
Date: March 2025

Ground Data Delivery Interface (GDDI)

Version 1.0 – beta 2

OMG Document Number: dtc/25-03-06

Standard Document URL: https://www.omg.org/spec/GDDI/1.0

Normative Machine Readable files(s):

https://www.omg.org/cgi-bin/doc?dtc/25-03-06

https://www.omg.org/cgi-bin/doc?dtc/25-03-06

ii GDDI, v1.0 – beta 2

Copyright © 2025, Kratos S1, Inc.

Copyright © 2025, Object Management Group, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any portion of this

specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,

paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the

modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed

the copyright in the included material of any such copyright holder by reason of having used the specification set forth

herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a

fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this

specification to create and distribute software and special purpose specifications that are based upon this specification,

and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the

copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the

specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in

any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to

this specification. This limited permission automatically terminates without notice if you breach any of these terms or

conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or

control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a

license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of

those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users

are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations

and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this

work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission

of the copyright owner.

GDDI, v1.0 – beta 2 iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY

OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO

EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE

LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA

OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,

PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This

disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of

The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)

of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.

227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal

Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and

may be contacted through the Object Management Group, 9C Medway Rd, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL

IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG Logo®,

SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and XMI® are

registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company names

mentioned are used for identification purposes only and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and

only if the software compliance is of a nature fully matching the applicable compliance points as stated in the

specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In the

event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this

specification may claim compliance or conformance with the specification only if the software satisfactorily completes

the testing suites.

iv GDDI, v1.0 – beta 2

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers

to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed

on the main web page https://www.omg.org, under Specifications, Report a Bug/Issue.

GDDI, v1.0 – beta 2 v

Table of Contents

Ground Data Delivery Interface (GDDI) ... i

Preface ... vi

1 Scope .. 1

2 Conformance ... 2

3 Normative References ... 2

4 Terms and definitions ... 2

5 Symbols .. 3

6 Additional Information .. 3
6.1 Acknowledgements ... 3

7 PIM .. 4
7.1 Overview .. 4
7.2 GDDI Use Cases .. 4
7.2.1 GDDI Endpoint ... 5
7.2.2 Encode Metadata .. 5
7.2.3 Decode Metadata .. 6
7.2.4 Transport Message ... 6
7.2.5 Ground System Engineer ... 7
7.2.6 Define GDDI Metadata .. 7
7.3 GDDI Message Design .. 8
7.3.1 GDDI Message .. 8
7.3.2 GDDI Header .. 8
7.3.3 Type Block ... 9
7.3.4 Type Header .. 9
7.3.5 Tag-Length-Value (TLV) Triplet .. 10
7.3.6 Standard and Vendor-Specific Metadata ... 10
7.3.7 Data/Payload ... 10
7.4 GDDI Package Design .. 11
7.4.1 Standard Metadata Package .. 12
7.4.2 Vendor-Specific Metadata Package .. 13
7.5 GDDI Security ... 13
7.6 GDDI Internationalization ... 13

8 PSM-CORBA Encoding ... 14
8.1 PIM to PSM Mapping .. 14
8.1.1 Attributes ... 14
8.1.2 GDDI Header Format .. 14
8.1.3 Type Block ... 16
8.1.4 Type Header Format .. 16
8.1.5 TLV Triplet Format ... 17
8.1.6 Data/Payload Format ... 18
8.1.7 GDDI Message Format ... 18
8.2 GDDI Message Examples ... 19
8.2.1 Example GDDI Message with Standard Metadata .. 19
8.2.2 Example GDDI Message with Vendor-Specific Metadata .. 20

9 PSM-TCP/IP Network Transport ... 21
9.1 PIM to PSM Mapping .. 21
9.2 Security .. 21
9.2.1 Encryption ... 21
9.2.2 Authentication ... 21

vi GDDI, v1.0 – beta 2

Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Meta-model);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal

Specifications are available from this URL: https://www.omg.org/spec

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF

format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,

Inc. at:

OMG Headquarters

9C Medway Road, PMB 274

Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:

https://www.omg.org/report_issue.htm

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

GDDI, v1.0 – beta 2 1

1 Scope

The Ground Data Delivery Interface (GDDI) specification defines a lightweight message interface standard to

encapsulate spacecraft data and metadata for transfer between ground applications within a common network using a

model-driven approach. The purpose of GDDI is to standardize the data/bearer-plane for digital baseband data within

satellite ground systems, making it a companion standard to the existing OMG GEMS specification which provides a

standard for the control/status-plane. By standardizing the structure of this message interface, GDDI facilitates

interoperability between endpoints that agree to use compatible metadata definitions (i.e., types, identifiers/tags, etc.).

GDDI is applicable to data and metadata in the digital domain, also known as baseband. This type of data and metadata

includes spacecraft commands, telemetry, and mission payload prior to conversion to/from signals in the RF domain (i.e.,

waveform modulation). The scope of GDDI is the baseband domain. Sufficient standards already exist for the RF domain

such as ANSI/VITA-49 and IEEE-ISTO DIFI.

Figure 1 below shows the scope of GDDI within a notional satellite ground system. The applicable baseband domain

boundary is depicted as well as the non-applicable RF waveform boundary. It also shows an overview of the conceptual

model for the GDDI specification with typical baseband data-plane interfaces between the various ground functions

composed of varying types of metadata between them. This model provides the necessary elastic flexibility of appending

different types of metadata at different points within the data path, dynamically.

Figure 1 - GDDI Conceptual Model and Scope

The GDDI PIM defines a model of the elastic message structure and behavior that is standard to all GDDI

implementations. In the case of GDDI, the platform is defined as the message encoding format and the network transport

mechanism used to transfer the messages between endpoints. By defining the platform at these levels, the focus of the

GDDI PIM is the message content and behavior, leaving the specifics of defining the message format and transporting

that message to the PSMs.

Two GDDI PSMs are defined:

1. The “Encoding Format PSM” uses well-defined CORBA type definitions, encoding formats, and bit/byte

ordering that are well suited for many transport platforms. This PSM focuses on reusing a robust standard that

allows implementations to lever OMG IDL or other languages and tooling for efficient development, language

mapping, maintenance, and portability, all with the goal of promoting interoperability.

2. The “Network Transport PSM” uses the ubiquitous TCP/IP protocol pair for guaranteed transmission and

reception of GDDI Messages between endpoints. The rationale for using this transport layer is that TCP

provides a proven, efficient, and ensured transport across IP-based networks that is prevalent among satellite

ground systems.

