

Date: October 2013

OMG hData RESTful Transport

Version 1.0

OMG Document Number: formal/2013-10-03
Standard document URL: http://www.omg.org/spec/hData/
Machine Consumable File(s)*:

Non-normative:
http://www.omg.org/spec/hData/20121201/OMG hData REST RLUS v1.0 Diagrams.xml

Copyright © 2009-2011, The MITRE Corporation
Copyright © 2013, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™, and SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

Preface ...iii

1 Scope ... 1

2 Namespaces .. 1

3 Glossary (non-normative) .. 1

4 Notational Conventions .. 2

5 Additional Information .. 2

5.1 Acknowledgements ...2

6 hData Record RESTful Transport .. 5

6.1 Overview ...5
6.1.1 Out of Scope ... 5
6.1.2 General Conventions and Considerations .. 5

6.2 Operations on the Base URL ...8
6.2.1 GET .. 8
6.2.2 POST – Parameters:extensionID, path, name .. 8
6.2.3 PUT .. 8
6.2.4 DELETE ... 8
6.2.5 OPTIONS .. 9

6.3 Special Paths on baseURL ..9
6.3.1 baseURL/root ... 9
6.3.2 baseURL/metadata ... 10
6.3.3 baseURL/search ... 10

6.4 baseURL/sectionpath .. 10
6.4.1 GET ... 10
6.4.2 POST .. 10
6.4.3 PUT ... 12
6.4.4 DELETE .. 12

6.5 baseURL/sectionpath/documentname ..12
6.5.1 GET ... 13
6.5.2 POST .. 13
6.5.3 PUT ... 13
6.5.4 DELETE .. 14

6.6 Queries ...14
OMG hData RESTful Transport, v1.0 i

7 Complex Operations .. 15

7.1 Reliable Operation Pattern ..15

8 Security Considerations ... 19

8.1 General ...19

8.2 Security Mechanism Specification ..19

8.3 Baseline Security ..20
8.3.1 HTTP Transport Security ... 20
8.3.2 Message Security .. 20
8.3.3 Authentication .. 21

8.4 Specifying A Custom Security Mechanism ...21

8.5 General Web Security Considerations ..21

8.6 Risk Assessment Approach and Best Practices ...22

9 Realization of RLUS Profiles (non-normative) ... 23

9.1 Introduction ...23

9.2 Implementation of RLUS Interfaces ..23

Annex A - Bibliography .. 27
ii OMG hData RESTful Transport, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
OMG HData RESTful Transport, v1.0 iii

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
report_issue.htm.
iv OMG HData RESTful Transport, v1.0

1 Scope

The hData RESTful application programming interface (API) specification defines remote operations for accessing
components of a Health Record and sending messages to an EHR system. “RESTful” refers to a style of web services in
which resources are identified by URLs and clients use stateless HTTP operations to perform operations on those
resources [14]. A related specification, the HL7 hData Record Format (HRF) [1], describes the logical organization of the
information in an electronic health record (EHR). Please refer to the HRF specification for more details on the HRF and
how it fits into the HL7 version 3 standards.

As described in more detail in Clause 9 of this specification, the hData specification is a platform specific module (PSM)
for the OMG Retrieve, Locate, Update Service (RLUS) platform independent model (PIM) (see [13]). It implements the
RLUS PIM Management and Query Interface using a RESTful architectural style. The current specification is specific to
the current RLUS PIM. If RLUS evolves and adds new functionalities and conformance profiles, the hData specification
will need to be updated to reflect these changes accordingly.

In addition to the RLUS conformant operations, this specification introduces a number of additional features and
operations specific to the operational needs of REST compliant set of HTTP services in the context of health information
exchange: Clause 7 describes a mechanism to provide receipt confirmation of the message exchange to both client and
server. Clause 8 provides a general framework for the server to provide information about the supported security
mechanisms to the client.

2 Namespaces

This document uses the following namespaces. This specification uses a number of namespace prefixes throughout; as
listed in Table 1. Note that the choice of any namespace prefix is arbitrary and not semantically significant.

3 Glossary (non-normative)

• HL7 hData Record Format (HRF) - This specification specifies an abstract hierarchical organization, packaging,
and metadata for individual documents (referred to as “Section Documents” within the HRF specification). Section
Documents can be of any type, either XML documents (such as CDA documents, H7v3 messages, or simplified XML
wire formats, etc.) or of other media types (such as e.g., MS Word documents or DICOM files). Also contained in this
specification is the format for specifying the content that goes into an hData record, which is called the hData Content
Profile (HCP) format.

• hData Record (HDR) - A single instantiation of the HRF.

Namespace
Prefix

Namespace URI Description

hrf http://projecthdata.org/hdata/schemas/2009/06/core Namespace for elements in this document

hrf-md http://projecthdata.org/hdata/schemas/2009/11/meta SectionDocument metadata
OMG HData RESTful Transport, v1.0 1

• OMG hData Restful Transport - The current specification, defining how the abstract hierarchical organization
defined within the HRF specification is accessed and modified through a RESTful approach, using HTTP as the access
protocol. It creates a unique mapping to an URL structure, and defines how HTTP verbs such as GET, PUT, DELETE,
etc. affect the underlying information.

• hData Content Profile (HCP) - A profile of the content of an HDR. The HRF specification contains the definition of
the HCP format.

• RLUS - A Retrieve, Location, and Update Service, as defined jointly by OMG and HL7.

• Semantic Signifier - A structure definition (such as a schema) and an associated set of validation instructions. The
semantic signifier describes the structural and semantic definition of the logical records managed by RLUS.

4 Notational Conventions

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

5 Additional Information

5.1 Acknowledgements

The following contributed to this publication:

• Nick Dikan

• Robert Dingwell

• Andrew Gregorowicz

• Grahame Grieve

• Marc Hadley

• Paul Knapp

• Mark Kramer

• John Koisch

• Stefano Lotti

• Anil Luthra

• Galen Mulrooney

• Dale Nelson

• Ken Rubin

• Samuel Sayer
2 OMG HData RESTful Transport, v1.0

• Harry Sleeper

• Andy Stechishin

Editor: Gerald Beuchelt
OMG HData RESTful Transport, v1.0 3

4 OMG HData RESTful Transport, v1.0

6 hData Record RESTful Transport

6.1 Overview

Any instantiation of an HRF - called an hData Record (HDR) - can be represented as a set of Hypertext Transfer Protocol
(HTTP 1.1, see [8]) resources in a canonical way by mapping the hierarchical structure of the HDR to a URL resource
hierarchy underneath the base URL (see below). Each HDR Section and Section Document is represented by a unique
URL, which is constructed from the Section paths and Section Document names. The entire HDR is referenced by a base
URL that depends on the implementation. See IETF RFC 3986, section 5 for more details. This base URL will be denoted
as base URL throughout this document.

