
Genomic Maps Specification

Draft Adopted Specification: December 1999

 paid up,
ified
 copyright
ving

ire use
y be
at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
form or
nd

 in

IDL,
, Inc.

ers to
Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Millennium Pharmaceuticals, Inc.
Copyright 1999, NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1

2

2

-1
1-1
1-1
-2
-3

-1
2-1

2-2

2-3

2-4

2-6

2-6

2-6

2-6

2-8
2-8
2-8
11
Preface .
About the Object Management Group .

What is CORBA? .

Associated OMG Documents .

Acknowledgments .

1. Genomic Maps Overview . 1
1.1 Specification Overview .

1.1.1 Document Structure .
1.1.2 Module DsLSRControlledVocabularies 1
1.1.3 Module DsLSRGenomicMaps 1

2. General Description . 2
2.1 Objects-by-value .

2.2 Iterators .

2.3 Controlled Vocabularies .

2.4 Identifier Strings .

2.5 Mappable .

2.6 Mappable and Map. .

2.7 Mappables and Assignments .

2.8 Nested Maps. .

2.9 Retrievals and Queries .
2.9.1 Retrievals .
2.9.2 Queries .
2.9.3 Wildcards . 2-
Genomic Map V1.0 December 1999 i

Contents

-11

-11

-1

3-1
3-1
-2
-2
-2
-3
-3

-4
-4

3-4
-4
-5
-5
-6

3-7
-8
-8

3-9
-9

-10

11
-12
-12
13
14
14
-15
-15
-15
15

-1

-1

ry-1
2.9.4 Ordering . 2

2.10 Lifecycle Issues . 2

3. Modules and Interfaces. 3

3.1 Module DsLSRControlledVocabularies
3.1.1 Exceptions .
3.1.2 Typedef VocabularyString 3
3.1.3 Valuetype VocabularyEntry 3
3.1.4 Interface VocabularyEntryIterator. 3
3.1.5 Interface Vocabulary . 3
3.1.6 Interface VocabularyFinder. 3

3.2 Module DsLSRLQSLink . 3
3.2.1 Interface LQSVocabularyFinder 3

3.3 Module DsLSRGenomicMaps .
3.3.1 Typedef Identifier . 3
3.3.2 Exception CannotResolveID. 3
3.3.3 Valuetype Mappable . 3
3.3.4 Interface Map . 3
3.3.5 Interface OrderedMap.
3.3.6 interface CytogeneticElement. 3
3.3.7 Interface LinearMap . 3
3.3.8 Interface MapsQueryLanguageType
3.3.9 Interface MapIterator . 3
3.3.10 Interface MapFactory . 3
3.3.11 Valuetypes Assignment,

MappableAssignment and SubMapAssignment 3-
3.3.12 Interface AssignmentIterator 3
3.3.13 Valuetype Position . 3
3.3.14 Valuetype RelativePosition 3-
3.3.15 Valuetype RelativeMetricPosition. 3-
3.3.16 Interface MapCorrelationFactory 3-
3.3.17 Typedef AssignmentPair. 3
3.3.18 Interface AssignmentPairIterator 3
3.3.19 Typedef MapPair . 3
3.3.20 Interface MapCorrelation 3-

Appendix A - OMG IDL . A

Appendix B -Relation to Lexicon Query Service B

Glossary. Glossa
ii Genomic Map V1.0 December 1999

Preface
d by
users.
nol-
of
e-

. Con-
plica-

tion

ent
er of
ica-

ic
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numb
hardware and software products available today. Simply stated, CORBA allows appl
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specif
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Genomic Maps V1.0 December 1999 1

 are
ides
 are

tion,
ating
f the

 OMG

t. To
con-
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Informa
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications,
tact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• EMBL-EBI

• Genomica Corp.

• Infobiogen

• Millennium Pharmaceuticals, Inc.

• NetGenics, Inc.

• Technische Universität Berlin
2 Genomic Maps V1.0 December 1999

Genomic Maps Overview 1
tents.

ot

m the
tice

 in the

le
1.1 Specification Overview

This document describes a standard for representing genomic maps and their con
It is able to deal with practically any type of chromosome map and marker that is
likely to occur in the fast growing field of molecular genetics. Situations that are n
catered for explicitly can be addressed by extending the types and using the
conventions described in this document. The standard was developed starting fro
practical need to represent complex bodies of data in a natural way. Existing prac
and terminology is used wherever this was available and practical.

In this section, a synopsis of the data model and data types is given. Chapter 2
introduces the general design and the general rules that apply to the components
standard, while also providing the rationale for the design. Chapter 3 presents the
standard in detail. The full IDL is provided in Appendix A.

To be compliant with this specification, all interfaces described in the modules
DsLSRControlledVocabularies and DsLSRGenomicMaps are mandatory; the
interface specified in the module DsLSRLQSLink is optional.

1.1.1 Document Structure

The specification is composed of three modules, DsLSRControlledVocabularies ,
DsLSRGenomicMaps , and DsLSRLQSLink .

Module DsLSRGenomicMaps defines mainly domain specific data types, such as
Mappable s, Map, Assignment and Position , MapCorrelation .

DsLSRGenomicMaps needs an auxiliary module,
DsLSRControlledVocabularies , that is used to define the contents of so-called
controlled vocabularies. This module is described first. A separate, optional modu
DsLSRLQSLink can provide connectivity between
DsLSRControlledVocabularies and the LexExplorer interface from CORBAmed’s
Lexicon Query Service.
Genomic Maps V1.0 December 1999 1-1

1

ese
t code

 are

nd

 is a
UML diagrams of most of the data types are presented in Figures 1, 2 and 3. Th
diagrams are meant to provide an overview, and are not complete in the sense tha
could be generated from them. For instance, not all iterators or factories are
represented.

1.1.2 Module DsLSRControlledVocabularies

A diagram of the data model for this module is given in Figure 1-1. Its data types
briefly discussed.

Figure 1-1 UML diagram of data types of module DsLSRControlledVocabularies

1.1.2.1 VocabularyString

This data type presents a notion intermediate between an enum and a string . They are
used to represent relatively fixed string values that are more or less well known a
usually specific to the domain. Their values are defined as the contents of Vocabulary ,
a type defined in the DsLSRControlledVocabularies module. To make the intended
use of a string variable clearer, a typedef string VocabularyString is provided and
used in this specification.

1.1.2.2 VocabularyEntry

This valuetype represents the contents of a Vocabulary , and consists of the
vocabulary string along with a description.

1.1.2.3 Vocabulary

This interface represents a set a of strings that are valid in a particular context. It
container for VocabularyEntry s. Objects of this data type are candidates for
registration with a Naming Server or a Trader.
1-2 Genomic Maps V1.0 December 1999

1

n in
. The

tes,

is

tent’

er

d

the
1.1.2.4 VocabularyFinder

An interface that gives access to Vocabulary s. Each context can have a number of
different relevant Vocabulary s, all of which can be represented by one
VocabularyFinder .

1.1.3 Module DsLSRGenomicMaps

UML diagrams of the data model of the mapping data types in this module are give
Figure 1-2; the types for representing map correlations are depicted in Figure 1-3
data types are briefly discussed below.

1.1.3.1 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify
them in a certain context. The current specification also uses strings for ID attribu
but constrains their syntax and semantics to improve interoperability. To make the
intended use of such string variables clearer, typedef string Identifier is provided
and used in this specification.

1.1.3.2 QueryString

This data type (again, a typedef string , for the same reasons as described earlier)
used to represent fixed query types to the evaluate() method that is inherited from
CosQuery::QueryEvaluator .

1.1.3.3 Mappable

The valuetype Mappable is used to represent the contents of a Map. It represents the
MappedEntity mentioned in the RFP. Mostly, Mappable s will be simple markers.
However, since maps can be nested, a nested map or sub-map is also ‘map con
(namely of the enclosing, or nesting map). The nestability of maps allows clones,
contigs or even genes and sequences to be both markers as well as maps. In oth
words, Map could be regarded as a specialization of Mappable . This relationship is
however not represented by IDL inheritance but by delegation as will be explaine
below.

Mappable has no information on where it is located on a map; this is the task of
Assignment data types. There are no sub-types of Mappable defined.
Genomic Maps V1.0 Specification Overview Dec. 1999 1-3

1

t

Figure 1-2 UML diagram of mapping data types in module DsLSRGenomicMaps

1.1.3.4 Map

The data type Map and its sub-types are used to represent genomic maps. It has
retrieval methods, and a number of fixed QueryString s that can be used as the inpu
to the evaluate() method inherited from CosQuery::QueryEvaluator . A number of
specific sub-types of Map are provided. As described in the previous paragraph on
Mappable , Map can be regarded as being a specialisation of Mappable . Although
this is-a relationship is an inheritance relationship, this standard represents it as a
delegation. The reason is that IDL syntax (i.e., sub-entity: super-entity {
… }) cannot be used to make interface Map inherit from the valuetype Mappable .
1-4 Genomic Maps V1.0 December 1999

1

eval

aps.

s
For clarity, the remainder of this specification uses the term sub-Map whenever
referring to a Map that is nested inside another Map. However, in any other respect,
sub-Map is exactly the same type as Map.

1.1.3.5 MapFactory

Map objects can be obtained from a MapFactory object. Objects of this data type are
candidates for registration with a Naming Server or a Trader. Methods for the retri
of Maps as well as a number fixed query strings are provided.

1.1.3.6 Assignment

An Assignment is the placement of a particular Mappable or sub-Map on a
particular Map; it holds the information concerning the location(s) of a Mappable on
a Map. The difficulty of representing either a Mappable or a sub-Map in an
Assignment is solved by having corresponding sub-types MappableAssignment
and SubMapAssignment . Assignment s are never used directly; only their
specializations MappableAssignment or SubMapAssignment are.

1.1.3.7 Position

The geometric information of an Assignment . A number of sub-types are provided to
deal with different kinds of maps and assignments.

1.1.3.8 MapCorrelation

This data type is used to hold the information needed to correlate two different m

A UML diagram of the data types that represent correlations between two maps i
given in Figure 1-3. The data types Map and Assignment are the same as those in
Figure 1-2.

