Genomic Maps Specification

Draft Adopted Specification: December 1999

Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Millennium Pharmaceuticals, Inc.
Copyright 1999, NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid |
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reNance or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form c
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7048n0MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc

report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface

About the Object Management Group. 1
Whatis CORBA?. e 1
Associated OMG Documents 2
Acknowledgments. 2
1. Genomic Maps OVerviewiiiinunnan.. 1-1
1.1 Specification Overview 1-1
1.1.1 Document Structure 1-1

1.1.2 Module DsLSRControlledVocabularies 1-2

1.1.3 Module DsLSRGenomicMaps 1-3

2. General Description 2-1
2.1 Objects-by-value 2-1
2.2 lterators 2-2
2.3 Controlled Vocabularies 2-3
2.4 ldentifier Strings 2-4
25 Mappable 2-6
26 MappableandMap........... . . 2-6
2.7 Mappablesand Assignments 2-6
28 NestedMaps..........ciiiiiiii i, 2-6
2.9 Retrievalsand Queries 2-8
291 Retrievals 2-8

292 QUETBS . . oot 2-8

293 Wildcards 2-11

Genomic Map V1.0 December 1999 i

Contents

294 Ordering. 2-11
2.10 Lifecyclelssues e 2-11
3. Modules and Interfaces. 3-1
3.1 Module DsLSRControlledVocabularies 3-1
3.1.1 Exceptions 3-1
3.1.2 Typedef VocabularyString 3-2
3.1.3 Valuetype VocabularyEntry 3-2
3.1.4 Interface VocabularyEntrylterator. 3-2
3.1.5 Interface Vocabulary. 3-3
3.1.6 Interface VocabularyFinder. 3-3
3.2 Module DSLSRLQSLINK 3-4
3.2.1 Interface LQSVocabularyFinder............ 3-4
3.3 Module DsLSRGenomicMaps 3-4
3.3.1 Typedefldentifier....................... 3-4
3.3.2 Exception CannotResolvelD. 3-5
3.3.3 \Valuetype Mappable..................... 3-5
3.34 InterfaceMap............, 3-6
3.3.5 Interface OrderedMap. 3-7
3.3.6 interface CytogeneticElement. 3-8
3.3.7 Interface LinearMap..................... 3-8
3.3.8 Interface MapsQueryLanguageType......... 3-9
3.3.9 Interface Maplterator 3-9
3.3.10 Interface MapFactory 3-10

3.3.11 Valuetypes Assignment,
MappableAssignment and SubMapAssignment 3-11

3.3.12 Interface Assignmentlterator 3-12
3.3.13 Valuetype Position 3-12
3.3.14 Valuetype RelativePosition................ 3-13
3.3.15 Valuetype RelativeMetricPosition. 3-14
3.3.16 Interface MapCorrelationFactory 3-14
3.3.17 Typedef AssignmentPair. 3-15
3.3.18 Interface AssignmentPairlterator 3-15
3.3.19 TypedefMapPair 3-15
3.3.20 Interface MapCorrelation................. 3-15
AppendiXx A-OMGIDL A-1
Appendix B -Relation to Lexicon Query Service B-1
Glossary. Glossary-1

ii Genomic Map V1.0 December 1999

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Genomic Maps V1.0 December 1999 1

Associated OMG Documents

The CORBA documentation is organized as follows:

®* Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaimdains
the architecture and specifications for the Object Request Broker.

®* CORBAservices: Common Object Services Specificabatains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in ti@bject Management Architecture Guife

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
« EMBL-EBI
» Genomica Corp.
* Infobiogen
« Millennium Pharmaceuticals, Inc.
* NetGenics, Inc.
Technische Universitat Berlin

2 Genomic Maps V1.0 December 1999

Genomic Maps Overview 1

1.1 Specification Overview

This document describes a standard for representing genomic maps and their contents
It is able to deal with practically any type of chromosome map and marker that is

likely to occur in the fast growing field of molecular genetics. Situations that are not
catered for explicitly can be addressed by extending the types and using the
conventions described in this document. The standard was developed starting from the
practical need to represent complex bodies of data in a natural way. Existing practice
and terminology is used wherever this was available and practical.

In this section, a synopsis of the data model and data types is given. Chapter 2
introduces the general design and the general rules that apply to the components in the
standard, while also providing the rationale for the design. Chapter 3 presents the
standard in detail. The full IDL is provided in Appendix A.

To be compliant with this specification, all interfaces described in the modules
DsLSRControlledVocabularies andDsLSRGenomicMaps are mandatory; the
interface specified in the modulzsLSRLQSLink is optional.

1.1.1 Document Structure

The specification is composed of three modulzs, SRControlledVocabularies
DsLSRGenomicMaps , andDsLSRLQSLIink .

Module DsLSRGenomicMaps defines mainly domain specific data types, such as
Mappable s, Map, Assignment andPosition , MapCorrelation .

DsLSRGenomicMaps needs an auxiliary module,

DsLSRControlledVocabularies , that is used to define the contents of so-called
controlled vocabularies. This module is described first. A separate, optional module
DsLSRLQSLink can provide connectivity between

DsLSRControlledVocabularies and the_exExplorer interface from CORBAmed’s
Lexicon Query Service.

Genomic Maps V1.0 December 1999 1-1

1-2

UML diagrams of most of the data types are presented in Figures 1, 2 and 3. These
diagrams are meant to provide an overview, and are not complete in the sense that code
could be generated from them. For instance, not all iterators or factories are
represented.

1.1.2 Module DsLSRControlledVocabularies

A diagram of the data model for this module is given in Figure 1-1. Its data types are
briefly discussed.

VooabularyFingar

Yocabulary

name

num_vocabularies

name

oo nEsing = dascription
AU m_antrigs contains = | ¥ocabularyEniry

get_all vocabular_namesi) 1.

get al vocabulanes|)

get_vocabulary by named)

o casg_sansitive e wocabulary string
" | description

i_containad] §
qat_all_antriasi)

1121

1.1.2.2

1.1.2.3

get_antry_by_namsai)

Figure 1-1 UML diagram of data types of module DsLSRControlledVocabularies

VocabularyString

This data type presents a notion intermediate betweenwam and astring . They are
used to represent relatively fixed string values that are more or less well known and
usually specific to the domain. Their values are defined as the contérasatiulary ,

a type defined in thBsLSRControlledVocabularies module. To make the intended
use of a string variable clearertygpedef string VocabularyString is provided and
used in this specification.

VocabularyEntry

This valuetype represents the contents oVacabulary , and consists of the
vocabulary string along with a description.

Vocabulary

This interface represents a set a of strings that are valid in a particular context. It is a
container foocabularyEntry s. Objects of this data type are candidates for
registration with a Naming Server or a Trader.

Genomic Maps V1.0 December 1999

1.1.2.4 VocabularyFinder

An interface that gives access\Mocabulary s. Each context can have a number of
different relevanVocabulary s, all of which can be represented by one
VocabularyFinder .

1.1.3 Module DsLSRGenomicMaps

UML diagrams of the data model of the mapping data types in this module are given in
Figure 1-2; the types for representing map correlations are depicted in Figure 1-3. The
data types are briefly discussed below.

1.1.3.1 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify
them in a certain context. The current specification also uses strings for ID attributes,
but constrains their syntax and semantics to improve interoperability. To make the
intended use of such string variables cleaygredef string Identifier is provided

and used in this specification.

1.1.3.2 QueryString

This data type (again, tgpedef string , for the same reasons as described earlier) is
used to represent fixed query types to elaluate() method that is inherited from
CosQuery::QueryEvaluator

1.1.3.3 Mappable

Thevaluetype Mappable is used to represent the contents dMap. It represents the
MappedEntitymentioned in the RFP. Mostlilappable s will be simple markers.
However, since maps can be nested, a nested map or sub-map is also ‘map content’
(namely of the enclosing, or nesting map). The nestability of maps allows clones,
contigs or even genes and sequences to be both markers as well as maps. In other
words,Map could be regarded as a specializatioMafopable . This relationship is
however not represented by IDL inheritance but by delegation as will be explained
below.

Mappable has no information on where it is located on a map; this is the task of the
Assignment data types. There are no sub-types of Mappable defined.

Genomic Maps V1.0 Specification Overview Dec. 1999 1-3

Map and its MapFacton: QuaryEvaluator
p bty pes are num_maps
\Mappable, Assignment su
and Position and and intariaces get_all_mapst}
thei b — = J
e suotvpasare] fgecnan
-
- COniams
P > ~ 1.4
| Mappable . o Map: QueryEvaluator
[id i < Nas hoader-yifomation mn the_mappable
| cross_relerancis circular
| aliases 1\) num_assignments
species < CONtAINS vocabulary_finder
1 chromoscme ™ “
| type ., get_all_assignments{)
| ‘:er;perties R get_assignment_by_mappable_id])
| length Assignment
| [unts o~ Bmsign_type
| 1= positions
“dascribas placomant of
l “gesorbe s placement of ["'\
| u.* D.*
| MappableAssig nment MaphAssignment L%Eggﬂap
| mappad_antity mappad_antity =
I
|
Position | , . LinearMap CytogeneticElement
LEC?; max_coordinate rank
_ECOr8 - nogition given by min_coordinate
get_super_bandsl)
get_sub_bands()
| | get_siblings()
Meatric Position RelalivePosilion
laft_and boft_flanking_entity
right_and right_flanking_e ntity
RelativaMetricPosition
distance_laft
distance_right
Figure 1-2 UML diagram of mapping data types in module DsLSRGenomicMaps
1.1.3.4 Map

The data typdMap and its sub-types are used to represent genomic maps. It has

retrieval methods, and a number of fix@deryString s that can be used as the input
to theevaluate() method inherited fronCosQuery::QueryEvaluator . A number of
specific sub-types dflap are provided. As described in the previous paragraph on
Mappable , Map can be regarded as being a specialisatiodagpable . Although
thisis-a relationship is an inheritance relationship, this standard represents it as a
delegation. The reason is that IDL syntax (iseib-entity: super-entity {

... }) cannot be used to makgerface Map inherit from thevaluetype Mappable .

