

January 2016

Hardware Abstraction Layer for Robotic
Technology (HAL4RT)

Version: 1.0 – Beta 1

OMG Document Number: dtc/2016-01-01
Standard document URL: http://www.omg.org/spec/HAL4RT/1.0

This OMG document replaces the submission document (robotics/15-12-14, Alpha). It is an OMG Adopted
Beta specification and is currently in the finalization phase. Comments on the content of this document are
welcome, and should be directed to issues@omg.org by January 8, 2016.

You may view the pending issues for this specification from the OMG revision issues web
page http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on December 16, 2016. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

mailto:issues@omg.org
http://www.omg.org/issues/

Copyright © 2015, Japan Embedded Systems Technology Association
Copyright © 2015, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 3

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

 OMG’s ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm.)

http://www.omg.org/legal/tm_list.htm
http://www.omg.org/report_issue.htm

4 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 5

Table of Contents

1. Scope ... 9

2. Conformance .. 9

3. References .. 9
3.1. Normative References ... 9

4. Terms and Definitions .. 10

5. Symbols .. 10

6. Additional Information .. 10
6.1. Acknowledgements ... 10

7. Hardware Abstraction Layer for Robotic Technology (HAL4RT) 13
7.1. General .. 13
7.2. Format and Conventions ... 13
Class and Interface .. 13
Enumeration .. 14
7.3. Return Codes ... 14
7.4. Platform Independent Model (PIM) .. 14
7.5.1.1.1 char [ISO/IEC-9899] .. 33
7.5.1.1.2 Octet [RTC] .. 33
7.5.1.1.3 double [ISO/IEC-9899] .. 33
7.5.2 C PSM ... 33
7.5.3 XML PSM ... 35

6 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 7

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG™s
specifications implement the Model Driven Architecture (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG™s specifications include: UML®
(Unified Modeling Language); CORBA® (Common Object Request Broker Architecture); CWM (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications
Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML
• MOF
• XMI
• CWM
• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP
• IDL/Language Mappings
• Specialized CORBA specifications
• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
• CORBAservices
• CORBAfacilities
• OMG Domain specifications
• OMG Embedded Intelligence specifications
• OMG Security specifications

8 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

OMG Headquarters
 109 Highland Ave,
 Needham, MA 02494 USA
 USA

 Tel: +1-781-444-0404
 Fax: +1-781-444-0320
 Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt.: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 9

1. Scope
This specification defines the Platform-Independent Model (PIM) of a Hardware Abstraction Layer for robotic systems
that is capable to support at least the following devices:

• Sensors. Besides the actual, normalized measurement, sensor kind and unit of measure should be provided.

• Actuators. Commands to perform motions, and motion feedback information should be provided.

In addition this specification defines the Platform specific Model (PSM) in language C based on the HAL PIM.

This specification aims to enable engineers such as device makers, device users, and software users to build robotic
software without any concern about the differences among the targeted devices, by standardizing the API of these
devices.

Target readers of this specification include:

• Software engineers who use the HAL4RT to develop middleware and software.

• Device vendors and its engineers who develop devices and components which conforms to the HAL4RT.

• Engineers who are interested in robot and software development.

2. Conformance
An HAL4RT implementation conforms to this specification if and only if it implements the C PSM as specified in
sub clause 7.3. The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,””SHALL NOT,” “SHOULD,”
“SHOULD NOT,” “RECOMMEND,” “MAY,” and “OPTIONAL” in this document are to be interpreted as
described in RFC 2119.

3. References

3.1. Normative References

The following normative documents contain provisions that, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

 [UML] Object Management Group, OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.5, 2015

[RTC] Robotic Technology Component specification,
http://www.omg.org/spec/RTC/1.1/

[RoIS] Robotic Interaction Service specification,
http://www.omg.org/spec/RoIS/1.0/

http://www.omg.org/spec/RTC/1.1/
http://www.omg.org/spec/RoIS/1.0/

10 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

[SMART] Smart Transducers specification,
http://www.omg.org/spec/SMART/1.0/

[ISO/IEC-9899] International Organization for Standardization, Programming languages – C,
1999

4. Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Robotic Technology Component (RTC)

A logical representation of a hardware and/or software entity that provides well-known functionality and services.

Robotic Technology (RT)

Robotic Technology (RT) is a general term of the technology originating in robotics, and it means not only the
standalone robot but technical element which constitutes robots.

Extensive Markup Language (XML)

A markup language that defines a set of rules for encoding documents in a format that is both human-readable and
machine-readable.

XML Metadata Interchange (XMI)

An OMG standard for exchanging metadata information via XML.

5. Symbols
There are no special symbols or terms.

6. Additional Information

6.1. Acknowledgements

The following organization submitted this specification:

• Japan Embedded Systems Technology Association (JASA)

6-7 Nihonbashi Odenmacho, Chuo-ku, Tokyo, 103-0011 Japan
Contact: Kenichi Nakamura (nakamura@upwind-technology.com)

The following organizations contributed to this specification:

• Central Information Center, Co., Ltd.

http://www.omg.org/spec/SMART/1.0/

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 11

• CORE CORPORATION
• Dai-ichi Seiko Co., Ltd.
• ECS Co., Ltd.
• Hitachi, Ltd.
• Keio University
• NDD Corporation
• ORIENTAL MOTOR Co., Ltd.
• ROBOTEC, Inc.
• TDI Product Solution Co., Ltd.
• Tokyo Metropolitan Industrial Technology Institute
• Tokyo Metropolitan University
• Upwind Technology, Inc.

