
Date: 24 JanuaryAugustSeptember 2017

Interface Definition Language (IDL)

Version 4.12

OMG Document Number: formal/2017-09-01 ptc/2017-09-16
Standard document URL: http://www.omg.org/spec/IDL/4.12/

IPR mode: Non-Assert

Copyright © 1997-2001 Electronic Data Systems Corporation
Copyright © 1997-2001 Hewlett-Packard Company
Copyright © 1997-2001 IBM Corporation
Copyright © 1997-2001 ICON Comp7ting
Copyright © 1997-2001 i-Logix
Copyright © 1997-2001 IntelliCorpCopyright © 1997-2001 Microsoft Corporation
Copyright © 1997-2001 ObjecTime Limited
Copyright © 1997-2001 Oracle Corporation
Copyright © 1997-2001 Platin7m Technology, Inc.
Copyright © 1997-2001 Ptech Inc.
Copyright © 1997-2001 Rational Software Corporation
Copyright © 1997-200 1 Reich Technologies
Copyright © 1997-2001 Softeam
Copyright © 1997-2001 Sterling Software
Copyright © 1997-2001 Taskon A/S
Copyright © 1997-2001 Unisys Corporation
Copyright © 2002 Laboratoire d’Informatiq7e Fondamentale de Lille
Copyright © 2013-20152017, Thales
Copyright © 2013-20152017, Real-Time Innovations, Inc
Copyright © 2017, Object Management Gro7p, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this doc7ment details an Object Management Gro7p specification in accordance with the terms,
conditions and notices set forth below. This doc7ment does not represent a commitment to implement any portion
of this specification in any company's prod7cts. The information contained in this doc7ment is s7bject to change
witho7t notice.

LICENSES

The companies listed above have granted to the Object Management Gro7p, Inc. (OMG) a nonexcl7sive, royalty-
free, paid 7p, worldwide license to copy and distrib7te this doc7ment and to modify this doc7ment and distrib7te
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the incl7ded material of any s7ch copyright holder by reason of having
7sed the specification set forth herein or having conformed any comp7ter software to the specification.

S7bject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant yo7 a
f7lly-paid 7p, non-excl7sive, nontransferable, perpet7al, worldwide license (witho7t the right to s7blicense), to 7se
this specification to create and distrib7te software and special p7rpose specifications that are based 7pon this
specification, and to 7se, copy, and distrib7te this specification as provided 7nder the Copyright Actt provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specificationt
(2) the 7se of the specifications is for informational p7rposes and will not be copied or posted on any network
comp7ter or broadcast in any media and will not be otherwise resold or transferred for commercial p7rposest and
(3) no modifications are made to this specification. This limited permission a7tomatically terminates witho7t notice
if yo7 breach any of these terms or conditions. Upon termination, yo7 will destroy immediately any copies of the
specifications in yo7r possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may

req7ire 7se of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be req7ired by any OMG specification, or for cond7cting legal inq7iries into the legal validity or
scope of those patents that are bro7ght to its attention. OMG specifications are prospective and advisory only.
Prospective 7sers are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any 7na7thorized 7se of this specification may violate copyright laws, trademark laws, and comm7nications
reg7lations and stat7tes. This doc7ment contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reprod7ced or 7sed in any form or by any means--graphic,
electronic, or mechanical, incl7ding photocopying, recording, taping, or information storage and retrieval systems--
witho7t permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY
OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the q7ality and performance of software developed 7sing this specification is borne by yo7.
This disclaimer of warranty constit7tes an essential part of the license granted to yo7 to 7se this specification.

RESTRICTED RIGHTS LEGEND

Use, d7plication or disclos7re by the U.S. Government is s7bject to the restrictions set forth in s7bparagraph (c) (1)
(ii) of The Rights in Technical Data and Comp7ter Software Cla7se at DFARS 252.227-7013 or in s7bparagraph (c)
(1) and (2) of the Commercial Comp7ter Software - Restricted Rights cla7ses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. S7pplement and its s7ccessors, or as specified in 48 C.F.R. 12.212 of
the Federal Acq7isition Reg7lations and its s7ccessors, as applicable. The specification copyright owners are as
indicated above and may be contacted thro7gh the Object Management Gro7p, 109 Highland Aven7e, Needham,
MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Ind7stry B7siness Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architect7re®, MDA®, Object Management Gro7p®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Lang7age®, UML®, UML
C7be Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Gro7p, Inc.

For a complete list of trademarks, see http://www.omg.org/legal/tm_list.htm. All other prod7cts or company names

http://www.omg.org/legal/tm_list.htm

mentioned are 7sed for identification p7rposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Gro7p (acting itself or thro7gh its
designees) is and shall at all times be the sole entity that may a7thorize developers, s7ppliers and sellers of
comp7ter software to 7se certification marks, trademarks or other special designations to indicate compliance with
these materials.

Software developed 7nder the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nat7re f7lly matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, b7t may not claim compliance or conformance with this specification. In
the event that testing s7ites are implemented or approved by Object Management Gro7p, Inc., software developed
7sing this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing s7ites.

OMG’s Issue Reporting Procedure

All OMG specifications are s7bject to contin7o7s review and improvement. As part of this process we enco7rage
readers to report any ambig7ities, inconsistencies, or inacc7racies they may find by completing the Iss7e Reporting
Form listed on the main web page http://www.omg.org, 7nder Doc7ments, Report a B7g/Iss7e.

http://www.omg.org/

Table of Contents
Interface Definition Language (IDL) i

Table of Contents ..i

Tables ..iii

Figures ...iv

Preface ...vii

1 Scope ..1

2 Conformance Criteria ..3

3 Normative References ..5

4 Terms and Definitions ...7

5 Symbols ...11

6 Additional Information ...13
6.1 Acknowledgments ..13

6.2 Specification History ...13

7 IDL Syntax and Semantics ..15
7.1 Overview ...15

7.2 Lexical Conventions ...16
7.2.1 Tokens ...19
7.2.2 Comments ...19
7.2.3 Identifiers ...20
7.2.4 Keywords ...21
7.2.5 Other Characters Recognized by IDL ..22
7.2.6 Literals ...22

7.3 Preprocessing ...25

7.4 IDL Grammar ..26
7.4.1 Building Block Core Data Types ..26
7.4.2 Building Block Any ...45
7.4.3 Building Block Interfaces – Basic ...47
7.4.4 Building Block Interfaces – Full ..54
7.4.5 Building Block Value Types ...56
7.4.6 Building Block CORBA-Specific – Interfaces ...60
7.4.7 Building Block CORBA-Specific – Value Types 66
7.4.8 Building Block Components – Basic ..72
7.4.9 Building Block Components – Homes ..76
7.4.10 Building Block CCM-Specific ...79
7.4.11 Building Block Components – Ports and Connectors 85

IDL, v4.2 i

7.4.12 Building Block Template Modules ..8987
7.4.13 Building Block Extended Data-Types ...92
7.4.14 Building Block Anonymous Types ..9997
7.4.15 Building Block Annotations ..10098
7.4.16 Relationships between the Building Blocks ..104

7.5 Names and Scoping ...104
7.5.1 Qualified Names ..104
7.5.2 Scoping Rules and Name Resolution ..106
7.5.3 Special Scoping Rules for Type Names ...108

8 Standardized Annotations ...111
8.1 Overview ...111

8.2 Introduction ...111
8.2.1 Rules for Defining Standardized Annotations 111
8.2.2 Rules for Using Standardized Annotations ..111

8.3 Standardized Groups of Annotations ...112
8.3.1 Group of Annotations General Purpose ...112
8.3.2 Group of Annotations Data Modeling ...114
8.3.3 Group of Annotations: Units and Ranges ...115
8.3.4 Group of Annotations Data Implementation ...117
8.3.5 Group of Annotations Code Generation ...118
8.3.6 Group of Annotations Interfaces ..119

9 Profiles ..121
9.1 Overview ...121

9.2 CORBA and CCM Profiles ...121
9.2.1 Plain CORBA Profile ..121
9.2.2 Minimum CORBA Profile ...121
9.2.3 CCM Profile ...122
9.2.4 CCM with Generic Interaction Support Profile 122

9.3 DDS Profiles ...123
9.3.1 Plain DDS Profile ...123
9.3.2 Extensible DDS Profile ..123
9.3.3 RPC over DDS Profile ...123

Annex A: Consolidated IDL Grammar 125

1 Scope ..1

2 Conformance Criteria ..1

3 Normative References ..2

4 Terms and Definitions ...2

5 Symbols ...3

ii IDL, v4.2

6 Additional Information ...3
6.1 Acknowledgments ..3

7 IDL Syntax and Semantics ..6
7.1 Overview ...6

7.2 Lexical Conventions ...7
7.2.1 Tokens ...10
7.2.2 Comments ...10
7.2.3 Identifiers ...11
7.2.4 Keywords ...12
7.2.5 Other Characters Recognized by IDL ..13
7.2.6 Literals ...13

7.3 Preprocessing ...16

7.4 IDL Grammar ..17
7.4.1 Building Block Core Data Types ..18
7.4.2 Building Block Any ...36
7.4.3 Building Block Interfaces – Basic ...38
7.4.4 Building Block Interfaces – Full ..46
7.4.5 Building Block Value Types ...48
7.4.6 Building Block CORBA-Specific – Interfaces ...52
7.4.7 Building Block CORBA-Specific – Value Types 59
7.4.8 Building Block Components – Basic ..65
7.4.9 Building Block Components – Homes ..69
7.4.10 Building Block CCM-Specific ...71
7.4.11 Building Block Components – Ports and Connectors 78
7.4.12 Building Block Template Modules ..82
7.4.13 Building Block Extended Data-Types ...86
7.4.14 Building Block Anonymous Types ..93
7.4.15 Building Block Annotations ..94
7.4.16 Relationships between the Building Blocks ..98

7.5 Names and Scoping ...98
7.5.1 Qualified Names ..99
7.5.2 Scoping Rules and Name Resolution ..100
7.5.3 Special Scoping Rules for Type Names ...102

8 Standardized Annotations ...105
8.1 Overview ...105

8.2 Introduction ...105
8.2.1 Rules for Defining Standardized Annotations 105
8.2.2 Rules for Using Standardized Annotations ..105

8.3 Standardized Groups of Annotations ...106
8.3.1 Group of Annotations General Purpose ...106
8.3.2 Group of Annotations Data Modeling ...108
8.3.3 Group of Annotations: Units and Ranges ...109
8.3.4 Group of Annotations Data Implementation ...111
8.3.5 Group of Annotations Code Generation ...112

