
Human-UsableTextualNotation
(HUTN)Specification

This OMG document replaces the draft adopted specification (ptc/02-10-08). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed toissues@omg.org by January 15, 2003.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on April 15, 2003.

OMG Adopted Specification

Human-UsableTextualNotation
(HUTN)Specification

December 2002
Final Adopted Specification

ptc/02-12-01

AnAdoptedSpecificationof theObjectManagementGroup, Inc.

ditions

t notice.

free,
of the
infringed
 forth

fully-

tion, and
yright

in any
e to this

ntrol.

y
h a
 of
sers are

lations
f this
r
ission
Copyright © 2002, Data Access Technologies
Copyright © 2002, DSTC Pty Ltd
Copyright © 2002, France Telecom
Copyright © 2002, IBM
Copyright © 2002, IONA Technologies
Copyright © 2002, Open-IT
Copyright © 2002, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, con
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change withou

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
the copyright in the included material of any such copyright holder by reason of having used the specification set
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specifica
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the cop
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are mad
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or co

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whic
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective u
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regu
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part o
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, o
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without perm
of the copyright owner.

his

) (ii) of
and (2)
.R. 227-
uisition
y be

®
ORBA

™,
G
mes

puter
aterials.

if and

e
 the
sing this
es the
DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. T
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acq
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and ma
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, C
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OM
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company na
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of com
software to use certification marks, trademarks or other special designations to indicate compliance with these m

Software developed under the terms of this license may claim compliance or conformance with this specification
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that th
software was based on this specification, but may not claim compliance or conformance with this specification. In
event that testing suites are implemented or approved by Object Management Group, Inc., software developed u
specification may claim compliance or conformance with the specification only if the software satisfactorily complet
testing suites.

 readers
sted on
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form li
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Overview 1-1
Introduction 1-1
Changes to Existing OMG Specifications 1-1
Proof of Concept 1-1
Overall Design Rationale 2-1
Overall Approach 2-1
Usability Criteria 2-2
Syntax and Aesthetics 2-3
Use of symbols and punctuation 2-3
Use of reserved words 2-4
User expectations 2-4
Other considerations 2-5
The Meta-Object Facility (MOF) 2-5
XML-based Model Interchange (XMI) 2-6
Example MOF Model 2-7
Example XMI 2-7
Equivalent HUTN 2-10
Summary 2-12
Generic 2-12
Fully Automated 2-12
Human Usable 2-13
Conformance 3-1
Overview 3-1
Input Stream Conformance 3-1
Output Stream Conformance 3-1
HutnConfig HUTN Language Configuration Conformance 3-2
ECA HUTN Language Configuration Conformance 3-2
HUTN Design Rationale 4-1
Overview 4-1
The Base Language 4-1
Use of familiar forms 4-1
Structure reflects containment 4-1
Defining and referencing major concepts 4-2
Representing minor concepts 4-2
Model-Specific Shorthands 4-3
Identifying class instances (objects) 4-3
Keywords and Adjectives 4-4
Omission of Class Type of an Object Reference 4-6
Omission of Reference Name for a Contained Object 4-6
Default Values 4-6
Parametric Form 4-7
Renaming of Model Elements for HUTN languages 4-7
Configuration 5-1

HutnConfig Metamodel 5-1
ClassConfig 5-2
«enumeration» UniquenessScope 5-2
«datatype» ClassRef 5-2
«datatype» AttributeRef 5-3
«datatype» ModelElementRef 5-3
IdentifierConfig 5-3
EnumAdjectiveConfig 5-3
DefaultValueConfig 5-4
ParametricConfig 5-4
RenameConfig 5-4
HUTN Document Production 6-1
Notation 6-2
Package Representations 6-2
Class Representations 6-3
Attribute Representations 6-6
Reference Representations 6-8
Classifier-Level Attributes 6-10
Data Value Representations 6-10
Numeric types 6-10
Boolean 6-11
Textual types 6-11
Enum 6-11
Object Reference 6-11
TypeCode 6-11
Any 6-12
Struct 6-12
Union 6-12
Sequence, Array 6-12
Collections (Set, Bag, List, UList) 6-12
Association Representations 6-13
Lexical issues 6-14
Comments 6-15
Identifiers 6-15
Reserved Words 6-15
White Space 6-15
Numeric literals 6-15
Character and string literals 6-16
Bracketed Pairs/Lists 6-16
Symbols 6-16
 Name Scope Optimization 6-17
Configuration Notation 7-1
HutnConfig Language Configuration 7-1

ECA Textual Notation 8-1
ECA Language Configuration 8-1
 References A-1

Preface
nical
iew

rted
and
nted

de a
,
ous
p a

d.

g

About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Tech
Standard. The collaboration between OMG and The Open Group ensures joint rev
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 600 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provi
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
More information is available athttp://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integratin
new technology across the enterprise.
December 2002 HUTN Final Adopted Specification v

n

ing

nd

of

tion
n of

Open

tial

he

s,
The mission of The Open Group is to drive the creation of boundaryless informatio
flow achieved by:

• Working with customers to capture, understand and address current and emerg
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus a
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certifica
programs and has extensive experience developing and facilitating industry adoptio
test suites used to validate conformance to an open standard or specification. The
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essen
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in t
development cycle, saving costs in development and quality assurance.

More information is available athttp://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specification
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
vi HUTN Final Adopted Specification December 2002

d,
dards
(The

at.

g
es or
Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF form
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programmin
statements from ordinary English. However, these conventions are not used in tabl
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear initalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Data Access Technologies

• DSTC

• France Telecom

• IBM

• IONA

• Open_IT
December 2002 HUTN Final Adopted Specification vii

the
• SINTEF

• Unisys

Note – The submitters wish to acknowledge the contributions of Jim Steel, Kerry
Raymond and Keith Duddy of DSTC and Mariano Belaunde of France Telecom in
preparation of this specification.
viii HUTN Final Adopted Specification December 2002

Overview 1
l-

e

n

ity

all

tion.

g

MI.
99]
1.1 Introduction

An HUTN standard represents an important element of the realization of the Mode
Driven Architecture (MDA). This HUTN specification offers three main benefits:

• Generic: It is a generic specification, that can provide a concrete HUTN languag
for any MOF model.

• Fully automated: The HUTN languages can be fully automated for both productio
and parsing.

• Human-Usable: The HUTN languages are designed to conform to human-usabil
criteria.

1.2 Changes to Existing OMG Specifications

The HUTN Language Configuration for the expression of ECA model instances sh
become part of the normative specification ptc/2002-02-05, currently entitled “UML
Profile for EDOC”. See Chapter 3, “Conformance”, Section 3.4, “HutnConfig HUTN
Language Configuration Conformance,” on page 3-2 for the accompanying
conformance statement, which shall become a conformance point of that specifica

1.3 Proof of Concept

DSTC Pty Ltd is currently engaged in a 7 year research program into Enterprise
Distributed Systems Technology with major projects devoted to enterprise modelin
and the mapping of such models into middleware technology. DSTC Pty Ltd has
extensive experience in the standardization, implementation and use of MOF and X
The DSTC has had a prototype implementation since 1999 based on XSLT [XSLT
and Antlr [Antlr] (earlier versions used [JavaCC]) that has been used internally in
December 2002 HUTN Final Adopted Specification 1-1

1

d

be

ed
or
of

nd

I

t is
to
s an
ck

nds,

d a

h as

er
e

developing prototypes for other DSTC RFP Responses, and for enterprise-oriente
research projects. The tool is also available for download and evaluation from
http://www.dstc.edu.au/Research/Projects/Pegamento/TokTok/index.html

The original design of the system is illustrated in Figure 1-1 with the components to
implemented as part of the HUTN system shaded

The MOF Model Repository is a repository for information models, which are creat
in a custom model definition language (called the Meta-Object Definition Language
MODL). DSTC’s MOF product is used for this purpose, since it has the advantage
being able to generate fully functional instance repositories from the model in the
Model repository. The XMI subsystem performs the role of generating programs (a
a DTD) for transferring data between the instance repository and XMI form.

Although the original design was quite symmetric and elegant, it was found to be
easier in practice to parse directly into the instance repository rather than into XM
format. However, the original design is technically feasible.

The system is divided into three basic components. The XSL generator componen
responsible for the creation of an XSLT style sheet for converting a stream of XMI in
the target human-usable language. The Grammar Generator component generate
ANTLR grammar and associated backend code for the parsing of the language ba
into a MOF-compliant repository. Finally, the so-called Configurator component is
responsible for parsing a file containing the language configurations for the shortha
and for communicating these preferences to the two generator components.

The Grammar Generator and the XSL Generator components are designed aroun
common generator architecture, which provides a simple mechanism for
communicating with the MOF. The architecture is enacted through the use of an
existing Java package included as part of the DSTC’s MOF system.

The HUTN modules were implemented in the Java programming language. Java
provides a number of features that make it a useful language for this purpose, suc
its mature object orientation and use of interfaces, and its ready connectivity with
CORBA. The CORBA product used for this implementation was Inprise’s “Visibrok
for Java” [Visibroker] product. This was chosen because it is the system used in th
dMOF product, and was thus less likely to induce compatibility problems.

MOF Model
Repository

Instance Repository
(generated)

XMI XMI

XSL
Generator
Module

Parser
Generator
ModuleModel

Figure 1-1 Original structure of the DSTC HUTN System
1-2 HUTN Final Adopted Specification December 2002

1

al
ly

-
.
al
France Telecom has developed since 1997 a MOF-based model repository tool
[Belaunde99] and has implemented since 1999 facilities to import and export textu
human usable specifications that use a Java-like syntax (the notation was original
named JMI) and a hierarchical identification system. The implementation uses a
generic parser that is connected at run-time to the API’s generated from the MOF
compliant metamodel definitions (No intermediate BNF parser generation is used)
France Telecom has provided feedback to the other submitters based on its origin
implementation.
December 2002 HUTN Draft Adopted Specification: Proof of Concept 1-3

1

1-4 HUTN Final Adopted Specification December 2002

OverallDesignRationale 2
is

and

to a

L)
2.1 Overall Approach

Taking the goals of the RFP and MDA into account, this specification provides a
generic solution, based on generating a textual language from a MOF model. This
the same approach taken by XMI, which generates a DTD or Schema from a MOF
model. This relationship between the MOF, XMI, and HUTN specifications can be
seen in Figure 2-1. While XMI represents a generic serialization format for models
metamodels, HUTN is intended to be easier for human users to read and write.

The benefits of generating a HUTN language from a MOF model are:

• consistency - each HUTN generated language is different, yet they all conform
single structure and style.

• automatable - not only can the HUTN language be generated, but also the
production and parsing of text strings to/from a MOF and to/from XMI can be
automated.

• completeness - anything that can be modeled in MOF (which includes all of UM
can have a HUTN language.
December 2002 HUTN Final Adopted Specification 2-1

2

UTN
2.2 Usability Criteria

The primary design goal of HUTN is human usability, and this is achieved through
consideration of the successes and failures of common programming languages. H
uses an abstract base syntax that is applied to all models, which is customized to
exploit specific properties of particular models.

Figure 2-1 Relationship between MOF, XMI, and HUTN

MOF Model Repository

ModelModel

“MOFlet”
Generated Repository
for Model Instances

XMI DTD
HUTN EBNF Grammar
Generated for ModelGenerated for Model

generated by
HUTN

generated
by XMI

generated
by MOF

XMI Document HUTN Document

Conforms
to DTD

Conforms
to EBNF

Can be
directly

transformed

Generated to/from
Model instances
2-2 HUTN Final Adopted Specification December 2002

2

ad to
d that

ing

r.

C
he
icult

e
. For
nt

d

nce
ly
h as

to
t

for
r the
f the
ign,
4.
ve

of
es
’s
As the first step in this user-centered design process, a number of assumptions h
be made about the target user audience of the generated languages. It was decide
this audience could be assumed to have some degree of familiarity with computer
languages generally, while not necessarily being proficient in the use of programm
languages. The syntax of a language can have a strong effect on the speed and
efficiency of its use for an expert user, but the syntax features associated with this
speed and efficiency often lead to a more difficult learning curve for the novice use
While it is not impossible to deal with both, a certain trade-off between these two
features is apparent in many common programming languages. For example, the
programming language features many syntactic elements that are convenient for t
experienced user, but the language is widely acknowledged as one of the more diff
to learn. By contrast, the Pascal language is a very popular language for teaching
programming, but is less popular for large-scale development, where it is more tim
consuming and less efficient than a language such as the C programming language
this application, it was decided that an efficient learning curve was a more importa
requirement of the languages, and that they would consequently be designed with
learnability as a primary goal, and expert-friendliness as a secondary goal.