Many other platform specific mappings of the GDDI PIM are possible. These potentially include other standard encoding

formats such as JSON or XML, as well as network transports such as Stream Control Transmission Protocol (SCTP),

Datagram Congestion Control Protocol (DCCP), or Data Distribution Service (DDS).

2 GDDI, v1.0 – beta 2

2 Conformance

Any implementation or product claiming conformance to this specification shall support the following conditions:

• Implementations shall support all use cases and provide the interfaces described in section 7.2 GDDI Use Cases.

• The data structure of messages shall support the UML model described in section 7.3 GDDI Message Design.

• Standard and/or Vendor-Specific metadata packages shall be supported per section 7.4 GDDI Package Design.

• Implementations shall support a minimum of one “Encoding” PSM. Note that PSM-CORBA Encoding per

section 8 is currently the only “Encoding” PSM, so it shall be supported by all implementations until which time

additional “Encoding” PSMs are added to this specification.

• Implementations shall support a minimum of one “Transport” PSM. Note that PSM-TCP/IP Network Transport

per section 9 is currently the only “Transport” PSM, so it shall be supported by all implementations until which

time additional “Transport” PSMs are added to this specification.

• If additional “Encoding” and/or “Transport” PSMs are added to this specification in the future, then this

Conformance section will include any required Encoding-Transport PSM mappings.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this

specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

[CORBAINTEROP] CORBA Specification, Version 3.3, Part 2: CORBA Interoperability, formal/2012-11-14

[IP] Internet Protocol, RFC791 (IPv4) & RFC8200 (IPv6), Internet Engineering Task Force (IETF)

[XMI] XML Metadata Interchange Specification, http://www.omg.org/spec/XMI

[TCP] Transmission Control Protocol, RFC9293, Internet Engineering Task Force (IETF)

[UML] Unified Modeling Language Specification, http://www.omg.org/spec/UML

[UTF8] Unicode Transformation Format, RFC3629, ISO/IEC10646-1, UTF-8

4 Terms and definitions

For the purposes of this specification, the following terms and definitions apply:

Baseband Data

Digital data in the form of a binary bit stream (as opposed to Radio Frequency data). Baseband is the primary form of the

data payload carried by the Ground Data Delivery Interface, often referred to “data plane” or “bearer data”. Examples of

Baseband Data are: Satellite Commands, Telemetry or Image data from a camera.

Data/bearer-plane

In satellite communications, this term refers to the types of user information carried between the various elements of a

satellite ground system using the Ground Data Delivery Interface. For example, commands used to control the satellite

and telemetry received from the satellite are forms of data/bearer-plane information.

Metadata

Out-of-band information that provides information about the data payload. The GDDI header, Type Block, and Tag-

Length-Value structures carry this Metadata information. Examples of Metadata are: Command Sequence Number,

Telemetry Timestamp, and Image ID.

Endpoint

In the context of this specification, an Endpoint refers to a sender or receiver of GDDI messages. An Endpoint typically

takes the form of a software application that implements GDDI to encapsulate, encode, and transfer data and metadata to

another Endpoint. An Endpoint equates to one of the Function boxes shown in Figure 1.

GDDI, v1.0 – beta 2 3

5 Symbols

ANSI – American National Standards Institute

CORBA – Common Object Request Broker Architecture

DIFI – Digital Intermediate Frequency Interoperability (part of IEEE)

GDDI – Ground Data Delivery Interface

GEMS – Ground Equipment Monitoring Service

ICD – Interface Control Document

IEEE – Institute of Electrical and Electronics Engineers

JSON – Javascript Serialized Object Notation

IDL – Interface Description Language

IP – Internet Protocol

ISO – International Organization for Standardization

ISTO – Industry Standards and Technology Organization (part of IEEE)

OpenSSL – Open-source [implementation of] SSL [and TLS]

PIM – Platform Independent Model

PSM – Platform Specific Model

SSL – Secure Sockets Layer

TCP – Transmission Control Protocol

TLS – Transport Layer Security

TLV – Tag Length Value

TTLV – Type Tag Length Value

UCF – Unicode Transformation Format

UML – Unified Modeling Language

URL – Uniform Resource Locator

XMI – XML Metadata Interchange

XML – eXtensible Markup Language

VITA – VMEbus International Trade Association

6 Additional Information

6.1 Acknowledgements

The following companies submitted this specification:

• Kratos S1, Inc.

The following companies and organizations support this specification:

• Sphinx Defense

4 GDDI, v1.0 – beta 2

7 PIM

7.1 Overview

The GDDI specification defines a standard, Platform Independent Model (PIM) used to encapsulate and transfer data and

metadata between endpoints within a satellite ground system. The GDDI model does not presume or try to define a

specific system level architecture. Instead, it defines generic concepts such as message structure, metadata, and endpoints

that are relatively simple to implement and provides system integrators with common ways to transfer multiple types of

space related metadata and data within a ground system.

Being a lightweight specification, the GDDI PIM provides a straightforward message interface standard with simplex

transmission between endpoints. These PIM features promote low encoding/formatting overhead, as well as efficient

network throughput and latency performance required for modern ground systems.

The following GDDI PIM sections consist of behavioral use cases and message related classes that allow ground system

endpoints to efficiently transfer data and metadata between themselves.

7.2 GDDI Use Cases

Figure 2 depicts the GDDI use cases. These use cases define common interactions and activities associated with defining

and using the GDDI data/metadata message interface. Subsequent sections explain each element in this diagram.

Figure 2 - GDDI Use Cases

GDDI, v1.0 – beta 2 5

7.2.1 GDDI Endpoint

This actor represents an endpoint user of a GDDI Message interface. A GDDI Endpoint can be a sender or a receiver,

where the information passed between them is the GDDI Message containing the encoded metadata and data to be

transferred. The GDDI Endpoint commonly takes the form of a software application that implements GDDI to

encapsulate, encode, and transfer data and metadata to another GDDI Endpoint.

The metadata definitions that this actor sends and receives via the GDDI Message are previously defined by the Ground

System Engineer actor. This provides compatibility between endpoints that agree to use the same metadata definitions,

allowing them to interoperate.

If an endpoint is both a sender and a receiver, a conformant implementation shall forward all metadata that it is not

directly consuming or transforming, and it shall be able to forward messages not intended for itself. Unknown metadata

must be able to be included in subsequent derived messages to other components though an implementation may choose

to allow it to be disabled per a configuration setting. For metadata that is supported by an implementation, the metadata

may be changed by an implementer along with the data/payload of the message.

7.2.1.1 Sender Endpoint

A GDDI sender endpoint assembles, encodes, and transmits a GDDI Message over one of the network transports

specified in the Platform Specific Model (PSM) for a given transport.

