
Genomic Maps Specification

Version 1.0
February 2002

Copyright 1999, 2000, 2001 EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, 2000, 2001 Millennium Pharmaceuticals, Inc.
Copyright 1999, 2000, 2001 NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
OMG web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . iii

1. Genomic Maps Overview . 1-1
1.1 Specification Overview . 1-1

1.2 Compliance Points . 1-1
1.2.1 “Base Maps” . 1-1

1.2.2 “Nested Maps”. 1-2
1.2.3 “Correlated Maps“. 1-2

1.2.4 “LQSLink” . 1-2

1.3 Document Structure . 1-2
1.3.1 Module DsLSRControlledVocabularies 1-3

1.3.2 Module DsLSRGenomicMaps 1-4

2. General Description . 2-1
2.1 Objects-by-value . 2-1

2.2 Iterators . 2-2

2.3 Controlled Vocabularies . 2-3

2.4 Identifier Strings . 2-4

2.5 Mappable . 2-6

2.6 Mappable and Map. 2-6

2.7 Mappables and Assignments . 2-6

2.8 Nested Maps. 2-7

2.9 Retrievals and Queries . 2-8

2.9.1 Retrievals . 2-8
2.9.2 Queries . 2-8
February 2002 Genomic Maps Specification, v1.0 i

Contents
2.9.3 Wildcards . 2-11
2.9.4 Ordering . 2-11

2.10 Lifecycle Issues . 2-11

3. Modules and Interfaces. 3-1
3.1 Module DsLSRControlledVocabularies 3-1

3.1.1 Exceptions . 3-1

3.1.2 Typedef VocabularyString 3-2
3.1.3 Valuetype VocabularyEntry 3-2

3.1.4 Interface VocabularyEntryIterator. 3-2
3.1.5 Interface Vocabulary . 3-3

3.1.6 Interface VocabularyFinder. 3-3

3.2 Module DsLSRLQSLink . 3-4
3.2.1 Interface LQSVocabularyFinder 3-4

3.3 Module DsLSRGenomicMaps . 3-4
3.3.1 Typedef Identifier . 3-4

3.3.2 Exception CannotResolveID. 3-5
3.3.3 Valuetype Mappable . 3-5

3.3.4 Interface Map . 3-6
3.3.5 Interface OrderedMap. 3-7

3.3.6 interface CytogeneticElement. 3-8
3.3.7 Interface LinearMap . 3-8

3.3.8 Interface MapsQueryLanguageType 3-9
3.3.9 Interface MapIterator . 3-9

3.3.10 Interface MapFactory . 3-10
3.3.11 Valuetypes Assignment,Mappable

Assignment and SubMapAssignment 3-11
3.3.12 Interface AssignmentIterator 3-12

3.3.13 Valuetype Position . 3-12
3.3.14 Valuetype RelativePosition 3-13

3.3.15 Valuetype RelativeMetricPosition. 3-14
3.3.16 Interface MapCorrelationFactory 3-14

3.3.17 Typedef AssignmentPair 3-15
3.3.18 Interface AssignmentPairIterator 3-15

3.3.19 Typedef MapPair . 3-15
3.3.20 Interface MapCorrelation 3-15

Appendix A - OMG IDL . A-1

Appendix B - Relation to Lexicon Query Service B-1

Glossary . Glossary-1
ii Genomic Maps Specification, v1.0 February 2002

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
February 2002 Genomic Maps Specification, v1.0 i

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in the Object Management Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming state-
ments from ordinary English. However, these conventions are not used in tables or section
headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the name
of a document, specification, or other publication.
ii Genomic Maps Specification, v1.0 February 2002

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• EMBL-EBI

• Genomica Corp.

• Infobiogen

• Millennium Pharmaceuticals, Inc.

• NetGenics, Inc.

• Technische Universität Berlin
February 2002 Genomic Maps, v1.0: Acknowledgments iii

iv Genomic Maps Specification, v1.0 February 2002

Genomic Maps Overview 1
Contents

This chapter contains the following sections.

1.1 Specification Overview

This document describes a standard for representing genomic maps and their contents.
It is able to deal with practically any type of chromosome map and marker that is
likely to occur in the fast growing field of molecular genetics. Situations that are not
catered for explicitly can be addressed by extending the types and using the
conventions described in this document. The standard was developed starting from the
practical need to represent complex bodies of data in a natural way. Existing practice
and terminology is used wherever this was available and practical.

In this section, a synopsis of the data model and data types is given. Chapter 2
introduces the general design and the general rules that apply to the components in the
standard, while also providing the rationale for the design. Chapter 3 presents the
standard in detail. The full IDL is provided in Appendix A.

Section Title Page

“Specification Overview” 1-1

“Compliance Points” 1-2

“Document Structure” 1-3
February 2002 Genomic Maps Specification, v1.0 1-1

1

1.2 Compliance Points

There are four compliance points to this specification: (1) “Base Maps,” (2) “Nested
Maps,” (3) “Correlated Maps,” and (4) “LQSLink.” These compliance points make use
of the interfaces described in IDL modules DsLSRControlledVocabularies,
DsLSRGenomicMaps, and DsLSRLQSLink, but to varying degrees. The modules
are described in detail in Chapter 3; the compliance points are given below.

A compliant Genomic Maps implementation must satisfy compliance point (1) “Base
Maps” and may satisfy none or more of compliance points (2) “Nested Maps” and (3)
“Correlated Maps” and (4) “LQSLink.” LQSLink is an optional compliance point.

1.2.1 “Base Maps”

Implements all modules and interfaces described in modules
DsLSRControlledVocabularies and DsLSRGenomicMaps, with the following
exclusions:

1. “Base Maps” implementations ignore the recursion_depth parameter for query
operations (implicitly setting it to 0).

2. “Base Maps” implementations support only the MappableAssignment subtype of
Assignment.

3. “Base Maps” implementations support Mappable as the type of
left_flanking_entity and right_flanking_entity in the interface
RelativePosition. They are not required to support Map as a type for
left_flanking_entity and right_flanking_entity.

4. The additional exclusions listed under the “Nested Maps” compliance point below.

“Base Maps” is a mandatory compliance point.

1.2.2 “Nested Maps”

Implements all modules and interfaces as described in modules
DsLSRControlledVocabularies and DsLSRGenomicMaps, with the following
exclusions:

1. The interface MapCorrelation and its factory MapCorrelationFactory.

2. The interface AssignmentPairIterator and the data types AssignmentPair and
MapPair.

“Nested Maps” is an optional compliance point.

1.2.3 “Correlated Maps“

Implements all modules and interfaces described in modules
DsLSRControlledVocabularies and DsLSRGenomicMaps, with the following
exclusions:
1-2 Genomic Maps Specification, v1.0 February 2002

1

1. Exclusions (1), (2), and (3) listed under “Base Maps” above.

“Correlated Maps” is an optional compliance point.

1.2.4 “LQSLink”

The interface described in the DsLSRLQSLink module is optional.

1.3 Document Structure

The specification is composed of three modules, DsLSRControlledVocabularies,
DsLSRGenomicMaps, and DsLSRLQSLink.

Module DsLSRGenomicMaps defines mainly domain specific data types, such as
Mappables, Map, Assignment, and Position, MapCorrelation.

DsLSRGenomicMaps needs an auxiliary module,
DsLSRControlledVocabularies, that is used to define the contents of so-called
controlled vocabularies. This module is described first. A separate, optional module
DsLSRLQSLink can provide connectivity between
DsLSRControlledVocabularies and the LexExplorer interface from the Lexicon
Query Service.

UML diagrams of most of the data types are presented in Figures 1, 2, and 3. These
diagrams are meant to provide an overview, and are not complete in the sense that code
could be generated from them. For instance, not all iterators or factories are
represented.

1.3.1 Module DsLSRControlledVocabularies

A diagram of the data model for this module is given in Figure 1-1. Its data types are
briefly discussed.

Figure 1-1 UML diagram of data types of module DsLSRControlledVocabularies

1.3.1.1 VocabularyString

This data type presents a notion intermediate between an enum and a string. They are
used to represent relatively fixed string values that are more or less well known and
usually specific to the domain. Their values are defined as the contents of Vocabulary,
February 2002 Genomic Maps Specification, v1.0: Document Structure 1-3

1

a type defined in the DsLSRControlledVocabularies module. To make the intended
use of a string variable clearer, a typedef string VocabularyString is provided and
used in this specification.

1.3.1.2 VocabularyEntry

This valuetype represents the contents of a Vocabulary, and consists of the
vocabulary string along with a description.

1.3.1.3 Vocabulary

This interface represents a set a of strings that are valid in a particular context. It is a
container for VocabularyEntrys. Objects of this data type are candidates for
registration with a Naming Server or a Trader.

1.3.1.4 VocabularyFinder

An interface that gives access to Vocabularys. Each context can have a number of
different relevant Vocabularys, all of which can be represented by one
VocabularyFinder.

1.3.2 Module DsLSRGenomicMaps

UML diagrams of the data model of the mapping data types in this module are given in
Figure 1-2 on page 1-5; the types for representing map correlations are depicted in
Figure 1-3 on page 1-7. The data types are briefly discussed below.

1.3.2.1 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify
them in a certain context. The current specification also uses strings for ID attributes,
but constrains their syntax and semantics to improve interoperability. To make the
intended use of such string variables clearer, typedef string Identifier is provided
and used in this specification.

1.3.2.2 QueryString

This data type (again, a typedef string, for the same reasons as described earlier) is
used to represent fixed query types to the evaluate() method that is inherited from
CosQuery::QueryEvaluator.

1.3.2.3 Mappable

The valuetype Mappable is used to represent the contents of a Map. It represents the
MappedEntity mentioned in the RFP. Mostly, Mappables will be simple markers.
However, since maps can be nested, a nested map or sub-map is also ‘map content’
(namely of the enclosing, or nesting map). The nestability of maps allows clones,
1-4 Genomic Maps Specification, v1.0 February 2002

1

contigs or even genes and sequences to be both markers as well as maps. In other
words, Map could be regarded as a specialization of Mappable. This relationship is
however not represented by IDL inheritance but by delegation as will be explained
below.

Mappable has no information on where it is located on a map; this is the task of the
Assignment data types. There are no sub-types of Mappable defined.

Figure 1-2 UML diagram of mapping data types in module DsLSRGenomicMaps

1.3.2.4 Map

The data type Map and its sub-types are used to represent genomic maps. It has
retrieval methods, and a number of fixed QueryStrings that can be used as the input
to the evaluate() method inherited from CosQuery::QueryEvaluator. A number of
specific sub-types of Map are provided. As described in the previous paragraph on
Mappable, Map can be regarded as being a specialization of Mappable. Although
February 2002 Genomic Maps Specification, v1.0: Document Structure 1-5

1

this is-a relationship is an inheritance relationship, this standard represents it as a
delegation. The reason is that IDL syntax (i.e., sub-entity: super-entity {
… }) cannot be used to make interface Map inherit from the valuetype Mappable.

