OBJECT MANAGEMENT GROUP

An OMG® Executable UML® Publication

>

Semantics of a Foundational Subset for

Executable UML Models (fUML)

Version 1.5 — Beta (with change tracking)

OMG Document Number: ptc/2020-05-11

Date: May 2020

Normative reference: https://www.omg.org/spec/FUML/1.5

Machine readable file(s):

Normative: https://www.omg.org/spec/FUML/20200501/fUML_Syntax.xmi
https://www.omg.org/spec/FUML/20200501/fUML_Semantics.xmi
https://www.omg.org/spec/FUML/20200501/fUML _Library.xmi

https://www.omg.org/spec/FUML/1.5
http://www.omg.org/spec/FUML/20180301/fUML_Library.xmi
https://www.omg.org/spec/FUML/20200501/fUML_Library.xmi
https://www.omg.org/spec/FUML/20200501/fUML_Semantics.xmi
https://www.omg.org/spec/FUML/20200501/fUML_Syntax.xmi

Copyright © 2012 88Solutions

Copyright © 2012 Atego

Copyright © 2008-2010 California Institute of Technology. United States Government sponsorship acknowledged
Copyright © 2005-2010 CARE Technologies, S.A.

Copyright © 2017-2020 Commissariat a I’Energie Atomique et aux Energies Alternatives (CEA)
Copyright © 2005-2020 Model Driven Solutions

Copyright © 2005-2012 IBM

Copyright © 2005-2010 Kennedy Carter Ltd.

Copyright © 2005-2012 Lockheed-Martin Corporation

Copyright © 2005-2012 Mentor Graphics Corporation

Copyright © 2008-2020 Object Management Group, Inc.

Copyright © 2012 NexJ Systems

Copyright © 2012 No Magic

Copyright © 2012 Sparx Systems

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:

(1) both the copyright notice identified above and this permission notice appear on any copies of this specification; (2)
the use of the specifications is for informational purposes and will not be copied or posted on any network computer
or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3) no
modifications are made to this specification. This limited permission automatically terminates without notice if you
breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated
above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

http://www.omg.org/legal/tm_list.htm

OMG:'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

(S Telo] o1 TSP 1
2 CONFOIMANCE......ccoii e e 1
2 I € T=T o 1= = | 1
2.2 Meaning and Types of Conformance..............cccoiiiiiiiiiiiiiie e 1
2.3 Genericity of the Execution MOdel...........oooiiiiiiiiiiiie e 4
2.4 Conformance StatemeNnt...........oo oo 5
3 Normative REfEIENCES.........coeeeeeeeee e 6
4 Terms and DefinitioNS...........oe i 6
O SYMDOIS.... s 7
6 Additional INformation............oouuiiiiiii e 9
6.1 Changes to Adopted OMG Specifications............ccoevvveeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 9
6.2 On the Semantics of Languages and Models...............ccccoo 9
6.3 On the Semantics of Metamodels...............uueeeiiiiiiiiiiceee e 11
6.4 Alignment with the OMG Four Layer Metamodeling Architecture......................... 12
6.5 ACKNOWIEAGMENTS. ..o e 14
B.5.1 SUDMIULEIS....cooiiiii e e e e e e e e e e e eaean 14

R S 10 o] o o] o (=T 4= OO RRRRR 15

7 ADSIrACE SYNTAX... ..o 17
% B O 1 V/=T oY/ 1= SO 17
7.2 SYNIAX PACKAGES.uuuiiiiiiiiie ettt e e e e e e e e e e e e e e e e s nneeeeaae s 18
7.3 COMMON STTUCKUIE......ceeiieeie et e e e e e e et e e e e eaaeeeeeens 20
T.3.1 OVEIVIBW. ...ttt ettt e e e e e e e e e e e e e et et b s b e e e e e e eeeeaaeeeeeseaesaasssbberanereaaaaaaaaaas 20

7.3.2 CONSIAINES...coiiiiii et e e e e e e e e e e e e eaaaaaaaaaaaaan 23
7.3.2.1 MUIPHCIEYEIEMENL....... et e e e e e e e e e et e e e e e e araeeeeensnneeaeas 23

T4 ValUES.......cooeeeeee ettt e ettt e e e e et e e e e e e e e e eaaaaaaeens 23
A T B @ V=Y V1= SO PPPRRRRP 23

A O70) 1] 1 -1] €T PPURUUPRR 24

7.5 ClasSifiCatioN..........coouiiiiieii et a e eaaaas 24

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta i

A T T O 1YL= 1Y/ (= T 24

A I ©7o] a1 (= 110 N 28
7.5.21 BehaVIioralFEatUre............ooooeeeieice et e e e e e e e e e e e e e e e aaaeaes 28

T.5.2.2 FRAIUIE.....cceeeeeeee ettt ettt et e e e e e e e e et et e et eeeeeeeeeeee e e et aaaaaaaaaans 29

7.5.2.3 INStANCESPECITICALION.....ccciiiiiiiie et e e e e et e e e earaeeeean 29

T N O o 1= 1 ([o] o T USSP PP P RUPPPRTPPTN 29

VA T o= = .41 =) TN 29

A T T o o o= o 2RSSR 29

7.6 SIMPle ClassSifiers........couiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee et 30
A T R O 1YY oY - RS R 30
A T A 070 015 1 =110 7R 31
LS B = Tor= o) (o) PSP OUPPRPRRRIRE 31

7.7 StruCtUred ClasSIfIErS......cooouueiiiiieee e e e e e e e e e e e aeees 31
A % T O Y=Y oV = UUUO PR 31
A A A 070] 015 (= 110 63 URRURPURNY 34

O A T -1~ Tl =1 (o P 34

A ©1 = 1= TR 34

7.8 PaCKAgES. ...t a e 35
% T B @ LYY V1 35
S I O7o] a1 (= 110 3OS 35
7.9 COmMMON BENAVIOL..... .o et e e e e e e e e e e eaaeaes 36
e T R O 1YY oY T OO 36
A T A 070 0 1S 1 =110 7R 38
e I B = 7= =1 T S OO 38

P I A @ o T To [§=] = 1= o =1V o] SRR 38

A O I e (A7 (1= 38
A O @ LY =Y V21 R 38

8 O O g 11 (= 110 3N 42
TA0.2.1 ACHVIEY ..ttt et et e e s a e et e e b e e aa e et e be e eaaeene e teeeaaeenreeareas 42

T7.10.2.2 ACHVIEYEAGE. ... ettt e ettt e e e et e e e e e nae e e e e e e nae e e e e eanneeeaeaannnneaaean 42

A L0 T2 T o 11] [Yo /= YRR 42

A (O S @ Lo =1 { o)A USSP UPURSRN 42

A L0 ST @ o] =Te1 1)L o [= TSRO 42

4 B Yo ([o 1= 42
% B IS B LY =Y VA1 42
0 B A O g 11 (= 110 3N 50
71121 ACCEPLCAIIACHON. ...ttt e bt e et nnne e neee s 50

T.A41.2.2 ACCEPIEVENTACHION. e e e e e e e e e e e e e e e e eesnnnnrnnees 51

A I T 0111211 o =1V o 472 o1 1 1o o TR 51

711.2.4 CallOPErationNACHON.ccciiiiiee ettt e et e e e e et e e e e et e e e e s et e e e e e sentaeeeaesentaeeeessassneaeenan 51

T 11.2.5 CreateODJECIACHION. ettt e e st e e e st e e e e sstae e e e e ssbaeeeessnraeeaeeannes 52

7.11.2.6 EXPANSIONNOGE.c.eeiiiiiiieit ettt ettt as e e ene e e et e e snr e enes 52

T AT.2.7 LOOPNOGE. ...ttt ettt e et e bt e st e et e e s e e e st e e e ebe e e nnneenaneeeas 52

0 7 T T TR 52

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

711.2.9 ReAdEXIENTACHON. ... ittt e et e e e et e e e e e e nte e e e e e eneeeeas 52

7.11.2.10 ReclassifyODJECIACHON.ccciieeeie ittt e e e et e e e snee e e nneeeeseaeeeeneeeeanneeenneeean 52

ST aTo RS o g E= 1N o1 o o SR 53

7.11.2.11 StartObjectBeaVIOTACHON.eiiie et e e e e et e e e s e anaeaaeenes 53

8 EXecution MOdEL..........coonnii e 55
G T B O V=T V1 SRRSO 55
8.2 SemantiCs PacCKages....... ... 57
S TR T I o o 59
S TR IR @ Y= PSPPSR 59
8.3.2 Class DESCIIPLIONS. .. .uuiiiiiiiiiieee et e aeae s 64

ST I B O To (o1 1 =1 (Yo |25 PP URPRPRN 64

8.3.2.2 EXECULIONFACIONY ...ttt ettt 65

8.3.2.3 ExecutionFactoryL1 (Deprecated).........cocuii it 74

8.3.2.4 ExecutionFactoryL2 (Deprecated)...........coeeiiieeeiiieiiee e 74

8.3.2.5 ExecutionFactoryL3 (Deprecated)...........cueeiiieeiiie e 74

8.3.2.8 EXECULON......eeieiiieeee ettt ettt ettt e et e e e 74

8.3.2.7 FirStChOICESIIategYcciei ittt e e e e e s et e e e st ae e e e e nraaaeeenes 75

TR B T o Yo U 1= TSP 76

8.3.2.9 SemMaNtiCOIrategY......uiiiuieiitiie et 79

8.3.2.10 SeMANtICVISITON.eiiitieeeiii ettt e st e e et e e st eeanteeennee e e eneeeeaneeeennneeenneeean 79

B4 VAlUEBS....... e e e ————— 79
o I © Y= SRR URRR 79
8.4.2 Class DESCIIPLIONS.uuuiiiiiiiiieee et e e e e e e e e e e e e e e e aranees 82
St B AV U= (o o O OSSPSR 82

8.4.2.2 LiteralBooleanEVvaluatioN..............cooiiiiiiiiiiiiiie e 83

8.4.2.3 LiiteralEValUatioNn..........ooi ittt e e et e e et e e e et e e e e naeeaaeeanns 83

8.4.2.4 LiterallntegerEvaluation.............ooiiiiiiiiiie e a e e 84

8.4.2.5 LiteralNUIIEVAIUGLION.ooo ettt e e e et e e e e neeeeas 84

8.4.2.6 LiteralRealEValUAtioN..............oiiiiiiiiii e 85

8.4.2.7 LiteralStringEValUatioN.............ooiiiiiiiie e 86

8.4.2.8 LiteralUnlimitedNaturalEvaluation..............c.cccuiiiiiiiiiii e 86

S BV 01 YOS RRRO 87

8.5 ClasSifiCatiON.......cccoeiiiiiiieeieeee e 90
G TR Tt B @ V= V1= YRS 90
8.5.2 Class DESCHIPLIONS.uiiiiiiiiiiiii ettt ettt 90
8.5.2.1 InstanceValUeEValuation......... ... et 90

8.6 SIMPIE ClaSSIfIErS.uuuueueiiiiiiiiiiiiiiiiiie it eaaeeaeeseseeanesanseennennsnnnnnes 92
8.8.T OVEIVIBW. ... ueiiiiie ettt ettt e e e ettt e e e e ettt e e e e s eatte e e e e e s sttt eeeesaasbaeeaeesansbeeeeesastbeeaeesanstaaeeeeans 92
8.6.2 Class DESCIIPLIONS.uuiiiiiiiiiiee et e e e e e e e e e e e e e e eaaaes 95
8.6.2.1 BOO0ICANVEAIUE........oiiiiiiieiie ettt e e e e nneeeeae 95

8.6.2.2 COMPOUNAVEAIUE.ciiiiiiiiie ettt e et e e e et e e e e et b e e e e e s e tae e e e e s nsaeeeeesanseeeaesensneeas 97

8.6.2.3 DAt@VaAlUE......ooiiiiiie ettt ettt e ettt e e e e e et e e e e e antaeeaeeaaneeeaaeana 100

8.6.2.4 ENUMEratioNValUE.ooo it e ettt e e e et e e e e e ne e e e e e e nnneeaans 101

8.6.2.5 FeAtUrEVAIUE......coi ettt e et e e e e e e anaeea s 103

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta iii

8.6.2.6 INTEUEIVAIUR..... ..o e e 105
8.6.2.7 PriMItIVEVAIUE.......ccoeiiiieee ettt et e et e e st e et e e nneee s 107
8.6.2.8 REAIVAIUE.ottt ettt te b nre e teenaee e 108
8.6.2.9 SiIgNalINSTANCE.c.ueiiiiiiieee et 110
8.6.2.10 SHNGVAIUE........eiiieii ettt 111
8.6.2.11 SHrUCIUrEAVAIUE........ooiiiieeiie ettt et e et e sae e e et e e eneeesneeeeneeesneeeanneeas 112
8.6.2.12 UnlimitedNaturalValUe..............c.oiiiiiiie e 118
8.7 Structured ClassSifiers..........c.uuiiiiiiiiee e 120
L A TR © V= o RSP 120
8.7.2 Class DESCIIPLONS.uuiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e aaeeaeaeas 123
8.7.2.1 DiSPatChSIrategy....ccco o 123
8.7.2.2 EXENSIONAIVAIUE.cooiiieiiii ettt e et e e e et e e e e e nbe e e e e e enneeeaeaanns 123
B.7.2.3 LINK ittt bt et b e be e e e b b e e aee b neeas 124
B.7.2.4 ODJECE. ...ttt bbbt eh e bt na e nhe e b b nae e 128
8.7.2.5 RedefinitionBasedDispatChStrategy..........ccccuveiuiieiiiiiee e 131
0 G B =Y (Y =Y o7 T SRS 132
8.8 COmMMON BENAVION..........uiiiiiiiieee e e 134
LSS R TR © V=T o RSP 134
8.8.2 Class DESCIIPLIONS. .. .ueiiiiiiiiiee et e ————raaaes 140
8.8.2.1 CallEVENIBENAVION. ...ttt e e ettt e e e e e e e e e nneeaaeenes 140
8.8.2.2 CallEVENIEXECULION. ... ittt e et e e e e e e e e nneeeaeenes 141
8.8.2.3 CallEVENTOCCUITENCE.ceeiiiieeeieeeitieeeetie e e eie e s tee e et ee e e eeeesaeeeanteeesseeeanneeeanteeeanseeesnneeeanseeenns 145
8.8.2.4 ClassifierBehaviorlnvocationEVENtACCEPLET..........cccuviieiieiiiee e 146
8.8.2.5 EVENIACCEPIEN.....eeii ettt ettt e e e e e e et r e e e e arbaaaaeaearaes 148
8.8.2.6 EVENTOCCUITENCE.ciiiiiiiieeeeeitiiee et e ettt e e e et e e e e et e e e e e sstaeeeeesntaeeeesesbaneeesesbaeeeesanses 148

S I A = (=T oT U (o] o FO USRS 150
8.8.2.8 FIFOGEetNeXtEVENISIrategyccviiiiei it 153
8.8.2.9 GEtNEXIEVENISIrAtEY iiiieeeeeitiee e eiee ettt et e e et e st e e et e e sneeesaee e et e e eneeeanneens 153
8.8.2.10 INvOCAtiONEVENTOCCUITENCE.iuiieeiiie ettt e e st e e et e s e e et e e e eeeeenneas 154
8.8.2.11 ODJECLACHVALION....... i e e e e st e e e et e e e e e eeaeaan 155
8.8.2.12 OpaqueBehaViOrEXECULION...........oiiiiiiiiie e e e s e e e e eenes 159
8.8.2.13 ParameterValUe.............ooii ittt e e e e e e e e e nneeas 160
8.8.2.14 SignNalEVENTOCCUITENCE.cuiiiiiiee ittt ettt st et eennee s 161
8.8.2.15 StreamingParameterLiStENET.c.ovi it 162
8.8.2.16 StreamingParameterValUe..............oooiiiiiiiiiii et 162
8.9 ACHVILIES. .o 163
LS TR T © Y= o RSP 163
8.9.2 Class DESCIIPLONS. .. .uuiiiiiiiiiee ettt e e e e e e e e e e e e e aaaaeas 172
8.9.2.1 ACHVItYEAGEINSIANCE.ooiiiieiiii et e e e 172
8.9.2.2 ACHVItYEXECULION.coiiiiiieii et 175
8.9.2.3 ActivityFinalNOAEACHVALION.cccuiiiiiec e 179
8.9.2.4 ActiVityNOAEACHVALION.t e e e e ee e e 180
8.9.2.5 ActivityNOJEACHVAtIONGIOUD......coiiiiieiiii ettt e et e e e s eeeneeee e 186
8.9.2.6 ActivityParameterNodeACtVatiON. ... 193
8.9.2.7 ActivityParameterNodeStreamingParameterListener............ccccooviiiiiiniee 196
8.9.2.8 CentralBufferNOdeACHVAtION.........c.eiiii e 197
8.9.2.9 ControlNOEACHIVALION.ooo ettt et e e et e e e e e e aneeeeaaeenes 197
IR L T ©7o] o o] I o] (=1 o TSP SRRN 197

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.9.2.11 DataStoreNodeACtiVatioN.............cooiviiiiiieeeeee e
8.9.2.12 DecisionNOdeACtVAtioN...........uueiieieieei e
8.9.2.13 ExecutableNodeActivation..........ccccccoeeiiiiiiiiieiicceee e,
8.9.2.14 FlowFinalNodeACtivation............ccuueeeeeeieeeeeeie e
8.9.2.15 FOrKEATOKEN......cooeieeeeeeeeee et e e e e e e e e eeeees
8.9.2.16 FOrkNOdEACHVALION.........evveieeeeee e
8.9.2.17 InitiaINOdEACHVAtiION...........ceieeeeeeeee e
8.9.2.18 JOINNOAEACHVALION.......uueeeiieeeeee e
8.9.2.19 MergeNodeACHVatioN...........ccuuiiiiiiii e
8.9.2.20 ObjectNodeActivation............c.ccoicuviiiiiiiiiic e
8.9.2.21 ODJECITOKEN......eiiieiiiiiie ettt e e e
I I O i (=Y RPN
I I T [o] (= o RN

B0 ACH ONS . e e

8.10.T OVEIVIEW. ... ittt e e e e e e e e e e e e e e e e eerase e
8.10.2 Class DeSCrIPIONS.u it
8.10.2.1 AcceptCallActionActivations..............ccoviiiiiieiiiiiii e
8.10.2.2 AcceptEventActionActivation.............ccceeveeiiiiiiii e
8.10.2.3 AcceptEventActionEventAccepter.........cccoiiiiiiiiiiiic e
8.10.2.4 ACONACHVALION........eiiiii e
8.10.2.5 AddStructuralFeatureValueActionActivation..........cccccccccoeeiiiiiiiiinnnnes
8.10.2.6 CallActionACHVAtiON........uuiiiiiiiiieee e
8.10.2.7 CallBehaviorActionActivation.............c.ccociveiiiiiiiiiie e
8.10.2.8 CallOperationActionActivation..............ccccueeieiiiiiiie e
8.10.2.9 ClauseACHVALiON...........uvviiiiiiiieiee e
8.10.2.10 ClearAssociationActionActivation.............cccceiviiiiiiiiii e,
8.10.2.11 ClearStructuralFeatureActionActivation.........c.ccccccccooeiiiiiiiiiiiiiieeeneen.
8.10.2.12 ConditionalNodeActivation............ccceveeeeeiiii i
8.10.2.13 CreateLinkActionActivation............ccccceieiiiiiii i
8.10.2.14 CreateObjectActionActivation.............ccceveeiiiiiiie e
8.10.2.15 DestroyLinkActionActivation..............cccoociiieeiiiiiiii e
8.10.2.16 DestroyObjectActionActivation............ccccevevieiiiiiiiiec e
8.10.2.17 ExpansionActivationGroUP...........covueeiiiiiiniie e
8.10.2.18 ExpansionNodeActivation...........c.cccciiiiiiiiiiieee e
8.10.2.19 ExpansionRegionACtivation..........c.ccouiiiiiiiiiii e
8.10.2.20 INPUtPINACHVALION.......ccciiiiie e e
8.10.2.21 InvocationActionActivation............ccccuveieeeieiieeie e
8.10.2.22 LinkActionACtivation............cooi i
8.10.2.23 LoopNodeACtiVatioN............oiiiiiiiiee et
8.10.2.24 OutputPinACHVAtioN.........ccuviiiiiiiie e
8.10.2.25 PINACHVALION. ...t
8.10.2.26 PinStreamingParameterListener...........ccccccooviviiiiiiiciiiiic e
8.10.2.27 RaiseExceptionActionACtVatioN............cccoiouiiiiiiiiiice e
8.10.2.28 ReadExtentActionACHiVation............cceeiiiiiiiiiie e
8.10.2.29 ReadIsClassifiedObjectActionActivation.............cccceevirieeiiieiniie e
8.10.2.30 ReadLinkActionActivation.............ccoooiiiiiiiiiiieeeee e
8.10.2.31 ReadSelfActionActivation.............ccccuvviiiiiiiiiie e
8.10.2.32 ReadStructuralFeatureActionActivation..............ccccceeeeeiiiiieciciiiiee e,
8.10.2.33 ReclassifyObjectActionActivation..............cccveeiieiiiiee i
8.10.2.34 ReduceActionACtivation.............oooiiiii i

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.10.2.35 RemoveStructuralFeatureValue ActionACtivation...............coooviiiiiiiieiieeee s 318

8.10.2.36 RepIYACHONACHVALION.oiiiiiiiiie et e e e e e et e e e e sennaeeaeeenes 321

8.10.2.37 ReturNINfOrMAtioN........ccviiiiee et e et e e e e e e st e e e s esba e e e e s enbeeeaeaennes 322

8.10.2.38 SendSignalACtioNACHVALION.iiiiiiii e 324

8.10.2.39 StartClassifierBehaviorActionActivation..............coooi e 325

8.10.2.40 StartObjectBehaviorActioNACHVALION.oiiiiiiii e 326

8.10.2.41 StructuralFeature ACtioNACHVALION...........c.eiiiiieee e 328

8.10.2.42 StructuredActivityNOdeACHVAtION............oeiiiiiiiie e 330

8.10.2.43 Testldentity ACIONACHVALION..........coiiiiiiiie e e e s e e e eeaes 334

8.10.2.44 TOKENSEL......eiiiiieeiie ettt ettt e ettt e ettt e et e e e be e e e taeeanseeesteeeanseeeenneeeenseeennneeennnes 335

8.10.2.45 UnmarshallACtioNACHVAtION..........oi i e e e e e 335

8.10.2.48 VAlUES......oeoieie ettt ettt e et e e et e e st eeas bt e e ante e e enaeeeanteeeanteeeenneeeanneeeanteeeaneeeanneeenn 336

8.10.2.47 ValueSpecificationActionACtivation...............coccuiiii i 337

8.10.2.48 WriteLiNKACHONACHVALION.eiiiiiie et 337

8.10.2.49 WriteStructuralFeature ACtioNACHVALION...........cocoiiiiiiie e 338

9 Foundational Model Library...........cooo oo 339
S I I € T=T o 1= = | F PO SRR 339
9.2 PriIMItIVE TYPES. .ot e et e e e e e e e e e e aanas 339
9.3 Primitive BERaAVIOrS.........ccooiieiie et 340
9.3.1 B00I€AN FUNCHONS.......euiiiiiiiiiiiee e e e e e e e e e e e e e e anr e aeeees 341

1S TG T2 [01 =Y =T ol W] o i) 13 342
9.3.3 ReEAI FUNCHONS. ...t e e e e e e e e e e ettt ae s e e e e e aeeeeeeeeeeeennrns 343
9.3.4 SHHNG FUNCHONS.....ooiiiiiiiiee e e e e e e e e e e e s e e e e e e eeaaeas 346
9.3.5 UnlimitedNatural FUNCLIONS..........cooiiiiiii e 347
9.3.6 LISt FUNCHIONS. ...ttt e e et e e e e e e e e e e e aaneae 347

9.4 COMMON....cciieeeeeeeeeeeeeee e 348
.41 OVEIVIEW. ... ittt ettt ettt e e e e e e e e e e e e e e e e e eeaa st et eeeaeeeeaaeaeeeesseresrssannnns 348
9.4.2 ClassSifier DESCHPONS.uuiiiiiiiiiiieie e e e e e e e e e e e s s e e e e e eaaaeeeeseesnannnn 348
9.4.2.1 Listener (aCtVE ClIaSS).....c.uuiiiuiiiiiiie ittt 348

9.4.2.2 NOIfICatioN (SIGNAI)....cciueeeeieeieeeie ettt e et e et e e e ne e e et e e e reeeeneeeennes 349

9.4.2.3 StAtUS (AAtA TYPE).ceeueeeeieie ittt st e e sneeeaneeean 349

9.5 BasiC INPUYOUIPUL......ooee e e e e e 349
9.5.1 The ChannNel MOGEL.........cccooeiiiiiiii e e e e e e e e e 350
9.5.2 Pre-defined ReadLine and WriteLine BEhaviors.............cccceeviiieiiiiiiiiicccciieeeeeee e, 351
9.5.3 Class DESCIIPLONS.uuieiiiiiiiee et e e e e e e e e e e e e e e r s 352
9.5.3.1 ActiveChannel (ACHVE CIaSS)......c.uuiiiiiiiiiiie ettt e e st e e e e eeaeeeeens 352

9.5.3.2 CRANNEL ...ttt e et e e e e e ettt e e e e e nta e e e e e e ntaeeaeeanaaeeas 353

9.5.3.3 INPUICRENNEL ..o 354

9.5.3.4 OULPULCRANNEL........oeii et e e ettt e e et e e e s e tae e e e e eeateeeeaeennes 354

9.5.3.5 StandardINPUIChANNEL............oooiiiiiiiei e e e earrae e 355

9.5.3.6 StandardOUPULICNANNEL............uviiiiiiiiie e e e e et e e e e araeeaeeaes 355

9.5.3.7 TextINPUICNANNEL........ooiiiieiiee et e e st e e e e et e e e e eenrraaeaean 355

9.5.3.8 TextOULPUICRANNEL.. ..ot 357
10Base SEMANTICS........oovuiiii e 359

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

10.1 Design Rationale...........oi oo enes 359

10.2 CONVENTIONS.ttt e e e e e e e e et eeeeeeeeeeannanneeeeeaeeesaannns 359
T0.3 STUCKUNE... .. ettt e e e e e e e e e et e e e e e e eeeeennans 360
(R T B 410 oA Y/ 0T USRI 360
028 Tt O T = T To 1= o TSSOSO 360
0 B 2 N1 U o o] o =Y 3PP SURPUT 361
T0.3.1.3 SEQUENCES.ceiiiiieiiie ettt ettt e et e et e e e e ettt e et et sabe e e e b et e e be e e nnn e e nne e s 365
O RS T B G 1 o = TP O EO TP PT ST OPPP PP 368
10.3.2 Classification and Generalization............. ..o 369
10.3.3 Classifier CardiNality..........oooiuiiiiiiii e 370
(LR R o o] o= 4 ([PP 371
(O = 7= o F= AV T PRSP RPN 374
10.4.1 Property Value MOIfIers.ueiiiiiiiiiieii e 374
10.4.2 COMMON BENAVIONttt e aaaennnnnnes 375
L0 TS | - PSR 375
O S 1T o 1 = (o= SRS URR 376
10.4.3 Activity EAges Generally............ccuuiiiiiiiiiiiieieee e 378
10.4.4 Activity NOAES GENETAIlY........ouumiiiiiiiiieeeie it e e e e e e e e e e e e 378
TO.4. 4.1 SYNEAX . uiiiiiiiii ettt ettt et et e e et e e et e e et e e e e be e e e beeeaaeeeabeeearaeesbeaeanbeeans 378
O S T g B o | (o= SRS TREP 379
10.4.5 Structured NOAEs GENErally.........ccuuuiiiiiiiiiiiii e e 380
10.4.6 EXPANSION REGIONS.ciiiiiiiiiiiie ittt e e ettt e e s et e e e s annbte e e e e s annneeeeas 382
T0.4.6.T SYNEAX. ettt ettt e e e e e e e e e ea 382
O G T =Y o =T TSRS 382
O @7 (o I o SRR 387
T10.4.7.1 TOP IEVEI @CHON......c ettt e e e e e e e e e e e e s e st n e e e e eeeeaaaeeeeeesasannnnsnnnnnns 387
10.4.7.2 Initial NOAE 10 ACHON.oiiiiie et 387
10.4.7.3 Action to Action, general necessary CONAItION..........c.eeiiiuiiiriiieiiiieniie e 388
10.4.7.4 Action to Action, single control flow, optional merge/fork...........cccoeiiiiiiiiiici 388
0 T @ o 1= Yor A [1P 389
10.4.8.1 Object node to object node, optional fork/merge.............ccooviiiiiiiiiiiii e 389
10.4.8.2 Object node to object node, decision, optional fork/merge...........ccccooeeeriiiiiiceeiiieeee e 390
10.4.8.3 Action with pins, no incoming control flow or one from initial............ccccoocciiviiiiiiiiniee. 391
10.4.8.4 Action with pins, one incoming control flow from action, optional fork/merge...................... 393
10.4.8.5 Action with pins, one incoming control flow from action, decision with decision flow from
same action, optional fFOrK/MENGE.........ocuuii i 394
10.4.8.6 Action with pins, one incoming control flow from initial, decision with decision flow from initial
action in same, optioNal fOrK/MEIGE........ccuii ittt e et e e e e e sraeeeaneeeenes 395
10.4.9 INVOCAION ACHONS.eeeeiiiieei ettt e e e e e e e e e e e e e e e e e e nnneneeeeeees 395
L0 e T S 3 | = PSR 395
O S T o =T (o= SRR 397
10.4.10 Object Actions (Intermediate)............cc.uuvmiiiiiiiiiiiiee e 400
10.4.11 Structural Feature ACHONS.oooiiiiiiii e 401
10.4.12 Object Actions (COMPIELE).........ccooeiiiiiceeee e 404
10.4.13 ACCEPE EVENT ACHON.eeii et e e e e e e e e e e e e e e s 405

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta vii

viii

A Java to UML Activity Mapping......c..coeeeeuiiieiiiee e e 407

AT GENEIAL ... 407
A2 TYPE NAMIES.....eeeiiiiiie ettt e e e e e e e e e e e e e e e nneeees 407
A.3 Method DeClaration.......... ... nnnnnnnnnes 408
A4 SEAtEMENTS. ... 409
A4l Statement SEUENCE........ouueiiie et e e s as 409
A.4.2 Statement Sequence (ISOlated)...........oovi i 410
A.4.3 Local Variable DecClaration.............oouuiiiiiiiiiie e 410
A.4.4 Instance Variable Assignment (NON-liSt)..........ccooiiiiiiiiiiiii e 411
A.4.5 Instance Variable AsSignment (liSt)...........ooiiiiiiiiii i 412
A4.6 Method Call Statement..........ooi i 413
A7 Start ObJECt BENAVION.........ueiiiii et 413
F N T T To | F= IS T=T 2 o PP UPP PRSPPI 414
LN e T | RS =1 (=Y o 1 1= oL PP PRPOPPRPPN 415
F N T o AT o 1 = e o PSSR 416
N T VA3 11T 1 o o J SR 417
A4.12 FOr LOOP (HEratiVe).... et e e e e e e 418
A.4.13 FOr LOOP (PArallel).........eeeeeeiiiiieee ettt e 419
N o] =11 o] o I PP 420
A.5.1 Local Variable or Method Parameter USe............ccooiiiiiiiiiiiiiiiiiieeee e 420
YT N (- - S 421
R 0 T [SRS 421
F R S I 011 SRS 422
A5.5 CONSITUCION Call......coiiiiiiiiiie et e e e et e e e e e e anbeeeeee e e 422
A.5.6 Instance Variable USE............ooi e 422
A5.7 OPErator EXPrESSION.oiiiiiiiiiiie et e e e e e 423
A.5.8 Testing FOr EQUAIILY.....cccoiiiiiiiii it 423
A.5.9 Testing String EQUAlIY..........eeiiiii s 424
A5 10 TeSHING FOr NUIL...coiie e e e e e e e e 425
R 0 T 1Y =1 o T I | SRS 426
ALS A2 SUPEE Gl ettt e ettt e e e e e e e e e e e e e abreeeae e 426
A.5.13 Type Cast (NON-PIIMILIVE).......ciiiiiiiie it e e s eeeeeaaes 427
A.5.14 TYPE Cast (NUMEIIC). .. .eeiiieiieiiie ettt e e e e e et e e e e e e 427
N T I £ 3 428
ALB. T LISE Gl . e 428
YL N 11 Yo o SR 429
ALB.3 LISEREMOVE.ot 429
ALB. 4 EMPLY LISt .o a e 430
A.B.5 List Of ONE EIEMENT.....coiiiiiiiii e 431
F N G 11 ST YRR 431
F N T A T3 [Lo [=] o o T PP UPPTP 432

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http./www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG specifications are
available from the OMG website at:

http://www.omg.org/spec

OMG?’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may be
obtained from the link cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp-/www.iso.org

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta ix

http://www.omg.org/spec

Issues

The reader is encouraged to report any technical or editing issues/problems with this by completing the Issue Reporting Form
listed on the main web page http://www.omg.org, under documents, Report a Bug/Issue.

X Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

1 Scope

The scope of this specification is the selection of a subset of the UML 2 metamodel that provides a shared foundation for
higher-level UML modeling concepts, as well as the precise definition of the execution semantics of that subset. Given its
fundamental nature, the subset assumes the most general type of system, including physically distributed and concurrent
systems with no assumptions about global synchronization.

Many executable UMLs are conceivable, based on executing use cases, activities, workflow, methods, or state machines and
their combinations. This specification covers the capabilities shown in the Structural Modeling layer of Figure 6.1, subclause
6.3.2 of the UML 2Specification, as well as the Common Behavior, Actions and Activities capabilities in the Behavioral
Modeling layer. This functionality is covered primarily in Clauses 7-12 and Clauses 15-16 of the UML 2 Specification.

The selected elements are translatable into an implementation such that a specified functional computation is independent of
the control and data structures in which the elements reside. This translatability provides maximum flexibility to modify the
organization of the data without affecting the definition of an algorithm. (The UML 1.5 action metamodel was designed in
this manner for precisely this reason.)

It is not the intent of this specification to define the specification of every higher-level UML construct in terms of elements
from the foundational subset; however, the specification does intend to encourage use of the broadest possible subset of
UML constructs that can be reduced to a small set of elements.

In sum, the foundational subset defines a basic virtual machine for the Unified Modeling Language, and the specific
abstractions supported thereon, enabling compliant models to be transformed into various executable forms for verification,
integration, and deployment.

2 Conformance

2.1 General

This specification defines a subset of UML 2 and specifies foundational execution semantics for it. This subset will be
referred to as Foundational UML or “fUML.” Conformance to this specification has two aspects:

» Syntactic Conformance: A conforming model must be restricted to the abstract syntax subset defined for f{UML.

* Semantic Conformance: A conforming execution tool must provide execution semantics for a conforming model
consistent with the semantics specified for {UML.

The fUML syntactic subset is defined by the abstract syntax subset model given in Clause 7. The packages in this metamodel
correspond to similarly named packages in the UML 2 metamodel, which act as the basic language units for the purpose of
syntactic conformance. The semantics for f{UML is specified by the execution model given in Clause 8. The packaging
structure of the execution model parallels the language unit packaging of the f{UML abstract syntax exactly, except that there
are no semantics packages for “Common Structure” or “Packages”, and there is one additional package called “Loci.”

2.2 Meaning and Types of Conformance

Conformance to a specific fUML conformance level entails both syntactic and semantic conformance. Syntactic
conformance is defined in terms of a conforming model.

* Abstract Syntax Conformance — A UML model conforms to f{UML if it is a well-formed model constructed from only

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 1

syntactic elements that are included in the fUML abstract syntax subset. A well-formed model is one that meets all
constraints imposed on its syntactic elements by the UML 2 abstract syntax metamodel and any additional constraints
imposed on those elements in the f{UML subset (given in Clause 7).

* Model Library Conformance — In addition, a conforming f{UML model may make use of elements from the fUML model
library (see Clause 9). An execution tool is not required to implement any of the model elements defined in Clause 9, but,
if such elements are provided, they must conform to the behavior specified in that clause. An execution tool may, in
addition, make available a tool-specific model library for use by conforming models accepted by the tool, so long as the
execution behavior of elements of the models in that library may be entirely defined in f{UML.

The fUML specification provides a precise definition of the execution semantics for a conforming model. Conformance to
these semantics is defined in terms of a conforming execution tool (see Clause 4 for the definition of the term “execution
tool” as used in this document). If a conforming execution tool is presented with a conforming model, then it must behave as
further described below. On the other hand, if it is presented with a non-conforming model, then it may react in one of the
following three ways.

e Rejection — It may reject the model and refuse to process it further at all.

 Static Partial Acceptance — If the tool is able to statically determine that the non-conforming parts of the model are all
elements of abstract syntax packages that are not included in the fUML subset at all, and that the model elements from
packages included in the f{UML subset all conform to f{UML, then the tool may accept the model. In this case, any
elements that are not included in the f{UML subset, and are not instances of metaclasses that are specializations, directly
or indirectly, of metaclasses in the f{UML subset, may be ignored by the tool. Any elements that are not included in the
fUML subset, but are instances of metaclasses that are specializations of metaclasses in the fUML subset, must be
interpreted as if they are instances of the superclass that is in the fUML abstract syntax.

* Dynamic Partial Acceptance — The tool may accept the model for execution and attempt to evaluate or execute any value
specification or behavior from the model, interpreting any model elements as in the case of static partial acceptance.
However, if the tool encounters any model element that is defined in an abstract syntax within the f{UML subset, but does
not conform to the additional constraints defined for the fUML subset, then the tool must terminate execution with an
erTor.

A conforming execution tool need not use the same option above in all cases. However, it must be specified for any
conforming tool in which cases each option is used.

To further claim conformance for an execution tool at a specific level, it must be possible to demonstrate the following:

* Abstract Syntax Mapping — An execution tool accepts a UML model for execution in some concrete form. It must be
possible to bidirectionally map this concrete input form to a well-formed representation in terms of instances of the
metaclasses in the fUML abstract syntax at the given conformance level. One standard way to do this is to use the XML
Metadata Interchange (XMI) as the input form for the model, in which case the mapping to the UML abstract syntax is
provided by the XMI standard (see Clause 3). However, it is not required that XMI be used as the input form. For
example, a tool may provide for direct model input in terms of graphical and or textual notation, so long as this may be
fully mapped to the fUML abstract syntax.

e Semantic Value Mapping — Runtime inputs and outputs are semantically specified by a model of values (see 8.4 to 8.7).
During the execution of a behavioral model, the model execution will generally take values as inputs and produce values
as outputs. The execution tool must provide a concrete implementation for all such values and demonstrate a mapping
from this implementation to the model of values provided in the execution model. For this mapping, it is only required to
demonstrate the effective implementation of the properties defined for the value classes, showing the corresponding
implementation value for any value instance from the semantic model, and vice versa. It is not required to demonstrate
the implementation of the operations specified for those classes in the execution model. Also, if the execution tool uses
different internal and external forms for values, it is only required to provide a mapping for the external form, so long as
this is sufficient to demonstrate semantic conformance, as described below.

2 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

» Execution Environment Mapping — The f{UML execution model provides an abstraction of the execution environment for
a model in terms of the concept of an execution locus (see 8.3). It must be possible to demonstrate how the actual
execution environment provided by an execution tool corresponds to the locus concept. Specifically, this must include:

* A definition of whether execution takes place at a single locus or may be distributed across multiple loci. If the
latter, then the tool must provide a mechanism for allocating a model or a portion of a model to a specific locus.

* A description of whether and how extensional values (see 8.3 and 8.7) are persisted at a locus across behavior
executions.

* A specification of what objects are pre-instantiated at a locus in order to provide system services (such as
input/output—see 9.4).

Note that, for an execution tool that, say, compiles a model to some target executable form, the execution environment for
the purposes of this mapping will be the environment in which the target executable runs, rather than the environment of the
tool itself.

e Semantic Conformance — Finally, a conforming execution tool must provide an implementation of the interface of the
Executor class from the execution model (see 8.3). While it is not necessary that this be a strict implementation of the
object-oriented operations provided by Executor, it must be possible to demonstrate the following:

* Evaluation — Given a well-formed value specification from a conforming model, the tool must be able to produce a
value conforming to the result of the Executor::evaluate operation on the value specification.

* Synchronous Execution — Given a well-formed behavior from a conforming model and values for all input
parameters of the behavior, the tool must be able to execute the behavior in conformance to the effect and results of
the Executor::execute operation.

* Asynchronous Execution — Given a behavior or an active class from a conforming model, the tool must be able to
asynchronously start the given behavior in conformance to the effect and results of the Executor::start operation.

Note that, at a given conformance level, a conforming execution tool must semantically conform when presented with any
conforming model at that level. That is, to conform at a certain level, an execution tool must implement a// of the fUML
abstract syntax at that level and provide conforming semantics for it.

The above definition of semantic conformance uses the concept of conforming to an operation of the Executor class from the
execution model. This concept is further defined as follows:

* Inputs provided to the execution tool must correspond to the input parameters required for the operation.

¢ Using the abstract syntax and semantic value mappings for the tool, map the inputs to the execution tool from their
implementation form to the corresponding representation in terms of instances of abstract syntax and semantic value
classes.

» Using the execution environment mapping, map the intended target execution environment to a corresponding model in
terms of execution loci and pre-instantiated extensional values.

» Using the specification of the given operation as part of the execution model (or the subset of that model that applies at a
certain conformance level), determine the effect of invoking the operation on the given input values using an executor at
a specific execution locus. This includes the generation of output values and any side effects that occur at and through
the execution locus.

¢ Using the execution environment mapping, map any updates to loci to updates to the target execution environment.
» Using the semantic value mapping, map any output values to the corresponding implementation form for the tool.
* Conformance requires that the actual outputs and environmental changes produced by the execution tool be consistent

with the outputs and changes determined in the two bullets directly above.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 3

The conformance requirement here is one of consistency rather than equivalence because, as a semantic specification, the
execution model tightly constrains, but does not always fully determine, the exact results of an execution. This is particularly
true in the presence of the high degree of concurrency possible with UML activity models, in which different conforming
implementations may produce significantly different resulting executions of the same model due to timing issues.

This allowance for some flexibility in the conformance requirements is known as the genericity of the execution model,
(discussed in more detail in 2.3). Nevertheless, it is still possible to formalize the conformance requirements even in the
presence of such genericity.

* Clause 10 specifies the base semantics for the execution model. This specification effectively provides for an
interpretation of the execution model as a set of first-order predicates, or axioms, over possible execution traces.

* A specific invocation of an operation in the execution model, as called for in the determination of conformance to the
operation above, results in an execution trace. Any execution trace that satisfies the axioms of the base semantics is a
legal execution trace.

» Conformance to the operation requires that the execution tool conform to the effect and results of any legal execution
trace of the operation. The tool is allowed to conform to different execution traces for different invocations of the
operation, even on identical inputs in an identical environment.

In essence, the base semantics provides an interpretation of the execution model as a set of constraints on the allowable
execution of well-formed fUML models. A conforming execution tool must produce results that do not violate these
constraints, but there is flexibility for allowing different implementations to provide somewhat different behavior for the
execution of the same well-formed model, within the specified constraints. Ideally, conformance would be demonstrated by a
formal proof that the execution tool implementation meets all the required constraints. In reality, it is expected that
conformance will be demonstrated by a sufficient suite of tests hand checked against the specification, as is the case for, say,
conformance to most major programming language standards.

2.3 Genericity of the Execution Model

To support a variety of different execution paradigms and environments—including a number of widely used commercial
and research variants of executable UML —the specification of the execution model incorporates a degree of genericity. This
is achieved in two ways: (1) by leaving some key semantic elements unconstrained, and (2) by defining explicit semantic
variation points. A particular execution tool can then realize specific semantics by suitably constraining the unconstrained
semantic aspects and providing specifications for any desired variation at semantic variation points.

The semantic areas below are not explicitly constrained by the execution model:

* The semantics of time — The execution model is agnostic about the semantics of time. This allows for a wide variety of
time models to be supported, including discrete time (such as synchronous time models) and continuous (dense) time.
Furthermore, it does not make any assumptions about the sources of time information and the related mechanisms,
allowing both centralized and distributed time models.

» The semantics of concurrency — The execution model includes an implicit concept of concurrent threading of execution
(see the discussion in 8.9.1). However, it does not require that a conforming execution tool actually execute such
concurrent threads in a physically parallel fashion and it is agnostic about the actual scheduling of execution of
concurrent threads that are not physically executed in parallel. So long as the execution tool respects the various creation,
termination, and synchronization constraints placed on such threads by the execution model, any sequentially ordered, or
partial or totally parallel, execution of concurrent threads conforms to a legal execution trace.

e The semantics of inter-object communications mechanisms — This refers specifically to communication properties of the
medium through which signals and messages are passed between objects. The execution model is written as if all
communications were perfectly reliable and deterministic. However, this is not realistic for all execution tool

4 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

implementations. Therefore, despite the restrictions that would be imposed by a strict interpretation of the execution
model, conformance of an execution tool to the semantics of inter-object communication is not predicated on any
assumptions about whether or not such communication is reliable (i.e., that signals and messages are never lost or
duplicated), preserves ordering, happens with deterministic or non-deterministic delays, and so on.

Different execution tools may semantically vary in the above areas in executing the same model, while still being
conformant to the semantics specified by the execution model for fUML. Additional semantic specifications or constraints
may be provided for a specific execution tool in these areas, so long as it remains, overall, conformant to the execution
model. For instance, a particular tool may be limited to a single centralized time source such that all time measurements can
be fully ordered.

In contrast to the above areas, the items below are explicit semantic variation points. That is, the execution model as given in
this specification by default fully specifies the semantics of these items. However, it is allowable for a conforming execution
tool to define alternate semantics for them, so long as this alternative is fully specified as part of the conformance statement
for the tool.

e FEvent dispatch scheduling — As described in 8.8, event occurrences received by an active object are placed into an event
pool. The event occurrences in the pool are then asynchronously dispatched, potentially triggering waiting accepters of
such events. By default, events are dispatched from the pool using a first-in first-out (FIFO) rule. However, a conforming
execution tool may define an alternative rule for how this dispatching is scheduled by providing a specialization of the
GetNextEventStrategy class that redefines the dispatchNextEvent operation to specify the desired rule.

* Polymorphic operation dispatching — Operations in UML are potentially polymorphic—that is, there may be multiple
methods for any one operation. The determination of which method to use for a given invocation of the operation
depends on the context and target of the invocation. The specification for this determination is provided in the execution
model by the dispatch operation of the Object class, as specified in 8.7 (the semantics of operation dispatching is further
discussed in relation to the call operation action in 8.9). By default, the method used for an operation must be associated
with a (possibly inherited) member operation of a type of the target object of the operation invocation that is either the
invoked operation or a redefinition (“override”) of it. However, a conforming execution tool may define an alternative
rule for how this dispatching is to take place by providing a specialization of the DispatchStrategy class that redefines the
dispatch operation to specify the desired rule.

If a conforming execution tool wishes to implement a semantic variation in one of the above areas, then a specification must
be provided for this variation via a specialization of the appropriate execution model class as identified above. This
specification must be provided as a fUML model in the “base UML” subset interpretable by the base semantics of Clause 10.
Further, it must be defined in what cases the variation is used and, if different variants may be used in different cases, when
each variant applies and/or how what variant to use is to be specified in a conforming model accepted by the execution tool.

2.4 Conformance Statement

The conformance of an execution tool to the f{UML specification may be summarized in a conformance statement for the
tool. Such a statement should include the following items.

e Model Library — An identification of what elements of the standard f{UML model library are implemented by the tool. A
specification of any additional tool-specific model library elements.

* Abstract Syntax Mapping
» Semantic Value Mapping
* Execution Environment Mapping

» Semantic Conformance — A demonstration of semantic conformance in terms of the above mappings.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 5

e Semantic Constraints — A specification of any additional semantic constraints on semantic areas left unconstrained by the
execution model.

» Semantic Variation — For each semantic variation point, a specification of any variation from the default semantics.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification.

The following OMG standards provided the source for the foundational subset.
e UML 2.5.1 Specification, http://www.omg.org/spec/UML/2.5.1
e MOF 2.5.1 Core Specification, http://www.omg.org/spec/MOF/2.5.1
¢ OCL 2.4 Specification, http://www.omg.org/spec/OCL

XML Metadata Interchange (XMI) provides a syntactic interchange mechanism for models. It is expected that models
conforming to this specification will be interchanged using XMI.

* MOF 2.5.1 XMI Mapping Specification, http://www.omg.org/spec/XMI/2.5.1

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Base Semantics

A definition of the execution semantics of those UML constructs used in the execution model, using some formalism other
than the execution model itself. Since the execution model is a UML model, the base semantics are necessary in order to
provide non-circular grounding for the execution semantics defined by the execution model. The base semantics provide the
“meaning” for the execution of just those UML constructs used in the execution model. The execution model then defines
the “meaning” of executing any UML model based on the full foundational subset. Any execution tool that executes the
execution model should reproduce the execution behavior specified for it by the base semantics.

Behavioral Semantics

The denotational mapping of appropriate language elements to a specification of a dynamic behavior resulting in changes
over time to instances in the semantic domain about which the language is making statements.

Compact Subset

For the purposes of this specification, a compact subset of UML is one that includes as small a subset of UML concepts as is
practicable to achieve computational completeness.

6 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Computationally Complete

A computationally complete subset of UML is one that is sufficiently expressive to allow definition of models that can be
automatically executed on a computer by an execution tool.

Execution Model

A model that provides a complete, abstract specification to which a valid execution tool must conform. Such a model defines
the required behavior of a valid execution tool in carrying out its function of executing a UML model and therefore provides
a definition of the semantics of such execution.

Execution Semantics

For the purposes of this specification, the behavioral semantics of UML constructs that specify operational action over time,
describing or constraining allowable behavior in the domain being modeled.

