
Historical Data Access from Industrial 
Systems Specification

This OMG document replaces the draft adopted specification and original submission
(mantis/02-10-03). It is an OMG Final Adopted Specification, which has been approved by the 
OMG board and technical plenaries, and is currently in the finalization phase. Comments on the 
content of this document are welcomed, and should be directed to issues@omg.org by October 27, 
2003.

You may view the pending issues for this specification from the OMG revision issues web page 
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues. 

The FTF Recommendation and Report for this specification will be published on November 28, 
2003. If you are reading this after that date, please download the available specification from the 
OMG Specifications Catalog.

OMG Adopted Specification
dtc/03-02-01
February 2003





 Historical Data Access from Industrial 
Systems Specification 

Final Adopted Specification
February 2003
dtc/03-02-01



Copyright 2002, ABB Utility Automation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions 
and notices set forth below. This document does not represent a commitment to implement any portion of this 
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The company listed above has granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid 
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the 
modified version. The copyright holder listed above has agreed that no person shall be deemed to have infringed the 
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein 
or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this 
specification to create and distribute software and special purpose specifications that are based upon this specification, and 
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright 
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the 
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any 
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this 
specification. This limited permission automatically terminates without notice if you breach any of these terms or 
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control. 

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are 
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations 
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this 
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or 
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission 
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN 
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE 
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF 
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. 
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE 



BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR 
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, 
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. 

The entire risk as to the quality and performance of software developed using this specification is borne by you. This 
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1) (ii) of 
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) 
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition 
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be 
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® 
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA 
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, 
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's 
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, 
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG 
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names 
mentioned are used for identification purposes only, and may be trademarks of their respective owners. 

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer 
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and 
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the 
specification. Software developed only partially matching the applicable compliance points may claim only that the 
software was based on this specification, but may not claim compliance or conformance with this specification. In the 
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this 
specification may claim compliance or conformance with the specification only if the software satisfactorily completes 
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on 
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue. 





Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Problems Being Addressed . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.2.1 Data Semantics  . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.2.2 Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
1.2.3 Concurrency Control . . . . . . . . . . . . . . . . . . . . 1-4

1.3 Problems Not Being Addressed . . . . . . . . . . . . . . . . . . . . . 1-5

1.4 Design Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
1.4.1 Adherence to OPC . . . . . . . . . . . . . . . . . . . . . . 1-5
1.4.2 Adherence to OMG Data Acquisition 

from Industrial Systems (DAIS)  . . . . . . . . . . . 1-5
1.4.3 Simplicity and Uniformity . . . . . . . . . . . . . . . . 1-5
1.4.4 High Performance Implementations  . . . . . . . . 1-6

2. Relations to Other Standards  . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 DAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.3 OLE for Process Control (OPC)  . . . . . . . . . . . . . . . . . . . . 2-2

2.4 Data Access Facility (DAF)  . . . . . . . . . . . . . . . . . . . . . . . 2-2

2.5 IEC 61346-1, Structuring and Naming  . . . . . . . . . . . . . . . 2-2

2.6 IEC 61970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

3. HDAIS Informational Model . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
February 2003 Historical Data Access from Industrial Systems i



4. Common Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.1 Character Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.2 DAFIdentifiers IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.3 DAFDescriptions IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.4 DAISCommon IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.5 Iterator Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.6 DAISNode IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.7 DAISType IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.8 DAISProperty IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.9 DAISSession IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

4.10 DAISServer IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

5. HDAIS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2 HDAIS Common IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

5.3 Server and Client Objects  . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
5.3.1 HDAISServer . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
5.3.2 HDAISSession . . . . . . . . . . . . . . . . . . . . . . . . . 5-9
5.3.3 HDAISClient . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

5.4 Connection Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
5.4.1 HDAISConnection Overview  . . . . . . . . . . . . . 5-12
5.4.2 HDAISConnection IDL . . . . . . . . . . . . . . . . . . 5-12

5.5 Browse Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
5.5.1 Mapping to OPC HDA  . . . . . . . . . . . . . . . . . . 5-15
5.5.2 HDAISBrowse . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
5.5.3 HDAISNode  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
5.5.4 HDAISItem  . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
5.5.5 HDAISItemAttribute . . . . . . . . . . . . . . . . . . . . 5-23
5.5.6 HDAISAggregate . . . . . . . . . . . . . . . . . . . . . . . 5-27

5.6 Data Access (IO) Interfaces  . . . . . . . . . . . . . . . . . . . . . . . 5-30
5.6.1 HDAISValueIO  . . . . . . . . . . . . . . . . . . . . . . . . 5-30
5.6.2 HDAISModifiedValueIO . . . . . . . . . . . . . . . . . 5-53
5.6.3 HDAISItemAttributeIO . . . . . . . . . . . . . . . . . . 5-57
5.6.4 HDAISAnnotationIO . . . . . . . . . . . . . . . . . . . . 5-61

5.7 Basic Sequencing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-67
ii Historical Data Access from Industrial Systems   February 2003



 Appendix A - References . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1

 Appendix B - OMG IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
February 2003 Historical Data Acquisition from Industrial Systems  iii



iv Historical Data Access from Industrial Systems   February 2003



Preface 
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 600 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG's objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to 
delivering greater business efficiency by bringing together buyers and suppliers of 
information technology to lower the time, cost, and risks associated with integrating 
new technology across the enterprise.

The mission of The Open Group is to drive the creation of boundaryless information 
flow achieved by:

• Working with customers to capture, understand and address current and emerging 
requirements, establish policies, and share best practices; 

• Working with suppliers, consortia and standards bodies to develop consensus and 
facilitate interoperability, to evolve and integrate specifications and open source 
technologies; 
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification v



• Offering a comprehensive set of services to enhance the operational efficiency of 
consortia; and 

• Developing and operating the industry’s premier certification service and 
encouraging procurement of certified products. 

The Open Group has over 15 years experience in developing and operating certification 
programs and has extensive experience developing and facilitating industry adoption of 
test suites used to validate conformance to an open standard or specification. The Open 
Group portfolio of test suites includes tests for CORBA,  the Single UNIX 
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime, 
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential 
for proper development and maintenance of standards-based products, ensuring 
conformance of products to industry-standard APIs, applications portability, and 
interoperability. In-depth testing identifies defects at the earliest possible point in the 
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications. 

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications, 
and CORBA Component Model (CCM). 

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG 
Embedded Intelligence specifications, and OMG Security specifications. 

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing 
Requests for Information, Requests for Proposals, and Requests for Comment and, 
with its membership, evaluating the responses. Specifications are adopted as standards 
only when representatives of the OMG membership accept them as such by vote. (The 
policies and procedures of the OMG are described in detail in the Object Management 
Architecture Guide.) 
vi Historical Data Access from Industrial Systems Final Adopted Specification February 2003



OMG formal documents are available from our web site in PostScript and PDF format. 
Contact the Object Management Group, Inc. at: 

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming 
statements from ordinary English. 

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax 
elements. 

Courier bold - Programming language elements. 

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the 
name of a document, specification, or other publication. 

Acknowledgments

The following company submitted this specification:

• ABB Utility Automation

Conformance to HDAIS

HDAIS specifies conformance points according to the table below.

Conformance Points

A
Synchronous access

B
Asynchronous access

1
Value retrieve & 

Discovery of time series

ValueIO::SyncRead
Node::Home

Item::Home

Aggregate::Home

ValueIO::AsyncRead
Node::Home

Item::Home

Aggregate::Home
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification vii



This table is a matrix where the left column and top row defines the conformance 
points, e.g. row 1 and column 1 defines the conformance point A1. The matrix cells 
define the interfaces that shall be conformed to, e.g. cell (conformance point) A1 
defines the following interfaces to conform to ValueIO::SyncRead, Node::Home, 
Item::Home and Aggregate::Home.

An implementation shall obey the following:

• An implementation shall conform to 1.

• A 1 implementation  may also conform to 2, 3, 6 and 7 in any combination ( just 2, 
just 3, just 6, both 2 and 3, etc).

• A 2 implementation may also conform to 4.

• An implementation shall conform to one of A or B.

• An implementation may conform to both A and B.

• A B1 implementation may also conform to B5.

Note – Any other combinations than the above are non-conformant.

2
Value recording

ValueIO::SyncUpdate
ModifiedValueIO::Sync

ValueIO::AsyncUpdate
ValueIO::Callback

ModifiedValueIO::Async

ModifiedValueIO::Callback

3
Value attributes

ItemAttributeIO::Sync
ItemAttribute::Home

ItemAttributeIO::Async
ItemAttributeIO::Callback
ItemAttribute::Home

4
Annotations

AnnotationIO::Sync AnnotationIO::Async
AnnotationIO::Callback

5
Play back

N/A ValueIO::Playback
ValueIO::PlaybackCallback

6
Discovery of schema

DAIS::Type::Home
DAIS::Property::Home

DAIS::Type::Home
DAIS::Property::Home

7
Discovery of objects for 

past times

IDL Attribute 
Browse::Home::browse_base_time

IDL Attribute 
Browse::Home::browse_base_time

Conformance Points
viii Historical Data Access from Industrial Systems Final Adopted Specification February 2003



Overview 1
1.1 Introduction

Recording and archival of time series data in industrial control systems is made for the 
following purposes:

• verification of the actual system state before and during a disturbance,

• dispute resolution,

• basis for simulation,

• analysis of relations between data, and

• system performance analysis.  

Time series data in this context mainly means measured or calculated values representing 
state variables within the industrial process. Measured data might be telemetered (i.e., 
collected from remote units). Parameter values (e.g., alarm limits, amplifier gains etc.), 
control commands and operator actions are also included. 

This specification defines a number of interfaces for a time series data management 
facility. The motivation is to enable integration between the various existing or emerging 
products that produce or consume historical data, such as:

• Remote terminal units, process control units, SCADA (Supervisory Control and 
Data Acquisition) systems that produce historical data to be recorded.

• Maintenance and persistent storage systems that consume historical data (a 
historical data management facility).

• Clients retrieving data for discovery, presentation and update.

• Clients retrieving data for analysis and or input to calculations.

• Bridges to and from existing OPC Historical data services.

Figure 1-1 gives an architecture overview of server and client components that use the 
interfaces.
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification 1-1



1

Figure 1-1 Client and server components using the HDAIS API

Figure 1-1 describes the data traffic crossing the interface between the server and its 
clients. The arrow directions indicate the major data flow direction. The arrow marked 
"calculation of new data" is outside the scope but indicates that new data can be created 
by calculations running within the server.

The data source components from Figure 1-1 and their relationships to major industrial 
control system components are shown in Figure 1-2.

Figure 1-2 Relationships between major industrial control system components and HDAIS

Clients

Communication supported by API

Time series data
mgt. facility

Calculation
of new data

Data source
(recording)

Presentation Update

Archive

AnalysisDiscovery

Server

Possible HDAIS
data source clients

Instrumentation

Process control
or remote terminal unit

SCADA or
Telemetry system

Model based 
management system

Server implementing
HDAIS

Data
traffic
possibly
across
DAIS
API
1-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



1

Connection to the process instrumentation (sensors and actuators) is usually through 
process control or remote terminal units. The remote units are connected to a SCADA 
(Supervisory Control and Data Acquisition) or telemetry system, possibly using DAIS. A 
SCADA system makes the telemetry data available to operators or other systems 
including model based management systems. In the utility context, the model-based 
management system is called an Energy Management Systems (EMS). Control room 
operators monitor and control a power system using an EMS. It runs various network 
related power applications utilizing telemetry (state) and parameter data. 

The SCADA/telemetry system or the model based management system typically uses the 
HDAIS server to record historical data. The recording data source from Figure 1-1 is then 
part of SCADA/telemetry or model based management system.

Telemetering is defined (from IEEE Std 1000 [1972]) as “measurement with the aid of 
intermediate means that permit the measurement to be interpreted at a distance from the 
primary detector.”

1.2 Problems Being Addressed

This specification includes interfaces to record and retrieve time series data. It is aimed to 
support domains as

• power systems, and

• industrial processes.

It may also be used in the control system domains for:

• space,

• rail way systems,

• air traffic control systems,

• manufacturing systems, and

• health monitoring systems.

Sources of time series data in these domains include: 

• Process control units (e.g., interlocking equipment, protection equipment, process 
regulation equipment, etc.).

• RTUs or remote utility control centers connected via inter center protocols (e.g., 
ICCP or ELCOM).

• Applications producing calculated data (e.g., custom SCADA calculations, model-
based calculations as State Estimator or Power Flows, etc.).

• Operators providing manually maintained data.

Time series data can describe any kind of state variables, control variables, or parameters 
existing in a control system. For example:

• State variables (also called measurements); e.g., analog values as voltages, 
pressure, fluid flows, electrical current, power flow, level or discrete values as on, 
off, tripped or blob type values as sound clips, video images, etc.
February 2003 HDAIS Final Adopted Specification:   Problems Being Addressed  1-3



1

• Control variables; e.g., analog controls as set points, pulsed controls as 
raise/lower or discrete controls as on, off etc.

• Parameters; e.g., limit values, ratings, amplifier gains, filter parameters, etc.

At any given time data is available only for the objects that existed at that time.  
Moreover, when an object is deleted, its history for past times is not deleted. This is 
important for use in legal cases or post mortem reviews. 

Clients usually don’t know in advance the organization of data and the schema 
(information model) describing the exposed data. Hence the specification includes 
interfaces where clients can explore both data and schema.

1.2.1 Data Semantics

Time series data is hierarchically organized in trees of Nodes and Items where the Items 
are leafs. The Nodes in the hierarchy have a Type (e.g., substation, pump, breaker). An 
Item is an instance of a Property and the Property belongs to a Type.

An Item has a time series of ItemValues. An ItemValue consists of one or more triples 
consisting of

• value,

• time stamp, and

• quality code.

The value can be of multiple data types, for example:

• various numeric data types

• text

• blob type of data as sound clips, images, control programs etc.

1.2.2 Data Access

This specification provides interfaces for data access including:

• Discovery of Nodes and Items available in a server.

• Discovery of the information model supported by a server (e.g., available Types and 
their Properties).

• Synchronous and asynchronous read or write of ItemValues.

• Client side subscription callback interfaces for event driven transfer of ItemValues.

1.2.3 Concurrency Control

There are no explicit means to synchronize clients. Time stamping of data is provided so 
that clients can judge the age.
1-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



1

1.3 Problems Not Being Addressed

The following items are outside the scope of this specification:

• Configuration of the historical data management systems itself and its population of  
objects. An industrial process evolves over time and this is reflected by changes in 
configuration. Changes include addition and/or deletion of Nodes and Items; 
specialized data maintenance tools make this. Such tools are outside the scope of 
this specification.

• Specification of what time domain calculations that are available in the historical 
data management systems. This is regarded to be a server configuration issue.

• The actual collection and recording of ItemValues. This is regarded to be a client 
responsibility.

• User interface for presentation of discovered or recorded data. This is regarded to be 
a client responsibility.

• Tools for analysis or calculations on data. This is regarded to be a client 
responsibility.

• Security and encryption/decryption of data.

• Complex relations between resources (e.g., references between objects).

1.4 Design Rationale

Besides meeting the requirements spelled out in the RFP there are a number of design 
goals that have shaped solutions.

1.4.1 Adherence to OPC

OPC Historical Data Access (HDA) [7] and other OPC specifications has been in use for 
a number of years today and this specification leverage on the experience gained by 
OPC. There are a large number of OPC based products in the market place and cases 
where HDAIS and OPC will be bridged are likely. Adherence to OPC is important to 
facilitate simple bridging and porting HDAIS software to/from OPC HDA.

1.4.2 Adherence to OMG Data Acquisition from Industrial Systems (DAIS)

The OMG DAIS specification [2] is based on the OPC specifications Data Access [5] 
and Alarms & Events [6]. HDAIS is an extension of DAIS and is aimed to be fully 
compatible with DAIS and build on the same basis; i.e., OPC.

1.4.3 Simplicity and Uniformity

Some design principles used when creating OPC were:

• Method behavior is sometimes controlled by an input parameter.