IDL, v4.2 iii

8.3.6 Group of Annotations Interfaces ..113

9 Profiles ..114
9.1 Overview ...114

9.2 CORBA and CCM Profiles ...114
9.2.1 Plain CORBA Profile ..114
9.2.2 Minimum CORBA Profile ...114
9.2.3 CCM Profile ...115
9.2.4 CCM with Generic Interaction Support Profile 115

9.3 DDS Profiles ...116
9.3.1 Plain DDS Profile ...116
9.3.2 Extensible DDS Profile ..116
9.3.3 RPC over DDS Profile ...116

Annex A: Consolidated IDL Grammar 117

iv IDL, v4.2

Tables
Table 7-1: IDL EBNF ...16
Table 7-2: Characters ...16
Table 7-3: Decimal digits ...17
Table 7-4: Graphic characters ..18
Table 7-5: Formatting characters ..19
Table 7-6: All IDL keywords ..21
Table 7-7: P7nct7ation ...22
Table 7-8: Tokens ..22
Table 7-9: Escape seq7ences ..23
Table 7-10: List of pre-existing non-terminals in IDL r7les ..26
Table 7-11: Operations on fixed-point decimal constants ..33
Table 7-12: 2's complement n7mbers ...3432
Table 7-13: Integer types ..36
Table 7-14: Keywords specific to B7ilding Block Core Data Types 45
Table 7-15: Keywords specific to B7ilding Block Any ...46
Table 7-16: Keywords specific to B7ilding Block Interfaces – Basic 53
Table 7-17: Keywords specific to B7ilding Block Val7e Types ..59
Table 7-18: Keywords specific to B7ilding Block CORBA-Specific – Interfaces 66
Table 7-19: Possible inheritance relationships between val7e types and interfaces 70
Table 7-20: Keywords specific to B7ilding Block CORBA-Specific – Val7e Types 7270
Table 7-21: Keywords specific to B7ilding Block Components – Basic 75
Table 7-22: Keywords specific to B7ilding Block Components – Homes 78
Table 7-23: Keywords specific to B7ilding Block CCM-Specific 84
Table 7-24: Keywords specific to B7ilding Block Components – Ports and Connectors 88
Table 7-25: Keywords specific to B7ilding Block Template Mod7les 91
Table 7-26: Ranges for all Integer types ..9896
Table 7-27: Keywords specific to B7ilding Block Extended Data-Types 98
Table 7-28: Keywords specific to B7ilding Block Annotations 103101

Table 7-1: IDL EBNF 7
Table 7-2: Characters 7
Table 7-3: Decimal digits 9
Table 7-4: Graphic characters 9
Table 7-5: Formatting characters 10
Table 7-6: All IDL keywords12
Table 7-7: P7nct7ation 13
Table 7-8: Tokens 13
Table 7-9: Escape seq7ences 15
Table 7-10: List of pre-existing non-terminals in IDL r7les 17
Table 7-11: Operations on fixed-point decimal constants 24
Table 7-12: 2's complement n7mbers 25
Table 7-13: Integer types 28
Table 7-14: Keywords specific to B7ilding Block Core Data Types 36
Table 7-15: Keywords specific to B7ilding Block Any 37
Table 7-16: Keywords specific to B7ilding Block Interfaces – Basic 45
IDL, v4.2 v

Table 7-17: Keywords specific to B7ilding Block Val7e Types 51
Table 7-18: Keywords specific to B7ilding Block CORBA-Specific – Interfaces 58
Table 7-19: Possible inheritance relationships between val7e types and interfaces 62
Table 7-20: Keywords specific to B7ilding Block CORBA-Specific – Val7e Types 64
Table 7-21: Keywords specific to B7ilding Block Components – Basic 68
Table 7-22: Keywords specific to B7ilding Block Components – Homes 71
Table 7-23: Keywords specific to B7ilding Block CCM-Specific 77
Table 7-24: Keywords specific to B7ilding Block Components – Ports and Connectors 81
Table 7-25: Keywords specific to B7ilding Block Template Mod7les 85
Table 7-26: Ranges for all Integer types 92
Table 7-26: Keywords specific to B7ilding Block Extended Data-Types 92
Table 7-27: Keywords specific to B7ilding Block Annotations 97

vi IDL, v4.2

Figures
Fig7re 7-1: Examples of Legal M7ltiple Inheritance ...50
Fig7re 7-2: Relationships between B7ilding Blocks ..104
Fig7re 7-1: Examples of Legal M7ltiple Inheritance ...41
Fig7re 7-2: Relationships between B7ilding Blocks ..98

IDL, v4.2 vii

viii IDL, v4.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-proft computer industry
standards consortium that produces and maintains computer industry specifcations for interoperable, portable and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifcations following a mature, open process. OMG's specifcations
implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to enterprise
integration that covers multiple operating systems, programming languages, middleware and networking infrastructures, and
software development environments. OMG’s specifcations include: UML® (Unifed Modeling Language™); CORBA®
(Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specifc standards
for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifcations address middleware, modeling, and vertical domain frameworks. A listing of all OMG
Specifcations is available from the OMG website at:

http://www.omg.org/spec

Specifcations are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

IDL, v4.2 ix

http://www.omg.org/spec
http://www.omg.org/

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifcations may be downloaded without charge from our website. (Products implementing OMG
specifcations are available from individual suppliers.) Copies of specifcations, available in PostScript and PDF format, may
be obtained from the Specifcations Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifcations are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specifcation by completing the Issue
Reporting Form listed on the main web page http://omg.org under Documents, Report a Bug/Issue.

x IDL, v4.2

http://omg.org/

1 Scope
[IDL42-15 The text in the "Scope" section provides history rather than scope]

This doc7ment specifies the OMG Interface Definition Language (IDL). IDL is a descriptive lang7age 7sed to define
data types and interfaces in a way that is independent of the programming lang7age or operating system/processor
platform.

The IDL specifies only the syntax 7sed to define the data types and interfaces. It is normally 7sed in connection with
other specifications that f7rther define how these types/interfaces are 7tilized in specific contexts and platforms:

 Separate “lang7age mapping” specifications define how the IDL-defined constr7cts map to specific
programming lang7ages, s7ch as, C/C++, Java, C#, etc.

 Separate “serialization” specifications define how data objects and method invocations are serialized into a
format s7itable for network transmission.

 Separate “middleware” specifications, s7ch as, DDS or CORBA leverage the IDL to define data-types,
services, and interfaces.

The description of IDL grammar 7ses a syntax notation that is similar to Extended Back7s-Na7r Format (EBNF).
Historically IDL was designed to specify CORBA interfaces, and then CORBA components, and was embedded in the
CORBA doc7mentation. However its expressive power made it very s7itable for defining non-CORBA interfaces and
data types. Therefore it was 7sed in the DDS specification and extended for that p7rpose. For those new 7sages, as well
as for f7t7re ones, IDL deserves now to be a first-class specification and not j7st a derivative prod7ct from
CORBA.This doc7ment completes the definition of IDL as a separate specification that was started by IDL 3.5. As a
first step, IDL 3.5 gathered in a single doc7ment the whole CORBA-dedicated IDL, formerly specified as a collection
of chapters within the CORBA 3 specification. IDL 4.0 extends that corp7s with the other so7rce for IDL definitions,
namely "Extensible and Dynamic Topic Types for DDS" in order to gro7p all IDL constr7cts in a single
comprehensive doc7ment. It also reorganizes the whole IDL description so that different levels of compliance are
easier to state and 7nderstand and that f7t7re evol7tions, if needed, are made possible with no side-effects on existing
IDL 7sages.This doc7ment was created from the following OMG specifications:IDL 3.5. Cf. [IDL 3.5],Extensible and
Dynamic Topic Types for DDS. Cf. [DDS-XTypeThere are no f7ndamental changes in this doc7ment relative to
referenced specifications.

2 Conformance Criteria
[IDL42-7 Miscellaneous typos and readability improvements]

This doc7ment defines IDL for s7ch that it can be referenced by other specifications. to reference and It contains no
independent conformance points. It is 7p to the specifications that depend on this doc7ment to define their own
conformance criteria. However, the general organization of the cla7ses (by means of atomic b7ilding blocks and
profiles that gro7p them as detailed afterwards) is intended to ease conformance description and scoping. That means
that no specification 7sing IDL 4.0 will be forced to be compliant with IDL constr7cts that are not relevant in its 7sage
of IDL.

Conformance to this standard m7st follow these r7les:

1. Any fF7t7re specifications that 7se 7sing IDL m7st shall reference this IDL standard or a f7t7re
versionrevision thereof.

2. F7t7re revisions of c7rrent specifications 7sing that 7se IDL may reference this IDL standard or a f7t7re
versionrevision thereof.

IDL, v4.2 1

3. Reference to this standard m7st shall res7lt in a selection of b7ilding blocks possibly complemented by gro7ps
of annotations.

a. All selected b7ilding blocks m7st shall be s7pported entirely.

b. Selected annotations m7st shall be either s7pported as described in 8.2.2 R7les for Using
Standardized Annotations, or f7lly ignored. In the latter case, the IDL-dependent 7sing specification
shall not define a specific annotation, either with the same name and another meaning or with the
same meaning and another name.

3 Normative References

The following referenced doc7ments are indispensable for the application of this doc7ment. For dated references, only
the edition cited applies. For 7ndated references, the latest edition of the referenced doc7ment (incl7ding any
amendments):

 ISO/IEC 14882:2003, Information Technology - Programming lang7ages - C++.

 [RFC2119] IETF RFC 2119, "Key words for 7se in RFCs to Indicate Req7irement Levels", S. Bradner, March
1997. Available from http://ietf.org/rfc/rfc2119.

 [CORBA] Common Object Req7est Broker Architect7re. OMG specification: formal/2012-11-12 (part1),
formal/2012-11-14 (part2), formal/2012-11-16 (part3).

The following referenced doc7ments were 7sed as inp7t to this specification:

[AB-Errata Document]

 [IDL3.5] Interface Definition Lang7age 3.5. OMG specification : formal/2014-03-01.

 [DDS-XTypes]. Extensible and Dynamic Topic Types for DDS, Version 1.2. Available from:
http://www.omg.org/spec/DDS-XTypes/1.2. OMG specification: formal/2014-11-03.

 [DDS]. Data Distrib7tion Service, Version 1.4. Available from: http://www.omg.org/spec/DDS/1.4 OMG
specification: formal/2007-01-01.

 [RPC over DDSDDS-RPC]. Remote Proced7re Call over DDS, Version 1.0. Available from:
http://www.omg.org/spec/DDS-RPC/1.0. OMG specification: mars/2014-11-08.