2.2.1 Syntax and Aesthetics

There is a proliferation of opinions on the aesthetic virtues and downfalls of
programming languages, and of what features are important when designing a
language. However, while there is an abundance of papers on the design of a
language’s semantic operations, there are surprisingly few published works on
programming language usability as it pertains purely to syntax. It must also be
considered that there are essential differences between the syntactic structure an
features of a programming language and those that the HUTN languages might
contain. While a programming language is aimed at the modification and maintena
of a (usually abstract) body of information, the HUTN languages are required pure
for the display of information. For this reason, programming language features suc
control constructs have no real relevance to HUTN languages.

Two usability works on programming languages and their syntax were considered
assist in identifying principles upon which to design the HUTN languages. The firs
[McIver96] is a paper by McIver and Conway from Monash University, which
identifies and explore problems associated with languages used as first languages
the teaching of programming. The paper also discusses a number of directions fo
design of such a language. The other [RL77] is a paper by Richard and Ledgard o
University of Massachusetts, and discussed a number of principles for syntax des
with a view to designing a general purpose programming language called Utopia8
From these papers and from independent consideration, a number of principles ha
been assembled for the design of the HUTN language.

2.2.2 Use of symbols and punctuation

An important principle of human-usability is that a language should have sufficient
variety of symbols that the user should be able to easily navigate through a stream
data. A language that does not follow this principle is the LISP language which us
parentheses almost exclusively. This problem often comes about from a language
December 2002 HUTN Final Adopted Specification: Usability Criteria 2-3

2

ut
the
d

f a
nd
d

e

lead

to
e.

ions

er’s

s for
se
heer

tion.
a

tion
h

f

ped
,
se of
ere
se
t a
d-
devotion to a certain functional, logical, or object-oriented paradigm. As pointed o
by McIver and Conway, this can also lead to the problem of ‘syntactic homonyms’,
use of a single syntactic construct to represent two distinct semantics. Richard an
Ledgard also identify this as a problem, emphasizing that “distinct features should
have distinct forms.”

However, the reverse of this can also be a problem. A language that makes use o
large vocabulary can make a novice’s task of learning the language very difficult, a
often misleading. The Ada 9x languages, for example, have 68 reserved words an
over 50 predefined attributes. As explained by McIver and Conway, this problem is
often dealt with by teaching the learner only a small subset of the language’s
vocabulary. However, this can lead to confusion when the student is exposed to th
new features of the language, and can lead to the production of overly verbose or
obscure code if they neglect to use some language features. The problem can also
to the presence of ‘syntactic synonyms’, the availability of a number of syntactic
constructs for the presentation of a single construct. These synonyms only serve
further mislead the student and unnecessarily expand the vocabulary of a languag

Related to this problem is the excessive use of symbols for the denotation of funct
or, to a lesser degree, for the denotation of syntactic structure. This is evident in
languages such as C, particularly. While the resultant terse syntax can make the
language very efficient for expert users, it has a detrimental effect on the novice us
ability to learn the language.

2.2.3 Use of reserved words

Another language syndrome to be avoided is the overuse of natural language word
syntactic structuring. While not as significant a problem as terse syntax, the verbo
syntax that can result in a language that becomes harder to read by virtue of the s
bulk of information being presented. Also, symbols are more intuitive delimiters of
structure than words, since natural languages use symbols exclusively for punctua
This division between words for semantic functions and symbols for punctuation is
useful general rule, in part because of the ties with natural language, and in part
because of the roles that words and symbols play. Words are useful when their func
requires a degree of explanation, whereas structure delimitation requires little suc
explanation, so is better suited to a more brief representation.

2.2.4 User expectations

One of the programming language faults identified by McIver and Conway is that o
backward compatibility. They define backward compatibility in two forms: genetic
compatibility and mimetic compatibility. Genetic compatibility refers to syntactic
similarities in programming languages that result from one language being develo
as a successor to the first (such as C and C++). Mimetic compatibility, by contrast
refers to language features that are derived from de-facto standards, such as the u
square brackets for indexing into arrays. The authors suggest that both of these w
too often agents for the propagation of syntactic features that, while familiar to tho
with programming experience, conflicted with a novice’s preconceived ideas of wha
function might appear as. However, since the target audience of a HUTN generate
2-4 HUTN Final Adopted Specification December 2002

2

ing

em
of

s can
ation
e
.

ts,
de.

of
del
y
ic

he
ort-

with
m

at

ontain

ese
ited

pes
both
language is assumed to have some familiarity with programming conventions, the
situation is reversed. These syntactic familiarities can serve the purpose of provid
the new user with a head start in learning the language.

The final usability consideration taken from the two papers was avoiding the probl
of violating the user’s expectations. This often comes about through poor selection
function names and appearances. In some situations, the orthogonality of concept
mean that misleading code can arise through the obscure and complicated combin
of simple features. However, the names used in a HUTN-generated language com
from the underlying model, which presumably conforms to the user’s expectations

2.2.5 Other considerations

Indentation plays an important part in improving the readability of textual documen
and particularly in enhancing the navigability of programming language source co
This is also the case in the HUTN languages, and an indentation policy should be
incorporated into the producer of HUTN text.

It is quite probable that the users of the HUTN languages will be involved in the use
a number of HUTN languages, either through the evolution of a single domain mo
or through the use of a number of models. This implies a need for some uniformit
between the HUTN languages. This is achieved through the use of a common bas
structure for the languages, the design of which is described in Section 4.1,
“Overview,” on page 4-1.

One of the major decisions made to enhance the usability of the HUTN-generated
languages was to allow the use of alternative forms (or short-hands). These
configurations would involve simple syntactic extensions without changing either t
larger syntactic structure or the semantics of the language. The details of these sh
hands are described in Section 4.2, “The Base Language,” on page 4-1.

2.3 The Meta-Object Facility (MOF)

OMG’s Meta-Object Facility (MOF, formal/00-04-03) specifies a small but complete
set of modeling concepts that can be used to express information models. In line
the OMG’s commitment to CORBA, the MOF standard also provides a mapping fro
these modeling concepts to CORBA IDL to support a repository of instances of th
model. Although not part of the MOF standard, some MOF tools (such as DSTC’s
dMOF product) also generate the code for the model-instance repository.

There are a number of essential concepts used in MOF modeling. APackageis used to
encapsulate a collection of related Classes and Associations. Packages can also c
simple type definitions, equivalent to those available in CORBA IDL.Classesexist in
the commonly-used sense of the word, describing an object and its properties. Th
properties are represented through Attributes and References, which can be inher
using a multiple-inheritance system based on that of CORBA IDL.Attributeshave a
name and a type, selected from the CORBA type system1. This includes a range of
types from basic types such as integers, strings and booleans, to more complex ty
such as enumerations, and through to structured types. In addition, attributes have
upper and lower limits on the number of times that they can appear within a class
December 2002 HUTN Final Adopted Specification: The Meta-Object Facility (MOF) 2-5

2

o

s

of
le
].

ty
ge
of
value

e

may
n be
ath

a

n is
ins

ata,
ithin
er as
instance. AnAssociationis used to represent a relationship between instances of tw
classes, each of which plays arole within the association. Associations can have the
additional property ofcontainment; an association represents acontainment
relationshipif one of the participant classes does not exist outside the scope of the
other. A Class participating in an association can also contain aReferenceto the
association. A reference appears much like an attribute, but reflects the set of clas
instances that participate in the Association with the containing class instance.

2.4 XML-based Model Interchange (XMI)

The XML-based Model Interchange (XMI) Format standard [XMI98] defines a set
mappings from the MOF modeling concepts to a representation in XML (eXtensib
Markup Language), a standard of the World Wide Web Consortium (W3C) [XML98

XML was chosen for its growing popularity for data expression, and for the flexibili
provided by its type definition system. The XML is essentially a tree-based langua
consisting of a series of nested “elements,” each of which is represented by a set
matching start and end tags. These elements may also include a number of name-
pairs called attributes, which appear within the opening tag of the element. The
flexibility of the language lies in the ability to associate an XML document with a
Document Type Definition (DTD). This DTD allows for the placement of further
specific restrictions on the contents of an element. These include restrictions on th
type of data (for example, numbers, strings with/without white space) allowable
between two tags. The element can also be restricted in terms of the attributes that
appear within the element, and on the types of their value. Further, a restriction ca
placed on the different elements (and the number of each) that are allowable bene
an element on the document tree.

The XMI specification provides two main components: a set of rules for producing
DTD from a model, and a set of rules for the transfer of data between XMI and a
MOF-compliant repository. Each instance of a MOF Package, Class, or Associatio
represented by an XML element. In addition, every instance of a MOF Class conta
an XMI identifier in the form of an attribute labelled “xmi.id” on the instance’s XML
element. When a class instance appears by reference (rather in the form of a full
declaration), it is referenced by an “xmi.idref” attribute in the XML element. MOF
Attributes whose types are simple types are represented as elements containing d
except for enumerations and booleans, whose values are enclosed in attributes, w
self-closing tags. Attributes whose values are class instances are represented eith
class instance declarations or as references to class instances using the scheme
mentioned above.

1. The type system for MOF Attributes is currently the subject of revision within the MOF
RTF and may change during the lifetime of this RFP.
2-6 HUTN Final Adopted Specification December 2002

2

he

ts
ily
2.5 Example MOF Model

To illustrate the MOF, XMI, HUTN relationship with a concrete example, consider t
MOF model in Figure 2-2 describing a family. Section 2.6 gives an example of an
XMI stream for that model, describing a number of families. Section 2.7 represen
the same information in the HUTN-generated language for this model. As can eas
be seen, the HUTN is much more human-readable than the XMI.

Figure 2-2 MOF model for a family

2.6 Example XMI

The following XML stream represents an instance of the model in Section 2.5.

<?xml version = "1.0"?>
<XMI>
 <XMI.header>
 <XMI.model xmi.name = ‘familyPackage’ xmi.version = ‘1.1’/>
 </XMI.header>
 <XMI.content>
 <FamilyPackage xmi.id=’xmi-id-001’>
 <FamilyPackage.Family xmi.id=‘xmi-id-002’>
 <FamilyPackage.Family.familyName>
 The McDonalds
 </FamilyPackage.Family.familyName>
 <FamilyPackage.Family.address>
December 2002 HUTN Final Adopted Specification: Example MOF Model 2-7

2

 7 Main Street
 </FamilyPackage.Family.address>
 <FamilyPackage.Family.nuclear xmi.value=’false’/>
 <FamilyPackage.Family.migrants xmi.value=’true’/>
 <FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family xmi.idref=’xmi-id-003’/>
 </FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family.petFish>
 <FamilyPackage.Fish>
 <FamilyPackage.Fish.name>
 Wanda
 </FamilyPackage.Fish.name>
 <FamilyPackage.Fish.sex xmi.value=’female’/>
 </FamilyPackage.Fish>
 </Familypackage.Family.petfish>
 <FamilyPackage.Family.petDog>
 <FamilyPackage.Family.Dog xmi.idref=’xmi-id-007’/>
 </FamilyPackage.Family.petDog>
 </FamilyPackage.Family>
 <FamilyPackage.Family xmi.id=‘xmi-id-003’>
 <FamilyPackage.Family.nuclear xmi.value=’true’/>
 <FamilyPackage.Family.migrants xmi.value=‘false’/>
 <FamilyPackage.Family.address>
 5 Main Street, Brisbane
 </FamilyPackage.Family.address>
 <FamilyPackage.Family.familyName>
 The Smiths
 </FamilyPackage.Family.familyName>
 <FamilyPackage.Family.naturalChild>
 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Joan Smith
 </FamilyPackage.Person.name>
 <FamilyPackage.Person.age>
 20
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’female’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.naturalChild>
 <FamilyPackage.Family.naturalChild>
 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Harry Smith
 </FamilyPackage.Person.name>
 <FamilyPackage.Person.age>
 17
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.naturalChild>
 <FamilyPackage.Family.adoptedChild>
2-8 HUTN Final Adopted Specification December 2002