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the foundational subset and expressed as an
instantiation of the UML 2 abstract syntax metamodel. This may involve direct interpretation of UML models and/or
generation of equivalent computer programs from the models through some kind of automated transformations. Such a tool
may also itself be concurrent and distributed.

Foundational Subset

The subset of UML to which execution semantics are given in order to provide a foundation for ultimately defining the
execution semantics of the rest of UML.

Static Semantics

Possible context sensitive constraints that statements of a language must satisfy, beyond their base syntax, in order to be
well-formed.

Structural Semantics

The denotational mapping of appropriate language elements to instances in the semantic domain about which the language
makes statements.

Syntax

The rules for how to construct well-formed statements in a language or, equivalently, for validating that a proposed statement
is actually well-formed.

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 7

This page intentionally left blank

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

6 Additional Information

6.1 Changes to Adopted OMG Specifications

The Foundational Subset for Executable UML Models specification does not change any adopted OMG specifications. The
semantics defined in this specification are generally a precise definition of a subset of the UML semantics given in the UML
2 Specification. For this subset, the foundational execution semantics are intended to be consistent with, though sometimes
more restrictive than, the less precise textual semantic specification given in the UML 2 Specification. Cases where the
foundational execution semantics restrict some semantic variability allowed in the UML 2 Specification are noted in the
overview discussions in the subclauses of Clause 8, Execution Model.

6.2 On the Semantics of Languages and Models

In a general sense, a language is a symbolic means for communication. The language provides rules for constructing
statements that communicate some specific meaning. In a natural language, these rules evolve neurologically and socially
over time. For a formal language, on the other hand, the rules are constructed artificially in order to create a means of
communication that, for some intended purpose, is in some way more precise than natural language.

A formal language only attaches meaning to statements that are correctly constructed or well formed. The syntax of the
language provides the rules for how to construct well-formed statements or, equivalently, for validating that a proposed
statement is actually well-formed. The semantics of the language then provides the specification of the meaning of well-
formed statements.

It is usually possible to completely specify the syntax of a formal language. This is because syntax has specifically to do with
the form and structure of statements in the language. Semantics is more problematical because it is inherently extrinsic to the
form of the statements themselves. Meaning can only be assigned to a formal statement in relation to entities in some
semantic domain about which the statement is intended to communicate.

An interpretation of a statement is a mapping of syntactic elements of the language to elements of the semantic domain such
that the truth-value of the statement can be determined, to some level of accuracy. Colloquially, an interpretation of a model
can be said to give it “meaning” relative to the semantic domain. If this mapping can be inverted, so that elements of the
semantic domain can be mapped to syntactic language elements, then a statement can also be constructed as a representation
of some part of the semantic domain, such that the statement is true under the interpretation mapping.

As a somewhat stylized example from natural language, consider the simple statement “Jack owns that house.” This is a
syntactically correct statement in the English language. We can interpret the statement in terms of the “real world” as the
semantic domain.

The word “Jack” is a syntactic element that denotes some person in the real world under this interpretation. Similarly, the
phrase “that house” denotes a specific structure in the real world. Finally, the word “owns” denotes a legal relationship that
may hold between a person and property. If this legal relationship does exist between the previously identified person and
structure, then we can say that the statement “Jack owns that house” is true under this interpretation. Otherwise it is false.

Conversely, suppose we know it to be true that a person named “Jack™ has legal ownership of a specific house being pointed
to. Then we can say that the statement “Jack owns that house” is a truthful representation of this situation.

One of the most useful aspects of a formal language is that it can be used to make concrete statements about potentially
abstract elements of the semantic domain. Essentially syntactic manipulations of these statements can then be used to make
deductions about the semantic elements represented by the statements.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 9

A theory is structured set of rules for deducing new statements in a language from existing statements. A theory is considered
correct under a certain interpretation if any statements deduced from true statements under the interpretation are themselves
always true. In this way, the syntactic deduction rules of the theory may be used to make corresponding actual deductions in
the semantic domain.

A model is a set of statements in a modeling language about some domain under study, which provides the semantic domain
for the model. The meaning of statements in the model is then assigned by an interpretation that maps model elements to
elements of that semantic domain.

A model may be used to describe a domain. In this case, the model is considered correct (under some interpretation) if all
statements made in the model are true for the domain. Similarly, a theory is considered correct for this domain if all
statements deduced using the theory from statements in the model are also true.

Alternatively, a model may be used as a specification for a domain (or for some system within a domain). In this case, a
specific domain is considered valid relative to this specification if no statement in the model is false for the domain.
Similarly, a valid domain conforms to a specific theory if, in addition, no statements deducible using the theory from the
model are false. That is, all statements deducible from the model also effectively become part of the specification.

UML is, of course, a modeling language. “Statements” in UML are constructed using a combination of (syntactic) modeling
elements, both graphical and textual. The statements made by a UML model can then be interpreted against the domain being
modeled.

For example, consider the simple instance model shown in Figure 6.1. As a model of the “real world,” this can be interpreted
as making the set of statements: “There is a person whose name is Jack. There is a house. The person is the owner of the
house.”

p: Person + owWner + houses House
+ name = "Jack"

Figure 6.1 - Simple UML Instance Model

Note that it is an instance model that is interpreted here as making direct statements about the real world. These statements
are what logicians call first order propositions. However, it is more common in UML to model (at least initially) at the level
of classes. A class model makes second order statements about what kind of first order propositions are valid for the domain
under study.

Consider the class model in Figure 6.2. Structurally, this model requires that each instance of the class Person have the
properties “name” and “houses.” Further, it requires that the name of an instance of Person have a String value and it allows
the instance to have zero or more houses associated with it.

Person + owner + houses House
+ name : String | 1 *

Figure 6.2 - Simple UML Class Model

Under this interpretation, the relationship between the instance model of Figure 6.1 and the class model of Figure 6.2 is
basically one of consistency. The instance p in Figure 6.1 is declared to have the class Person as its type. It is therefore
required to have a name attribute. It would certainly be possible to construct a UML model of an instance of Person that does
not have a name. However, this would be inconsistent with the class model given in Figure 6.2.

10 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Of course, it is also possible to give a direct interpretation of a class model in terms of the domain under study. For example,
we could take the class Person to denote the set of all people and the class House to denote the set of all houses, while the
association Ownership denotes a relationship between people and houses. The class model of Figure 6.2 then makes
statements about the “real world” such as “Every person has a name” and “Some people own houses” (where the latter
statement reflects the “zero or more” multiplicity of the “houses” association end).

There is also another common, but very different, interpretation that may be given to the same class model shown in Figure
6.2. In this interpretation the domain under study is that of computer programs written, say, in the Java programming
language. That is, the class model is interpreted as a model of a Java program in this domain. Each class in the model is
taken to denote a corresponding Java class with each property in the model denoting a corresponding field in the Java class.
If the class model is taken as a specification, then the model will actually exist before the program is written; the model
becomes the design for constructing a valid Java program.

This example points out the fact that the same model may have different “meanings” under different interpretations. In fact,
it may even be useful to have multiple interpretations for a model at the same time. Indeed, under the usual tenets of object-
oriented design, the design model of program should also be interpretable as a model (in a somewhat restricted sense) of the
portion of the real world relevant to the program (the so-called “problem domain”).

6.3 On the Semantics of Metamodels

A metamodel is often rather loosely defined as “a model of a model.” For our purposes here, however, a more precise
definition is “a model of a modeling language.” Thus, the UML metamodel is a model with the domain under study being
UML, the language.

Another way to look at this is to consider the metamodel to be a specification model for a class of “systems” in the semantic
domain, where each system in the class is itself a valid model expressed in a certain modeling language. The metamodel
therefore makes statements about what can be expressed in the valid models of the modeling language. Since a metamodel is
a specification, a model in the modeling language is valid only if none of these statements are false.

If the interpretation mapping for a metamodel is invertible, one can also uniquely map elements of the modeling language
back to elements of the metamodeling language. In this case, given any model, we can invert the interpretation mapping to
create a metamodel representation of the model; that is, a set of true statements about the model expressed in the
metamodeling language.

A theory of a metamodel is a way to deduce new statements about a modeling language from the statements already in a
metamodel of the modeling language. Since a metamodel is a specification, a valid model in the modeling language must not
violate any statement deducible using the theory from the explicit metamodel statements.

One way to look at this is to consider the statements of the metamodel as axioms about the modeling language. Then, given
the metamodel representation of a model, we can deduce, using the theory, whether the representation of the model is
consistent with the metamodel. If it is consistent, then the model is valid, otherwise it is not.

The UML Specification provides a metamodel of UML. That is, it includes a set of statements about UML models that must
not be violated by any valid UML model. Note that, in its entirety, this metamodel can be considered to include all of the
concrete graphical notation, abstract syntax and semantics for UML. However, as defined in the Specification, the only part
of this metamodel that is formal is the abstract syntax model.

The UML abstract syntax is formalized as a UML class model. It is thus an example of a reflexive metamodel. That is, it is
expressed in the same modeling language that it is defining. This, of course, introduces an inherent circularity.

Since a reflexive metamodel is expressed in the same modeling language as it is describing, its interpretation provides a
mapping of the modeling language onto itself. Generally, this mapping will be from the entire modeling language to a subset
of it. One can then iterate this mapping, each time producing a smaller subset, until one reaches the minimal reflexive

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 1

metamodel that maps completely onto itself, rather than a subset. This minimal metamodel contains the smallest set of
modeling elements required in order to specify the modeling language in question.

An interpretation of a minimal reflexive metamodel maps the metamodel onto itself. This means that any statement in the
minimal reflexive metamodel can be represented in terms of elements of the minimal reflexive metamodel. However, the
interpretation of this representation is itself expressed reflexively as a mapping to yet another representation in terms of the
minimal reflexive metamodel. This circularity means that, for a minimal reflexive metamodel, the interpretation mapping
really provides no useful expression of the “meaning” of the metamodel itself. To break this circularity, the minimal
reflexive metamodel must be given a base semantics that is independent of its circular interpretation in terms of itself.

In the case of UML, the “minimal” reflexive abstract syntax metamodel is the UML Infrastructure (for pragmatic reasons the
Infrastructure is not actually absolutely “minimal,” but it is still just a small subset of the full UML Superstructure). The
Meta-Object Facility (MOF) specification defines a standard meta-metamodel based on the UML Infrastructure that provides
the basic elements required to construct the abstract syntax metamodel for any modeling language.

The MOF specification also attempts to provide an “Abstract Semantics” for the MOF meta-metamodel. However, this
semantics is still defined in terms of a semantic domain that is specified using a UML class model. Thus, the circularity is
not really broken. The only interpretations of the MOF meta-metamodel that are effectively non-circular are those provided
by the standard mappings of the meta-metamodel to other technologies, such as XML Metadata Interchange (XMI) and Java
Metadata Interface (JMI).

It is one of the goals of the Foundational Subset for Executable UML Models specification to provide a true abstract base
semantics for the foundation of UML.

6.4 Alignment with the OMG Four Layer Metamodeling Architecture
OMG modeling language specifications are developed within the framework of a four layer metamodeling architecture.
* MO-The domain under study (the “objects” of the model)
e M1-The user specification (the model)
* M2-The modeling language specification (the metamodel)
* M3-The reflexive metamodeling language specification (the meta-metamodel)

In terms of the OMG metamodeling layers, interpretation can generally be said to “cross meta-layers.” For example, the
interpretation mapping for UML maps from model elements, considered to be “at layer M1,” to elements of the domain
under study, considered to be “at layer M0.” Similarly, there are interpretation mappings from metamodel elements “at layer
M2” to model elements “at layer M1 and from meta-metamodel elements “at layer M3” to metamodel elements “at layer
M2.”

On the other hand, a theory is “within a single meta-layer.” For example, a theory of UML allows some models to be
deduced from other models (e.g., instance models from class models), entirely at layer M1. Similarly, a theory of the UML
abstract syntax allows the validity of a UML model to be determined entirely at level M2, after mapping the model to its
metamodel representation.

Note that this view of the meta-layers does not consider elements in one layer to necessarily be “instances of”” elements in
the layer above it. For example, consider the particularly simple case of the domain at level M0 being Java programs.
Typically, the relationship of the model of a class at level M1 to level MO is considered to be something of the sort given in
Figure 6.3.

12 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

% <<instanceOf>>
M1 /|k
|
MO |nstar1|ce of'
|
|
anX

Figure 6.3 - Instance Relationship across Meta-Layers M1 and M0

The view taken here is that the concept of interpretation provides the general relationship between one meta-layer and the

next. Thus, the above situation would be considered as in Figure 6.4. Despite the concrete example of a Java class used here
at MO, the argument applies equally well to other more abstract domains, such as workers and the conceptual classes of their
positions in a company.

<<instanceOf>>
X j=—-=hsd C ;anX
I I
M1 I “interpr:etation” I
1 " 1
! : !
| | |
MO "interpreitation" | "interprétation”
| |
v N v
Xjava =77~ dnstance of’__ _ anX

Figure 6.4 - Interpretation across Meta-Layers M1 and MO

If we now add level M2 to this diagram, the interpretation mapping is between instances of metaclasses at M2 and the model
elements at M1. This is shown in Figure 6.5.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

13

M2

M1

M1

MO

+classifier I
Class il InstanceSpecification
| 0
| |
I <<instanceOf>> :<<instance0f>>
. +classifier .
:Class | : InstanceSpecification
I | I
| “interpretation” |
I I i
LH : " | " . "
mterpretahon | interpretation
v y b
X = _<Ln§tar_qe_OL>z _____ anX
I “interpr{etation" :
I | |
"interpretation" : “interpreta*ion“
v | v
Xjava =—-—instanceof’ _ ____ anX

Figure 6.5 - Interpretation across Meta-Layers M2 and M1

The MOF takes the UML Infrastructure subset from layer M2 and places it in layer M3. The relationship between M2 and
M3 is thus essentially the same as between M1 and M2. For example, the Class and InstanceSpecification metaclasses in
layer M2 are represented as instances of the meta-metaclass Class in layer M3.

Now, it is common mental shorthand to identify a model element directly with its metamodel representation (e.g., the class X
with its representation as an instance of the metaclass Class) and loosely refer to the model element as being directly “an
instance of” the metaclass (e.g., class X “is an instance of” the metaclass Class). However, strictly speaking, the concept of
“instance of”” only has meaning within the theory of the metamodeling language. The fact that this concept is in the
metamodeling language at all is merely consequence of the use in OMG of an object-oriented modeling language for
metamodeling, which is not the only possible approach, and is not really fundamental to the relationship between the meta-

layers.

6.5 Acknowledgments

The following companies submitted and/or supported parts of this specification.

6.5.1 Submitters

14

CARE Technologies

International Business Machines Corporation

Kennedy Carter Ltd.
Lockheed-Martin Corporation

Mentor Graphics Corporation

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

¢ Model Driven Solutions

6.5.2 Supporters

¢ 88 Solutions Corporation

CEALIST

NASA Jet Propulsion Laboratory

¢ U.S. National Institute of Standards and Technology

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

15

16

This page intentionally left blank

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

7 Abstract Syntax

7.1 Overview

This clause defines the subset of UML for which foundational semantics are specified in Clause 8. This subset is called
Foundational UML or fUML. It is a computationally complete language for executable models.

A fundamental purpose of f{UML is to serve as an intermediary between “surface subsets” of UML used for modeling and
computational platform languages used as the target for model execution. As shown in Figure 7.1, this generally requires the
ability to translate from the surface subset to f{UML and from fUML to the target platform language.

Surface
UML subset *

Surface-to-fUML
translator

¥
Foundational
UML subset

fUML-to-platform
translator

¥

Platform
language

Figure 7.1 - Translation to and from the foundational UML subset
In this context, the contents of the fUML subset has been largely determined by three criteria.

» Compactness — The subset should be small to facilitate definition of a clear semantics and implementation of execution
tools.

* Ease of translation — The subset should enable straightforward translation from common surface subsets of UML to
fUML and from fUML to common computational platform languages.

¢ Action functionality — This specification only specifies how to execute the UML actions as they are currently defined
with primitive functionality. Therefore, the f{UML subset should not include UML functionality requiring coordinated
sets of UML actions to reproduce.

There is, of course, some tension between these criteria.

Suppose that there is a surface feature of UML (say, polymorphic operation dispatching) that also happens to have a
corresponding analog in a certain platform language (say, an object-oriented programming language such as Java), but which
is excluded from fUML (though, in this case, it actually isn’t). It is clearly desirable that the surface UML feature be
translated, ultimately, into the corresponding feature of the platform language. However, if the feature is excluded from
fUML, it is necessary for the surface-to-fUML translator to generate a coordinated set of f{UML elements that has the same
effect as that feature. But then the fUML-to-platform translator would need to recognize the pattern generated by the surface-
to-fUML generator, in order to map this back into the desired feature of the target language. Compactness can therefore
conflict with ease of translation.

Unfortunately, in practice, such overlaps between desired features in the surface subset of UML used for modeling and the
available features of the target platform language can be significant, especially within a single domain of application.
Further, the specific pattern of elements that might be generated by a surface-to-fUML translator for any given surface

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 17

feature is not standardized-and such a standard is not in the scope of this specification. Therefore, a general f{UML-to-
platform translator cannot be optimized to specially handle a standard set of expected patterns.

On the other hand, if a feature of UML is included in f{UML to reduce the translation problems described above, it increases
the complexity of the semantics of f{UML and the implementation of execution tools conforming to those semantics. This
might not be so bad for any individual feature, but an accumulation of many such features will eventually defeat the purpose
of having a compact subset.

The subset specified in this clause resolves the choice between compactness and ease of translation based on judgments
about which functionalities in common between UML and computational platforms are more widely used than others. These
judgments have the hazard of making broad generalizations about highly segmented modeling and platform markets, but
once made, they help determine the contents of the foundational subset as follows:

¢ Widely used functionality in common between UML and platforms should have the simplest translation into and out of
the f{UML subset, namely, one-to-one translations. This functionality is included in the foundational subset. For example,
classes with properties and operations are widely used elements of object oriented models and control and object flows
are widely used in activity modeling.

* Moderately used functionality in common between UML and platforms should have a straightforward translation into
and out of the foundational subset. This translation is not one-to-one, so this functionality is not included in the f{UML
subset, but the elements needed to enable straightforward mappings are included. For example, composite structure and
simple state machines are considered moderately used.

* Less used functionality in common between UML and platforms may have a complicated translation into the f{UML
subset and is not included in the foundational subset. Little consideration is given to including functionality to simplify
the translation. For example, association qualifiers and interruptible activity regions are considered less used.

Further, certain modeling features of UML are not directly supported by UML action functionality. For example, the UML
semantics of default attribute values is that the default values are assigned to attributes when the object is created. However,
the UML semantics for create object actions require that objects be created without attribute values being set. Therefore,
making the semantics of UML default values explicit requires coordinated actions for creating objects and assigning
structural feature values, with activity control and object flows between them. Consequently, default attribute values are not
included in the foundational subset. In cases such as this, it is expected that the transformational approach above will be used
to generate the set of actions corresponding to desired surface UML semantics. (Note, for example, that this is particularly
important for embedded systems, where the execution of default actions for initialization purposes must carefully coordinate
with other initialization activities.)

Finally, the fUML subset also contains some UML elements that have no execution semantics. Examples of this are
comments and packages from Kernel and modeling declarations such as isDeterminate and isAssured on conditional nodes.
These reduce compactness of the subset but not in a way that affects the specification of semantics, the implementation of
execution tools or translator construction.

7.2 Syntax Packages

Subclauses 7.3 and following define the abstract syntax of the fUML subset as a subset of the abstract syntax of UML 2. The
package structure parallels the package structure of the UML 2 abstract syntax model. Packages in the UML 2 model that
have no corresponding package here are excluded in their entirety. For packages that are included, some further elements
from the UML package may be excluded in the corresponding f{UML package. In this case, the model presented for the
fUML version of the abstract syntax package shows those elements that are specifically in f{UML and specify additional
constraints on the class that that apply in addition to the constraints already specified in UML 2 for the same class.

The fUML subset definition is formally captured in the package fUML_Syntax::Syntax. This package includes the subpackages
shown in Figure 7.2, each of which imports into its namespace exactly those metaclasses from the corresponding UML abstract

18 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

syntax package. All the elements in the subpackages are then re-imported into the top-level Syntax package, which allows them
to be uniformly referenced by qualified name directly from the top-level package (similarly to the namespace structure used in

the UML abstract syntax metamodel).

]
fUML_Syntax::Syntax::
CommonStructure
A\
AN
AN
fUML_Syntax::Syntax:: [
Values N\ «import» fUML_Syntax::Syntax::
S N N CommonBehavior
~
—l ~ ~ «import> N -7
fUML_Syntax::Syntax:: SO N «mp/orz -
Classification K _ «import» ~ ﬁ _ - —
T _
= fUML_Syntax:: «import» fUML_Syntax::Syntax::
«importy _ Syntax | Activities
fUML_Syntax::Syntax:: & — — =
SimpleClassifiers dmporty = // s = «import»
-7 % N
i «importy
fUML_Syntax::Syntax:: P 7 fUML_Syntax::Syntax::
StructuredClassifiers s Actions
s
s
©
fUML_Syntax::Syntax::
Packages

Figure 7.2 - fUML Syntax Package

A UML model that syntactically conforms to this subset shall have an abstract syntax representation that consists solely of
instances of metaclasses that are (imported) members of the f{UML_Syntax::Syntax package. For simplicity, meta-associations
from the UML abstract syntax metamodel are not explicitly imported into the f{UML_Syntax::Syntax package, but it is,
nevertheless, permissible for the model elements of a conforming model, within the f{UML subset, to be involved in any meta-
associations consistent with both the UML metamodel and any further constraints as defined in this specification.

Note. This approach for defining a subset of the UML abstract syntax is similar to the approach used for defining the
metamodel subset covered by a UML profile, in which specially identified package imports (metamodelReferences) and
element imports (metaclassReferences) are used to import the metaclasses from the subset into the namespace of the Profile (see
the UML 2 Specification, 12.3).

In addition to being representable within the f{UML abstract syntax subset, as described above, a UML model that syntactically
conforms to fUML shall also satisfy all relevant constraints defined in the UML abstract syntax metamodel and the additional
syntactic constraints specified here for {UML. The fUML semantics specified in Clause 8 are only defined for well-formed
fUML models that meet all the necessary constraints.

The constraints specified for {UML are all those that are imported members of the fUML_Syntax::Constraints package (see
Figure 7.3). Each of these constraints has as its single constrained element the UML abstract syntax metaclass to which the
constraint applies. The constraints are organized into subpackages, similarly to the those in the Syntax subset model, and then

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 19

re-imported into the top-level Constraints package. (However, there are no additional constraints for the Values and Packages
syntactic packages, so there are no corresponding Constraint subpackages for these.)

]
fUML_Syntax::Constraints::
CommonStructure]
DS fUML_Syntax::Constraints::
~ . .
] ~ ilmport» CommonBehavior
fUML_Syntax::Constraints:: RN «mporty — ~
. M ~ —
Classification K _ cmporty % _ - — —
T fUML_Syntax:: «import» > fUML_Syntax::Constraints::
«importy - _ Constraints Activities
fUML_Syntax::Constraints:: & — ~ = = cimport»
~
SimpleClassifiers «im _ - ~ -
port»
~ - g - $

] -~ fUML_Syntax::Constraints::

- - yActions
fUML_Syntax::Constraints::

StructuredClassifiers

Figure 7.3 - fUML Constraints Package

Editorial Note: The following subclauses are entirely re-organized based on the abstract syntax package
structure of UML 2.5.1. All diagrams have been re-drawn to be consistent with UML 2.5.1, and the class
descriptions that appeared previously have been replaced with definitions of the additional constraints
that apply to the fUML abstract syntax subset.

7.3 Common Structure

7.3.1 Overview

The fUML CommonStructure package imports classes from the UML CommonStructure package. The classes shown in
Figures 7.4 to 7.6 are those included in the fUML CommonStructure package. The diagrams correspond to similar diagrams
in the UML 2 Specification. The following classes and features have been excluded from the fUML subset and are, therefore,
not shown on the fUML abstract syntax diagrams.

From Root (see Figure 7.4): No exclusions.
From Templates (no corresponding f{UML diagram):

* All classes related to templates are excluded from fUML, because templates are outside the scope of the fUML
specification.

From Namespaces (see Figure 7.5):

* Namespace::nameExpression — This is excluded because name expressions are used to provide computed names within
templates, and templates are excluded from the f{UML subset.

¢ Namespace::ownedRule — Namespaces cannot own constraints in f{UML, because constraints are excluded from the
fUML subset.

20 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

From Types and Multiplicities (see Figure 7.6): No exclusions

From Constraints (no corresponding f{UML diagram):

* Constraint — Constraints are excluded from fUML, because they are considered to be design-time annotations that should

already be satisfied by a well-formed model. Otherwise, the general semantics of the run time checking of constraints is
not currently well specified in UML 2, particularly when constraints should be evaluated and what should happen if they

should fail. Further elaboration of the semantics of constraint checking in UML was judged to be outside the scope of the

fUML specification.

From Dependencies (no corresponding fUML diagram):

All classes related to dependencies are excluded from fUML, because dependencies either declare a design intent or

express a model-level relationship without significant execution semantics.

{readOnly, union, subsets
relatedElement}
+/source

Element +annotatedElement

1.%

{readOnly, union, subsets
relatedElement}
+/target

*

{subsets owner}
+owningElement

1.%

{readOnly, union}
+/relatedElement

0.1

{readOnly, union}
+/owner

0.1

1.%

{readOnly, union}

T
+/ownedElement
{readOnly, union}

{subsets ownedElement}
+ownedComment

+/relationship

{readOnly, union, subsets relationship}

Comment +comment

Relationship

+body : String [0..1] [«

+/directedRelationship

*

{readOnly, union, subsets relationship}
+/directedRelations hip

*

DirectedRelationship

Figure 7.4 - Root

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

21

{readOnly, union, subsets member,
subsets ownedElement}

FAN

«enumeration»
VisibilityKind
enumeration literals

public
private
protected
package

{readOnly, subsets member}
+/importedMember

PackageableElement

+/ownedMember
NamedElement
+name : String [0..1]
+ | */qualifiedName : String [0..1]{readOnly}
+visibility : VisibilityKind [0..1]
+/member AN
{readOnly, union}
{readOnly, union}
+/memberNamespace Namespace
0.*
0..1
+/namespace

{readOnly, union, subsets

memberNamespace,
subsets owner}

+namespace
{subsets memberNamespace}

* +visibility : VisibilityKind [0..1] = public{redefines visibility}

{subsets directedRelationship,
subsets ownedElement}
1 +elementimport

1| +importedElement
{subsets target}

{subsets directedRelationship}
+import

*

Elementimport

0
+importingNamespace

{subsets owner,

subsets source}

{subsets directedRelationship,
subsets ownedElement}
1 +packagelmport

+alias : String [0..1]
+visibility : VisibilityKind [1] = public

DirectedRelationship

Packagelmport

Figure 7.5 - Namespaces

22

*

+importingNamespace
{subsets owner,
subsets source}

+visibility : VisibilityKind [1] = public

*

+packagelmport
{subsets directedRelationship}

{subsets target}
1 | timportedPackage

Package

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

NamedElement PackageableElement
[\ [\

+typedElement +ype

{subsets owner} {subsets ownedElement}
MultiplicityElement +owningLower +lowerValue ValueSpecification
+isOrdered : Boolean [1] = false 0.1 0.1
:i/fouwr:;?eelr;tgggrle[?? [1=true {subs_ets owner} {subsets ownedElement}
+/upper : UnlimitedNatural [1] ;o:mlngUpper +upper\/0all:1|e

upperValue must be a LiteralUnlimitedNatural and
lowerValue must be a Literallnteger. Both are
required.

Figure 7.6 - Types and Multiplicity
7.3.2 Constraints

7.3.2.1 MultiplicityElement

[1] fuml multiplicity element required lower and upper
upperValue must be a LiteralUnlimitedNatural and lowerValue must be a Literallnteger. Both are required.

self.upperValue->notEmpty() and
self.upperValue->asSequence()->first().ocllsKindOf(LiteralUnlimitedNatural) and
self.lowerValue->notEmpty() and
self.lowerValue->asSequence()->first().ocllsKindOf(Literallnteger)

7.4 Values

7.4.1 Overview

The fUML Values package imports classes from the UML Values package. The classes shown in Figure 7.7 are those
included in the f{UML Values package. The diagram corresponds to a similar diagrams in the UML 2 Specification. The
following classes have been excluded from the fUML subset and are, therefore, not shown on the fUML abstract syntax
diagrams.

From Literals (see Figure 7.7): No exclusions.

From Expressions (no corresponding fUML diagram):

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

23

Expression — Expressions are excluded from fUML because, in UML, this construct simply captures the parse tree of an
expression whose symbols are otherwise only informally represented as strings and thus cannot be properly executed.

OpaqueExpression — Opaque expressions are excluded from fUML because their body is not further defined within
UML and, thus, not executable. Opaque expressions also allow for an optional association with a UML behavior.
However, this was considered to be redundant with the ability to directly call behaviors within the context of UML
activities, the primary form of behavior modeling supported in f{UML.

StringExpression — String expressions are excluded from fUML because they are only used within the context of
templates, which are outside the scope of fUML.

From Time and Duration (no corresponding f{UML diagram):

Time values are excluded entirely from fUML because time events and constraints are not within the scope of f{UML.

From Intervals (no corresponding f{UML diagram):

LiteralNull Literallnteger LiteralUnlimitedNatural

Intervals and interval constraint are excluded entirely from fUML because they are are outside the scope of f{UML.

ValueSpecification

LiteralSpecification

+value : Integer [1] =0 +value : UnlimitedNatural [1] =0
LiteralString LiteralBoolean LiteralReal
+value : String [0..1] +value : Boolean [1] = false +value : double [1]

Figure 7.7 - Literals

7.4.2 Constraints

None.

7.5

Classification

7.5.1 Overview

The fUML Classification package imports classes from the UML Classification package. The classes shown in Figures 7.8 to
7.12 are those included in the fUML Classification package. The diagrams correspond to similar diagrams in the UML 2

24

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Specification. The following classes and features have been excluded from the fUML subset and are, therefore, not shown on
the fUML abstract syntax diagrams.

From Classifiers (see Figure 7.8):

Classifier::redefinedClassifier — Classifier redefinition is excluded from fUML because it was judged to add significant
complexity to resolve during execution, without a fundamental need in the majority of cases.

Classifier::powerTypeExtent — This is excluded because generalization sets not included in fUML.

Classifier::collaborationUse and Classifier::representation — These are excluded because collaborations are outside the of
scope of f{UML.

Classifier::useCase — This is excluded because use cases are outside the scope of f{UML.

Classifier::substitution — This is excluded because substitution dependencies are not included in f{UML.

From Classifier Templates (no corresponding f{UML diagram):

All classes related to classifier templates are excluded from fUML because templates are outside the scope of fUML.

From Features (see Figure 7.9):

FUML15-2 The fUML subset should support the raising and handling of exceptions

BehavioralFeature::ownedParameterSet — This is excluded because parameter sets are not included in fUML.

Parameter::defaultValue — Implicitly computing a default value for a behavioral feature (or behavior) would require
coordination of multiple UML actions, since call actions always require explicit inputs or outputs to be provided.

Parameter::parameterSet — This is excluded because parameter sets are not included in fUML.

From Properties (see Figure 7.10):

Property::defaultValue — Setting defaults requires coordination of multiple UML actions, since the create object action is
specified to create objects without default values. Setting defaults in f{UML must be modeled explicitly by using the
appropriate structural feature actions after object creation.

Property::qualifier — Association qualifiers are excluded from fUML because their effect can be effectively achieved in
models using unqualified associations and so are not considered fundamental. Further, they were judged not widely used
enough to otherwise require inclusion in f{UML for ease of implementation of execution tools and translators.

Property::subsettedProperty — Subsetting is excluded from fUML because subsetting is generally used in static models
and there is no consensus on the execution semantics for this mechanism. (See 8.1 for further discussion of conventions
related to the handling of subsetting in f{UML execution semantics.)

Property::redefinedProperty — Property redefinition is excluded from fUML because it was judged to add significant
complexity to the resolution of structural features at runtime, without a fundamental need. (Note, on the other hand, that
operation redefinition is included in fUML, as shown in Figure 7.11, because it is necessary for the default f{UML
semantics for polymorphic operation dispatching, as discussed in 8.7.1. Also see 8.1 for further discussion of
conventions related to the handling of redefinition in f{UML execution semantics.)

Property::interface — This is excluded because interfaces are outside the scope of f{UML.

From Operations (see Figure 7.11):

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 25

¢ Operation::raisedException — This is excluded because exceptions are not included in fUML.
* Operation::templateParameter — This is excluded because templates are outside the scope of f{UML.

* Operation::precondition, Operation::postcondition and Operation::bodyCondition — These are excluded because
constraints are not included in fUML.

* Operation::interface — This is excluded because interfaces are outside the scope of f{UML.
* Operation::datatype — This is excluded because data types cannot have operations in f{UML.
From Generalization Sets (no corresponding fUML diagram):

e Power types and generalization sets add significant complexity to the semantics of generalization, particularly as it
relates to typing and polymorphic operation dispatching. Further, the effect of a generalization set can be equivalently
modeled using regular classes and generalizations, albeit at the expense of some modeling convenience. Power types and
generalization sets are therefore not considered fundamental for the f{UML subset.

From Instances (see Figure 7.12):

* InstanceSpecification::specification — Instance specifications in fUML are only used as part of the value specification of
a structured instance value, which is specified using slots, or as an enumeration literal (see Figure 7.13). Therefore, it is
unnecessary to provide a separate specification for its value.

{readOnly, subsets member}

NamedElement +inheritedMember | Namespace | | Type |
FAN
{subsets memberNam) {subsets owner, {subsets directedRelationship,
subsets +iheﬁtin§0l§:§n§|g$ subsets source} subsets ownedElement}
RedefinableElement 7 Classifier *spacific +generalization Generalization
+isLeaf : Boolean [1] = false K& +isAbstract : Boolean [1] = false 1 {subsets +isSubstitutable : Boolean [0..1] = true

{readOnly, union} {subsets redefinedElement} *isFinalSpecialization : Boolean [1] = false {subsets target} ~directedRelationship}
+/redefinableElement +redefinedClassifier +general +generalization
g = 7
* +classifier
+/redefinedElement +classifier
{readOnly, union} {subsets redefinableElement}

{readOnly, union} {readOnly, union} =

+/redefinableElement +/redefinitionContext +/general

{readOnly, union, {readOnly, union, subsets

subsets member} memberNamespace}

+/feature +/featuringClassifier

Feature II:

* 0.1

{readOnly, union, subsets feature,

subsets redefinableElement, ordered}

+attribute 0.1

Property ||=
* +/classifier

{readOnly, union, subsets featuringClassifier,
subsets redefinitionContext}

Figure 7.8 - Classifiers

26 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-2 The fUML subset should support the raising and handling of exceptions
FUML15-12 fUML should include streaming

RedefinableElement

{readOnly, union, subsets {readOnly, union,
subsets member}

memberNamespace}
+/feature

p — +/featuringClassifier

Feature

+isStatic : Boolean [1] = false

I

[Wripretygomert] [T

~ T

StructuralFeature

+isReadOnly : Boolean [1] = false

+behavioralFeature (0..*

+raisedException | 0..*

Figure 7.9 - Features

Behavior

concurrency must be sequenﬁ%

isException must be false H

must be false.

isDerived and isDerivedUnion

{subsets attribute, subsets
ownedMember, ordered}

0.1 +ownedAttribute

StructuralFeature
Z\

{subsets feature, subsets
memberEnd, subsets ownedMember,
subsets redefinableElement, ordered}

Property

+ownedEnd +owningAssociation

«enumeration» «enumeration» «enumeration»
isStatic must be false callC yKind F irectionKind F rEffectKind
sequential in create
guarded inout read
concurrent out update
return delete TypedElement
[pttyEsement] - [c
{subsets ownedMember, ‘\ /1
T ordered
BehavioralFeature 0.1 +0%NnedParameter Parameter
+concurrency : CallConcurrencyKind [1] = sequential * +/default : String [0..1]
+isAbstract : Boolean [1] = false +ownerFormaIParam‘ 0- +direction : ParameterDirectionKind [1] = in
{subsets r e} +effect : ParameterEffectKind [0..1]
+specification | 0..1 ~ +isException : Boolean [1] = false
Ny +isStream : Boolean [1] = false
N
+method | * N -

{subsets association, subsets
featuringClassifier, subsets namespace,
subsets redefinitionContext}

DataType ||=

+datatype *
{subsets classsifier,
subsets namespace}

{subsets attribute, subsets
ownedMember, redefines
ownedAttribute, ordered}

0..1 +ownedAttribute

Class]]=
+class .

{subsets classifier, subsets
namespace, subsets
structuredClassifier}

Figure 7.10 - Properties

+aggregation : AggregationKind [1] = none
+/isComposite : Boolean [1] = false
+isDerived : Boolean [1] = false
+isDerivedUnion : Boolean [1] = false
+isID : Boolean [1] = false

* 0.1

{subsets member, ordered} {subsets memberNamespace}
+memberEnd +association

Association

2. 0.1
+/opposite
0.1 «enumeration»
AggregationKind
+property none
0.1 shared
v composite

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-2 The fUML subset should support the raising and handling of exceptions

If an operation is abstract, it must have no
method. Otherwise it must not have more

than one method and it must have exactly BehavioralF
one method unless owned by an active class. ehavioralFeature
<
N - {redefines ownedParameter, ordered}
0.1 +ownedParameter
{subsets feature, subsets - =|| Parameter
ownedMember, subsets Operation +operation *
redefinableElement, +/isOrdered : Boolean [1]{readOnly} {subsets ownerFormalParam}
ordered}) +isQuery : Boolean [1] = false)
Class ||= 0.1 +ownedOperation g, isUnique : Boolean [1]{readOniy} toperation +type
*class) . +/lower : Integer [0..1]{readOnly} * 0.1 Type
{subsets featuringClassffier, +upper : UnlimitedNatural [0..1){readOnly} {readOnly}
subsets namespace, subsets {subsets behavioralFeature}
redefinitonContext} +operation 0..*
0..* +raisedException
+operation |* * [+redefinedOperation {redefines raisedException}
{subsets redefinableElement} {subsets redefinedElement}

Figure 7.11 - Operations

PackageableElement

{subsets owner} {subsets ownedElement}

InstanceSpecification +owninglnstance st st || sl +definingFeature _ J structuralFeature
1 * 1

1

0..

o

+owningSlot {subsets owner}

*

+value {subsets ownedElement, ordered}

ValueSpecification

+instance +instanceValue v
InstanceValue
1 B

+instanceSpecification | * ~

+classifier | * ~

Classifier
Either all the classifiers are classes, or

there is one classifier that is a data type.

Figure 7.12 - Instances

7.5.2 Constraints

7.5.2.1 BehavioralFeature

[1] fuml behavioral feature sequentiality
concurrency must be sequential

self.concurrency = CallConcurrencyKind::sequential

28 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

7.5.2.2 Feature

[1] fuml feature non_static
isStatic must be false

not self.isStatic
7.5.2.3 InstanceSpecification

[1] fuml instance specification_possible classifiers
Either all the classifiers are classes, or there is one classifier that is a data type
self.classifier->forAll(oclIsKindOf(Class)) or

self.classifier->size() = 1 and self.classifier->forAll(ocllsKindOf(DataType))
7.5.2.4 Operation

[1] fuml operation has at most one method
If an operation is abstract, it must have no method. Otherwise it must not have more than one method and it must have
exactly one method unless owned by an active class.

If self.isAbstract then self.method->isEmpty()
else
self.method->size() <= 1 and
((self.class = null or not self.class.isActive) implies
self.method->size() = 1)
endif

7.5.2.5 Parameter

FUML15-12 fUML should include streaming

[1] fuml parameter not exception
isException must be false

not self.isException
7.5.2.6 Property

[1] no_derivation
isDerived and isDerivedUnion must be false

not self.isDerived and not self.isDerivedUnion

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

29

7.6 Simple Classifiers

7.6.1 Overview

The fUML SimpleClassifiers package imports classes from the UML SimpleClassifiers package. The classes shown in Figures
7.13 to 7.15 are those included in the fUML SimpleClassifiers package. The diagrams correspond to similar diagrams in the
UML 2 Specification. The following classes and features have been excluded from the f{UML subset and are, therefore, not
shown on the fUML abstract syntax diagrams.

From Data Types (see Figure 7.13):

* DataType::ownedOperation — Data types cannot have operations in fUML because they are not behaviored classifiers
and so cannot own behaviors. This means that there is no way to provide executable methods for the operations of a
data type.

From Signals (see Figure 7.14): No exclusions.
From Interfaces (see Figure 7.15):

¢ Interfaces — Within the fUML subset, the effect of interfaces can be achieved using abstract classes with entirely abstract
operations. (Note that f{UML does not include UML 2 structured classes and ports, which depend specifically on the use
of interfaces.)

¢ InterfaceRealization — This is excluded because interfaces are not included in fUML.

¢ BehavioredClassifier::interfaceRealization — This is excluded because interface realizations are not included in f{UML.

AN

{subsets classifier, {subsets attribute, subsets
subsets namespace} ownedMember, ordered}

+datatype +ownedAttribute
:{ Property
0..1 *

DataType

InstanceSpecification
L\
PrimitiveType {subsets ownedMember,
{subsets namespace} ordered}

+enumeration +ownedLiteral

Enumeration

1 EnumerationLiteral

1 *

+/classifier +enumerationLiteral
{readOnly, redefines classifier} {redefines instanceSpecification}

Figure 7.13 - Data Types

30 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

BehavioralFeature
AN

T +signal +reception
Signal
I:_l' 1 0.

Reception

{subsets classifier,
subsets namespace}
0..1 | +owningSignal

{subsets attribute, subsets
ownedMember, ordered}
* | townedAttribute

Property

Figure 7.14 - Signals

BehavioredClassifier

{redefines behavioredClassifier} {subsets namespace}
+behavioredClassifier |0..1 0..1 | +behavioredClassifier
{subsets ownedBehavior} {subsets ownedMember}
+classifierBehavior |0..1 * |, +ownedBehavior

Behavior

Figure 7.15 - Interfaces

7.6.2 Constraints

7.6.2.1 Reception

[1] fuml reception_no method
A reception must not have an associated method.

self.method->isEmpty()

[2] fuml reception not abstract
A reception must not be abstract.

not self.isAbstract

7.7 Structured Classifiers

7.7.1 Overview

The fUML StructuredClassifiers package imports classes from the UML StructuredClassifiers package. The classes shown in
Figures 7.16 to 7.17 are those included in the fUML StructuredClassifiers package. The diagrams correspond to similar
diagrams in the UML 2 Specification. The following classes and features have been excluded from the fUML subset and are,
therefore, not shown on the f{UML abstract syntax diagrams.

From Structured Classifiers (no corresponding fUML diagram):

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 31

¢ Connectors are entirely excluded as being outside the scope of fUML.
From Encapsulated Classifiers (no corresponding fUML diagram):

* Ports are entirely excluded as being outside the scope of f{UML.
From Classes (see Figure 7.16):

* (lass::extension — This is excluded because stereotypes are outside the scope of f{UML.
From Associations (see Figure 7.17):

» AssociationClass — Association classes, as a modeling construct, add significant semantic complexity and their effect can
be equivalently modeled using regular classes and associations, albeit at the expense of some modeling convenience.
They are therefore not considered fundamental for the f{UML subset.

From Components (no corresponding fUML diagram):
» Components are entirely excluded as being outside the scope of f{UML.
From Collaborations (no corresponding f{UML diagram):

* Collaborations are entirely excluded as being outside the scope of f{UML.

32 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

{subsets ownedMember, subsets
redefinableElement, ordered}

+nestedClassifier
StructuredClassifier

| EncapsulatedClassifier |

Only an abstract class
may have abstract
behavioral features.

{subsets namespace, subsets

AN redefinitonContext}
\ 0..1] +nestingClass
{subsets classifier}
Class +class
+isAbstract : Boolean [1] = false{redefines isAbstract} [~ « TypedElement
+isActive : Boolean [1] = false
+/superClass
{redefines general} ConnectableElement
{subsets classifier, subsets {subsets attribute, subsets
namespace, subsets ownedMember, redefines
structuredClassifier} ownedAttribute, ordered}
+class +ownedAttribute -
Property
0..1 *
{subsets feature, subsets
{subsets featuringClasssifier, ownedMember, subsets
subsets namespace, subsets redefinableElement,
redefinitonContext} ordered}
+class +ownedOperation Operation
0..1 §
{subsets featuringClassifier, {subsets feature,
subsets namespace} subsets ownedMember}
+class +ownedReception
% Reception
0..1 *
I I
| |
| |
Only active classes may have classifier behaviors. Only an active class may specialize an active class.

Figure 7.16 - Classes

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-28 fUML should allow association ends that are not association owned

Relationship

{subsets feature, subsets {subsets association, subsets AN S
memberEnd, subsets featuringClassifier, subsets
ownedMember, subsets namespace, subsets
redefinableElement, ordered} redefinitionContext}
Property +ownedEnd +owningAssociation Association
* 0.1 +isDerived : Boolean [1] = false isDerived must be false
A
{subsets ownedEnd} {subsets owningAssociation} .
+navigableOwnedEnd +association
* 0.1
{subsets member, ordered} {subsets memberNamespace} -
+memberEnd +association
2. 0.1

{subsets relationship}
+association

{readOnly, subsets
relatedElement}
1.* | +/endType

Type

Figure 7.17 - Associations

7.7.2 Constraints

7.7.2.1 Association

[1] fuml association no_derivation
isDerived must be false

not self.isDerived

FUML15-28 fUML should allow association ends that are not association owned

[2] #um%a%%eaaﬁeﬁ:ewmjmembeﬂ?:ﬂé%

. . oDt . e isE
7.7.2.2 Class

FUML15-30 Repeated constraint
[1] fuml—elass—abstract—class

¢ doral-featares-fuml class active class classifier behavior
Only active classes may have classifier behaviors.

self.classifierBehavior—notEmpty() implies self.isActive

[2] fuml class active class_specialization
Only an active class may specialize an active class.

self.parents()->exist(isActive) implies self.isActive

34 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[3] fuml class abstract class
Only an abstract class may have abstract behavioral features.

self.member->select(oclisKindOf(BehavioralFeature))->exists(isAbstract) implies self.isAbstract

7.8 Packages

7.8.1 Overview

The fUML Packages package imports classes from the UML Packages package. The classes shown in Figure 7.18 are those
included in the fUML Packages package. The diagrams correspond to similar diagrams in the UML 2 Specification. The
following classes and features have been excluded from the f{UML subset and are, therefore, not shown on the fUML abstract
syntax diagrams.

From Packages (see Figure 7.18):

» PackageMerge — Package merge is excluded from fUML because it is not considered to be a runtime construct. All
package merges are assumed to have been already carried out before a model is submitted for execution.

e Model — This is excluded from fUML because it is not considered to be runtime construct. For an executable model, a
model package is considered equivalent to a regular package.

From Profiles (no corresponding fUML diagram):

* Profiles are excluded as being outside the scope of fUML.

Namespace ’ ’PackageabIeElement
{subsets ownedMember}
* | +packagedElement
{subsets packagedElement} Package
+nestedPackage [+URI : String [0..1] 0.1

+owningPackage
{subsets namespace}

*

{subsets owningPackage} {subsets packagedElement}

0.1 +package +ownedType Type
+nestingPackage 0..1 0." J\I’

{subsets owningPackage}

Figure 7.18 - Packages

7.8.2 Constraints

None.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 35

7.9 Common Behavior

7.9.1 Overview

The fUML CommonBehavior package imports classes from the UML CommonBehavior package. The classes shown in
Figures 7.19 and 7.20 are those included in the f{UML CommonBehavior package. The diagrams correspond to similar
diagrams in the UML 2 Specification. The following classes and features have been excluded from the fUML subset and are,
therefore, not shown on the f{UML abstract syntax diagrams.

From Common Behavior (see Figure 7.19):

* Behavior::redefinedBehavior — Behavior redefinition is excluded from fUML because opaque behaviors are only used
for primitive behaviors in f{UML, and the only other type of behavior provided is activities, the semantics of redefinition
for which is not fully defined in UML 2.

» Behavior::precondition and Behavior::postcondition — Behavior preconditions and postconditions are excluded from
fUML because constraints, in general, are excluded from fUML (see 7.3.1).

From Events (see Figure 7.20):

* TimeEvent and ChangeEvent — These events are excluded from fUML because they imply a background infrastructure,
such as a model of time or a mechanism for monitoring for change. The execution semantics for this would be
complicated to specify and more sophisticated than is necessary for computational completeness of the foundational
subset.

* AnyReceiveEvent — Any receive events are excluded because they are largely unnecessary. Only asynchronous signal
events are allowed in fUML.

36 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

In this specification, an fUML instance model must have Behavior.isReentra%

BehavioredClassifier

I L\
{readOnly, subsets
redefinitionContext} {subsets redefinableElement} I -
+/context +behavior Behavior
0.1 + | HisReentrant : Boolean [1] = true
{redefines

behavioredClassifier}
+behavioredClassifier

{subsets ownedBehavior}
+classifierBehavior

0.1

{subsets namespace}
+behavioredClassifier

0.1

{subsets ownedMember}
+ownedBehavior

0..1

*

+method

- +specification
BehavioralFeature l|=
0.1

{subsets ownedMember,

ordered

*

{subsets namespace}
+behavior

+owned?3arameter
Parameter II;
0..*

0.1

T

body and language must be empty |' - = = 7

OpaqueBehavior

+body : String [0..*){ordered,nonunique}
+language : String [0..*[{ordered}

—_
—
—
—

An opaque behavior cannot be activl}‘

Figure 7.19 - Behaviors

FunctionBehavior

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

37

NamedElement PackageableElement
A

+trigger +event e
Event

* 1
MessageEvent

|SignaIEvent| | CallEvent |

Trigger

+signalEvent | * * | +callEvent

+signal [1

N

+operation

’ Signal ’ ’Operation’

Figure 7.20 - Events

7.9.2 Constraints

7.9.2.1 Behavior

[1] fuml behavior reentrant
In this specification, a fUML instance model must have Behavior.isReentrant

self.isReentrant
7.9.2.2 OpaqueBehavior

[1] fuml opaque behavior empty body and language
body and language must be empty

self.language->isEmpty() and self.body->isEmpty()

[2] fuml opaque behavior inactive
An opaque behavior cannot be active.

not self.isActive

7.10 Activities

7.10.1 Overview

The fUML Activities package imports classes from the UML Activities package. The classes shown in Figures 7.21 and 7.25
are those included in the fUML Activities package. The diagrams correspond to similar diagrams in the UML 2

Specification. The following classes and features have been excluded from the fUML subset and are, therefore, not shown on
the f{UML abstract syntax diagrams.

