association is its extension at a specific locus.

For executions at a certain locus, the extension of a class or association is always limited to the extent at that locus.
Therefore, a read link action will only query the specified association extent at the locus at which it is executing.
Similarly, aread extent action will only return (references to) the set of currently extant objects in the specified class
extent at the locus at which it is executing.

Evaluations

An evaluation is a kind of visitor class used to evaluate value specifications (see 8.2 for a general discussion of visitor
classes). As shown in Figure 8.11, there is an evaluation class corresponding to each concrete subclass of the abstract
syntax metaclass ValueSpecification.

To evaluate a value specification, the executor uses the execution factory to create an instance of the appropriate
evaluation class (see 8.2), with a reference to the representation of the value specification to be evaluated. Evaluation is
actually carried out by calling the evaluate method on the evaluation object, which then returns a value of the appropriate

type.

An evaluation object is also created with areference to the execution locus. This provides access to the execution factory
at the locus in order to obtain the proper primitive type to use for the value resulting from a literal evaluation.

Polymorphic Operation Dispatching

Operations in UML are potentially polymorphic-that is, there may be multiple methods for any one operation.
Polymorphic operation dispatching is the determination of which method to use for a given invocation of the operation,
depending on the context and target of the invocation. The specification for this determination is provided in the
execution model by the dispatch operation of the Object class, as shown in Figure 8.10 (the semantics of operation
dispatching is further discussed in relation to the call operation action in 8.6.2).

116 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

However, the exact behavior to be specified for polymorphic operation dispatching is a semantic variation point in fUML.
(See Clause 2.4 for a full discussion of semantic variation within fUML.) Following the general approach of using the
Strategy Pattern to model semantic variation points (see 8.2.1), the variability of operation dispatching is captured by
using strategy classes for the Object::dispatch operation. DispatchStrategy provides the abstract base class for this type of
strategy (see Figure 8.10). The default dispatching behavior is given by the concrete class
RedefinitionBasedDispatchStrategy.

The default redefinition based dispatch strategy requires that every concrete fUML operation has an associated method. In
order to override an operation inherited from a superclass, the subclass must declare the redefining operation as a
redefinition of the inherited operation. This is interpreted as meaning that any calls made to the original superclass
operation, for objects that are instances of the subclass or any of its descendants, will be dispatched to the method of the
redefining operation, rather than to the method of the original operation.

A conforming execution tool may define an aternative rule for how this dispatching is to take place by defining a new
DispatchStrategy subclass specifying whatever rule is desired. An instance of this alternate strategy must then be
registered with the execution factory at a given locus, rather than the default strategy.

To simplify the specification of new concrete dispatch strategy subclasses, the abstract base DispatchStrategy class
provides a generally applicable method for its dispatch operation using an abstract getMethod operation. The getM ethod
operation takes the same arguments as dispatch (the target object and the operation to dispatched) and is required to return
the operation method chosen to be executed for the operation by a specific dispatch strategy. The dispatch operation then
creates an execution for the chosen method at the locus of the target object on which the operation is being invoked and
returns that execution object.

The UML Superstructure allows data types to own operations, as well as classes. However, data types are not behaviored
classifiers, so they cannot own behaviors to be used as methods for their operations. Since fUML requires that every non-
abstract operation have a method, it would thus only be possible to have abstract operations on data types, which would
not be very useful. Therefore, data types are prohibited from having operations at all in fUML (see the constraint in
7.2.2.2.6).

It is thus not possible to use owned operations to define the primitive behaviors of a data type. Instead, the Foundational
Model Library defines a set of primitive function behaviors that take values of primitive data types as their arguments.
Rather than being operations of the primitive types, these primitive behaviors are grouped into library packages
corresponding to the appropriate types (e.g., IntegerFunctions for type Integer, etc.). Implementations for these behaviors
are then registered with the execution factory as part of the configuration of the execution environment (see 8.2.1).

Not being operations, such primitive behaviors are, of course, not polymorphic. They are called using call behavior
actions, rather than call operation actions.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 117

fUML i oci::Locil1

Value

+ specify () : ValueSpecification
+ equals (otherValue : Value) : Boolear
+ copy () : Value fUML jonLiteral

#new_ () : Value
+ getTypes () : Classifier [*]
+ hasType (type :lCIassifier) : Boolean + literal | 1
+ toString () : String + enumeration | 0..1
+ objectld () : String
*
StructuredValue
PrimitiveValue EnumerationValue
+ specify (') : ValueSpecification
+ getFeatureValue (feature : StructuralFeature) : FeatureValue + o - Value + specil + ValueSpecification
+ setFeatureValue (feature : StructuralFeature, values : Value [*], position : Integer [0..1]) + elt)'l): ((Z.s u Classifier [*]] + ezualfsy((3ther\,:,uep. Vlal|uel) - Boolear
+ getFeatureValues (') : FeatureValue [*] * + copy () : Value ' '
+ createFeatureValues () * #new_ ()" Value
+ getT?pes () : Classifier [*]
+ toString () : String
*
BooleanValue StringValue
| +value:Boolean | + value : String
+ specify () : ValueSpecification + specify () : ValueSpecification
+ equals (otherValue : Value) : Boolear + equals (otherValue : Value) : Boolear + type 1
+ copy () : Value +copy () : Value
new_ () : Value #new_ () : Value | fUML::Sy | nel::PrimitiveType |
-+ toString () : String -+ toString () : String + ownedLiteral *
+ type 1 ’
RealValue IntegerValue Unliri alValue fUML::Sy I ation |
+value:Real | | +value:Integer | + value : UnlimitedNatural
+ specify () : ValueSpecification + specify () : ValueSpecification s ecify" () : ValueSpecification
+ equals (otherValue : Value) : Boolear + equals (otherValue : Value) : Boolear P Is (otherval p. Value) : Bool
+copy () : Value +copy () : Value +equas(loVTraue. alue) : Boolear
#new_ () : Value #new_ () : Value ; f,zw (())'- \?afueé
+ toStri - String + toString < Strin =
ostring () : String osiring () : String + toString () : String

Figure 8.11 - Values

118 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

fUML eature fUML

1 | + feature [r
*
FeatureValue + featureValues
+ position : Integer [0..1 x
+ hasEqualValues (other : FeatureValue) : Boolean
+ copy () : FeatureValue
0..1
Reference
*\y + values 1
ML - | + startBehavior (classifier : Class [0..1], inputs : ParameterValue [*])
+ dispatch (operation : Operation) : Execution
+ send (signallnstance : Signallnstance)
CompoundValue + destroy ()
+ equals (otherValue : Value) : Boolear
+ equals (otherValue : Value) : Boolear ; ;:125;/ (()):,v\?alllfe
+copy () : Value + getTy, es' : Classifier [*
+ getFeatureValue (feature : StructuralFeature) : FeatureValue N - gethgtur((e\za.lu e (featur[e]: StructuralFeature) : FeatureValue
+ setFeaturevalue (feature : StructuralFeature, values : Value [*], position : Integer [0..1]) + setFeatureValue (feature : StructuralFeature, values : Value [*], position : Integer [0..1])
+ getFeatureValues () : FeatureValue [*] + getFeatureValues () : FeatureValue [*] ! !
+ removeFeatureValues (classifier : Classifier) + toString () : Strin
+ toString () : String -
*
DataValue
+ extensionalValues + locus
+ getTypes () : Classifier [*] > o . i LociL1::|
+ copy () : Value + destroy () N o "|_fuML oci::LociL1::Locu |
new : Value + coj : Value -
*
1|t referent
+ type 1
fUML::Syntax::Classes::Kernel::DataType | Object
+ startBehavior (classifier : Class [0..1], inputs : ParameterValue [*])
N + dispatch (operation : Operation) : Execution
Link . §
+ send (signallnstance : SignalInstance)
* + destroy ()
+ destroy () + register (accepter : EventAccepter)
+copy () .-Value + unregister (accepter : EventAccepter)
new_ () : Value) + copy () : Value
+ getTypes () : Classifier [*] #new_ () : Value
+ isMatchingLink (link : ExtensionalValue, end : Property) : Boolea + getTypes () : Classifier [*]
+ getOtherF les (extent : Extensi je [*], end : Property)
+ addTo (locus : Locus)
« 1 T + object
+type 0.1 + types * 0..1 | + objectActivation
| fuML iati fUML ::Clase | I fUML N N P N P I

| fUML ics::Loci::LociL1 i M

+ getName () : String
+ dispatch (object : Object, operation : Operation) : Execution
+ getMethod (object : Object, operation : Operation) : Behavior

+ getMethod (object : Object, operation : Operation) : Behavior
+ operationsMatch (ownedOperation : Operation, baseOperation : Operation) : Boolean

Figure 8.12 - Structured Values

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 119

fUML ics::Loci::LocilL1 icVisitoi

|

Lt specification Evaluation + locus N
fUML::Sy Cl. nel::ValueSpecification g 4 fUML ics::Loci::LociL1::Locu:
E3
+ evaluate () : Value [0..1 *
InstanceValueEvaluation LiteralEvaluation
+ evaluate () : Value [0..1 + getType (builtInTypeName : String) : PrimitiveType
LiteralNullEvaluation LiteralIntegerEvaluation LiteralUnlimitedNaturalEvaluation
+ evaluate () : Value [0..1 + evaluate () : Value [0..1 + evaluate () : Value [0..1

LiteralBooleanEvaluation LiteralStringEvaluation LiteralRealEvaluation
+ evaluate () : Value [0..1 + evaluate () : Value [0..1 + evaluate () : Value [0..1

Figure 8.13 - Evaluations

8.3.2.2 Class Descriptions

8.3.2.2.1 BooleanValue

A boolean value is a primitive value whose type is Boolean.

Generalizations

« “PrimitiveValue’ on page 147

Attributes

« vaue: Boolean

The actual Boolean value.

Associations

None

Operations
[1] copy () : Value

// Create a new boolean value with the same value as this boolean value.

BooleanValue newValue = (BooleanValue) (super.copy()) ;

120 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

newValue.value = this.value;

return newValue;

[2] equals (in otherVaue : Value) : Boolean
// Test 1if this boolean value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this boolean value.

boolean isEqual = false;
if (otherValue instanceof BooleanValue) {

isEqual = ((BooleanValue)otherValue) .value == this.value;

return isEqual;

[3] new_ () : Value

// Return a new boolean value with no value.

return new BooleanValue() ;

[4] specify () : ValueSpecification

// Return a literal boolean with the value of this boolean value.

LiteralBoolean literal = new LiteralBoolean() ;

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "false";

if (this.value) {

stringValue = "true";

return stringValue;
8.3.2.2.2 CompoundValue

A compound value is a structured value with by-value semantics. Values are associated with each structural feature
specified by the type(s) of the compound value.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 121

Generalizations

» “StructuredValue” on page 155

Attributes

None

Associations

- featureValues: FeatureValue[0..*]

Operations
[1] copy () : Value

// Create a new data value with the same featureValues as this data

CompoundValue newValue = (CompoundValue) (super.copy());

FeatureValueList featureValues = this.featureValues;
for (int i = 0; i < featurevValues.size(); i++) {
FeatureValue featureValue = featureValues.getValue (i) ;

newValue.featureValues.addValue (featurevValue.copy()) ;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test 1if this data value is equal to the otherValue.

// To be equal, the otherValue must also be a compund value with the
values for each feature.

// Debug.println(" [equals] othervalue instanceof CompoundValue = " +

CompoundValue)) ;

// Debug.println("[equals] super.equals (otherValue) = " + super.equals(otherValue)) ;
boolean isEqual = otherValue instanceof CompoundValue;

if (isEqual) {

CompoundValue otherCompoundValue = (CompoundValue)otherValue;
// Debug.println("[equals] " + this.featureValues.size() + " feature(s).");
isEqual = super.equals(otherValue) & otherCompoundValue.featureValues.size ()

this.featureValues.size () ;

int 1 = 1;

122 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

value.

same types and equal

(otherValue instanceof

while (isEqual & i <= this.featureValues.size()) {

FeatureValue thisFeatureValue = this.featureValues.getValue(i-1);
boolean matched = false;
int j = 1;
while (!matched & j <= otherCompoundvValue.featureValues.size())
FeatureValue otherFeatureValue = otherCompoundValue.featureValues.getValue (]-
1);
if (thisFeatureValue.feature == otherFeatureValue.feature) {
matched = thisFeatureValue.hasEqualValues (otherFeatureValue) ;
}
jo=3 + 1;

isEqual = matched;

return isEqual;

[3] getFeatureValue (in feature : StructuralFeature) : FeatureValue

// Get the value(s) of the member of featureValues for the given feature.

FeatureValue featureValue = null;

int i = 1;

while (featureValue == null & i <= this.featureValues.size()) ({
if (this.featureValues.getValue(i-1).feature == feature) {

featureValue = this.featureValues.getValue(i-1);

return featureValue;

[4] getFeatureValues () : FeatureValue [0..*]

// Return the feature values for this compound value.

return this.featurevValues;

[5] removeFeatureValues (in classifier : Classifier)

// Remove all feature values for features whose type is the given classifier.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 123

int i = 1;
while (i <= this.featurevValues.size())
if (this.featurevValues.getValue(i-1).feature.typedElement.type == classifier) {

this.featureValues.remove (i-1) ;

[6] setFeatureValue (in feature : Structural Feature, in values : Value [0..*], in position : Integer [0..1])

// Set the value(s) of the member of featureValues for the given feature.

FeatureValue featureValue = this.getFeatureValue (feature) ;
if (featurevValue == null) {
featureValue = new FeatureValue() ;

this.featurevValues.addValue (featurevValue) ;

featureValue. feature = feature;
featurevValue.values = values;
featureValue.position = position;

[7] toString (1) : String
String buffer = "(" + this.objectId() + ":";

ClassifierList types = this.getTypes();

int i = 1;

while (i <= types.size()) {

buffer = buffer +" " + types.getValue(i-1) .name;
i =1 4+ 1;

}

int k = 1;

while (k <= this.featurevValues.size()) ({

FeatureValue featureValue = this.featureValues.getValue(k-1);

124 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

buffer = buffer + "\n\t\t" + featureValue.feature.name + "[" + featureValue.position

+ "] =n,;

int j = 1;
while (j <= featureValue.values.size()) {
buffer = buffer + " " + featureValue.values.getValue(j-1).toString() ;
jo=3+1;
}
k =k + 1;

return buffer + ")";
8.3.2.2.3 DataValue
A data value is a compound value whose (single) type is a data type other than a primitive type or an enumeration.

Generalizations

« “CompoundVaue’ on page 121

Attributes

None

Associations
e type: DataType
The type of this data value. This must not be a primitive or an enumeration.

Operations

[1] copy () : Value

// Create a new data value with the same type and feature values as this data value.
DataValue newValue = (DataValue) (super.copy());
newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single type of this data value.

ClassifierList types = new ClassifierList();

types.addvValue (this. type) ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 125

return types;

[3] new_ () : Vaue

// Create a new data value with no type or feature values.

return new DataValue () ;
8.3.2.2.4 DispatchStrategy

A dispatch strategy is a semantic strategy for the polymorphic dispatching of an operation to an execution of a method for
that operation.

Generalizations

» “SemanticStrategy” on page 106

Attributes

None

Associations

None

Operations
[1] dispatch (in object : Object, in operation : Operation) : Execution

// Get the behavior for the given operation as determined by the type(s) of the given
object, compile the behavior at the locus of the object, and return the resulting execution
object.

return object.locus.factory.createExecution (this.getMethod (object,operation), object);

[2] getMethod (in object : Object, in operation : Operation) : Behavior

// Get the method that corresponds to the given operation for the given object.

[3] getName () : String

// Dispatch strategies are always named "dispatch".
return "dispatch";

8.3.2.2.5 EnumerationValue

An enumeration value is a value whose (single) type is an enumeration.

Its literal must be an owned literal of its type.

126 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

« Vaue

Attributes

None

Associations

¢ litera : EnumerationLiteral
The literal value of this enumeration value.

e type: Enumeration

Operations

[1] copy () : Value

// Create a new enumeration value with the same literal as this enumeration value.

EnumerationValue newValue = (EnumerationValue) (super.copy()) ;

newValue.type = this.type;

newValue.literal = this.literal;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this enumeration value is equal to the otherValue.

// To be equal, the otherValue must also be an enumeration value with the same literal as
this enumeration value.

boolean isEqual = false;

if (otherValue instanceof EnumerationValue)

isEqual = ((EnumerationValue)otherValue).literal == this.literal;

return isEqual;

[3] getTypes () : Classifier [0..*]

// Return the single type of this enumeration value.

ClassifierList types = new ClassifierList();

types.addValue (this.type) ;

return types;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 127

[4] new_ () : Value

// Create a new enumeration value with no literal.

return new EnumerationValue() ;

[5] specify () : ValueSpecification

// Return an instance value with literal as the instance.

InstanceValue instanceValue = new InstanceValue() ;

InstanceSpecification instance = new InstanceSpecification();

instanceValue.type = this.type;

instanceValue.instance = this.literal;

return instanceValue;

[6] toString (') : String

return literal.name;

8.3.2.2.6 Evaluation
An evaluation is used to evaluate a value specification to produce a value.

Generalizations

« “SemanticVisitor” on page 106

Attributes

None

Associations

e locus: Locus
Thelocus at which this evaluation is taking place.

« gpecification : ValueSpecification
The value specification to be evaluated.

Operations

[1] evaluate () : Value [0..1]

Evaluate the specification, returning the resulting wvalue.
8.3.2.2.7 ExtensionalValue

An extensional value is a data value that is part of the extent of some classifier at a specific locus.

128 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

» “CompoundVaue’ on page 121

Attributes

None

Associations

e locus: Locus[0..1]
The locus of the extent of which this valueis a member. (If the value has been destroyed, it has no locus.)

Operations

[1] copy () : Value

// Create a new extensional value with the same feature values at the same locus as this
one.

ExtensionalValue newValue = (ExtensionalValue) (super.copy()) ;

if (this.locus != null) {

this.locus.add (newValue) ;

return newValue;

[2] destroy ()

// Remove this value from its locus (if it has not already been destroyed).

if (this.locus != null) {

this.locus.remove (this) ;

}

8.3.2.2.8 FeatureValue
A feature value gives the value(s) that a single structural feature has in a specific structured value.

Generalizations

None

Attributes

e position: Integer [0..1]
The position of this feature value in a set of ordered values for a feature of an association.
[Thisisonly relevant if the feature value isfor alink and the feature is ordered.]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 129

Associations

e feature: StructuralFeature
The structural feature being given value(s).

e vaues: Vaue[0..*]
The values of for the feature. Zero or more values are possible, as constrained by the multiplicity of the feature.
Operations

[1] copy () : FeatureValue

// Create a copy of this feature value.

FeatureValue newValue = new FeatureValue () ;

newValue.feature = this.feature;

newValue.position = this.position;

ValueList values = this.values;

for (int i = 0; 1 < values.size(); i ++) {
Value value = values.getValue (i) ;

newValue.values.addValue (value.copy()) ;

return newValue;

[2] hasEqual VValues (in other : FeatureValue) : Boolean
// Determine if this feature value has an equal set of values as another feature value.

// If the feature is ordered, then the values also have to be in the same order.

boolean equal = true;
if (this.values.size() != other.values.size()) {
equal = false;
} else {
// Debug.println(" [hasEqualValues] feature = " + this.feature.name + ", " +
this.values.size() + " wvalue(s).");

if (this.feature.multiplicityElement.isOrdered) {

int 1 = 1;
while (equal & i <= this.values.size())
equal = this.values.getValue(i-1).equals (other.values.getValue(i-1)) ;

130 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

} else {

// Note: otherFeatureValues is used here solely as a holder for a copy of the list
of other wvalues,

// since the Java to UML mapping conventions do not allow "remove" on a local
list wvariable.

FeatureValue otherFeatureValues = new FeatureValue () ;
ValuelList values = other.values;
for (int i=0; i < values.size(); i++) {

Value value = values.getValue(i);

otherFeatureValues.values.addValue (value) ;

int 1 = 1;
while (equal & i <= this.values.size())
// Debug.println (" [hasEqualValues] This value [" + (i-1) + "] = " +

this.values.getValue(i-1)) ;

boolean matched = false;
int j = 1;
while (!matched & j <= otherFeatureValues.values.size()) {

if (this.values.getValue(i-1) .equals (otherFeatureValues.values.getValue (j-

1))) |

// Debug.println (" [hasEqualValues] Other value [" + (j-1) + "] ="
+ otherFeatureValues.values.getValue(j-1));

matched = true;

otherFeatureValues.values.remove (j-1);

G P —_—

= 3j + 1;
}
equal = matched;
i =1 + 1;

return equal;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 131

8.3.2.2.9 InstanceValueEvaluation
An instance value evaluation is an evaluation whose specification is an instance value.

Generalizations

« “Evaluation” on page 128

Attributes

None

Associations

None

Operations
[1] evaluate () : Value [0..1]

// If the instance specification is for an enumeration, then return the identified
enumeration literal.