2

 <FamilyPackage.Person>
 <FamilyPackage.Person.name>
 Dylan Smith
 </FamilyPackage.Person.name>
 <FamilyPackage.Person.age>
 12
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 </FamilyPackage.Person>
 </FamilyPackage.Family.adoptedChild>
 <FamilyPackage.Family.familyFriends>
 <FamilyPackage.Family xmi.idref=’xmi-id-002’/>
 </FamilyPackage.Family.familyFriends>
 </FamilyPackage.Family>
 <FamilyPackage.Person xmi.id=‘xmi-id-004’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 7
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Namdou Ndiaye
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Person xmi.id=‘xmi-id-005’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 6
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Sharif Mbangwa
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Person xmi.id=’xmi-id-006’>
 <FamilyPackage.Person.sex xmi.value=’male’/>
 <FamilyPackage.Person.age>
 3
 </FamilyPackage.Person.age>
 <FamilyPackage.Person.name>
 Miguel Aranjuez
 </FamilyPackage.Person.name>
 </FamilyPackage.Person>
 <FamilyPackage.Dog xmi.id=‘xmi-id-007’>
 <FamilyPackage.Dog.sex xmi.value=’male’/>
 <FamilyPackage.Dog.age>
 2
 </FamilyPackage.Dog.age>
 <FamilyPackage.Dog.name>
 Spike
 </FamilyPackage.Dog.name>
 <FamilyPackage.Dog.breed>
 Irish Wolfhound
December 2002 HUTN Final Adopted Specification: Example XMI 2-9

2

nd,
 </FamilyPackage.Dog.breed>
 </FamilyPackage.Dog>
 <FamilyPackage.Sponsorship>
 <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-004’/>
 <FamilyPackage.Family xmi.idref=‘xmi-id-003’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-005’/>
 <FamilyPackage.Family xmi.idref=‘xmi-id-002’/>
 <FamilyPackage.Person xmi.idref=‘xmi-id-006’/>
 </FamilyPackage.Sponsorship>
 <FamilyPackage.CarOwnership>
 <FamilyPackage.Family xmi.idref=’xmi-id-002’/>
 <FamilyPackage.Car>
 <FamilyPackage.Car.Registration>
 755-BDL
 </FamilyPackage.Car.Registration>
 <FamilyPackage.Car.State>
 QLD
 </FamilyPackage.Car.State>
 <FamilyPackage.Car.Make>
 Mitsubishi Magna
 </FamilyPackage.Car.Make>
 <FamilyPackage.Car.Year>
 1992
 </FamilyPackage.Car.Year>
 </FamilyPackage.Car>
 </FamilyPackage.CarOwnership>
 </FamilyPackage>
 </XMI.content>
</XMI>

Figure 2-3 An example XMI stream for two families

As Figure 2-3 clearly demonstrates, the XMI/XML format is one that is neither
succinct, nor easily readable or writable. Although the XMI standard is still under
revision, the basic structure of the language and its ties with XML will not change a
as such, these human usability problems are likely to remain.

2.7 Equivalent HUTN

The following text is the HUTN-generated equivalent representation of the same
example as in Section 2.6.

FamilyPackage id-001 {

Family “The McDonalds” {
address: “7 Main Street”
migrants
familyFriends: “The Smiths”
petFish: female Fish “Wanda”;
2-10 HUTN Final Adopted Specification December 2002

2

petDog: “Spike”
CarOwnership: “755-BDL” {

state: QLD
make: “Mitsubishi Magna”
year: 1992

}
}

nuclear Family “The Smiths” {
address: “5 Main Street”
naturalChild: female Person “Joan Smith” {

age: 20
}
naturalChild: male Person “Harry Smith” {

age: 17
}
adoptedChild: male Person “Dylan Smith” {

age: 12
}
familyFriends: “The McDonalds”

}

male Person “Namdou Ndiaye” {
age: 6

}

male Person “Sharif Mbangwa” {
age: 3

}

male Person “Miguel Aranjuez” {
age: 2

}

male Dog “Spike” {
age: 2
breed: “Irish Wolfhound”

}

sponsorship {
“The Smiths” “Namdou Ndiaye”
“The Smiths” “Sharif Mbangwa”
“The McDonalds” “Miguel Aranjuez”

}
}

Figure 2-4 The same example in the HUTN-generated language
December 2002 HUTN Final Adopted Specification: Equivalent HUTN 2-11

2

nt

ility

tem’s
on

larly
hat

be

at a

epts
tax

ws
In
n
uage,
will

uces
2.8 Summary

The stark contrast between the example XMI/XML in Section 2.6 and the equivale
HUTN in Section 2.7 shows that a language generation facility designed with
sufficient consideration of usability can make significant advances in providing a
human-usable mechanism for the interchange of data with repositories. This usab
comes about not by coincidence, but through the adoption of a user-centric design
approach, considering the needs of the user before the technical agenda of the sys
development. The alignment of the generated language’s style with those of comm
programming languages provides the user with a familiar frame of reference for
learning the language. Also, careful consideration of the problems associated with
existing programming languages’ styles leads to a syntax that will be able to avoid
these problems.

There are three properties that make the generation of HUTN languages a particu
useful. The first is that it is generic, in that it can provide a language for any model t
can be specified using the MOF techniques. Secondly, the HUTN specification can
fully automated, particularly useful for systems whose information models are
undergoing rapid change. Thirdly, the family of HUTN languages were designed to
conform to human-usability criteria.

2.8.1 Generic

The language mappings as described in Chapter 6 provide a set of syntactic rules
providing complete coverage for all of the MOF modeling concepts. This means th
language can be rapidly created for any model specified using these concepts. In
addition, since the MOF modeling concepts have been designed as a basic set of
common concepts, there will almost always be a simple mapping from these conc
to alternative modeling techniques. Therefore it should be possible to use the syn
described to develop a similar system for other modeling and repository tools.

Since the HUTN mappings are based on transformations to (and potentially from)
MOF, it can also be used to translate to/from XMI.

2.8.2 Fully Automated

The second benefit of the generation of the HUTN languages is that it can be fully
automated (see Section 1.3, “Proof of Concept,” on page 1-1 for a description of
DSTC’s prototype). The task involved in the manual implementation of a parser allo
for more flexibility in language design, but requires a good deal of time and effort.
addition to this, a manually constructed parser is open to problems with informatio
models that are subject to change. Automation means that changes made to a lang
be they as a result of a change in the underlying model or a change in the syntax,
be implemented uniformly and quickly across the entire system. In this way,
automation avoids problems of consistency in changing languages, and greatly red
the time involved in the evolution of an information model/repository suite.
2-12 HUTN Final Adopted Specification December 2002

2

l

2.8.3 Human Usable

The other major benefit provided by the HUTN languages is the human-usability.
While the essential style of the language is fixed and hence familiar, the individua
generated languages are specific to each model and incorporate model-specific
shorthands.
December 2002 HUTN Final Adopted Specification: Summary 2-13

2

2-14 HUTN Final Adopted Specification December 2002

Conformance 3
o

r

er
ion.

F
N

nt
ined
3.1 Overview

There are three conformance points for Chapter 4, “HUTN Design Rationale” up t
and including Chapter 7, “Configuration Notation” that apply to HUTN tool
implementations:

1. Input text stream conformance (defined in section 3.2).

2. Output text stream conformance (defined in section 3.3).

3. HUTN Configuration Documents (defined in section 3.4).

In addition, there are further compliance points that will relate to the UML Profile fo
EDOC, as amended by Chapter 8 (defined in section 3.5).

3.2 Input Stream Conformance

For all given combinations of MOF models and HUTN Configurations, a HUTN pars
must be able to recognize any legal HUTN document, as defined in this specificat

Note – This implies that a conformant HUTN parser for a given combination of MO
model and HUTN Configuration must recognize the input from all conformant HUT
document generators for the some model/configuration pair.

3.3 Output Stream Conformance

For a given combination of MOF model and HUTN Configuration, a HUTN docume
generator must be able to output at least one legal form of HUTN document, as def
in this specification.
December 2002 HUTN Final Adopted Specification 3-1

3

r
n

n
It
and

ter
TN
Note – The capacity to generate all alternative forms and the internal heuristics o
external instructions or influences used to determine the choice between them is a
area for product differentiation.

3.4 HutnConfig HUTN Language Configuration Conformance

The HUTN language configuration for the org.omg.HutnConfig MOF model given i
Chapter 7 is normative for input to HUTN tools which parse HUTN Configurations.
is also the standard representation for “@Config” comments in HUTN documents,
shall be acceptable to tools which parse these comments.

3.5 ECA HUTN Language Configuration Conformance

The HUTN language configuration for the org.omg.ECA MOF model given in Chap
8 is normative for HUTN tools which parse ECA model instances expressed as HU
documents, or output model instances as HUTN documents.
3-2 HUTN Final Adopted Specification December 2002

HUTNDesignRationale 4
is

awn

t
er
ta.
as
of a
a

]

and
4.1 Overview

The generation of HUTN languages starts with an abstract base language, which
then customized by the use of model-specific information.

4.2 The Base Language

4.2.1 Use of familiar forms

Using the structural and syntactic features of existing languages is a good way to
enhance the learnability of the HUTN languages, and to ensure that the user’s
expectations are not violated. To this end, HUTN languages use syntactic forms dr
from CORBA IDL and structural forms taken from XMI (XML), as HUTN users are
believed to be familiar with these.

4.2.2 Structure reflects containment

Languages, on the whole, represent information in a fairly similar way. A documen
invariably consists of a set of concepts, each of which consists of a number of oth
concepts, and so on until the concepts are nothing but simple pieces of atomic da
This can be seen in both procedural and object-oriented programming languages,
well as in natural English. For example, an English essay could be said to consist
series of paragraphs, each of which contains a series of sentences, which contain
series of words. A piece of source code for the Java programming language [Java
could consist of a series of import statements, package statements, and class
definitions, which contain variables and methods, which contain sets of parameters
statements.
December 2002 HUTN Final Adopted Specification 4-1

4

ing

e a

turn
ay

ithin

N

a, for

ps to
of
cept

with
ften

ces
en

or’
le

fying
y

any
se
ment.
.

ual
ay

nly
e
tted

sented
At different levels of depth on this ‘concept tree,’ the representation of the contain
concept changes. One common change is for concepts higher on this tree to be
introduced in some way. For example the essay with its paragraphs might first hav
title, or chapters within a thesis might have chapter numbers and titles. A method
declaration in a Java class definition has a visibility value, a method name, and a re
type. By contrast, where an element is the only possible element in its position, it m
go without an introduction, such as sentences within a paragraph, or statements w
a Java method definition. However, to be effective this requires some language
familiarity on the part of the user, something that cannot be assumed for the HUT
languages.

Particularly in structured notations such as programming languages, it is often
necessary to separate the contained concepts using some form of punctuation. Jav
example, uses braces to delimit method bodies, commas to separate method
parameters, and semicolons to terminate statements. Written English uses full sto
terminate sentences, and commas or parentheses to delimit phrases. The choice
symbols for separating punctuation can also be dependent on the depth of the con
on the tree. For example, braces are often associated in programming languages
high-level or major concepts such as procedure declarations, while commas are o
associated with low-level or minor ones, such as a list of method parameters.

The MOF modeling concepts underlying the HUTN languages also conform to this
‘concept tree’ paradigm. Package instances contain Class instances, Class instan
contain Attribute values, and so on. Accordingly, the HUTN language core has be
based around these ideas of concept containment, introduction and delimitation.

4.2.3 Defining and referencing major concepts

The MOF Package, Class, and Association concepts have been classified as ‘maj
concepts, warranting an introduction for their instances. The introduction is a simp
one, consisting of the name of the Class, Package, or Association and some identi
string. (When translating from XMI, the XMI ID provides a logical and automaticall
unique identifier). The appearance of this introduction is very similar to the
introductions of procedures or functions in Pascal or C. Curly braces, as used in m
languages deriving syntactic features from C, are used to delimit the bodies of the
major concepts. Class instances can also be referenced by other parts of the docu
This is done by simply displaying the introduction of the instance without the body

4.2.4 Representing minor concepts

By contrast, MOF Attributes are denoted as minor concepts, and as such are
represented differently. In their case, the attribute name is followed by a colon or eq
sign, followed in turn by the value of the attribute. The attributes’ representations m
be separated only by white space, or with a semi-colon terminator. White-space-o
separation is possible because it is always feasible to know how many white-spac
separated ‘words’ will appear in an attribute’s value. No simple attributes are permi
white space within their values except string-typed attributes, whose values are
delimited by a number of possible delimiting characters, or left undelimited, if their
contents make this possible. Attributes whose values are class instances are repre
4-2 HUTN Final Adopted Specification December 2002

4

ure of
t do
e

gn
tical
f
is

ture’
their

in

n of

ve in

in

a
value

el.
the
on

, such
name
an
either as instance references or as full instance declarations, depending on the nat
the attribute. These representations do have more than one ‘word’ in their value, bu
not cause problems because the number of words is always fixed and known to th
parser.