The following organizations supported this specification:

• Honda R&D, Co., Ltd.
• Japan Robot Association
• National Institute of Advanced Industrial Science and Technology
• Shibaura Institute of Technology

12 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

 This page intentionally left blank.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 13

7. Hardware Abstraction Layer for Robotic Technology
(HAL4RT)

7.1. General

Hardware Abstraction Layer for Robotic Technology (HAL4RT) is an open standard for the implementation of
robotics and control software systems.

Specifically, HAL4RT is an API (Application Program Interface) for the layer between on the first hand an
application software of a middleware and on the other hand the drivers for devices such as sensor inputs, motor
control commands and so on.

This standardized API increases the portability and reusability of these device drivers.

7.2. Format and Conventions

 Class and Interface

Classes and interfaces described in this PIM are documented using tables of the following format:

Table 7.1 : <Class / Interface Name>
Description : <description>
Derived From: <parent class>
Attributes

<attribute name> <attribute type> <obligation> <occurrence> <description>
… … … … …
Operations

<operation name> <description>
<direction> <parameter name> <parameter type> <description>

… … … …

Note that derived attributes or operations are not described explicitly. Also, as the type of return code for every
operation in this specification is Returncode, which is defined in Section7.3, Return Codes, this is omitted in the
description table.

The ‘obligation’ and ‘occurrence’ are defined as follows.

Obligation

 M (mandatory): This attribute shall always be supplied.

 O (optional): This attribute may be supplied.

 C (conditional): This attribute shall be supplied under a condition. The condition is given as a part
of the attribute description.

Occurrence

The occurrence column indicates the maximum number of occurrences of the attribute values that are permissible.
The followings denote special meanings.

14 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

 N: No upper limit in the number of occurrences.

 ord: The appearance of the attribute values shall be ordered.

 unq: The appeared attribute values shall be unique.

Enumeration
Enumerations are documented as follows:

Table 7.2 : <enumeration name>
<constant name> <description>

… …

7.3. Return Codes

At the PIM level we have modeled errors as operation return codes typed ReturnCode. Each PSM may map these to
either return codes or exceptions. The complete list of return codes is indicated below.

Table 7.3: ReturnCode enumeration

HAL_OK The operation completed successfully.

HAL_NO_CONNECTED The target device is not connected.

HAL_NO_MEMORY The target of the operation ran out of the memory needed to complete the
operation.

HAL_NULL_PARAMETER The parameter is not supported.

HAL_NOT_IMPLEMENTED The operation is unsupported by the implementation (e.g., it belongs to a
compliance point that is not implemented).

HAL_BAD_PARAMETER The operation failed because an illegal argument was passed to it.

7.4. Platform Independent Model (PIM)

7.4.1 Overview
This section specifies the PIM for service interfaces and data models. HAL4RT has two layers: “Surface layer” and
“Device layer”.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 15

Figure 7.1 - Schematic structure of HAL4RT

The Surface layer provides standardized API (Application Program Interface) to application software and
middleware. The Surface layer will so enable software developers to build application software and middleware
without any concern about the differences among device interfaces she or he uses.

The Device layer consists of HAL4RT components. Application (including middleware) developers do not need to
be aware of the presence of the Device layer.

Device suppliers and manufacturers provide HAL4RT component to their customer along with their actuators or
sensors. The Device layer serves to bridge the gap between the API of the Surface Layer and the actual operation of
the device.

[OPTIONAL] In addition, the Surface layer is not required because HAL4RT aims “light and compact”
specification.

pkg HAL4RT

HAL4RT

Surface layer Dev ice layer

16 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

7.4.2 Interaction

7.4.2.1 System Interface

System Interface is the interface to notify the status of the device to the application program.

For examples, the following sequence diagram shows the behavior when the application program receives the status
of the actuator by using system interface.

Figure 7.2 – Sequence diagram of System Interface (System Error)

When the error occurred in the actuator, the application receives the asynchronous error notification by using
notify_error(). notify_error() notify the error_id and the error_type. The application program can know the detail of
the error by using get_error_detail() and the error_id.

7.4.2.2 Command Interface

Command interface is the interface to execute the commands of the device from the application program.

For the examples, the following sequence diagram show the behavior to send the position command to the actuator,
and to receive the position information from the actuator by using Command interface.

sd Sys t em

Application Program

<<SurfaceLay...

SerfaceApp

<<DeviceLayer...