• Related data is transferred in multiple parallel vectors.
February 2003 HDAIS Final Adopted Specification:   Problems Not Being Addressed  1-5



1

• Outputs are always returned in one or more output parameters.

To simplify and get a more uniform interface these principles have been replaced by the 
following:

• A method has one single behavior resulting in some OPC methods being replaced 
by more than one DAIS method.

• Related data is kept together in structs resulting in reduction of the number 
parameters compared to OPC.

• Outputs are returned as method return results resulting in the OPC HRESULT 
parameter being replaced by exceptions and reduced number of output parameters 
compared to OPC.

1.4.4 High Performance Implementations

An HDAIS server is a real-time system required to deliver data in high rates and 
volumes.  The performance requirements mean that a typical HDAIS server does not use 
a relational database management system for on-line operation but some kind of real-
time database. The HDAIS API efficiently encapsulates such real-time databases from 
clients.

To effectively deliver data the HDAIS interface itself must not introduce performance 
bottlenecks. This has influenced the design in several ways, listed below.

1.4.4.1 Subscription

The subscription mechanism consists of two phases. In the first the client negotiates with 
the server on what data items to subscribe for and in the second the actual data transfer 
takes place. This minimizes the amount of transferred data between the server and the 
client during on-line operation.

1.4.4.2 Sequences

The HDAIS interface supports using sequences of data in calls rather than having calls 
requiring single valued parameters. This allows clients to ask for processing of multiple 
data in a single call rather than making multiple calls thus reducing the number of LAN 
round trips.

1.4.4.3 Iterators

Large volumes of data are not efficiently transferred in one method call. For this reason 
many methods return an iterator that is used to transfer optimal volumes of data in each 
call.
1-6 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



1

1.4.4.4 Data Value Representation

The basic unit of data is a union type: SimpleValue. SimpleValue exploits our knowledge 
of the basic data types needed and eliminates CORBA any from the highest bandwidth 
part of the interface.  This can make a significant impact on performance when 
accumulated across large amounts of data.
February 2003 HDAIS Final Adopted Specification:   Design Rationale  1-7



1

1-8 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



Relations to Other Standards 2
2.1 Overview

An overview of relations between standards is shown below.

Figure 2-1 Overview relations to other standards

2.2 DAIS

The DAIS [2] specification describes an interface for Data Access and Alarms & Events 
from industrial control systems. HDAIS extends these interfaces with access to historical 
data. The basic data types from DAIS [2] and DAF [3] is reused in this specification as 
well as the call back pattern for event driven transfer of data from a server to its clients. 

OPC
Data Access

(DA)

OPC
Alarms & Events

(A&E)

OPC
Historical Data Access

(HDA)

Data Acquisition 
from Industrial Systems

(DAIS)

Data Access Facility
(DAF)

Historical Data Access
from Industrial Systems

(HDAIS)

Document depends on
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification 2-1



2

DAIS Alarms & Events primarily deals with the current alarm condition for objects. 
However DAIS Alarms & Events also has an interface that supports access of the event 
history. An event is not only a recording of a value or quality change but also includes 
information as

• the reason why the recording was made.

• the severity of the alarm condition.

• additional parameters that describe the event.

HDAIS supports recording of quality-coded values where the values have the simple 
structure as described in Section 1.2.1, “Data Semantics,” on pag e1-4 and do not support 
the above described more complex events.

2.3 OLE for Process Control (OPC)

OPC consists of a suite of specifications where the ones of interest for HDAIS and DAIS 
are shown to the right in Figure 2-1. HDAIS is a recast of OPC HDA [7] into OMG IDL 
following the same principles as DAIS recast OPC DA [5] and OPC A&E [6]. For a 
discussion of these principles refer to DAIS [2]. 

2.4 Data Access Facility (DAF)

The basic data types defined in the DAF [3] specification are used in the HDAIS 
specification. For a discussion of the data types used by HDAIS and DAIS refer to the 
DAIS [2] specification.

2.5 IEC 61346-1, Structuring and Naming

61346-1 [10] is a standard for hierarchical naming of objects. HDAIS and DAIS both 
support hierarchical naming according to 61346-1. Refer to DAIS [2] for more 
information.

2.6 IEC 61970

The IEC 61970-301 standard [9], also named CIM [8], describes a specific organization 
of power system objects in a hierarchical structure.

IEC 61970-301 specifies the two classes CurveSchedule and CurveShedData that can be 
used also for time series data. The correspondence between HDAIS and these classes are 
listed in Table 2-1.
2-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



2

The CurveShedData contains an alternate value CurveShedData.y2AxisData. If this value 
is present, it shall be mapped to a second Item. For a description of the HDAIS 
information model refer to Chapter 3.

Table 2-1 Correspondence between HDAIS and classes

IEC 61970-301 attribute HDAIS property

CurveSchedule.pathName Item.pathname

CurveShedData.xAxisData ItemValue.time_stamp

CurveShedData.y1AxisData ItemValue.value
February 2003 HDAIS Final Adopted Specification:   IEC 61970  2-3



2

2-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



HDAIS Informational Model 3
3.1 Overview

This section describes the data model seen through the HDAIS interface. The following 
classes describe the data model

• Node

• Item

• ItemValue

• ModifiedItemValue

• Annotation

• ItemAttribute

• ItemAttributeValue

• ItemAttributeDefinition

• Type

• Property

• AggregateDefinition
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification 3-1



3

Figure 3-1 HDAIS Information Model

A Node represents objects that are hierarchically organized in a Node tree. A Node 
typically represents a real world object (e.g., Tank_200, Transformer_3, 
Measurement_100, etc.). A Node has a Type and the Type tells what kind of object a 
Node represents (e.g., a Tank, Transformer, Measurement, etc.). A Node can have a 
number of property values called Items. The Items are leafs in the Node tree. For a 
Measurement Node typical Items are measured value, limit values, etc. The Type also 
describes what Properties a Node has and the allowed Child Node Types. An Item is 
described by a Property. This model is identical to the DAIS Data Access (DA) model.

ItemID

parent  :  ResourceID
property : Propert yID

NodeItem Component

pathname : string

Node

id : ResourceID
parent  :  ResourceID
label : string
desc ription : str ing
t ype : TypeID

0.. *1 0.. *1

ItemAttributeValue

value : SimpleV alue
t ime_stamp : DateTime

ModifiedItemValue

modification_time : DateTime
user_name : string
value : SimpleValue
hdais_quality : OPCQuality

Annotat ion

entry_time :  Dat eTime
text  :  st ring
user_name : str ing

It emValue

time_stamp : DateTime
value : SimpleValue
hdais_quality : OPCQuality

0..1

1

0..1

1

0..1

1

0..1

1

AggregateDefinition

id : AggregateID
label : string
descrip : string

Type

id : TypeID
s chema :  ResourceID
label : s tring
descript ion : str ing
aggregated_t ypes : TypeIDs

0..*0..*

1

0..*

1

0..*

Property

id : PropertyID
label : string
description : string
data_type : SimpleValueType

0..n1..n 0..n1..n

Item

id : ItemID

0.. *

1

+time_series0.. *

1

1

0..*

1

0..*

ItemAttributeDefintion

id : AttributeID
label : string
description : str ing
data_t ype : Sim pleValueType

ItemAttribute

id : AttributeID

0..*

1

+time_series0..*

1

0..*

1

0..*

1

1

0..*

1

0..*
3-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



3

An Item represents a time series of Property values called ItemValues. HDAIS differs 
from DAIS DA in that an Item has a time series of ItemValues instead of just a single 
value. Each ItemValue is time stamped and has a quality code.

A time series has a start ItemValue and an end ItemValue. These ItemValues are called 
the bounding values. The time for the start ItemValue is called the start time and for the 
end ItemValue the end time. The start time and the end time forms a time interval.

An ItemValue may be modified (e.g., due to correction of an erroneous recording) and an 
optional ModifiedItemValue describes the modification.

An ItemValue may also be annotated and an optional Annotation describes the 
annotation.

Each HDAIS Item may have a number of ItemAttributes describing the treatment of the 
ItemValues (e.g., if ItemValues are being recorded, corresponding DAIS DA Item, etc.). 
As an ItemAttribute may change over time it has a time series consisting of 
ItemAttributeValues. Each ItemAttributeValue consists of a value and a time stamp.

An ItemAttributeDefinition describes each ItemAttribute. For a server there is one 
common set of ItemAttributeDefinitions for all Properties. This means that all Items 
always have ItemAttributes for all defined ItemAttributeDefinitions. ItemAttributes at an 
Item may however not have any ItemAttributeValues.

An AggregateDefinition describes a calculation that can be performed on a time series 
(e.g., max value, mean value, etc.).

The Node attributes parent, label, and description shall also be represented as Items such 
that their historical values can be recorded and kept. This allows having the history 
recorded for:

• Node.parent as a result of changing the Node position in the Node tree.

• Node.labe as a result of renaming.

• Node.description as a result of changing the description.

The Node.id and Node.type are both expected to be unchanged during the Nodes 
lifetime. The Item.id is also expected to be unchanged during the Items (and Nodes) 
lifetime.
February 2003 HDAIS Final Adopted Specification:   Overview  3-3



3

3-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



Common Declarations 4
This section lists the HDAIS declarations common with the DAIS [2] and DAF [3] 
specifications.

4.1 Character Encoding

Refer to DAIS [2] specification.

4.2 DAFIdentifiers IDL

Refer to the DAF [3] specification.

4.3 DAFDescriptions IDL

This IDL is the same as DAF [3] with the difference that the PropertyID type now is 
included in the SimpleValue union.

//File: DAFDescriptions.idl
#ifndef _DAF_DESCRIPTIONS_IDL_
#define _DAF_DESCRIPTIONS_IDL_
#include <DAFIdentifiers.idl>
#include <TimeBase.idl>
#pragma prefix "omg.org"
module DAFDescriptions
{

//++
// Simple Types used as property values.
//--
// imported from identifiers module.
typedef DAFIdentifiers::ResourceID ResourceID;
typedef DAFIdentifiers::URI URI;

// absolute time stamps in 100 nanosecond units
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification 4-1



4

// base time is 15 October 1582 00:00 UTC
// as per Time Service specification
typedef TimeBase::TimeT DateTime;

// a complex number
struct Complex
{

double real;
double imaginary;

};

// a blob
typedef string FileExtension;

struct Blob
{

any blob_data;
FileExtension blob_data_type;

}; 

//++
// Resource Descriptions
//--
// properties are represented by their resource identifiers
typedef ResourceID PropertyID;

// SimpleValue's can take on the following types.
typedef short SimpleValueType;
const SimpleValueType RESOURCE_TYPE = 1;
const SimpleValueType URI_TYPE = 2;
const SimpleValueType STRING_TYPE = 3;
const SimpleValueType BOOLEAN_TYPE = 4;
const SimpleValueType INT_TYPE = 5;
const SimpleValueType UNSIGNED_TYPE = 6;
const SimpleValueType DOUBLE_TYPE = 7;
const SimpleValueType COMPLEX_TYPE = 8;
const SimpleValueType DATE_TIME_TYPE = 9;
const SimpleValueType ULONG_LONG_TYPE = 10;
const SimpleValueType BLOB_TYPE = 11;
const SimpleValueType PROPERTYID_TYPE = 12;
const SimpleValueType RESOURCES_TYPE = 101;
const SimpleValueType URIS_TYPE = 102;
const SimpleValueType STRINGS_TYPE = 103;
const SimpleValueType BOOLEANS_TYPE = 104;
const SimpleValueType INTS_TYPE = 105;
const SimpleValueType UNSIGNEDS_TYPE = 106;
const SimpleValueType DOUBLES_TYPE = 107;
const SimpleValueType COMPLEXES_TYPE = 108;
const SimpleValueType DATE_TIMES_TYPE = 109;
const SimpleValueType ULONG_LONGS_TYPE = 110;
const SimpleValueType BLOBS_TYPE = 111;
const SimpleValueType PROPERTYIDS_TYPE = 112;

// a SimpleValue is the object of a resource description.
union SimpleValue switch( SimpleValueType )
4-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



4

{
case RESOURCE_TYPE : ResourceID resource_value;
case URI_TYPE : URI uri_value;
case STRING_TYPE : string string_value;
case BOOLEAN_TYPE : boolean boolean_value;
case INT_TYPE : long int_value;
case UNSIGNED_TYPE : unsigned long unsigned_value;
case DOUBLE_TYPE : double double_value;
case COMPLEX_TYPE : Complex complex_value;
case DATE_TIME_TYPE : DateTime date_time_value;
case ULONG_LONG_TYPE : unsigned long long ulong_long_value;
case BLOB_TYPE : Blob blob_value;
case PROPERTYID_TYPE : PropertyID propertyid_value;
case RESOURCES_TYPE : sequence<ResourceID> resource_values;
case URIS_TYPE      : sequence<URI> uri_values;
case STRINGS_TYPE   : sequence<string> string_values;
case BOOLEANS_TYPE  : sequence<boolean> boolean_values;
case INTS_TYPE      : sequence<long> int_values;
case UNSIGNEDS_TYPE : sequence<unsigned long> unsigned_values;
case DOUBLES_TYPE   : sequence<double> double_values;
case COMPLEXES_TYPE : sequence<Complex> complex_values;
case DATE_TIMES_TYPE : sequence<DateTime> date_time_values;
case ULONG_LONGS_TYPE : sequence<unsigned long long> ulong_long_values;
case PROPERTYIDS_TYPE : sequence<PropertyID> propertyid_values;

};

// predicate and object for a resource description
struct PropertyValue
{

PropertyID property;
SimpleValue value;

};
typedef sequence<PropertyValue> PropertyValueSequence;

// resource description with one subject, multiple predicates
struct ResourceDescription
{

ResourceID id;
PropertyValueSequence values;

};
typedef sequence<ResourceDescription> ResourceDescriptionSequence;

// iterator for handling large numbers of resource descriptions
interface ResourceDescriptionIterator
{

unsigned long max_left();
boolean next_n(
in unsigned long n,
out ResourceDescriptionSequence descriptions );
void destroy();

};
};
#endif // _DAF_DESCRIPTIONS_IDL_
February 2003 HDAIS Final Adopted Specification:   DAFDescriptions IDL  4-3



4

4.4 DAISCommon IDL

Refer to DAIS [2] specification.

4.5 Iterator Methods

Refer to DAIS [2] specification.

4.6 DAISNode IDL

Refer to DAIS [2] specification.

4.7 DAISType IDL

Refer to DAIS [2] specification.

4.8 DAISProperty IDL

Refer to DAIS [2] specification.

4.9 DAISSession IDL

Refer to DAIS [2] specification.

4.10 DAISServer IDL

Refer to DAIS [2] specification.
4-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



HDAIS API 5
5.1 Overview

HDAIS extends the DAIS with functionality for management of time series data. 
Figure 5-1 shows the interface objects for dealing with the data described in section 0.
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification 5-1



5

Figure 5-1 HDAIS Objects

Interfaces or objects belong to one of the four main categories: 

• server and client objects

• connection interfaces

• browse objects

• data access (IO) objects

The server and client objects are: DAIS::HDA::Server, DAIS::HDA::Session, and 
DAIS::HDA::Callback. An HDAIS Server extends DAIS functionality by inheriting 
DAIS::Server hence an HDAIS DAIS::HDA::Server can also be a DAIS DA or A&E 

DA IS ::S erver DA IS ::HDA ::V alueIO::Callbac k

DA IS ::HDA ::V alueIO::P lay bac k Callbac k

DA IS::HDA ::A nnot at ionIO::Call back

DA IS ::HDA ::Item A ttributeIO ::Callbac k

DA IS ::HDA ::Connec tion

DA IS ::S es s ion DA IS ::S hutDownCallbac k1..* 0.. 11..* 0.. 1

DA IS ::P roperty ::Hom e

DA IS ::Ty pe::Hom e

DA IS ::HDA ::A ggregate::Hom e

DA IS ::HDA ::Item A ttribute::Hom e

DA IS ::HDA ::Node::Hom e

DA IS ::HDA ::Item ::Hom e

Client

0..1

1

0..1

1

DA IS ::HDA ::S erver

DA IS ::HDA ::B rows e::Hom e

11

11

11

11

11

1

1

1

1

DA IS ::HDA ::Ca llback

0..*

1

0..*

1

DA IS ::HDA ::V alueIO::Hom e

DA IS ::HDA ::M odifiedV alue::Hom e

DA IS ::HDA ::Item A ttri buteIO ::H om e

DA IS ::HDA ::S es s ion

0..*

1

0..*

1

0..*1 0..*

0..1

1

0..1

1

11

11

11

DA IS ::HDA ::A nnotat ionIO ::Hom e

1

1

1

1

DA IS ::Node::Hom e

1

5-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

Server. An HDAIS specific DAIS::HDA::Session is created by inheriting DAIS::Session. 
The Client may connect the HDAIS DAIS::HDA::Session object to a DAIS::HDA:: 
Callback object that it implements. A Client may create several DAIS::HDA::Session 
objects and each DAIS::HDA::Session object shall have its own DAIS::HDA::Callback 
object if any. The DAIS::HDA::Callback object implements a number of callback 
interfaces that are defined  with the data access objects.