38 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

From Activities (see Figure 7.21):

* ActivityEdge::redefinedEdge — Activity edge redefinition is excluded from fUML because behavior redefinition is
excluded from fUML (see 7.9).

* ActivityEdge::weight — Activity edge weights are excluded as being outside the scope of f{UML.

e ActivityNode::redefinedNode — Activity node redefinition is excluded from fUML because behavior redefinition is
excluded from fUML (see 7.9).

* ObjectNode::transformation and ObjectNode::selection — Transformation and selection behaviors are excluded as
being outside the scope of fUML.

* Variable — Variables are excluded from fUML because the passing of data between actions can be achieved using object
flows.

From Control Nodes (see Figure 7.22):
» JoinNode::joinSpec — Join specifications are excluded as being two imprecisely defined in UML to be executable.
From Object Nodes (see Figure 7.23):

¢ ObjectNode::selection and ObjectNode::upperBound — Object node selection and upper bound are excluded as being
outside the scope of fUML.

* ObjectNode::inState — Identifying a state with an object node is excluded from fUML because state machines are not
included in f{UML.

FUML15-2 The fUML subset should support the raising and handling of exceptions

‘ From Executable Nodes (see Figure 7.24): No exclusions.

From Activity Groups (see Figure 7.25):

* ActivityPartition — Activity partitions are excluded from fUML because they are a very general modeling construct in
UML activities and their precise execution semantics is unclear.

e InterruptibleRegion — Interruptible regions are excluded from fUML because they are considered to be more appropriate
for “higher level” process modeling and outside the scope of f{UML.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 39

Behavior

A An activity may be active, but
cannot have a classifier behavior.
-
-
Activity

+isReadOnly : Boolean [1] = false
+isSingleExecution : Boolean [1] = false

isSingleExecution must be falsli

+activity
{subsets owner}

RedefinableElement
L\

ActivityNode
{subsets ownedElement}

+activity

0.1 {subsets owner}

RedefinableElement
L\

ActivityEdge
{subsets ownedElement]

+edge
g
+target +incoming
1 *
+source +outgoing

1

+guard

{subsets ownedElement}

{subsets owner}
+activityEdge

ValueSpecification l.l-/

0.1

0.1

A guard is only allowed if the source
of the edge is a DecisionNode.

isMulticast and isMultireceive
must be false

Figure 7.21 - Activities

ObjectFlow

+isMulticast : Boolean [1] = false
+isMultireceive : Boolean [1] = false

ActivityNode
N\

ControlNode
N\

ControlFlow

InitialNode | | FinalNode | | ForkNode
AN

FIowFinaINode| |ActivityFinaINode

Figure 7.22 - Control Nodes

40

JoinNode

| MergeNode | |DecisionNode

+isCombineDuplicate : Boolean [1] = true
T +decisionNode
|
|

+decisionInputFlow 0.1

+decisionNode
0.1

0..1], +decisionlnput

ObjectFl
isCombineDuplicate must be false Iﬁ | jec ow|

’Behavior’

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

TypedElement ActivityNode
L\ [\

«enumeration»
isControlType must be falslé} - — _] ObjectNode ObjectNodeOrderingKind
+isControlType : Boolean [1] = false unordered
B‘_ _ — — —{+ordering : ObjectNodeOrderingKind [1] = FIFO Elrgged
ordering must be FIFO T FIFO

|ActivityParameterNode | |CentraIBufferNode |

*

+activityParameterNode

+parameter | 1

Parameter DataStoreNode

Figure 7.23 - Object Nodes

FUML15-2 The fUML subset should support the raising and handling of exceptions

ActivityNode
Z\ JAN
{subsets owner} {subsets ownedElement}
+protectedNode +handler +exceptionHandler +exceptioninput ObjectNode

ExecutableNode 1 0~ ExceptionHandler 0. 1
+handlerBod + tionHandl + tionHandl + tionT'
andlerBody exceptionHandler exceptionHandler exception ype@
1 0.* 0.* 1.*

Figure 7.24 - Executable Nodes

NamedElement
A

{subsets owner} {subsets ownedElement} {readOnly, union}

) e N +/containedNode
ActivitylI= +inActivity +group | ActivityGroup =|| ActivityNode
* +/inGroup *

0.1
{readOnly, union}
{readOnly, union, {readOnly, union}

subsets ownedElement} * .
+/subgroup *containedEdge JlActivityEdge
+/inGroup *

{readOnly, union}

0..1 |+/superGroup
{readOnly, union,
subsets owner}

Figure 7.25 - Activity Groups

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

4

7.10.2 Constraints

7.10.2.1 Activity

[1] fuml activity no classifier behavior
An activity may be active, but cannot have a classifier behavior.

self.classifierBehavior->isEmpty()
[2] fuml activity not single execution
isSingleExecution must be false.

not self.isExecution
7.10.2.2 ActivityEdge

[1] fuml activity edge allowed guards
A guard is only allowed if the source of the edge is a DecisionNode.

self.guard->notEmpty() implies self.source.ocllsKindOf(DecisionNode)
7.10.2.3 JoinNode

[1] fuml join node not combine duplicate
isCombineDuplicate must be false

not self.isCombineDuplicate
7.10.2.4 ObjectFlow

[1] fuml object flow not multi
isMulticast and isMultireceive must be false

not self.isMulticast and not self.isMultireceive
7.10.2.5 ObjectNode

[1] fuml object node fifo ordering
ordering must be FIFO

self.ordering = ObjectNodeOrderingKind::FIFO

[2] fuml object node not control type
isControl Type must be false

not self.isControlType

7.11 Actions

7.11.1 Overview

The fUML Actions package imports classes from the UML Actions package. The classes shown in Figures 7.26 and 7.35 are
those included in the f{UML Actions package. The diagrams correspond to similar diagrams in the UML 2 Specification. The
following classes and features have been excluded from the f{UML subset and are, therefore, not shown on the f{UML abstract
syntax diagrams.

42 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

From Actions (see Figure 7.26):

* Action::localPrecondition and Action::localPostcondition — Local preconditions and postconditions for actions are not
supported in fUML because constraints are not supported in fUML (see 7.3).

 ActionInputPin — Action input pins are excluded from fUML because they are redundant with using an object flow to
connect the output pin of the action to a regular input pin.

¢ OpaqueAction — Opaque actions are excluded from fUML since, being opaque, they cannot be executed.

* ValuePin — Value pins are excluded from fUML because they are redundant with using value specifications to specify
values.

From Invocation Actions (see Figure 7.27):

¢ InvocationAction::onPort — Identification of a port for an invocation action is excluded from fUML because ports are
excluded from fUML.

* BroadcastSignalAction and SendObjectAction — The sole mechanism for asynchronous invocation in fUML is via send
signal action. This can be used to achieve the effect of broadcasting and sending objects.

From Object Actions (see Figure 7.28): No exclusions.
From Link End Data (see Figure 7.29):

* QualifierValue — Qualifier values are excluded from fUML because association qualifiers are excluded from fUML (see
7.7).

From Link Actions (see Figure 7.30): No exclusions.
From Link Object Actions (no fUML diagram):

» ReadLinkObjectEndAction, ReadLinkObjectEndQualifierAction and CreateLinkObjectAction — These actions are
excluded from fUML because association classes are excluded from fUML (see 7.7).

From Structural Feature Actions (see Figure 7.31): No exclusions.
From Variable Actions (no f{UML diagram):

* ReadVariableAction, WriteVariableAction (and its subclasses) and ClearVariableAction — These actions are excluded
from fUML because variables are excluded from fUML (see 7.10).

FUML15-13 fUML should include unmarshall actions

‘ From Structured Actions (see Figure 7.33):

* StructuredActivityNode::variables — Variables are excluded from fUML because the passing of data between actions can
be achieved using object flows (see also 7.10).

¢ SequenceNode — Sequence nodes are excluded from fUML because the sequencing of actions can be expressed using
control flows.

From Expansion Regions (see Figure 7.34): No exclusions.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 43

FUML15-2 The fUML subset should support the raising and handling of exceptions

‘ From Other Actions (see Figure 7.35): No exclusions.

ExecutableNode
L\

Acti {readOnly}
ction . "
*action feontext cll Classifier
+isLocallyReentrant : Boolean [1] = false | * 0.1
+/action |0..1 0..1[+/action
{readOnly, union, {readOnly, union,
subsets owner} subsets owner}
{readOnly, union, subsets {readOnly, union, subsets
ownedElement, ordered} ownedElement, ordered}
+/input | 0..* * [+output
| InputPin | | OutputPin |

Pin
+isControl : Boolean [1] = false isControl must be false

ObjectNode | | MultiplicityElement |

Figure 7.26 - Actions

44 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-27 fUML should not require signal receptions

{subsets input}

{subsets input, ordered}

{subsets action}

+object +argument
InputPin
1 *

+result
OutputPin ||=

{subsets action}
0..1| +startObjectBehaviorAction

+invocationAction
0.1
{subsets output,
ordered} {subsets action}
+ealiAction CallAction SendSignalAction
0.1 +isSynchronous : Boolean [1] = true
AN
+sendSignalAction (0..1

StartObjectBehaviorAction |

|CaIIBehaviorAction |
+callBehaviorAction +callOperationAction

*

I
s
s /

isSynchronous must be falslﬁ 7 /
Ve
Ve

/
. /
isSynchronous must be true Y

The behavior may not be activlﬁ

Figure 7.27 - Invocation Actions

\
+behaviok +operation |1

~N

p \ "
/ |Behavior N Operation

or a (direct or indirect) superclass of it.

If the behavior has a context, it must be the
same as the context of the enclosing activity

{subsets input}

{subsets action}
+sendSignalAction

{subsets input} +arget |1
+target
9 o InputPin
171

CallOperationAction LI_ 0.1

~N

+callOperationAction
{subsets action}

~N
N

isSynchronous must be true

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

45

The given classifier must be a class.

The given classifier must not be
an owned behavior (or otherwise

have a context classifier).

{subsets owner}

\
~ ~ \ DestroyObjectAction
" - +isDestroyLinks : Boolean [1] = false - — —
CreateObjectAction +isDestroyOwnedObjects : Boolean [1] = false TestidentityAction I l l l
+ teObjectActi *
createUbjectAction +createObjectAction . +estldentityAction | 0.1 0..1 |+testldentityAction subsets action} 0..1] +readSelfAction
+destroyObjectAction |0..1
subsets action}

+classifier |1

Classifier

{subsets action}
{subsets output}
+Hirst

{subsets input}

{subsets action}

{subsets input}

1

+second

1 InputPi
+arget

a

{subsets action} 0..1[+testldentityAction

{subsets input}

{subsets action}

{subsets output}
+result

OutputPin
+result

{subsets output}

+result

0..1| +valueSpecificationAction

{subsets action} {subsets
ownedElement}
+value

ValueSpecification

{subsets output}

B e sifier must b I All the old and new classifiers
DO must be classes.
~
ﬁﬁ {subsets action}
j d
" 0.1 +isReplaceAll : Boolean [1] = fa\sel
{subsets action) 0..1| +readExtentAction Vl
+readExtentAction [0..1 +reclassifyObjectAction | * * [+reclassifyObjectAction
+readlsClassifiedObjectAction | * 0.1
{subsets output}| {subsets input}
+result |1 +object | 1
OutputPin InputPir
+oldClassifier | * * | +newClassifier
+classﬂier\J - |

Figure 7.28 - Object Actions

1

+linkEndData ,mm +linkEndData +end

% Property
1

0..1

LinkEndCreationData LinkEndDestructionData
+isReplaceAll : Boolean [1] = false +isDestroyDuplicates : Boolean [1] = false
+linkEndCreationData 0.1 0.1 +linkEndDestructionData
0.1 0.1
+insertAt +destroyAt
+value
InputPin
0.1

Figure 7.29 - Link End Data

46

ReadlsClassifiedObjectAction

+isDirect : Boolean [1] = false 0.1

{subsets action}
+readlsClassifiedObjectAction

{subsets output}

{subsets input)
1 | +result j

+object

OutputPin

{subsets action}
+readlsClassifiedObj

1

+object
InputPi
1

ion | StartClassifi i i

{subsets action}
+startClassifierBehaviorAction

{subsets input}

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

{subsets ownedElement}
LinkEndData [*+endData

Z\

{subsets owner}
+linkAction

2.

LinkAction

1

ReadLinkAction

+readLinkAction
{subsets action}

0.1

{subsets output}

+result |1

WriteLinkAction

OutputPin |

|CreateLinkAction

{subsets action}
tlinkAction

+inputValue
{subsets input}

0..1| +clearAssociationAction

{subsets action}

{subsets input}
+object

-

InputPin

1

+clearAssociationAction
| ClearAssociationAction |7
0..1

+association

Association

+readStructuralFeatureAction

DestroyLinkAction

+createLinkAction | 1 +destroyLinkAction | 1
{redefines linkAction} {redefines linkAction}
{redefines endData} {redefines endData}

+endData | 2..* +endData |2..*

LinkEndCreationData | | LinkEndDestructionData
Figure 7.30 - Link Actions
{subsets action} {subsets input}
StructuralFeature L *structuralFeature P eatureActi +structuralFeatureAction +object InputPin
1 +structuralFeatureAction %ﬁr 0.1 1

ReadStructuralFeatureAction

{subsets action}
+writeStructuralFeatureAction

{subsets action}

Y Acti

{subsets action}
0.1

L +writeStructuralFeatureAction

0.1 |

{subsets output}
+result

OutputPin

{subsets input}|

+isReplaceAll : Boolean [1] = false

{subsets action}

{subsets input}

0.1 | +insertAt
+value |0..1
{subsets input})
InputPin |, _tremoveAtremoveStructuralFeatureValueAction RemoveStructuralFeatureValueAction
J0.1 0.1

+addStructuralFeatureValueAction

{subsets output}

ClearStructuralFeatureAction
" 0.1
{subsets action}
0..1 [+clearStructuralFeatureAction
{subsets output}
0.1
AddStructuralFeatureValueAction

+result

Figure 7.31 - Structural Feature Actions

{subsets action}

+isRemoveDuplicates : Boolean [1] = false

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+result
“e OutputPin
0.1

47

FUML15-13 fUML should include unmarshall actions
FUML15-27 fUML should not require signal receptions

Unless the action is an accept call action, all triggers
must be for signal events.

event action must be an active class.

AN

An accept event action may not be contained directly
or indirectly in the test part of a clause or loop node.

|

|

The context of the containing activity of the accept ~ |— -
|

|

-

|

. | {subsets action}
{subsets action} - {subsets owner} ;
+acceptEventAction AcceptEventAction +acceptEventAction +replyAction ReplyAction 0 A +unmarshallAction
0.1 +isUnmarshall : Boolean [1] =false| 0..1 0.1 L I 0..1

{subsets action}
0..1| +replyAction
+unmarshallAction | 0..1
{subsets ownedElement} {subsets action}
+rigger [1..* +replyToCall {subsets input,
ordered} {subsets input}

AcceptCallAction Trigger +replyValue +returninformation
~ InputPin P%'Ob]ed Classifier
{subsets action} 1

+acceptCallAction {subsets input}

{subsets action}
+replyAction | 0..1

0..*| +unmarshallAction

*

+unmarshallType

0..

The operations of the call events on the
triggers of an accept call action must be owned
{subsets output, {subsets output} or inherited by the context class of the action.

? +returninformation

ordered}
+result subsets output, ordered
OutputPin 'gresuﬂ P }

1.%

Figure 7.32 - Accept Event Actions

48 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+predecessorClause

{redefines activity,
redefines inActivity}
+activity

Namespace |

|Action | ‘ ActivityGroup

{subsets group,
subsets node}
+structuredNode

StructuredActivityNode

+mustlsolate : Boolean [1] = false

Activity||=
0..1

{subsets containedNode,
subsets ownedElement}

*

{subsets inGroup,
subsets owner}

+inStructuredNode

ActivityNode ||=+“"de

{subsets containedEdge,
subsets ownedElement}

0.1

{subsets inGroup,
subsets owner}

+inStructuredNode

ActivityEdge ||=’redge

0.1

0.1

{subsets input}

0.1

+structuredActivityNode
{subsets action}

{subsets output}

+structuredNodeOutput

I

+structuredActivityNode
{subsets action}

{redefines structuredNodelnput,
ordered;

)
4]
InputPin loopVariablelnput
0.

*

+successorClause

{subsets structuredActivityNode}
+loopNode |0..1

{redefines structuredNodeOutput, {Subsets ownedElement, /
ConditionaiNod ordered} ordered}
onditionaode 0.1 +result | OutputPin +loopVariable 0.1 LoopNode
+isAssured : Boolean [1] = false — " . - — -
+isDeterminate : Boolean [1] = false | +conditionalNode 0.. *oopNode | +isTestedFirst : Boolean [1] = false
{subsets {subsets owner}
tructuredActivityNod
{sub_sgts owner} structuredActivityNode} +decider +ioopNode
+conditionalNode | 1
{subsets ownedElement} N {ordered}
+clause 1.* +bodyOutput +loopNode
+Clause +decider ’ '
Clause]
0.1 {redefines structuredNodeOutput,
{ordered} ordered}
+clause +bodyOutput +result 0.1
n - * +loopNode
+clause (0.1 +clause |0..1 {subsets structuredActivityNode}
+loopNode |0..1 ..1 | +loopNode
+loopNode | 0..1
+setupPart +est |1.* * | +bodyPart
+est ExecutableNode
1*
+body

Figure 7.33 - Structured Actions

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+structuredNodelnput InputPin

no setupParts in fUML

49

«enumeration»
ExpansionKind

StructuredActivityNode parallel ObjectNode
iterative

AN

stream
+regionAsOutput +outputElement
ExpansionRegion g i ExpansionNode
0.1 B
+mode : ExpansionKind [1] = iterative
+regionAsInput +inputElement
0.1 1.%

/
/

I

|

|

I Edges may not cross into or out
mode cannot be stream of an expansion region.

|

An expansion region may not have output pinli

Figure 7.34 - Expansion Regions

FUML15-2 The fUML subset should support the raising and handling of exceptions

Z\

5 +reducer +reduceAction ReduceAction RaiseExceptionAction
Behavior %
1 * +isOrdered : Boolean [1] = false
{subsets action} subsets action} 0..1 |+raiseExceptionAction
*reduceAction subsets action
+reduceAction |0..1 0.1 { }
{subsets output} {subsets input}
+result |1 {subsets input} .
) 1 1]} +exception
+collection

OutputPin

Figure 7.35 - Other Actions

7.11.2 Constraints

7.11.2.1 AcceptCallAction

[1] fuml accept call action call event operations
The operations of the call events on the triggers of an accept call action must be owned or inherited by the context class of
the action.

let cls: Class = self.context.oclAsType(Class) in
let classes:Bag(Class) = cls.allParents()->select(ocllsKindOf(Class))->collect(oclAs Type(Class))->union(cls->asBag()) in
classes.ownedOperation—includesAll(self.trigger.event—collect(oclAs Type(CallEvent)).operation)

50 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

7.11.2.2 AcceptEventAction

(1]

(2]

(3]

fuml_accept_event action_active context
The context of the containing activity of the accept event action must be an active class.

self.context.oclAsType(Class).isActive

fuml_accept_event no_accept event action in_tests
An accept event action may not be contained directly or indirectly in the test part of a clause or loop node.

self->closure(inStructuredNode.oclAsType(ActivityNode))->forAll(n |
let s : StructuredActivityNode = n.inStructuredNode in
s->notEmpty() implies
(s.ocllsTypeOf(ConditionalNode) implies s.oclAsType(ConditionalNode).clause.test->
excludes(n.oclAsType(ExecutableNode)) and
s.ocllsTypeOf(LoopNode) implies s.oclAsType(LoopNode).test->excludes(n.oclAsType(ExecutableNode))))

fuml accept _event only signal event triggers

Unless the action is an accept call action, all triggers must be for signal events.
not self.ocllsKindOf(AcceptCallAction) implies
self.trigger.event->forAll(ocllsKindOf(SignalEvent))

FUML15-27 fUML should not require signal receptions

7.11.2.3 CallBehaviorAction

(1]

(3]

fuml_call behavior action inactive behavior
The behavior may not be active.

not self.behavior.isActive

fuml call behavior action is_synchronous
isSynchronous must be true
self.isSynchronous

fuml call behavior action proper context

If the behavior has a context, it must be the same as the context of the enclosing activity or a (direct or indirect) superclass
of it.

self.behavior.context->notEmpty() implies
self.context->union(self.context.allParents())->includes(self.behavior.context)

7.11.2.4 CallOperationAction

(1]

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

fuml call operation_action is synchronous
isSynchronous must be true

self.isSynchronous

51

7.11.2.5 CreateObjectAction

[1] fuml create object action is_class
The given classifier must be a class.

self.classifier.oclIsKindOf(Class)
[2] fuml create object action no owned behavior
The given classifier must not be an owned behavior (or otherwise have a context classifier).

self.classifier.ocllsKindOf(Behavior) implies self.classifier.oclAsType(Behavior).context = null
7.11.2.6 ExpansionNode

[1] fuml expansion node mode cannot be stream
mode cannot be stream

self.mode <> ExpansionKind::stream
[2] fuml expansion node no crossing edges
Edges may not cross into or out of an expansion region.
self.edge->forAll(self.node->includes(source) and self.node—includes(target))
[3] fuml _expansion node no output pins
An expansion region may not have output pins.

self.output->isEmpty()
7.11.2.7 LoopNode

[1] fuml loop node no_setup part
no setupParts in f{UML

self.setupPart->isEmpty()
7.11.2.8 Pin

[1] fuml pin not control
isControl must be false

not self.isControl
7.11.2.9 ReadExtentAction

[1] fuml read extent action is_class
The classifier must be a class.

self.classifier.oclIsKindOf(Class)
7.11.2.10 ReclassifyObjectAction

[1] fuml reclassify object action old new classes
All the old and new classifiers must be classes.

self.oldClassifier->forAll(ocllsKindOf(Class)) and self.newClassifier—forAll(ocllsKindOf(Class))

52 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

\ FUML15-27 fUML should not require signal receptions

7.11.2.11 StartObjectBehaviorAction

[1] fuml start object behavior action is_asynchronous
isSynchronous must be false.

not self.isSynchronous

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

53

54

This page intentionally left blank

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8 Execution Model

8.1 Overview

This clause describes the execution model for fUML. The execution model is itself a model, written in f{UML, that specifies
how fUML models are to be executed. This circularity is broken by the separate specification of a base semantics for the
subset of fUML actually used in the execution model (see Clause 10).

Static Semantics and Well Formedness

It is important to distinguish execution semantics from what is sometimes called “static semantics,” a term that comes from
programming language compiler theory.

Typically, the syntax of a programming language is defined using a context-free grammar (e.g., using Backus-Naur Form
productions). However, there are also typically aspects of the language that are context-sensitive, but can still be checked
statically by the compiler. The most common example is static type checking, which requires matching expression types to
be declared variable types. The checking of such context-sensitive constraints is known as “static semantics.”

For UML, the abstract syntax is defined as a MOF metamodel. The UML specification also defines additional constraints
that the metamodel representation of a valid UML model is required to meet. These constraints are the equivalent of the
static semantics of UML.

However, since these constraints can all be checked statically, they are not part of the execution semantics of UML. Indeed,
any model that violates one or more of these additional constraints is not actually well formed. Such an ill-formed model
cannot really be assigned any meaning at all.

In this specification, static semantics are not considered to be part of the execution semantics to be specified. That is, any
well-formed model is already presumed to have met all the constraints imposed on the abstract syntax as defined in the UML
Specification. Semantic meaning will only be defined for models that are well formed in this sense.

Conventions on Derivation and Redefinition

In a number of cases in the UML abstract syntax metamodel, constraints express requirements for derived properties
(including the implicit constraints involved in derived unions and subsetting). The values of such properties may be
completely determined from the values of other, non-derived properties using the defining constraints. Thus, for example, the
values of these properties do not need to be included in the interchange representation of the model.

On the other hand, the UML 2 Specification allows a derived property to be read using a read structural feature action, just
like any other property. In principle, it should be possible to dynamically compute the value of the derived property in order
to read it. However, the fUML subset does not include constraints (see 7.3.1 for the rationale for this exclusion) and,
therefore, the defining constraints for derived properties are not available in an executing f{UML model.

As a result, this specification adopts the convention that, when an object is instantiated, explicit values are provided for all
derived properties and that these values are consistent with the defining constraints for the derivation. In the context of the
abstract syntax metamodel, this means that all the implicit and explicit derivation constraints are treated as part of the
conditions for a well-formed model. Consistent with the discussion of well-formedness above, the execution model therefore
assumes that the abstract syntax representation of a model being executed has valid values set for all derived properties that
may be read just like other properties (and that all derived properties keep the same value throughout an execution). That is,
the distinction between derived and non-derived properties essentially disappears at runtime, so far as the execution model is
concerned (since the execution model does not change the value of any properties in the abstract syntax representation of an
input model).

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 55

For example, the UML abstract syntax metamodel defines the ownedAttribute property of Class to subset the derived union
Namespace::ownedMember, which, in turn, subsets both Namespace::member and Element::ownedElement. The f{UML
execution model assumes that, in the abstract syntax representation of a well-formed model, every ownedAttribute of the
representation of a class will also be explicitly included in the collection of values of the inherited ownedMember, member
and ownedElement properties for that class.

Similarly, an object is considered to have values set for both any redefined property and the property redefinition of it. In this
case, the implicit constraint is that the values must be the same, whether accessed via the redefined property or via the
redefining property. However, the redefining property may also impose additional constraints (such as a narrowing of the
allowed multiplicity, for example) that then effectively also apply to the value of the redefined property.

Note: A conforming execution tool is not necessarily required to handle the derived and redefined properties of the UML
abstract syntax metamodel in this way. This is simply the convention for the execution model, which is written within the
constraints of the f{UML subset.

Behavioral Semantics

The execution model is a formal, operational specification of the execution semantics of f{UML. That is, it defines the
operational procedure for the dynamic changes required during the execution of a f{UML model. This is in contrast to the
declarative approach used for the base semantics (see Clause 10).

The execution model is itself an executable, object-oriented, f{UML model of a fUML execution engine. To specify the
behavioral semantics of f{UML completely, the execution model must fully define its own behavior-that is, it must fully
specify every operation method and classifier behavior in it. Since the only kind of user-defined behavior supported in f{UML
is the activity, each behavior in the execution model must be modeled as an activity.

Currently, the only UML notation provided for activity modeling is the graphical activity diagram. It would thus be possible
to represent each of the activities in the execution model using such a diagram. For example, Figure 8.14 gives a sample
activity diagram for just a part of the method specified for the execute operation of the ActivityExecution class in the
execution model. Unfortunately, for significant activities, these diagrams quickly become large, intractable to draw and hard
to comprehend.

Instead of using such cumbersome graphical notation, and rather than defining from scratch a new, non-normative textual
notation for activities, most activities in this specification are written as equivalent code in the Java programming language.
Informally, these code snippets can actually be understood as executable Java code, and the standard Java semantics for this
code is consistent with the behavior to be specified for the activity. For example, Figure 8.15 shows the Java code equivalent
to the activity model in Figure 8.14.

Formally, however, any Java code should be understood as just a surface notation for the true, underlying UML activity
model. That is, the code in Figure 8.15 should be thought of as just another representation of the model given in Figure 8.14.
Annex A provides the normative mapping from this Java surface notation to UML activity models, for the purposes of the
fUML specification. The formal semantics of the constructs used in activity models mapped from the Java surface notation is
then given by the base semantics in Clause 10.

56 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Read types X

Read Self

1 Add activationGroup

1 Add actiivityExecution '

(Create ActivityNodeActivationGroup |2
n

Read node

Call activate

Read edge [

Figure 8.1 - Partial Activity Model for the ActivityExecution::execute Operation

Activity activity = (fUML.Syntax.Activity) (this.types.getValue(0));
ActivityNodeActivationGroup group = new ActivityNodeActivationGroup () ;
this.activationGroup = group;

group.activityExecution = this;

Figure 8.2 - Java Surface Representation of the Activity Model in Figure 8.1

8.2 Semantics Packages

The remainder of this clause is organized according to the packaging structure of the execution model. The packaging of the
execution model parallels that of the f{UML abstract syntax (see Clause 7), except that the execution model does not include
CommonStructure and Package packages, because these either contain abstract syntax elements without execution semantics
or whose general execution semantics are accounted for in the execution model Value package. In addition, the execution
model includes the Loci package, which contains elements of the execution model that do not directly correspond to
syntactic elements of f{UML. Rather, the elements in this package provide a model of an executor for well-formed f{UML
models, which can be considered to be the abstract specification for actual f{UML execution engines.

Figure 8.3 shows the relationships of the f{UML semantics packages with each other and the corresponding syntax packages.
Subclause 8.3 describes the Loci package, which contains the Locus, Executor, and ExecutionFactory classes that model a
fUML execution engine and its environment. Subclauses 8.4 to 8.7 cover the Values, Classification, SimpleClassifiers and
StructuredClassifiers packages, which together define the structural semantics of fUML. Subclauses 8.8 to 8.10 cover the
Common Behavior, Activities and Actions packages, which together define the behavioral semantics of f{UML.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 57

fUML_Syntax::Syntax::
CommonStructure
A ~
= < «import»
~ -
fUML_Syntax::Syntax:: s «import» Values «access»
Values T T
— - N |
. _ /)
«|mpc£t»/ P | «import» |
] -7 P - | |
& e 1 |
fUML_Syntax::Syntax:: «importy .~ Classification
Classification _ - :
_ |
P N
e |«import» I
< |
s |
L |
fUML_Syntax::Syntax:: SimpleClassifiers |
SimpleClassifiers |
" [
| «import» |
— — ' [
fUML_Syntax::Syntax:: __ «mporty | StructuredClassifiers | «access» !
StructuredClassifiers = — |
=) T | |
«importy _ — I«|mport» | caccess» | |
-7 ! roo
< v | |
fUML_Syntax::Syntax:: CommonBehavior | |
CommonBehavior | |
N | |
| «import» | |
— — o
fUML_Syntax::Syntax:: «import» Activities | |
o €= = === — -
Activities | |
N | |
|«import» | |
] — | | |
fUML_Syntax::Syntax:: «import» Actions : :
. < - === - = = | |
Actions
| |
" |
| «import» I
| |
|
1 I I
Loci < — I
ke — — — |

Figure 8.3 - f{UML Semantics Package

Throughout the following subclauses, the terminology of semantic interpretation introduced in Clause 6 will be freely used
to relate the operational semantic specification provided by the execution model to the general semantics approach used in
this specification.

58 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.3 Loci

8.3.1 Overview

The Loci package includes the model of the key concepts of an execution /ocus and of the executor that provides the abstract
external interface of the execution model.

The Executor and the Execution Locus

The Executor class provides the root abstraction for executing a f{UML model. As shown in Figure 8.4, it provides three
operations:

» Evaluate — Evaluate a value specification, returning the specified value.

¢ Execute — Synchronously execute a behavior, given values for its input parameters and returning values for its output
behaviors.

» Start — Asynchronously start the execution of a stand-alone or classifier behavior, returning a reference to the instance of
the executing behavior or of the behaviored classifier.

Every execution takes place at a specific locus. A locus is an abstraction of a physical or virtual computer capable of
executing fUML models. It is a place at which extensional values (objects or links) can exist. The extent of a class or
association is the set of objects or links of that type that exist at a certain locus. Note that this implies that an individual
object is restricted to a single locus; i.e., it cannot span multiple loci (see 8.7.1 for further discussion of extensional values.)

All objects and links created during an execution are created at the locus of that execution. And, unless an object or link is
explicitly destroyed, it will persist at the locus even after the execution has completed. This means that objects and links may
already exist at a locus before a specific behavior execution begins, providing part of the environment in which the execution
takes place. (The concept of an execution environment is discussed further at the end of this subclause.)

Indeed, an execution locus may provide a set of pre-existing objects as part of the environment of all behavior executions at
that locus, as a means of providing external services to those executions. Given that the appropriate class is known, such
service objects may be discovered using the read extent action (this is the mechanism used for accessing input/output
services, for example — see 9.5). More sophisticated discovery services may also be provided but are not defined in this
specification.

While the execution of any one behavior takes place at a single locus, an execution at one locus may invoke a behavior that
executes at another locus. To do this, an execution must be able to instantiate, or otherwise obtain a reference to, an object on
the remote locus on which the behavior is to be invoked (or which itself is a behavior instance). However, no normative
mechanism is provided within f{UML for an execution on one locus to obtain references to objects on another locus.
Conformant execution tool implementations may optionally provide a service to discover objects on remote services or to
allow references to be passed between loci using input/output channels (see 9.5). (With such extensions it should be possible
to support the execution of models that span multiple loci.)

Visitor Classes and the Execution Factory

The model for evaluation and execution is based on the Visitor pattern. This pattern is used to add behavior to an already
existing class hierarchy. In the case of the execution model, the existing class hierarchy is that of the f{UML subset of the
UML Abstract Syntax (see Clause 7). The intent of the execution model is to provide a specification for the execution of
models represented in terms of instances of abstract syntax metaclasses, without making any change to those metaclasses as
they are given in the UML Superstructure specification.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 59

Using the Visitor Pattern, each abstract syntax metaclass for which behavior is to be added has a corresponding visitor class
in the Execution Model. This visitor class has a unidirectional association to the corresponding abstract syntax metaclass and
operations that effectively provide the behavioral specification of the semantics of model elements represented by that
metaclass. All visitor classes in the execution model are descended, directly or indirectly from the root SemanticVisitor class
(see Figure 8.4).

There are three types of visitor classes in the Execution Model. Two of them, evaluations and executions, are used by the
Executor.

» Evaluations — An evaluation visitor is used to evaluate a specific kind of value specification; that is, to return an instance
of the value denoted by the value specification. There is an evaluation visitor class corresponding to each concrete
subclass of ValueSpecification included in the f{UML subset (see 8.4). The name of the visitor class is the same as the
name of the corresponding abstract syntax metaclass with the word “Evaluation” appended. For example, the evaluation
visitor class for the abstract syntax metaclass LiteralString is called LiteralStringEvaluation. (See 8.4.1 for further
discussion of evaluation classes.)

¢ Executions — An execution visitor is used to execute a specific kind of behavior. There is an execution visitor class
corresponding to each concrete subclass of Behavior included in the fUML subset (see 8.8 and 8.9). The name of the
visitor class is the same as the name of the corresponding abstract syntax metaclass with the word “Execution”
appended. The primary kind of UML behavior included in fUML is the activity with a corresponding visitor class called
ActivityExecution. There are also OpaqueBehaviorExecution and FunctionBehaviorExecution visitor classes
corresponding to OpaqueBehavior and FunctionBehavior. (See 8.8 for a general discussion of execution classes and 8.9
for specific discussion of activity execution.)

The behavior of the Executor evaluate and execute operations is to create an instance of the corresponding evaluation or
execution visitor class and then use that visitor instance to carry out the required evaluation or execution. To create a
corresponding visitor instance, the Executor uses an instance of the ExecutionFactory class located at the execution locus (see
Figure 8.4). The ExecutionFactory class provides createEvaluation and createExecution operations that take, respectively,
value specification and behavior abstract syntax instances and return, respectively, instances of the evaluation or execution
class corresponding to the concrete class of the input abstract syntax object.

The third type of visitor class is an activation. An activation visitor is used to model the semantics of a specific kind of
activity node within the execution of a containing activity. Such activation instances are created as part of the construction of
the execution object for an activity. Therefore, they are further described in 8.9 as part of the discussion of activity
execution.

All three types of visitor classes are ultimately instantiated using the instantiateVisitor operation of the ExecutionFactory
class (see Figure 8.5). The ExecutionFactory class also has three subclasses: ExecutionFactoryL1, ExecutionFactoryl.2 and
ExecutionFactorylL3. These are provided solely for backward compatibility with previous versions of fUML and provide no
additional functionality beyond that of the base ExecutionFactory class. The use of these subclasses should be considered
deprecated in favor of directly using the ExecutionFactory class.

Strategy Classes and Semantic Variation Points

There are two semantic variation points defined for f{UML (see 2.3): event dispatch scheduling and polymorphic operation
dispatching. In both of these cases, the execution model limits the semantic variability to the behavior of a single operation:
ObjectActivation::getNextEvent (see 8.8.1) in the case of event dispatching and Object::dispatch in the case of operation
dispatching (see 8.7.1). The execution model uses the Strategy pattern in order to allow for possible variation in the behavior
of these operations.

The Strategy pattern involves defining an abstract base strategy class for an operation whose behavior is to be allowed to
vary. This base class defines an abstract operation corresponding to the original operation, to which the original operation is
delegated. Different concrete subclasses of the base strategy class can then define different concrete behaviors for the

60 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

operation, and selecting a specific behavior (or strategy) corresponds to using an instance of a specific concrete strategy
class.

In the execution model, all strategy classes ultimately descend, directly or indirectly, from the class SemanticStrategy (see
Figure 8.4). The SemanticStrategy class provides a common operation for getting the “name” of a strategy, which identifies
to which semantic variation point a strategy instance applies. The standard strategy names used in the execution model
correspond to the names of the operations whose behavior is being provided: “getNextEvent” and “dispatch.”

The strategy to be used for a semantic variation point is determined by the strategy instance that is registered with the
execution factory (using the setStrategy operation) at a given locus under the corresponding strategy name. There must be
exactly one strategy instance, of the appropriate subclass, registered for each semantic variation point. The execution factory
getStrategy operation provides a lookup mechanism for retrieving a strategy instance to be used for a specific named
semantic variation.

For further discussion of the strategy classes related to each semantic variation point, as well as the default strategies
provided in the execution model, see 8.7.1 and 8.8.1.

Note: While there are currently only two semantic variation points defined for f{UML, the strategy mechanism has
intentionally been made general enough to accommodate the possible need for additional variation points in future
extensions to the specification of the execution semantics for larger subsets of UML.

Specifying Nondeterministic Behavior

There are a number of cases in which the UML 2 Specification specifically indicates that the execution semantics in a certain
area are nondeterministic-that is, the semantic specification does not prescribe which one of a number of possible choices is
taken during an actual execution. A legal execution may take any one of the allowed choices. For example, if more than one
clause of a conditional node has a successful test, then only one of the clause bodies will be executed, but it is
nondeterministic which one is actually executed.

In order to model nondeterministic behavior in the execution model, a special case of the Strategy pattern is used. A choice
strategy is one with the name “choice” that provides a single operation called choose. This operation takes a single integer
argument size (which must be greater than zero) and returns an integer value from 1 to the given size.

The ChoiceStrategy class (see Figure 8.4) is the abstract base strategy class for all choice strategies. A single instance of a
concrete subclass of ChoiceStrategy is registered with the execution factory at each locus. Whenever a behavior specification
within the execution model is required to make a non-deterministic choice between some number of options, this choice is
made by getting the registered choice strategy and using its choose operation.

The key point is that a legal execution may use any choice strategy at all, so long as the “choose operation” always returns a
selection from 1 to the required number of choices. Since any choice strategy is legal, no restriction is placed on a
conforming execution tool as to how such choices are actually made in its specific implementation. In this way, the concept
of nondeterminism operationally is interpreted in the execution model.

For completeness, the execution model includes a single concrete default choice strategy class, FirstChoiceStrategy (see
Figure 8.4). The choose operation of this class always returns 1, which corresponds to always picking the first of a list of
possible options. It is important to understand that, while this specific strategy is deterministic, the effective nondeterminism
of allowed behavior comes about because any other choice strategy might also be used, whether it is some other simple
algorithm, totally random or just based on what is most convenient for the internal implementation of some execution tool.

Note: There is no requirement that a conforming execution tool provide a formal specification of what its effective choice
strategy is, as this may be entirely implicit in the way the tool is implemented. On the other hand, a specific choice strategy
may be formally specified by defining a new subclass of ChoiceStrategy. This may be useful, for example, if the
implementation target is in a domain (such as life critical systems) in which fully determinable behavior is desirable or if it is
desirable to be able to specify some sort of fair or parameterized distribution of how choices are made.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 61

Primitive Behaviors and Primitive Types

The execution factory at each locus maintains the set of primitive behaviors available to be called by executions at a specific
locus. In fUML, primitive behaviors are defined syntactically as instances of OpaqueBehavior. For each OpaqueBehavior
instance representing a primitive behavior, the execution factory maintains a corresponding prototype instance of
OpaqueBehaviorExecution. When an instance of OpaqueBehavior is passed to the execution factory createExecution
operation, the corresponding prototype opaque behavior execution is looked up. A copy of this prototype execution instance
is then returned as the result of the createExecution call.

Subclause 9.3 specifies the basic library of primitive behaviors that must be provided by any conforming execution tool.
However, specific execution tools may also provide additional primitive behaviors. These are modeled as additional opaque
behavior execution prototypes added to the standard list required to be maintained by any execution factory.

Finally, the execution factory also maintains a list of built-in primitive types for which there are corresponding literal value
specifications. Note that this is a list of instances of the PrimitiveType metaclass — that is, representations of the M1-level
types from the fUML model library (see 9.2). During the evaluation of a literal value specification, the appropriate
evaluation class looks up by name the proper primitive type to attach to the resulting value (see 8.4). Since f{UML includes
literal value specifications for Boolean, Integer, Real, String, and UnlimitedNatural (see 7.4), the list of built-in types must
include at least these types.

Configuring the Execution Environment at a Locus

While the Executor class provides the basic interface for evaluating value specifications and executing behaviors, the
preceding discussion in this subclause indicates that more than just an instance of an executor is required in order to even
begin to perform such evaluations and executions. Instead, it is necessary to instantiate a set of collaborating objects (largely
from classes within the execution model) that provide the initial execution environment. The configuration of this initial
environment in terms of the execution model is an abstraction of the capabilities that a conforming execution tool must
actually provide in order to execute a fUML model.

The following items are required as part of the execution environment at a specific locus.

* A single instance of class Locus. The identifier for this instance must be initialized to a non-empty string, which should
be distinct from the identifiers for any remove loci that may be available from this locus.

» A single instance of class Executor, linked to the locus.
* A single instance of ExecutionFactory, also linked to the locus (see 8.3.2.2).

* Instances of PrimitiveType for each of the primitive types Boolean, Integer, Real, String and UnlimitedNatural, as
defined in the Foundational Model Library (see 9.2), registered with the execution factory as built-in types.

» Single instances of concrete subclasses of ChoiceStrategy (see 8.3.2.1), DispatchStrategy (see 8.7.2.1) and
GetNextEventStrategy (see 8.8.2.9), all registered with the execution factory.

The following items are also permitted as part of the execution environment at a specific locus.

« Instances of concrete subclasses of OpaqueBehaviorExecution registered with the execution factory as primitive
behavior prototypes (these may include some or all of the primitive behaviors from the Foundational Model Library (see
9.3).

* Instances of Object representing discoverable services, instantiated as existential values at the locus (these may include
singleton instances of the basic input/output classes StandardInputChannel and StandardOutputChannel (see 9.5).

62 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

fUML_Semantics::Semantics::StructuredClassifiers::
ExtensionalValue

+extensionalValues | *

+locus] 0..1

Locus

+identifier : String

+setExecutor(executor : Executor)

+setFactory(factory : ExecutionFactory) +ocus
+getExtent(classifier : Classifier) : ExtensionalValue [*] >
+add(value : ExtensionalValue) 0.1

+remove(value : ExtensionalValue)

+instantiate(type : Class) : Object

+makeldentifier(value : ExtensionalValue) : String
+conforms(type : Classifier, classifier : Classifier) : Boolean

+locus |0..1

+executor 0..1

Executor

+execute(behavior : Behavior [1], context : Object [0..1], inputs : ParameterValue [*]) : ParameterValue [*]
+evaluate(specification : ValueSpecification) : Value
+start(type : Class, inputs : ParameterValue [*]) : Reference

ExecutionFactory

+factory

+createExecution(behavior : Behavior, context : Object [0..1]) : Execution

+createEvaluation(specification : ValueSpecification) : Evaluation

+instantiateVisitor(element : Element) : SemanticVisitor

+instantiateOpaqueBehaviorExecution(behavior : OpaqueBehavior) : OpaqueBehaviorExecution

0..1

+strategies

SemanticVisitor

SemanticStrategy

+addPrimitiveBehaviorPrototype(execution : OpaqueBehaviorExecution)
+addBuiltinType(type : PrimitiveType)

+getBuiltinType(name : String) : PrimitiveType [0..1]

+setStrategy(strategy : SemanticStrategy)

+getStrategy(name : String) : SemanticStrategy [0..1]
+getStrategyIndex(name : String) : Integer

* *

+builtinTypes +primitiveBehaviorPrototy pes

UML::SimpleClassifiers:: fUML_Semantics::Semantics::CommonBehavior::
PrimitiveType OpaqueBehaviorExecution

Figure 8.4 - Loci

*

+getName() : String

|

ChoiceStrategy

+getName() : String
+choose(size : Integer) : Integer

|

FirstChoiceStrategy

+choose(size : Integer) : Integer

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

63

ExecutionFactory
ExecutionFactoryL1

ExecutionFactorylL2
ExecutionFactoryL3

Figure 8.5 - Execution Factories (use of subclasses of ExecutionFactory is deprecated)

8.3.2 Class Descriptions

8.3.2.1 ChoiceStrategy

A choice strategy is used to represent the behavior of making an arbitrary non-deterministic choice.
A valid execution may use ANY choice strategy for choosing one element from a given set.

Generalizations

* SemanticStrategy

Attributes

None

Associations

None

Operations

[1] choose (in size : Integer) : Integer
Choose an integer from 1 to the given size.

[The size must be greater than 0.]

[2] getName () : String
// The name of a choice strategy is always "choice".

return "choice";

64 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.3.2.2 ExecutionFactory

An execution factory is used to create objects that represent the execution of a behavior, the evaluation of a value
specification or the activation of an activity node.

Generalizations

None

Attributes

None

Associations

builtInTypes : PrimitiveType [0..*]
The set of primitive types that have corresponding literal value specifications.
Must include Integer, Boolean, String, and UnlimitedNatural.

locus : Locus [0..1]
The locus at which this factory resides.

primitiveBehaviorPrototypes : OpaqueBehaviorExecution [0..*]
The set of opaque behavior executions to be used to execute the primitive behaviors known to the factory.

e strategies : SemanticStrategy [0..*]

The set of semantic strategies currently registered with this execution factory.

Operations

[1] addBuiltInType (in type : PrimitiveType)
// Add the given primitive type as a built-in type.

// Precondition: No built-in type with the same name should already exist.

this.builtInTypes.addValue (type);

[2] addPrimitiveBehaviorPrototype (in execution : OpaqueBehaviorExecution)

// Add an opaque behavior execution to use as a prototype for instantiating the corresponding
primitive opaque behavior.

// Precondition: No primitive behavior prototype for the type of the given execution should
already exist.

this.primitiveBehaviorPrototypes.addValue (execution);

[3] createEvaluation (in specification : ValueSpecification) : Evaluation
// Create an evaluation object for a given value specification.

// The evaluation will take place at the locus of the factory.

Evaluation evaluation = (Evaluation) (this.instantiateVisitor (specification));

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 65

evaluation.specification = specification;

evaluation.locus = this.locus;

return evaluation;

[4] createExecution (in behavior : Behavior, in context : Object [0..1]) : Execution
// Create an execution object for a given behavior.
// The execution will take place at the locus of the factory in the given context.

// If the context is empty, the execution is assumed to provide its own context.

Execution execution;

if (behavior instanceof OpagqueBehavior) {

execution = this.instantiateOpaqueBehaviorExecution ((OpaqueBehavior)behavior);
}
else {

execution = (Execution) (this.instantiateVisitor (behavior));

execution.types.addValue (behavior) ;

execution.createFeatureValues () ;

this.locus.add (execution);

if (context == null) {
execution.context = execution;
}
else {
execution.context = context;

return execution;

[5] getBuiltInType (in name : String) : PrimitiveType [0..1]
// Return the built-in type with the given name.

PrimitiveType type = null;

int 1 = 1;

while (type == null & i <= this.builtInTypes.size()) {
PrimitiveType primitiveType = this.builtInTypes.getValue(i-1);
if (primitiveType.name.equals (name)) {

type = primitiveType;

66 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return type;

[6] getStrategy (in name : String) : SemanticStrategy [0..1]
// Get the strategy with the given name.

int i = this.getStrategyIndex (name) ;

SemanticStrategy strategy = null;
if (i <= this.strategies.size()) {

strategy = this.strategies.getValue(i-1);

return strategy;

[7] getStrategylndex (in name : String) : Integer
// Get the index of the strategy with the given name.

// If there is no such strategy, return the size of the strategies list.

SemanticStrategylList strategies = this.strategies;
int 1 = 1;
boolean unmatched = true;
while (unmatched & (i <= strategies.size())) {
if (strategies.getValue(i-1) .getName () .equals (name)) {
unmatched = false;
} else {
i=1i+4+ 1;

return 1i;

[8] instantiateOpaqueBehaviorExecution (in behavior : OpaqueBehavior) : OpaqueBehaviorExecution

// Return a copy of the prototype for the primitive behavior execution of the given opaque
behavior.