References are displayed with the reference name followed by a colon or equal si
and the representation of the class instance that is referred to. This is almost iden
to the representation of attributes, which could be seen as violating the principle o
‘different forms for different features.’ However, the role of references in the MOF
in many ways to provide a class instance with attribute-like access to other class-
instances that are related by association links. For this reason, the underlying ‘fea
of references and class-instance valued attributes is essentially the same, and thus
representations should in fact be similar.

4.3 Model-Specific Shorthands

There are several kinds of model-specific shorthands and configurations available
HUTN, each described in the following subsections:

• The use of a class’s attribute as the class’s unique identifier, and the specificatio
the scope over which the identifier is unique.

• The representation of a boolean or enumerated attribute as a keyword or adjecti
the Class header rather than a name-value pair in its body.

• The omission of the class type of an object reference when only one type is
possible, or the omission of the reference name for containment relationships.

• The use of default values for mandatory attributes, enabling them to be omitted
many cases.

• Alternative representations for associations.

• The selection of an alternate name for any model element for HUTN language-
generation purposes.

• The use ofparametric formfor attribute values; that is, representing a number of
class’s attribute values in parenthesis in the Class header rather than as name-
pairs in the body.

Some of these short-hands can be incorporated automatically from analysis of the
MOF model, but a couple of them require some additional information about the
model. Those that do are specified using a language configuration MOF-metamod
This metamodel is presented in the next section, and is followed by descriptions of
various available shorthands. The final section will discuss the effects of inheritance
the various available configuration.

4.3.1 Identifying class instances (objects)

Class instances (objects) are concepts that can be referred to by other constructs
as References, Associations, and Attributes. For this reason they require a unique
by which they can be identified within the HUTN text stream. As mentioned above,
December 2002 HUTN Final Adopted Specification: Model-Specific Shorthands 4-3

4

the
ility.
the

fier
n
e

ility

ict
ere
t are

ed

this

the

e

the
he
ing

’s

two
arbitrary unique identifier such as the XMI ID provides this, and is thus a logical
choice for a default identifier. However, since this string is meaningless in terms of
data being represented, it makes for a somewhat poor identifier with regard to usab
It would be far better to use an identifier that somehow is relevant to or symbolic of
instance that it identifies.

The logical choice, therefore, is to use an attribute of the class instance as the
identifier. Many classes do contain an attribute which can serve as a unique identi
for the object (e.g., a name or ID field). However, it is vital that the attribute chose
does indeed distinguish between the instances of this class (it does not have to b
distinct relative to instances of other unrelated classes). Since the MOF does not
provide a mechanism by which an attribute can be defined as unique, the responsib
of ensuring the uniqueness of the identifying attribute must be provided by the
user/model-builder.

For attributes with a very limited range of values, this is obviously difficult. For
example, if an attribute’s type is boolean, or if it is an enumeration, the attribute is
unlikely to make a useful identifier, since its small range of values will greatly restr
the number of instances that it can uniquely identify. However, there are cases wh
these types may serve to uniquely identify class instances. The only attributes tha
never practical as unique identifiers, due mainly to the impossibility of comparing
values, are those of class types, and therefore it is illegal to nominate a class-valu
attribute as a unique identifier for a Class. Also, the attribute selected must be
mandatory (not optional), since it will always be required to generate the object
identifier.

This identifying attribute may not be configured to have a default value, as only a
single instance of a class (within a given scope) may have any particular value for
attribute if it is an identifying attribute. (See section 4.3.5 for information about
configuration of default values.)

Since the value of the attribute selected as the identifying attribute is presented in
class instance’s introduction, its normal representation within the body of the
instance’s definition is superfluous, and is thus omitted.

In addition to defining the meaning of the identifying string, users are also given th
ability to define the scope over which the string is unique. By default, identifying
strings (be they arbitrary or the value of an attribute) are required to be unique over
set of instances of the class, and over all instances of its subtypes. Alternatively, t
identifier may be configured to be unique within the scope of the instance’s contain
object. This allows for nested identification structures.

Class instance identifiers are configured using the IdentifierConfig metaclass (see
section 5.1.6).

4.3.2 Keywords and Adjectives

When a boolean attribute is mandatory, it seems redundant to display the attribute
name as well as its value each time it is displayed. The display of two pieces of
information seems unnecessary for the representation of a variable that only has
states. A shorthand is to display the attribute only if it is true, and to elide its
4-4 HUTN Final Adopted Specification December 2002

4

n

in

not

sible
ave

it is
his is

is

ibute

of
se

h

ed in

y
bol)

ration

,
y of

e
, a
will

e
f the
representation if it is false. Further to this, since the presence of the representatio
already denotes that the attribute’s value is true, it would be far more efficient to
simply the display the name of the attribute. We call the use of such a name alone
the body of a class-instance akeyword.

However, the use of keywords is restricted to attributes that are mandatory and do
contain more than one value. There are only two states available to a keyword
representation: present or absent. By contrast, an optional boolean has three plau
states: true, false, and not defined. Attributes with more than one value obviously h
even more than this, and as such neither optional nor multiply-defined boolean
attributes can be shortened to keywords.

In the absence of a default value for a mandatory single-valued boolean attribute,
assumed to be false, and its name will appear in the class instance header only if t
not the case (the value is true). This is also the case if a default value of false is
explicitly configured for this attribute. (See section 4.3.5). If, however, the attribute
configured with a default value of true, then the tilde symbol ‘~’ is used before the
attribute name keyword to denote that its value is false, and the absence of the attr
name indicates a value of true.

Programming languages such as C++, Java and Pascal represent various pieces
information other than an identifier in the definition of methods or procedures. The
can include the visibility of the method, or the return type of the method. Variables
displayed in this way are calledadjectives, since they provide information about an
object before it is declared, much like an adjective describing a noun in the Englis
grammar.

Adjectives in HUTN are similar to keywords, but are located differently within the
representation of the class instance. Where a keyword’s representation is express
the body, an adjective’s is placed directly before the name of the class in the
introduction of the declaration. There are two kinds of adjectives: boolean-valued
attributes, and enumeration-valued attributes.

Like keywords, boolean-valued adjectives are restricted to single-valued mandator
boolean attributes, and the name of the attribute (perhaps preceded by a tilde sym
is used as the adjective. Enumeration-valued adjectives, however, use the enume
labels as the adjective. While boolean-valued adjectives are available by default,
enumeration-valued adjectives must be configured. The metaclass for configuring
enumeration-valued adjectives is EnumAdjectiveConfig (see section 5.1.7).

Like the identifying attribute of a class, an attribute that is represented as adjective
within the introduction of a class instance, need not be shown again within the bod
the class instance.

When one or more attributes are defined as adjectives on a class, the nature of th
parser may be required to change. When no adjectives are present in a language
parser may use a look-ahead of only one symbol, since the next occurring symbol
uniquely determine the current state of the parser. However, the introduction of
adjectives changes this. For example, if two classes are given attributes of the sam
name, or if an adjective is inherited from a class’s parent class, then the presence o
adjective in the symbol stream will not be sufficient to determine which class the
December 2002 HUTN Final Adopted Specification: Model-Specific Shorthands 4-5

4

ok-
r than

s,
ame
See

for

nd

lass

in an
the

d
se, its

a
ying

e
ion
m
e can
ject
ed.

e
ry
e
not
forthcoming instance will belong to. For this reason, it is necessary to make the lo
ahead of the parser greater than one. More exactly, the look-ahead must be greate
the number of adjectives on that class that has the most shared adjectives.

Other conflicts are possible when using enumeration-valued attributes as adjective
such as a name clash between enumeration labels for two different attributes or a n
clash between an enumeration label and the name of a boolean-valued adjective.
Section 4.3.7, “Renaming of Model Elements for HUTN languages,” on page 4-7,
ways of overcoming such conflicts.

4.3.3 Omission of Class Type of an Object Reference

The default form of referring to a class instance (object) is to give its class name a
its object identifier. However, due to the strong typing of the MOF, there are many
situations in which the references will always be to a known class and hence the c
name can be omitted.

There are three situations when this shorthand can be used; in a MOF Reference,
attribute where the type of the attribute is an instance of a local MOF class, and in
representation of an association. Each of these is subject to two conditions. If the
object that is being referred to is contained by the referring object, then the referre
object may be represented as a declaration rather than a reference and, in this ca
type name may not be omitted.

The second condition is that the referred class and all of its subclasses must use
consistent identification scheme, either by all using the same attribute as an identif
attribute, or all arbitrary unique identifiers. Without this condition, the risk would be
introduced of having two objects with the same identifying string.

4.3.4 Omission of Reference Name for a Contained Object

When a contained object is defined within its container object, the default languag
rules require the name of the MOF Reference to identify the containment associat
involved. However, in practice, there is often only one containment association fro
the container class to the contained class, and therefore the MOF Reference nam
be omitted. When there are two containment associations by which a contained ob
and its container may be linked, the omission of the reference name is not permitt

4.3.5 Default Values

Often a class has an attribute for which many of the class instances will assign th
same value to that attribute. Reading and write this same attribute-value pair is ve
tedious. Therefore, the HUTN supports the shorthand of omitting the attribute-valu
pair if the value is intended to be the default value. Note that the default value can
be determined from the MOF model and so user/modeler input is needed. Default
values for an attribute on a class are configured using the DefaultValueConfig
metaclass (see section 5.1.8).
4-6 HUTN Final Adopted Specification December 2002

4

t be
f the

ibute
red
a
-
rms.

s,

ted as

bles

se
tifier,
he
.

have

to

. In
e

ation
h an
r the
e

The effect of this on a HUTN producer is that the attribute’s representation need no
shown if its value is the same as its default value. For a consumer, the absence o
attribute in the object declaration can be taken to mean that it has as its value the
attribute’s default value.

Since classes that use an attribute as an identifier must show be identified, an attr
selected as such may not be assigned a default value. Similarly, attributes configu
for parametric display (as described in section 4.3.6) are also not configurable for
default value. As described in section 4.3.2, the use of a default value on a single
valued boolean-valued attribute affects the behavior of it keyword and adjective fo

4.3.6 Parametric Form

Some class instances have a conventional order for the values of certain attribute
which makes it unnecessary to give the names of those attributes. For example
cartesian coordinates have numeric values named X and Y, but are often represen
two comma separated numbers (2, 4), where it is well known that the first value
represents X and the second represents Y. The form of their representation resem
actual parameters to a function or method, and is hence calledparametric form.

A configuration of a class for a HUTN language may include a list of attributes who
values will appear in the class instance header, in parentheses after the class iden
and before the class body. The parametric attribute values will be represented in t
same way as multi-valued attributes; that is, separated by whitespace or commas
These attributes will then be omitted from the class body.

To make the parametric form simple and consistent, attributes nominated by a
parametric configuration may not be multi-valued, and may not be optional. In
addition, these attributes may not have default values, as each class instance will
explicit values given for each parametric attribute every time.

Attributes having parametric form within a class are configured using the
ParametricConfig metaclass (see section 5.1.9).

4.3.7 Renaming of Model Elements for HUTN languages

In human readable textual representations of MOF Models it is sometimes useful
use simpler names for model elements than used in other representations. Some
examples include the elimination of white space, and the shortening of long names
addition it may be useful to allow certain shorthands given above by removing nam
clashes that may arise when placing previously separated names into the same
namespace. For example, a MOF model may have the same name for an enumer
label as for a boolean attribute name. In this case it would be impossible to use bot
attribute with the enumeration as a type and the boolean attribute as adjectives fo
same class configuration. However, by renaming either the enumeration label or th
boolean attribute name, the clash can be avoided.
December 2002 HUTN Final Adopted Specification: Model-Specific Shorthands 4-7

4

n
ng a
A renaming configuration allows any MOF Model Element whose name has a
rendering in HUTN (Package, Class, Attribute, Reference, Association, Associatio
End, Enumeration label) to be assigned a new name for the purposes of configuri
HUTN representation of the model. This is done using an instance of the
RenameConfig metaclass (see section 5.1.10).
4-8 HUTN Final Adopted Specification December 2002

Configuration 5
the
can

y to
Configuration options for HUTN languages are expressed as instances of the
HutnConfig metamodel, which is described in this chapter.