The DAIS::HDA::Connection interface is implemented by the DAIS::HDA::Session 
object.

The data type specific browse objects are collected as a number of singleton objects at 
the DAIS::HDA::Browse::Home object. The DAIS::HDA::Browse::Home is an object at 
the DAIS::HDA::Session object. Each DAIS::HDA::Browse::Home has a base time at 
which the browsing for the data by type specific browse objects is made. 

The following data type specific browse objects are defined:

• DAIS::HDA::Node::Home for Nodes.

• DAIS::HDA::Item::Home for HDAIS Items.

• DAIS::Type::Home for Types as defined in the DAIS specification.

• DAIS::Property::Home for Properties as defined in the DAIS specification.

• DAIS::HDA::ItemAttribute::Home for ItemAttributes.

• DAIS::HDA::Aggregate::Home for aggregate calculations.

The following type specific data access (IO) objects are defined:

• DAIS::HDA::ValueIO::Home for ItemValue access.

• DAIS::HDA::ModifiedValue::Home for access of ItemValues that has been 
modified.

• DAIS::HDA::ItemAttributeIO::Home for access of ItemAttributeValues.

• DAIS::HDA::AnnotationIO::Home for access of Annotations.

Each data type has its own name space where it's corresponding interfaces are defined; 
the following name spaces are defined:

• DAIS::HDA for HDAIS common data.

• DAIS::HDA::Node for Node browse data.

• DAIS::HDA::Item for Item browse data.

• DAIS::HDA::ItemAttribute for ItemAttribute browse data.

• DAIS::HDA::Aggregate for AggregateDefinition browse data.

• DAIS::HDA::AnnotationIO for Annotation data.

• DAIS::HDA::ValueIO for ItemValue data.

• DAIS::HDA::ModifiedValueIO for ModifiedItemValue data.

• DAIS::HDA::ItemAttributeIO for ItemAttributeValue data 

5.2 HDAIS Common IDL

// File: HDAISCommon.idl
#ifndef __HDAIS_COMMON_IDL
#define __HDAIS_COMMON_IDL
February 2003 HDAIS Final Adopted Specification: HDAIS Common IDL  5-3



5

#include <DAISCommon.idl>

module DAIS {
module HDA {

typedef unsigned long AggregateID;

const Error ERROR_AGGREGATE_NOT_AVAILABLE = 0x0100;
const Error ERROR_DATA_ALREADY_EXIST = 0x0200;
const Error ERROR_DATA_DOES_NOT_EXIST = 0x0300;
const Error WARNING_MORE_DATA_THAN_REQUESTED = 0x1000;
const Error WARNING_NO_DATA = 0x2000;
const Error WARNING_MORE_EXTREEM_VALUES = 0x3000;
const Error RESULT_DATA_INSERTED = 0x8000;
const Error RESULT_DATA_REPLACED = 0x9000;

const OPCQuality OPCHDA_EXTRADATA = 0x00010000;
const OPCQuality OPCHDA_INTERPOLATED = 0x00020000;
const OPCQuality OPCHDA_RAW = 0x00040000;
const OPCQuality OPCHDA_CALCULATED = 0x00080000;
const OPCQuality OPCHDA_NOBOUND = 0x00100000;
const OPCQuality OPCHDA_NODATA = 0x00200000;
const OPCQuality OPCHDA_DATALOST = 0x00400000;
const OPCQuality OPCHDA_CONVERSION = 0x00800000;

typedef unsigned short CancelID;
typedef unsigned short TransactionID;

typedef unsigned long AttributeID;
typedef sequence<AttributeID> AttributeIDs;

struct TimeInterval {
DateTime start;
DateTime end;};

struct Value {
SimpleValue val;
DateTime time_stamp;
OPCQuality quality;};

};
};
#endif // __HDAIS_COMMON_IDL

Error

Error is an enumeration error code defined in the DAIS specification in the IDL 
DAISCommon. This specification extends that enumeration as given below.
5-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

AggregateID

The AggregateID is an enumeration that identifies the various aggregate calculations. 
The definition of the enumeration values can be found in Section 5.6.4, 
“HDAISAnnotationIO,” on page 5-61.

OPCQuality

The OPCQuality is a flag word giving the OPC quality as defined in the DAIS 
specification in the IDL DAISCommon. HDAIS extends the flags as listed below. 

EnumValue Description

ERROR_AGGREGATE_NOT_AVAILABLE The requested aggregate is not available. The corresponding OPC code is 
OPC_E_NOT_AVAIL

ERROR_DATA_ALREADY_EXIST The inserted data already exists. The corresponding OPC code is 
OPC_E_DATAEXISTS.

ERROR_DATA_DOES_NOT_EXIST The updated data does not exist. The corresponding OPC code is 
OPC_E_NODATAEXISTS.

WARNING_MORE_DATA_THAN_
REQUESTED

More data is available in the time range beyond the number of values 
requested. This return code is only valid in a response to read_raw method 
calls. The client may continue to call read_raw to get the remaining data. 
The corresponding OPC code is OPC_S_MOREDATA.

WARNING_NO_DATA No ItemValues were found to delete. The corresponding OPC codes are 
OPC_S_NODATA (for ItemValues) and OPC_S_CURRENTVALUE (for 
ItemAttributeValues).

WARNING_MORE_EXTREEM_VALUES Several identical max or min ItemValues were found at different times in 
the interval. The corresponding OPC code is OPC_S_EXTRADATA.

RESULT_DATA_INSERTED ItemValue updates in an insert/update operation that was inserted. The 
corresponding OPC code is OPC_S_INSERTED.

RESULT_DATA_REPLACED ItemValue updates in an insert/update operation that was replaced. The 
corresponding OPC code is OPC_S_REPLACED.

Flag Description

OPCHDA_EXTRADATA More than one piece of data that may be hidden 
exists at same timestamp. This is the case when 
a value has been modified and both an 
ItemValue and a ModifiedItemValue exist.

OPCHDA_INTERPOLATED Interpolated data value.

OPCHDA_RAW The ItemValue is returned without any 
processing made.
February 2003 HDAIS Final Adopted Specification: HDAIS Common IDL  5-5



5

CancelID

CancelID is a server generated handle generated for each asynchronous call made by a 
client. A client can use the CancelID to abort an asynchronous call that hasn’t finished.

TransactionID

A TransactionID is a handle created by clients and used in asynchronous calls. A server 
sends the TransactionID back to a client in the callback corresponding to the original 
asynchronous call from the client.

AttributeID

The AttributeID identifies an ItemAttribute.

TimeInterval

TimeInterval defines a time interval. It is used to specify start and stop times when 
accessing data. If for read operations no ItemValues exist matching the start or stop 
times, an empty ItemValue with the OPCQuality set to OPCHDA_NOBOUND shall be 
returned.

Value

Value is a struct that holds the ItemValue data.

OPCHDA_CALCULATED Calculated data value, as would be returned from 
a read_processed call.

OPCHDA_NOBOUND No data found for upper or lower bound values. 
For each missing bound value and empty 
ItemValue with this code is returned.

OPCHDA_NODATA No data collected. Archiving not active (for item 
or all items).

OPCHDA_DATALOST Collection started / stopped / lost.

OPCHDA_CONVERSION Scaling / conversion error.

Member Description

start The interval start time.

end The interval end time.

Member Description

val The actual value.

time_stamp The time stamp when the value was originally 
recorded.

quality The quality of the value.
5-6 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.3 Server and Client Objects

This section describes the server and client objects defined in the following IDLs

• HDAISServer

• HDAISSession

• HDAISClient

5.3.1 HDAISServer

5.3.1.1 HDAISServer Overview

The fundamental HDAIS service object from which session objects can be obtained. The 
DAIS::HDA::Server object is normally persistent and is accessed via a naming or trader 
service. From the DAIS::HDA::Server object it is possible to create session objects for 
access of

• time series data (HDAIS)

• data (DAIS DA)

• alarms and events (DAIS A&E)

Sessions can be created for a view as described in DAIS [2] section 3.2.2.1.

The DAIS::HDA::Server object corresponds to the IOPCHDA_Server object.

5.3.1.2 HDAISServer IDL

//File: HDAISServer.idl
#ifndef _HDAIS_SERVER_IDL
#define _HDAIS_SERVER_IDL

#include <DAISServer.idl>
#include <HDAISSession.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {

interface Server : DAIS::Server
{

exception InternalServerProblem{string reason;};

Session create_historical_data_access_session(
in string session_name)
raises (InternalServerProblem, DuplicateName);

Session create_historical_data_access_session_for_view(
in string session_name,
in string view_name)
raises (InternalServerProblem, DuplicateName, InvalidView);
February 2003 HDAIS Final Adopted Specification: Server and Client Objects  5-7



5

readonly attribute unsigned longmax_returned_values;

};};};
#endif // _HDAIS_SERVER_IDL

InternalServerProblem

InternalServerProblem is an exception telling that the server cannot respond to the call 
because of some internal problem. The server might not have all functions up and 
running or its internal configuration might be erroneous.

For the other exceptions refer to the DAISServer IDL.

Server

An object that implements the HDAIS server and inherits the DAIS::Server. The 
DAIS::HDA::Server object supports views in the same way as the DAIS::Server object.

create_historical_data_access_session ()

create_historical_data_access_session() is a method that creates a time series data access 
session object for the default view.

create_historical_data_access_session_for_view ()

create_historical_data_access_session_for_view() is a method that creates a time series 
data access session object for a specified view.

max_returned_values

max_returned_values is the maximum number of values that can be returned by the 
server on a per Item basis. A value of 0 indicates that the server forces no limit on the 
number of values it can return.

Parameter Description

session_name The name of the session. If an empty name is supplied, the 
server will create a name for the session. If a duplicate name 
is supplied, no session is generated.

return A reference to the created DAIS::HDA::Session object.

Parameter Description

session_name The name of the session. If an empty name is supplied, the 
server will create a name for the session. If a duplicate 
name is supplied, no session is generated.

view_name The name of the view to open.

return A reference to the created DAIS::HDA::Session object.
5-8 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.3.2 HDAISSession

5.3.2.1 HDAISSession Overview

The DAIS::HDA::Session object implements the data access service on a per client basis. 
A historical data access session object has a number of services provided by one 
singleton object each. Each singleton object provides methods for manipulation of a 
specific data type.

The DAIS::HDA::Session object implement functions from the DAIS::Session interface 
and the DAIS::HDA::Connection interface.

Each client may instantiate one or more DAIS::HDA::Sessions. If callbacks are used, 
each session object shall have an associated DAIS::HDA::Callback object.

The DAIS::HDA::Session object corresponds to the IOPCHDA_Server object.

5.3.2.2 HDAISSession IDL

//File: HDAISSession.idl
#ifndef _HDAIS_SESSION_IDL
#define _HDAIS_SESSION_IDL

#include <DAISSession.idl>
#include <HDAISBrowse.idl>
#include <HDAISConnection.idl>
#include <HDAISValueIO.idl>
#include <HDAISModifiedValueIO.idl>
#include <HDAISItemAttributeIO.idl>
#include <HDAISAnnotationIO.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {

interface Session : DAIS::Session, Connection
{

readonly attribute ValueIO::Home item_value_home;

readonly attribute ModifiedValueIO::Homemodified_item_value_home;

readonly attribute ItemAttributeIO::Home item_attribute_home;

readonly attribute AnnotationIO::Home annotation_home;

Browse::Home create_browser (
in DateTime browse_base_time);

};
};};
#endif // _HDAIS_SESSION_IDL
February 2003 HDAIS Final Adopted Specification: Server and Client Objects  5-9



5

Session

Sesson is an object implementing the data access functions. It inherits common 
functionality as shut down callbacks and session status from DAIS::Session. It also 
implements the Connection interface, see Section 5.4, “Connection Interfaces,” on 
page 5-11.

item_value_home

item_value_home is an attribute holding the ItemValue data access singleton object.

modified_item_value_home

modified_item_value_home is an attribute holding the ModifiedItemValue data access 
singleton object.

item_attribute_home

item_attribute_home is an attribute holding the ItemAttributeValue data access singleton 
object.

annotation_home

annotation_home is an attribute holding the Annotation data access singleton object.

create_browser()

create_browser() is a method that creates a browse object.

5.3.3 HDAISClient

5.3.3.1 HDAISClient overview

The DAIS::HDA::Callback interface shall be implemented by a client for it to receive 
callbacks from the HDAIS server. If a client only uses synchronous HDAIS interfaces, 
this object is not needed. For each DAIS::HDA::Session object there shall be one 
DAIS::HDA::Callback object if callbacks from the server are used.

The DAIS::HDA::Callback interface corresponds to the OPC interface 
IOPCHDA_DataCallback.

Parameter Description

browse_base_time The base time for the browsing. A zero value means use 
current time. A client may check the time actually used by 
the server in the Browse::Home object attribute 
browse_base_time.

return The browse object.
5-10 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.3.3.2 HDAISClient IDL

//File HDAISClient.idl
#ifndef _HDAIS_CLIENT_IDL
#define _HDAIS_CLIENT_IDL

#include <HDAISAsyncIO.idl>
#include <HDAISPlayback.idl>
#include <HDAISAnnotationIO.idl>
#include <HDAISItemAttributeIO.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {

interface Callback : ValueIO::Callback,
ValueIO::PlaybackCallback,
AnnotationIO::Callback,
ItemAttributeIO::Callback

{

void on_cancel_complete (
in CancelID cancel_id);

};
};};
#endif // _HDAIS_CLIENT_IDL

Callback

Callback is an object that the client shall implement to be able to receive callbacks from 
the server.

on_cancel_complete ()

on_cancel_complete() is a method that notifies a client that the cancellation request has 
been serviced.

5.4 Connection Interfaces

In contrary to DAIS there is no group objects defined in HDAIS. Instead connections for 
a time series (Items) are established by exchanging handles between the client and the 
server. The interface supporting this is DAIS::HDA::Connection defined in the 
HDAISConnection IDL.

Parameter Description

cancel_id The cancellation number from the server for the original 
asynchronous operation and used by the client to request 
the cancellation.
February 2003 HDAIS Final Adopted Specification: Connection Interfaces  5-11



5

5.4.1 HDAISConnection Overview

The DAIS::HDA::Connection interface is used to establish and manage bilateral 
association between Item handles in the server and the client.

The DAIS::HDA::Connection interface  is implemented by the DAIS::HDA::Session 
object. DAIS::HDA::Connection interface has the corresponding OPC methods

• create IOPCHDA_Server::GetItemHandles

• remove IOPCHDA_Server::ReleaseItemHandles

• validate IOPCHDA_Server::ValidateItemIDs

5.4.2 HDAISConnection IDL

//File: HDAISConnection.idl
#ifndef __HDAIS_CONNECTION_IDL
#define __HDAIS_CONNECTION_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {

struct Description {
ServerItemHandle server_handle;
ClientItemHandle client_handle;};

typedef sequence<Description> Descriptions;

struct SetUp {
ServerItemIdentification server_id;
ClientItemHandle client_handle;};

typedef sequence<SetUp> SetUps;

struct ValidateSetUp {
ServerItemIdentification server_id;
ServerItemHandle server_handle;
ClientItemHandle client_handle;};

typedef sequence<ValidateSetUp> ValidateSetUps;

interface Home
{

Descriptions create (
in SetUps connection_setups,
out ItemErrors errors);

void remove (
in ServerItemHandles server_handles,
out ItemErrors errors);

ItemErrors validate (
5-12 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

in ValidateSetUps validate_setups);
};
};};
#endif // __HDAIS_CONNECTION_IDL

Description

Description is a struct that contains the association between the server and client 
generated handles.

