

Date: January 2012

OMG hData RESTful Transport

OMG Document Number: dtc/2012-01-03
Standard document URL: http://www.omg.org/spec/HL7/1.0
Associated Schema Files: none

This OMG document replaces the submission document (health/2011-09-04, alpha). It is an OMG Adopted Beta
specification and is currently in the finalization phase. Comments on the content of this document are welcome,
and should be directed to issues@omg.org by May 21, 2012.

You may view the pending issues for this specification from the OMG revision issues web page:
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 21, 2012. If you
are reading this after that date, please download the available specification from the OMG Specifications
Catalog.

Copyright © 2011, Object Management Group, Inc.
Copyright © 2009-2011, The MITRE Corporation

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ...iii

1 Scope ... 1

2 Namespaces .. 1

3 Glossary (non-normative) .. 1

4 Notational Conventions .. 2

5 Additional Information .. 2

5.1 Acknowledgements ...2

6 hData Record RESTful Transport .. 3

6.1 Overview ...3
6.1.1 Out of Scope ... 3
6.1.2 General Conventions .. 3

6.2 Operations on the Base URL ...3
6.2.1 GET .. 3
6.2.2 POST – Parameters:extensionID, path, name .. 4
6.2.3 PUT .. 4
6.2.4 DELETE ... 4
6.2.5 OPTIONS .. 4

6.3 baseURL/root.xml ..5
6.3.1 GET .. 5
6.3.2 POST, PUT, DELETE .. 5

6.4 baseURL/sectionpath ..5
6.4.1 GET ... 5
6.4.2 POST ... 5
6.4.3 PUT .. 6
6.4.4 DELETE ... 6

6.5 baseURL/sectionpath/documentname ..7
6.5.1 GET .. 7
6.5.2 PUT ... 7
6.5.3 POST ... 7
6.5.4 DELETE .. 7

7 Complex Operations .. 9
HL7 hData RESTful Transport i

7.1 Reliable Operation Pattern ..9

7.2 Asynchronous Request/Response Pattern ...11

8 Security Considerations ... 13

8.1 Security Mechanism Specification ..13

8.2 Baseline Security ..14
8.2.1 HTTP Transport Security ... 14
8.2.2 Message Security .. 14
8.2.3 Authentication .. 14

8.3 Specifying A Custom Security Mechanism ...15

8.4 General Web Security Considerations ..15

8.5 Risk Assessment Approach and Best Practices ...16

9 Realization of RLUS Profiles .. 17

9.1 Introduction ...17

9.2 Implementation of RLUS Interfaces ..17

Annex A - Bibliography .. 21
Annex B - Non Normative POST Example .. 23
ii HL7 hData RESTful Transport

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
 HL7 hData RESTful Transport iii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.
iv HL7 hData RESTful Transport

1 Scope

The hData RESTful application programming interface (API) specification defines remote operations for accessing
components of a Health Record and sending messages to an EHR system. “RESTful” refers to a style of web services in
which resources are identified by URLs and clients uses stateless HTTP operations to perform operations on those
resources [14].A related specification, the HL7 hData Record Format (HRF) [1], describes the logical organization of the
information in an electronic health record (EHR). Please refer to the HRF specification for more details on the HRF and
how it fits into the HL7 version 3 standards.

As described in more detail in section 9 of this specification, the hData specification is a platform specific module (PSM)
for the OMG Retrieve, Locate, Update Service (RLUS) platform independent model (PIM). It implements the RLUS PIM
Management and Query Interface using a RESTful architectural style.

2 Namespaces

This document uses the following namespaces, which are originally defined in the HL7 HRF specification [1]. This
specification uses a number of namespace prefixes throughout, as listed in Table 1. Note that the choice of namespace
prefix is arbitrary and not semantically significant.

3 Glossary (non-normative)

HL7 hData Record Format (HRF) – a related specification that specifies an abstract hierarchical organization,
packaging, and metadata for individual documents (referred to as “Section Documents” within the HRF specification).
Section Documents can be of any type, either XML documents (such as CDA documents, H7v3 messages, or simplified
XML wire formats, etc.) or of other media types (such as e.g. MS Word documents or DICOM files). Also contained in
this specification is the format for specifying the content that goes into an hData record, which is called the hData Content
Profile (HCP) format.

hData Record (HDR) - an single instantiation of the HRF.

OMG hData Restful Transport – the current specification, defining how the abstract hierarchical organization defined
within the HRF specification is access and modified through a RESTful approach, using HTTP as the access protocol. It
creates a unique mapping to an URL structure, and defines how HTTP verbs such as GET, PUT, DELETE, etc. affect the
underlying information.

hData Content Profile (HCP) - a profile of the content of an HDR. The HRF specification contains the definition of the
HCP format.

Namespace
Prefix

Namespace URI Description

hrf http://www.hl7.org/schema/hdata/2009/06/core Namespace for elements in this document

hrf-md http://www.hl7.org/schema/hdata/2009/11/meta SectionDocument metadata
HL7 hData RESTful Transport 1

RLUS – a Retrieve, Location, and Update Service, as defined jointly by OMG and HL7.