7.2.1.2 Receiver Endpoint

A GDDI receiver endpoint receives, decodes, and parses a GDDI Message so that it can process its metadata and data.

Optionally, this endpoint can forward the received metadata/data to a sender endpoint that may append additional

metadata (of different types) or remove metadata, then encode and transmit them via GDDI Message to another endpoint.

7.2.2 Encode Metadata

This use case represents the assembly and encoding of metadata and data into the GDDI Message format. This metadata

and data are supplied by the Sender GDDI Endpoint, and the metadata definitions are supplied by the Ground System

Engineer actor. The sender endpoint performs this Encode Metadata function per the specific PSM for a given encoding

format. After performing metadata encoding, the sender endpoint transmits the encoded GDDI Message to the receiver

endpoint via the Transport Message use case. Figure 3 provides an interaction diagram depicting this Encode Metadata

use case.

Figure 3 - Encode Metadata Use Case

6 GDDI, v1.0 – beta 2

7.2.3 Decode Metadata

This use case represents the parsing and decoding of the GDDI Message into the original metadata and data for

processing by the receiver endpoint. The metadata definitions are supplied by the Ground System Engineer actor. The

receiver endpoint performs this Decode Metadata function per the specific PSM for a given format. After performing

metadata decoding, the receiver endpoint uses the decoded metadata and data to perform operations and subsequent

processing. Figure 4 depicts this Decode Metadata use case.

Figure 4 - Decode Metadata Use Case

7.2.4 Transport Message

This use case represents the fundamental GDDI behavior of transferring endpoint data and metadata (encoded into GDDI

Messages) via transmission across a network transport channel. The type of transport is mapped from a specific GDDI

PSM. The following subsections explain how GDDI supports both unidirectional (simplex) and bidirectional (duplex)

message transfer over a supporting transport channel(s).

7.2.4.1 Unidirectional Transfer

Figure 5 shows the unidirectional transfer of a GDDI Message where a single transport channel is used in simplex mode.

The sender endpoint is shown using the transport channel to transfer the GDDI Message (containing the metadata and

data) to the receiver endpoint.

Figure 5 - Unidirectional Transfer Use Case

By specifying simplex transmission and a single transport channel, this Unidirectional Transfer use case forms the

foundation for other multidirectional use cases, like the bidirectional use case described in the following sections.

GDDI, v1.0 – beta 2 7

7.2.4.2 Bidirectional Transfer

For bidirectional transfer, the simplex transmission specified in the GDDI PIM is extended to support duplex

transmission between GDDI Endpoints. Doing so provides duplex capability where the sender endpoint can send requests

concurrently or sequentially to the receiver endpoint while it sends responses back to the sender. Figure 6 shows the

bidirectional transfer of GDDI Messages where separate transport channels are used to support duplex mode. This allows

a receiver to send messages back to the sender (e.g., for status or display purposes).

Figure 6 - Bidirectional Transfer Use Case

7.2.5 Ground System Engineer

The role of this actor is to provide GDDI metadata definitions to be used by GDDI Endpoints to encode the metadata into

GDDI Messages. The Ground System Engineer commonly takes the form of a system or software developer who selects

and/or defines the necessary metadata needed between endpoints within a satellite ground system. These metadata

definitions are explained in the Define GDDI Metadata use case below.

7.2.6 Define GDDI Metadata

This use case represents the process where the satellite Ground System Engineer determines the metadata necessary for

the GDDI endpoints (within the respective ground system) to communicate between themselves using GDDI Messages.

Once the required metadata is determined, the Ground System Engineer then selects existing metadata definitions from

the Standard and/or Vendor-Specific Metadata package(s) and may add any new required metadata definitions to either or

both packages, as described in the Section 7.4.

These definitions include the metadata types, identifiers/tags, versions, corresponding value lengths, and value typedefs

needed to build GDDI Messages in compliance with this specification.

This specification supports both standard and vendor-specific metadata definitions in order to facilitate data interface

reuse as well as provide the flexibility to support vendor-specific needs. For example, Standard metadata definitions can

be selected for an interface requiring GDDI Types “A” and “B” and Vendor-Specific definitions can be selected for an

interface requiring a vendor’s custom Type “C” metadata. Also, vendors can extend standard GDDI Types with their own

vendor-specific metadata without impacting existing GDDI endpoints that support the standard Types. This affords

flexibility to the Ground System Engineer to design data-plane communications that lever an open standard interface

(GDDI) using industry standard metadata definitions, with the ability to use Vendor-Specific metadata definitions when

required.

8 GDDI, v1.0 – beta 2

7.3 GDDI Message Design

The central concept of GDDI is the GDDI Message used to transfer data and metadata. This construct consists of a

GDDI Header containing the necessary attributes for defining the message envelope, like Sync Marker, Version, Total

Length, etc. The GDDI Message also contains the raw Data/Payload carrying the baseband data whose encoding format

can be included as GDDI metadata, or agreed upon between sender and receiver endpoints. Most importantly, the GDDI

Message contains multiple types of metadata, grouped into blocks of related metadata called the Type Block, also

referred to as the Type-Tag-Length-Value (TTLV) construct.

Within a given type of metadata, there can be one-to-many metadata Values, each identified with a metadata Tag and a

Length (of the value); when combined is referred to as the Tag-Length-Value (TLV) Triplet. This multi-dimensional

metadata elasticity is the crux of the GDDI concept, as depicted above in Figure 1 where multiple types of metadata are

appended at various points across the data chain, with a dynamic number of metadata values per type. The TLV triplet

Length (of value) field supports not only primitive metadata types, but larger more complex metadata values.

Figure 7 below provides the complete UML model of the GDDI Message, its Header, its Type Block, and its

Data/Payload.

Figure 7 - GDDI Message UML Class Diagram

7.3.1 GDDI Message

This message is the primary data construct transferred between GDDI Endpoints. The GDDI Message is a concrete class

composed of three other classes: the GDDI Header, Type Block, and Data/Payload. The encoding of the composed GDDI

Message fields is specified by a GDDI Encoding PSM. This message structure provides the basis for the PSM encoding.

The transport of GDDI Messages is specified by another GDDI PSM, described herein. The case where only

Data/Payload needs to be transferred is supported by appending no Type Blocks to the GDDI Message; this provides a

minimal message encapsulation when no metadata is needed but is not the nominal use case for GDDI.

7.3.2 GDDI Header

A single GDDI Header is used to envelope the subsequent contents of a GDDI Message. This header consists of the

following attributes that are encoded prior to transport per the selected PSM:

• Sync Marker: This attribute consists of the message-leading byte pattern for receivers to find and extract GDDI

Messages from stream-based transports, such as TCP/IP which provides a byte stream with no encapsulation.