For clarity, the remainder of this specification uses the term sub-Map whenever
referring to a Map that is nested inside another Map. However, in any other respect,
sub-Map is exactly the same type as Map.

1.3.2.5 MapFactory

Map objects can be obtained from a MapFactory object. Objects of this data type are
candidates for registration with a Naming Server or a Trader. Methods for the retrieval
of Maps as well as a number fixed query strings are provided.

1.3.2.6 Assignment

An Assignment is the placement of a particular Mappable or sub-Map on a
particular Map; it holds the information concerning the location(s) of a Mappable on
a Map. The difficulty of representing either a Mappable or a sub-Map in an
Assignment is solved by having corresponding sub-types MappableAssignment
and SubMapAssignment. Assignments are never used directly; only their
specializations MappableAssignment or SubMapAssignment are.

1.3.2.7 Position

The geometric information of an Assignment. A number of sub-types are provided to
deal with different kinds of maps and assignments.

1.3.2.8 MapCorrelation

This data type is used to hold the information needed to correlate two different maps.

A UML diagram of the data types that represent correlations between two maps is
given in Figure 1-3 on page 1-7. The data types Map and Assignment are the same
as those in Figure 1-2 on page 1-5.

1.3.2.9 MapCorrelationFactory

MapCorrelations are obtained by querying a MapCorrelationFactory object. As with
Map and MapFactory, fixed query strings to be used as input for the evaluate()
method inherited from CosQuery::QueryEvaluator are given as well. Like
MapFactory, it will usually be registered with a Naming or Trader service.
1-6 Genomic Maps Specification, v1.0 February 2002

1

Figure 1-3 UML diagram of correlation data types in module DsLSRGenomicMaps
February 2002 Genomic Maps Specification, v1.0: Document Structure 1-7

1

1-8 Genomic Maps Specification, v1.0 February 2002

General Description 2
Contents

This chapter contains the following sections.

This chapter describes the principles that are used by many of the components in this
specification, along with explanations of the design rationale. The more detailed
descriptions provided in the next section, Modules and Interfaces, refer to those
provided here. For a UML diagram of some of the data types in this document, the
reader is referred to the figures located in Chapter 1. The full IDL specification can be
found in Appendix A.

Section Title Page

“Objects-by-value” 2-2

“Iterators” 2-2

“Controlled Vocabularies” 2-3

“Identifier Strings” 2-5

“Mappable” 2-6

“Mappable and Map” 2-7

“Mappables and Assignments” 2-7

“Nested Maps” 2-7

“Retrievals and Queries” 2-8

“Lifecycle Issues” 2-12
February 2002 Genomic Maps Specification, v1.0 2-1

2

2.1 Objects-by-value

The CORBA 2.3a specification provides the concept valuetype, an IDL data type
intermediate between struct and interface. They are part of the so-called Objects by
Value (OBV) specification. Although the OBV standard is relatively new and not
widely available yet, the current work uses valuetypes, as they offer definite
advantages. In the context of this standard, the benefit of valuetypes over interfaces
is scalability (a single round trip transfers the whole state of the object). The benefit of
valuetypes over structs is their extendibility through inheritance.

In the interest of scalability, the contents of a map should preferably be local to the
client. For this reason the most abundantly used types (Mappable, Position, and
Assignment) are represented using valuetypes. They are used essentially as
extendible structs, by applying the following constraints:

• all members (‘attributes’) are public,

• there are no methods,

• inheritance is only of other valuetypes (i.e., no “supports SomeInterface”),

• all inheritance uses truncatable (i.e., “casting” a sub-type to its super-type by
simply omitting the extra members is a semantically valid operation).

2.2 Iterators

If a method has to return a multi-valued result to the caller, there is a design choice of
returning these elements directly as a list, or through an iterator, or using a
combination of both.

This standard mostly uses the iterator approach. Iterators are objects that ‘point to’
elements in a set, and which can be used to ‘step through’ the set. During this stepping
process, each element is visited once. If the underlying set is ordered, this ordering is
also preserved in the output of the iterator methods. If, during the iteration, the
underlying result set changes (by another process), an exception is thrown. Iterators
allow the client to choose between the scalability of iterators and the convenience of
the lists returned by the iterators’ next_n() methods.

This standard has iterators for the data types Map, Assignment, and
VocabularyEntry. An iterator provides a pointer or cursor to step through a set of
entities. The iterators all look as follows:
2-2 Genomic Maps Specification, v1.0 February 2002

2

exception IteratorInvalid {
string reason;

};

interface ThingIterator {
boolean next(out Thing the_thing) raises(IteratorInvalid);
boolean next_n(in unsigned long how_many, out ThingList thing_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

Iteration using these objects can be in steps of one entry using the next() method,
which are returned as the out parameter. Alternatively, when using the next_n()
method, a batch of at most how_many entities are returned in the out parameter. If
the retrieval was successful, the out parameter contains the next entity or entities.
TRUE is returned if the call did not yet exhaust the iteration (i.e., if more elements are
available for subsequent calls to next() or next_n()). Conversely, a FALSE return
value signifies that no more elements are available from the iterator. If, in a call to
next_n(), less than the requested how_many elements can be returned, the out
parameter contains as many elements as were available, and the return-value is FALSE.
The next() and next_n() methods can fail (e.g., if the underlying set changed). In this
case, the IteratorInvalid exception is raised. Its reason member can be used to provide
human-readable information on details of the failure.

Calls to reset() re-position the iterator such that subsequent calls to next() or
next_n() start at the beginning of the result set. In this case, nothing is implied about
the contents of the underlying result set, or of their ordering; both may have changed.

Empty result sets (such as from queries yielding no matches) are not represented by
NULL objects, but by real iterators that are ‘empty’ (i.e., invoking their next() or
next_n() methods only ever return FALSE).

The destroy() method is used to indicate that the iterator is no longer needed, and
deletes the iterator object.

2.3 Controlled Vocabularies

When describing and representing domain-specific systems, there is frequently a need
for a string type that can only assume a limited set of allowed values, a set however
that is allowed to change over time (as values are added or removed) or space (different
servers accepting different sets of strings). Such strings are called controlled
vocabulary strings (“vocabulary strings” for brevity). A particular set of such strings,
valid in some context, is called a controlled vocabulary. Vocabulary strings typically
denote domain-specific concepts, usually as a short descriptive string or common
abbreviation, rather than as a code. An example from the mapping domain would be
the strings “unknown,” “genetic,” “EST,” and “RFLP” as valid marker types in a
particular map.
February 2002 Genomic Maps Specification, v1.0: Controlled Vocabularies 2-3

2

To specify a satisfactory standard for vocabulary strings, the usage of an enum is too
inflexible, as it would require approval and re-compilation of new IDL, possibly
rendering existing clients and/or servers incompatible. Conversely, string is too
lenient, as there is no mechanism to list or control the values that a particular variable
of such a type can assume. As a result, the definition of a system that needs vocabulary
strings becomes less precise and less interoperable. This loss of semantics is frequently
due to things as trivial as misspellings and issues of type-case and white-space usage.

Some of the controlled vocabulary functionality could be provided by the Lexicon
Query Services standard (LQS; corbamed/98-03-22). For reasons described in
Appendix B, the current specification includes the module
DsLSRControlledVocabularies, which describes a standard for representing, listing
and checking vocabulary strings. This module is general, and may be of use in contexts
other than that of genomic maps. A mapping between
DsLSRControlledVocabularies and LQS is also given in Appendix B.

To provide a standard way of offering access to the functionality LQS, a specialization
of VocabularyFinder called LQSVocabularyFinder is provided in module
DsLSRLQSLink. This optional interface has a
TerminologyServices::LexExplorer attribute that yields access to the LQS
functionality.

IDL strings are used to represent vocabulary strings. The typedef string
VocabularyString is provided, and used to indicate that the values of an attribute or
member are constrained. VocabularyStrings are contained in VocabularyEntrys
(along with a description). There are no syntactic restrictions on the value of
VocabularyStrings, but the following guidelines are suggested:

• vocabulary strings should not contain superfluous white-space (i.e., no leading or
trailing white-space); internal white-space should be represented by single spaces
only.

• vocabulary strings should be short yet descriptive. Common abbreviations often
serve this purpose well.

• empty strings are allowed but discouraged. The semantics are typically “unknown,”
“not applicable,” “missing,” “miscellaneous,” “default,” etc. It is considered cleaner
to define dedicated vocabulary strings for this purpose.

The VocabularyEntrys are served by Vocabulary objects, which can in turn be
obtained from VocabularyFinder objects. The vocabulary names presented by the
VocabularyFinder are typically identical to the names available from the
Vocabulary interface. However, this is not necessarily the case, because names
provided by individual Vocabularys cannot be guaranteed to be unique.

The anticipated use of VocabularyFinder objects is to contain a relatively limited
number of Vocabularys (say, less than 50). If there is a need for managing larger
numbers of Vocabularys, a more general and powerful facility akin to a knowledge
base would be more appropriate.
2-4 Genomic Maps Specification, v1.0 February 2002

2

2.4 Identifier Strings

There is frequently a requirement for a simple data type to indicate an entity’s identity.
In most cases, this need is or can be addressed by using a string type. The advantages
are that it is simple, lightweight, and used universally throughout the realm of
computing (and indeed outside). However the risk of using strings is that they can be
too flexible, both in terms of syntax and semantics. This easily results in the lack of
interoperability. To allow strings, yet mitigate their potential for abuse, this standard
uses the syntax convention of CosNaming::StringName as described in the
Interoperable Naming service. This convention is mainly a syntactical one; in no way
is the use of a naming service implementation required or implied (but it is not
precluded either).

A brief description of CosNaming::StringName is as follows. CosNaming::Name
is a list of struct NameComponents. For the purpose of illustration, a
NameComponent can be likened to a directory or filename, whereas
CosNaming::Name constitutes a full path-name. The struct NameComponent has
string members id and kind. To transform a CosNaming::Name into a string, all its
NameComponents are represented as strings “id.kind”. If the kind-field is
empty, this becomes simply “id”; if the id-field is empty, this becomes “.kind”;
finally, the Naming service also allows both the id- and kind-fields to be empty, which
is represented as “.”. The full stringified CosNaming::Name is then obtained by
concatenating all the NameComponents using “/” as a separator character. The
character “\” is designated as an escape character; if it precedes any of the special
characters “.”, “/” and “\”, these special characters are taken as literal characters.
The typedef string CosNaming::StringName is provided for strings used as object
names using this convention.