Semantic Signifier - a structure definition (such as a schema) and an associated set of validation instructions. The
semantic signifier describes the structural and semantic definition of the logical records managed by RLUS. The UML
diagram below indicates how e.g. XML or DICOM media types relate to the concept of a semantic signifier.

4 Notational Conventions

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

5 Additional Information

5.1 Acknowledgements

The following contributed to this publication:

• Nick Dikan

• Robert Dingwell

• Andrew Gregorowicz

• Marc Hadley

• Paul Knapp

• Mark Kramer

• John Koisch

• Stefano Lotti

• Anil Luthra

• Galen Mulrooney

• Dale Nelson

• Ken Rubin

• Samuel Sayer

• Harry Sleeper

• Andy Stechishin

Editor: Gerald Beuchelt
2 HL7 hData RESTful Transport

http://www.ietf.org/rfc/rfc2119.txt

6 hData Record RESTful Transport

6.1 Overview

Any instantiation of an HRF – called an hData Record (HDR) – can be represented as a set of Hypertext Transfer Protocol
(HTTP 1.1, see [8]) resources in a canonical way by mapping the hierarchical structure of the HDR to a URL resource
hierarchy underneath the baseURL (see below). Each HDR Section and Section Document is represented by a unique
URL, which is constructed from the Section paths and Section Document names. The entire HDR is referenced by a base
URL that depends on the implementation. See IETF RFC 3986, section 5 for more details. This base URL will be denoted
as baseURL throughout this document.

6.1.1 Out of Scope

While this specification does not dictate the format of the baseURL, the baseURL MUST NOT contain a query
component. All content within an HDR that uses this transport specification MUST be expressible as a HTTP resource. In
the following, the minimum version for HTTP is 1.1.

This specification does not address data modeling in any form. hData is designed to be able to transport clinical data of
any Internet Media Type. The HL7 HRF specification describes how established and emerging data models can be used
through the hData Content Profile mechanism by hData-enabled systems.

It should be noted that this specification was designed with extensibility in mind, e.g. by not defining certain HTTP
methods on classes of HTTP resources. When implementers use these extension points, the interoperability assertion of
this specification does not extend to such extensions, but only covers those parts of an implementation that are in
conformance with this documents. At the same time, implementers MUST implement all mandatory elements of this
specification.

6.1.2 General Conventions

Any HTTP GET, PUT, POST, DELETE, or OPTIONS operation (see [8], section 9) on a given resource that are not
implemented MUST return an HTTP response with a status code of 405 that includes an Allow header that specifies the
allowed methods. All operations SHOULD return HTTP status codes in the 5xx range if there is a server problem. Other
HTTP status code MAY be added by security mechanisms or other extensions.

It is RECOMMENDED that all section document responses include a “Last-Modified” header. It is RECOMMENDED
that all document resources support the “If-ModifiedSince” and “If-Unmodified-Since” headers to support conditional
GET and optimistic concurrency.

For improved performance it is RECOMMENDED that the server support client requests for GZIP compression. Clients
will request compression by setting the Accept-Encoding HTTP header to “gzip.” The server SHOULD honor this request
for all documents, so that devices may benefit from the reduced bandwidth needs and improved battery life when
requesting compressed content.

6.2 Operations on the Base URL

6.2.1 GET

If there is no HDR at the base URL, the server SHOULD return a 404 - Not found status code.
HL7 hData RESTful Transport 3

The server MUST offer an Atom 1.0 compliant feed of all child sections specified in the HRF specification [1], as
identified in the corresponding sections node in the root document.

It is RECOMMENDED that the server also offers a web user interface that allows users to access and manipulate the
content of the HDR, as permitted by the policies of the system. Selecting between the Atom feed and the user interface
can be achieved using standard content negotiation (HTTP Accept header). This is not necessary for systems that are used
by non-person entities only. If the Accept header is non-existent, or set to */* or application/atom+xml, the system MUST
return the Atom feed. For all other cases the format of the returned resource is left to the implementer.

Status Code: 200, 404

6.2.2 POST – Parameters:extensionID, path, name

This operation is used to create a new Section at the root of the document. The request body is of type “application/x-
www-form-urlencoded” and MUST contain the extensionId, path, and name parameters. The extensionId parameter MAY
be a string that is equal to value of one of the registered <extension> nodes of the root document of the HDR identified
by baseURL. The path MUST be a string that can be used as a URL path segment. If any parameters are incorrect or not
existent, the server MUST return a status code of 400.

The system MUST confirm that there is no other section registered as a child node that uses the same path name. If there
is a collision, the server MUST return a status code of 409.

If the extensionId is not registered as a valid extension, the server MUST verify that it can support this extension. If it
cannot support the extension it MUST return a status code of 406. It MAY provide additional entity information. If it can
support that extension, it MUST register it with the root.xml of this record.

When creating the section resource, the server MUST update the root document: in the node of the parent section a new
child node must be inserted. If successful, the server MUST return a 201 status code and SHOULD include the location
of the new section. The name parameter MUST be used as the user-friendly name for the new section.