This byte pattern shall be set to the following hexadecimal values: 0x47 0x44 0x44 0x49 (i.e., the ASCII

character values: “G” “D” “D” “I”, respectively). These values shall be fixed for all interfaces using GDDI

Messages.

GDDI, v1.0 – beta 2 9

• GDDI Version: This attribute represents the numeric version of the GDDI Message structure for a given

Encoding PSM. This provides separate versioning per Encoding PSM to allow for changes to the encoded field

formats as well as for PIM-level changes to the overall structure of the message (which would increment the

version for all encoding PSMs). For example, GDDI Version for Encoding PSM#1 could be 4 while for

Encoding PSM#2 it could be 0. The GDDI Version attribute is zero-based, where version value of 0 indicates

logical version 1. Note: this GDDI Version attribute does not correlate with the document version of this GDDI

specification. Supported GDDI Versions are explicitly stated in each Encoding PSM.

• Reserved: This attribute is a placeholder for future interface use and shall be assigned to all zero bits in all

PSMs.

• Total Length: This integer attribute represents the length (in octets) of the entire encoded GDDI Message. This

attribute, combined with the Sync Marker, is used by GDDI receiver endpoints to determine the end of the

received GDDI Message so that it can be extracted from various stream-oriented transports like TCP. This

attribute is also used in combination with the Type Count and Length of TLVs attributes to determine the size of

the Data/Payload.

• Type Count: This attribute represents the number of Type Blocks contained in the GDDI Message. It is used by

GDDI receiver endpoints to determine the last Type Block in the message so it can locate the beginning of the

Data/Payload.

• Payload Type: This attribute indicates which of the Types (within the current GDDI Message) contains the

primary metadata describing the Data/Payload being transferred, i.e., the Type ID of the most recent data

transformation.

• Sequence Counter: This attribute is incremented by one for each successive GDDI Message transmitted from a

given Sender GDDI Endpoint to its corresponding Receiver GDDI Endpoint. This numeric attribute starts at the

value zero and increments by one for each GDDI Message transmitted. It is used by the receiver to detect any

missing or out-of-order messages if the underlying PSM does not guarantee them.

7.3.3 Type Block

A Type Block represents a specific category of metadata for a given ground system processing function. A GDDI

Endpoint can append zero or more Type Blocks to a GDDI Message to fully describe the data as it transits multiple

processing functions across the ground system. A Type Block consists of a Type Header and zero or more TLV Triplets,

per below. There is no required or fixed order for Type Blocks, so receivers shall handle any ordering, i.e., if a Type is

not needed or is unknown, it must skip to the next Type using the Length of TLVs attribute provided in the Type Header.

7.3.4 Type Header

The Type Header is used to start the beginning of a Type Block and describes the block’s contents. This header consists

of the following attributes that are encoded prior to transport per the selected PSM:

• Type ID: This numeric attribute is a unique identifier for a given metadata type and represents the category of

all subsequent TLV triplets in the corresponding Type Block identified by this Type ID. See section 7.3.6 for

how this attribute is used to support standard and vendor-specific Type Blocks.

• Major Version: This integer attribute represents the incompatibility portion of the combined Major.Minor

version. When a Major Version increments, it means that existing TLV(s) for that Type ID have been modified

and/or deleted, making the new Major version incompatible with previous Major versions.

• Minor Version: This integer attribute represents the compatibility portion of the combined Major.Minor

version. When a Minor Version increments, it means that new TLV(s) for that Type ID have only been added,

making the new Minor version backward compatible with previous Minor versions of the same Major version.

• Length of TLVs: This integer attribute represents the length (in octets) of all TLV triplets in the corresponding

Type Block; excludes the length of the Type Header. Receiver endpoints use the Type ID and Length of TLVs

to process or ignore TLVs for a given Type. A zero Length of TLVs shall be allowed where the Type Block

includes a Type Header with no TLVs; this is to support the use case where optional TLVs are not transmitted,

but the sender wants to indicate presence of that Type to the receiver.

10 GDDI, v1.0 – beta 2

7.3.5 Tag-Length-Value (TLV) Triplet

The Tag-Length-Value Triplet is the foundational construct of the GDDI Message. The Tag member identifies the

individual metadatum, the Length member indicates the length of the metadatum Value. And the Value member provides

the actual value of the metadatum. There is no required or fixed order for TLVs within the Type Block, so receivers shall

handle any ordering, i.e., if a Tag is not needed or is unknown, it must skip to the next Tag using the Length attribute in

the TLV triplet. The TLV Triplet consists of the following three attributes that are encoded prior to transport per the

selected PSM:

• Tag: This numeric attribute is an identifier for a given metadatum item, referred to as a TLV triplet. Tag

numbers are not required to be unique, where multiple instances of the same tag within a message are allowed

and shall be handled accordingly by implementations. This allows the same Tag number to be repeated within a

given Type to provide multiple Values for a common Tag, e.g. multiple “IP address” Tags could exist for a Type

that represents all IP addresses for a certain host, each with a different Value. Unique Tag numbers are also

supported to provide groupings of different yet related metadata for a given Type. The semantics regarding Tag

uniqueness are determined and set for each Type ID a-priori so that GDDI receiver endpoints can properly parse

and decode the TLV triplets. See section 7.3.6 for how this attribute is used to support standard and vendor-

specific TLVs.

• Length: This numeric attribute indicates the length in octets of the Value attribute. This provides flexibility to

support small or large Values while maintaining a lightweight and elastic metadata interface. A zero Length

shall be allowed to support the use case of Tags without Values, e.g. A “middle name” Tag could have no

Value.

• Value: This attribute is an array of bytes representing the metadatum value for the given Tag. The length of this

value is specified by the Length attribute of the TLV. The format and data type of this value attribute is known

based on the specific Tag representing it, and maps to one of the definitions in the selected Encoding PSM.

7.3.6 Standard and Vendor-Specific Metadata

A GDDI message may carry metadata containing one or more of the following:

1. Standard-Only Type Block(s) containing TLV(s) with concrete definitions from the Standard Metadata Package

as described in section 7.4.1, i.e., contains no vendor-specific metadata.

2. A standard Type Block containing standard TLV(s) followed by one or more vendor-specific TLV(s). This is

how vendors can extend a standard Type, i.e., combined metadata from Standard and Vendor-specific packages.

3. Vendor-Only Type Block(s) containing TLV(s) with concrete definitions from a Vendor-Specific Metadata

Package as described in section 7.4.2, i.e., contains vendor-only Type(s) with a single vendor’s metadata per

Type. These Type Blocks use a single reserved Vendor-Only Type ID (prescribed in the Encoding PSM) to

indicate that the Type Block only contains vendor-specific metadata.