1.1.3.9 MapCorrelationFactory

MapCorrelations are obtained by querying a MapCorrelationFactory object. As with
Map and MapFactory , fixed query strings to be used as input for the evaluate()
method inherited from CosQuery::QueryEvaluator are given as well. Like
MapFactory, it will usually be registered with a Naming or Trader service.
Genomic Maps V1.0 Specification Overview Dec. 1999 1-5

1

Figure 1-3 UML diagram of correlation data types in module DsLSRGenomicMaps
1-6 Genomic Maps V1.0 December 1999

General Description 2
 this

e
 be

y

fit of

e
This section describes the principles that are used by many of the components in
specification, along with explanations of the design rationale. The more detailed
descriptions provided in the next section, Modules and Interfaces, refer to those
provided here. For a UML diagram of some of the data types in this document, th
reader is referred to the figures located in Chapter 1.The full IDL specification can
found in Appendix A.

2.1 Objects-by-value

The CORBA 2.3a specification provides the concept valuetype , an IDL data type
intermediate between struct and interface . They are part of the so-called Objects b
Value (OBV) specification. Although the OBV standard is relatively new and not
widely available yet, the current work uses valuetype s, as they offer definite
advantages. In the context of this standard, the benefit of valuetype s over interface s
is scalability (a single round trip transfers the whole state of the object). The bene
valuetype s over struct s is their extendibility through inheritance.

In the interest of scalability, the contents of a map should preferably be local to th
client. For this reason the most abundantly used types (Mappable , Position and
Assignment) are represented using valuetypes . They are used essentially as
extendible struct s, by applying the following constraints:

• all members (‘attributes’) are public ,

• there are no methods,

• inheritance is only of other valuetype s (i.e., no “supports SomeInterface”),

• all inheritance uses truncatable (i.e., “casting” a sub-type to its super-type by
simply omitting the extra members is a semantically valid operation).
Genomic Maps V1.0 December 1999 2-1

2

ce of

to’
pping
ng is

ors
 of

f

 are

is

out
ged.

d by
2.2 Iterators

If a method has to return a multi-valued result to the caller, there is a design choi
returning these elements directly as a list, or through an iterator, or using a
combination of both.

This standard mostly uses the iterator approach. Iterators are objects that ‘point
elements in a set, and which can be used to ‘step through’ the set. During this ste
process, each element is visited once. If the underlying set is ordered, this orderi
also preserved in the output of the iterator methods. If, during the iteration, the
underlying result set changes (by another process), an exception is thrown. Iterat
allow the client to choose between the scalability of iterators and the convenience
the lists returned by the iterators’ next_n() methods.

This standard has iterators for the data types Map, Assignment , and
VocabularyEntry . An iterator provides a pointer or cursor to step through a set o
entities. The iterators all look as follows:

exception IteratorInvalid {
string reason;

};

interface Thing Iterator {
boolean next(out Thing the_thing) raises(IteratorInvalid);
boolean next_n(in unsigned long how_many, out Thing List thing _list)

raises(IteratorInvalid);
void reset();
void destroy();

};

Iteration using these objects can be in steps of one entry using the next() method,
which are returned as the out parameter. Alternatively, when using the next_n()
method, a batch of at most how_many entities are returned in the out parameter. If
the retrieval was successful, the out parameter contains the next entity or entities.
TRUE is returned if the call did not yet exhaust the iteration (i.e., if more elements
available for subsequent calls to next() or next_n()). Conversely, a FALSE return
value signifies that no more elements are available from the iterator. If, in a call to
next_n() , less than the requested how_many elements can be returned, the out
parameter contains as many elements as were available, and the return-value is FALSE.
The next() and next_n() methods can fail (e.g., if the underlying set changed). In th
case, the IteratorInvalid exception is raised. Its reason member can be used to provide
human-readable information on details of the failure.

Calls to reset() re-position the iterator such that subsequent calls to next() or
next_n() start at the beginning of the result set. In this case, nothing is implied ab
the contents of the underlying result set, or of their ordering; both may have chan

Empty result sets (such as from queries yielding no matches) are not represente
NULL objects, but by real iterators that are ‘empty’ (i.e., invoking their next() or
next_n() methods only ever return FALSE) .
2-2 Genomic Maps V1.0 December 1999

2

d

 need
ver
ferent

,
ly

 be

iable
bulary
uently
sage.

ed
ed in

g
texts

tion

 or

 or
ces

n
The destroy() method is used to indicate that the iterator is no longer needed, an
deletes the iterator object.

2.3 Controlled Vocabularies

When describing and representing domain-specific systems, there is frequently a
for a string type that can only assume a limited set of allowed values, a set howe
that is allowed to change over time (as values are added or removed) or space (dif
servers accepting different sets of strings). Such strings are called controlled
vocabulary strings (“vocabulary strings” for brevity). A particular set of such strings
valid in some context, is called a controlled vocabulary. Vocabulary strings typical
denote domain-specific concepts, usually as a short descriptive string or common
abbreviation, rather than as a code. An example from the mapping domain would
the strings “unknown,” “genetic,” “EST,” and “RFLP” as valid marker types in a
particular map.

To specify a satisfactory standard for vocabulary strings, the usage of an enum is too
inflexible, as it would require approval and re-compilation of new IDL, possibly
rendering existing clients and/or servers incompatible. Conversely, string is too
lenient, as there is no mechanism to list or control the values that a particular var
of such a type can assume. As a result, the definition of a system that needs voca
strings becomes less precise and less interoperable. This loss of semantics is freq
due to things as trivial as misspellings and issues of type-case and white-space u

Some of the controlled vocabulary functionality could be provided by the CORBAm
Lexicon Query Services standard (LQS; corbamed/98-03-22). For reasons describ
Appendix B, the current specification includes the module
DsLSRControlledVocabularies , which describes a standard for representing, listin
and checking vocabulary strings. This module is general, and may be of use in con
other than that of genomic maps. A mapping between
DsLSRControlledVocabularies and LQS is also given in Appendix B.

To provide a standard way of offering access to the functionality LQS, a specializa
of VocabularyFinder called LQSVocabularyFinder is provided in module
DsLSRLQSLink . This optional interface has a
TerminologyServices::LexExplorer attribute that yields access to the LQS
functionality.

IDL strings are used to represent vocabulary strings. The typedef string
VocabularyString is provided, and used to indicate that the values of an attribute
member are constrained. VocabularyString s are contained in VocabularyEntry s
(along with a description). There are no syntactic restrictions on the value of
VocabularyString s, but the following guidelines are suggested:

• vocabulary strings should not contain superfluous white-space (i.e., no leading
trailing white-space); internal white-space should be represented by single spa
only.

• vocabulary strings should be short yet descriptive. Common abbreviations ofte
serve this purpose well.
Genomic Maps V1.0 Controlled Vocabularies Dec. 1999 2-3

2

n,”
er

tity.
ntages

 be
 of
rd

way

ial
.
t

s that

he
nt
• empty strings are allowed but discouraged. The semantics are typically “unknow
“not applicable,” “missing,” “miscellaneous,” “default,” etc. It is considered clean
to define dedicated vocabulary strings for this purpose.

The VocabularyEntry s are served by Vocabulary objects, which can in turn be
obtained from VocabularyFinder objects.

The anticipated use of VocabularyFinder objects is to contain a relatively limited
number of Vocabulary s (say, less than 50). If there is a need for managing larger
numbers of Vocabulary s, a more general and powerful facility akin to a knowledge
base would be more appropriate.

2.4 Identifier Strings

There is frequently a requirement for a simple data type to indicate an entity’s iden
In most cases, this need is or can be addressed by using a string type. The adva
are that it is simple, lightweight, and used universally throughout the realm of
computing (and indeed outside). However the risk of using strings is that they can
too flexible, both in terms of syntax and semantics. This easily results in the lack
interoperability. To allow strings, yet mitigate their potential for abuse, this standa
uses the syntax convention of CosNaming::StringName as described in the
Interoperable Naming service. This convention is mainly a syntactical one; in no
is the use of a naming service implementation required or implied (but it is not
precluded either).

A brief description of CosNaming::StringName is as follows. CosNaming::Name
is a list of struct NameComponent s. For the purpose of illustration, a
NameComponent can be likened to a directory or filename, whereas
CosNaming::Name constitutes a full path-name. The struct NameComponent has
string members id and kind . To transform a CosNaming::Name into a string, all its
NameComponent s are represented as strings “id.kind ”. If the kind -field is
empty, this becomes simply “id ”; if the id -field is empty, this becomes “.kind ”;
finally, the Naming service also allows both the id - and kind -fields to be empty, which
is represented as “. ”. The full stringified CosNaming::Name is then obtained by
concatenating all the NameComponent s using “/ ” as a separator character. The
character “\ ” is designated as an escape character; if it precedes any of the spec
characters “. ”, “ / ” and “\ ”, these special characters are taken as literal characters
The typedef string CosNaming::StringName is provided for strings used as objec
names using this convention.

The genomic maps specification adopts the same syntax convention, but request
the components of our Identifier data type adhere to some additional semantic
constraints. These rules do not follow from, nor are implied by any semantics of t
Naming Service. The additional constraints make this data type sufficiently differe
from CosNaming::StringName to warrant the dedicated typedef string Identifier .

In the remainder of this description, ‘component’ means: the sub-string of an
Identifier that corresponds to one CosNaming::NameComponent ; likewise, id-
field and kind-field correspond to the equivalent fields of NameComponent .

The rules are as follows:
2-4 Genomic Maps V1.0 December 1999

2

ithin
ent;
s.

:

r
tics

ts.
n the

l

nd

ly
. The

-case

the
f the

pty.

on.
• Names can refer to collections of entities (such as databases), or to entities w
such collections. Names referring to collections consist of exactly one compon
names referring to entities within collections consist of at least two component

• The first component represents the data source. Data sources can be anything
transient collections, local databases, public repositories, etc. It is up to the
implementation to document the accepted names for the data source.

• The empty name (“. ”) is valid for the first component, and represents the ‘local’ o
‘default’ collection. It is up to the implementation to document what the seman
of ‘local’ or ‘default’ is.