Status Code: 201, 400, 406, 409

6.2.3 PUT

This operation is undefined by this specification.

Status Code: 405, unless an implementer defines this operation.

6.2.4 DELETE

This operation is undefined by this specification.

Status Code: 405, unless an implementer defines this operation.

6.2.5 OPTIONS

The OPTIONS operation on the baseURL is per [8], section 9.2, intended to return communications options to the clients.
Within the context of this specification, OPTIONS is used to indicate which security mechanisms are available for a given
baseURL and a list of hData content profiles supported by this implementation. All implementations MUST support
OPTIONS on the baseURL of each HDR and return a status code of 200, along with:

• The X-hdata-security HTTP header defined in section of this specification. The security mechanisms defined at the
baseURL are applicable to all child resources, i.e., to the entire HDR.
4 HL7 hData RESTful Transport

• An X-hdata-hcp HTTP header that contains a space separated list of the identifiers of the hData Content Profiles
supported by this implementation.

• The X-hdata-extensions HTTP header contains a space separated list of the identifiers of the hData extensions
supported by this implementation independent of their presence in the root document at baseURL/root.xml (cf. section
XXX in [1] describing the root document format for an explanation of the extensions in a root.xml).

The server MAY include additional HTTP headers. The response SHOULD NOT include an HTTP body. The client
MUST NOT use the Max-Forward header when requesting the security mechanisms for a given HDR.

Status Code: 200

6.3 baseURL/root.xml

6.3.1 GET

This operation returns an XML representation of the current root document, as defined by the HRF specification.

Status Code: 200

6.3.2 POST, PUT, DELETE

These operations MUST NOT be implemented.

Status Code: 405

6.4 baseURL/sectionpath

6.4.1 GET

This operation MUST return an Atom 1.0 [3] compliant feed of all section documents and child sections contained in this
section. Each entry MUST contain a link to a resource that uniquely identifies the section document or child section. If
the section document type defines a creation time, is RECOMMENDED to set the Created node to that datetime.

For section documents, the Atom Content element MUST contain the XML representation of its metadata (see [1],
Section 2.4.1).

Status Code: 200

6.4.2 POST

For creating a new sub section, three additional parameters are used, and the POST will create a new child section within
this section. For new documents a document MUST be sent that conforms to the business rules expressed by the extension
that the section has registered.

6.4.2.1 Add new section – Parameters: extensionId, path, name

The content type MUST equal “application/x-www-form-urlencoded” for the POST method to create a new sub section.
The extensionId parameter is the URI in the root.xml document that identifies the Extension element. If the extensionId
is not registered as a valid extension, the server MUST verify that it can support this extension. If it cannot support the
extension it MUST return a status code of 406 and MAY provide additional information in the entity body. If it can
HL7 hData RESTful Transport 5

support that extension, it MUST register it with the root.xml of this record. The path MUST be a string that can be used
as a URL path segment. The name parameter MUST be used as the user-friendly name for the new section. If any
parameters are incorrect, the server MUST return a status code of 400.

The system MUST confirm that there is no other section registered as a child node that uses the same path name and that
it can create a new subsection identified by the path parameter. If there is a collision, the server MUST return a status
code of 409.

When creating the section resource, the server MUST update the root document: in the node of the parent section a new
child node must be inserted. The server MUST return a 201 status code. The extensionId and path parameters are
REQUIRED, the name parameter is OPTIONAL.

Status Code: 201, 400, 406, 409

6.4.2.2 Add new document

When adding a new section document, the request Content Type MUST be “multipart/form-data” if including metadata.
In this case, the content part MUST contain the section document. The content part MUST include a Content-Disposition
header with a disposition of “form-data” and a name of “content.” The metadata part MUST contain the metadata for this
section document. The metadata part MUST include a Content-Disposition header with a disposition of “form-data” and
a name of “metadata.” It is to be treated as informational, since the service MUST compute the valid new metadata based
on the requirements found in the HRF specification. The content media type MUST conform to the media type of either
the section or the media type identified by metadata of the section document. For XML media types, the document MUST
also conform to the XML schema identified by the extensionId for the section or the document metadata. If the content
cannot be validated against the media type and the XML schema identified by the content type of this section, the server
MUST return a status code of 400.

If the request is successful, the new section document MUST show up in the document feed for the section. The server
returns a 201 with a Location header containing the URI of the new document.

Status Code: 201, 400

6.4.3 PUT

This operation is not defined by this specification.

Status Code: 405, unless an implementer defines this operation.

6.4.4 DELETE

This operation MAY be implemented, but special precaution should be taken: if a DELETE is sent to the section URL, the
entire section, its documents, and subsections are completely deleted. Future requests to the section URL MUST return a
status code of 404, unless the record is restored. If successful the server MUST return a status code of 204. If DELETE
is implemented, special precautions should be taken to assure against accidental or malicious deletion. Future requests to
the section URL MAY return a status code of 410, unless the record is restored.

Status Code: 204, 404, 410
6 HL7 hData RESTful Transport

6.5 baseURL/sectionpath/documentname

6.5.1 GET

This operation returns a representation of the document that is identified by documentname within the section identified
by sectionpath. The documentname is typically assigned by the underlying system and is not guaranteed to be identical
across two different systems. Implementations MAY use identifiers contained within the infoset of the document as
documentnames.