Figure 5-1 The HutnConfig MOF metamodel

5.1 HutnConfig Metamodel

This is the HutnConfig metamodel. The semantics of each element are described in
following sections. RenameConfig applies to any Model Element whose name has
be represented in a HUTN language (Class, Association, Reference, Attribute,
Package, Enumeration label, Association End), while the other configurations appl
a Class.

+the_class

ClassConfig

+id_attribute : AttributeRef
+uniqueness : UniquenessScope

IdentifierConfig

+parameters : AttributeRef

ParametricConfig

+adjectives : AttributeRef

EnumAdjectiveConfig

+the_attribute : AttributeRef
+the_value : any(idl)

DefaultValueConfig

+the_element : ModelElementRef
+new_name : string(idl)

RenameConfig

«datatype»
ClassRef

«datatype»
AttributeRef

«datatype»
ModelElementRef

-all_of_type
-container
-property_in_container

«enumeration»
UniquenessScope
December 2002 HUTN Final Adopted Specification 5-1

5

ption
nt.

lass

lass

ass
ship

ass
ship
lass
5.1.1 ClassConfig

This metaclass is abstract, and is inherited by all the concrete configuration
metaclasses which relate to the textual representation of MOF Classes. The exce
to this is the RenameConfig metaclass, which may refer to any MOF Model Eleme

the_class

This metaattribute is a reference to the MOF Class being configured,

5.1.2 «enumeration» UniquenessScope

This enumeration gives possible scopes for uniqueness of identifying attributes of c
instances. It is used in the IdentifierConfig metaclass (see section 5.1.6).

all_of_type

This value indicates that the scope for uniqueness of attribute values identifying c
instances is all instances of the class and all instances of subtypes of the class.

container

This value indicates that the scope or uniqueness of attribute values identifying cl
instances is the set of instances of this class participating in a containment relation
with the same container instance as this class does.

property_in_container

This value indicates that the scope or uniqueness of attribute values identifying cl
instances is the set of instances of this class participating in a containment relation
with the same container instance and the same containment relationship as this c
does.

Example:

Typical identifier for a UML class contained in a UML Package:

• MyPackage.MyClass, if ’container’ is used.

• MyPackage.ownedElement.MyClass, if ’property_in_container’ is used

5.1.3 «datatype» ClassRef

This is an AliasType to string, for representing a MOF Class by its fully-qualified
name. It is used by ClassConfig (see Section 5.1.1).

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.
5-2 HUTN Final Adopted Specification December 2002

5

e

F

s
the

e

. If
be

n of

e

5.1.4 «datatype» AttributeRef

This is an AliasType to string, for representing a MOF Attribute by its fully-qualified
name. It is used by IdentifierConfig (see Section 5.1.6), EnumAdjectiveConfig (se
Section 5.1.7), DefaultValueConfig (see Section 5.1.8) and ParametricConfig (see
Section 5.1.9).

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.

5.1.5 «datatype» ModelElementRef

This is an AliasType to string, for representing a MOF Model Element by its fully-
qualified name. It is used by IdentifierConfig (), Enu

taggedValue org.omg.uml2mof.corbaType: string

This type aliases string.

5.1.6 IdentifierConfig

The metaclass IndentifierConfig is subtype of ClassConfig, which identifies the MO
class being configured for a HUTN language.

The purpose of IndentifierConfig is to nominate a particular attribute of the Class a
unique within some scope, so that its value may be used as a unique identifier for
Class in the HUTN language with this configuration.

id_attribute : AttributeRef

This metaattribute refers to the Attribute of the MOF class being configured for a
HUTN language representation. If this attribute is null, then arbitrary strings may b
used for identifying instances. If this attribute is non null, a specific instance of this
class may use or may not use the value of the identifying attribute as the identifier
the latter case, both the arbitrary identifier and the identifying attribute value should
provided within the HUTN representation of the instance.

uniqueness : UniquenessScope

This metaattribute indicates the scope over which the values of the Attribute being
nominated as a unique identifier must be unique. (See section 5.1.2 for the definitio
UniquenessScope.)

5.1.7 EnumAdjectiveConfig

The metaclass EnumAdjectiveConfig is subtype of ClassConfig, which identifies th
MOF class being configured for a HUTN language.
December 2002 HUTN Final Adopted Specification: HutnConfig Metamodel 5-3

5

be

h

OF

be

ich
The purpose of EnumAdjectiveConfig is to identify an attribute of the class whose
value may appear as an adjective for instances of this class.

adjectives: set[0..*] of AttributeRef

This metaattribute denotes the MOF Attributes of the Class being configured for a
HUTN language which may be used as adjectives.

5.1.8 DefaultValueConfig

The metaclass DefaultValueConfig is subtype of ClassConfig, which identifies the
MOF class being configured for a HUTN language.

The purpose of DefaultValueConfig is to provide a value which will be assumed to
the value of the attribute identified when it is not explicitly provided by a class
instance declaration.

the_attribute : AttributeRef

This metaattribute refers to the MOF Attribute of the Class being configured for a
HUTN language.

the_value : any

This metaattribute provides the default value that the HUTN tool will associate wit
the attribute for any class instance where it is not given an explicit value.

5.1.9 ParametricConfig

The metaclass ParametricConfig is subtype of ClassConfig, which identifies the M
class being configured for a HUTN language.

The purpose of ParametricConfig is to provide a list of attributes whose values will
expected in parentheses after the class instance identifier.

parameters : list[0..*] AttributeRef

An ordered list of Attributes for this class configuration which will be placed in
parametric form for this HUTN language.

5.1.10 RenameConfig

This metaclass is used to indicate that a Model Element in the MOF Model for wh
a HUTN language is being configured will take a different name in the HUTN
language from its MOF Element Name.

the_element : ModelElementRef

This metaattribute is a reference to the MOF Model Element being renamed in the
HUTN configuration.
5-4 HUTN Final Adopted Specification December 2002

5

new_name: string

This metaattribute is the string to be used to represent the_element in the HUTN
language.
December 2002 HUTN Final Adopted Specification: HutnConfig Metamodel 5-5

5

5-6 HUTN Final Adopted Specification December 2002

HUTNDocumentProduction 6
F

cope
ion

ch
This chapter describes the syntax of the generated languages, in terms of the MO
modeling concepts as outlined in Section 4.2, “The Base Language,” on page 4-1.

The examples presented throughout this chapter (with the exception of the name-s
reduction examples) are derived from the FamilyPackage system, whose informat
model is described in Section 2.6, “Example XMI,” on page 2-7, and reproduced in
Figure 6-1. Section 2.7, “Equivalent HUTN,” on page 2-10 and Section 2.8,
“Summary,” on page 2-12 contain the respective XMI and HUTN streams from whi
the data in this section’s examples are extracted.

Figure 6-1 MOF model for a family
December 2002 HUTN Final Adopted Specification 6-1

6

r as
nd

n-
and
).

ame
lly

the

of

as
by a
6.1 Notation

In this chapter, the following notational conventions will be used.

An example of a text stream conforming to a HUTN-generated language will appea
follows. The text in bold face (but not italic) is the literal text stream (e.g., the first a
fourth lines below) whereas the text is bold-and-italic face describe omitted detail
which should not be taken literally (e.g., the 2nd and 3rd lines below).

FamilyPackage “id-001” {
Class instances here
Association instances or links here

}

EBNF rules for HUTN mappings are presented using a numbered rule for each no
terminal (e.g., PackageInstance, PackageHeader, PackageBody) in the grammar
literal symbols enclosed in single quotes (e.g., right curly brace represented as ‘}’
The italicized words enclosed in angle brackets indicate a placeholder for a literal
value which must be substituted with an actual value (e.g., <PackageName>); the n
given is deliberately chosen to be meaningful, but will always be explained more fu
in the accompanying text.

[2] PackageInstance := 3:PackageHeader ‘{‘ 4:PackageBody ‘}’
[3] PackageHeader := <PackageName> 5:PackageIdentifier

6.2 Package Representations

A HUTN document consists of a zero or more instances of the package from which
HUTN has been generated.

[1] Document := (2:PackageInstance)*

A packagein the MOF type structure is a concept used for containing a collection
related classes and associations.

[2] PackageInstance := 3:PackageHeader
(‘{‘ 4:PackageBody ‘}’
| ‘;’ 4:PackageBody)

[3] PackageHeader := <PackageName> 5:PackageIdentifier
[4] PackageBody := (6:ClassInstance | 32:AssocInstance |

24:ClassifierLvlAttr) *
[5] PackageIdentifier := 28:TextualValue

Package instances are represented either by a block structure, with the package
contents appearing either between braces, or following a single line introduction
followed by a semicolon. Identifying attributes are not permitted on packages and,
such, packages are prefaced and identified by the name of the package, followed
string-delimited arbitrary unique identifier. This identifier can be used for qualifying
6-2 HUTN Final Adopted Specification December 2002

6

me
e

6.8,
a
s,”

onsist
uding
ges,

e,
e,
form

tive
es,
the identifiers of objects referenced between separate package instances in the sa
document. The package body consists of the class and association instances of th
package, as well as any classifier-level attribute values, in accordance with the
mappings described in Section 6.3, “Class Representations,” on page 6-3, Section
“Association Representations,” on page 6-13. An example of the representation of
package instance is given in Figure 6-2, and Section 6.6, “Classifier-Level Attribute
on page 6-10, respectively.

Figure 6-2 An example of a package instance representation

The classes and associations whose instances can appear in the package body c
of all non-abstract classes and associations that reside in the target package, incl
those that result from package inheritance, those that are defined in nested packa
and those that are defined in clustered packages.

6.3 Class Representations
[6] ClassInstance := 7:ClassHeader 10:ParametricAttrs

‘{‘ 11:ClassContents ‘}’ (‘;’)?
[7] ClassHeader := 8:ClassAdjectives < ClassName>

(9:ClassIdentifier)?
[8] ClassAdjectives := ((‘~’? < AttributeName >) | 25:DataValue) *
[9] ClassIdentifier := 28:TextualValue
[10] ParametricAttrs := ‘(‘ 31:ValueList ‘)’
[11] ClassContents := ((18:AttributeInstance

 | 21:ReferenceInstance
 | 12:ContainedObject
) (‘;’)?
) *

[12] ContainedObject := (< AssocName >’:’)?
(6:ClassInstance | 13:ClassInstanceRef)

The representation of a class consists of a number of parts; adjectives, class nam
identifier, parametric representation, and contents. The contents consist of attribut
reference and contained object representations. The parts appear in that order, to
the representation of the class. These attribute, reference and contained instance
representations appear within curly braces, in any order, optionally terminated by
semicolons.

There are two types of adjectives: single-valued boolean attributes, for which adjec
representation is enabled by default; and single-valued enumeration-typed attribut
which must be configured as adjectives. Boolean attributes are represented by the

FamilyPackage “id-001” {
Class instances here
Association instances or links here

}

December 2002 HUTN Final Adopted Specification: Class Representations 6-3

6

the

ple-
e of
ifier.
e

ave
ere

ar in
ce or

for

ily
attribute name, optionally prefixed by the ‘~’ symbol, representing negation.
Enumerated adjectives are represented as the enumerator label corresponding to
value of the attribute. Adjectives can appear in any order.

Class instances can be identified in one of two ways. Firstly, if a single-valued sim
typed attribute has been configured as the class’ identifying attribute, then the valu
that attribute, formatted as appropriate for the attribute’s type, appears as the ident
Alternatively, if no such identifier has been selected, then an arbitrary string may b
used, or the instance may go unidentified. Unidentified instance representations h
no identifier, and may only be used when the instance is not referred to from anywh
else in the document.

If any single-valued, simple-typed attributes have been configured for parametric
representation, then their values appear next inside parentheses. The values appe
the order specified by the parametric configuration, and are separated by whitespa
commas.