6.1.1 Out of Scope

While this specification does not dictate the format of the baseURL, the base URL MUST NOT contain a query
component. All content within an HDR that uses this transport specification MUST be expressible as a HTTP resource. In
the following, the minimum version for HTTP is 1.1.

This specification does not address data modeling in any form. hData is designed to be able to transport clinical data of
any Internet Media Type. The HL7 HRF specification describes how established and emerging data models can be used
through the hData Content Profile mechanism by hData-enabled systems.

It should be noted that this specification was designed with extensibility in mind, e.g. by not defining certain HTTP
methods on classes of HTTP resources. When implementers use these extension points, the interoperability assertion of
this specification does not extend to such extensions, but only covers those parts of an implementation that are in
conformance with this document. At the same time, implementers MUST implement all mandatory elements of this
specification.

6.1.2 General Conventions and Considerations

Default Response Codes

Any HTTP GET, PUT, POST, DELETE, or OPTIONS operation (see [8], section 9) on a given resource that is not implemented
MUST return an HTTP response with a status code of 405 that includes an Allow header that specifies the allowed methods. All
operations SHOULD return HTTP status codes in the 5xx range if there is a server problem. Other HTTP status codes MAY be
added by security mechanisms or other extensions.

Incorrect Updates

Servers are permitted to reject update operations because of integrity concerns or business rules implemented on the
server, and return HTTP status code 409 Conflict. .

Recommended HTTP Headers

It is RECOMMENDED that all section document responses include a “Last-Modified” header. It is RECOMMENDED that all
document resources support the “If-ModifiedSince” and “If-Unmodified-Since” headers to support conditional GET and
optimistic concurrency.
OMG HData RESTful Transport, v1.0 5

http://example.com/foo/bar/net.ihe/DocumentEntry/123456

Content Compression

For improved performance it is RECOMMENDED that the server support client requests for GZIP compression. Clients will
request compression by setting the Accept-Encoding HTTP header to “gzip.” The server SHOULD honor this request for all
documents, so that devices may benefit from the reduced bandwidth needs and improved battery life when requesting
compressed content.

Content Negotiation

All URLs within this section MUST support HTTP content negotiation through the use of the HTTP Accept header (see
[8]). The client MUST NOT ask for media types not supported by the Content Model. If the client requests an
unsupported media type, the server MUST return a HTTP status code 415.

In addition, the service SHOULD support alternate content negotiation by allowing to append a HTTP query string of the
following form: (URL)?$format=(mediaType) where (URL) is the URL for the resource and (mediaType) is a valid media
type supported by the content type of the resource. Since XML and JSON based formats will be commonly used, clients
MAY use “xml” instead of “text/xml” and “json” instead of “application/json”, respectively. Servers MUST understand
these abbrevated media types.

For Section-level URLs and query responses it is RECOMMENDED to allow representation of the Atom feed in at least
the standard application/atom+xml media type, as well as in application/json media type. This is achieved by representing
the Atom feed through a JSON object. This object is built as follows:

• The object SHOULD have an attribute “updated” with the time of the completion of the query rendered by calling the
JavaScript Date.toString method.

• The object SHOULD include an attribute “self” with a URL pointing to the URL corresponding to the query.

• The object MUST include an array called “entries” that contains objects corresponding to the results of the query.

The objects contained in the entries correspond to SectionDocuments, and each object in the array MUST contain the
following attributes:

• An attribute called “id” that is set to the path segment of the documentname in the URL for the SectionDocument (see
section 6.5).

• An attribute called “self” that MUST contain a URL which points to the

• (resourceURL), as defined in section 6.5.

• An attribute called “updated” that MUST contain the

• time of the last update to the SectionDocument. It is rendered according to the rules of ECMAScript Date interchange
format (see ECMA-262, section 15.9.1.15).

Example (non-normative):

{
 “updated”:”2012-10-21T12:34:28Z”,
 “self”:http://example.com/foo/bar”,
 “entries”:[
 {
 “id”:”123456”,
 “self”:http://example.com/foo/bar/123456”,
 “updated”:”2012-10-21T12:34:28Z”
 },
6 OMG HData RESTful Transport, v1.0

 {
 “id”:”9876”,
 “self”:http://example.com/foo/bar/9876”,
 “updated”:”2012-10-21T12:34:28Z”
 }
]
}

This example is equivalent to the following Atom feed:

<?xml version="1.0" encoding="utf-8"?>
 <feed xmlns="http://www.w3.org/2005/Atom">
 <title>Example Query</title>
 <link rel=“self”
 href="http://example.com/foo/bar"/>
 <updated>2012-10-21T12:34:28Z</updated>
 <entry>
 <title>123456</title>
 <link rel=“self” href="http://example.com/foo/bar/123456"/>
 <id>123456</id>
 <updated>2012-10-21T12:34:28Z</updated>
 </entry>
 <entry>
 <title>9876</title>
 <link rel=“self” href="http://example.com/foo/bar/9876"/>
 <id>9876</id>
 <updated>2012-10-21T12:34:28Z</updated>
 </entry>
 </feed>

Forbidden Keywords

To allow optional extensions, the sectionpath and the SectionDocument documentname MUST NOT use any of the
following keywords

• history

• root

• search

• validate

6.1.2.1 Intermediaries Consideration

The HTTP protocol may be routed through an HTTP proxy such as squid. Such proxies are transparent to the
applications, though implementors should be alert to the effects of rogue caching. Interface engines may also be placed
between the consumer and the provider; these differ from proxies because they actively alter the content or destination of
the HTTP exchange, and are not bound by the rules that apply to HTTP proxies. Such agents are allowed, but MUST
mark the HTTP header to assist with troubleshooting. Any agent that modifies an HTTP request or response content other
than permitted under the rules for HTTP proxies must add a stamp to the HTTP headers like this:

• request-modified-[identity]: [purpose]

• response-modified-[identity]: [purpose]
OMG HData RESTful Transport, v1.0 7

The identity must be a single token defined by the administrator of the agent that will sufficiently identify the agent in the
context of use. The header must specify the agent’s purpose in modifying the content. End point systems must not use this
header for any purpose; its aim is to assist with system troubleshooting.