MotorDevice

Actuator

opt

[If users need detail information]

Returncode_t= get_error_detail(-, results = outcome)

get_error_detail(error_id, results = null)

Returncode_t= get_error_detail(-, results = outcome)

notify_error(error_id = assigned_id, error_type)

notify_error(error_id = assigned_id, error_type)

Returncode_t= get_error_detail(-, results = outcome)

get_error_detail(error_id, results = null)

get_error_detail(error_id, results = null)

notify_error(error_id = assigned_id, error_type)

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 17

Figure 7.3 – Sequence Diagram of Command Interface (Motor position control)

Figure 7.4 – Sequence Diagram of Command Interface (Get current motor position)

sd Command

Application Program

<<SurfaceLayer>>

SerfaceApp

<<DeviceLayer>>

MotorDevice

Actuator

completed(command_id = assigned_id, , Returncode_t)

Returncode_t= parseCommand(command)

comleted(command_id = assigned_id, Returncode_t)

deviceId= selectDevice(logicalId)

Returncode_t= execute(command = assigned)

execute(command)

Returncode_t= HalMotorSetPosition(position, speed, tmAcc)

HalMotorSetPosition(LogicalId, position, speed, tmAcc): ReturnCode

sd Command

Application Program

<<SurfaceLay...

SerfaceApp

<<DeviceLayer...

MotorDevice

Actuator

Returncode_t= HalMotorGetPosition(-, position = outcome)

execute(command)

command= buildResult(position = outcome)

Returncode_t= HalMotorGetPosition(position = outcome)

deviceId= selectDevice(logicalId)

Returncode_t= execute(command)

Returncode_t= parseCommand(command)

HalMotorGetPosition(position)

HalMotorGetPosition(LogicalId, position)

18 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

The application program specifies the command of the target device by using execute() in the surface layer. The
surface layer parse the command and select the element in the device layer.

When the command is asynchronous, the surface layer returns command_id to the application program. After the
command finished execution in the device, the device layer call completed() and notifies to the application program.

On the other hand, when the command is synchronous, the surface layer calls processing in the device layer. The
device layer selects the target device, and calls the command. The surface layer returns the return value to the
application program.

7.4.2.3 Event Interface

Event Interface is the interface to receive the notification of changing state of the device. This interface uses
subscribe/unsubscribe to register/unregister the event.

The following sequence diagram shows the example.

Figure 7.5 – Sequence Diagram of Event Interface

The application program registers the event by using subscribe(). The device returns the result and subscribe_id.

When the event occurs, the device notifies the application program and sends event_id by using notify_event(). The
application program can find out the detail of the event using get_event_detail() and event_id.

The application calls unsubscribe() with subscribe_id to cancel the notification of the event.

sd [Package] HAL4RT [Event]

Application Program

<<SurfaceLayer>>

SerfaceApp

<<DeviceLayer>>

MotorDevice

Actuator

loop

opt

[When target event occurred]

opt

[If users need detail information]

break

[Stop event detection]

ReturnCode= unsubscribe()

subscribe(event_type, subscribe_id)

subscribe(event_type, subscribe_id)

notify_event(event_id=assigned_id, event_type, subscribe_id=assigned_id)

unsubscribe(subscribe_id=assigned_id)

ReturnCode= get_event_detail(-, results=outcome)

ReturnCode= subscribe(-, subscribe_id=assigned_id)

get_event_detail(event_id, results=null)

notify_event(event_id=assigned_id, event_type, subscribe_id=assigned_id)

subscribe(device_kind, event_type, subscribe_id)

unsubscribe(subscribe_id=assigned_id)

ReturnCode= subscribe(-, subscribe_id=assigned_id)

ReturnCode= unsubscribe()

unsubscribe(subscribe_id=assigned_id)

notify_event(event_id=assigned_id, event_type, subscribe_id=assigned_id)

ReturnCode= get_event_detail(-, results=outcome)

ReturnCode= unsubscribe()

ReturnCode= get_event_detail(-, results=outcome)

ReturnCode= subscribe(-, subscribe_id=assigned_id)

get_event_detail(event_id, results=null)
get_event_detail(event_id, results=null)

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 19

7.4.3 Surface layer
The surface layer is the specification of the Application Programming Interface for the application programmer who
uses HAL4RT devices. The surface layer parses the command from the application program, gets the device kind,
and generates the logical id.

The following diagram is the PIM of the surface layer.

Figure 7.6 – Surface Layer

7.4.3.1 Interface for Surface Layer

Table 7.4: System Interface

Description: The device notifies the error to the application program. Or, the application program gets the detail of
the error.
Derived From: None

Operations
notify_error Notify the error to the application program.

in error_id String Id information to distinguish the error.

in error_type String Information to distinguish the kind of the error.

get_error_detail Get the detail of the error.

in error_id String Id information to distinguish the error that was
notified by notify_error.

out result_list ResultList The detail information of the error.

clas s Surface Layer

<<SurfaceLayer>>
SurfaceApp

<<interface>>
Command

+ execute(inout command: Device): ReturnCode
+ completed(in command_id: String, in status: ReturnCode)

<<enumeration>>
Ret urnCode

 HAL_OK
 HAL_NO_CONECTED
 HAL_NO_MEMORY
 HAL_NULL_PARAMETER
 HAL_NOT_IMPLEMENTED
 HAL_BAD_PARAMETER

Appl ica t ion Prog ram
<<interface>>

Appl ica t ionBase

+ completed(in command_id: String, in status: ReturnCode)
+ notify_event(in event_id: String, in event_type: String, in subscribe_id: Integer): int
+ notify_error(in error_id: String, in error_type: String)

<<interface>>
Sys t em

+ notify_error(error_id: String, error_type: String)
+ get_error_detail(in error_id: String, out result_list: ResultList*): ReturnCode

<<interface>>
Event

+ subscribe(in device_kind: String, in event_type: String, out subscribe_id: Integer*): ReturnCode
+ unsubscribe(in subscribe_id: Integer): ReturnCode
+ notify_event(in event_id: String, in event_type: String, in subscribe_id: Integer)
+ get_event_detail(in event_id: String, out result: ResultList*): ReturnCode

20 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

Table 7.5: Command Interface
Description: The application program calls the command of the device.