The genomic maps specification adopts the same syntax convention, but requests that
the components of our Identifier data type adhere to some additional semantic
constraints. These rules do not follow from, nor are implied by any semantics of the
Naming Service. The additional constraints make this data type sufficiently different
from CosNaming::StringName to warrant the dedicated typedef string Identifier.

In the remainder of this description, ‘component’ means: the sub-string of an
Identifier that corresponds to one CosNaming::NameComponent; likewise, id-
field and kind-field correspond to the equivalent fields of NameComponent.

The rules are as follows:

• Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

• The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories, etc. It is up to the
implementation to document the accepted names for the data source.

• The empty name (“.”) is valid for the first component, and represents the ‘local’ or
‘default’ collection. It is up to the implementation to document what the semantics
of ‘local’ or ‘default’ is.
February 2002 Genomic Maps Specification, v1.0: Identifier Strings 2-5

2

• Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No empty id-fields are allowed in this or any further
components.

• If two components are not enough to uniquely identify an entity, an Identifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textual
information.

• The only characters valid in a component are “a” through “z”, “0” through “9”, and
“-“ (hyphen), “_” (under_score), “$” and “.” (period). Use of the latter is
discouraged since it has a special meaning in the stringifying convention, and has
therefore to be escaped.

To comply with existing practice in the field of public data repositories, it is strongly
advised that implementations do string comparisons in a case-insensitive manner. The
CosNaming Service standard fails to mention whether type-case is, for string
comparison purposes, significant or not. Implementations that use a third-party
implementation of the Naming service may therefore wish to restrict Identifiers to
only use one type-case. It is up to an implementation to state whether mixed type-case
is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of Identifier are used as follows:

• The id-field of a component contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of an Identifier (see above).

• The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with ‘the latest release or version’. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:

• it is simple and lightweight,

• it has a well-defined and ‘re-used’ syntax,

• it is compatible with existing practice,

• it is sufficiently flexible to allow for sub-IDs if necessary.

The LSR Biomolecular Sequence Analysis standard uses the same Identifier type and
semantics.

2.5 Mappable

The data type Mappable defined in this specification is used to represent things that
can be mapped. This includes ordinary markers as well as sub-maps (see below). The
choice for this unusual, novel term was motivated by the desire to reduce the risk of
confusion with existing terms.
2-6 Genomic Maps Specification, v1.0 February 2002

2

2.6 Mappable and Map

As indicated above, a Map should be considered a special kind of Mappable to allow
for the nesting of maps. Moreover, it is desirable that map contents be local to clients.
Yet at the same time, the data type Map needs methods to serve and query its contents,
so Map should be an object local to the server.

This inheritance relationship is represented as a delegation: the interface Map has a
readonly attribute Mappable the_mappable, which contains (and transfers) the
whole state of the Mappable aspects of a Map. One could call this the ‘header
information’ of a map (such as the id, the chromosome, etc.).

2.7 Mappables and Assignments

The relationship between maps and mapped entities is a many-to-many association.
That is, one map can contain many markers, and conversely, one marker can have been
mapped on several different maps. An assignment of one marker on one map is one
instance of this map-marker relationship. Therefore, a map is a container (or factory)
of Assignments, rather than of (references to) Mappables. For this reason, the query
methods of Map and its sub-types yield assignments, never Mappables. If the
Mappables contained in a Map are required, they can always be obtained by
inspecting the mapped_entity members of the sub-types of Assignment.

Since an assignment can be both of a Mappable and of a sub-Map, the valuetype
Assignment data type is never returned directly; only its more specific sub-types
MappableAssignment and SubMapAssignment are returned. Only instances of
these sub-types contain the mapped entity that makes them meaningful.

2.8 Nested Maps

Nested maps are a potentially powerful concept for the integration of mapping data
from different (and potentially distributed) sources. Another area where nesting is
desirable is the case where resolution of a map increases over the course of a mapping
project. For example, a contig may be treated as a point-like entity at first; later, when
the mapping effort proceeds, the contig may become a map in its own right.

There are three potential problem areas with nested maps: infinite recursion,
representation and coordinate systems, and querying.

Infinite recursion occurs when a map contains itself as a sub-map. However this
standard is concerned with representation only, and it is the implementor’s
responsibility to prevent such errors. Hence, this does not pose a problem.

Coordinate systems of nested maps are generally different from that of the containing
map. Such nested maps must retain their own ordering and coordinate system, as sub-
maps may not be under the control of the implementation, and transforming the
coordinates would be cumbersome. Perhaps more importantly, currently no widely
accepted general coordinate system is available that would make such a transformation
possible or meaningful. For the same reasons, maps and map sections that are returned
from queries always retain the nesting structure of the underlying map.
February 2002 Genomic Maps Specification, v1.0: Mappable and Map 2-7

2

The problem with queries into possibly nested maps is whether the query method is
expected to satisfy the criteria by inspecting the immediately contained mapped entities
only, or alternatively, should delve into any contained nested maps to find matches. A
related issue is how a query method should return ‘nested hits’ (i.e., queries that
actually are satisfied at a nested level).

The first question is addressed by having a parameter recursion_depth for query
operations where this is relevant. If this parameter is zero, no descending into nested
maps takes place, and only ‘top-level’ mapped elements are inspected for matches
(although these top-level elements themselves may in fact be maps). If
recursion_depth is greater than zero, the query descends into a nesting level no
deeper than its value. The value of the recursion_depth parameter only determines
how deep a query should descend; it does not determine the way in which the obtained
match is returned.

This is the second issue, and it is resolved as follows: each query for mapped entities
shall only return directly contained Assignments (whether this concerns entities of
Map type or not). Entities that match at a deeper level (‘nested hits’) are not returned
directly; instead, the Assignment that contains it (either directly or through yet
further nesting) is returned. In other words, each query either returns the sought entity
(the usual case) or the Assignment that contains it at some deeper nesting level.

In the latter case (the ‘nested hit’ case), only the first step in the access path to an
entity contained in a nested map is given as a result. Therefore, in this situation, the
same query has to be effected on the returned map, possibly several times, until the
sought entity itself is obtained.

The rationale for this design is that it is sufficient, simple and unambiguous. Moreover
in client implementations, explicit representations of the nested map ‘tree’ will have to
be established before the map can be rendered anyway. Therefore, the usefulness of a
method that returns the complete access path to the mapped entity in one call is
debatable.

Finally, it can be remarked that iterators are well suited to dealing with recursive
structures. By always invoking their next(out_arg) method on nodes in the tree
structure, depth-first traversal of a nested map structure can be effected. Conversely,
breadth-first traversal can be had by using the next_n(n, out_args) method with
n being a very large number.

2.9 Retrievals and Queries

The current specification offers limited query capability by two means. Firstly, a
distinction is made between retrieval and querying. Retrieval, in this context, includes
both the resolving of a known entity given some designator such as name or an id, as
well as the listing and/or obtaining of all entities in a given space. In contrast, querying
corresponds to the semantically different (and richer) concept of searching among
entities in a given space.
2-8 Genomic Maps Specification, v1.0 February 2002

2

2.9.1 Retrievals

Retrievals are available as specific methods, typically get_thing_by_id() for the
resolution case, and get_all_things() for the listing case. The resolution
methods can raise the CannotResolveID exception:

exception CannotResolveID {
Identifier id;
string reason;

};

This rationale for using an exception rather than returning nothing is that resolution
should normally be considered to succeed.

2.9.2 Queries

The more general query functionality is provided by inheriting from
CosQuery::QueryEvaluator. Its evaluate() method is used for the expression of a
number of queries, and has the following signature:

any evaluate(in string query, in QLTypeql_type, in ParameterList params)
raises (QueryTypeInvalid, QueryInvalid, QueryProcessingError);

A number of const QueryStrings (with descriptive names such as
GET_ASSIGNMENTS) are defined that represent fixed queries. To effect a query, one
such predefined QueryString is passed as the query argument to evaluate(). The
contents of the params argument contain the criteria for the query, and are described
below. In the remainder of this document, the term “query” is often synonymous with
“passing a particular pre-defined QueryString into the evaluate() method.”

The argument ql_type denotes the query language type. Its formal type is a
CORBA::InterfaceDef corresponding to one of the (empty) sub-classes of the
(empty) QueryLanguageType interface defined in CosQuery. All interfaces that
extend CosQuery::QueryEvaluator must accept MapsQL. This query language type
is defined as the CORBA::InterfaceDef of the MapsQueryLanguageType
interface (the ‘value’ of this CORBA::InterfaceDef cannot be defined in IDL; hence
this textual description). In contrast to the formal CosQuery module, the current
specification does not require that at least one of the OQL or SQL query languages be
supported.

The semantics of MapsQL are as follows. The params argument to evaluate()
contains name-value pairs that correspond to criteria that have to be fulfilled. It is
essentially a query in conjunctive normal form (albeit a very restricted version: just
two levels of clauses are possible, and there is no logical NOT operator). That is,
queries such as the following:

((criterion1 = value1 OR criterion1 = value2 OR criterion1 = …)
 AND
 (criterion2 = value3 OR criterion2 = value4 OR criterion2 = …)
 AND
February 2002 Genomic Maps Specification, v1.0: Retrievals and Queries 2-9

2

 (criterion3 = value5 OR criterion3 = value6 OR criterion3 = …)
 AND
 …)

are represented by a list of struct { string name; any value; } pairs with the
following values:

{ { “criterion1” , {“value1”, “value2”, …} },
 { “criterion2” , {“value3”, “value4”, …} },
 { “criterion3” , {“value5”, “value6”, …} },
 …
}

(The name-value pairs are defined as a CosQueryCollection::ParameterList). Each
name-value pair represents one criterion; its value (packaged as an IDL any) is a list of
terms that each would constitute a valid match for the criterion. That is, the ‘local’
match for one criterion is the logical OR of all the values in the list. The final result of
a query is simply the logical AND of the local matches obtained for each of the
separate criteria.

As a convenience, a criterion queried with a single particular value (rather than a list)
may be represented as that value, rather than as a list of values of length one. Likewise,
separate criteria having the same criterion name are treated as one criterion that
matches any of the values of all the separate criteria. For example:

{ { “criterion1” , {“value1”, “value2” } },
 { “criterion1” , “value3”} }

is equivalent to

{ { “criterion1” , {“value1”, “value2”, “value3” } }

Strings are always allowed as search values, but an implementation may offer querying
on types other than string. In some cases, the required type of the query is indicated
(e.g., long for parameter “recursion_depth”, float for “from,” “to,” and “range” for
the queries of LinearMap; see below).