6.2 Operations on the Base URL

6.2.1 GET

If there is no HDR at the base URL, the server SHOULD return a 404 - Not found status code.

The server MUST offer an Atom 1.0 compliant feed of all child sections specified in the HRF specification [1], as
identified in the corresponding sections node in the root document.

It is RECOMMENDED that the server also offers a web user interface that allows users to access and manipulate the
content of the HDR, as permitted by the policies of the system. Selecting between the Atom feed and the user interface
can be achieved using standard content negotiation (HTTP Accept header). This is not necessary for systems that are used
by non-person entities only. If the Accept header is non-existent, or set to */* or application/atom+xml, the system MUST
return the Atom feed. For all other cases the format of the returned resource is left to the implementer.

Status Code: 200, 404

6.2.2 POST – Parameters:extensionID, path, name

This operation is used to create a new Section at the root of the document. The request body is of type "application/
xwww-form-urlencoded" and MUST contain the extensionId, path, and name parameters. The extensionId parameter
MAY be a string that is equal to value of one of the registered <extension> nodes of the root document of the HDR
identified by base URL. The path MUST be a string that can be used as a URL path segment. If any parameters are
incorrect or not existent, the server MUST return a status code of 400.

The system MUST confirm that there is no other section registered as a child node that uses the same path name. If there
is a collision, the server MUST return a status code of 409.

If the extensionId is not registered as a valid extension, the server MUST verify that it can support this extension. If it
cannot support the extension it MUST return a status code of 406. It MAY provide additional entity information. If it can
support that extension, it MUST register it with the root document of this record.

When creating the section resource, the server MUST update the root document: in the node of the parent section a new
child node must be inserted. If successful, the server MUST return a 201 status code and SHOULD include the location
of the new section. The name parameter MUST be used as the user-friendly name for the new section.

Status Code: 201, 400, 406, 409

6.2.3 PUT

This operation is undefined by this specification.

Status Code: 405, unless an implementer defines this operation.

6.2.4 DELETE

This operation is undefined by this specification.
8 OMG HData RESTful Transport, v1.0

Status Code: 405, unless an implementer defines this operation.

6.2.5 OPTIONS

The OPTIONS operation on the base URL is per [8], section 9.2, intended to return communications options to the
clients. Within the context of this specification, OPTIONS is used to indicate which security mechanisms are available for
a given base URL and a list of hData content profiles supported by this implementation. All implementations SHOULD
support OPTIONS on the base URL of each HDR and return a status code of 200, along with:

• The WWW-Authenticate HTTP header defined in RFC 2617 [6]. The security mechanisms defined at the baseURL are
applicable to all child resources, i.e., to the entire HDR. Refer to section 8 for a detailed discussion on the semantics of
this field.

• An X-hdata-hcp HTTP header that contains a space separated list of the identifiers of the hData Content Profiles
supported by this implementation.

• The X-hdata-extensions HTTP header contains a space separated list of the identifiers of the hData extensions
supported by this implementation independent of their presence in the root document at base URL/root (cf. section
XXX in [1] describing the root document format for an explanation of the extensions in a root).

The server MAY include additional HTTP headers. The response SHOULD return an HTTP body with the document
identified in section 6.3.2. The client MUST NOT use the Max-Forwards header when requesting the security
mechanisms for a given HDR. If it does, the server MUST return a 403 Forbidden status code with optional message
"Request cannot include Max-Forwards header field".

If the baseURL does not correspond to an HDR, it should not respond with a successful OPTIONS response, but return a
404 error.

Status Code: 200, 403, 404

6.3 Special Paths on baseURL

6.3.1 baseURL/root

6.3.1.1 GET

This operation MUST return an XML representation of the current root document, as defined by the HRF specification. If
the server supports non-XML representations of the root Document, the client MAY request different media types through
the content negotiation mechanisms.

If there is no HDR at the base URL, the server SHOULD return a 404 - Not found status code.

Status Code: 200, 404, 415

6.3.1.2 6.3.1.2 POST, PUT, DELETE

These operations MUST NOT be implemented.
OMG HData RESTful Transport, v1.0 9

Status Code: 405

6.3.2 baseURL/metadata

6.3.2.1 GET

The resource at this URL represents the metadata associate with the operations of this service. Any request to this URL
MUST be completed without prior authentication or authorization. The service MUST return an XML document
describing implementation specific metadata. The semantics of this records are identical to the values of the header fields
in 6.2.5.

Status Code: 200, 415

6.3.2.2 POST, PUT, DELETE

These operations MUST NOT be implemented.

Status Code: 405

6.3.3 baseURL/search

6.3.3.1 GET

Please refer to section 6.6 for a definition of the query mechanism.

6.3.3.2 POST, PUT, DELETE

These operations MUST NOT be implemented.

Status Code: 405

6.4 baseURL/sectionpath

6.4.1 GET

This operation MUST return an Atom 1.0 [3] compliant feed of all section documents and child sections contained in this
section. Each entry MUST contain a link to a resource that uniquely identifies the section document or child section. For
section documents, this link MUST be the version specific link (see section 6.5). If the section document type defines a
creation time, it is RECOMMENDED to set the Created node to that datetime. For documents that were deleted using the
DELETE operation in section 6.5.4, the server SHOULD create an Atom entry with a <at:deleted-entry> node set as
described in section 6.5.4.

For section documents, the Atom Content element MUST contain the XML representation of its metadata (see [1], Section 2.4.1).

If baseURL does not exist or no sectionpath of name sectionpath exists, the implementation MUST return a HTTP status
code 404.

Status Code: 200, 404, 415

6.4.2 POST

For creating a new sub section, three additional parameters are used, and the POST will create a new child section within this
section. For new documents a document MUST be sent that conforms to the business rules expressed by the extension that the
section has registered.
10 OMG HData RESTful Transport, v1.0

6.4.2.1 Add new section – Parameters: extensionId, path, name

The content type MUST equal “application/x-www-form-urlencoded” for the POST method to create a new sub section. The
extensionId parameter is the URI in the root document that identifies the Extension element. If the extensionId is not
registered as a valid extension, the server MUST verify that it can support this extension. If it cannot support the extension it
MUST return a status code of 406 and MAY provide additional information in the entity body. If it can support that
extension, it MUST register it with the root of this record. The path MUST be a string that can be used as a URL path
segment. The name parameter MUST be used as the user-friendly name for the new section. If any parameters are
incorrect, the server MUST return a status code of 400.