Derived From: None

Operations
execute Execute the command of the device.

inout command Device The kind of the target device, the detail of the
command, the result of the command.

completed Notify the completion of the command.
in command_id String ID information of the command.
in status ReturnCode The result of the command.

Table 7.6: Event Interface

Description: The device notifies the event to the application program.

Derived From: None

Operations
subscribe Register the event.

in device_kind String The kind of the device.
in event_type String The type of the event.

out subscribe_id Integer ID information of the registered event.
unsubscribe Unregister the event.

in subscribe_id Integer ID information of the registered event.

get_event_detail Get the detail of the event.

in event_id String ID information of the event.

out results ResultList The detail information of the event.

notify_event Notify the event.
in event_id String ID information of the event.
in event_type String The type of the event.
in subscribe_id String ID information of the registered event.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 21

7.4.3.2 Interface for Application

The detail of the interface for the application program.

Table 7.7: Application Base Interface
Description: The application program implements this interface to receive the information from the device.
Derived From: None

Operations
completed Notify completion of the process in the device.

in command_id String The command ID.

in status ReturnCode The result of command.

notify_event Notify the event in the device.
in event_id String ID information of the event.
in event_type String The type of the event.
in subscribe_id Integer ID information of the registered event.

notify_error Notify the error in the device.

in error_id String ID information of the error.

in error_type String The type of the error.

7.4.4 Message Data Structure
When the application program executes the command of the device, it uses execute() in the command interface. The
following diagram shows the data structure of the message that is the argument of execute().

Figure 7.7 – Data Structure of Message

clas s Dat a St ruct ure

CommandMessage

- function_name: String
- command_id: String

Argument Lis t Paramet er

- data_type_id: Integer
- name: String
- value: Any

Result Lis t

Dev ice

- device_kind: String

+parameters

1..* {ordered}

+arguments

0..1

+ｐarameters

1..* {ordered}

+results

0..1

1..*

22 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

The following tables are the detailed definition of each class.

Table 7.8: Device

Description: Data type to distinguish the device.

Derived From : None

Attributes

device_kind String M 1

The kind of the device. For examples, Motor, Encoder, Gyro
sensor, Acceleration sensor, Force sensor, Torque sensor,
Temperature sensor, Humidity sensor, GPS sensor, Direction
sensor etc.

Table 7.9: Command Message

Description: Data type to specify the API and to keep the result.

Derived From : None

Attributes
function_name String M 1 The name of API.

command_id String M 1

The ID information to distinguish the CommandMessage.
The element of the surface layer select the ID and notify the
application program. In the asynchronous command, this is
used to notify the result.

arguments ArgumentList O 1 Parameter information for the command.
results ResultList O 1 Parameter information for the result of the command.

Table 7.10: ArgumentList

Description: Data type to keep the parameter.

Derived From : None

Attributes
parameters Parameter M Nord Parameter information.

Table 7.11: ResultList

Description: Data type to keep the result.

Derived From : None

Attributes
parameters Parameter M Nord The information of the result.

Table 7.12: Parameter

Description: Data type to send the parameter and to keep the result.

Derived From : None

Attributes
data_type_id Integer M 1 The ID of data type.

name String M 1 Parameter name.

value Any M 1 Parameter value.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 23

7.4.5 Device layer

The device layer is the specification of API for the device manufacturer. In the same kind of device, it hides the
differences between manufacturers, models etc.. It defines the common API for each device type. It converts the
actual device ID to the logical ID. The following diagram shows PIM of the device layer.

Figure 7.8 – Device Layer

Products conforming to HAL4RT, for each affected device must implement the entire API. If the nature of the
product, an API that does not function exists, it will implement all of the API. (A motor which is corresponding to
only the speed control in, or if it can not support the torque control API · Position Control API) And, non-support
API will be implemented as you plan to return the "API unimplemented error (HAL_NOT_IMPLEMENTED)" as
the API of the return value.

Event Interface and System Interface is an interface that is required only when you are using a surface layer. If the
surface layer is omitted, it is not necessary to implement these interfaces.

clas s Dev ice Layer

HALComponent

- componentName: String
- vendorId: Octet
- productId: Octet
- instanceId: Octet
- profileId: Octet

+ Init(): ReturnCode
+ Exit(): ReturnCode
+ Reset(): ReturnCode

Act uat or

- actuatorKindId: Integer

Sensor

- sensorKindId: Integer
- value of measurement: List<Real>
- unit of measurement: List<String>
- scale factor: List<Real>
- origin: List<Real>