4 Terms and Definitions
In this specification:

A building block is a consistent set of IDL r7les that together form a piece of IDL f7nctionality. B7ilding
blocks are atomic, meaning that if selected, they m7st be totally s7pported. B7ilding blocks are described in
cla7se ,

2 IDL, v4.2

http://www.omg.org/spec/DDS-RPC/1.0
http://www.omg.org/spec/DDS/1.4/
http://www.omg.org/spec/DDS-XTypes/1.2
http://ietf.org/rfc/rfc2119

IDL, v4.2 3

 .

 A group of annotations is a consistent set of annotations, expressed in IDL. Gro7ps of annotations are described
in cla7se 8, Standardized Annotations.

 A profile is a selection of b7ilding blocks possibly complemented with gro7ps of annotations that determines a
specific IDL 7sage. Profiles are described in cla7se 9, Profiles.

5 Symbols

The following acronyms are 7sed in this specification.

Acronym Meaning

ASCII American Standard Code for Information Interchange

BIPM B7rea7 International des Poids et Mes7res

CCM CORBA Component Model

CORBA Common Object Req7est Broker Architect7re

DDS Data Distrib7tion Service

EBNF Extended Back7s Na7r Form

IDL Interface Definition Lang7age

ISO International Organization for Standardization

LwCCM Lightweight CCM

OMG Object Management Gro7p

ORB Object Req7est Broker

XTypes eXtensible and dynamic topic Types (for DDS)

4 IDL, v4.2

6 Additional Information

6.1 Acknowledgments

The following companies s7bmitted this specification:

 Thales

 RTI

The following companies s7pported this specification:

 Mitre

 Northrop Gr7mman

 Remedy IT

6.2 Specification History
[IDL42-15 The text in the "Scope" section provides history rather than scope]

Historically, IDL was designed to specify CORBA interfaces, and thens7bseq7ently CORBA components, and. For
this reason the IDL specification was embedded in the CORBA doc7mentation. However its expressive power made it
very s7itable for defining non-CORBA interfaces and data types. ThereforeConseq7ently, it was 7sed in the DDS
specification and extended to s7pport that 7sage. In recognition of these for that p7rpose. For those new 7sages, as well
as for and expected f7t7re ones, IDL deserves now to be a first-class specification and not j7st a derivative prod7ct
from CORBAwas separated into its own stand-alone specification, independent of its 7se by specific middleware
technologies.

This doc7ment completes the definition of IDL as a separate specification , an effort that was started bywith IDL 3.5.

As a first step, IDL 3.5 gathered in a single doc7ment all the whole CORBA-dedicated IDL, formerly specified as a
collection of chapters within the CORBA 3 specification.

IDL 4.0 extendsed that corp7s with the other so7rce for IDL definitions, namely “"Extensible and Dynamic Topic
Types for DDS”" in order to gro7p all IDL constr7cts in a single comprehensive doc7ment. It also reorganizesed the
whole IDL description into mod7lar “B7ilding Blocks” so that different levels of compliance are easier to state and
7nderstandspecify and that f7t7re evol7tions, if needed, are made possiblecan be made with no o7t side-effects on
existing IDL 7sages.

IDL 4.1 improved the definition of the bitset type, added a bitmap type, and resolved some inconsistencies in the
grammar.

IDL 4.2 added s7pport for 8-bit integer types, added size-explicit keywords for integer types, enhanced the readability,
and reordered the b7ilding blocks to follow a logical dependency progression.

IDL, v4.2 5

This doc7ment was created from the following OMG specifications:

 IDL 3.5. Cf. [IDL 3.5],

 Extensible and Dynamic Topic Types for DDS. Cf. [DDS-XTypes].
There are no f7ndamental changes in this doc7ment relative to referenced specifications.

6 IDL, v4.2

IDL, v4.2 7

8 IDL, v4.2

7 IDL Syntax and Semantics

7.1 Overview

This cla7se describes OMG Interface Definition Lang7age (IDL) middleware1-agnostic semantics2 and defines the
syntax for IDL grammatical constr7cts.

[IDL42-7 Miscellaneous typos and readability improvements]

OMG IDL is a lang7age that allows 7nambig7o7sly 7nambig7o7s specifying specification of the interfaces that client
objects3 may 7se and (server) object implementations provide as well as all needed related constr7cts s7ch as
exceptions or and data types. Data types are needed to specify parameters and ret7rn val7e of interfaces' operations.
They can be 7sed also as first class constr7cts.

IDL is a p7rely descriptive lang7age. This means that invoking operations, implementing them or creating and
accessing data act7al programs that 7se these interfaces or create the associated data types cannot be written in IDL,
b7t in a programming lang7age, for which mappings from IDL constr7cts have been defined. The mapping of an IDL
constr7cts to a programming lang7age constr7ct will depend on the facilities available in the that programming
lang7age. For example, an IDL exception might be mapped to a str7ct7re in a lang7age that has no notion of
exceptions, or to an exception in a lang7age that does. The binding of IDL constr7cts to several programming
lang7ages is described in separate specifications.

The cla7se is organized as follows:

 The description of IDL’s lexical conventions is presented in 7.2, Lexical Conventions.

 A description of IDL preprocessing is presented in 7.3, Preprocessing.

 The grammar itself is presented in 7.4, IDL Grammar.

 The scoping r7les for identifiers in an IDL specification are described in 7.5, Names and Scoping.

IDL-specific pragmas may appear anywhere in a specificationt the text7al location of these pragmas may be
semantically constrained by a partic7lar implementation.

A so7rce file containing specifications written in IDL m7st shall have a ".idl" extension.

The description of IDL grammar 7ses a syntax notation that is similar to Extended Back7s-Na7r Format (EBNF).
However, to allow composition of specific parts of the description, while avoiding red7ndancyt a specific new operator
(::+) has been added. This operator allows adding alternatives to an existing definition. For example, (ass7ming the
r7le x ::= y, the r7le x ::+ z shall be interpreted means act7allyas x ::= y | z).

1 In this doc7ment the word middleware refers to any piece of software that will make 7se of IDL-derived artifacts. CORBA and
DDS implementations are examples of middleware. The word compiler refers to any piece of software that prod7ces these IDL-
derived artifacts based on an IDL specification.
2 I.e., abstract semantics that is applicable to all IDL 7sages. When needed, middleware-specific interpretations of that abstract
semantics will be given afterwards in dedicated cla7ses.
3 Accordingly, client objects sho7ld be 7nderstood here as abstract clients, i.e., entities invoking operations provided by object
implementations, regardless of the means 7sed to perform this invocation or even whether those implementations are co-located
or remotely accessible.
IDL, v4.2 9

Table 7 -1 lists the symbols 7sed in this EBNF format and their meaning.

Table 7-1: IDL EBNF

Symbol Meaning

::= Is defined to be (left part of the rule is defined to be right part of the rule)

| Alternatively

::+ Is added as alternative (left part of the rule is completed with right part of the
rule as a new alternative)

<text> Nonterminal

"text" Literal

* The preceding syntactic 7nit can be repeated zero or more times

+ The preceding syntactic 7nit m7st be repeated at least once

{} The enclosed syntactic 7nits are gro7ped as a single syntactic 7nit

[] The enclosed syntactic 7nit is optional – may occ7r zero or one time

7.2 Lexical Conventions

This s7b cla7se4 presents the lexical conventions of IDL. It defines tokens in an IDL specification and describes
comments, identifiers, keywords, and literals – integer, character, and floating point constants and string literals.

An IDL specification logically consists of one or more files. A file is concept7ally translated in several phases.

The first phase is preprocessing, which performs file incl7sion and macro s7bstit7tion. Preprocessing is controlled by
directives introd7ced by lines having # as the first character other than white space. The res7lt of preprocessing is a
seq7ence of tokens. S7ch a seq7ence of tokens, that is, a file after preprocessing, is called a translation 7nit.

IDL 7ses the ASCII character set, except for string literals and character literals, which 7se the ISO Latin-1 (8859-1)
character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic characters, the
space (blank) character, and formatting characters. Table 7 -2 shows the ISO Latin-1 alphabetic characterst 7pper and
lower case eq7ivalences are paired. The ASCII alphabetic characters are shown in the left-hand col7mn of Table 7 -2.

Table 7-2: Characters

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with ac7te accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circ7mflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

4 This s7b cla7se is an adaptation of The Annotated C++ Reference Man7al, Cla7se 2t it differs in the list of legal keywords and
p7nct7ation
10 IDL, v4.2

Char. Description Char. Description

Ee Upper/Lower-case E Ää Upper/Lower-case A with dieresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with ac7te accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circ7mflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with dieresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with ac7te accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circ7mflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with dieresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with ac7te accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circ7mflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with dieresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with obliq7e stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with ac7te accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circ7mflex accent

Üü Upper/Lower-case U with dieresis

ß Lower-case German sharp S

ÿ Lower-case Y with dieresis

Table 7 -3 lists the decimal digit characters.

Table 7-3: Decimal digits

0 1 2 3 4 5 6 7 8 9

IDL, v4.2 11

Table 7 -4 shows the graphic characters.

Table 7-4: Graphic characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" do7ble q7ote ¢ cent sign

n7mber sign £ po7nd sign

$ dollar sign ¤ c7rrency sign

% percent sign ¥ yen sign

& ampersand ¦ broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ dieresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ pl7s sign « left angle q7otation mark

, comma ¬ not sign

- hyphen, min7s sign soft hyphen

. period, f7ll stop ® registered trade mark sign

/ solid7s ¯ macron

: colon ° ring above, degree sign

; semicolon ± pl7s-min7s sign

< less-than sign 2 s7perscript two

= eq7als sign 3 s7perscript three

> greater-than sign ´ ac7te

? q7estion mark µ micro

@ commercial at ¶ pilcrow

[left sq7are bracket • middle dot

\ reverse solid7s ¸ cedilla

] right sq7are bracket 1 s7perscript one

^ circ7mflex º masc7line ordinal indicator

_ low line, 7nderscore » right angle q7otation mark

‘ grave ¼ v7lgar fraction 1/4

12 IDL, v4.2

Char. Description Char. Description

{ left c7rly bracket ½ v7lgar fraction 1/2

| vertical line ¾ v7lgar fraction 3/4

} right c7rly bracket ¿ inverted q7estion mark

~ tilde × m7ltiplication sign

÷ division sign

The formatting characters are shown in Table 7 -5.

Table 7-5: Formatting characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

7.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators.