OpaqueBehaviorExecution execution = null;

int 1 = 1;

while (execution == null & i <= this.primitiveBehaviorPrototypes.size()) {
OpaqueBehaviorExecution prototype = this.primitiveBehaviorPrototypes.getValue (i-1);

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 67

if (prototype.getBehavior () == behavior) ({

execution = (OpaqueBehaviorExecution) (prototype.copy()):;

if (execution == null) {

}

return execution;

[9] instantiateVisitor (in element : Element, in suffix : String) : SemanticVisitor

// Instantiate a visitor object for the given element.
SemanticVisitor visitor = null;

// Formerly Level L1

if (element instanceof LiteralBoolean) {

visitor = new LiteralBooleanEvaluation();

else if (element instanceof LiteralString) {

visitor = new LiteralStringEvaluation();

else if (element instanceof LiteralNull) {

visitor = new LiteralNullEvaluation();

else i1if (element instanceof InstanceValue) {

visitor = new InstanceValueEvaluation();

else if (element instanceof LiteralUnlimitedNatural) {

visitor = new LiteralUnlimitedNaturalEvaluation ()

else if (element instanceof LiteralInteger) {

visitor = new LiterallntegerEvaluation();

68 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

else if (element instanceof LiteralReal) {

visitor = new LiteralRealEvaluation();

else if (element instanceof CallEventBehavior) {

visitor = new CallEventExecution();

// Formerly Level L2

} else if (element instanceof Activity) {

visitor = new ActivityExecution();

else i1if (element instanceof ActivityParameterNode) {

visitor = new ActivityParameterNodeActivation();

else if (element instanceof CentralBufferNode &
!'{element instanceof DataStoreNode)) {

visitor = new CentralBufferNodeActivation();

else 1f (element instanceof InitialNode) {

visitor = new InitialNodeActivation():;

else if (element instanceof ActivityFinalNode) {

visitor = new ActivityFinalNodeActivation();

else if (element instanceof FlowFinalNode) ({

visitor = new FlowFinalNodeActivation();

else i1if (element instanceof JoinNode) {

visitor = new JoinNodeActivation();

else if (element instanceof MergeNode) {

visitor = new MergeNodeActivation();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

69

else 1f (element instanceof ForkNode) {

visitor = new ForkNodeActivation();

else if (element instanceof DecisionNode) {

visitor = new DecisionNodeActivation();

else if (element instanceof InputPin) ({

visitor = new InputPinActivation();

else if (element instanceof OutputPin) {

visitor = new OutputPinActivation();

else if (element instanceof CallBehaviorAction) {

visitor = new CallBehaviorActionActivation();

else if (element instanceof CallOperationAction) {

visitor = new CallOperationActionActivation();

else if (element instanceof SendSignalAction) {

visitor = new SendSignalActionActivation();

else if (element instanceof ReadSelfAction) {

visitor = new ReadSelfActionActivation();

else if (element instanceof TestIdentityAction) {

visitor = new TestIdentityActionActivation();

else if (element instanceof ValueSpecificationAction) {

visitor = new ValueSpecificationActionActivation();

70 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

else if (element instanceof CreateObjectAction) {

visitor = new CreateObjectActionActivation();

else if (element instanceof DestroyObjectAction) {

visitor = new DestroyObjectActionActivation();

else if (element instanceof ReadStructuralFeatureAction) {

visitor = new ReadStructuralFeatureActionActivation();

else if (element instanceof ClearStructuralFeatureAction) {

visitor = new ClearStructuralFeatureActionActivation();

else if (element instanceof AddStructuralFeatureValueAction) {

visitor = new AddStructuralFeatureValueActionActivation();

else if (element instanceof RemoveStructuralFeatureValueAction) {

visitor = new RemoveStructuralFeatureValueActionActivation();

else if (element instanceof ReadLinkAction) {

visitor = new ReadLinkActionActivation();

else if (element instanceof ClearAssociationAction) {

visitor = new ClearAssociationActionActivation();

else i1if (element instanceof CreateLinkAction) {

visitor = new CreatelinkActionActivation();

else if (element instanceof DestroyLinkAction) {

visitor = new DestroyLinkActionActivation();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Formerly Level L3

else if (element instanceof DataStoreNode) ({

visitor = new DataStoreNodeActivation();

else if (element instanceof ConditionalNode) {

visitor = new ConditionalNodeActivation();

else if (element instanceof LoopNode) ({

visitor = new LoopNodeActivation();

else if (element instanceof ExpansionRegion) {

visitor = new ExpansionRegionActivation();

// Note: Since ConditionalNode, LoopNode and ExpansionRegion are
// subclasses of StructuredActivityNode, element must be tested
// against the three subclasses before the superclass.
else if (element instanceof StructuredActivityNode) {

visitor = new StructuredActivityNodeActivation();

else i1if (element instanceof ExpansionNode) {

visitor = new ExpansionNodeActivation();

else i1if (element instanceof ReadExtentAction) {

visitor = new ReadExtentActionActivation();

else if (element instanceof ReadIsClassifiedObjectAction) {

visitor = new ReadIsClassifiedObjectActionActivation();

else if (element instanceof ReclassifyObjectAction) ({

visitor = new ReclassifyObjectActionActivation();

72 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

else if (element instanceof StartObjectBehaviorAction) {

visitor = new StartObjectBehaviorActionActivation();

else if (element instanceof StartClassifierBehaviorAction) {

visitor = new StartClassifierBehaviorActionActivation();

// Note: Since AcceptCallAction is a subclass of AcceptEventAction,
// element must be tested against AcceptCallAction before

// AcceptEventAction.

else if (element instanceof AcceptCallAction) ({

visitor = new AcceptCallActionActivation();

else if (element instanceof AcceptEventAction) {

visitor = new AcceptEventActionActivation();

else if (element instanceof ReplyAction) {

visitor = new ReplyActionActivation();

else if (element instanceof ReduceAction) {
visitor = new ReduceActionActivation();
}
FUML15-2 The fUML subset should support the raising and handling of exceptions

‘ else if (element instanceof RaiseExceptionAction)

‘ visitor = new RaiseExceptionActionActivation();

return visitor;

[10] setStrategy (in strategy : SemanticStrategy)

// Set the strategy for a semantic variation point. Any existing strategy for the same SVP is
replaced.

int i1 = this.getStrategylndex(strategy.getName())

if (i <= this.strategies.size()) {

this.strategies.removeValue (i-1);

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 73

this.strategies.addValue (strategy);
8.3.2.3 ExecutionFactoryL1 (Deprecated)

This subclass is provided for backward compatibility with previous versions of fUML. Its use is deprecated.

8.3.2.4 ExecutionFactoryL2 (Deprecated)

This subclass is provided for backward compatibility with previous versions of f{UML. Its use is deprecated.
8.3.2.5 ExecutionFactoryL3 (Deprecated)

This subclass is provided for backward compatibility with previous versions of f{UML. Its use is deprecated.
8.3.2.6 Executor

An executor is used to execute behaviors and evaluation value specifications.

Generalizations

None

Attributes

None

Associations

e locus: Locus [0..1]
The locus at which this executor resides.

Operations

[1] evaluate (in specification : ValueSpecification) : Value

// Evaluate the given value specification, returning the specified value.

return this.locus.factory.createEvaluation (specification) .evaluate();

[2] execute (in behavior : Behavior, in context : Object [0..1], in inputs : ParameterValue [0..*]) : ParameterValue [0..¥]

// Execute the given behavior with the given input values in the given context, producing the
given output values.

// There must be one input parameter value for each input (in or in-out) parameter of the
behavior.

// The returned values include one parameter value for each output (in-out, out or return)
parameter of the behavior.

// The execution instance is destroyed at completion.

74 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Execution execution = this.locus.factory.createExecution (behavior, context);

for (int i = 0; 1 < inputs.size(); i++) {

execution.setParameterValue (inputs.getValue (1)) ;

execution.execute () ;
ParameterValuelist outputValues = execution.getOutputParameterValues()

execution.destroy () ;

return outputValues;

[3] start (in type : Class, in inputs : ParameterValue [0..*]) : Reference

// Instantiate the given class and start any behavior of the resulting object.

// (The behavior of an object includes any classifier behaviors for an active object or the

class of the object itself, if that is a behavior.)

Object object = this.locus.instantiate(type);

object.startBehavior (type, inputs);

Reference reference = new Reference();

reference.referent = object;

return reference;

8.3.2.7 FirstChoiceStrategy

Generalizations

* ChoiceStrategy

Attributes

None

Associations

None

Operations

[1] choose (in size : Integer) : Integer

// Always choose one.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

75

return 1;
8.3.2.8 Locus

A locus is a place at which extensional values (objects or links) can exist. The extent of a class or association is the set of
objects or links of that type that exist at a certain locus.

A locus also has an executor and a factory associated with it, used to execute behaviors as a result of requests dispatched to
objects at the locus.

Generalizations

None

Attributes

* identifier : String
The identifier of this locus, which should be unique at least within the current execution environment.

Associations

e executor : Executor [0..1]
The executor to be used at this locus.

¢ extensionalValues : ExtensionalValue [0..*]
The set of values that are members of classifier extents at this locus.

* factory : ExecutionFactory [0..1]
The factory to be used at this locus.

Operations

[1] add (in value : Extensional Value)

// Add the given extensional value to this locus

value.locus = this;
value.identifier = this.identifier + "#" 4+ this.makeIdentifier (value);

this.extensionalValues.addValue (value) ;

[2] conforms (in type : Classifier, in classifier : Classifier) : Boolean

// Test if a type conforms to a given classifier, that is, the type is equal to or a
descendant of the classifier.

boolean doesConform = false;

if (type == classifier) {
doesConform = true;
} else {
int 1 = 1;
while (!doesConform & i <= type.general.size()) {

doesConform = this.conforms (type.general.getValue(i-1l), classifier);

76 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return doesConform;

[3] getExtent (in classifier : Classifier) : ExtensionalValue [0..*]

// Return the set of extensional values at this locus which have the given classifier as a

type.

ExtensionalValuelList extent = new ExtensionalValuelList():;
ExtensionalValuelList extensionalValues = this.extensionalValues;
for (int 1 = 0; 1 < extensionalValues.size(); 1i++) {

ExtensionalValue value = extensionalValues.getValue(i);

ClassifierList types = value.getTypes();

boolean conforms = false;

int 3 = 1;

while (!conforms & j <= types.size()) {
conforms = this.conforms (types.getValue(j-1), classifier);
j=3+1;

if (conforms) {

extent.addValue (value) ;

return extent;

[4] instantiate (in type : Class) : Object

// Instantiate the given class at this locus.

Object object = null;

if (type instanceof Behavior) {

object = this.factory.createExecution ((Behavior)type, null);

}
else {

object = new Object ();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

7

object.types.addValue (type) ;
object.createFeatureValues() ;

this.add (object) ;

return object;

[5] makeldentifier (in value : ExtensionalValue) : String

// Return an identifier for the given (newly created) extensional value.

// [No normative specification. A conforming implementation may create an identifier
// in any way such that all identifiers for extensional values created at any one

// locus are unique.]

[5] remove (in value : Extensional Value)

// Remove the given extensional value from this locus.

value.locus = null;

boolean notFound = true;

int 1 = 1;

while (notFound & 1 <= this.extensionalValues.size()) {
if (this.extensionalValues.getValue(i-1) == value) {

this.extensionalValues.remove (i-1);

notFound = false;

[6] setExecutor (in executor : Executor)

// Set the executor for this locus.

this.executor = executor;

this.executor.locus = this;

[7] setFactory (in factory : ExecutionFactory)
// Set the factory for this locus.

this.factory = factory;

this.factory.locus = this;

78 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.3.2.9 SemanticStrategy

The common base class for semantic strategy classes. A semantic strategy class specifies the behavior to be used at a specific
semantic variation point.

Generalizations
None

Attributes

None
Associations

None

Operations

[1] getName () : String

Return the name of this strategy, as defined for the semantic variation point to which the
strategy applies.

8.3.2.10 SemanticVisitor
The common base class for semantic visitor classes.

Generalizations

None

Attributes
None
Associations

None

Operations

[1] beginlsolation ()
[2] _endIsolation ()

8.4 Values

8.4.1 Overview

Values

As discussed in 6.2, a model is interpreted to make statements about some semantic domain. First order statements are
actually made on instances in the semantics domain. The structural semantics of UML provides the denotational mapping of
appropriate UML model elements to such semantic instances.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 79

The term instance is often used to mean an object of a specific class. However, in UML, this needs to be generalized to the
concept of an instance of any classifier. The appropriate UML model elements for representing this generalized concept are
value specifications.

Figure 7.7 in 7.4 and Figure 7.12 in 7.5 show the subset of the abstract syntax of UML value specifications that is included
in f{UML. This subset includes the syntax for model elements representing literals of primitive types such as integers and
Booleans, as well as instances of structured types, which include non-primitive data types and classes.

The denotation of a value specification is given formally by the evaluate operation of the Executor class (see 8.3). This
operation maps an instance of the abstract syntax type ValueSpecification to an instance of the semantic type Value. Just as
the abstract syntax of UML can itself be modeled in UML, the semantic domain for UML can also be modeled in UML.
Figure 8.3 shows this model for Value.

Clearly, literal specifications map to primitive values: literal integers to integer values, literal Booleans to Boolean values,
etc. The mapping for instance values is not so straightforward. An instance value is the specification of a value as an instance
of a non-primitive classifier. The classifier may be an enumeration, a structured data type or a class. Such value
specifications map to enumeration and structured values. The instances of simple classifiers (primitive types, enumerations
and data types) are discussed further in 8.6, while instance of classes and associations are described in 8.7.

Consider, for example, the simple instance model from Figure 6.1 in 6.2. Figure 8.6 gives the representation of this model in
terms of the abstract syntax of ValueSpecification. The result of the operation evaluate acting on the instance value v (a kind
of ValueSpecification) in Figure 8.7 is then the object j (a kind of structured value) given in Figure 8.6.

: PrimitiveType |+ type : LiteralString
+ name = "String” + value = "Jack”
+ type + value

‘+ owningslot

: Property + definingFeature : Slot
+ name = "name”
+ ownedAttribute + slot
+ class + owningInstance
: Class + classifier : InstanceSpecification + instance v : InstanceValue

+ name = "Person”

+ class .
+ owningInstance
+ ownedAttribute +slat
: Property definingFeature - Slot
+ name = "houses”
+ owningSlot
+ value

: InstanceValue

+ type .
+ instance

: Class classifier : InstanceSpecification
+ name = "House"

Figure 8.6 - Abstract Syntax Representation of a Simple Instance Model

80 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

: PrimitiveType + type : StringValue
+ name = "String” + value = "lack”

+ type + values

¢

: Property + feature : FeatureValue
+ name = "name”

+ ownedAttribute + featureValues
+ class ‘ ‘
: Class + types i: Object

+ name = "Person”

¢

+ class
+ ownedAttribute + featureValues
: Property + feature : FeatureValue

+ name = "houses”

¢

+ type + wvalues
: Class + types : Object

+ name = "House"

Figure 8.7 - Semantic Interpretation of a Simple Instance Model

Evaluations

An evaluation is a kind of visitor class used to evaluate value specifications (see 8.3 for a general discussion of visitor
classes). As shown in Figure 8.9, there is an evaluation class corresponding to each concrete subclass of the abstract syntax
metaclass ValueSpecification (instance values are covered in 8.5).

To evaluate a value specification, the executor uses the execution factory to create an instance of the appropriate evaluation
class (see 8.3), with a reference to the representation of the value specification to be evaluated. Evaluation is actually carried
out by calling the evaluate method on the evaluation object, which then returns a value of the appropriate type.

An evaluation object is also created with a reference to the execution locus. This provides access to the execution factory at
the locus in order to obtain the proper primitive type to use for the value resulting from a literal evaluation.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 81

Value

+specify() : ValueSpecification

+equals(otherValue : Value) : Boolean

+copy() : Value

#new_() : Value

+getTypes() : Classifier [0..*]

+hasType(type : Classifier) : Boolean

+isInstanceOf(classifier : Classifier) : Boolean

+checkAllParents(type : Classifier, classifier : Classifier) : Boolean
+toString() : String

Figure 8.8 - Values

SemanticVisitor

UML::Values:: +specification Evaluation Hocus JruML_Semantics::Semantics::Loci::
ValueSpecification [* +evaluate() : Value [0..1]{query} | * 1 N Locus
N
LiteralEvaluation

+getType(builtinTypeName : String) : PrimitiveType
A

LiteralNullEvaluation

LiteralintegerEvaluation

LiteralRealEvaluation

+evaluate() : Value [0..1]

+evaluate() : Value [0..1]

+evaluate() : Value [0..1]

LiteralBooleanEvaluation

LiteralStringEvaluation

LiteralUnlimitedNaturalEvaluation

+evaluate() : Value [0..1]

+evaluate() : Value [0..1]

+evaluate() : Value [0..1]

Figure 8.9 - Evaluations

8.4.2 Class Descriptions

8.4.2.1 Evaluation

An evaluation is used to evaluate a value specification to produce a value.

Generalizations

¢ SemanticVisitor

Attributes

None

82

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Associations

e locus : Locus
The locus at which this evaluation is taking place.

* specification : ValueSpecification
The value specification to be evaluated.

Operations

[1] evaluate () : Value [0..1]

Evaluate the specification, returning the resulting value.
8.4.2.2 LiteralBooleanEvaluation

A boolean evaluation is an evaluation whose specification is a literal boolean.
Generalizations
 LiteralEvaluation
Attributes
None
Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal boolean, producing a boolean value.

LiteralBoolean literal = (LiteralBoolean)specification;
BooleanValue booleanValue = new BooleanValue();
booleanValue.type = this.getType ("Boolean");

booleanValue.value = literal.value;

return booleanValue;
8.4.2.3 LiteralEvaluation

A literal evaluation is an evaluation whose specification is a Literal Specification.

Generalizations

¢ Evaluation

Attributes

None

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

83

Associations

None

Operations

[1] getType (in builtInTypeName : String) : PrimitiveType

// Get the type of the specification. If that is null, then use the built-in type of the
given name.

PrimitiveType type = (PrimitiveType) (this.specification.type);

if (type == null) {
type = this.locus.factory.getBuiltInType (builtInTypeName) ;

return type;
8.4.2.4 LiterallntegerEvaluation

A literal integer evaluation is an evaluation whose specification is a literal integer.

Generalizations

¢ LiteralEvaluation

Attributes
None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal integer, producing an integer wvalue.

LiteralInteger literal = (Literallnteger)specification;
IntegerValue integerValue = new IntegerValue();
integerValue.type = this.getType("Integer");
integerValue.value = literal.value;

return integerValue;
8.4.2.5 LiteralNullEvaluation

A literal null evaluation is an evaluation whose specification is a literal null.

84 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Generalizations

¢ LiteralEvaluation

Attributes
None
Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal null, returning nothing (since a null represents an

value") .

return null;
8.4.2.6 LiteralRealEvaluation

A literal real evaluation is an evaluation whose specification is a literal real.
Generalizations

¢ LiteralEvaluation

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal real, producing a real value.

LiteralReal literal = (LiteralReal)specification;
RealValue realValue = new RealValue();
realValue.type = this.getType(“Real”);
realValue.value = literal.value;

return realValue;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

"absence of any

85

8.4.2.7 LiteralStringEvaluation
A literal string evaluation is an evaluation whose specification is a literal string.

Generalizations

¢ LiteralEvaluation

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal string, producing a string value.

LiteralString literal = (LiteralString)specification;
StringValue stringValue = new StringValue();
stringValue.type = this.getType ("String");

stringValue.value = literal.value;

return stringValue;
8.4.2.8 LiteralUnlimitedNaturalEvaluation

A literal unlimited natural evaluation is an evaluation whose specification is a literal unlimited natural.

Generalizations

¢ LiteralEvaluation

Attributes

None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// Evaluate a literal unlimited natural producing an unlimited natural value.

LiteralUnlimitedNatural literal = (LiteralUnlimitedNatural)specification;

86 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

UnlimitedNaturalValue unlimitedNaturalValue = new UnlimitedNaturalValue() ;
unlimitedNaturalValue.type = this.getType ("UnlimitedNatural");

unlimitedNaturalValue.value = literal.value;

return unlimitedNaturalValue;
8.4.2.9 Value

A value is an instance of one or more classifiers, which are its types. A value is always representable using a value
specification.

[Note: Value specializes SemanticVisitor to allow the Execution subclass to be a semantic visitor, without requiring multiple
generalization of Execution.]

Generalizations

¢ SemanticVisitor
Attributes
None

Associations

None

Operations

[1] checkAllParents (in type : Classifier, in classifier : Classifier) : Boolean
// Check if the given classifier matches any of the direct or indirect

// ancestors of a given type.

ClassifierList directParents = type.general;

boolean matched = false;

int 1 = 1;

while (!matched & i <= directParents.size()) {
Classifier directParent = directParents.getValue (i - 1);
if (directParent == classifier) {

matched = true;
} else {

matched = this.checkAllParents (directParent, classifier);

return matched;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 87

[2] copy () : Value
// Create a new value that is equal to this value.
// By default, this operation simply creates a new value with empty properties.

// It must be overridden in each Value subclass to do the superclass copy and then
appropriately set properties defined in the subclass.

return this.new ();

[3] equals (in otherValue : Value) : Boolean

// Test 1f this wvalue is equal to othervValue. To be equal, this value must have the same type
as othervalue.

// This operation must be overridden in Value subclasses to check for equality of properties
defined in those subclasses.

ClassifierList myTypes = this.getTypes();

ClassifierList otherTypes = otherValue.getTypes();
boolean isEqual = true;
if (myTypes.size() != otherTypes.size()) {
isEqual = false;
} else {
int 1 = 1;
while (isEqual & i <= myTypes.size()) {
boolean matched = false;
int 3 = 1;

while (!matched & j <= otherTypes.size()) {
matched = (otherTypes.getValue(j-1) == myTypes.getValue(i-1));
J=3 + 1;

isEqual = matched;

return isEqual;

[4] getTypes () : Classifier [0..*]

Gets all the classifiers under which this value is currently classifier.

88 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[5] hasType (in type : Classifier) : Boolean
// Check if this object has the given classifier as a type.

ClassifierList types = this.getTypes();

boolean found = false;

int 1 = 1;

while (!found & 1 <= types.size()) {
found = (types.getValue(i-1) == type);
i=1+1;

return found;

[6] isInstanceOf (in classifier : Classifier) : Boolean
// Check if this value has the given classifier as its type

// or as an ancestor of one of its types.

ClassifierList types = this.getTypes/();

boolean isInstance = this.hasType(classifier);
int 1 = 1;
while (!isInstance & 1 <= types.size()) {
isInstance = this.checkAllParents (types.getValue(i-1), classifier);

i=1+4+1;

return isInstance;

[7] new_ (') : Value

Create a new value of the same Value subclass as this value, with all properties empty (even
if this violates multiplicity constraints).

This operation must be defined in each concrete Value subclass to create an instance of that
subclass.

[8] specify () : ValueSpecification

Return a value specification whose evaluation gives a value equal to this wvalue.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 89

[9] toString () : String

Return a string representation of this wvalue.

8.5 Classification

8.5.1 Overview

An instance value is a value specification used to specify the instance of a classifier based on an instance specification. In
fUML, instance values are used to represent instances of non-primitive data types, including enumerations, structured data types
and classes (see 7.5 and 7.6). As shown in Figure 8.10, an instance value evaluation is used to evaluate an instance value,
producing enumeration value, a compound value or a reference. Enumeration and structured values are described in 8.6, and
references are described in 8.7.

UML::Values:: +specification fUML_Semantics::Semantics::Values::
ValueSpecification | 1 * Evaluation
UML::Classification:: InstanceValueEvaluation

InstanceValue +evaluate() : Value [0..1]

Figure 8.10 - Instance Values

8.5.2 Class Descriptions

8.5.2.1 InstanceValueEvaluation
An instance value evaluation is an evaluation whose specification is an instance value.

Generalizations

¢ Evaluation

Attributes
None

Associations

None

Operations

[1] evaluate () : Value [0..1]

// If the instance specification is for an enumeration, then return the identified
enumeration literal.

// If the instance specification is for a data type (but not a primitive value or an
enumeration), then create a data value of the given data type.

90 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// If the instance specification is for an object, then create an object at the current locus
with the specified types.

// Set each feature of the created value to the result of evaluating the value specifications
for the specified slot for the feature.

InstanceSpecification instance = ((InstanceValue)this.specification).instance;
ClassifierlList types = instance.classifier;

Classifier myType = types.getValue (0);

Value value;

if (instance instanceof EnumerationLiteral) {
EnumerationValue enumerationValue = new EnumerationValue () ;
enumerationValue.type = (Enumeration)myType;
enumerationValue.literal = (EnumerationLiteral)instance;
value = enumerationValue;

}

else {
StructuredvValue structuredValue = null;

if (myType instanceof DataType) {
DataValue dataValue = new DataValue();
dataValue.type = (DataType)myType;
structuredValue = dataValue;
}
else {
Object object = null;
if (myType instanceof Behavior) {
object = this.locus.factory.createExecution((Behavior)myType, null);
}
else {
object = new Object ();
for (int i = 0; 1 < types.size(); i++) {
Classifier type = types.getValue (i);
object.types.addValue ((Class)type);

this.locus.add (object) ;

Reference reference = new Reference();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 91

reference.referent = object;

structuredvValue = reference;

structuredValue.createFeatureValues () ;

SlotList instanceSlots = instance.slot;

for (int i = 0; 1 < instanceSlots.size(); i++) {

Slot slot = instanceSlots.getValue(i);

ValueList values = new ValueList();

ValueSpecificationList slotValues = slot.value;

for (int j = 0; j < slotValues.size(); Jj++) {
ValueSpecification slotValue = slotValues.getValue(]);

values.addValue (this.locus.executor.evaluate (slotValue)) ;

}

structuredValue.setFeatureValue (slot.definingFeature, values, 0);

value = structuredValue;

return value;

8.6 Simple Classifiers

8.6.1 Overview

Simple Values

The possible values of a primitive type or enumeration are essentially fully determined by the definition of the type. For
example, the set of possible values of the primitive type Integer is the mathematical set of integers. While this set is infinite,
it is completely specified by its mathematical definition. One cannot “create” a “new” instance of Integer that does not
denote an integer value already in the set. In some sense, all the possible instances of Integer are considered to already exist,
even though, of course, only a small finite subset of them will be denoted in any given model.

As shown in Figure 8.11, the primitive values are represented as subclasses of Value with an underlying value drawn from
the base semantic representation of primitive types (see 10.3.1). The equality of two primitive values of the same type is
determined by the equality of their underlying base primitive values, and they have no identity separate from those
underlying values.

The possible values for an enumeration, on the other hand, are an explicitly-specified, finite set, denoted by the enumeration
literals of the enumeration. As shown in Figure 8.11, an enumeration value is a value associated with a specific enumeration
literal of the enumeration. Two enumeration values are equal if they represent the same enumeration literal, so two
enumeration values for the same literal are semantically representations of the same value.

92 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Compound values

A structured data type is a data type that is not a primitive type or an enumeration value. An instance value of a structured
data type maps to a data value, as shown in Figure 8.12. A data value is a kind of compound value, which associates values
with the attributes of the data type. The equality of two data values of the same type is determined by the equality of the
values of their attributes. They have no identity separately from their value and are, therefore, semantically akin to non-
structured data types.

A signal is a classifier used to specify data passed in an asynchronous communication. The structural semantics of signals are
essentially the same as for structured data types, so signal instances are also kinds of compound values (see Figure 8.12).
(For the behavioral semantics of asynchronous communication using signals, see 8.10.)

Data Type Behaviors

The UML 2 Specification allows data types to own operations, as well as classes. However, data types are not behaviored
classifiers, so they cannot own behaviors to be used as methods for their operations. Since f{UML requires that every non-
abstract operation have a method, it would thus only be possible to have abstract operations on data types, which would not
be very useful. Therefore, data types are prohibited from having operations at all in f{UML (see the constraint in 7.6.1).

It is thus not possible to use owned operations to define the primitive behaviors of a data type. Instead, the Foundational
Model Library defines a set of primitive function behaviors that take values of primitive data types as their arguments.
Rather than being operations of the primitive types, these primitive behaviors are grouped into library packages
corresponding to the appropriate types (e.g., IntegerFunctions for type Integer, etc.). Implementations for these behaviors are
then registered with the execution factory as part of the configuration of the execution environment (see 8.3.1).

Not being operations, such primitive behaviors are, of course, not polymorphic (see 7.7.1 on the semantics of polymorphic
operation dispatching). They are called using call behavior actions, rather than call operation actions.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 93

fUML_Semantics::Semantics::Values::
Value

I

EnumerationValue

o . PrimitiveValue +specify() : ValueSpecification
UML::SimpleClassifiers:: | Hype - +equals(otherValue : Value) : Boolean
PrimitiveType 1 *—|+copy() : Value _ —+copy() : Value
+getTypes() : Classifier [*] 0% | new () : Value
+getTypes() : Classifier [*]
+toString() : String
+type |1
IntegerValue RealValue UML::SlmpIeCIalssmers::
Enumeration

+value : Integer +value : Real

+specify() : ValueSpecification +specify() : ValueSpecification +enumeration | 1

+equals(otherValue : Value) : Boolean +equals(otherValue : Value) : Boolean

+copy() : Value +copy() : Value

#new_() : Value #new_() : Value +ownedLiteral | *

+toString() : String +toString() : String

+literal UML::SimpleClassifiers::
1 EnumerationLiteral
BooleanValue StringValue UnlimitedNaturalValue

+value : Boolean +value : String +value : UnlimitedNatural
+specify() : ValueSpecification +specify() : ValueSpecification +specify() : ValueSpecification
+equals(otherValue : Value) : Boolean +equals(otherValue : Value) : Boolean +equals(otherValue : Value) : Boolean
+copy() : Value +copy() : Value +copy() : Value
#new_() : Value #new_() : Value #new_() : Value
+toString() : String +toString() : String +toString() : String

Figure 8.11 - Simple Values

94 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-13 fUML should include unmarshall actions

FUML15-28 fUML should allow association ends that are not association owned

{ordered, nonunique}
+values fUML_Semantics::Semantics::Values::

0.1

FeatureValue

+position : Integer [0..1]

+featureValues

. Value

T

StructuredValue

+specify() : ValueSpecification

+getFeatureValue(feature : StructuralFeature) : FeatureValue
+setFeatureValue(feature : StructuralFeature, values : Value [*], position : Integer [0..1])
+getFeatureValues() : FeatureValue [*]

+createFeatureValues()

+getMemberFeatures(type : Classifier) : StructuralFeature [*]
+getStructuralFeatures() : StructuralFeature [*]

+getStructuralFeaturesForType(type : Classifier) : StructuralFeature [*]
+addFeatureValues(oldFeatureValues : FeatureValue [*])
+checkForAssociationEnd(feature : StructuralFeature) : Boolean

+getValues(feature : NamedElement, featureValues : FeatureValue [*]) : Value [*]

|

CompoundValue

+equals(otherValue : Value) : Boolean
+copy() : Value

+hasEqualValues(other : FeatureValue) : Boolean
+copy() : FeatureValue

+feature |1

UML::Classification::
StructuralFeature

Figure 8.12 - Compound Values

8.6.2 Class Descriptions

8.6.2.1 BooleanValue

*

+getFeatureValue(feature : StructuralFeature) : FeatureValue
+setFeatureValue(feature : StructuralFeature, values : Value [*], position : Integer [0..1])

+toString() : String

+getFeatureValues() : FeatureValue [*]

DataValue Signallnstance

+getTypes() : Classifier [*]
+new_() : Value
+copy() : Value

+getTypes() : Classifier [*]
+copy() : Value
#new_() : Value

*
*

+ype |1 +ype |1
UML::SimpleClassifiers:: UML::SimpleClassifiers::
DataType Signal

A boolean value is a primitive value whose type is Boolean.

Generalizations

¢ PrimitiveValue

Attributes

¢ value : Boolean
The actual Boolean value.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Associations

None

Operations

[1] copy () : Value

// Create a new boolean value with the same value as this boolean value.
BooleanValue newValue = (BooleanValue) (super.copy());

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this boolean value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this boolean value.

boolean isEqual = false;
if (otherValue instanceof BooleanValue) {

isEqual = ((BooleanValue)otherValue) .value == this.value;

return isEqual;

[3] new_ () : Value

// Return a new boolean value with no value.

return new BooleanValue();

[4] specify () : ValueSpecification

// Return a literal boolean with the value of this boolean value.
LiteralBoolean literal = new LiteralBoolean();

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "false";

if (this.value) {

stringValue = "true";

96 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return stringValue;

8.6.2.2 CompoundValue

A compound value is a structured value with by-value semantics. Values are associated with each structural feature specified
by the type(s) of the compound value.

Generalizations
* StructuredValue
Attributes
None
Associations
e featureValues : FeatureValue [0..¥]
Operations

[1] copy () : Value

// Create a new data value with the same featureValues as this data value.
CompoundValue newValue = (CompoundValue) (super.copy());

FeatureValuelist featureValues = this.featureValues;
for (int 1 = 0; 1 < featureValues.size(); i++) {
FeatureValue featureValue = featureValues.getValue (i) ;

newValue. featureValues.addValue (featureValue.copy());

return newValue;
FUML15-36 Typo fixes

[2] equals (in otherValue : Value) : Boolean
// Test if this data value is equal to the otherValue.

// To be equal, the otherValue must also be a compound value with the same types and equal
values for each feature.

boolean isEqual = otherValue instanceof CompoundValue;
if (isEqual) {

CompoundValue otherCompoundValue = (CompoundValue)otherValue;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 97

isEqual = super.equals (otherValue) & otherCompoundValue.featureValues.size() ==
this.featureValues.size();

int 1 = 1;

while (isEqual & 1 <= this.featureValues.size()) {

FeatureValue thisFeatureValue = this.featureValues.getValue(i-1);
boolean matched = false;
int 3 = 1;

while (!matched & j <= otherCompoundValue.featureValues.size()) {

FeatureValue otherFeatureValue = otherCompoundValue.featureValues.getValue(j-1);
if (thisFeatureValue.feature == otherFeatureValue.feature) {
matched = thisFeatureValue.hasEqualValues (otherFeatureValue);
}
j=3+1

isEqual = matched;

i =1+ 1;

return isEqual;

[3] getFeatureValue (in feature : StructuralFeature) : FeatureValue

// Get the value(s) of the member of featureValues for the given feature.

FeatureValue featureValue = null;

int 1 = 1;

while (featureValue == null & 1 <= this.featureValues.size()) {
if (this.featureValues.getValue(i-1).feature == feature) {

featureValue = this.featureValues.getValue(i-1);

return featureValue;

[4] getFeatureValues () : FeatureValue [0..*]

// Return the feature values for this compound value.

return this.featurevValues;

98 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[5] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])

// Set the value(s) of the member of featureValues for the given feature.

FeatureValue featureValue = this.getFeatureValue (feature);
if (featureValue == null) {
featureValue = new FeatureValue();

this.featureValues.addValue (featureValue);

featureValue. feature = feature;
featureValue.values = values;
featureValue.position = position;

[6] toString () : String
String buffer = "(";

ClassifierList types = this.getTypes();

int 1 = 1;
while (i <= types.size()) {
if (1 !'= 1) {
buffer = buffer + " ";

}
buffer = buffer + types.getValue(i - 1) .name;

int k = 1;
while (k <= this.featureValues.size()) {

FeatureValue featureValue = this.featureValues.getValue (k-1);

buffer = buffer + "\n\t\t" + featureValue.feature.name + "[" + featureValue.position +
"lo="

int 3 = 1;

while (j <= featureValue.values.size()) {

Value value = featureValue.values.getValue(j - 1);

if (value instanceof Reference) {
Object object = ((Reference)value) .referent;

buffer = buffer + " Reference to " + object.identifier + "(";

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

99

types = object.getTypes () ;

int n = 1;
while (n <= types.size()) {
if (n !'= 1) {
buffer = buffer + " ";

}
buffer = buffer + types.getValue(n - 1) .name;

buffer = buffer + ")";
} else {

buffer = buffer + " " + value.toString();

return buffer + ")";
8.6.2.3 DataValue

A data value is a compound value whose (single) type is a data type other than a primitive type or an enumeration.

Generalizations

e CompoundValue

Attributes

None

Associations

e type : DataType
The type of this data value. This must not be a primitive or an enumeration.

Operations

[1] copy () : Value

// Create a new data value with the same type and feature values as this data value.

DataValue newValue = (DataValue) (super.copy()):;

newValue.type = this.type;

100 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return newValue;

[2] getTypes () : Classifier [0..*]
// Return the single type of this data value.

ClassifierList types = new ClassifierList();

types.addValue (this.type) ;

return types;

[3] new_ () : Value

// Create a new data value with no type or feature values.

return new DataValue();

8.6.2.4 EnumerationValue

An enumeration value is a value whose (single) type is an enumeration.
Its literal must be an owned literal of its type.

Generalizations
e Value

Attributes

None

Associations

e literal : EnumerationLiteral
The literal value of this enumeration value.

* type : Enumeration

Operations

[1] copy () : Value

// Create a new enumeration value with the same literal as this enumeration value.

EnumerationValue newValue = (EnumerationValue) (super.copy()):;

newValue.type = this.type;

newValue.literal = this.literal;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 101

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this enumeration value is equal to the otherValue.

// To be equal, the otherValue must also be an enumeration value with the same literal as
this enumeration wvalue.

boolean isEqual = false;

if (otherValue instanceof EnumerationValue) {

isEqual = ((EnumerationValue)otherValue) .literal == this.literal;

return isEqual;

[3] getTypes () : Classifier [0..*]

// Return the single type of this enumeration value.

ClassifierList types = new ClassifierList();

types.addValue (this.type);

return types;

[4] new_ () : Value

// Create a new enumeration value with no literal.

return new EnumerationValue();

[5] specify () : ValueSpecification

// Return an instance value with literal as the instance.

InstanceValue instanceValue = new InstanceValue();
InstanceSpecification instance = new InstanceSpecification();
instanceValue.type = this.type;

instanceValue.instance = this.literal;

return 1instanceValue;

[6] toString () : String

return literal.name;

102 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.6.2.5 FeatureValue

A feature value gives the value(s) that a single structural feature has in a specific structured value.

Generalizations

None

Attributes

e position : Integer [0..1]
The position of this feature value in a set of ordered values for a feature of an association.
[This is only relevant if the feature value is for a link and the feature is ordered.]

Associations

e feature : StructuralFeature
The structural feature being given value(s).

e values : Value [0..*]
The values of for the feature. Zero or more values are possible, as constrained by the multiplicity of the feature.

Operations

[1] copy () : FeatureValue

// Create a copy of this feature value.

FeatureValue newValue = new FeatureValue();

newValue.feature = this.feature;

newValue.position = this.position;

Valuelist values = this.values;

for (int 1 = 0; 1 < values.size(); 1 ++) {
Value value = values.getValue(i);
newValue.values.addValue (value.copy());

return newValue;

[2] hasEqualValues (in other : FeatureValue) : Boolean
// Determine if this feature value has an equal set of values as another feature value.
// If the feature is ordered, then the values also have to be in the same order.

boolean equal = true;

if (this.values.size() != other.values.size()) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 103

equal =

} else {

false;

if (this.feature.multiplicityElement.isOrdered) {

int

i=1;
while (equal & i <= this.values.size()) {
equal = this.values.getValue(i-1).equals (other.values.getValue (i-1));
i=1i+4+ 1;

} else {

// Note: otherFeatureValues is used here solely as a holder for a copy of the list of
other wvalues,

// since the Java to UML mapping conventions do not allow "remove" on a local list

variable.

FeatureValue otherFeatureValues = new FeatureValue();

ValuelList values = other.values;

for (int 1=0; i < values.size(); 1i++) {
Value value = values.getValue(i);
otherFeatureValues.values.addValue (value) ;

}

int i = 1;

104

while (equal & i <= this.values.size()) {

boolean matched = false;
int 37 = 1;
while (!matched & j <= otherFeatureValues.values.size()) {

if (this.values.getValue (i-1) .equals (otherFeatureValues.values.getValue (j-

matched = true;

otherFeatureValues.values.remove (j-1);

+ 1;

.
Il
]

equal = matched;

i =1+ 1;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return equal;

8.6.2.6 IntegerValue
An integer value is a primitive value whose type is Integer.

Generalizations
¢ PrimitiveValue

Attributes

* value : Integer
The actual Integer value.

Associations
None
Operations

[1] copy () : Value

// Create a new integer value with the same value as this integer value.

IntegerValue newValue = (IntegerValue) (super.copy()):;

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this integer value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this integer value.

boolean isEqual = false;
if (otherValue instanceof IntegerValue) {

isEqual = ((IntegerValue)otherValue) .value == this.value;

return isEqual;

[3] new_ () : Value

// Create a new integer value with no value.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 105

return new IntegerValue();

[4] specify () : ValueSpecification

// Return a literal integer

LiteralInteger literal

literal.type this.type;

literal.value this.value;

return literal;

new

with the value of this integer value.

Literallnteger () ;

[5] toString () String
String stringValue = "";
if (this.value == 0) {
stringValue = "0";
} else {
int positiveValue = this.value;
if (positiveValue < 0) {
positiveValue = -positiveValue;
}
do {
int digit = positiveValue % 10;
if (digit == 0) {
stringValue = "0" + stringValue;
} else if (digit == 1) {
stringValue = "1" + stringValue;
} else if (digit == 2) {
stringValue = "2" + stringValue;
} else if (digit == 3) {
stringValue = "3" + stringValue;
} else if (digit == 4) {
stringValue = "4" + stringValue;
} else if (digit == 5) {
stringValue = "5" + stringValue;
} else if (digit == 6) {
106

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

stringValue = "6" + stringValue;

} else if (digit == 7) {

stringValue = "7" + stringValue;
} else if (digit == 8) {

stringValue = "8" + stringValue;
} else if (digit == 9) {

stringValue = "9" + stringValue;
}
positiveValue = positiveValue / 10;

} while (positiveValue > 0);

if (this.value < 0) {

stringValue = "-" + stringValue;

return stringValue;
8.6.2.7 PrimitiveValue

A primitive value is a value whose (single) type is a primitive type.

Generalizations

e Value

Attributes

None

Associations
e type : PrimitiveType
Operations

[1] copy () : Value

// Create a new value that is equal to this primitive value.

PrimitiveValue newValue = (PrimitiveValue) (super.copy()):;

newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 107

// Return the single primitive type of this value.

ClassifierList types = new ClassifierList();
types.addValue (this.type) ;

return types;

8.6.2.8 RealValue

A real value is a primitive value whose type is real.

Generalizations

¢ PrimitiveValue

Attributes

e value: Real
The actual Real value.

Associations

None

Operations

[1] copy () : Value

// Create a new real value with the same value as this real value.

RealValue newValue = (RealValue) (super.copyl()):;

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this real value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this real value.
boolean isEqual = false;

if (otherValue instanceof RealValue) {

isEqual = ((RealValue)otherValue).value == this.value;

return isEqual;

[3] new_ () : Value

// Create a new real value with no value.

108 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return new RealValue();

[4] specify () : ValueSpecification

// Return a literal real with the value of this real value.

LiteralReal literal = new LiteralReal();

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "";

if (this.value == 0) {
stringValue = "0";
} else {
float positiveValue = this.value;

if (positiveValue < 0) {

positiveValue = -positiveValue;

int exponent = 0;

if (positivevValue < .1) {
while (positiveValue < .1) {
positiveValue = positiveValue * 10;
exponent = exponent - 1;
}
} else if (positiveValue >= 1) {
while (positiveValue >= 1) {
positiveValue = positiveValue / 10;

exponent = exponent + 1;

// This gives 9 significant digits in the mantissa.

for (int 1=0; 1<9; i++) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

109

positiveValue = positiveValue * 10;

IntegerValue integerValue = new IntegerValue ();
integerValue.value = (int)positiveValue;

stringValue = "0." + integerValue.toString();
integerValue.value = exponent;

StringValue = stringValue + "E" + integerValue.toString():;

if (this.value < 0) {

stringValue = "-" + stringValue;

return stringValue;

8.6.2.9 Signallnstance

Generalizations

e CompoundValue

Attributes

None
Associations

e type : Signal
Operations

[1] copy () : Value

// Create a new signal instance with the same type and feature values as this signal
instance.

SignallInstance newValue = (SignallInstance) (super.copy()):;

newValue.type = this.type;

return newValue;

[2] getTypes () : Classifier [0..*]

// Return the single type of this signal instance.

ClassifierList types = new ClassifierList();

110 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

types.addValue (this.type) ;

return types;

[3] new_ () : Value

// Create a new signal instance with no type or feature values.

return new Signallnstance();
8.6.2.10 StringValue
A string value is a primitive value whose type is String.
Generalizations
* PrimitiveValue
Attributes
* value : String
Associations
None

Operations

[1] copy () : Value

// Create a new string value with the same value as this string value.

StringValue newValue = (StringValue) (super.copy());

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this string value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this string value.

boolean isEqual = false;
if (otherValue instanceof StringValue) {

isEqual = ((StringValue)otherValue).value.equals (this.value);
}

return isEqual;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 111

[3] new_ () : Value

// Create a new string value with no value.

return new StringValue();

[4] specify () : ValueSpecification

// Return a literal string with the value of this string value.

LiteralString literal = new LiteralString();

literal.type = this.type;

literal.value = this.value;

return literal;
[5] toString () : String
return value;

8.6.2.11 StructuredValue

A structured value is a Value whose type has structural features: a data type (but not a primitive type or enumeration), a class
or an association.

Generalizations

e Value

Attributes

None

Associations

None

Operations
FUML15-28 fUML should allow association ends that are not association owned

[1] addFeatureValues (in oldFeatureValues : FeatureValue [0..*])

// Add feature values for all non ociation-end structural features

// of the types of this structured value and all its supertypes
// (including private features that are not inherited). If a feature
// has an old feature value in the given list, then use that to
// initialize the values of the corresponding new feature value.

// Otherwise leave the values of the new feature value empty.

112 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

>
—
o]
g
-
0!
—
— N BN
- — —~
= ~ =
!
LN H o () g
4 nf o - —
n Ba| I - (9]
s [0)
B < 3|
H o [= —
B < [y — |
S o A - >
g o ~ [0)
& = © ~ Q Y
o] - 9] 3| 3 3
i)) —)
o of o o of &
of < 5 > (0]
2N -l P H) [0) [y
0] 2 O~ o o]
~h i ol wm o 3 —
o~] R | o [¢)
+ I G o +| v ®©
I~ H S @ %] o) +)) R
+~ +~ ¥t of O o -d S W 0]
T + o, of g 0 S 1 § H
n + P by ol A A oy P T o I
B U TR) of L < ~ © < 4
o} 5+ o o ®m o o
LN FS) O] o wH <o o o
E T A ®, of | I N o © W
i -+ b < «a A A of
o Ep IS] I B! P H ow
o AN E] O o of © | o
. -t h (0] I | I) B IET] B ()] R
£ T Q) |) 30 O |
- B T o gl oo 49 B o H o
ey b 3 @] o ©n o >
b 4] o o o B o w > P
on un of o W o W o« o o
| < 5 o 0 0] S| IS)
4 (X H W of o .
h (%] 0| L =] IS ()
o, ¢ g o A VvV B X o A
o, NooB of /| 4 L o o <
L 1 SR1 5} g O] T @ of | P
¥ B g o 4 of < b
I~ & of > 3 o & O O
4P q o, 0 Y o H 4 0
-Ho P s © 0 .
-iH | 11 P] > - o S -H o »)
Hl 4B o o S oo A
¢ -t h . [o] IR B BT | EE) D i
Y ® o -
- PF b . [E= R
Yt ¢ 4 4 o o B[g
- H o b I S R I
I o o o ~ v A
n 2 < 5
P H “ ~
- Ed IR
4 Hh ~+ [0 —~

P N
o R
B
-] &
H Il P
o, ¥ B
NP @ b L) 0’ @,
+ q 'y ol Aw SIENON
€ N 4D o
& o g &9 dab
[N« .} CH o s
B H -Ho W H o) N [0
-H® TP £ b P
™ £ 4 W b B
4 + Wy 'S S &
> ¢ Lo] ! SR :
(o o k OIS N T) T
S b -H B . + & n
TN i & S W
Y4 H B [T 5 g d 4y
il #H B ~H iy
] & b b+~ +~ b
P B 4+ B ks B
NI [1 T 1 1
J B &L W ,u 4 + i R J B
b H - q 4 H 7 4
Dod 5 £ 7) ,@ A 4
p B 4 n [\ A y b
+# > B] b HoOR M H
G4 p il H o] Einl T N WH il
B l LB Kol W 5) 49
=il Y V) o VRS o~ E € & =il p
B -H] b 4 B A o] B4 B
[TR TR (O N H n T 5 4 b & 4 W
RPN | B 0} n i B
RN & BooM I 4
q joal + ORISR | R TR VR PR &
B4 ¢ p 1 I I} BoH
[T 5 @ b EeH o w b & H
#H P H 1 k H N L i #
B b + O Y (RN P 8]
P s J &
—H & I Hoo ORI 5 +#
i - &P % i £
- ~— H 4 £ @ 3 b
+ & ¢ b g 5 1% Y in WP
H B -H -f HooB P ab 1u K
44 ¥ H o 5 & =
4y B -f H W 4 [ON [IO} oo 5l W
@, [n & k3 H b
[0 P - & 5 o .
4 P o ® 1\ s
5o g PO i, P
- H — g€ [B CR— — ol
B h 4 . B & h o E & V)
Y B H H -H & b
5P I 3 o+~ b N T
ER i 9 &£
4 LW I - o
BT 1 B¢ | I L R+ B
P - D 1= /I S # >
5 ni B + B I RO] B
L5 CRY: [R . +
uh H B uh - - 4 & W &
(st} 1 oo 5 uh 4p
ORISR S P H D, U= H o}
T o4 F 4 < | ~x OB
B | R R b b @ +
$h
i1 ~+

113

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Faotiw bl - frowr +h Foot 1ig for ned foaotiie \
featur SEaac SHEEer—ty featur SEoc £o¥ a—Featyx
fall T += 110 i SN — + SN e, r 1
S-S e ¥rhHT SHperEye Eype—generats
For (Se+ 4o 0. 4 Haert s 3 A)
o A — gpex P + =+
fak! iEL o et ime e o= et s et Tire {4
tSSHEFeF HeerEye HeerEye —getYarge i
+hi ddFestire 14 ForTunedsunert s l1dFestie 3)
As—aadabeatyr aruestortype{supesr cacas +akeatur SToc: ,,

2] checkForAssociationEnd (_in feature : StructuralFeature) : Boolean

boolean isAssociationEnd = false;
if (feature instanceof Property) {

isAssociationEnd = ((Property) feature) .association !'= null;
1

return isAssociationEnd;

FUML15-28 fUML should allow association ends that are not association owned

[3] createFeatureValues ()

// Create empty feature values for all non-association-end structural

// features of the types of this structured value and all its supertypes

/7

(including private features that are not inherited).

this.addFeatureValues (new FeatureValuelist());

[4] getFeatureValue (in feature : StructuralFeature) : FeatureValue
Get the feature value associated with the given feature.