The system MUST confirm that there is no other section registered as a child node that uses the same path name and that
it can create a new subsection identified by the path parameter. If there is a collision, the server MUST return a status
code of 409.

When creating the section resource, the server MUST update the root document: in the node of the parent section a new child
node must be inserted. When creating a sub-section resource, the server MUST also update the Atom 1.0 [3] compliant
feed for the parent section: a new child node must be inserted as an entry in the Atom content with a link to the new
section. The server MUST return a 201 status code. The extensionId and path parameters are REQUIRED, the name
parameter is OPTIONAL.

Status Code: 201, 400, 406, 409

6.4.2.2 Add new document

When adding a new section document, the request Content Type MUST be “multipart/form-data” if including metadata.
In this case, the content part MUST contain the section document. The content part MUST include a Content-Disposition header
with a disposition of “form-data” and a name of “content.” The metadata part MUST contain the metadata for this section
document. The metadata part MUST include a Content-Disposition header with a disposition of “form-data” and a name
of “metadata.” It is to be treated as informational, since the service MUST compute the valid new metadata based on the
requirements found in the HRF specification. The content media type MUST conform to the media type of either the
section or the media type identified by metadata of the section document. For XML media types, the document MUST also
conform to the XML schema identified by the extensionId for the section or the document metadata. If the content cannot be
validated against the media type and the XML schema identified by the content type of this section, the server MUST return a
status code of 400.

If POST does not include metadata then MUST POST with a Content Type conforming to the media type of the section.
The body of the POST MUST contain the document of the new document. Document metadata in this case MUST be
created by the system, based on instructions in the hData Content Profile applying to the system.

The server MAY support bulk updates of sections: if the media type is set to “application/xml+atom”, the client MUST
send a valid Atom 1.0 feed that complies with the requirements for the Atom feed provided by the section. The server will
parse the feed and add any <atom:entry> as a new SectionDocument to the section. If the client intends to update a server
resource, it MUST include the server URL for that resource in the <atom:link rel=”self”> element of the entry. If the
client intends to create a new SectionDocument, it MUST NOT use <atom:link rel=”self”>.

If the POSTed feed contains entries that the server already knows about, it MUST update these entries if they are different
from the server’s version.

If the request is successful, the new section document MUST show up in the document feed for the section. The server returns
a 201 with a Location header containing the URI of the new document.

Status Code: 201, 400
OMG HData RESTful Transport, v1.0 11

6.4.3 PUT

This operation is not defined by this specification.

Status Code: 405, unless an implementer defines this operation.

6.4.4 DELETE

This operation MAY be implemented, but special precaution should be taken: if a DELETE is sent to the section URL, the entire
section, its documents, and subsections are completely deleted. Future requests to the section URL MUST return a status code
of 404, unless the record is restored. If successful the server MUST return a status code of 204. If DELETE is
implemented, special precautions should be taken to assure against accidental or malicious deletion. Future requests to the
section URL MAY return a status code of 410, unless the record is restored.

Status Code: 204, 404, 410

6.5 baseURL/sectionpath/documentname

The resource URL for a SectionDocument is constructed as follows:

(resourceURL) = baseURL/sectionpath/documentname

Note that the sectionpath may contain more than one path segment. To support the functionality described in this section,
the (resourceURL) can be extended in different ways.

Versioning

To support versioning and optimistic concurrency control (OCC) of SectionDocuments this specification uses a version-
aware URL naming scheme. The implementation MUST support the following extension mechanism:

(versionAwareResourceURL) = (resourceURL)/history/(versionId)

where versionId can be any permissible URL-encoded string. The server MUST support version specific retrieval of the
current version, and MAY support version specific retrieval of older versions.

Note that other HTTP-based protocols use ETags for caching and OCC. This specification does not use ETags for two
reasons: (i) ETags are optional in HTTP 1.1 and especially disadvantaged devices may decide not to support them. (ii)
ETags have been used in the past to enable privacy violating tracking. As a result, some user may decide to disable ETags
altogether.

Validation

Similar to the version-aware resource structure, the following URL for sectionDocuments is reserved:

(validationResourceURL) = (resourceURL)/validate/

This allows a client to ask the server whether the attached POSTed content would be acceptable as a PUT. By this means
that client can

• validate business logic during testing concerning correct content, and

• implement a light-weight two-phase commit alternative that reduces the chance of partial success of multi-resource
operations.

Implementation of the validation mechanism is NOT REQUIRED.
12 OMG HData RESTful Transport, v1.0

6.5.1 GET

A GET on the (resourceURL) MUST return the representation of the document that is identified by documentname within
the section identified by sectionpath in the HTTP body, a status code of 200, and a Content-Location header containing
the (versionAwareResourceURL) of the current version of that resource. The documentname is typically assigned by the
underlying system and is not guaranteed to be identical across two different systems. Implementations MAY use identifiers
contained within the infoset of the document as documentnames. If the resource was deleted with a DELETE, the service
SHOULD return a HTTP status code 410, with no body. It MAY include a (versionAwareResourceURL) that points to the
last valid version before it got deleted. Alternatively it MAY return a 404 status code instead.

If no document of name documentname exists, the implementation MUST return a HTTP status code 404.

Status Codes: 200, 404, 410, 415

6.5.2 POST

This operation is used to replace metadata on a section document. When replacing the metadata, the hrf-md:DocumentId MUST
NOT be changed – the server MUST return a status code 403 if this is attempted. This operation SHOULD NOT be used
unless necessary for replicating information within an organization. If a section document is copied from one system to
another, a new document metadata instance MUST be constructed from the original metadata according to the rules in the
HRF specification.

The request Media Type MUST be application/xml. The body MUST contain the document metadata. It MUST conform to
the XML schema for the document metadata, defined in [1]. If the metadata is not of media type application/xml or it cannot be
validated against the document metadata XML schema, the server MUST return a status code of 400.

If the request is successful, the document metadata for the section document MUST be updated. The server returns a 201.

Status Code: 201, 400, 403

6.5.3 PUT

This operation is used to update a document by replacing it. The content MUST conform to the media type identified by the
document metadata or the section content type. For media type application/xml, the document MUST also conform to the
XML schema that corresponds to the content type identified by the document metadata or the section. If the parameter is
incorrect or the content cannot be validated against the correct media type or the XML schema identified by the content type
of this section, the server MUST return a status code of 400.