Genomic Maps V1.0 December 1999

1.1.3.5

1.1.3.6

1.1.3.7

1.1.3.8

1.1.3.9

For clarity, the remainder of this specification uses the termviapwhenever
referring to aMap that is nested inside anothdap. However, in any other respect,
sub-Map is exactly the same type Bfap.

MapFactory

Map objects can be obtained fromvapFactory object. Objects of this data type are
candidates for registration with a Naming Server or a Trader. Methods for the retrieval
of Maps as well as a number fixed query strings are provided.

Assignment

An Assignment is the placement of a particultappable or subMap on a
particularMap; it holds the information concerning the location(s) dappable on
a Map. The difficulty of representing eitherMappable or a subMap in an
Assignment is solved by having corresponding sub-typsppableAssignment
and SubMapAssignment . Assignment s are never used directly; only their
specializationdgVlappableAssignment or SubMapAssignment are.

Position
The geometric information of alsssignment . A number of sub-types are provided to
deal with different kinds of maps and assignments.

MapCorrelation

This data type is used to hold the information needed to correlate two different maps.

A UML diagram of the data types that represent correlations between two maps is
given in Figure 1-3. The data typbtp andAssignment are the same as those in
Figure 1-2.

MapCorrelationFactory

MapCorrelations are obtained by queryiniglapCorrelationFactory object. As with
Map andMapFactory , fixed query strings to be used as input for ¢kaluate()
method inherited fronCosQuery::QueryEvaluator are given as well. Like
MapFactory, it will usually be registered with a Naming or Trader service.

Genomic Maps V1.0 Specification Overview Dec. 1999 1-5

1-6

MapCormlationFactory. QuoryEvaluator

vocabulary_findar

get_all coralationst)

hap: QuaryEvaluator

get_correlation] §
2 1
* g On
COFE NS .
. Assignmant
0.
MapCormralation 2
idantifigr rafas o>
map_pair2] 1
d
cormeponcancas AssignmantPair
4 consists of > *

Figure 1-3 UML diagram of correlation data types in module DsLSRGenomicMaps

Genomic Maps V1.0

December 1999

General Description 2

This section describes the principles that are used by many of the components in this
specification, along with explanations of the design rationale. The more detailed
descriptions provided in the next sectiddpdules and Interfacesefer to those

provided here. For a UML diagram of some of the data types in this document, the
reader is referred to the figures located in Chapter 1.The full IDL specification can be
found in Appendix A.

2.1 Objects-by-value

The CORBA 2.3a specification provides the conogtietype , an IDL data type
intermediate betweestruct andinterface . They are part of the so-called Objects by
Value (OBV) specification. Although the OBV standard is relatively new and not
widely available yet, the current work usesuetype s, as they offer definite

advantages. In the context of this standard, the benefaloétype s overinterface s

is scalability (a single round trip transfers the whole state of the object). The benefit of
valuetype s overstruct s is their extendibility through inheritance.

In the interest of scalability, the contents of a map should preferably be local to the
client. For this reason the most abundantly used tydapgable , Position and
Assignment) are represented usimgluetypes . They are used essentially as
extendiblestruct s, by applying the following constraints:

* all members (‘attributes’) aneublic ,
® there are no methods,
® inheritance is only of otheraluetype s (i.e, no “supportsSomelnterfacg,

* all inheritance usesuncatable (i.e., “casting” a sub-type to its super-type by
simply omitting the extra members is a semantically valid operation).

Genomic Maps V1.0 December 1999 2-1

2.2 lterators

If a method has to return a multi-valued result to the caller, there is a design choice of
returning these elements directly as a list, or through an iterator, or using a
combination of both.

This standard mostly uses the iterator approach. Iterators are objects that ‘point to’
elements in a set, and which can be used to ‘step through’ the set. During this stepping
process, each element is visited once. If the underlying set is ordered, this ordering is
also preserved in the output of the iterator methods. If, during the iteration, the
underlying result set changes (by another process), an exception is thrown. Iterators
allow the client to choose between the scalability of iterators and the convenience of
the lists returned by the iteratomrgext_n() methods.

This standard has iterators for the data tyjdag, Assignment , and
VocabularyEntry . An iterator provides a pointer or cursor to step through a set of
entities. The iterators all look as follows:

exception Iteratorinvalid {
string reason;

h

interface Thing lterator {
boolean next(out Thing the_thing) raises(lteratorinvalid);
boolean next_n(in unsigned long how_many, out Thing List thing _list)
raises(Iteratorinvalid);
void reset();
void destroy();

h

Iteration using these objects can be in steps of one entry usimg:tt(® method,

which are returned as tloait parameter. Alternatively, when using thext_n()

method, a batch of at mosbw_many entities are returned in theut parameter. If

the retrieval was successful, tbet parameter contains the next entity or entities.
TRUEis returned if the call did not yet exhaust the iteration (i.e., if more elements are
available for subsequent callsrext() or next_n()). Conversely, &ALSE return

value signifies that no more elements are available from the iterator. If, in a call to
next_n(), less than the requestadw_many elements can be returned, thet
parameter contains as many elements as were available, and the returnvAlugHS
Thenext() andnext_n() methods can fail (e.g., if the underlying set changed). In this
case, thdteratorinvalid exception is raised. Iteason member can be used to provide
human-readable information on details of the failure.

Calls toreset() re-position the iterator such that subsequent callsex¢() or
next_n() start at the beginning of the result set. In this case, nothing is implied about
the contents of the underlying result set, or of their ordering; both may have changed.

Empty result sets (such as from queries yielding no matches) are not represented by
NULL objects, but by real iterators that are ‘empty’ (i.e., invoking theit() or
next_n() methods only ever retuffALSE).

Genomic Maps V1.0 December 1999

2

The destroy() method is used to indicate that the iterator is no longer needed, and
deletes the iterator object.

2.3 Controlled Vocabularies

When describing and representing domain-specific systems, there is frequently a need
for a string type that can only assume a limited set of allowed values, a set however
that is allowed to change over time (as values are added or removed) or space (different
servers accepting different sets of strings). Such strings are callled
vocabularystrings (“vocabulary strings” for brevity). A particular set of such strings,
valid in some context, is called a controlled vocabulary. Vocabulary strings typically
denote domain-specific concepts, usually as a short descriptive string or common
abbreviation, rather than as a code. An example from the mapping domain would be
the strings “unknown,” “genetic,” “EST,” and “RFLP” as valid marker types in a
particular map.

To specify a satisfactory standard for vocabulary strings, the usageeotianis too
inflexible, as it would require approval and re-compilation of new IDL, possibly
rendering existing clients and/or servers incompatible. Convestghyg is too

lenient, as there is no mechanism to list or control the values that a particular variable
of such a type can assume. As a result, the definition of a system that needs vocabulary
strings becomes less precise and less interoperable. This loss of semantics is frequently
due to things as trivial as misspellings and issues of type-case and white-space usage

Some of the controlled vocabulary functionality could be provided by the CORBAmed
Lexicon Query Services standard (LQS; corbamed/98-03-22). For reasons described in
Appendix B, the current specification includes the module
DsLSRControlledVocabularies , which describes a standard for representing, listing
and checking vocabulary strings. This module is general, and may be of use in contexts
other than that of genomic maps. A mapping between

DsLSRControlledVocabularies and LQS is also given in Appendix B.

To provide a standard way of offering access to the functionality LQS, a specialization
of VocabularyFinder calledLQSVocabularyFinder is provided in module
DsLSRLQSLink . This optional interface has a

TerminologyServices::LexExplorer attribute that yields access to the LQS
functionality.

IDL strings are used to represent vocabulary strings. tfpedef string
VocabularyString is provided, and used to indicate that the values of an attribute or
member are constrainedocabularyString s are contained iNocabularyEntry s

(along with adescription). There are no syntactic restrictions on the value of
VocabularyString s, but the following guidelines are suggested:

® vocabulary strings should not contain superfluous white-space (i.e., no leading or
trailing white-space); internal white-space should be represented by single spaces
only.

® vocabulary strings should be short yet descriptive. Common abbreviations often
serve this purpose well.

Genomic Maps V1.0 Controlled Vocabularies Dec. 1999 2-3

®* empty strings are allowed but discouraged. The semantics are typically “unknown,”
“not applicable,” “missing,” “miscellaneous,” “default,” etc. It is considered cleaner
to define dedicated vocabulary strings for this purpose.

The VocabularyEntry s are served byocabulary objects, which can in turn be
obtained fromVocabularyFinder objects.

The anticipated use &focabularyFinder objects is to contain a relatively limited
number ofVocabulary s (say, less than 50). If there is a need for managing larger
numbers oMocabulary s, a more general and powerful facility akin to a knowledge
base would be more appropriate.

2.4 ldentifier Strings

There is frequently a requirement for a simple data type to indicate an entity’s identity.
In most cases, this need is or can be addressed by using a string type. The advantage
are that it is simple, lightweight, and used universally throughout the realm of
computing (and indeed outside). However the risk of using strings is that they can be
too flexible, both in terms of syntax and semantics. This easily results in the lack of
interoperability. To allow strings, yet mitigate their potential for abuse, this standard
uses the syntax convention @bsNaming::StringName as described in the
Interoperable Naming service. This convention is mainly a syntactical one; in no way
is the use of a naming service implementation required or implied (but it is not
precluded either).

A brief description ofCosNaming::StringName is as follows CosNaming::Name

is a list ofstruct NameComponent s. For the purpose of illustration, a
NameComponent can be likened to a directory or filename, whereas
CosNaming::Name constitutes a full path-name. Thiguct NameComponent has
string membersd andkind . To transform a&CosNaming::Name into a string, all its
NameComponent s are represented as stringd.Kind . If the kind -field is

empty, this becomes simplyd'”; if the id-field is empty, this becomeskind 7,

finally, the Naming service also allows both ile andkind -fields to be empty, which
is represented as “. The full stringified CosNaming::Name is then obtained by
concatenating all thllameComponent s using /" as a separator character. The
character " is designated as an escape character; if it precedes any of the special
characters .*”, “/ " and “\ ", these special characters are taken as literal characters.
Thetypedef string CosNaming::StringName s provided for strings used as object
names using this convention.