The given feature must be a structural feature of the type of the structured value.

[5] getFeatureValues () : FeatureValue [0..*]

Return the feature values associated with this structural value.

FUML15-13 fUML should include unmarshall actions

FUML15-28 fUML should allow association ends that are not association owned

[6] getMemberValuesFeatures (_in type : Classifier) : MemberVatueStructuralFeature [0..¥]

jal 2 £ T 2 S R T IN = + 1 oot Txn L)
TCr et yicd 3 = v Y
for FAEESNE S =0 El £ ESEEY il L) ERN AN [
TO*F—(*1t E= = oottt St == 7 T
inl ER R 1 £ EE T 13q = £ ER R 13q oot 1 (3
Sa—acx= ot oottt ot oot uE ot S ST CE77
R il . Maombar — £
= o STICHSeE o 7
EEES R T |
T+t 5 +

114

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

wn
& s
fil ~
arn
)
[
o
[OR
iu
4 ©
<
]
&
H — 0]
B 3
YH H —
B ®©
€H >
[
€ B O
40
Py
§O)] R
I)
€ ¢4 O el
¥ 3 >~
[ol N
+H T —~
%) al o ~
& di o P -+
B B 0 e) ©
- Al Y o A -
P o ol o ~ A Q
B i ~ o o
) & & ol < [I |
- + H oy <f - [0 -]
T & IS [¢] +H ¥ N w
T T ~ W » = 3 N -
<+ . il 2 m L& % - — >
T A+~ H o0 ~ — -
& + 50 o ~) | -
¥ % Too4p 4 b o o M ®© =i A =
+ 4 & H B n) of 49 — 4 — ~
P 5 -f K woP P o o 3 |) 2
+ 403 o & ¢ © a . S8 = - 2 e
IS " he H
I PYody 4 14 q & g
R B H 4
T & L AN I I e b o =/ 5 o ~ = ol Y 38
-+ D D 5 B B B oo - 2 + v Q9 s
T & b= H TR s} uhy 4 p 1)) o+ o sl o
N " Jn TR +® S o 192! I [| B Q Y —
+ BT K PP o of g £ 0] i = u s
4 R + E ip g S o < g - D W o o =
I~ Eoo o P n) o o g ~ o Ao o
b] & R & - [0 RS o Il of — O - Q9 Q)
1 % X 28 P ol) gl o 0 g o w = = o
I + | -+ b + -0 4 P = e A | N = O O o
9 F y b . & E p o 3 < o of Al gl g =
8 d, ol H H %] H o4 o] B! — w
di uly I uh [0 n o ~ uf b
B S M 4 | 4l [I+ IS) I) [0 Ii >
b .5 A -t | 4h ©f o I o 9| @ N n
SR S i 5 ¢ 4 h 0 O [I B! A o o -
h i S i B 0 o M ! I o Q9 4 5]
& & - & b B o o ¥ n B o =i - «
| r o Y ~ @ —H i - =il SH < “ i 0] “ o W 0 O] — -
Wb & % % -fi 5 & B fh .- bl 9 o o I S = Q
b A A Y ® B P S D o & o wl o 0 0 3
@, -H & 4 B 4 4 & N @ [0 O] IS 1S Qf | S
-k £ 3 | N $ow ol D 12/ O “ g o V| 9 o gl < n
I D X 4 €) € HO® =l IS H Q o o I I s
& | o .6 P Q - - I/ S —H o £ g £ i o]
d; R i R 4+ % 5 F Ko} 4 S 0 0 + o O o H c
& EooT B i & D B B ¢ ©f P A — 0 N E S I~ o + o
B) A& T ~ @ p Y i) o g A A o —H o o V| m Q E=
dio A F F T 4 [T - B> o o —~ 4 o - o g M (1]
oh B, 1 il 4 ap 4 ~ - S Y = ~ 9 O °
o A T T -+ o) b B b [=/ e = g ! = BTN B (R = N B S
h B & ¢ & Ho-H MoE O |1 O PP S o -+ | o o 0 °
5 & i -k | & 4p HH ~ ¢ D g o © ®© al £ o of M o =Z Al o
R T b= hol LS e o O o L B/ —
b £ A E -+ & b o s 25 o I~ a < of 2 - ©
1 -H I L PP ¢ L s —[— = ®\ 4 L O g g N
-+ JoR B P - s ¢ o kel o o o - v @ A = o
bl > 3 H oS PP o] B “ o [0) n
un 4] Hon o 5| B [S1 S I O
N & $ & 4o p e > o PP > o o =1
BB [o A X ol o IS = c
s Db S Wi g ol 0 = - — <
& 5B & =i q g IS
4) Iu e 4y)
+ A = 0l - w

if (isMember) {

memperFeatures.addValue (feature) ;

return memberFeatures;

FUML15-28 fUML should allow association ends that are not association owned

[7] getStructuralFeatures () : StructuralFeature [0..*]

// Get all structural features of the types of this structured

value and all of their supertypes (including private features

// that are not inherited).

StructuralFeaturelist features = new StructuralFeaturelist();

ClassifierlList types = this.getTypes();

for (int i = 0; i < types.size(); i++) {

Classifier type = types.getValue (i) ;

StructuralFeaturelist typeFeatures = this.getStructuralFeaturesForType (type) ;
for (dnt 7 = 0; 3 < typeFeatures.size(); j++) {
NamedElement supertypeFeature = typeFeatures.getValue (j);

features.addValue ((StructuralFeature) supertypeFeature) ;

return features;

8] getStructuralFeatureForType(in type : Classifier) : StructuralFeature [0..*

Get all structural features of the given type and all of its

supertypes (including private features that are not inherited).

StructuralFeaturelist features = new StructuralFeaturelist();

Get feature values for the owned structural features of the given type.

NamedElementlList ownedMembers = type.ownedMember;
for (int 7 = 0; 7 < ownedMembers.size(); j++) |
NamedElement ownedMember = ownedMembers.getValue () ;

116 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

if (ownedMember instanceof StructuralFeature) {

features.addValue ((StructuralFeature) ownedMember) ;

|

Add features for the structural features of the supertypes

/ of the given type. (Note that the features for supertypes

always come after the owned features.

ClassifierlList supertypes = type.general;
Classifier supertype = supertypes.getValue (i) ;
StructuralFeaturelist supertypeFeatures = this.getStructuralFeaturesForType (supertype);
for (int j = 0; 7 < supertypeFeatures.size(); J++) {
NamedElement supertypeFeature = supertypeFeatures.getValue (J);

features.addValue ((StructuralFeature) supertypeFeature) ;

|

return features;

|
|
|
|
|
|
|
|
|
‘ for (int 1 = 0; i < supertypes.size(); i++) {
|
|
|
|
|
|
|
|
|
|

‘ [#8] getValues(in feature : NamedElement, featureValues : FeatureValue [0..*]) : Value [0..*]
// Return the values from the feature value in the given list for the
// given feature. If there is no such feature value, return an empty

// list.
FeatureValue foundFeatureValue = null;

int i = 1;

while (foundFeatureValue == null & i <= featureValues.size()) {
FeatureValue featureValue = featureValues.getValue(i-1);
if (featureValue.feature == feature) {

foundFeatureValue = featureValue;

Valuelist values;

if (foundFeatureValue == null) {
values = new ValuelList():;
} else {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 117

values = foundFeatureValue.values;

return values;

[89] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])
Set the wvalue(s) and, optionally, the position index associated with the given feature.

The given feature must be a structural feature of the type of the structured value.

[210] specify () : ValueSpecification

// Return an instance value that specifies this structured value.

InstanceValue instanceValue = new InstanceValue();
InstanceSpecification instance = new InstanceSpecification();
instanceValue.type = null;
instanceValue.instance = instance;
instance.classifier = this.getTypes|();
FeatureValuelList featureValues = this.getFeatureValues();
for (int i1 = 0; 1 < featureValues.size(); i++) {
FeatureValue featureValue = featureValues.getValue(i);

Slot slot = new Slot();

slot.definingFeature = featureValue.feature;

Valuelist values = featureValue.values;

for (int j = 0; j < values.size(); Jj++) {
Value value = values.getValue (j);
slot.value.addValue (value.specify());

instance.slot.addValue (slot);

return instanceValue;
8.6.2.12 UnlimitedNaturalValue

An unlimited natural value is a primitive value whose type is UnlimitedNatural.

118 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Generalizations
¢ PrimitiveValue

Attributes

¢ value : UnlimitedNatural
The actual unlimited natural value.

Associations

None

Operations

[1] copy () : Value

// Create a new unlimited natural value with the same value as this value.

UnlimitedNaturalValue newValue = (UnlimitedNaturalValue) (super.copy()):;

newValue.value = this.value;

return newValue;

[2] equals (in otherValue : Value) : Boolean
// Test if this unlimited natural value is equal to the otherValue.

// To be equal, the otherValue must have the same value as this unlimited natural value.
boolean isEqual = false;

if (otherValue instanceof UnlimitedNaturalValue) {

isEqual = ((UnlimitedNaturalValue)otherValue).value.naturalValue ==
this.value.naturalValue;

}

return isEqual;

[3] new_ () : Value

// Create a new unlimited natural value with no value.

return new UnlimitedNaturalValue();

[4] specify () : ValueSpecification

// Return a literal unlimited natural with the value of this unlimited natural value.

LiteralUnlimitedNatural literal = new LiteralUnlimitedNatural();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 119

literal.type = this.type;

literal.value = this.value;

return literal;

[5] toString () : String

String stringValue = "*";

if (this.value.naturalValue >= 0) {

IntegerValue integerValue = new IntegerValue();
integerValue.value = this.value.naturalValue;
stringValue = integerValue.toString();

return stringValue;

8.7 Structured Classifiers

8.7.1 Overview

Extensional Values

Every classifier has an intension, that is, the set of all possible values that may have that classifier as a type. Other than for
enumerations, for which this set is explicitly specified, the intension of a classifier is conceptually infinite (though, of course,
actually finite in any real implementation). In fact, one semantic mapping for a classifier is to have it specifically denote its
intension.

However, there is a fundamental difference between the intensions of data types and classes. As discussed in 7.6.1, the
possible values of a data type are fully determined by the definition of the type.On the other hand, an instance of a class,
called an object, has an identity separate from the values of its attributes. Two objects can have the same values for their
attributes, and still be distinct objects. Further, the values of the attributes of an object may change over time, independently
of how the attribute values of any other object change.

Actually, an instance value of a class does not map directly to an object but, rather, to a reference to an object, as shown in
Figure 8.13. This is because an object, once created, has an independent existence and there may be multiple references to
that same object. Changes to the object made via one reference are visible via any other reference.

Objects are thus examples of extensional values, as are links, which are instances of associations. In addition to their
intension, classes and associations have an extension, that is, the set of instances of the class or association that exist at any
one point in time. This leads, however, to the issue of managing the scope of such extension sets.

This is particularly important for associations. There are actually no actions that return links as values. (Foundational UML
does not contain association actions, so it does not provide semantics for link objects.) Rather, a read link action actually
queries the current extension of the association for matching links.

120 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

But, pragmatically, how does one bound what is to be included in the actual extension set? Certainly links created during the
execution of a model should be accessible later in the execution of that model. But what about other executions of the same
model, perhaps widely physically distributed? What about other models that may reuse the same association?

In order to deal with this issue, the f{UML semantic model introduces the concept of a locus, as shown in Figure 8.13 and
described in 8.3. An existential value is created at a specific such locus and remains there during its life. The extent of a class
or association is its extension at a specific locus.

For executions at a certain locus, the extension of a class or association is always limited to the extent at that locus.
Therefore, a read link action will only query the specified association extent at the locus at which it is executing. Similarly, a
read extent action will only return (references to) the set of currently extant objects in the specified class extent at the locus
at which it is executing.

Polymorphic Operation Dispatching

Operations in UML are potentially polymorphic-that is, there may be multiple methods for any one operation. Polymorphic
operation dispatching is the determination of which method to use for a given invocation of the operation, depending on the
context and target of the invocation. The specification for this determination is provided in the execution model by the
dispatch operation of the Object class, as shown in Figure 8.13 (the semantics of operation dispatching is further discussed in
relation to the call operation action in 8.10).

However, the exact behavior to be specified for polymorphic operation dispatching is a semantic variation point in f{UML. (See
2.3 for a full discussion of semantic variation within f{UML.) Following the general approach of using the Strategy Pattern to
model semantic variation points (see 8.3.1), the variability of operation dispatching is captured by using strategy classes for
the Object::dispatch operation. DispatchStrategy provides the abstract base class for this type of strategy (see Figure 8.14).
The default dispatching behavior is given by the concrete class RedefinitionBasedDispatchStrategy.

The default redefinition based dispatch strategy requires that every concrete f{UML operation has an associated method. In
order to override an operation inherited from a superclass, the subclass must declare the redefining operation as a
redefinition of the inherited operation. This is interpreted as meaning that any calls made to the original superclass operation,
for objects that are instances of the subclass or any of its descendants, will be dispatched to the method of the redefining
operation, rather than to the method of the original operation.

A conforming execution tool may define an alternative rule for how this dispatching is to take place by defining a new
DispatchStrategy subclass specifying whatever rule is desired. An instance of this alternate strategy must then be registered
with the execution factory at a given locus, rather than the default strategy.

To simplify the specification of new concrete dispatch strategy subclasses, the abstract base DispatchStrategy class provides
a generally applicable method for its dispatch operation using a second operation, getMethod. The getMethod operation takes
the same arguments as dispatch (the target object and the operation to be dispatched) and is required to return the operation
method chosen to be executed for the operation by a specific dispatch strategy. The dispatch operation then creates an
execution for the chosen method at the locus of the target object on which the operation is being invoked and returns that
execution object.

It is also possible for a concrete operation to have no method, if calls to it are to be handled using a call event (see the
discussion of accept call actions in 8.10). This case is still managed through the dispatch strategy. Instead of using a method
behavior defined for the operation in the model, an instance of a special CallEventBehavior class (see 8.8) is created to act as
an effective method for the call. For convenience, the getMethod operation in the DispatchStrategy superclass provides this
functionality, which may be used as appropriate in the definition of the getMethod operation for a subclass of
DispatchStrategy (for example, the redefinition based dispatch strategy getMethod operation calls the superclass operation if
it identifies a concrete, most-redefined operation, but that operation does not have a method). The execution created for a call
event behavior is an instance of the CallEventExecution class, which carries out the behavior of sending a call event
occurrence and waiting for a response.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 121

fUML_Semantics::Semantics::SimpleClassifiers::
StructuredValue

T

fUML_Semantics::Semantics::SimpleClassifiers:: Reference

CompoundValue

+startBehavior(classifier : Class [0..1], inputs : ParameterValue [*])
+dispatch(operation : Operation) : Execution

+send(signallnstance : Signallnstance)

+destroy()

+equals(otherValue : Value) : Boolean

+copy() : Value

#new_() : Value

ExtensionalValue

- - - « | identifier : String +getTypes() : Classifier [*]
fUML_Semantics::Semantics::Loci: | Hlocus +getFeatureValue(feature : StructuralFeature) : FeatureValue

Locus 0.1 +extensionalValues | *destroy() +setFeatureValue(feature : StructuralFeature, values : Value [*], position : Integer [0..1])
+copy() : Value +getFeatureValues() : FeatureValue [*]

+oString() : String +oString() : String

JAY

+referent |1

Link Object

+destroy() +startBehavior(classifier : Class [0..1], inputs : ParameterValue [*])
+copy() : Value +dispatch(operation : Operation) : Execution

#new_() : Value +send(signallnstance : Signallnstance)

+getTypes() : Classifier [0.."] +destroy()

+isMatchingLink(link : ExtensionalValue, end : Property) : Boolean +register(accepter : EventAccepter)

+getOtherFeatureValues(extent : ExtensionalValue [0..*], end : Property) : FeatureValue [*] +unregister(accepter : EventAccepter)

+addTo(locus : Locus) +copy() : Value

#new_() : Value

+getTypes() : Classifier [*]

*|+equals(otherValue : Value) : Boolean

+object

+type |0..1 +types | * +objectActivation [0..1

fUML_Semantics::Semantics::CommonBehavior::

UML::StructuredClassifiers::
ObjectActivation

Association

UML.::StructuredClassifiers::
Class

Figure 8.13 - Extensional Values

fUML_Semantics::Semantics::Loci::
SemanticStrategy

DispatchStrategy

+getName() : String
+dispatch(object : Object, operation : Operation) : Execution
+getMethod(object : Object, operation : Operation) : Behavior

RedefinitionBasedDispatchStrategy

+getMethod(object : Object, operation : Operation) : Behavior
+operationsMatch(ownedOperation : Operation, baseOperation : Operation) : Boolean

Figure 8.14 - Dispatch Strategies

122 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.7.2 Class Descriptions

8.7.2.1 DispatchStrategy

A dispatch strategy is a semantic strategy for the polymorphic dispatching of an operation to an execution of a method for
that operation.

Generalizations

¢ SemanticStrategy

Attributes
None
Associations
None
Operations

[1] dispatch (in object : Object, in operation : Operation) : Execution

// Get the behavior for the given operation as determined by the type(s) of the given object,
compile the behavior at the locus of the object, and return the resulting execution object.

return object.locus.factory.createExecution(this.getMethod (object,operation), object);

[2] getMethod (in object : Object, in operation : Operation) : Behavior

// Get the method that corresponds to the given operation for the given object.

// By default, the operation is treated as being called via a call event occurrence,
// with a call event behavior as its effective method. Concrete dispatch strategy

// subclasses may override this default to provide other dispatching behavior.

CallEventBehavior method = new CallEventBehavior();
method.setOperation (operation) ;

return method;

[3] getName () : String

// Dispatch strategies are always named "dispatch".

return "dispatch";
8.7.2.2 ExtensionalValue

An extensional value is a data value that is part of the extent of some classifier at a specific locus.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 123

Generalizations

e CompoundValue

Attributes

* identifier : String
The identifier for this extensional value, unique among the extensional values created at the same locus as this
value.

Associations

¢ locus : Locus [0..1]
The locus of the extent of which this value is a member. (If the value has been destroyed, it has no locus.)

Operations

[1] copy () : Value

// Create a new extensional value with the same feature values at the same locus as this one.

ExtensionalValue newValue = (ExtensionalValue) (super.copy()):;

if (this.locus != null) {

this.locus.add (newValue) ;

return newValue;

[2] destroy ()

// Remove this value from its locus (if it has not already been destroyed).

if (this.locus != null) {
this.locus.remove (this);

}
[3] toString () : String

return this.identifier + super.toString();
8.7.2.3 Link

A link is an extensional value whose (single) type is an association. (However, if the link has been destroyed, then it has no
type.)

A link must at have most one feature value for each structural feature owned by its type.

Generalizations

¢ ExtensionalValue

124 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Attributes

None

Associations

* type : Association [0..1]
The type of this link

Operations

// Return a literal integer with the value of this integer value.

LiteralInteger literal = new Literallnteger();

literal.type = this.type;

[1] addTo (locus : Locus)

// Add this link to the extent of its association at the given locus,

// Shift the positions of ends of other links, as appropriate, for ends

// that are ordered.

PropertyList ends = this.type.memberEnd;

ExtensionalValuelist extent = locus.getExtent (this.type);

for (int 1 = 0; 1 < ends.size(); i++) {
Property end = ends.getValue(i);
if (end.multiplicityElement.isOrdered) {
FeatureValue featureValue = this.getFeatureValue (end);
FeatureValuelList otherFeatureValues =

this.getOtherFeatureValues (extent, end);

int n = otherFeatureValues.size();
if (featureValue.position < 0 | featureValue.position > n)
featureValue.position = n + 1;
} else {
if (featureValue.position == 0) {
featurevValue.position - 1;
}
for (int j = 0; j < otherFeatureValues.size(); j++) {
FeatureValue otherFeatureValue = otherFeatureValues.getValue(]j):;

if (featureValue.position <= otherFeatureValue.position)

otherFeatureValue.position = otherFeatureValue.position + 1;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

125

locus.add (this) ;

[2] copy () : Value

// Create a new link with the same type, locus and feature values as this link.
Link newValue = (Link) (super.copy()):;

newValue.type = this.type;

return newValue;

[3] destroy ()

// Remove the type of this link and destroy it.

// Shift the positions of the feature values of any remaining links in

// the extent of the same association, for ends that are ordered.

PropertylList ends = this.type.memberEnd;

ExtensionalValuelist extent = this.locus.getExtent (this.type);
for (int 1 = 0; 1 < extent.size(); i++) {

ExtensionalValue otherLink = extent.getValue(i);

for (int j=0; Jj < ends.size(); J++) {

Property end = ends.getValue(Jj);
if (end.multiplicityElement.isOrdered) {
FeatureValue featureValue = otherLink.getFeatureValue (end);
if (this.getFeatureValue (end) .position < featureValue.position) {

featureValue.position = featureValue.position - 1;

this.type = null;

super.destroy () ;

126 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[4] getOtherFeatureValues (extent : ExtensionalValue [*]. end : Property) : FeatureValue [*]
// Return all feature values for the given end of links in the given

// extent whose other ends match this link.

FeatureValuelList featureValues = new FeatureValueList();
for (int 1 = 0; i < extent.size(); 1++) {

ExtensionValue link = extent.getValue(i);

if (link != this {

if (isMatchingLink(link, end)) {

featureValues.addValue (link.getFeatureValue (end)) ;

}

return featureValues;

[5] getTypes () : Classifier [0..*]
// Return the single type of this link (if any).

ClassifierList types = null;

if (this.type == null) {

types = new ClassifierList();
} else {

types = new ClassifierList();

types.addvValue (this.type);

return types;
[6] isMatchingLink (link : ExtensionalValue. end : Property) : Boolean
// Test whether the given link matches the values of this link on all

// ends other than the given end.

PropertylList ends = this.type.memberEnd;

boolean matches = true;
int 1 = 1;
while (matches & i <= ends.size()) {

Property otherEnd = ends.getValue(i - 1);
if (otherEnd != end &

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

127

'this.getFeatureValue (otherEnd) .values.getValue (0) .equals (
link.getFeatureValue (otherEnd) .values.getValue (0))) {

matches = false;

return matches;

FUML15-36 Typo fixes

[7] new_ () : Value

// Create a new link with no type or properties.

return new Link();
8.7.2.4 Object

An object is an extensional value that may have multiple types, all of which must be classes. (Note that a destroyed object
has no types.)

An object has a unique identity. Usually, references to objects are manipulated, rather than the objects themselves, and there
may be multiple references to the same object.

If an object is active, it has an object activation that handles the execution of its classifier behavior(s).

Generalizations

¢ ExtensionalValue

Attributes

None

Associations

¢ objectActivation : ObjectActivation
The object activation handling the active behavior of this object.

* types : Class
The classes under which this object is currently classified. (A destroyed object has no types.)

Operations

[1] copy () : Value
// Create a new object that is a copy of this object at the same locus as this object.

// However, the new object will NOT have any object activation (i.e, its classifier behaviors
will not be started).

Object newObject = (Object) (super.copy());

128 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Class List types = this.types;

for (int 1 = 0; 1 < types.size(); 1i++) {
Class_ type = types.getValue(i);
newObject.types.addValue (type) ;

return newObject;

[2] destroy ()
FUML15-16 Destroying an object should remove its feature values

// Stop the object activation (if any), clear all types, clear all feature values

// and destroy the object as an extensional value.

if (this.objectActivation != null) {
this.objectActivation.stop () ;

this.objectActivation = null;

this.types.clear();

this.featureValues.clear();

super.destroy () ;

[3] dispatch (in operation : Operation) : Execution

// Dispatch the given operation to a method execution, using a dispatch strategy.

return ((DispatchStrategy)this.locus.factory.getStrategy("dispatch")) .dispatch(this,
operation);

[4] equals (in otherValue : Value) : Boolean
// Test if this object is equal to the otherValue.

// To be equal, the otherValue must be the same object as this object.

return this == otherValue;

[4] getTypes () : Classifier [0..*]
// Return the types of this object.

ClassifierList types = new ClassifierlList();

Class List myTypes = this.types;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 129

for (int 1 =

0;
Class_ type

i < myTypes.size(); i++) {

nyTypes.getValue (1) ;
types.addValue (type) ;

return types;

[5] new_ () : Value
// Create a new object with no type,

feature values or locus.
return new Object ();
[6] register (in accepter : EventAccepter)

(this.objectActivation != null) {

// Register the given accept event accepter to wait for a dispatched signal event.
if

this.objectActivation.register (accepter);
}

[7] send (in eventOccurrence : EventOccurrence)
// If the object is active,

add the given event occurrence to the event
// pool and signal that a new event occurrence has arrived.
if (this.objectActivation != null) {

this.objectActivation.send (eventOccurrence) ;

behavior (s)

[8] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])
// Create an object activation for this object

(if one does not already exist) and start its
if (this.objectActivation == null) {
this.objectActivation = new ObjectActivation();
this.objectActivation.object = this;
}

this.objectActivation.startBehavior (classifier,

inputs) ;
[9] unregister (in accepter : EventAccepter)

130

// Remove the given event accepter for the list of waiting event accepters.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

if (this.objectActivation != null) {

this.objectActivation.unregister (accepter);

8.7.2.5 RedefinitionBasedDispatchStrategy

A redefinition-based dispatch strategy is one that requires an overriding subclass operation to explicitly redefine the overridden
superclass operation. If a concrete operation has no methods, then it is assumed to be handled by a call event; otherwise, it
should have at most one method.

Generalizations

* DispatchStrategy

Attributes

None

Associations

None

Operations
[1] getMethod (in object : Object, in operation : Operation) : Behavior

// Find the member operation of a type of the given object that

// 1s the same as or a redefinition of the given operation. Then
// return the method of that operation, if it has one, otherwise
// return a CallEventBehavior as the effective method for the

// matching operation.

// [If there is more than one type with a matching operation, then

// the first one 1is arbitrarily chosen.]

Behavior method = null;
int 1 = 1;
while (method == null & i1 <= object.types.size()) {

Class_ type = object.types.getValue(i-1);

NamedElementList members = type.member;

int 7 = 1;

while (method == null & j <= members.size()) {
NamedElement member = members.getValue(j-1);

if (member instanceof Operation) {

Operation memberOperation = (Operation)member;
if (this.operationsMatch (memberOperation, operation)) {
if (memberOperation.method.size() == 0) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 131

method = super.getMethod (object, memberOperation);
} else {

method = memberOperation.method.getValue (0);

return method;
8.7.2.6 Reference

A reference is an access path to a specific object. There may be multiple references to the same object.

As a structured value, the reference acts just the same as its referent in terms of type, features, operations, etc.

Generalizations

¢ StructuredValue

Attributes

None

Associations

e referent : Object

Operations

[1] copy () : Value

// Create a new reference with the same referent as this reference.

Reference newValue = (Reference) (super.copyl()):;

newValue.referent = this.referent;

return newValue;

[2] destroy ()
// Destroy the referent.

this.referent.destroy() ;

132 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[3] dispatch (in operation : Operation) : Execution

// Dispatch the given operation to the referent object.

return this.referent.dispatch (operation);

[4] equals (in otherValue : Value) : Boolean

// Test if this reference is equal to the otherValue.

// To be equal, the otherValue must also be a reference, with the same referent as this

reference.

boolean isEqual = false;

if (otherValue instanceof Reference) {

if (this.referent == null) {
isEqual = ((Reference)otherValue).referent == null;
} else {
isEqual = this.referent.equals(((Reference) otherValue).referent);

return isEqual;

[5] getFeatureValue (in feature : StructuralFeature) : FeatureValue

// Get the feature value associated with the given feature in the referent object.

return this.referent.getFeatureValue (feature);

[6] getFeatureValues () : FeatureValue [0..*]

// Return the feature values of the referent.

return this.referent.getFeatureValues();

[7] getTypes () : Classifier [0..*]
// Get the types of the referent object.

return this.referent.getTypes|();

[8] new_ () : Value

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

133

// Create a new reference with no referent.

return new Reference();

[9] send (in eventOccurrence : EventOccurrence)

// Send the given signal instance to the referent object.

this.referent.send (eventOccurrence) ;

[10] setFeatureValue (in feature : StructuralFeature, in values : Value [0..*], in position : Integer [0..1])

// Set the values associated with the given feature in the referent object.

this.referent.setFeatureValue (feature, values, position);

[11] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])

// Asynchronously start the behavior of the given classifier for the referent object.

this.referent.startBehavior(classifier, inputs);

[12] toString () : String

return "Reference to " + this.referent.toString();

8.8 Common Behavior

8.8.1 Overview

Executions

In UML, a behavior is actually a kind of class, and it may, therefore, have instances. An instance of a behavior is called an
execution, as shown in Figure 8.15. An instance value with a behavior type thus evaluates to an execution object.

The abstract Execution class has two concrete subclasses: OpaqueBehaviorExecution (shown in Figure 8.15) and
ActivityExecution (see 8.9). These subclasses act as visitor classes for OpaqueBehavior and Activity, respectively (see 8.3
for a general discussion of visitor classes). (Since function behaviors are basically just opaque behaviors with certain
additional restrictions, OpaqueBehaviorExecution also acts as the visitor class for FunctionBehavior.)

To execute a behavior, the executor uses the execution factory to create an instance of the appropriate execution class (see
8.3). The behavior to be executed becomes the type of the instantiated execution object. The executor then sets the parameter
values for the input parameters (i.e., those with direction in and in-out) of the behavior (if any) and calls the execute
operation on the execution object.

FUML15-12 fUML should include streaming

The Execution::execute operation provides the fundamental specification of behavior in fUML. H-aets

134 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

‘ speettied-by-the-behavior-The execute operation is actually defined as an abstract operation on the Execution class, since its
detailed specification depends on the kind of behavior being executed. See 8.9 for a specific discussion of the execution of
activities, which provide the means for user modeling of behavior in fUML.

In general, though, the execute operation of an execution must act on the parameter values for any input parameters (i.e.. those
with direction in or inout) and produce parameter values for any output parameters (i.e, those with direction inout or out). For
normal parameters (that is, those with isStream = false). input parameter values are available before the execute operation is
called and output parameter values are created at the end of the execution. Streaming parameters (that is, those with isStream =
true), however, can accept values (for input parameters) or post values (for output parameters) while a behavior is executing.

To allow streaming, a streaming parameter /istener can register to receive values posted to a streaming parameter during the

execution of a behavior. For an input parameter, the listener receives input values posted after the execution begins and passes

them to some element within the behavior execution (for example, an input parameter activity node for an activity execution

see 8.9.2.7). For an output parameter, the listener receives output values posted from within the behavior execution to the

invoker of the behavior (for example, an output pin of a call action invoking a behavior with streaming parameters, see
8.10.2.26).

Note that, as a kind of object itself, an execution is an extensional value. As discussed in 8.7, this means that any execution
effectively takes place at a specific locus. Thus, an object created during an execution will exist at the locus of the execution.
Unless this new object is explicitly destroyed later in the execution, it will continue to exist in the extent of its class at the
execution locus, even after the behavior that created it has completed its execution.

Active Objects

An active object is one that has one or more classifiers that are active classes — that is, they are classes with a classifier
behavior. (In fUML, an active class must either be a behavior or have a classifier behavior and only active classes may be
behaviored classifiers — see 7.9). After an active object is instantiated, a start object behavior action (see 7.11) is used to start
one or more of its classifier behaviors. Note that an object may also become active if it has an active class added to it using a
reclassify object action (see 7.11). In this case, a start object behavior action must still be used to start the classifier behavior
of the newly added class.

Once started, classifier behaviors then run asynchronously from whatever behavior executed the start object behavior action.
This allows the active object to autonomously send communications to and react to communications from other objects. The
points at which an active object responds to asynchronous communications from other objects is determined solely by the
behavior of the active object.

Active objects in f{UML communicate asynchronously via signals. A signal is a kind of classifier (see 7.6). Therefore, an
instance of a signal is a value. Since a signal may have attributes, a signal instance is a kind of compound value (see Figure
8.12).

The semantic model for an active object itself is an extension to the basic value model for objects. An active object still has
the same structural semantics as a passive object, but it adds the behavioral semantics of the execution of classifier behaviors
and the handling of asynchronous communication. These semantics are captured in the object activation for an active object,
which is created when the active behavior of the object is started.

Note that a behavior may itself be instantiated as an active object and the active behavior of a behavior instance is just the
behavior itself, acting as its own context object. For simplicity, in the description of the semantics of active objects and event
handling below, the running behavior of an active object is always referred to as its “classifier behavior execution”.
However, in the case of an active object that is a behavior instance (which is already an execution), the “classifier behavior
execution” will actually be the active object itself, not an instance of some other “classifier behavior”.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 135

Event Dispatching

An active object may asynchronously react to the occurrence of various events. When an object is notified of the occurrence
of an event, it is said to have received the event occurrence. Asynchronicity means that the receipt of the event occurrence is
decoupled from the dispatching of that occurrence, which is when a determination is made as to how the object will react to
the event occurrence (if at all).

Note: Operation calls are always synchronous invocations in fUML, as opposed to signal sends, which are always asynchronous
invocations. Nevertheless, when an operation call is handled by an active object via a call event, the call event occurrence is
handled asynchronously by the object, in the sense discussed above. The synchronous nature of the call is maintained for the
caller by requiring the caller to block the execution thread making the call until the call event occurrence is dispatched and
replied to. See also the discussion of call event occurrences under Event Occurrences below.

In order to achieve this decoupling, ObjectActivation is itself an active class (in the execution model). The classifier
behavior for ObjectActivation (see Figure 8.19) is a simple dispatch loop. When an event occurrence is received by an active
object, it is placed into the event pool of the object activation for that object, after which the object activation sends an
ArrivalSignal to itself. The dispatch loop waits for an ArrivalSignal and, when this happens, calls the dispatchNextEvent
operation. This operation dispatches a single event occurrence from the event pool. Once this is complete (“run to
completion semantics” for dispatched event occurrences), the dispatch loop returns to waiting for another event occurrence
to arrive.

It is important to carefully note the two semantics levels in the above description. At the level of a user model, the execution
model is modeling the receipt of an event occurrence and the dispatching of that event occurrence, to be handled as defined
in the user model. However, the semantic model itself also uses the active class ObjectActivation and the signal
ArrivalSignal, whose receipt by an object activation is an event occurrence handled by the classifier behavior of the object
activation (i.e., the event dispatch loop). The semantics for active class and signals, as used in the execution model, are given
by the base semantics for those model constructs (see Clause 10; also see Clause 6 for a general discussion of f{UML
execution semantics versus base semantics).

Note, while an event occurrence is being dispatched, it is possible that the active object will receive additional event
occurrences. In this case, these event occurrences will be concurrently placed into the event pool for the active object and an
ArrivalSignal will be generated for each arriving event occurrence. When the dispatch loop is ready to accept another event
occurrence, it will accept exactly one pending ArrivalSignal, causing another event occurrence to be dispatched. The
dispatch loop will continue to dispatch event occurrences, one at a time, until there are no more pending ArrivalSignals (or
until the active object is destroyed).

Which event occurrence is actually dispatched out of the event pool is not determined by the ArrivalSignal but, rather, by the
dispatchNextEvent operation. However, the exact behavior to be specified for this operation is a semantic variation point in
fUML. (See 2.3 for a full discussion of semantic variation within f{UML.)

Following the general approach of using the Strategy Pattern to model semantic variation points (see 8.3.1), the variability of
event dispatching is captured by using strategy classes for the ObjectActivation::getNextEvent operation.
GetNextEventStrategy provides the abstract base class for this type of strategy. The default dispatching behavior is given by
the concrete FIFOGetNextEventStrategy, which dispatches event occurrences on a first-in first-out (FIFO queue) basis. Any
variant behavior must be fully specified by overriding the behavioral specification of the dispatchNextEvent operation.

A conforming execution tool may define an alternative rule for how this dispatching is to take place by defining a new
GetNextEventStrategy subclass specifying whatever rule is desired. An instance of this alternate strategy must then be
registered with the execution factory at a given locus, rather than the default strategy.

136 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Once an event occurrence is selected for dispatch, it is matched against the list of waiting event accepters for the active
object. If a match is found, the event occurrence is passed to the event accepter using its accept operation. If no matching
event acceptor is found, the event occurrence is not returned to the event pool and is lost. (Note that deferred events are not
included in the f{UML subset.)

The event accepters for an active object are points within the executing classifier behaviors of the object that are waiting for
certain events. An executing classifier behavior may register an event accepter for itself using the Object::registerForEvent
operation. The event accepter is then added to the list of waiting event accepters for the object and any matching event
occurrence is passed back to the executing classifier behavior via the accept operation of the event accepter.

Event Occurrences

The event-dispatching framework described above is intended to be general enough to handle the occurrence of various
different kinds of events defined in UML. However, currently there are three kinds of events whose occurrences are handled in
the fUML execution model: classifier behavior (asynchronous) invocation events, signal reception events and operation call
events. It is expected that other specifications building on fUML may specify the semantics of other kinds of events within the
general fUML event-handling framework.

The EventOccurrence class is also an active class in the execution model, in a similar way to ObjectActivation, as described
above. When an event occurrence is sent using the sendTo operation of EventOccurrence, the event occurrence classifier
behavior is started asynchronously. When the classifier behavior executes, it carries out the actual sending of the event
occurrence to the target object, resulting in the event occurrence being placed in the target object event pool. Thus, not only is
the dispatching of the event occurrence asynchronously decoupled from the receipt of the event occurrence, but actual
transmission of the event occurrence to the target object is asynchronously decoupled from the execution that initiated the
sending of the event occurrence.

Note: The above model of the sending of event occurrences supports the general approach to the semantics of inter-object
communications in fUML (see 2.3). Since each event occurrence is sent using a concurrently executing behavior in the
execution model, the semantics of concurrency (as also discussed in 2.3) allows event occurrences that have been sent
concurrently to be arbitrarily re-ordered in time before delivery or arbitrarily delayed in time relative to the concurrent
execution of the target object event dispatch loop behaviors. This is consistent with the allowed possibility that inter-object
communication may not be reliable or deterministic.

A classifier behavior for an active object may be started using a start object behavior action (see 8.10.2.40). When a behavior of
an active object is so started, if no object activation yet exists for the active object, one is created. An active object with multiple
types may have multiple classifier behaviors, which may be started separately, so it is possible that an object activation may
already exist when a classifier behavior is started, if it is not the first one. In either case, the actual starting of the behavior is
then delegated to the object activation.

To start a classifier behavior, an Execution instance is created for it (see 8.8.2.7), but this execution does not run
immediately. Instead, an invocation event occurrence for the execution is added to the event pool and a classifier behavior
invocation event accepter is registered to handle this event occurrence. As previously described in general for event
occurrences, this decouples the receipt of the event occurrence requesting the start of a classifier behavior from the
dispatching of the event occurrence, at which point the classifier behavior invocation event accepter actually starts the
classifier behavior execution. In this way, the classifier behavior executes asynchronously from its invocation and within an
initial run-to-completion step, so that any event occurrences received by the active object during this initial execution are
saved until the object is ready to handle them. (Note that an invocation event occurrence is not sent using the asynchronous
EventOccurrence behavior, as described above for signal and call event occurrences, but is placed directly into the event
pool of the context object of the classifier behavior execution.)

An object activation also keeps a list of the classifier behavior invocation event accepters created to start classifier behavior
executions. This maintains a link between the object activation and any ongoing executions so that, if the associated active
object is destroyed, any running classifier behavior executions may be terminated.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 137

Once a classifier behavior is running, it may register event accepters to handle the occurrences of other kinds of events
received by its context object. In particular, the firing of an accept event action results in the registration of an event accepter
for the events declared in the triggers of that action (see 8.10.2.2 and 8.10.2.3). Currently, a regular accept event action in
fUML is limited to handling signal events, while an accept call action (a special kind of accept event action) is used to
handle call events (see 8.10.2.1). When a signal or call event occurrence is received by an active object, it is placed in the
event pool. When this event occurrence is dispatched, if there is a matching accept event action accepter for it, then it will be
accepted by the accept event action (or accept call action, for a call event occurrence), resulting in the resumption of
execution of the activity containing the action.

As mentioned above under Event Dispatching, an operation call is always a synchronous invocation from the point of view
of the caller, even if it is handled asynchronously using a call event at the target. In order to achieve this, a call event
occurrence is always sent by executing a special call event execution object (see 8.8.2.2), after which the calling execution
thread is blocked until a reply to the call is received. Blocking is specified in the suspend operation of the call event
execution using a loop that repeatedly checks for the callSuspended flag to be reset by the concurrent thread responding to
the call. The body of the loop consists of a call to a special wait operation, which does nothing, but, during which, a
conforming execution tool must allow other concurrent threads to run. That is, an execution trace that, after a certain point,
consists entirely of a caller executing one or more suspend loops for all time is not allowed, unless no other execution trace
is possible (i.e., no other non-blocked concurrent threads are available to execute).

Note: The special rule above concerning waiting is necessary because fUML allows great flexibility in whether a conforming
execution tool actually implements a concurrent thread as a parallel execution or not (see 2.3). Without this rule, it would be
allowable for a conforming execution tool to consume all processing resources executing one or more suspend loops and
never allow the execution of the dispatch loops necessary to handle the call event occurrences that have been sent. Even with
the rule, however, it is not inherently guaranteed that any call event occurrence will ever be dispatched, since the dispatch
loop of the target object that receive it may still be blocked forever, in a particular implementation, by some other
unsuspended thread.

FUML15-2 The fUML subset should support the raising and handling of exceptions
FUML15-12 fUML should include streaming

UML::StructuredClassifiers +types fUML_Semantics::Semantics::StructuredClassifiers:: fUML_Semantics::Semantics::Values::
Class * * Object Value

+exception

+context 0.4 *values|*

0.1

UML Cc;m:on'Behavwor Execution +parameterValues ParameterValue +parameter | UNL::Classification
ehavior *
+execute() 01 9% +copy() : ParameterValue |* 1 Parameter

+terminate()
+copy() : Value
+new_() : Value

+setParameterValue(parameterYaIue : ParamgterVaIue) StreamingParameterValue
UML:-CommonBehavior +getParameterValue(parameter : Parameter) : ParameterValue - -
+getOutputParameterValues() : ParameterValue [*] +register(listener : StreamingParameterListener)
OpaqueBehavior +getBehavior() : Behavior +post(values : Value ["])
+destroy() +isTerminated() : Boolean

+propagateException(exception : Value)

1
T +listener | 0..1

OpaqueBehaviorExecution StreamingParameterListener
+execute() +post(values : Value [*])
+doBody(inputParameters : ParameterValue [*], outputParameters : ParameterValue [*]) +is Terminated() : Boolean

Figure 8.15 - Executions

138 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-13 fUML should include unmarshall actions

«activity»
SendingBehavior

EventOccurrence

+sendTo(target : Reference)
#doSend()

+match(trigger : Trigger) : Boolean
+matchAny(trigger : Trigger) : Boolean

+getParameterValues(event : Event) : ParameterValue [*]|

+target
0.1

fUML_Semantics::Semantics::StructuredClassifiers::
Reference

+referent | 1

fUML_Semantics::Semantics::StructuredClassifiers::
Object

SignalEventOccurrence

InvocationEventOccurrence

+execution

+match(trigger : Trigger) : Boolean
+getParameterValues(event : Event) : ParameterValue [*].

+match(trigger : Trigger) : Boolean -
+getParameterValues(event : Event) : ParameterValue [*]

Execution
JAN

+signalinstance

CallEventOccurrence

+match(trigger : Trigger) : Boolean
+getParameterValues(event : Event) : ParameterValue [*]

+setOutputParameterValues(parameterValues : ParameterValue [*])

+getOperation() : Operation
+returnFromcCall()

+execution

UML::StructuredClassifiers:
Class
7Y
UML::CommonBehavior:
Behavior
A

CallEventExecution

CallEventBehavior

+callerSuspended : Boolean

+setOperation(operation : Operation)

fUML_Semantics::Semantics::SimpleClassifiers::
Signallnstance

Figure 8.16 - Event Occurrences

1

+isCallerSuspended() : Boolean
+setCallerSuspended(callerSuspended : Boolean)
+suspendCaller()

+releaseCaller()

+execute()

+makeCall()

+createEventOccurrence() : EventOccurrence
+getOperation() : Operation
+getinputParameterValues() : ParameterValue [*]
+setOutputParameterValues() : ParameterValue [*]
+new_() : Value

+copy() : Value

+wait_()

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+operation |1

UML::Classification:
Operation

139

fUML_Semantics::Semantics::StructuredClassifiers:: - UML::StructuredClassifiers::
- Execution

Object Class
+execution |1 +classifier | 1
+object | 1
0..1 *
+objectActivation | 0..1 ClassifierBehaviorlnvocationEventAccepter
ObjectActivation 0.1 +classifierBehaviorlnvocations |+invokeBehavior(classifier : Class, inputs : ParameterValue [*])
+obiectActivat ¥ +terminate()
:StOP(t) o EventAccent objectActivation +accept(eventOccurrence : EventOccurrence)
regis ?"(accepter : EventAccepter) +match(eventOccurrence : EventOccurrence) : Boolean
+unregister(accepter : EventAccepter)

+getNextEvent() : Signallnstance

+dispatchNextEvent() l
+send(signallnstance : Signallnstance)

+startBehavior(classifier : Class [0..1], inputs : ParameterValue [*]) +waitingEventAccepters EventAccepter
«signal»ArrivalSignal() 0.1 ~ | +accept(eventOccurrence : EventOccurrence)
. +match(eventOccurrence : EventOccurrence) : Boolean
T 0..1
«activity» «signal» fUML_Semantics::Semantics::Loci::
EventDispatchLoop ArrivalSignal SemanticStrategy
{ordered}

* | +eventPool T
EventOccurrence GetNextEventStrategy

+getName() : String
+getNextEvent(objectActivation : ObjectActivation) : EventOccurrence

|

FIFOGetNextEventStrategy

+getNextEvent(objectActivation : ObjectActivation) : EventOccurrence

Figure 8.17 - Active Objects

8.8.2 Class Descriptions

8.8.2.1 CallEventBehavior

A call event behavior is a special kind of behavior used to represent the type of a call event execution. It is not directly a part of
a user model, but has a signature constructed from the signature of the operation being called.

Generalizations
* Behavior

Attributes

None

Associations

e operation : Operation
The operation whose call is to be handled via a call event.

Operations

[1] setOperation (in operation : Operation)

// Set the operation for this call event behavior and construct

140 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// the behavior signature based on the operation signature.

this.operation = operation;
for(int 1 = 0; i < operation.ownedParameter.size(); i++) {

Parameter operationParameter = operation.ownedParameter.get (i) ;

Parameter parameter = new Parameter();
parameter.name = operationParameter.name;
parameter.type = operationParameter.type;

parameter.multiplicityElement.lowerValue =
operationParameter.multiplicityElement.lowerValue;
parameter.multiplicityElement.lower =
operationParameter.multiplicityElement.lower;
parameter.multiplicityElement.upperValue =
operationParameter.multiplicityElement.upperValue;
parameter.multiplicityElement.upper =

operationParameter.multiplicityElement.upper;

parameter.direction = operationParameter.direction;
parameter.owner = this;
parameter.namespace = this;

this.ownedElement.addValue (parameter) ;
this.ownedMember.addValue (parameter) ;
this.member.addValue (parameter) ;
this.ownedParameter.addValue (parameter) ;

}

this.isReentrant = true;

this.name = "CallEventBehavior";

if (operation.name != null) {

this.name = this.name + " (" + operation.name + ")";

8.8.2.2 CallEventExecution

A call event execution acts as the effective method execution for an operation call that is to be handled by a call event. When
executed, a call event execution sends a call event occurrence to the target object and then suspends until a reply is received.

Generalizations
¢ Execution

Attributes

* callerSuspended : Boolean
Indicates whether the caller is suspended, waiting for a reply to the sent call event occurrence. (Concurrently
setting this flag to “false” releases the caller.)

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 141

Associations

None

Operations

[1] copy () : Value

// Create a new call event execution that is a copy of this execution, with the
// caller initially not suspended.

CallEventExecution copy = (CallEventExecution) super.copy();
copy.callerSuspended = false;

return copy;

[2] createEventOccurrence () : EventOccurrence
// Create a call event occurrence associated with this call event execution.

// (This operation may be overridden in subclasses to alter how the event

// occurrence is create, e.g., if it is necessary to wrap it.)
CallEventOccurrence eventOccurrence = new CallEventOccurrence() ;
eventOccurrence.execution = this;

return eventOccurrence;

[3] execute()
// Make the call on the target object (which is the context of this execution)
// and suspend the caller until the call is completed.

// Note: The callerSuspended flag needs to be set before the call is made,
// in case the call is immediately handled and returned, even before the
// suspend loop is started.

this.setCallerSuspended (true) ;

this.makeCall () ;
this.suspendCaller();

[4] getlnputParameterValues () : ParameterValue [0..*]

// Return input parameter values for this execution.