// If the instance specification is for a data type (but not a primitive value or an
enumeration), then create a data value of the given data type.

// If the instance specification is for an object, then create an object at the current
locus with the specified types.

// Set each feature of the created value to the result of evaluating the value
specifications for the specified slot for the feature.

// Debug.println (" [evaluate] InstanceValueEvaluation...");

InstanceSpecification instance = ((InstanceValue)this.specification) .instance;
ClassifierList types = instance.classifier;

Classifier myType = types.getValue(0) ;

Debug.println (" [evaluate] type = " + myType.name) ;

Value value;

if (instance instanceof EnumerationLiteral)
// Debug.println("[evaluate] Type is an enumeration.");
EnumerationValue enumerationValue = new EnumerationValue() ;
enumerationValue.type = (Enumeration)myType;
enumerationValue.literal = (EnumerationLiteral)instance;
value = enumerationValue;

}

else {

132 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

StructuredValue structuredValue = null;

if (myType instanceof DataType) {
// Debug.println("[evaluate] Type is a data type.");
DataValue dataValue = new DataValue() ;
dataValue.type = (DataType)myType;

structuredValue = dataValue;

else {
Object object = null;
if (myType instanceof Behavior) ({

// Debug.println("[evaluate] Type is a behavior.");

object = this.locus.factory.createExecution ((Behavior)myType,

}

else {
// Debug.println("[evaluate] Type is a class.");
object = new Object ();
for (int 1 = 0; i < types.size(); i++) {
Classifier type = types.getValue (i) ;
object.types.addvValue((Class_)type) ;

this.locus.add (object) ;
Reference reference = new Reference() ;

reference.referent = object;

structuredValue = reference;

structuredvValue.createFeatureValues() ;

// Debug.println("[evaluate] " + instance.slot.size() + " slot(s).

SlotList instanceSlots = instance.slot;
for (int i = 0; 1 < instanceSlots.size(); i++) {
Slot slot = instanceSlots.getValue(i);

ValuelList values = new ValuelList () ;

// Debug.println (" [evaluate] feature = " + slot.definingFeature.name +

slot.value.size() + " wvalue(s).");

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

null) ;

n

133

ValueSpecificationList slotValues = slot.value;
for (int j = 0; j < slotValues.size(); j++) {
ValueSpecification slotValue = slotValues.getValue(j);
// Debug.println("[evaluate] Value = " + slotValue.getClass().getName()) ;

values.addValue (this.locus.executor.evaluate (slotValue)) ;

}

structuredvValue.setFeatureValue (slot.definingFeature, values, 0);

value = structuredValue;

return value;
8.3.2.2.10 IntegerValue
An integer value is a primitive value whose type is Integer.

Generalizations

« “PrimitiveValue’ on page 147

Attributes

e vaue: Integer
The actual Integer value.

Associations

None

Operations
[1] copy () : Value

// Create a new integer value with the same value as this integer value.

IntegerValue newValue = (IntegerValue) (super.copy());

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this integer value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this integer value.

boolean isEqual = false;

134 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

if (otherValue instanceof IntegerValue) {

isEqual = ((IntegerValue)otherValue) .value

return isEqual;

[3] new_(): Vaue

// Create a new integer value with no value.

return new IntegerValue() ;

[4] specify () : ValueSpecification

// Return a literal integer with the value of this integer value.

LiteralInteger literal = new LiteralInteger();

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "'";

if (this.value == 0) {
stringValue = "0";
} else {
int positiveValue = this.value;
if (positivevalue < 0)
positiveValue = -positiveValue;
}
do {
int digit = positiveValue % 10;
if (digit == 0) {
stringValue = "0" + stringValue;
} else if (digit == 1) {
stringValue = "1" + stringValue;

this.value;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

135

} else if (digit == 2) {

stringValue = "2" + stringValue;
} else if (digit == 3) {

stringValue = "3" + stringValue;
} else if (digit == 4) {

stringValue = "4" + stringValue;
} else if (digit == 5) {

stringValue = "5" + stringValue;
} else if (digit == 6) {

stringValue = "6" + stringValue;
} else if (digit == 7) {

stringValue = "7" + stringValue;
} else if (digit == 8) {

stringValue = "8" + stringValue;
} else if (digit == 9) {

stringValue = "9" + stringValue;
}
positiveValue = positivevValue / 10;

} while (positivevValue > 0);

if (this.value < 0) {

stringValue = "-" + stringValue;

return stringValue;
8.3.2.2.11 Link

A link is an extensional value whose (single) type is an association. (However, if the link has been destroyed, then it has
no type.)

A link must at have most one feature value for each structural feature owned by its type.

Generalizations

» “ExtensionalVValue’” on page 128

Attributes

None

136 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations

e type: Association [0..1]
The type of thislink.

Operations

// Return a literal integer with the value of this integer value.

LiteralInteger literal = new LiteralInteger();

literal.type = this.type;

[1] addTo (locus: Locus)
// Add this link to the extent of its association at the given locus,
// Shift the positions of ends of other links, as appropriate, for ends

// that are ordered.

Debug.println(*[addTo] 1link = “ + this.objectId());

PropertyList ends = this.type.memberEnd;

ExtensionalValuelList extent = locus.getExtent (this.type);

for (int i = 0; i < ends.size(); i++) {
Property end = ends.getValue (i) ;
if (end.multiplicityElement.isOrdered) {
FeatureValue featureValue = this.getFeatureValue (end) ;
FeatureValueList otherFeatureValues =

this.getOtherFeatureValues (extent, end);

int n = otherFeatureValues.size() ;
if (featureValue.position < 0 | featureValue.position > n) {
featurevValue.position = n + 1;
} else {
if (featureValue.position == 0) {
featurevValue.position - 1;
}
for (int j = 0; j < otherFeatureValues.size(); j++) {
FeatureValue otherFeatureValue = otherFeatureValues.getValue (j) ;

if (featureValue.position <= otherFeatureValue.position) {

otherFeatureValue.position = otherFeatureValue.position + 1;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

137

locus.add (this) ;

[2] copy () : Value

// Create a new link with the same type, locus and feature values as this link.
Link newValue = (Link) (super.copy()) ;

newValue.type = this.type;

return newValue;

[3] destroy ()

// Remove the type of this link and destroy it.

// Shift the positions of the feature values of any remaining links in

// the extent of the same association, for ends that are ordered.

Debug.println (" [destroy] 1link = " + this.objectId());

PropertyList ends = this.type.memberEnd;

ExtensionalValuelList extent = this.locus.getExtent (this.type);
for (int i = 0; 1 < extent.size(); i++) {

ExtensionalValue otherLink = extent.getValue (i) ;

for (int j=0; j < ends.size(); Jj++) {

Property end = ends.getValue(j);
if (end.multiplicityElement.isOrdered) {
FeatureValue featureValue = otherLink.getFeatureValue (end) ;
if (this.getFeatureValue (end) .position < featureValue.position) {

featurevValue.position = featureValue.position - 1;

this.type = null;

super.destroy () ;

138 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[4] getOtherFeatureValues (extent : ExtensionalValue [*]. end : Property) : FeatureValue [*]

// Return all feature values for the given end of links in the given

// extent whose other ends match this link.

FeatureValueList featureValues = new FeatureValuelList();
for (int 1 = 0; i < extent.size(); i++) {
ExtensionValue link = extent.getValue (i) ;
if (link != this {

if (isMatchingLink(link, end)) {

featureValues.addValue (link.getFeatureValue (end)) ;

}

return featureValues;

[5] getTypes () : Classifier [0..*]
// Return the single type of this link (if any).

ClassifierList types = null;

if (this.type == null) {

types = new ClassifierList();
} else {

types = new ClassifierList();

types.addvValue (this.type) ;

return types;

[6] isMatchingLink (link : ExtensionalVValue. end : Property) : Boolean

// Test whether the given link matches the values of this link on all

// ends other than the given end.

PropertyList ends = this.type.memberEnd;

boolean matches = true;
int 1 = 1;
while (matches & i <= ends.size()) ({

Property otherEnd = ends.getValue(i - 1);
if (otherEnd != end &

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

139

lthis.getFeatureValue (otherEnd) .values.getValue (0) .equals (
link.getFeatureValue (otherEnd) .values.getValue(0))) {

matches = false;

return matches;

[7] new_ () : Value

// Create a new link with no type or properies.

return new Link() ;

8.3.2.2.12 LiteralBooleanEvaluation

A boolean evaluation is an evaluation whose specification is a literal boolean.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal boolean, producing a boolean value.

LiteralBoolean literal = (LiteralBoolean)specification;
BooleanValue booleanValue = new BooleanValue () ;
booleanValue.type = this.getType ("Boolean");

booleanValue.value = literal.value;

return booleanValue;
8.3.2.2.13 LiteralEvaluation

A literal evaluation is an evaluation whose specification is a Literal Specification.

140 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

» “Evaluation” on page 128

Attributes

None

Associations

None

Operations

[1] getType (in builtinTypeName : String) : PrimitiveType

// Get the type of the specification. If that is null, then use the built-in type of the

given name.

PrimitiveType type = (PrimitiveType) (this.specification.type);

if (type == null)
type = this.locus.factory.getBuiltInType (builtInTypeName) ;

return type;
8.3.2.2.14 LiterallntegerEvaluation
A literal integer evaluation is an evaluation whose specification is a literal integer.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal integer, producing an integer value.

LiteralInteger literal = (LiterallInteger)specification;
IntegerValue integerValue = new IntegerValue() ;
integerValue.type = this.getType("Integer");

integerValue.value = literal.value;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

141

return integerValue;
8.3.2.2.15 LiteralNullEvaluation
A literal null evaluation is an evaluation whose specification is a literal null.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None
Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal null, returning nothing (since a null represents an "absence of any
value") .

return null;

8.3.2.2.16 LiteralRealEvaluation
A literal real evaluation is an evaluation whose specification is a literal real.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal real, producing a real value.

LiteralReal literal = (LiteralReal)specification;

142 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

RealValue realValue = new RealValue() ;
realValue.type = this.getType(“Real”);
realValue.value = literal.value;

return realValue;

8.3.2.2.17 LiteralStringEvaluation
A literal string evaluation is an evaluation whose specification is a literal string.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None

Operations
[1] evaluate () : Value [0..1]

// Evaluate a literal string, producing a string value.

LiteralString literal = (LiteralString)specification;
StringValue stringValue = new StringValue() ;
stringValue.type = this.getType ("String") ;

stringValue.value = literal.value;

return stringValue;

8.3.2.2.18 LiteralUnlimitedNaturalEvaluation
A literal unlimited natural evaluation is an evaluation whose specification is a literal unlimited natural.

Generalizations

» “LiteralEvaluation” on page 140

Attributes

None

Associations

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 143

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal unlimited natural producing an unlimited natural value.

LiteralUnlimitedNatural literal = (LiteralUnlimitedNatural)specification;
UnlimitedNaturalValue unlimitedNaturalValue = new UnlimitedNaturalValue() ;
unlimitedNaturalValue.type = this.getType("UnlimitedNatural") ;

unlimitedNaturalValue.value = literal.value;

return unlimitedNaturalValue;

8.3.2.2.19 Object

An object is an extensional value that may have multiple types, al of which must be classes. (Note that a destroyed object
has no types.)

An object has a unique identity. Usually, references to objects are manipulated, rather than the objects themselves, and
there may be multiple references to the same object.

If an object is active, it has an object activation that handles the execution of its classifier behavior(s).

Generalizations

- “ExtensionalVValue’ on page 128

Attributes

None

Associations

* objectActivation : ObjectActivation
The object activation handling the active behavior of this object.

e types: Class
The classes under which this object is currently classified. (A destroyed object has no types.)

Operations
[1] copy () : Value
// Create a new object that is a copy of this object at the same locus as this object.

// However, the new object will NOT have any object activation (i.e, its classifier
behaviors will not be started).

Object newObject = (Object) (super.copy());

Class_List types = this.types;

144 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

for (int i = 0; i < types.size(); i++) {
Class_ type = types.getValue(i);
newObject.types.addValue (type) ;

return newObject;

[2] destroy ()

// Stop the object activation (if any), clear all types and destroy the object as
extensional value.

Debug.println (" [destroy] object = " + this.objectId());

if (this.objectActivation != null)
this.objectActivation.stop() ;

this.objectActivation = null;

this.types.clear();

super.destroy () ;

[3] dispatch (in operation : Operation) : Execution

// Dispatch the given operation to a method execution, using a dispatch strategy.

return ((DispatchStrategy)this.locus.factory.getStrategy ("dispatch")) .dispatch(this,
operation) ;

[4] getTypes () : Classifier [0..*]
// Return the types of this object.

ClassifierList types = new ClassifierList();

Class_List myTypes = this.types;

for (int i = 0; i < myTypes.size(); i++) {
Class_ type = myTypes.getValue(i);
types.addValue (type) ;

return types;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

an

145

[5] new_ () : Vaue

// Create a new object with no type, feature values or locus.

return new Object () ;

[6] register (in accepter : EventAccepter)

// Register the given accept event accepter to wait for a dispatched signal event.

if (this.objectActivation != null)

this.objectActivation.register (accepter) ;

[7] send (' in signallnstance : Signallnstance)

// If the object is active, add the given signal instance to the event pool and signal that
a new signal instance has arrived.

if (this.objectActivation != null) {

this.objectActivation.send(signalInstance) ;

[8] startBehavior (in classifier : Class [0..1], in inputs : ParameterVaue [0..*])

// Create an object activation for this object (if one does not already exist) and start
its behavior(s).

// Debug.println (" [startBehavior] On object...");

if (this.objectActivation == null) {
this.objectActivation = new ObjectActivation() ;
this.objectActivation.object = this;

// Debug.println (" [startBehavior] objectActivation = " + objectActivation);

this.objectActivation.startBehavior (classifier, inputs);

[9] unregister (in accepter : EventAccepter)

// Remove the given event accepter for the list of waiting event accepters.

146 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

if (this.objectActivation != null) {

this.objectActivation.unregister (accepter) ;

8.3.2.2.20 PrimitiveValue
A primitive value is a value whose (single) type is a primitive type.

Generalizations

« “Value” on page 158

Attributes

None

Associations

 type: PrimitiveType

Operations

[1] copy () : Value

// Create a new value that is equal to this primitive wvalue.

PrimitiveValue newValue = (PrimitiveValue) (super.copy()) ;

newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single primitive type of this value.

ClassifierList types = new ClassifierList();
types.addvValue (this. type) ;

return types;

8.3.2.2.21 RealValue
A real value is a primitive value whose type is real.

Generalizations

» “PrimitiveValue’ on page 147

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

147

Attributes

e vaue: Integer
The actual Integer value.

Associations

None

Operations

[1] copy () : Value

// Create a new real value with the same value as this real wvalue.

RealValue newValue = (RealValue) (super.copy());

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean

// Test if this real value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this real value.
boolean isEqual = false;

if (otherValue instanceof RealValue) {

isEqual = ((RealValue)otherValue) .value == this.value;

return isEqual;

[3] new_ () : Vaue
// Create a new real value with no wvalue.

return new RealValue();

[4] specify () : ValueSpecification

// Return a literal real with the value of this real value.

LiteralReal literal = new LiteralReal () ;

literal.type = this.type;

literal.value = this.value;

return literal;

148 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[5] toString () : String

String stringValue = “”;
if (this.value == 0) {
stringValue = “0”;

} else {2

float positivevalue < 0) {

if (positivevalue < 0) {

positiveValue = -positiveValue;

int exponent = 0;

if (positivevalue < .1) {
while (positivevalue < .1) {
positiveValue = positiveValue * 10;
exponent = exponent - 1;
}
} else if (positivevalue > 1) {
while (positivevalue > 1) {
positiveValue = positivevValue / 10;

exponent = exponent +1;

// This gives 10 significant digits in the mantissa.

for (int 1i=0; i<10; i++) {

positiveValue = positiveValue * 10;
}
IntegerValue intergerValue = new IntegerValue () ;
integerValue.value = (int)positiveValue;
stringValue = “0.” + integerValue.toString() ;
integerValue.value = exponent;
StringValue = stringValue + “E” + integerValue.toString() ;

if (this.value < 0) {

stringValue = “-” + stringValue;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

149

return stringValue;

8.3.2.2.22 RedefinitionBasedDispatchStrategy

A redefinition-based dispatch strategy is one that requires:
« each non-abstract operation to have exactly one method
- anoverriding subclass operation to explicitly redefine the overridden superclass operation.

Generalizations

- “DigpatchStrategy” on page 126

Attributes

None

Associations

None

Operations

[1] getMethod (in object : Object, in operation : Operation) : Behavior

// Get the method that corresponds to the given operation for the given object.

// [If there is more than one type with a method for the operation, then the first one is
arbitrarily chosen.]

Behavior method = null;
int i = 1;
while (method == null & i <= object.types.size()) {

Class_ type = object.types.getValue(i-1);

NamedElementList members = type.member;

int j = 1;

while (method == null & j <= members.size()) {
NamedElement member = members.getValue(j-1);

if (member instanceof Operation) {
Operation memberOperation = (Operation)member;
if (this.operationsMatch (memberOperation, operation)) {

method = memberOperation.method.getValue (0) ;

150 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

return method;

[2] operationsMatch (in ownedOperation : Operation, in baseOperation : Operation) : Boolean

// Check if the owned operation is equal to or a redefinition (directly or indirectly) of
the base operation.

boolean matches = false;
if (ownedOperation == baseOperation) {
matches = true;
} else {
int 1 = 1;
while (!matches & i <= ownedOperation.redefinedOperation.size()) {
matches = this.operationsMatch (ownedOperation.redefinedOperation.getValue(i-1),
baseOperation) ;
i =1 + 1;

return matches;

8.3.2.2.23 Reference

A reference is an access path to a specific object. There may be multiple references to the same object.

As a structured value, the reference acts just the same as its referent in terms of type, features, operations, etc.

Generalizations

» “StructuredValue” on page 155

Attributes

None

Associations

 referent : Object

Operations

[1] copy () : Value

// Create a new reference with the same referent as this reference.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 151

Reference newValue = (Reference) (super.copy());

newValue.referent = this.referent;

return newValue;

[2] destroy ()

// Destroy the referent.

this.referent.destroy() ;

[3] dispatch (in operation : Operation) : Execution

// Dispatch the given operation to the referent object.

return this.referent.dispatch (operation) ;

[4] equals (in otherValue : Value) : Boolean
// Test 1if this reference is equal to the otherValue.

// To be equal, the otherValue must also be a reference, with the same referent as this
reference.

boolean isEqual = false;
if (otherValue instanceof Reference) {

isEqual = (((Reference)otherValue) .referent this.referent) ;

return isEqual;

[5] getFeatureValue (in feature : StructuralFeature) : FeatureValue

// Get the feature value associated with the given feature in the referent object.

return this.referent.getFeatureValue (feature) ;

[6] getFeatureValues () : FeatureValue [0..*]

// Return the feature values of the referent.

return this.referent.getFeatureValues() ;

152 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[7] getTypes () : Classifier [0..*]
// Get the types of the referent object.

return this.referent.getTypes() ;

[8] new_ () : Vaue

// Create a new reference with no referent.

return new Reference() ;

[9] send (in signallnstance : Signallnstance)

// Send the given signal instance to the referent object.

this.referent.send(signallInstance) ;

[10] setFeatureVaue (in feature : Structural Feature, in values : Value [0..*], in position : Integer [0..1])

// Set the values associated with the given feature in the referent object.

this.referent.setFeatureValue (feature, values, position);

[11] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])

// Asynchronously start the behavior of the given classifier for the referent object.

this.referent.startBehavior (classifier, inputs);

[12] toString () : String

return "Reference to " + this.referent.toString() ;

8.3.2.2.24 StringValue
A string value is a primitive value whose type is String.

Generalizations

« “PrimitiveValue’ on page 147

Attributes

« value: String

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

153

Associations

None

Operations
[1] copy () : Value

// Create a new string value with the same value as this string value.

StringValue newValue = (StringValue) (super.copy()) ;

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this string value 1is equal to the otherValue.

// To be equal, the otherValue must have the same value as this string value.

boolean isEqual = false;
if (otherValue instanceof StringValue) {

isEqual = ((StringValue)otherValue) .value.equals(this.value) ;

}

return isEqual;

[3] new_ () : Value

// Create a new string value with no value.

return new StringValue() ;

[4] specify () : ValueSpecification

// Return a literal string with the value of this string value.

LiteralString literal = new LiteralString() ;

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString (') : String

return value;

154 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.3.2.2.25 StructuredValue

A structured value is a Value whose type has structural features: a data type (but not a primitive type or enumeration), a

class or an association.

Generalizations

« “Value” on page 158

Attributes

None

Associations

None

Operations

[1] createFeatureValues ()

// Create empty feature values for all structural features, direct and inherited,
types of this structured value.

