
Date: September 2024

Ground Data Delivery Interface (GDDI)
Version 1.0 – beta 1

__

OMG Document Number: dtc/24-09-16

Normative Reference: https://www.omg.org/spec/GDDI/

Normative Machine Readable file(s):
https://www.omg.org/members/cgi-bin/doc?space/24-07-02.xml

__

This OMG document replaces the submission document (space/24-07-01). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are welcome
and should be directed to issues@omg.org by October 11, 2024.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in June 2025. If you are reading
this after that date, please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/members/cgi-bin/doc?space/24-07-02.xml

ii Ground Data Delivery Interface (GDDI), v1.0 – beta 1

Copyright © 2024, Kratos RT Logic, Inc.
Copyright © 2024, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

https://www.omg.org/legal/tm_list.htm

iv Ground Data Delivery Interface (GDDI), v1.0 – beta 1

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process, we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Specifications, Report a
Bug/Issue.

Ground Data Delivery Interface (GDDI), V0.2 v

Table of Contents
1 Scope .. 1
2 Conformance .. 2
3 Normative References .. 2
4 Terms and Definitions .. 2
5 Symbols .. 2
6 Additional Information ... 2

6.1 Acknowledgments ... 2
7 PIM ... 3

7.1 Overview ... 3
7.2 GDDI Use Cases ... 3
7.2.1 GDDI Endpoint ... 4
7.2.1.1 Sender Endpoint .. 4
7.2.1.2 Receiver Endpoint ... 4
7.2.2 Encode Metadata ... 4
7.2.3 Decode Metadata ... 5
7.2.4 Transport Message .. 5
7.2.4.1 Unidirectional Transfer ... 5
7.2.4.2 Bidirectional Transfer ... 6
7.2.5 Ground System Engineer .. 6
7.2.6 Define GDDI Metadata ... 6
7.3 GDDI Message Design .. 7
7.3.1 GDDI Message .. 7
7.3.2 GDDI Header .. 7
7.3.3 Type Block .. 8
7.3.4 Type Header .. 8
7.3.5 Tag-Length-Value (TLV) Triplet .. 9
7.3.6 Standard and Vendor-Specific Metadata ... 9
7.3.7 Data/Payload ... 9
7.4 GDDI Package Design ... 10
7.4.1 Standard Metadata Package .. 11
7.4.2 Vendor-Specific Metadata Package .. 12
7.5 GDDI Security .. 12
7.6 GDDI Internationalization ... 12

8 PSM-CORBA Encoding ... 13
8.1 PIM to PSM Mapping ... 13
8.1.1 Attributes ... 13
8.1.2 GDDI Header Format .. 13
8.1.2.1 Sync Marker .. 14
8.1.2.2 GDDI Version ... 14
8.1.2.3 Reserved .. 14
8.1.2.4 Total Length .. 14
8.1.2.5 Type Count .. 15
8.1.2.6 Payload Type ... 15
8.1.2.7 Sequence Counter .. 15
8.1.3 Type Block .. 15
8.1.4 Type Header Format ... 15
8.1.4.1 Type ID ... 15
8.1.4.2 Major Version ... 15
8.1.4.3 Minor Version ... 15
8.1.4.4 Length of TLVs ... 16
8.1.5 TLV Triplet Format ... 16
8.1.5.1 Tag 16
8.1.5.2 Length ... 16
8.1.5.3 Value ... 16

 vi Ground Data Delivery Interface (GDDI), V0.2

8.1.6 Data/Payload Format ... 17
8.1.7 GDDI Message Format ... 17
8.2 GDDI Message Examples ... 18
8.2.1 Example GDDI Message with Standard Metadata .. 18
8.2.2 Example GDDI Message with Vendor-Specific Metadata .. 19

9 PSM-TCP/IP Network Transport ... 20
9.1 PIM to PSM Mapping ... 20
9.2 Security ... 20
9.2.1 Encryption ... 20
9.2.2 Authentication ... 20

Ground Data Delivery Interface (GDDI), V0.2 vii

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:
https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 1

1 Scope
The Ground Data Delivery Interface (GDDI) specification defines a lightweight message interface standard to encapsulate
spacecraft data and metadata for transfer between ground applications within a common network using a model-driven
approach. The purpose of GDDI is to standardize the data/bearer-plane for digital baseband data within satellite ground
systems, making it a companion standard to the existing OMG GEMS specification which provides a standard for the
control/status-plane. By standardizing the structure of this message interface, GDDI facilitates interoperability between
endpoints that agree to use compatible metadata definitions (i.e., types, identifiers/tags, etc.). GDDI is applicable to data and
metadata in the digital domain, also known as baseband. This type of data and metadata includes spacecraft commands,
telemetry, and mission payload prior to conversion to/from signals in the RF domain (i.e., waveform modulation). The scope
of GDDI is the baseband domain. Sufficient standards already exist for the RF domain such as ANSI/VITA-49 and IEEE-
ISTO DIFI.

Figure 1 below shows the scope of GDDI within a notional satellite ground system. The applicable baseband domain
boundary is depicted as well as the non-applicable RF waveform boundary. It also shows an overview of the conceptual
model for the GDDI specification with typical baseband data-plane interfaces between the various ground functions
composed of varying types of metadata between them. This model provides the necessary elastic flexibility of appending
different types of metadata at different points within the data path, dynamically.

Figure 1 – GDDI Conceptual Model and Scope

The GDDI PIM defines a model of the elastic message structure and behavior that is standard to all GDDI implementations.
In the case of GDDI, the platform is defined as the message encoding format and the network transport mechanism used to
transfer the messages between endpoints. By defining the platform at these levels, the focus of the GDDI PIM is the message
content and behavior, leaving the specifics of defining the message format and transporting that message to the PSMs.

Two GDDI PSMs are defined:

1. The “Encoding Format PSM” uses well-defined CORBA type definitions, encoding formats, and bit/byte ordering
that are well suited for many transport platforms. This PSM focuses on reusing a robust standard that allows
implementations to lever OMG IDL or other languages and tooling for efficient development, language mapping,
maintenance, and portability, all with the goal of promoting interoperability.

2. The “Network Transport PSM” uses the ubiquitous TCP/IP protocol pair for guaranteed transmission and reception
of GDDI Messages between endpoints. The rationale for using this transport layer is that TCP provides a proven,
efficient, and ensured transport across IP-based networks that is prevalent among satellite ground systems.

Many other platform specific mappings of the GDDI PIM are possible. These potentially include other standard encoding
formats such as JSON or XML, as well as network transports such as Stream Control Transmission Protocol (SCTP),
Datagram Congestion Control Protocol (DCCP), or Data Distribution Service (DDS).