For cases #2 and #3 above, vendor-specific TLV(s) shall be preceded with a Vendor-Identifying TLV consisting of a

reserved Vendor ID Tag, a fixed Length, and a Vendor ID Value containing a unique identifier of that specific vendor.

This Vendor ID Tag and Length are prescribed in the Encoding PSM, and the Vendor ID Values are prescribed in a

separate repository/website as referenced in section 7.4.2 of this specification. Also refer to section 8.2.2 for an example

GDDI message carrying metadata for all three of the above cases.

7.3.7 Data/Payload

The Data/Payload portion of the GDDI Message is an array of bytes containing the variable-length payload data

described by the attached metadata in the GDDI Header and Type Block(s). The format and encoding of this payload data

can be included as GDDI metadata, or agreed upon between endpoints.

The length of this data/payload is determined by the GDDI Header Total Length less the lengths of all Type Blocks,

where the length of each Type Block is determined by the fixed length of the encoded Type Header and the encoded

Length of TLVs attribute.

In the case where the usable length of the data/payload is not an integral number of octets (bytes), a TLV can be used to

specify a bit-length. For example, a TLV could be specified to represent the “Length in Bits”, where the data length could

be 15 bits carried within a 2 byte Data/Payload field, i.e., only the first 15 most significant bits would be valid.

GDDI, v1.0 – beta 2 11

7.4 GDDI Package Design

GDDI specifies the message structure and interaction between GDDI Endpoints. It does not specify the exact metadata

definitions (i.e., types, identifiers/tags, versions, corresponding value lengths, and value typedefs) for any given interface.

That is beyond the scope of this specification. Instead, GDDI delineates the approach to use when defining specific

metadata; as well as how that metadata is structured and encoded in GDDI Messages for transport between endpoints.

When first defining a given interface between GDDI Endpoints, the Ground System Engineer provides the concrete

metadata definitions that are compliant with the PIM and PSM used. To represent this interaction, GDDI specifies two

notional packages: the Vendor-Specific Metadata package, containing definitions of concrete metadata that meet the

GDDI specification but are custom to a given vendor, and the Standard Metadata package also containing concrete

metadata definitions but are standardized among multiple vendors to ensure interoperability among them. While not

included in this document, it is envisioned that the Standard package eventually becomes a machine-readable, publicly

available XML metadata dictionary hosted in a separate repository linked from this specification or OMG website. Each

Vendor package (maintained by the respective vendors) may take a similar XML dictionary approach. Both packages

contain the concrete metadata definitions, including Type IDs, Type Versions, Tags, corresponding Value lengths, etc.

Figure 8 shows the GDDI packages.

Figure 8 - GDDI Packages

When supporting the Standard Metadata package, a GDDI implementation enables customers to easily configure the

implementation for interoperable communication of baseband metadata and data following the GDDI model. When

GDDI implementations use Vendor-Specific packages, interoperability between different vendors is not guaranteed.

Metadata definitions supported by a GDDI implementation shall be available via one or both of these packages which

can be distributed by the vendor via product documentation, an API provided by a GDDI implementation, or via XML

dictionary.

Refer to the following subsections for more details on GDDI metadata definitions (packages) and the planned use of

XML data dictionaries.

12 GDDI, v1.0 – beta 2

7.4.1 Standard Metadata Package

As mentioned in the GDDI Package Design, it is envisioned that the Standard Metadata package eventually becomes a

machine-readable XML metadata dictionary available in a separate repository linked from this specification or OMG

website (e.g., wiki or GitHub repository).

This dictionary will provide the concrete definitions for Standard GDDI metadata. A concrete definition is an explicit

assignment of a given PIM attribute or supporting property, e.g., Type ID = 7, where ‘7’ is the concrete definition.

This allows GDDI implementers and users to retrieve these standard definitions from the referenced external repository.

Concrete metadata definitions provide Type-Tag-Length-Value (TTLV) information needed for two GDDI endpoints to

interoperate.

Concrete definitions for the following normative attributes shall be provided by the Standard Metadata Package (i.e., via

metadata dictionary), and used to populate GDDI Message fields for a given interface as specified in the PIM and the

Encoding PSM. It is preferred that Type Name and Tag Name carry well-known values to facilitate machine-readability.

Optional definitions are enclosed in brackets “[]” and italics text is informational:

• Type ID

• Type Name

• Per Type:

o Major Version

o Minor Version

o Per TLV Triplet:

▪ Tag (ID)

▪ Tag Name

▪ Length (of Value)

▪ Value Type (per the Encoding PSM)

▪ [Value Units]

▪ [Tag Description]

In addition to the Standard metadata dictionary provided via OMG-managed site, GDDI implementations may supply

these standard metadata definitions in an Interface Control Document (ICD) and/or provide an API to retrieve them

programmatically from a running GDDI-enabled application.

The following Table 1 is not normative but illustrates an example of a Standard Metadata Dictionary in a generic form.

This example dictionary contains concrete metadata definitions for five standard Types (IDs 1 – 5). To provide the

flexible/elastic interface, GDDI messages can transfer one or more Types depending on the use case.

Table 1. Example GDDI Standard Metadata Dictionary

Type

ID

Type

Name

Major

Ver

Minor

Ver

Tag

(ID)

Tag

Name

Length

(of Value)

Value

Type

Value

Units

Tag

Description

1 Raw 1 0 1 Sequence Number 2 unsigned short count Sequence Number used to detect out-of-order and/or lost data

2 Data Rate 8 double bits per sec Bit Rate (in bits per second) of the underlying Raw data

3 Time Stamp Seconds 4 unsigned long sec Time Stamp: Number of seconds since 00:00:00 Jan 1, 1970 (UTC), minus leap seconds

4 Time Stamp Nanosec 4 unsigned long nsec Time Stamp: Nanoseconds representing the fractional portion of the timestamp

5 Data Length 8 unsigned long long bits Length in bits of the Raw data payload

2 Frame 1 2 1 FrameSync Lock State 1 octet enum Lock State of the Frame: 0=stopped, 1=search, 2=verfiy, 3=lock, 4=check, 5=noSignal

2 Bits Slipped 2 short bits Bits slipped: negative value slipped to the left, positive value slipped to the right

3 Time Stamp Seconds 4 unsigned long sec Time Stamp (POSIX): Number of seconds since 00:00:00 Jan 1, 1970 (UTC), minus leap seconds

4 Time Stamp Nanosec 4 unsigned long nsec Time Stamp (POSIX): Nanoseconds representing the fractional portion of the timestamp