• Names that refer to entities within collections consist of two or more componen
The second component of such names represents an identifier that is unique i
context of the data source. No empty id -fields are allowed in this or any further
components.

• If two components are not enough to uniquely identify an entity, an Identifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textua
information.

• The only characters valid in a component are “a” through “z”, “0” through “9”, a
“-“ (hyphen), “_” (under_score), “$” and “.” (period). Use of the latter is
discouraged since it has a special meaning in the stringifying convention, and has
therefore to be escaped.

To comply with existing practice in the field of public data repositories, it is strong
advised that implementations do string comparisons in a case-insensitive manner
CosNaming Service standard fails to mention whether type-case is, for string
comparison purposes, significant or not. Implementations that use a third-party
implementation of the Naming service may therefore wish to restrict Identifier s to
only use one type-case. It is up to an implementation to state whether mixed type
is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of Identifier are used as follows:

• The id-field of a component contains the principal value that makes it unique in
scope provided by the preceding component. It may only be empty in the case o
first component of an Identifier (see above).

• The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be em
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with ‘the latest release or version’. It is up to the
implementation to document the syntax and semantics of the version informati

The adoption of this convention has the following advantages:

• it is simple and lightweight,

• it has a well-defined and ‘re-used’ syntax,

• it is compatible with existing practice,

• it is sufficiently flexible to allow for sub-IDs if necessary.
Genomic Maps V1.0 Identifier Strings Dec. 1999 2-5

2

at
. The
 of

ents.
ts,

on.
e been
one
ory)

ta

apping
n
The LSR Biomolecular Sequence Analysis standard uses the same Identifier type and
semantics.

2.5 Mappable

The data type Mappable defined in this specification is used to represent things th
can be mapped. This includes ordinary markers as well as sub-maps (see below)
choice for this unusual, novel term was motivated by the desire to reduce the risk
confusion with existing terms.

2.6 Mappable and Map

As indicated above, a Map should be considered a special kind of Mappable to allow
for the nesting of maps. Moreover, it is desirable that map contents be local to cli
Yet at the same time, the data type Map needs methods to serve and query its conten
so Map should be an object local to the server.

This inheritance relationship is represented as a delegation: the interface Map has a
readonly attribute Mappable the_mappable , which contains (and transfers) the
whole state of the Mappable aspects of a Map. One could call this the ‘header
information’ of a map (such as the id, the chromosome, etc.).

2.7 Mappables and Assignments

The relationship between maps and mapped entities is a many-to-many associati
That is, one map can contain many markers, and conversely, one marker can hav
mapped on several different maps. An assignment of one marker on one map is
instance of this map-marker relationship. Therefore, a map is a container (or fact
of Assignment s, rather than of (references to) Mappable s. For this reason, the query
methods of Map and its sub-types yield assignments, never Mappable s. If the
Mappable s contained in a Map are required, they can always be obtained by
inspecting the mapped_entity members of the sub-types of Assignment .

Since an assignment can be both of a Mappable and of a sub-Map, the valuetype
Assignment data type is never returned directly; only its more specific sub-types
MappableAssignment and SubMapAssignment are returned. Only instances of
these sub-types contain the mapped entity that makes them meaningful.

2.8 Nested Maps

Nested maps are a potentially powerful concept for the integration of mapping da
from different (and potentially distributed) sources. Another area where nesting is
desirable is the case where resolution of a map increases over the course of a m
project. For example, a contig may be treated as a point-like entity at first; later, whe
the mapping effort proceeds, the contig may become a map in its own right.

There are three potential problem areas with nested maps: infinite recursion,
representation and coordinate systems, and querying.
2-6 Genomic Maps V1.0 December 1999

2

ining
s sub-

y
ation
turned

 is

s. A

sted
s

tities

ntity

n
the
the

over
e to
s of a

ly,
Infinite recursion occurs when a map contains itself as a sub-map. However this
standard is concerned with representation only, and it is the implementor’s
responsibility to prevent such errors. Hence, this does not pose a problem.

Coordinate systems of nested maps are generally different from that of the conta
map. Such nested maps must retain their own ordering and coordinate system, a
maps may not be under the control of the implementation, and transforming the
coordinates would be cumbersome. Perhaps more importantly, currently no widel
accepted general coordinate system is available that would make such a transform
possible or meaningful. For the same reasons, maps and map sections that are re
from queries always retain the nesting structure of the underlying map.

The problem with queries into possibly nested maps is whether the query method
expected to satisfy the criteria by inspecting the immediately contained mapped entities
only, or alternatively, should delve into any contained nested maps to find matche
related issue is how a query method should return ‘nested hits’ (i.e., queries that
actually are satisfied at a nested level).

The first question is addressed by having a parameter recursion_depth for query
operations where this is relevant. If this parameter is zero, no descending into ne
maps takes place, and only ‘top-level’ mapped elements are inspected for matche
(although these top-level elements themselves may in fact be maps). If
recursion_depth is greater than zero, the query descends into a nesting level no
deeper than its value. The value of the recursion_depth parameter only determines
how deep a query should descend; it does not determine the way in which the obtained
match is returned.

This is the second issue, and it is resolved as follows: each query for mapped en
shall only return directly contained Assignment s (whether this concerns entities of
Map type or not). Entities that match at a deeper level (‘nested hits’) are not returned
directly; instead, the Assignment that contains it (either directly or through yet
further nesting) is returned. In other words, each query either returns the sought e
(the usual case) or the Assignment that contains it at some deeper nesting level.

In the latter case (the ‘nested hit’ case), only the first step in the access path to a
entity contained in a nested map is given as a result. Therefore, in this situation,
same query has to be effected on the returned map, possibly several times, until
sought entity itself is obtained.

The rationale for this design is that it is sufficient, simple and unambiguous. More
in client implementations, explicit representations of the nested map ‘tree’ will hav
be established before the map can be rendered anyway. Therefore, the usefulnes
method that returns the complete access path to the mapped entity in one call is
debatable.

Finally, it can be remarked that iterators are well suited to dealing with recursive
structures. By always invoking their next(out_arg) method on nodes in the tree
structure, depth-first traversal of a nested map structure can be effected. Converse
breadth-first traversal can be had by using the next_n (n, out_args) method with
n being a very large number.
Genomic Maps V1.0 Nested Maps Dec. 1999 2-7

2

des
d, as
ying
g

n

one

ed
ith

 be
2.9 Retrievals and Queries

The current specification offers limited query capability by two means. Firstly, a
distinction is made between retrieval and querying. Retrieval, in this context, inclu
both the resolving of a known entity given some designator such as name or an i
well as the listing and/or obtaining of all entities in a given space. In contrast, quer
corresponds to the semantically different (and richer) concept of searching amon
entities in a given space.

2.9.1 Retrievals

Retrievals are available as specific methods, typically get_ thing _by_id() for the
resolution case, and get_all_ things() for the listing case. The resolution
methods can raise the CannotResolveID exception:

exception CannotResolveID {
Identifier id;
string reason;

};

This rationale for using an exception rather than returning nothing is that resolutio
should normally be considered to succeed.

2.9.2 Queries

The more general query functionality is provided by inheriting from
CosQuery::QueryEvaluator . Its evaluate() method is used for the expression of a
number of queries, and has the following signature:

any evaluate(in string query, in QLTypeql_type, in ParameterList params)
raises (QueryTypeInvalid, QueryInvalid, QueryProcessingError);

A number of const QueryString s (with descriptive names such as
GET_ASSIGNMENTS) are defined that represent fixed queries. To effect a query,
such predefined QueryString is passed as the query argument to evaluate() . The
contents of the params argument contain the criteria for the query, and are describ
below. In the remainder of this document, the term “query” is often synonymous w
“passing a particular pre-defined QueryString into the evaluate() method”.

The argument ql_type denotes the query language type. Its formal type is a
CORBA::InterfaceDef corresponding to one of the (empty) sub-classes of the
(empty) QueryLanguageType interface defined in CosQuery . All interfaces that
extend CosQuery::QueryEvaluator must accept MapsQL. This query language type
is defined as the CORBA::InterfaceDef of the MapsQueryLanguageType
interface (the ‘value’ of this CORBA::InterfaceDef cannot be defined in IDL; hence
this textual description). In contrast to the formal CosQuery module, the current
specification does not require that at least one of the OQL or SQL query languages
supported.
2-8 Genomic Maps V1.0 December 1999

2

t

’
t of

 list)
ewise,

rying
ed

The semantics of MapsQL are as follows. The params argument to evaluate()
contains name-value pairs that correspond to criteria that have to be fulfilled. It is
essentially a query in conjunctive normal form (albeit a very restricted version: jus
two levels of clauses are possible, and there is no logical NOT operator). That is,
queries such as the following:

((criterion1 = value1 OR criterion1 = value2 OR criterion1 = …)
 AND
 (criterion2 = value3 OR criterion2 = value4 OR criterion2 = …)
 AND
 (criterion3 = value5 OR criterion3 = value6 OR criterion3 = …)
 AND
 …)

are represented by a list of struct { string name; any value; } pairs with the
following values:

{ { “criterion1” , {“ value1”, “value2”, …} },
 { “criterion2” , {“ value3”, “value4”, …} },
 { “criterion3” , {“ value5”, “value6”, …} },
 …
}

(The name-value pairs are defined as a CosQueryCollection::ParameterList). Each
name-value pair represents one criterion; its value (packaged as an IDL any) is a list of
terms that each would constitute a valid match for the criterion. That is, the ‘local
match for one criterion is the logical OR of all the values in the list. The final resul
a query is simply the logical AND of the local matches obtained for each of the
separate criteria.

As a convenience, a criterion queried with a single particular value (rather than a
may be represented as that value, rather than as a list of values of length one. Lik
separate criteria having the same criterion name are treated as one criterion that
matches any of the values of all the separate criteria. For example:

{ { “criterion1” , {“ value1”, “value2” } },
 { “criterion1” , “value3”} }

is equivalent to

{ { “criterion1” , {“ value1” , “value2” , “value3” } }

Strings are always allowed as search values, but an implementation may offer que
on types other than string . In some cases, the required type of the query is indicat
(e.g., long for parameter “recursion_depth”, float for “from,” “to,” and “range” for
the queries of LinearMap ; see below).