To enable safe updates, the following process MUST be used:

• The client reads obtains the representation of the current version by performing a GET on the (resourceURL). This
contains the reference to (versionAwareResourceURL).

• The client makes the necessary changes to the state.

• The client MUST then PUT the updates representation to the (resourceURL) and quote the
(versionAwareResourceURL) in the Content-Location header of the PUT operation.

• If the (versionAwareResourceURL) provided by the client is the current version, the server accepts the representation
and persists the change, and returns a HTTP response with a status code of 202 OK, a Content-Location header with
the (versionAwareResourceURL) of the new version, and the representation of the new version of the resource in the
response.
OMG HData RESTful Transport, v1.0 13

• If the (versionAwareResourceURL) no longer represents the current version, the server MUST return a HTTP response
with status code 412, a Content-Location header with the new (versionAwareResourceURL), and a representation of
the latest version of the resource.

If the request is successful, the updated section document MUST show up in the document feed for the section. The server
returns a 200.

This operation MAY be used to create a new document at a specific location, if the client desires to suggest naming of the
resource. The document creation rules in 6.4.2.2 apply to this operation with the following changes:

• If the server cannot create a document this way, it MUST return a HTTP status code of 409 – Conflict.

• Bulk updates MUST NOT be attempted through this operation. If the client sends an Atom media type, the server
MUST return a status code of 415 – Unsupported Media type.

Status Code: 200, 400, 409, 412, 415

6.5.4 DELETE

This operation MAY be implemented. If a DELETE is sent to the document URL, the document is completely deleted. If
DELETE is implemented, special precautions should be taken to assure against accidental or malicious deletion. Future requests
(GET, PUT, POST, DELETE) to the document URL MAY return a status code of 410, unless the record is restored. In this
case, the Atom feed for the Section formerly containing the SectionDocument SHOULD inject a <at:deleted-entry> node
into the feed as described in [12] and use the same representation in the JSON representation, if used. If baseURL,
sectionpath, or target document name does NOT exist, the implementation SHOULD return a 404 - Not found HTTP
status code.

Status Code: 204, 404, 410

6.6 Queries

To support simple queries over the entire hData Record as identified by the (baseURL) as well as individual Sections
identified by (baseURL)/(sectionpath) the system MUST support the following extension:

(baseURL)/search?(querystring)

This allows a search over the entire record. The (querystring) can be arbitrary, but it is RECOMMENDED to use HTML
form-encoding style key/value parameters, as documented in HTML 4.01, section 17.13.4. The server returns the results
of the query in the form of an Atom feed, with each Entry representing a search result.

(baseURL)/(sectionpath)/search?(querystring)

The semantics for this query are identical to the one above., but the scope is limited to the section described by the
(sectionpath).

The entries in the Atom feed (or its JSON representation) have a defined order, though there is not necessarily an
underlying meaning in the ordering. Other specifications using the hData REST Transport MAY assign a specific
semantic to the ordering of the Atom feed resulting from a query.
14 OMG HData RESTful Transport, v1.0

7 Complex Operations

7.1 Reliable Operation Pattern

This pattern is a complex multi-step exchange, applicable to situations where reliable transfer of information is required.
In the context of this specification, “reliable” means that both sender and service provider have confirmation that the
other side has successfully received the information exactly once. For example, in a medication administration scenario,
the sender would be the prescribing provider, and the service would be an order system that informs the staff to
administer a given product. In this case, the system would need to make sure that:

• (i) the prescription is sent only once,

• (ii) the sender receives an acknowledgement from the medication administration service that received the
 information, and

• (iii) the medication service is assured that the sender received that acknowledgement.

Items (i) is guaranteed by the idempotency of the operations, item (ii) is achieved through the standard HTTP request/
response pattern, and item (iii) is achieved through the pattern described in this sub clause.

This pattern MAY be combined with any operation in section 6 when interacting with an hData Record or with other
message patterns, as long as there is no overloading of HTTP methods or it is explicitly forbidden by this document or the
HTTP specification.

The use of the reliable operations pattern will be governed by the business requirements of the business domain. It should
be noted that this pattern breaks the statelessness of the service. As such, it cannot be used easily with load balancers and
similar horizontal scaling techniques.
OMG HData RESTful Transport, v1.0 15

The flow of the patterns is as follows:

1. The sender accesses the resource URL resource using PUT, POST, or DELETE. To indicate that it wants to use the
reliable operations pattern, it sets the HTTP message header “X-hdata-reliable.”

2. If the resource URL is capable of performing the reliable operations pattern, it will create a new resource for a
message at confirmation URL, and return an HTTP status code of 202. The HTTP result MUST contain the
confirmation URL in the HTTP location header and a confirmation secret in the “X-hdata-reliable-conf” header.
This secret SHOULD be a simple string of sufficient length to prevent guessing. The service MUST NOT process
the message at this stage. This means that once the confirmation URL is created the resource is locked, until the
pattern completes, or after a preconfigured time-out. The server MUST send a HTTP status code 405 to any client
trying to modify that resource while the resource is locked.

If the resourceURL does not implement the reliable operations pattern, it MUST return an HTTP status code of 405
and discard the message.

3. The sender MUST then POST an empty request body to the resource at confirmation URL and set the “X-hdata-
reliable-conf” header to the value provided in step 2. Upon receipt, the service - listening at the confirmation URL
- MUST validate the confirmation secret. Once the GET secret is validated, the service processor MUST process
the message immediately.

4. If the validation is successful, the confirmation URL returns an HTTP result with the expected status code for the
initial operation. If the validation is not successful, the service MUST return an HTTP status code of 409. The
sender MUST retry the POST until it receives a different HTTP status code.

Remarks:

1. Since POST is not idempotent, the service MUST implement a safe guard against duplicity of requests for all
POSTs in this flow. It is RECOMMENDED that the service implements “POST Once Exactly” (POE) [13].

2. The confirmation URL resource MAY be destroyed after the reliable message pattern flow is complete. The service
MAY maintain the confirmation URL after the pattern flow completes.