5 Frame Length 4 unsigned long bits Length in bits of the Frame data payload

3 FEC 1 1 1 Bits Corrected 2 unsigned short bits Forward Error Correction (FEC) Bits Corrected in this frame

2 Uncorrectable 1 boolean true/false Forward Error Correction (FEC) Uncorrectable Frame flag

3 ASM Vector 0 octet array bytes Attached Sync Marker (Length of Value of zero indicates this TLV is variable-length)

4 CCSDS 2 0 1 Spacecraft Identifier 2 unsigned short ID SpaceCraft ID from the received CCSDS Data Link Transfer Frame Header

Transfer 2 Virtual Channel ID 1 octet ID Virtual Channel ID from the received CCSDS Data Link Transfer Frame Header

Frame 3 CRC Error 1 boolean true/false Indicates if CRC error(s) for this CCSDS Transfer Frame have been detected

5 IP 1 3 1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)

Addrs 1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)

1 IP Address 0 string address IPv4 address in dot notation (Length of Value of zero indicates this TLV is variable-length)

GDDI, v1.0 – beta 2 13

7.4.2 Vendor-Specific Metadata Package

To support the Vendor-Specific Metadata package per the GDDI Package Design, vendors may extend the metadata of a

given Standard Type by adding their own TLV definitions and/or create their own Vendor Types with vendor-specific

TLV definitions. These options are discussed in section 7.3.6.

This capability provides vendor flexibility to on-ramp and/or innovate while using the standard GDDI interface. It allows

unknown/unexpected vendor metadata to be easily parsed or skipped without impacting existing GDDI implementations.

Vendors may use a similar metadata dictionary approach as shown in Table 2 below (not normative). This example

dictionary contains one additional column named “Vendor ID” to identify the vendor’s TLV triplet(s) per Type Block.

For the first Type Block with Type ID 2, Vendor IDs 11 and 22 have extended the Standard “Frame” type with their own

vendor metadata. Note how the first TLV for a given vendor’s metadata must be the Vendor-Identifying TLV with Tag

255, Length of 1, and a Value equal to the Vendor ID as described in section 7.3.6.

The next two Type Blocks use Type ID 255 (a reserved value per the Encoding PSM) to indicate that the subsequent

TLV(s) for each Type Block only contain metadata for the vendor specified by the first Vendor-Identifying TLV. In this

example, these two Type Blocks contain metadata for Vendor IDs 33 and 44, respectively.

Vendor ID Values containing unique identifiers of each vendor used to support vendor-specific metadata will be provided

in a separate repository linked from this specification or OMG website.

Table 2. Example GDDI Vendor-Specific Metadata Dictionary

Vendor-Specific metadata definitions may be supplied via a metadata dictionary (preferably a similar XML format as the

standard metadata dictionary), an Interface Control Document (ICD) and/or an API to retrieve them programmatically

from a running GDDI-enabled application.

7.5 GDDI Security

Security has been considered for this specification, though it does not apply at the PIM level. Specific security controls

are not specified by the GDDI PIM because it does not define a network transport. See the Security section 9.2 in the

PSM-TCP/IP Network Transport for details of how the PSM supports security.

7.6 GDDI Internationalization

GDDI supports international use as there are no specific regional type definitions in the PIM. Encoding PSM section

8.1.1 references section 7.10.2.6 of [CORBAINTEROP] which states that strings are encoded using UTF-8, allowing for

the representation of characters within the Unicode character set that are supported internationally. All other GDDI-

specified types are internationally supported.

Type

ID

Type

Name

Major

Ver

Minor

Ver

Tag

(ID)

Tag

Name

Length

(of Value)

Vendor

ID

Value

Type

Value

Units

Tag

Description

2 Frame 1 2 255 Vendor ID 1 11 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)

1 Frame Data Inverted 1 11 boolean true/false Indicates if the frame data was detected to be inverted based on the sync pattern

2 Frame Antenna Name 0 11 string name Name of the ground antenna site that sourced this frame data

255 Vendor ID 1 22 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)

1 Frame Sync Lost 1 22 boolean true/false Indicates if the frame synchronization was lost since the previous frame

255 Vend33 1 0 255 Vendor ID 1 33 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)

1 Vendor33 Meta X 4 33 float widgets Vendor33 description for this metadatum

2 Vendor33 Meta Y 8 33 unsigned long long widgets Vendor33 description for this metadatum

255 Vend44 1 0 255 Vendor ID 1 44 octet ID Vendor ID (255 is the reserved Tag ID used to indicate Vendor ID in its value)

1 Vendor44 Meta A 2 44 short widgets Vendor44 description for this metadatum

2 Vendor44 Meta B 0 44 octet array widgets Vendor44 description for this metadatum

14 GDDI, v1.0 – beta 2

8 PSM-CORBA Encoding

This Encoding PSM specifies Data Type Definitions and CORBA Encoding Formats for all GDDI Message attributes

other than the Data/Payload as described in Section 7.3.7. Additionally, CORBA provides established floating-point

encoding formats via the ANSI/IEEE 754 Standard. By levering this subset of CORBA, this PSM provides encoding

formats that are interoperable among many processing platforms as well as across a variety of transport mechanisms.

8.1 PIM to PSM Mapping

For the GDDI PIM to PSM (CORBA Encoding) mapping, each attribute in the GDDI Message and its containing

members shall adhere to the following mapping rules, which shall be considered normative. All ranges and attribute

semantics are described in the corresponding PIM attributes, unless otherwise stated.

8.1.1 Attributes

PIM attributes map to encoded PSM fields. Each attribute called out in the GDDI Message UML Class Diagram in

Figure 7 shall map to one of the CORBA Encoding Formats called out in Table 3. The subsequent “Format” sections

specify exactly which Data Type/CORBA Encoding is used for each field that is mapped from a PIM attribute.

The Value attribute in the TLV Triplet shall also map to one of the below Data Type definitions, or may be omitted if a

Value is not required, i.e., an empty Value. Refer to Section 8.1.5.3 for details.

Table 3. Attribute to CORBA Mapping

PIM Attribute Data Type PSM-CORBA Encoding Format (Size, Bit Ordering)

short, ushort, long, ulong, long long, unsigned long long Per Section 9.3.1.2 of [CORBAINTEROP]

float, double Per Section 9.3.1.3 of [CORBAINTEROP]

octet Per Section 9.3.1.4 of [CORBAINTEROP]

boolean Per Section 9.3.1.5 of [CORBAINTEROP]

string Per Section 7.10.2.6 of [CORBAINTEROP]

octet array Per Section 9.3 (octet stream) of [CORBAINTEROP]

All above data types shall be encoded with big-endian ordering per the referenced CORBA section prior to transport.