ParameterValuelist parameterValues = new ParameterValueList();
for (int 1=0; i < this.parameterValues.size(); 1i++) {
ParameterValue parameterValue = this.parameterValues.get (i) ;

if (parameterValue.parameter.direction == ParameterDirectionKind.in

142 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

| parameterValue.parameter.direction == ParameterDirectionKind.inout) {

parameterValues.addValue (parameterValue) ;

}

return parameterValues;

[5] getOperation () : Operation

// Return the operation being called by this call event execution.

return ((CallEventBehavior)this.getBehavior()) .operation;

[6] isCallerSuspended () : Boolean
// Check if the caller is still suspended.

// This is done in isolation from possible concurrent updates to this flag.

_beginIsolation();
boolean isSuspended = this.callerSuspended;

_endIsolation();

return isSuspended;

[7] makeCall ()

// Make the call on the target object (which is the context of this execution)
// by sending a call event occurrence. (Note that the call will never be
// completed if the target is not an active object, since then the object

// would then have no event pool in which the event occurrence could be placed.)

Reference reference = new Referencel();
reference.referent = this.context;
this.createEventOccurrence () .sendTo (reference) ;

[8] new_ () : Value

// Create a new call event execution.

return new CallEventExecution () ;

[9] releaseCaller ()

// Release the caller, if suspended.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

143

this.setCallerSuspended (false) ;

[10] setCallerSuspended (in callerSuspended : Boolean)
// Set the caller suspended flag to the given value.

// This 1is done in isolation from possible concurrent queries to this flag.

_beginlIsolation();
this.callerSuspended = callerSuspended;

_endIsolation();

[11] setOutputParameterValues (parameterValues : ParameterValue [0..*])

// Set the output parameter values for this execution.

ParameterList parameters = this.getBehavior () .ownedParameter;
int 1 = 1;
int 3 = 1;
while (i <= parameters.size()) {
Parameter parameter = parameters.get (i-1);
if (parameter.direction == ParameterDirectionKind.inout |
parameter.direction == ParameterDirectionKind.out |
parameter.direction == ParameterDirectionKind.return) {
ParameterValue parameterValue = parameterValues.get (j-1);
parameterValue.parameter = parameter;
this.setParameterValue (parameterValue) ;

j=3+1;

[12] suspendCaller ()

// Suspend the caller until the caller is released.

while(this.isCallerSuspended()) {

this.wait ();

[11] wait_()
// Wait for an indeterminate amount of time to allow other concurrent

// executions to proceed.

144 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// [There is no further formal specification for this operation.]

8.8.2.3 CallEventOccurrence

A call event occurrence represents the occurrence of a call event due to a call to a specific operation.
Generalizations

¢ EventOccurrence

Attributes

None

Associations

¢ execution : CallEventExecution
The call event execution that created this call event occurrence.

Operations

[1] getOperation () : Operation

// Get the operation being called by this call event occurrence.

return this.execution.getOperation() ;

FUML15-13 fUML should include unmarshall actions

[2] getParameterValues (_in event : Event) : ParameterValue [0..*]
// Return the input parameter values from the call event execution for
// this call event occurrence, which correspond to the values of the

// operation input parameters for the call.

return this.execution.getInputParameterValues();

[3] match (trigger : Trigger) : Boolean
// Match a trigger if it references a call event whose operation is the

// operation of this call event occurrence.

boolean matches = false;
if (trigger.event instanceof CallEvent) {
CallEvent callEvent = (CallEvent)trigger.event;
matches = callEvent.operation == this.getOperation();
}

return matches;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 145

[4] releaseCaller ()

// Release the caller on return from the call.

this.execution.releaseCaller () ;

[5] setOutputParameterValues (parameterValues : ParameterValue [0..*])
// Set the output parameter values of the call event execution for
// this call event occurrence, which correspond to the values of the

// operation output parameters for the call.

this.execution.setOutputParameterValues (parameterValues) ;

8.8.2.4 ClassifierBehaviorinvocationEventAccepter

A classifier behavior accepts an invocation event occurrence for the invocation of the execution of a classifier behavior from
a specific active class.

Generalizations

* EventAccepter

Attributes

None

Associations

e classifier : Class
The classifier whose behavior is being executed. (This must be an active class.)

 execution : Execution
The execution of the associated classifier behavior for a certain object.

* objectActivation : ObjectActivation [0..1]
The object activation that owns this classifier behavior execution.

Operations

[1] accept (in eventOccurrence : EventOccurrence)
// Accept an invocation event occurrence. Execute the execution of this

// classifier behavior invocation event accepter.

if (eventOccurrence instanceof InvocationEventOccurrence) {

this.execution.execute () ;

[2] invokeBehavior (in classifier : Class, in inputs : ParameterValue [0..*])

146 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Set the classifier for this classifier behavior execution to the given class.

// If the given class is a behavior, set the execution to be the object of the object
activation of the classifier behavior execution.

// Otherwise the class must be an active class, so get an execution object for the classifier
behavior for the class.

// Set the input parameters for the execution to the given values.

// Then register this event accepter with the object activation.

this.classifier = classifier;

Object object = this.objectActivation.object;

if (classifier instanceof Behavior) {

this.execution = (Execution)object;
} else {

this.execution = object.locus.factory.createExecution(classifier.classifierBehavior,
object) ;
}
if (inputs != null) {

for (int i = 0; 1 < inputs.size(); 1i++) {

ParameterValue input = inputs.getValue (i)

this.execution.setParameterValue (input) ;

this.objectActivation.register (this);

[3] match (in eventOccurrence : EventOccurrence) : Boolean
// Return true if the given event occurrence is an invocation event
// occurrence for the execution of this classifier behavior invocation

// event accepter.

boolean matches = false;
if (eventOccurrence instanceof InvocationEventOccurrence) {

matches = ((InvocationEventOccurrence)eventOccurrence) .execution == this.execution;
}

return matches;

[4] terminate ()
// Terminate the associated execution.

// If the execution is not itself the object of the object activation, then destroy it.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 147

this.execution.terminate () ;

if (this.execution != this.objectActivation.object) {

this.execution.destroy();

8.8.2.5 EventAccepter

An event accepter handles signal reception events.

This is an abstract class intended to provide a common interface for different kinds of event accepters.

Generalizations

None

Attributes

None

Associations

* None

Operations

[17 accept (in eventOccurrence : EventOccurrence)

Accept a signal occurrence for the given signal instance.

[2] match (in eventOccurrence : EventOccurrence) : Boolean

Determine if the given signal instance matches a trigger of this event accepter.

8.8.2.6 EventOccurrence

An event occurrence represents a single occurrence of a specific kind of event.

148 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

/activity SendingBehavior)

Read Self

Call doSend

Figure 8.18 - Sending Behavior

Generalizations

None

Attributes

None

Associations

» target : Reference [0..1]
A reference to the target object to which this event occurrence is being sent.

Operations

[1] doSend ()

// Send this event occurrence to the target reference.

this.target.send(this);

FUML15-13 fUML should include unmarshall actions

[2] getParameterValues (_in event : Event) : ParameterValue[0..*]

Return the values of parametric data associated with this event occurrence- relevant to the

given event.

[3] match (in trigger : Trigger) : Boolean

Return true if this event occurrence matches the given trigger. Each concrete specialization of
EventOccurrence must provide a behavior for this operation.

[4] matchAny (in triggers : Trigger [0..*]) : Boolean
// Check that at least one of the given triggers is matched by this

// event occurrence.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 149

boolean matches = false;

int 1 = 1;

while (!matches & i <= triggers.size()) {
if (this.match (triggers.get (i-1))) {

matches = true;

return matches;

[5] sendTo (in target : Reference)
// Set the target reference and start the SendingBehavior, which

// will send this event occurrence to the target.

this.target = target;
_startObjectBehavior () ;

8.8.2.7 Execution

An execution is used to execute a specific behavior. Since a behavior is a kind of class, an execution is an object with the
behavior as its type.

Generalizations
¢ Object

Attributes

None

Associations

* context : Object
The object that provides the context for this execution.
The type of the context of the execution must be the context of the type (behavior) of the execution.

FUML15-2 The fUML subset should support the raising and handling of exceptions

e exception : Value [0..1]
The value raised as an exception by this execution, if any.

* parameterValues : ParameterValue [0..*]
The parameterValues for this execution. All parameterValues must have a parameter that is a parameter of the
type of this execution.
The values of all input (in and in-out) parameters must be set before the execution is executed.

150 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Operations

[1] copy () : Value

// Create a new execution that has the same behavior and parameterValues as this execution.

Execution newValue = (Execution) (super.copy());

newValue.context = this.context;

ParameterValuelist parameterValues = this.parameterValues;

for (int i = 0; i < parameterValues.size(); i++) {
ParameterValue parameterValue = parameterValues.getValue (i) ;
newValue.parameterValues.addValue (parameterValue.copy());

return newValue;

FUML15-12 fUML should include streaming
2] destroy ()

// Terminate the execution before destrovying it.

this.terminate () ;

super.destroy () ;

FUML15-36 Typo fixes

[23] execute ()
Execute the behavior given by the type of this execution.

The parameterValues for any input (in or in-out) parameters of the behavior should be set
before the execution.

The parameterValues for any output (in-out, out or return) parameters of the behavior will be
set by the execution.

[34] getBehavior () : Behavior
// Get the behavior that is the type of this execution.

return (Behavior) (this.getTypes () .getValue(0));

[45] getOutputParameterValues () : ParameterValue [0..*]

// Return the parameter values for output (in-out, out and return) parameters.

ParameterValuelist outputs = new ParameterValuelList();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 151

ParameterValuelist parameterValues = this.parameterValues;
for (int i = 0; i < parameterValues.size(); i++) {
ParameterValue parameterValue = parameterValues.getValue (i)
Parameter parameter = parameterValue.parameter;
if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {

outputs.addValue (parameterValue) ;

return outputs;

[56] getParameterValue (in parameter : Parameter) : ParameterValue

// Get the parameter value of this execution corresponding to the given parameter

ParameterValue parameterValue = null;
int 1 = 1;
while (parameterValue == null & i1 <= this.parameterValues.size()) {
if (this.parameterValues.getValue (i-1) .parameter == parameter) {
parameterValue = this.parameterValues.getValue(i-1);
}
i=1+1;

return parameterValue;

[67] new_ () : Value

Create a new execution with no behavior or parameterValues.

FUML15-2 The fUML subset should support the raising and handling of exceptions

[8] propagateException (_in exception : Value)

// Set the propagated exception for this execution to the given exception,
// then terminate the execution.

this.exception = exception;

this.terminate () ;

[#9] setParameterValue (in parameterValue : ParameterValue)

152 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Set the given parameter value for this execution.

// If a parameter value already existed for the parameter of the given parameter value, then
replace its value.

ParameterValue existingParameterValue = this.getParameterValue (parameterValue.parameter);

if (existingParameterValue == null) {
this.parameterValues.addValue (parameterValue) ;

}
else {

existingParameterValue.values = parameterValue.values;

[€10] terminate ()

// Terminate an ongoing execution. By default, do nothing.

return;

8.8.2.8 FIFOGetNextEventStrategy
A FIFO get next event strategy gets events in first-in first-out order.

Generalizations

* GetNextEventStrategy

Attributes

None
Associations

None

Operations

[1] getNextEvent (in objectActivation : ObjectActivation) : EventOccurrence

// Get the first event from the given event pool. The event is removed from the pool.

EventOccurrence eventOccurrence = objectActivation.eventPool.getValue (0);
objectActivation.eventPool.removeValue (0) ;

return eventOccurrence;

8.8.2.9 GetNextEventStrategy

A get next event strategy is a semantic strategy that determines the order in which signal instances are retrieved from the
event pool of an object activation.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 153

Generalizations
* SemanticStrategy

Attributes

None

Associations

None

Operations

[1] getName () : String

// Get next event strategies are always named "getNextEvent".

return "getNextEvent";

[2] getNextEvent (in objectActivation : ObjectActivation) : EventOccurrence

Get the next event from the event pool of the given object activation. The event is removed
from the pool.

8.8.2.10 InvocationEventOccurrence

An invocation event occurrence represents a signal occurrence of the event of the asynchronous invocation of a specific
behavior execution.

Generalizations

¢ EventOccurrence

Attributes

None

Associations

* execution : Execution
The execution being asynchronously invoked.

Operations

[1] getParameterValues () : ParameterValue[0..*]

// An invocation event occurrence does not have any associated data.

return new ParameterValueList () ;

[2] match (in trigger : Trigger) : Boolean

// An invocation event occurrence does not match any triggers.

154 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return false;

8.8.2.11 ObjectActivation

An object activation handles the active behavior of an active object.

/activity EventDispatchLoop)

Accept
ArrivalSignal

ReadSelf

(Call dispatchNextEvent I

«comment»
The response to each event is completed
before dispatching the next event (run to
completion semantics).

N

Figure 8.19 - Classifier Behavior for ObjectActivation

Generalizations

None

Attributes

None

Associations

* classifierBehaviorInvocations : ClassifierBehaviorlnvocationEventAccepter [0..*]
The invocations of the executing classifier behaviors for this object activation.

e eventPool : EventOccurrence [0..%]

The pool of event occurrences received by the object of this object activation, pending dispatching.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

155

¢ object : Object
The object whose active behavior is being handled by this active object.

e waitingEventAccepters : EventAccepter [0..*]
The set of event accepters waiting for event occurrences to be dispatched from the event pool.

Operations

[1] dispatchNextEvent ()

// Get the next event occurrence out of the event pool.

// If there are one or more waiting event accepters with triggers that
// match the event occurrence, then dispatch it to exactly one of those

// waiting accepters.

if (this.eventPool.size() > 0) {

EventOccurrence eventOccurrence = this.getNextEvent () ;

intList matchingEventAccepterIndexes = new intList();

EventAccepterlList waitingEventAccepters = this.waitingEventAccepters;

for (int 1 = 0; 1 < waitingEventAccepters.size(); i++) {
EventAccepter eventAccepter = waitingEventAccepters.getValue(i);
if (eventAccepter.match (eventOccurrence)) {

matchingEventAccepterIndexes.addValue (1) ;

if (matchingEventAccepterIndexes.size() > 0) {
// *** Choose one matching event accepter non-deterministically. ***
int j =
((ChoiceStrategy)this.object.locus.factory.getStrategy("choice")) .choose (matchingEventAccepte
rIndexes.size());

int k = matchingEventAccepterIndexes.getValue(j - 1);
EventAccepter selectedEventAccepter = this.waitingEventAccepters.getValue (k) ;
this.waitingEventAccepters.removeValue (k) ;

selectedEventAccepter.accept (eventOccurrence) ;

[2] getNextEvent () : EventOccurrence

// Get the next event from the event pool, using a get next event strategy.

return
((GetNextEventStrategy) this.object.locus.factory.getStrategy ("getNextEvent")) .getNextEvent (th
is);

156 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[3] register (in accepter : EventAccepter)

// Register the given event accepter to wait for a dispatched signal event.

this.waitingEventAccepters.addValue (accepter);

[4] send (in eventOccurrence : eventOccurrence)
// Add the event occurrence to the vent pool and signal that a

// new event occurrence has arrived.

this.eventPool.addValue (eventOccurrence) ;

_send(new ArrivalSignal()):;

[5] startBehavior (in classifier : Class [0..1], in inputs : ParameterValue [0..*])

// Start the event dispatch loop for this object activation (if it has not already been
started) .

// If a classifier is given that is a type of the object of this object activation and there
is not already a classifier behavior invocation for it,

// then create a classifier behavior invocation for it.

// Otherwise, create a classifier behavior invocation for each of the types of the object of
this object activation which has a classifier behavior or which is a behavior itself

// and for which there is not currently a classifier behavior invocation.

// Start EventDispatchLoop

_startObjectBehavior();

if (classifier == null) {
// *** Start all classifier behaviors concurrently. **x*

Class_List types = this.object.types;

for (Iterator i = types.iterator(); i.hasNext();) {
Class_ type = (Class_)i.next();
if (type instanceof Behavior | type.classifierBehavior != null) {

this.startBehavior (type, new ParameterValueList()):;

}
else {
_beginIsolation();
boolean notYetStarted = true;

int 1 = 1;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 157

while (notYetStarted & 1 <= this.classifierBehaviorInvocations.size()) {

notYetStarted = (this.classifierBehaviorInvocations.getValue(i-1).classifier !=
classifier);

i=1+ 1;

if (notYetStarted) {

ClassifierBehaviorInvocationEventAccepter newlInvocation =
new ClassifierBehaviorInvocationEventAccepter();

newInvocation.objectActivation = this;
this.classifierBehaviorInvocations.addValue (newInvocation);
newInvocation.invokeBehavior (classifier, inputs);
InvocationEventOccurrence eventOccurrence = new InvocationEventOccurrence ();
eventOccurrence.execution = newlInvocation.execution;
this.eventPool.addValue (eventOccurrence) ;
_send(new ArrivalSignal());

}

_endIsolation();

[6] stop ()

// Stop this object activation by terminating all classifier behavior executions.

ClassifierBehaviorInvocationEventAccepterList classifierBehaviorInvocations =
this.classifierBehaviorExecutions;

for (int i = 0; i < classifierBehaviorExecutions.size(); i++) {

ClassifierBehaviorInvocationEventAccepter classifierBehaviorInvocation =
classifierBehaviorExecutions.getValue (i) ;

classifierBehaviorExecution.terminate () ;

[7] unregister (in accepter : EventAccepter)

// Remove the given event accepter for the list of waiting event accepters.

boolean notFound = true;
int 1 = 1;
while (notFound & 1 <= this.waitingEventAccepters.size()) {
if (this.waitingEventAccepters.getValue(i-1) == accepter) {
this.waitingEventAccepters.remove (i-1);

notFound = false;

158 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.8.2.12 OpaqueBehaviorExecution

An opaque execution is an execution for an opaque behavior.

Opaque behaviors are used to define primitive behaviors.

The actual definition of the primitive behavior should be given in a concrete subclass of OpaqueBehaviorExecution.
Generalizations

e Execution

Attributes

None

Associations

None

Operations

[1] doBody (in inputParameters : ParameterValue [0..*], in outputParameters : ParameterValue [0..*])

The actual definition of the behavior of an Opaque Behavior should be given in a concrete
subclass that defines this operation.

The values of the inputParameters are set when the operation is called.

The values of the outputParmeters should be set during the execution of the operation.

[2] execute ()
// Execute the body of the opaque behavior.

ParameterList parameters = this.getBehavior () .ownedParameter;
ParameterValuelList inputs = new ParameterValueList();
ParameterValuelist outputs = new ParameterValuelList();
for (int i = 0; 1 < parameters.size(); i++) {
Parameter parameter = parameters.getValue (i) ;
if ((parameter.direction == ParameterDirectionKind.in) |
(parameter.direction == ParameterDirectionKind.inout)) {

inputs.addValue (this.getParameterValue (parameter)) ;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 159

if ((parameter.direction == ParameterDirectionKind.inout) |
(parameter.direction == ParameterDirectionKind.out) |
(parameter.direction == ParameterDirectionKind.return)) {
ParameterValue parameterValue = new ParameterValue();
parameterValue.parameter = parameter;
this.setParameterValue (parameterValue) ;

outputs.addValue (parameterValue) ;

this.doBody (inputs, outputs);
8.8.2.13 ParameterValue

A parameter value gives the value(s) for a specific parameter.

Generalizations

None

Attributes

None

Associations

e parameter : Parameter [0..1]
The parameter for which values are being provided. (This may be empty in the case of an internally generated
“effective” parameter value, e.g., to represent data extracted from a SignalEventOccurrence.)

e values : Value [0..¥]
The values for the parameter. Zero or more values are possible, as constrained by the multiplicity of the parameter.

Operations

[1] copy () : ParameterValue

// Create a new parameter value for the same parameter as this parameter value, but with
copies of the values of this parameter value.

ParameterValue newValue = new ParameterValue();
newValue.parameter = this.parameter;

ValuelList values = this.values;

for (int 1 = 0; 1 < wvalues.size(); i++) {

Value value = values.getValue(i);

newValue.values.addValue (value.copy())

160 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return newValue;
8.8.2.14 SignalEventOccurrence
A signal event occurrence represents the occurrence of a signal event due to the receipt of a specific signal instance.

Generalizations

¢ EventOccurrence

Attributes

None

Associations
* signallnstance : Signallnstance
The signal instance whose receipt caused this signal event occurrence.
Operations
FUML15-13 fUML should include unmarshall actions

FUML15-28 fUML should allow association ends that are not association owned

[1] getParameterValues (_in event : Event) : ParameterValue[0..*]
// Return parameter values for the features of the signal instance, in order—,

// corresponding to the attributes of the declared signal of the given event.

// These are intended to be treated as if they are the values of effective
// parameters of direction "in"

(Note that the given event must be a signal event, and the signal instance

// of this signal event occurrence must be a direct or indirect instance of

the event signal.)

ParameterValuelist parameterValues = new ParameterValuelList();
i EEEE Il il 3 ot o X7o 1 10 = +h T onal oot o gotMamho 1751 19 () .
A S T ———— - T e
for (14t o =0 3 Mmool o 1 VY 2) [
For{fiat— — Sefroet Yt R
il EE R £ e T — oo 17 oot (3) .
e e ———— e — R
D rormat r BN m + _ D rormat r 1 L)
Perametesda e —fararm et £ PearaererYatue{i
Boramoadt o 17 = £ R
——— ———— - - alussy
Boramat oo 1. dd vt A 1. \
SarameterYady seld-parame e rate)
if (event instanceof SignalEvent) {

StructuralFeaturelist memberFeatures =

this.signalInstance.getMemberFeatures (((SignalEvent)event) .signal) ;

for(dnt i = 0; i < memberFeatures.size(); i++){

StructuralFeature feature = memberFeatures.getValue (i) ;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

161

ParameterValue parameterValue = new ParameterValue();

parameterValue.values = this.signallnstance.getFeatureValue (feature) .values;

parameterValues.add (parameterValue) ;

return parameterValues;

[2] match (in trigger : Trigger) : Boolean
// Match a trigger if it references a signal event whose signal is the type of the

// signal instance or one of its supertypes.

boolean matches = false;
if (trigger.event instanceof SignalEvent) {

SignalEvent event = (SignalEvent) trigger.event;

matches = this.signallInstance.isInstanceOf (event.signal);
}

return matches;

FUML15-12 fUML should include streaming

8.8.2.15 StreamingParameterListener

A streaming parameter listener handles the posting of values from a streaming parameter value to some target.
This is an abstract class intended to provide a common listener interface for different kinds of targets.

Generalizations
None

Attributes
None

Associations
None

Operations
1] isTerminated () : Boolean

Check whether the target of this listener has terminated.

[2] post (values : Value [0..*])

Post the given values to the target of this listener.

8.8.2.16 StreamingParameterValue

Generalizations

e ParameterValue

162 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Attributes
None
Associations

¢ listener : StreamingParameterListener [0..1]
The listener for values from this streaming parameter value. A streaming parameter value can have at most one

Operations
1] isTerminated () : Boolean

Check if this streaming parameter value either has no listener,

// or it has a listener that has terminated.

boolean isTerminated = true;

if (this.listener != null) {

isTerminated = this.listener.isTerminated();

1

return isTerminated;

[2] post (values : Value [0.*])

Post the given values to the listener, if there is at

least one value.

this.values = values;

if (this.listener != null & values.size() > 0) {

listener.post (values) ;

[3] register (listener : StreamingParameterListener)

// Register a listener for this streaming parameter value.

this.listener = listener;

8.9 Activities

8.9.1 Overview

Activities are the only concrete sort of user behavior model included in fUML. (Opaque behaviors are also included in
fUML, but only for specifying primitive behaviors.) Subclause 7.10 gives the abstract syntax for activities. The elements of
this syntax are that activities are composed of activity nodes with control flow and object flow activity edges connecting the

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 163

nodes. The present subclause describes the basic semantics of activity execution in terms of activations of the activity nodes
in the activity. The semantics for actions, which are a kind of activity node, are given in 8.10.

Activity Node Activation

As shown in Figure 8.23, the activity execution model is an extension of the general behavior execution model from 8.8. In
addition to activity executions themselves, the model includes activity node activations that specify the behavior of activity
nodes during a specific activity execution. These node activations are then interconnected by activity edge instances
corresponding to the activity edges in the activity.

Activity node activations are semantic visitor classes, like evaluations and executions (see 8.3.1 for a discussion of semantic
visitor classes in general). There is an activation visitor class corresponding to each concrete subclass of ActivityNode. The
name of the visitor class is the same as the name of the corresponding abstract syntax metaclass with the word “Activation”
appended. For example, the activation visitor class for the abstract syntax metaclass JoinNode is called JoinNodeActivation.
Note that actions are activity nodes, so that the semantics of actions are specified using activation visitor classes (see 8.10).

Activity node activations are always created within an activity node activation group. This concept is introduced in the
execution model to handle nested groups within an activity. The activity itself is considered to implicitly be the top-level

group.
Token and Offer Flow

Note that, consistent with the overall use of the Visitor Pattern (see 8.3.1), the activity execution model intentionally has a
largely parallel structure to the abstract syntax model from 7.10. However, there are concepts introduced in the semantic
model for which there is no explicit syntax in UML. In this case, the most important such concepts are those of token and
offer. Consider the simple activity model shown in Figure 8.20. Figure 8.21 shows the abstract syntax representation of this
model, which may then be given the semantic interpretation shown in Figure 8.22.

Simple Activity

b

Figure 8.20 - A Simple Activity Model

164 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+ ownedParameter

: Parameter

+ ownedParameter

. Activity

+ direction = in

+ activity + activity

+ parameter + activipy

: ActivityParameterNode

+ 50Urce

+ outgoing + foutput + finput

: Parameter

+ direction = out

+ parameter

: ActivityParameterMode

+ edge

: ObjectFlow I : InputPin | | : DutputPin I
+ incoming + target + source

Figure 8.21 - Abstract Syntax Representation of a Simple Activity Model

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+ outgoing

+ target

+ incoming

: ObjectFlow

165

: ActivityParameterNode

+ node
=

+ nodedctivations

: ActivityParameterNodeActivation

+ holder
+ heldTokens

+ 50urce

+ offeredTokens

+ outgoingEdges

+ node
& outgoing
. + edge
: ObjectFlow
. + edge
+ activity + incoming

+ incomingEdges

+ activityExecution

I : ActivityEdgeInstance |ﬂ

+ group

+ target

| 2 ActivityExecution |¢
+ target
- - + node T
+ activity : InputPin

+ finput

| : InputPinActivation

+ pinActivations

+ actionActivation

+ node

+ node VT
: ActionActivation
+ actionActivation
+ Joutput

+ pinActivations

: OutputPin

+ source

d
*edee + Outgoing

+ edge

1 : OutputPinActivation

+ source

+ outgoingEdges

J

; ObjectFlow

+ incoming

+ node
+ target

+ node

I ; ActivityEdgeInstance

+ incomingEdges

+ target

+ activationGroup |
|

+ nodeActivations

+ edgelnstances

: ActivityNodeActivationGroup

group

: ActivityParameteriNode

.

: ActivityParameterNodeActivation |

+ nodeActivations

Figure 8.22 - Semantic Interpretation of a Simple Activity Model at the Start of Execution

So far, the interpretation shown in Figure 8.22 provides essentially just the structural semantics of activities, in which an
activity execution is interpreted as an instance of the activity considered as a classifier. To truly capture the behavior
semantics, the interpretation needs to further define how the execution of the activity proceeds over time. The UML 2
Specification defines the behavior of an activity in terms of tokens that may be held by nodes and offers made between nodes

for the movement of these tokens.

FUML15-12 fUML should include streaming

The execute operation on an activity execution object places tokens on the
the activity. Figure 8.22 shows an early stage in the execution of the activity from Figure 8.20, in which the input activity

parameter node holds an object token corresponding to the input parameter value for the activity execution and this node is
offering the token to the input pin of the action. The behavioral semantic rules of UML activity execution then determine if
and when the action will accept the offered token to its input pin.

166

input activity parameter nodes of

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-12 fUML should include streaming

Presuming that the input pin has multiplicity of 1 and a token for a single value has been offered, the action will accept the
offer, receive the offered token on its input pin and fire its own behavior. A token with the result value from this behavior
will then be placed on the output pin of the action and subsequently offered to the output parameter node. Figure 8.23 shows
the semantic interpretation of this successor to the earlier stage of execution shown in Figure 8.22. The execution of this
activity then concludes with the output activity parameter node accepting the offered token. At the end of the execution of an

activity, the execute operation then places the values in tokens held by any
onto the corresponding output parameters of the activity.

output activity parameter nodes

Note: In the UML abstract syntax, pins are multiplicity elements with optional ordering and so are parameters. However,
while activity parameter nodes may be typed, they are not multiplicity elements and they cannot be specifically identified as
ordered. Nevertheless, the f{UML semantics interprets an output activity parameter node as effectively having the ordering
specified for its associated parameter. Thus, when multiple tokens flow from an ordered output pin to an output activity
parameter node, this ordering is preserved when the values on the tokens are ultimately placed on the corresponding output

parameter.
+ node e
| : ActivityParamaterNode I" I 1 ActivityParameterNodeActivation ! + NodeActivations
+ hode + source
+ outgoing + outgoingEdges
: ObjectFlow + edge I : ActivityEdgeInstance
+ edge -) i -
+ activity + Incoming + incomingEdiges +group
+ activityExecution ot . 0
: Activity I : ActivityExecution I% + aCtvationGroup I : ActivityNodeActivationGroup |
+ target + target
» K - + node . - A
+ activity : InputPin = InputPinActivation + gijoup
+ finput + pinActivations
+ actionActivation + nodelctivations
+ node - o
< : ActionActivation
+ actionActivation
+ Joutput + pinActivations
- Outputpin |<--n2de | OutputPinActivation + heldTokens
+ hiolder y
+ source .
+ source + offeredTokens
+ edge A]
+ outgaing + outgoingEdges + edgelnstances
- .. +edge — + offers _ %
: ObjectFlow = I : ActivityEdgeInstance | >| 10ffer
+ incoming + incomingEdges
+ node]
+ target . + target
+ node

<

: ActivityParameterNode

: ActivityParameterNodeActivation | o
L + nodeActivations

Figure 8.23 - Semantic Interpretation of a Simple Activity Model Just Prior to Completion of Execution

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

167

Threading Model

The execution semantics for activities in UML places no restriction on the concurrent activation of activity nodes within an
activity, other than that imposed by the semantics of token and offer flow across the activity edges connecting the nodes. The
execution model captures this concurrent execution semantics through an implicit concept of threading.

When an activity node activation produces tokens and is ready to offer them to downstream activations, it calls the sendOffer
operation on outgoing activity edge instances. The edge instance sendOffer operation, in turn, signals to the target activity
node activation that an offer is available by calling the receiveOffer operation. The target activity node activation then

checks if its execution prerequisites are satisfied (encoded in the method of the isReady operation for each kind of activity
node activation) and, if so, it accepts the pending offers made to it using its takeOfferedTokens operation and then calls its
fire operation.

Note that, in the execution model, the self-calls to the isReady operation and, if the activation is ready, to the
takeOfferedTokens operation happen within a single isolated region-that is, a structured activity node with mustlsolate =
true. This ensures that, if the takeOfferedTokens operation is invoked, then any offers checked by the isReady operation
cannot be accepted by any other activity node activation before the takeOfferedTokens operation completes. The invocation
of the fire operation, however, does not occur within this isolated region, in order to not block continued concurrency with
other activity node activations. (See 8.10.1 for a discussion of the semantics of structured activity nodes with mustlsolate =
true.)

The method of the fire operation for an activity node activation captures the execution behavior of the corresponding activity
node, which may then cause new offers to be sent further downstream. While there is no explicit class for it in the Execution
Model, an extended chain of sendOffer-receiveOffer-fire-sendOffer calls can be considered to be a single thread of execution
through an activity.

When an activity begins execution, a control token is implicitly placed on each enabled node. Enabled nodes include initial
nodes, input activity parameter nodes, and actions with no incoming control nodes or input pins. If such an enabled node is
immediately ready to fire, then it begins an execution thread within the activity execution. If there is more than one enabled
node that fires, then each one begins a concurrent thread within the activity execution.

Note: The UML 2 Specification (subclause 15.2.3.6) states that “When an Activity is first invoked...A single control token is
placed on each enabled node and they begin executing concurrently. Such nodes include ExecutableNodes...with no
incoming ControlFlows and no mandatory input data....” Actions are kinds of executable nodes, which has “mandatory input
data” if it has input pins, at least one of which has a multiplicity lower bound greater than zero. On the other hand, if the
action has input pins, but they all have multiplicity lower bounds of zero, then placing a control token on the action will
cause it to fire immediately. However, this is likely not to be the expected behavior, since, having input pins, the presumption
is that the modeler expected the action to have at least some input. Therefore, f{UML requires that an action with input pins
have an offer on at least one of the pins before it fires, even if all the input pins have zero multiplicity lower bound.

It is also possible for a thread to split. This occurs whenever the same offer is made to multiple outgoing edges, such as when
there are multiple edges leaving an output pin, fork node or action. Again, each outgoing thread executes concurrently-which
is modeled by requiring that the sendOffer calls on outgoing edges are all made concurrently.

Note: This model of execution concurrency does not require the implementation of actual parallelism in a conforming
execution tool. It simply means that such parallelism is allowed and that the execution semantics provide no further
restriction on the serialization of execution across concurrent threads.

A thread ends when a target activity node activation does not accept an offer passed to it along the thread. In this case, the
receiveOffer operation on the target node activation returns without calling the fire operation, and the chain of calls making
up the thread terminates. For example, the input pin of an action cannot accept an offer unless its action as a whole is ready
to execute (see 8.10.1). Therefore, if an action has several input pins with non-zero multiplicity lower bound, then offers
need to be delivered to every input pin before the action can execute. Thus, all the threads delivering these offers, except the

168 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

last one, will terminate at the action input pin activations. Only the thread delivering the final offer (assuming all the other
offered tokens are still available) will result in the action firing, with the action execution continuing on that thread.

FUML15-2 The fUML subset should support the raising and handling of exceptions
FUML15-12 fUML should include streaming

If an activity has no streaming parameters, anThe execution of theasn activity terminates when all threads within it have
ended or with the raising of an exception. Such termination may happen naturally when, for example, all tokens are
consumed by nodes that do not produce any new offers, or it may be forced by an activity final node. When an activity final
node fires, it causes its enclosing activity execution to call the terminate operation on all activity node activations within it.
Once a node activation is terminated, it will no longer accept any offers and, as a result, all executing threads will eventually
end, resulting in the termination of the activity execution. When an exception is raised. the activity execution terminates in the
same way as in the case of the firing of an activity final node, but it also records the exception value that caused the termination.

FUML15-12 fUML should include streaming

parameter nodes corresponding to those parameters. Values posted to a streaming input parameter will be passed to the
corresponding activity parameter node via the listener. An activity with streaming input parameters can continue execution even
after all threads within it have (temporarily) ended, because additional values posted to those input parameters can trigger new
threads within the activity execution. The execution of such an activity only terminates if this is forced by an activity final node
or the raising of an exception, or if the execution is explicitly terminated by the invoker of the activity.

If an activity has streaming output parameters, then the values of any tokens accepted by the activity parameter nodes of
streaming output parameters are immediately posted to those output parameters and passed on to their listeners. Note that an
activity whose only streaming parameters are output parameters cannot continue execution once all threads within it have
ended. This is because the invocation of the activity is synchronous, so, if there are no streaming input parameters, once the
initial execution returns, there is no way to trigger new threads within the activity execution.

FUML15-2 The fUML subset should support the raising and handling of exceptions

Exception Handling

Any executable node in an activity may be protected by one or more exception handlers. If an exception is raised during the
firing of a protected executable node, then the exception value is checked to see if it is an instance of any of the exception types
of one of the exception handlers for the node. If so, then the exception value is offered to the body of the handler (which must
also be an executable node) on exception input object node. (See the UML 2 Specification, subclause 15.5.3.2.)

The semantics of exception handling is captured in the ExecutableNodeActivation class. However, other than this, executable
nodes do not have any specrﬁc execution semantlcs The only concrete executable nodes in UML are actions. Therefore, the

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 169

FUML15-12 fUML should include streaming

UML::StructuredClassifiers:: | _+types fUML_Semantics::Semantics::StructuredClassifiers::
Class * * Object
UML::CommonBehavior:: fUML_Semantics::Semantics::CommonBehavior::
Behavior Execution

I T

+activi - T
activity UML..A(I:t\.\/ltles.. ActivityExecution
0.1 Activity
+isStreaming : Boolean
+activity |0..1 +execute()
+complete()
+copy() : Value
+new_() : Value
+terminate()
+activityExecution [0..1
+activationGroup |1
ActivityNodeActivationGroup
+run(activations : ActivityNodeActivation [*])
+checklncomingEdges(incomingEdges : ActivityEdgelnstance [*], activations : ActivityNodeActivation [*]) : Boolean
+runNodes(nodes : ActivityNode [*])
+activate(nodes : ActivityNode [*], edges : ActivityEdge [*])
+terminateAll()
+createNodeActivations(nodes : ActivityNode [*])
+createNodeActivation(node : ActivityNode) : ActivityNodeActivation
+getNodeActivation(node : ActivityNode) : ActivityNodeActivation [0..1]
+createEdgelnstances(edges : ActivityEdge [*])
+getActivity Execution() : ActivityExecution
+getOutputParameterNodeActivations() : ActivityParameterNodeActivation [*]
+hasSourceFor(edgelnstance : ActivityEdgelnstance) : Boolean
+isSuspended() : Boolean
+suspend(activation : ActivityNodeActivation)
+resume(activation : ActivityNodeActivation)
0.1
+group (1 +group |1
+edge | * +edgelnstances |*
UML::Activities:: +edge fUML_Semantics::Semantics::Activities::
ActivityEdge 0.1 * ActivityEdgelnstance
+nodeActivations |* +suspendedActivations | *
+node UML::Activities:: +node fUML_Semantics::Semantics::Activities::
* ActivityNode 0.1 * ActivityNodeActivation
AN
UML-Activities - fUML_Senfntl.cs::ASerT]anflcs::Actlons::
ExecutableNode ctionActivation
AN
UML::Actions::
Action

Figure 8.24 - Activity Executions

170 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-2 The fUML subset should support the raising and handling of exceptions
FUML15-12 fUML should include streaming

- +outgoing +source
UML:Activities ; 1t UML::Activities: |fUML_Semamics::Semantics::Loci::
+argef o i
; ActivityNode SemanticVisitor
+node |0..1
ActivityEdgelnstance) . ActivityNodeActivation
+incomingEdges +arget

+sendOffer(tokens : Token [*]) +running : Boolean

+countOfferedValues() : Integer * 1 — — — —
+takeOfferedTokens() : Token [*] +initialize(node : ActivityNode, group : ActivityNodeActivationGroup)
+takeOfferedTokens(maxCount : Integer) : Token [*] +outgoingEdges +source | *1un()

+getOfferedTokens() : Token [*] " +receiveOffer()

1 +takeOfferedTokens() : Token [*]
+fire(incomingTokens : Token [])
0.1 +sendOffers(tokens : Token [*])
+terminate()

+isReady() : Boolean
+isRunning() : Boolean

+hasOffer() : Boolean

+offers [0..* +addOutgoingEdge(edge : ActivityEdgelnstance)
+addIncomingEdge(edge : ActivityEdgelnstance)
Offer +createNodeActivations()

+countOfferedValues() : Integer +createEdgelnstances() »)
+getOfferedTokens() : Token [] +|sSAou[_ct3For(edg_elns@nce_ ‘_AArI:annyEfjgelnstance) : Boolean
+removeOfferedValues(count : Integer) g yE ution() : Activity Jtion
+removeWithdrawnTokens() g::gizzﬂi:ngg&::ﬁ() |_ zt;lsect

+ :

hasTokens() : Boolean +getNodeActivation(node : ActivityNode) : ActivityNodeActivation [0..1]
0.1 +addToken(token : Token)

+removeToken(token : Token) : Integer

+addTokens(tokens : Token [*])

+takeTokens() : Token [*]

+offeredTokens |0..* +clearTokens()
+getTokens() : Token [*]
Token +heldTokens +holder +suspend()
+transfer(holder : ActivityNodeActivation) : Token [* 0.1 +resume()
+withdraw()
+baseToken [+equals(other : Token) : Boolean T
1 +copy() : Token
+isWithdrawn() : Boolean
+isControl() : Boolean B — —
+getValue() : Value [0..1] ObjectNodeActivation ControlNodeActivation
~ +offeredTokenCount : Integer +fire(incomingTokens : Token [])
+run()
+sendOffers(tokens : Token []) ExecutableNodeActivation
+terminate() " .
+addToken(token : Token) +propagathxcep(|or.1(exception : Value) _
* +removeToken(token : Token) : Integer +getMatch|ngEx_ceptlonHandlers(exception : Value) : ExceptionHandler
- +clearTokens() +handle(exception : Value, handler : ExceptionHandler)
ForkedToken ControlToken ObjectToken X
+countOfferedValues() : Integer
+remainingOffersCount : Integer +equals(other : Token) : Boolean | |+equals(other : Token) : Boolean +sendUnofferedTokens()
+baseTokenlsWithdrawn : Boolean +copy() : Token +copy() : Token +countUnofferedTokens() : Integer
— - +isControl() : Boolean +isControl() : Boolean +getUnofferedTokens() : Token [*]
:'5%";“0'8 : Boolean +getValue() : Value [0..1] +getValue() : Value [0..1] +takeUnofferedTokens() : Token [*]
-withdraw
+copy() : Token [
+equals(otherToken : Token) : Boolean
+getValue() : Value [0..1] +value |0..1 |
fUML_Semantics::Semantics::Values:: A y A C A
Value +run() +ire(incomingTokens; Token[*])
+fire(incomingTokens : Token [*])
+clearTokens() T
+nodeActivation |1 DataStoreNodeActivation
+addToken(token : Token)
+removeToken(token : Token) : Integer
0.
Activi rNod ingP: rListener

y

+post(values : Value [*])
+isTerminated() : Boolean

|

fUML_Semantics::Semantics::CommonBehavior::
StreamingParameterListener

Figure 8.25 - Node Activations

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 171

ControlNodeActivation
JA

InitiaINodeActivation JoinNodeActivation MergeNodeActivation

+ire(incomingTokens : Token [*]) +isReady() : Boolean
ForkNodeActivation ActivityFinalNodeActivation FlowFinalNodeActivation
+fire(incomingTokens : Token [*]) +fire(incomingTokens : Token [*]) +fire(incomingTokens : Token [*])
+terminate()

DecisionNodeActivation

+fire(incomingTokens : Token [*])

+getDecisionValues(incomingTokens : Token [*]) : Value [*]
+executeDecisionInputBehavior(inputValue : Value [0..1], decisionInputValue : Value [0..1]) : Value
+terminate()

+isReady() : Boolean

+takeOfferedTokens() : Token [*]

+getDecisionInputFlowValue() : Value [0..1]
+getDecisionInputFlowInstance() : ActivityEdgelnstance [0..1]

+test(guard : ValueSpecification, value : Value) : Boolean
+removedJoinedControlTokens(incomingTokens : Token [*]) : Token [*]
+hasObjectFlowInput() : Boolean

+decisionInputExecution |0..1

fUML_Semantics::Semantics::CommonBehavior::
Execution

Figure 8.26 - Control Node Activations

8.9.2 Class Descriptions

8.9.2.1 ActivityEdgelnstance

An activity edge instance is a connection between activity node activations corresponding to an edge between the
corresponding nodes of those activations

Generalizations

None

Attributes

None

Associations

e edge : ActivityEdge [0..1]
The activity edge of which this is an instance.
[This is optional to allow for an implicit fork node execution to be connected to its action execution by an edge
instance which does not have a corresponding node in the model.]

* group : ActivityNodeActivationGroup
The activity group that contains this activity edge instance.

172 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

¢ offers : Offer [0..¥]

¢ source : ActivityNodeActivation
The source of this activity edge instance.
The node of the source must be the same as the source of the edge of this edge instance.

e target : ActivityNodeActivation
The target of this activity edge instance.
The node of the target must be the same as the target of the edge of this edge instance.

Operations

[1] countOfferedValues () : Integer

// Return the number of values being offered in object tokens.

int count = 0;
OfferList offers = this.offers;
for (int 1 = 0; 1 < offers.size(); i++) {

count = count + offers.getValue (i) .countOfferedValues();

return count;

[2] getOfferedTokens () : Token [0..*]
// Get the offered tokens (after which the tokens will still be offered).

TokenList tokens = new TokenList ();

Offerlist offers = this.offers;
for (int 1 = 0; 1 < offers.size(); i++) {
TokenList offeredTokens = offers.getValue (i) .getOfferedTokens();

for (int 7 = 0; j < offeredTokens.size(); j++) {

tokens.addValue (offeredTokens.getValue(j))

return tokens;

[3] hasOffer () : Boolean

// Return true if there are any pending offers.

boolean hasTokens = false;

int 1 = 1;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 173

while ('hasTokens & 1 <= this.offers.size()) {
hasTokens = this.offers.getValue(i-1) .hasTokens();

i =1+ 1;

return hasTokens;

[4] sendOffer (in tokens : Token [0..*])
// Send an offer from the source to the target.
// Keep the offered tokens until taken by the target.

// (Note that any one edge should only be handling either all object tokens or all control
tokens.)

Offer offer = new Offer();
for (int 1 = 0; i < tokens.size(); 1++) {

Token token = tokens.getValue (i);

offer.offeredTokens.addValue (token) ;

this.offers.addValue (offer);

this.target.receiveOffer();

[5] takeOfferedTokens () : Token [0..*]
// Take all the offered tokens and return them.

TokenList tokens = new TokenList();

while (this.offers.size() > 0) {
TokenList offeredTokens = this.offers.getValue(0).getOfferedTokens ()
for (int i = 0; 1 < offeredTokens.size(); i++) {
tokens.addValue (offeredTokens.getValue(i)) ;
}

this.offers.removeValue (0) ;

return tokens;

[6] takeOfferedTokens (in maxCount : Integer) : Token [0..*]

174 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Take all the offered tokens, up to the given maximum count of non-null object tokens, and

return them.

TokenList tokens = new TokenList ();

int remainingCount = maxCount;

while (this.offers.size() > 0 & remainingCount > 0) {
Offer offer = this.offers.getValue(0);
TokenList offeredTokens = offer.getOfferedTokens();
int count = offer.countOfferedValues|();

if (count <= remainingCount) {
for (int 1 = 0; 1 < offeredTokens.size(); 1i++) {

tokens.addValue (offeredTokens.getValue(i)) ;

}

remainingCount = remainingCount - count;
this.offers.removeValue (0) ;

} else {
for (int i = 0; 1 < remainingCount; i++) {

Token token = offeredTokens.getValue (i) ;
if (token.getValue() != null) {
tokens.addValue (token) ;

}

offer.removeOfferedValues (remainingCount) ;

remainingCount = 0;

return tokens;

8.9.2.2 ActivityExecution
An activity execution is used to execute a specific activity. The type of the activity execution must be an activity.

When executed, the activity execution creates activity edge instances for all activity edges, activity node activations for all
activity nodes and makes offers to all nodes with no incoming edges.

Execution terminates when either all node activations are complete, or an activity final node is executed.

Generalizations

¢ Execution

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 175

Attributes
FUML15-12 fUML should include streaming

‘ Slome

isStreaming
Whether the activity being executed has streaming input parameters.

Associations

* activationGroup : ActivityNodeActivationGroup
The group of activations of the activity nodes of the activity.

Operations
FUML15-12 fUML should include streaming

1] complete ()

Copy the wvalues on the tokens offered by output parameter nodes for

non-stream parameters to the corresponding output parameter values.

Activity activity = (Activity) (this.getTypes().getValue(0));

ActivityParameterNodeActivationlList outputActivations = this.activationGroup

.getOutputParameterNodeActivations () ;

for (int i = 0; i < outputActivations.size(); i++) {

ActivityParameterNodeActivation outputActivation = outputActivations

.getValue (i) ;

if (!parameter.isStream) {
ParameterValue parameterValue = new ParameterValue();

parameterValue.parameter = parameter;

Tokenlist tokens = outputActivation.getTokens();

for (int 7 = 0; j < tokens.size(); j++) {

Token token = tokens.getValue (J):;

Value value = ((ObljectToken) token).value;

if (value !'= null) {

parameterValue.values.addValue (value) ;

|

|
|
|
|
|
|
|
|
|
|
|
|
|
‘ Parameter parameter = ((ActivityParameterNode) (outputActivation.node)) .parameter;
|
|
|
|
[
|
|
|
|
|
|
|
|
|

176 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

z

this.setParameterValue (parameterValue)

Value

| [+2] copy ()

ion.

t

is a copy of this execu

ion that i

ty execut

ivi

// Create a new act

/7

ity as this

ivi

for the same act

tion

1lng execu

t returns a non-execut

jus

This currently

[Note

execution.]

return super.copy();

FUML15-12 fUML should include streaming

| [32] execute ()

na
iSzzac

PEEN
bl

o
SE=

n
Fr

o

finer
SRS

13
\Sa =

i

£
+

£ axz3+
===

+h 3

(SE 22

n

1

+ 3 ey
S====

ISacE 22

+

EeaE

raod

££

+ 1

+1h
SE23

At
F

Arva=

Az T

gt —PoEaitt

oY

===

=

P+

Sx 3 ==

EENENERS
ottt

EeaE
Tept

Sondina
JSASETIC==2as]

¥

d,
n
I~ i
B 5
- i
NI i
1 [OR
- A
] +
P §OJ
ol &
h oo
€
.
- 4
B b
B b
b -
- 4
P
L 4
pii B
I B b,
T o, 4
T PN i e
M\ o~ [l o B o~ -+
T v | T 4+
P [OR . [
- B & i 5P
B b i + % TR iR
€ =9
= bl -H -H Y q PS
p @ b Bl 4+] i T W"
& i b 1 o N BN
P 4P % i ¢ &
o .ﬂ & - H 2 - & B i)
T ~ P I | b & g +H -+
b T Lo £ + 5 5
4 -t I A~ 7 p 5 Ep i
-H a4 N 4 &4 a n A . NS
[ON #4 4b i} K T By
i $ P & by »
P o] iy 2 L2 N E B
w“ | 4 b, & o L -F Lo i
v b 4 S A AR T QN P g
o o g T o 4 ("I HE S 4 K0}
N & H @ » 4 B A~ w
N 4 o " A N
-4 H ER L Wb mw ¢ o { M q 5
& HooB o -H i = I TR S G b
N 1 4 T K 54 i} i h b
A .M 1 .% [l p i . Ef]
3 h F R 4 -~ P 9 O _m an
4 hoP b A 5 5 F P
il 24 4 +C.. =4 o, ¥ & K T .
i [T] 5 L.M [oA L.M mu L¢
“ A 1 E 7 PN . 1
n & -4 -h NP o P £ K 3+ T 4
b P 4 P9 i P+ B E
S] & & b | +
T , 5 4 o o) g
N . N B @, | | H
, T T D & o .
]] 1) g q B
=4 i] P] 4
N [T TR T T 6 T 5 & WA mw
P o b b O & TP [IS
- & r & D & o K B o H 4 o H
j L& 4 $F 1 + 01 b
K [R R & - - b 4 F 09 OB
EX B #4 MJ | ..J A 3 m JRE A
1 B ¢ ¢ J] W e & ﬂ R P oo
- Hoo- [a I - E B T = |
Bl H @y ‘“4 D W4 vm ww] J,
b 5 & ¢ i R 5,
b . . . Y . N A = A
- h -
4+ -H - il W -H H
4 46 4 Koo
L ER il uly

177

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+

[/ Execute the activity for this execution by creating an activity node

activation group and activating all the activity nodes in the

activity. If the activity has no streaming input parameters, then, when

the execution is complete, copy the values on the tokens offered by

output parameter nodes to the corresponding output parameters.