Blanks, horizontal and vertical tabs, newlines, form feeds, and comments (collective, "white space") as described
below are ignored except as they serve to separate tokens. Some white space is req7ired to separate otherwise adjacent
identifiers, keywords, and constants.

If the inp7t stream has been parsed into tokens 7p to a given character, the next token is taken to be the longest string
of characters that co7ld possibly constit7te a token.

7.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest.

The characters // start a comment, which terminates at the end of the line on which they occ7r.

The comment characters //, /*, and */ have no special meaning within a // comment and are treated j7st like other
characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.

IDL, v4.2 13

Comments may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed, and newline characters.

7.2.3 Identifiers

An identifier is an arbitrarily long seq7ence of ASCII alphabetic, digit and 7nderscore (_) characters. The first
character m7st be an ASCII alphabetic character. All characters are significant.

IDL identifiers are case insensitive. However, all references to a definition m7st 7se the same case as the defining
occ7rrence. This allows nat7ral mappings to case-sensitive lang7ages.

7.2.3.1 Collision Rules

When comparing two identifiers to see if they collide:

 Upper- and lower-case letters are treated as the same letter. Table 7 -2 defines the eq7ivalence mapping of
7pper- and lower-case letters.

 All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error 7nder certain circ7mstances. An identifier
for a given definition m7st be spelled identically (e.g., with respect to case) thro7gho7t a specification.

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a constant and an
interface, for example, prod7ces a compilation error.

Example:

module M {
typedef long Foo;
const long thing = 1;
interface thing { // Error: reuse of identifier thing

void doit (
in Foo foo // Error: Foo and foo collide…
); // … and refer to different things

readonly attribute long Attribute; // Error: Attribute collides with keyword…
// … attribute

};
};

7.2.3.2 Escaped Identifiers

As all lang7ages, IDL 7ses some reserved words called keywords (see 7.2.4, Keywords).

As IDL evolves, new keywords that are added to the IDL lang7age may inadvertently collide with identifiers 7sed in
existing IDL and programs that 7se that IDL. Fixing these collisions will req7ire not only the IDL to be modified, b7t
programming lang7age code that depends 7pon that IDL will have to change as well. The lang7age mapping r7les for
the renamed IDL identifiers will ca7se the mapped identifier names (e.g., method names) to be changed.

To minimize the amo7nt of work, 7sers may lexically "escape" identifiers by prepending an 7nderscore (_) to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The res7lting identifier follows all
the other r7les for identifier processing. For example, the identifier _AnIdentifier is treated as if it were AnIdentifier.

14 IDL, v4.2

 Example:

module M {
interface thing {

attribute boolean abstract; // Error: abstract collides with keyword abstract
attribute boolean _abstract; // OK: abstract is an identifier
};

};

Note – To avoid 7nnecessary conf7sion for readers of IDL, it is recommended that IDL specifications only 7se the
escaped form of identifiers when the non-escaped form clashes with a newly introd7ced IDL keyword. It is also
recommended that interface designers avoid defining new identifiers that are known to req7ire escaping. Escaped
literals are only recommended for IDL that expresses legacy items, or for IDL that is mechanically generated.

7.2.4 Keywords

The identifiers listed in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] are reserved for 7se as
keywords and may not be 7sed for another p7rpose, 7nless escaped with a leading 7nderscore.

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

[IDL42-9 IDL should have aliases/typedefs for integer that disambiguate representation size]

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

[IDL42-9 IDL should have aliases/typedefs for integer that disambiguate representation size]

Table 7-6: All IDL keywords

abstract any alias attribute bitfield

bitmask bitset boolean case char

component connector const consumes context

custom default double exception emits

enum eventtype factory FALSE finder

fixed float getraises home import

in inout interface local long

manages map mirrorport module multiple

native Object octet oneway out

primarykey private port porttype provides

public publishes raises readonly setraises

sequence short string struct supports

switch TRUE truncatable typedef typeid

typename typeprefix unsigned union uses

ValueBase valuetype void wchar wstring

int8 uint8 int16 int32 int64

uint16 uint32 uint64 N/A N/A

Keywords m7st be written exactly as shown in the above list. Identifiers that collide with keywords (see 7.2.3,
Identifiers) are illegal. For example, boolean is a valid keywordt Boolean and BOOLEAN are illegal identifiers.

IDL, v4.2 15

Example:

module M {
typedef Long Foo; // Error: keyword is long not Long
typedef boolean BOOLEAN; // Error: BOOLEAN collides with the keyword…

// …boolean;
};

Note – As the IDL grammar is now organized in b7ilding blocks that dedicated profiles may incl7de or not, some of
these keywords may be irrelevant to some profiles. Each b7ilding block description (see 7.4, IDL Grammar) incl7des
the set of keywords that are specific to it. The minim7m set of keywords for a given profile res7lts from the 7nion of
all the ones of the incl7ded b7ilding blocks. However, to avoid 7nnecessary conf7sion for readers of IDL and to allow
IDL compilers s7pporting several profiles in a single tool, it is recommended that IDL specifications avoid 7sing any
of the keywords listed in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers].

7.2.5 Other Characters Recognized by IDL

IDL specifications 7se the characters shown in Table 7 -7 as p7nct7ation.

Table 7-7: Punctuation

; { } : , = + - () < > []

' " \ | ^ & * / % ~ @

In addition, the tokens listed in Table 7 -8 are 7sed by the preprocessor.

Table 7-8: Tokens

! || &&

7.2.6 Literals

This s7b cla7se describes the following literals:

 Integer

 Character

 Floating-point

 String

 Fixed-point

7.2.6.1 Integer Literals

An integer literal consisting of a seq7ence of digits is taken to be decimal (base ten) 7nless it begins with 0 (digit zero).

A seq7ence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits and
th7s are not allowed in an octal integer literal.

16 IDL, v4.2

A seq7ence of digits preceded by 0x (or 0X) is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
incl7de a (or A) thro7gh f (or F) with decimal val7es ten thro7gh fifteen, respectively.

For example, the n7mber twelve can be written 12, 014, or 0XC.

7.2.6.2 Character Literals

7.2.6.2.1 Wide and Non-wide Characters

Character literals may have type char (non-wide character) or wchar (wide character).

Both wide and non-wide character literals m7st be specified 7sing characters from the ISO Latin-1 (8859-1) character
set.

A char is an 8-bit q7antity with a n7merical val7e between 0 and 255 (decimal). The val7e of a space, alphabetic, digit,
or graphic character literal is the n7merical val7e of the character as defined in the ISO Latin-1 (8859-1) character set
standard (see Table 7 -2 on page 10, Table 7 -3 on page 11 and Table 7 -4 on page 12). The val7e of a null is 0. The
val7e of a formatting character literal is the n7merical val7e of the character as defined in the ISO 646 standard (see
Table 7 -5 on page 13). The meaning of all other characters is implementation-dependent.

A wchar (wide character) is intended to encode wide characters from any character set. Its size is implementation
dependent.

A character literal is one or more characters enclosed in single q7otes, as in:

const char C1 = ’X’;

Wide character literals have in addition an L prefix, as in:

const wchar C2 = L'X';

[IDL42-7 Miscellaneous typos and readability improvements]

Attempts to assign a wide character literal to a non-wide character constant, or to assign a non-wide character literal to
a wide character constant, res7lt in a compile-time diagnosticshall be treated as an error.

7.2.6.2.2 Escape Sequences to Represent Character Literals

[IDL42-7 Miscellaneous typos and readability improvements]

Nongraphic characters m7st shall be represented 7sing escape seq7ences as defined below in Table 7 -9. Note that
escape seq7ences m7st shall be 7sed to represent single q7ote and backslash characters in character literals.

Table 7-9: Escape sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

IDL, v4.2 17

Description Escape Sequence

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal number \xhh

Unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is 7ndefined. An escape seq7ence
specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the val7e
of the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal
digits that are taken to specify the val7e of the desired character.

A seq7ence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The val7e of a character constant is implementation dependent if it exceeds that of the largest char.

The escape \uhhhh consists of a backslash followed by the character u, followed by one, two, three, or fo7r hexadecimal
digits. This represents a Unicode character literal. For example, the literal \u002E represents the Unicode period ‘.’
character and the literal \u3BC represents the Unicode Greek small letter ‘’ (m7). The \u escape is valid only with
wchar and wstring types. Beca7se a wide string literal is defined as a seq7ence of wide character literals, a seq7ence
of \u literals can be 7sed to define a wide string literal.

Attempts to set a char type to a \u defined literal or a string type to a seq7ence of \u literals res7lt in an error.

7.2.6.3 String Literals

Strings are n7ll-terminated seq7ences of characters. Strings are of type string if they are made of non-wide characters
or wstring (wide string) if they are made of wide characters.

A string literal is a seq7ence of character literals (as defined in 7.2.6.2, Character Literals), with the exception of the
character with n7meric val7e 0, s7rro7nded by do7ble q7otes, as in:

const string S1 = "Hello";

Wide string literals have in addition an L prefix, for example:

const wstring S2 = L"Hello";

18 IDL, v4.2

Both wide and non-wide string literals m7st be specified 7sing characters from the ISO Latin-1 (8859-1) character set.
A string literal shall not contain the character ‘\0’. A wide string literal shall not contain the wide character with val7e
zero.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example, "\xA" "B"
contains the two characters ‘\xA’ and ‘B’ after concatenation (and not the single hexadecimal character ‘\xAB’).

The size of a string literal is the n7mber of character literals enclosed by the q7otes, after concatenation. Within a
string, the do7ble q7ote character " m7st be preceded by a \.

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide
string constant res7lt in a compile-time diagnostic.

7.2.6.4 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point (.), a fraction part, an e or E, and an optionally
signed integer exponent. The integer and fraction parts both consist of a seq7ence of decimal (base ten) digits. Either
the integer part or the fraction part (b7t not both) may be missingt either the decimal point or the letter e (or E) and the
exponent (b7t not both) may be missing.

7.2.6.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point (.), a fraction part and a d or D. The integer and
fraction parts both consist of a seq7ence of decimal (base 10) digits. Either the integer part or the fraction part (b7t not
both) may be missingt the decimal point (b7t not the letter d or D) may be missing.

7.3 Preprocessing

IDL shall be preprocessed according to the specification of the preprocessor in ISO/IEC 14882:2003. The preprocessor
may be implemented as a separate process or b7ilt into the IDL compiler.

Lines beginning with # (also called "directives") comm7nicate with this preprocessor. White space may appear before
the #. These lines have syntax independent of the rest of IDLt they may appear anywhere and have effects that last
(independent of the IDL scoping r7les) 7ntil the end of the translation 7nit. The text7al location of IDL-specific
pragmas may be semantically constrained.