Metadatum A.1
GDDI Message

Function A
(e.g. Mod,
Demod)

Function D
(e.g. Protocol

Framing)

Function F
(e.g. Payload,
C2 process) Function C

(e.g. Error
Correction)

VITA-49 and
IEEE-DIFI
Standards

Function E
(e.g. Protocol
Packetizing)

Metadatum F.1

Data from
Function F

Function B
(e.g. Frame

Sync)

Metadatum A.3

Metadatum A.4

Data from
Function A

Metadatum B.1
GDDI Message

Metadatum B.2

Metadatum B.3

Data from
Functions B & C

Data from
Function D

Metadatum E.1

Data from
Function E

GDDI
Standard

Metadatum A.2

Metadatum C.2

Metadatum C.1

Digital / Baseband Domain (scope of GDDI) RF/Waveform Domain

GDDI
Standard

GDDI Message
Metadatum D.1

Metadatum D.2

Metadatum C.1

Metadatum C.2

GDDI
Standard

GDDI Message

Metadatum E.2

Metadatum E.3

GDDI
Standard

GDDI Message

Metadatum F.2

RF
Functions
(Digitizer,

ADC/DAC)

GDDI
Standard RF

2 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

2 Conformance
A valid implementation requires and consists of everything specified in the PIM. Conformance is based on one encoding
PSM and one transport PSM in their entirety.

3 Normative References
The following are normative references that apply to this specification:

• [CORBAINTEROP] CORBA Specification, Version 3.3, Part 2: CORBA Interoperability, OMG Document:
formal/2012-11-14

• [GDDIRFP] Ground Data Delivery Interface (GDDI) Request For Proposal (RFP), OMG Document: space/2023-
03-01

• [TCP] Transmission Control Protocol, RFC9293, Internet Engineering Task Force (IETF)
• [IP] Internet Protocol, RFC791 (IPv4) and RFC8200 (IPv6), Internet Engineering Task Force (IETF)
• [UTF8] Unicode Transformation Format, RFC3629, ISO/IEC10646-1, UTF-8

4 Terms and Definitions
None.

5 Symbols
None.

6 Additional Information
6.1 Acknowledgments
The following companies submitted this specification:
• Kratos RT Logic, Inc.

The following companies and organizations support this specification:
• Sphinx Defense

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 3

7 PIM
7.1 Overview
The GDDI specification defines a standard, Platform Independent Model (PIM) used to encapsulate and transfer data and
metadata between endpoints within a satellite ground system. The GDDI model does not presume or try to define a specific
system level architecture. Instead, it defines generic concepts such as message structure, metadata, and endpoints that are
relatively simple to implement and provides system integrators with common ways to transfer multiple types of space related
metadata and data within a ground system.

Being a lightweight specification, the GDDI PIM provides a straightforward message interface standard with simplex
transmission between endpoints. These PIM features promote low encoding/formatting overhead, as well as efficient
network throughput and latency performance required for modern ground systems.

The following GDDI PIM sections consist of behavioral use cases and message related classes that allow ground system
endpoints to efficiently transfer data and metadata between themselves.

7.2 GDDI Use Cases
Figure 2 depicts the GDDI use cases. These use cases define common interactions and activities associated with defining and
using the GDDI data/metadata message interface. Subsequent sections explain each element in this diagram.

Figure 2 – GDDI Use Cases

4 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

7.2.1 GDDI Endpoint
This actor represents an endpoint user of a GDDI Message interface. A GDDI Endpoint can be a sender or a receiver, where
the information passed between them is the GDDI Message containing the encoded metadata and data to be transferred. The
GDDI Endpoint commonly takes the form of a software application that implements GDDI to encapsulate, encode, and
transfer data and metadata to another GDDI Endpoint.

The metadata definitions that this actor sends and receives via the GDDI Message are previously defined by the Ground
System Engineer actor. This provides compatibility between endpoints that agree to use the same metadata definitions,
allowing them to interoperate.

If an endpoint is both a sender and a receiver, a conformant implementation shall forward all metadata that it is not directly
consuming or transforming, and it shall be able to forward messages not intended for itself. Unknown metadata must be able
to be included in subsequent derived messages to other components though an implementation may choose to allow it to be
disabled per a configuration setting. For metadata that is supported by an implementation, the metadata may be changed by
an implementer along with the data/payload of the message.

7.2.1.1 Sender Endpoint
A GDDI sender endpoint assembles, encodes, and transmits a GDDI Message over one of the network transports specified in
the Platform Specific Model (PSM) for a given transport.

7.2.1.2 Receiver Endpoint

A GDDI receiver endpoint receives, decodes, and parses a GDDI Message so that it can process its metadata and data.
Optionally, this endpoint can forward the received metadata/data to a sender endpoint that may append additional metadata
(of different types) or remove metadata, then encode and transmit them via GDDI Message to another endpoint.

7.2.2 Encode Metadata
This use case represents the assembly and encoding of metadata and data into the GDDI Message format. This metadata and
data are supplied by the Sender GDDI Endpoint, and the metadata definitions are supplied by the Ground System Engineer
actor. The sender endpoint performs this Encode Metadata function per the specific PSM for a given encoding format. After
performing metadata encoding, the sender endpoint transmits the encoded GDDI Message to the receiver endpoint via the
Transport Message use case. Figure 3 provides an interaction diagram depicting this Encode Metadata use case.

Figure 3 – Encode Metadata Use Case

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 5

7.2.3 Decode Metadata
This use case represents the parsing and decoding of the GDDI Message into the original metadata and data for processing by
the receiver endpoint. The metadata definitions are supplied by the Ground System Engineer actor. The receiver endpoint
performs this Decode Metadata function per the specific PSM for a given format. After performing metadata decoding, the
receiver endpoint uses the decoded metadata and data to perform operations and subsequent processing. Figure 4 depicts this
Decode Metadata use case.

Figure 4 – Decode Metadata Use Case

7.2.4 Transport Message
This use case represents the fundamental GDDI behavior of transferring endpoint data and metadata (encoded into GDDI
Messages) via transmission across a network transport channel. The type of transport is mapped from a specific GDDI PSM.
The following subsections explain how GDDI supports both unidirectional (simplex) and bidirectional (duplex) message
transfer over a supporting transport channel(s).

7.2.4.1 Unidirectional Transfer

Figure 5 shows the unidirectional transfer of a GDDI Message where a single transport channel is used in simplex mode. The
sender endpoint is shown using the transport channel to transfer the GDDI Message (containing the metadata and data) to the
receiver endpoint.

Figure 5 – Unidirectional Transfer Use Case

By specifying simplex transmission and a single transport channel, this Unidirectional Transfer use case forms the foundation
for other multidirectional use cases, like the bidirectional use case described in the following sections.

6 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

7.2.4.2 Bidirectional Transfer

For bidirectional transfer, the simplex transmission specified in the GDDI PIM is extended to support duplex transmission
between GDDI Endpoints. Doing so provides duplex capability where the sender endpoint can send requests concurrently or
sequentially to the receiver endpoint while it sends responses back to the sender. Figure 6 shows the bidirectional transfer of
GDDI Messages where separate transport channels are used to support duplex mode. This allows a receiver to send messages
back to the sender (e.g., for status or display purposes).

Figure 6 – Bidirectional Transfer Use Case

7.2.5 Ground System Engineer
The role of this actor is to provide GDDI metadata definitions to be used by GDDI Endpoints to encode the metadata into
GDDI Messages. The Ground System Engineer commonly takes the form of a system or software developer who selects
and/or defines the necessary metadata needed between endpoints within a satellite ground system. These metadata definitions
are explained in the Define GDDI Metadata use case below.