3. If the initial operation in step 1 above is an application-level request message or document, the confirmation URL
MAY provide an application-level response in step 4. The response MAY be provided by returning the response
body in the final step; the HTTP status code MUST NOT be 409. For asynchronous responses, the confirmation
URL MAY return an HTTP status 303 with a “Retry-After” header, indicating when the response will be available
through a GET operation at the confirmation URL.
16 OMG HData RESTful Transport, v1.0

This pattern extends the Reliable Operations Pattern to enable a simple asynchronous request response pattern. It allows
a service to direct a client to return at a later time and pickup the result of a given request, by using the HTTP Retry-After
header.

This specification does not provide guidance to what constitutes an application-level request/response protocol.
Implementers of this specification can decide if this mechanism is appropriate for their application.

1. There is no default for how long the confirmation URL resource is available for confirmation (step 3). The service
MAY destroy the confirmation URL resource and discard the message if the sender does not complete step 3 of the
pattern flow. It is strongly RECOMMENDED to advertise the maximum time for confirming the message to the
developer of the sender in the documentation for the service. If the service discards the message after timing out
the confirmation step, it MUST return a status code of 404 at the confirmation URL permanently. If the service
issued a “Retry-After” header in response (as indicated in Remark 3.), it MUST provide the confirmation URL
until after the expiration of the time indicated by this header.

2. For operations on hData Records (as described in section 6) special provision MUST be taken to prevent alteration
of the resource once the reliable message pattern is initiated. This means that once the confirmation URL is created
the resource is locked, until the pattern completes, or after a preconfigured time-out. The server MUST send a
OMG HData RESTful Transport, v1.0 17

HTTP status code 405 to any client trying to modify that resource while the resource is locked. The service MUST
provide the old status of the resource until step 3 completes. It is RECOMMENDED to use the resource URL
(which is different from the URL for the metadata for the resource URL) also as the confirmation URL.
18 OMG HData RESTful Transport, v1.0

8 Security Considerations

8.1 General

This transport and API specification can be used to transfer data in many different situations, for example, inside
organizations, between organizations, or from medical devices. As such, the specification cannot provide a comprehensive
security solution that addresses the needs of all possible applications. However, this section describes a number of basic
security mechanisms that hData implementations MUST support. In addition, this section describes general web security
considerations and how additional security mechanisms and systems can be added to implementations of this standard.
Implementers of hData are advised to review their domain specific security requirements and select or create appropriate
security mechanisms. The section concludes with a discussion of risk analysis, which is highly recommended prior to
implementing and deploying any infrastructure for clinical systems.

While this specification does not define any access controls to the web resources, it is RECOMMENDED that a
comprehensive access control management system is always deployed with any hData installation.

8.2 Security Mechanism Specification

To allow the support of multiple security mechanisms at a single HRF resource, clients MUST be able to always access
the baseURL through an HTTPOPTIONS request (see [8], section 9.2). If the resource employs any security mechanism
with the exception of transport security (see Section 8.3.1, “HTTP Transport Security”), it MUST include the HTTP
header X-hdata-security which MUST contain a comma separated list of URL-encoded URIs that identify the supported
security mechanism. Sub clause 8.3 includes the URIs for the baseline security mechanisms.

It is RECOMMENDED that hData Content Profiles include a detailed specification of any required custom security
mechanisms. If the custom security mechanism The URIs for identifying these additional security mechanisms SHOULD
be made unique by using the DNS domain name in the first part of the URI.

Any new security mechanism specification that is compliant with this standard needs to provide the following items. This
SHOULD be done through a commonly readable text document, such as HTML. This package provides implementers
with the necessary security protocol information to create the security mechanism for their system.

1. Common Name (REQUIRED) – free text, recommended to be less that 32 characters.

2. Identifier (REQUIRED) - URI or none, recommended to include the originating organization's DNS domain name
for uniqueness. NOT REQUIRED for transport security (see 4.2.1). It is RECOMMENDED to use a URL that
resolves into the HTML representation of the security mechanism specification.

3. Exclusiveness (REQUIRED) - free text, describes if the mechanism can be combined with other mechanism.

4. Description (REQUIRED) - free text, includes a comprehensive description of all allowed interaction patterns,
parameters, and dependencies.

5. State diagram (RECOMMENDED) - UML state diagram, identifies all actors and illustrates all allowed interaction
patterns. The state diagram SHOULD be encoded in the latest released version of XMI.

6. Business rules (RECOMMENDED) - free text, describes the business/domain justification and rules for this
security mechanism.
OMG HData RESTful Transport, v1.0 19

7. Example (RECOMMENDED) - free text, recommended to include examples including packet content for all
interaction patterns.

8. Other Content (OPTIONAL)

8.3 Baseline Security

The mechanisms described in this section MUST be supported by all implementation of this specification. While transport
security is always RECOMMENDED, there can be situations where transport security is not required.

The versions of IETF standards selected within this specification are the minimal REQUIRED versions. It is
RECOMMENDED to use more modern versions, as long as these newer versions are backward compatible.

8.3.1 HTTP Transport Security

Transport security is implemented within the network stack below the HTTP transport layer.

1. Common Name: HTTP Transport Security

2. Identifier: none – Not required becausethe identifier is encoded in the baseURL URL through the https scheme.

3. Exclusiveness: This mechanism can be combined with all other security mechanisms.

4. Description: Implementations MUST support TLS 1.1 or higher. This protocol is described in detail in IETF RFC
4345 [2]. TLS supports both anonymous clients, as well as client authentication. Implementations of this
specification MUST support anonymous client, and MUST support client authentication through TLS. If TLS
client authentication is supported, implementation MAY use the principal obtained from the exchange in their
authentication and authorization process.

8.3.2 Message Security

1. Common Name: S/MIME Message security

2. Identifier: http://www.hl7.org/hdata/2011/03/security/smime-messages

3. Exclusiveness: This mechanism can be combined with all other security mechanisms.

4. Description: Implementations MUST support S/MIME 3.2 or higher which is an IETF internet standard described
in IETF RFC 5751 [4]. S/MIME requires PKI certificates for sender and receiver, and also a way for the sender to
discover the public key certificate for the receiver. The sender should include its own certificate in the S/MIME
message. Implementations MUST use SHA-256 and RSA for signature and encryption, respectively. To achieve
confidentiality, implementations MUST use the EnvelopedData content type [10], section 2.4.3. The hData
SectionDocument that becomes the MIME payload of the S/MIME message MUST be prepared by the
implementation according to the requirements of the S/MIME specifications, with special consideration for the
MIME content type.

While out of scope for this specification, there are a number of ways to discover the certificates:

• If the receiver offers any web resources through https, it is RECOMMENDED to use the server certificate.