+ GetSensorKind(out sensor_kind: Integer*): ReturnCode
+ GetValueOfMeasurement(out values: List<Real>*): ReturnCode
+ SetUnitOfMeasurement(in units: List<String>): ReturnCode
+ GetUnitOfMeasurement(out units: List<String>*): ReturnCode
+ SetScaleFactor(values: List<Real>): ReturnCode
+ SetOrigin(vakues: List<Real>): ReturnCode

<<enumeration>>
Mot orCont rolMode

 HALMOTOR_READY_TO_CONTROL
 HALMOTOR_CTL_POSITION
 HALMOTOR_CTL_SPEED
 HALMOTOR_CTL_TORQUE

Mot or

- mode: MotorControlMode
- position: Real
- speed: Real
- torque: Real
- scale factor: Real

+ SetControlMode(in mode: MotorControlMode): ReturnCode
+ GetControlMode(out mode: MotorControlMode*): ReturnCode
+ SetPosition(in position: Real): ReturnCode
+ SetSpeed(in speed: Real, in tmAcc: Real): ReturnCode
+ SetTorque(in torque: Real): ReturnCode
+ GetPosition(out position: Real*): ReturnCode
+ GetSpeed(out speed: Real*): ReturnCode
+ GetTorque(out torque: Real*): ReturnCode
+ SetOrigin(in position: Real): ReturnCode
+ SetScaleFactor(in value: Real): ReturnCode

Gyro Sensor

Torque Sensor

Direct ion Sensor

- Latitude: Real
- Longitude: Real
- Altitude: Real
- Date: Real
- Total Intensity: Real
- Horizontal Intensity: Real
- North Component: Real
- East Component: Real
- Vertical Component: Real
- Geomagnetic Inclination: Real
- Geomagnetic Declination: Real

+ SetLatitude(in latitude: Real): ReturnCode
+ SetLongitude(in longitude: Real): ReturnCode
+ SetAltitude(in altitude: Real): ReturnCode
+ SetDate(in date: Real): ReturnCode
+ GetF(out F: Real*): ReturnCode
+ GetH(out H: Real*): ReturnCode
+ GetX(out X: Real*): ReturnCode
+ GetY(out Y: Real*): ReturnCode
+ GetZ(out Z: Real*): ReturnCode
+ GetI(out I: Real*): ReturnCode
+ GetD(out D: Real*): ReturnCode

Encoder

Force Sensor

Accelera t ion Sensor

<<interface>>
Event

+ subscribe(in device_kind: String, in event_type: String, out subscribe_id: Integer*): ReturnCode
+ unsubscribe(in subscribe_id: Integer): ReturnCode
+ notify_event(in event_id: String, in event_type: String, in subscribe_id: Integer)
+ get_event_detail(in event_id: String, out result: ResultList*): ReturnCode

<<interface>>
Sys t em

+ notify_error(error_id: String, error_type: String)
+ get_error_detail(in error_id: String, out result_list: ResultList*): ReturnCode

GPS Sensor

- Latitude: Real
- Longitude: Real
- Accuracy: Real
- Dilution of Precision: Real
- Altitude: Real
- Time: Real
- Speed: Real
- Course: Real
- Signal Strength: Real
- Angle: Real
- Period: Real

+ GetLatitude(out latitude: Real*): ReturnCode
+ GetLongitude(out longitude: Real*): ReturnCode
+ GetAccuracy(out accuracy: Real*): ReturnCode
+ GetDOP(out DOP: Real*): ReturnCode
+ GetAltitude(out altitude: Real*): ReturnCode
+ GetTime(out time: Real*): ReturnCode
+ GetSpeed(out speed: Real*): ReturnCode
+ GetCourse(out course: Real*): ReturnCode
+ GetSignalStrength(out signalStrength: Real*): ReturnCode
+ GetAngle(out angle: Real*): ReturnCode
+ SetPeriod(in period: Real): ReturnCode

Tempera t ure Sensor

Humid it y Sensor

24 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

7.4.5.1 HAL Component

HAL Component is an element to keep the common definition for all components in the device layer.

Derived From: None

Attributes
componentName String M 1 Component name.

vendorId Octet [RTC] M 1 Manufacturer ID. Manufacturer provides a component for the
device.

productId Octet [RTC] M 1 Product ID defined by manufacturer.
instanceId Octet [RTC] M 1 Instance ID for some same devices.
profileId Octet [RTC] M 1 ID for the kind of the device.
Operations
Init Initialize HAL Component

Exit Finish HALComponent.

Reset Reset the error status and recover.

componentName
Each HAL component is identified by a Profile ID (See the section 7.2.2), a Vendor ID (See the section 7.2.3) and
a Product ID (See the section 7.2.4), and has a unique HAL component name.

 Hal + Profile name + Vender Name + Product Name

vendorId

The Vendor names and Vendor IDs identify the device suppliers and manufacturers. A Vendor ID is defined as a
32bit unsigned integer type, with value between 0x00000000 and 0xFFFFFFFF. The Vendor names and Vendor
IDs are maintained by the OMG. The Vendor name is a 2 to 16-character string beginning with an uppercase
letter.

productId

The Product names and Product IDs identify the products of the device suppliers and manufacturers. A Product
ID is defined as a 32bit unsigned integer type, with values between 0x00000000 and 0xFFFFFFFF. The Product
names and Product IDs are defined by device suppliers and manufacturers

instanceId

An Instance ID identifies a specific device. An Instance ID is defined as a 32bit unsigned integer type, with values
between 0x00000000 and 0xFFFFFFFF. The Instance IDs are defined by the application developers.

profileId
A Profile ID identifies the kind of the device.