The genomic maps specification adopts the same syntax convention, but requests that
the components of oudentifier data type adhere to some additional semantic
constraints. These rules do not follow from, nor are implied by any semantics of the
Naming Service. The additional constraints make this data type sufficiently different
from CosNaming::StringName to warrant the dedicategpedef string Identifier

In the remainder of this description, ‘component’ means: the sub-string of an
Identifier that corresponds to or@@sNaming::NameComponent ; likewise,id-
field andkind-field correspond to the equivalent fields démeComponent .

The rules are as follows:

Genomic Maps V1.0 December 1999

2

®* Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

® The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories, etc. It is up to the
implementation to document the accepted names for the data source.

®* The empty name (*) is valid for the first component, and represents the ‘local’ or
‘default’ collection. It is up to the implementation to document what the semantics
of ‘local’ or ‘default’ is.

* Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No emptyfields are allowed in this or any further
components.

® |f two components are not enough to uniquely identify an entitydantifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, ddentifier may not be used to freely attach textual
information.

® The only characters valid in a component are “a” through “z”, “0” through “9”, and
“-* (hyphen), “ " (under_score), “$” and “.” (period). Use of the latter is
discouraged since it has a special meaning irsttiegifying convention, and has
therefore to be escaped.

To comply with existing practice in the field of public data repositories, it is strongly
advised that implementations do string comparisons in a case-insensitive manner. The
CosNaming Service standard fails to mention whether type-case is, for string
comparison purposes, significant or not. Implementations that use a third-party
implementation of the Naming service may therefore wish to resdeatifier s to

only use one type-case. It is up to an implementation to state whether mixed type-case
is allowed, and whether type-case is significant in comparisons.

Theid andkind parts of the string components ldentifier are used as follows:

* Theid-field of a component contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of afdentifier (see above).

* Thekind{ield of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kindis empty and entities with non-empitind-fields exist, an emptkind field
becomes synonymous with ‘the latest release or version'. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:
® it is simple and lightweight,

* it has a well-defined and ‘re-used’ syntax,

® it is compatible with existing practice,

® it is sufficiently flexible to allow forsubIDs if necessary.

Genomic Maps V1.0 Identifier Strings Dec. 1999 2-5

2-6

2.5 Mappable

The LSR Biomolecular Sequence Analysis standard uses theldantiéier type and
semantics.

The data typéMappable defined in this specification is used to represent things that
can be mapped. This includes ordinary markers as well as sub-maps (see below). The
choice for this unusual, novel term was motivated by the desire to reduce the risk of
confusion with existing terms.

2.6 Mappable and Map

As indicated above, Blap should be considered a special kindv&ppable to allow

for the nesting of maps. Moreover, it is desirable that map contents be local to clients.
Yet at the same time, the data tyylap needs methods to serve and query its contents,
soMap should be an object local to the server.

This inheritance relationship is represented as a delegatiomtéiniace Map has a
readonly attribute Mappable the_mappable , which contains (and transfers) the
whole state of thd&lappable aspects of &ap. One could call this the ‘header
information’ of a map (such as the id, the chromosome, etc.).

2.7 Mappables and Assignments

2.8 Nested Maps

The relationship between maps and mapped entities is a many-to-many association.
That is, one map can contain many markers, and conversely, one marker can have beel
mapped on several different maps. An assignment of one marker on one map is one
instance of this map-marker relationship. Therefore, a map is a container (or factory)
of Assignment s, rather than of (references tdappable s. For this reason, the query
methods ofMap and its sub-types yield assignments, néMappable s. If the

Mappable s contained in &ap are required, they can always be obtained by

inspecting themapped_entity members of the sub-types A§signment .

Since an assignment can be both dappable and of a sutMap, thevaluetype
Assignment data type is never returned directly; only its more specific sub-types
MappableAssignment andSubMapAssignment are returned. Only instances of
these sub-types contain the mapped entity that makes them meaningful.

Nested maps are a potentially powerful concept for the integration of mapping data
from different (and potentially distributed) sources. Another area where nesting is
desirable is the case where resolution of a map increases over the course of a mappinc
project. For example, eontig may be treated as a point-like entity at first; later, when

the mapping effort proceeds, thentig may become a map in its own right.

There are three potential problem areas with nested maps: infinite recursion,
representation and coordinate systems, and querying.

Genomic Maps V1.0 December 1999

2

Infinite recursion occurs when a map contains itself as a sub-map. However this
standard is concerned with representation only, and it is the implementor’s
responsibility to prevent such errors. Hence, this does not pose a problem.

Coordinate systems of nested maps are generally different from that of the containing
map. Such nested maps must retain their own ordering and coordinate system, as sub
maps may not be under the control of the implementation, and transforming the
coordinates would be cumbersome. Perhaps more importantly, currently no widely
accepted general coordinate system is available that would make such a transformation
possible or meaningful. For the same reasons, maps and map sections that are returne
from queries always retain the nesting structure of the underlying map.

The problem with queries into possibly nested maps is whether the query method is
expected to satisfy the criteria by inspectingithmediatelycontained mapped entities
only, or alternatively, should delve into any contained nested maps to find matches. A
related issue is how a query method shaatdrn ‘nested hits’ (i.e., queries that

actually are satisfied at a nested level).

The first question is addressed by having a parameterrsion_depth for query
operations where this is relevant. If this parameter is zero, no descending into nested
maps takes place, and only ‘top-level’ mapped elements are inspected for matches
(although these top-level elements themselves may in fact be maps). If
recursion_depth is greater than zero, the query descends into a nesting level no
deeper than its value. The value of teeursion_depth parameteonly determines

how deep a query should descend; it dogtdetermine the way in which the obtained
match is returned.

This is the second issue, and it is resolved as follows: each query for mapped entities
shallonly return directly containedssignment s (whether this concerns entities of

Map type or not). Entities that match at a deeper level (‘nested hitsioareturned
directly; instead, thé&ssignment that contains it (either directly or through yet

further nesting) is returned. In other words, each query either returns the sought entity
(the usual case) or thessignment that contains it at some deeper nesting level.

In the latter case (the ‘nested hit’ case), only the first step in the access path to an
entity contained in a nested map is given as a result. Therefore, in this situation, the
same query has to be effected on the returned map, possibly several times, until the
sought entity itself is obtained.

The rationale for this design is that it is sufficient, simple and unambiguous. Moreover
in client implementations, explicit representations of the nested map ‘tree’ will have to
be established before the map can be rendered anyway. Therefore, the usefulness of ¢
method that returns the complete access path to the mapped entity in one call is
debatable.

Finally, it can be remarked that iterators are well suited to dealing with recursive
structures. By always invoking theiext(out arg) method on nodes in the tree
structure depth-firsttraversal of a nested map structure can be effected. Conversely,
breadth-firsttraversal can be had by using thext_n (n, out_args) method with

n being a very large number.

Genomic Maps V1.0 Nested Maps Dec. 1999 2-7

2.9 Retrievals and Queries

The current specification offers limited query capability by two means. Firstly, a
distinction is made between retrieval and querying. Retrieval, in this context, includes
both the resolving of a known entity given some designator such as hame or an id, as
well as the listing and/or obtaining of all entities in a given space. In contrast, querying
corresponds to the semantically different (and richer) concept of searching among
entities in a given space.

2.9.1 Retrievals

Retrievals are available as specific methods, typialy thing by id() for the
resolution case, anget_all_ things() for the listing case. The resolution
methods can raise ti@annotResolvelD exception:

exception CannotResolvelD {
Identifier id;
string reason;

k

This rationale for using an exception rather than returning nothing is that resolution
should normally be considered to succeed.

2.9.2 Queries

The more general query functionality is provided by inheriting from
CosQuery::QueryEvaluator . Its evaluate() method is used for the expression of a
number of queries, and has the following signature:

any evaluate(in string query, in QLTypeql_type, in ParameterList params)
raises (QueryTypelnvalid, Querylnvalid, QueryProcessingError);

A number ofconst QueryString s (with descriptive names such as
GET_ASSIGNMENTS) are defined that represent fixed queries. To effect a query, one
such predefine@QueryString is passed as thguery argumen to evaluate() . The
contents of thggarams argument contain the criteria for the query, and are described
below. In the remainder of this document, the term “query” is often synonymous with
“passing a particular pre-defin€@ueryString into theevaluate() method”.

The argumenyl_type denotes the query language type. Its formal type is a
CORBA::InterfaceDef corresponding to one of the (empty) sub-classes of the
(empty)QueryLanguageType interface defined it€osQuery . All interfaces that
extendCosQuery::QueryEvaluator must accepMapsQL This query language type

is defined as th€ORBA::InterfaceDef of the MapsQueryLanguageType

interface (the ‘value’ of thiCORBA::InterfaceDef cannot be defined in IDL; hence
this textual description). In contrast to the forrGalsQuery module, the current
specification doesotrequire that at least one of the OQL or SQL query languages be
supported.

Genomic Maps V1.0 December 1999

The semantics dflapsQLare as follows. Thearams argument taevaluate()

contains name-value pairs that correspond to criteria that have to be fulfilled. It is
essentially a query in conjunctive normal form (albeit a very restricted version: just
two levels of clauses are possible, and there is no logical NOT operator). That is,
queries such as the following:

((criterionl = value1OR criterionl = value2OR criterionl1 = ...)
AND
(criterion2 = value3OR criterion2 = value4OR criterion2 = ...)
AND
(criterion3 = value50R criterion3 = value6OR criterion3 = ...)
AND

)

are represented by a list stfuct { string name; any value; } pairs with the
following values:

{{ “criterion1” , {*valuel”, “value2”, ..}
{ “criterion2” , {“value3”, “valued”, ...}
{ “criterion3” , {“valueb”, “value6”, ...}

}
2
}

}

(The name-value pairs are defined &oaQueryCollection::ParameterList). Each
name-value pair represents one criterion; its value (packaged as amypls a list of
terms that each would constitute a valid match for the criterion. That is, the ‘local’
match for one criterion is the logical OR of all the values in the list. The final result of
a query is simply the logical AND of the local matches obtained for each of the
separate criteria.