Contained objects are those class instances linked by a containment association
which there are no references defined.

Figure 6-3 and Figure 6-4 show examples of class representations, where the Fam
class is identified arbitrarily and by the familyName attribute, respectively. In both
examples, the boolean nuclear attribute is used as an adjective.

Figure 6-3 An example of the representation of arbitrarily-identified class instances

Figure 6-4 An example of the representation of attribute-identified Class instances

FamilyPackage “id-001” {
Family “id-002” {

familyName: “The McDonalds”
Attribute and Reference representations

}
nuclear Family “id-003” {

familyName: “The Smiths”
Attribute and Reference representations

}
}

FamilyPackage “id-001” {
Family “The McDonalds” {

Attribute and Reference representations
}
nuclear Family “The Smiths” {

Attribute and Reference representations
}

}

6-4 HUTN Final Adopted Specification December 2002

6

r

ifier
s a

a non-

class

the

is

gs

time
ring,
Figure 6-5 shows an example for metamodel of polygons, with a string attribute fo
their name, a boolean attribute for whether they are filled or not, and containment
association with coordinate class. The coordinate class has only two floating point
attributes, X and Y. The HUTN configuration for coordinates places X and Y in
parametric form, and for polygons it provides the name attribute as a unique ident
and the default value ‘true’ for the filled attribute. The example shows filled used a
negated boolean adjective and the instance identifier as an undelimited string. The
contained coordinate objects are shown inline with all their attribute values in
parametric form, and their empty contents denoted by the use of a semicolon.

Figure 6-5 An example of the use of various configuration options

[13] ClassInstanceRef := ((<ClassName>)? 14:ClassRefString)
| ExternalObjRef

[14] ClassRefString := 15:PackageRootRef | 16:DocumentRootRef
[15] PackageRootRef := 17:ClassRefSeparator 28:TextualValue

 (17:ClassRefSeparator 28:TextualValue) *
[16] DocumentRootRef := 17:ClassRefSeparator 17:ClassRefSeparator

 28:TextualValue
 (17:ClassRefSeparator 28:TextualValue) *

[17] ClassRefSeparator:= ‘::’ | ‘.’ | ‘/’

There are number of cases in which a class instance can be referred to, either as
contained attribute of another class instance, via a MOF Reference, or in an
association. The standard representation of one of these references consists of the
name followed by the identifying string for the class instance (explained below).
Alternatively, the typeless references shorthand allows for the omission of the type
name of the referred instance, leaving just the identifying string. (This is subject to
conditions stated in Section 4.2.3, “Defining and referencing major concepts,” on
page 4-2).

The string used to refer to class instances is structured differently according to the
uniqueness scope of the referred class’ identification system. If all_of_type scope
used, then the string is just the class identifier of the class referred to (arbitrary or
identifying-attribute value). If container scope is used, then a number of these strin
can be separated by either a double-colon, a full-stop, or a forwards-slash. These
names are resolved relatively, moving up the containment hierarchy one level at a
until a match is found. If container is used then a level is represented by a single st

ShapePackage triangles {
~filled polygon my_triangle {

coordinate (3.6, 7.3);
coordinate (5.2, 7.673);
coordinate (9.4 ,13);

}
}

December 2002 HUTN Final Adopted Specification: Class Representations 6-5

6

the
e
a
ther
d by

t
rding

nal
ype

by a
as
for
the

has
ctive
is

te
if a
which is the container’s identifier. If property_in_container is used then a level is
represented by two strings separated by a delimiter: the container’s identifier and
property name of the containment association. To indicate that the name should b
resolved relative to the current package instance, a separator can be included as
prefix to the string. Regardless of which uniqueness scope is used, instances in o
packages can be referenced by prefixing the string with a double separator followe
the identifying string of the package instance that contains the referred object.

If the class instance referred to exists outside of the scope of the current documen
(including any references to external imported classes), then it is represented acco
to the rules in Section 6.7.5, “Object Reference,” on page 6-11.

Figure 6-6 shows an further example for the metamodel of polygons with an additio
class “diagram,” which has a string name and a multi-valued-attribute “shapes” of t
polygon. The text below is assumed to be in the same document as Figure 6-5.

Figure 6-6 An example of the use of package and document references

6.4 Attribute Representations
[18] AttributeInstance := 19:NormalAttribute | 20:KeywordAttribute
[19] NormalAttribute := < AttributeName> (’ :‘ | ‘=’)

 (25:DataValue | ‘null’)
[20] KeywordAttribute := (‘~’)? < AttributeName> ?

The standard representation for attributes consists of the attribute name, followed
colon or by an equals sign ‘=’, followed by the data value of the attribute, encoded
is appropriate for the attribute’s type. There are, however, a number of shorthands
attribute representation. If a default value has been specified for the attribute, then
absence of the attribute’s representation must be taken to mean that the attribute
the default value. Mandatory boolean attributes can be represented using the adje
or keyword shorthands. If there is no default value configured then a value of true
indicated by the attribute name, and a value of false by the absence of the attribu
name. The same applies if a default value of false has been configured. However,

ShapePackage quads {
polygon my_quad1 {

coordinate (4.6, 78.3);
coordinate (4.2, 7.3);
coordinate (10.4 ,1.5);
coordinate (33 ,8.5);

}

diagram two_shapes {
shapes = [//triangles/my_triangle, /my_quad1]

}
}

6-6 HUTN Final Adopted Specification December 2002

6

a
y a

of

ways.
it
ce

erred
lass
default value of true is configured then the absence of the attribute name indicates
value of true, and a value of false is represented by the attribute name preceded b
tilde ‘~’.

Attributes whose lower multiplicity bound is 0 may be explicitly unset by assigning
them to the ‘null’ keyword.

Figure 6-7 presents an example of a number of attributes’ representations. The
‘migrants’ attribute has been used as a keyword on the Family class, the ‘nuclear’
attribute as an adjective of Family, ‘familyName’ configured the identifying attribute
Family, and ‘name’ has been configured as the identifier of Person.

Figure 6-7 An example of representations of simple attributes

Attributes whose values are instances of a class are represented in two separate
If the attribute class instance is contained by the enclosing class instance (that is,
does not exist outside of the containing instance’s scope), then the attribute instan
may represented in-line in the manner described in Section 6.3, “Class
Representations,” on page 6-3. Alternatively, a class instance may appear as a ref
object, as described in Section 6.3, “Class Representations,” on page 6-3. If the c
instance is not contained, then only this second representation may be used. An
example in which petFish is a contained attribute and petDog is a non-contained
attribute, both of Family, is presented in Figure 6-8.

FamilyPackage “id-001” {
Family “The McDonalds” {

migrants
Address: “7 Main Street”
Reference representations

}
nuclear Family “The Smiths” {

Address: “5 Main Street”
Reference representations

}
Person “Namdou Ndiaye” {

age: 7
sex: male
Reference representations

}
}

December 2002 HUTN Final Adopted Specification: Attribute Representations 6-7

6

t in an

is

e of

may

e the
the
,

Figure 6-8 An example of class-instance valued attributes

6.5 Reference Representations
[21] ReferenceInstance := 22:ContainedReference

| 23:NonContReference
[22] ContainedReference := (< ReferenceName> (’ :’ | ‘=’))?

 (6:ClassInstance | 13:ClassInstanceRef)
[23] NonContReference := < ReferenceName> (’ :’ | ‘=’)

 13:ClassInstanceRef

References are a means for classes to be aware of class instances that play a par
association, by providing a view into the association as it pertains to the observing
instance. For this reason, the representation within a class instance of a reference
depends in part on the nature of the association to which it refers. An association
involved in acontainment relationshipif one of the participating instances is wholly
contained within the other. That is, thecontained instancedoes not exist outside the
scope of the other instance.

Much like that of an attribute, the representation of a reference begins with the nam
the reference followed by a colon or an equals sign. If the instance to which the
reference refers is the contained instance in a containment relationship, then this
be followed either by a full representation of the instance (see Section 6.3, “Class
Representations,” on page 6-3), or by a reference to the instance. In the latter cas
full representation of the contained instance must appear as a top level definition in
content of the current package. Figure 6-9 shows the Family class with references
‘naturalChild’ and ‘adoptedChild’, to two containment associations between the
Family and Person classes.

FamilyPackage “id-001” {
Family “The McDonalds” {

petDog: Dog “Spike”
petFish: Fish “Wanda” {

Attribute and reference representations
}

}
Dog “Spike” {

Attribute and reference representations
}

}

6-8 HUTN Final Adopted Specification December 2002

6

then
ence

,

a

ion

se a
ry
Figure 6-9 An example representation for a reference to a containment association

If there is only one association through which a contained object may be referred,
the shorthand of a nameless reference is available, in which the name of the refer
(and the trailing colon) may be omitted.

Alternatively, if the association that is referred to is not a containment relationship
then the subsequent depiction must be in the form of an instance reference. An
example of this case is given in Figure 6-10, where familyFriends is a reference to
non-containment association ‘familyFriendship’.

Figure 6-10 An example of the representation of references to a non-containment associat

If the class referred to by a non-containment association (and all its subclasses) u
common identification mechanism (either a single identifying attribute or the arbitra
unique identifier), then the type name of the referred class may be omitted, as a
typeless reference.

FamilyPackage “id-001” {
Family “The Smiths” {

Attribute representations
Reference representations

naturalChild: Person “Harry Smith” {
Attribute and reference representations

}
naturalChild: Person “Joan Smith” {

Attribute and reference representations
}
adoptedChild: Person “Dylan Smith” {

Attribute and reference representations
}

}
}

FamilyPackage “id-001” {
Family “The McDonalds” {

Attribute representations
familyFriends: Family “The Smiths”

}
Family “The Smiths” {

Attribute representations
familyFriends: Family “The McDonalds”

}
}

December 2002 HUTN Final Adopted Specification: Reference Representations 6-9

6

out
here
of the

as

ithin
f the

for
nces
t,

at a

ed
rals
It should be noted that an association link need only be represented once through
the document. For example, in the case of an association between two classes w
both classes have references to the association, a link need only be shown in one
three possible places it may appear; in one of the two references, or in the
representation of the association. The link may be shown more than once, so long
the different representations are consistent.

6.6 Classifier-Level Attributes
[24] ClassifierLvlAttr := <ClassifierName> ’.’ <AttrName> (’:’|’=’)

25:DataValue ’;’

Classifier-level Attributes are represented similarly to other attributes, with the
exception that their declarations must appear within package bodies rather than w
class instance bodies, and that the Attribute name must be prefixed by the name o
Classifier. These declarations must be terminated by semi-colons.

6.7 Data Value Representations
[25] DataValue := 26:SingleValueData | 30:MultiValueData
[26] SingleValueData := 28:TextualValue

| NumericValue
| EnumValue
| 27:BooleanValue
| TypeCodeValue
| StructValue
| UnionValue
| 6:ClassInstance
| 13:ClassInstanceRef

The data types of Attributes in MOF are based on CORBA TypeCodes. Therefore,
each concrete TypeCode, the HUTN must define a textual representation for insta
of that type. Furthermore, a MOF Attribute may be defined as a collection kind (Se
Bag, List, UList) of these data types.

Note that the system of data typing used by MOF is currently being revised, and th
final submission will need to conform to these revised data types.

6.7.1 Numeric types

Shorts, longs, unsigned shorts, unsigned longs, floats, doubles, longlongs, unsign
longlongs, long doubles, fixed points and octets are all represented as numeric lite
(see Section 6.9.5, “Numeric literals,” on page 6-15).
6-10 HUTN Final Adopted Specification December 2002

6

.9.3,
nted

rings
ing
ely,
that

same

g is
ted
-

at

to

(see
are

and
ns
6.7.2 Boolean

[27] BooleanValue := ‘true’ | ‘false’

Boolean values, true and false, are represented as reserved words (see Section 6
“Reserved Words,” on page 6-15). Note that boolean attributes may also be represe
as keywords or adjectives, which appear in the class header.

6.7.3 Textual types

[28] TextualValue := EncodedString

Characters, strings, wide characters and wide strings are represented as literal st
(see Section 6.9.6, “Character and string literals,” on page 6-16). The encoded str
may be delimited by either double quotes, single quotes, or back quotes. Alternativ
they may go undelimited, provided that they start with an alphabetic character, and
they contain no whitespace or special characters.