If no document of name documentname exists, the implementation MUST return a HTTP status code 404.

Status Codes: 200, 404

6.5.2 PUT

This operation is used to update a document by replacing it. The PUT operation MUST NOT be used to create a new
document; new documents MUST be created by POSTing to the section. If the client attempts to create a new document
this way, the server MUST return a 404. The content MUST conform to the media type identified by the document
metadata or the section content type. For media type application/xml, the document MUST also conform to the XML
schema that corresponds to the content type identified by the document metadata or the section. If the parameter is
incorrect or the content cannot be validated against the correct media type or the XML schema identified by the content
type of this section, the server MUST return a status code of 400.

If the request is successful, the new section document MUST show up in the document feed for the section. The server
returns a 200.

Status Code: 200, 400, 404

6.5.3 POST

This operation is used to replace metadata on a section document. When replacing the metadata, the hrf-md:DocumentId
MUST NOT be changed – the server MUST return a status code 403 if this is attempted. This operation SHOULD NOT
be used unless necessary for replicating information within an organization. If a section document is copied from one
system to another, a new document metadata instance MUST be constructed from the original metadata according to the
rules in the HRF specification.

The request Media Type MUST be application/xml. The body MUST contain the document metadata. It MUST conform
to the XML schema for the document metadata, defined in [1]. If the metadata is not of media type application/xml or it
cannot be validated against the document metadata XML schema, the server MUST return a status code of 400.

If the request is successful, the document metadata for the section document MUST be updated. The server returns a 201.

Status Code: 201, 400, 403

6.5.4 DELETE

This operation MAY be implemented. If a DELETE is sent to the document URL, the document is completely deleted. If
DELETE is implemented, special precautions should be taken to assure against accidental or malicious deletion. Future
requests to the section URL MAY return a status code of 410, unless the record is restored.

Status Code: 204, 410
HL7 hData RESTful Transport 7

8 HL7 hData RESTful Transport

7 Complex Operations

7.1 Reliable Operation Pattern

This pattern is a complex multi-step exchange, applicable to situations where reliable transfer of information is required.
This pattern MAY be combined when interacting with an hData Record or with other message patterns, as long as there is
no overloading of HTTP methods.

The use of the reliable operations pattern will be governed by the business requirements of the business domain. It should
be noted that this pattern breaks the statelessness of the service. As such, it cannot be used easily with load balancers and
similar horizontal scaling techniques.

The flow of the patterns is as follows:

1. The sender accesses the resourceURL resource using PUT, POST, or DELETE. To indicate that it wants to use the
reliable operations pattern, it sets the HTTP message header “X-hdata-reliable.”
HL7 hData RESTful Transport 9

2. If the resourceURL is capable of performing the reliable operations pattern, it will create a new resource for a
message at confirmationURL, and return an HTTP status code of 202. The HTTP result MUST contain the
confirmationURL in the HTTP location header and a confirmation secret in the “X-hdata-reliable-conf” header.
This secret SHOULD be a simple string of sufficient length to prevent guessing. The service MUST NOT process
the message at this stage. This means that once the confirmationURL is created the resource is locked, until the
pattern completes, or after a preconfigured time-out. The server MUST send a HTTP status code 405 to any client
trying to modify that resource while the resource is locked.
If the resourceURL does not implement the reliable operations pattern, it MUST return an HTTP status code of 405
and discard the message.

3. The sender MUST then POST an empty request body to the resource at confirmationURL and set the “X-hdata-
reliable-conf” header to the value provided in step 2. Upon receipt, the service – listening at the confirmationURL
– MUST validate the confirmation secret. Once the GET secret is validated, the service processor MUST process
the message immediately.

4. If the validation is successful, the confirmationURL returns an HTTP result with the expected status code for the
initial operation. If the validation is not successful, the service MUST return an HTTP status code of 409. The
sender MUST retry the POST until it receives either a different HTTP status code.

Remarks:

1. Since POST is not idempotent, the service MUST implement a safe guard against duplicity of requests for all
POSTs in this flow. It is RECOMMENDED that the service implements “POST Once Exactly” (POE) [13].

2. The confirmationURL resource MAY be destroyed after the reliable message pattern flow is complete. The service
MAY maintain the confirmationURL after the pattern flow completes.

3. If the initial operation in step 1 above is an application-level request message or document, the confirmationURL
MAY provide an application-level response in step 4. The response MAY be provided by returning the response
body in the final step; the HTTP status code MUST NOT be 409. For asynchronous responses, the
confirmationURL MAY return an HTTP status 303 with a “Retry-After” header, indicating when the response will
be available through a GET operation at the confirmationURL.
10 HL7 hData RESTful Transport

7.2 Asynchronous Request/Response Pattern

This pattern extends the Reliable Operations Pattern to enable a simple asynchronous request response pattern. It allows
a service to direct a client to return at a later time and pickup the result of a given request, by using the HTTP Retry-After
header.