ClassifierList types = this.getTypes();

for (int i = 0; i < types.size(); i++) {

Classifier type = types.getValue (i) ;

NamedElementList members = type.member;
for (int j = 0; j < members.size(); J++) {
NamedElement member = members.getValue(j) ;

if (member instanceof StructuralFeature) {

this.setFeatureValue ((StructuralFeature)member, new ValueList (), 0);

[2] getFeatureValue (in feature : StructuralFeature) : FeatureValue

Get the feature value associated with the given feature.

of

The given feature must be a structural feature of the type of the structured value.

[3] getFeatureValues () : FeatureValue [0..*]

Return the feature values associated with this structural value.

[4] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

the

155

Set the value(s) and, optionally, the position index associated with the given feature.

The given feature must be a structural feature of the type of the structured value.

[5] specify () : ValueSpecification

// Return an instance value that specifies this structured value.

// Debug.println("[specify] Structuredvalue...");

InstanceValue instanceValue = new InstanceValue() ;
InstanceSpecification instance = new InstanceSpecification();
instancevValue.type = null;
instanceValue.instance = instance;
instance.classifier = this.getTypes|();
FeatureValuelList featureValues = this.getFeatureValues() ;
// Debug.println (" [specify] " + featureValues.size() + " feature(s).");
for (int i = 0; i < featureValues.size(); i++) {

FeatureValue featureValue = featureValues.getValue (i) ;

Slot slot = new Slot();

slot.definingFeature = featureValue.feature;
// Debug.println(" [specify] feature = " + featureValue.feature.name + ", " +
featureValue.values.size() + " value(s).");
ValueList wvalues = featureValue.values;
for (int j = 0; j < values.size(); J++) {
Value value = values.getValue (j);
// Debug.println("[specify] value = " + value);

slot.value.addvValue (value.specify()) ;

instance.slot.addValue(slot) ;

return instanceValue;

156 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.3.2.2.26 UnlimitedNaturalValue
An unlimited natural value is a primitive value whose type is UnlimitedNatural .

Generalizations

« “PrimitiveValue’ on page 147

Attributes

¢ vaue: UnlimitedNatural
The actual unlimited natural value.

Associations

None

Operations
[1] copy () : Value

// Create a new unlimited natural value with the same value as this value.

UnlimitedNaturalValue newValue = (UnlimitedNaturalValue) (super.copy()) ;

newValue.value = this.value;

return newValue;

[2] equals (in otherVaue : Value) : Boolean

// Test if this unlimited natural value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this unlimited natural value.
boolean isEqual = false;

if (otherValue instanceof UnlimitedNaturalValue) {

isEqual = ((UnlimitedNaturalValue)otherValue).value == this.value;

return isEqual;

[3] new_ () : Vaue

// Create a new unlimited natural value with no value.

return new UnlimitedNaturalValue() ;

[4] specify () : ValueSpecification

// Return a literal unlimited natural with the value of this unlimited natural value.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 157

LiteralUnlimitedNatural literal = new LiteralUnlimitedNatural () ;

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "*";

if (this.value.naturalvValue >= 0) {

IntegerValue integerValue = new IntegerValue () ;
integerValue.value = this.value.naturalValue;
stringValue = integerValue.toString() ;

return stringValue;

8.3.2.2.27 Value

A value is an instance of one or more classifiers, which are its types. A value is aways representable using a value
specification.

[Note: Value specializes SemanticVisitor to allow the Execution subclass to be a semantic visitor, without requiring
multiple generalization of Execution.]

Generalizations

« “SemanticVisitor” on page 106

Attributes

None

Associations

None

Operations

[1] copy () : Value

// Create a new value that is equal to this value.

// By default, this operation simply creates a new value with empty properties.

// It must be overridden in each Value subclass to do the superclass copy and then
appropriately set properties defined in the subclass.

158 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

return this.new () ;

[2] equals (in otherValue : Value) : Boolean

// Test if this value is equal to otherValue. To be equal, this value must have the same
type as otherValue.

// This operation must be overridden in Value subclasses to check for equality of
properties defined in those subclasses.

ClassifierList myTypes = this.getTypes|();
ClassifierList otherTypes = otherValue.getTypes() ;

boolean isEqual = true;

// Debug.println("[equals] Value...");

// Debug.println("[equals] this has " + myTypes.size() + "types, other has " +
otherTypes.size() + ".");

if (myTypes.size() != otherTypes.size()) {
isEqual = false;

} else {
// Debug.println("[equals] " + myTypes.size() + " type(s).");
int i = 1;

while (isEqual & i <= myTypes.size()) {

// Debug.println("[equals] this type = " + myTypes.getValue(i-1) .name) ;
boolean matched = false;
int j = 1;

while (!matched & j <= otherTypes.size())

// Debug.println("[equals] other type = " + otherTypes.getValue(j-1) .name) ;
matched = (otherTypes.getValue(j-1) == myTypes.getValue(i-1));
j=3+ 1;

isEqual = matched;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 159

return isEqual;

[3] getTypes () : Classifier [0..*]

Gets all the classifiers under which this wvalue is currently classifier.

[4] hasType (in type : Classifier) : Boolean

// Check if this object has the given classifier as a type.

ClassifierList types = this.getTypes();

boolean found = false;

int i = 1;

while (!found & i <= types.size()) {
found = (types.getValue(i-1) == type);
i =1 4+ 1;

return found;

[5] new_ () : Vaue

Create a new value of the same Value subclass as this wvalue, with all properties empty
(even if this violates multiplicity constraints).

This operation must be defined in each concrete Value subclass to create an instance of
that subclass.

[6] objectld () : String
// Return an identifier for this object.

// [Non-normative.]

return super.toString() ;

[7] specify () : ValueSpecification

Return a value specification whose evaluation gives a value equal to this wvalue.

[8] toString (') : String

Return a string representation of this wvalue.

160 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.4 Common Behaviors

8.4.1 Overview

As discussed in 8.3, the structural semantics of UML provide an interpretation for the structural models of instances.
Behavioral semantics, on the other hand, provide an interpretation for models of behavior, that is, specifications of how
instances change over time. The foundation for the behavioral semantics of fUML is the semantic specification for the
CommonBehaviors classes.

The CommonBehavior package is divided into sub-packages in a way that parallels the package structure of the
corresponding syntactic CommonBehavior packages. Figure 8.14 shows the dependencies of these sub-packages.

Sub clause 8.4.2 describes the basic model for behavioral execution in fUML. This model is then further elaborated in
8.5, Activities and 8.6, Actions. Sub clause 8.4.3 describes the semantic model for active objects and how asynchronous
communications between such objects are dispatched to behaviors attached to them.

o
| =importss
| =imports = | :
JasicBehaviors A — BasicBehaviors
t {from LML @ :Semantics | (CommonBahaviors)
)
i
b mpor s e
- - “|Mports =] :. -
Communications L — Communications

{from LML : :Semantics : :CommonBahaviors)

Figure 8.14 - Common Behaviors Semantics Packages
8.4.2 Basic Behaviors

8.4.2.1 Overview

In UML, a behavior is actually a kind of class, and it may, therefore, have instances. An instance of a behavior is called
an execution, as shown in Figure 8.15. An instance value with a behavior type thus evaluates to an execution object.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 161

The abstract Execution class has two concrete subclasses: OpaqueBehaviorExecution (shown in Figure 8.15) and
ActivityExecution (see 8.5). These subclasses act as visitor classes for OpaqueBehavior and Activity, respectively (see 8.2
for a general discussion of visitor classes). (Since function behaviors are basically just opague behaviors with certain
additional restrictions, OpaqueBehaviorExecution also acts as the visitor class for FunctionBehavior.)

To execute a behavior, the executor uses the execution factory to create an instance of the appropriate execution class (see
8.2). The behavior to be executed becomes the type of the instantiated execution object. The executor then sets the
parameter values for the input parameters (i.e., those with direction in and in-out) of the behavior (if any) and calls the
execute operation on the execution object.

The Execution::execute operation provides the fundamental specification of behavior in fUML. It acts on the initial set of
input parameter values and creates parameter values for any output parameters (i.e., those with direction in-out and out),
as specified by the behavior. The execute operation is actually defined as an abstract operation on the Execution class,
since its detailed specification depends on the kind of behavior being executed. See 8.5 for a specific discussion of the
execution of activities, which provide the means for user modeling of behavior in fUML.

Note that, as a kind of object itself, an execution is an extensional value. As discussed in 8.3, this means that any
execution effectively takes place at a specific locus. Thus, an object created during an execution will exist at the locus of
the execution. Unless this new object is explicitly destroyed later in the execution, it will continue to exist in the extent of
its class at the execution locus, even after the behavior that created it has completed its execution.

+ types
fUML::Syntax::Classes:Kernel::Class rl'(I fuML::Semantics::Classes:Kernel::0bject
A L * - — - -
1] + context fUML ::Semantics::Classes::Kernel::Value
* |+ values
M
Execution
0.1
y - N 5 +execute ()
fUML ::Syntax::CommonBehaviors::BasicBehaviors::Behavior + teminate ()
+copy () Value . + parameterValues Parametervalue
+new_ (). Vaue N
+ setParameterValue (parameterValue © Parameteryalue) 1 +copy () : ParameterValue
+ getParameterValue (parameter : Parameter) : ParameterValue "
+ getOutputParameterValues () : ParameterValue [*]
+ getBehavior () Behaviar
+ parameter | 1
fUML::Syntax::CommonBehaviors::BasicBehaviors::0paqueBehavior fUML::Syntax::Classes::Kernel::Parameter

DpaqueBehaviorExecution

+axecute ()
+ doBody (inputParameters | ParameterValue [*], outputParameters | ParameterValue [*])

Figure 8.15 - Executions
8.4.2.2 Class Descriptions
8.4.2.2.1 Execution

An execution is used to execute a specific behavior. Since a behavior is a kind of class, an execution is an object with the
behavior as its type.

162 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

» Object

Attributes

None

Associations

e context : Object
The object that provides the context for this execution.
The type of the context of the execution must be the context of the type (behavior) of the execution.

e parameterValues : ParameterVaue [0..*]
The parameterValues for this execution. All parameterValues must have a parameter that is a parameter of the
type of this execution.
The values of al input (in and in-out) parameters must be set before the execution is executed.

Operations

[1] copy () : Value

// Create a new execution that has the same behavior and parameterValues as this execution.

// Debug.println (" [Copy] execution = " + this);

Execution newValue = (Execution) (super.copy());

newValue.context = this.context;

ParameterValuelList parameterValues = this.parameterValues;

for (int 1 = 0; i < parameterValues.size(); i++)
ParameterValue parameterValue = parameterValues.getValue(i);

newValue.parameterValues.addValue (parameterValue.copy()) ;

// Debug.println(" [Copy] Done.");

return newValue;

[2] execute ()
Execute the behavior given by the type of this execution.

The parameterValues for any input (in or in-out) parameters of the behavior should be set
before the execution.

The parameteValues for any output (in-out, out or return) parameters of the behavior will
be set by the execution.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 163

[3] getBehavior () : Behavior

// Get the behavior that is the type of this execution.

return (Behavior) (this.getTypes () .getValue(0)) ;

[4] getOutputParameterValues () : ParameterValue [0..*]

// Return the parameter values for output (in-out, out and return) parameters.

ParameterValuelList outputs = new ParameterValuelList () ;
ParameterValuelList parameterValues = this.parameterValues;
for (int i = 0; i1 < parameterValues.size(); i++) {
ParameterValue parameterValue = parameterValues.getValue (i) ;
Parameter parameter = parameterValue.parameter;
if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {

outputs.addValue (parameterValue) ;

return outputs;

[5] getParameterValue (in parameter : Parameter) : ParameterVaue

// Get the parameter value of this execution corresponding to the given parameter (if any).
ParameterValue parameterValue = null;

int 1 = 1;

while (parameterValue == null & i <= this.parameterValues.size()) {

if (this.parameterValues.getValue(i-1).parameter == parameter) {

parameterValue = this.parameterValues.getValue(i-1);

return parameterValue;

[6] new_ () : Value

Create a new execution with no behavior or parameterValues.

[7] setParameterValue (in parameterValue : ParameterValue)

164 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// Set the given parameter value for this execution.

// If a parameter value already existed for the parameter of the given parameter value,
then replace its wvalue.

// Debug.println(" [setParameterValue] parameter = " + parameterValue.parameter.name + "
with " + parameterValue.values.size() + " valuesg");

ParameterValue existingParameterValue = this.getParameterValue (parameterValue.parameter) ;
if (existingParameterValue == null) {

this.parameterValues.addValue (parameterValue) ;

}

else {

existingParameterValue.values = parameterValue.values;

[8] terminate ()

// Terminate an ongoing execution. By default, do nothing.

return;

8.4.2.2.2 OpaqueBehaviorExecution

An opaque execution is an execution for an opagque behavior.
Opague behaviors are used to define primitive behaviors.
The actual definition of the primitive behavior should be given in a concrete subclass of OpaqueBehaviorExecution.

Generalizations

» “Execution” on page 162

Attributes

None

Associations

None

Operations

[1] doBody (in inputParameters : ParameterValue [0..*], in outputParameters : ParameterValue [0..*])

The actual definition of the behavior of an Opaque Behavior should be given in a concrete
subclass that defines this operation.

The wvalues of the inputParameters are set when the operation is called.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 165

The values of the outputParmeters should be set during the execution of the operation.

[2] execute ()
// Execute the body of the opaque behavior.

Debug.println (" [execute] Opaque behavior " + this.getBehavior().name + "...");
ParameterList parameters = this.getBehavior () .ownedParameter;
ParameterValuelList inputs = new ParameterValuelList () ;
ParameterValueList outputs = new ParameterValuelList () ;
for (int i = 0; 1 < parameters.size(); i++) {

Parameter parameter = parameters.getValue (i) ;

if ((parameter.direction == ParameterDirectionKind.in) |

(parameter.direction == ParameterDirectionKind.inout))

inputs.addvalue (this.getParameterValue (parameter)) ;

if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {
ParameterValue parameterValue = new ParameterValue() ;
parameterValue.parameter = parameter;
this.setParameterValue (parameterValue) ;

outputs.addValue (parameterValue) ;

this.doBody (inputs, outputs);

8.4.2.2.3 ParameterValue
A parameter value gives the value(s) for a specific parameter.

Generalizations

None

Attributes

None

166 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations
e parameter : Parameter

e vaues: Vaue[0..*]
The values for the parameter. Zero or more values are possible, as constrained by the multiplicity of the parameter.

Operations

[1] copy () : ParameterValue

// Create a new parameter value for the same parameter as this parameter value, but with
copies of the values of this parameter value.

ParameterValue newValue = new ParameterValue() ;

newValue.parameter = this.parameter;

ValuelList values = this.values;

for (int i = 0; i < values.size(); i++) {
Value value = values.getValue (i) ;

newValue.values.addValue (value.copy ()) ;

return newValue;

8.4.3 Communications

8.4.3.1 Overview

Active Objects

An active object is one that has one or more classifiers that are active classes-that is, they are classes with a classifier
behavior. (In fUML, an active class must either be a behavior or have a classifier behavior and only active classes may be
behaviored classifiers - see 7.3.2). After an active object is instantiated, a start object behavior action (see 7.5.4.2.7) is
used to start one or more of its classifier behaviors. Note that an object may also become active if it has an active class
added to it using a reclassify object action (see 7.5.4.2.4). In this case, a start object behavior action must still be used to
start the classifier behavior of the newly added class.

Once started, classifier behaviors then run asynchronously from whatever behavior executed the start object behavior
action. This allows the active object to autonomously send communications to and react to communications from other
objects. The points at which an active object responds to asynchronous communications from other objects is determined
solely by the behavior of the active object.

Active abjects in fUML communicate asynchronously via signals. A signal is a kind of classifier (see 7.3.3). Therefore,
an instance of a signal is avalue. Since a signal may have attributes, a signal instance is a kind of compound value (see
Figure 8.16). This is an extension to the basic value model described in 8.3.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 167

The semantic model for an active object itself is also an extension to the basic value model for objects. An active object
still has the same structural semantics as a passive object, but it adds the behavioral semantics of the execution of
classifier behaviors and the handling of asynchronous communication.

When the active behavior of an active object is started, an object activation is created for that object. The object activation
further maintains a classifier behavior execution for each executing classifier behavior. Despite its name, the
ClassifierBehaviorExecution class is not actually a subclass of Execution. Rather, it provides an association between a
specific active class and the execution object for the classifier behavior of that class in the context of the active object
whose activation is being model ed.

Note also that ClassifierBehaviorExecution is itself an active class. Thus, each classifier behavior execution instance runs
“in its own thread,” modeling the autonomous execution of the classifier behaviors of an active object. Within the
execution model, the concurrent execution semantics for such active objects are given by the base semantics (see Clause
10).

Event Dispatching

An object activation also handles the dispatching of asynchronous communications received by its active object. A signal
instance is sent to an active object using a send signal action (see 7.5.2.2.9). The delivery of this signal to the active
object is modeled in the Execution Model by the send operation on Object. This operation accepts a signal instance and
passes it to the object activation for the active object, which places it in the event pool of received signal instances
waiting to be dispatched. At this point, the delivery of the signal is complete and the signal sender may continue
execution asynchronously to the eventual dispatching (or not) of the signal by the receiving active object.

In order to decouple the reception of a signal from its dispatching, ObjectActivation is also an active class. The classifier
behavior for ObjectActivation (see Figure 8.17) is a simple dispatch loop. When a signa instance arrives,
ObjectActiviation sends an ArrivalSignal to itself after the received signal instance is placed in the event pool. The
dispatch loop waits for a signal arrival and, when this happens, calls the dispatchNextEvent operation. This operation
dispatches a single signal instance from the event pool. Once this is complete (“run to completion semantics’ for
dispatched events), the dispatch loop returns to waiting for another signal to arrive.

It is important to carefully note the two semantic levels in the above description. At the level of the execution of a user
model, the execution model is modeling the reception of a signal instance (of a signa defined in the user model) and the
dispatching of that signal instance to an executing classifier behavior (which is also defined in the user model). However,
this semantic model itself also uses active classes (i.e., ObjectActivation and ClassifierBehaviorExecution) and signals
(e.g., ArrivalSignal). The semantics for active classes and signals, as use in the execution model, are given by the base
semantics for those model constructs (see Clause 10; also see Clause 6 for a general discussion of fUML execution
semantics versus base semantics).

Now, while an event is being dispatched, it is possible that the active object will receive additional signal instances. In
this case, these instances will be concurrently placed into the event pool for the active object and an ArrivalSignal will be
generated for each arriving event. When the dispatch loop is ready to accept another event, it will accept exactly one
pending ArrivalSignal, causing another event to be dispatched. The dispatch loop will continue to dispatch events, one at
atime, until there are no more pending ArrivalSignals (or until the active object is destroyed).

Which event is actually dispatched out of the event pool is not determined by the ArrivalSignal but, rather, by the
dispatchNextEvent operation. However, the exact behavior to be specified for this operation is a semantic variation point
in fUML. (See 2.4 for afull discussion of semantic variation within fUML.)

168 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Following the general approach of using the Strategy Pattern to model semantic variation points (see 8.2.1), the variability
of event dispatching is captured by using strategy classes for the ObjectActivation::getNextEvent operation.
GetNextEventStrategy provides the abstract base class for this type of strategy. The default dispatching behavior is given
by the concrete FIFOGetNextEventStrategy, which dispatches events on a first-in first-out (FIFO queue) basis. Any
variant behavior must be fully specified by overriding the behavioral specification of the dispatchNextEvent operation.

A conforming execution tool may define an aternative rule for how this dispatching is to take place by defining a new
GetNextEventStrategy subclass specifying whatever rule is desired. An instance of this aternate strategy must then be
registered with the execution factory at a given locus, rather than the default strategy.

Once an event is selected for dispatch, it is matched against the list of waiting event accepters for the active object. If a
match is found, the signal instance is passed to the event accepter using its accept operation. If no matching event
acceptor is found, the signal instance is not returned to the event pool and is lost. (Note that deferred events are not
included in the fUML subset.)