The values of match criteria typically can assume only a limited number of string
values. That is, they are vocabulary strings. For this reason, each match criterion
corresponds to a Vocabulary, with the name of the criterion being the name attribute
of its Vocabulary. The different criteria and corresponding Vocabularys that apply to
a particular queriable object are available from its VocabularyFinder. An easy way to
obtain the criteria names is to invoke its get_all_vocabulary_names() method.
Typical criteria are “id,” “type,” “specie,” “chromosome,” “sex,” as these criteria
correspond to the fixed members of the data types Mappable (and Map). The name-
parts of the contents of the properties of Mappable are other likely candidates for
match criteria.

Criteria that can assume an unlimited number of values (e.g., length,
recursion_depth) are also represented by a Vocabulary, but this Vocabulary is
degenerate, in that it contains no VocabularyEntrys.
2-10 Genomic Maps Specification, v1.0 February 2002

2

The return type of evaluate() is any. In current specification, each of the queriable
objects shall return only one particular type, which is documented below.

Some queries have mandatory parameters. Such parameters and their values must be
passed when invoking evaluate(), and their semantics as documented below must be
implemented. An example is “recursion_depth” for queries of Map. In the description
of the queries below, the mandatory parameters are indicated. The current standard
does not specify a general solution to dynamically inquire whether a parameter is
mandatory. (A suggestion is to put this information in the description attribute of the
Vocabulary that represents the parameter.)

The exceptions QueryTypeInvalid, QueryInvalid, and QueryProcessingError may be
raised by evaluate(). QueryTypeInvalid is raised if the query language type is not
understood. To be compliant with this standard, this is not allowed to happen when the
MapsQL is used. QueryInvalid is raised whenever query parameter is not valid. The
most important cases are:

• the value passed as in query string in a call to evaluate() is not one of the const
strings defined in this specification, and is not recognized by the implementation.

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter names (i.e., they are not among the names of the vocabularies contained
in the vocabulary_finder, and hence cannot be queried for.

• the list passed as in ParameterList params in a call to evaluate() does not
include the mandatory parameters (e.g., recursion_depth in some queries).

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter value strings. For example, they are not among the vocabulary strings
contained in the corresponding vocabulary (e.g., querying for sex = “red”).

• the list passed as in ParameterList params in a call to evaluate() uses wrong
parameter value types (that is, if they are other than string).

• The why string of the QueryInvalid exception should document the details of the
failure in human readable form; at least the above five cases must be distinguished.

• The QueryProcessingError is raised to signal a ‘run-time’ of the query execution.

The advantages of using CosQuery are re-use, and the ability to easily extend the
range of query capabilities by providing additional query language types and/or
additional predefined QueryStrings.

2.9.3 Wildcards

Implementations can, but are not required to offer the use of wildcards in queries. If
wildcards are offered, they should follow the convention used for Posix filename
wildcards (ISO/IEC 9945-2:1993):

• ‘?’ is taken as meta-character that represents any single character;

• ‘*’ is the meta-character that represents a string of any length (including 0),
consisting of any characters;
February 2002 Genomic Maps Specification, v1.0: Retrievals and Queries 2-11

2

• ‘\’ is the meta-character that makes the character following it lose its special
meaning in case it is a meta-character (including ‘\’).

2.9.4 Ordering

The ordering of map contents returned by a query is not strictly necessary, as the client
could reconstruct it from the position information. However, it is obviously more
natural and convenient for clients if the results are ordered. This specification requires
that the Assignments in an AssignmentList (see below) be by increasing
Assignment.positions[0].rank.

If an AssignmentList contains an Assignment having a compound position, the
ordering of the AssignmentList is by definition not total, but it is unique,
predictable, and repeatable.

The elements in the positions attribute of the Assignment data type are ordered by
position.rank. The Positions (and their ranks) of one Assignment must be
distinct.

As discussed under the description of multi-valued return types, the ordering of results
does not depend on the way the results are retrieved.

2.10 Lifecycle Issues

A number of interfaces used in this specification have a method to delete the object.
This can be through a destroy() method (the iterators), or by inheritance from
CosLifeCycle::LifeCycleObject (Map and its sub-types). The interfaces using the
latter approach (Map and Vocabulary) can, in addition to the inherited remove()
method, provide the move() and copy() functionality. If they do not implement these
methods, the standard system exception CORBA::NO_IMPLEMENT should be raised
with an exception minor code of 7.
2-12 Genomic Maps Specification, v1.0 February 2002

Modules and Interfaces 3
This chapter describes the types, methods as well as the semantics of the standard in
detail. For an overview and a description of the design rationale, refer to Chapter 2. For
brevity, not all the required forward declarations, typedefs and iterators are provided in
the boxes containing IDL, as they will be clear from the context, and have been described
earlier. For the full IDL specification, the reader is referred to Appendix A.

3.1 Module DsLSRControlledVocabularies

Controlled vocabularies essentially represent ‘dynamic enums’. The need for and usage of
controlled vocabularies is described in more detail in Section 2.3, “ Controlled Vocabular-
ies,” on page 2-3.

3.1.1 Exceptions

exception NotFound { string reason;};

This exception is raised by Vocabulary::get_entry_by_name() and Vocabulary-
Finder::get_vocabulary_by_name() if the desired entry or vocabulary could not be
found.

exception IteratorInvalid { string reason; };

This exception is raised by VocabularyEntryIterator::next() and VocabularyEntry-
Iterator::next_n() if the iterator has become invalid. For a description of the semantics,
see Section 2.2, “Iterators,” on page 2-2.
February 2002 Genomic Maps Specification, v1.0 3-1

3

3.1.2 Typedef VocabularyString

typedef string VocabularyString;

VocabularyString is the data type used for attributes that can only assume a limited set
of string values. For a detailed description of the semantics of this data type, refer to
Section 2.3, “Controlled Vocabularies,” on page 2-3.

3.1.3 Valuetype VocabularyEntry

valuetype VocabularyEntry {
public VocabularyString vocabulary_string;
public string description;

};

The contents of a controlled vocabulary are represented by the VocabularyEntry data
type.

Members

vocabulary_string - an actually allowed value in a particular context

description - descriptive text; the anticipated use is to contain the full text of
 vocabulary_string if that string is an abbreviation.

3.1.4 Interface VocabularyEntryIterator

interface VocabularyEntryIterator {
boolean next(out VocabularyEntry the_entry)
raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out VocabularyEntryList list)
raises(IteratorInvalid);

void reset();
void destroy();

}; // interface VocabularyEntryIterator;

The semantics of the iterators were described in Section 2.2, “Iterators,” on page 2-2. The
reset() operator can raise the CORBA::NO_IMPLEMENT exception (minor code 7) if
the underlying implementation does not allow resetting the iterator.

3.1.5 Interface Vocabulary

interface Vocabulary: CosLifeCycle::LifeCycleObject {
readonly attribute string name;
readonly attribute string description;
readonly attribute boolean case_sensitive;
readonly attribute unsigned long num_entries;
3-2 Genomic Maps Specification, v1.0 February 2002

3

VocabularyEntryIterator get_all_entries();
boolean is_contained(in string test_string);
VocabularyEntry get_entry_by_name(in string test_string)

raises (NotFound);
};

Controlled vocabularies are represented by objects of the type Vocabulary.

The name attribute holds the name of the Vocabulary, and should be unique in the con-
text of the VocabularyFinder that serves it (see below). It is suggested that if a Vocab-
ulary is used to represent a query criterion, it should have the name of that criterion. The
description attribute is provided to hold descriptive information. When Vocabulary is
used to represent a query criterion, this field could be used to indicate the semantics of the
criterion, such as its type and whether it is mandatory. The attribute case_sensitive is
used to indicate whether type case of VocabularyStrings in the VocabularyEntrys of
the current Vocabulary is, for the purpose of comparison, significant or not; it is TRUE if
type case is significant, FALSE if not. Attribute num_entries contains the total number
of entries in a Vocabulary; they can be retrieved using the get_all_entries() method.
For establishing whether a given string belongs to a Vocabulary, the is_contained()
method can be employed. The method get_entry_by_name() provides lookup func-
tionality, allowing the retrieval of single VocabularyEntrys (e.g., to inspect their
description member).

3.1.6 Interface VocabularyFinder

Vocabularies are obtained from a VocabularyFinder object.

interface VocabularyFinder {
readonly attribute string name;
readonly attribute unsigned long num_vocabularies;
StringList get_all_vocabulary_names();
VocabularyList get_all_vocabularies();
Vocabulary get_vocabulary_by_name(in string name);

};

The name attribute can be used to identify a VocabularyFinder; num_vocabularies
is the number of all the Vocabularys served by it. Their names are available from the
get_all_vocabulary_names() method, and the Vocabularys themselves can be
obtained from the get_vocabulary_by_name() method.

On purpose, the iterator pattern is not used in this case, as the anticipated use of the
DsLSRControlledVocabularies module is to represent a relatively limited number
(say, less than 50) of controlled vocabularies. For such small numbers, iterators are not
needed.

Since objects of type VocabularyFinder are entry points into servers that provide
Vocabularys, it is likely that they will be registered with a CosTrader service. If they
are, the following Trader Service Type shall be used:

service omg.lsr.ControlledVocabularyFinder {
interface DsLSRControlledVocabularies::VocabularyFinder;
February 2002 Genomic Maps Specification, v1.0: Module DsLSRControlledVocabularies 3-3

3

mandatory property string provider;
mandatory property StringList vocabularies_served;

}

Likewise, if a VocabularyFinder is registered with a CosNamingService, this shall
be done as follows (where the NamingContexts are separated by '/'):

/DsLSRControlledVocabularies/provider/VocabularyFinder

3.2 Module DsLSRLQSLink

This module offers connectivity to the Lexicon Query Service. It contains one interface,
LQSVocabularyFinder, which is optional.

3.2.1 Interface LQSVocabularyFinder

interface LQSVocabularyFinder:
DsLSRControlledVocabularies::VocabularyFinder {
readonly attribute TerminologyServices::LexExplorer lex_explorer};

};

The optional LQSVocabularyFinder interface is a specialization of Vocabulary-
Finder, and can be used instead of its super-type when it is desirable to offer access to the
full functionality of the LexExplorer interface defined in the LQS TerminologySer-
vices module. The attribute lex_explorer provides this link.

3.3 Module DsLSRGenomicMaps

3.3.1 Typedef Identifier

typedef string Identifier;

Identifier is used as data type for IDs. The syntax (which follows the new CosNaming
standard) and semantics of the string Identifier are described in detail in Section 2.4,
“Identifier Strings,” on page 2-5. The same type, syntax and semantics are used in the LSR
Biomolecular Sequence Analysis standard.

3.3.2 Exception CannotResolveID

exception CannotResolveID {
Identifier id;
string reason;

};

This exception is thrown by methods that take an Identifier as an input parameter. If the
entity denoted by the Identifier cannot be found or resolved by the method that takes it as
an input argument, this constitutes an exceptional situation, as the usage of an Identifier
3-4 Genomic Maps Specification, v1.0 February 2002

3

implies that the server can be expected to contain the desired entity. The id member holds
the offending Identifier, and is provided as a convenience. The string reason holds
details (if any can be provided) as to why the resolution failed. Suggested contents are:
“syntax invalid” if the form of the Identifier to be resolved was not acceptable, and
“entity unknown” if the syntax was right, but the entity it denotes could not be found.