This specification does not provide guidance to what constitutes an application-level request/response protocol.
Implementers of this specification can decide if this mechanism is appropriate for their application.

1. There is no default for how long the confirmationURL resource is available for confirmation (step 3). The service
MAY destroy the confirmationURL resource and discard the message if the sender does not complete step 3 of the
pattern flow. It is strongly RECOMMENDED to advertise the maximum time for confirming the message to the
developer of the sender in the documentation for the service. If the service discards the message after timing out
the confirmation step, it MUST return a status code of 404 at the confirmationURL permanently. If the service
issued a “Retry-After” header in response (as indicated in Remark 3.), it MUST provide the confirmationURL until
after the expiration of the time indicated by this header.
HL7 hData RESTful Transport 11

2. For operations on hData Records (as described in section 6) special provision MUST be taken to prevent alteration
of the resource once the reliable message pattern is initiated. This means that once the confirmationURL is created
the resource is locked, until the pattern completes, or after a preconfigured time-out. The server MUST send a
HTTP status code 405 to any client trying to modify that resource while the resource is locked. The service MUST
provide the old status of the resource until step 3 completes. It is RECOMMENDED to use the resource URL
(which is different from the URL for the metadata for the resource URL) also as the confirmationURL.
12 HL7 hData RESTful Transport

8 Security Considerations

This transport and API specification can be used to transfer data in many different situations, for example, inside
organizations, between organizations, or from medical devices. As such, the specification cannot provide a comprehensive
security solution that addresses the needs of all possible applications. However, this section describes a number of basic
security mechanisms that hData implementations MUST support. In addition, this section describes general web security
considerations and how additional security mechanisms and systems can be added to implementations of this standard.
Implementers of hData are advised to review their domain specific security requirements and select or create appropriate
security mechanisms. The section concludes with a discussion of risk analysis, which is highly recommended prior to
implementing and deploying any infrastructure for clinical systems.

While this specification does not define any access controls to the web resources, it is RECOMMENDED that a
comprehensive access control management system is always deployed with any hData installation.

8.1 Security Mechanism Specification

To allow the support of multiple security mechanisms at a single HRF resource, clients MUST be able to always access
the baseURL through an HTTP OPTIONS request (see [8], section 9.2). If the resource employs any security mechanism
with the exception of transport security (see 8.2.1), it MUST include the HTTP header X-hdata-security that MUST
contain a space separated list of URL-encoded URIs that identify the supported security mechanism. Section 8.2 includes
the URIs for the baseline security mechanisms.

It is RECOMMENDED that hData Content Profiles include a detailed specification of any required custom security
mechanisms. If the custom security mechanism The URIs for identifying these additional security mechanisms SHOULD
be made unique by using the DNS domain name in the first part of the URI.

Any new security mechanism specification that is compliant with this standard needs to provide the following items. This
SHOULD be done through a commonly readable text document, such as HTML. This package provides implementers
with the necessary security protocol information to create the security mechanism for their system.

1. Common Name (REQUIRED) – free text, recommended to be less that 32 characters.

2. Identifier (REQUIRED) – URI, recommended to include the originating organizations DNS domain name for
uniqueness. NOT REQUIRED for transport security (see 4.2.1). It is RECOMMENDED to use a URL that
resolves into the HTML representation of the security mechanism specification.

3. Exclusiveness (REQUIRED) – free text, describes if the mechanism can be combined with other mechanism.

4. Description (REQUIRED) – free text, includes a comprehensive description of all allowed interaction patterns,
parameters, and dependencies.

5. State diagram (RECOMMENDED) – UML state diagram, identifies all actors and illustrates all allowed interaction
patterns.

6. Business rules (RECOMMENDED) – free text, describes the business/domain justification and rules for this
security mechanism.

7. Example (RECOMMENDED) – free text, recommended to include examples including packet content for all
interaction patterns.

8. Other Content (OPTIONAL)
HL7 hData RESTful Transport 13

8.2 Baseline Security

The mechanisms described in this section MUST be supported by all implementation of this specification. While transport
security is always RECOMMENDED, there can be situations where transport security is not required.

The versions of IETF standards selected within this specification are the minimal REQUIRED versions. It is
RECOMMENDED to use more modern versions, as long as these newer versions are backward compatible.

8.2.1 HTTP Transport Security

Transport security is implemented within the network stack below the HTTP transport layer.

1. Common Name: HTTP Transport Security

2. Identifier: none – Not required because the identifier is encoded in the baseURL URL through the https scheme.

3. Exclusiveness: This mechanism can be combined with all other security mechanism.

4. Description: Implementations MUST support TLS 1.1 or higher. This protocol is described in detail in IETF RFC
4345 [2]. TLS supports both anonymous clients, as well as client authentication. Implementations of this
specification MUST support anonymous client, and MUST support client authentication through TLS. If TLS
client authentication is supported, implementation MAY use the principal obtained from the exchange in their
authentication and authorization process.