The event accepters for an active object are points within the executing classifier behaviors of the object that are waiting
for certain (signal reception) events. An executing classifier behavior may register an event accepter for itself using the
Object::registerForEvent operation. The event accepter is then added to the list of waiting event accepters for the object
and any matching signal instance is passed back to the executing classifier behavior via the accept operation of the event
accepter. (Currently in fUML, event accepters are defined only for accept event actions-see 8.6.4.)

fUML ::Semantics::Classes::Kernel: :CompoundValue

Signallnstance

+ getTypes () : Classifier [*]
+new_ (] Value
+ copy [) : Value

1| +type

fuML ::Syntax::CommonBehaviors: :Communications::Signal

Figure 8.16- Signal Instances

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 169

@ EventDispatchLoop @ ClassifierBehaviorExecutionActivity

+ types

fUML::Semantics::Classes::Kernel::Objecl I =8 fUML::Syntax::Classes::Kernel::Clas¢
X
*

1Y . object

—_

+ classifier

0..1 | + objectActivation

ObjectActivation I + objectActivation

0.1

+ stop ()

+ register (accepter : EventAccepter)

+ unregister (accepter : EventAccepter)
+ dispatchNextEvent ()

+ getNextEvent () : Signallnstance

+ classifierBehaviorExecutions | x *

<signab ArivalSignal — ClassifierBehaviorExecution I
| |
0.1 + execute (classifier : Class, inputs : ParameterValue [*])I
+ terminate ()
0..1
0..1
ArrivalSignal 1], + execution
* |+ waitingEventAccepters fUML, ics::(Behaviors::BasicBehaviors::Execution
EventAccepter
+ accept (signallnstance : Signallnstance)
+ match (signallnstance : Signallnstance) : Boolear fUML: ics::Loci::Locil1::SemanticStrategy
{ordered}« | | o\ entpool
| fuML::S itics::C Behaviors::Communications::SignalInstance GetNextEventStrategy

+ getName (') : String
+ getNextEvent (objectActivation : ObjectActivation) : Signallnstance

FIFOGetNextEventStrategy

+ getNextEvent (objectActivation : ObjectActivation) : SignalInstance

Figure 8.17- Active Objects
8.4.3.2 Class Descriptions
8.4.3.2.1 ClassifierBehaviorExecution

A classifier behavior execution executes the classifier behavior from a specific active class.

170 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

UasﬂﬁerBehavmrExecuHunnchnyJ

Readself

Figure 8.18 - Classifier Behavior for ClassifierBehaviorExecution

Generalizations

None

Attributes

None

Associations
e classfier: Class
The classifier whose behavior is being executed. (This must be an active class.)

e execution : Execution
The execution of the associated classifier behavior for a certain object.

e objectActivation : ObjectActivation [0..1]
The object activation that owns this classifier behavior execution.

Operations

[1] execute (in classifier : Class, in inputs : ParameterValue [0..*])
// Set the classifier for this classifier behavior execution to the given class.

// If the given class is a behavior, set the execution to be the object of the object
activation of the classifier behavior execution.

// Otherwise the class must be an active class, so get an execution object for the
classifier behavior for the class.

// Set the input parameters for the execution to the given values.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 171

// Then start the active behavior of this ClassifierBehaviorExecution object,

which will

execute the execution object on a separate thread of control.

// Debug.println (" [execute] Executing behavior for "

this.classifier = classifier;

Object object = this.objectActivation.object;

if (classifier instanceof Behavior) {
this.execution = (Execution)object;

} else {
this.execution =

object) ;

}

if (inputs != null) {
for (int i = 0; 1 < inputs.size(); i++) {

ParameterValue input = inputs.getValue (i) ;

this.execution.setParameterValue (input) ;

_startObjectBehavior () ;

[2] terminate ()

// Terminate the associated execution.

// If the execution is not itself the object of the object activation,

//Debug.println (" [terminate] Terminating behavior for

this.execution.terminate() ;

if (this.execution != this.objectActivation.object) {

this.execution.destroy () ;

8.4.3.2.2 EventAccepter

An event accepter handles signal reception events.

+ classifier.name + "...

") ;

object.locus.factory.createExecution(classifier.classifierBehavior,

then destroy it.

") ;

" + classifier.name + "...

This is an abstract class intended to provide a common interface for different kinds of event accepters.

172

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

None

Attributes

None

Associations

None

Operations
[1] accept (in signallnstance : Signallnstance)

Accept a signal occurance for the given signal instance.

[2] match (in signallnstance : Signallnstance) : Boolean

Determine if the given signal instance matches a trigger of this event accepter.

8.4.3.2.3 FIFOGetNextEventStrategy
A FIFO get next event strategy gets events in first-in first-out order.

Generalizations

« “GetNextEventStrategy” on page 173

Attributes

None

Associations

None

Operations

[1] getNextEvent (in objectActivation : ObjectActivation) : Signallnstance

// Get the first event from the given event pool. The event is removed from the pool.

SignalInstance signallInstance = objectActivation.eventPool.getValue (0) ;
objectActivation.eventPool.removeValue (0) ;

return signallInstance;

8.4.3.2.4 GetNextEventStrategy

A get next event strategy is a semantic strategy that determines the order in which signal instances are retrieved from the
event pool of an object activation.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 173

Generalizations

» “SemanticStrategy” on page 106

Attributes

None

Associations

None

Operations
[1] getName () : String

// Get next event strategies are always named "getNextEvent".

return "getNextEvent";

[2] getNextEvent (in objectActivation : ObjectActivation) : Signallnstance

Get the next event from the event pool of the given object activation. The event is removed
from the pool.

8.4.3.2.5 ObjectActivation

An object activation handles the active behavior of an active object.

174 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

EventDispatchLoop

>cept ArrivalSignal

Readself

[Call dispatchMextEvent)7

The response to each event is completed j

before dispatching the next event {"run to
completion” semantics).

Figure 8.19 - Classifier Behavior for ClassifierBehaviorExecution

Generalizations

None

Attributes

None

Associations

« classifierBehaviorExecutions : ClassifierBehaviorExecution [0..*]
The executing classifier behaviors for this object activation.

¢ eventPool : Signallnstance [0..*]
The pool of signals sent to the object of this object activation, pending dispatching as events.
(All the data valuesin the pool must be signal instances -- that is, they must have asingle typethat isasignal.)

e oObject : Object
The object whose active behavior is being handled by this active object.

e waitingEventAccepters : EventAccepter [0..*]
The set of event accepters waiting for signals to be received by the object of this object activation.

Operations

[1] dispatchNextEvent ()

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 175

// Get the next signal instance out of the event pool.

// If there is one or more waiting event accepters with triggers that match the signal
instance, then dispatch it to exactly one of those waiting accepters.

if (this.eventPool.size() > 0)

SignalInstance signallInstance = this.getNextEvent () ;
Debug.println (" [dispatchNextEvent] signalInstance = " + signallnstance);

intList matchingEventAccepterIndexes = new intList () ;

EventAccepterList waitingEventAccepters = this.waitingEventAccepters;

for (int i = 0; i < waitingEventAccepters.size(); i++) {
EventAccepter eventAccepter = waitingEventAccepters.getValue (i) ;
if (eventAccepter.match(signalInstance)) {

matchingEventAccepterIndexes.addvValue (i) ;

if (matchingEventAccepterIndexes.size() > 0)
// *** Choose one matching event accepter non-deterministically. *x*x*
int j =
((ChoiceStrategy)this.object.locus.factory.getStrategy ("choice")) .choose (matchingEventAccep
terIndexes.size())

EventAccepter selectedEventAccepter =
this.waitingEventAccepters.getValue (matchingEventAccepterIndexes.getValue(j-1)) ;

this.waitingEventAccepters.removeValue (j-1) ;

selectedEventAccepter.accept (signalInstance) ;

[2] getNextEvent () : Signallnstance

// Get the next event from the event pool, using a get next event strategy.

return
((GetNextEventStrategy)this.object.locus.factory.getStrategy ("getNextEvent")) .getNextEvent (
this) ;

[3] register (in accepter : EventAccepter)

// Register the given event accepter to wait for a dispatched signal event.

Debug.println (" [register] object = " + this.object);

Debug.println (" [register] accepter = " + accepter);

176 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

this.

waitingEventAccepters.addValue (accepter) ;

[4] send (in signallnstance : Signallnstance)

// Add the given signal instance to the event pool and signal that a new signal instance

has arrived.

this

.eventPool.addValue ((SignalInstance) (signalInstance.copy()));

_send(new ArrivalSignal());

[5] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])

// Start the event dispatch loop for this object activation

started) .

(if it has not already been

// If a classifier is given that is a type of the object of this object activation and
there is not already a classifier behavior execution for it,

//

// Otherwise,

then create a classifier behavior execution for it.

create a classifier behavior execution for each of the types of the object

of this object activation which has a classifier behavior or which is a behavior itself

//

and for which there is not currently a classifier behavior execution.

// Start EventDispatchLoop

_startObjectBehavior() ;

if (classifier == null) {

else

Debug.println (" [startBehavior] Starting behavior for all classifiers...");
// *** Start all classifier behaviors concurrently. **%*

Class_List types = this.object.types;

for (Iterator i = types.iterator(); i.hasNext() ;) {
Class_ type = (Class_)i.next();
if (type instanceof Behavior | type.classifierBehavior != null) {

this.startBehavior (type, new ParameterValueList()) ;

{

Debug.println (" [startBehavior] Starting behavior for " + classifier.name + "...
boolean notYetStarted = true;

int 1 = 1;

while (notYetStarted & i <= this.classifierBehaviorExecutions.size()) ({

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

177

notYetStarted = (this.classifierBehaviorExecutions.getValue(i-1) .classifier !=
classifier) ;

if (notYetStarted) ({
ClassifierBehaviorExecution newExecution = new ClassifierBehaviorExecution () ;
newExecution.objectActivation = this;
this.classifierBehaviorExecutions.addValue (newExecution) ;

newExecution.execute (classifier, inputs);

[6] stop ()

// Stop this object activation by terminating all classifier behavior executions.

ClassifierBehaviorExecutionList classifierBehaviorExecutions =
this.classifierBehaviorExecutions;

for (int 1 = 0; 1 < classifierBehaviorExecutions.size(); 1i++) {

ClassifierBehaviorExecution classifierBehaviorExecution =
classifierBehaviorExecutions.getValue (i) ;

classifierBehaviorExecution.terminate () ;

[7] unregister (in accepter : EventAccepter)

// Remove the given event accepter for the list of waiting event accepters.

Debug.println (" [unregister] object = " + this.object);
Debug.println (" [unregister] accepter = " + accepter);
boolean notFound = true;

int 1 = 1;

while (notFound & 1 <= this.waitingEventAccepters.size()) {
if (this.waitingEventAccepters.getValue(i-1) == accepter) ({
this.waitingEventAccepters.remove (i-1) ;

notFound = false;

178 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.4.3.2.6 Signallnstance

Generalizations

» “CompoundVaue’ on page 121

Attributes

None

Associations

- type: Signd

Operations
[1] copy () : Value

// Create a new signal instance with the same type and feature values as this signal
instance.

SignalInstance newValue = (SignallInstance) (super.copy());

newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single type of this signal instance.

ClassifierList types = new ClassifierList();

types.addValue (this.type) ;

return types;

[3] new_ () : Vaue

// Create a new signal instance with no type or feature values.

return new SignalInstance() ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 179

8.5 Activities

8.5.1 Overview

Activities are the only concrete sort of user behavior model included in fUML. (Opaque behaviors are also included in
fUML, but only for specifying primitive behaviors.) The package structure for the semantic Activities sub-packages
parallels that of the syntactic Activities sub-packages (see 7.3.1). Figure 8.20 shows the dependencies of these sub-
packages.

Sub clause 7.4.2 includes the top level diagrams of the abstract syntax for activities. The elements of this syntax are that
activities are composed of activity nodes with control flow and object flow activity edges connecting the nodes.

Sub clause 8.5.2 describes the basic semantics of activity execution in terms of activations of the activity nodes in the
activity. Sub clause 8.5.3 then provides the further semantics of structured activity nodes and 8.5.4 covers expansion
regions. The semantics for actions, which are a kind of activity node, are given in 8.6.

——
BasicBehaviors
(from fUML::Semantics: :CommonBehaviors)
AN
i «irnport»
i
S PR A «import» ’
I']tP'T;'III];ELI"1t';A‘t"’;'t't'm" e i IntermediateActivities
(rom fUML::Syntax:Activities) (from fUML: :Semantics: :Activities)
N
i«imports
E—
BasicActions
(from fUML::Semantics: Actions)
AN
i «import»
I _ |
S P _ ARt o «imports :
L”";"""tﬂ“‘i‘ltﬂ"ti'r"'LIAt't;“' = CompleteStructuredActivities
trom Hisyntax: Activities) (from fUML::Sermantics : Activities)
Eay
I «import»
«import» i
ExtrastructuredActivities [€-------m-mmmmmmmomsmomosssooooooooooo g ExtraStructuredActivities
(friom fUML: Syntax Activities) (from ML :Semantics Activities)

Figure 8.20 - Activities Semantics Packages

180 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

8.5.2 Intermediate Activities

8.5.2.1 Overview

Activity Node Activation

As shown in Figure 8.25, the activity execution model is an extension of the general behavior execution model from
8.4.2. In addition to activity executions themselves, the model includes activity node activations that specify the behavior
of activity nodes during a specific activity execution. These node activations are then interconnected by activity edge
instances corresponding to the activity edges in the activity.

Activity node activations are semantic visitor classes, like evaluations and executions (see 8.2.1 for a discussion of
semantic visitor classes in general). There is an activation visitor class corresponding to each concrete subclass of
ActivityNode. The name of the visitor class is the same as the name of the corresponding abstract syntax metaclass with
the word “Activation” appended. For example, the activation visitor class for the abstract syntax metaclass JoinNode is
called JoinNodeActivation. Note that actions are activity nodes, so that the semantics of actions are specified using
activation visitor classes (see 8.6).

Activity node activations are always created within an activity node activation group. This concept is introduced in the
execution model to handle nested groups within an activity. The activity itself is considered to implicitly be the top-level

group.

Token and Offer Flow

Note that, consistent with the overall use of the Visitor Pattern (see 8.2.1), the activity execution model intentionally has
alargely parallel structure to the abstract syntax model from 7.4. However, there are concepts introduced in the semantic
model for which there is no explicit syntax in UML. In this case, the most important such concepts are those of token and
offer. Consider the simple activity model shown in Figure 8.21. Figure 8.22 shows the abstract syntax representation of
this model, which may then be given the semantic interpretation shown in Figure 8.23.

Smmple Activity

Figure 8.21 - A Simple Activity Model

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 181

: Parameter

+ ownedParameter

+ ownedParameter
: Parameter

+ direction = in

+ parameter

: ActivityParameterNode

+ source

+ outgoing

+ foutput

: Activity

+ direction = out

+ parameter

: ActivityParameterNode

+ target

+ finput

+ edge + incoming

P

: ObjectFlow

+incoming + target

I : InputPin | | : OutputPin I : ObjectFlow
+ source + outgoing

Figure 8.22 - Abstract Syntax Representation of a Simple Activity Model

182

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

' ActivityParameterNode |[<

+ node

+ node

+ actiwity

+ nodeActivations

: ActivityParameterNodeActivation

+ actiwity

+

+ niode

+ holder
+ source
+ heldTolens
+ offeredTokens
+ outgoingEdges
+ outgoing gang=ag
+ offars
+ edge
: ObjectFlow g I : ActivityEdgeInstance |ﬂ
+ group
+ incoming + incomingEdges + B tances
+ activityExecution tvationGr ’
I : ActivityExecution |« + activatontroup I : ActivityNodeActivationGr
+ target + target
dl)
: InputPin | <= I : InputPinActivation +gfoup +|group

+ finpuit

_. +node

+ pinActivations

+ actionActivation
|

+ Joutput

| 2 ActionActivation

+ actionActivation

+ pinActivations

- OutputPin + node

+ source

d
sdae + outgoing

+ edge

|

[: OutputPinActivation

+ source

+ oUtgoingEdges
[

+ edgelnstances

; ObjectFlow

+ incoming

+ target

+ node

| ; ActivityEdgelnstance

+ incomingEdges

+ target

| :ActivityParameterNode |<

+ nodehctivations

: ActivityParameterNodeActivation

Figure 8.23 - Semantic Interpretation of a Simple Activity Model at the Start of Execution

+ nodeActivations

So far, the interpretation shown in Figure 8.23 provides essentially just the structural semantics of activities, in which an
activity execution is interpreted as an instance of the activity considered as a classifier. To truly capture the behavior
semantics, the interpretation needs to further define how the execution of the activity proceeds over time. The UML 2
Superstructure Specification defines the behavior of an activity in terms of tokens that may be held by nodes and offers
made between nodes for the movement of these tokens.

The execute operation on an activity execution object places tokens on the input activity parameter nodes of the activity.
Figure 8.23 shows an early stage in the execution of the activity from Figure 8.21, in which the input activity parameter
node holds an object token corresponding to the input parameter value for the activity execution and this node is offering
the token to the input pin of the action. The behavioral semantic rules of UML activity execution then determine if and

when the action will accept the offered token to its input pin.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

183

Presuming that the input pin has multiplicity of 1 and a token for a single value has been offered, the action will accept

the offer, receive the offered token on its input pin and fire its own behavior. A token with the result value from this

behavior will then be placed on the output pin of the action and subsequently offered to the output parameter node. Figure

8.24 shows the semantic interpretation of this successor to the earlier stage of execution shown in Figure 8.25. The

execution of this activity then concludes with the output activity parameter node accepting the offered token. At the end
of the execution of an activity, the execute operation then places the values in tokens held by any output activity
parameter nodes onto the corresponding output parameters of the activity.

Note: In the UML abstract syntax, pins are multiplicity elements with optional ordering and so are parameters. However,
while activity parameter nodes may be typed, they are not multiplicity elements and they cannot be specifically identified

as ordered. Nevertheless, the fUML semantics interprets an output activity parameter node as effectively having the

ordering specified for its associated parameter. Thus, when multiple tokens flow from an ordered output pin to an output
activity parameter node, this ordering is preserved when the values on the tokens are ultimately placed on the
corresponding output parameter.

: ActivityParameterNode

+

ol

node

: ActivityParameterNodeActivation ! + nodeActivations

+ source
+ node
+ outgoing + outgoingEdges
: ObjectFlow + edge I : ActivityEdgeInstance |
+ edge
+ activity + incaming + incomingEdges + & tances + group
group 0
+ activityExecution i .
+ activationGrowy
: Activity I : ActivityExecution |- P I : ActivityNodeActivationGrot
+ target + target
- N - + node . - A
+ activity : InputPin | = InputPinActivation + gio

+ node

: ActivityParameterNode

+ edge

-

+ finput

+ node

+ pinActivations

+ actionActivation + nodeActivations

+ foutput

| : ActionActivation |

+ actionActivation

+ pinActivations

+ heldTokens

: OutputPin + node

: ObjectFlow

+ source

+ outgeing
+ edge

1 : DutputPinActivation

+ holder

Ei

+ souUrCe

+ outgoingEdges

+ offeredTolens

+ edgelnstances

+ incoming

+ target

+ node

| : ActivityEdgeInstance |

- offers > _: Offer

+ incomingEdges

+ target

: ActivityParameterNodeActivation | + nodeactivations

Figure 8.24 - Semantic Interpretation of a Simple Activity Model Just Prior to Completion of Execution

184

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Threading Model

The execution semantics for activities in UML places no restriction on the concurrent activation of activity nodes within
an activity, other than that imposed by the semantics of token and offer flow across the activity edges connecting the
nodes. The execution model captures this concurrent execution semantics through an implicit concept of threading.

When an activity node activation produces tokens and is ready to offer them to downstream activations, it calls the
sendOffer operation on outgoing activity edge instances. The edge instance sendOffer operation, in turn, signals to the
target activity node activation that an offer is available by calling the receiveOffer operation. The target activity node
activation then checks if its execution prerequisites are satisfied (encoded in the method of the isReady operation for each
kind of activity node activation) and, if so, it accepts the pending offers made to it using its takeOfferedTokens operation
and then calls its fire operation.

Note that, in the execution model, the self-calls to the isReady operation and, if the activation is ready, to the
takeOfferedTokens operation happen within a single isolated region-that is, a structured activity node with mustlsolate =
true. This ensures that, if the takeOfferedTokens operation is invoked, then any offers checked by the isReady operation
cannot be accepted by any other activity node activation before the takeOfferedTokens operation completes. The
invocation of the fire operation, however, does not occur within this isolated region, in order to not block continued
concurrency with other activity node activations. (See 8.5.3.1 for a discussion of the semantics of structured activity
nodes with mustlsolate = true.)

The method of the fire operation for an activity node activation captures the execution behavior of the corresponding
activity node, which may then cause new offers to be sent further downstream. While there is no explicit class for it in the
Execution Model, an extended chain of sendOffer-receiveOffer-fire-sendOffer calls can be considered to be a single
thread of execution through an activity.

When an activity begins execution, a control token is implicitly placed on each enabled node. Enabled nodes include
initial nodes, input activity parameter nodes, and actions with no incoming control nodes or input pins. If such an enabled
node is immediately ready to fire, then it begins an execution thread within the activity execution. If there is more than
one enabled node that fires, then each one begins a concurrent thread within the activity execution.

Note: The UML 2 Superstructure Specification (sub clause 12.3.31) states that “In addition [to initial nodes], when an
activity starts, a control token is placed at each action...that has no incoming edges....” However, if an action has input
pins, at least one of which has a multiplicity lower bound greater than zero, then the action will still not be able to fire
until it is offered the appropriate number of object tokens. On the other hand, if the action has input pins, but they all have
multiplicity lower bounds of zero, then placing a control token on the action will cause it to fire immediately. However,
thisis likely not to be the expected behavior, since, having input pins, the presumption is that the modeler expected the
action to have at least some input. Therefore, fUML requires that an action with input pins have an offer on at least one
of the pins before it fires, even if al the input bins have zero multiplicity lower bound.