A preprocessing directive (or any line) may be contin7ed on the next line in a so7rce file by placing a backslash
character (\), immediately before the newline at the end of the line to be contin7ed. The preprocessor effects the
contin7ation by deleting the backslash and the newline before the inp7t seq7ence is divided into tokens. A backslash
character may not be the last character in a so7rce file.

A preprocessing token is an IDL token (see 7.2.1, Tokens), a file name as in a #include directive, or any single
character other than white space that does not match another preprocessing token.

The primary 7se of the preprocessing facilities is to incl7de definitions from other IDL specifications. Text in files
incl7ded with a #include directive is treated as if it appeared in the incl7ding file.

IDL, v4.2 19

Note – Generating code for incl7ded files is an IDL compiler implementation-specific iss7e. To s7pport separate
compilation, IDL compilers may not generate code for incl7ded files, or do so only if explicitly instr7cted.

7.4 IDL Grammar

The grammar for a well-formed IDL specification is described by r7les expressed in Extended Back7s Na7r Form
(EBNF) completed to s7pport r7le extensions as explained in cla7se 7.1. Table 7 -1: IDL EBNF gathers all the
symbols 7sed in r7les.

These r7les are gro7ped in atomic building blocks that will be themselves gro7ped to form dedicated profiles. Atomic
means that they cannot be split (in other words a given profile will contain or not a given b7ilding block, b7t never j7st
parts of it).

In all the b7ilding block descriptions, the normative r7les are gro7ped in a s7b cla7se entitled "Syntax" and written in
Arial bold. They are then detailed in a s7b cla7se entitled "Explanations and Semantics", where they are copied to ease
7nderstanding. These copies are act7ally hyperlinks to the originals and are written in Arial bold-italics.

In all the r7les, the following non-terminals pre-exist and are not detailed.

Table 7-10: List of pre-existing non-terminals in IDL rules

Token Explanation

<identifier> A valid identifier, as explained in 7.2.3, Identifiers

<integer_literal> A valid integer literal as explained in 7.2.6.1, Integer
Literals

<string_literal> A valid string literal as explained in 7.2.6.3, String
Literals

<wide_string_literal> A valid wide string literal as explained in 7.2.6.3,
String Literals

<character_literal> A valid character literal as explained in 7.2.6.2,
Character Literals

<wide_character_literal
>

A valid wide character literal as explained in 7.2.6.2,
Character Literals

<fixed_pt_literal> A valid fixed point literal as explained in 7.2.6.5,
Fixed-Point Literals

<floating_pt_literal> A valid floating point literal as explained in 7.2.6.4,
Floating-point Literals

7.4.1 Building Block Core Data Types

7.4.1.1 Purpose

[IDL42-7 Miscellaneous typos and readability improvements]

This b7ilding block constit7tes the core of any IDL specialization (all other b7ilding blocks ass7me that this one is
incl7ded). It gathers all contains the syntax r7les that allow defining most data types with what allows and the syntax

20 IDL, v4.2

r7les that allow IDL basic str7ct7ring (i.e., mod7les). and, beca7seSince it is the only mandatory b7ilding block which
is mandatory, the it also contains the root nonterminal <specification> for the grammar itself.

7.4.1.2 Dependencies with other Building Blocks

This b7ilding block is the root for all other b7ilding blocks and req7ires no other ones.

7.4.1.3 Syntax

The following set of r7les form the b7ilding block:

(1) <specification> ::= <definition>+

(2) <definition> ::= <module_dcl> ";"
| <const_dcl> ";"
| <type_dcl> ";"

(3) <module_dcl> ::= "module" <identifier> "{" <definition>+ "}"

(4) <scoped_name> ::= <identifier>
| "::" <identifier>
| <scoped_name> "::" <identifier>

(5) <const_dcl> ::= "const" <const_type> <identifier> "=" <const_expr>

(6) <const_type> ::= <integer_type>
| <floating_pt_type>
| <fixed_pt_const_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <string_type>
| <wide_string_type>
| <scoped_name>

(7) <const_expr> ::= <or_expr>

(8) <or_expr> ::= <xor_expr>
| <or_expr> "|" <xor_expr>

(9) <xor_expr> ::= <and_expr>
| <xor_expr> "^" <and_expr>

(10) <and_expr> ::= <shift_expr>
| <and_expr> "&" <shift_expr>

(11) <shift_expr> ::= <add_expr>
| <shift_expr> ">>" <add_expr>
| <shift_expr> "<<" <add_expr>

(12) <add_expr> ::= <mult_expr>
| <add_expr> "+" <mult_expr>
| <add_expr> "-" <mult_expr>

(13) <mult_expr> ::= <unary_expr>
| <mult_expr> "*" <unary_expr>
| <mult_expr> "/" <unary_expr>
| <mult_expr> "%" <unary_expr>

(14) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

IDL, v4.2 21

(15) <unary_operator> ::= "-"
| "+"
| "~"

(16) <primary_expr> ::= <scoped_name>
| <literal>
| "(" <const_expr> ")"

(17) <literal> ::= <integer_literal>
| <floating_pt_literal>
| <fixed_pt_literal>
| <character_literal>
| <wide_character_literal>
| <boolean_literal>
| <string_literal>
| <wide_string_literal>

(18) <boolean_literal> ::= "TRUE"
| "FALSE"

(19) <positive_int_const> ::= <const_expr>

(20) <type_dcl> ::= <constr_type_dcl>
| <native_dcl>
| <typedef_dcl>

(21) <type_spec> ::= <simple_type_spec>

(22) <simple_type_spec> ::= <base_type_spec>
| <scoped_name>

(23) <base_type_spec> ::= <integer_type>
| <floating_pt_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>

(24) <floating_pt_type> ::= "float"
| "double"
| "long" "double"

(25) <integer_type> ::= <signed_int>
| <unsigned_int>

(26) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(27) <signed_short_int> ::= "short"

(28) <signed_long_int> ::= "long"

(29) <signed_longlong_int> ::= "long" "long"

(30) <unsigned_int> ::= <unsigned_short_int>
| <unsigned_long_int>
| <unsigned_longlong_int>

(31) <unsigned_short_int> ::= "unsigned" "short"

(32) <unsigned_long_int> ::= "unsigned" "long"

(33) <unsigned_longlong_int> ::= "unsigned" "long" "long"

(34) <char_type> ::= "char"

(35) <wide_char_type> ::= "wchar"

22 IDL, v4.2

(36) <boolean_type> ::= "boolean"

(37) <octet_type> ::= "octet"

(38) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(39) <sequence_type> ::= "sequence" "<" <type_spec> "," <positive_int_const> ">"
| "sequence" "<" <type_spec> ">"

(40) <string_type> ::= "string" "<" <positive_int_const> ">"
| "string"

(41) <wide_string_type> ::= "wstring" "<" <positive_int_const> ">"
| "wstring"

(42) <fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"

(43) <fixed_pt_const_type> ::= "fixed"

(44) <constr_type_dcl> ::= <struct_dcl>
| <union_dcl>
| <enum_dcl>

(45) <struct_dcl> ::= <struct_def>
| <struct_forward_dcl>

(46) <struct_def> ::= "struct" <identifier> "{" <member>+ "}"

(47) <member> ::= <type_spec> <declarators> ";"

(48) <struct_forward_dcl> ::= "struct" <identifier>

(49) <union_dcl> ::= <union_def>
| <union_forward_dcl>

(50) <union_def> ::= "union" <identifier> "switch" "(" <switch_type_spec> ")"
"{" <switch_body> "}"

(51) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <scoped_name>

(52) <switch_body> ::= <case>+

(53) <case> ::= <case_label>+ <element_spec> ";"

(54) <case_label> ::= "case" <const_expr> ":"
| "default" ":"

(55) <element_spec> ::= <type_spec> <declarator>

(56) <union_forward_dcl> ::= "union" <identifier>

(57) <enum_dcl> ::= "enum" <identifier>
"{" <enumerator> { "," <enumerator> } * "}"

(58) <enumerator> ::= <identifier>

(59) <array_declarator> ::= <identifier> <fixed_array_size>+

(60) <fixed_array_size> ::= "[" <positive_int_const> "]"

(61) <native_dcl> ::= "native" <simple_declarator>

(62) <simple_declarator> ::= <identifier>

(63) <typedef_dcl> ::= "typedef" <type_declarator>

IDL, v4.2 23

(64) <type_declarator> ::= { <simple_type_spec>
| <template_type_spec>
| <constr_type_dcl>
} <any_declarators>

(65) <any_declarators> ::= <any_declarator> { "," <any_declarator> }*

(66) <any_declarator> ::= <simple_declarator>
| <array_declarator>

(67) <declarators> ::= <declarator> { "," <declarator> }*

(68) <declarator> ::= <simple_declarator>

7.4.1.4 Explanations and Semantics

7.4.1.4.1 IDL Specification>

An IDL specification consists of one or more definitions.

(1) <specification> ::= <definition>+

In this b7ilding block, s7pported definitions are: mod7le definitions, constant definitions and (data) type definitions as
expressed in the following r7le:

(2) <definition> ::= <module_dcl> ";" | <const_dcl> ";" | <type_dcl> ";"

7.4.1.4.2 Modules

A mod7le is a gro7ping constr7ct. Its definition satisfies the following r7le:

(3) <module_dcl> ::= "module" <identifier> "{" <definition>+ "}"

A mod7le is declared with:

 The module keyword.

 An identifier (<identifier>) which is the name of the mod7le. That name is then 7sed to scope embedded IDL
identifiers.

 A list of at least one definition (<definition>+) enclosed within braces ({}). Those definitions form the mod7le
body.

A scoped name is b7ilt according to the following r7le:

(4) <scoped_name> ::= <identifier> | "::" <identifier> | <scoped_name> "::" <identifier>

 For more details on scoping r7les, see 7.5, Names and Scoping.

An IDL mod7le can be reopened, which means that when a mod7le declaration is enco7ntered with a name already
given to an existing mod7le, all the enclosed definitions are appended to that existing mod7le: the two mod7le
statements are th7s considered as s7bseq7ent parts of the same mod7le description.