8.2.2 Message Security

1. Common Name: S/MIME Message security

2. Identifier: http://www.omg.org/hdata/2011/03/security/smime-messages

3. Exclusiveness: This mechanism can be combined with all other security mechanisms.

4. Description: Implementations MUST support S/MIME 3.2 or higher which is an IETF internet standard described
in IETF RFC 5751 [4]. S/MIME requires PKI certificates for sender and receiver, and also a way for the sender to
discover the public key certificate for the receiver. The sender should include its own certificate in the S/MIME
message. Implementations MUST use SHA-256 and RSA for signature and encryption, respectively. To achieve
confidentiality, implementations MUST use the EnvelopedData content type [10], section 2.4.3. The hData
SectionDocument that becomes the MIME payload of the S/MIME message MUST be prepared by the
implementation according to the requirements of the S/MIME specifications, with special consideration for the
MIME content type.

While out of scope for this specification, there are a number of ways to discover the certificates:

• If the receiver offers any web resources through https, it is RECOMMENDED to use the server certificate.

• If any discovery services are available, it is RECOMMENDED that the metadata for the endpoint includes the
public key certificate.

• If DNS CERT resource records (IETF 4398 [5]) are available, the sender MAY use the certificate published.
14 HL7 hData RESTful Transport

8.2.3 Authentication

Authentication can be achieved through all of the mechanisms described in this section. Implementations of this
specification MUST support all described authentication mechanisms, but these mechanisms MAY be disabled at deploy
or runtime.

8.2.3.1 HTTP Basic Authentication

1. Common Name: HTTP Basic Authentication

2. Identifier: http://www.omg.org/hdata/2011/03/security/http-basic-auth

3. Exclusiveness: This mechanism can be combined with all other security mechanisms. When combining with other
authentication mechanisms, it SHOULD use the other mechanism’s security principal for authentication and
authorization.

4. Description: Implementations MUST implement HTTP Basic Authentication as specified in IETF RFC 2617 [6],
section 2.

8.2.3.2 HTTP TLS Authentication

1. Common Name: HTTP over TLS

2. Identifier: http://www.omg.org/hdata/2011/03/security/http-tls-auth

3. Exclusiveness: This mechanism SHOULD NOT be combined with other authentication security mechanisms. If
combined with other security mechanisms, the principal of the client certificate, as identified by the Common
Name (CN) attribute of the certificate, SHOULD be used as the security principal in all subsequent authentication
and authorization decisions.

4. Description: Implementations MUST implement HTTP TLS Client Certificates as specified in IETF RFC 2246 [7],
section 7.4.6.

8.3 Specifying A Custom Security Mechanism

Additional security mechanisms that can be published through the X-hdata-security header can be created as needed by
the behavioral model and the application domain. It is RECOMMENDED to include or reference security mechanisms
necessary for a given hData Content Profile (HCP) within the HCP package. The security mechanism description MUST
comply with the template specified in Section 8.2, “Baseline Security.”

8.4 General Web Security Considerations

Because hData is implemented using common web technology, it is subject to the same security considerations as other
security-sensitive web applications and services. Because Internet threats and vulnerabilities are constantly evolving,
hData implementations should apply current best practices to assure appropriate levels of security.

These security best practices should be considered not only at the software application layer, but also at lower layers such
as the network layer and physical layer. For example, hData implementations MAY also support lower-level protection
mechanisms, such as IPSEC or other bulk traffic encryption. Typically, such technologies have no direct impact on the
application layer, and their use and implementation is determined by the networking infrastructure. Protection of critical
infrastructure services such as DNS or DHCP MAY be necessary. Information security must be integrated with non-IT
security as well:
HL7 hData RESTful Transport 15

• Any information processing systems must be protected from intentional and unintentional physical harm, both man-
made as well as natural.

• Business processes and non-IT workflow must integrate with information security, and prevent circumvention of
information security measures.

• System operators and end users must be cleared for access at the appropriate level.

The reader is advised to consult appropriate resources in this area for more information, such as NIST 800-12, NIST 800-
14, ISA-99, and ISO 27002.

8.5 Risk Assessment Approach and Best Practices

It is highly RECOMMENDED to perform a comprehensive risk analysis prior to deploying any clinical application. Risk
analysis is a systematic consideration of the threats, vulnerabilities, and consequences of gaps in security, as well as
mitigation strategies for risks. Often, the threats and vulnerabilities are captured in terms of specific scenarios that can be
re-used during security audits throughout the system’s lifecycle. The reader is advised to consult appropriate resources for
more information on cyber risk assessment, such as NIST 800-30, the IHE security cookbook [11], and ISO/TS 25238.
16 HL7 hData RESTful Transport

9 Realization of RLUS Profiles

9.1 Introduction

The Retrieve, Locate, Update Service (RLUS) Specification defines an HL7 framework for healthcare services. The hData
RESTful Transport is a realization of RLUS Functional Profiles. The hData Content Profile (HCP) [1], section 3, acts as
such as a Semantic Profile in the sense of [5], section 6.1. Taken together, the two portions of the hData specification
forms an RLUS Conformance profile. This section provides a mapping between the hData RESTful implementation and
the RLUS framework.

It should be noted that while this section is necessary to establish hData as a Platform Specific Module of the OMG
RLUS Platform Independent Module, it does not require any additional implementation burden on the developer.