7.2.6 Define GDDI Metadata
This use case represents the process where the satellite Ground System Engineer determines the metadata necessary for the
GDDI endpoints (within the respective ground system) to communicate between themselves using GDDI Messages. Once the
required metadata is determined, the Ground System Engineer then selects existing metadata definitions from the Standard
and/or Vendor-Specific Metadata package(s) and may add any new required metadata definitions to either or both packages,
as described in the Section 7.4.

These definitions include the metadata types, identifiers/tags, versions, corresponding value lengths, and value typedefs
needed to build GDDI Messages in compliance with this specification.

This specification supports both standard and vendor-specific metadata definitions in order to facilitate data interface reuse as
well as provide the flexibility to support vendor-specific needs. For example, Standard metadata definitions can be selected
for an interface requiring GDDI Types “A” and “B” and Vendor-Specific definitions can be selected for an interface
requiring a vendor’s custom Type “C” metadata. Also, vendors can extend standard GDDI Types with their own vendor-
specific metadata without impacting existing GDDI endpoints that support the standard Types. This affords flexibility to the
Ground System Engineer to design data-plane communications that lever an open standard interface (GDDI) using industry
standard metadata definitions, with the ability to use Vendor-Specific metadata definitions when required.

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 7

7.3 GDDI Message Design
The central concept of GDDI is the GDDI Message used to transfer data and metadata. This construct consists of a GDDI
Header containing the necessary attributes for defining the message envelope, like Sync Marker, Version, Total Length, etc.
The GDDI Message also contains the raw Data/Payload carrying the baseband data whose encoding format can be included
as GDDI metadata, or agreed upon between sender and receiver endpoints. Most importantly, the GDDI Message contains
multiple types of metadata, grouped into blocks of related metadata called the Type Block, also referred to as the Type-Tag-
Length-Value (TTLV) construct.

Within a given type of metadata, there can be one-to-many metadata Values, each identified with a metadata Tag and a
Length (of the value); when combined is referred to as the Tag-Length-Value (TLV) Triplet. This multi-dimensional
metadata elasticity is the crux of the GDDI concept, as depicted above in Figure 1 where multiple types of metadata are
appended at various points across the data chain, with a dynamic number of metadata values per type. The TLV triplet Length
(of value) field supports not only primitive metadata types, but larger more complex metadata values.

Figure 7 below provides the complete UML model of the GDDI Message, its Header, its Type Block, and its Data/Payload.

Figure 7 – GDDI Message UML Class Diagram

7.3.1 GDDI Message
This message is the primary data construct transferred between GDDI Endpoints. The GDDI Message is a concrete class
composed of three other classes: the GDDI Header, Type Block, and Data/Payload. The encoding of the composed GDDI
Message fields is specified by a GDDI Encoding PSM. This message structure provides the basis for the PSM encoding. The
transport of GDDI Messages is specified by another GDDI PSM, described herein. The case where only Data/Payload needs
to be transferred is supported by appending no Type Blocks to the GDDI Message; this provides a minimal message
encapsulation when no metadata is needed but is not the nominal use case for GDDI.

7.3.2 GDDI Header
A single GDDI Header is used to envelope the subsequent contents of a GDDI Message. This header consists of the
following attributes that are encoded prior to transport per the selected PSM:

• Sync Marker: This attribute consists of the message-leading byte pattern for receivers to find and extract GDDI
Messages from stream-based transports, such as TCP/IP which provides a byte stream with no encapsulation. This
byte pattern shall be set to the following hexadecimal values: 0x47 0x44 0x44 0x49 (i.e., the ASCII character
values: “G” “D” “D” “I”, respectively). These values shall be fixed for all interfaces using GDDI Messages.

8 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

• GDDI Version: This attribute represents the numeric version of the GDDI Message structure for a given Encoding
PSM. This provides separate versioning per Encoding PSM to allow for changes to the encoded field formats as well
as for PIM-level changes to the overall structure of the message (which would increment the version for all encoding
PSMs). For example, GDDI Version for Encoding PSM#1 could be 4 while for Encoding PSM#2 it could be 0. The
GDDI Version attribute is zero-based, where version value of 0 indicates logical version 1. Note: this GDDI Version
attribute does not correlate with the document version of this GDDI specification. Supported GDDI Versions are
explicitly stated in each Encoding PSM.

• Reserved: This attribute is a placeholder for future interface use and shall be assigned to all zero bits in all PSMs.

• Total Length: This integer attribute represents the length (in octets) of the entire encoded GDDI Message. This
attribute, combined with the Sync Marker, is used by GDDI receiver endpoints to determine the end of the received
GDDI Message so that it can be extracted from various stream-oriented transports like TCP. This attribute is also
used in combination with the Type Count and Length of TLVs attributes to determine the size of the Data/Payload.

• Type Count: This attribute represents the number of Type Blocks contained in the GDDI Message. It is used by
GDDI receiver endpoints to determine the last Type Block in the message so it can locate the beginning of the
Data/Payload.

• Payload Type: This attribute indicates which of the Types (within the current GDDI Message) contains the primary
metadata describing the Data/Payload being transferred, i.e., the Type ID of the most recent data transformation.

• Sequence Counter: This attribute is incremented by one for each successive GDDI Message transmitted from a
given Sender GDDI Endpoint to its corresponding Receiver GDDI Endpoint. This numeric attribute starts at the
value zero and increments by one for each GDDI Message transmitted. It is used by the receiver to detect any
missing or out-of-order messages if the underlying PSM does not guarantee them.

7.3.3 Type Block
A Type Block represents a specific category of metadata for a given ground system processing function. A GDDI Endpoint
can append zero or more Type Blocks to a GDDI Message to fully describe the data as it transits multiple processing
functions across the ground system. A Type Block consists of a Type Header and zero or more TLV Triplets, per below.
There is no required or fixed order for Type Blocks, so receivers shall handle any ordering, i.e., if a Type is not needed or is
unknown, it must skip to the next Type using the Length of TLVs attribute provided in the Type Header.

7.3.4 Type Header
The Type Header is used to start the beginning of a Type Block and describes the block’s contents. This header consists of
the following attributes that are encoded prior to transport per the selected PSM:

• Type ID: This numeric attribute is a unique identifier for a given metadata type and represents the category of all
subsequent TLV triplets in the corresponding Type Block identified by this Type ID. See section 7.3.6 for how this
attribute is used to support standard and vendor-specific Type Blocks.

• Major Version: This integer attribute represents the incompatibility portion of the combined Major.Minor version.
When a Major Version increments, it means that existing TLV(s) for that Type ID have been modified and/or
deleted, making the new Major version incompatible with previous Major versions.

• Minor Version: This integer attribute represents the compatibility portion of the combined Major.Minor version.
When a Minor Version increments, it means that new TLV(s) for that Type ID have only been added, making the
new Minor version backward compatible with previous Minor versions of the same Major version.