The values of match criteria typically can assume only a limited number of string
values. That is, they are vocabulary strings. For this reason, each match criterion
corresponds to a Vocabulary , with the name of the criterion being the name attribute
of its Vocabulary . The different criteria and corresponding Vocabulary s that apply to
a particular queriable object are available from its VocabularyFinder . An easy way to
Genomic Maps V1.0 Retrievals and Queries Dec. 1999 2-9

2

st be
be

rd

n the

on.

tained

gs

ished.

.
obtain the criteria names is to invoke its get_all_vocabulary_names() method.
Typical criteria are “id,” “type,” “specie,” “chromosome,” “sex,” as these criteria
correspond to the fixed members of the data types Mappable (and Map). The name -
parts of the contents of the properties of Mappable are other likely candidates for
match criteria.

Criteria that can assume an unlimited number of values (e.g., length ,
recursion_depth) are also represented by a Vocabulary , but this Vocabulary is
degenerate, in that it contains no VocabularyEntry s.

The return type of evaluate() is any. In current specification, each of the queriable
objects shall return only one particular type, which is documented below.

Some queries have mandatory parameters. Such parameters and their values mu
passed when invoking evaluate() , and their semantics as documented below must
implemented. An example is “recursion_depth” for queries of Map. In the description
of the queries below, the mandatory parameters are indicated. The current standa
does not specify a general solution to dynamically inquire whether a parameter is
mandatory. (A suggestion is to put this information in the description attribute of the
Vocabulary that represents the parameter.)

The exceptions QueryTypeInvalid, QueryInvalid, and QueryProcessingError may be
raised by evaluate() . QueryTypeInvalid is raised if the query language type is not
understood. To be compliant with this standard, this is not allowed to happen whe
MapsQL is used. QueryInvalid is raised whenever query parameter is not valid. The
most important cases are:

• the value passed as in query string in a call to evaluate() is not one of the const
strings defined in this specification, and is not recognized by the implementati

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter names (i.e., they are not among the names of the vocabularies con
in the vocabulary_finder , and hence cannot be queried for.

• the list passed as in ParameterList params in a call to evaluate() does not
include the mandatory parameters (e.g., recursion_depth in some queries).

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter value strings. For example, they are not among the vocabulary strin
contained in the corresponding vocabulary (e.g., querying for sex = “red”).

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter value types (that is, if they are other than string).

• The why string of the QueryInvalid exception should document the details of the
failure in human readable form; at least the above five cases must be distingu

• The QueryProcessingError is raised to signal a ‘run-time’ of the query execution

The advantages of using CosQuery are re-use, and the ability to easily extend the
range of query capabilities by providing additional query language types and/or
additional predefined QueryString s.
2-10 Genomic Maps V1.0 December 1999

2

. If

client

uires

sults

ect.

2.9.3 Wildcards

Implementations can, but are not required to offer the use of wildcards in queries
wildcards are offered, they should follow the convention used for Posix filename
wildcards (ISO/IEC 9945-2:1993):

• ‘?’ is taken as meta-character that represents any single character;

• ‘*’ is the meta-character that represents a string of any length (including 0),
consisting of any characters;

• ‘\’ is the meta-character that makes the character following it loose its special
meaning in case it is a meta-character (including ‘\’).

2.9.4 Ordering

The ordering of map contents returned by a query is not strictly necessary, as the
could reconstruct it from the position information. However, it is obviously more
natural and convenient for clients if the results are ordered. This specification req
that the Assignments in an AssignmentList (see below) be by increasing
Assignment.positions[0].rank .

If an AssignmentList contains an Assignment having a compound position, the
ordering of the AssignmentList is by definition not total, but it is unique, predictable
and repeatable.

The elements in the positions attribute of the Assignment data type are ordered by
position.rank . The Position s (and their rank s) of one Assignment must be
distinct.

As discussed under the description of multi-valued return types, the ordering of re
does not depend on the way the results are retrieved.

2.10 Lifecycle Issues

A number of interfaces used in this specification have a method to delete the obj
This can be through a destroy() method (the iterators), or by inheritance from
CosLifeCycle::LifeCycleObject (Map and its sub-types). The interfaces using the
latter approach (Map and Vocabulary) can, in addition to the inherited remove()
method, provide the move() and copy() functionality. If they do not implement these
methods, the standard system exception CORBA::NO_IMPLEMENT should be raised
(an exception minor code will be requested, ed.).
Genomic Maps V1.0 Lifecycle Issues Dec. 1999 2-11

2

2-12 Genomic Maps V1.0 December 1999

Modules and Interfaces 3
rd in
. For

n
 A.

lled
This chapter describes the types, methods as well as the semantics of the standa
detail. For an overview and a description of the design rationale, refer to Chapter 2
brevity, not all the required forward declarations, typedef s and iterators are provided
in the boxes containing IDL, as they will be clear from the context, and have bee
described earlier. For the full IDL specification, the reader is referred to Appendix

3.1 Module DsLSRControlledVocabularies

Controlled vocabularies essentially represent ‘dynamic enums’. The need for and
usage of controlled vocabularies is described in more detail in Section 2.3, “Contro
Vocabularies,” on page 2-3.

3.1.1 Exceptions

exception NotFound { string reason;};

This exception is raised by Vocabulary::get_entry_by_name() and
VocabularyFinder::get_vocabulary_by_name() if the desired entry or
vocabulary could not be found.

exception IteratorInvalid { string reason; };

This exception is raised by VocabularyEntryIterator::next() and
VocabularyEntryIterator::next_n() if the iterator has become invalid. For a
description of the semantics, see Section 2.2, “Iterators,” on page 2-2.
Genomic Maps V1.0 December 1999 3-1

3

ited
refer

2-2.
3.1.2 Typedef VocabularyString

typedef string VocabularyString;

VocabularyString is the data type used for attributes that can only assume a lim
set of string values. For a detailed description of the semantics of this data type,
to Section 2.3, “Controlled Vocabularies,” on page 2-3.

3.1.3 Valuetype VocabularyEntry

valuetype VocabularyEntry {
public VocabularyString vocabulary_string;
public string description;

};

The contents of a controlled vocabulary are represented by the VocabularyEntry data
type.

Members

vocabulary_string - an actually allowed value in a particular context

description - descriptive text; the anticipated use is to contain the full text of
 vocabulary_string if that string is an abbreviation.

3.1.4 Interface VocabularyEntryIterator

interface VocabularyEntryIterator {
boolean next(out VocabularyEntry the_entry)
raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out VocabularyEntryList list)
raises(IteratorInvalid);

void reset();
void destroy();

}; // interface VocabularyEntryIterator;

The semantics of the iterators were described in Section 2.2, “Iterators,” on page
3-2 Genomic Maps V1.0 December 1999

3

t
n
ate
ibute

g
d

3.1.5 Interface Vocabulary

interface Vocabulary: CosLifeCycle::LifeCycleObject {
readonly attribute string name;
readonly attribute string description;
readonly attribute boolean case_sensitive;
readonly attribute unsigned long num_entries;

VocabularyEntryIterator get_all_entries();
boolean is_contained(in string test_string);
VocabularyEntry get_entry_by_name(in string test_string)

raises (NotFound);
};

Controlled vocabularies are represented by objects of the type Vocabulary .

The name attribute holds the name of the Vocabulary , and should be unique in the
context of the VocabularyFinder that serves it (see below). It is suggested that if a
Vocabulary is used to represent a query criterion, it should have the name of tha
criterion. The description attribute is provided to hold descriptive information. Whe
Vocabulary is used to represent a query criterion, this field could be used to indic
the semantics of the criterion, such as its type andwhether it is mandatory. The attr
case_sensitive is used to indicate whether type case of VocabularyString s in the
VocabularyEntry s of the current Vocabulary is, for the purpose of comparison,
significant or not; it is TRUE if type case is significant, FALSE if not. Attribute
num_entries contains the total number of entries in a Vocabulary ; they can be
retrieved using the get_all_entries() method. For establishing whether a given strin
belongs to a Vocabulary , the is_contained() method can be employed. The metho
get_entry_by_name() provides lookup functionality, allowing the retrieval of single
VocabularyEntry s (e.g., to inspect their description member).

3.1.6 Interface VocabularyFinder

Vocabularies are obtained from a VocabularyFinder object.

interface VocabularyFinder {
readonly attribute string name;
readonly attribute unsigned long num_vocabularies;
StringList get_all_vocabulary_names();
VocabularyList get_all_vocabularies();
Vocabulary get_vocabulary_by_name(in string name);

};

The name attribute can be used to identify a VocabularyFinder ;
num_vocabularies is the number of all the Vocabulary s served by it. Their names
are available from the get_all_vocabulary_names() method, and the Vocabulary s
themselves can be obtained from the get_vocabulary_by_name() method.
Genomic Maps V1.0 Module DsLSRControlledVocabularies Dec. 1999 3-3

3

f the
r
re not

ins

 to

s are
On purpose, the iterator pattern is not used in this case, as the anticipated use o
DsLSRControlledVocabularies module is to represent a relatively limited numbe
(say, less than 50) of controlled vocabularies. For such small numbers, iterators a
needed.

Since objects of type VocabularyFinder are entry points into servers that provide
Vocabulary s, it is likely that they will be registered with a CosTrader service. If they
are, the following Trader Service Type shall be used:

service omg.lsr.ControlledVocabularyFinder {
interface DsLSRControlledVocabularies::VocabularyFinder;
mandatory property string provider;
mandatory property StringList vocabularies_served;

}

Likewise, if a VocabularyFinder is registered with a CosNamingService , this shall
be done as follows (where the NamingContexts are separated by '/'):

/DsLSRControlledVocabularies/ provider /VocabularyFinder

3.2 Module DsLSRLQSLink

This module offers connectivity to the CORBAmed Lexicon Query Service. It conta
one interface, LQSVocabularyFinder , which is optional.