• If any discovery services are available, it is RECOMMENDED that the metadata for the endpoint includes the
public key certificate.

• If DNS CERT resource records (IETF 4398 [5]) are available, the sender MAY use the certificate published.
20 OMG HData RESTful Transport, v1.0

8.3.3 Authentication

Authentication can be achieved through all of the mechanisms described in this section. Implementations of this
specification MUST support all described authentication mechanisms, but these mechanisms MAY be disabled at deploy
or runtime.

8.3.3.1 HTTP Basic Authentication

1. Common Name: HTTP Basic Authentication

2. Identifier: http://www.hl7.org/hdata/2011/03/security/http-basic-auth

3. Exclusiveness: This mechanism can be combined with all other security mechanisms. When combining with other
authentication mechanisms, it SHOULD use the other mechanism’s security principal for authentication and
authorization.

4. Description: Implementations MUST implement HTTP Basic Authentication as specified in IETF RFC 2617 [6],
section 2.

8.3.3.2 HTTP TLS Authentication

1. Common Name: HTTP over TLS

2. Identifier: http://www.hl7.org/hdata/2011/03/security/http-tls-auth

3. Exclusiveness: This mechanism SHOULD NOT be combined with other authentication security mechanisms. If
combined with other security mechanisms, the principal of the client certificate, as identified by the Common
Name (CN) attribute of the certificate, SHOULD be used as the security principal in all subsequent authentication
and authorization decisions.

4. Description: Implementations MUST implement HTTP TLS Client Certificates as specified in IETF RFC 2246 [7],
section 7.4.6.

8.4 Specifying A Custom Security Mechanism

Additional security mechanisms that can be published through the X-hdata-security header can be created as needed by
the behavioral model and the application domain. It is RECOMMENDED to include or reference security mechanisms
necessary for a given hData Content Profile (HCP) within the HCP package. The security mechanism description MUST
comply with the template specified in Section 8.3, “Baseline Security.”

8.5 General Web Security Considerations

Because hData is implemented using common web technology, it is subject to the same security considerations as other
security-sensitive web applications and services. Because Internet threats and vulnerabilities are constantly evolving,
hData implementations should apply current best practices to assure appropriate levels of security.

These security best practices should be considered not only at the software application layer, but also at lower layers such
as the network layer and physical layer. For example, hData implementations MAY also support lower-level protection
mechanisms, such as IPSEC or other bulk traffic encryption. Typically, such technologies have no direct impact on the
application layer, and their use and implementation is determined by the networking infrastructure. Protection of critical
infrastructure services such as DNS or DHCP MAY be necessary.Information security must be integrated with non-IT
security as well:
OMG HData RESTful Transport, v1.0 21

• Any information processing systems must be protected from intentional and unintentional physical harm, both man-
made as well as natural.

• Business processes and non-IT workflow must integrate with information security, and prevent circumvention of
information security measures.

• System operators and end users must be cleared for access at the appropriate level.

The reader is advised to consult appropriate resources in this area for more information, such as NIST 800-12, NIST 800-
14, ISA-99, and ISO 27002.

8.6 Risk Assessment Approach and Best Practices

It is highly RECOMMEDED to perform a comprehensive risk analysis prior to deploying any clinical application. Risk
analysis is a systematic consideration of the threats, vulnerabilities, and consequences of gaps in security, as well as
mitigation strategies for risks. Often, the threats and vulnerabilities are captured in terms of specific scenarios that can be
re-used during security audits throughout the system’s lifecycle. The reader is advised to consult appropriate resources for
more information on cyber risk assessment, such as NIST 800-30, the IHE security cookbook [11], and ISO/TS 25238.
22 OMG HData RESTful Transport, v1.0

9 Realization of RLUS Profiles (non-normative)

9.1 Introduction

The Retrieve, Locate, Update Service (RLUS) Specification defines an HL7 framework for healthcare services. The hData
RESTful Transport is a realization of RLUS Functional Profiles. The hData Content Profile (HCP) [1], section 3, acts as
such as a Semantic Profile in the sense of [5], section 6.1. Taken together, the two portions of the hData specification
forms an RLUS Conformance profile. This clause provides a mapping between the hData RESTful implementation and
the RLUS framework.

It should be noted that while this section is necessary to establish hData as a Platform Specific Module of the OMG
RLUS Platform Independent Module, it does not require any additional implementation burden on the developer.

9.2 Implementation of RLUS Interfaces

The RLUS specification defines a number of interfaces in [9], Section 5.4 "Detailed Functional Model." These are mostly
implemented by the hData specification, as detailed within the table below. Note that a SectionDocument is the hData
realization of an RLUS Resource.

Table 9.1 - RLUS Runtime/Management and Query Interface

HL7 RLUS SFM
(CIM) - RLUS
Basic Runtime
Capabilities

OMG RLUS STM PIM
Management and Query
Interface ([13])

hData RESTful Platform
Specific Model (PSM)
Implementation

Note

Locate Resources
(4.4.1)

Locate (7.4) GET (baseURL)
GET (baseURL/sectionpath)

Parameter-specific query may be
implemented either over a single
HDR or a collection of HDR by
another specification. This is out-of-
scope for the HRF and this
specification.

GetResource
(4.4.2)

Get (7.2) GET (baseURL/sectionpath/
documentname)

This is implemented using an HTTP
GET operation on the resource
identified by its URL.

List and Get
Resource (4.4.3)

List (7.3) Not implemented The Atom 1.0 feed returned at each
Section level as well as at the
baseURL (see 6.4.1 and 6.2.1,
respectively) implements the List
Interface.
OMG HData RESTful Transport, v1.0 23

Section 5.6 in the HL7 RLUS SFM describes the Introspective Capabilities, which are mapped to hData in the following table.

HL7 RLUS SFM
(CIM) - RLUS
Basic Runtime
Capabilities

OMG RLUS STM PIM
Management and Query
Interface ([13])

hData RESTful Platform
Specific Model (PSM)
Implementation

Note

Put Resource
(4.4.4)

Put (7.5) POST (baseURL/sectionpath) Sub clause 6.4.2.2 (Add new
document) describes how a new
SectionDocument can be created.

Initialize Resource
(4.4.5)

Initialize (7.8) Not implemented The initialization of a resource and
the actual creation is always
performed in a single transaction
within hData. As such, when creating
a new SectionDocument as described
in 6.4.2.2, hData returns the location
of the newly created resource as part
of the transaction. As such, this
operation by itself makes no sense in
the hData RESTful context.