To provide the required flexibility and compact efficiency, enumerations can use any of the integer types above.

Since GDDI provides an interface that carries data and metadata over an octet stream and optimizes encoding overhead,

GDDI Message attributes with the above types shall be adjacently packed on octet boundaries within the octet stream

with no alignment gaps per Section 9.3.1.1 of [CORBAINTEROP]. This provides a lightweight efficient encoding with

no undefined data inside alignment gaps.

8.1.2 GDDI Header Format

A fully encoded GDDI Header shall adhere to the format in Figure 9 with the specified CORBA encodings and octet

lengths for each field mapped from the corresponding PIM attribute. The GDDI Header is the first member of the GDDI

Message, hence is transmitted first over the selected transport. Transmission starts with the Most Significant Bit (MSB) 0

of the first byte[0] Sync Marker field as shown. Additional detail is provided in the subsections below the figure.

GDDI, v1.0 – beta 2 15

Figure 9 - GDDI Header: CORBA Encoded Format

8.1.2.1 Sync Marker

This field is directly mapped from the PIM attribute whose type is a byte array of length 4. Each byte is encoded as a

CORBA octet, which are considered as unsigned 8-bit integer values per [CORBAINTEROP]. The required values of

each byte in this array directly map from the default value of this PIM attribute.

8.1.2.2 GDDI Version

For this PSM, the GDDI Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in the most

significant four bits of the fifth octet in the encoded GDDI Header, as shown in the above figure. The range for this field

shall be 0 to 15, meaning 16 unique versions per Encoding PSM.

The currently supported GDDI Versions for this CORBA-Encoding PSM are:

• 0 (representing Message Version 1)

Note: New versions shall be added to this list whenever this PSM encoding format changes or the PIM structure changes.

8.1.2.3 Reserved

This integer PIM attribute maps to an unsigned 4-bit integer that resides in the least significant four bits of the fifth octet

in the encoded GDDI Header, as shown in the above figure. This field is reserved for future use and shall be assigned to

all zero bits.

8.1.2.4 Total Length

This integer PIM attribute maps to a CORBA unsigned long and is encoded as an unsigned 32-bit integer value per

Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian long per [CORBAINTEROP] Figure 9.1.

The range for this field shall be 13 to 4,294,967,295. The minimum length equates to only the 13-byte GDDI Header

being transferred with no Type Blocks and a zero length Data/Payload (supported but not a nominal use case).

16 GDDI, v1.0 – beta 2

8.1.2.5 Type Count

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section

9.3.1.4 of [CORBAINTEROP]. The range for this field shall be 0 to 255. Nominally Type Count will be 1 or greater,

however zero is allowed for the rare case where only Data/Payload needs to be transferred with no Type Blocks.

8.1.2.6 Payload Type

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section

9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 0 to 254. The Payload Type shall only be set to zero

when Type Count is zero, otherwise it shall be 1 to 254. Payload Type 255 is reserved.

8.1.2.7 Sequence Counter

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value

per Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure

9.1. The range for this attribute shall be 0 to 65,535, hence is incremented for each transmitted GDDI message by

modulo-65,536.

8.1.3 Type Block

The Type Block is composed of one Type Header and 0 to 255 TLV Triplets. The following two sections describe the

encoding formats of these Type Block components.

8.1.4 Type Header Format

A fully encoded Type Header shall adhere to the format in Figure 10 with the specified CORBA encodings and octet

lengths for each field mapped from the corresponding PIM attribute. Additional encoding details of each field are

provided below.

Figure 10 - Type Header: CORBA Encoded Format

8.1.4.1 Type ID

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section

9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 1 to 254, where Type IDs 0 and 255 are reserved.

Reserved Type ID 255 shall be used by GDDI implementations for the Vendor-Only Type ID as described in section

7.3.6.

8.1.4.2 Major Version

For this PSM, the Type’s Major Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in

the most significant four bits of the first octet in the encoded Type Header, as shown in the above figure. The range for

this attribute shall be 0 to 15, meaning 16 unique Major versions per Type.

The Major Version for each Type is maintained in the Standard or Vendor-Specific Metadata Package per Section 7.4.

8.1.4.3 Minor Version

For this PSM, the Type’s Minor Version integer attribute from the PIM maps to an unsigned 4-bit integer that resides in

the least significant four bits of the first octet in the encoded Type Header, as shown in the above figure. The range for

this attribute shall be 0 to 15, meaning 16 unique Minor versions for a given Major Version, per Type.

The Minor Version for each Type is maintained in the Standard or Vendor-Specific Metadata Package per Section 7.4.

GDDI, v1.0 – beta 2 17

8.1.4.4 Length of TLVs

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value

per Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure

9.1. The range for this field shall be 0 to 65,535, where a zero Length of TLVs is described in the corresponding PIM

attribute.

8.1.5 TLV Triplet Format

A fully encoded TLV Triplet shall adhere to the format in Figure 11 with the specified CORBA encodings and octet

lengths for each field mapped from the corresponding PIM attribute. Additional encoding details of each field are

provided below.

Figure 11 – TLV Triplet: CORBA Encoded Format

8.1.5.1 Tag

This integer PIM attribute maps to the CORBA octet type and is encoded as an unsigned 8-bit integer value per Section

9.3.1.4 of [CORBAINTEROP]. The range for this attribute shall be 1 to 254, where Tags 0 and 255 are reserved.

Reserved Tag 255 shall be used by GDDI implementations for the Vendor ID Tag as described in section 7.3.6.

8.1.5.2 Length

This integer PIM attribute maps to the CORBA unsigned short type and is encoded as an unsigned 16-bit integer value

per Section 9.3.1.2 of [CORBAINTEROP]. This field is ordered as a Big-Endian short per [CORBAINTEROP] Figure

9.1.

The range of this 16-bit integer is 0 to 65,531 representing the length in octets of the TLV’s Value. A zero length

indicates that the Value field does not exist. The maximum range of 65,531 octets is derived from the maximum “Length

of TLVs” field which is a CORBA ushort (65,535 octets) less 4 octets for the encoded length of a Type Header.

Lengths from 1 to 8 bytes are used for common primitive value types, i.e., octet to long long. Lengths larger than 8 bytes

are used for string and octet array values.

8.1.5.3 Value

This PIM attribute of type byte with multiplicity of [0..*] shall map to this PSM in one of two methods, as follows:

• Value maps to one of the Data Types/CORBA Encodings in Table 3 as indicated by the corresponding Tag

within the given Type. The Value field’s length N is 1 to 8 octets for primitive types or may be larger than 8

bytes for string and octet-array types, with length N of 1 to 65,531 octets.