SetUp

SetUp is a struct used by a client to create an association between server and client 
handles.

ValidateSetUp

ValidateSetUp is a struct that contains the information about an association between 
client handles, server handles and Item identifications.

Home

Home is an interface that has the operations to manage associations between server and 
client handles.

create ()

create() is a method for creation of server and client handle associations.

Member Description

server_handle Server handle as defined in the DAISCommon IDL [2].

client_handle Client handle as defined in the DAISCommon IDL [2].

Member Description

server_id The identification of an Item as defined in the 
DAISCommon IDL [2].

client_handle Client handle as defined in the DAISCommon IDL [2].

Member Description

server_id The identification of an Item as defined in the 
DAISCommon IDL [2].

client_handle Client handle as defined in the DAISCommon IDL [2].

client_handle Client handle as defined in the DAISCommon IDL [2].
February 2003 HDAIS Final Adopted Specification: Connection Interfaces  5-13



5

remove ()

remove() is a method for removal of server and client associations.

validate ()

validate() is a method for verifying that associations still are valid.

Parameter Description

connection_setups A sequence specifying the wanted associations between 
client handles and Item identifications.

errors A sequence reporting the items where no associations 
were created due to an error. Reported errors are:
-- ERROR_BAD_RIGHTS
-- ERROR_UNKNOWN_PATHNAME
-- ERROR_UNKNOWN_ITEMID
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

return A sequence with the successfully created associations.

Parameter Description

server_handles The server handles for which associations shall be 
removed.

errors A sequence reporting the items where no associations 
were created due to an error. Reported errors are:
-- ERROR_INVALID_DAIS_HANDLE
For the error codes refer to the DAISCommon IDL [2].

Parameter Description

validate_setups A sequence of associations to be verified as seen by the 
client.

return A sequence reporting the items that no longer has an 
association at the server. The reported errors are:
-- ERROR_BAD_RIGHTS
-- ERROR_UNKNOWN_PATHNAME
-- ERROR_UNKNOWN_ITEMID
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
5-14 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.5 Browse Interfaces

The browse interfaces consist of one IDL definition for each data type specific browse 
object. The following IDLs are defined:

• HDAISBrowse for the DAIS::HDA::Browse::Home object.

• HDAISNode for the DAIS::HDA::Node::Home object.

• HDAISItem for the DAIS::HDA::Item::Home object.

• HDAISAggregate for the DAIS::HDA::Aggregate::Home object.

• HDAISItemAttribute for the DAIS::HDA::ItemAttribute::Home object.

5.5.1 Mapping to OPC HDA

Mapping of the browse interface to OPC is not straightforward. The two main differences 
are that HDAIS

• does not require client browse information at the server side

• separate OPC branch and leaf nodes into the HDAIS types Node and Item.

This means that the HDAIS Node and Item browse interfaces behave differently from 
OPC but have the same functionality. The table below shows how the OPC HDA browse 
methods map to the Node and Item browse methods.

OPC methods OPC parameters HDAIS methods HDAIS parameters

IOPCHDA_Server::CreateBrowse() Supply filter 
parameters once when 
the browse object is 
created.

Node::find_by_parent()
Node::find_by_type()
Item::find_by_parent()
Item::find_by_type()

Supply the filter 
parameters at each call.

IOPCHDA_Browser::GetEnum() dwBrowseType set to 
OPCHDA_BRANCH

Node::find_by_parent()

IOPCHDA_Browser::GetEnum() dwBrowseType set to 
OPCHDA_ITEMS or 
OPCHDA_LEAF

Item::find_by_parent()

IOPCHDA_Browser::GetEnum() dwBrowseType set to 
OPCHDA_FLAT

Item::find_by_type()

N/A as OPC does not distinguish 
Nodes as own types.

Node::find_by_type()

IOPCHDA_Browser::
ChangeBrowsePosition()

N/A as no server side 
cursor exists

IOPCHDA_Browser::GetItemID Node::get_pathnames()
Item::get_pathnames()

IOPCHDA_Browser::
GetBranchPosition()

N/A as no server side 
cursor exists
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-15



5

5.5.2 HDAISBrowse

5.5.2.1 HDAISBrowse overview

The Browse::Home object is an object at a Session. It is a container of the data type 
specific browse objects as shown in Figure 5-1 on page 5-2.

A Browse::Home object can be created for a specific time. The browser will then expose 
objects (Nodes, Items etc.) as they existed at this time. This makes it possible to browse 
for disappeared objects. This requires that the server keep a history of all objects that 
have existed.

The Browse::Home object does not correspond directly to an OPC interface as the OPC 
browse interfaces are scattered. In OPC browse objects have local states initialized by 
clients. This is not possible in HDAIS. Clients must maintain such states at the client side 
and send it to the server in each call.

5.5.2.2 HDAISBrowse IDL

//File: HDAISBrowse.idl
#ifndef _HDAIS_BROWSE_IDL
#define _HDAIS_BROWSE_IDL

#include <HDAISNode.idl>
#include <HDAISItem.idl>
#include <DAISProperty.idl>
#include <DAISType.idl>
#include <HDAISAggregate.idl>
#include <HDAISItemAttribute.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module Browse {

interface Home
{

readonly attribute Node::Home node_home;

readonly attribute Item::Home item_home;

readonly attribute Property::Home property_home;

readonly attribute Type::Home type_home;

readonly attribute Aggregate::Home aggregate_home;

readonly attribute ItemAttribute::Home item_attribute_home;

readonly attribute DateTime browse_base_time;
};
};};};
5-16 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

#endif // _HDAIS_BROWSE_IDL

Home

Home is a container object for all data type specific browse objects.

node_home

node_home is an attribute holding the Node browse singleton object.

item_home

item_ home is an attribute holding the Item browse singleton object.

property_home

property_home is an attribute holding the Property browse singleton object. For a 
description of the Property::Home object refer to the DAISProperty IDL [2].

type_home

type_home is an attribute holding the Type browse singleton object. For a description of 
the Type::Home object refer to the DAISType IDL [2].

aggregate_home

aggregate_home is an attribute holding the AggregateDefinition browse singleton object.

item_attribute_home

item_attribute_home is an attribute holding the ItemAttribute browse singleton object.

browse_base_time

browse_base_time is an attribute holding a base time for the browsing. The browser will 
present the objects that existed at the time specified in browse_base_time. If this time is 
zero, current time is used. A server that doesn’t support base times for browsing will 
always set this value to zero.

5.5.3 HDAISNode

5.5.3.1 HDAISNode overview

The interface is used to browse Nodes, refer to Chapter 3 for the information model.

For a discussion on Node browsing refer to the DAISNode IDL [2].

Refer to Section 5.5.1, “Mapping to OPC HDA,” on page 5-15 for a description of the 
mapping to OPC HDA.
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-17



5

5.5.3.2 HDAISNode IDL

//File: HDAISNode.idl
#ifndef _HDAIS_NODE_IDL
#define _HDAIS_NODE_IDL
#pragma prefix "omg.org"
#include <DAISNode.idl>

module DAIS {
module HDA {
module Node {

interface Home : DAIS::Node::Home
{

ResourceID get_root();
};
};};};
#endif // _HDAIS_NODE_IDL

Home

Home is an object used for browsing nodes. Most functionality is inherited from the 
DAIS::Node::Home interface, refer to the DAISNode IDL [2].

get_root()

get_root() is a method to get the root Node of the Node tree.

5.5.4 HDAISItem

5.5.4.1 HDAISItem overview

The interface is used to browse Items, refer to Chapter 3 for the information model.

For a discussion on Item browsing refer to the DAISItem IDL [2]. HDAIS Items differ 
from DAIS DA Items in that they don’t have the six fixed attributes (value, time_stamp, 
etc). Instead the attributes are divided between the ItemValue (value, time_stamp, and 
quality) and the ItemAttributeValue. The ItemAtributeValue types may vary dependent on 
the implementation hence there is a browse interface (ItemAttribute::Home) also for the 
ItemAttributeValue types (i.e., the ItemAttribute interface).

Refer to Section 5.5.1, “Mapping to OPC HDA,” on page 5-15 for a description of the 
mapping to OPC HDA.

Parameter Description

return The root node identification to be used in further calls.
5-18 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.5.4.2 HDAISItem IDL

//File: HDAISItem.idl
#ifndef __HDAIS_ITEM_IDL
#define __HDAIS_ITEM_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module Item {

struct Description {
ItemID id;
string label;};

typedef sequence<Description> Descriptions;

typedef unsigned short OPCOperator;
const OPCOperator OPCHDA_EQUAL =1;
const OPCOperator OPCHDA_LESS =2;
const OPCOperator OPCHDA_LESSEQUAL =3;
const OPCOperator OPCHDA_GREATER =4;
const OPCOperator OPCHDA_GREATEREQUAL =5;
const OPCOperator OPCHDA_NOTEQUAL =6;

struct AttributeFilter {
AttributeID attribute_id;
OPCOperator operator;
SimpleValue filter_value;

};
typedef sequence<AttributeFilter> AttributeFilters;

interface Iterator
{

boolean next_n (
in unsigned long n,
out Descriptions items);

void reset();

Iterator clone();

void destroy();
};

interface Home
{

exception UnknownResourceID {string reason;};
exception UnknownItemID {string reason;};
exception InvalidFilter {string reason;};

Description find (
in ItemID item)
raises (UnknownItemID);
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-19



5

Descriptions find_each(
in ItemIDs items)
raises (UnknownItemID);

Iterator find_by_parent (
in ResourceID node,
in string pathname_criteria,
in SimpleValueType data_type_filter,
in AttributeFilter attribute_filter)
raises (UnknownResourceID, InvalidFilter);

Iterator find_by_type (
in ResourceID node,
in string pathname_criteria,
in SimpleValueType data_type_filter,
in TypeIDs type_filter,
in AttributeFilter attribute_filter)
raises (UnknownResourceID, InvalidFilter);

Strings get_pathnames ( 
in ItemIDs items);

ItemIDs get_ids (
in Strings pathnames);

};
};};};
#endif // _HDAIS_ITEM_IDL

Description

Description is a struct that identifies an Item.

OPCOperator

OPCOperator is an enumeration of comparison operators used when filtering Items on 
ItemAttributeValues.

AttributeFilter

AttributeFilter is a struct used to filter Items based on a filter criteria specified by the 
members.

Member Description

id The identification of this item.

label The unique name of the Item within its parent Node. The 
label is the same as for the Items corresponding Property.

Member Description

attribute_id The identification of the ItemAttribute to filter on.
5-20 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

Iterator

The same iterator methods as in DAIS is used, refer to the DAIS specification section 
“Iterator Methods IDL.”

Home

Home is an object used for browsing Items.

find ()

find() is a method that returns the Description of a known Item.

This method does not have a corresponding OPC method.

find_each ()

find_each() is a method that returns the descriptions for a sequence of known Items.

This method does not have a corresponding OPC method.

find_by_parent ()

find_by_parent() is a method that for a given parent Node returns the child items of that 
Node. To reach all items in the parent Node sub-tree use this method repeatedly for each 
Node level in the sub-tree. To reach the child Nodes in the parent Node sub-tree use the 
method Node::Home::find_by_parent(). 

find_by_parent() has three filter input parameters. All filters must be fulfilled for an item 
for it to be selected.

operator The operator to use according to OPCOperator.

filter_value A value constant to compare with.

Parameter Description

item The identification of the Item.

return The description of the Item.

Parameter Description

items A sequence of item identifications.

return An iterator holding the item descriptions.

Parameter Description

node The parent node identification.
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-21



5

find_by_type ()

find_by_type() is a method that for a given sub-tree parent Node finds all child Items 
matching the filter criteria. This will return all items under the given sub-tree root Node. 
This will make the items in the sub-tree to appear flattened out. This corresponds to the 
OPC method IOPCHDA::GetEnum() with the parameter dwBrowseType set to 
OPCHDA_FLAT.

find_by_parent() has four filter input parameters. All filters must be fulfilled for an item 
for it to be selected.

pathname_criteria The filter selects items with pathnames matching the 
pathname_criteria. For a description of the filter refer to 
the section on filter definitions in the DAIS specification 
[2].

data_type_filter Select items having the specified canonical data type.

attribute_filters An ItemAttribute filter specification. If more than one 
filter entry is specified, all must be fulfilled for an item to 
be candidate for selection. Note that the OPC 
specification has ItemAttributes defined both for the 
pathname and the data type. In HDAIS they are not 
defined as ItemAttributes as the
-- pathname is an attribute of Node and Item.
-- data type is an attribute of Property.

return An iterator holding the Item descriptions.

Parameter Description

node The parent node identification.

pathname_criteria The filter selects items with pathnames matching the 
pathname_criteria. For a description of the filter refer to 
the section on filter definitions in the DAIS specification 
[2].

data_type_filter Selects items having the specified canonical data type.

type_filter Selects Items belonging to Nodes that have a Type that 
matches one of the Types in the type_filter.

attribute_filters An ItemAttribute filter specification. If more than one 
filter entry is specified, all must be fulfilled for an item to 
be candidate for selection. Note that the OPC 
specification has ItemAttributes defined both for the 
pathname and the data type. In HDAIS they are not 
defined as ItemAttributes as the
-- pathname is an attribute of Node and Item.
-- data type is an attribute of Property.

return An iterator holding the Item descriptions.
5-22 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

get_pathnames()

get_pathnames() is a method to translate a sequence of item identifications to the 
corresponding sequence of pathnames. If an item fails to translate to a pathname (due to 
an unknown identification), the corresponding pathname is an empty string.

get_ids()

get_ids() is a method that translates a sequence of pathnames to the corresponding 
sequence of node identifications. If a pathname fails to translate to node identification 
(due to an unrecognized pathname), the corresponding node identification is NULL.

get_ids() has no corresponding OPC method.

5.5.5 HDAISItemAttribute

5.5.5.1 HDAISItemAttribute overview

The interface is used to browse the ItemAtributeDefintions, refer to Chapter 3 for the 
information model.

5.5.5.2 HDAISItemAttributes IDL

//File: HDAISItemAttribute.idl
#ifndef _HDAIS_ITEM_ATTRIBUTE_IDL
#define _HDAIS_ITEM_ATTRIBUTE_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ItemAttribute {

struct Description {
AttributeID id;
string label;
string descrip;
SimpleValueType data_type;};

Parameter Description

items A sequence of Items identifications.

return The corresponding sequence of pathnames.

Parameter Description

pathnames A sequence of pathnames.

return The corresponding sequence of Item identifications.
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-23



5

typedef sequence<Description> Descriptions;

//const AttributeID OPCHDA_DATA_TYPE = 0x0001;
//const AttributeID OPCHDA_DESCRIPTION = 0x0002;
const AttributeID OPCHDA_ENG_UNITS = 0x0003;
const AttributeID OPCHDA_STEPPED = 0x0004;
const AttributeID OPCHDA_ARCHIVING = 0x0005;
const AttributeID OPCHDA_DERIVE_EQUATION = 0x0006;
//const AttributeID OPCHDA_NODE_NAME = 0x0007;
//const AttributeID OPCHDA_PROCESS_NAME = 0x0008;
const AttributeID OPCHDA_SOURCE_NAME = 0x0009;
const AttributeID OPCHDA_SOURCE_TYPE = 0x000a;
const AttributeID OPCHDA_NORMAL_MAXIMUM = 0x000b;
const AttributeID OPCHDA_NORMAL_MINIMUM = 0x000c;
//const AttributeID OPCHDA_ITEMID = 0x000d;
const AttributeID HDAIS_SOURCE_RESOURCE = 0x0100;
const AttributeID HDAIS_SOURCE_PROPERTY = 0x0101;
const AttributeID HDAIS_ITEM_PATH_NAME = 0x0102;
const AttributeID HDAIS_PARENT_NAME = 0x0103;
const AttributeID HDAIS_INSERT_TIMES = 0x0104;

interface Home
{

exception UnknownID {string reason;};

Description find (
in AttributeID id)
raises (UnknownID);

Descriptions find_all();
};
};};};
#endif // _HDAIS_ITEM_ATTRIBUTE_IDL

Description

Description is a struct describing an ItemAttributeDefinition. 