3.3.3 Valuetype Mappable

valuetype Mappable {
public Identifier id;
public IdentifierList cross_references;
public StringList aliases;
public VocabularyString type;
public VocabularyString species;
public VocabularyString chromosome;
public VocabularyString sex;
public CosPropertyService::Properties properties;
public float length;
public VocabularyString units;

};

Mappable is the central data type of this standard, and is used to represent map contents.
It typically is a simple marker of some kind, but as explained in Section 2.6, “Mappable
and Map,” on page 2-7, sub- Maps can also be regarded as Mappables. Mappable does
not contain information on where it is located on a map, as one Mappable may be placed
on several maps.

id is the unique identifier of the Mappable, and should comply with the convention
described in Section 2.4, “Identifier Strings,” on page 2-5. The cross_references mem-
ber can be used to hold references to other entities, of either the same or of a different type,
from either the same or from a different data source. Elements in this list must comply
with the conventions described in Section 2.4, “ Identifier Strings,” on page 2-5. The list
can be empty. It is anticipated that a common usage of the cross_references member is
to contain Identifiers of entities of types specified in the BioMolecular Sequence Analy-
sis standard, thus providing a point of contact between these two standards.

The member aliases can be used to provide other names for the current Mappable; this
field is provided as a convenience. In contrast to the cross_references field, no con-
straints to syntax or semantics are imposed on the contents of this field.

The members type, chromosome, and sex contain information that characterizes the
current Mappable. For each of these attributes the most specific value that applies should
be used, although the empty string is also allowed. All these fields are vocabulary strings.

properties is a field that can be used to attach any additional characteristic not a fixed
member of Mappable.

length and units describe the extent of the marker, if any. Markers that can be considered
point-like have length = 0.0, and units is the empty string. Units that are integer-valued
(such as base pairs) have an integer-valued length (e.g., 1243.00 if the integer length is
1243).
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-5

3

Mappables cannot be null. There are no sub-types defined for Mappable.

Queries for Mappables can be against the fixed members (type, chromosome, etc.) as
well as against the additional characteristics contained as properties. Implementations
should document which query criteria are provided.

3.3.4 Interface Map

interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
const QueryString GET_ASSIGNMENTS = "get_assignments";

readonly attribute Mappable the_mappable;
readonly attribute VocabularyFinder vocabulary_finder;

readonly attribute unsigned long num_assignments;
readonly attribute boolean circular;

Assignment get_assignment_by_mappable_id(
in Identifier the_mappable,
in unsigned long recursion_depth);

Map is the data type that represents a full or partial genomic map or anything that is used
as such. Maps are also Mappables; this inheritance is specified as delegation for reasons
explained in Section 2.8, “Nested Maps,” on page 2-7. All the Mappable aspects of
Map, including information such as the ID or name, the species and the chromosome, are
available from the the_mappable attribute. This attribute yields all the Mappable
aspects of the Map in one round-trip, and can be regarded as containing its the header
information.

A Map consists of Assignments; their number is provided in the num_assignments
attribute. If a map is circular, the circular attribute is TRUE.

The method get_all_assignments() returns all the Assignments that constitute the
map. The Assignments are returned by an iterator. For a description of the semantics of
this approach see Section 2.2, “Iterators,” on page 2-2.

get_assignment_by_mappable_id() returns the Assignment that contains the
Mappable identified by argument the_mappable. If possible and needed, the query
descends into sub-maps to a recursion-depth of no more than recursion_depth to find
the Mappable.

One query is provided, and represented by the GET_ASSIGNMENTS QueryString
which can be passed as the in string query argument to the evaluate() method inher-
ited from CosQuery::QueryEvaluator. The any returned by queries of MapFactory
objects must be of type AssignmentIterator. Details of this mechanism are described in
Section 2.9.2, “Queries,” on page 2-9.

The GET_ASSIGNMENTS query has three mandatory parameter: “start,” “end,” and
“recursion_depth.” “start” and “end” are the Identifiers of Mappables that bracket the
segment of the of the Map in which the Assignments are searched. An empty Identi-
fier (i.e., the empty string) is legal, and implies the corresponding end-point of the map.
3-6 Genomic Maps Specification, v1.0 February 2002

3

The “recursion_depth” parameter must be of type long or a string that evaluates to one.

In an invocation of the method, the actual start and end arguments may appear to be in
the wrong order. This is the case if the Mappable designated by start is assigned closer
to the end of the map than that denoted by argument end. In this situation, the arguments
start and end are taken as if their values were exchanged (i.e., making their order reflect
that of the underlying map). The reason for this silent correction is that it is simple and
unambiguous, and preserves the ordering of the underlying map. For a description of the
iterator mechanism, see Section 2.2, “Iterators,” on page2-2; for a description of the
“recursion_depth” parameter, see Section 2.8, “Nested Maps,” on pag e2-7; for a descrip-
tion of the query specification, see Section 2.9.2, “Queries,” on page 2-9.

The assignments of Mappables denoted by the start and end arguments may be com-
pound assignments (that is, if their Assignments have more than one Position). In this
case, start and end are interpreted so as to return the maximum number of markers
possible: the left-most of the Positions of start’s Assignment and/or the right-most
Position of end’s Assignment are taken when calculating which Assignments to
return.

The any returned by the evaluate() method must be of type AssignmentIterator. This
also applies to the sub-types of Map, which are described below.

3.3.5 Interface OrderedMap

interface OrderedMap:Map {
readonly attribute float LOD_score;

};

OrderedMap is a data type to represent maps for which only ordering information is
known. The overall LOD-score (a measure of the quality of the map) is available in the
attribute LOD_score.

3.3.6 Interface CytogeneticElement

interface CytogeneticElement;
typedef sequence <CytogeneticElement> CytogeneticElementList;
interface CytogeneticElement: Map {

readonly attribute long rank;

exception NoSuperBand { string reason; };

CytogeneticElement get_super_band() raises (NoSuperBand);
CytogeneticElementList get_sub_bands();
CytogeneticElementList get_siblings();

};

Cytogenetic elements (chromosome banding patterns) are represented using the dedicated
type CytogeneticElement. Theoretically, Map’s machinery for traversing and querying
nested maps could be used to implement the functionality of cytogenetic maps, but com-
mon usage calls for the simpler methods provided by this interface. The exception NoSu-
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-7

3

perBand is raised if the traversal has reached the top of the hierarchy. The contents of its
reason member are unspecified.

3.3.7 Interface LinearMap

interface LinearMap:Map {
const QueryString GET_INTERVAL = "get_interval";
const QueryString GET_RANGE_AROUND = "get_range_around";

readonly attribute float min_coordinate;
readonly attribute float max_coordinate;

};

The LinearMap interface represents a fully metric map (i.e., one where the locations of
all markers are expressed as distances, be they to the beginning of the map, or relative to
other markers). It is an extension of Map that allows retrieval of Map sections specified by
geometry.

Attributes min_coordinate and max_coordinate specify the end points of the map,
with min_coordinate < max_coordinate.

Query by geometry is provided by the two QueryStrings GET_INTERVAL and
GET_RANGE_ARROUND.

The GET_INTERVAL query selects a geometric span of the LinearMap. To this end,
two mandatory parameters are needed: “from” and “to,” which correspond to the begin-
ning and end of the map section that is desired. The data type of these parameters can be
float or a string that evaluates to one. If the “from”-parameter is less than
min_coordinate, the beginning of the map is assumed; if the “to”-parameter is greater
than max_coordinate, the end of the map is assumed. If “from” is greater than “to,”
they are silently exchanged, for reasons outlined in the description of the
GET_ASSIGNMENTS query of the super-type. Further criteria can be applied to the
contents of the selected span by using additional parameters.

The GET_RANGE_AROUND query is similar to previous one, but bases its selection on
the distance relative to a given marker. The distance is specified as the mandatory parame-
ter “range” (which can be a float or a string that evaluates to one); the centre of this seg-
ment is specified as the mandatory parameter “mapped_entity.” The span from
mapped_entity - range to mapped_entity + range is selected. If either
end of this span ‘runs off the map,’ the end point of the map in that part is assumed. Again,
further criteria can be applied to the contents of the selected span by using additional
parameters.

The assignment of the mapped entity denoted by the mapped_entity parameter may be
compound (that is, if its MappableAssignment or SubMapAssignment has more
than one Position). In this case, the location is to be interpreted such that the maximum
number of markers possible is returned: the span runs from left-most of the Positions –
range to right-most of the Positions + range.

Neither of the methods has the recursion_depth argument that determines recursion, as
its usefulness is debatable, and the semantics are too difficult to specify.
3-8 Genomic Maps Specification, v1.0 February 2002

3

3.3.8 Interface MapsQueryLanguageType

interface MapsQueryLanguageType:CosQuery::QueryLanguageType{};

The query method evaluate() inherited from from CosQuery::QueryEvaluator
requires that a CORBA::InterfaceDef be passed into it as the ql_type argument. The
CORBA::InterfaceDef of the above MapsQueryLanguageType can be used for this
purpose. An implementation may offer more query languages, but to be compliant with
the standard, at least MapsQueryLanguageType must be supported by all the inter-
faces that extend CosQuery::QueryEvaluator. The semantics of this ‘query language
type’ are descripted in detail in Section 2.9.2, “Queries,” on page 2-9.

3.3.9 Interface MapIterator

interface MapIterator {
boolean next(out Map the_Map)
raises(IteratorInvalid);
boolean next_n(in unsigned long how_many, out MapList map_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

This object is used to step through a set of Maps. It is the only valid return type to be con-
tained in the any returned by the evaluate() method of interface MapFactory. The
details of the semantics of iterators were described in Section 2.2, “Iterators,” on page 2-2.

3.3.10 Interface MapFactory

interface MapFactory: CosQuery::QueryEvaluator {
const QueryString MAP_BY_MAP_PROPERTY =

"map_by_map_property";
const QueryString MAP_BY_CONTENT_PROPERTY =

"map_by_content_property";

readonly attribute unsigned long num_maps;
readonly attribute VocabularyFinder vocabulary_finder;

MapIterator get_all_maps();
Map get_map_by_id(in Identifier id) raises(CannotResolveID);

};

The data type MapFactory allows the retrieval of Maps. Queries are represented by the
QueryStrings MAP_BY_MAP_PROPERTY and
MAP_BY_CONTENT_PROPERTY. These strings should be used as the in string
query argument to the evaluate() method inherited from CosQuery::QueryEvalua-
tor. The any returned by queries of MapFactory objects must be of type MapIterator.
Details of this mechanism are described in Section 2.9.2, “Queries,” on page 2-9.
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-9

3

MAP_BY_MAP_PROPERTY queries for maps based on their properties (that is, those
of the Map ‘header,’ rather than those of the contained Mappables). Both ‘top-level’
Maps and sub-Maps can be returned, and there is no need for a “recursion_depth” param-
eter to this query (see Section 2.8, “Nested Maps,” on page 2-7).