As a convenience, a criterion queried with a single particular value (rather than a list)
may be represented as that value, rather than as a list of values of length one. Likewise,
separate criteria having the same criterion name are treated as one criterion that
matches any of the values of all the separate criteria. For example:

{{ “criterion1” , {*valuel”, “value2” } },
{ “criterion1” , “value37} }

is equivalent to
{{ “criterion1” , {“valueZ, “value?, “value3 } }

Strings are always allowed as search values, but an implementation may offer querying
on types other thastring . In some cases, the required type of the query is indicated
(e.g.,long for parameter “recursion_depthlpat for “from,” “to,” and “range” for

the queries of.inearMap ; see below).

The values of match criteria typically can assume only a limited number of string
values. That is, they are vocabulary strings. For this reason, each match criterion
corresponds to ®ocabulary , with the name of the criterion being theme attribute
of its Vocabulary . The different criteria and correspondivigcabulary s that apply to
a particular queriable object are available fromVasabularyFinder . An easy way to

Genomic Maps V1.0 Retrievals and Queries Dec. 1999 2-9

2-10

obtain the criteria names is to invoke gest_all_vocabulary _names() method.
Typical criteria are “id,” “type,” “specie,” “chromosome,” “sex,” as these criteria
correspond to the fixed members of the data tyagpable (andMap). Thename-
parts of the contents of thmoperties of Mappable are other likely candidates for
match criteria.

Criteria that can assume an unlimited number of values (emgth ,
recursion_depth) are also represented byacabulary , but thisVocabulary is
degenerate, in that it contains WocabularyEntry s.

The return type oévaluate() is any. In current specification, each of the queriable
objects shall return only one particular type, which is documented below.

Some queries have mandatory parameters. Such parameters and their values must be
passed when invokingvaluate() , and their semantics as documented below must be
implemented. An example is “recursion_depth” for querieslap. In the description

of the queries below, the mandatory parameters are indicated. The current standard
does not specify a general solution to dynamically inquire whether a parameter is
mandatory. (A suggestion is to put this information indbscription attribute of the
Vocabulary that represents the parameter.)

The exceptionQueryTypelnvalid, Querylnvalid, andQueryProcessingError may be

raised byevaluate() . QueryTypelnvalid is raised if the query language type is not
understood. To be compliant with this standard, this is not allowed to happen when the
MapsQLis usedQuerylnvalid is raised whenever query parameter is not valid. The
most important cases are:

® the value passed @squery string in a call toevaluate() is not one of theonst
strings defined in this specification, and is not recognized by the implementation.

* the list passed as ParameterList params in a call toevaluate() uses wrong
parameter names (i.e., they are not among the names of the vocabularies containec
in thevocabulary_finder , and hence cannot be queried for.

* the list passed as ParameterList params in a call toevaluate() does not
include the mandatory parameters (ergcursion_depth in some queries).

* the list passed da ParameterList params in a call toevaluate() uses wrong
parameter value strings. For example, they are not among the vocabulary strings
contained in the corresponding vocabulary .(eggerying for sex = “red”).

* the list passed da ParameterList params in a call toevaluate() uses wrong
parameter value types (that is, if they are other #iang).

®* Thewhy string of theQuerylnvalid exception should document the details of the
failure in human readable form; at least the above five cases must be distinguished.

* TheQueryProcessingError is raised to signal a ‘run-time’ of the query execution.

The advantages of usir@osQuery are re-use, and the ability to easily extend the
range of query capabilities by providing additional query language types and/or
additional predefine@QueryString s.

Genomic Maps V1.0 December 1999

2.9.3 Wildcards

Implementations can, but are not required to offer the use of wildcards in queries. If
wildcards are offered, they should follow the convention used for Posix filename
wildcards (ISO/IEC 9945-2:1993):

* ?'is taken as meta-character that represents any single character;

* ¥ is the meta-character that represents a string of any length (including 0),
consisting of any characters;

* ‘' is the meta-character that makes the character following it loose its special
meaning in case it is a meta-character (including ‘).

2.9.4 Ordering

The ordering of map contents returned by a query is not strictly necessary, as the client
could reconstruct it from the position information. However, it is obviously more
natural and convenient for clients if the results are ordered. This specification requires
that theAssignments in anAssignmentList (see below) be by increasing
Assignment.positions[0].rank

If an AssignmentList contains an Assignment having a compound position, the
ordering of theAssignmentList is by definition not total, but it is unique, predictable
and repeatable.

The elements in thpositions attribute of theAssignment data type are ordered by
position.rank . ThePosition s (and theirank s) of oneAssignment must be
distinct.

As discussed under the description of multi-valued return types, the ordering of results
does not depend on the way the results are retrieved.

2.10 Lifecycle Issues

A number of interfaces used in this specification have a method to delete the object.
This can be through @estroy() method (the iterators), or by inheritance from
CoslLifeCycle::LifeCycleObject (Map and its sub-types) The interfaces using the
latter approachMap andVocabulary) can, in addition to the inheriteedmove()

method, provide thenove() andcopy() functionality. If they do not implement these
methods, the standard system excepG@RBA::NO_IMPLEMENT should be raised

(an exception minor code will be requested).ed.

Genomic Maps V1.0 Lifecycle Issues Dec. 1999 2-11

2-12 Genomic Maps V1.0 December 1999

Modules and Interfaces 3

This chapter describes the types, methods as well as the semantics of the standard in
detail. For an overview and a description of the design rationale, refer to Chapter 2. For
brevity, not all the required forward declaratiohgedef s and iterators are provided

in the boxes containing IDL, as they will be clear from the context, and have been
described earlier. For the full IDL specification, the reader is referred to Appendix A.

3.1 Module DsLSRControlledVocabularies

Controlled vocabularies essentially represent ‘dynasniems’. The need for and
usage of controlled vocabularies is described in more detail in Section 2.3, “Controlled
Vocabularies,” on page 2-3.

3.1.1 Exceptions
exception NotFound { string reason;};
This exception is raised Byocabulary::get_entry by name() and
VocabularyFinder::get_vocabulary by name() if the desired entry or
vocabulary could not be found.
exception Iteratorinvalid { string reason; };
This exception is raised ByocabularyEntrylterator::next() and

VocabularyEntrylterator::next_n() if the iterator has become invalid. For a
description of the semantics, see Section 2.2, “lterators,” on page 2-2.

Genomic Maps V1.0 December 1999 3-1

3.1.2 Typedef VocabularyString
typedef string VocabularyString;

VocabularyString is the data type used for attributes that can only assume a limited
set of string values. For a detailed description of the semantics of this data type, refer
to Section 2.3, “Controlled Vocabularies,” on page 2-3.

3.1.3 Valuetype VocabularyEntry

valuetype VocabularyEntry {
public VocabularyString vocabulary_string;
public string description;

k

The contents of a controlled vocabulary are represented BottabdularyEntry data
type.

Members

vocabulary_string -an actually allowed value in a particular context

description - descriptive text; the anticipated use is to contain the full text of
vocabulary_string if that string is an abbreviation.

3.1.4 Interface VocabularyEntrylterator

interface VocabularyEntrylterator {
boolean next(out VocabularyEntry the_entry)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out VocabularyEntryList list)
raises(Iteratorinvalid);
void reset();
void destroy();
}; Il interface VocabularyEntrylterator;

The semantics of the iterators were described in Section 2.2, “Iterators,” on page 2-2.

3-2 Genomic Maps V1.0 December 1999

3.1.5 Interface Vocabulary

interface Vocabulary: CosLifeCycle::LifeCycleObject {
readonly attribute string name;
readonly attribute string description;
readonly attribute boolean case_sensitive;
readonly attribute unsigned long num_entries;

VocabularyEntrylterator get_all_entries();
boolean is_contained(in string test_string);
VocabularyEntry get_entry_by_name(in string test_string)
raises (NotFound);
h

Controlled vocabularies are represented by objects of theVygabulary .

The name attribute holds the name of tMecabulary , and should be unique in the
context of thevocabularyFinder that serves it (see below). It is suggested that if a
Vocabulary is used to represent a query criterion, it should have the name of that
criterion. Thedescription attribute is provided to hold descriptive information. When
Vocabulary is used to represent a query criterion, this field could be used to indicate
the semantics of the criterion, such as its type andwhether it is mandatory. The attribute
case_sensitive is used to indicate whether type cas&/ofabularyString s in the
VocabularyEntry s of the currenVocabulary is, for the purpose of comparison,
significant or not; it is TRUE if type case is significant, FALSE if not. Attribute
num_entries contains the total number of entries iVacabulary ; they can be

retrieved using thget_all_entries() method. For establishing whether a given string
belongs to a/ocabulary , theis_contained() method can be employed. The method
get_entry by name() provides lookup functionality, allowing the retrieval of single
VocabularyEntry s (e.g., to inspect thetfescription member).

3.1.6 Interface VocabularyFinder

Vocabularies are obtained from ®ocabularyFinder object.

interface VocabularyFinder {
readonly attribute string name;
readonly attribute unsigned long num_vocabularies;
StringList get_all_vocabulary _names();
VocabularyList get_all_vocabularies();
Vocabulary get_vocabulary by name(in string name);

k

The name attribute can be used to identifyWacabularyFinder ;

num_vocabularies is the number of all thgocabulary s served by it. Their names
are available from thget_all_vocabulary_names() method, and th&¥ocabulary s
themselves can be obtained from et vocabulary by name() method.

Genomic Maps V1.0 Module DsLSRControlledVocabularies Dec. 1999 3-3

On purpose, the iterator pattern is not used in this case, as the anticipated use of the
DsLSRControlledVocabularies module is to represent a relatively limited humber
(say, less than 50) of controlled vocabularies. For such small numbers, iterators are not
needed.

Since objects of typ¥ocabularyFinder are entry points into servers that provide
Vocabulary s, it is likely that they will be registered withCosTrader service. If they
are, the following Trader Service Type shall be used:

service omg.lsr.ControlledVocabularyFinder {
interface DsLSRControlledVocabularies::VocabularyFinder;
mandatory property string provider;
mandatory property StringList vocabularies_served,;

}

Likewise, if aVocabularyFinder is registered with €osNamingService , this shall
be done as follows (where tiNamingContexts are separated by '/):

/DsLSRControlledVocabularies/ provider /NVocabularyFinder

3.2 Module DsLSRLQSLink

This module offers connectivity to the CORBAmed Lexicon Query Service. It contains
one interfacel QSVocabularyFinder , which is optional.