3.2.1 Interface LQSVocabularyFinder

interface LQSVocabularyFinder:
DsLSRControlledVocabularies::VocabularyFinder {
readonly attribute TerminologyServices::LexExplorer lex_explorer};

};

The optional LQSVocabularyFinder interface is a specialization of
VocabularyFinder , and can be used instead of its super-type when it is desirable
offer access to the full functionality of the LexExplorer interface defined in the LQS
TerminologyServices module. The attribute lex_explorer provides this link.

3.3 Module DsLSRGenomicMaps

3.3.1 Typedef Identifier

typedef string Identifier;

Identifier is used as data type for IDs. The syntax (which follows the new
CosNaming standard) and semantics of the string Identifier are described in detail in
Section 2.4, “Identifier Strings,” on page 2-4. The same type, syntax and semantic
used in the LSR Biomolecular Sequence Analysis standard.
3-4 Genomic Maps V1.0 December 1999

3

ge of

 The

.

2.6,

n

f a
his
 on
3.3.2 Exception CannotResolveID

exception CannotResolveID {
Identifier id;
string reason;

};

This exception is thrown by methods that take an Identifier as an input parameter. If
the entity denoted by the Identifier cannot be found or resolved by the method that
takes it as an input argument, this constitutes an exceptional situation, as the usa
an Identifier implies that the server can be expected to contain the desired entity.
id member holds the offending Identifier , and is provided as a convenience. The
string reason holds details (if any can be provided) as to why the resolution failed
Suggested contents are: “syntax invalid” if the form of the Identifier to be resolved
was not acceptable, and “entity unknown” if the syntax was right, but the entity it
denotes could not be found.

3.3.3 Valuetype Mappable

valuetype Mappable {
public Identifier id;
public IdentifierList cross_references;
public StringList aliases;
public VocabularyString type;
public VocabularyString species;
public VocabularyString chromosome;
public VocabularyString sex;
public CosPropertyService::Properties properties;
public float length;
public VocabularyString units;

};

Mappable is the central data type of this standard, and is used to represent map
contents. It typically is a simple marker of some kind, but as explained in Section
“Mappable and Map,” on page 2-6, sub-Maps can also be regarded as Mappables .
Mappable does not contain information on where it is located on a map, as one
Mappable may be placed on several maps.

id is the unique identifier of the Mappable, and should comply with the conventio
described in Section 2.4, “Identifier Strings,” on page 2-4. The cross_references
member can be used to hold references to other entities, of either the same or o
different type, from either the same or from a different data source. Elements in t
list must comply with the conventions described in Section 2.4, “Identifier Strings,”
page 2-4. The list can be empty. It is anticipated that a common usage of the
cross_references member is to contain Identifier s of entities of types specified in
the BioMolecular Sequence Analysis standard, thus providing a point of contact
between these two standards.
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-5

3

e
s

ixed

t is
r

ng
The member aliases can be used to provide other names for the current Mappable ;
this field is provided as a convenience. In contrast to the cross_references field, no
constraints to syntax or semantics are imposed on the contents of this field.

The members type , chromosome , and sex contain information that characterises th
current Mappable . For each of these attributes the most specific value that applie
should be used, although the empty string is also allowed. All these fields are
vocabulary strings.

properties is a field that can be used to attach any additional characteristic not a f
member of Mappable .

length and units describe the extent of the marker, if any. Markers that can be
considered point-like have length = 0.0, and units is the empty string. Units that are
integer-valued (such as base pairs) have an integer-valued length (e.g., 1243.00 if the
integer length is 1243).

Mappable s cannot be null. There are no sub-types defined for Mappable .

Queries for Mappable s can be against the fixed members (type , chromosome , etc.)
as well as against the additional characteristics contained as properties .
Implementations should document which query criteria are provided.

3.3.4 Interface Map

interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
const QueryString GET_ASSIGNMENTS = "get_assignments";

readonly attribute Mappable the_mappable;
readonly attribute VocabularyFinder vocabulary_finder;

readonly attribute unsigned long num_assignments;
readonly attribute boolean circular;

Assignment get_assignment_by_mappable_id(
in Identifier the_mappable,
in unsigned long recursion_depth);

Map is the data type that represents a full or partial genomic map or anything tha
used as such. Maps are also Mappable s; this inheritance is specified as delegation fo
reasons explained in Section 2.8, “Nested Maps,” on page 2-6. All the Mappable
aspects of Map, including information such as the ID or name, the species and the
chromosome, are available from the the_mappable attribute. This attribute yields all
the Mappable aspects of the Map in one round-trip, and can be regarded as containi
its the header information.

A Map consists of Assignment s; their number is provided in the
num_assignments attribute. If a map is circular, the circular attribute is TRUE.
3-6 Genomic Maps V1.0 December 1999

3

tics

nd

t of

n is

ap.
2-2;
ps,”
ies,”

of
The method get_all_assignments() returns all the Assignments that constitute the
map. The Assignments are returned by an iterator. For a description of the seman
of this approach see Section 2.2, “Iterators,” on page 2-2.

get_assignment_by_mappable_id() returns the Assignment that contains the
Mappable identified by argument the_mappable . If possible and needed, the query
descends into sub-maps to a recursion-depth of no more than recursion_depth to
find the Mappable .

One query is provided, and represented by the GET_ASSIGNMENTS QueryString
which can be passed as the in string query argument to the evaluate() method
inherited from CosQuery::QueryEvaluator . The any returned by queries of
MapFactory objects must be of type AssignmentIterator . Details of this
mechanism are described in Section 2.9.2, “Queries,” on page 2-8.

The GET_ASSIGNMENTS query has three mandatory parameter: “start,” “end,” a
“recursion_depth.” “start” and “end” are the Identifiers of Mappable s that bracket
the segment of the of the Map in which the Assignment s are searched. An empty
Identifier (i.e., the empty string) is legal, and implies the corresponding end-poin
the map. The “recursion_depth” parameter must be of type long or a string that
evaluates to one.

In an invocation of the method, the actual start and end arguments may appear to be
in the wrong order. This is the case if the Mappable designated by start is assigned
closer to the end of the map than that denoted by argument end . In this situation, the
arguments start and end are taken as if their values were exchanged (i.e., making
their order reflect that of the underlying map). The reason for this silent correctio
that it is simple and unambiguous, and preserves the ordering of the underlying m
For a description of the iterator mechanism, see Section 2.2, “Iterators,” on page
for a description of the “recursion_depth” parameter, see Section 2.8, “Nested Ma
on page 2-6; for a description of the query specification, see Section 2.9.2, “Quer
on page 2-8.

The assignments of Mappable s denoted by the start and end arguments may be
compound assignments (that is, if their Assignment s have more than one Position).
In this case, start and end are interpreted so as to return the maximum number
markers possible: the left-most of the Position s of start ’s Assignment and/or the
right-most Position of end ’s Assignment are taken when calculating which
Assignment s to return.

The any returned by the evaluate() method must be of type AssignmentIterator .
This also applies to the sub-types of Map, which are described below.

3.3.5 Interface OrderedMap

interface OrderedMap:Map {
readonly attribute float LOD_score;

};
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-7

3

 is
 the

netic
. The
hy.

ns
r

,

meters
OrderedMap is a data type to represent maps for which only ordering information
known. The overall LOD-score (a measure of the quality of the map) is available in
attribute LOD_score.

3.3.6 interface CytogeneticElement

interface CytogeneticElement;
typedef sequence <CytogeneticElement> CytogeneticElementList;
interface CytogeneticElement: Map {

readonly attribute long rank;

exception NoSuperBand { string reason; };

CytogeneticElement get_super_band() raises (NoSuperBand);
CytogeneticElementList get_sub_bands();
CytogeneticElementList get_siblings();

};

Cytogenetic elements (chromosome banding patterns) are represented using the
dedicated type CytogeneticElement . Theoretically, Map’s machinery for traversing
and querying nested maps could be used to implement the functionality of cytoge
maps, but common usage calls for the simpler methods provided by this interface
exception NoSuperBand is raised if the traversal has reached the top of the hierarc
The contents of its reason member are unspecified.

3.3.7 Interface LinearMap

interface LinearMap:Map {
const QueryString GET_INTERVAL = "get_interval";
const QueryString GET_RANGE_AROUND = "get_range_around";

readonly attribute float min_coordinate;
readonly attribute float max_coordinate;

};

The LinearMap interface represents a fully metric map (i.e., one where the locatio
of all markers are expressed as distances, be they to the beginning of the map, o
relative to other markers). It is an extension of Map that allows retrieval of Map
sections specified by geometry.

Attributes min_coordinate and max_coordinate specify the end points of the map
with min_coordinate < max_coordinate .

Query by geometry is provided by the two QueryStrings GET_INTERVAL and
GET_RANGE_ARROUND .

The GET_INTERVAL query selects a geometric span of the LinearMap . To this end,
two mandatory parameters are needed: “from” and “to,” which correspond to the
beginning and end of the map section that is desired. The data type of these para
can be float or a string that evaluates to one. If the “from”-parameter is less than
3-8 Genomic Maps V1.0 December 1999

3

e
he

on
atory

an

an by

e
f the

,

liant
min_coordinate , the beginning of the map is assumed; if the “to”-parameter is
greater than max_coordinate , the end of the map is assumed. If “from” is greater
than “to,” they are silently exchanged, for reasons outlined in the description of th
GET_ASSIGNMENTS query of the super-type. Further criteria can be applied to t
contents of the selected span by using additional parameters.

The GET_RANGE_AROUND query is similar to previous one, but bases its selecti
on the distance relative to a given marker. The distance is specified as the mand
parameter “range” (which can be a float or a string that evaluates to one); the centre
of this segment is specified as the mandatory parameter “mapped_entity.” The sp
from mapped_entity - range to mapped_entity + range is selected. If
either end of this span ‘runs off the map,’ the end point of the map in that part is
assumed. Again, further criteria can be applied to the contents of the selected sp
using additional parameters.

The assignment of the mapped entity denoted by the mapped_entity parameter may
be compound (that is, if its MappableAssignment or SubMapAssignment has
more than one Position). In this case, the location is to be interpreted such that th
maximum number of markers possible is returned: the span runs from left-most o
Positions – range to right-most of the Positions + range .

Neither of the methods has the recursion_depth argument that determines recursion
as its usefulness is debatable, and the semantics are too difficult to specify.