• Length of TLVs: This integer attribute represents the length (in octets) of all TLV triplets in the corresponding
Type Block; excludes the length of the Type Header. Receiver endpoints use the Type ID and Length of TLVs to
process or ignore TLVs for a given Type. A zero Length of TLVs shall be allowed where the Type Block includes a
Type Header with no TLVs; this is to support the use case where optional TLVs are not transmitted, but the sender
wants to indicate presence of that Type to the receiver.

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 9

7.3.5 Tag-Length-Value (TLV) Triplet
The Tag-Length-Value Triplet is the foundational construct of the GDDI Message. The Tag member identifies the individual
metadatum, the Length member indicates the length of the metadatum Value. And the Value member provides the actual
value of the metadatum. There is no required or fixed order for TLVs within the Type Block, so receivers shall handle any
ordering, i.e., if a Tag is not needed or is unknown, it must skip to the next Tag using the Length attribute in the TLV triplet.
The TLV Triplet consists of the following three attributes that are encoded prior to transport per the selected PSM:

• Tag: This numeric attribute is an identifier for a given metadatum item, referred to as a TLV triplet. Tag numbers
are not required to be unique, where multiple instances of the same tag within a message are allowed and shall be
handled accordingly by implementations. This allows the same Tag number to be repeated within a given Type to
provide multiple Values for a common Tag, e.g. multiple “IP address” Tags could exist for a Type that represents all
IP addresses for a certain host, each with a different Value. Unique Tag numbers are also supported to provide
groupings of different yet related metadata for a given Type. The semantics regarding Tag uniqueness are
determined and set for each Type ID a-priori so that GDDI receiver endpoints can properly parse and decode the
TLV triplets. See section 7.3.6 for how this attribute is used to support standard and vendor-specific TLVs.

• Length: This numeric attribute indicates the length in octets of the Value attribute. This provides flexibility to
support small or large Values while maintaining a lightweight and elastic metadata interface. A zero Length shall be
allowed to support the use case of Tags without Values, e.g. A “middle name” Tag could have no Value.

• Value: This attribute is an array of bytes representing the metadatum value for the given Tag. The length of this
value is specified by the Length attribute of the TLV. The format and data type of this value attribute is known
based on the specific Tag representing it, and maps to one of the definitions in the selected Encoding PSM.

7.3.6 Standard and Vendor-Specific Metadata
A GDDI message may carry metadata containing one or more of the following:

1. Standard-Only Type Block(s) containing TLV(s) with concrete definitions from the Standard Metadata Package as
described in section 7.4.1, i.e., contains no vendor-specific metadata.

2. A standard Type Block containing standard TLV(s) followed by one or more vendor-specific TLV(s). This is how
vendors can extend a standard Type, i.e., combined metadata from Standard and Vendor-specific packages.

3. Vendor-Only Type Block(s) containing TLV(s) with concrete definitions from a Vendor-Specific Metadata Package
as described in section 7.4.2, i.e., contains vendor-only Type(s) with a single vendor’s metadata per Type. These
Type Blocks use a single reserved Vendor-Only Type ID (prescribed in the Encoding PSM) to indicate that the
Type Block only contains vendor-specific metadata.

For cases #2 and #3 above, vendor-specific TLV(s) shall be preceded with a Vendor-Identifying TLV consisting of a
reserved Vendor ID Tag, a fixed Length, and a Vendor ID Value containing a unique identifier of that specific vendor. This
Vendor ID Tag and Length are prescribed in the Encoding PSM, and the Vendor ID Values are prescribed in a separate
repository/website as referenced in section 7.4.2 of this specification. Also refer to section 8.2.2 for an example GDDI
message carrying metadata for all three of the above cases.

7.3.7 Data/Payload
The Data/Payload portion of the GDDI Message is an array of bytes containing the variable-length payload data described by
the attached metadata in the GDDI Header and Type Block(s). The format and encoding of this payload data can be included
as GDDI metadata, or agreed upon between endpoints.

The length of this data/payload is determined by the GDDI Header Total Length less the lengths of all Type Blocks, where
the length of each Type Block is determined by the fixed length of the encoded Type Header and the encoded Length of
TLVs attribute.

In the case where the usable length of the data/payload is not an integral number of octets (bytes), a TLV can be used to
specify a bit-length. For example, a TLV could be specified to represent the “Length in Bits”, where the data length could be
15 bits carried within a 2 byte Data/Payload field, i.e., only the first 15 most significant bits would be valid.

10 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

7.4 GDDI Package Design
GDDI specifies the message structure and interaction between GDDI Endpoints. It does not specify the exact metadata
definitions (i.e., types, identifiers/tags, versions, corresponding value lengths, and value typedefs) for any given interface.
That is beyond the scope of this specification. Instead, GDDI delineates the approach to use when defining specific metadata;
as well as how that metadata is structured and encoded in GDDI Messages for transport between endpoints.

When first defining a given interface between GDDI Endpoints, the Ground System Engineer provides the concrete metadata
definitions that are compliant with the PIM and PSM used. To represent this interaction, GDDI specifies two notional
packages: the Vendor-Specific Metadata package, containing definitions of concrete metadata that meet the GDDI
specification but are custom to a given vendor, and the Standard Metadata package also containing concrete metadata
definitions but are standardized among multiple vendors to ensure interoperability among them. While not included in this
document, it is envisioned that the Standard package eventually becomes a machine-readable, publicly available XML
metadata dictionary hosted in a separate repository linked from this specification or OMG website. Each Vendor package
(maintained by the respective vendors) may take a similar XML dictionary approach. Both packages contain the concrete
metadata definitions, including Type IDs, Type Versions, Tags, corresponding Value lengths, etcError! Reference source
not found.. Figure 8 shows the GDDI packages.

Figure 8 – GDDI Packages

When supporting the Standard Metadata package, a GDDI implementation enables customers to easily configure the
implementation for interoperable communication of baseband metadata and data following the GDDI model. When GDDI
implementations use Vendor-Specific packages, interoperability between different vendors is not guaranteed.

Metadata definitions supported by a GDDI implementation shall be available via one or both of these packages which can be
distributed by the vendor via product documentation, an API provided by a GDDI implementation, or via XML dictionary.

Refer to the following subsections for more details on GDDI metadata definitions (packages) and the planned use of XML
data dictionaries.

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 11

7.4.1 Standard Metadata Package
As mentioned in the GDDI Package Design, it is envisioned that the Standard Metadata package eventually becomes a
machine-readable XML metadata dictionary available in a separate repository linked from this specification or OMG website
(e.g., wiki or GitHub repository).

This dictionary will provide the concrete definitions for Standard GDDI metadata. A concrete definition is an explicit
assignment of a given PIM attribute or supporting property, e.g., Type ID = 7, where ‘7’ is the concrete definition.

This allows GDDI implementers and users to retrieve these standard definitions from the referenced external repository.
Concrete metadata definitions provide Type-Tag-Length-Value (TTLV) information needed for two GDDI endpoints to
interoperate.