9.2 Implementation of RLUS Interfaces

The RLUS specification defines a number of interfaces in [9], Section 5.4 “Detailed Functional Model.” These are mostly
implemented by the hData specification, as detailed within the table below. Note that a SectionDocument is the hData
realization of a RLUS Resource.

Table 9.1 - RLUS Runtime/Management and Query Interface

HL7 RLUS
SFM (CIM) –
RLUS Basic
Runtime
Capabilities

OMG RLUS STM
PIM Management
and Query Interface
(version 1.0.1, formal/
2011-07-02)

hData RESTful Platform
Specific Model (PSM)
Implementation

Note

Locate Resources
(4.4.1)

Locate (7.4) GET (baseURL)
GET (baseURL/sectionpath)

Parameter-specific query may be
implemented either over a single
HDR or a collection of HDR by
another specification. This is out-
of-scope for the HRF and this
specification.

Get Resource
(4.4.2)

Get (7.2) GET (baseURL/sectionpath/
documentname)

This is implemented using an
HTTP GET operation on the
resource identified by its URL.

List and Get
Resource (4.4.3)

List (7.3) Not implemented The Atom 1.0 feed returned at
each Section level as well as at
the baseURL (see Sections 6.4.1
and 6.2.1, respectively)
implements the List Interface

Put Resource
(4.4.4)

Put (7.5) POST (baseURL/sectionpath) Sub clause 6.4.2.2 (Add new
document) describes how a new
SectionDocument can be created.
HL7 hData RESTful Transport 17

Section 5.6 in the HL7 RLUS SFM describes the Introspective Capabilities, which are mapped to hData in the following
table.

Initialize Resource
(4.4.5)

Initialize (7.8) Not implemented The initialization of a resource
and the actual creation is always
performed in a single transaction
within hData. As such, when
creating a new SectionDocument
as described in Section 6.4.2.2,
hData returns the location of the
newly created resource as part of
the transaction. As such, this
operation by itself makes no
sense in the hData RESTful
context

Discard Resource
(4.4.6)

Discard (7.6) DELETE (baseURL/sectionpath) Section 6.5.4 (DELETE)
describes how a
SectionDocument can be deleted.

Table 9.2 - RLUS Introspective/Semantic Profiles Interface

HL7 RLUS
SFM (CIM) –
Introspective
Capabilities

OMG RLUS STM
PIM Semantic
Profiles interface
(version 1.0.1,
formal/2011-07-02)

hData RESTful
Platform Specific
Model Implementation

Note

List
Conformance
Profiles
(4.6.1)

List Conformance
profiles (13.6)

OPTIONS (baseURL) Section 6.2.5 (OPTIONS) describes the X-
hdata-hcp header which returns a list of
hData content profiles.

List Semantic
Signifiers (4.6.2)

List Semantic Signifier
(13.5)

GET (hDataRoot/root.xml)
or
OPTIONS (baseURL)

The root.xml at the baseUrl contains the list
of supported elements within the Extensions
node. The list of Extension elements
represents the list of semantic signifiers, as
required by [5] 5.2.1. (The HRF
specification [1] recommends URLs as
identifiers for each Extension, which should
resolve into a RDDL document describing
the given Extension. This is consistent with
the recommendation of [5] section 5.2.1 to
provide an explanation for each semantic
signifier.)
Alternatively, the list of Extension can also
be obtained throught the OPTIONS request
against the baseURL and the evaluation of
the X-hdata-extension HTTP header (see
section 6.2.5).

Table 9.1 - RLUS Runtime/Management and Query Interface
18 HL7 hData RESTful Transport

Since the above mapping provides the Basic Runtime and the Introspective Capabilities, hData implements RLUS at Level 2
(see [9], section 6.2).

Describe
Semantic
Signifier (4.6.3)

Describe (7.7)a

Find Semantic Signifier
(13.3)

GET (url) For any <Extension> that is a URL and
resolves into a RDDL document, the
necessary description can be retrieved.
Thus, if an hData implementation strives to
be compliant to this interface,
recommendation in [1] section 2.3 to use
URLs and resolve into RDDLs becomes a
requirement.

Put Semantic
Signifier (4.6.4)

Create Semantic
Signifier (13.2)

Update Semantic
Signifier (13.4)

Not implemented hData does not allow explicit creation of
new Extensions for a given system.
However, if the system supports Extensions
that are not currently registered in the
root.xml document, they can be added to the
record by creating a new Section as
described in Section 6.2.2 and 6.4.2.

a. For pragmatic reason Describe operation, currently, is included in the Management and Query Interface of the OMG. PIM

Table 9.2 - RLUS Introspective/Semantic Profiles Interface
HL7 hData RESTful Transport 19

20 HL7 hData RESTful Transport

Annex A - Bibliography

[1] G. Beuchelt et al., "hData Record Format", The MITRE Corporation, 2011.