3.3.8 Interface MapsQueryLanguageType

interface MapsQueryLanguageType:CosQuery::QueryLanguageType{};

The query method evaluate() inherited from from CosQuery::QueryEvaluator
requires that a CORBA::InterfaceDef be passed into it as the ql_type argument. The
CORBA::InterfaceDef of the above MapsQueryLanguageType can be used for
this purpose. An implementation may offer more query languages, but to be comp
with the standard, at least MapsQueryLanguageType must be supported by all the
interfaces that extend CosQuery::QueryEvaluator . The semantics of this ‘query
language type’ are descripted in detail in Section 2.9.2, “Queries,” on page 2-8.

3.3.9 Interface MapIterator

interface MapIterator {
boolean next(out Map the_Map)
raises(IteratorInvalid);
boolean next_n(in unsigned long how_many, out MapList map_list)

raises(IteratorInvalid);
void reset();
void destroy();

};
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-9

3

” on

.2,

ow
” on

ing
This object is used to step through a set of Maps. It is the only valid return type to be
contained in the any returned by the evaluate() method of interface MapFactory .
The details of the semantics of iterators were described in Section 2.2, “Iterators,
page 2-2.

3.3.10 Interface MapFactory

interface MapFactory: CosQuery::QueryEvaluator {
const QueryString MAP_BY_MAP_PROPERTY =

"map_by_map_property";
const QueryString MAP_BY_CONTENT_PROPERTY =

"map_by_content_property";

readonly attribute unsigned long num_maps;
readonly attribute VocabularyFinder vocabulary_finder;

MapIterator get_all_maps();
Map get_map_by_id(in Identifier id) raises(CannotResolveID);

};

The data type MapFactory allows the retrieval of Maps. Queries are represented by
the QueryStrings MAP_BY_MAP_PROPERTY and
MAP_BY_CONTENT_PROPERTY . These strings should be used as the in string
query argument to the evaluate() method inherited from
CosQuery::QueryEvaluator . The any returned by queries of MapFactory objects
must be of type MapIterator . Details of this mechanism are described in Section 2.9
“Queries,” on page 2-8.

MAP_BY_MAP_PROPERTY queries for maps based on their properties (that is,
those of the Map ‘header,’ rather than those of the contained Mappable s). Both ‘top-
level’ Maps and sub-Maps can be returned, and there is no need for a
“recursion_depth” parameter to this query (see Section 2.8, “Nested Maps,” on
page 2-6).

MAP_BY_CONTENT_PROPERTY yields Maps for which the contained
Mappable s satisfy the query criteria. This query has “recursion_depth” (of type long
or as a string that evaluates to one) as a mandatory parameter that determines h
deep the recursion can be. This topic is discussed in Section 2.8, “Nested Maps,
page 2-6.

The attribute num_maps contains the number of Maps that are available from the
get_all_maps() method. get_map_by_id() is a retrieval method to fetch a known
map from a server.

The vocabulary_finder attribute contains the VocabularyFinder that holds the
Vocabulary s corresponding to the search criteria.

Since objects of type MapFactory are entry points into servers that provide Maps, it
is likely that they will be registered with a CosTrader service. If they are, the follow
Service Type shall be used:
3-10 Genomic Maps V1.0 December 1999

3

ne

nment

ion
is the

e than

 in
arker

g the
service omg.lsr.MapFactory {
mandatory property string provider;
mandatory property StringList map_databases_served;

}

Likewise, if a MapFactory is registered with a CosNamingService, this shall be do
as follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/ provider /MapFactory

3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssig

enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

valuetype Assignment {
public boolean framework_assignment;
public VocabularyString evidence;
public PositionList positions;
public AssignType assign_type;

};

valuetype SubMapAssignment : Assignment {
public Map mapped_entity;

};

valuetype MappableAssignment : Assignment {
public Mappable mapped_entity;

};

As discussed above, an assignment is an instance of the many-to-many associat
between maps and the mapped entities, and holds the positional information that
objective of mapping in general (see also Figure 1-1 on page 1-2). Assignment s must
always be returned as either a MappableAssignment or as a SubMapAssignment .
Only these sub-types have the mapped_entity member (of different type) that make
them meaningful. The mapped_entity member refers to the Mappable or sub-Map
respectively, that is described by the Assignment . The positions field describes
where it has been mapped. In the case of compound assignments, this is at mor
one location (see below). A Map cannot have two different Assignment s for the
same Mappable or sub-Map: in this situation, a single Assignment with multiple
Position s should be used.

assign_type is used to describe the following information. Assignments may be
compound (e.g., if experimental information is ambiguous, or genes are detected
multiple copies). An assignment may also be a negative one, in the sense that a m
is known not to be at a certain location. These semantics can be expressed usin
assign_type member:

value of assign_type member

SINGLE the Mappable or sub-Map is at the single position given

NOT the Mappable or sub-Map is not at the single position given;
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-11

3

 more

 an

ent.

ALL the Mappable or sub-Map is at all of the several positions given;

ONE the Mappable or sub-Map is at one, unknown, of the several
positions given;

SOME the Mappable or sub-Map is at more than one, unknown, of the
several positions given;

NONE the Mappable or sub-Map is at none of the several positions
given.

SINGLE is probably the most commonly used value of this enum . The values
SINGLE and NOT can only apply to single Position s. The usage of the types ALL ,
ONE, SOME, and NONE only apply if there is more than one Position .

The framework_assignment field of valuetype Assignment indicates whether
the assignment was of a framework marker or not.

An Assignment cannot be null. The positions member of Assignment must
contain at least one Position . The list positions may not contain duplicates. Their
ordering is by increasing positions[0] .

3.3.12 Interface AssignmentIterator

interface AssignmentIterator {
boolean next(out Assignment the_assignment)

raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out AssignmentList assignment_list)
raises(IteratorInvalid);

void reset();
void destroy();

};

Objects of this type are used to step through a list of Assignment s. It is the only valid
return type to be contained in the any returned by the evaluate() method of interface
Map and its sub-types. The semantics of the iterator mechanism are described in
detail in Section 2.2, “Iterators,” on page 2-2.

3.3.13 Valuetype Position

valuetype Position {
public long rank;
public float LOD_score;

};

Position is the base-type of a family of types that hold the location information of
Assignment . In general, the positional information of an assignment includes or
implies a point(s) of reference, units, and a measure of the quality of the assignm
These factors and their usage vary widely across different types of maps. Position has
two members: rank and LOD_score . rank represents the most elementary position
3-12 Genomic Maps V1.0 December 1999

3

e
le of

d

he

is

ap.

ty.
information: the index of an entity in an ordered list (ties are allowed). Ranks hav
usually a significance measure attached in the form of a LOD score; this is the ro
the LOD_score member.

Neither Position , nor any of its sub-types is allowed to be null.

The unextended type Position is likely (but not required) to be used in Assignment s
of OrderedMap s.

valuetype MetricPosition: truncatable Position {
public float left_end;
public float right_end;

};

MetricPosition specializes Position for situations where the real distance to the
beginning of the map is known. This distance is contained in the members left_end
and right_end . If the mapped entity is segment-like, left_end and right_end denote
the location of the entity’s end-points as a distance to the beginning of the map.

If left_end is greater than right_end , the segment is placed on the map in reverse
direction.

If the mapped entity is considered to be point-like and the error associated with t
placement can be represented as a distance, then left_end and right_end represent
the end-points of the interval in which the Mappable is believed to lie.

If a Mappable or sub-Map is considered point-like and the error of the placement
unknown, negligible, or cannot be represented as a distance, then left_end and
right_end have identical values, again being the distance to the beginning of the m

MetricPosition s are likely to be useful in Assignment s of LinearMap s.

3.3.14 Valuetype RelativePosition

valuetype RelativePosition: truncatable Position {
public any left_flanking_entity;
public any right_flanking_entity;

};

RelativePosition represents location information that is relative to (an)other
Mappable (s) or sub-Map(s). The field left_flanking_entity is the point of reference
to the left of the mapped entity, and right_flanking_entity is that to the right. Either
but not both of these members can be null, in case there is just one flanking enti
Only Mappable or Map are valid types for the any.

If the mapped entity is considered segment-like, and left_flanking_entity lies, on the
current map, to the right of right_flanking_entity , the placement of the mapped
entity on the current map is in reverse direction.

RelativePosition offers no location information more precise than indicating the
flanking entities; for this purpose, the type RelativeMetricPosition can be used.
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-13

3

g

tity

d as

 is
 the

 the

e.
3.3.15 Valuetype RelativeMetricPosition

valuetype RelativeMetricPointPosition: truncatable RelativePosition {
public float distance_left;
public float distance_right;

};

RelativeMetricPosition is used to represent location information that is relative to
(an)other Mappable (s) or sub-Map(s), but where also a real distance to the flankin
entities is known. distance_left is the distance to the left_flanking_entity ;
distance_right that to the right_flanking_entity . If either of the flanking entities is
null, the corresponding distance is undefined.

No data-type or convention is provided to deal with the exceptional case of an en
lying to one side of both flanking entities.

3.3.16 Interface MapCorrelationFactory

interface MapCorrelationFactory: CosQuery::QueryEvaluator {
const QueryString GET_CORRELATION = "get_correlation";
const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

readonly attribute unsigned long num_correlations;
readonly attribute VocabularyFinder vocabulary_finder;

};

The data type MapCorrelationFactory provides the methods to obtain cross-
correlations of maps.

As with the other factories described in this document, the queries are represente
fixed pre-defined query strings which are passed as the in string query argument to
the evaluate() method inherited from CosQuery::QueryEvaluator . Details of this
are described in Section 2.9.2, “Queries,” on page 2-8. The MapCorrelationFactory
interface has two such queries: GET_CORRELATION and
GET_ALL_CORRELATIONS .

The GET_CORRELATION query has the mandatory input parameter “map,” which
an Identifier string. It returns all the correlations known for the map designated by
given identifier. The GET_ALL_CORRELATIONS query has the mandatory input
parameters “map1” and “map2,” both Identifier strings. This query returns the
correlations known between the two maps denoted by the identifiers given. As with
other query methods, these queries may take additional query criteria using the
parameter mechanism described in Section 2.9.2, “Queries,” on page 2-8.