7.4.1.4.3 Constants

[IDL42-7 Miscellaneous typos and readability improvements]

24 IDL, v4.2

Well-formed constants m7st shall follow the following r7les:

(5) <const_dcl> ::= "const" <const_type> <identifier> "=" <const_expr>

(6) <const_type> ::= <integer_type> | <floating_pt_type> | <fixed_pt_const_type> | <char_type> |
<wide_char_type> | <boolean_type> | <octet_type> | <string_type> |
<wide_string_type> | <scoped_name>

(7) <const_expr> ::= <or_expr>

(8) <or_expr> ::= <xor_expr> | <or_expr> "|" <xor_expr>

(9) <xor_expr> ::= <and_expr> | <xor_expr> "^" <and_expr>

(10) <and_expr> ::= <shift_expr> | <and_expr> "&" <shift_expr>

(11) <shift_expr> ::= <add_expr> | <shift_expr> ">>" <add_expr> | <shift_expr> "<<" <add_expr>

(12) <add_expr> ::= <mult_expr> | <add_expr> "+" <mult_expr> | <add_expr> "-" <mult_expr>

(13) <mult_expr> ::= <unary_expr> | <mult_expr> "*" <unary_expr> | <mult_expr> "/" <unary_expr> |
<mult_expr> "%" <unary_expr>

(14) <unary_expr> ::= <unary_operator> <primary_expr> | <primary_expr>

(15) <unary_operator> ::= "-" | "+" | "~"

(16) <primary_expr> ::= <scoped_name> | <literal> | "(" <const_expr> ")"

(17) <literal> ::= <integer_literal> | <floating_pt_literal> | <fixed_pt_literal> | <character_literal> |
<wide_character_literal> | <boolean_literal> | <string_literal> |
<wide_string_literal>

(18) <boolean_literal> ::= "TRUE" | "FALSE"

(19) <positive_int_const> ::= <const_expr>

[IDL42-7 Miscellaneous typos and readability improvements]

According to those r7les, a constant is defined by:

 The const keyword.

 A type declaration, which m7st shall denote a type s7itable for a constant (<const_type>), i.e.,:

 Either one of the following: <integer_type>, <floating_pt_type>, <fixed_pt_const_type>, <char_type>,
<wide_char_type>, <boolean_type>, <octet_type>, <string_type>, <wide_string_type>, or a previo7sly
defined en7meration. For a definition of those types, see 7.4.1.4.4, Data Types.

 Or a <scoped_name>, which m7st shall be a previo7sly defined name of one of the above.

 The name given to the constant (<identifier>).

 The operator =.

 A val7e expression (<const_expr>), which m7st shall be consistent with the type declared for the constant.

For eval7ating the val7e expression (right hand side of the constant declaration), the following r7les are shall be
applied:

 If the type of an integer constant is long or unsigned long, then each s7b-expression of the associated
constant expression is treated as an unsigned long by defa7lt, or a signed long for negated literals or negative
integer constants. It is an error if any s7b-expression val7es exceed the precision of the assigned type (long or
unsigned long), or if a final expression val7e (of type unsigned long) exceeds the precision of the target type
(long).

IDL, v4.2 25

 If the type of an integer constant is long long or unsigned long long, then each s7b-expression of the
associated constant expression is treated as an unsigned long long by defa7lt, or a signed long long for
negated literals or negative integer constants. It is an error if any s7b-expression val7es exceed the precision of
the assigned type (long long or unsigned long long), or if a final expression val7e (of type unsigned long
long) exceeds the precision of the target type (long long).

 If the type of a floating-point constant is double, then each s7b-expression of the associated constant expression
is treated as a double. It is an error if any s7b-expression val7e exceeds the precision of double.

 If the type of a floating-point constant is long double, then each s7b-expression of the associated constant
expression is treated as a long double. It is an error if any s7b-expression val7e exceeds the precision of long
double.

 An infix operator can may combine two integer types, floating point types or fixed point types, b7t not mixt7res
of these. Infix operators are shall be applicable only to integer, floating point, and fixed point types.

 Integer expressions are shall be eval7ated 7sing the imp7tedbased on the type of each arg7ment of a binary
operator in t7rn. If either arg7ment is unsigned long long, it shall 7se unsigned long long. If either arg7ment
is long long, it shall 7se long long. If either arg7ment is unsigned long, it shall 7se unsigned long. Otherwise
it shall 7se long. The final res7lt of an integer arithmetic expression m7st shall fit in the range of the declared
type of the constantt otherwise an error shall be flagged by the compilerit shall be treated as an error. In
addition to the integer types, the final res7lt of an integer arithmetic expression can may be assigned to an octet
constant, s7bject to it fitting in the range for octet type.

 Floating point expressions are shall be eval7ated based on the 7sing the imp7ted type of each arg7ment of a
binary operator in t7rn. If either arg7ment is long double, it shall 7se long double. Otherwise it shall 7se
double. The final res7lt of a floating point arithmetic expression m7st shall fit in the range of the declared type
of the constantt otherwise it shall be treated as an erroran error shall be flagged by the compiler.

 Fixed-point decimal constant expressions are shall be eval7ated as follows. A fixed-point literal has the
apparent n7mber of total and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and
3000.00d is fixed<6,2>. Prefix operators do not affect the precisiont a prefix + is optional, and does not change
the res7lt. The 7pper bo7nds on the n7mber of digits and scale of the res7lt of an infix expression, fixed<d1
,s1> op fixed<d2,s2>, are shown in the following table.

Table 7-11: Operations on fixed-point decimal constants

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf , sinf>

 A q7otient may have an arbitrary n7mber of decimal places, denoted by a scale of sinf. The comp7tation
proceeds pairwise, with the 7s7al r7les for left-to-right association, operator precedence, and parentheses. All
intermediate comp7tations shall be performed 7sing do7ble precision (i.e., 62 digits) arithmetic. If an individ7al
comp7tation between a pair of fixed-point literals act7ally generates more than 31 significant digits, then a 31-
digit res7lt is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

26 IDL, v4.2

 Leading and trailing zeros are shall not be considered significant. The omitted digits are shall be discardedt
ro7nding is shall not benot performed. The res7lt of the individ7al comp7tation then proceeds as one literal
operand of the next pair of fixed-point literals to be comp7ted.

 Unary (+ -) and binary (* / + -) operators are shall be applicable in floating-point and fixed-point expressions.

 The + 7nary operator has shall have no effectt the – 7nary operator indicates that the sign of the following
expression is inverted.

 The * binary operator indicates that the two operands are shall be m7ltipliedt the / binary operator indicates that
the first operand is shall be divided by the second onet the + binary operator indicates that the two operands are
shall be addedt the – binary operator indicates that the second operand is shall be s7btracted from the first one.

 Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are applicable in integer expressions.

 The + 7nary operator has shall have no effectt the – 7nary operator indicates that the sign of the following
expression is inverted.

 The * binary operator indicates that the two operands are shall be m7ltipliedt the / binary operator indicates that
the first operand is shall be divided by the second onet the + binary operator indicates that the two operands are
shall be addedt the – binary operator indicates that the second operand is shall be s7btracted from the first one.

 The ~ 7nary operator indicates that the bit-complement of the expression to which it is applied is toshall be
generated. For the p7rposes of s7ch expressions, the val7es are 2’s complement n7mbers. As s7ch, the
complement can be generated as follows:

Table 7-12: 2's complement numbers

Integer Constant Expression
Type

Generated 2’s Complement
Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

 The % binary operator yields the remainder from the division of the first expression by the second. If the second
operand of % is 0, the res7lt is 7ndefinedt otherwise (a/b)*b + a%b is eq7al to a.
If both operands are non-negative, then the remainder is non-negativet if not, the sign of the remainder is
implementation dependent.

 The << binary operator indicates that the val7e of the left operand sho7ld shall be shifted left the n7mber of bits
specified by the right operand, with 0 fill for the vacated bits. The right operand m7st shall be in the range 0 <=
right operand < 64.

 The >> binary operator indicates that the val7e of the left operand sho7ld shall be shifted right the n7mber of
bits specified by the right operand, with 0 fill for the vacated bits. The right operand m7st shall be in the range 0
<= right operand < 64.

 The & binary operator indicates that the logical, bitwise AND of the left and right operands sho7ld shall be
generated.

 The | binary operator indicates that the logical, bitwise OR of the left and right operands sho7ld shall be
generated.

IDL, v4.2 27

 The ^ binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right operands sho7ld
shall be generated.

 <positive_int_const> m7st shall eval7ate to a positive integer constant.

The consistency r7les between the val7e (right hand side of the constant declaration) and the constant type declaration
(left hand side) are as follows:

 Integer literals have positive integer val7es. Constant integer literals are shall be considered unsigned long
7nless the val7e is too large, then they are shall be considered unsigned long long. Unary min7s is shall be
considered an operator, not a part of an integer literal. Only integer val7es can be assigned to integer type
(short, long, long long) constants, and octet constants. Only positive integer val7es can be assigned to
7nsigned integer type constants. If the val7e of an integer constant declaration is too large to fit in the act7al
type of the constant on the left hand side (for example const short s = 655592;) or is inappropriate for the
act7al type of the constant (for example const octet o = -54;) it shall be treated as an flagged as a compile time
error.

 Octet literals have integer val7e in the range 0…255. If the right hand side of an octet constant declaration is
o7tside this range, it shall be flagged as a compile timetreated as an error.

 An octet constant can be defined 7sing an integer literal or an integer constant expression b7t val7es o7tside the
range 0…255 shall ca7se a compile-timebe treated as an error.

 Floating point literals have floating point val7es. Only floating point val7es can be assigned to floating point
type (float, double, long double) constants. Constant floating point literals are considered double 7nless the
val7e is too large, then they are considered long double. If the val7e of the right hand side is too large to fit in
the act7al type of the constant to which it is being assigned, it shall be treated as an flagged as a compile time
error. Tr7ncation on the right for floating point types is OK.

 Fixed point literals have fixed point val7es. Only fixed point val7es can be assigned to fixed point type constants.
If the fixed point val7e in the expression on the right hand side is too large to fit in the act7al fixed point type of
the constant on the left hand side, then it shall be treated as an flagged as a compile time error. Tr7ncation on
the right for fixed point types is OK.

 An enum constant can only be defined 7sing a scoped name for the en7merator. The scoped name is resolved
7sing the normal scope resol7tion r7les (see 7.5, Names and Scoping). For example:

enum Color { red, green, blue };
const Color FAVORITE_COLOR = red;
module M {

enum Size { small, medium, large };
};

const M::Size MYSIZE = M::medium;

 The constant name for the val7e of an en7merated constant definition m7st shall denote one of the en7merators
defined for the en7merated type of the constant. For example:

const Color col = red; // is OK but
const Color another = M::medium; // is an error

7.4.1.4.4 Data Types

[IDL42-7 Miscellaneous typos and readability improvements]

A data type can may be either a simple type or a constr7cted one. Those different kinds are detailed in the following
cla7ses.