Device kind ID Registry

 A register to manage Device Kind ID, Device Name, componentName, vendorId, productId, instanceId and
profileId.

 For examples,

 Device Kind ID, Device Name

 0x00000001, Motor

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 25

 0x00000002, Encoder

 0x00000003, GyroSensor

 0x00000004, TorqueSensor

 Vendor ID, Product ID, Component Name

 0x00000001, 0x00000001, AAA

 0x00000002, 0x00000001, BBB

Device Characteristics Profile

 A profile that will have the kind of the device, command name, command ID, and parameters.

Device Characteristics Profile Definition

 A register to have componentName, vendorId, productId, instanceId and profileId.

State Machine

The following diagram shows State Machine of HAL Component. State Machine of the device is defined in
“Active”.

Figure 7.9 – State Machine of HAL Component

s tm HALComponent

In it ia l iz ing

In it ia l iz ed
Act ive

E rror

occurrence of an error

Exit

Exit

HalReset

Init

26 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

The detail of each state is below.

• Initializing: The status to initialize the device. The application program cannot call the methods of HAL
Component.

• Initialized: The status after initializing of the device. The application program can call only Init.
• Active: The state that HAL Component is working. The application program can call all API except Init

and Reset.
• Error: The state that HAL Component is stopping. The application program can call Reset and Exit.

7.4.5.2 Actuator

Actuator is an element that has the common definition of the actuator.

Derived From: HAL Component

Attributes
actuatorKind Integer M 1 ID that shows the kind of the actuator.

Operations：None

7.4.5.3 MotorControlMode

MotorControlMode is an enumeration to distinguish the control mode of the motor.

HALMOTOR_READY_TO_CONTROL No power mode.

HALMOTOR_CTL_POSITION Position control mode.

HALMOTOR_CTL_SPEED Speed control mode.

HALMOTOR_CTL_TORQUE Torque control mode.

7.4.5.4 Motor

Motor is an abstract element that shows 1 DOF (degree of freedom) motor including linear and rotary. HAL4RT
doesn’t support Multiple DOF motors.

Derived From: Actuator

Attributes
mode MotorControlMode M 1 The control mode of the motor.

position Real M 1 The current position/angle.

speed Real M 1 The current velocity/angular velocity.

torque Real M 1 The current force/torque.

scale factor Real M 1

Unit(the scale of position/angle of output shaft)
Rotating system：The value per round. The initial value is 2
pi.
Linear system：The value per meter. The initial value is1.0.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 27

Operations
SetControlMode Set control mode of the motor.

in mode MotorControlMode M Control mode.

GetControlMode Get control mode of the motor.

out mode MotorControlMode M The current control mode.

SetPosition Move to the target position/angle. If the control mode is not position control mode, change
to position control mode.

in position Real M The target position. Unit: scale factor.

SetSpeed Increase/Decrease velocity/angular velocity in the specified acceleration/deceleration time.
If the control mode is not speed control mode, change to speed control mode.

in speed Real M The target speed. Unit:scale factor/second.

in tmAcc Real M Acceleration/Deceleration time to the target speed. Unit:second.

SetTorque Output the specified torque. If the control mode is not torque control mode, change to
torque control mode.

in torque Real M The target torque. Unit:[Nm] or [N].

GetPosition Get the current position/angle.

out position Real M The current position/angle. Unit:scale factor.

GetSpeed Get the current velocity/angular velocity.

out speed Real M The current speed. Unit:scale factor/second

GetTorque Get the current torque.

out torque Real M The current torque. Unit:[Nm] or [N]

SetOrigin Set the current position as the origin.
in position Real M The target position. Unit:[rad] or [m]

State Machine

The following diagram shows State Machine of Motor. It shows the State Machine in the Active state of HAL4RT
Component.

28 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

Figure 7.10 – State Machine of Motor

The details of each state are below.

• Wait (Not Excited): Standby state that motor body is not energized.
• Position control: The state running position control. If SetPosition is called, change to this state

automatically.
• Speed Control: The state running speed control. If SetSpeed is called, change to this state automatically.
• Torque Control: The state running torque control. If SEtTorque is called, change to this state automatically.

 [OPTIONAL] It is not necessary to implement all control modes.

7.4.5.5 Sensor

Sensor is an abstract element that has the common definition of the sensor.