[2] IETF RFC 4345 “Transport Layer Security (TLS) 1.1,” online at http://tools.ietf.org/html/rfc4346

[3] IETF Network Working Group. (2005, Dec.) IETF. [Online]. http://www.ietf.org/rfc/rfc4287.txt

[4] IETF Network Working Group “S/MIME 3.2 Message Specification,” online at http://tools.ietf.org/html/

rfc5751

[5] IETF Network Working Group, “Storing Certificates in the Domain Name System (DNS),” online at http://

tools.ietf.org/html/rfc4398

[6] IETF Network Working Group, “HTTP Authentication: Basic and Digest Access Authentication,” online at

http://tools.ietf.org/html/rfc2617

[7] IETF Network Working Group “The TLS Protocol,” online at http://tools.ietf.org/html/rfc2246

[8] IETF Network Working Group “Hypertext Transfer Protocol – HTTP 1.1,” online at http://tools.ietf.org/html/
rfc2616

[9] HL7 Resource Location and Updating Service (RLUS), DSTU Release 1, Health Level Seven, Inc., December
2006

[10] “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification,” RFC 3851,

The Internet Society, July 2004, online at http://www.rfc-editor.org/rfc/rfc3851.txt

[11] “Cookbook:Preparing the IHE Profile Security Section,” IHE International, October 2008, online at http://
www.ihe.net/Technical_Framework/upload/IHE_ITI_Whitepaper_Security_Cookbook_2008-11-10.pdf
HL7 hData RESTful Transport 21

http://tools.ietf.org/html/rfc4346
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc4398
http://tools.ietf.org/html/rfc4398
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc3851.txt

22 HL7 hData RESTful Transport

Annex B - Non Normative POST Example

The following example illustrates the wire-level representation of an HTTP POST operation adding a new
SectionDocument (see also Section 2.4.2.2) using a simplified payload.

POST /example.com/additionalPatientInfo/patient1234/allergies/ HTTP/1.0

Content-Length: 1105

Content-Type: multipart/form-data; boundary=END_OF_PART

--END_OF_PART

Content-Disposition: form-data; name="content"

Content-Type: application/xml

<allergy:allergy xmlns:allergy="http://projecthdata.org/hdata/schemas/2009/06/
allergy">

 <allergy:product codeSystem="2.16.840.1.113883.6.88" code="310965" />

 <allergy:narrative>Ibuprofen allergy</allergy:narrative>

</allergy:allergy>

--END_OF_PART

Content-Disposition: form-data; name="metadata"

Content-Type: application/xml

<hrf-md:DocumentMetaData>

 <hrf-md:DocumentId>allergy1.xml</hrf-md:DocumentId>

 <hrf-md:RecordDate>

 <hrf-md:CreatedDateTime>

 2009-10-10T09:21:55Z

 </hrf-md:CreatedDateTime>

 <hrf-md:Modified>

 <hrf-md:ModifiedDateTime>

 2011-08-13T18:30:02Z

 </hrf-md:ModifiedDateTime>
HL7 hData RESTful Transport 23

 </hrf-md:Modified>

 </hrf-md:RecordDate>

 <hrf-md:LinkedDocuments>

 <hrf-md:LinkInfo>

 <hrf-md:Target>

 http://example.com/additionalPatientInfo/patient1234/allergies

 </hrf-md:Target>

 </hrf-md:LinkInfo>

 </hrf-md:LinkedDocuments>

</hrf-md:DocumentMetaData>

--END_OF_PART--
24 HL7 hData RESTful Transport

	Preface
	1 Scope
	2 Namespaces
	3 Glossary (non-normative)
	4 Notational Conventions
	5 Additional Information
	5.1 Acknowledgements

	6 hData Record RESTful Transport
	6.1 Overview
	6.1.1 Out of Scope
	6.1.2 General Conventions

	6.2 Operations on the Base URL
	6.2.1 GET
	6.2.2 POST – Parameters:extensionID, path, name
	6.2.3 PUT
	6.2.4 DELETE
	6.2.5 OPTIONS

	6.3 baseURL/root.xml
	6.3.1 GET
	6.3.2 POST, PUT, DELETE

	6.4 baseURL/sectionpath
	6.4.1 GET
	6.4.2 POST
	6.4.2.1 Add new section – Parameters: extensionId, path, name
	6.4.2.2 Add new document

	6.4.3 PUT
	6.4.4 DELETE

	6.5 baseURL/sectionpath/documentname
	6.5.1 GET
	6.5.2 PUT
	6.5.3 POST
	6.5.4 DELETE

	7 Complex Operations
	7.1 Reliable Operation Pattern
	7.2 Asynchronous Request/Response Pattern

	8 Security Considerations
	8.1 Security Mechanism Specification
	8.2 Baseline Security
	8.2.1 HTTP Transport Security
	8.2.2 Message Security
	8.2.3 Authentication
	8.2.3.1 HTTP Basic Authentication
	8.2.3.2 HTTP TLS Authentication

	8.3 Specifying A Custom Security Mechanism
	8.4 General Web Security Considerations
	8.5 Risk Assessment Approach and Best Practices

	9 Realization of RLUS Profiles
	9.1 Introduction
	9.2 Implementation of RLUS Interfaces

	Annex A - Bibliography
	Annex B - Non Normative POST Example