3.2.1 Interface LQSVocabularyFinder

interface LQSVocabularyFinder:
DsLSRControlledVocabularies::VocabularyFinder {
readonly attribute TerminologyServices::LexExplorer lex_explorer};

I3

The optionalLQSVocabularyFinder interface is a specialization of

VocabularyFinder , and can be used instead of its super-type when it is desirable to
offer access to the full functionality of thexExplorer interface defined in the LQS
TerminologyServices module. The attributeex_explorer provides this link.

3.3 Module DsLSRGenomicMaps

3.3.1 Typedef Identifier

typedef string Identifier;

Identifier is used as data type for IDs. The syntax (which follows the new

CosNaming standard) and semantics of the stridentifier are described in detail in
Section 2.4, “Identifier Strings,” on page 2-4. The same type, syntax and semantics are
used in the LSR Biomolecular Sequence Analysis standard.

Genomic Maps V1.0 December 1999

3.3.2 Exception CannotResolvelD

exception CannotResolvelD {
Identifier id;
string reason;

I3

This exception is thrown by methods that takddentifier as an input parameter. If

the entity denoted by théentifier cannot be found or resolved by the method that
takes it as an input argument, this constitutes an exceptional situation, as the usage of
anldentifier implies that the server can be expected to contain the desired entity. The
id member holds the offendiridentifier , and is provided as a convenience. The
stringreason holds details (if any can be provided) as to why the resolution failed.
Suggested contents are: “syntax invalid” if the form of Itentifier to be resolved

was not acceptable, and “entity unknown” if the syntax was right, but the entity it
denotes could not be found.

3.3.3 Valuetype Mappable

valuetype Mappable {
public ldentifier id;
public IdentifierList cross_references;
public StringList aliases;
public VocabularyString type;
public VocabularyString species;
public VocabularyString chromosome;
public VocabularyString sex;
public CosPropertyService::Properties properties;
public float length;
public VocabularyString units;

I3

Mappable is the central data type of this standard, and is used to represent map
contents. It typically is a simple marker of some kind, but as explained in Section 2.6,
“Mappable and Map,” on page 2-6, sMaps can also be regarded Mappables .
Mappable doesnot contain information on where it is located on a map, as one
Mappable may be placed on several maps.

id is the unique identifier of the Mappable, and should comply with the convention
described in Section 2.4, “Identifier Strings,” on page 2-4. diloss_references

member can be used to hold references to other entities, of either the same or of a
different type, from either the same or from a different data source. Elements in this
list must comply with the conventions described in Section 2.4, “Identifier Strings,” on
page 2-4. The list can be empty. It is anticipated that a common usage of the
cross_references member is to contaitdentifier s of entities of types specified in

the BioMolecular Sequence Analysis standard, thus providing a point of contact
between these two standards.

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-5

The membeanliases can be used to provide other names for the cuiviampable ;
this field is provided as a convenience. In contrast tatbes references field, no
constraints to syntax or semantics are imposed on the contents of this field.

The membersype, chromosome , andsex contain information that characterises the
currentMappable . For each of these attributes the most specific value that applies
should be used, although the empty string is also allowed. All these fields are
vocabulary strings.

properties is a field that can be used to attach any additional characteristic not a fixed
member ofMappable .

length andunits describe the extent of the marker, if any. Markers that can be
considered point-like haviength = 0.0, andunits is the empty string. Units that are
integer-valued (such as base pairs) have an integer-Velgth (e.g, 1243.00 if the
integer length is 1243).

Mappable s cannot be null. There are no sub-types defined/ppable .

Queries forMappable s can be against the fixed membeaypé¢ , chromosome , etc.)
as well as against the additional characteristics containptbpserties .
Implementations should document which query criteria are provided.

3.3.4 Interface Map

interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
const QueryString GET_ASSIGNMENTS = "get_assignments”;

readonly attribute Mappable the_mappable;
readonly attribute VocabularyFinder vocabulary_finder;

readonly attribute unsigned long num_assignments;
readonly attribute boolean circular;

Assignment get_assignment_by mappable_id(
in Identifier the_mappable,
in unsigned long recursion_depth);

Map is the data type that represents a full or partial genomic map or anything that is
used as suclMaps are alstMappable s; this inheritance is specified as delegation for
reasons explained in Section 2.8, “Nested Maps,” on page 2-6. Aldppable

aspects oMap, including information such as the ID or name, the species and the
chromosome, are available from tee_mappable attribute. This attribute yields all

the Mappable aspects of thiap in one round-trip, and can be regarded as containing
its the header information.

A Map consists ofAssignment s; their number is provided in the
num_assignments attribute. If a map is circular, tredrcular attribute isTRUE

Genomic Maps V1.0 December 1999

3

The methodyet_all_assignments() returns all théAssignments that constitute the
map. TheAssignments are returned by an iterator. For a description of the semantics
of this approach see Section 2.2, “Iterators,” on page 2-2.

get_assignment_by mappable_id() returns theAssignment that contains the
Mappable identified by argumenthe_mappable . If possible and needed, the query
descends into sub-maps to a recursion-depth of no moredbarsion_depth to

find the Mappable .

One query is provided, and represented byGES ASSIGNMENTS QueryString
which can be passed as thestring query argument to thevaluate() method
inherited fromCosQuery::QueryEvaluator . Theany returned by queries of
MapFactory objects must be of typssignmentlterator . Details of this
mechanism are described in Section 2.9.2, “Queries,” on page 2-8.

The GET_ASSIGNMENTS query has three mandatory parameter: “start,” “end,” and
“recursion_depth.” “start” and “end” are thaentifiers of Mappable s that bracket

the segment of the of thdap in which theAssignment s are searched. An empty
Identifier (i.e., the empty string) is legal, and implies the corresponding end-point of
the map. The “recursion_depth” parameter must be of ltypge or astring that
evaluates to one.

In an invocation of the method, the actstrt andend arguments may appear to be

in the wrong order. This is the case if tdappable designated bgtart is assigned
closer to the end of the map than that denoted by argusnelntin this situation, the
argumentsstart andend are taken as if their values were exchanged (i.e., making
their order reflect that of the underlying map). The reason for this silent correction is
that it is simple and unambiguous, and preserves the ordering of the underlying map.
For a description of the iterator mechanism, see Section 2.2, “Iterators,” on page 2-2;
for a description of the “recursion_depth” parameter, see Section 2.8, “Nested Maps,”
on page 2-6; for a description of the query specification, see Section 2.9.2, “Queries,”
on page 2-8.

The assignments dflappable s denoted by thstart andend arguments may be
compound assignments (that is, if th&gsignment s have more than orRpsition).

In this casestart andend are interpreted so as to return the maximum number of
markers possible: the left-most of tResition s of start’s Assignment and/or the
right-mostPosition of end’s Assignment are taken when calculating which
Assignment s to return.

The any returned by thevaluate() method must be of typ&ssignmentlterator .
This also applies to the sub-types of Map, which are described below.

3.3.5 Interface OrderedMap

interface OrderedMap:Map {
readonly attribute float LOD_score;

I3

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-7

OrderedMap is a data type to represent maps for which only ordering information is
known. The overall LOD-score (a measure of the quality of the map) is available in the
attribute LOD_score.

3.3.6 interface CytogeneticElement

interface CytogeneticElement;
typedef sequence <CytogeneticElement> CytogeneticElementList;
interface CytogeneticElement: Map {

readonly attribute long rank;

exception NoSuperBand { string reason; };

CytogeneticElement get_super_band() raises (NoSuperBand);
CytogeneticElementList get_sub_bands();
CytogeneticElementList get_siblings();

h

Cytogenetic elements (chromosome banding patterns) are represented using the
dedicated typ&ytogeneticElement . TheoreticallyMap’s machinery for traversing

and querying nested maps could be used to implement the functionality of cytogenetic
maps, but common usage calls for the simpler methods provided by this interface. The
exceptionNoSuperBand is raised if the traversal has reached the top of the hierarchy.
The contents of itseason member are unspecified.

3.3.7 Interface LinearMap

interface LinearMap:Map {
const QueryString GET_INTERVAL = "get_interval";
const QueryString GET_RANGE_AROUND = "get_range_around";

readonly attribute float min_coordinate;
readonly attribute float max_coordinate;

I3

The LinearMap interface represents a fully metric map (i.e., one where the locations
of all markers are expressed as distances, be they to the beginning of the map, or
relative to other markers). It is an extension of Map that allows retrieval of Map
sections specified by geometry.

Attributesmin_coordinate andmax_coordinate specify the end points of the map,
with min_coordinate < max_coordinate

Query by geometry is provided by the two QueryStriGEsT INTERVAL and
GET_RANGE_ARROUND.

The GET_INTERVAL query selects a geometric span of tireearMap . To this end,
two mandatory parameters are needed: “from” and “to,” which correspond to the
beginning and end of the map section that is desired. The data type of these parameter:
can befloat or astring that evaluates to one. If the “from”-parameter is less than

Genomic Maps V1.0 December 1999

3

min_coordinate , the beginning of the map is assumed; if the “to”-parameter is
greater thammax_coordinate , the end of the map is assumed. If “from” is greater
than “to,” they are silently exchanged, for reasons outlined in the description of the
GET_ASSIGNMENTS query of the super-type. Further criteria can be applied to the
contents of the selected span by using additional parameters.

The GET_RANGE_AROUND query is similar to previous one, but bases its selection

on the distance relative to a given marker. The distance is specified as the mandatory
parameter “range” (which can bdlaat or astring that evaluates to one); the centre

of this segment is specified as the mandatory parameter “mapped_entity.” The span
from mapped _entity - range to mapped_entity + range is selected. If

either end of this span ‘runs off the map,’ the end point of the map in that part is
assumed. Again, further criteria can be applied to the contents of the selected span by
using additional parameters.

The assignment of the mapped entity denoted byrtlygped_entity parameter may

be compound (that is, if itslappableAssignment or SubMapAssignment has

more than onéosition). In this case, the location is to be interpreted such that the
maximum number of markers possible is returned: the span runs from left-most of the
Positions — range to right-most of theéPositions + range .