Derived From: HAL Component
Attributes
sensorKindId Integer M 1 ID information to distinguish the kind of the sensor.

value of measurement Real M Nord Value of measurement of the sensor.

unit of measurement String M Nord Unit of measurement.

scale factor Real M Nord Factor to convert the measurement content of the sensor to the
specified measurement information.

origin Real M Nord The origin of each measurement

Operations
GetSensorKind Get the kind of the sensor.

out sensor_kind Integer M The kind of the sensor.

s tm Mot or

Wa it (Not Ex ic it ed)

Pos it ion Cont rol

Speed Cont rol

Torque Cont rol

SetControlMode(mode=HALMOTOR_CTL_TORQUE)

SetControlMode(mode=HALMOTOR_CTL_TORQUE)

SetSpeed

SetTorque

SetControlMode(mode=HALMOTOR_CTL_TORQUE)

SetControlMode
(mode=HALMOTOR_CTL_SPEED)

SetControlMode(mode=HALMOTOR_CTL_POSITION)
SetControlMode(mode=HALMOTOR_READY_TO_CONTROL)

SetControlMode(mode=HALMOTOR_CTL_SPEED)

SetTorque

SetPosition

SetPosition

SetControlMode(mode=HALMOTOR_CTL_POSITION)

SetControlMode
(mode=HALMOTOR_READY_TO_CONTROL)

SetControlMode(mode=HALMOTOR_CTL_POSITION)

SetSpeed

SetPosition

SetControlMode(mode=HALMOTOR_CTL_SPEED)

SetControlMode
(mode=HALMOTOR_READY_TO_CONTROL)

SetTorque

SetSpeed

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 29

GetValueOfMeasurement Get the value of measurement of the sensor.

out values List<Real> M Value of measurement of the sensors.

SetUnitOfMeasurement Set the unit of sensor measurement.

in units List<String> M Unit of sensor measurement.

GetUnitOfMeasurement Get the unit of sensor measurement.

out units List<String> M Unit of sensor measurement.

SetScaleFactor Set the scale factor of the value of measurement of the sensor.

in values List<Real> M Scale factor of the value of measurement of the sensor.

GetScaleFactor Get the scale factor of the value of measurement of the sensor.

out values List<Real> M Scale factor of the value of measurement of the sensor.

SetOrigin Set the origin of the sensor.

in values List<Real> M Origin of the sensor.

7.4.5.6 Encoder

Encoder is a sensor to measure the position / angle.

Derived From: Sensor

Attributes： None

Operations：None

7.4.5.7 Gyro Sensor

Gyro Sensor is a sensor to measure angular velocity.

Derived From: Sensor

Attributes：None

Operations：None

7.4.5.8 Acceleration Sensor

Acceleration Sensor is a sensor to measure acceleration.

Derived From: Sensor

Attributes：None

Operations：None

30 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

7.4.5.9 Force Sensor

Force Sensor is a sensor to measure force.

Derived From: Sensor

Attributes：None

Operations：None

7.4.5.10 Torque Sensor

Torque Sensor is a sensor to measure torque.

Derived From: Sensor

Attributes：None

Operations：None

7.4.5.11 Temperature Sensor

Temperature Sensor is a sensor to measure temperature.

Derived From: Sensor

Attributes：None

Operations：None

7.4.5.12 Humidity Sensor

Humidity Sensor is a sensor to measure humidity.

Derived From: Sensor

Attributes：None

Operations：None

7.4.5.13 GPS Sensor

GPS Sensor is a sensor to measure latitude and longitude, or heading and distance to GPS position.

Derived From: Sensor

Attributes
latitude Real M 1 Latitude

longitude Real M 1 Longitude

accuracy Real M 1 Accuracy
dilution of
precision Real M 1 Dilution of precision (DOP)

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 31

altitude Real M 1 Altitude

time Real M 1 Time

speed Real M 1 Speed

course Real M 1 Course

signal strength Real M 1 Signal strength

angle Real M 1 Angle

period Real M 1 Period

Operations
GetLatitude Get the latitude, in degrees.

out latitude Real M Latitude

GetLongitude Get the longitude, in degrees.

out longitude Real M Longitude

GetAccuracy Get the estimated accuracy of this location, in meters.

out accuracy Real M Accuracy

GetDOP Get the value of DOP.

out DOP Real M Dilution of precision (DOP)

GetAltitude Get the altitude if available, in meters above the WGS 84 reference ellipsoid.

out altitude Real M Altitude

GetTime Return the UTC time of this fix, in milliseconds since January 1, 1970.

out time Real M Time

GetSpeed Get the speed if it is available, in meters/second over ground.

out speed Real M Speed. Unit : [m/s]

GetCourse Get the course if it is available, in 000.0–359.9 degrees.

out course Real M Course. Unit : [degree]

GetSignalStrength Get signal strength.

out signal strength Real M Signal strength

GetAngle Get angle.

out angle Real M Angle

SetPeriod Set period.

in period Real M Period

32 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

7.4.5.14 Direction Sensor

Direction Sensor is a sensor to measure direction.

Derived From: Sensor

Attributes
latitude Real M 1 Latitude. -90.00 to +90.00 degrees

longitude Real M 1 Longitude. -180.00 to +180.00 degrees

altitude Real M 1 Altitude. referenced to the WGS 84 ellipsoid OR the Mean Sea
Level (MSL)

date Real M 1 Date. 2015.0 to 2020.0

total intensity Real M 1 F - Total Intensity of the geomagnetic field

horizontal intensity Real M 1 H - Horizontal Intensity of the geomagnetic field

north component Real M 1 X - North Component of the geomagnetic field

east component Real M 1 Y - East Component of the geomagnetic field

vertical component Real M 1 Z - Vertical Component of the geomagnetic field

geomagnetic inclination Real M 1 I (DIP) - Geomagnetic Inclination
geomagnetic
declination Real M 1 D (DEC) - Geomagnetic Declination (Magnetic Variation)

Operations
SetLatitude Set latitude.

in latitude Real M Latitude

SetLongitude Set longitude.

in longitude Real M Longitude

SetAltitude Set altitude.

in Altitude Real M Altitude

SetDate Set date.

in date Real M Date

GetF Get F.

out F Real M F - Total Intensity of the geomagnetic field

GetH Get H.

out H Real M H - Horizontal Intensity of the geomagnetic field

GetX Get X.

out X Real M X - North Component of the geomagnetic field

GetY Get Y.

out Y Real M Y - East Component of the geomagnetic field

GetZ Get Z.

out Z Real M Z - Vertical Component of the geomagnetic field

GetI Get I.