It is also possible for a thread to split. This occurs whenever the same offer is made to multiple outgoing edges, such as
when there are multiple edges leaving an output pin, fork node or action. Again, each outgoing thread executes
concurrently-which is modeled by requiring that the sendOffer calls on outgoing edges are al made concurrently.

Note: This model of execution concurrency does not require the implementation of actual parallelism in a conforming
execution tool. It simply means that such parallelism is allowed and that the execution semantics provide no further
restriction on the serialization of execution across concurrent threads.

A thread ends when a target activity node activation does not accept an offer passed to it along the thread. In this case,
the receiveOffer operation on the target node activation returns without calling the fire operation, and the chain of calls
making up the thread terminates. For example, the input pin of an action cannot accept an offer unless its action as a
whole is ready to execute (see 8.6.2.1). Therefore, if an action has severa input pins with non-zero multiplicity lower
bound, then offers need to be delivered to every input pin before the action can execute. Thus, all the threads delivering

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 185

these offers, except the last one, will terminate at the action input pin activations. Only the thread delivering the final
offer (assuming all the other offered tokens are still available) will result in the action firing, with the action execution
continuing on that thread.

The execution of an activity terminates when all threads within it have ended. Such termination may happen naturally
when, for example, all tokens are consumed by nodes that do not produce any new offers, or it may be forced by an
activity final node. When an activity final node fires, it causes its enclosing activity execution to call the terminate
operation on all activity node activations within it. Once a node activation is terminated, it will no longer accept any
offers and, as a result, all executing threads will eventually end, resulting in the termination of the activity execution.

186 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

+ types

fUML::Syntax:Classes::Kernel::Class < { fUML::Semantics::Classes::Kernel:0bject
L L
fUMLzSyntaxzCommonBehaviors:BasicBehaviorszBehavior | | fUML Semantics:CommonBehaviorszBasicBehaviorszExecution
A

ActivityExecution

+ execute [)
+ copy () : Value
+new_() value

0.1 T+ activity 0.1 + activity + terminate ()

| FUML:Syntax:Activities:Intermediate Activities:Activity

0.17 4 activityExecution

1 + activationGroup

ActivityNodeActivationGroup

+ run { activations : ActivityNodeActivation [*])

+ checlIncomingEdges (incomingEdges : ActivityEdgeInstance [*], activations : ActivityNodeActivation [*]) : Boolean
+ runModes { nodes : ActivityMode [*])

+ activate (nodes ; ActivityMode [*], edges : ActivityEdge [*])

+ terminatedll {)

+ createModeActivations | nodes : ActivityMode [*])

+ createModeictivation (node @ ActivityMode) ¢ ActivityNodeActivation

+ addiodeictivation { ackivation ; ActivityNodeActivation)

+ getModeActivation (nods : ActivityMode) ¢ ActivityNodeActivation [0..1]

+ createEdgelnstances | edges : ActivityEdge [*])

+ addEdgeInstance (instance : ActivityEdgeInstance)

+ getActivityExecution [) @ ActivityExecution

+ getOutputParameteriodeActivations () 1 ActivityParameterModeActivation [*]
+ hasSourceFor { edgelnstance : ActivityEdgelnstance) : Boolean

+ isSuspended () : Boolean

+ suspend { activation : ActivityModeActivation)

*| +edge + resume (activation : ActivityNodeActivation)
fUML:Syntax::Activities:IntermediateActivities::ActivityEdge | 1 ‘ + group 0.1
1 | + group
0.1 | + edge

. * | + edgelnstances

| fUML::Semantics::Activities:IntermediateActivities:ActivityEdgeInstance

* |+ node

fUMLzSyntaxc:Activities:IntermediateActivities:ActivityNode
A

0..1] + node

+ nodeActivations | * * \|; + suspendedActivations

4‘ fUML=SemanticszActivities=IntermediateActivities=ActivityllodeActivation

®

fUML:SyntaxzActivities:CompleteStructuredActivities:Execut ableNode |
A

| furLSyntaxsactionssBasicActionssAction | furn:Semantics:Actions::BasicActions:ActionActivation

Figure 8.25 - Activity Executions

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 187

+ outgoing + source
fUML::Sy Activities::I diateActil ActivityEdge [N fUML::Sy Activities::IntermediateActivities::ActivityNode
+ incoming + target
* 1
+edge | 0.1 +node| 0.1
fUML ics::Loci::Locil1 icVisitol
: : i
ActivityEdgeInstance ActivityNodeActivation
+ incomingEdges + target J + running : Boolean
+ sendOffer (tokens : Token [*]) % 1 +run ()
+ countOfferedValues () : Integer + receiveOffer ()
+ takeOfferedTokens () : Token [*] . + takeOfferedTokens () : Token [*]
+ takeOfferedTokens (maxCount : Integer) : Token [*] [+ outgoingEdges +source | 4 fire (incomingTokens : Token [*])
+ getOfferedTokens () : Token [*] = + sendOffers (tokens : Token [*])
+ hasOffer () : Boolean 1 + terminate ()
0..1 + isReady () : Boolean
+ isRunning () : Boolear
* | 4+ offers + addOutgoingEdge (edge : ActivityEdgeInstance)
+ addIncomingEdge (edge : ActivityEdgelnstance)
+ createNodeActivations ()
Offer + createEdgelnstances ()
+ isSourceFor (edgelnstance : ActivityEdgeInstance) : Boolean
+ countOfferedValues () : Integer + getActivityExecution () : ActivityExecution
+ getOfferedTokens () : Token [*] + getExecutionContext () : Object
+ removeOfferedValues (count : Integer) + getExecutionLocus () : Locus
+ removeWithdrawnTokens () + getNodeActivation (node : ActivityNode) : ActivityNodeActivation [0..1]
+ hasTokens () : Boolean + addToken (token : Token)
0.1 + removeToken (token : Token) : Integer
" + addTokens (tokens : Token [*])
+ takeTokens () : Token [*]
* \/ + offeredTokens + clearTokens ()
Token + holder + getTokens () : Token [*]
_ _ + heldTokens 0.1 : f::ﬁ;ld(())
+ transfer (holder : ActivityNodeActivation) : Token
+ withdraw () ZF
+ equals (other : Token) : Boolean
+ copy () : Token
+ isWithdrawn (') : Boolean
+ isControl (') : Boolean
+ getValue () : Value [0..1] ObjectNodeActivation ControlNodeActivation
+ offeredTokenCount : Integer
+run () + fire ((incomingTokens : Token [*] °
+ sendOffers (tokens : Token [*])
+ terminate ()
+ addToken (token : Token)
+ removeToken (token : Token) : Integer
ControlToken ObjectToken + clearTokens ()
+ countOfferedValues () : Integer
+ equals (other : Token) : Boolean + equals (other : Token) : Boolean + sendUnofferedTokens ()
+ copy () : Token + copy () : Token + countUnofferedTokens () : Integer
+ isControl () : Boolean + isControl () : Boolean + getUnofferedTokens () : Token [*]
+ getValue () : Value [0..1 + getValue () : Value [0..1 + takeUnofferedTokens () : Token [*]

0..1 | + value

| fum ics::Cli

nel::Value

Figure 8.26 - Node Activations

188

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

ActivityParameterNodeActivation

+ fire (incomingTokens : Token [*] |

+ clearTokens ()

fUMLzSemanticszActivities:IntermediateActivities:ControffladeActivation

InitialNodeActivation JoinNodeActivation

MergeNodeActivation

+ Fire { incomingTokens : Tolen [*])

+ isReady () : Boolean

ForkNodeActivation ActivityFinalNodeActivation FlowFinalNodeActivation
+ fire { incomingTokens : Token [*]) + fire (incomingTokens : Token [*]) + fire { incomingTokens ¢ Token [*])
+ terminate ()

fUML:Semantics:ActivitieszIntermediateActivities: Token | DecisionNodeActivation

1"+ baseToken + fire { incomingTolkens @ Token [*])

+ getDecisionValues (incomingTokens : Token [*]) : Value [*]

+ executeDecisionInputBehavior (inputValue : Value [0..1], decisionInputValue : Value [0..1]) : Value
+ terminate [)

+ isReady () : Boolzan

ForkedToken + takeOfferedTokens () : Token [*]
+ remainingOffersCount @ Integer + getDecisionInputFlowValue () 1 Value [0..1]
w |+ baseTokenIsWithdrawn : Boolean + getDecisionInputFlowInstance () : ActivityEdgeInstance [0..1]
+ isControl {) : Boolean + test { guard : ValueSpecification, value : Value) : Boolean
+ withdraw [) + removeJoinedControlTokens (incomingTokens : Token [*]) : Token [*]
+ copy [)+ Token + hasObjectFlowInput () : Boolean
+ equals (otherToken : Token) : Boolean
+ getvalue () : Value [0..1] 1

0..1 |, + decisionInputExecution

fUMLzSemantics:CommonBehaviors:BasicBehaviors:Execution

Figure 8.27 - Control Node Activations
8.5.2.2 Class Descriptions
8.5.2.2.1 ActivityEdgelnstance

An activity edge instance is a connection between activity node activations corresponding to an edge between the
corresponding nodes of those activations
Generalizations

None

Attributes

None

Associations

e edge: ActivityEdge[0..1]
The activity edge of which thisisan instance.

[Thisis optional to allow for an implicit fork node execution to be connected to its action execution by an edge instance
which does not have a corresponding node in the model.]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 189

e group : ActivityNodeActivationGroup
The activity group that contains this activity edge instance.
offers : Offer [0..*]

e source: ActivityNodeActivation
The source of this activity edge instance.
The node of the source must be the same as the source of the edge of this edge instance.

e target : ActivityNodeActivation
The target of this activity edge instance.
The node of the target must be the same as the target of the edge of this edge instance.

Operations

[1] countOfferedValues () : Integer

// Return the number of values being offered in object tokens.
int count = 0;
OfferList offers = this.offers;

for (int i = 0; i < offers.size(); i++) {

count = count + offers.getValue (i) .countOfferedvalues() ;

return count;

[2] getOfferedTokens () : Token [0..*]
// Get the offered tokens (after which the tokens will still be offered).

TokenList tokens = new TokenList () ;

OfferList offers = this.offers;
for (int i = 0; 1 < offers.size(); i++) {
TokenList offeredTokens = offers.getValue (i) .getOfferedTokens() ;

for (int j = 0; j < offeredTokens.size(); j++) {

tokens.addValue (offeredTokens.getValue (j)) ;

return tokens;

[3] hasOffer () : Boolean

// Return true if there are any pending offers.

boolean hasTokens = false;

190 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

int i = 1;

while (!hasTokens & i <= this.offers.size())
hasTokens = this.offers.getValue(i-1).hasTokens() ;
1 =1 + 1;

return hasTokens;

[4] sendOffer (in tokens : Token [0..*])
// Send an offer from the source to the target.
// Keep the offered tokens until taken by the target.

// (Note that any one edge should only be handling either all object tokens or all control
tokens.)

Offer offer = new Offer();
for (int i = 0; i < tokens.size(); i++) {
Token token = tokens.getValue(i);
// Debug.println (" [sendOffer] token value = " + token.getValue());

offer.offeredTokens.addValue (token) ;

this.offers.addValue (offer) ;

this.target.receiveOffer() ;

[5] takeOfferedTokens () : Token [0..*]

// Take all the offered tokens and return them.

TokenList tokens = new TokenList () ;

while (this.offers.size() > 0)
TokenList offeredTokens = this.offers.getValue(0).getOfferedTokens() ;
for (int i1 = 0; 1 < offeredTokens.size(); 1i++) {

tokens.addValue (offeredTokens.getValue(i)) ;

}

this.offers.removeValue (0) ;

return tokens;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 191

[6] takeOfferedTokens (in maxCount : Integer) : Token [0..*]

// Take all the offered tokens, up to the given maximum count of non-null object tokens,
and return them.

TokenList tokens = new TokenList () ;

int remainingCount = maxCount;

while (this.offers.size() > 0 & remainingCount > 0) {
Offer offer = this.offers.getValue(0) ;
TokenList offeredTokens = offer.getOfferedTokens() ;
int count = offer.countOfferedvValues() ;
if (count <= remainingCount)
for (int 1 = 0; 1 < offeredTokens.size(); 1++) {
tokens.addValue (offeredTokens.getValue (i)) ;
}
remainingCount = remainingCount - count;

this.offers.removeValue (0) ;

} else {
for (int i = 0; i < remainingCount; i++) {
Token token = offeredTokens.getValue (i) ;
if (token.getValue() != null) {

tokens.addvalue (token) ;

}

offer.removeOfferedvalues (remainingCount) ;

remainingCount = 0;

return tokens;
8.5.2.2.2 ActivityExecution

An activity execution is used to execute a specific activity. The type of the activity execution must be an activity.

When executed, the activity execution creates activity edge instances for all activity edges, activity node activations for
all activity nodes and makes offers to al nodes with no incoming edges.

Execution terminates when either all node activations are complete, or an activity final node is executed.

Generalizations

» “Execution” on page 162

192 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Attributes

None

Associations

e activationGroup : ActivityNodeA ctivationGroup
The group of activations of the activity nodes of the activity.

Operations
[1] copy () : Value
// Create a new activity execution that is a copy of this execution.

// [Note: This currently just returns a non-executing execution for the same activity as
this execution.]

return super.copy () ;

[2] execute ()

// Execute the activity for this execution by creating an activity node activation group
and activating all the activity nodes in the activity.

// When this is complete, copy the values on the tokens offered by output parameter nodes
to the corresponding output parameters.

Activity activity = (Activity) (this.getTypes () .getValue(0)) ;
Debug.println (" [execute] Activity " + activity.name + "...");

// Debug.println(" [execute] context = " + this.context.objectId()) ;
this.activationGroup = new ActivityNodeActivationGroup () ;
this.activationGroup.activityExecution = this;

this.activationGroup.activate (activity.node, activity.edge);

// Debug.println (" [execute] Getting output parameter node activations...");

ActivityParameterNodeActivationList outputActivations =
this.activationGroup.getOutputParameterNodeActivations () ;

// Debug.println (" [execute] There are " + outputActivations.size() + " output parameter
node activations.");

for (int i = 0; i < outputActivations.size(); i++) {

ActivityParameterNodeActivation outputActivation = outputActivations.getValue (i) ;

ParameterValue parameterValue = new ParameterValue() ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 193

parameterValue.parameter = ((ActivityParameterNode) (outputActivation.node)) .parameter;

TokenList tokens = outputActivation.getTokens() ;
for (int j = 0; j < tokens.size(); J++) {
Token token = tokens.getValue(j);
Value value = ((ObjectToken)token).value;
if (value != null)

parameterValue.values.addValue (value) ;

this.setParameterValue (parameterValue) ;

Debug.println (" [execute] Activity " + activity.name + " completed.");

[3] new_ () : Vaue

// Create a new activity execution with empty properties.

return new ActivityExecution() ;

[4] terminate ()

// Terminate all node activations (which will ultimately result in the
completing) .

this.activationGroup.terminateAll () ;

8.5.2.2.3 ActivityFinalNodeActivation

activity execution

An activity final node activation is a control node activation for a node that is an activity final node.

Generalizations

» “ControlNodeActivation” on page 211

Attributes

None

Associations

None

194 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Operations
[1] fire (in incomingTokens : Token [0..*])
// Terminate the activity execution or structured node activation

// containing this activation.

Debug.println(“[fire] Activity final node ” + this.node.name + “...");
if (incomingTokens.size() > 0 | this.incomingSize () == 0) {
if (this.group.activityExecution !=null)

this.group.activityExecution.terminate () ;

} else if (this.group.containingNodeActivation != null) ({
this.group.containingNodeActivation.terminateAll () ;

} else if (this.group instanceof ExpansionActivationGroup) {

((ExpansionActivationGroup) this.group) .regionActivation.terminate () ;

8.5.2.2.4 ActivityNodeActivation

An activity node activation is used to define the behavior of an activity node in the context of a containing activity or
structured activity node.
Generalizations

« “SemanticVisitor” on page 106

Attributes
e running : Boolean

If true, this node activation is enabled for execution once al its other prerequesites are satisfied.
Associations

 group : ActivityNodeA ctivationGroup
The group that contains this activity node activation.

» heldTokens: Token [0..*]

 incomingEdges : ActivityEdgelnstance [0..*]
The set of activity edge instances for the incoming edges of the node.

« node: ActivityNode[0..1]
The activity node being activated by this activity node activation. The node must be owned by the
activity (type) of the activity execution of this node activation.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 195

[Thisis optional, to allow for fork node edge queues and implicit fork and join node activations for actions to not have
nodes in the model]

 outgoingEdges : ActivityEdgelnstance [0..*]
The set of activity edge instances for the outgoing edges of the node.
Operations
[1] addincomingEdge (in edge : ActivityEdgel nstance)

// Add an activity edge instance as an incoming edge of this activity node activation.

edge.target = this;

this.incomingEdges.addValue (edge) ;

[2] addOutgoingEdge (in edge : ActivityEdgelnstance)

// Add an activity edge instance as an outgoing edge of this activity node activation.

edge.source = this;

this.outgoingEdges.addValue (edge) ;

[3] addToken (in token : Token)
// Transfer the given token to be held by this node.

if (this.node == null) {
Debug.println (" [addToken] ...");
} else {
Debug.println (" [addToken] node = " + this.node.name) ;
}
Token transferredToken = token.transfer (this);
// Debug.println (" [addToken] Adding token with value = " + transferredToken.getValue()) ;

this.heldTokens.addValue (transferredToken) ;

[4] addTokens (in tokens : Token [0..*])

// Transfer the given tokens to be the held tokens for this node.

// if (this.node == null)

// Debug.println (" [addTokens] ...");

// } else {

// Debug.println (" [addTokens] node = " + this.node.name) ;
7

196 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

for (int i = 0; i < tokens.size(); i++) {
Token token = tokens.getValue(i);

this.addToken (token) ;

[5] clearTokens ()

// Remove all held tokens.

while (this.heldTokens.size() > 0) {
this.heldTokens.getValue (0) .withdraw() ;

[6] createEdgel nstances ()
// Create edge instances for any edge instances owned by the node for this activation.

// For most kinds of nodes, this does nothing.

return;

[7] createNodeActivations ()
// Create node activations for any subnodes of the node for this activation.

// For most kinds of nodes, this does nothing.

return;

[8] fire (in incomingTokens : Token [0..*])

Carry out the main behavior of this activity node.

[9] getActivityExecution () : ActivityExecution

// Return the activity execution that contains this activity node activation, directly or
indirectly.

return this.group.getActivityExecution() ;

[10] getExecutionContext () : Object

// Get the context object for the containing activity execution.

return this.getActivityExecution () .context;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 197

[11] getExecutionLocus () : Locus

// Get the locus of the containing activity execution.

return this.getActivityExecution () .locus;

[12] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Get the activity node activation corresponding to the given activity node, in the
context of this activity node activation.

// By default, return this activity node activation, if it is for the given node, otherwise
return nothing.

ActivityNodeActivation activation = null;
if (node == this.node) {
activation = this;

return activation;

[13] getTokens () : Token [0..*]

// Get the tokens held by this node activation.

// Debug.println (" [getTokens] node = " + this.node.name);

TokenList tokens = new TokenList () ;

TokenList heldTokens = this.heldTokens;

for (int i = 0; i < heldTokens.size(); i++) {
Token heldToken = heldTokens.getValue (i) ;
// Debug.println (" [getTokens] token value = " + heldTokens.getValue()) ;
tokens.addValue (heldToken) ;

return tokens;

[14] isReady () : Boolean
// Check if all the prerequisites for this node have been satisfied.

// By default, check that this node is running.

return this.isRunning() ;

198 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[15] isRunning () : Boolean

// Test whether this node activation is running.

return this.running;

[16] isSourceFor (in edgelnstance : ActivityEdgelnstance) : Boolean

// Check if this node activation is the effective source for the given edge instance.

return edgelnstance.source == this;

[17] receiveOffer ()

// Receive an offer from an incoming edge.

// Check if all prerequisites have been satisfied. If so, fire.

if (this.node != null) {

Debug.println (" [receiveOffer] node = " + this.node.name);
}
_beginIsolation() ;

boolean ready = this.isReady () ;

TokenList tokens = new TokenList();

if (ready) {
Debug.println (" [receiveOffer] Firing.");

tokens = this.takeOfferedTokens () ;

_endIsolation() ;

if (ready)

this.fire (tokens) ;

[18] removeToken (in token : Token) : Integer
// Remove the given token, if it is held by this node activation.

// Return the position (counting from 1) of the removed token (0 if there is none removed) .

boolean notFound = true;

int i = 1;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 199

while (notFound & 1 <= this.heldTokens.size()) {

if (this.heldTokens.getValue(i-1) == token) {
if (this.node == null) {
Debug.println (" [removeToken] ...");
} else {
Debug.println (" [removeToken] node = " + this.node.name);

}

this.heldTokens.remove (i-1) ;

notFound = false;

if (notFound) {

i = 0;
} else {
i =1 - 1;

return 1 ;

[19] resume ()

// Resume this activation within the activation group that contains it.

this.group.resume (this) ;

[20] run ()

// Run the activation of this node.

if (this.node != null)
Debug.println (" [run] node = " + this.node.name) ;
} else {
Debug.println (" [run] Anonymous activation of type " + this.getClass().getName()) ;
}
this.running = true;

[21] sendOffers (in tokens : Token [0..*])

// Send offers for the given set of tokens over all outgoing edges (if there are any tokens
actually being offered).