Only entities of type MapCorrelationList are valid as the type of the any returned by
the evaluate() .

MapCorrelationFactory objects are likely to be registered with a CosTrader servic
If they are, they shall do so with the following Service Type:
3-14 Genomic Maps V1.0 December 1999

3

o

aps.

in
service omg.lsr.MapCorrelationFactory {
interface DsLSRGenomicMaps::MapCorrelationFactory;
mandatory property string provider;

};

Likewise, if a MapCorrelationFactory is registered with a CosNamingService, it
shall be done as follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/ provider /MapCorrelationFactory

3.3.17 Typedef AssignmentPair

typedef sequence<AssignmentPair> AssignmentPairList;
typedef Assignment AssignmentPair[2];

An AssignmentPair represents one correspondence between assignments on tw
maps.

3.3.18 Interface AssignmentPairIterator

interface AssignmentPairIterator {
boolean next(out AssignmentPair the_assignment_pair)

raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out AssignmentPairList assignment_list)
raises(IteratorInvalid);

void reset();
void destroy();

};

This iterator is used to step through a set of AssignmentPairs . The semantics of the
iterator is described in detail in Section 2.2, “Iterators,” on page 2-2.

3.3.19 Typedef MapPair

typedef Map MapPair[2];

When maps are correlated, the current standard respresents this using pairs of m
This data type is defined for that purpose.

3.3.20 Interface MapCorrelation

The data types used to represent correlations between two maps were depicted
Figure 1-3 on page 1-6.
Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-15

3

interface MapCorrelation {
readonly attribute Identifier id;
readonly attribute MapPair map_pair;
readonly attribute AssignmentPairIterator correspondences;

};

MapCorrelation is a data type that contains all the information of a map cross-
correlation. Member id provides an identification tag. map_pair[0] and map_pair[1]
contain the two maps that are cross-correlated. A correspondence between an
Assignment on map_pair[0] and one on map_pair[1] forms an AssignmentPair ,
with each first assignment of the pair being on map_pair[0] and each second one on
map_pair[1] . The full list of correspondences is available from the
correspondences attribute, which is an iterator.

Nothing is implied about the identity of map_pair[0] and map_pair[1] ; they could
even be the same map. The correspondences list is sorted by positions[0] of the
first Assignment of each AssignmentPair .
3-16 Genomic Maps V1.0 December 1999

OMG IDL A
A.1 File: DsLSRControlledVocabularies.idl

//File: DsLSRControlledVocabularies.idl
#ifndef _DS_LSR_CONTROLLED_VOCABULARIES_IDL_
#define _DS_LSR_CONTROLLED_VOCABULARIES_IDL_

#pragma prefix "omg.org"
#include <CosLifeCycle.idl>

module DsLSRControlledVocabularies {
 // typedefs:
 typedef sequence <string> StringList;
 typedef string Identifier;
 typedef string VocabularyString;
 typedef sequence<string> VocabularyStringList;

 valuetype VocabularyEntry {
 public VocabularyString vocabulary_string;
 public string description;
 };
 typedef sequence<VocabularyEntry> VocabularyEntryList;

 exception IteratorInvalid { string reason; };

 interface VocabularyEntryIterator {
 boolean next(out VocabularyEntry the_entry)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many, out VocabularyEntryList list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface VocabularyEntryIterator;
Genomic Maps V1.0 December 1999 A-1

A

 interface Vocabulary: CosLifeCycle::LifeCycleObject {
 readonly attribute string name;
 readonly attribute string description;
 readonly attribute unsigned long num_entries;

 VocabularyEntryIterator get_all_entries();
 boolean is_contained(in string test_string);
 }; // interface Vocabulary;
 typedef sequence<Vocabulary> VocabularyList;

 interface VocabularyFinder {
 readonly attribute string name;
 readonly attribute unsigned long num_vocabularies;

 StringList get_all_vocabulary_names();
 VocabularyList get_all_vocabularies();
 Vocabulary get_vocabulary_by_name(in string name);
 void destroy();
 }; // interface VocabularyFinder
};// module DsLSRControlledVocabularies
#endif // #ifdef _DS_LSR_CONTROLLED_VOCABULARIES_IDL_

A.2 File: DsLSRLQSLink.idl

//File: DsLSRLQSLink.idl
#ifndef _DS_LSR_LQS_LINK_IDL_
#define _DS_LSR_LQS_LINK_IDL_

#pragma prefix "omg.org"

#include "TerminologyService.idl"
#include "DsLSRControlledVocabularies.idl"

module DsLSRLQSLink {
 interface LQSVocabularyFinder:
 DsLSRControlledVocabularies::VocabularyFinder {
 readonly attribute TerminologyServices::LexExplorer lex_explorer;
 };
};

#endif //_DS_LSR_LQS_LINK_IDL_
A-2 Genomic Maps V1.0 December 1999

A

A.3 File: DsLSRsGenomicMaps.idl

//File: DsLSRGenomicMaps.idl
#ifndef _DS_LSR_GENOMIC_MAPS_IDL_
#define _DS_LSR_GENOMIC_MAPS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>
#include <CosQuery.idl>

#include "DsLSRControlledVocabularies.idl"

module DsLSRGenomicMaps {
 // simple typedefs:
 typedef sequence<string> StringList;
 typedef string QueryString;
 typedef string Identifier;
 typedef sequence<Identifier> IdentifierList;

 // shorthands for imported types:
 typedef CosPropertyService::Properties Properties;
 typedef DsLSRControlledVocabularies::VocabularyFinder
VocabularyFinder;
 typedef DsLSRControlledVocabularies::VocabularyString
VocabularyString;
 typedef sequence<string> VocabularyStringList;

 // forward declarations:
 valuetype Assignment;
 interface AssignmentIterator;
 typedef sequence <Assignment> AssignmentList;

 interface AssignmentPairIterator;

 valuetype Position;
 typedef sequence <Position> PositionList;

 interface MapFactory;
 interface Map;
 interface MapIterator;
 typedef sequence <Map> MapList;

 exception IteratorInvalid { string reason; };

 exception CannotResolveID { Identifier id; string reason; };

 interface MapsQueryLanguageType : CosQuery::QueryLanguageType {};
Genomic Maps V1.0 Dec. 1999 A-3

A

 valuetype Mappable {
 public Identifier id;
 public StringList aliases;
 public IdentifierList cross_references;
 public VocabularyString type;
 public VocabularyString species;
 public VocabularyString chromosome;
 public VocabularyString sex;
 public Properties properties;

 public float length;
 public VocabularyString units;
 }; // interface Mappable

 interface MapFactory: CosQuery::QueryEvaluator {
 const QueryString MAP_BY_MAP_PROPERTY =
"map_by_map_property";
 const QueryString MAP_BY_CONTENT_PROPERTY =
"map_by_content_property";

 readonly attribute unsigned long num_maps;
 readonly attribute VocabularyFinder vocabulary_finder;

 MapIterator get_all_maps();
 Map get_map_by_id(in Identifier id) raises(CannotResolveID);
 }; // interface MapFactory

 interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
 const QueryString GET_ASSIGNMENTS = "get_assignments";

 readonly attribute Mappable the_mappable;
 readonly attribute VocabularyFinder vocabulary_finder;

 readonly attribute unsigned long num_assignments;
 readonly attribute boolean circular;

 Assignment
 get_assignment_by_mappable_id (in Identifier the_mappable,
 in unsigned long recursion_depth)
 raises(CannotResolveID);
 AssignmentIterator get_all_assignments();
 }; // interface Map

 interface MapIterator {
 boolean next(out Map the_Map)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many, out MapList map_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface MapIterator
A-4 Genomic Maps V1.0 December 1999

A

 interface OrderedMap:Map {
 readonly attribute float LOD_score;
 };

 interface CytogeneticElement;
 typedef sequence <CytogeneticElement> CytogeneticElementList;

 interface CytogeneticElement: Map {
 exception NoSuperBand { string reason; };
 readonly attribute long rank;

 CytogeneticElement get_super_band() raises (NoSuperBand);
 CytogeneticElementList get_sub_bands();
 CytogeneticElementList get_siblings();
 }; // interface CytogeneticElement

 interface LinearMap:Map {
 const QueryString GET_INTERVAL = "get_interval";
 const QueryString GET_RANGE_AROUND = "get_range_around";

 readonly attribute float min_coordinate;
 readonly attribute float max_coordinate;
 }; // interface LinearMap

 enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

 valuetype Assignment {
 public boolean framework_assignment;
 public VocabularyString evidence;
 public PositionList positions;
 public AssignType assign_type;
 }; // valuetype Assignment

 interface AssignmentIterator {
 boolean next(out Assignment the_assignment)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many,
 out AssignmentList assignment_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface AssignmentIterator

 valuetype SubMapAssignment : Assignment {
 public Map mapped_entity;
 };

 valuetype MappableAssignment : Assignment {
 public Mappable mapped_entity;
 };
Genomic Maps V1.0 Dec. 1999 A-5

A

 valuetype Position {
 public long rank;
 public float LOD_score;
 };

 valuetype MetricPosition: truncatable Position {
 public float left_end;
 public float right_end;
 };

 valuetype RelativePosition: truncatable Position {
 public any left_flanking_entity;
 public any right_flanking_entity;
 };

 valuetype RelativeMetricPointPosition: truncatable RelativePosition {
 public float distance_left;
 public float distance_right;
 };

 typedef Assignment AssignmentPair[2];
 typedef sequence<AssignmentPair> AssignmentPairList;
 typedef Map MapPair[2];

 interface AssignmentPairIterator {
 boolean next(out AssignmentPair the_assignment_pair)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many,
 out AssignmentPairList assignment_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface AssignmentPairIterator

 interface MapCorrelation {
 readonly attribute Identifier id;
 readonly attribute MapPair map_pair;
 readonly attribute AssignmentPairIterator correspondences;
 readonly attribute unsigned long num_correspondences;
 }; // interface MapCorrelation
 typedef sequence<MapCorrelation> MapCorrelationList;

 interface MapCorrelationFactory: CosQuery::QueryEvaluator {
 const QueryString GET_CORRELATION = "get_correlation";
 const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

 readonly attribute unsigned long num_correlations;
 readonly attribute VocabularyFinder vocabulary_finder;
 }; // interface CorrelationFactory
}; // module DsGenomicMaps
A-6 Genomic Maps V1.0 December 1999

A

#endif // #ifdef _DS_LSR_GENOMIC_MAPS_IDL_
Genomic Maps V1.0 Dec. 1999 A-7

A

A-8 Genomic Maps V1.0 December 1999

Relation to Lexicon Query Service B
ical

t

of

ve

l

 class
The CORBAmed Lexicon Query Service is an OMG standard for representing med
terminology systems in a comprehensive framework. This includes such things as
naming authorities, presentation (formats, language), conversion between differen
coding schemes, general description of relationships between concepts (including
hierarchies), and different versions of coding schemes and value domains. None
these are deemed relevant for the domain of genomic maps. The
DsLSRGControlledVocabularies module of the Genomic Maps specification
essentially offers a ‘dynamic enum ’, and parts of the ValueDomain aspects of LQS
could be used to address some of these needs.