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 33

out I Real M I (DIP) - Geomagnetic Inclination

GetD Get D.

out period Real M D (DEC) - Geomagnetic Declination (Magnetic Variation)

7.5 Platform Specific Model (PSM)

This section specifies the PSM for HAL4RT. HAL4RT offers only one PSM, which is based on the ISO/IEC
9899:1999 Programming Language C (also known as C99).

7.5.1 UML-to-C Transformation

7.5.1.1 Type Definition

7.5.1.1.1 char [ISO/IEC-9899]
String is mapped to char.

7.5.1.1.2 Octet [RTC]
Octet is mapped to int32_t.

7.5.1.1.3 double [ISO/IEC-9899]
Real is mapped to double.

7.5.2 C PSM

/* HAL4RT_Surface.h */

#ifndef HAL4RT_SURFACE_H
#define HAL4RT_SURFACE_H

int32_t completed();
int32_t notify_event();
int32_t notify_error();
int32_t get_error_detail();
int32_t execute();
int32_t completed();
int32_t subscribe();
int32_t unsubscribe();
int32_t get_event_data();

typedef struct ApplicationBase {
 int32_t completed();
 int32_t notify_event();
 int32_t notify_error();
} APPLICATIONBASE;

typedef struct System {
 int32_t notify_error();
 int32_t get_error_detail();

34 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

} SYSTEM;

typedef struct Command {
 int32_t execute();
 int32_t completed();
} COMMAND;

typedef struct Event {
 int32_t subscribe();
 int32_t unsubscribe();
 int32_t notify_event();
 int32_t get_event_data();
} EVENT;

/* HAL4RT_Device.h */

#ifndef HAL4RT_DEVICE_H
#define HAL4RT_DEVICE_H

typedef struct HALComponent {
 char ComponentName[32];
 uint32_t Vendor_ID;
 uint32_t Product_ID;
 uint32_t Instance_ID;
 uint32_t Profile_ID;
} HALCOMPONENT;

typedef struct Actuator {
 uint32_t ActuatorKindId;
} ACTUATOR

typedef struct Sensor {
 uint32_t SensorKindId;
 int32_t ValueOfMeasurement[32];
 int32_t ScaleFactor[32];
 int32_t Origin[32];
 int32_t GetSensorKind();
 int32_t GetValueOfMeasurement();
 int32_t SetUintOfMeasurement();
 int32_t GetUnitOfMeasurement();
 int32_t SetScaleFactor();
 int32_t SetOrigin();
} SENSOR

#endif HAL4RT_DEVICE_H

Hardware Abstraction Layer for Robotic Technology, v1.0 Beta 35

7.5.3 XML PSM

The below is XML schema to express Message Data Structure.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CommandMessage" type="CommandMessage"/>
 <xs:complexType name="CommandMessage">
 <xs:sequence>
 <xs:element name="function_name" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="command_id" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="arguments" type="ArgumentList" minOccurs="0" maxOccurs="1"/>
 <xs:element name="results" type="ResultList" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ArgumentList" type="ArgumentList"/>
 <xs:complexType name="ArgumentList">
 <xs:sequence>
 <xs:element name=" ｐarameters" type="Parameter" minOcc
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Parameter" type="Parameter"/>
 <xs:complexType name="Parameter">
 <xs:sequence>
 <xs:element name="data_type_id" type="xs:integer" minOccurs="1" maxOccurs="1"/>
 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="value" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="ResultList" type="ResultList"/>
 <xs:complexType name="ResultList">
 <xs:sequence>
 <xs:element name="parameters" type="Parameter" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Device" type="Device"/>
 <xs:complexType name="Device">
 <xs:sequence>
 <xs:element name="device_kind" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="CommandMessage" type="CommandMessage" minOccurs="1"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

36 Hardware Abstraction Layer for Robotic Technology, v1.0 Beta

 This page intentionally left blank.

	1. Scope
	2. Conformance
	3. References
	3.1. Normative References

	4. Terms and Definitions
	5. Symbols
	6. Additional Information
	6.1. Acknowledgements

	7. Hardware Abstraction Layer for Robotic Technology (HAL4RT)
	7.1. General
	7.2. Format and Conventions
	Class and Interface
	Enumeration

	7.3. Return Codes
	7.4. Platform Independent Model (PIM)
	7.5.1.1.1 char [ISO/IEC-9899]
	7.5.1.1.2 Octet [RTC]
	7.5.1.1.3 double [ISO/IEC-9899]
	7.5.2 C PSM
	7.5.3 XML PSM