6.7.4 Enum

An enum-value is represented as an identifier (see Section 6.9.2, “Identifiers,” on
page 6-15) with the string values being the names of the enum labels. Note that
attributes of type enum may also be presented as adjectives, which appear in the
way.

6.7.5 Object Reference

[29] ExternalObjRef := StringifiedObjRef

An object-reference value is represented as a string literal. The format of the strin
defined by the CORBA standard (Sections 13.6.6 through 13.6.7). It should be no
that some of the URL formats defined in 13.6.7 were designed to be more “human
usable” than the stringified object reference format of Section 13.6.6 (a stream of
hexadecimal digits). However, the stringified object reference may be the only form
that can be generated by some ORBs (using the operation object_to_string).

It is important to note that these object-reference values are NOT the format used
cross-reference objects within a HUTN document, as these are instances of MOF
Classes and are represented by their class name followed by their object identifier
Section 6.3, “Class Representations,” on page 6-3). These object-reference values
used to reference external CORBA objects.

6.7.6 TypeCode

A TypeCode-value is represented as a literal string (see Section 6.9.6, “Character
string literals,” on page 6-16). The format of the string is defined in XMI 1.2 Sectio
6.4.8.2 through 6.4.8.16.
December 2002 HUTN Final Adopted Specification: Data Value Representations 6-11

6

alue

er

in

ond

6.9.7,

d
ce.
the
ring

one
6.7.7 Any

An any-value is represented as a bracketed pair (see Section 6.9.7, “Bracketed
Pairs/Lists,” on page 6-16). The first value is the TypeCode (see Section 6.7.6,
“TypeCode,” on page 6-11) and second is the data value (see Section 6.7, “Data V
Representations,” on page 6-10) which is represented appropriately for the stated
TypeCode. The pair are separated by white space and grouped with brackets (eith
round, square, or angle).

6.7.8 Struct

A struct-value is represented as a bracketed list (see Section 6.9.7, “Bracketed
Pairs/Lists,” on page 6-16), containing the values of each of the fields of the struct
the order defined by the struct. The fields of the structs are not labelled.

6.7.9 Union

A union-value is represented as a bracketed list (see Section 6.9.7, “Bracketed
Pairs/Lists,” on page 6-16). The first value is the value of the discriminator. The sec
value is the value of the variant part selected by the discriminator (if any).

6.7.10 Sequence, Array

A sequence-value or an array-value is represented as a bracketed list (see Section
“Bracketed Pairs/Lists,” on page 6-16) with each value of the sequence/array
represented in the same order as in the sequence/array.

6.7.11 Collections (Set, Bag, List, UList)

A collection value is represented as a bracketed list (see Section 6.9.7, “Brackete
Pairs/Lists,” on page 6-16) with each value of the collection represented exactly on
For ordered collections (Lists and ULists), the elements of the bracketed list are in
same order as the collection. For unordered collections (Sets and Bags), the orde
does not matter.

[30] MultiValueData := ‘<‘ 31:ValueList ‘>’
| ‘[‘ 31:ValueList ‘]’
| ‘(‘ 31:ValueList ‘)’

[31] ValueList := (25:DataValue)+
| 25:DataValue (‘,’ 25:DataValue)*

An alternative representation is to provide a number of attribute name-value pairs,
for each value in the collection.
6-12 HUTN Final Adopted Specification December 2002

6

to
e
nk

an
ibed

o
yed
r the
e of

tion

and

this:

nces

pair
6.8 Association Representations

Associations constitute a relationship between two classes, and can appear in two
forms: either containment relationships or non-containment relationships. Further
this, classes can contain references into associations (see Section 6.5, “Referenc
Representations,” on page 6-8). This leads to three methods of representing the li
between associated class instances.

Firstly, if one or more of the classes participating in the association contains a
reference into the association, then the elements participating in the association c
displayed within the representation of the class containing the reference, as descr
above in Section 6.5, “Reference Representations,” on page 6-8.

Secondly, if the association represents a containment relationship, but there are n
classes with references to the association, the association contents may be displa
within the representations of the containing class instances. The representation fo
contained instance is exactly the same as if it were referenced, except that the nam
the association is substituted for the name of the reference. This is shown by the
production rules in Section 6.3, “Class Representations,” on page 6-3. The associa
name is optionally displayed before the contained class instance to allow
disambiguation for MOF models which have more than one possible containment
association between the container and the contained instance.

An example of the representation of unreferenced containment associations is
presented in Figure 6-11, where CarOwnership is an association between Family
Car, with Car instances being contained by Family instances.

Figure 6-11 An example of a containment association without references

[32] AssocInstance := 33:AssocBlock | 36:InfixAssocLink
[33] AssocBlock := <AssocName> ‘{‘ 34:AssocContents ‘}’
[34] AssocContents := (35:AssocEnd 35:AssocEnd) *
[35] AssocEnd := (<AssocEndName> (’:’ | ‘=’))?

13:ClassInstanceRef

The third method of representing association instances involves displaying the link
separately to either of the class instances that participate. There are two forms for
block display of the association, or infix representation of the individual links.

In the case of block display, a list appears containing references to the class insta
participating in the association. The block consists of the name of the association
followed by a block (with opening and closing braces) containing the pairs of
references to the instances participating in the relationships. Each instance in the

FamilyPackage “id-001” {
Family “The McDonalds” {

CarOwnership: Car “755-BDL” {
Attribute and reference representations

}
}

}

December 2002 HUTN Final Adopted Specification: Association Representations 6-13

6

a
ed in

sses..

the
red,
first
may

on is

d
ces.

s

may optionally be preceded by the name of the role it plays in the association and
colon or equals symbol. Class instance references are displayed in the style specifi
Section 6.3, “Class Representations,” on page 6-3. Figure 6-12 shows a block
representation of an association ‘sponsorship’ between the Family and Person cla

Figure 6-12 An example of the representation for a non-containment association

[36] InfixAssocLink := 13:ClassInstanceRef <AssocName>
13:ClassInstanceRef

Infix display consists of references to each of the class instances (in the form
appropriate for the participating classes’ identification configuration), separated by
name of the association. It should be noted that the ends of associations are orde
and the participating class instances must appear in the appropriate order, with the
association end before the association name and the second afterwards. Infix links
be optionally terminated by a semicolon. An example of infix display is shown in
Figure 6-13, where Family is the first end of the sponsorship association, and Pers
the other end...

Figure 6-13 An example of infix display for associations

As mentioned in Section 6.5, “Reference Representations,” on page 6-8, there nee
only be one representation of any an association link between a pair of class instan
This can be in the form of a reference, or using any of the forms shown above for
associations.

6.9 Lexical issues

In most lexical aspects, HUTN follows the accepted practices of OMG IDL, but allow
greater freedom where the strong-typing of the underlying model permits it.

FamilyPackage “id-001” {
Family “The Smiths” {

Attribute and reference representations
}
Person “Namdou Ndiaye” {

Attribute and reference representations
}
sponsorship {

sponsor: Family “The Smiths”
sponsored: Person “Namdou Ndiaye”
Other pairs within the sponsorship association

}
}

Family “The Smiths” sponsorship Person “Namdou Ndiaye”;
6-14 HUTN Final Adopted Specification December 2002

6

e

s,
ced

MG

g

r
rved

re
6.9.1 Comments

Comments appear as in OMG IDL:
/* comment between delimiters */
// comment to end of line

A leading or ‘header’ comment in a document is treated specially, in that it may
contain a HUTN configuration for the document, or a URL or URI indicating where
the configuration document can be found. See Chapter 7 for the specification of th
HUTN Configuration for the metamodel given in Chapter 5.

These comments take the following form:

/**
 *@config

HUTN Configuration document text or URL/URI
*/

6.9.2 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, numeric, and underscore
characters. The first character must be alphabetic. Identifiers in HUTN-generated
languages are mostly taken from the names of MOF Packages, Classes, Attribute
References, and Associations. Some identifiers from the MOF model will be repla
by renaming configurations.

Identifiers are case-sensitive, and there are no clashing-case rules like those in O
IDL.

6.9.3 Reserved Words

The HUTN languages have three reserved words: “true” and “false” for representin
boolean values, and “null” for unsetting attribute values.

6.9.4 White Space

Like OMG IDL, white space and comments can be freely used between lexical
elements (but not within them) and are ignored in parsing. Note that white space o
comments must be used to separate lexical elements such as identifiers and rese
words (which would otherwise appear as a single lexical element without such
separation).

6.9.5 Numeric literals

The legitimate forms for numeric literals (integers, floating point, and fixed point) a
the same as for OMG IDL.

‘+’ and ‘-’ can be used to indicate the positive/negative sign of the value.
December 2002 HUTN Final Adopted Specification: Lexical issues 6-15

6

l

y

s the

are
orted

a
his
it is

sist

or

n

r as
It should be noted that OMG IDL permits the presentation of integer literals in octa
and hexadecimal forms using the prefixes 0 and 0x/0X respectively.

6.9.6 Character and string literals

The contents of character and string literals can take any legitimate form defined b
OMG IDL. Unlike OMG IDL, however, strings may be delimited by either single
quotes, double quotes, or back quotes (provided that the opening delimiter matche
closing). Strings may also be left undelimited, provided that they start with an
alphabetic character, and contain no whitespace or special characters. Characters
delimited by matching single, double or back quotes. Escape sequences are supp
in both strings and characters. Wide characters/strings are prefixed with “L.” String
concatenation is supported (primarily to enable long strings to be entered using a
number of lines).

Since HUTN is based on the strong type system of the MOF, it is always known
whether a literal value is a character or a string. Hence, HUTN permits the use of
pair of single, double or back quotes to delimit both character and string literals. T
can be convenient when the string must contain single/double quote characters as
only necessary to escape the kind of quote used as a delimiter.

6.9.7 Bracketed Pairs/Lists

Bracketed pairs/lists appear throughout the generated HUTN grammars. They con
of 0 or more (strictly 2 for a pair) values separated by white space or commas,
surrounded by matching brackets. The brackets can be either square [], round (),
angle <>.

As a number of the representations that use bracketed pairs/lists are recursively
defined, it is to be expected that bracketed pairs/lists will be nested. The use of
different kinds of brackets may help to make the groupings clearer in the text whe
there is extensive nesting.

Bracketed form is also used for parametric form, but in this case the brackets are
always round, and there is at least one value in the list (See Section 6.3, “Class
Representations,” on page 6-3).

6.9.8 Symbols

The generated HUTN grammars use the following symbols in a consistent manne
described in Table 6-1:

Table 6-1 Use of symbols in HUTN-generated languages

Symbol Symbol name Use in HUTN

{} Curly braces nesting of content

() Round brackets grouping of parametric
form
6-16 HUTN Final Adopted Specification December 2002

6

tion
e-
on
hile
ore

el.

them
ute
me).
own

hen
me.
d as
ords
able
6.10 Name Scope Optimization

Names of packages, associations, and classes in the MOF include all of the informa
about the concept’s scope. This fully qualified name consists of a number of scop
level components, separated by dots. For example, an attribute contains informati
about which class it is in, and what package that class is contained by. However, w
this scope information is necessary in the broader picture, these names provide m
information than is necessary to uniquely identify a model concept within the mod

The names of packages, associations, and classes are therefore optimized to make
as short as possible while still being unique within the domain model. (Since attrib
names are unique within their class, they are simply represented by their local na
This is done as follows. First, a set of all names is assembled, and each is broken d
into a sequence of words (one for each scope level). A possible scoped name is t
created for each name, constituting the last word of the word sequence for that na
If this possible name is unique within the set of possible names, then it is accepte
the scope-optimized name. If not, then the process is repeated with the last two w
of the name sequence. This continues until all names have been optimized. The t
shown in presents an example of a set of names and their reductions.