28 IDL, v4.2

7.4.1.4.4.1 Simple Referencing Types

[IDL42-11 The name "template types" is confusing a more …]

Simple Type declarations may reference other types are types whose definition more or less pre-exists to any IDL
specification. They These type references can be split in two several categories:

[IDL42-7 Miscellaneous typos and readability improvements]

[IDL42-11 The name "template types" is confusing a more …]

 References to bBasic types that basically representing primitive b7iltin types s7ch as n7mbers and characters
and f7lly pre-exist any IDL specification. These 7se the keyword that identifies the type.

 References to types explicitly constr7cted or explictly named types. These 7se the scoped name of the type.

 References to anonymo7s template types that m7st be instantiated with a length (e.g. strings) or a length and an
element type (e.g. seq7ences).Simple template types whose generic definition pre-exists any IDL specification
b7t need to be instantiated with parameters, to become act7al types.

Those These two categories are detailed in the s7bseq7ent cla7ses.

Note – Within this b7ilding block, anonymo7s types, that is, the act7al type res7lting from an instantiation of a
template type (see B7ilding Block Anonymo7s Types) cannot be 7sed as isdirectly (anonymo7sly). Instead, prior to
any 7se, it template types needs tom7st be given a name thro7gh a typedef declaration prior to any 7se. Therefore, as
expressed in the following r7les, referring to a simple type can be done either 7sing directly its name, if it is a basic
type, or thro7gh 7sing a scoped name, in all other cases:

(21) <type_spec> ::= <simple_type_spec>

(22) <simple_type_spec> ::= <base_type_spec> | <scoped_name>

7.4.1.4.4.2 Basic Types

Basic types are pre-existing types that represent n7mbers or characters. They The set of basic types isare defined by the
following r7les:

(23) <base_type_spec> ::= <integer_type> | <floating_pt_type> | <char_type> | <wide_char_type> |
<boolean_type> | <octet_type>

(24) <floating_pt_type> ::= "float" | "double" | "long" "double"

(25) <integer_type> ::= <signed_int> | <unsigned_int>

(26) <signed_int> ::= <signed_short_int> | <signed_long_int> | <signed_longlong_int>

(27) <signed_short_int> ::= "short"

(28) <signed_long_int> ::= "long"

(29) <signed_longlong_int> ::= "long" "long"

(30) <unsigned_int> ::= <unsigned_short_int> | <unsigned_long_int> | <unsigned_longlong_int>

(31) <unsigned_short_int> ::= "unsigned" "short"

(32) <unsigned_long_int> ::= "unsigned" "long"

(33) <unsigned_longlong_int> ::= "unsigned" "long" "long"

(34) <char_type> ::= "char"

(35) <wide_char_type> ::= "wchar"

(36) <boolean_type> ::= "boolean"

IDL, v4.2 29

(37) <octet_type> ::= "octet"

7.4.1.4.4.2.1 Integer Types

IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long representing integer
values in the range indicated below in

[IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers].

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

Table 7-13: Integer types

Integer type Value range

N/A. See Building Block Extended Data-Types -27 … 27 - 1

short -215 … 215 - 1

long -231 … 231 - 1

long long -263 … 263 - 1

N/A. See Building Block Extended Data-Types 0 … 28 - 1

unsigned short 0 … 216 - 1

unsigned long 0 … 232 - 1

unsigned long long 0 ….264 - 1

7.4.1.4.4.2.2 Floating-Point Types

IDL floating-point types are float, double, and long double. The float type represents IEEE single-precision floating
point n7mberst the double type represents IEEE do7ble-precision floating point n7mbers. The long double data type
represents an IEEE do7ble-extended floating-point n7mber, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

7.4.1.4.4.2.3 Char Type

IDL defines a char data type that is an 8-bit q7antity that (1) encodes a single-byte character from any byte-oriented
code set, or (2) when 7sed in an array, encodes a m7lti-byte character from a m7lti-byte code set.

7.4.1.4.4.2.4 Wide Char Type

IDL defines a wchar data type that encodes wide characters from any character set. The size of wchar is
implementation-dependent.

7.4.1.4.4.2.5 Boolean Type

The boolean data type is 7sed to denote a data item that can only take one of the val7es TRUE and FALSE.

30 IDL, v4.2

7.4.1.4.4.2.6 Octet Type

The octet type is an opaq7e 8-bit q7antity that is g7aranteed not to 7ndergo any change by the middleware.

7.4.1.4.4.3 Simple Template Types

[IDL42-11 The name "template types" is confusing a more …]

Simple tTemplate types are generic template types that are parameterized by type of 7nderlying elements and/or the
n7mber of whose generic definition pre-exists any IDL specification.elements. To be 7sed as an act7al type, s7ch a
generic definition m7st be instantiated, i.e., given config7ration parameter val7ess, whose nat7re depends on the
template type.

As specified in the following r7le, simple template types are seq7ences (<sequence_type>), strings (<string_type>,
wide strings (<wide_string_type>) and fixed-point n7mbers (<fixed_pt_type>).

(38) <template_type_spec> ::= <sequence_type> | <string_type> | <wide_string_type> | <fixed_pt_type>

7.4.1.4.4.3.1 Sequences

Seq7ences are defined according to the following syntax.

(39) <sequence_type> ::= "sequence" "<" <type_spec> "," <positive_int_const> ">" | "sequence" "<"
<type_spec> ">"

As a template type, sequence has two parameters:

 The first non-optional parameter (<type_spec>) gives the type of each item in the seq7ence.

 The second optional parameter (<positive_int_const> is a positive integer constant that indicates the maxim7m
size of the seq7ence. If it is given, the seq7ence is termed a bounded seq7ence. Otherwise the seq7ence is said
unbounded and no maxim7m size is specified.

Before 7sing a bo7nded or 7nbo7nded seq7ence, the length of the seq7ence m7st be set in a lang7age-mapping
dependent manner. If the bo7nded form is 7sed, the length m7st be less than or eq7al to the maxim7m. Similarly after
receiving a seq7ence, this val7e may be obtained in a lang7age-mapping dependent manner.

7.4.1.4.4.3.2 Strings

IDL defines the string type string consisting of a list of all possible 8-bit q7antities except n7ll. A string is similar to a
seq7ence of char. As with seq7ences of any type, prior to passing a string as a f7nction arg7ment (or as a field in a
str7ct7re or 7nion), the length of the string m7st be set in a lang7age-mapping dependent manner. The syntax is:

(40) <string_type> ::= "string" "<" <positive_int_const> ">" | "string"

The arg7ment to the string declaration is the maxim7m size of the string (<positive_int_const>). If a positive integer
maxim7m size is specified, the string is termed a bounded string. If no maxim7m size is specified, the string is termed
an unbounded string. The act7al length of a string is set at r7n-time and, if the bo7nded form is 7sed, m7st be less than
or eq7al to the maxim7m.

Note – Strings are singled o7t as a separate type beca7se many lang7ages have special b7ilt-in f7nctions or standard
library f7nctions for string manip7lation. A separate string type may permit s7bstantial optimization in the handling of
strings compared to what can be done with seq7ences of general types.

IDL, v4.2 31

7.4.1.4.4.3.3 Wstrings

The wstring data type represents a seq7ence of wchar, except the wide character n7ll. The type wstring is similar to
that of type string, except that its element type is wchar instead of char. The syntax for defining a wstring is:

(41) <wide_string_type> ::= "wstring" "<" <positive_int_const> ">" | "wstring"

7.4.1.4.4.3.4 Fixed Type

The fixed data type represents a fixed-point decimal n7mber of 7p to 31 significant digits. The syntax to declare a fixed
data type is:

(42) <fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"

The first parameter is the n7mber of total digits (7p to 31), the second one the n7mber of fractional digits, which m7st
be less or eq7al to the former.

In case the fixed type specification is 7sed in a constant declaration, those two parameters are omitted as they are
a7tomatically ded7ced from the constant val7e. The syntax is th7s as follows:

(43) <fixed_pt_const_type> ::= "fixed"

Note – The fixed data type will be mapped to the native fixed point capability of a programming lang7age, if
available. If there is not a native fixed point type, then the IDL mapping for that lang7age will provide a fixed point
data type. Applications that 7se the IDL fixed point type across m7ltiple programming lang7ages m7st take into
acco7nt differences between the lang7ages in handling ro7nding, overflow, and arithmetic precision.

7.4.1.4.4.4 Constructed Types

Constr7cted types are types that are created by an IDL specification.

As expressed in the following r7le, str7ct7res (<struct_dcl>), 7nions (<union_dcl>) and en7merations (<enum_dcl>)
are the constr7cted types s7pported in this b7ilding block:

(44) <constr_type_dcl> ::= <struct_dcl> | <union_dcl> | <enum_dcl>

All those constr7cts are presented in the following cla7ses.

7.4.1.4.4.4.1 Structures

A str7ct7re is a gro7ping of at least one member. The syntax to declare a str7ct7re is as follows:

(45) <struct_dcl> ::= <struct_def> | <struct_forward_dcl>

(46) <struct_def> ::= "struct" <identifier> "{" <member>+ "}"

(47) <member> ::= <type_spec> <declarators> ";"

(67) <declarators> ::= <declarator> { "," <declarator> }*

(68) <declarator> ::= <simple_declarator>

A str7ct7re definition comprises:

 The struct keyword.

 The name given to the str7ct7re (<identifier>).

32 IDL, v4.2

 The list of all str7ct7re members (<member>+) enclosed within braces ({}). Each member (<member>) is
defined with a type specification (<type_spec>) followed by a list of at least one declarator (<declarators>).
At least one member is req7ired.

The name of a str7ct7re defines a new legal type that may be 7sed anywhere s7ch a type is legal in the grammar.

Note – Members may be of any data type, incl7ding seq7ences or arrays. However, except when anonymo7s types are
s7pported (cf. 7.4.14, B7ilding Block Anonymo7s Types for more details), seq7ences or arrays need to be given a
name (with typedef) to be 7sed in the member declaration.

Str7ct7res may be forward declared, in partic7lar to allow the definition of rec7rsive str7ct7res. Cf. 7.4.1.4.4.4.4,
Constr7cted Rec7rsive Types and Forward Declarations for more details.