Discard Resource
(4.4.6)

Discard (7.6) DELETE (baseURL/
sectionpath)

Sub clause 6.5.4 (DELETE) describes
how a SectionDocument can be
deleted.

Table 9.2 - RLUS Introspective/Semantic Profiles Interface

HL7 RLUS SFM
(CIM) -
Introspective
Capabilities

OMG RLUS STM PIM
Semantic Profiles
interface (version 1.0.1,
formal/2011-07-02)

hData RESTful Platform
Specific Model
Implementation

Note

List Conformance
Profiles (4.6.1)

List Conformance profiles
(13.6)

OPTIONS (baseURL) Sub clause 6.2.5 (OPTIONS)
describes the X-hdata-hcp header
which returns a list of hData content
profiles.
24 OMG HData RESTful Transport, v1.0

HL7 RLUS SFM
(CIM) -
Introspective
Capabilities

OMG RLUS STM PIM
Semantic Profiles
interface (version 1.0.1,
formal/2011-07-02)

hData RESTful Platform
Specific Model
Implementation

Note

List Semantic
Signifiers (4.6.2)

List Semantic Signifier
(13.5)

GET(hDataRoot/root.xml)
or
OPTIONS (baseURL)

The root document at baseUrl/root
contains of supported elements within
the Extensions node. The list of
Extension elements represents the list
of semantic signifiers, as required by
[5] 5.2.1. (The HRF specification [1]
recommends URLs as identifiers for
each Extension, which should resolve
into a RDDL document describing the
given Extension. This is consistent
with the recommendation of [5]
section 5.2.1 to provide an
explanation for each semantic
signifier.)

Alternatively, the list of Extension
can also be obtained through the
OPTIONS request against the
baseURL and the evaluation of the X-
hdata-extension HTTP header (see
6.2.5).

Describe Semantic
Signifier (4.6.3)

Describe (7.7)a

Find Semantic Signifier
(13.3)

a. For pragmatic reason Describe operation, currently, is included in the Management and Query Interface of the OMG.PIM

GET (url) For any <Extension> that is a URL
and resolves into a RDDL document,
the necessary description can be
retrieved. Thus, if an hData
implementation strives to be
compliant to this interface,
recommendation in [1] section 2.3 to
use URLs and resolve into RDDLs
becomes a requirement.

Put Semantic
Signifier (4.6.4)

Create Semantic Signifier
(13.2)

Update Semantic Signifier
(13.4)

Not implemented hData does not allow explicit creation
of new Extensions for a given system.
However, if the system supports
Extensions that are not currently
registered in the root document, they
can be added to the record by creating
a new Section as described in 6.2.2
and 6.4.2.
OMG HData RESTful Transport, v1.0 25

Since the above mapping provides the Basic Runtime and the Introspective Capabilities, hData implements RLUS at
Level 2 (see [9], section 6.2).
26 OMG HData RESTful Transport, v1.0

Annex A - Bibliography

[1] G. Beuchelt et al., "hData Record Format", The MITRE Corporation, 2011.

[2] IETF RFC 4345 “Transport Layer Security (TLS) 1.1”, online at http://tools.ietf.org/html/rfc4346

[3] IETF Network Working Group. (2005, Dec.) IETF. [Online]. http://www.ietf.org/rfc/rfc4287.txt

[4] IETF Network Working Group “S/MIME 3.2 Message Specification”, online at http://tools.ietf.org/html/

rfc5751

[5] IETF Network Working Group, “Storing Certificates in the Domain Name System (DNS)”, online at http://

tools.ietf.org/html/rfc4398

[6] IETF Network Working Group, “HTTP Authentication: Basic and Digest Access Authentication”, online at

http://tools.ietf.org/html/rfc2617

[7] IETF Network Working Group “The TLS Protocol”, online at http://tools.ietf.org/html/rfc2246

[8] IETF Network Working Group “Hypertext Transfer Protocol – HTTP 1.1”, online at http://tools.ietf.org/html/
rfc2616

[9] HL7 Resource Location and Updating Service (RLUS), DSTU Release 1, Health Level Seven, Inc., December
2006

[10] "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification", RFC 3851,

The Internet Society, July 2004, online at http://www.rfc-editor.org/rfc/rfc3851.txt

[11] “Cookbook:Preparing the IHE Profile Security Section”, IHE International, October 2008, online at http://
www.ihe.net/Technical_Framework/upload/IHE_ITI_Whitepaper_Security_Cookbook_2008-11-10.pdf
OMG HData RESTful Transport, v1.0 27

http://tools.ietf.org/html/rfc4346
http://www.ietf.org/rfc/rfc4287.txt
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc4398
http://tools.ietf.org/html/rfc4398
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc3851.txt

28 OMG HData RESTful Transport, v1.0

	Preface
	1 Scope
	2 Namespaces
	3 Glossary (non-normative)
	4 Notational Conventions
	5 Additional Information
	5.1 Acknowledgements

	6 hData Record RESTful Transport
	6.1 Overview
	6.1.1 Out of Scope
	6.1.2 General Conventions and Considerations

	6.2 Operations on the Base URL
	6.2.1 GET
	6.2.2 POST – Parameters:extensionID, path, name
	6.2.3 PUT
	6.2.4 DELETE
	6.2.5 OPTIONS

	6.3 Special Paths on baseURL
	6.3.1 baseURL/root
	6.3.2 baseURL/metadata
	6.3.3 baseURL/search

	6.4 baseURL/sectionpath
	6.4.1 GET
	6.4.2 POST
	6.4.3 PUT
	6.4.4 DELETE

	6.5 baseURL/sectionpath/documentname
	6.5.1 GET
	6.5.2 POST
	6.5.3 PUT
	6.5.4 DELETE

	6.6 Queries

	7 Complex Operations
	7.1 Reliable Operation Pattern

	8 Security Considerations
	8.1 General
	8.2 Security Mechanism Specification
	8.3 Baseline Security
	8.3.1 HTTP Transport Security
	8.3.2 Message Security
	8.3.3 Authentication

	8.4 Specifying A Custom Security Mechanism
	8.5 General Web Security Considerations
	8.6 Risk Assessment Approach and Best Practices

	9 Realization of RLUS Profiles (non-normative)
	9.1 Introduction
	9.2 Implementation of RLUS Interfaces

	Annex A - Bibliography