200 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

if (tokens.size()>0) {

// *** Send all outgoing offers concurrently. ***

ActivityEdgeInstancelList outgoingEdges = this.outgoingEdges;
for (Iterator i = outgoingEdges.iterator(); i.hasNext() ;)

ActivityEdgeInstance outgoingEdge = (ActivityEdgeInstance)i.next () ;

// Debug.println (" [sendOffers] Sending offer to "
+ H_u)l.

outgoingEdge.sendOffer (tokens) ;

[22] suspend ()

// Ssupend this activation within the activation group that contains it.

this.group.suspend (this) ;

[23] takeOfferedTokens () : Token [0..*]

// Get tokens from all incoming edges.

TokenList allTokens = new TokenList () ;

ActivityEdgeInstancelList incomingEdges = this.incomingEdges;

for (int i1 = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance incomingEdge = incomingEdges.getValue (i) ;
TokenList tokens = incomingEdge.takeOfferedTokens () ;
for (int j = 0; j < tokens.size(); J ++) {

Token token = tokens.getValue(j) ;
allTokens.addValue (token) ;

return allTokens;

[24] takeTokens (') : Token [0..*]

// Take the tokens held by this node activation.

TokenList tokens = this.getTokens() ;

this.clearTokens () ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

+ outgoingEdge.target.node.name

201

return tokens;

[25] terminate ()

// Terminate the activation of this node.

if (this.running)

if (this.node != null) {
Debug.println(" [terminate] node = " + this.node.name) ;
} else {
Debug.println (" [terminate] Anonymous activation of type " +

this.getClass () .getName ()) ;

}

this.running = false;
8.5.2.2.5 ActivityNodeActivationGroup

An activity node group is a group of nodes that are activated together, either directly in the context of an activity
execution, or in the context of.

Generalizations

None

Attributes

None

Associations

- activityExecution : ActivityExecution [0..1]
The activity execution to which this group belongs.

(This will be empty if the group is for a structured activity node activation.)

« containingNodeActivation : StructuredActivityNodeActivation [0..1]
The structured activity node activation to which this group belongs.

(This will be empty if the group is for an activity execution.)

« edgelnstances : ActivityEdgel nstance [0..*]
The set of activity edge instances for this group.

« nodeActivations : ActivityNodeActivation [0..*]
The set of activity node executions for this group.

» suspendedActivations : ActivityNodeActivation [0..*]
Activity node activations in this activation group that are suspended waiting for an event occurrence. If an

202 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

activation group has a containing node activation and any suspended activations, then the containing node
activation will also be suspended.

Operations

[1] activate ((in nodes : ActivityNode [0..*], in edges : ActivityEdge [0..*])

// Activate and run the given set of nodes with the given set of edges, within this
activation group.

this.createNodeActivations (nodes) ;
this.createEdgeInstances (edges) ;

this.run(this.nodeActivations) ;

// Debug.println(" [activate] Exiting.");

[2] addEdgelnstance (in instance : ActivityEdgel nstance)

// Add the given edge instance to this group.

instance.group = this;

this.edgelnstances.addValue (instance) ;

[3] addNodeActivation (in activation : ActivityNodeActivation)

// Add the given node activation to this group.

activation.group = this;

this.nodeActivations.addValue (activation) ;

[4] checkincomingEdges (in incomingEdges : ActivityEdgel nstance [0..*], in activations : ActivityNodeActivation [0..*]
) : Boolean

// Check if any incoming edges have a source in a given set of activations.

int j = 1;
boolean notFound = true;
while (j <= incomingEdges.size() & notFound) {
int k = 1;
while (k <= activations.size() & notFound) {
if (activations.getValue (k-1).isSourceFor (incomingEdges.getValue(j-1))) {
notFound = false;
}
k =k + 1;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 203

[P ——

+ 1;

I
(SR

return notFound;

[5] createEdgelnstances (in edges : ActivityEdge [0..*])

// Create instance edges for the given activity edges, as well as for edge instances within
any nodes activated in this group.

for (int i = 0; i < edges.size(); i++) {

ActivityEdge edge = edges.getValue (i) ;

Debug.println (" [createEdgeInstances] Creating an edge instance from " +
edge.source.name + " to " + edge.target.name + ".");

ActivityEdgeInstance edgelnstance = new ActivityEdgelInstance() ;

edgelnstance.edge = edge;

this.addEdgeInstance (edgeInstance) ;
this.getNodeActivation (edge.source) .addOutgoingEdge (edgeInstance) ;

this.getNodeActivation (edge.target) .addIncomingEdge (edgeInstance) ;

// Debug.println(" [createEdgeInstances] Edge instance created...");
ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int i = 0; 1 < nodeActivations.size(); i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue (i) ;

nodeActivation.createEdgeInstances() ;

// Debug.println (" [createEdgelInstances] Done creating edge instances.");

[6] createNodeActivation (in node : ActivityNode) : ActivityNodeActivation

// Create an activity node activation for a given activity node in this activity node
activation group.

ActivityNodeActivation activation =
(ActivityNodeActivation) (this.getActivityExecution() .locus.factory.instantiateVisitor (node)

)i

204 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

activation.node = node;

activation.running = false;

this.addNodeActivation (activation) ;

activation.createNodeActivations () ;

return activation;

[7] createNodeActivations (in nodes : ActivityNode [0..*])

// Add activity node activations for the given set of nodes to this group and create edge
instances between them.

for (int 1 = 0; i < nodes.size(); i++) {
ActivityNode node = nodes.getValue (i) ;
Debug.println (" [createNodeActivations] Creating a node activation for " + node.name +

u__'n)’.

this.createNodeActivation (node) ;

[8] getActivityExecution () : ActivityExecution

// Return the activity execution to which this group belongs, directly or indirectly.

ActivityExecution activityExecution = this.activityExecution;
if (activityExecution == null)

activityExecution = this.containingNodeActivation.group.getActivityExecution() ;
// Debug.println("[getActivityExecution] activityExecution = " + activityExecution) ;

return activityExecution;

[9] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Return the node activation (if any) in this group,

// or any nested group, corresponding to the given activity node.
// If this is a group for a structured activity node activation,

// also include the pin activations for that node activation.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 205

ActivityNodeActivation activation = null;

if (this.containingNodeActivation != null && node instanceof Pin) {
activation = this.containingNodeActivation.getPinActivation ((Pin)node) ;
}
if (activation == null) {
int 1 = 1;
while (activation == null & i1 <= this.nodeActivations.size()) {
activation = this.nodeActivations.getValue(i-1) .getNodeActivation (node) ;
i =1 + 1;

return activation;

[10] getOutputParameterNodeActivations () : ActivityParameterNodeActivation [0..*]

// Return the set of all activations in this group of activity parameter nodes for output
(inout, out and return) parameters.

ActivityParameterNodeActivationList parameterNodeActivations = new
ActivityParameterNodeActivationList () ;

ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int i = 0; 1 < nodeActivations.size(); i++) {
ActivityNodeActivation activation = nodeActivations.getValue (i) ;

if (activation instanceof ActivityParameterNodeActivation) {
if (activation.incomingEdges.size() > 0 {

parameterNodeActivations.addValue ((ActivityParameterNodeActivation)activation) ;

return parameterNodeActivations;

[11] hasSourceFor (edgelnstance : activityEdgelnstance) : Boolean
// Returns true 1if this activation group has a node activation

// corresponding to the source of the given edge instance.

boolean hasSource = false;
ActivityNodeActivationList activations = this.nodeActivations;
int i = 1;

206 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

while 'hasSource & 1 <= activations.size()) {

hasSource = activations.getValue(i-1).isSourceFor (edgelInstance) ;

}

return hasSource;

[12] isSuspended () : Boolean
// Check if this activation group has any suspended activations and 1is,

// therefore, itself suspended.

return this.suspendedActivations.size() > 0;

[13] resume (activation : ActivityNodeActivation)

// Resume the given activation by removing it from the suspended

// activation list for this activation group. If this is the last
// suspended activation, and the activation group h as a containing

// node activation, then resume that containing activation.

boolean found = false;
int 1 = 1;
while (!found & i <= this.suspendedActivations.size()) {
if (this.suspendedActivations.get(i-1) == activation)

this.suspendedActivations.removeValue (i-1) ;

found = true;
}
i =1 4+ 1;
}
if (!this.isSuspended())

StructuredActivityNodeActivation containingNodeActivation =
this.containingNodeActivation;
if (containingNodeActivation != null) {

containingNodeActivation.resume () ;

[14] run (in activations : ActivityNodeActivation [0..*])
// Run the given node activations and then (concurrently) send an offer to all activations
for nodes with no incoming edges within the given set.

for (int 1 = 0; i < activations.size(); i++) {

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 207

ActivityNodeActivation activation = activations.getValue (i) ;

activation.run() ;

Debug.println (" [run] Checking for enabled nodes...");

= new ActivityNodeActivationList () ;

ActivityNodeActivationList enabledActivations

i < activations.size(); i++) {
= activations.getValue (i) ;

for (int 1 = 0;
ActivityNodeActivation activation

Debug.println (" [run] Checking node " + activation.node.name + "...");

if (activation instanceof ActionActivation |
activation instanceof ControlNodeActivation |

activation instanceof ActivityParameterNodeActivation) {

boolean isEnabled = this.checkIncomingEdges (activation.incomingEdges, activations) ;

// For an action activation, also consider incoming edges to input pins

if (isEnabled & activation instanceof ActionActivation) {
InputPinList inputPins = ((Action)activation.node) .input;

int j = 1;
while (j <= inputPins.size() & isEnabled) {
InputPin inputPin = inputPins.getValue(j-1);

ActivityEdgeInstancelList inputEdges =
((ActionActivation)activation) .getPinActivation (inputPin) .incomingEdges;

isEnabled = this.checkIncomingEdges (inputEdges, activations) ;
jo=3 + 1;
}
}
if (isEnabled)
Debug.println (" [run] Node " + activation.node.name + " is enabled.");

enabledActivations.addValue (activation) ;

// Debug.println("[run] " + enabledActivations.size() + " node(s) are enabled.");

208 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// *** Send offers to all enabled nodes concurrently. **%*

for (Iterator i = enabledActivations.iterator(); i.hasNext();) {
ActivityNodeActivation activation = (ActivityNodeActivation)i.next();
Debug.println (" [run] Sending offer to node " + activation.node.name + ".

activation.receiveOffer () ;

}
[15] runNodes (in nodes : ActivityNode [0..*])

// Run the node activations associated with the given nodes in this activation group.

ActivityNodeActivationList nodeActivations = new ActivityNodeActivationList() ;
for (int i = 0; i < nodes.size(); i++) {

ActivityNode node = nodes.getValue (i) ;

ActivityNodeActivation nodeActivation = this.getNodeActivation (node) ;

if (nodeActivation != null) {

nodeActivations.addValue (nodeActivation) ;

this.run (nodeActivations) ;

[16] suspend (activation : ActivityNodeActivation)
// Suspend the given activation in this activation group. If this is
// the only suspended activation, and the activation group has a

// containing node activation, then suspend that containing activation.

if (!this.isSuspended()) {

StructuredActivityNodeActivation containingNodeActivation =
this.containingNodeActivation;

if (containingNodeActivation != null) {

containingNodeActivation.suspend() ;

}

this.suspendedActivations.addValue (activation) ;

[17] terminateAll ()

// Terminate all node activations in the group.

Debug.println (" [terminateAll] Terminating activation group for " +

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

209

(this.activityExecution != null? "activity " +
this.activityExecution.getTypes () .getValue (0) .name:

this.containingNodeActivation != null? "node " +
this.containingNodeActivation.node.name:

"expansion region") + ".");
ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int 1 = 0; 1 < nodeActivations.size(); 1i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue (i) ;

nodeActivation.terminate () ;

8.5.2.2.6 ActivityParameterNodeActivation
An activity parameter node activation is an object node activation for a node that is an activity parameter node.

Generalizations

» “ObjectNodeActivation” on page 224

Attributes

None

Associations

None

Operations

[1] clearTokens ()

// Clear all held tokens only if this is an input parameter node.

if (this.node.incoming.size() == 0) {

super.clearTokens () ;

[2] fire (in incomingTokens : Token [0..*])

// If there are no incoming edges, this is an activation of an input activity parameter
node.

// Get the values from the input parameter indicated by the activity parameter node and
offer those values as object tokens.

if (this.node.incoming.size() == 0) {
Debug.println (" [fire] Input activity parameter node " + this.node.name + "...");
Parameter parameter = ((ActivityParameterNode) (this.node)) .parameter;

210 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

ParameterValue parameterValue =
this.getActivityExecution () .getParameterValue (parameter) ;

// Debug.println (" [fire]

parameter = "

if (parameterValue != null) {

Debug.println (" [fire]

value(s) .");

Parameter has

+ parameter.name) ;

" + parameterValue.values.size ()

TokenList tokens = new TokenList () ;
ValuelList values = parameterValue.values;
for (int i = 0; i < values.size(); i++) {

Value value = values.getValue(i);

ObjectToken token = new ObjectToken() ;

token.value = wvalue;

this.addToken (token) ;

}

this.sendUnofferedTokens () ;

// If there are one or more incoming edges,
parameter node.

+

this is an activation of an output activity

// Take the tokens offered on incoming edges and add them to the set of tokens being
offered.

// [Note that an output activity parameter node may fire multiple times,

tokens offered to it.]

else

}

8.5.2.

{

Debug.println (" [fire] Output activity parameter node "

this.addTokens (incomingTokens) ;

2.7 ControlNodeActivation

+ this.node.name +

A control node activation is an activity node activation for a node that is a control node.

Generalizations

« “ActivityNodeActivation” on page 195

Attributes

None

Associations

None

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

accumulating

211

Operations
[1] fire (in incomingTokens : Token [0..*])

// By default, offer all tokens on all outgoing edges.

if (this.node != null) {

Debug.println (" [fire] Control node " + this.node.name + "...");

this.sendOffers (incomingTokens) ;
8.5.2.2.8 ControlToken
A control token represents the passing of control along a control flow edge.

Generalizations

» “Token” on page 230

Attributes

None

Associations

None

Operations
[1] copy () : Token

// Return a new control token.

return new ControlToken () ;

[2] equals (in other : Token) : Boolean

// Return true if the other token is a control token, because control tokens are
interchangable.

return other instanceof ControlToken;

[3] getValue () : Value[0..1]

// Control tokens do not have values.

return null;

[4] isControl () : Boolean

212 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// Return true for a control token.

return true;

8.5.2.2.9 DecisionNodeActivation

Generalizations

» “ControlNodeActivation” on page 211

Attributes

None

Associations

« decisionlnputExecution : Execution [0..1]
The current execution of the decision input behavior (if any).

Operations

[1] executeDecisionlnputBehavior (in inputValue : Vaue [0..1], in decisioninputValue : Value [0..1]) : Value
// Create the decision input execution from the decision input behavior.

// If the behavior has input parameter(s), set the input parameter(s) of the execution to
the given value(s).

// Execute the decision input execution and then remove it.
// Return the value of the output parameter of the execution.

// If there is no decision input behavior, the decision input value is returned, if one is
given, otherwise the input value is used as the decision value.

Debug.println (" [executeDecisionBehavior] inputValue = " + inputValue) ;
Behavior decisionInputBehavior = ((DecisionNode) (this.node)) .decisionInput;
Value decisionInputResult = null;
if (decisionInputBehavior == null)
if (decisionInputValue != null) {
decisionInputResult = decisionInputValue;
} else {
decisionInputResult = inputValue;
}
} else {

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 213

this.decisionInputExecution =
this.getExecutionLocus () .factory.createExecution (decisionInputBehavior,
this.getExecutionContext()) ;

int 1 = 1;
int j = 0;
while ((j == 0 | (j == 1 & decisionInputValue != null)) & i <=
decisionInputBehavior.ownedParameter.size())
Parameter parameter = decisionInputBehavior.ownedParameter.getValue (i-1);

if (parameter.direction.equals (ParameterDirectionKind.in) |
parameter.direction.equals (ParameterDirectionKind. inout)) {
ParameterValue inputParameterValue = new ParameterValue() ;

inputParameterValue.parameter = parameter;

if (j == 1 && inputValue != null) {
inputParameterValue.values.addValue (inputValue) ;
} else {

inputParameterValue.values.addValue (decisionInputValue) ;

this.decisionInputExecution.setParameterValue (inputParameterValue) ;

this.decisionInputExecution.execute () ;

ParameterValueList outputParameterValues =
this.decisionInputExecution.getOutputParameterValues () ;

decisionInputExecution.destroy () ;

decisionInputResult = outputParameterValues.getValue(0).values.getValue(0);

return decisionInputResult;

[2] fire (in incomingTokens : Token [0..*])

// Get the decision values and test them on each guard.

214 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// Forward the offer over the edges for which the test succeeds.

Debug.println (" [fire] Decision node " + this.node.name + "...");

//TokenList incomingTokens = this.takeOfferedTokens () ;
TokenList removedControlTokens = this.removeJoinedControlTokens (incomingTokens) ;

ValuelList decisionValues = this.getDecisionValues (incomingTokens) ;

ActivityEdgeInstancelList outgoingEdges = this.outgoingEdges;
for (int i1 = 0; i < outgoingEdges.size(); i++) {

ActivityEdgeInstance edgelInstance = outgoingEdges.getValue (i) ;

ValueSpecification guard = edgelnstance.edge.guard;

TokenList offeredTokens = new TokenList () ;

for (int j = 0; j < incomingTokens.size(); Jj++) {
Token incomingToken = incomingTokens.getValue(j);
Value decisionValue = decisionValues.getValue(j);
if (this.test (guard, decisionValue)) {

offeredTokens.addValue (incomingToken) ;

if (offeredTokens.size() > 0) {
for (int j = 0; j < removedControlTokens.size(); Jj++) {
Token removedControlToken = removedControlTokens.getValue(j) ;

offeredTokens.addValue (removedControlToken) ;

}

edgelInstance.sendOffer (offeredTokens) ;

[3] getDecisionlnputFowlnstance () : ActivityEdgelnstance [0..1]

// Get the activity edge instance for the decision input flow, if any.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
ActivityEdgeInstance edgelnstance = null;
if (decisionInputFlow != null) {

int 1 = 1;

while (edgelInstance == null & i <=this.incomingEdges.size()) {

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 215

ActivityEdgeInstance incomingEdge = this.incomingEdges.getValue(i-1);

if (incomingEdge.edge == decisionInputFlow) {
edgeInstance = incomingEdge;

}

i =1 + 1;

return edgelnstance;

[4] getDecisionlnputFlowValue () : Value [0..1]

// Take the next token available on the decision input flow, if any, and return its value.

ActivityEdgeInstance decisionInputFlowInstance = this.getDecisionInputFlowInstance() ;
Value value = null;
if (decisionInputFlowlInstance != null) {
TokenList tokens = decisionInputFlowInstance.takeOfferedTokens() ;
if (tokens.size() > 0) {
value = tokens.getValue(0) .getValue() ;

return value;

[5] getDecisionValues (in incomingTokens : Token [0..*]) : Value [0..*]

// If there is neither a decision input flow nor a decision input behavior, then return
the set of values from the incoming tokens.

// [In this case, the single incoming edge must be an object flow.]

// If there is a decision input flow, but no decision input behavior, then return a list
of the decision input values equal in size to the number of incoming tokens.

// If there is both a decision input flow and a decision input behavior, then execute the
decision input behavior once for each incoming token and return the set of resulting
values.

// If the primary incoming edge is an object flow, then the value on each object token
is passed to the decision input behavior, along with the decision input flow value, if any.

// If the primary incoming edge is a control flow, then the decision input behavior
only receives the decision input flow, if any.

Value decisionInputValue = this.getDecisionInputFlowValue() ;

216 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

ValueList decisionValues = new ValuelList() ;
for (int i1 = 0; i < incomingTokens.size(); i++) {
Token incomingToken = incomingTokens.getValue (i) ;

Value value = this.executeDecisionInputBehavior (incomingToken.getValue(),
decisionInputValue) ;

decisionValues.addValue (value) ;

// Debug.println (" [getDecisionValues] " + decisionValues.size() + " decision value(s):");
for (int 1 = 0; 1 < decisionValues.size(); 1++) {

Value decisionValue = decisionValues.getValue (i) ;

Debug.println (" [getDecisionValues] decisionValues[" + 1 + "] = " + decisionValue) ;

return decisionValues;

[6] hasObjectFlowInput () : Boolean
// Check that the primary incoming edge is an object flow.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
boolean isObjectFlow = false;

int i = 1;

while (!isObjectFlow & i <= this.incomingEdges.size()) ({

ActivityEdge edge = this.incomingEdges.getValue(i-1) .edge;
isObjectFlow = edge != decisionInputFlow & edge instanceof ObjectFlow;

i =1 + 1;

return isObjectFlow;

[7] isReady () : Boolean
// Check that all incoming edges have sources that are offering tokens.