Concrete definitions for the following normative attributes shall be provided by the Standard Metadata Package (i.e., via
metadata dictionary), and used to populate GDDI Message fields for a given interface as specified in the PIM and the
Encoding PSM. It is preferred that Type Name and Tag Name carry well-known values to facilitate machine-readability.
Optional definitions are enclosed in brackets “[]” and italics text is informational:

• Type ID
• Type Name
• Per Type:

o Major Version
o Minor Version
o Per TLV Triplet:

 Tag (ID)
 Tag Name
 Length (of Value)
 Value Type (per the Encoding PSM)
 [Value Units]
 [Tag Description]

In addition to the Standard metadata dictionary provided via OMG-managed site, GDDI implementations may supply these
standard metadata definitions in an Interface Control Document (ICD) and/or provide an API to retrieve them
programmatically from a running GDDI-enabled application.

The following Table 1 is not normative but illustrates an example of a Standard Metadata Dictionary in a generic form. This
example dictionary contains concrete metadata definitions for five standard Types (IDs 1 – 5). To provide the flexible/elastic
interface, GDDI messages can transfer one or more Types depending on the use case.

Table 1. Example GDDI Standard Metadata Dictionary

Type
ID

Type
Name

Major
Ver

Minor
Ver

Tag
(ID)

Tag
Name

Length
(of Value)

Value
Type

Value
Units

Tag
Description

1 Raw 1 0 1 Sequence Number 2 unsigned short count Sequence Number used to detect out-of-order and/or lost data
2 Data Rate 8 double bits per sec Bit Rate (in bits per second) of the underlying Raw data
3 Time Stamp Seconds 4 unsigned long sec Time Stamp: Number of seconds since 00:00:00 Jan 1, 1970 (UTC), minus leap seconds
4 Time Stamp Nanosec 4 unsigned long nsec Time Stamp: Nanoseconds representing the fractional portion of the timestamp
5 Data Length 8 unsigned long long bits Length in bits of the Raw data payload

2 Frame 1 2 1 FrameSync Lock State 1 octet enum Lock State of the Frame: 0=stopped, 1=search, 2=verfiy, 3=lock, 4=check, 5=noSignal
2 Bits Slipped 2 short bits Bits slipped: negative value slipped to the left, positive value slipped to the right
3 Time Stamp Seconds 4 unsigned long sec Time Stamp (POSIX): Number of seconds since 00:00:00 Jan 1, 1970 (UTC), minus leap seconds
4 Time Stamp Nanosec 4 unsigned long nsec Time Stamp (POSIX): Nanoseconds representing the fractional portion of the timestamp
5 Frame Length 4 unsigned long bits Length in bits of the Frame data payload

3 FEC 1 1 1 Bits Corrected 2 unsigned short bits Forward Error Correction (FEC) Bits Corrected in this frame
2 Uncorrectable 1 boolean true/false Forward Error Correction (FEC) Uncorrectable Frame flag
3 ASM Vector 0 octet array bytes Attached Sync Marker (Length of Value of zero indicates this TLV is variable-length)

4 CCSDS 2 0 1 Spacecraft Identifier 2 unsigned short ID SpaceCraft ID from the received CCSDS Data Link Transfer Frame Header
Transfer 2 Virtual Channel ID 1 octet ID Virtual Channel ID from the received CCSDS Data Link Transfer Frame Header
Frame 3 CRC Error 1 boolean true/false Indicates if CRC error(s) for this CCSDS Transfer Frame have been detected

5 IP 1 3 1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)
Addrs 1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)

1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)

12 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

7.4.2 Vendor-Specific Metadata Package
To support the Vendor-Specific Metadata package per the GDDI Package Design, vendors may extend the metadata of a
given Standard Type by adding their own TLV definitions and/or create their own Vendor Types with vendor-specific TLV
definitions. These options are discussed in section 7.3.6.

This capability provides vendor flexibility to on-ramp and/or innovate while using the standard GDDI interface. It allows
unknown/unexpected vendor metadata to be easily parsed or skipped without impacting existing GDDI implementations.

Vendors may use a similar metadata dictionary approach as shown in Table 2 below (not normative). This example
dictionary contains one additional column named “Vendor ID” to identify the vendor’s TLV triplet(s) per Type Block.

For the first Type Block with Type ID 2, Vendor IDs 11 and 22 have extended the Standard “Frame” type with their own
vendor metadata. Note how the first TLV for a given vendor’s metadata must be the Vendor-Identifying TLV with Tag 255,
Length of 1, and a Value equal to the Vendor ID as described in section 7.3.6.

The next two Type Blocks use Type ID 255 (a reserved value per the Encoding PSM) to indicate that the subsequent TLV(s)
for each Type Block only contain metadata for the vendor specified by the first Vendor-Identifying TLV. In this example,
these two Type Blocks contain metadata for Vendor IDs 33 and 44, respectively.

Vendor ID Values containing unique identifiers of each vendor used to support vendor-specific metadata will be provided in a
separate repository linked from this specification or OMG website.

Table 2. Example GDDI Vendor-Specific Metadata Dictionary

Vendor-Specific metadata definitions may be supplied via a metadata dictionary (preferably a similar XML format as the
standard metadata dictionary), an Interface Control Document (ICD) and/or an API to retrieve them programmatically from a
running GDDI-enabled application.

7.5 GDDI Security
Security has been considered for this specification, though it does not apply at the PIM level. Specific security controls are
not specified by the GDDI PIM because it does not define a network transport. See the Security section 9.2 in the PSM-
TCP/IP Network Transport for details of how the PSM supports security.

7.6 GDDI Internationalization
GDDI supports international use as there are no specific regional type definitions in the PIM. Encoding PSM section 8.1.1
references section 7.10.2.6 of [CORBAINTEROP] which states that strings are encoded using UTF-8, allowing for the
representation of characters within the Unicode character set that are supported internationally. All other GDDI-specified
types are internationally supported.

Type
ID

Type
Name

Major
Ver

Minor
Ver

Tag
(ID)

Tag
Name

Length
(of Value)

Vendor
ID

Value
Type

Value
Units

Tag
Description

2 Frame 1 2 255 Vendor ID 1 11 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)
1 Frame Data Inverted 1 11 boolean true/false Indicates if the frame data was detected to be inverted based on the sync pattern
2 Frame Antenna Name 0 11 string name Name of the ground antenna site that sourced this frame data

255 Vendor ID 1 22 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)
1 Frame Sync Lost 1 22 boolean true/false Indicates if the frame synchronization was lost since the previous frame

255 Vend33 1 0 255 Vendor ID 1 33 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)
1 Vendor33 Meta X 4 33 float widgets Vendor33 description for this metadatum
2 Vendor33 Meta Y 8 33 unsigned long long widgets Vendor33 description for this metadatum

255 Vend44 1 0 255 Vendor ID 1 44 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)
1 Vendor44 Meta A 2 44 short widgets Vendor44 description for this metadatum
2 Vendor44 Meta B 0 44 octet array widgets Vendor44 description for this metadatum

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 13

8 PSM-CORBA Encoding
This Encoding PSM specifies Data Type Definitions and CORBA Encoding Formats for all GDDI Message attributes other
than the Data/Payload as described in Section 7.3.7. Additionally, CORBA provides established floating-point encoding
formats via the ANSI/IEEE 754 Standard. By levering this subset of CORBA, this PSM provides encoding formats that are
interoperable among many processing platforms as well as across a variety of transport mechanisms.