A number of ItemAttributes are defined and listed in the AttributeID section below.

AttributeID

AttributeID is defined in the HDAISCommon IDL refer to Section 5.2, “HDAIS 
Common IDL,” on page 5-3. The table below lists the ItemAttributeDefinitions and their 
Description member values.

Member Description

id The identification of an ItemAttributeDefinition.

label The label of an ItemAttributeDefinition.

descrip The description of an ItemAttributeDefinition.

type The data type of an ItemAttributeDefinition.
5-24 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

EnumValue (id) label description data_type

OPCHDA_ENG_UNITS engineeringUnit The engineering unit for the Item. string

OPCHDA_STEPPED stepped Tells if the data shall be stepped and not 
interpolated (0 means interpolated).

boolean

OPCHDA_ARCHIVING archiving Tells if the server records data (0 means no 
recording).

boolean

OPCHDA_DERIVE_EQUATION equation Gives the equation used to calculate a derived 
item value. This attribute only used by servers 
that are capable of calculating Item values. The 
format of the string is server specific and 
intended for human readability only.

string

OPCHDA_SOURCE_NAME sourceName Gives the pathname for the corresponding 
DAIS DA Item.

string

OPCHDA_SOURCE_TYPE sourceType Gives what sort of source produces the data for 
the item. For an OPC DA server, this would be 
“OPC.” For non-OPC sources, the meaning of 
this field is server-specific.

string

OPCHDA_NORMAL_MAXIMUM max Gives the upper limit for the normal value range 
for the Item.  

double or 
long

OPCHDA_NORMAL_MINIMUM min Gives the lower limit for the normal value range 
for the Item.  

double or 
long

HDAIS_SOURCE_RESOURCE sourceResource Gives the ReourceID for the DAIS DA Item. Can 
together with the 
HDAIS_SOURCE_PROPERTY be used to 
create the source ItemID.

ResourceID

HDAIS_SOURCE_PROPERTY sourceProperty Gives the PropertyID for the DAIS DA Item. 
Can together with the 
HDAIS_SOURCE_RESOURCE be used to 
create the source ItemID.

PropertyID

HDAIS_ITEM_PATH_NAME pathName The pathname for the Item. An object may be 
moved in the naming hierarchy and the parent 
Node name might be changed. Hence the 
pathname for an object may change over time. 
This attribute corresponds to the 
OPCHDA_ITEMID.

string

HDAIS_PARENT_NAME parentName The parent Node name for the Item. This name 
may change over time if the parent Node is 
renamed.

string
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-25



5

The following OPC constants are not defined in HDAIS for reasons listed below.

Home

Home is an object for browsing ItemAttributeDefinitions.

UnknownID

UnknownID is an exception telling that the provided AttributeID is unknown.

find ()

find() is a method that returns the Description from a known ItemAttributeDefinition.

The find() method has no corresponding OPC method.

find_all ()

find_all() is a method that returns all the Description for all ItemAttributeDefinition.

HDAIS_INSERT_TIMES insertTimes The attribute contains the time_stamps when 
ItemValues was inserted or replaced. Several 
updates can happen at the same insert/update 
operation. The time when the operation was 
made is recorded in 
ItemAttributeIO::Value.time_stamp. 

DateTimes

EnumValue Description

OPCHDA_DATA_TYPE The data type of an Item. The data type is given by a Property and is 
accessed via the Property::Home browse object. Methods that use the data 
type for filtering have a specific input parameter for this.

OPCHDA_DESCRIPTION The description of an Item. The description is given by a Property and is 
accessed via the Property::Home browse object.

OPCHDA_NODE_NAME The name of the computer hosting the OPC DA server (e.g., IP address). This 
information is supposed to be serviced by a naming service.

OPCHDA_PROCESS_NAME The name of the process hosting the OPC DA server. This information is 
supposed to be serviced by a naming service.

OPCHDA_ITEMID The pathname of the Item. The pathname is accessed via the Node::Home 
and Item::Home browse objects. Methods that use the pathname for filtering 
have a specific input parameter for this.

Parameter Description

item The identification of the ItemAttributeDefinition (i.e., the 
AttributeID).

return The Description for the ItemAttributeDefinitions.
5-26 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

The find_all method corresponds to the OPC method 
IOPCHDA_Server::GetItemAttributes().

5.5.6 HDAISAggregate

5.5.6.1 HDAISAggregate overview

The interface is used to browse the AggregateDefinitions, refer to Chapter 3 for the 
information model.

5.5.6.2 HDAISAggregate IDL

//File HDAISAggregate.idl
#ifndef __HDAIS_AGGREGATE_IDL
#define __HDAIS_AGGREGATE_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module Aggregate {

struct Description {
AggregateID id;
string label;
string descrip;};

typedef sequence<Description> Descriptions;

const AggregateIDOPCHDA_NOAGGREGATE = 0x0000;
const AggregateIDOPCHDA_INTERPOLATIVE = 0x0001;
const AggregateIDOPCHDA_TOTAL = 0x0002;
const AggregateIDOPCHDA_AVERAGE = 0x0003;
const AggregateIDOPCHDA_TIMEAVERAGE = 0x0004;
const AggregateIDOPCHDA_COUNT = 0x0005;
const AggregateIDOPCHDA_STDEV = 0x0006;
const AggregateIDOPCHDA_MINIMUMACTUALTIME = 0x0007;
const AggregateIDOPCHDA_MINIMUM = 0x0008;
const AggregateIDOPCHDA_MAXIMUMACTUALTIME = 0x0009;
const AggregateIDOPCHDA_MAXIMUM = 0x0010;
const AggregateIDOPCHDA_START = 0x0011;
const AggregateIDOPCHDA_END = 0x0012;
const AggregateIDOPCHDA_DELTA = 0x0013;
const AggregateIDOPCHDA_REGSLOPE = 0x0014;
const AggregateIDOPCHDA_REGCONST = 0x0015;
const AggregateIDOPCHDA_REGDEV = 0x0016;
const AggregateIDOPCHDA_VARIANCE = 0x0017;

Parameter Description

return The Descriptions for all ItemAttributeDefinitions.
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-27



5

const AggregateIDOPCHDA_RANGE = 0x0018;
const AggregateIDOPCHDA_DURATIONGOOD = 0x0019;
const AggregateIDOPCHDA_DURATIONBAD = 0x0020;
const AggregateIDOPCHDA_PERCENTGOOD = 0x0021;
const AggregateIDOPCHDA_PERCENTBAD = 0x0022;
//const AggregateIDOPCHDA_WORSTQUALITY = 0x0023;
const AggregateIDOPCHDA_ANNOTATIONS = 0x0024;

interface Home
{

exception UnknownID {string reason;};

Description find (
in AggregateID id)
raises (UnknownID);

Descriptions find_all ();
};
};};};
#endif // __HDAIS_AGGREGATE_IDL

Description

Description is a struct describing an AggregateDefinition.

AggregateID

AggregateID is defined in the HDAISCommon IDL (refer to Section 5.2, “HDAIS 
Common IDL,” on page 5-3). The table below lists the AggregateDefinitions and their 
Description member values.

Member Description

id The identification of an AggregateDefinition.

label The label of an AggregateDefinition.

descrip The description of an AggregateDefinition.

EnumValue (id) label description

OPCHDA_NOAGGREGATE noAggregate Do not use any aggregate calculations.

OPCHDA_INTERPOLATIVE interpolate Interpolate the values with the given interval.

OPCHDA_TOTAL total Sum the values over the sample interval.

OPCHDA_AVERAGE average Calculate the average over the sample interval.

OPCHDA_TIMEAVERAGE weightedAverage Calculate the weighted average over the sample 
interval.

OPCHDA_COUNT count Calculate the number of values in the sample 
interval.
5-28 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

find ()

find() is a method that returns the Description from a known AggregateDefinition.

OPCHDA_STDEV standardDeviation Calculate the standard deviation over the sample 
interval.

OPCHDA_MINIMUMACTUALTIME minWithTime Retrieve the minimum value in the sample 
interval and the timestamp of the minimum value.

OPCHDA_MINIMUM min Retrieve the minimum value in the sample 
interval.

OPCHDA_MAXIMUMACTUALTIME maxWithTime Retrieve the maximum value in the sample 
interval and the timestamp of the maximum 
value.

OPCHDA_MAXIMUM max Retrieve the maximum value in the sample 
interval.

OPCHDA_START start Retrieve the value at the beginning of the sample 
interval.

OPCHDA_END end Retrieve the value at the end of the sample 
interval.

OPCHDA_DELTA delta Calculate the delta (difference) between the 
sample interval start and the end values.

OPCHDA_REGSLOPE regressionSlope Calculate the slope of the regression line for the 
sample interval.

OPCHDA_REGCONST regressionConst Calculate the regression constant (i.e., the value 
for the regression line at the start value).

OPCHDA_REGDEV regressionDev Calculate the standard deviation for the 
regression line over the sample interval.

OPCHDA_VARIANCE variance Calculate the variance over the sample interval.

OPCHDA_RANGE range Calculate the difference between the maximum 
and minimum values over the sample interval.

OPCHDA_DURATIONGOOD durationGood Calculate the time in seconds that the value had 
quality good within the sample interval.

OPCHDA_DURATIONBAD durationBad Calculate the time in seconds that the value had 
quality bad within the sample interval.

OPCHDA_PERCENTGOOD durationGood% Calculate the percentage of the time that the 
value had quality good within the sample interval.

OPCHDA_PERCENTBAD durationBad% Calculate the percentage of the time that the 
value had quality bad within the sample interval.

OPCHDA_ANNOTATIONS countAnnotations Retrieve the number of annotations in the sample 
interval.
February 2003 HDAIS Final Adopted Specification: Browse Interfaces  5-29



5

The find() method has no corresponding OPC method.

find_all ()

find_all() is a method that returns all the Description for all AggregateDefinitions.

The find_all() method corresponds to the OPC method 
IOPCHDA_Server::GetAggregates.

5.6 Data Access (IO) Interfaces

This section describes the data access interfaces defined in the following IDLs:

• HDAISValueIO for ItemValues

• HDAISModifiedValueIO for ModifiedItemValues

• HDAISItemAttributesIO for ItemAttributeValues

• HDAISAnnotationIO for Annotations

5.6.1 HDAISValueIO

5.6.1.1 HDAISValueIO overview

The DAIS::HDA::ValueIO defines the object for access of ItemValue time series data. 
The interface is large and hence divided in several interfaces. Figure 5-2 shows the 
interfaces and their relation.

Parameter Description

item The identification of the AggregateDefinition (i.e., the 
AggregateID).

return The Description for the AggregateDefinition.

Parameter Description

return The Descriptions for all AggregateDefinitions.
5-30 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

Figure 5-2 ValueIO Interfaces

The DAIS::HDA::ValueIO::Home object implements all interfaces described in this 
section as a singleton object.

The interfaces use handles for identification of Items and require that the interface 
DAIS::HDA::Connection has been used to establish associations between server and 
client handles.

DAIS::HDA::ValueIO::Home interface supports four different ways to read data and two 
ways to update data.

Ways to read data:

• Synchronous read where the data is received at return from the read method.

• Asynchronous read returning execution immediately to the client. The data is 
returned at the callback object.

• Subscription where updated data is sent spontaneously by the server through the 
callback object.

• Playback where data is sent through the callback object in pace with a simulated 
time.

Ways to update data:

• Synchronous update returning execution to the client once all data has been 
recorded.

• Asynchronous update returning execution immediately to the client. Once the 
updates are recorded the client gets a notification through the callback object.

The read operations can deliver data processed in the following ways:

• Raw data as recorded.

DAIS::HDA::ValueIO::Home

DAIS::HDA::ValueIO::SyncRead

DAIS::HDA::ValueIO::SyncUpdate

DAIS::HDA::ValueIO::AsyncRead

DAIS::HDA::ValueIO::AsynchUpdate

DAIS::HDA::ValueIO::Playback
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-31



5

• Data processed according to an aggregate calculation. For a description of the 
aggregate calculations refer to Section 5.5.5, “HDAISItemAttribute,” on page 5-23.

Data updates can be made in the following ways:

• Insert where new ItemValues are inserted. If an ItemValue already exists (i.e., the 
same time stamp already exists) no insert is made.

• Replace where update ItemValues replace existing ItemValues. If no existing 
ItemValues correspond to the update ItemValues, the update ItemValues are not 
processed. The DAIS::HDA::ModifiedValueIO::Home interface can be used to 
specifically read the replaced ItemValues values.

• Insertreplace where update ItemValues replace existing ItemValues. If no existing 
ItemValues correspond to the update ItemValues, the update ItemValues are inserted 
as new.

The following IDLs define the interfaces:

• HDAISValueIOCommon defines common data declarations used by all interfaces.

• HDAISValueIO defines the object dealing with ItemValue access.

• HDAISSyncIO defines the interfaces for synchronous ItemValue access.

• HDAISAsyncIO defines the interfaces for asynchronous ItemValue access.

• HDAISPlayback defines the interfaces for playback of ItemValues.

The table below shows in what IDL the interfaces they define.

5.6.1.2 HDAISValueIOCommon IDL

// File: HDAISValueIOCommon.idl
#ifndef _HDAIS_VALUE_IO_COMMON_IDL
#define _HDAIS_VALUE_IO_COMMON_IDL

#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ValueIO {

IDL Interface

HDAISValueIO DAIS::HDA::ValueIO::Home

HDAISSyncIO DAIS::HDA::ValueIO::SyncRead

DAIS::HDA::ValueIO::SyncUpdate

HDAISAsyncIO DAIS::HDA::ValueIO::AsyncRead 

DAIS::HDA::ValueIO::AsyncUpdate

HDAISPlayback DAIS::HDA::ValueIO::Playback
5-32 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

struct TimeSerie {
ClientItemHandle client_handle;
AggregateID aggregate_id;
sequence<Value> item_values;};

typedef sequence<TimeSerie> TimeSeries;

struct Update {
ServerItemHandle server_handle;
Value item_value;};

typedef sequence<Update> Updates;

struct ProcessedRef {
ServerItemHandle server_handle;
AggregateID aggregate_id;};

typedef sequence<ProcessedRef> ProcessedRefs;

struct ItemValueRef {
ServerItemHandle server_handle;
DateTime time_stamp;};

typedef sequence<ItemValueRef> ItemValueRefs;

typedef ItemErrors UpdateResults;

};};};
#endif // _HDAIS_VALUE_IO_COMMON_IDL

TimeSerie

TimeSerie is a struct that describes a sequence of ItemValues for a particular Item. 

Update

Update is a struct that describes updates that shall be made for ItemValues at a particular 
Item.

Member Description

client_handle The client side handle that identifies the Item.

aggregate_id The aggregate that was used when the data was retrieved. 
The methods that return raw data set the id to 
OPCHDA_NOAGGREGATE.

item_values A sequence of Values that holds ItemValue data.

Member Description

server_handle The server side handle that identifies the Item.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-33



5

ProcessedRef

ProcessedRef is a struct that references the Item and the aggregate calculation to use for 
retrieval of ItemValues.

ItemValueRef

ItemValueRef is a struct that references the ItemValues to access.

UpdateResults

UpdateResults is a definition of the result returned from insert/update operations. The 
actual operation performed (insert or update) is returned in the result together with Items 
that failed due to an error.