// [This should be at most two incoming edges, if there is a decision input flow.]

int i = 1;
boolean ready = true;
while (ready & i <= this.incomingEdges.size()) {
ready = this.incomingEdges.getValue (i-1) .hasOffer () ;

i =1 + 1;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 217

return ready;

[8] removeJoinedControl Tokens (in incomingTokens : Token [0..*]) : Token [0..*]
// If the primary incoming edge is an object flow, then remove any control tokens from the
incoming tokens and return them.

// [Control tokens may effectively be offered on an object flow outgoing from a join node
that has both control and object flows incoming.]

TokenList removedControlTokens = new TokenList () ;
if (this.hasObjectFlowInput()) {
int 1 = 1;
while (i <= incomingTokens.size()) {
Token token = incomingTokens.getValue(i-1);
if (token.isControl()) {

removedControlTokens.addValue (token) ;

incomingTokens.removeValue (i-1) ;

return removedControlTokens;

[9] takeOfferedTokens () : Token [0..*]

// Get tokens from the incoming edge that is not the decision input flow.

ObjectFlow decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
TokenList allTokens = new TokenList () ;
ActivityEdgeInstancelList incomingEdges = this.incomingEdges;
for (int i = 0; 1 < incomingEdges.size(); i++) {
ActivityEdgeInstance edgelnstance = incomingEdges.getValue (i) ;
if (edgelInstance.edge != decisionInputFlow)
TokenList tokens = edgelnstance.takeOfferedTokens() ;
for (int j = 0; j < tokenmns.size(); J++) {

allTokens.addValue (tokens.getValue (j)) ;

218 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

return allTokens;

[10] terminate ()

// Terminate the decision input execution, if any, and then terminate this activation.

if (this.decisionInputExecution != null) {

this.decisionInputExecution.terminate () ;

super.terminate () ;

[11] test (in guard : ValueSpecification, in value : Value) : Boolean

// Test if the given value matches the guard. If there is no guard, return true.

boolean guardResult = true;

if (guard != null)
Value guardValue = this.getExecutionLocus () .executor.evaluate (guard) ;
guardResult = guardValue.equals (value) ;

}

return guardResult;

8.5.2.2.10 FlowFinalNodeActivation
A f low final node activation is a control node activation for a node that is a flow final node.

Generalizations

» “ControlNodeActivation” on page 211

Attributes

None

Associations

None

Operations
[1] fire (in incomingTokens : Token [0..*])
//Consume all incoming tokens.

Debug.println (“[fire] Flow final node ” + this.node.name + “...");

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 219

for (int i = 0; i < incomingTokens.size(); i++) {
Token token = incomingTokens.getValue (i) ;

token.withdraw() ;

8.5.2.2.11 ForkedToken

A forked token is a proxy for a token that has been offered through a fork node. If the token is accepted through the fork
node, then the original token is withdrawn from its holder, but the forked token remains held by the fork node activation
until all outstanding offers on all outgoing edges are accepted.

Generalizations

» “Token” on page 230

Attributes

- baseTokenlswithdrawn : Boolean
Indicates whether withdraw() has been classed on the base token.

» remainingOffersCount : Integer
The remaining number of outstanding offers for this token on outgoing edges of the fork node.

Associations

« baseToken : Token

Operations

[1] copy () : Token

// Return a copy of the base token.

return this.baseToken.copy () ;

[2] equals (in otherToken : Token) : Boolean

// Test if this token is equal to another token.

return this == otherToken;

[3] getValue () : Value [0..1]

// Return the value of the base token.

return this.baseToken.getValue () ;

220 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[4] isControl () : Boolean

// Test if the base token is a control token.

return this.baseToken.isControl () ;

[5] withdraw ()
// If the base token is not withdrawn, then withdraw it.
// Decrement the remaining offers count.

// When the remaining number of offers is zero, then remove this token from its holder.

if (!this.baseTokenIsWithdrawn & !this.baseToken.isWithdrawn())

this.baseToken.withdraw() ;

// NOTE: This keeps a base token that is a forked token from being
// withdrawn more than once, since withdrawing a forked token may
// not actually remove it from its fork node holder.

this.baseTokenIsWithdrawn = true;

}

if (this.remainingOffersCount > 0)

this.remainingOffersCount = this.remainingOffersCount - 1;

if (this.remainingOffersCount == 0) {

super.withdraw () ;

}

8.5.2.2.12 ForkNodeActivation
A fork node activation is a control node activation for a node that is a fork node.

Generalizations

» “ControlNodeActivation” on page 211

Attributes

None

Associations

None

Operations
[1] fire (in incomingTokens : Token [0..*])

// Create forked tokens for all incoming tokens and offer them on all outgoing edges.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 221

if (this.node == null)

Debug.println (" [fire] Anonymous fork node.");
} else {
Debug.println (" [fire] Fork node " + this.node.name + "...");

ActivityEdgeInstancelList outgoingEdges = this.outgoingEdges;

int outgoingEdgeCount = outgoingEdges.size() ;

TokenList forkedTokens = new TokenList () ;

for (int i = 0; 1 < incomingTokens.size(); i++) {
Token token = incomingTokens.getValue (i) ;
ForkedToken forkedToken = new ForkedToken () ;
forkedToken.baseToken = token;
forkedToken.remainingOffersCount = outgoingEdgeCount;
forkedToken.baseTokenIsWithdrawn = false;

forkedTokens.addValue (forkedToken) ;

this.addTokens (forkedTokens) ;

this.sendOffers (forkedTokens) ;

[2] terminate ()

// Remove any offered tokens and terminate.

this.clearTokens () ;

super.terminate () ;

8.5.2.2.13 InitiaINodeActivation
An initial node activation is a control node activation for a node that is an initial node.

Generalizations

« ControlNodeActivation

Attributes

None

222 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Associations

None

Operations
[1] fire (in incomingTokens : Token [0..*])

// Create a single token and send offers for it.

TokenList tokens = new TokenList () ;
tokens.addValue (new ControlToken()) ;

this.addTokens (tokens) ;

this.sendOffers (tokens) ;
8.5.2.2.14 JoinNodeActivation
A join node activation is a control node activation for a hode that is ajoin node.

Generalizations

« “ControlNodeActivation” on page 211

Attributes

None

Associations

None

Operations
[1] isReady () : Boolean

// Check that all incoming edges have sources that are offering tokens.

boolean ready = true;
int 1 = 1;
while (ready & 1 <=this.incomingEdges.size()) {

ready = this.incomingEdges.getValue (i-1) .hasOffer () ;

i =1 + 1;

return ready;

8.5.2.2.15 MergeNodeActivation

A merge node activation is a control node activation for a node that is a merge node.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

223

Generalizations

» “ControlNodeActivation” on page 211

Attributes

None

Associations

None

Operations

None
8.5.2.2.16 ObjectNodeActivation
An object node activation is an activity node activation for a node that is an object node.

Generalizations

« “ActivityNodeActivation” on page 195

Attributes
« offeredTokenCount : Integer
The number of held tokens that have already been offered.
Associations

None

Operations

[1] addToken (in token : Token)

// Transfer the given token to be held by this node only if it is a non-null object token.

// If it is a control token or a null token, consume it without holding it.

if (token.getValue() == null) {
token.withdraw () ;
} else {

super.addToken (token) ;

[2] clearTokens ()
// Remove all held tokens.

super.clearTokens () ;

this.offeredTokenCount = 0;

224 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[3] countOfferedValues () : Integer

// Count the total number of non-null object tokens being offered to this node activation.

int totalValueCount = 0;
int i = 1;
while (i <= this.incomingEdges.size()) {

totalvValueCount = totalValueCount + this.incomingEdges.getValue (i-
1) .countOfferedvalues() ;

i =1 + 1;

return totalValueCount;

[4] countUnofferedTokens (') : Integer
// Return the number of unoffered tokens that are to be offered next.

// (By default, this is all unoffered tokens.)

if (this.heldTokens.size() == 0) {
this.offeredTokenCount = 0;

}

return this.heldTokens.size() - this.offeredTokenCount;

[5] getUnofferedTokens () : Token [0..*]

// Get the next set of unoffered tokens to be offered and return it.

// [Note: This effectively treats all object flows as if they have weight=*,

the weight=1 default in the current superstructure semantics.]

TokenList tokens = new TokenList () ;
int 1 = 1;
while (i <= this.countUnofferedTokens ()) {

tokens.addValue (this.heldTokens.getValue (this.offeredTokenCount + i

i =1 + 1;

return tokens;

[6] removeToken (in token : Token) : Integer

// Remove the given token, if it is held by this node activation.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

rather than

225

int i = super.removeToken (token) ;
if (1 > 0 & i <= this.offeredTokenCount) {

this.offeredTokenCount = this.offeredTokenCount - 1;

return 1i;

[7] run ()

// Initialize the offered token count to zero.

super.run() ;

this.offeredTokenCount = 0;

[8] sendOffers (in tokens : Token [0..*])
// If the set of tokens to be sent is empty, then offer a null token instead.

// Otherwise, offer the given tokens as usual.

if (tokens.size() == 0) {
if (tokens.size() == 0) {
ObjectToken token = new ObjectToken() ;
token.holder = this;
tokens.addValue (token) ;

super.sendOffers (tokens) ;

[9] sendUnofferedTokens ()

// Send offers over all outgoing edges, if there are any tokens to be offered.

TokenList tokens = this.getUnofferedTokens () ;

this.offeredTokenCount = this.offeredTokenCount + tokens.size();

this.sendOffers (tokens) ;

[10] takeUnofferedTokens () : Token [0..*]

// Take the next set of unoffered tokens to be offered from this node activation and return
them.

TokenList tokens = this.getUnofferedTokens() ;

226 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

for (int i = 0; i < tokens.size(); i++) {
Token token = tokens.getValue(i);

token.withdraw() ;

}

return tokens;

[11] terminate ()

// Remove any offered tokens and terminate.

this.clearTokens () ;
super.terminate () ;
8.5.2.2.17 ObjectToken

An object token represents the passing of data along an object flow edge.

Generalizations

« “Token” on page 230

Attributes

None

Associations

« value: Vaue[0..1]
The value carried by thistoken. A token may have no value, in which caseit isa“null token.”

Operations
[1] copy () : Token
// Return a new object token with the same value as this token.

// [Note: the holder of the copy is not set.]

ObjectToken copy = new ObjectToken() ;

copy.value = this.value;

return copy;

[2] equals (in other : Token) : Boolean
// Test if this object token is the same as the other token.

return this == other;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

227

[3] getvalue () : Value[0..1]
// Return the value of this object token.

return this.value;

[4] isControl () : Boolean

// Return false for an object token.

return false;
8.5.2.2.18 Offer

An offer is agroup of tokens offered together. The grouping of offered tokens into offers usually does not matter for how
the tokens may be accepted. However, control and object tokens may become grouped together in the same offer due to a
join node that has both incoming control and object flows. In this case, the control tokens are implicitly accepted once all
the object tokens in the same offer have been accepted.

Generalizations

None

Attributes

None

Associations

» offeredTokens: Token [0..*]

Operations

[1] countOfferedValues () : Integer
// Return the number of values being offered on object tokens.

// Remove any tokens that have already been withdrawn and don't include them in the count.

this.removeWithdrawnTokens () ;

int count = 0;
for (int 1 = 0; 1 < this.offeredTokens.size(); 1++) {
if (this.offeredTokens.getValue (i) .getValue() != null) {
count = count + 1;

return count;

228 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[2] getOfferedTokens () : Token [0..*]

// Get the offered tokens, removing any that have been withdrawn.

this.removeWithdrawnTokens () ;

TokenList tokens = new TokenList () ;

TokenList offeredTokens = this.offeredTokens;

for (int 1 = 0; i < this.offeredTokens.size() ; i++) {
Token offeredToken = offeredTokens.getValue (i) ;

// Debug.println (" [getOfferedTokens] token value = "
tokens.addValue (offeredToken) ;

return tokens;

[3] hasTokens () : Boolean

// Check whether this offer has any tokens that have not been withdrawn.

this.removeWithdrawnTokens () ;

return this.offeredTokens.size() > O0;

[4] removeOfferedValues (in count : Integer)

// Remove the given number of non-null object tokens from those in this offer.

int n = count;
int 1 = 1;

while (n > 0) {

if (this.offeredTokens.getValue(i-1) .getValue() != null)

this.offeredTokens.removeValue (i-1) ;

} else {

i =1 + 1;
}
n =n - 1;

[5] removeWithdrawnTokens ()

// Remove any tokens that have already been consumed.

TokenList offeredTokens = this.offeredTokens;

int i = 1;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

+ offeredToken.getValue()) ;

229

while (i <= this.offeredTokens.size()) {
if (this.offeredTokens.getValue(i-1) .isWithdrawn()) {
this.offeredTokens.remove (1-1) ;

i =1 - 1;

8.5.2.2.19 Token
A token is an individual element of data or control that may flow across an activity edge.

Generalizations

None

Attributes

None

Associations

 holder : ActivityNodeActivation [0..1]

Operations
[1] copy () : Token
// Make a copy of this token.

[2] equals (in other : Token) : Boolean

Test if this token is equal to another token.

[3] getValue () : Value[0..1]

Get the value associated with this token (if any).

[4] isControl () : Boolean

Test whether this is a control token.

[5] iswithdrawn () : Boolean

// Test if this token has been withdrawn.

return this.holder == null;

[6] transfer (in holder : ActivityNodeActivation) : Token

// 1if this token does not have any holder, make the given holder its holder.

230 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// Otherwise, remove this token from its holder and return a copy of it transfered to a
new holder.

Token token = this;
if (this.holder != null) {
this.withdraw() ;

token = this.copy();

token.holder = holder;

return token;

[7] withdraw ()

// Remove this token from its holder, withdrawing any offers for it.

if (!this.isWithdrawn()) {
// Debug.println (" [withdraw] Taking token with value = " + this.getValue());
this.holder.removeToken (this) ;

this.holder = null;

}
8.5.3 Complete Structured Activities

8.5.3.1 Overview

The fUML subset includes base structured activity nodes and the specialized conditional and loop nodes (see 7.4.3).
However, since fUML does not support variables and, therefore, requires the use of pins and object flows, only the full
Complete Structured Activities abstract syntax is supported as a conformance level in fUML (see Clause 2). The basic
Structured Activities syntax is not supported on its own.

Structured Activity Node Activation

In the Complete Structure Activities abstract syntax, structure activity nodes actually become kinds of actions. Therefore,
as shown in Figure 8.28, their semantics are specified using action activations (see 8.6.2.1 for a general discussion of
action activation semantics). However, unlike other kinds of nodes, structured activity nodes have nested activity nodes
within them. The activation of the nested activity nodes is handled by an activity node activation group associated with
the structured activity node activation (see 8.5.2 for the specification of ActivityNodeA ctivationGroup).

Note that al structured activity node activations have exactly one activation group that covers the activation of all nested
activity nodes. However, how nested activity nodes are actually activated varies depending on the kind of structured
activity node.

For the base structured activity node, which simply groups its nested activity nodes, execution proceeds much as in the
case of an overall activity. All nested activity nodes are activated, and subsequent behavior is determined by the flow of
offers and tokens between activations.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 231

For a conditional node, however, the test part is activated first. Depending on the result of the test, additional nodes are
activated depending on which conditional clause is selected.

For a loop node, the loop test and body parts are repeatedly activated (with the test coming before or after the body,
depending on the isTestedFirst attribute of the loop node). The same activity node activation group is used for every
iteration of the loop, but the group is cleared of node activations between iterations.

Isolation

If a structured activity node has the property mustlsolate = true, then its activity node activations run in isolation from
activity node activation external to it. The UML Superstructure Specification (sub clause 12.3.48) defines this behavior as
follows:

If the mustlsolate flag istrue for an activity node, then any access to an object by an action within the node must not
conflict with access to the object by an action outside the node. A conflict is defined as an attempt to write to the object by
one or both of the actions. If such a conflict potentially exists, then no such access by an action outside the node may be
interleaved with the execution of the node.

For the purposes of fUML, however, it isimportant to define this important optional behavior somewhat more completely.
The following definitions apply for the purposes of this discussion.

« An execution trace providestiming for all the events in the execution of a model.

» Theduration of afiring of an action activation is the time interval from the event of the action activation firing to the
event of the action activation offering tokens on outgoing control flows (even if there are no outgoing control flows, the
duration ends at that point in time at which the firing of the action activation is“ complete’ and would offer control
tokensif there were flows.) A legal execution trace is one that is permitted by the behavioral semantics specified for
executing the model. Note that there can, and generally will, be multiple possible legal execution traces for any given
model.

« Two action activation firings overlap if their durations are not digjoint.

« Anaction activation A is serializable with respect to another action activation B if, for any legal execution trace in
which one or more of thefirings of A and B overlap, thereis another legal execution trace in which none of their firings
overlap but for which the execution behavior of thefirings of B are identical to that of the first trace. (Note that the
behavior of A does not have to be preserved in the second trace. This means that A being serializable with respect to B
does not necessarily imply that B is serializable with respect to A.)

» The scope of control of an activity execution or a structured activity node activation firing is defined to be the set of
activity node activations covered by the following:

1. For astructured activity node activation, that activation itself.

2. All activations of nested activity nodes with the activity or structured activity node that are run as a result of
that specific activity execution or structured activity node activation firing. (In the execution model, thisis
called the “activity node activation group”.)

3. The scope of control of the firing of any nested structured activity node activations.

4. The scope of control of any activity executions resulting from the firing of any nested call (behavior or
operation) actions (which, in fUML, are always synchronous).

Therule for isolation can now be stated fairly simply: Let S be a structured activity node with mustlsolate=true. Then any
action activation not in the scope of control of S must be serializable with respect to any action activation that is within
the scope of control of S.

232 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Basically, under this rule, any action behavior not under the control of S, even if it physically happens in parallel with an
execution of S, has the same effect on S as if it occurred entirely before or entirely after the execution of S. In particular,
any actions that write to objects read within S must either have their effect visible throughout the execution of S (“asif it
occurred entirely before the execution of S”) or their effect must not be visible at all within the execution of S (“asif it
occurred entirely after the execution of S”). (Thisis similar to the way that “isolation” is defined for database
transactional semantics.)

Note that the asymmetric definition of “serializable” above means that, in general, an action activation not under the
control of S can see into intermediate results produced by S (in database terminology, this is known as a “dirty read”),
unlessit, too, is part of some other structured activity node with mustlsolate=true. For two structured activity nodes to run
in complete isolation with respect to each other, both must specify mustlsolate=true.

Note also that the above rule does not allow certain deadlock conditions that can occur due to specific implementation
techniques, such as locking. For example, there is the archetypical case in which two concurrent threads are each holding
locks which the other needs, and so neither can proceed. However, in most such cases, there is alegal execution trace in
which these threads could have successfully executed (e.g., if they were run sequentially instead of concurrently). The
intent is that the execution trace leading to deadlock would not be legal at all, since it is only the locking implementation
that leads to the deadlock, not anything specified by the behavioral semantics. In particular, this means that, if an
execution tool uses locking to implement isolation, then it also must provide some means to detect implementation-
specific deadlock conditions and recover from them (again, thisis typically what is done in database transaction
implementations).

On the other hand, there are cases in which deadlock cannot be avoided. For example, suppose a structured activity node
with mustlsolate = true contains just two read actions. The first read action has an outgoing control flow that crosses out
of the structured activity node to a write action on the outside that writes to the object read by the read actions. If the
write action then has an outgoing control flow that crosses back into the structured activity node to the second read action,
it isimpossible to satisfy both the control flow constraints and the isolation rule. Such a model has no legal control flows.
Per the UML Superstructure Specification, it is actually ill-formed and has no execution semantics.

Note: The above semantics for mustlsolate = true are intended to allow the simple implementation of approach of
serializing the execution of all structured activity nodes with mustlsolate = true-that is, running them sequentially, one at
atime, with nothing else running at the same time. One subtlety here is the case when an execution of one or more of the
isolated structured activity nodes does not terminate, due to, say, an infinite loop. In this case, there may not be any finite
execution trace in which all isolated structured activity nodes can complete sequentially. However, since there are no
particular requirements in the fUML semantics for liveliness or fairness in concurrent execution, it is generally
permissible in any case for an implementation to allow a concurrent thread that does not terminate to continue to use all
resources and not allow any other threads to run. Therefore, the rule above for isolation is not meant to disallow a fully
serialized implementation.