() Round brackets grouping of lists

[] Square brackets

<> Angle brackets

: colon introduces a data value

= equals sign

+ plus sign of number

- minus

’ single quote delimit literal strings

‘ back quote

“ double quote

\ backslash escape in literal strings

, comma separator in bracketed lists
and parametric attributes

~ tilde boolean adjective negation

; semi-colon optional terminator of
attributes, references, and
association links

Table 6-2 An example of some name optimizations

Fully Scoped Name Scope-Optimized Name

Table 6-1 Use of symbols in HUTN-generated languages
December 2002 HUTN Final Adopted Specification: Name Scope Optimization 6-17

6

Genealogy.Family.Child Family.Child

Genealogy.Family.Father Father

Genealogy.Tree.Child Tree.Child

Genealogy.Tree.Branch Genealogy.Tree.Branch

Flora.Tree.Branch Flora.Tree.Branch

Flora.Flower Flower

Table 6-2 An example of some name optimizations
6-18 HUTN Final Adopted Specification December 2002

ConfigurationNotation 7
ated

e
the

ions
HUTN language configurations are expressed using a HutnConfig language gener
according to the rules in Chapter 6. The language configuration for this generated
notation is described in this chapter.

7.1 HutnConfig Language Configuration

The following document is the language configuration of the HUTN language for th
HutnConfig MOF metamodel. The document is configured by itself, and therefore
body text is duplicated in the @config section of the opening comment. This
demonstrates the use of the @config statement for specifying language configurat
within HUTN documents.

/**
 * @config

HutnConfig “HutnConfig” {
all_of_type IdentifierConfig “HutnConfig.IdentifierConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
EnumAdjectiveConfig “HutnConfig.IdentifierConfig” {

adjectives: “HutnConfig.IdentifierConfig.uniqueness”
}
all_of_type IdentifierConfig “HutnConfig.EnumAdjectiveConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.ParametricConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.RenameConfig” {

id_attribute: “HutnConfig.RenameConfig.the_element”
}

}
 */
December 2002 HUTN Final Adopted Specification 7-1

7

HutnConfig “HutnConfig” {
all_of_type IdentifierConfig “HutnConfig.IdentifierConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
EnumAdjectiveConfig “HutnConfig.IdentifierConfig” {

adjectives: “HutnConfig.IdentifierConfig.uniqueness”
}
all_of_type IdentifierConfig “HutnConfig.EnumAdjectiveConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.ParametricConfig” {

id_attribute: “HutnConfig.ClassConfig.the_class”
}
all_of_type IdentifierConfig “HutnConfig.RenameConfig” {

id_attribute: “HutnConfig.RenameConfig.the_element”
}

}

7-2 HUTN Final Adopted Specification December 2002

ECATextualNotation 8
s

ns,
This chapter specifies a HUTN language configuration for the ECA metamodel as
specified in the UML Profile for EDOC adopted specification (ptc/2002-02-05). Thi
configuration, in conjunction with the ECA metamodel as specified in the above
document, when used with the production rules for Human-Usable Textual Notatio
result in a textual notation for the expression of ECA models.

8.1 ECA Language Configuration

The following is the language configuration for the ECA metamodel.

HutnConfig “org.omg.ECA” {

// ModelManagement package configurations
all_of_type IdentifierConfig

org.omg.ECA.ModelManagement.PackageContent {
id_attribute:

“org.omg.ECA.ModelManagement.PackageContent.name”
}

// DocumentModel package configurations
all_of_type IdentifierConfig org.omg.ECA.DocumentModel.DataInvariant
{

id_attribute:
“org.omg.ECA.DocumentModel.DataInvariant.expression”

}
container IdentifierConfig

org.omg.ECA.DocumentModel.EnumerationValue {
id_attribute: org.omg.ECA.DocumentModel.EnumerationValue.name

}
DefaultValueConfig {

the_class: org.omg.ECA.DocumentModel.ECAAttribute
December 2002 HUTN Final Adopted Specification 8-1

8

the_attribute:
org.omg.ECA.DocumentModel.ECAAttribute.initialValue

the_value: ““
}

// CCA package configurations
container IdentifierConfig org.omg.ECA.CCA.Node {

id_attribute: org.omg.ECA.CCA.Node.name
}
EnumAdjectiveConfig org.omg.ECA.CCA.PseudoState {

adjectives: org.omg.ECA.CCA.PseudoState.kind
}
container IdentifierConfig org.omg.ECA.CCA.ComponentUsage {

id_attribute: org.omg.ECA.CCA.ComponentUsage.name
}
container IdentifierConfig org.omg.ECA.CCA.PropertyValue {

id_attribute: org.omg.ECA.CCA.PropertyValue.value
}
container IdentifierConfig org.omg.ECA.CCA.InitiatingRole {

id_attribute: org.omg.ECA.CCA.InitiatingRole.name
}
container IdentifierConfig org.omg.ECA.CCA.RespondingRole {

id_attribute: org.omg.ECA.CCA.RespondingRole.name
}
container IdentifierConfig org.omg.ECA.CCA.Port {

id_attribute: org.omg.ECA.CCA.Port.name
}
EnumAdjectiveConfig org.omg.ECA.CCA.Port {

adjectives: org.omg.ECA.CCA.Port.direction
}
EnumAdjectiveConfig org.omg.ECA.CCA.ProcessComponent {

adjectives: org.omg.ECA.CCA.ProcessComponent.granularity
}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.ProcessComponent
the_attribute: org.omg.ECA.CCA.ProcessComponent.primitiveKind
the_value: ““

}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.ProcessComponent
the_attribute: org.omg.ECA.CCA.ProcessComponent.primitiveSpec
the_value: ““

}
container IdentifierConfig org.omg.ECA.CCA.PropertyDefinition {

id_attribute: org.omg.ECA.CCA.PropertyDefinition.name
}
DefaultValueConfig {

the_class: org.omg.ECA.CCA.PropertyDefinition
the_attribute: org.omg.ECA.CCA.PropertyDefinition.initial
the_value: ““

}

8-2 HUTN Final Adopted Specification December 2002

8

// Event package configurations
container IdentifierConfig org.omg.ECA.Event.EventCondition {

id_attribute: org.omg.ECA.Event.EventCondition.condition
}
container IdentifierConfig org.omg.ECA.Event.NotificationRule {

id_attribute: org.omg.ECA.Event.EventCondition.condition
}
container IdentifierConfig org.omg.ECA.Event.Subscription {

id_attribute: org.omg.ECA.Event.subscriptionClause
}
DefaultValueConfig {

the_class: org.omg.ECA.Event.Subscription
the_attribute: org.omg.ECA.Event.Subscription.domain
the_value: ““

}
container IdentifierConfig org.omg.ECA.Event.Subscription {

id_attribute: org.omg.ECA.Event.subscriptionClause
}
DefaultValueConfig {

the_class: org.omg.ECA.Event.Publication
the_attribute: org.omg.ECA.Event.Publication.domain
the_value: ““

}

// BusinessProcessPkg package configurations
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessFlowPort
the_attribute:
org.omg.ECA.BusinessProcessPkg.ProcessFlowPort.multiplicity_lb
the_value: 1

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessFlowPort
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessFlowPort.multiplicity_ub
the_value: 1

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessRole
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessRole.selectionRule
the_value: ““

}
DefaultValueConfig {

the_class: org.omg.ECA.BusinessProcessPkg.ProcessRole
the_attribute:

org.omg.ECA.BusinessProcessPkg.ProcessRole.creationRule
the_value: ““

}
}

December 2002 HUTN Final Adopted Specification: ECA Language Configuration 8-3

8

8-4 HUTN Final Adopted Specification December 2002

References H
d
,

ty

Pp

t

A.1 List of References

[Antlr] Terence Parr, ANTLR - Complete Language Translation Services.
http://www.antlr.org/index.html

[Belaunde99] Mariano Belaunde, A Pragmatic Approach To Building a Flexible UML
Model Repository. In UML’99 - The Unified Modeling Language. Beyon
the Standard. Second International Conference, Fort Collins, CO, USA
October 28-30. 1999, Proceedings. Springer. Pp 188-203.

[Java] James Gosling, Bill Joy and Guy Steele. “The Java™ Language
Specification”, First Edition. Sun Microsystems, 1996

[JavaCC] Sun Microsystems & Metamata. The Java™ Parser Generator.
http://www.metamata.com/javacc/index.html.

[McIver96] Linda McIver and Damian Conway. Seven Deadly Sins of Introductory
Programming Language Design. In Proceedings, 1996 Conference on
Software Engineering: Education and Practice. IEEE Computing Socie
Press, Los Alamitos, CA, USA 1996. Pp 309-316.

[MOF01] Meta-Object Facility (MOF) Specification, OMG TC document
formal/2001-11-02, 2001

[RL77] Frederic Richard and Henry F. Ledgard. A Reminder for Language
Designers. ACM SIGPLAN Notices, Vol. 12 No. 12 (December 1977).
73-82.

[Visibroker] Inprise Corporation. “Visibroker 3.4 for Java”.
http://www.visigenic.com/visibroker/

[XMI02] XML-Based Model Interchange (XMI) Specification, OMG TC documen
formal/2002-01-01, 2002.
December 2002 HUTN Final Adopted Specification H-1

H

-

ation
[XML98] eXtensible Markup Language (XML) 1.0, World Wide Web Consortium
Recommendation 10-February-1998. Http://www.w3.org/TR/1998/REC
xml-19980210.

[XSLT99] XSL Transformations (XSLT) Version 1.0, W3C Proposed Recommend
8 October 1999.http://www.w3.org/TR/1999/PR-xslt-19991008.

[XT99] James Clark. XT. http://www.jclark.com/xml/xt.html.
H-2 HUTN Final Adopted Specification December 2002

	Overview
	1.1 Introduction
	1.2 Changes to Existing OMG Specifications
	1.3 Proof of Concept

	Overall Design Rationale
	2.1 Overall Approach
	2.2 Usability Criteria
	2.2.1 Syntax and Aesthetics
	2.2.2 Use of symbols and punctuation
	2.2.3 Use of reserved words
	2.2.4 User expectations
	2.2.5 Other considerations

	2.3 The Meta-Object Facility (MOF)
	2.4 XML-based Model Interchange (XMI)
	2.5 Example MOF Model
	2.6 Example XMI
	2.7 Equivalent HUTN
	2.8 Summary
	2.8.1 Generic
	2.8.2 Fully Automated
	2.8.3 Human Usable

	Conformance
	3.1 Overview
	3.2 Input Stream Conformance
	3.3 Output Stream Conformance
	3.4 HutnConfig HUTN Language Configuration Conformance
	3.5 ECA HUTN Language Configuration Conformance

	HUTN Design Rationale
	4.1 Overview
	4.2 The Base Language
	4.2.1 Use of familiar forms
	4.2.2 Structure reflects containment
	4.2.3 Defining and referencing major concepts
	4.2.4 Representing minor concepts

	4.3 Model-Specific Shorthands
	4.3.1 Identifying class instances (objects)
	4.3.2 Keywords and Adjectives
	4.3.3 Omission of Class Type of an Object Reference
	4.3.4 Omission of Reference Name for a Contained Object
	4.3.5 Default Values
	4.3.6 Parametric Form
	4.3.7 Renaming of Model Elements for HUTN languages

	Configuration
	5.1 HutnConfig Metamodel
	5.1.1 ClassConfig
	5.1.2 «enumeration» UniquenessScope
	5.1.3 «datatype» ClassRef
	5.1.4 «datatype» AttributeRef
	5.1.5 «datatype» ModelElementRef
	5.1.6 IdentifierConfig
	5.1.7 EnumAdjectiveConfig
	5.1.8 DefaultValueConfig
	5.1.9 ParametricConfig
	5.1.10 RenameConfig

	HUTN Document Production
	6.1 Notation
	6.2 Package Representations
	6.3 Class Representations
	6.4 Attribute Representations
	6.5 Reference Representations
	6.6 Classifier-Level Attributes
	6.7 Data Value Representations
	6.7.1 Numeric types
	6.7.2 Boolean
	6.7.3 Textual types
	6.7.4 Enum
	6.7.5 Object Reference
	6.7.6 TypeCode
	6.7.7 Any
	6.7.8 Struct
	6.7.9 Union
	6.7.10 Sequence, Array
	6.7.11 Collections (Set, Bag, List, UList)

	6.8 Association Representations
	6.9 Lexical issues
	6.9.1 Comments
	6.9.2 Identifiers
	6.9.3 Reserved Words
	6.9.4 White Space
	6.9.5 Numeric literals
	6.9.6 Character and string literals
	6.9.7 Bracketed Pairs/Lists
	6.9.8 Symbols

	6.10 Name Scope Optimization

	Configuration Notation
	7.1 HutnConfig Language Configuration

	ECA Textual Notation
	8.1 ECA Language Configuration

	References