8.1 PIM to PSM Mapping
For the GDDI PIM to PSM (CORBA Encoding) mapping, each attribute in the GDDI Message and its containing members
shall adhere to the following mapping rules, which shall be considered normative. All ranges and attribute semantics are
described in the corresponding PIM attributes, unless otherwise stated.

8.1.1 Attributes
PIM attributes map to encoded PSM fields. Each attribute called out in the GDDI Message UML Class Diagram in Figure 7
shall map to one of the CORBA Encoding Formats called out in Table 2. The subsequent “Format” sections specify exactly
which Data Type/CORBA Encoding is used for each field that is mapped from a PIM attribute.

The Value attribute in the TLV Triplet shall also map to one of the below Data Type definitions, or may be omitted if a Value
is not required, i.e., an empty Value. Refer to Section 8.1.5.3 for details.

Table 3. Attribute to CORBA Mapping

PIM Attribute Data Type PSM-CORBA Encoding Format (Size, Bit Ordering)
short, ushort, long, ulong, long long, unsigned long long Per Section 9.3.1.2 of [CORBAINTEROP]
float, double Per Section 9.3.1.3 of [CORBAINTEROP]
octet Per Section 9.3.1.4 of [CORBAINTEROP]
boolean Per Section 9.3.1.5 of [CORBAINTEROP]
string Per Section 7.10.2.6 of [CORBAINTEROP]
octet array Per Section 9.3 (octet stream) of [CORBAINTEROP]

All above data types shall be encoded with big-endian ordering per the referenced CORBA section prior to transport.

To provide the required flexibility and compact efficiency, enumerations can use any of the integer types above.

Since GDDI provides an interface that carries data and metadata over an octet stream, GDDI Message attributes with the
above types shall be adjacently packed on octet boundaries within the octet stream and aligned on boundaries as described in
Section 9.3.1.1 and Table 9.1 of [CORBAINTEROP].

8.1.2 GDDI Header Format
A fully encoded GDDI Header shall adhere to the format in Figure 9 with the specified CORBA encodings and octet lengths
for each field mapped from the corresponding PIM attribute. The GDDI Header is the first member of the GDDI Message,
hence is transmitted first over the selected transport. Transmission starts with the Most Significant Bit (MSB) 0 of the first
byte[0] Sync Marker field as shown. Additional detail is provided in the subsections below the figure.

14 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

Figure 9 – GDDI Header: CORBA Encoded Format

8.1.2.1 Sync Marker

This field is directly mapped from the PIM attribute whose type is a byte array of length 4. Each byte is encoded as a
CORBA octet, which are considered as unsigned 8-bit integer values per [CORBAINTEROP]. The required values of each
byte in this array directly map from the default value of this PIM attribute.

8.1.2.2 GDDI Version

For this PSM, the GDDI Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in the most
significant four bits of the fifth octet in the encoded GDDI Header, as shown in the above figure. The range for this field shall
be 0 to 15, meaning 16 unique versions per Encoding PSM.

The currently supported GDDI Versions for this CORBA-Encoding PSM are:

• 0 (representing Message Version 1)

Note: New versions shall be added to this list whenever this PSM encoding format changes or the PIM structure changes.

8.1.2.3 Reserved

This integer PIM attribute maps to an unsigned 4-bit integer that resides in the least significant four bits of the fifth octet in
the encoded GDDI Header, as shown in the above figure. This field is reserved for future use and shall be assigned to all zero
bits.

8.1.2.4 Total Length

This integer PIM attribute maps to a CORBA unsigned long whose most significant 8-bits are unused, resulting in a 24-bit (3
octet) field as shown in the above figure. When encoding this field, a CORBA unsigned long shall be populated with the
Total Length of the GDDI Message, then after formatting into big-endian order, the MSB octet 0 is discarded and octets 1, 2,
and 3 of the Big-Endian long (per [CORBAINTEROP] Figure 9.1) shall be placed into the Total Length field. The range for
this field shall be 12 to 16,777,215. The minimum length equates to only the 12-byte GDDI Header being transferred with no
Type Blocks and a zero length Data/Payload (supported but not a nominal use case).

Sync Marker [byte 0] = 0x47 (‘G’)

Bit transmission order

GDDI Version

0 (MSB) 1 2 3 4 5 6 7 (LSB)

Sync Marker [byte 1] = 0x44 (‘D’)
Sync Marker [byte 2] = 0x44 (‘D’)
Sync Marker [byte 3] = 0x49 (‘I’)-

Reserved

CORBA octet

CORBA octet

CORBA octet

CORBA octet

CORBA octet

Total Length CORBA
unsigned long

4

1

3

Type Count1

Fi
el

d
Le

ng
th

s
(in

 o
ct

et
s)

CORBA octet

Payload Type1 CORBA octet

Sequence Counter CORBA
unsigned short2

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 15

8.1.2.5 Type Count

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section
9.3.1.4 of [CORBAINTEROP]. The range for this field shall be 0 to 255. Nominally Type Count will be 1 or greater,
however zero is allowed for the rare case where only Data/Payload needs to be transferred with no Type Blocks.

8.1.2.6 Payload Type

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section
9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 0 to 254. The Payload Type shall only be set to zero
when Type Count is zero, otherwise it shall be 1 to 254. Payload Type 255 is reserved.

8.1.2.7 Sequence Counter

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value per
Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure 9.1. The
range for this attribute shall be 0 to 65,535, hence is incremented for each transmitted GDDI message by modulo-65,536.

8.1.3 Type Block
The Type Block is composed of one Type Header and 0 to 255 TLV Triplets. The following two sections describe the
encoding formats of these Type Block components.

8.1.4 Type Header Format
A fully encoded Type Header shall adhere to the format in Figure 10 with the specified CORBA encodings and octet lengths
for each field mapped from the corresponding PIM attribute. Additional encoding details of each field are provided below.

Figure 10 – Type Header: CORBA Encoded Format

8.1.4.1 Type ID

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section
9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 1 to 254, where Type IDs 0 and 255 are reserved.
Reserved Type ID 255 shall be used by GDDI implementations for the Vendor-Only Type ID as described in section 7.3.6.

8.1.4.2 Major Version

For this PSM, the Type’s Major Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in the
most significant four bits of the first octet in the encoded Type Header, as shown in the above figure. The range for this
attribute shall be 0 to 15, meaning 16 unique Major versions per Type.

The Major Version for each Type is maintained in the Standard or Vendor-Specific Metadata Package per Section 7.4.

8.1.4.3 Minor Version

For this PSM, the Type’s Minor Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in the
least significant four bits of the first octet in the encoded Type Header, as shown in the above figure. The range for this
attribute shall be 0 to 15, meaning 16 unique Minor versions for a given Major Version, per Type.

The Minor Version for each Type is maintained in the Standard or Vendor-Specific Metadata Package per Section 7.4.