The above rule for isolation is part of the base semantics of the modeling subset used to write the execution model itself
(see 10.4.5). Therefore, structured activity nodes with mustlsolate = true may be used within the execution model. For
fUML user models being executed by the execution model, the effect of mustlsolate = true is achieved by activating the
body of the fUML structured activity node within a structured activity node in the execution mode with mustlsolate =
true. This results in the body of the structured activity node being run in isolation from other threads running within the
executing fUML activity, resulting in the base isolation behavior being elevated to fUML.

In order to accommodate this optional isolation behavior, the class StructuredActivityNodeActivation provides a method
for the operation doAction in terms of an operation called doStructuredActivity. The operation StructuredActivity
Activcation::doAction checks the mustlsolate flag for the structured activity node being executed. If it is true, then
doAction calls doStructuredActivity within a structuredA ctivityNode with mustloslate = true. If mustlsolate = false, then
doAction still calls doStructuredActivity, but not within an isolated structured activity node.

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 233

The classes Conditional NodeA ctivation and LoopNodeA ctivation specialize StructuredActivityNodeAcivation (see Figure
8.28). They both override the operation doStructuredActivity to specify the behavior specific to conditional nodes and
loop nodes. However, they do not override the doAction operation, and, therefore, they inherit the basic isolation
behavior from StructuredActivityNode behavior.

+ node

P —— FaleAc R icr ARy ade T icactnt - o]
[+] - riY
+ Feclalrinratorm -
+ MR
L
lﬂ.ﬂ_—!ﬂtmﬂhﬁfmmmmwm
vgoup | E
| s emantiesactivties=intermediate crvityNodeActivatinGrou.
[erusyntncactionsaasicactionsction | LT + poxr L | errontae

= | & sdgainstances

|...-- s v prreTET— v
.
0.1] »edge .1 4 # contanngodndctivabon
JT - i A Bl =R Bl il e
| = i | nErichuraddd il yiedeRctivation
0.1 |+ rStuctuedodo i ok
! 0.1} + nShuctumedinds : :‘:ﬁm':l"?""'“': [
o+ et e e e f il - Actiwiyhiode | - Activitebiooeic troaton [00.1]
[T pr—r— P Tt 4+ miskmdc Tt bl i [neden ; § sl abletios []) : Actretyicds [*]
L i sdActivitytiode | i geaPieiakses { B0 1 CUEPURPY) 1 Vala [7]
"I"' + puhr e | pin : Outguei, wakoes Vil [*])
1 mestetededtn shons | |
+ e dos et | |
+ mhcmncmtn | mignlinl wre Rl yE hplint e | | Rosken
Puilasy Sty | + bermatesl | |
[s — J + iSascprdad [| - Boclar
+ eomptelabion | | 1 Token |*]
+awisns | }
[nr syt mcactivitiesCompletestsct iesConditionaliod T
1 + Cordtorahiods - TRy -]
L7 | close T C 2 — %
+ doSrucnsedis ity | + DT ety |)
+ gboctedlarie - coopietaiody (] + thil oy | artEnag | Boskm |
soCompHeteStractured Achivit \Rrdh): . o H
UL =Syt o Actiwities t jeximne | : Uy e 1o oAbt
X . 1 |+ geiCimsahtoion | fese : Class | : Clunaictsion + nurdy | |
" # 1URTest | cluse : Clase | + sarveBsdeCutpts |)
+ sy + sbsctllady | dajie | Chiis + 1 depiiablas |)
tremme|) + Ereatetisdedsin sbena |
+ kel gkl it (] ¢ Aetiviyhiads [¥]
1 + epradtinPullectahrineanom i lerrwaledd (|
+ienmal)
* | & clasnicowvations Ll
[T r—— a1
F TR] » = budyGuloullaty
+ ifteady [| Dockean
. wnted [| bt]
+ neectfiody [
¥ geibeonmon | | | Bockeanvakee [5..1] -=
+ petPiedecessors | | - Clumebctivation [*)
gritarcruion | | | Chmedctredten [*] i

Figure 8.28 - Structured Node Activations
8.5.3.2 Class Descriptions

8.5.3.2.1 ClauseActivation

| e semanticetlassestemetalue |

A clause activation defines the behavior of a clause within the context of a specific activation of the conditional node

containing the clause.

234

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Generalizations

None

Attributes

None

Associations

» clause: Clause

« conditionalNodeActivation : ConditionalNodeActivation
The activation of the conditional node that contains the clause for this clause activation.
Operations

[1] getDecision () : BooleanValue [0..1]

// Get the value (if any) on the decider pin of the clause for this clause activation.

ValuelList deciderValues = this.conditionalNodeActivation.getPinValues (this.clause.decider) ;
BooleanValue deciderValue = null;
if (deciderValues.size () > 0) |

deciderValue = (BooleanValue) (deciderValues.getValue(0)) ;

return deciderValue;

[2] getPredecessors () : ClauseActivation [0..*]

// Return the clause activations for the predecessors of the clause for this clause
activation.

ClauseActivationList predecessors = new ClauseActivationList () ;
ClauseList predecessorClauses = this.clause.predecessorClause;

for (int i = 0; 1 < predecessorClauses.size(); 1i++) {

Clause predecessorClause = predecessorClauses.getValue (i) ;

predecessors.addValue (this.conditionalNodeActivation.getClauseActivation (predecessorClause)

)i
1

return predecessors;

[3] getSuccessors () : ClauseActivation [0..*]

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 235

// Return the clause activations for the successors of the clause for this clause
activation.

ClauseActivationList successors = new ClauseActivationList () ;

ClauselList successorClauses = this.clause.successorClause;
for (int i = 0; 1 < successorClauses.size(); i++) {

Clause successorClause = successorClauses.getValue (i) ;

successors.addValue (this.conditionalNodeActivation.getClauseActivation (successorClause)) ;

}

return successors;

[4] isReady () : Boolean

// Test if all predecessors to this clause activation have failed.

ClauseActivationList predecessors = this.getPredecessors() ;
boolean ready = true;
int i = 1;
while (ready & i <= predecessors.size()) {
ClauseActivation predecessor = predecessors.getValue(i-1);
BooleanValue decisionValue = predecessor.getDecision() ;

// Note that the decision will be null if the predecessor clause has not run yet.

if (decisionvValue == null) {
ready = false;
} else {
ready = !decisionValue.value;
}
i =1 + 1;

return ready;

[5] receiveControl ()

// If all predecessors to the clause for this activation have run their tests and failed,
then run the test for this clause.

// If the test succeeds, then terminate any other clauses that may be running and run the
body of this clause.

236 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

// If the test fails, then pass control to successor clauses.

Debug.println (" [receiveControl] clauseActivation = " + this);

if (this.isReady()) {
Debug.println (" [receiveControl] Running test...");

this.runTest () ;

BooleanValue decision = this.getDecision() ;

// Note that the decision may be null if the test was terminated before completion.
if (decision != null)
if (decision.value == true) {
Debug.println (" [receiveControl] Test succeeded.");
this.selectBody () ;
} else {

Debug.println (" [receiveControl] Test failed.");
ClauseActivationList successors = this.getSuccessors() ;
// *** Give control to all successors concurrently. **%
for (Iterator i = successors.iterator(); i.hasNext();) {

ClauseActivation successor = (ClauseActivation)i.next();

successor.receiveControl () ;

[6] runTest ()

// Run the test of the clause for this clause activation.

this.conditionalNodeActivation.runTest (this.clause) ;

[7] selectBody ()

// Select the body of the clause for this clause activation.

this.conditionalNodeActivation.selectBody (this.clause);

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 237

8.5.3.2.2 ConditionalNodeActivation

A conditional node activation is a structured activity node activation for a node that is a conditional node.

Generalizations

« “StructuredActivityNodeActivation” on page 247

Attributes

None

Associations

» clauseActivations : ClauseActivation [0..*]
The activations for each clause in the conditional node for this node activation.

 selectedClause : clause
The clause chosen from the set of selected Blauses to actually be executed.

» selectedClauses : Clause [0..*]
The set of clauses which meet the conditions to have their bodies activated.

Operations

[1] completeAction () : Token [0..*]

// Only complete the conditional node if it is not suspended.

if (!this.isSuspended()) {
completeBody () ;

}

return super.completeAction() ;

[2] completeBody ()
// Complete the activation of the body of a conditional note by
// copying the outputs of the selected clause (if any) to the output

// pins of the node and terminating the activation of all nested nodes.

if (this.selectedClause != null) {
ConditionalNode node = (ConditionalNode) (this.node) ;
OutputPinList resultPins = node.result;

OutputPin bodyOutputPin = bodyOutputPins.getValue (k) ;
this.putTokens (resultPin, this.getPinValues (bodyOutputPin)) ;

}
}

this.activationGroup.terminateAll () ;

238 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

[3] doStructuredActivity ()
// Run all the non-executable, non-pin nodes in the conditional node.

// Activate all clauses in the conditional node and pass control to those that are ready
(i.e., have no predecessors).

// 1If one or more clauses have succeeded in being selected, choose one non-
deterministically and run its body, then copy the outputs of that clause to the output pins
of the node.

ConditionalNode node = (ConditionalNode) (this.node) ;
ActivityNodeActivationList nodeActivations = this.activationGroup.nodeActivations;
ActivityNodeActivationList nonExecutableNodeActivations = new ActivityNodeActivationList() ;
for (int 1 = 0; 1 < nodeActivations.size(); i++) {

ActivityNodeActivation nodeActivation = nodeActivations.getValue (i) ;

if (! (nodeActivation.node instanceof ExecutableNode | nodeActivation.node instanceof
Pin)) {

nonExecutableNodeActivations.addValue (nodeActivation) ;

this.activationGroup.run (nonExecutableNodeActivations) ;

this.clauseActivations.clear () ;

ClauseList clauses = node.clause;

for (int i = 0; i < clauses.size(); i++) {
Clause clause = clauses.getValue (i) ;
ClauseActivation clauseActivation = new ClauseActivation() ;
clauseActivation.clause = clause;
clauseActivation.conditionalNodeActivation = this;

this.clauseActivations.addValue (clauseActivation) ;

this.selectedClauses.clear () ;

ClauseActivationList readyClauseActivations = new ClauseActivationList();

for (int i1 = 0; i < this.clauseActivations.size(); i++) {
ClauseActivation clauseActivation = this.clauseActivations.getValue (i) ;
Debug.println (" [doStructuredActivity] clauseActivations[" + 1 + "] = " +

clauseActivation) ;
if (clauseActivation.isReady()) {
Debug.println (" [doStructuredActivity] Clause activation is ready.");

readyClauseActivations.addValue (clauseActivation) ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 239

// *** Give control to all ready clauses concurrently. **x

for (Iterator i1 = readyClauseActivations.iterator(); 1i.hasNext() ;) {
ClauseActivation clauseActivation = (ClauseActivation)i.next();
Debug.println (" [doStructuredActivity] Giving control to " + clauseActivation + "...");

clauseActivation.receiveControl () ;

this.selectedClause = null;

if (this.selectedClauses.size() > 0 & this.isRunning()) {
Debug.println (" [doStructuredActivity] " + this.selectedClauses.size() + " clause(s)

selected.");

// *** If multiple clauses are selected, choose one non-deterministically. ***

int 1 =
((ChoiceStrategy)this.getExecutionLocus () .factory.getStrategy ("choice")) .choose (this.select
edClauses.size()) ;

this.selectedClause = this.selectedClauses.getValue(i-1);

Debug.println (" [doStructuredActivity] Running selectedClauses[" + i + "] = " +

this.selectedClause) ;

for (int j = 0; j < clauses.size(); J++) {
Clause clause = clauses.getValue(j);
if (clause != this.selectedClause)
ExecutableNodeList testNodes = clause.test;
for (int k = 0; k < testNodes.size(); k++)

ExecutableNode testNode = testNodes.getValue (k) ;

this.activationGroup.getNodeActivation (testNode) .terminate () ;

this.activationGroup.runNodes (this.makeActivityNodeList (this.selectedClause.body)) ;

[4] getClauseActivation (in clause : Clause) : ClauseActivation

// Get the clause activation corresponding to the given clause.

240 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

ClauseActivation selectedClauseActivation = null;

int i = 1;
while ((selectedClauseActivation == null) & i <= this.clauseActivations.size()) {
ClauseActivation clauseActivation = this.clauseActivations.getValue(i-1);
if (clauseActivation.clause == clause) {
selectedClauseActivation = clauseActivation;
}
i =1 + 1;

return selectedClauseActivation;

[5] resume()

// When this conditional node is resumed after being suspended, complete
// its body and then resume it as a structured activity node.

// [Note that this presumes that accept event actions are not allowed

// in the test part of a clause of a conditional node.]

completeBody () ;

super.resume () ;

[6] runTest (in clause : Clause)

// Run the test for the given clause.

if (this.isRunning()) {

this.activationGroup.runNodes (this.makeActivityNodeList (clause.test)) ;

[7] selectBody (in clause : Clause)

// Add the clause to the list of selected clauses.

this.selectedClauses.addValue (clause) ;
8.5.3.2.3 LoopNodeActivation
A loop node activation is a structured activity node activation for a node that is aloop node.

Generalizations

» “StructuredActivityNodeActivation” on page 247

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 241

Attributes

None

Associations

 bodyOutputLists: Values[0..*]

Operations

[1] continueLoop ()

// Continue the loop node when it is resumed after being suspended. If
// 1isTestedFirst is true, then continue executing the loop. If

// isTestedFirst is false, then run the test to determine whether

// the loop should be continued or completed.

// [Note that this presumes that an accept event action is not allowed

// in the test part of a loop node.]

LoopNode loopNode = (LoopNode) (this.node);
boolean continuing = true;
if (!loopNode.isTestedFirst) {
continuing = this.runTest () ;
}
if (this.isRunning()) {
this.activationGroup.terminateAll () ;

this.doLoop (continuing) ;

[2] createNodeActivations ()

// In addition to creating activations for contained nodes, create activations for any loop
variables.

super.createNodeActivations () ;

this.activationGroup.createNodeActivations (this.makeLoopVariableList ()) ;

[3] doLoop (in continuing : Boolean)

// If isTestedFirst is true, then repeatedly run the test part and the
// body part of the loop, copying values from the body outputs to the
//loop variables.

// If isTestedFirst is false, then repeatedly run the body part and the
// test part of the loop, copying values from the body outputs to the

// loop variables.

LoopNode loopNode = (LoopNode) (this.node(;

242 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

OutputPinList loopVariables = loopNode.loopVariable;

OutputPinList resultPins = loopNode.result;

while (continuing)

// Set loop variable values

this.runLoopVariables() ;

for (int i = 0; i < loopVariables.size() i++) {
OutputPin loopVariable = loopVariables.getValue (i) ;
Values bodyOutputList = bodyOutputLists.getValue (i) ;
ValuelList values = bodyOutputList.values;
this.putPinValues (loopVariable, wvalues);
((OutputPinActivation) this.activationGroup

.getNodeActivation (loopVariable)) .sendUnofferedTokens () ;

// Run all the non-executable, non-pin nodes in the conditional
// node.
ActivityNodeActivationList nodeActivations = this.activationGroup.nodeActivations;
ActivityNodeActivationList nonExecutableNodeActivations =

new ActivityNodeActivationList () ;
for (int i = 0; 1 < nodeActivations.size(); i++) {

ActivityNodeActivation nodeActivation = nodeActivations

.getvalue (i) ;
if (!nodeActivation.node instanceof ExecutableNode |
nodeActivation.node instanceof Pin))

nonExecutableNodeActivations.addValue (nodeActivation) ;

}

this.activationGroup.run (nonExecutableNodeActivations) ;

// Run the loop

if (loopNode.isTestedFirst) {
continuing = this.runTest () ;
if (continuing) {

this.runBody () ;

{

} else {
this.runBody () ;
if (this.isRunning() & !this.isSuspended())
continuing = this.runTest () ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 243

if (this.isRunning() && !this.isSuspended())
this.activationGroup.terminateAll () ;
} else {

continuing = false;

Debug.println (“ [doStructuredActivity] ~
+ (continuing? “Continuing.”

this.isSuspended()? “Suspended”:

“Done ")) ;
}
if (this.isRunning() && !this.isSuspended()) {
for (int i = 0; i < bodyOutputLists.size(); i++) {

Values bodyOutputList = bodyOutputLists.getValue (i) ;
OutputPin resultPin = resultPins.getValue(i);

this.putTokens (resultPin, bodyOutputList.values) ;

[4] doStructuredActivity ()

// Set the initial values for the body outputs to the values of the loop variable input
pins.

// If isTestedFirst is true, then repeatedly run the test part and the body part of the
loop, copying values from the body outputs to the loop variables.

// If isTestedFirst is false, then repeatedly run the body part and the test part of the
loop, copying values from the body outputs to the loop variables.

// When the test fails, copy the values of the body outputs to the loop outputs.

// [Note: The body outputs are used for the loop outputs, rather than the loop variables,
since values on the loop variables may be consumed when running the test for the last
time.]

LoopNode loopNode = (LoopNode) (this.node) ;
InputPinlList loopVariableInputs = loopNode.loopVariableInput;
OutputPinlList loopVariables = loopNode.loopVariable;

OutputPinList resultPins = loopNode.result;

ValuesList bodyOutputLists = this.bodyOutputLists;

244 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

for (int i = 0; 1 < loopVariableInputs.size(); 1i++) {
InputPin loopVariableInput = loopVariableInputs.getValue (i) ;
Values bodyOutputList = new Values();
bodyOutputList.values = this.takeTokens (loopVariableInput) ;
this.bodyOutputLists.addValue (bodyOutputList) ;

this.doLoop (true) ;

[5 makeL oopVariableList () : ActivityNode [0..*]

// Return an activity node list containing the loop variable pins for the loop node of this
activation.

LoopNode loopNode = (LoopNode) (this.node) ;
ActivityNodeList nodes = new ActivityNodeList () ;

OutputPinList loopVariables = loopNode.loopVariable;

for (int 1 = 0; i < loopVariables.size(); i++)
OutputPin loopVariable = loopVariables.getValue(i);
nodes.addValue (loopVariable) ;

return nodes;

[6] runBody ()

// Run the body part of the loop node for this node activation and save the body outputs.

LoopNode loopNode = (LoopNode)this.node;

this.activationGroup.runNodes (this.makeActivityNodeList (loopNode.bodyPart)) ;

if (!this.isSuspended()) {

this.saveBodyOutputs () ;

[7] resume ()
// When this loop node is resumed after being suspended, continue with
// 1ts next iteration (is any). Once the loop has completed execution

// without being suspended again, complete the action.

LoopNode loopNode = (LoopNode) (this.node) ;

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 245

this.saveBodyOutputs () ;

if (loopNode.mustIsolate)
beginIsolation() ;
this.continueLoop () ;
endIsolation() ;
} else {

this.continueLoop() ;

if (this.isSuspended()) {
// NOTE: If the subsequent iteration of the loop suspends it again,
// then it is necessary to remove the previous suspension from the
// containing activity node activation group.
this.group.resume (this) ;

} else {

super.resume () ;

[8] runLoopVariables ()

// Run the loop variable pins of the loop node for this node activation.

this.activationGroup.runNodes (this.makeLoopVariableList ()) ;

[9] runTest () : Boolean

// Run the test part of the loop node for this node activation.

// Return the value on the decider pin.

LoopNode loopNode = (LoopNode) (this.node) ;
this.activationGroup.runNodes (this.makeActivityNodeList (loopNode.test)) ;

ValuelList wvalues = this.getPinValues (loopNode.decider) ;

// If there is no decider value, treat it as false.

boolean decision = false;
if (values.size() > 0) {
decision = ((BooleanValue) (values.getValue(0))) .value;

246 Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1

Debug.println (" [runTest] " + (decision? "Test succeeded.": "Test failed."));

return decision;

[10] saveBodyOutputs ()

// Save the body outputs for use in the next iteration.

LoopNode loopNode = (LoopNode) this.node;

OutputPinList bodyOutputs = loopNode.bodyOutput;

ValuesList bodyOutputlLists = this.bodyOutputLists;

for (int 1 = 0; i < bodyOutputs.size(); i++ {
OutputPin bodyOutput = bodyOutputs.getValue (i) ;
Values bodyOutputList = bodyOutputLists.getValue (i) ;
bodyOutputList.values = this.getPinValues (bodyOutput) ;

[11] terminateAll ()
// Copy the values of the body outputs to the loop outputs, and then

// terminate all activations in the loop.

OutputPinList resultPins = ((LoopNode)this.node) .result;

for (int i = 0; i < bodyOutputlLists.size(); i++) {
Values bodyOutputList = bodyOutputLists.getValue (i) ;
OutputPin resultPin = resultPins.getValue (i) ;

this.putTokens (resultPin, bodyOutputList.values);

super.terminateAll () ;

8.5.3.2.4 StructuredActivityNodeActivation
A structured activity node activation is an action activation for an action that is a structured activity node.

Generalizations

» “ActionActivation” on page 270

Semantics of a Foundational Subset for Executable UML Models (FUML), v1.1 247

Attributes

None

Associations

- activationGroup : ActivityNodeA ctivationGroup
The group of activations of the activity nodes contained in the structured activity node.

Operations
[1] completeAction(): Token[*]

// O