5.6.1.3 HDAISValueIO IDL

//File: HDAISValueIO.idl
#ifndef _HDAIS_VALUE_IO_IDL
#define _HDAIS_VALUE_IO_IDL
#include <HDAISSyncIO.idl>
#include <HDAISAsyncIO.idl>
#include <HDAISPlayback.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ValueIO {

typedef unsigned short UpdateCapabilities;
const UpdateCapabilities OPCHDA_INSERTCAP = 0x0001;
const UpdateCapabilities OPCHDA_REPLACECAP = 0x0002;
//const UpdateCapabilities OPCHDA_INSERTREPLACECAP = 0x0004;
const UpdateCapabilities OPCHDA_DELETERAWCAP = 0x0008;
const UpdateCapabilities OPCHDA_DELETEATTIMECAP = 0x0010;

item_value The value that shall be used to update the ItemValue. 
The time_stamp in the item_value is used to find the 
ItemValue to update.

Member Description

server_handle The server side handle that identifies the Item.

aggregate_id The id of the aggregate calculation to use.

Member Description

server_handle The server side handle that identifies the Item.

time_stamp The time stamp for the ItemValue to access.
5-34 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

interface Home :
SyncRead
,SyncUpdate
,AsyncRead
,AsyncUpdate
,Playback

{
readonly attribute UpdateCapabilities capabilities;

};
};};};
#endif // _HDAIS_VALUE_IO_IDL

UpdateCapabilities

UpdateCapabilities is a flag word that describes the update capabilities the server 
supports.

Home

Home is an object that implements all the ItemValue access interfaces.

capabilities

capabilities is an attribute that tells the client what update capabilities the server supports.

The OPC corresponding OPC methods are IOPCHDA_SyncUpdate::QueryCapabilities() 
and IOPCHDA_AsyncUpdate::QueryCapabilities().

5.6.1.4 HDAISSyncIO IDL

//File: HDAISSyncIO.idl
#ifndef _HDAIS_SYNC_IO_IDL
#define _HDAIS_SYNC_IO_IDL
#include <HDAISValueIOCommon.idl>
#include <HDAISModifiedValueIO.idl>
#include <HDAISItemAttributeIO.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ValueIO {

Flag Description

OPCHDA_INSERTCAP The server support insertion of new ItemValues.

OPCHDA_REPLACECAP The server support replacement of ItemValues.

OPCHDA_DELETERAWCAP The server support deletion of ItemValues in a 
time interval.

OPCHDA_DELETEATTIMECAP The server support deletion of specified 
ItemValues.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-35



5

interface SyncRead
{

exception MaximumNumberOfValuesExceeded {string reason;};

TimeSeries sync_read_raw (
in TimeInterval interval,
in unsigned long max_number_of_values,
in boolean bounds,
in ServerItemHandles server_handles,
out ItemErrors item_errors)
raises (MaximumNumberOfValuesExceeded);

TimeSeries sync_read_processed (
in TimeInterval interval,
in DateTime sample_interval,
in ProcessedRefs item_refs,
out ItemErrors item_errors)
raises (MaximumNumberOfValuesExceeded);

TimeSeries sync_read_at_time (
in DateTimes time_stamps,
in ServerItemHandles server_handles
out ItemErrors item_errors);

};

interface SyncUpdate
{

ItemErrors sync_insert (
in Updates item_values);

ItemErrors sync_replace (
in Updates item_values);

UpdateResults sync_insert_replace (
in Updates item_values);

ItemErrors sync_delete_raw (
in TimeInterval interval,
in ServerItemHandles server_handles);

ItemErrors sync_delete_at_time (
in DateTimes time_stamps,
in ServerItemHandles server_handles);

};
};};};
#endif // _HDAIS_SYNC_IO_IDL

SyncRead

SyncRead is an interface for synchronous read of ItemValues.

MaximumNumberOfValuesExceeded

MaximumNumberOfValuesExceeded is an exception that tells the number of ItemValues 
requested by the client is larger than the server can handle.
5-36 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

sync_read_raw ()

sync_read_raw() is a method for synchronous read of the raw ItemValues.

The corresponding OPC method is IOPCHDA_SyncRead::ReadRaw().

sync_read_processed ()

sync_read_processed() is a method for synchronous read of ItemValues with the returned 
data processed by an aggregate calculation.

The corresponding OPC method is IOPCHDA_SyncRead::ReadProcessed().

Parameter Description

interval interval specifies the time interval for which to read 
ItemValues.

max_number_of_values The maximum number of ItemValues to return for an 
Item.

bounds If true, the bounding ItemValues shall be returned for 
the start and end times for the specified intervals. If a 
bounding ItemValue doesn't exist (no matching time 
stamp), an empty ItemValues is returned having the 
quality OPCHDA_NOBOUND. 

server_handles The server handles that identify the Items.

item_errors A sequence reporting the items that was not read due 
to an error. Reported errors are:
-- WARNING_MORE_DATA_THAN_REQUESTED
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the found ItemValues are returned.

Parameter Description

interval interval specifies the time interval for which to read 
ItemValues.

sample_interval The time interval where to pick ItemValues to use in 
the calculation. A calculated result is returned for 
each sample interval.

item_refs The server handles and AggregateIDs to use as 
reference to Items and aggregate calculations.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-37



5

sync_read_at_time ()

sync_read_at_time() is a method for synchronous read of ItemValues at specified times.

The corresponding OPC method is IOPCHDA_SyncRead::ReadAtTime().

SyncUpdate

SyncUpdate is an interface for synchronous update of ItemValues.

sync_insert ()

sync_insert() is a method for synchronous insertion of new ItemValues.

The corresponding OPC method is IOPCHDA_SyncUpdate::Insert().

item_errors A sequence reporting the items that was not read due 
to an error. Reported errors are:
-- WARNING_NO_DATA (in sample_interval)
-- WARNING_MORE_EXTREEM_VALUES
-- ERROR_AGGREGATE_NOT_AVAILABLE
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the calculated ItemValues are 
returned.

Parameter Description

time_stamps The times for the ItemValues to read.

server_handles The server handles that identifies the Items.

item_errors A sequence reporting the Items that was not read due to an 
error. Reported errors are;
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the found ItemValues are returned.

Parameter Description

item_values The descriptions of the new ItemValues to insert.
5-38 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

sync_replace ()

sync_replace() is a method for synchronous replacement of already existing ItemValues.

The corresponding OPC method is IOPCHDA_ SyncUpdate::Replace().

sync_insert_replace ()

sync_insert_replace() is a method for synchronous insertion of new or replacement of 
existing ItemValues.

The corresponding OPC method is IOPCHDA_ SyncUpdate::InsertReplace().

return A sequence reporting the Items that was not updated 
due to an error. Reported errors are:
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_DATA_ALREADY_EXIST
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

item_values The descriptions of the updates to make for the existing 
ItemValues.

return A sequence reporting the Items that was not updated 
due to an error. Reported errors are:
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_DATA_DOES_NOT_EXIST
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

item_values The descriptions of the updates to make for the existing 
ItemValues.

return A sequence reporting the kind of updates made for 
successful ItemValues as well as errors for failed 
ItemValues. The reports are;
-- RESULT_DATA_INSERTED
-- RESULT_DATA_REPLACED
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-39



5

sync_delete_raw ()

sync_delete_raw() is a method for synchronous deletion of all ItemValues in a time 
interval.

The corresponding OPC method is IOPCHDA_ SyncUpdate::DeleteRaw().

sync_delete_at_time ()

sync_delete_at_time() is a method for synchronous delete of specified ItemValues.

The corresponding OPC method is IOPCHDA_ SyncUpdate::DeleteAtTime().

5.6.1.5 HDAISAsyncIO IDL

//File: HDAISAsyncIO.idl
#ifndef _HDAIS_ASYNC_IO_IDL
#define _HDAIS_ASYNC_IO_IDL
#include <HDAISValueIOCommon.idl>
#include <HDAISModifiedValueIO.idl>

Parameter Description

interval interval specifies the time interval for which to delete 
ItemValues.

server_handles server_handles specifies the Items that shall be searched 
for ItemValues to delete.

item_refs The server handles and AggregateIDs to use as 
reference to Items and aggregate calculations.

return A sequence reporting the items that was not read due to 
an error. Reported errors are:
-- WARNING_NO_DATA (in interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

time_stamps The times for the ItemValues to delete.

server_handles The server handles that identify the Items.

return A sequence reporting the Items that was not read due 
to an error. Reported errors are:
-- WARNING_NO_DATA (for the specified times)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.
5-40 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

#include <HDAISItemAttributeIO.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ValueIO {

interface AsyncRead
{

exception MaximumNumberOfValuesExceeded {string reason;};

CancelID async_read_raw (
in TransactionID transaction_id,
in TimeInterval interval,
in unsigned long max_number_of_values,
in boolean bounds,
in ServerItemHandles server_handles)
raises (MaximumNumberOfValuesExceeded);

CancelID subscribe_raw (
in TransactionID transaction_id,
in DateTime start_time,
in DateTime value_return_interval,
in ServerItemHandles server_handles);

CancelID async_read_processed (
in TransactionID transaction_id,
in TimeInterval interval,
in DateTime sample_interval,
in ProcessedRefs item_refs)
raises (MaximumNumberOfValuesExceeded);

CancelID subscribe_processed (
in TransactionID transaction_id,
in DateTime start_time,
in DateTime sample_interval,
in ProcessedRefs item_refs,
in unsigned long no_samples_per_callback);

CancelID async_read_at_time (
in TransactionID transaction_id,
in DateTimes time_stamps,
in ServerItemHandles server_handles);

void cancel (
in CancelID cancel_id);

};

interface AsyncUpdate
{

CancelID async_insert (
in TransactionID transaction_id,
in Updates item_values);

CancelID async_replace (
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-41



5

in TransactionID transaction_id,
in Updates item_values);

CancelID async_insert_replace (
in TransactionID transaction_id,
in Updates item_values);

CancelID async_delete_raw (
in TransactionID transaction_id,
in TimeInterval interval,
in ServerItemHandles server_handles);

CancelID async_delete_at_time (
in TransactionID transaction_id,
in DateTimes time_stamps,
in ServerItemHandles server_handles);

};

interface Callback
{

void on_data_change (
in TransactionID transaction_id,
in boolean all_quality_good,
in TimeSeries time_series,
in ItemErrors item_errors);

void on_read_complete (
in TransactionID transaction_id,
in boolean all_quality_good,
in TimeSeries time_series,
in ItemErrors item_errors);

void on_update_complete (
in TransactionID transaction_id,
in ClientItemHandles client_handles,
in ItemErrors item_errors);

};
};};};
#endif // _HDAIS_ASYNC_IO_IDL

AsyncRead

AsyncRead is an interface for asynchronous read of ItemValues.

async_read_raw ()

async_read_raw() is a method for asynchronous read of the raw ItemValues. The result is 
returned by the server on the on_read_complete() method.

The corresponding OPC method is IOPCHDA_AsyncRead::ReadRaw().

Parameter Description

transaction_id A client assigned handle for the read operation.
5-42 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

subscribe_raw ()

subscribe_raw() is a method to read existing ItemValues from a specified start time and 
continue to feed the client with new values that becomes available after transmission of 
the initially existing values. The result is returned by the server on the on_data_change() 
method.

The corresponding OPC method is IOPCHDA_AsyncRead::AdviseRaw().

async_read_processed ()

async_read_processed() is a method for asynchronous read of ItemValues with the 
returned data processed by an aggregate calculation. The result is returned by the server 
on the on_read_complete() method.

The corresponding OPC method is IOPCHDA_AsyncRead::ReadProcessed().

interval interval specifies the time interval for which to read 
ItemValues.

max_number_of_values The maximum number of ItemValues to return for an 
Item.

bounds If true, the bounding ItemValues shall be returned for 
the start and end times for the specified intervals. If a 
bounding ItemValue doesn't exist (no matching time 
stamp), an empty ItemValues is returned having the 
quality OPCHDA_NOBOUND. 

server_handles The server handles that identify the Items.

return A cancellation id that the client may use to cancel the 
operation.

Parameter Description

transaction_id A client assigned handle for the read operation.

start_time The time where to start the read operation.

value_return_interval The time interval to return ItemValues. If no 
ItemValue has a matching time stamp, the nearest is 
picked.

server_handles The server handles that identify the Items.

return A cancellation id that the client may use to cancel the 
operation.

Parameter Description

transaction_id A client assigned handle for the read operation.

interval interval specifies the time interval for which to read 
ItemValues.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-43



5

subscribe_processed ()

subscribe_processed() is a method to read existing ItemValues from a specified start time 
and continue to feed the client with new values that become available after transmission 
of the initially existing values. The ItemValues are processed with an aggregate 
calculation before transmission. The result is returned by the server on the 
on_data_change() method.

The corresponding OPC method is IOPCHDA_AsyncRead::AdviseProcessed().

async_read_at_time ()

async_read_at_time() is a method for asynchronous read of ItemValues at specified 
times. The result is returned by the server on the on_read_complete() method.

The corresponding OPC method is IOPCHDA_AsyncRead::ReadAtTime().

sample_interval The time interval where to pick ItemValues to use in 
the calculation. A calculated result is returned for each 
sample interval.

item_refs The server handles and AggregateIDs to use as 
reference to Items and aggregate calculations.

return A cancellation id that the client may use to cancel the 
operation.

Parameter Description

transaction_id A client assigned handle for the read operation.

start_time The time where to start the read operation.

sample_interval The time interval where to pick ItemValues to use in the 
calculation. A calculated result is returned for each 
sample interval.

item_refs The server handles and AggregateIDs to use as 
reference to Items and aggregate calculations.

return A cancellation id that the client may use to cancel the 
operation.

Parameter Description

transaction_id A client assigned handle for the read operation.

time_stamps The times for the ItemValues to read.

server_handles The server handles that identify the Items.

return A cancellation id that the client may use to cancel the 
operation.
5-44 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

cancel ()

cancel() is a method to cancel ongoing asynchronous operations.

The corresponding OPC methods are IOPCHDA_AsyncRead::Cancel() and 
IOPCHDA_AsyncUpdate::Cancel().

AsyncUpdate

AsyncUpdate is an interface for asynchronous update of ItemValues.

async_insert ()

async_insert() is a method for asynchronous insertion of new ItemValues. The result is 
returned by the server on the on_update_complete() method.

The corresponding OPC method is IOPCHDA_AsyncUpdate::Insert().

async_replace ()

async_replace() is a method for asynchronous replacement of already existing 
ItemValues. The result is returned by the server on the on_update_complete() method.

The corresponding OPC method is IOPCHDA_AsyncUpdate::Replace().

async_insert_replace ()

async_insert_replace() is a method for asynchronous insertion of new or replacement of 
existing ItemValues. The result is returned by the server on the on_update_complete() 
method.

Parameter Description

cancel_id The cancellation number from the server for the original 
asynchronous operation and used by the client to request 
the cancellation.

Parameter Description

transaction_id A client assigned handle for the read operation.

item_values The descriptions of the new ItemValues to insert.

return A server assigned cancellation handle.

Parameter Description

transaction_id A client assigned handle for the read operation.

item_values The descriptions of the updates to make for the existing 
ItemValues.

return A server assigned cancellation handle.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-45



5

The corresponding OPC method is IOPCHDA_AsyncUpdate::InsertReplace().

async_delete_raw ()

async_delete_raw() is a method for asynchronous deletion of all ItemValues in a time 
interval. The result is returned by the server on the on_update_complete() method.

The corresponding OPC method is IOPCHDA_AsyncUpdate::DeleteRaw().

async_delete_at_time ()

async_delete_at_time() is a method for asynchronous delete of specified ItemValues. The 
result is returned by the server on the on_update_complete() method.

The corresponding OPC method is IOPCHDA_AsyncUpdate::DeleteAtTime().

Callback

Callback is an interface to be implemented by the client for the server to transmit 
responses to asynchronous calls from the client.

Parameter Description

transaction_id A client assigned handle for the read operation.

item_values The descriptions of the updates to make for the existing 
ItemValues.

return A server assigned cancellation handle.

Parameter Description

transaction_id A client assigned handle for the read operation.

interval interval specifies the time interval for which to delete 
ItemValues.

server_handles server_handles specifies the Items that shall be searched 
for ItemValues to delete.

item_refs The server handles and AggregateIDs to use as reference 
to Items and aggregate calculations.

return A server assigned cancellation handle.