MAP_BY_CONTENT_PROPERTY yields Maps for which the contained Mappables
satisfy the query criteria. This query has “recursion_depth” (of type long or as a string
that evaluates to one) as a mandatory parameter that determines how deep the recursion
can be. This topic is discussed in Section 2.8, “Nested Maps,” on page 2-7.

The attribute num_maps contains the number of Maps that are available from the
get_all_maps() method. get_map_by_id() is a retrieval method to fetch a known map
from a server.

The vocabulary_finder attribute contains the VocabularyFinder that holds the
Vocabularys corresponding to the search criteria.

Since objects of type MapFactory are entry points into servers that provide Maps, it is
likely that they will be registered with a CosTrader service. If they are, the following Ser-
vice Type shall be used:

service omg.lsr.MapFactory {
mandatory property string provider;
mandatory property StringList map_databases_served;

}

Likewise, if a MapFactory is registered with a CosNamingService, this shall be done as
follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/provider/MapFactory

3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssignment

enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

valuetype Assignment {
public boolean framework_assignment;
public VocabularyString evidence;
public PositionList positions;
public AssignType assign_type;

};

valuetype SubMapAssignment : Assignment {
public Map mapped_entity;

};

valuetype MappableAssignment : Assignment {
public Mappable mapped_entity;

};

As discussed above, an assignment is an instance of the many-to-many association
3-10 Genomic Maps Specification, v1.0 February 2002

3

between maps and the mapped entities, and holds the positional information that is the
objective of mapping in general (see also Figure 1-1 on page 1-3). Assignments must
always be returned as either a MappableAssignment or as a SubMapAssignment.
Only these sub-types have the mapped_entity member (of different type) that make
them meaningful. The mapped_entity member refers to the Mappable or sub-Map
respectively, that is described by the Assignment. The positions field describes where
it has been mapped. In the case of compound assignments, this is at more than one loca-
tion (see below). A Map cannot have two different Assignments for the same Mappa-
ble or sub-Map: in this situation, a single Assignment with multiple Positions should
be used.

assign_type is used to describe the following information. Assignments may be com-
pound (e.g., if experimental information is ambiguous, or genes are detected in multiple
copies). An assignment may also be a negative one, in the sense that a marker is known not
to be at a certain location. These semantics can be expressed using the assign_type
member:

value of assign_type member

SINGLE the Mappable or sub-Map is at the single position given

NOT the Mappable or sub-Map is not at the single position given;

ALL the Mappable or sub-Map is at all of the several positions given;

ONE the Mappable or sub-Map is at one, unknown, of the several
positions given;

SOME the Mappable or sub-Map is at more than one, unknown, of the
several positions given;

NONE the Mappable or sub-Map is at none of the several positions
given.

SINGLE is probably the most commonly used value of this enum. The values SINGLE
and NOT can only apply to single Positions. The usage of the types ALL, ONE,
SOME, and NONE only apply if there is more than one Position.

The framework_assignment field of valuetype Assignment indicates whether the
assignment was of a framework marker or not.

An Assignment cannot be null. The positions member of Assignment must contain
at least one Position. The list positions may not contain duplicates. Their ordering is by
increasing positions[0].

3.3.12 Interface AssignmentIterator

interface AssignmentIterator {
boolean next(out Assignment the_assignment)

raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out AssignmentList assignment_list)
raises(IteratorInvalid);

void reset();
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-11

3

void destroy();
};

Objects of this type are used to step through a list of Assignments. It is the only valid
return type to be contained in the any returned by the evaluate() method of interface
Map and its sub-types. The semantics of the iterator mechanism are described in more
detail in Section 2.2, “Iterators,” on page 2-2.

3.3.13 Valuetype Position

valuetype Position {
public long rank;
public float LOD_score;

};

Position is the base-type of a family of types that hold the location information of an
Assignment. In general, the positional information of an assignment includes or implies
a point(s) of reference, units, and a measure of the quality of the assignment. These factors
and their usage vary widely across different types of maps. Position has two members:
rank and LOD_score. rank represents the most elementary position information: the
index of an entity in an ordered list (ties are allowed). Ranks have usually a significance
measure attached in the form of a LOD score; this is the role of the LOD_score member.

Neither Position, nor any of its sub-types is allowed to be null.

The unextended type Position is likely (but not required) to be used in Assignments of
OrderedMaps.

valuetype MetricPosition: truncatable Position {
public float left_end;
public float right_end;

};

MetricPosition specializes Position for situations where the real distance to the begin-
ning of the map is known. This distance is contained in the members left_end and
right_end. If the mapped entity is segment-like, left_end and right_end denote the
location of the entity’s end-points as a distance to the beginning of the map.

If left_end is greater than right_end, the segment is placed on the map in reversed
direction.

If the mapped entity is considered to be point-like and the error associated with the place-
ment can be represented as a distance, then left_end and right_end represent the end-
points of the interval in which the Mappable is believed to lie.

If a Mappable or sub-Map is considered point-like and the error of the placement is
unknown, negligible, or cannot be represented as a distance, then left_end and
right_end have identical values, again being the distance to the beginning of the map.

MetricPositions are likely to be useful in Assignments of LinearMaps.
3-12 Genomic Maps Specification, v1.0 February 2002

3

3.3.14 Valuetype RelativePosition

valuetype RelativePosition: truncatable Position {
public any left_flanking_entity;
public any right_flanking_entity;

};

RelativePosition represents location information that is relative to (an)other Mappa-
ble(s) or sub-Map(s). The field left_flanking_entity is the point of reference to the left
of the mapped entity, and right_flanking_entity is that to the right. Either but not both
of these members can be null, in case there is just one flanking entity. Only Mappable or
Map are valid types for the any.

If the mapped entity is considered segment-like, and left_flanking_entity lies, on the
current map, to the right of right_flanking_entity, the placement of the mapped entity
on the current map is in reverse direction.

RelativePosition offers no location information more precise than indicating the flank-
ing entities; for this purpose, the type RelativeMetricPosition can be used.

3.3.15 Valuetype RelativeMetricPosition

valuetype RelativeMetricPointPosition: truncatable RelativePosition {
public float distance_left;
public float distance_right;

};

RelativeMetricPosition is used to represent location information that is relative to
(an)other Mappable(s) or sub-Map(s), but where also a real distance to the flanking enti-
ties is known. distance_left is the distance to the left_flanking_entity;
distance_right that to the right_flanking_entity. If either of the flanking entities is
null, the corresponding distance is undefined.

No data-type or convention is provided to deal with the exceptional case of an entity lying
to one side of both flanking entities.

3.3.16 Interface MapCorrelationFactory

interface MapCorrelationFactory: CosQuery::QueryEvaluator {
const QueryString GET_CORRELATION = "get_correlation";
const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

readonly attribute unsigned long num_correlations;
readonly attribute VocabularyFinder vocabulary_finder;

};

The data type MapCorrelationFactory provides the methods to obtain cross-correla-
tions of maps.

As with the other factories described in this document, the queries are represented as fixed
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-13

3

pre-defined query strings which are passed as the in string query argument to the eval-
uate() method inherited from CosQuery::QueryEvaluator. Details of this are
described in Section 2.9.2, “Queries,” on page2-9. The MapCorrelationFactory inter-
face has two such queries: GET_CORRELATION and GET_ALL_CORRELATIONS.

The GET_CORRELATION query has the mandatory input parameter “map,” which is an
Identifier string. It returns all the correlations known for the map designated by the given
identifier. The GET_ALL_CORRELATIONS query has the mandatory input parameters
“map1” and “map2,” both Identifier strings. This query returns the correlations known
between the two maps denoted by the identifiers given. As with the other query methods,
these queries may take additional query criteria using the parameter mechanism described
in Section 2.9.2, “Queries,” on page 2-9.

Only entities of type MapCorrelationList are valid as the type of the any returned by
the evaluate().

MapCorrelationFactory objects are likely to be registered with a CosTrader service. If
they are, they shall do so with the following Service Type:

service omg.lsr.MapCorrelationFactory {
interface DsLSRGenomicMaps::MapCorrelationFactory;
mandatory property string provider;

};

Likewise, if a MapCorrelationFactory is registered with a CosNamingService, it shall
be done as follows (where the NamingContexts are separated by '/'):

/DsLSRGenomicMaps/provider/MapCorrelationFactory

3.3.17 Typedef AssignmentPair

typedef sequence<AssignmentPair> AssignmentPairList;
typedef Assignment AssignmentPair[2];

An AssignmentPair represents one correspondence between assignments on two maps.

3.3.18 Interface AssignmentPairIterator

interface AssignmentPairIterator {
boolean next(out AssignmentPair the_assignment_pair)

raises(IteratorInvalid);
boolean next_n(in unsigned long how_many,

out AssignmentPairList assignment_list)
raises(IteratorInvalid);

void reset();
void destroy();

};

This iterator is used to step through a set of AssignmentPairs. The semantics of the iter-
ator is described in detail in Section 2.2, “ Iterators,” on page 2-2.
3-14 Genomic Maps Specification, v1.0 February 2002

3

3.3.19 Typedef MapPair

typedef Map MapPair[2];

When maps are correlated, the current standard represents this using pairs of maps. This
data type is defined for that purpose.

3.3.20 Interface MapCorrelation

The data types used to represent correlations between two maps were depicted in Figure
1-3 on page1-7.

interface MapCorrelation {
readonly attribute Identifier id;
readonly attribute MapPair map_pair;
readonly attribute AssignmentPairIterator correspondences;

};

MapCorrelation is a data type that contains all the information of a map cross-correla-
tion. Member id provides an identification tag. map_pair[0] and map_pair[1] contain
the two maps that are cross-correlated. A correspondence between an Assignment on
map_pair[0] and one on map_pair[1] forms an AssignmentPair, with each first
assignment of the pair being on map_pair[0] and each second one on map_pair[1]. The
full list of correspondences is available from the correspondences attribute, which is
an iterator.