Neither of the methods has trecursion_depth argument that determines recursion,
as its usefulness is debatable, and the semantics are too difficult to specify.

3.3.8 Interface MapsQueryLanguageType
interface MapsQueryLanguageType:CosQuery::QueryLanguageType{};

The query methoévaluate() inherited from fromCosQuery::QueryEvaluator

requires that £ORBA::InterfaceDef be passed into it as tlgé type argument. The
CORBA::InterfaceDef of the aboveMapsQueryLanguageType can be used for

this purpose. An implementation may offer more query languages, but to be compliant
with the standard, at leabtapsQueryLanguageType must be supported by all the
interfaces that exten@osQuery::QueryEvaluator . The semantics of this ‘query
language type’ are descripted in detail in Section 2.9.2, “Queries,” on page 2-8.

3.3.9 Interface Maplterator

interface Maplterator {
boolean next(out Map the_Map)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many, out MapList map_list)
raises(Iteratorinvalid);
void reset();
void destroy();

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-9

3-10

This object is used to step through a seMaps. It is the only valid return type to be
contained in thany returned by thevaluate() method ofinterface MapFactory .

The details of the semantics of iterators were described in Section 2.2, “Iterators,” on
page 2-2.

3.3.10 Interface MapFactory

interface MapFactory: CosQuery::QueryEvaluator {
const QueryString MAP_BY_MAP_PROPERTY =
"map_by_map_property";
const QueryString MAP_BY_CONTENT_PROPERTY =
"map_by_content_property";

readonly attribute unsigned long num_maps;
readonly attribute VocabularyFinder vocabulary_finder;

Maplterator get_all_maps();
Map get_map_by id(in Identifier id) raises(CannotResolvelD);

k

The data typéapFactory allows the retrieval oMaps. Queries are represented by
the QueryStrings MAP_BY_MAP_PROPERTY and
MAP_BY_CONTENT_PROPERTY. These strings should be used asithstring

query argument to thevaluate() method inherited from

CosQuery::QueryEvaluator . Theany returned by queries dflapFactory objects
must be of typéMaplterator . Details of this mechanism are described in Section 2.9.2,
“Queries,” on page 2-8.

MAP_BY_MAP_PROPERTY queries for maps based on their properties (that is,
those of the Map ‘header,’ rather than those of the contditeggpable s). Both ‘top-
level’ Maps and suliMaps can be returned, and there is no need for a
“recursion_depth” parameter to this query (see Section 2.8, “Nested Maps,” on
page 2-6).

MAP_BY_CONTENT_PROPERTY yieldsMaps for which the contained

Mappable s satisfy the query criteria. This query has “recursion_depth” (oflome

or as astring that evaluates to one) as a mandatory parameter that determines how
deep the recursion can be. This topic is discussed in Section 2.8, “Nested Maps,” on
page 2-6.

The attributenum_maps contains the number dflaps that are available from the
get_all_maps() method.get_map_by id() is a retrieval method to fetch a known
map from a server.

Thevocabulary_finder attribute contains the€ocabularyFinder that holds the
Vocabulary s corresponding to the search criteria.

Since objects of typ®apFactory are entry points into servers that proviaps, it
is likely that they will be registered with a CosTrader service. If they are, the following
Service Type shall be used:

Genomic Maps V1.0 December 1999

service omg.lsr.MapFactory {
mandatory property string provider;
mandatory property StringList map_databases_served;

}

Likewise, if aMapFactory is registered with a CosNamingService, this shall be done
as follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/ provider IMapFactory

3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssignme

enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

valuetype Assignment {
public boolean framework_assignment;
public VocabularyString evidence;
public PositionList positions;
public AssignType assign_type;

¥

valuetype SubMapAssignment : Assignment {
public Map mapped_entity;
h

valuetype MappableAssignment : Assignment {
public Mappable mapped_entity;

h

As discussed above, an assignment is an instance of the many-to-many association
between maps and the mapped entities, and holds the positional information that is the
objective of mapping in general (see also Figure 1-1 on pageAls@gnment s must
always be returned as eitheMappableAssignment or as aSubMapAssignment .

Only these sub-types have tirapped_entity member (of different type) that make
them meaningful. Thenapped_entity member refers to thielappable or subMap
respectively, that is described by tAssignment . Thepositions field describes

where it has been mapped. In the case of compound assignments, this is at more thar
one location (see below). Wap cannot have two differe{ssignment s for the
sameMappable or subMap: in this situation, a singl&ssignment with multiple

Position s should be used.

assign_type is used to describe the following information. Assignments may be
compound (e.g., if experimental information is ambiguous, or genes are detected in
multiple copies). An assignment may also be a negative one, in the sense that a marker
is known not to be at a certain location. These semantics can be expressed using the
assign_type member;

value ofassign_type member
SINGLE theMappable or subMap is at the single position given
NOT theMappable or subMap is not at the single position given;

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-11

ALL theMappable or subMap is at all of the several positions given;

ONE theMappable or subMap is at one, unknown, of the several
positions given;

SOME theMappable or subMap is at more than one, unknown, of the
several positions given;

NONE theMappable or subMap is at none of the several positions
given.

SINGLE is probably the most commonly used value of #rism. The values
SINGLE andNOT can only apply to singl@osition s. The usage of the typéd.L,
ONE, SOME, andNONE only apply if there is more than oResition .

The framework_assignment field of valuetype Assignment indicates whether
the assignment was of a framework marker or not.

An Assignment cannot be null. Theositions member ofAssignment must
contain at least onBosition . The listpositions may not contain duplicates. Their
ordering is by increasingositions[0] .

3.3.12 Interface Assignmentlterator

interface Assignmentlterator {

boolean next(out Assignment the_assignment)
raises(Iteratorinvalid);

boolean next_n(in unsigned long how_many,

out AssignmentList assignment_list)

raises(Iteratorinvalid);

void reset();

void destroy();

k

Objects of this type are used to step through a lisiseignment s. It is the only valid

return type to be contained in they returned by thevaluate() method ofinterface

Map and its sub-types. The semantics of the iterator mechanism are described in more
detail in Section 2.2, “Iterators,” on page 2-2.

3.3.13 Valuetype Position

valuetype Position {

public long rank;

public float LOD_score;
h

Position is the base-type of a family of types that hold the location information of an
Assignment . In general, the positional information of an assignment includes or
implies a point(s) of reference, units, and a measure of the quality of the assignment.
These factors and their usage vary widely across different types of Ruegitfon has

two membersrank andLOD_score . rank represents the most elementary position

3-12 Genomic Maps V1.0 December 1999

3

information: the index of an entity in an ordered list (ties are allowed). Ranks have
usually a significance measure attached in the form of a LOD score; this is the role of
the LOD_score member.

NeitherPosition , nor any of its sub-types is allowed to be null.

The unextended typosition is likely (but not required) to be usedAssignment s
of OrderedMap s.

valuetype MetricPosition: truncatable Position {
public float left_end,;
public float right_end;

|3

MetricPosition specializedPosition for situations where the real distance to the
beginning of the map is known. This distance is contained in the meieleend

andright_end . If the mapped entity is segment-likeft end andright_end denote
the location of the entity’s end-points as a distance to the beginning of the map.

If left_end is greater thamight_end , the segment is placed on the map in reversed
direction.

If the mapped entity is considered to be point-like and the error associated with the
placement can be represented as a distance)efieend andright_end represent
the end-points of the interval in which tMappable is believed to lie.

If a Mappable or subMap is considered point-like and the error of the placement is
unknown, negligible, or cannot be represented as a distancdethemd and
right end have identical values, again being the distance to the beginning of the map.

MetricPosition s are likely to be useful iAssignment s of LinearMap s.

3.3.14 Valuetype RelativePosition

valuetype RelativePosition: truncatable Position {
public any left_flanking_entity;
public any right_flanking_entity;

¥

RelativePosition represents location information that is relative to (an)other
Mappable (s) or subMap(s). The fieldleft_flanking_entity is the point of reference
to the left of the mapped entity, andht_flanking_entity is that to the right. Either
but not both of these members can be null, in case there is just one flanking entity.
Only Mappable or Map are valid types for thany.

If the mapped entity is considered segment-like, lafidflanking_entity lies, on the
current map, to the right afght_flanking_entity , the placement of the mapped
entity on the current map is in reverse direction.

RelativePosition offers no location information more precise than indicating the
flanking entities; for this purpose, the tyRelativeMetricPosition can be used.

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-13

3-14

3.3.15 Valuetype RelativeMetricPosition

valuetype RelativeMetricPointPosition: truncatable RelativePosition {
public float distance_|left;
public float distance_right;

I3

RelativeMetricPosition is used to represent location information that is relative to
(an)otherMappable (s) or subMap(s), but where also a real distance to the flanking
entities is knowndistance_left is the distance to theft _flanking_entity ;
distance_right that to theright_flanking_entity . If either of the flanking entities is
null, the corresponding distance is undefined.

No data-type or convention is provided to deal with the exceptional case of an entity
lying to one side oboth flanking entities.

3.3.16 Interface MapCorrelationFactory

interface MapCorrelationFactory: CosQuery::QueryEvaluator {
const QueryString GET_CORRELATION = "get_correlation";
const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

readonly attribute unsigned long num_correlations;
readonly attribute VocabularyFinder vocabulary_finder;

I3

The data typéapCorrelationFactory provides the methods to obtain cross-
correlations of maps.

As with the other factories described in this document, the queries are represented as
fixed pre-defined query strings which are passed agmtbting query argument to

the evaluate() method inherited fronCosQuery::QueryEvaluator . Details of this

are described in Section 2.9.2, “Queries,” on page 2-8.Médg@CorrelationFactory

interface has two such querié3ET_CORRELATION and

GET_ALL_CORRELATIONS .

The GET_CORRELATION query has the mandatory input parameter “map,” which is
anldentifier string. It returns all the correlations known for the map designated by the
given identifier. TheGET_ALL_CORRELATIONS query has the mandatory input
parameters “mapl” and “map2,” boldentifier strings. This query returns the
correlations known between the two maps denoted by the identifiers given. As with the
other query methods, these queries may take additional query criteria using the
parameter mechanism described in Section 2.9.2, “Queries,” on page 2-8.