Parameter Description

time_stamps The times for the ItemValues to delete.

server_handles The server handles that identify the Items.

return A server assigned cancellation handle.
5-46 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

on_data_change ()

on_data_change() is a method the server will use to transmit responses to the 
asynchronous subscribe calls

• subscribe_raw

• subscribe processed

The corresponding OPC method is IOPCHDA_DataCallback::OnDataChange().

on_read_complete ()

on_read_complete() is a method the server will use to transmit responses to the 
asynchronous read calls

• async_read_raw()

• async_read_processed()

• async_read_at_time()

The corresponding OPC method is IOPCHDA_DataCallback::OnReadComplete().

Parameter Description

transaction_id The client assigned handle for the subscribe operation 
returned by the server.

all_quality_good All ItemValue qualities are good.

time_series The TimeSeries for initially read or updated ItemValues.

item_errors A sequence reporting the items that was not read and 
will not be further reported due to an error.
Reported errors for all subscribe operations are:
- -ERROR_BAD_RIGHTS
- -ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER

Reported errors specifically for subscribe_processed 
are:
- -WARNING_MORE_EXTREEM_VALUES
-- ERROR_AGGREGATE_NOT_AVAILABLE

For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

transaction_id The client assigned handle for the read operation returned 
by the server.

all_quality_good All ItemValue qualities are good.

time_series The TimeSeries for initially read or updated ItemValues.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-47



5

on_update_complete ()

on_update_complete() is a method the server will use to transmit responses to the 
asynchronous update calls

• async_insert()

• async_replace()

• async_insert_replace()

• async_delete_raw()

• async_delete_at_time()

The corresponding OPC method is IOPCHDA_DataCallback::OnUpdateComplete().

item_errors A sequence reporting the items that was not read due to 
an error. Reported errors for all read operations are:
-- WARNING_NO_DATA (in sample_interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER

Reported error specifically for read_raw is:
-- WARNING_MORE_DATA_THAN_REQUESTED

Reported errors specifically for read_processed are:
-- WARNING_MORE_EXTREEM_VALUES
-- ERROR_AGGREGATE_NOT_AVAILABLE

For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

transaction_id The client assigned handle for the update operation 
returned by the server.

client_handles The client handles for the successfully updated 
ItemValues.
5-48 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.6.1.6 HDAISPlayback IDL

//File: HDAISPlayback.idl
#ifndef _HDAIS_PLAYBACK_IDL
#define _HDAIS_PLAYBACK_IDL
#include <HDAISValueIOCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ValueIO {

interface Playback
{

exception MaximumNumberOfValuesExceeded {string reason;};

CancelID playback_raw_with_update (
in TransactionID transaction_id,
in TimeInterval initalization_interval,
in unsigned long max_number_of_values,
in DateTime duration,
in DateTime playback_interval,
in ServerItemHandles server_handles)
raises (MaximumNumberOfValuesExceeded);

CancelID playback_processed_with_update (
in TransactionID transaction_id,

item_errors A sequence reporting the items that was not updated due 
to an error. Reported errors for all subscribe operations 
are:
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER

Reported error specifically for insert is:
-- ERROR_DATA_ALREADY_EXIST

Reported error specifically for replace is:
-- ERROR_DATA_DOES_NOT_EXIST

Reported errors specifically for insert_replace are:
-- RESULT_DATA_INSERTED
-- RESULT_DATA_REPLACED

Reported error specifically for delete_raw is:
-- WARNING_NO_DATA (in interval)

Reported error specifically for delete_at_time is:
-- WARNING_NO_DATA (for the specified times)

For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-49



5

in TimeInterval initalization_interval,
in DateTime sample_interval,
in unsigned long number_of_sample_intervals,
in DateTime playback_interval,
in ProcessedRefs item_refs)
raises (MaximumNumberOfValuesExceeded);

};

interface PlaybackCallback
{

void on_playback (
in TransactionID transaction_id,
in boolean all_quality_good,
in TimeSeries time_series,
in ItemErrors item_errors);

};
};};};
#endif // _HDAIS_PLAYBACK_IDL

Playback

Playback is an interface to start play back of ItemValues from the server.

MaximumNumberOfValuesExceeded

MaximumNumberOfValuesExceeded is an exception that tells the number of ItemValues 
requested by the client is larger than the server can handle.

playback_raw_with_update ()

playback_raw_with_update() is a method that initially transmits ItemValues according to 
the requested initialization interval. After initialization ItemValues are transmitted 
according to a simulated time. ItemValues are transmitted as they change at the simulated 
time. The corresponding OPC method is IOPCHDA_Playback::ReadRawWithUpdate().

Parameter Description

transaction_id A client assigned handle for the read operation.

initialization_interval initialization_interval specifies the time interval for 
which to read ItemValues for initialization.

max_number_of_values The maximum number of ItemValues to return for an 
Item.

duration The duration time for the simulated time. This period 
starts after the interval end time.

playback_interval The time between transmissions of updated 
ItemValues.

server_handles server_handles specifies the Items that shall be 
played back.

return A server assigned cancellation handle.
5-50 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

playback_processed_with_update ()

playback_processed_with_update() is a method that initially transmits ItemValues 
according to the requested initialization interval. After initialization ItemValues are 
transmitted according to a simulated time. ItemValues are transmitted as they change at 
the simulated time. The speed of the simulated time can be controlled.

The corresponding OPC method is IOPCHDA_Playback::ReadProcessedWithUpdate().

By increasing the number_of_sample_intervals the play back speed will increase as 
ItemValues for more recorded times will be transmitted in the same playback_interval. 
Figure 5-3 shows how the play back speed can be controlled by changing the 
number_of_sample_intervals.

Figure 5-3 Play Back Example

Parameter Description

transaction_id A client assigned handle for the read operation.

initialization_interval initialization_interval specifies the time interval for 
which to read ItemValues for initialization.

sample_interval The time interval where to pick ItemValues to use 
in the calculation. A calculated result is created for 
each sample interval.

number_of_sample_intervals The number of sample intervals from which to 
collect changed ItemValues for transmission to the 
client.

playback_interval The time between transmissions of updated 
ItemValues at real time.

item_refs The server handles and AggregateIDs to use as 
reference to Items and aggregate calculations.

return A server assigned cancellation handle.

Initialization 
interval

Sample 
interval

Playback interval

Sample 
interval

Sample 
interval

Sample 
interval

Recorded time

Real time

Playback interval

number_of_sample_intervals
= 2
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-51



5

In Figure 5-3 the sample_interval is set to half of the playback_interval and 
number_of_sample_intervals is set to two. This will result in a play back speed equal to 
real time. If number_of_sample_intervals is set to one, the play back speed will be half of 
real time speed and if it is set to four it will be twice the real time speed.

PlaybackCallback

PlaybackCallback is an interface to be implemented by the client for the server to 
transmit play back data to the client.

on_playback ()

on_playback() is a method the server will use to transmit responses to the asynchronous 
play back calls

• playback_raw_with_update()

• playback_processed_with_update()

The corresponding OPC method is IOPCHDA_DataCallback::OnPlayback().

Parameter Description

transaction_id The client assigned handle for the play back operation 
returned by the server.

all_quality_good All ItemValue qualities are good.

time_series The TimeSeries for initially read or as play back proceed 
updated ItemValues.

item_errors A sequence reporting the items that were not updated 
due to an error. Reported errors for all subscribe 
operations are:
-- WARNING_NO_DATA (in initialization interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER

Reported error specifically for 
playback_processed_with_update is:
-- ERROR_AGGREGATE_NOT_AVAILABLE

For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
5-52 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

5.6.2 HDAISModifiedValueIO

5.6.2.1 HDAISModifiedValueIO Overview

The DAIS::HDA::ModifiedValueIO::Home interface has methods for reading of 
ItemValues as they appeared before the modification was made. It is also possible to read 
deleted ItemValues. Note that modified values are accessed via the DAIS::HDA::ValueIO 
interfaces except deleted values.

DAIS::HDA::ModifiedValueIO::Home is implemented as a singleton object.

The interfaces use handles for identification of Items and require that the interface 
DAIS::HDA::Connection has been used to establish associations between server and 
client handles.

5.6.2.2 HDAISModifiedValueIO IDL

//File: HDAISModifiedValueIO.idl
#ifndef _HDAIS_MODIFIED_VALUE_IO_IDL
#define _HDAIS_MODIFIED_VALUE_IO_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ModifiedValueIO {

typedef unsigned short ModificationType;
const ModificationType OPCHDA_INSERT = 1;
const ModificationType OPCHDA_REPLACE = 2;
const ModificationType OPCHDA_INSERTREPLACE = 3;
const ModificationType OPCHDA_DELETE = 4;

struct Modification {
Value item_value;
DateTime modification_time;
ModificationType modification_type;
string user_name;};

struct TimeSerie {
ClientItemHandle client_handle;
AggregateID aggregate_id;
sequence<Modification> modifications;};

typedef sequence<TimeSerie> TimeSeries;

interface Sync
{

TimeSeries sync_read_modified (
in TimeInterval interval,
in unsigned long max_number_of_values,
in ServerItemHandles server_handles,
out ItemErrors item_errors);
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-53



5

};

interface Async
{

CancelID async_read_modified (
in TransactionID transaction_id,
in TimeInterval interval,
in unsigned long max_number_of_values,
in ServerItemHandles server_handles);

void cancel (
in CancelID cancel_id);

};

interface Home : Sync, Async
{};

interface Callback
{

void on_read_modified_complete (
in TransactionID transaction_id,
in boolean all_quality_good,
in TimeSeries time_series,
in ItemErrors item_errors);

};
};};};
#endif // _HDAIS_MODIFIED_VALUE_IO_IDL

ModificationType

ModificationType is an enumeration used to indicate the type of modification made.

Modification

Modification is a struct describing a modification.

EnumValue Description

OPCHDA_INSERT The update operation was an insert.

OPCHDA_REPLACE The update operation was a replace.

OPCHDA_INSERTREPLACE The update operation was an insert_replace.

OPCHDA_DELETE The update operation was a delete.

Member Description

item_value The old ItemValue as it appeared before the 
modification. The following cases exist:
-- OPCHDA_INSERT; no old item_value.
-- OPCHDA_REPLACE; old item_value exists.
-- OPCHDA_INSERTREPLACE old item_value may or

may not exist
-- OPCHDA_DELETE; old item_value exists.
5-54 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

TimeSerie

TimeSerie is a struct that describes a sequence of Modifications made to ItemValues for 
a particular Item. 

Sync

Sync is an interface for synchronous read operations.

sync_read_modified ()

sync_read_modified() is a method for synchronous read of modified  ItemValues.

The corresponding OPC method is IOPCHDA_SyncRead::ReadModified().

modification_time The time when the modification was made.

modification_type The type of modification made.

user_name The name of the person that made the modification.

Member Description

client_handle The client side handle that identifies the Item.

aggregate_id The aggregate that was used when the data was 
retrieved. The methods that return raw data set the id to 
OPCHDA_NOAGGREGATE.

modifications A sequence of Modifications.

Parameter Description

interval interval specifies the time interval for which to read 
ItemValues.

max_number_of_values The maximum number of ItemValues to return for an 
Item.

server_handles The server handles that identify the Items.

item_errors A sequence reporting the items that were not read due 
to an error. Reported errors are:
-- WARNING_MORE_DATA_THAN_REQUESTED
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] 
and Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the found modified ItemValues are 
returned.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-55



5

Async

Async is an interface for asynchronous read operations.

async_read_modified ()

async_read_modified() is a method for asynchronous read of modified ItemValues. The 
server returns the result on the on_read_modified_complete () method.

The corresponding OPC method is IOPCHDA_AsyncRead::ReadModified().

cancel ()

cancel() is a method to cancel ongoing asynchronous read operations for modified values.

The corresponding OPC method is IOPCHDA_AsyncRead::Cancel().

Home

Home is a singleton object for reading of modified ItemValues.

Callback

Callback is an interface to be implemented by the client for the server to transmit 
responses to the asynchronous read operations from the client.

on_read_modified_complete ()

on_read_modified_complete() is a method the server will use to transmit responses to 
async_read_modified() calls.

Parameter Description

transaction_id A client assigned handle for the read operation.

interval interval specifies the time interval for which to read 
ItemValues.

max_number_of_values The maximum number of ItemValues to return for an 
Item.

server_handles The server handles that identifies the Items.

return A server assigned cancellation handle.

Parameter Description

cancel_id The cancellation number from the server for the original 
asynchronous operation and used by the client to request the 
cancellation.
5-56 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

The corresponding OPC method is 
IOPCHDA_DataCallback::OnReadModifiedComplete().

5.6.3 HDAISItemAttributeIO

5.6.3.1 HDAISItemAttributeIO overview

The DAIS::HDA::ItemAttributeIO::Home interface has methods for transfer of 
ItemAttributeValue time series data and is implemented as a singleton object.

The interfaces use handles for identification of Items and require that the interface 
DAIS::HDA::Connection has been used to establish associations between server and 
client handles.

5.6.3.2 HDAISItemAttributeIO IDL

//File: HDAISItemAttributeIO.idl
#ifndef _HDAIS_ITEM_ATTRIBUTE_IO_IDL
#define _HDAIS_ITEM_ATTRIBUTE_IO_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module ItemAttributeIO {

typedef short SimpleValueType;
const SimpleValueType DAIS_SIMPLE_VALUE_TYPE = 1;
const SimpleValueType ITEMID_VALUE_TYPE = 2;

union SimpleValue switch( SimpleValueType )
{

case DAIS_SIMPLE_VALUE_TYPE: DAIS::SimpleValue simple_value;

Parameter Description

transaction_id The client assigned handle for the read operation 
returned by the server.

all_quality_good All ItemValue qualities are good.

time_series TimeSeries for the found modified ItemValues.

item_errors A sequence reporting the items that were not read due to 
an error. Reported errors are:
-- WARNING_MORE_DATA_THAN_REQUESTED
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-57



5

case ITEMID_VALUE_TYPE: ItemID item_id_value;};

struct Value {
SimpleValue simple_value;
DateTime time_stamp;};

typedef sequence<Value> Values;

struct TimeSerie {
AttributeID attribute_id;
ClientItemHandle client_handle;
Values attribute_values;};

typedef sequence<TimeSerie> TimeSeries;

interface Sync
{

TimeSeries sync_read_attribute (
in TimeInterval interval,
in ServerItemHandle server_handle,
in AttributeIDs attribute_ids,
out ItemErrors item_errors);};

interface Async
{

CancelID async_read_attribute (
in TransactionID transaction_id,
in TimeInterval interval,
in ServerItemHandle server_handle,
in AttributeIDs attribute_ids);

void cancel (
in CancelID cancel_id);};

interface Home : Sync, Async
{};

interface Callback
{

void on_read_attributes_complete (
in TransactionID transaction_id,
in TimeSeries time_series,
in ItemErrors item_errors);};

};};};
#endif // _HDAIS_ITEM_ATTRIBUTE_IO_IDL

SimpleValueType

SimpleValueType is an extension of the SimpleValueType as defined in the 
DAFDescriptions IDL. The following values are defined.
5-58 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

SimpleValue

SimpleValue is a union that includes the original DAIS/DAF simple value extended with 
ItemID and ItemIDs.

Value

Value is a struct that holds the ItemAttributeValue data.

TimeSerie

TimeSerie is a struct that describes a sequence of ItemAttributeValues for a particular 
ItemAttribute and Item. 

Sync

Sync is an interface for synchronous read operations.

sync_read_attribute ()

sync_read_attribute() is a method for synchronous read of ItemAttributeValues.

The corresponding OPC method is IOPCHDA_SyncRead::ReadAttribute ().

Enum Description

DAIS_SIMPLE_VALUE_TYPE The SimpleValue as used by DAIS and DAF.

ITEMID_VALUE_TYPE The extension of SimpleValue with the ItemID.

Member Description

simple_value The attribute value.

time_stamp The time stamp when the attribute value was inserted or 
updated.

Member Description

attribute_id The identification of the ItemAttribute.

client_handle The client side handle that identifies the Item.

attribute_values A sequence of ItemAttribute values.