Activity activity = (Activity) (this.getTypes().getValue(0));
this.isStreaming = false;
int i = 1;
Parameterlist parameters = activity.ownedParameter;
Parameter parameter = parameters.getValue(i - 1);

this.isStreaming =

(parameter.direction == ParameterDirectionKind.in |

parameter.direction == ParameterDirectionKind.inout) &

parameter.isStream;

i=31i+ 1;

1

this.activationGroup = new ActivityNodeActivationGroup() ;

this.activationGroup.activityExecution = this;

this.activationGroup.activate (activity.node, activity.edge):;

if (!this.isStreaming) {

this.complete () ;

1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ while (i <= parameters.size() & !this.isStreaming) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

‘ [34] new_ () : Value

// Create a new activity execution with empty properties.

return new ActivityExecution();

178 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-12 fUML should include streaming

[45] terminate ()

Yerminat e B T e B e EOE e S B e e S e
B
£ (1 2 2 2 Ial 130 | — 227170 I

B e st

1 + 1 + 3 Al rotir + rrnd o ot 11 () -«

chisractvatlenGeony rminateAtl
+
// Terminate all node activations. If this execution is non-streaming
// then this is sufficient to result in the activity execution ultimatel

// completing. Otherwise, explicitly complete the execution.

if (this.activationGroup !'= null) {

this.activationGroup.terminateAll () ;

if (this.isStreaming) {

this.complete () ;

8.9.2.3 ActivityFinalNodeActivation
An activity final node activation is a control node activation for a node that is an activity final node.

Generalizations

¢ ControlNodeActivation
Attributes

None

Associations

None

Operations

[1] fire (in incomingTokens : Token [0..*])
// Terminate the activity execution or structured node activation

// containing this activation.

if (incomingTokens.size() > 0 | this.incomingSize() == 0) {

if (this.group.activityExecution !=null) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

179

this.group.activityExecution.terminate () ;

} else if (this.group.containingNodeActivation != null) {
this.group.containingNodeActivation.terminateAll () ;

} else if (this.group instanceof ExpansionActivationGroup) {

((ExpansionActivationGroup) this.group) .regionActivation.terminate () ;

8.9.2.4 ActivityNodeActivation

An activity node activation is used to define the behavior of an activity node in the context of a containing activity or
structured activity node.

Generalizations

¢ SemanticVisitor

Attributes
FUML15-36 Typo fixes

* running : Boolean
If true, this node activation is enabled for execution once all its other prerequiesites are satisfied.

Associations

e group : ActivityNodeActivationGroup
The group that contains this activity node activation.

¢ heldTokens : Token [0..*]

¢ incomingEdges : ActivityEdgelnstance [0..*]
The set of activity edge instances for the incoming edges of the node.

* node : ActivityNode [0..1]
The activity node being activated by this activity node activation. The node must be owned by the
activity (type) of the activity execution of this node activation.
[This is optional, to allow for fork node edge queues and implicit fork and join node activations for
actions to not have nodes in the model.]

» outgoingEdges : ActivityEdgelnstance [0..*]
The set of activity edge instances for the outgoing edges of the node.

Operations

[1] addIncomingEdge (in edge : ActivityEdgelnstance)

// Add an activity edge instance as an incoming edge of this activity node activation.

edge.target = this;
this.incomingEdges.addValue (edge) ;

180 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[2] addOutgoingEdge (in edge : ActivityEdgelnstance)

// Add an activity edge instance as an outgoing edge of this activity node activation.

edge.source = this;

this.outgoingEdges.addValue (edge) ;

[3] addToken (in token : Token)
// Transfer the given token to be held by this node.

Token transferredToken = token.transfer (this);

this.heldTokens.addValue (transferredToken) ;

[4] addTokens (in tokens : Token [0..*])
// Transfer the given tokens to be the held tokens for this node.

for (int 1 = 0; 1 < tokens.size(); i++) {
Token token = tokens.getValue(i);

this.addToken (token) ;

[5] clearTokens ()
// Remove all held tokens.

while (this.heldTokens.size() > 0) {
this.heldTokens.getValue (0) .withdraw() ;

[6] createEdgelnstances ()
// Create edge instances for any edge instances owned by the node for this activation.

// For most kinds of nodes, this does nothing.

return;

[7] createNodeActivations ()
// Create node activations for any subnodes of the node for this activation.

// For most kinds of nodes, this does nothing.

return;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 181

[8] fire (in incomingTokens : Token [0..*])

Carry out the main behavior of this activity node.

[9] getActivityExecution () : ActivityExecution

// Return the activity execution that contains this activity node activation, directly or
indirectly.

return this.group.getActivityExecution() ;

[10] getExecutionContext () : Object

// Get the context object for the containing activity execution.

return this.getActivityExecution () .context;

[11] getExecutionLocus () : Locus

// Get the locus of the containing activity execution.

return this.getActivityExecution () .locus;

[12] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Get the activity node activation corresponding to the given activity node, in the context
of this activity node activation.

// By default, return this activity node activation, if it is for the given node, otherwise
return nothing.

ActivityNodeActivation activation = null;
if (node == this.node) {
activation = this;

return activation;

[13] getTokens () : Token [0..*]
// Get the tokens held by this node activation.

TokenList tokens = new TokenList () ;

TokenList heldTokens = this.heldTokens;

for (int 1 = 0; i < heldTokens.size(); 1i++) {

182 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Token heldToken = heldTokens.getValue (i) ;
tokens.addValue (heldToken) ;

return tokens;

[14] initialize (node : ActivityNode, group : ActivityNodeActivationGroup)

// Initialize this node activation.
this.node = node;

this.group = group;

this.running = false;

[15] isReady () : Boolean
// Check if all the prerequisites for this node have been satisfied.

// By default, check that this node is running.

return this.isRunning();

[16] isRunning () : Boolean

// Test whether this node activation is running.

return this.running;

[17] isSourceFor (in edgelnstance : ActivityEdgelnstance) : Boolean

// Check if this node activation is the effective source for the given edge instance.

return edgelnstance.source == this;

[18] receiveOffer ()

// Receive an offer from an incoming edge.

// Check if all prerequisites have been satisfied. If so, fire.
_beginIsolation();

boolean ready = this.isReady();

TokenList tokens = new TokenList();

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 183

if (ready) {
tokens = this.takeOfferedTokens();

_endIsolation();

if (ready) {

this.fire (tokens);

[19] removeToken (in token : Token) : Integer
// Remove the given token, if it is held by this node activation.

// Return the position (counting from 1) of the removed token (0 if there is none removed).

boolean notFound = true;

int 1 = 1;

while (notFound & 1 <= this.heldTokens.size()) {
if (this.heldTokens.getValue(i-1) == token) {

this.heldTokens.remove (i-1);

notFound = false;

if (notFound) {

i = 0;
} else {
i=1-1;

return i ;

[20] resume ()

// Resume this activation within the activation group that contains it.

this.group.resume (this) ;

[21] run ()

// Run the activation of this node.

184 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

this.running = true;

[22] sendOffers (in tokens : Token [0..*])

// Send offers for the given set of tokens over all outgoing edges (if there are any tokens
actually being offered).

if (tokens.size()>0) {

// *** Send all outgoing offers concurrently. ***

ActivityEdgeInstancelist outgoingEdges = this.outgoingEdges;

for (Iterator i1 = outgoingEdges.iterator(); i.hasNext();) {
ActivityEdgeInstance outgoingEdge = (ActivityEdgelInstance)i.next();

outgoingEdge.sendOffer (tokens) ;

[23] suspend ()

// Ssupend this activation within the activation group that contains it.

this.group.suspend(this);

[24] takeOfferedTokens () : Token [0..*]

// Get tokens from all incoming edges.

TokenList allTokens = new TokenList();

ActivityEdgeInstancelist incomingEdges = this.incomingEdges;

for (int i = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance incomingEdge = incomingEdges.getValue (i) ;
TokenList tokens = incomingEdge.takeOfferedTokens() ;
for (int j = 0; j < tokens.size(); J ++) {

Token token = tokens.getValue(J);
allTokens.addValue (token) ;

return allTokens;

[25] takeTokens () : Token [0..*]
// Take the tokens held by this node activation.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 185

TokenList tokens = this.getTokens();

this.clearTokens () ;

return tokens;

[26] terminate ()

// Terminate the activation of this node.

this.running = false;
8.9.2.5 ActivityNodeActivationGroup

An activity node group is a group of nodes that are activated together, either directly in the context of an activity execution,
or in the context of.

Generalizations

None

Attributes

None

Associations

* activityExecution : ActivityExecution [0..1]
The activity execution to which this group belongs.
(This will be empty if the group is for a structured activity node activation.)

* containingNodeActivation : StructuredActivityNodeActivation [0..1]
The structured activity node activation to which this group belongs.
(This will be empty if the group is for an activity execution.)

¢ edgelnstances : ActivityEdgelnstance [0..*]
The set of activity edge instances for this group.

* nodeActivations : ActivityNodeActivation [0..*]
The set of activity node executions for this group.

» suspendedActivations : ActivityNodeActivation [0..*]
Activity node activations in this activation group that are suspended waiting for an event occurrence. If an activation
group has a containing node activation and any suspended activations, then the containing node activation will also be
suspended.

Operations

[1] activate (in nodes : ActivityNode [0..*], in edges : ActivityEdge [0..*])

// Activate and run the given set of nodes with the given set of edges, within this
activation group.

186 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

this.createNodeActivations (nodes) ;
this.createEdgeInstances (edges) ;

this.run (this.nodeActivations) ;

[2] checkIncomingEdges (in incomingEdges : ActivityEdgelnstance [0..*], in activations : ActivityNodeActivation [0..*]) :
Boolean

// Check if any incoming edges have a source in a given set of activations.

int §J = 1;
boolean notFound = true;
while (j <= incomingEdges.size() & notFound) {
int k = 1;
while (k <= activations.size () & notFound) {
if (activations.getValue (k-1).isSourceFor (incomingEdges.getValue (j-1))) {
notFound = false;
}
k =%k + 1;
}
J=3+ L

return notFound;

[3] createEdgelnstances (in edges : ActivityEdge [0..*%])

// Create instance edges for the given activity edges, as well as for edge instances within
any nodes activated in this group.

for (int 1 = 0; 1 < edges.size(); 1i++) {

ActivityEdge edge = edges.getValue (i) ;

ActivityEdgeInstance edgelnstance = new ActivityEdgelInstance();
edgelnstance.edge = edge;
edgeInstance.group = this;

this.edgeInstances.addValue (edgeInstance) ;
this.getNodeActivation (edge.source) .addOutgoingEdge (edgeInstance) ;
this.getNodeActivation (edge.target) .addIncomingEdge (edgelInstance) ;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 187

ActivityNodeActivationList nodeActivations = this.nodeActivations;

for (int 1 = 0; 1 < nodeActivations.size(); i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue (i) ;
nodeActivation.createEdgelInstances();

}

[4] createNodeActivation (in node : ActivityNode) : ActivityNodeActivation

// Create an activity node activation for a given activity node in this activity node
activation group.

ActivityNodeActivation activation = (ActivityNodeActivation)
(this.getActivityExecution () .locus.factory.instantiateVisitor (node));

activation.initialize (node, this);

this.nodeActivations.addValue (activation) ;

activation.createNodeActivations () ;

return activation;

[5] createNodeActivations (in nodes : ActivityNode [0..*])

// Add activity node activations for the given set of nodes to this group and create edge
instances between them.

for (int i = 0; 1 < nodes.size(); 1i++) {

ActivityNode node = nodes.getValue (i) ;

this.createNodeActivation (node) ;

[6] getActivityExecution () : ActivityExecution

// Return the activity execution to which this group belongs, directly or indirectly.

ActivityExecution activityExecution = this.activityExecution;
if (activityExecution == null) {
activityExecution = this.containingNodeActivation.group.getActivityExecution()

return activityExecution;

188 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[7] getNodeActivation (in node : ActivityNode) : ActivityNodeActivation [0..1]

// Return the node activation (if any) in this group,

// or any nested group, corresponding to the given activity node.
// If this is a group for a structured activity node activation,

// also include the pin activations for that node activation.

ActivityNodeActivation activation = null;
if (this.containingNodeActivation != null && node instanceof Pin) {

activation = this.containingNodeActivation.getPinActivation ((Pin)node);
}
if (activation == null) {

int 1 = 1;

while (activation == null & i1 <= this.nodeActivations.size()) {

activation = this.nodeActivations.getValue (i-1) .getNodeActivation (node) ;

i =1+ 1;

return activation;

[8] getOutputParameterNodeActivations () : ActivityParameterNodeActivation [0..*]

// Return the set of all activations in this group of activity parameter nodes for output
(inout, out and return) parameters.

ActivityParameterNodeActivationList parameterNodeActivations = new
ActivityParameterNodeActivationList ()

ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int 1 = 0; 1 < nodeActivations.size(); i++) {
ActivityNodeActivation activation = nodeActivations.getValue (i) ;

if (activation instanceof ActivityParameterNodeActivation) ({
if (activation.incomingEdges.size() > 0 {

parameterNodeActivations.addValue ((ActivityParameterNodeActivation)activation);

return parameterNodeActivations;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 189

[9] hasSourceFor (edgelnstance : activityEdgelnstance) : Boolean
// Returns true if this activation group has a node activation

// corresponding to the source of the given edge instance.

boolean hasSource = false;
ActivityNodeActivationList activations = this.nodeActivations;
int 1 = 1;
while 'hasSource & 1 <= activations.size()) {
hasSource = activations.getValue(i-1).isSourceFor (edgelnstance);

i=1+1;
}

return hasSource;

[10] isSuspended () : Boolean
// Check if this activation group has any suspended activations and is,

// therefore, itself suspended.

return this.suspendedActivations.size() > 0;

[11] resume (activation : ActivityNodeActivation)

// Resume the given activation by removing it from the suspended

// activation list for this activation group. If this is the last
// suspended activation, and the activation group h as a containing

// node activation, then resume that containing activation.

boolean found = false;
int 1 = 1;
while (!found & i <= this.suspendedActivations.size()) {
if (this.suspendedActivations.get(i-1) == activation) {

this.suspendedActivations.removeValue (i-1);

found = true;

if (!this.isSuspended()) {

StructuredActivityNodeActivation containingNodeActivation =
this.containingNodeActivation;

if (containingNodeActivation != null) {

containingNodeActivation.resume () ;

190 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

}

[12] run (in activations : ActivityNodeActivation [0..*])

// Run the given node activations.

// Then concurrently send offers to all input activity parameter node activations (if any).
// Finally, concurrently send offers to all activations of other kinds of nodes that have

// no incoming edges with the given set (if any).

for (int 1 = 0; 1 < activations.size(); i++) {
ActivityNodeActivation activation = activations.getValue (i)

activation.run();

ActivityNodeActivationList enabledParameterNodeActivations = new
ActivityNodeActivationList () ;

ActivityNodeActivationList enabledOtherActivations = new ActivityNodeActivationList();
for (int 1 = 0; 1 < activations.size(); i++) {
ActivityNodeActivation activation = activations.getValue(i);

if (! (activation instanceof PinActivation |
activation instanceof ExpansionNode)) {

boolean isEnabled = this.checkIncomingEdges (activation.incomingEdges, activations);

// For an action activation, also consider incoming edges to input pins
if (isEnabled & activation instanceof ActionActivation) {
InputPinList inputPins = ((Action)activation.node) .input;
int 3 = 1;
while (Jj <= inputPins.size() & isEnabled) {
InputPin inputPin = inputPins.getValue(j-1);

ActivityEdgeInstanceList inputEdges =
((ActionActivation)activation) .getPinActivation (inputPin) .incomingEdges;

isEnabled = this.checkIncomingEdges (inputEdges, activations);

j=3+ 1

if (isEnabled) {

if (activation instanceof ActivityParameterNodeActivation) {

enabledParameterNodeActivations.addValue (activation) ;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 191

} else {

enabledOtherActivations.addValue (activation) ;

// *** Send offers to all enabled activity parameter nodes concurrently. ***
for (Iterator i1 = enabledParameterNodeActivations.iterator(); i.hasNext();) {
ActivityNodeActivation activation = (ActivityNodeActivation) 1i.next();

activation.receiveOffer () ;

// *** Send offers to all other enabled nodes concurrently. ***

for (Iterator 1 = enabledOtherActivations.iterator(); i.hasNext();) {
ActivityNodeActivation activation = (ActivityNodeActivation)i.next();
activation.receiveOffer () ;

}
[13] runNodes (in nodes : ActivityNode [0..*])

// Run the node activations associated with the given nodes in this activation group.

ActivityNodeActivationList nodeActivations = new ActivityNodeActivationList();
for (int i1 = 0; 1 < nodes.size(); i++) {

ActivityNode node = nodes.getValue (i) ;

ActivityNodeActivation nodeActivation = this.getNodeActivation (node);

if (nodeActivation != null) {

nodeActivations.addValue (nodeActivation) ;

this.run (nodeActivations);

[14] suspend (activation : ActivityNodeActivation)
// Suspend the given activation in this activation group. If this is
// the only suspended activation, and the activation group has a

// containing node activation, then suspend that containing activation.

if (!'this.isSuspended()) {

StructuredActivityNodeActivation containingNodeActivation =

192 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

this.containingNodeActivation;
if (containingNodeActivation != null) {

containingNodeActivation.suspend() ;

this.suspendedActivations.addValue (activation) ;

[15] terminateAll ()

// Terminate all node activations in the group.

ActivityNodeActivationList nodeActivations = this.nodeActivations;
for (int 1 = 0; 1 < nodeActivations.size(); i++) {
ActivityNodeActivation nodeActivation = nodeActivations.getValue(i);

nodeActivation.terminate () ;

8.9.2.6 ActivityParameterNodeActivation
An activity parameter node activation is an object node activation for a node that is an activity parameter node.

Generalizations

¢ ObjectNodeActivation

Attributes

None

Associations

None

Operations

[1] clearTokens ()

// Clear all held tokens only if this is an input parameter node.

if (this.node.incoming.size() == 0) {

super.clearTokens () ;

[2] fire (in incomingTokens : Token [0..*])
FUML15-12 fUML should include streaming

£ bl o g oot e Ad o +1n 3 ¥ PSR S P - D SOy P SR A P
—H—EhRe¥Fe—aFre—hRo—FhRCeomIRg—eagesS;— A S35 ah—acEr Vot roR—oFr a3 hput otV ey Porofete¥r—hRoeaes

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 193

£
£

nd
iSzzac s

naramat

£ axza+
3

aoramat A 2 A0 + + 1
F—FHGT Tttt

ERSC-CEE
ot

+

=Tt

™

Cot+ +1

A=)

+

PoEraet

=

=3

=

ottt

ot

Tt

=

b
£~

o

+h
\Sx22

By &
s ¢
h H
D o B
m sho4p
N
vw_ - | foa)
o
P -l &
T 4 -H J
it i QL
P 4 Mu
A P @
i
i
ni B B
'S v 4b
d & ~
m_ @ 4y n N
4 B v o) o)
b5 ki d 0)
£ Y 4 IS
i 4 > W T -
¥ D 0] D
p . o - It ‘
L b > = o o o o
- 4 - £ - o W o < —
4+ T 4 W) - T v I R e
T p 4 $)) o o o -
- 1 o © © wWogl ol v
b A poB > w W o —f —
bk + i 0] - g O s o J
oo & c J B 0] “H > g
N B) | e Y e
&£ ol o o a4 u 4 o
Tk ¢ NI 0 o A o o <
© i Ui o X g o o o A
T 4 ol ol o ol 9 — o w
-H g k0] 3 e @ IS
D T T b b I e 1479 5
A . 3+ By 2 I
T T & © O o 9 o © E
2 BN ¢ - & b= of o o v/] B el
4 & 5 & 5 = B o o P)
T T . 4 i g o 9 < i) o o
hi S L N ¢ = s o+ o Y S m
[l o~ -H N < - q
Y T §6 1T 9 &0 § o 9 o 29 8 o -
i -+ 4~ MO) G g 9
& W P B fon) 1b ol w " % m .mw +) w
o - =i B
i L% ' K o & = o o o d u o o o
o d N 0 d F .8 g 5 o o g o g A
o 4 1A o NI b= & = - SgY9493 9 o
8 *® N o E B LS
3 T R H X % I BN 2 of B < n Y d o o -~
9 ¢ m d 3 ol RS 0 ol
NI T) - F + I £
I R g & & ~ L e & & Jdde Y9yl
SN P~ I o ¢ Ho4b = o +
g T o+ & ¢ B 5 & n b g 5l o o o g o e
T 4 4 5 R R o i & o ol o g « = g A o
T 4 5 W B 5 - eh o o 4 - wl o n O > O
n @ H X 1 H EH ab fod) %) - S | =] ol -H ~
| | I < P € - [hl R e)) in] o] EES) BN O))
bl E R u I Bdaddydydye
B L N & & &
H & + @ & b g o W « g g o o o < 0o
q k B d B B uh 4] s 9] © O ®© o Of +
A TR T P U S P oo B 4 2 o4 5 o 8 & & o § o 8 2
ey v i B B VO] 4b - O o]
m % N £ eh & & s N o & g ol o g 49 o o o
E vw nw t - 4 i i mu & “m bt g m oo m > m © m m w Pm
p 1 D b oo b 0) 0)
A TR . (N O A &) i ¢ m o o o ool o o Wl =
vse 1t 3399449 H99¢:
£ ¢ I P4 . 5 ¢ b 4 oab Ept R= i .
i} Of o L L o L u | A
B O A A A b D B oo K4 o 5 u ol o 5 o o o
£ & £ P b % N A p S d 8 H 9y Y S
S AT A B | ! T P) g2 A < 9o o o o 4 o o 5
& & n < > v g oo g < g < o o €
s P b o] & of of Y o Y o BV o B
e T N DI n 5 2 2 H D O ol of o
N N R = = o o o wW oo W o5 W g =Z o
~+ H © B 9 ~ o© O o H o H A H L T ©
d 4l G
4h B Yy —
MH + o} +

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

194

Parameter parameter = ((ActivityParameterNode) (this.node)) .parameter;

ParameterValue parameterValue = this.getActivityFExecution().

getParameterValue (parameter) ;

if (this.node.incoming.size() == 0) {
if (parameterValue != null) {
Valuelist values = parameterValue.values;
for (int i = 0; i < values.size(); i++) {
Value value = values.getValue (i) ;
ObjectToken token = new ObjectToken();
token.value = value;
this.addToken (token) ;
I
this.sendUnofferedTokens () ;
1
1
else {
this.addTokens (incomingTokens) ;
if (parameterValue instanceof StreamingParameterValue) {
Valuelist values = new ValueList ();
for (int i = 0; i < incomingTokens.size(); i++) |
Token token = incomingTokens.getValue (i) ;
Value value = token.getValue();
if (value !'= null) {
values.addValue (value) ;
- 1
I
((StreamingParameterValue)parameterValue) .post (values) ;
super.clearTokens () ;
1
1
3] run

If this activation is for an input activity parameter node for a

/ stream parameter, then register a listener for this activation

with the streaming parameter value corresponding to the parameter.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 195

Parameter parameter = ((ActivityParameterNode) (this.node)) .parameter;

ParameterValue parameterValue = this.getActivityExecution().

getParameterValue (parameter) ;

if (this.node.incoming.size() == 0 &

parameterValue instanceof StreamingParameterValue) {

ActivityParameterNodeStreamingParameterlistener listener =

new ActivityParameterNodeStreamingParameterlListener () ;

listener.nodeActivation = this;

((StreamingParameterValue)parameterValue) .register (listener) ;

FUML15-12 fUML should include streaming

8.9.2.7 ActivityParameterNodeStreamingParameterListener

An activity parameter node streaming parameter listener is a streaming parameter listener for posting values from a streaming
parameter value to an activity parameter node (which is presumed to be for an input parameter).

| Generalizations

| ¢ StreamingParameterListener
| Attributes

| None

| Associations

* nodeActivation : ActivityParameterNodeActivation
The node activation for the activity parameter node to which streaming parameter values are to be posted.

| Operations
| [1]isTerminated () : Boolean

This listener is terminated if the node activation is not running.

return !this.nodeActivation.isRunning();

[2] post (values : Value [0..*])

Fire the activity parameter node activation.

/ (Note that the values do not have to be passed to the node activation,

because an input activity parameter node activation retrieves values

/ directly from the relevant parameter value.)

nodeActivation.fire (new TokenList ());

196 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

| 8.9.2.8 CentralBufferNodeActivation
A central buffer node activation is an object node activation for a node that is a central buffer node.

Generalizations
* ObjectNodeActivation

Attributes
None

Associations
None

Operations
[1] fire (in incomingTokens : Token [0..*])

// Add all incoming tokens to the central buffer node.

// Offer any tokens that have not yet been offered.

this.addTokens (incomingTokens) ;

this.sendUnofferedTokens () ;

8.9.2.9 ControlNodeActivation

A control node activation is an activity node activation for a node that is a control node.

Generalizations

* ActivityNodeActivation

Attributes

None

Associations

None

Operations

[1] fire (in incomingTokens : Token [0..*])
// By default, offer all tokens on all outgoing edges.

this.sendOffers (incomingTokens) ;
8.9.2.10 ControlToken
A control token represents the passing of control along a control flow edge.

Generalizations

¢ Token

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 197

Attributes

None

Associations
None
Operations

[1] copy () : Token

// Return a new control token.

return new ControlToken():;

FUML15-36 Typo fixes

[2] equals (in other : Token) : Boolean

// Return true if the other token is a control token, because control tokens are
interchangeable.

return other instanceof ControlToken;

[3] getValue () : Value [0..1]

// Control tokens do not have values.

return null;

[4] isControl () : Boolean

// Return true for a control token.

return true;

8.9.2.11 DataStoreNodeActivation
A data store node activation is a central buffer node activation for a node that is a data store node.

Generalization
¢ CentralBufferNodeActivation

Attributes
None
Associations
None

Operations

[1] addToken (in token : Token)

198 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Add the given token to the data store only if it is unique,

// that is, if its value is not the same as the value of

// another token already held in the data store.

Value value = token.getValue();
boolean isUnique = true;
if (value != null) {

TokenList heldTokens = this.getTokens();

int 1 = 1;
while (isUnique & 1 <= heldTokens.size()) {
isUnique = !'heldTokens.getValue (i-1) .getValue () .equals (value);

i=1+4+ 1;

if (isUnique) {

super.addToken (token) ;

[2] removeToken (in token : Token) : Integer

// Remove the given token from the data store, but then immediately

// add a copy back into the data store and offer it

// node activation has already been terminated).

int i = super.removeToken (token) ;

if (this.isRunning()) {
super.addToken (token.copy ()) ;

this.sendUnofferedTokens () ;

return 1i;

8.9.2.12 DecisionNodeActivation

Generalizations
¢ ControlNodeActivation

Attributes

None

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

(unless the

199

Associations

¢ decisionInputExecution : Execution [0..1]
The current execution of the decision input behavior (if any).

Operations

[1] executeDecisionInputBehavior (in inputValue : Value [0..1], in decisionInputValue : Value [0..1]) : Value
// Create the decision input execution from the decision input behavior.

// If the behavior has input parameter(s), set the input parameter(s) of the execution to the
given value(s).

// Execute the decision input execution and then remove it.
// Return the value of the output parameter of the execution.

// If there is no decision input behavior, the decision input value is returned, if one is
given, otherwise the input value is used as the decision value.

Behavior decisionInputBehavior = ((DecisionNode) (this.node)) .decisionInput;
Value decisionInputResult = null;
if (decisionInputBehavior == null) {
if (decisionInputValue != null) {
decisionInputResult = decisionInputValue;
} else {
decisionInputResult = inputValue;
}
} else {

this.decisionInputExecution =
this.getExecutionLocus () .factory.createExecution (decisionInputBehavior,
this.getExecutionContext());

int 1 = 1;

int 3 = 0;

while ((jJ == 0 | (j == 1 & decisionInputValue != null)) & i <=
decisionInputBehavior.ownedParameter.size()) {

Parameter parameter = decisionInputBehavior.ownedParameter.getValue (i-1);

if (parameter.direction.equals (ParameterDirectionKind.in) |
parameter.direction.equals (ParameterDirectionKind.inout)) {
ParameterValue inputParameterValue = new ParameterValue();

inputParameterValue.parameter = parameter;

200 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

=3+

if (3 == 1 && inputValue != null) {
inputParameterValue.values.addValue (inputValue) ;

} else {

inputParameterValue.values.addValue (decisionInputValue) ;

this.decisionInputExecution.setParameterValue (inputParameterValue) ;

this.decisionInputExecution.execute () ;

ParameterValuelist outputParameterValues =
this.decisionInputExecution.getOutputParameterValues() ;

decisionInputExecution.destroy () ;

decisionInputResult = outputParameterValues.getValue (0).values.getValue(0);

return decisionInputResult;

[2] fire (in incomingTokens : Token [0..*])
// Get the decision values and test them on each guard.

// Forward the offer over the edges for which the test succeeds.

//TokenList incomingTokens = this.takeOfferedTokens();

TokenList removedControlTokens = this.removeJoinedControlTokens (incomingTokens) ;

ValuelList decisionValues = this.getDecisionValues (incomingTokens) ;

ActivityEdgeInstancelList outgoingEdges = this.outgoingEdges;
for (int i = 0; i < outgoingEdges.size(); i++) {

ActivityEdgeInstance edgelnstance = outgoingEdges.getValue (i) ;

ValueSpecification guard = edgelnstance.edge.guard;

TokenList offeredTokens = new TokenList () ;

for (int 3 = 0; j < incomingTokens.size(); Jj++) {
Token incomingToken = incomingTokens.getValue (3);
Value decisionValue = decisionValues.getValue (j);

if (this.test(guard, decisionValue)) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

201

offeredTokens.addValue (incomingToken) ;

if (offeredTokens.size() > 0) {
for (int 3 = 0; j < removedControlTokens.size(); J++) {
Token removedControlToken = removedControlTokens.getValue(3J);

offeredTokens.addValue (removedControlToken) ;

}

edgeInstance.sendOffer (offeredTokens) ;

[3] getDecisionInputFlowlInstance () : ActivityEdgelnstance [0..1]

// Get the activity edge instance for the decision input flow, if any.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
ActivityEdgeInstance edgelnstance = null;
if (decisionInputFlow != null) {

int 1 = 1;

while (edgelnstance == null & i <=this.incomingEdges.size()) {

ActivityEdgeInstance incomingEdge = this.incomingEdges.getValue(i-1);

if (incomingEdge.edge == decisionInputFlow) {
edgeInstance = incomingEdge;

}

i=1+1;

return edgelnstance;

[4] getDecisionInputFlowValue () : Value [0..1]

// Take the next token available on the decision input flow, if any, and return its value.

ActivityEdgeInstance decisionInputFlowInstance = this.getDecisionInputFlowInstance() ;
Value value = null;
if (decisionInputFlowInstance != null) {

TokenList tokens = decisionInputFlowInstance.takeOfferedTokens();

202 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

if (tokens.size() > 0) {

value = tokens.getValue(0).getValue();

return value;

[5] getDecisionValues (in incomingTokens : Token [0..*]) : Value [0..*]

// If there is neither a decision input flow nor a decision input behavior, then return the
set of values from the incoming tokens.

// [In this case, the single incoming edge must be an object flow.]

// If there is a decision input flow, but no decision input behavior, then return a list of
the decision input values equal in size to the number of incoming tokens.

// If there is both a decision input flow and a decision input behavior, then execute the
decision input behavior once for each incoming token and return the set of resulting values.

// If the primary incoming edge is an object flow, then the value on each object token is
passed to the decision input behavior, along with the decision input flow value, if any.

// If the primary incoming edge is a control flow, then the decision input behavior only
receives the decision input flow, if any.

Value decisionInputValue = this.getDecisionInputFlowValue();
ValuelList decisionValues = new ValueList();
for (int i = 0; i < incomingTokens.size(); i++) {
Token incomingToken = incomingTokens.getValue (i) ;
Value value = this.executeDecisionInputBehavior (incomingToken.getValue (),

decisionInputValue) ;

decisionValues.addValue (value) ;

for (int 1 = 0; 1 < decisionValues.size(); 1i++) {

Value decisionValue = decisionValues.getValue (i) ;

return decisionValues;

[6] hasObjectFlowInput () : Boolean
// Check that the primary incoming edge is an object flow.

ActivityEdge decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 203

boolean isObjectFlow = false;

int 1 = 1;

while (!isObjectFlow & i <= this.incomingEdges.size()) {
ActivityEdge edge = this.incomingEdges.getValue (i-1) .edge;
isObjectFlow = edge != decisionInputFlow & edge instanceof ObjectFlow;

i =1+ 1;

return 1isObjectFlow;

[7] isReady () : Boolean
// Check that all incoming edges have sources that are offering tokens.

// [This should be at most two incoming edges, 1f there is a decision input flow.]

int 1 = 1;
boolean ready = true;
while (ready & i <= this.incomingEdges.size()) {

ready = this.incomingEdges.getValue (i-1) .hasOffer();

return ready;

[8] removeJoinedControlTokens (in incomingTokens : Token [0..*]) : Token [0..*]

// If the primary incoming edge is an object flow, then remove any control tokens from the
incoming tokens and return them.

// [Control tokens may effectively be offered on an object flow outgoing from a join node
that has both control and object flows incoming.]

TokenList removedControlTokens = new TokenList();

if (this.hasObjectFlowInput()) {
int i = 1;
while (i <= incomingTokens.size()) {
Token token = incomingTokens.getValue (i-1);
if (token.isControl()) {
removedControlTokens.addValue (token) ;
incomingTokens.removeValue (i-1);

i=1-1;

204 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return removedControlTokens;

[9] takeOfferedTokens () : Token [0..*]

// Get tokens from the incoming edge that is not the decision input flow.

ObjectFlow decisionInputFlow = ((DecisionNode) (this.node)) .decisionInputFlow;
TokenList allTokens = new TokenList();
ActivityEdgeInstancelist incomingEdges = this.incomingEdges;
for (int i = 0; i < incomingEdges.size(); i++) {
ActivityEdgeInstance edgelnstance = incomingEdges.getValue (i) ;
if (edgelInstance.edge != decisionInputFlow) {

TokenList tokens = edgelnstance.takeOfferedTokens();
for (int j = 0; j < tokens.size(); Jj++) {

allTokens.addValue (tokens.getValue (j))

return allTokens;

[10] terminate ()

// Terminate the decision input execution, if any, and then terminate this activation.

if (this.decisionInputExecution != null) {

this.decisionInputExecution.terminate () ;

super.terminate () ;

[11] test (in guard : ValueSpecification, in value : Value) : Boolean

// Test if the given value matches the guard. If there is no guard, return true.

boolean guardResult = true;
if (guard !'= null) {
Value guardValue = this.getExecutionLocus () .executor.evaluate (guard);

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 205

guardResult = guardValue.equals (value);

}

return guardResult;

FUML15-2 The fUML subset should support the raising and handling of exceptions

8.9.2.13 ExecutableNodeActivation

An executable node activation is an activity node activation for a node that is an executable node. It includes the specification of
the semantics for the handling of exceptions raised by an executable node protected by one or more exception handlers. All
other executable node semantics are covered by specializations of ExecutableNodeActivation.

Generalizations
* ActivityNodeActivation
Attributes
None
Associations
None

Operations

1] getMatchingExceptionHandlers ((in exception : Value) : ExceptionHandler [0..*

Return the set of exception handlers that have an exception type

/ for which the given exception is an instance.

ExceptionHandlerlList handlers = ((ExecutableNode)this.node) .handler;
ExceptionHandlerlList matchingHandlers = new ExceptionHandlerList () ;
for (dnt i = 0; i < handlers.size(); i++) {

ExceptionHandler handler = handlers.getValue (i) ;

boolean noMatch = true;

int 4 = 1;

while (noMatch & j <= handler.exceptionType.size()) {

if (exception.isInstanceOf (handler.exceptionType.getValue(j = 1))) {

matchingHandlers.addValue (handler) ;

noMatch = false;
R
1 =3+ 1;
1
1

206 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

return matchingHandlers;

2] handle (_in exception : Value, in handler : ExceptionHandler)

Offer the given exception to the body of the given exception handler

/ on its exception input node.

ActivityNodeActivation handlerBodyActivation =

this.group.getNodeActivation (handler.handlerBody) ;

ActivityNodeActivation inputActivation =

handlerBodyActivation.group.getNodeActivation (handler.exceptionInput) ;

ObjectToken token = new ObjectToken() ;

token.value = exception;

inputActivation.addToken (token) ;

handlerBodyActivation.receiveOffer () ;

3] propagateException (_in exception : Value)

If there is no matching exception handler for the given exception, then propagate

the exception to either the containing node activation or the activity execution, as

appropriate.

If there is a matching exception handler, then use it to catch the exception.

(If there is more than one matching handler, then choose one non-deterministically.)

ExceptionHandlerlList matchingExceptionHandlers =

this.getMatchingExceptionHandlers (exception) ;

if (matchingExceptionHandlers.size() == 0) {

this.terminate();

if (this.group.containingNodeActivation '= null) {

this.group.containingNodeActivation.propagatekxception (exception);

l else {

this.group.activityExecution.propagateException (exception) ;

}
I else f

ChoiceStrategy strategy = (ChoiceStrategy) this.getExecutionlLocus().

factory.getStrategy ("choice") ;

ExceptionHandler handler = matchingExceptionHandlers.getValue (

strategy.choose (matchingExceptionHandlers.size()) - 1);

this.handle (exception, handler);

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 207

\ 8.9.2.14 FlowFinalNodeActivation
A flow final node activation is a control node activation for a node that is a flow final node.

Generalizations

¢ ControlNodeActivation

Attributes

None

Associations

None

Operations

[1] fire (in incomingTokens : Token [0..*])

//Consume all incoming tokens.

for (int i = 0; 1 < incomingTokens.size(); i++) {
Token token = incomingTokens.getValue (i);
token.withdraw () ;

}

8.9.2.15 ForkedToken

A forked token is a proxy for a token that has been offered through a fork node. If the token is accepted through the fork
node, then the original token is withdrawn from its holder, but the forked token remains held by the fork node activation
until all outstanding offers on all outgoing edges are accepted.

Generalizations

¢ Token

Attributes

¢ baseTokenlsWithdrawn : Boolean
Indicates whether withdraw() has been classed on the base token.

* remainingOffersCount : Integer
The remaining number of outstanding offers for this token on outgoing edges of the fork node.

Associations

¢ baseToken : Token

Operations

[1] copy () : Token

208 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Return a copy of the base token.

return this.baseToken.copy/();

[2] equals (in otherToken : Token) : Boolean
// Test if this token is equal to another token.

return this == otherToken;

[3] getValue () : Value [0..1]
// Return the value of the base token.

return this.baseToken.getValue();

[4] isControl () : Boolean

// Test if the base token is a control token.

return this.baseToken.isControl ();

[5] withdraw ()
// I1If the base token is not withdrawn, then withdraw it.

// Decrement the remaining offers count.

// When the remaining number of offers is zero, then remove this token from its holder.

if (!'this.baseTokenIsWithdrawn & !this.baseToken.isWithdrawn())

this.baseToken.withdraw() ;

// NOTE: This keeps a base token that is a forked token from being

// withdrawn more than once, since withdrawing a forked token may

// not actually remove it from its fork node holder.
this.baseTokenIsWithdrawn = true;

}

if (this.remainingOffersCount > 0) {

this.remainingOffersCount = this.remainingOffersCount - 1;

if (this.remainingOffersCount == 0) {

super.withdraw() ;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

209

8.9.2.16 ForkNodeActivation

A fork node activation is a control node activation for a node that is a fork node.
Generalizations
¢ ControlNodeActivation
Attributes
None
Associations
None
Operations

[1] fire (in incomingTokens : Token [0..*])

// Create forked tokens for all incoming tokens and offer them on all outgoing edges.

ActivityEdgeInstancelist outgoingEdges = this.outgoingEdges;
int outgoingEdgeCount = outgoingEdges.size();

TokenlList forkedTokens = new TokenList():;

for (int i = 0; i < incomingTokens.size(); i++) {
Token token = incomingTokens.getValue (i)
ForkedToken forkedToken = new ForkedToken () ;
forkedToken.baseToken = token;
forkedToken.remainingOffersCount = outgoingEdgeCount;
forkedToken.baseTokenIsWithdrawn = false;

forkedTokens.addValue (forkedToken) ;

this.addTokens (forkedTokens) ;

this.sendOffers (forkedTokens) ;

[2] terminate ()

// Remove any offered tokens and terminate.

FUML-9 Execution of an activity with a data store may never end

T leana () .
A4

S CTrea T OKeHs 7

210 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

8.9.2.17 InitiaINodeActivation

An initial node activation is a control node activation for a node that is an initial node.
Generalizations
¢ ControlNodeActivation
Attributes
None
Associations

None

Operations

[1] fire (in incomingTokens : Token [0..*])

// Create a single token and send offers for it.

TokenlList tokens = new TokenList ();
tokens.addValue (new ControlToken());

this.addTokens (tokens) ;

this.sendOffers (tokens);
8.9.2.18 JoinNodeActivation

A join node activation is a control node activation for a node that is a join node.

Generalizations

¢ ControlNodeActivation

Attributes

None

Associations

None

Operations

[1] isReady () : Boolean

// Check that all incoming edges have sources that are offering tokens.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

21"

boolean ready = true;
int 1 = 1;
while (ready & 1 <=this.incomingEdges.size()) {

ready = this.incomingEdges.getValue (i-1) .hasOffer();

return ready;

8.9.2.19 MergeNodeActivation

A merge node activation is a control node activation for a node that is a merge node.

Generalizations
* ControlNodeActivation
Attributes
None
Associations

None
Operations
None

8.9.2.20 ObjectNodeActivation

An object node activation is an activity node activation for a node that is an object node.
Generalizations
* ActivityNodeActivation

Attributes

e offeredTokenCount : Integer
The number of held tokens that have already been offered.

Associations

None

Operations

[1] addToken (in token : Token)
// Transfer the given token to be held by this node only if it is a non-null object token.

212 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// If it is a control token or a null token, consume it without holding it.

if (token.getValue() == null) {
token.withdraw () ;
} else {

super.addToken (token) ;

[2] clearTokens ()
// Remove all held tokens.

super.clearTokens () ;

this.offeredTokenCount = 0;

[3] countOfferedValues () : Integer

// Count the total number of non-null object tokens being offered to this node

int totalValueCount = 0;
int 1 = 1;

while (i <= this.incomingEdges.size()) {

totalValueCount = totalValueCount + this.incomingEdges.getValue (i-

1) .countOfferedvalues() ;

i =1+ 1;

return totalValueCount;

[4] countUnofferedTokens () : Integer

// Return the number of unoffered tokens that are to be offered next.
// (By default, this is all unoffered tokens.)

if (this.heldTokens.size () == 0) {

this.offeredTokenCount = 0;

return this.heldTokens.size() - this.offeredTokenCount;

[5] getUnofferedTokens () : Token [0..*]

// Get the next set of unoffered tokens to be offered and return it.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

activation.

213

// [Note: This effectively treats all object flows as if they have weight=*, rather than the
weight=1 default in the current superstructure semantics.]

TokenList tokens = new TokenList ();
int 1 = 1;
while (i <= this.countUnofferedTokens()) {

tokens.addValue (this.heldTokens.getValue (this.offeredTokenCount + i - 1));

i =1+ 1;

return tokens;

[6] removeToken (in token : Token) : Integer

// Remove the given token, if it is held by this node activation.

int i1 = super.removeToken (token);
if (1 > 0 & 1 <= this.offeredTokenCount) {

this.offeredTokenCount = this.offeredTokenCount - 1;

return 1;

[7] run ()

// Initialize the offered token count to zero.

super.run();

this.offeredTokenCount = 0;

[8] sendOffers (in tokens : Token [0..*])
// If the set of tokens to be sent is empty, then offer a null token instead.

// Otherwise, offer the given tokens as usual.

if (tokens.size() == 0) {
if (tokens.size() == 0) {
ObjectToken token = new ObjectToken();
token.holder = this;
tokens.addValue (token) ;

214 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

super.sendOffers (tokens);

[9] sendUnofferedTokens ()

// Send offers over all outgoing edges, if there are any tokens to be offered.

TokenList tokens = this.getUnofferedTokens();

this.offeredTokenCount = this.offeredTokenCount + tokens.size();

this.sendOffers (tokens);

[10] takeUnofferedTokens () : Token [0..*]

// Take the next set of unoffered tokens to be offered from this node activation and return
them.

TokenList tokens = this.getUnofferedTokens();

for (int 1 = 0; 1 < tokens.size(); i++) {
Token token = tokens.getValue(i);
token.withdraw () ;

}

return tokens;

[11] terminate ()

// Terminate the node activation and remove any held tokens.

super.terminate () ;

this.clearTokens () ;
8.9.2.21 ObjectToken
An object token represents the passing of data along an object flow edge.

Generalizations
¢ Token
Attributes

None

Associations

e value : Value [0..1]
The value carried by this token. A token may have no value, in which case it is a “null token.”

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 215

Operations

[1] copy () : Token
// Return a new object token with the same value as this token.

// [Note: the holder of the copy is not set.]

ObjectToken copy = new ObjectToken();

copy.value = this.value;

return copy;

[2] equals (in other : Token) : Boolean

// Test if this object token is the same as the other token.

return this == other;

[3] getValue () : Value [0..1]
// Return the value of this object token.

return this.value;

[4] isControl () : Boolean

// Return false for an object token.

return false;
8.9.2.22 Offer

An offer is a group of tokens offered together. The grouping of offered tokens into offers usually does not matter for how the
tokens may be accepted. However, control and object tokens may become grouped together in the same offer due to a join
node that has both incoming control and object flows. In this case, the control tokens are implicitly accepted once all the
object tokens in the same offer have been accepted.

Generalizations

None

Attributes

None

Associations

¢ offeredTokens : Token [0..*]

Operations

[1] countOfferedValues () : Integer

// Return the number of values being offered on object tokens.

216 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

// Remove any tokens that have already been withdrawn and don't include them in the count.

this.removeWithdrawnTokens () ;

int count = 0;
for (int 1 = 0; 1 < this.offeredTokens.size(); i++) {
if (this.offeredTokens.getValue (i) .getValue() != null) {
count = count + 1;

return count;

[2] getOfferedTokens () : Token [0..*]

// Get the offered tokens, removing any that have been withdrawn.

this.removeWithdrawnTokens () ;

TokenList tokens = new TokenList ();

TokenList offeredTokens = this.offeredTokens;

for (int 1 = 0; 1 < this.offeredTokens.size () ; 1i++) {
Token offeredToken = offeredTokens.getValue (i);

tokens.addValue (offeredToken) ;

return tokens;

[3] hasTokens () : Boolean
// Check whether this offer has any tokens that have not been withdrawn.

this.removeWithdrawnTokens () ;

return this.offeredTokens.size() > O0;

[4] removeOfferedValues (in count : Integer)

// Remove the given number of non-null object tokens from those in this offer.

int n = count;
int 1 = 1;
while (n > 0) {
if (this.offeredTokens.getValue(i-1) .getValue() != null) {

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

217

this.offeredTokens.removeValue (i-1);

} else {

i =1+ 1;
}
n=mn-1;

[5] removeWithdrawnTokens ()

// Remove any tokens that have already been consumed.

TokenList offeredTokens = this.offeredTokens;
int 1 = 1;
while (i <= this.offeredTokens.size()) {
if (this.offeredTokens.getValue(i-1) .isWithdrawn()) {
this.offeredTokens.remove (i-1);

i=1-1;

8.9.2.23 Token
A token is an individual element of data or control that may flow across an activity edge.

Generalizations

None

Attributes

None

Associations

* holder : ActivityNodeActivation [0..1]

Operations

[1] copy () : Token
// Make a copy of this token.

[2] equals (in other : Token) : Boolean

Test if this token is equal to another token.

[3] getValue () : Value [0..1]

Get the value associated with this token (if any).

[4] isControl () : Boolean

Test whether this is a control token.

218 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[5] isWithdrawn () : Boolean
// Test if this token has been withdrawn.

return this.holder == null;

FUML15-36 Typo fixes

[6] transfer (in holder : ActivityNodeActivation) : Token
// If this token does not have any holder, make the given holder its holder.

// Otherwise, remove this token from its holder and return a copy of it transferred to a new
holder.