• A TLV with an empty Value shall map as a valid Tag, a zero Length (of value), and no Value field encoded.

The Value field’s length N is 0 octets, i.e., no Value exists in the encoded GDDI Message.

18 GDDI, v1.0 – beta 2

8.1.6 Data/Payload Format

This PIM attribute of type byte with multiplicity of [0..*] shall map to this PSM in one of two methods, as follows:

• Data/payload shall map as an octet array whose encoding format can be included as GDDI metadata or agreed

upon between the sender and receiver GDDI endpoints.

• When no data/payload is required to be transferred between GDDI endpoints, the Total Length field shall only

include the lengths of the GDDI Header and Type Block(s) to indicate zero octets for the Data/Payload field.

8.1.7 GDDI Message Format

A full GDDI message shall consist of the above elements per Figure 12, which shows a basic GDDI use case. The

number of Types, the number and size of the TLV Triplets, and the length of Data/Payload is determined for each

specific use case.

Figure 12 – Complete GDDI Message

GDDI, v1.0 – beta 2 19

8.2 GDDI Message Examples

The diagrams in the following subsections are intended to be an aid in comprehension of this encoding PSM as well as

the overall GDDI metadata approach. They are not normative.

8.2.1 Example GDDI Message with Standard Metadata

Figure 13 depicts an example GDDI message with generic PSM-CORBA encodings of standard metadata. It is not

normative. This diagram shows all constructs of the GDDI message: the GDDI Header, three example Type Blocks

(labelled ‘A’, ‘B’, and ‘C’, delineated with brackets on the left side), each Type Block containing several example TLV

Triplets of varying lengths, and a variable-length Data/payload. This example helps to show the elastic metadata concept,

and the structure where concrete metadata definitions (from the metadata dictionary) are to be applied within an encoded

message. It also shows how the GDDI message provides a structure that can be readily parsed by Cross Domain

Solutions (CDS) via the self-describing length and other supporting fields.

Figure 13 – Example GDDI Message with Standard Metadata

Data ayload

 G D D I

GDDI eader

 a en t

 alue ()

tri let

 y e eader

 y e

 loc

20 GDDI, v1.0 – beta 2

8.2.2 Example GDDI Message with Vendor-Specific Metadata

Figure 14 depicts an example GDDI message with generic PSM-CORBA encodings of vendor-specific metadata. It is not

normative. This diagram shows how a GDDI message containing standard metadata can be extended with vendor-

specific metadata either by: 1) adding it to a standard GDDI Type, or 2) adding completely new Vendor-Only Type

Block(s).

In the diagram, standard metadata is shown by “Type A” fields in black text, and vendor-specific metadata is shown by

“Type A” fields in red and purple text, where two different vendors (vendor ID 11 and vendor ID 22) extend Type A with

their own metadata TLV triplets as described in section 7.3.6, #2.

The orange and blue Type Blocks use the Vendor-Only Type ID (255) combined with the Vendor-Identifying TLV to

indicate the vendor-only metadata/TLVs for both vendorID 33 and vendor ID 44 as described in section 7.3.6, #3.

Figure 14 – Example GDDI Message with Vendor-Specific Metadata

Data ayload

 G D D I

GDDI, v1.0 – beta 2 21

9 PSM-TCP/IP Network Transport

This network transport PSM specifies a TCP/IP-based formatting for all message types supported by GDDI.

Implementations that follow the details of this PSM can send and receive GDDI-formatted messages in compliance with

the GDDI specification.

9.1 PIM to PSM Mapping

TCP is a stream-oriented protocol and provides built-in message delivery assurance which allows for the transport of

GDDI messages to be reliably delivered with high Quality of Service (QoS). Further, TCP is broadly implemented in

existing hardware and software utilized in ground systems, enabling it to be an implementation that can be quickly

realized by implementations and compatible with incorporation into new and existing satellite ground systems.

Within the TCP/IP Network Transport PSM, GDDI CORBA/IEEE data type-encoded messages are inserted over

TCP/IP. Implementations may choose to utilize additional transport features, such as Transport Level Security (TLS) to

provide additional security control. However, any additional features shall be able to be turned off.

The CORBA/IEEE Types and Encoding, as specified in Section 8 shall be used for GDDI Header and TTLV Fields in

the GDDI Message. The data/payload encoding format may be specified via GDDI metadata or agreed upon between

endpoints.

The GDDI specification defines that each message is prepended by “G” “D” “D” “I” magic bytes. These four octets

serve as a marker for the beginning of a new message and implementing clients can seek to find where to read a new

message and to begin extraction of a new message from the octet stream. It is expected that data is octet-aligned. Within

the TCP/IP PSM, this seeking is performed against the TCP/IP network stream after any TLS-transport decryption has

taken place (if encryption is enabled).

The representation of all data types and formats shall adhere to the encoding types as specified in the PSM-CORBA

Encoding, detailed in the previous section of this specification. As such, all multi-octet data types are to be represented in

big endian format (as shown in [CORBAINTEROP] Section 9.3.1). In addition, the size and bit ordering across the

network shall comply with [CORBAINTEROP] Section 9.3.1.

9.2 Security

The TCP/IP PSM is designed to support integration with security controls that may exist in a network infrastructure but

not to require them. This allows for the greatest flexibility in supporting implementations of this specification within

existing TCP/IP-based systems and is compatible with current/future technology architectures that may improve on

security capabilities built into TLS and secure network transport. As such, the specific versions of TLS, ciphers,

encryption mechanisms/configuration are not specified. However, it is recommended that implementations follow the

latest security controls available while allowing for security controls to be disabled or adjusted to support maximum

flexibility.

9.2.1 Encryption

Encryption is recommended to be supported by PSMs, optional within the TCP/IP PSM. Implementations shall allow for

encryption, but it must be able to be disabled. Encryption may be directly implemented using a native implementation

(such as via OpenSSL) or it could be implemented by the infrastructure hosting the software elements. Several options

that could be utilized by the infrastructure include the use of a service mesh or an IPSec tunnel (such as a Virtual Private

Network) while the application itself is implemented with data connections unencrypted.

9.2.2 Authentication

When the TCP/IP PSM is implemented using TLS/SSL over TCP (e.g., OpenSSL or via a service mesh), authentication

can be controlled by way of trusted certificates or a trusted certificate root, as built into the standard TLS certificate

implementation. While implementing TLS is optional, if implemented, implementations should support specifying

certificate options, to include the client certificate, certificate trust chain/trusted certificates, and certificate revocation

lists.