Nothing is implied about the identity of map_pair[0] and map_pair[1]; they could even
be the same map. The correspondences list is sorted by positions[0] of the first
Assignment of each AssignmentPair.
February 2002 Genomic Maps Specification, v1.0: Module DsLSRGenomicMaps 3-15

3

3-16 Genomic Maps Specification, v1.0 February 2002

OMG IDL A
A.1 File: DsLSRControlledVocabularies.idl

//File: DsLSRControlledVocabularies.idl
#ifndef _DS_LSR_CONTROLLED_VOCABULARIES_IDL_
#define _DS_LSR_CONTROLLED_VOCABULARIES_IDL_

#pragma prefix "omg.org"
#include <CosLifeCycle.idl>

module DsLSRControlledVocabularies {
 // typedefs:
 typedef sequence <string> StringList;
 typedef string Identifier;
 typedef string VocabularyString;
 typedef sequence<string> VocabularyStringList;

 valuetype VocabularyEntry {
 public VocabularyString vocabulary_string;
 public string description;
 };
 typedef sequence<VocabularyEntry> VocabularyEntryList;

 exception IteratorInvalid { string reason; };

 interface VocabularyEntryIterator {
 boolean next(out VocabularyEntry the_entry)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many, out VocabularyEntryList list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface VocabularyEntryIterator;
February 2002 Genomic Maps Specification, v1.0 A-17

A

 interface Vocabulary: CosLifeCycle::LifeCycleObject {
 readonly attribute string name;
 readonly attribute string description;
 readonly attribute unsigned long num_entries;

 VocabularyEntryIterator get_all_entries();
 boolean is_contained(in string test_string);
 }; // interface Vocabulary;
 typedef sequence<Vocabulary> VocabularyList;

 interface VocabularyFinder {
 readonly attribute string name;
 readonly attribute unsigned long num_vocabularies;

 StringList get_all_vocabulary_names();
 VocabularyList get_all_vocabularies();
 Vocabulary get_vocabulary_by_name(in string name);
 void destroy();
 }; // interface VocabularyFinder
};// module DsLSRControlledVocabularies
#endif // #ifdef _DS_LSR_CONTROLLED_VOCABULARIES_IDL_

A.2 File: DsLSRLQSLink.idl

//File: DsLSRLQSLink.idl
#ifndef _DS_LSR_LQS_LINK_IDL_
#define _DS_LSR_LQS_LINK_IDL_

#pragma prefix "omg.org"

#include "TerminologyService.idl"
#include "DsLSRControlledVocabularies.idl"

module DsLSRLQSLink {
 interface LQSVocabularyFinder:
 DsLSRControlledVocabularies::VocabularyFinder {
 readonly attribute TerminologyServices::LexExplorer lex_explorer;
 };
};

#endif //_DS_LSR_LQS_LINK_IDL_

A.3 File: DsLSRsGenomicMaps.idl

//File: DsLSRGenomicMaps.idl
#ifndef _DS_LSR_GENOMIC_MAPS_IDL_
#define _DS_LSR_GENOMIC_MAPS_IDL_
A-18 Genomic Maps Specification, v1.0 February 2002

A

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>
#include <CosQuery.idl>

#include "DsLSRControlledVocabularies.idl"

module DsLSRGenomicMaps {
 // simple typedefs:
 typedef sequence<string> StringList;
 typedef string QueryString;
 typedef string Identifier;
 typedef sequence<Identifier> IdentifierList;

 // shorthands for imported types:
 typedef CosPropertyService::Properties Properties;
 typedef DsLSRControlledVocabularies::VocabularyFinder Vocabulary-
Finder;
 typedef DsLSRControlledVocabularies::VocabularyString Vocabu-
laryString;
 typedef sequence<string> VocabularyStringList;

 // forward declarations:
 valuetype Assignment;
 interface AssignmentIterator;
 typedef sequence <Assignment> AssignmentList;

 interface AssignmentPairIterator;

 valuetype Position;
 typedef sequence <Position> PositionList;

 interface MapFactory;
 interface Map;
 interface MapIterator;
 typedef sequence <Map> MapList;

 exception IteratorInvalid { string reason; };

 exception CannotResolveID { Identifier id; string reason; };

 interface MapsQueryLanguageType : CosQuery::QueryLanguageType {};

 valuetype Mappable {
 public Identifier id;
 public StringList aliases;
 public IdentifierList cross_references;
 public VocabularyString type;
 public VocabularyString species;
 public VocabularyString chromosome;
February 2002 Genomic Maps, v1.0: File: DsLSRsGenomicMaps.idl A-19

A

 public VocabularyString sex;
 public Properties properties;

 public float length;
 public VocabularyString units;
 }; // interface Mappable

 interface MapFactory: CosQuery::QueryEvaluator {
 const QueryString MAP_BY_MAP_PROPERTY =
"map_by_map_property";
 const QueryString MAP_BY_CONTENT_PROPERTY =
"map_by_content_property";

 readonly attribute unsigned long num_maps;
 readonly attribute VocabularyFinder vocabulary_finder;

 MapIterator get_all_maps();
 Map get_map_by_id(in Identifier id) raises(CannotResolveID);
 }; // interface MapFactory

 interface Map: CosQuery::QueryEvaluator, CosLifeCycle::LifeCycleObject {
 const QueryString GET_ASSIGNMENTS = "get_assignments";

 readonly attribute Mappable the_mappable;
 readonly attribute VocabularyFinder vocabulary_finder;

 readonly attribute unsigned long num_assignments;
 readonly attribute boolean circular;

 Assignment
 get_assignment_by_mappable_id (in Identifier the_mappable,
 in unsigned long recursion_depth)
 raises(CannotResolveID);
 AssignmentIterator get_all_assignments();
 }; // interface Map

 interface MapIterator {
 boolean next(out Map the_Map)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many, out MapList map_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface MapIterator

 interface OrderedMap:Map {
 readonly attribute float LOD_score;
 };

 interface CytogeneticElement;
 typedef sequence <CytogeneticElement> CytogeneticElementList;
A-20 Genomic Maps Specification, v1.0 February 2002

A

 interface CytogeneticElement: Map {
 exception NoSuperBand { string reason; };
 readonly attribute long rank;

 CytogeneticElement get_super_band() raises (NoSuperBand);
 CytogeneticElementList get_sub_bands();
 CytogeneticElementList get_siblings();
 }; // interface CytogeneticElement

 interface LinearMap:Map {
 const QueryString GET_INTERVAL = "get_interval";
 const QueryString GET_RANGE_AROUND = "get_range_around";

 readonly attribute float min_coordinate;
 readonly attribute float max_coordinate;
 }; // interface LinearMap

 enum AssignType { SINGLE, NOT, ALL, ONE, SOME, NONE };

 valuetype Assignment {
 public boolean framework_assignment;
 public VocabularyString evidence;
 public PositionList positions;
 public AssignType assign_type;
 }; // valuetype Assignment

 interface AssignmentIterator {
 boolean next(out Assignment the_assignment)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many,
 out AssignmentList assignment_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface AssignmentIterator

 valuetype SubMapAssignment : Assignment {
 public Map mapped_entity;
 };

 valuetype MappableAssignment : Assignment {
 public Mappable mapped_entity;
 };

 valuetype Position {
 public long rank;
 public float LOD_score;
 };

 valuetype MetricPosition: truncatable Position {
February 2002 Genomic Maps, v1.0: File: DsLSRsGenomicMaps.idl A-21

A

 public float left_end;
 public float right_end;
 };

 valuetype RelativePosition: truncatable Position {
 public any left_flanking_entity;
 public any right_flanking_entity;
 };

 valuetype RelativeMetricPointPosition: truncatable RelativePosition {
 public float distance_left;
 public float distance_right;
 };

 typedef Assignment AssignmentPair[2];
 typedef sequence<AssignmentPair> AssignmentPairList;
 typedef Map MapPair[2];

 interface AssignmentPairIterator {
 boolean next(out AssignmentPair the_assignment_pair)
 raises(IteratorInvalid);
 boolean next_n(in unsigned long how_many,
 out AssignmentPairList assignment_list)
 raises(IteratorInvalid);
 void reset();
 void destroy();
 }; // interface AssignmentPairIterator

 interface MapCorrelation {
 readonly attribute Identifier id;
 readonly attribute MapPair map_pair;
 readonly attribute AssignmentPairIterator correspondences;
 readonly attribute unsigned long num_correspondences;
 }; // interface MapCorrelation
 typedef sequence<MapCorrelation> MapCorrelationList;

 interface MapCorrelationFactory: CosQuery::QueryEvaluator {
 const QueryString GET_CORRELATION = "get_correlation";
 const QueryString GET_ALL_CORRELATIONS = "get_all_correlations";

 readonly attribute unsigned long num_correlations;
 readonly attribute VocabularyFinder vocabulary_finder;
 }; // interface CorrelationFactory
}; // module DsGenomicMaps
#endif // #ifdef _DS_LSR_GENOMIC_MAPS_IDL_
A-22 Genomic Maps Specification, v1.0 February 2002

Relation to Lexicon Query Service B
The CORBAmed Lexicon Query Service is an OMG standard for representing medical
terminology systems in a comprehensive framework. This includes such things as
naming authorities, presentation (formats, language), conversion between different
coding schemes, general description of relationships between concepts (including
hierarchies), and different versions of coding schemes and value domains. None of
these are deemed relevant for the domain of genomic maps. The
DsLSRGControlledVocabularies module of the Genomic Maps specification
essentially offers a ‘dynamic enum’, and parts of the ValueDomain aspects of LQS
could be used to address some of these needs.

This appendix describes a mapping between the types in the
DsLSRControlledVocabularies module of the current standard, and the
ValueDomain aspects of the Lexicon Query Service (LQS). This mapping may prove
useful if implementors want to base their implementation of
DsLSRControlledVocabularies on an implementation of LQS.

The list below follows the order of definitions given in the
DsLSRControlledVocabularies.idl file, which can be found in Section A.1, “File:
DsLSRControlledVocabularies.idl,” on page A-17. For each item, the
DsLSRControlledVocabularies type is given first, the LQS equivalent second. All
the relevant LQS types are in the TerminologyServices module; therefore the types
are not scoped by their module name. Attributes and methods are scoped by their class
name using dot-notation where necessary.

• VocabularyString corresponds to a QualifiedCode, but with a human-readable
ConceptCode and an empty CodingSchemeID. The functionality of the latter is
not needed, as it is implied by the context.

• valuetype VocabularyEntry corresponds to PickListEntry. Inside this aggregate
type, the member vocabulary_string corresponds to the a_qualified_code
member, whereas description corresponds to pick_text.

• VocabularyEntryIterator corresponds to PickListIter.
February 2002 Genomic Maps Specification, v1.0 B-23

B

• interface Vocabulary corresponds roughly to ValueDomainId. The latter is
typedef-ed to struct QualifiedCode. That is, ValueDomain itself is not a
CORBA object, but is represented by an ID. Its methods can be found in the
LexExplorer interface: the Vocabulary methods correspond to methods in
LexExplorer that have ValueDomainId input arguments (see below). They all
may raise the UnknownValueDomain exception.