Type ID

Bit transmission order
0 (MSB) 1 2 3 4 5 6 7 (LSB)

Length of TLVs

CORBA octet

CORBA octet

2

Fi
el

d
Le

ng
th

s
(in

 o
ct

et
s) Major Version Minor Version1

1

CORBA
unsigned short

16 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

8.1.4.4 Length of TLVs

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value per
Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure 9.1. The
range for this field shall be 0 to 65,535, where a zero Length of TLVs is described in the corresponding PIM attribute.

8.1.5 TLV Triplet Format
A fully encoded TLV Triplet shall adhere to the format in Figure 11 with the specified CORBA encodings and octet lengths
for each field mapped from the corresponding PIM attribute. Additional encoding details of each field are provided below.

Figure 11 – TLV Triplet: CORBA Encoded Format

8.1.5.1 Tag

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section
9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 1 to 254, where Tags 0 and 255 are reserved. Reserved
Tag 255 shall be used by GDDI implementations for the Vendor ID Tag as described in section 7.3.6.

8.1.5.2 Length

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value per
Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure 9.1.

The range of this 16-bit integer is 0 to 65,531 representing the length in octets of the TLV’s Value. A zero length indicates
that the Value field does not exist. The maximum range of 65,531 octets is derived from the maximum “Length of TLVs”
field which is a CORBA ushort (65,535 octets) less 4 octets for the encoded length of a Type Header.

Lengths from 1 to 8 bytes are used for common primitive value types, i.e., octet to long long. Lengths larger than 8 bytes are
used for string and octet array values.

8.1.5.3 Value

This PIM attribute of type byte with multiplicity of [0..*] shall map to this PSM in one of two methods, as follows:

• Value maps to one of the Data Types/CORBA Encodings in Table 2 as indicated by the corresponding Tag within
the given Type. The Value field’s length N is 1 to 8 octets for primitive types or may be larger than 8 bytes for string
and octet-array types, with length N of 1 to 65,531 octets.

• A TLV with an empty Value shall map as a valid Tag, a zero Length (of value), and no Value field encoded. The
Value field’s length N is 0 octets, i.e., no Value exists in the encoded GDDI Message.

Tag

Bit transmission order
0 (MSB) 1 2 3 4 5 6 7 (LSB)

Value

CORBA octet

N

Fi
el

d
Le

ng
th

s
(in

 o
ct

et
s)

1

CORBA
short, unsigned short,
long, unsigned long,
long long,
unsigned long long,
float, double,
boolean, octet,
string, or octet-array

Length2 CORBA
unsigned short

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 17

8.1.6 Data/Payload Format
This PIM attribute of type byte with multiplicity of [0..*] shall map to this PSM in one of two methods, as follows:

• Data/payload shall map as an octet array whose encoding format can be included as GDDI metadata or agreed upon
between the sender and receiver GDDI endpoints.

• When no data/payload is required to be transferred between GDDI endpoints, the Total Length field shall only
include the lengths of the GDDI Header and Type Block(s) to indicate zero octets for the Data/Payload field.

8.1.7 GDDI Message Format
A full GDDI message shall consist of the above elements per Figure 12, which shows a basic GDDI use case. The number of
Types, the number and size of the TLV Triplets, and the length of Data/Payload is determined for each specific use case.

Figure 12 – Complete GDDI Message

GDDI Header

Bit transmission order
0 (MSB) 1 2 3 4 5 6 7 (LSB)

Type Header (A)

M

E
le

m
en

t L
en

gt
hs

 (i
n

oc
te

ts
)

12

4

TLV Triplet (A.1)

TLV Triplet (A.2)N

Type Header (B)

X

4

TLV Triplet (B.1)

TLV Triplet (B.2)Y

TLV Triplet (B.3)Z

Type
Block

(A)

Data/Payloadn

Type
Block

(B)

18 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

8.2 GDDI Message Examples
The diagrams in the following subsections are intended to be an aid in comprehension of this encoding PSM as well as the
overall GDDI metadata approach. They are not normative.

8.2.1 Example GDDI Message with Standard Metadata
Figure 13 depicts an example GDDI message with generic PSM-CORBA encodings of standard metadata. It is not
normative. This diagram shows all constructs of the GDDI message: the GDDI Header, three example Type Blocks (labelled
‘A’, ‘B’, and ‘C’, delineated with brackets on the left side), each Type Block containing several example TLV Triplets of
varying lengths, and a variable-length Data/payload. This example helps to show the elastic metadata concept, and the
structure where concrete metadata definitions (from the metadata dictionary) are to be applied within an encoded message. It
also shows how the GDDI message provides a structure that can be readily parsed by Cross Domain Solutions (CDS) via the
self-describing length and other supporting fields.

Figure 13 – Example GDDI Message with Standard Metadata

Data
(variable-length)

Tag A.01 Value A.01 (beg)

Total Length (in bytes)

1 byte (MSB)

Type = A

Len Value A.01=2

Tag A.02

Value A.02

Len Value A.02=4

Tag A.03 Len Value A.03=1

Tag A.04 Value A.04 (beg)Len Value A.04=8

Value A.04 (middle)

Value A.03

Value A.04 (end) Tag A.05

Len Value A.05=4094 Value A.05 (beg)

Value A.05 (end)

. . .

“G” “D” “D” “I”

Length of TLVs (for Type A)Major
Version

Tag B.01 Value B.01

Type = B

Len Value B.01=1

Length of TLVs (for Type B)

Tag B.02

Len Value B.02=2 Value B.02 Type = C

Length of TLVs (for Type C) Tag C.01

Len Value C.01=4 Value C.01 (beg)

Value C.01 (end)

1 byte 1 byte 1 byte

Minor
Version

Major
Version

Minor
Version

Major
Version

Minor
Version

GDDI
Version ReservedGDDI header

Tag-Length-
Value (TLV)

triplets

Type Header

Payload Type Sequence Counter

Type
Block

Type Count

Type
Block

Value A.01 (end)

Type
Block

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 19

8.2.2 Example GDDI Message with Vendor-Specific Metadata
Figure 14 depicts an example GDDI message with generic PSM-CORBA encodings of vendor-specific metadata. It is not
normative. This diagram shows how a GDDI message containing standard metadata can be extended with vendor-specific
metadata either by: 1) adding it to a standard GDDI Type, or 2) adding completely new Vendor-Only Type Block(s).

In the diagram, standard metadata is shown by “Type A” fields in black text, and vendor-specific metadata is shown by
“Type A” fields in red and purple text, where two different vendors (vendor ID 11 and vendor ID 22) extend Type A with
their own metadata TLV triplets as described in section 7.3.6, #2.

The orange and blue Type Blocks use the Vendor-Only Type ID (255) combined with the Vendor-Identifying TLV to
indicate the vendor-only metadata/TLVs for both vendorID 33 and vendor ID 44 as described in section 7.3.6, #3.