Token token = this;
if (this.holder != null) {
this.withdraw () ;

token = this.copy():

token.holder = holder;

return token;

[7] withdraw ()

// Remove this token from its holder, withdrawing any offers for it.

if (!this.isWithdrawn()) {
this.holder.removeToken (this) ;

this.holder = null;

8.10 Actions

8.10.1 Overview

This subclause describes the semantics of actions, which are the basic units out of which most non-trivial kinds of behavior
are created in fUML. Actions are kinds of activity nodes, so they are always executed in the context of an activity, which is
the overall behavioral construct (see 8.9 for the general semantics of activities). Subclause 7.11 gives the abstract syntax for
actions included in fUML. The present subclause defines the fundamental semantics for actions and pins, as well as the
specific semantics of those kinds of actions included in the f{UML subset.

Action Activation

Since actions are kinds of activity node, the semantic visitor classes for actions are kinds of activity node activations (see
8.9.1). In addition, the pins on actions are also kinds of activity nodes (specifically, object nodes) so there are also visitor
classes for input and output pins that are kinds of object node activation. Pin activations are associated with an action
activation in a parallel way to the association of the corresponding pins with their action (see Figure 8.27).

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 219

The ActionActivation class provides a method for the abstract fire operation inherited from ActivityNodeActivation and
overrides the takeOfferedTokens operation. In general, the fire operation for an activity node activation is called whenever
the prerequisites for execution of the node have been satisfied, as determined by the isReady operation, after accepted tokens
are obtained using takeOfferedTokens (see 8.9.1). For an action activation, these operations are specialized to model the
particular semantic requirements of action execution in terms of the offers received by the pins of the action.

When an input pin activation receives an offer, via a call to its receiveOffer operation, it passes the offer on by calling the
receiveOffer operation of its action activation. The isReady operation of the action activation then checks whether all its
input pin activations are ready. If so, then it fires all of the input pin activations at once, accepting all the offers that have
been made to them and moving the accepted tokens to the input pins.

Note: The UML 2 Specification (subclause 16.2.3.4) states that “Executing an Action in an Activity requires all of its
InputPins to be offered all necessary tokens, as specified by their minimum multiplicity (except for the special cases of
ActionlnputPins and ValuePins, as discussed above). When the Action begins executing, all the InputPins accept tokens
offered to them at once, up to the maximum multiplicity allowed on each InputPin..” In the execution model, the calls to the
isReady and takeOfferedTokens operations from the ActivityNodeActivation::receiveOffer operation are made within an
isolated region (see 8.9.1). This means that the source node activations of any offers to an action activation cannot be
modified while the action activation is checking for, and possibly accepting, offers to its input pins. This prevents contention
for the offers during this period, as required by the UML 2 semantics. (See below for more on the semantics of isolated
regions — that is, structured activity nodes with mustlsolate = true.)

The above behavior is specified in the takeOfferedTokens method for ActionActivation and is generic to all action
activations. The actual specific behavior of each kind of action is factored into the doAction operation. This operation is
called from the ActionActivation fire operation after all the input pin activations have fired. Once the doAction operation is
complete, all the output pin activations of the action are fired, which causes them to send offers on any outgoing edges
(assuming they have tokens to offer), and a control token is offered on all control flows outgoing from the action.

The semantics of the offering of a token on control flows outgoing from an action are those of an “implicit fork” (see
subclause 15.5.3.1 of the UML 2 Specification). Therefore, in order that the semantic model for control flows from an action
be identical to those of a fork, if an action has outgoing control flows, an anonymous fork node activation is also created
along with the action activation for the action. The action activation is then connected to the fork node activation, and the
activity edge instances corresponding to the control flows outgoing the action are connected to the fork node activation.
When the action activation completes its behavior, it creates a control token and offers it to the fork node activation which,
per the semantics of fork nodes, in turn offers it on all outgoing activity edge instances.

Invocation Actions

The basic invocation actions include send signal, call operation, and call behavior actions (see 7.11). The corresponding
activation classes are specializations of ActionActivation (see Figure 8.28).

Of these, the behavior of a send signal action activation is the simplest. When it fires, it takes values from its argument input
pin activations, constructs a signal instance with slots filled in with those values, creates a signal event occurrence
referencing the signal instance and sends the event occurrence via the object reference obtained from its target input pin
activation. The event occurrence is sent by calling the send operation on the target object (see 8.8.1). This results in the event
occurrence being placed in the event pool for the target object, at which point the send call returns and the thread on which
the send signal action is executing can continue (as appropriate). As discussed in 8.8.1, event occurrences in the event pool
are dispatched asynchronously by the event dispatching loop of the object activation for the target object.

In contrast to sending signals, call behavior and operation actions in f{UML are always synchronous (see 7.11). This basic
synchronous calling behavior is modeled in the doAction method of the CallActionActivation class. Associated with this
class is an Execution object that represents the invocation of the called behavior. Other than for how this execution object is
instantiated, the semantics of call behavior and call operation actions are the same:

220 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-12 fUML should include streaming
1. +Values of argument input pin activations are passed as input parameter values to the execution object:.-

2. Listeners are registered for the output pin activations corresponding to streaming output parameters.

3. +tThe execute operation is called on the execution.-¢

pin-aectivations.

4. If there are no streaming input parameters. then the invocation is complete once the execute operation returns.
Otherwise, the invocation continues until the invoked execution terminates (and, since the call action must be
locally non-reentrant in this case, the action cannot fire again until the invocation is complete).

FUML15-2 The fUML subset should support the raising and handling of exceptions

5. Once the invocation is complete, if the execution completes without an exception, any non-streaming output
parameter values are placed on result output pin activations. If the execution raises an exception, then this is
propagated using the general propagateException operation inherited from ActionActivation.-Onee-executionis-
eemplete; In either case. the execution object is destroyed.

Note: The fUML execution model interprets the semantics of called behaviors as requiring that the execution object
instantiated by a synchronous call action be destroyed when the call returns. Otherwise, repeated calls would result in a
potentially large number of anonymous, completed, called executions accumulating at any execution locus.

Instantiating the execution object for a call behavior action is straightforward: an instance of the referenced behavior is
simply instantiated at the execution locus of the call action. Instantiating the execution object for an operation call, on the
other hand, requires that a potentially polymorphic operation be dispatched in order to determine which method should act as
its behavior. This dispatching is carried by calling the dispatch operation on the target object. (See 8.7.1 for further
discussion of polymorphic operation dispatching.)

Unlike the case of a call behavior action, the default behavior of polymorphic operation dispatching is for the execution
object for the operation method to be instantiated at the locus of the target object, not the locus of the action execution. Thus,
if an operation call is made on an object at a remote locus, then the operation will be executed on that locus. While f{UML
does not provide a normative means for passing object references between loci, a specific execution tool may implement
such a means, in which case the semantics of operation calls across inter-locus references is specified normatively. (See 8.3.1
for a discussion of loci.)

Note: As described in 8.7.1, polymorphic operation dispatching is a semantic variation point. The default semantics for
operation calls acts as described above for references to objects on other loci, and it would generally be expected that any
alternative dispatching strategy would have a similar behavior. However, a conforming execution tool is allowed to define a
dispatching strategy that would prescribe, for example, that all operation executions are performed on the local locus,
regardless of where the target object resides.

Start Object Behavior Action

A start object behavior action is used to start the execution of an instantiated behavior or a classifier behavior of an active
object.

In general UML, a start object behavior action is a kind of call action and its behavior invocation may be either synchronous
or asynchronous. However, in f{UML, only asynchronous invocation is supported (see 7.11). Therefore,
StartObjectBehaviorActionActivation is a subclass of InvocationActionActivation rather than CallActionActivation (see
Figure 8.28), since CallActionActivation only provides synchronous call semantics.

If the input object to the action activation is an active object of the type of the input pin of the start object behavior action,
then the effect of the action is to start the classifier behavior associated with that type. The start object behavior activation

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 221

doAction method calls the startBehavior operation on the input object, passing as parameter values the values on the
argument input pin activations for the action activation. This results in the input object having an object activation with a
classifier behavior execution for that classifier behavior (see 8.8). Once the classifier behavior execution starts, it executes
concurrently, so the execution thread of the start object behavior action activation can continue without blocking. If the
classifier behavior for the indicated type already has an execution for the given object, then the action has no effect.

If the input pin to the start object behavior action activation does not have a type, then the effect of the action is to start the
classifier behaviors for all types of the input object that have classifier behaviors that are not already executing. Note that, in
this case, it is not possible to specify input parameter values for the classifier behaviors.

If the input object to the action activation is itself an execution object (i.e., an instance of a behavior), then the effect is to
start the execution of the behavior (if it isn't already executing). However, since the execution most proceed asynchronously
to the execution of the start object behavior action, it is necessary to start a new execution thread. This is achieved in the
execution model by starting the execution of the behavior in the same way as a classifier behavior. That is, the input
execution object is given an object activation with a classifier behavior execution that provides a new execution thread for
the execution object itself. The execute operation for the input execution object is called on this new thread, so that the
thread of the start object behavior action activation can continue without blocking. (See also 8.8.)

Note: fUML also includes the start classifier behavior action. This acts similarly to a start object behavior action, but it only
handles active objects with classifier behaviors and it does not provide a mechanism for specifying input parameters. Start
classifier behavior actions are supported in fUML for compatibility with past practice, but they should be considered
deprecated in favor of start object behavior actions.

Object Actions
fUML includes the following object actions (see Figure 8.29 for the corresponding activation model).

* Create Object Action — In fUML, the classifier specified by a create object action must be a class (see 7.11). Therefore,
the instance created really is an object, as the action name indicates. The object becomes part of the extent of the
specified class at the execution locus of the activity execution that contains the action activation. (See 8.3 and 8.7 for
more on loci and extents.) The classifier for a create object action may be a behavior, in which case the instance created
is an unstarted behavior execution that may be started asynchronously using a start object behavior action (see above).
However, in fUML, the classifier may not be an owned behavior (see 7.11), because starting an instance of such a
behavior asynchronously would not allow for the execution context (which must be an instance of its context classifier)
to be set properly. An owned behavior may be called synchronously or, if it is a classifier behavior, it may be started
asynchronously using a start object behavior action on an instance of its (owning) context classifier (see above).

¢ Destroy Object Action — This action accepts an object reference and destroys the referenced object. Destruction involves
terminating the object activation (if any), removing all of the objects types, and removing the object from the extent at
the execution locus. Note that the fUML semantics do not preclude references continuing to exist to destroyed objects.
However, since such objects do not have any types, they will have neither attributes nor behaviors. Note also that only
objects can be destroyed in fUML-attempting to destroy a data value will have no effect.

» Test Identity Action — This action tests whether its two input values are “identical.” If the input values are both data
values, then “identical” means that they are either the same primitive value or they have the same compound type, with
identical values for all corresponding attributes. If the input values are both object references, then “identical” means that
they reference the same object. That is, for data values equality is testing “by value,” while for objects it is tested “by
reference.”

» Read Self Action — This action reads the context object of the activity activation that contains the action activation. If the
activity is associated with a class (as a method or a classifier behavior), then the context object will be an instance of that
class. Otherwise, the context object will be the execution object of the activity itself.

222 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

¢ Value Specification Action — This action evaluates a given value specification and outputs the resulting value. The value
specification is evaluated using the evaluate operation of the executor at the execution locus of the activity execution that
contains the action activation (see 8.3).

Object Classification Actions

fUML also includes three additional actions related to object classification (see Figure 8.29 for the corresponding activation
model).

* Read Extent Action — This action is used to obtain the extent of a class at the execution locus of the activity activation
containing the action activation. The action outputs references to each of the objects in the extent. Note that the extent of
a class is considered to also include the instances of all subclasses of the identified class. In f{UML, the classifier
associated with this action must be a class (see 7.11).

* Read Is Classified Object Action — This action is used to test whether its input value is of a given type. The input value
does not actually have to be an object reference but can also be a data value. The action produces a true output if the
input has the given classifier as one of its types (objects may have multiple types). If isDirect is false, then the action also
outputs true of any type of the input value is a specialization (directly or indirectly) of the given classifier. Otherwise, the
action outputs false.

* Reclassify Object Action — This action is used to change the type(s) of an object. In fUML, the input value must be a
reference to an object and all the classifiers associated with the action must be classes (see 7.11). Per the semantics of
UML 2 for reclassification (see subclause 16.4.3.7 of the UML 2 Specification), this action removes the indicated old
classifiers as types of the input object and adds the new classifiers, taking into account cases in which a classifier my be
in both sets. Note that, if a classifier with a classifier behavior is removed, then any execution the input object may have
for this behavior is terminated (see also 8.8). However, if a classifier is added with a classifier behavior, this behavior is
not started until an explicit start object behavior action is performed (see above).

Link Actions

In fUML, a link is an extensional value that exists at a specific execution locus (see 8.7). Unlike objects, however, there are
no explicit references to links. Rather, links may be thought of as tuples of values, one for each association end, and a link of
a specific association can be identified by giving such a tuple. Note that this identification is not necessarily unique, though,
unless all the ends of the association are specified as being unique.

fUML includes the following actions for manipulating links (see Figure 8.30 for the corresponding activation model).

* Create Link Action — Given a value for each association end, this action normally creates a link with those values. This
link becomes a member of the extent of the association at the execution locus of the activity activation that contains the
action activation. However, if a link already exists in the association extent with the same tuple of values, and all the
ends of the association are specified as unique, then no new link is actually created (though this is not an error). Since, in
fUML, an association always owns its ends (see 7.7), each of the values for the link are represented as structural feature
values for the link (see 8.7 for more on the representation of the structure of links). If an association end is ordered, then
the link also maintains the position of its value for that association end relative to the value provided by other links in the
extent of the association.

* Destroy Link Action — Given a value for each association end, this action destroys all links that match the link end
destruction data in the extent of the given association at the execution locus of the activity activation that contains the
action activation. Destroying a link means simply removing it from the extent of the association. Matching links are
determined as follows:

* For unique ends, or non-unique ends for which isDestroyDuplicates is true, match links with a matching value for
that end.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 223

* For non-unique, ordered ends for which isDestroyDuplicates is false, match links with an end value at the given
destroyAt position.

* For non-unique, non-ordered ends for which isDestroyDuplicates is false, pick one matching link (if any)
nondeterministically.

Note: The behavior in this third class when there is more that one matching link is not explicitly stated in the
UML 2 Specification (subclause \16.6.3.4). f{UML provides an interpretation of nondeterministic choice in this
case.

* Read Link Action — This action provides a means for querying the extent of an association at the execution locus of the
activity activation that contains the action activation. The action specifies values for all ends of the association but one-
the open end (see 7.11). This link end data identifies a subset of matching links from the association extent that have the
specified end values. The action outputs the set of values on the open ends of these matching links.

¢ Clear Association Action — This action destroys all the links in the extent of the given association (at the execution
locus of the activity activation that contains the action activation) that has the input value of the action as an end
value.

Structural Feature Actions

fUML includes actions for accessing the structural features of both objects and data types (see Figure 8.31 for the
corresponding activation model).

Note: The UML Specification (subclause 16.8.3.3) states that, for an add structural feature value action, “The semantics is
undefined for adding a value that violates the upper multiplicity of the StructuralFeature....” Nevertheless, the fUML semantics
are defined in this case, such that the given value is always added, even though it violates the upper multiplicity of the
structural feature.

Note: For an ordered structural feature, the UML Specification (subclause 16.8.3.3) defines the effect of “insertAt” to be:
“An insertion point that is a positive integer less than or equal to the current number of values means to insert the new value
at that position in the sequence of existing values, with the integer one meaning the new value will be first in the sequence. A
value of unlimited (“*”) for the insertion point means to insert the new value at the end of the sequence.” For f{UML, this
behavior is assumed to mean that the new value is inserted into the required position without replacing any of the previously
existing values in the structural feature, which retain the same relative ordering as before the insertion of the new value.

FUML15-13 fUML should include unmarshall actions

Accept Event Action

An accept event action is used in an activity to wait for the occurrence of a specific event. In fUML, an accept event action is
either a regular accept event action, in which case it can only wait for signal events, or it is a specialized accept call action,
in which case it can only wait for call events (see 7.11). The discussion on accept event actions below also applies to accept
call actions. This is followed by some additional discussion specific to accept call actions.

To wait for the dispatching of a signal event, the accept event action activation must register itself as an event accepter with
its context object. Actually, the action activation does not directly register itself, but, instead, it creates an accept event action
event accepter object, which is a kind of event accepter (see 8.8), and registers this with the context object (see Figure 8.32).

224 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

This registration happens when the accept event action activation fires (the only prerequisites for this action are that it
receives a control token), and the doAction operation is not called in this case.

Instead, the behavior of the action is triggered when an event occurrence is dispatched from the event pool of the context
object that matches the trigger specification of the accept event action. In this case, the object activation dispatchEvent
operation calls the accept operation on the accept event action event accepter object (see 8.8). The event accepter then
forwards the call to the accept operation of the accept event action activation, starting a new thread within the activity
containing the start object behavior action.

Accept Call and Reply Actions

An accept call action is a specialized accept event action used to wait for call events. It registers and accepts event
occurrences as described for accept event actions in general above. However, when triggered, in addition to producing the
unmarshalled values of the input parameters (if any) of the called operation, an accept call action produces another output,
the return information for the call. Return information is a special value that may be passed on an object flow of an activity,
but is only usable as input to a reply action, in order to return from a call. The return information contains a link back to the
call event occurrence that triggered the accept call action for the call.

When a reply action fires, it takes values for the output parameters (if any) of the called operation from its replyValue input
pins and a return information value from its returnInformation pin. It then returns the output parameter values to the caller

using the reply operation on the return information. This reply operation sets the output parameter values via the call event
occurrence and releases the calling thread, which will have been suspended waiting for a reply to the call (see 8.8).

Note: A reply action is associated with a trigger that identifies the call event from which the reply action is returning. The
UML Specification (subclause 11.3.43) states that “The semantics are also undefined if the return information value is not
for a call to the same Operation as identified by the replyToCall Trigger of the ReplyAction.” In fUML, this is interpreted as
meaning that the operation specified by the call event on the trigger must be the same as the operation that was called by the
call event occurrence on the return information provided to the call action. If the operations do not match, the reply action
has no effect.

Structured Activity Node Activation

Unlike other kinds of actions, structured activity nodes have nested activity nodes within them. As shown in Figure 8.33, the
activation of the nested activity nodes is handled by an activity node activation group associated with the structured activity
node activation (see 8.9 for the specification of ActivityNodeActivationGroup).

Note that all structured activity node activations have exactly one activation group that covers the activation of all nested
activity nodes. However, how nested activity nodes are actually activated varies depending on the kind of structured activity
node.

For the base structured activity node, which simply groups its nested activity nodes, execution proceeds much as in the case
of an overall activity. All nested activity nodes are activated, and subsequent behavior is determined by the flow of offers and
tokens between activations.

For a conditional node, however, the test part is activated first. Depending on the result of the test, additional nodes are
activated depending on which conditional clause is selected.

For a loop node, the loop test and body parts are repeatedly activated (with the test coming before or after the body,
depending on the isTestedFirst attribute of the loop node). The same activity node activation group is used for every iteration
of the loop, but the group is cleared of node activations between iterations.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 225

Isolation

If a structured activity node has the property mustlsolate = true, then its activity node activations run in isolation from
activity node activation external to it. The UML Specification (subclause 16.11.3.2) defines this behavior as follows:

If the mustisolate flag is true for a StructuredActivityNode, then any access to an object by an Action within the node must
not conflict with access to the object by an Action outside the node. A conflict is defined as an attempt to write to the object
by one or both of the Actions. If such a conflict potentially exists, then no such access by an Action outside the isolated
StructuredActivityNode may be interleaved with the execution of the StructuredActivityNode.

For the purposes of f{UML, however, it is important to define this important optional behavior somewhat more completely.
The following definitions apply for the purposes of this discussion.

* An execution trace provides timing for all the events in the execution of a model.

* The duration of a firing of an action activation is the time interval from the event of the action activation firing to the
event of the action activation offering tokens on outgoing control flows (even if there are no outgoing control flows, the
duration ends at that point in time at which the firing of the action activation is “complete” and would offer control
tokens if there were flows). A legal execution trace is one that is permitted by the behavioral semantics specified for
executing the model. Note that there can, and generally will, be multiple possible legal execution traces for any given
model.

* Two action activation firings overlap if their durations are not disjoint.

* An action activation A is serializable with respect to another action activation B if, for any legal execution trace in which
one or more of the firings of A and B overlap, there is another legal execution trace in which none of their firings overlap
but for which the execution behavior of the firings of B are identical to that of the first trace. (Note that the behavior of A
does not have to be preserved in the second trace. This means that A being serializable with respect to B does not
necessarily imply that B is serializable with respect to A.)

* The scope of control of an activity execution or a structured activity node activation firing is defined to be the set of
activity node activations covered by the following:

* For a structured activity node activation, that activation itself.

* All activations of nested activity nodes with the activity or structured activity node that are run as a result of that
specific activity execution or structured activity node activation firing. (In the execution model, this is called the
“activity node activation group”.)

* The scope of control of the firing of any nested structured activity node activations.

» The scope of control of any activity executions resulting from the firing of any nested call (behavior or operation)
actions (which, in fUML, are always synchronous).

The rule for isolation can now be stated fairly simply: Let S be a structured activity node with mustlsolate=true. Then any
action activation not in the scope of control of S must be serializable with respect to any action activation that is within the
scope of control of S.

Basically, under this rule, any action behavior not under the control of S, even if it physically happens in parallel with an
execution of S, has the same effect on S as if it occurred entirely before or entirely after the execution of S. In particular, any
actions that write to objects read within S must either have their effect visible throughout the execution of S (“as if it
occurred entirely before the execution of S”) or their effect must not be visible at all within the execution of S (“as if it
occurred entirely after the execution of S”). (This is similar to the way that “isolation” is defined for database transactional
semantics.)

226 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Note that the asymmetric definition of “serializable” above means that, in general, an action activation not under the control
of S can see into intermediate results produced by S (in database terminology, this is known as a “dirty read”), unless it, too,
is part of some other structured activity node with mustlsolate=true. For two structured activity nodes to run in complete
isolation with respect to each other, both must specify mustlsolate=true.

Note also that the above rule does not allow certain deadlock conditions that can occur due to specific implementation
techniques, such as locking. For example, there is the archetypical case in which two concurrent threads are each holding
locks which the other needs, and so neither can proceed. However, in most such cases, there is a legal execution trace in
which these threads could have successfully executed (e.g., if they were run sequentially instead of concurrently). The intent
is that the execution trace leading to deadlock would not be legal at all, since it is only the locking implementation that leads
to the deadlock, not anything specified by the behavioral semantics. In particular, this means that, if an execution tool uses
locking to implement isolation, then it also must provide some means to detect implementation-specific deadlock conditions
and recover from them (again, this is typically what is done in database transaction implementations).

On the other hand, there are cases in which deadlock cannot be avoided. For example, suppose a structured activity node
with mustlsolate = true contains just two read actions. The first read action has an outgoing control flow that crosses out of
the structured activity node to a write action on the outside that writes to the object read by the read actions. If the write
action then has an outgoing control flow that crosses back into the structured activity node to the second read action, it is
impossible to satisfy both the control flow constraints and the isolation rule. Such a model has no legal control flows. Per the
UML Superstructure Specification, it is actually ill-formed and has no execution semantics.

Note: The above semantics for mustlsolate = true are intended to allow the simple implementation of approach of serializing
the execution of all structured activity nodes with mustlsolate = true-that is, running them sequentially, one at a time, with
nothing else running at the same time. One subtlety here is the case when an execution of one or more of the isolated
structured activity nodes does not terminate, due to, say, an infinite loop. In this case, there may not be any finite execution
trace in which all isolated structured activity nodes can complete sequentially. However, since there are no particular
requirements in the fUML semantics for liveliness or fairness in concurrent execution, it is generally permissible in any case
for an implementation to allow a concurrent thread that does not terminate to continue to use all resources and not allow any
other threads to run. Therefore, the rule above for isolation is not meant to disallow a fully serialized implementation.

The above rule for isolation is part of the base semantics of the modeling subset used to write the execution model itself (see
10.4.5). Therefore, structured activity nodes with mustlsolate = true may be used within the execution model. For f{UML user
models being executed by the execution model, the effect of mustlsolate = true is achieved by activating the body of the
fUML structured activity node within a structured activity node in the execution mode with mustlsolate = true. This results
in the body of the structured activity node being run in isolation from other threads running within the executing f{UML
activity, resulting in the base isolation behavior being elevated to f{UML.

FUML15-36 Typo fixes

In order to accommodate this optional isolation behavior, the class StructuredActivityNodeActivation provides a method for
the operation doAction in terms of an operation called doStructuredActivity. The operation StructuredActivity-Activeation::
doAction checks the mustlsolate flag for the structured activity node being executed. If it is true, then doAction calls
doStructuredActivity within a structuredActivityNode with mustlsolate = true. If mustlsolate = false, then doAction still
calls doStructuredActivity, but not within an isolated structured activity node.

The classes ConditionalNodeActivation and LoopNodeActivation specialize StructuredActivityNodeAcivation (see Figure
8.33). They both override the operation doStructuredActivity to specify the behavior specific to conditional nodes and loop
nodes. However, they do not override the doAction operation, and, therefore, they inherit the basic isolation behavior from
StructuredActivityNode behavior.

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 227

Collections

The UML 2 Specification (subclause 16.12.3) defines the semantics of an expansion region as “a StructuredActivityNode
that takes as input one or more collections of values and executes its contained ActivityNodes and ActivityEdges on each value
in those collections” where:

An execution engine may define various kinds of collection types that it supports (sets, bags, and so on), individual
instances of which may be constructed from element values and from which those element values may later be obtained.
Such a collection instance is passed as a single value on a single token. An execution engine may alternatively support
collections implicitly as the set of values passed in a group of tokens placed together on an ExpansionNode.

Neither the fUML subset nor the Foundation Model Library provide a standard set of collection types. Instead, f{UML relies
on the use of properties with multiplicity upper bounds greater than zero to provide the ability to model collections.

Therefore, rather than an expansion node being expected to receive a single token with a collection value, in fUML the
“collection” is made up of the values on a set of tokens accepted by the expansion node. An expansion region fires when its
input expansion node accepts an offer for such a collection of tokens. If the region has more than one input expansion region,
then all must accept the same number of tokens for the region to fire.

Similarly, the output expansion nodes of the region (if any) collect tokens generated during the iterations of the body of the
region. When the expansion region completes, the tokens on its output expansion nodes are offered downstream in the
normal fashion.

Expansion Region Activation

An expansion region is a kind of structured activity node and, therefore, a kind of action. However, because the semantics of
expansion regions are rather different than those of other structured activity nodes, ExpansionRegionActivation does not
specialize StructuredActivityNodeActivation but, rather, directly specializes ActionActivation (see Figure 8.34). There is
also an ExpansionNodeActivation class to capture the specialized semantics of expansion nodes.

Unlike other structured activity nodes (as described above), an expansion region activation may have multiple activity node
activation groups. This is to allow for the possible parallel activation of the body of the expansion region, if so specified for
the expansion region. In addition, the activity node activation groups for an expansion region activation are all instances of
the specialized ExpansionActivationGroup. This specialization handles the semantic relationship between the pins and
expansion nodes of the expansion region and the nested activity nodes in the body of the expansion region.

Note, in particular, that an expansion activation group defines output pin activations corresponding to the input pins and
expansion nodes of the expansion region. This is to allow these output pin activations to be connected to input pin
activations within the expansion activation group. Tokens are placed on the output pin activations for input values to be sent
into the group and they then flow to the appropriate input pins within the group via the normal token/offer semantics.

An expansion activation group also defines output pin activations on which the outputs of the group are placed,
corresponding to the output expansion nodes of the expansion region. (An expansion region in fUML is not allowed to have
output pins — see 7.11 for more information.)

Since an expansion region is syntactically a kind of structured activity node, it includes the option of running its body in
isolation (i.e., with mustlsolate = true). However, since ExpansionRegionActivation does not specialize

Structured ActivityNodeActivation, it does not automatically inherit the behavior defined in
StructuredActivityNodeActivation for isolation (see above). Nevertheless, the class ExpansionRegionActivation uses a
similar pattern to StructuredActivityActivation to handle isolation. That is, ExpansionRegionActivation::doAction checks
whether mustlsolate = true for the associated expansion region and, if so, it calls
ExpansionRegionActivation::doStructuredActivity within a structured activity node with mustlsolate = true. Otherwise it
calls doStructuredActivity with no isolation.

228 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-2 The fUML subset should support the raising and handling of exceptions

Reduce-ActionOther Actions

Finally, the f{UML subset also includes the reduce and raise exception actions.

Theis reduce action calls a reducer behavior repeatedly in order to reduce a set of input values to a single value. Similarly to
a call action, the reduce action activation creates an execution object for the reducer behavior (see Figure 8.35). A new
execution object is created for each call and is destroyed at the end of the call.

The raise exception action takes a single value as input and raises it as an exception. The raise exception activation does this

by simply propagating the exception using the general propagateException operation inherited from ActionActivation.

FUML15-2 The fUML subset should support the raising and handling of exceptions

FUML15-12 fUML should include streaming

FUML15-28 fUML should allow association ends that are not association owned

fUML_Semantics::Semantics::Activities::
ActivityNodeActivation
Ay

UML::Activities::
ActivityNode
Ay

ExecutableNodeActivation
AN

UML::Activities::
ExecutableNode
UML::Actions::

Action

fUML_Semantics::Semantics::Activities:: |

StreamingParameterListener

|fUMLisemantics ::Semantics::CommonBehavior::

ActionActivation

+firing : Boolean

+initialize(node : ActivityNode, group : ActivityNodeActivationGroup)
+run()

+takeOfferedTokens() : Token [*]

+fire(incomingTokens : Token [*])

+terminate()

+completeAction() : Token [*]

+isReady() : Boolean

+isControlReady() : Boolean

+isFiring() : Boolean

+doAction()

+getOfferingOutputPins() : OutputPin [*]

+sendOffers()

+createNodeActivations()

+addOutgoingEdge(edge : ActivityEdgelnstance)

+addPinActivation(pinActivation : PinActivation)

+getPinActivation(pin : Pin) : PinActivation

+putToken(pin : OutputPin, value : Value)

+putTokens(pin : OutputPin, values : Value [*])

+getTokens(pin : InputPin) : Value [*]

+takeTokens(pin : InputPin) : Value [*]

+isSourceFor(edgelnstance : ActivityEdgelnstance) : Boolean
+valueParticipatesInLink(value : Value, link : Link) : Boolean
+makeBooleanValue(value : Boolean) : BooleanValue
+checkAllParents(type : Classifier, classifier : Classifier) : Boolean
+getValues(sourceValue : Value, feature : StructuralFeature) : Value [*]
+getAssociation(feature : StructuralFeature) : Association [0..1]
+getMatchingLinks(association : Association, end : StructuralFeature, oppositeValue : Value) : Link [*]
+getMatchingLinksForEndValue(association : Association, end : StructuralFeature, oppositeValue : Value, endValue : Value [0..1]) : Link [*]
+getOppositeEnd(association : Association, end : StructuralFeature) : Property
+handle(exception : Value, handler : ExceptionHandler)
+transferOutputs(handlerBody : Action)

fUML_Semantics::Semantics::Activities::

ObjectNodeActivation
Ay
+actionActivation PinStreamingParameterListener
01 ~ | tpost(values : Value [*])
" +isTerminated() : Boolean
+pinActivations | * 0..1 | +nodeActivation
PinActivation
+fire(incomingTokens : Token [*])
+takeOfferedTokens() : Token [*]

Ay

InputPinActivation

OutputPinActivation

+receiveOffer()

+fire(incomingTokens : Token [*])
+isReady() : Boolean
+isReadyForStreaming() : Boolean
+isStreaming() : Boolean
+streamingls Terminated() : Boolean
+getTotalValueCount() : Integer

0.1

+streamingParameterValue

Figure 8.27 - Action Activations

fUML_Semantics::Semantics::CommonBehavior::

StreamingParameterValue

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

229

FUML15-12 fUML should include streaming

fUML_Semantics::Semantics::Actions:: fUML_Semantics::Semantics::CommonBehavior::
ActionActivation Execution
AN

+callExecutions |0..*

InvocationActionActivation

A
0.1
StartObjectBehaviorActionActivation SendSignalActionActivation CallActionActivation
+doAction() +doAction() +isStreaming : Boolean
+initialize(node : ActivityNode, group : ActivityNodeActivationGroup)
+isReady() : Boolean
i +doAction()
UML::Classification:: | +nonStreamingOutputParameters +completeAction()
Parameter 0..* +completeCall(callExecution : Execution)
+completeStreamingCall()
ordered
¢ } +getParameters() : Parameter [*]
R . - +getCallExecution() : Execution
UML“AC“OpS“ nonStreamingOutputPins +getOfferingOutputPins() : OutputPin [*]
OutputPin 0..* +terminate()
{ordered} +removeCallExecution(execution : Execution)
CallOperationActionActivation CallBehaviorActionActivation
+isReady() : Boolean +getCallExecution() : Execution
+getCallExecution() : Execution +getParameters() : Parameter [*]
+getParameters() : Parameter [*]

Figure 8.28 - Invocation Action Activations

230 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-17 Objects at the composite end of an association should be considered “owned objects” during
the destruction of the objects at the other end

FUML15-28 fUML should allow association ends that are not association owned

fUML_Semantics::Semantics::Actions::

ActionActivation
AN
ValueSpecificationActionActivation CreateObjectActionActivation TestldentityActionActivation
+doAction() +doAction() +doAction()
ReadSelfActionActivation DestroyObjectActionActivation
+doAction() +doAction()

+destroyObject(value : Value, isDestroyLinks : Boolean, isDestroyOwnedObjects : Boolean)
+getCompositeValue(reference : Reference, link : Link) : Value [0..1]

fUML_Semantics::Semantics::Actions::
ActionActivation

T

ReadExtentActionActivation

ReadlsClassifiedObjectActionActivation

StartClassifierBehaviorActionActivation

+doAction()

+doAction() +doAction()
ReclassifyObjectActionActivation
+doAction()
+checkForMissingFeature(features : StructuralFeature [*], feature : StructuralFeature) : Boolean

Figure 8.29 - Object Action Activations

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

231

fUML_Semantics::Semantics::Actions::

ActionActivation
ClearAssociationActionActivation LinkActionActivation
+doAction() +inkMatchesEndData(link : Link, endDataList : LinkEndData [*]) : Boolean

+endMatchesEndData(link : Link, endData : LinkEndData) : Boolean
+getAssociation() : Association

ReadLinkActionActivation WriteLinkActionActivation
+doAction()

AN
CreateLinkActionActivation DestroyLinkActionActivation
+doAction() +doAction()

Figure 8.30 - Link Action Activations

FUML15-28 fUML should allow association ends that are not association owned

fUML_Semantics::Semantics::Actions::
ActionActivation

StructuralFeatureActionActivation

T

ClearStructuralFeatureActionActivation WriteStructuralFeatureActionActivation
+doAction() +position(value : Value, list : Value [*], startAt : Integer) : Integer
JAY

ReadStructuralFeatureActionActivation
+doAction()

AddStructuralFeatureValueActionActivation
+doAction()

RemoveStructuralFeatureValueActionActivation
+doAction()

Figure 8.31 - Structural Feature Action Activations

232 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

FUML15-13 fUML should include unmarshall actions

fUML_Semantics::Semantics::Actions::
ActionActivation
A

UnmarshallActionActivation

AcceptEventActionActivation

ReplyActionActivation

fUML_Semantics::Semantics::CommonBehavior::

Figure 8.32 - Accept Action Activations

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

+doAction() +waiting : Boolean +doAction() EventAccepter
+initialize(node : ActivityNode, group : ActivityNodeActivationGroup)
+run()
+ire(incomingTokens : Token [0..*])
+isReady() : Boolean
+d°A°“°"(,) .) . AcceptEventActionEventAccepter
+accept(signallnstance : Signallnstance) +actionActivation +eventAccepter
+match(signalinstance : Signallnstance) : Boolean 1 o1 +accept(eventOccurrence : EventOccurrence)
+terminate() - +match(eventOccurrence : EventOccurrence) : Boolean
AcceptCallActionActivation fUML_Semantics::Semantics::Values::
+accept(eventOccurrence : EventOccurrence) Value
Returninformation
+getOperation() : Operation
fUMLfSemantics::Sernantics::CommonBehavior::|L +callEventOccurrence +reply(outputParameterValues : ParameterValue ['])
CallEventOccurrence “- ” 01 +specify() : ValueSpecification

+getTypes() : Classifier [*]

+equals(otherValue : Value) : Boolean
#new_() : Value

+copy() : Value

+toString() : String

233

+node

+node [UML::Activities:: 01 | fUML_Semantics::Semantics::Activities::
* ActivityNode . * ActivityNodeActivation
~ +nodeActivations L
+group |1
UML::Activities fUML_Semantics::Semantics::Activities:: | +activationGroup fUML_Semantics::Semantics::Actions::
ExecutableNode ActivityNodeActivationGroup 1 ActionActivation
JAY Ay
1 | +group
+containingNodeActivation |0..1
* | +edgelnstances
UML::Actions:: fUML_Semantics::Semantics::Activities:: StructuredActivityNodeActivation
Action ActivityEdgelnstance +doAction()
o . +doStructuredActivity()
+terminate()
+getNodeActivation(node : ActivityNode) : ActivityNodeActivation [0..1]
0..1), +edge +makeActivityNodeList(nodes : ExecutableNode [*]) : ActivityNode [*]

K P +getPinValues(pin : OutputPin) : Value [*]
UML"A'CUV'UES“ +putPinValues(pin : OutputPin, values : Value [*])
ActivityEdge +createNodeActivations()
. +createEdgelnstances()
+isSourceFor(edgelnstance : ActivityEdgelnstance) : Boolean
0.1 UML::Actions:: +inStructuredNode +erminateAll()

L +isSuspended() : Boolean
+inStructuredNode StructuredActivityNode 0..1 +completeAction() : Token [*]

T +resume()

+edge

UML::Actions:: UML::Actions::
LoopNode ConditionalNode
LoopNodeActivation
+conditionalNode | 1 +selectedClauses _ ConditionalNodeActivation +isTerminateAll : Boolean
+clause| 1.* | * +doStructuredActivity() +doStructured-Act-|V|ty()
+completeBody() +doLoop(continuing : Boolean)
UML::Actions:: +completeAction() : Token [*] +runTest() : Boolean
Clause +getClauseActivation(clause : Clause) : ClauseActivation :runB(édyd()o tout
+runTest(clause : Clause) +savLe 0\3// u l?lu s()
+clause |1 0.1 +selectBody(clause : Clause) runl-oopvaria gs(?
- *_|+resume() +createNodeActivations()
+selectedClause +makeloopVariableList() : ActivityNode [*]
+terminateAll()
™ - +resume()
1 | +conditionalNodeActivation +continueLoop()
0.1
* | +clauseActivations +bodyOutputLists | 0..*
ClauseActivation Values
+receiveControl() 0.*
+isReady() : Boolean "
+runTest()
* | +selectBody() +values |0..*
+getDecision() : BooleanValue [0..1]
+getPredecessors() : ClauseActivation [0..*] fUML_Semantics::Semantics::Values::
+getSuccessors() : ClauseActivation [0..%] Value

Figure 8.33 - Structured Action Activations

234 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

fUML_Semantics::Semantics::Activities::

+node |UML::Activities::

ActivityNodeActivation *
A

fUML_Semantics::Semantics::Activities::

ObjectNodeActivation
A

ExpansionNodeActivation

+fire(incomingTokens : Token [*])

+receiveOffer()

+isReady() : Boolean

+getExpansionRegionActivation() : ExpansionRegionActivation

fUML_Semantics::Semantics::Activities::

0.1 ActivityNode
N

UML::Activities::

ObjectNode
N

UML::Actions::
ExpansionNode

fUML_Semantics::Semantics::Actions::
ActionActivation

ExpansionRegionActivation

Token
+tokens | 0..*
0.*
TokenSet
+inputTokens
* 1

+inputExpansionTokens

+next : Integer [0..1]

+takeOfferedTokens() : Token [*]
+doAction()
+doStructuredActivity()
+runlterative()

ActivityNodeActivationGroup

Figure 8.34 - Expansion Region Activations

e

*

+activationGroups

1. 1 +runParallel()
+doOutput()
+terminate()
+sendOffers()
+runGroup(activationGroup : ExpansionActivationGroup)
+terminateGroup(activationGroup : ExpansionActivationGroup)
+getExpansionNodeActivation(node : ExpansionNode) : ExpansionNodeActivation
+numberOfValues() : Integer
+isSuspended() : Boolean
+resume(activationGroup : ExpansionActivationGroup)

fUML_Semantics::Semantics::Activities:: +regionActivation

ExpansionActivationGroup

+index : Integer

+getActivityExecution() : ActivityExecution
+suspend(activation : ActivityNodeActivation)
+resume(activation : ActivityNodeActivation)

+getNodeActivation(node : ActivityNode) : ActivityNodeActivation

0.1 0.1

+regioninputs | 0..* +grouplnputs | 1..* +groupOutputs

0..1

fUML_Semantics::Semantics::Actions::
OutputPinActivation

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

235

FUML15-2 The fUML subset should support the raising and handling of exceptions

fUML_Semantics::Semantics::Actions::
ActionActivation

I

ReduceActionActivation RaiseExceptionActionActivation
+doAction() +doAction()
+terminate()

0..1

+currentExecution | 0..1

fUML_Semantics::Semantics::CommonBehavior::
Execution

Figure 8.35 - ReduceOther Action Activations

8.10.2 Class Descriptions

8.10.2.1 AcceptCallActionActivations

An accept call action activation is a specialized accept event action activation for an accept call action.

Generalizations

* AcceptEventActionActivation

Attributes

o None

Associations

. None

Operations

[1] accept (in eventOccurrence : EventOccurrence)

// Accept the given event occurrence, which must be a call event occurrence.
// Place return information for the call on the return information

// output pin. Then complete the acceptance of the event occurrence

// as usual.

AcceptCallAction action = (AcceptCallAction) this.node;

OutputPin returnInformationPin = action.returnInformation;

ReturnInformation returnInformation = new ReturnInformation();

236 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

returnInformation.callEventOccurrence = (CallEventOccurrence) eventOccurrence;

this.putToken (returnInformationPin, returnInformation);

super.accept (eventOccurrence) ;

8.10.2.2 AcceptEventActionActivation

An accept event action activation is an action activation for an accept event action.

Generalizations

¢ ActionActivation

Attributes

* waiting : Boolean

Associations

» eventAccepter : AcceptEventActionEventAccepter [0..1]
If the accept event action activation is waiting for an event, then this is the accepter it has registered for the event.

Operations

[1] accept (in eventOccurrence : EventOccurrence)

// Accept the given event occurrence.

// If the action does not unmarshall, then, if the event occurrence 1is

// a signal event occurrence, place the signal instance of the signal

// event occurrence on the result pin, if any.

// If the action does unmarshall, then get the parameter values of the

// event occurrence, and place the values for each parameter on the

// corresponding output pin.

// Concurrently fire all output pins while offering a single control token.
// If there are no incoming edges, then re-register this accept event action

// execution with the context object.

AcceptEventAction action = (AcceptEventAction) (this.node);

OutputPinlist resultPins = action.result;

if (this.running) {
if (!action.isUnmarshall) {
if (eventOccurrence instanceof SignalEventOccurrence) {
SignalInstance signallnstance =

((SignalEventOccurrence)eventOccurrence) .signalInstance;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 237

ValuelList result = new ValuelList();
result.addValue (signalInstance) ;
if (resultPins.size() > 0) {

this.putTokens (resultPins.getValue (0), result);

}
} else {

FUML15-13 fUML should include unmarshall actions

ParameterValuelist parameterValues =

eventOccurrence.getParameterValues (action.trigger.get (0) .event);
for (int 1 = 0; i1 < parameterValues.size(); i++) {
ParameterValue parameterValue = parameterValues.getValue (i);
OutputPin resultPin = resultPins.getValue(i);

this.putTokens (resultPin, parameterValue.values);

this.sendOffers () ;

this.waiting = false;

this.receiveOffer();

this.resume () ;

[2] doAction ()
// Do nothing. [This will never be called.]

return;

[3] fire (in incomingTokens : Token [0..*])

// Register the event accepter for this accept event action activation with the context
object of the enclosing activity execution

// and wait for an event to be accepted.

this.getExecutionContext () .register (this.eventAccepter);
this.waiting = true;
this.firing = false;

this.suspend() ;

238 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

[4] initialize (in node : ActivityNode, in group : ActivityNodeActivationGroup)

// Initialize this accept event action activation to be not waiting for an event.

super.initialize (node, group):;

this.waiting = false;

[5] isReady () : Boolean

// An accept event action activation is ready to fire only if it is not already waiting for

an event.

boolean ready;

if (this.waiting) {
ready = false;

} else {

ready = super.isReady();

return ready;

[6] match (in eventOccurrence : EventOccurrence) : Boolean

// Return true 1if the given event occurrence matches a trigger of the

// accept event action of this activation.

AcceptEventAction action = (AcceptEventAction) (this.node);

TriggerList triggers = action.trigger;

return eventOccurrence.matchAny(triggers);

(7] run ()

// Create an event accepter and initialize waiting to false.

super.run();

this.eventAccepter = new AcceptEventActionEventAccepter();
this.eventAccepter.actionActivation = this;
this.waiting = false;

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

239

[8] terminate ()

// Terminate this action and unregister its event accepter.

super.terminate () ;

if (this.waiting) {
this.getExecutionContext () .unregister (this.eventAccepter) ;

this.waiting = false;

8.10.2.3 AcceptEventActionEventAccepter

An accept event action event accepter handles signal reception events on the behalf of a specific accept event action
activation.

Generalizations

* EventAccepter
Attributes
None

Associations

e actionActivation : AcceptEventActionActivation
The accept event action activation on behalf of which this event accepter is waiting.

Operations

[17 accept (in eventOccurrence : EventOccurrence)

// Accept an event occurrence and forward it to the action activation.

this.actionActivation.accept (eventOccurrence) ;

[2] match (in eventOccurrence : EventOccurrence) : Boolean
// Return true if the given event occurrence matches a trigger of the accept event

// action of the action activation.

return this.actionActivation.match (eventOccurrence) ;
8.10.2.4 ActionActivation
An action activation is an activity node activation for a node that is an action.

Generalizations

FUML15-2 The fUML subset should support the raising and handling of exceptions

ActivityNodeActivationExecutableNodeActivation

240 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

Attributes

* firing : Boolean
Whether this action activation is already firing. This attribute is only used if the action for this action
activation has isLocallyReentrant = false (the default). If isLocallyReentrant=true, then firing always just
remains false.

Associations

* pinActivations : PinActivation [0..*]
The activations of the pins owned by the action of this action activation.

Operations

[1] addOutgoingEdge (in edge : ActivityEdgelnstance)

// If there are no outgoing activity edge instances, create a single activity edge instance
with a fork node execution at the other end.

// Add the give edge to the fork node execution that is the target of the activity edge
instance out of this action execution.

// [This assumes that all edges directly outgoing from the action are control flows, with an
implicit fork for offers out of the action.]

ActivityNodeActivation forkNodeActivation;

if (this.outgoingEdges.size() == 0) {
forkNodeActivation = new ForkNodeActivation() ;
forkNodeActivation.running = false;
ActivityEdgeInstance newEdge = new ActivityEdgelInstance();
super.addOutgoingEdge (newEdge) ;
forkNodeActivation.addIncomingEdge (newEdge) ;

}

else {

forkNodeActivation = this.outgoingEdges.getValue (0) .target;

forkNodeActivation.addOutgoingEdge (edge) ;

[2] addPinActivation (in pinActivation : PinActivation)

// Add a pin activation to this action activation.

this.pinActivations.addValue (pinActivation);

pinActivation.actionActivation = this;

[3] completeAction () : Token [0..*]

// Concurrently fire all output pin activations and offer a single

Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta 241

// control token. Then check if the action should fire again

// and, if so, return additional incoming tokens for this.

this.sendOffers () ;

_beginIsolation();
TokenList incomingTokens = new TokenList();
this.firing = false;
if (this.isReady()) {
incomingTokens = this.takeOfferedTokens();
this.firing = this.isFiring() & incomingTokens.size() > O0;
}

_endIsolation();

return incomingTokens;

[4] createNodeActivations ()
// Create node activations for the input and output pins of the action for this activation.

// [Note: Pins are owned by their actions, not by the enclosing activity (or group), so they
must be activated through the action activation.]

Action action = (Action) (this.node);

ActivityNodeList inputPinNodes = new ActivityNodeList();
InputPinlist inputPins = action.input;
for (int i = 0; i < inputPins.size(); 1i++) {
InputPin inputPin = inputPins.getValue (i) ;
inputPinNodes.addValue (inputPin) ;

this.group.createNodeActivations (inputPinNodes) ;

for (int i = 0; i < inputPinNodes.size(); i++) {

ActivityNode node = inputPinNodes.getValue (i) ;

this.addPinActivation ((PinActivation) (this.group.getNodeActivation (node)));
}
ActivityNodeList outputPinNodes = new ActivityNodelList();
OutputPinlList outputPins = action.output;
for (int 1 = 0; i < outputPins.size(); i++) {

OutputPin outputPin = outputPins.getValue (i) ;

242 Semantics of a Foundational Subset for Executable UML Models (fUML), v1.5 — Beta

outputPinNodes.addValue (outputPin) ;

this.group.createNodeActivations (outputPinNodes) ;

for (int i = 0; i < outputPinNodes.size(); i++) {

ActivityNode node = outputPinNodes.getValue (i) ;

this.addPinActivation ((PinActivation) (this.group.getNodeActivation (node)));

[5] doAction ()

Do the required action behavior.

[6] fire (in incomingTokens : Token [0..*])

// Do the main action behavior then concurrently fire all output pin activations

// and offer a single control token. Then activate the action again,

// if it is still ready to fire and has at least one token actually being

// offered to it.

do {

this.doAction();

incomingTokens = this.completeAction();
} while (