Parameter Description

interval interval specifies the time interval for which to read 
ItemAttributeValues.

server_handle The server handle that identifies the Item.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-59



5

Async

Async is an interface for asynchronous read operations.

async_read_attribute ()

async_read_attribute() is a method for asynchronous read of ItemAttributeValues.

The corresponding OPC method is IOPCHDA_AsyncRead::ReadAttribute().

cancel ()

cancel() is a method to cancel ongoing asynchronous read operations.

The corresponding OPC method is IOPCHDA_AsyncRead::Cancel().

Home

Home is a singleton object for reading of ItemAttributeValues.

attribute_ids The identifications of ItemAttributeValues to read.

item_errors A sequence reporting the items that were not read due to 
an error. Reported errors are:
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the found ItemAttributeValues are returned.

Parameter Description

transaction_id A client assigned handle for the read operation.

interval interval specifies the time interval for which to read 
ItemAttributeValues.

server_handle The server handle that identifies the Item.

attribute_ids The identifications of ItemAttributeValues to read.

return A server assigned cancellation handle.

Parameter Description

cancel_id The cancellation number from the server for the original 
asynchronous operation and used by the client to request 
the cancellation.
5-60 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

Callback

Callback is an interface to be implemented by the client for the server to transmit 
responses to the asynchronous read operations from the client.

on_read_attributes_complete ()

on_read_attributes_complete () is a method the server will use to transmit responses to 
async_read_attribute () calls.

The corresponding OPC method is 
IOPCHDA_DataCallback::OnReadAttributesComplete().

5.6.4 HDAISAnnotationIO

5.6.4.1 HDAISAnnotationIO Overview

The DAIS::HDA::ItemAnnotationIO::Home interface has methods for transfer of 
Annotations time series data and is implemented as a singleton object.

The interfaces use handles for identification of Items and require that the interface 
DAIS::HDA::Connection has been used to establish associations between server and 
client handles.

5.6.4.2 HDAISAnnotationIO IDL

//File: HDAISAnnotation.idl
#ifndef _HDAIS_ANNOTATION_IDL
#define _HDAIS_ANNOTATION_IDL
#include <HDAISCommon.idl>
#pragma prefix "omg.org"

module DAIS {
module HDA {
module AnnotationIO {

Parameter Description

transaction_id The client assigned handle for the read operation returned by 
the server.

time_series TimeSeries for the found ItemAttributeValues.

item_errors A sequence reporting the items that were not read due to an 
error. Reported errors are:
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-61



5

typedef unsigned short AnnotCapabilities;
const AnnotCapabilities OPCHDA_READANNOTATIONCAP = 0x0001;
const AnnotCapabilities OPCHDA_INSERTANNOTATIONCAP = 0x0002;

struct Description {
DateTime time_stamp;
DateTime entry_time;
string text;
DAFDescriptions::Blob a_blob;
string user_name;};

struct TimeSerie {
ClientItemHandle client_handle;
sequence<Description> annotations;};

typedef sequence<TimeSerie> TimeSeries;

struct Update {
ServerItemHandle server_handle;
sequence<Description> annotations;};

interface Sync
{

TimeSeries sync_read (
in TimeInterval interval,
in ServerItemHandles server_handles,
out ItemErrors item_errors);

ItemErrors sync_insert (
in Update annotation_update);

};

interface Async
{

CancelID async_read (
in TransactionID transaction_id,
in TimeInterval interval,
in ServerItemHandles server_handles);

CancelID async_insert (
in TransactionID transaction_id,
in Update annotation_update);

void cancel (
in CancelID cancel_id);

};

interface Home : Sync, Async
{

readonly attribute AnnotCapabilitiescapabilities;
};

interface Callback
{

5-62 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

void on_read_annotation_complete (
in TransactionID transaction_id,
in TimeSeries time_series,
in ItemErrors item_errors);

void on_insert_annotation_complete (
in TransactionID transaction_id,
in ClientItemHandles client_handles,
in ItemErrors item_errors);

};
};};};
#endif // _HDAIS_ANNOTATION_IDL

AnnotCapabilities

AnnotCapabilities is a flag word that describes the annotation capabilities the server 
supports.

Description

Description is a struct that describes an Annotation. 

TimeSerie

TimeSerie is a struct that describes a sequence of Annotations for a particular Item. 

Flag Description

OPCHDA_READANNOTATIONCAP The server support read of Annotations.

OPCHDA_INSERTANNOTATIONCAP The server support insertion of Annotations.

Member Description

time_stamp The time_stamp for the annotated ItemValue.

entry_time The time when the Annotation was entered.

text The annotation text.

a_blob A blob that may contain any kind of data (e.g., a picture, a 
movie, a sound clip, etc.).

user_name The name of the person that entered the Annotation.

Member Description

client_handle The client side handle that identifies the Item.

annotations A sequence of Annotation descriptions.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-63



5

Update

Update is a struct that describes Annotation updates that shall be made for ItemValues at 
a particular Item.

Sync

Sync is an interface for synchronous read or update operations.

sync_read ()

sync_read is a method for synchronous read of Annotations.

The corresponding OPC method is IOPCHDA_SyncAnnotations::Read().

sync_insert ()

sync_insert is a method for synchronous insert of Annotations. If an Annotation already 
exists, it is replaced. 

The corresponding OPC method is IOPCHDA_SyncAnnotations:: Insert().

Member Description

server_handle The server handle that identifies the Item.

annotations A sequence of Annotation descriptions to be used in 
the update.

Parameter Description

interval interval specifies the time interval for which to read 
Annotations.

server_handles The server handles that identify the Items.

item_errors A sequence reporting the items that were not read due to 
an error. Reported errors are:
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

return TimeSeries for the found Annotations are returned.

Parameter Description

annotation_update The descriptions of the Annotations to be inserted.
5-64 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

Note – WARNING_NO_DATA means that ItemValues to be annotated were not found 
(i.e., ItemValues corresponding to Description::time_stamps was not found). Other 
ItemValues for the Item may still have been annotated.

Async

Async is an interface for asynchronous read or update operations.

async_read ()

async_read () is a method for asynchronous read of Annotations.

The corresponding OPC method is IOPCHDA_AsyncAnnotations::Read().

async_insert ()

async_insert is a method for asynchronous insert of Annotations. If an Annotation 
already exists, it is replaced.

The corresponding OPC method is IOPCHDA_AsyncAnnotations::Insert().

cancel ()

cancel() is a method to cancel ongoing asynchronous read or insert operations.

return A sequence reporting the items that were not read due to 
an error. Reported errors are:
-- WARNING_NO_DATA, see note below
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

Parameter Description

transaction_id A client assigned handle for the read operation.

interval interval specifies the time interval for which to read 
Annotations.

server_handles The server handles that identify the Items.

return A server assigned cancellation handle.

Parameter Description

transaction_id A client assigned handle for the read operation.

annotation_update The descriptions of the Annotations to be inserted.

return A server assigned cancellation handle.
February 2003 HDAIS Final Adopted Specification: Data Access (IO) Interfaces  5-65



5

The corresponding OPC method is IOPCHDA_AsyncAnnotations::Cancel().

Home

Home is a singleton object for access of Annotations.

capabilities

capabilities is an attribute that tells the client what annotation capabilities the server 
supports.

The OPC methods that correspond to the flag word are 
IOPCHDA_SyncAnnotations::QueryCapabilities () and IOPCHDA_ 
AsyncAnnotations::QueryCapabilities().

Callback

Callback is an interface to be implemented by the client for the server to transmit 
responses to the asynchronous read or insert operations from the client.

on_read_annotation_complete ()

on_read_annotation_complete() is a method the server will use to transmit responses to 
async_read() calls.

The corresponding OPC method is IOPCHDA_DataCallback::OnReadAnnotations().

on_insert_annotation_complete ()

on_insert_annotation_complete() is a method the server will use to transmit responses to 
async_insert() calls.

Parameter Description

cancel_id The cancellation number from the server for the original 
asynchronous operation and used by the client to request 
the cancellation.

Parameter Description

transaction_id The client assigned handle for the read operation returned by 
the server.

time_series TimeSeries for the found Annotations.

item_errors A sequence reporting the items that were not read due to an 
error. Reported errors are:
-- WARNING_NO_DATA (in the interval)
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.
5-66 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



5

The corresponding OPC method is IOPCHDA_DataCallback::OnInsertAnnotations().

Note – WARNING_NO_DATA means that ItemValues to be annotated were not found 
(i.e., ItemValues corresponding to Description::time_stamps was not found). Other 
ItemValues for the Item may still have been annotated.

5.7 Basic Sequencing

The basic sequencing is shown in Figure 5-4.

Figure 5-4 Basic Sequencing

Parameter Description

transaction_id The client assigned handle for the read operation returned by 
the server.

client_handles The client side handles for the Items that have been 
successfully updated with Annotations.

item_errors A sequence reporting the items that were not updated due to 
an error. Reported errors are:
-- WARNING_NO_DATA, see note below
-- ERROR_BAD_RIGHTS
-- ERROR_INVALID_DAIS_HANDLE
-- ERROR_INTERNAL_SERVER
For the error codes refer to the DAISCommon IDL [2] and 
Section 5.2, “HDAIS Common IDL,” on page 5-3.

Server

Client &
Callback objects

Browse 
objects

Browse

Save browse data

Recall saved  browse data

Create handle association

Session 
object

Do access (record, retrieve, subscribe or play back)

Response to asynchronous calls, subscription or play back

Data access 
objects

Remove handle association
February 2003 HDAIS Final Adopted Specification: Basic Sequencing  5-67



5

Before a client accesses data it must know what Items exist in the server. This knowledge 
can be acquired by using the browse interfaces (Node::Home, Item::Home etc) or in 
some other way. Based on the Items configured in the server the client usually saves a 
collection of Item descriptions for later use in an access. Item collections may be related 
to a trend displays, report displays, scheduling programs, etc.

At some point in time a client recalls the Item descriptions and uses the Connection 
interface at the Session object to establish associations between server and client handles.

When associations are successfully created the client uses the server handles in the data 
access interfaces (e.g., ValueIO::SyncRead, ValueIO::AsyncRead, ValueIO::Playback). 

For asynchronous subscription and playback calls the server returns data to the client on 
the callback interfaces using the client handles as Item identifications.
5-68 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



 References A
A.1 List of References

1. OMG HDAIS RFP utility/2002-01-03

2. OMG Data Acquisition from Industrial Systems specification (DAIS) from the 
DAIS FTF utility/02-05-04.

3. OMG Utility Management Systems Data Access Facility (DAF) formal/01-06-01 
and the DAIS FTF revision utility/02-05-03

4. OPC Overview; www.opcfoundation.org.

5. OPC Data access version 2.05; www.opcfoundation.org.

6. OPC Alarm and events 1.03; www.opcfoundation.org.

7. OPC Access to Historical data 1.1; www.opcfoundation.org.

8. Guidelines for Control Center APIs; EPRI TR-106324

9. Energy management system APIs; IEC draft IEC 61970-301.

10. Structuring principles and reference designations; IEC standard IEC 61346-1.
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification A-1



A

A-2 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



 OMG IDL B
The complete IDL can be found in the zip archive mantis/2002-10-04. The following 
URL should be used to access this file:

http://www.omg.org/cgi-bin/doc?mantis/02-10-04

As the HDAIS IDL has dependencies both to the DAF and the DAIS IDLs a flat file 
structure would is unstructured and difficult to navigate. Hence the IDL files have been 
sorted in a directory structure with a common root for common IDL as DAFIdentifiers 
IDL and DAFDescriptions IDL. The next level contains DAF and DAIS specific IDLs. 
DAIS further divided in HDA for HDAIS and DAAE for DAIS DA and A&E. This 
structure has been included in the zip archive. To simplify compilation of the IDL 
HDA.bat is included for convenience.
February 2003 Historical Data Access from Industrial Systems Final Adopted Specification B-3



B

B-4 Historical Data Access from Industrial Systems Final Adopted Specification February 2003



 Glossary
DAF - The Utility Management System Data Access Facility.

DAF Client - A program or software entity that uses the DAF interfaces to obtain 
information. Abbreviated to client in most of this specification.

Data Provider - An implementation of the DAF.  That is, a program or software entity 
that supplies information via the DAF interfaces. Also referred to as a DAF server or just 
a server.

DMS - A Distribution Management System.  This is a UMS for operating an electric 
power sub-transmission and distribution system.

EMS - An Energy Management System.  This is a UMS for operating an electric power 
main transmission and/or production system.

EPRI - Electric Power Research Institute.  A power industry body that is engaged in an 
effort to define APIs and data models for EMS systems and applications.

EPRI CIM - The EPRI Common Information Model. A data model defined in UML that 
can be used to describe power systems and related concepts. 

OPC - OLE for Process Control.

PLC - Programmed Logic Controller, a device that controls an item or items of 
equipment.  A PLC may transmit data it gathers to a UMS and receive control commands 
from the UMS.  In this case it fills a role similar to an RTU.

Power System - The integrated facilities and resources that produce, transmit and/or 
distribute electric energy. 

RDF - Resource Description Framework. A model of data that has been defined by a 
W3C recommendation and is used in conjunction with XML notation.
February 2003 Historical Data Acquisition from Industrial Systems Final Adopted Specification Glossary-1



RTU - Remote Terminal Unit, a device located at a (usually) remote site that connects 
equipment with a central UMS.  An RTU gathers data from equipment, and transmits that 
data back to the UMS.  It also receives commands from the UMS and controls the 
equipment.

SCADA - Supervisory Control and Data Acquisition, a system that gives operators 
oversight and control of geographically dispersed facilities.

UML - Unified Modeling Language. The OMG standard modeling language, which has 
been used to define the EPRI Common Information Model.

UMS - Utility Management System, a control system that incorporates simulation and 
analysis applications used by a water, gas or electric power utility for operations or 
operational decision support.

WQEMS - A Water Quality and Energy Management System.  This is a UMS for 
operating water supply and/or waste water systems.

XML - Extensible Markup Language. A generic syntax defined by a W3C 
recommendation that can be used to represent UMS data and schema, among other 
things.
Glossary-2 Historical Data Acquisition from Industrial Systems Final Adopted Specification February 2003


	1.  Overview
	1.1 Introduction
	1.2 Problems Being Addressed
	1.2.1 Data Semantics
	1.2.2 Data Access
	1.2.3 Concurrency Control

	1.3 Problems Not Being Addressed
	1.4 Design Rationale
	1.4.1 Adherence to OPC
	1.4.2 Adherence to OMG Data Acquisition from Industrial Systems (DAIS)
	1.4.3 Simplicity and Uniformity
	1.4.4 High Performance Implementations


	2.  Relations to Other Standards
	2.1 Overview
	2.2 DAIS
	2.3 OLE for Process Control (OPC)
	2.4 Data Access Facility (DAF)
	2.5 IEC 61346-1, Structuring and Naming
	2.6 IEC 61970

	3.  HDAIS Informational Model
	3.1 Overview

	4.  Common Declarations
	4.1 Character Encoding
	4.2 DAFIdentifiers IDL
	4.3 DAFDescriptions IDL
	4.4 DAISCommon IDL
	4.5 Iterator Methods
	4.6 DAISNode IDL
	4.7 DAISType IDL
	4.8 DAISProperty IDL
	4.9 DAISSession IDL
	4.10 DAISServer IDL

	5.  HDAIS API
	5.1 Overview
	5.2 HDAIS Common IDL
	5.3 Server and Client Objects
	5.3.1 HDAISServer
	5.3.2 HDAISSession
	5.3.3 HDAISClient

	5.4 Connection Interfaces
	5.4.1 HDAISConnection Overview
	5.4.2 HDAISConnection IDL

	5.5 Browse Interfaces
	5.5.1 Mapping to OPC HDA
	5.5.2 HDAISBrowse
	5.5.3 HDAISNode
	5.5.4 HDAISItem
	5.5.5 HDAISItemAttribute
	5.5.6 HDAISAggregate

	5.6 Data Access (IO) Interfaces
	5.6.1 HDAISValueIO
	5.6.2 HDAISModifiedValueIO
	5.6.3 HDAISItemAttributeIO
	5.6.4 HDAISAnnotationIO

	5.7 Basic Sequencing

	A.  References
	B.  OMG IDL
	Glossary