Figure 14 – Example GDDI Message with Vendor-Specific Metadata

Data
(variable-length)

Tag A.01 (std) Value A.01 (beg)

Total Length (in bytes)

1 byte (MSB)

Type: A (std)

Len Value A.01=2

Tag A.02 (std)

Value A.02

Len Value A.02=4

Tag A.03=255
(vendor ID tag) Len Value A.03=1

Tag A.04
(vendor 11 specific) Value A.04Len Value A.04=1

Value A.03=11
(unique vendor ID)

“G” “D” “D” “I”

Length of TLVs (for Type A)Major
Version

Tag B.02
(vendor 33 specific)

Type: B=255
(vendor-custom)

Len Value B.02=4

Length of TLVs (for Type B)

Value B.02 (beg)

1 byte 1 byte 1 byte

Minor
Version

GDDI
Version Reserved

Payload Type Sequence CounterType Count

Value A.01 (end)

Tag A.05
(vendor 11 specific) Value A.05Len Value A.05=1

Tag A.06=255
(vendor ID tag) Len Value A.06=1

Tag A.07
(vendor 22 specific) Value A.07Len Value A.07=1

Value A.06=22
(unique vendor ID)

Value B.02 (end)

Major
Version

Minor
Version

Tag B.01=255
(vendor ID tag) Len Value B.01=1 Value B.01=33

(unique vendor ID)

Vendor 11
metadata for
std Type A

Vendor 22
metadata for
std Type A

Vendor 33
metadata for
custom Type

Tag C.02
(vendor 44 specific)

Type: C=255
(vendor-custom)

Len Value C.02=2

Length of TLVs (for Type C)

Value C.02

Major
Version

Minor
Version

Tag C.01=255
(vendor ID tag)

Len Value C.01=1 Value C.01=44
(unique vendor ID)

Vendor 44
metadata for
custom Type

20 Ground Data Delivery Interface (GDDI), v1.0 – beta 1

9 PSM-TCP/IP Network Transport

This network transport PSM specifies a TCP/IP-based formatting for all message types supported by GDDI.
Implementations that follow the details of this PSM can send and receive GDDI-formatted messages in compliance with the
GDDI specification.

9.1 PIM to PSM Mapping
TCP is a stream-oriented protocol and provides built-in message delivery assurance which allows for the transport of GDDI
messages to be reliably delivered with high Quality of Service (QoS). Further, TCP is broadly implemented in existing
hardware and software utilized in ground systems, enabling it to be an implementation that can be quickly realized by
implementations and compatible with incorporation into new and existing satellite ground systems.

Within the TCP/IP Network Transport PSM, GDDI CORBA/IEEE data type-encoded messages are inserted over TCP/IP.
Implementations may choose to utilize additional transport features, such as Transport Level Security (TLS) to provide
additional security control. However, any additional features shall be able to be turned off.

The CORBA/IEEE Types and Encoding, as specified in Section 8 shall be used for GDDI Header and TTLV Fields in the
GDDI Message. The data/payload encoding format may be specified via GDDI metadata or agreed upon between endpoints.

The GDDI specification defines that each message is prepended by “G” “D” “D” “I” magic bytes. These four octets serve as
a marker for the beginning of a new message and implementing clients can seek to find where to read a new message and to
begin extraction of a new message from the octet stream. It is expected that data is octet-aligned. Within the TCP/IP PSM,
this seeking is performed against the TCP/IP network stream after any TLS-transport decryption has taken place (if
encryption is enabled).

The representation of all data types and formats shall adhere to the encoding types as specified in the PSM-CORBA
Encoding, detailed in the previous section of this specification. As such, all multi-octet data types are to be represented in big
endian format (as shown in [CORBAINTEROP] Section 9.3.1). In addition, the size and bit ordering across the network
shall comply with [CORBAINTEROP] Section 9.3.1.

9.2 Security
The TCP/IP PSM is designed to support integration with security controls that may exist in a network infrastructure but not to
require them. This allows for the greatest flexibility in supporting implementations of this specification within existing
TCP/IP-based systems and is compatible with current/future technology architectures that may improve on security
capabilities built into TLS and secure network transport. As such, the specific versions of TLS, ciphers, encryption
mechanisms/configuration are not specified. However, it is recommended that implementations follow the latest security
controls available while allowing for security controls to be disabled or adjusted to support maximum flexibility.

9.2.1 Encryption
Encryption is recommended to be supported by PSMs, optional within the TCP/IP PSM. Implementations shall allow for
encryption, but it must be able to be disabled. Encryption may be directly implemented using a native implementation (such
as via OpenSSL) or it could be implemented by the infrastructure hosting the software elements. Several options that could
be utilized by the infrastructure include the use of a service mesh or an IPSec tunnel (such as a Virtual Private Network)
while the application itself is implemented with data connections unencrypted.

9.2.2 Authentication
When the TCP/IP PSM is implemented using TLS/SSL over TCP (e.g., OpenSSL or via a service mesh), authentication can
be controlled by way of trusted certificates or a trusted certificate root, as built into the standard TLS certificate
implementation. While implementing TLS is optional, if implemented, implementations should support specifying certificate
options, to include the client certificate, certificate trust chain/trusted certificates, and certificate revocation lists.

Ground Data Delivery Interface (GDDI), v1.0 – beta 1 21

This page intentionally left blank.

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments

	7 PIM
	7.1 Overview
	7.2 GDDI Use Cases
	7.2.1 GDDI Endpoint
	7.2.1.1 Sender Endpoint
	7.2.1.2 Receiver Endpoint
	7.2.2 Encode Metadata
	7.2.3 Decode Metadata
	7.2.4 Transport Message
	7.2.4.1 Unidirectional Transfer
	7.2.4.2 Bidirectional Transfer
	7.2.5 Ground System Engineer
	7.2.6 Define GDDI Metadata
	7.3 GDDI Message Design
	7.3.1 GDDI Message
	7.3.2 GDDI Header
	7.3.3 Type Block
	7.3.4 Type Header
	7.3.5 Tag-Length-Value (TLV) Triplet
	7.3.6 Standard and Vendor-Specific Metadata
	7.3.7 Data/Payload
	7.4 GDDI Package Design
	7.4.1 Standard Metadata Package
	7.4.2 Vendor-Specific Metadata Package
	7.5 GDDI Security
	7.6 GDDI Internationalization

	8 PSM-CORBA Encoding
	8.1 PIM to PSM Mapping
	8.1.1 Attributes
	8.1.2 GDDI Header Format
	8.1.2.1 Sync Marker
	8.1.2.2 GDDI Version
	8.1.2.3 Reserved
	8.1.2.4 Total Length
	8.1.2.5 Type Count
	8.1.2.6 Payload Type
	8.1.2.7 Sequence Counter
	8.1.3 Type Block
	8.1.4 Type Header Format
	8.1.4.1 Type ID
	8.1.4.2 Major Version
	8.1.4.3 Minor Version
	8.1.4.4 Length of TLVs
	8.1.5 TLV Triplet Format
	8.1.5.1 Tag
	8.1.5.2 Length
	8.1.5.3 Value
	8.1.6 Data/Payload Format
	8.1.7 GDDI Message Format
	8.2 GDDI Message Examples
	8.2.1 Example GDDI Message with Standard Metadata
	8.2.2 Example GDDI Message with Vendor-Specific Metadata

	9 PSM-TCP/IP Network Transport
	9.1 PIM to PSM Mapping
	9.2 Security
	9.2.1 Encryption
	9.2.2 Authentication