This appendix describes a mapping between the types in the
DsLSRControlledVocabularies module of the current standard, and the
ValueDomain aspects of the Lexicon Query Service (LQS). This mapping may pro
useful if implementors want to base their implementation of
DsLSRControlledVocabularies on an implementation of LQS.

The list below follows the order of definitions given in the
DsLSRControlledVocabularies.idl file, which can be found in Section A.1, “File:
DsLSRControlledVocabularies.idl,” on page A-1. For each item, the
DsLSRControlledVocabularies type is given first, the LQS equivalent second. Al
the relevant LQS types are in the TerminologyServices module; therefore the types
are not scoped by their module name. Attributes and methods are scoped by their
name using dot-notation where necessary.

• VocabularyString corresponds to a QualifiedCode , but with a human-readable
ConceptCode and an empty CodingSchemeID . The functionality of the latter is
not needed, as it is implied by the context.

• valuetype VocabularyEntry corresponds to PickListEntry . Inside this aggregate
type, the member vocabulary_string corresponds to the a_qualified_code
member, whereas description corresponds to pick_text .

• VocabularyEntryIterator corresponds to PickListIter .
Genomic Maps V1.0 December 1999 B-1

B

• interface Vocabulary corresponds roughly to ValueDomainId . The latter is
typedef -ed to struct QualifiedCode . That is, ValueDomain itself is not a
CORBA object, but is represented by an ID. Its methods can be found in the
LexExplorer interface: the Vocabulary methods correspond to methods in
LexExplorer that have ValueDomainId input arguments (see below). They all
may raise the UnknownValueDomain exception.

• Vocabulary.name corresponds to ValueDomainId . That is, ValueDomainId
corresponds to both a Vocabulary object as well as to its own (human-readable)
name.

• Vocabulary.description is not represented in LQS; this attribute is for
convenience only, and can be left empty.

• Vocabulary.get_all_entries() corresponds to get_pick_list(in ValueDomainId
value_domain_id, …) in the LexExplorer interface. This methods returns a
PickListIter ; the Vocabulary.num_entries attribute corresponds to the quantity
obtained from PickListIter.max_left() when invoked appropriately.

• Vocabulary.is_contained(in string test_string) corresponds to
LexExplorer.is_concept_in_value_domain(in QualifiedCode
qualified_code, in ValueDomainId value_domain_id) .

• interface VocabularyFinder corresponds to LexExplorer .

• VocabularyFinder.name corresponds to
LexExplorer.terminology_service_name .

• get_all_vocabulary_names() and get_all_vocabularies() in interface
VocabularyFinder correspond to LexExplorer.list_value_domain_ids() . This
method returns a ValueDomainIdIter , which is an iterator. The
VocabularyFinder.num_vocabularies attribute corresponds to the quantity
obtained from ValueDomainIdIter.max_left() when invoked appropriately.

• VocabularyFinder.get_vocabulary_by_name() is not represented in LQS,
since ValueDomains are not CORBA objects, but are represented by a
ValueDomainId . Instantiating a ValueDomainId would require a
ValueDomainId as input argument, which obviates the need for this method in
LQS.
B-2 Genomic Maps V1.0 December 1999

Glossary

s a
ared

ted
Assignment Data type to represent assignments

assignment Placement of a Mappable or sub-Map on a Map; contains position information. Can
be compound. See also MappableAssignment and SubMapAssignment.

bin One of an ordered set of collections of unordered markers.

clone In the context of large-scale sequencing: long sequence used in genome sequencing.
Clones or sub-clones are assembled into contigs.

compound assignment A non-unique placement of a Mappable on a Map.

contig A genomic sequence fragment assembled from an overlapping group of clones.

controlled vocabulary A set of strings that are valid as the values of a vocabulary string. The standard
specifes a Vocabulary data type that represents such sets.

cytogenetic map Map (or image) of chromosome banding patterns. See also idiogram.

EST Expressed Sequence Tag.

factory An object that is capable of ‘producing’ other objects (simply by returning them a
result of a method call). These objects may or may not be entirely new and/or sh
with others.

framework In the context of mapping: a map consisting of well known and high-quality ‘anchor
points’ (framework markers), relative to which other markers are placed.

gene Unit of inheritance; also: the DNA sequence coding for a particular protein sequence.
Also: unit of independently regulated transcription. No definition is generally accep
and the issue is somewhat contentious.

genome The full volume of information contained in the genetic material of a species.

genomic Belonging/applying to the genome as a whole.
Genomic Maps V1.0 December 1999 Glossary - 1

tic

ing

ch as

e

.

genomic map Map of chromosome content obtained by any means. This is as opposed to gene
map, which is generally used for maps obtained from linkage analysis. The term map
is used more frequently in the domain of molecular genetics, but is too general.

genomic sequence Sequence such as existing in the chromosomes themselves.

idiogram Simplified drawing of a chromosome that highlights certain aspects such as band
patterns. See also cytogenetic map.

linkage analysis The calculation of maps based on the observed patterns of occurrences of traits in
families of individuals.

locus A location on the chromosome (as opposed to the contents of such a location, su
a gene). In the current standard, these entities are best represented as Mappable s.

LOD score Logarithm of odds score; statistical measure of the quality of a placement on a map.
The higher, the better.

LQS Lexicon Query Service; an OMG CORBA standard (formal/99-03-01) that could b
used to deal with representations of controlled vocabularies.

Map Data type that represents maps.

map A summary of chromosome content. The ultimate map is the full sequence of a
chromosome (in which case ‘summary’ is a misnomer). See also genomic map.

Mappable Term used in this standard to represent anything that can be placed on a map. This
includes maps themselves, in the case of nested, or sub-maps.

MappableAssignment An assignment of a simple Mappable (as opposed to a sub-Map).

marker Any experimentally identifiable element on a chromosome. Examples include genes,
ESTs, polymorphisms.

nested map A map placed, at a certain location, within another map. Same as sub-Map.

OBV Objects-by-value; see valuetype .

PIDS Person Identification Service; an OMG CORBA standard (formal/99-03-05) for
uniquely identifying persons.

placement See assignment.

polymorphism Any variation in chromosome content that can be used to distinguish between
individuals; used in linkage analysis.

ordered Having an ordering; in the context of molecular genetics, indicates that only the order
is known, rather than more precise distances.

sequence Biologically, a string of nucleotides (DNA building blocks) or amino acids (protein
building blocks. Often the term sequence is used as including additional information.

STS Sequence Tagged Site. An example is EST.

sub- Map A Map that is contained in another Map. Same as nested map.
Glossary - 2 Genomic Maps V1.0 December 1999

s
SubMapAssignment An assignment of a sub-Map inside another Map

valuetype IDL keyword from the Objects-by-Value specification, designating an entity that lie
halfway between an IDL struct and an IDL interface .

vocabulary string A string that can only assume a limited set of values; the contents of a controlled
vocabulary.
Genomic Maps V1.0 December 1999 Glossary - 3

Glossary - 4 Genomic Maps V1.0 December 1999

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Genomic Maps Overview
	1.1 Specification Overview
	1.1.1 Document Structure
	1.1.2 Module DsLSRControlledVocabularies
	1.1.3 Module DsLSRGenomicMaps

	General Description
	2.1 Objects-by-value
	2.2 Iterators
	2.3 Controlled Vocabularies
	2.4 Identifier Strings
	2.5 Mappable
	2.6 Mappable and Map
	2.7 Mappables and Assignments
	2.8 Nested Maps
	2.9 Retrievals and Queries
	2.9.1 Retrievals
	2.9.2 Queries
	2.9.3 Wildcards
	2.9.4 Ordering

	2.10 Lifecycle Issues

	Modules and Interfaces
	3.1 Module DsLSRControlledVocabularies
	3.1.1 Exceptions
	3.1.2 Typedef VocabularyString
	3.1.3 Valuetype VocabularyEntry
	3.1.4 Interface VocabularyEntryIterator
	3.1.5 Interface Vocabulary
	3.1.6 Interface VocabularyFinder

	3.2 Module DsLSRLQSLink
	3.2.1 Interface LQSVocabularyFinder

	3.3 Module DsLSRGenomicMaps
	3.3.1 Typedef Identifier
	3.3.2 Exception CannotResolveID
	3.3.3 Valuetype Mappable
	3.3.4 Interface Map
	3.3.5 Interface OrderedMap
	3.3.6 interface CytogeneticElement
	3.3.7 Interface LinearMap
	3.3.8 Interface MapsQueryLanguageType
	3.3.9 Interface MapIterator
	3.3.10 Interface MapFactory
	3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssignment
	3.3.12 Interface AssignmentIterator
	3.3.13 Valuetype Position
	3.3.14 Valuetype RelativePosition
	3.3.15 Valuetype RelativeMetricPosition
	3.3.16 Interface MapCorrelationFactory
	3.3.17 Typedef AssignmentPair
	3.3.18 Interface AssignmentPairIterator
	3.3.19 Typedef MapPair
	3.3.20 Interface MapCorrelation

	Appendix A - OMG IDL
	Appendix B - Relation to Lexicon Query Service
	Glossary