Only entities of typeMapCorrelationList are valid as the type of tlamy returned by
the evaluate() .

MapCorrelationFactory objects are likely to be registered with a CosTrader service.
If they are, they shall do so with the following Service Type:

Genomic Maps V1.0 December 1999

service omg.lsr.MapCorrelationFactory {
interface DsLSRGenomicMaps::MapCorrelationFactory;
mandatory property string provider;

h
Likewise, if aMapCorrelationFactory is registered with a CosNamingService, it
shall be done as follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/ provider IMapCorrelationFactory

3.3.17 Typedef AssignmentPair

typedef sequence<AssignmentPair> AssignmentPairList;
typedef Assignment AssignmentPair[2];

An AssignmentPair represents one correspondence between assignments on two
maps.

3.3.18 Interface AssignmentPairlterator

interface AssignmentPairlterator {
boolean next(out AssignmentPair the_assignment_pair)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AssignmentPairList assignment_list)
raises(Iteratorinvalid);
void reset();
void destroy();
¥

This iterator is used to step through a seAsdignmentPairs . The semantics of the
iterator is described in detail in Section 2.2, “Iterators,” on page 2-2.

3.3.19 Typedef MapPair
typedef Map MapPair[2];

When maps are correlated, the current standard respresents this using pairs of maps.
This data type is defined for that purpose.

3.3.20 Interface MapCorrelation

The data types used to represent correlations between two maps were depicted in
Figure 1-3 on page 1-6.

Genomic Maps V1.0 Module DsLSRGenomicMaps Dec. 1999 3-15

3-16

interface MapCorrelation {
readonly attribute Identifier id;
readonly attribute MapPair map_pair;
readonly attribute AssignmentPairlterator correspondences;

I3

MapCorrelation is a data type that contains all the information of a map cross-
correlation. Membeid provides an identification tagiap_pair[0] andmap_pair[1]
contain the two maps that are cross-correlated. A correspondence between an
Assignment onmap_pair[0] and one omap_pair[1l] forms anAssignmentPair ,
with each first assignment of the pair beingmap_pair[0] and each second one on
map_pair[1] . The full list of correspondences is available from the
correspondences attribute, which is an iterator.

Nothing is implied about the identity ofiap_pair[0] andmap_pair[1] ; they could
even be the same map. Tearespondences list is sorted bypositions[0] of the
first Assignment of eachAssignmentPair .

Genomic Maps V1.0 December 1999

OMG IDL A

A.1 File: DsLSRControlledVocabularies.idl

/[File: DsLSRControlledVocabularies.id|
#ifndef DS LSR_CONTROLLED_VOCABULARIES_ IDL_
#define DS LSR_CONTROLLED_VOCABULARIES IDL_

#pragma prefix "omg.org"
#include <CosLifeCycle.idl>

module DsLSRControlledVocabularies {
/I typedefs:
typedef sequence <string> StringList;
typedef string Identifier;
typedef string VocabularyString;
typedef sequence<string> VocabularyStringList;

valuetype VocabularyEntry {

public VocabularyString vocabulary_string;
public string description;

3

typedef sequence<VocabularyEntry> VocabularyEntryList;
exception Iteratorinvalid { string reason; };

interface VocabularyEntrylterator {
boolean next(out VocabularyEntry the_entry)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many, out VocabularyEntryList list)
raises(Iteratorinvalid);
void reset();
void destroy();
}; Il interface VocabularyEntrylterator;

Genomic Maps V1.0 December 1999

A-1

interface Vocabulary: CosLifeCycle::LifeCycleObiject {
readonly attribute string name,;
readonly attribute string description;
readonly attribute unsigned long num_entries;

VocabularyEntrylterator get_all_entries();
boolean is_contained(in string test_string);

}; Il interface Vocabulary;

typedef sequence<Vocabulary> VocabularyList;

interface VocabularyFinder {
readonly attribute string name;
readonly attribute unsigned long hum_vocabularies;

StringList get_all_vocabulary _names();
VocabularyList get_all_vocabularies();
Vocabulary get_vocabulary by name(in string name);
void destroy();
}; Il interface VocabularyFinder
}.// module DsLSRControlledVocabularies
#endif // #ifdef _DS_LSR_CONTROLLED_ VOCABULARIES_IDL_

A.2 File: DSLSRLQSLink.idl

/IFile: DSLSRLQSLIink.idl
#ifndef _DS LSR_LQS_LINK_IDL_
#define _DS_LSR_LQS LINK_IDL_

#pragma prefix "omg.org"

#include "TerminologyService.idl"
#include "DsLSRControlledVocabularies.idl"

module DSLSRLQSLink {
interface LQSVocabularyFinder:
DsLSRControlledVocabularies::VocabularyFinder {
readonly attribute TerminologyServices::LexExplorer lex_explorer;
K
h

#endif /_DS_LSR_LQS_LINK_IDL_

A-2 Genomic Maps V1.0 December 1999

A.3 File: DsLSRsGenomicMaps.idl

/[File: DsLSRGenomicMaps.idl
#ifndef _DS_LSR_GENOMIC_MAPS_IDL_
#define _DS_LSR_GENOMIC_MAPS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>
#include <CosQuery.idl>

#include "DsLSRControlledVocabularies.idl"

module DsLSRGenomicMaps {
Il simple typedefs:
typedef sequence<string> StringList;
typedef string QueryString;
typedef string Identifier;
typedef sequence<ldentifier> IdentifierList;

/I shorthands for imported types:

typedef CosPropertyService::Properties Properties;

typedef DsLSRControlledVocabularies::VocabularyFinder
VocabularyFinder;

typedef DsLSRControlledVocabularies::VocabularyString
VocabularyString;

typedef sequence<string> VocabularyStringList;

/Il forward declarations:

valuetype Assignment;

interface Assignmentlterator;

typedef sequence <Assignment> AssignmentList;
interface AssignmentPairlterator;

valuetype Position;
typedef sequence <Position> PositionList;

interface MapFactory;

interface Map;

interface Maplterator;

typedef sequence <Map> MapList;
exception lteratorinvalid { string reason; };

exception CannotResolvelD { Identifier id; string reason; };

interface MapsQueryLanguageType : CosQuery::QueryLanguageType {};

Genomic Maps V1.0 Dec. 1999 A-3

A-4

valuetype Mappable {
public Identifier id;
public StringList aliases;
public IdentifierList cross_references;
public VocabularyString type;
public VocabularyString species;
public VocabularyString chromosome;
public VocabularyString sex;
public Properties properties;

public float length;
public VocabularyString units;
}; /I interface Mappable

interface MapFactory: CosQuery::QueryEvaluator {
const QueryString MAP_BY_MAP_PROPERTY =
"map_by_map_property";
const QueryString MAP_BY_CONTENT_PROPERTY =
"map_by_content_property";

readonly attribute unsigned long num_maps;
readonly attribute VocabularyFinder vocabulary_finder;

Maplterator get_all_maps();
Map get_map_by id(in Identifier id) raises(CannotResolvelD);
}; Il interface MapFactory

interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
const QueryString GET_ASSIGNMENTS = "get_assignments";

readonly attribute Mappable the_mappable;
readonly attribute VocabularyFinder vocabulary_finder;

readonly attribute unsigned long num_assignments;
readonly attribute boolean circular;

Assignment
get_assignment_by mappable_id (in Identifier the_mappable,
in unsigned long recursion_depth)
raises(CannotResolvelD);
Assignmentlterator get_all_assignments();
}; Il interface Map

interface Maplterator {
boolean next(out Map the_Map)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many, out MapList map_list)
raises(lteratorinvalid);
void reset();
void destroy();
}; Il interface Maplterator

Genomic Maps V1.0 December 1999

interface OrderedMap:Map {
readonly attribute float LOD_score;

I3

interface CytogeneticElement;
typedef sequence <CytogeneticElement> CytogeneticElementList;

interface CytogeneticElement: Map {
exception NoSuperBand { string reason; };
readonly attribute long rank;

CytogeneticElement get_super_band() raises (NoSuperBand);
CytogeneticElementList get_sub_bands();
CytogeneticElementList get_siblings();

}; Il interface CytogeneticElement

interface LinearMap:Map {
const QueryString GET_INTERVAL ="get_interval";
const QueryString GET_RANGE_AROUND = "get_range_around";

readonly attribute float min_coordinate;
readonly attribute float max_coordinate;
}; Il interface LinearMap

enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

valuetype Assignment {
public boolean framework _assignment;
public VocabularyString evidence;
public PositionList positions;
public AssignType assign_type;

}; 1 valuetype Assignment

interface Assignmentliterator {
boolean next(out Assignment the_assignment)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AssignmentList assignment_list)
raises(Iteratorinvalid);
void reset();
void destroy();
}. Il interface Assignmentlterator

valuetype SubMapAssignment : Assignment {
public Map mapped_entity;
h

valuetype MappableAssignment : Assignment {
public Mappable mapped_entity;

h

Genomic Maps V1.0 Dec. 1999 A-5

A-6

valuetype Position {
public long rank;
public float LOD_score;

h

valuetype MetricPosition: truncatable Position {
public float left_end;
public float right_end;

h

valuetype RelativePosition: truncatable Position {
public any left_flanking_entity;

public any right_flanking_entity;

K

valuetype RelativeMetricPointPosition: truncatable RelativePosition {
public float distance_left;
public float distance_right;

g

typedef Assignment AssignmentPair[2];
typedef sequence<AssignmentPair> AssignmentPairList;
typedef Map MapPair[2];

interface AssignmentPairlterator {
boolean next(out AssignmentPair the_assignment_pair)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out AssignmentPairList assignment_list)
raises(lteratorinvalid);
void reset();
void destroy();
}; Il interface AssignmentPairlterator

interface MapCorrelation {
readonly attribute Identifier id;
readonly attribute MapPair map_pair;
readonly attribute AssignmentPairlterator correspondences;
readonly attribute unsigned long nhum_correspondences;
}; Il interface MapCorrelation
typedef sequence<MapCorrelation> MapCorrelationList;

interface MapCorrelationFactory: CosQuery::QueryEvaluator {
const QueryString GET_CORRELATION = "get_correlation";
const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

readonly attribute unsigned long num_correlations;
readonly attribute VocabularyFinder vocabulary_finder;
}; Il interface CorrelationFactory
}; Il module DsGenomicMaps

Genomic Maps V1.0 December 1999

#endif // #ifdef _DS_LSR_GENOMIC_MAPS_IDL_

Genomic Maps V1.0 Dec. 1999

A-7

A-8

Genomic Maps V1.0

December 1999

Relation to Lexicon Query Service B

The CORBAmed Lexicon Query Service is an OMG standard for representing medical
terminology systems in a comprehensive framework. This includes such things as
naming authorities, presentation (formats, language), conversion between different
coding schemes, general description of relationships between concepts (including
hierarchies), and different versions of coding schemes and value domains. None of
these are deemed relevant for the domain of genomic maps. The
DsLSRGControlledVocabularies module of the Genomic Maps specification
essentially offers a ‘dynamienum’, and parts of th&alueDomain aspects of LQS
could be used to address some of these needs.