• Vocabulary.name corresponds to ValueDomainId. That is, ValueDomainId
corresponds to both a Vocabulary object as well as to its own (human-readable)
name.

• Vocabulary.description is not represented in LQS; this attribute is for
convenience only, and can be left empty.

• Vocabulary.get_all_entries() corresponds to get_pick_list(in ValueDomainId
value_domain_id, …) in the LexExplorer interface. This methods returns a
PickListIter; the Vocabulary.num_entries attribute corresponds to the quantity
obtained from PickListIter.max_left() when invoked appropriately.

• Vocabulary.is_contained(in string test_string) corresponds to
LexExplorer.is_concept_in_value_domain(in QualifiedCode
qualified_code, in ValueDomainId value_domain_id).

• interface VocabularyFinder corresponds to LexExplorer.

• VocabularyFinder.name corresponds to
LexExplorer.terminology_service_name.

• get_all_vocabulary_names() and get_all_vocabularies() in interface
VocabularyFinder correspond to LexExplorer.list_value_domain_ids(). This
method returns a ValueDomainIdIter, which is an iterator. The
VocabularyFinder.num_vocabularies attribute corresponds to the quantity
obtained from ValueDomainIdIter.max_left() when invoked appropriately.

VocabularyFinder.get_vocabulary_by_name() is not represented in LQS, since
ValueDomains are not CORBA objects, but are represented by a ValueDomainId.
Instantiating a ValueDomainId would require a ValueDomainId as input argument,
which obviates the need for this method in LQS.
B-24 Genomic Maps Specification, v1.0 February 2002

Glossary
Assignment Data type to represent assignments

assignment Placement of a Mappable or sub-Map on a Map; contains position information. Can
be compound. See also MappableAssignment and SubMapAssignment.

bin One of an ordered set of collections of unordered markers.

clone In the context of large-scale sequencing: long sequence used in genome sequencing.
Clones or sub-clones are assembled into contigs.

compound assignment A non-unique placement of a Mappable on a Map.

contig A genomic sequence fragment assembled from an overlapping group of clones.

controlled vocabulary A set of strings that are valid as the values of a vocabulary string. The standard
specifies a Vocabulary data type that represents such sets.

cytogenetic map Map (or image) of chromosome banding patterns. See also idiogram.

EST Expressed Sequence Tag.

factory An object that is capable of ‘producing’ other objects (simply by returning them as a
result of a method call). These objects may or may not be entirely new and/or shared
with others.

framework In the context of mapping: a map consisting of well known and high-quality ‘anchor
points’ (framework markers), relative to which other markers are placed.

gene Unit of inheritance; also: the DNA sequence coding for a particular protein sequence.
Also: unit of independently regulated transcription. No definition is generally accepted
and the issue is somewhat contentious.

genome The full volume of information contained in the genetic material of a species.

genomic Belonging/applying to the genome as a whole.
February 2002 Genomic Maps Specification, v1.0 Glossary - 1

genomic map Map of chromosome content obtained by any means. This is as opposed to genetic
map, which is generally used for maps obtained from linkage analysis. The term map
is used more frequently in the domain of molecular genetics, but is too general.

genomic sequence Sequence such as existing in the chromosomes themselves.

idiogram Simplified drawing of a chromosome that highlights certain aspects such as banding
patterns. See also cytogenetic map.

linkage analysis The calculation of maps based on the observed patterns of occurrences of traits in
families of individuals.

locus A location on the chromosome (as opposed to the contents of such a location, such as
a gene). In the current standard, these entities are best represented as Mappables.

LOD score Logarithm of odds score; statistical measure of the quality of a placement on a map.
The higher, the better.

LQS Lexicon Query Service; an OMG CORBA standard (formal/99-03-01) that could be
used to deal with representations of controlled vocabularies.

Map Data type that represents maps.

map A summary of chromosome content. The ultimate map is the full sequence of a
chromosome (in which case ‘summary’ is a misnomer). See also genomic map.

Mappable Term used in this standard to represent anything that can be placed on a map. This
includes maps themselves, in the case of nested, or sub-maps.

MappableAssignment An assignment of a simple Mappable (as opposed to a sub-Map).

marker Any experimentally identifiable element on a chromosome. Examples include genes,
ESTs, polymorphisms.

nested map A map placed, at a certain location, within another map. Same as sub-Map.

OBV Objects-by-value; see valuetype.

PIDS Person Identification Service; an OMG CORBA standard (formal/99-03-05) for
uniquely identifying persons.

placement See assignment.

polymorphism Any variation in chromosome content that can be used to distinguish between
individuals; used in linkage analysis.

ordered Having an ordering; in the context of molecular genetics, indicates that only the order
is known, rather than more precise distances.

sequence Biologically, a string of nucleotides (DNA building blocks) or amino acids (protein
building blocks. Often the term sequence is used as including additional information..

STS Sequence Tagged Site. An example is EST.

sub-Map A Map that is contained in another Map. Same as nested map.
Glossary - 2 Genomic Maps Specification, v1.0 February 2002

SubMapAssignment An assignment of a sub-Map inside another Map

valuetype IDL keyword from the Objects-by-Value specification, designating an entity that lies
halfway between an IDL struct and an IDL interface.

vocabulary string A string that can only assume a limited set of values; the contents of a controlled
vocabulary.
February 2002 Genomic Maps Specification, v1.0 Glossary - 3

Glossary - 4 Genomic Maps Specification, v1.0 February 2002

Index
A
Assignment 1-6
AssignmentIterator 3-11
AssignmentPair 3-14
AssignmentPairIterator 3-14

B
Base Maps 1-2

C
CannotResolveID 3-4
Chromosome map 1-1
Compliance points 1-2
Controlled Vocabularies 2-3
Controlled vocabularies 3-1
CORBA

contributors iii
documentation set ii

Correlated Maps 1-3
CytogeneticElement 3-7

E
Exception CannotResolveID 3-4
Exceptions 3-1

I
Identifier 1-4
Identifier Strings 2-5
id-field 2-6
Interface AssignmentIterator 3-11
Interface AssignmentPairIterator 3-14
Interface CytogeneticElement 3-7
Interface LinearMap 3-8
Interface LQSVocabularyFinder 3-4
Interface Map 3-6
Interface MapCorrelation 3-15
Interface MapCorrelationFactory 3-13
Interface MapFactory 3-9
Interface MapIterator 3-9
Interface MapsQueryLanguageType 3-9
Interface OrderedMap 3-7
Interface Vocabulary 3-2
Interface VocabularyEntryIterator 3-2
Interface VocabularyFinder 3-3
Iterators 2-2

K
kind-field 2-6

L
Lifecycle Issues 2-12
LinearMap 3-8
LQSLink 1-3
LQSVocabularyFinder 3-4

M
Map 1-5, 3-6
MapCorrelation 1-6, 3-15
MapCorrelationFactory 1-6, 3-13
MapFactory 1-6, 3-9
MapIterator 3-9

Mappable 1-4, 2-6, 3-5
Mappable and Map 2-7
MappableAssignmen 3-10
Mappables and Assignments 2-7
MapPair 3-15
MapsQueryLanguageType 3-9
Module DsLSRGenomicMaps 1-4, 3-4
Module DsLSRLQSLink 3-4
Modules 1-3
Molecular genetics 1-1

N
Nested Maps 1-2
Nested maps 2-7

O
Object Management Group i

address of ii
Objects-by-value 2-2
OrderedMap 3-7
ordering 2-12

P
Position 1-6, 3-12

Q
Queries 2-9
QueryString 1-4

R
RelativeMetricPosition 3-13
RelativePosition 3-13
Retrievals 2-9
Retrievals and Queries 2-8

S
SubMapAssignment 3-10

T
Typedef AssignmentPair 3-14
Typedef Identifier 3-4
Typedef MapPair 3-15
Typedef VocabularyString 3-2

V
Valuetype Mappable 3-5
Valuetype Position 3-12
Valuetype RelativeMetricPosition 3-13
Valuetype RelativePosition 3-13
Valuetype VocabularyEntry 3-2
Valuetypes Assignment 3-10
Vocabulary 1-4, 3-2
vocabulary strings 2-3
VocabularyEntry 1-4, 3-2
VocabularyEntryIterator 3-2
VocabularyFinder 1-4, 3-3
VocabularyString 1-3, 3-2

W
wildcards 2-11
February 2002 Genomic Maps Specification Index-1

Index
Index-2 Genomic Maps Specification February 2002

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Genomic Maps Overview
	1.1 Specification Overview
	1.2 Compliance Points
	1.2.1 “Base Maps”
	1.2.2 “Nested Maps”
	1.2.3 “Correlated Maps“
	1.2.4 “LQSLink”

	1.3 Document Structure
	1.3.1 Module DsLSRControlledVocabularies
	1.3.2 Module DsLSRGenomicMaps

	2. General Description
	2.1 Objects-by-value
	2.2 Iterators
	2.3 Controlled Vocabularies
	2.4 Identifier Strings
	2.5 Mappable
	2.6 Mappable and Map
	2.7 Mappables and Assignments
	2.8 Nested Maps
	2.9 Retrievals and Queries
	2.9.1 Retrievals
	2.9.2 Queries
	2.9.3 Wildcards
	2.9.4 Ordering

	2.10 Lifecycle Issues

	3. Modules and Interfaces
	3.1 Module DsLSRControlledVocabularies
	3.1.1 Exceptions
	3.1.2 Typedef VocabularyString
	3.1.3 Valuetype VocabularyEntry
	3.1.4 Interface VocabularyEntryIterator
	3.1.5 Interface Vocabulary
	3.1.6 Interface VocabularyFinder

	3.2 Module DsLSRLQSLink
	3.2.1 Interface LQSVocabularyFinder

	3.3 Module DsLSRGenomicMaps
	3.3.1 Typedef Identifier
	3.3.2 Exception CannotResolveID
	3.3.3 Valuetype Mappable
	3.3.4 Interface Map
	3.3.5 Interface OrderedMap
	3.3.6 Interface CytogeneticElement
	3.3.7 Interface LinearMap
	3.3.8 Interface MapsQueryLanguageType
	3.3.9 Interface MapIterator
	3.3.10 Interface MapFactory
	3.3.11 Valuetypes Assignment,MappableAssignment and SubMapAssignment
	3.3.12 Interface AssignmentIterator
	3.3.13 Valuetype Position
	3.3.14 Valuetype RelativePosition
	3.3.15 Valuetype RelativeMetricPosition
	3.3.16 Interface MapCorrelationFactory
	3.3.17 Typedef AssignmentPair
	3.3.18 Interface AssignmentPairIterator
	3.3.19 Typedef MapPair
	3.3.20 Interface MapCorrelation

	Appendix A - OMG IDL
	Appendix B - Relation to Lexicon Query Service
	Glossary
	Index