This appendix describes a mapping between the types in the
DsLSRControlledVocabularies module of the current standard, and the
ValueDomain aspects of the Lexicon Query Service (LQS). This mapping may prove
useful if implementors want to base their implementation of
DsLSRControlledVocabularies on an implementation of LQS.

The list below follows the order of definitions given in the
DsLSRControlledVocabularies.idl file, which can be found in Section A.1, “File:
DsLSRControlledVocabularies.idl,” on page A-1. For each item, the
DsLSRControlledVocabularies type is given first, the LQS equivalent second. All

the relevant LQS types are in therminologyServices module; therefore the types

are not scoped by their module name. Attributes and methods are scoped by their class
name using dot-notation where necessary.

® \ocabularyString corresponds to QualifiedCode , but with a human-readable
ConceptCode and an empty¥odingSchemelD . The functionality of the latter is
not needed, as it is implied by the context.

* valuetype VocabularyEntry corresponds tickListEntry . Inside this aggregate
type, the membevocabulary_string corresponds to tha qualified_code
member, whereadescription corresponds tpick text .

® \ocabularyEntrylterator corresponds t®ickListlter .

Genomic Maps V1.0 December 1999 B-1

B-2

interface Vocabulary corresponds roughly tdalueDomainld . The latter is
typedef -ed tostruct QualifiedCode . That is,ValueDomainitself is not a
CORBA object, but is represented by an ID. Its methods can be found in the
LexExplorer interface: thevVocabulary methods correspond to methods in
LexExplorer that haveValueDomainld input arguments (see below). They all
may raise théJnknownValueDomain exception.

Vocabulary.name corresponds t&%alueDomainld . That is,ValueDomainld
corresponds to both\ocabulary object as well as to its own (human-readable)
name.

Vocabulary.description is not represented in LQS; this attribute is for
convenience only, and can be left empty.

Vocabulary.get_all_entries() corresponds tget_pick_list(in ValueDomainld
value_domain_id, ...) in theLexExplorer interface. This methods returns a
PickListlter ; theVocabulary.num_entries attribute corresponds to the quantity
obtained fromPickListlter.max_left() when invoked appropriately.

Vocabulary.is_contained(in string test_string) corresponds to
LexExplorer.is_concept_in_value_domain(in QualifiedCode
qualified_code, in ValueDomainld value_domain_id)

interface VocabularyFinder corresponds thexExplorer .

\ocabularyFinder.name corresponds to
LexExplorer.terminology_service_name

get_all_vocabulary_names() andget_all_vocabularies() in interface
VocabularyFinder correspond taexExplorer.list_value_domain_ids() . This
method returns &alueDomainlditer , which is an iterator. The
VocabularyFinder.num_vocabularies attribute corresponds to the quantity
obtained fromValueDomainlditer.max_left() when invoked appropriately.

VocabularyFinder.get_vocabulary by name() is not represented in LQS,
sinceValueDomainsare not CORBA objects, but are represented by a
ValueDomainld . Instantiating a/alueDomainld would require a

ValueDomainld as input argument, which obviates the need for this method in
LQS.

Genomic Maps V1.0 December 1999

Assignment
assignment

bin

clone

compound assignment

contig

controlled vocabulary

cytogenetic map

EST

factory

framework

gene

genome

genomic

Glossary

Data type to represeassignmens

Placementof a Mappable or sub-Mapon aMap; contains position information. Can
be compound See alsiMappableAssignment and SubMapAssignment.

One of an ordered set of collections of unordaredkers.

In the context of large-scale sequencing: Isequenceused ingenomesequencing.
Clones or sub-clones are assembled auotigs.

A non-unique placement of Mappable on aMap.
A genomic sequencéragment assembled from an overlapping grouploifies.

A set of strings that are valid as the values of a vocabulary string. The standard
specifes a/ocabulary data type that represents such sets.

Map (or image) of chromosome banding patterns. Seeidiggram.

Expressed Sequence Tag.

An object that is capable of ‘producing’ other objects (simply by returning them as a
result of a method call). These objects may or may not be entirely new and/or shared

with others.

In the context of mapping: map consisting of well known and high-quality ‘anchor
points’ (frameworkmarkers), relative to which othemarkers are placed.

Unit of inheritance; also: the DN&equencecoding for a particular proteisequence

Also: unit of independently regulated transcription. No definition is generally accepted

and the issue is somewhat contentious.
The full volume of information contained in the genetic material of a species.

Belonging/applying to thgenomeas a whole.

Genomic Maps V1.0 December 1999 Glossary -1

genomic map Map of chromosome content obtained by any means. This is as opposed to genetic
map, which is generally used for maps obtained fliakage analysis The termmap
is used more frequently in the domain of molecular genetics, but is too general.

genomic sequence Sequencesuch as existing in the chromosomes themselves.

idiogram Simplified drawing of a chromosome that highlights certain aspects such as banding
patterns. See alstytogenetic map

linkage analysis The calculation omaps based on the observed patterns of occurrences of traits in
families of individuals.

locus A location on the chromosome (as opposed to the contents of such a location, such as
agené. In the current standard, these entities are best represerittabpable s.

LOD score Logarithm of odds score; statistical measure of the qualityp&@ementon amap.
The higher, the better.

LQS Lexicon Query Service; an OMG CORBA standard (formal/99-03-01) that could be
used to deal with representationscohtrolled vocabularies

Map Data type that represemsaps.

map A summary of chromosome content. The ultimaigp is the full sequence of a
chromosome (in which case ‘summary’ is a misnomer). Seegaisomic map

Mappable Term used in this standard to represent anything that can be placedam &his
includesmaps themselves, in the caserdsted or sub-maps

MappableAssignment An assignment of a simpMappable (as opposed to sub-Map).

marker Any experimentally identifiable element on a chromosome. Examples ingkreks,

ESTs, polymorphisms.

nested map A map placed, at a certain location, within anothesp. Same asub-Map.

OBV Objects-by-value; seealuetype

PIDS Person Identification Service; an OMG CORBA standard (formal/99-03-05) for
uniquely identifying persons.

placement Seeassignment

polymorphism Any variation in chromosome content that can be used to distinguish between

individuals; used idinkage analysis

ordered Having an ordering; in the context of molecular genetics, indicate®iathe order
is known, rather than more precise distances.

sequence Biologically, a string of nucleotides (DNA building blocks) or amino acids (protein
building blocks. Often the termequenceis used as including additional information..

STS Sequence Tagged Site. An exampl&S&T.

sub- Map A Map that is contained in anothbtap. Same asested map

Glossary - 2 Genomic Maps V1.0 December 1999

SubMapAssignment An assignmentof asub-Map inside anotheMap

valuetype IDL keyword from the Objects-by-Value specification, designating an entity that lies
halfway between an IDIstruct and an IDLinterface

vocabulary string A string that can only assume a limited set of values; the contentsouit@lled
vocabulary.

Genomic Maps V1.0 December 1999 Glossary - 3

Glossary - 4 Genomic Maps V1.0 December 1999

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Genomic Maps Overview
	1.1 Specification Overview
	1.1.1 Document Structure
	1.1.2 Module DsLSRControlledVocabularies
	1.1.3 Module DsLSRGenomicMaps

	General Description
	2.1 Objects-by-value
	2.2 Iterators
	2.3 Controlled Vocabularies
	2.4 Identifier Strings
	2.5 Mappable
	2.6 Mappable and Map
	2.7 Mappables and Assignments
	2.8 Nested Maps
	2.9 Retrievals and Queries
	2.9.1 Retrievals
	2.9.2 Queries
	2.9.3 Wildcards
	2.9.4 Ordering

	2.10 Lifecycle Issues

	Modules and Interfaces
	3.1 Module DsLSRControlledVocabularies
	3.1.1 Exceptions
	3.1.2 Typedef VocabularyString
	3.1.3 Valuetype VocabularyEntry
	3.1.4 Interface VocabularyEntryIterator
	3.1.5 Interface Vocabulary
	3.1.6 Interface VocabularyFinder

	3.2 Module DsLSRLQSLink
	3.2.1 Interface LQSVocabularyFinder

	3.3 Module DsLSRGenomicMaps
	3.3.1 Typedef Identifier
	3.3.2 Exception CannotResolveID
	3.3.3 Valuetype Mappable
	3.3.4 Interface Map
	3.3.5 Interface OrderedMap
	3.3.6 interface CytogeneticElement
	3.3.7 Interface LinearMap
	3.3.8 Interface MapsQueryLanguageType
	3.3.9 Interface MapIterator
	3.3.10 Interface MapFactory
	3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssignment
	3.3.12 Interface AssignmentIterator
	3.3.13 Valuetype Position
	3.3.14 Valuetype RelativePosition
	3.3.15 Valuetype RelativeMetricPosition
	3.3.16 Interface MapCorrelationFactory
	3.3.17 Typedef AssignmentPair
	3.3.18 Interface AssignmentPairIterator
	3.3.19 Typedef MapPair
	3.3.20 Interface MapCorrelation

	Appendix A - OMG IDL
	Appendix B - Relation to Lexicon Query Service
	Glossary