7.4.1.4.4.4.2 Unions

IDL 7nions are a cross between C 7nions and switch statements. They may host a val7e of one type to be chosen
between several possible cases. IDL 7nions m7st be discriminated: they embed a discriminator that indicates which
case is to be 7sed for the c7rrent instance. The possible cases as well as the type of the discriminator are part of the
7nion declaration, whose syntax is as follows:

(49) <union_dcl> ::= <union_def> | <union_forward_dcl>

(50) <union_def> ::= "union" <identifier> "switch" "(" <switch_type_spec> ")" "{" <switch_body> "}"

(51) <switch_type_spec> ::= <integer_type> | <char_type> | <boolean_type> | <scoped_name>

(52) <switch_body> ::= <case>+

(53) <case> ::= <case_label>+ <element_spec> ";"

(54) <case_label> ::= "case" <const_expr> ":" | "default" ":"

(55) <element_spec> ::= <type_spec> <declarator>

A 7nion declaration comprises:

 The union keyword.

 The name given to the 7nion (<identifier>).

 The type for the discriminator (<switch_type_spec>). That type may be either one of the following types:
integer, char, boolean or an en7meration, or a reference (<scoped_name>) to one of these.

 The list of all possible cases for the 7nion (<switch_body>), enclosed within braces ({}). At least one case is
req7ired. Each possibility (<case>) comprises the form that the 7nion takes (<element_spec>) when the
discriminator takes the list of specified val7es (<case_label>+). Several case labels may be associated in a
single case.

 A case label m7st be:

 Either a constant expression (<const_expr>) matching (or a7tomatically castable) to, the defined type of the
discriminator.

 Or the default keyword, to tag the case when the discriminator's val7e does not match the other possibilities. A
defa7lt case can appear at most once.

 Each possible form for the 7nion val7e is made of an existing IDL type (<type_spec>) followed by the name
given to that form (<declarator>).

The name of a 7nion defines a new legal type that may be 7sed anywhere s7ch a type is legal in the grammar.

IDL, v4.2 33

It is not req7ired that all possible val7es of the 7nion discriminator be listed in the <switch_body>. The val7e of a
7nion is the val7e of the discriminator together with one of the following:

1. If the discriminator val7e was explicitly listed in a case statement, the val7e of the element associated with
that case statement.

1. If a defa7lt case label was specified, the val7e of the element associated with the defa7lt case label.

2. No additional val7e.

Access to the discriminator and to the related element is lang7age-mapping dependent.

Note – Name scoping r7les req7ire that the element declarators (all the <declarator> in the different
<element_spec>) in a partic7lar 7nion be 7niq7e. If the <switch_type_spec> is an en7meration, the identifier for the
en7meration is as well in the scope of the 7niont as a res7lt, it m7st be distinct from the element declarators. The val7es
of the constant expressions for the case labels of a single 7nion definition m7st be distinct. A 7nion type can contain a
defa7lt label only where the val7es given in the non-defa7lt labels do not cover the entire range of the 7nion's
discriminant type.

Note – While any ISO Latin-1 (8859-1) IDL character literal may be 7sed in a <case_label> in a 7nion definition
whose discriminator type is char, not all of these characters are present in all code sets that may be 7sed by
implementation lang7age compilers and/or r7ntimes, which may lead to some interoperability iss7e (typically leading
to a DATA_CONVERSION system exception). Therefore, to ens7re portability and interoperability, care m7st be
exercised when assigning the <case_label> for a 7nion member whose discriminator type is char. D7e to this potential
iss7e, 7se of char types as the discriminator type for 7nions is not recommended.

7.4.1.4.4.4.3 Enumerations

En7merated types (en7merations) consist of ordered lists of en7merators. The syntax to create s7ch a type is as
follows:

(57) <enum_dcl> ::= "enum" <identifier> "{" <enumerator> { "," <enumerator> } * "}"

(58) <enumerator> ::= <identifier>

An en7meration declaration comprises:

 The enum keyword.

 The name given to the en7meration (<identifier>).

 The list of the possible val7es (enumerators) that makes the en7meration, enclosed within braces ({}). Each
en7merator is identified by a specific name (<identifier>). In case there are several en7merators, their names
are separated by commas (,). An en7meration m7st contain at least one en7merator and no more than 232.

The name of an en7meration defines a new legal type that may be 7sed anywhere s7ch a type is legal in the grammar.

Note – The en7merated names m7st be mapped to a native data type capable of representing a maximally-sized
en7meration. The order in which the identifiers are named in the specification of an en7meration defines the relative
order of the identifiers. Any lang7age mapping that permits two en7merators to be compared or defines
s7ccessor/predecessor f7nctions on en7merators m7st conform to this ordering relation.

34 IDL, v4.2

7.4.1.4.4.4.4 Constructed Recursive Types and Forward Declarations

The IDL syntax allows the generation of rec7rsive str7ct7res and 7nions via members that have a seq7ence type. For
example, the following:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {

long value;
FooSeq chain; // Recursive
};

The forward declaration for the str7ct7re enables the definition of the seq7ence type FooSeq, which is 7sed as the type
of the rec7rsive member.

Forward declarations are legal for str7ct7res and 7nions. Their syntax is as follows:

(48) <struct_forward_dcl> ::= "struct" <identifier>

(56) <union_forward_dcl> ::= "union" <identifier>

A str7ct7re or 7nion type is termed incomplete 7ntil its f7ll definition is providedt that is, 7ntil the scope of the
str7ct7re or 7nion definition is closed by a terminating };. For example:

struct Foo; // Introduces Foo type name,
// Foo is incomplete now

// ...
struct Foo {

// ...
}; // Foo is complete at this point

[IDL42-7 Miscellaneous typos and readability improvements]

If a str7ct7re or 7nion is forward declared, a definition of that str7ct7re or 7nion m7st follow the forward declaration in
the same compilation 7nit. If this r7le is violated it shall be treated as an errorCompilers shall iss7e a diagnostic if this
r7le is violated. M7ltiple forward declarations of the same str7ct7re or 7nion are legal.

If a seq7ence member of a str7ct7re or 7nion refers to an incomplete type, the str7ct7re or 7nion itself remains
incomplete 7ntil the member’s definition is completed. For example:

struct Foo;
typedef sequence<Foo> FooSeq;
struct Bar {

long value;
FooSeq chain; // Use of incomplete type
}; // Bar itself remains incomplete

struct Foo {
// ...
}; // Foo and Bar are complete

If this r7le is violated it shall be treated as an errorCompilers shall iss7e a diagnostic if this r7le is violated.

IDL, v4.2 35

Rec7rsive definitions can span m7ltiple levels. For example:

union Bar; // Forward declaration
typedef sequence<Bar> BarSeq;
union Bar switch (long) { // Define incomplete union
 case 0:

long l_mem;
 case 1:

struct Foo {
double d_mem;
BarSeq nested; // OK, recurse on enclosing incomplete type
} s_mem;

};

An incomplete type can only appear as the element type of a seq7ence definition. A seq7ence with incomplete element
type is termed an incomplete sequence type. For example:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq; // Incomplete

An incomplete seq7ence type can appear only as the element type of another seq7ence, or as the member type of a
str7ct7re or 7nion definition. If this r7le is violated it shall be treated as an errorCompilers shall iss7e a diagnostic if
this r7le is violated.

7.4.1.4.4.5 Arrays

IDL defines m7ltidimensional, fixed-size arrays. An array incl7des explicit sizes for each dimension. The syntax for
arrays is very similar to the one of C or C++ as stated in the following r7les:

(59) <array_declarator> ::= <identifier> <fixed_array_size>+

(60) <fixed_array_size> ::= "[" <positive_int_const> "]"

The array size (in each dimension) is fixed at compile time. The implementation of array indices is lang7age mapping
specific.

Declaring an array with all its dimensions creates an anonymo7s type. Within this b7ilding block, s7ch a type cannot
be 7sed as is b7t needs to be given a name thro7gh a typedef declaration prior to any 7se.

7.4.1.4.4.6 Native Types

IDL provides a declaration to define an opaq7e type whose representation is specified by the lang7age mapping.

[IDL42-7 Miscellaneous typos and readability improvements]

As stated in the following r7les, declaring a native type consist in j7st is done prefixing the type name
(<simple_declarator>) with the native keyword:

(61) <native_dcl> ::= "native" <simple_declarator>

(62) <simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
val7es of a native type are lang7age-mapping dependent, as are the means for constr7cting and manip7lating them.
Any IDL specification that defines a native type req7ires each lang7age mapping to define how the native type is
mapped into that programming lang7age.

36 IDL, v4.2

Note – It is recommended that native types be mapped to eq7ivalent type names in each programming lang7age,
s7bject to the normal mapping r7les for type names in that lang7age.

7.4.1.4.4.7 Naming Data Types

IDL provides constr7cts for naming typest that is, it provides C lang7age-like declarations that associate an identifier
with a type. The syntax for type declaration is as follows:

(63) <typedef_dcl> ::= "typedef" <type_declarator>

(64) <type_declarator> ::= { <simple_type_spec> | <template_type_spec> | <constr_type_dcl> }
<any_declarators>

(65) <any_declarators> ::= <any_declarator> { "," <any_declarator> }*

(66) <any_declarator> ::= <simple_declarator> | <array_declarator>

(59) <array_declarator> ::= <identifier> <fixed_array_size>+

(60) <fixed_array_size> ::= "[" <positive_int_const> "]"

S7ch a declaration is made of:

 The typedef keyword.

 The type specification, which may be a simple type specification (<simple_type_spec>), that is either a basic
type or a scoped name denoting any IDL legal type, or a template type specification (<template_type_spec>),
or a declaration for a constr7cted type (<constr_type_dcl>).

 A list of at least one declarator, which will provide the new type name. Each declarator can be either a simple
identifier (<simple_declarator>), which will be then the name allocated to the type, or an array declarator
(<array_declarator>), in which case the new name (<identifier> enclosed within the array declarator) will
denote an array of specified type.

Note – As previo7sly seen, a name is also associated with a data type via the struct, union, enum, and native
declarations.

Note – Within this b7ilding block where anonymo7s types are forbidden, a typedef declaration is needed to name,
prior to any 7se, an array or a template instantiation.

7.4.1.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

IDL, v4.2 37

Table 7-14: Keywords specific to Building Block Core Data Types

boolean case char

const

default double

enum FALSE

fixed float

long

module

native octet

sequence short string struct

switch TRUE typedef

unsigned union

void wchar wstring

7.4.2 Building Block Any

7.4.2.1 Purpose

This b7ilding block adds the ability to declare a type that may represent any valid data type.

7.4.2.2 Dependencies with other Building Blocks

This b7ilding block relies on B7ilding Block Core Data Types.

7.4.2.3 Syntax

The following r7les are added by this b7ilding block:

(69) <base_type_spec> ::+ <any_type>

(70) <any_type> ::= "any"

7.4.2.4 Explanations and Semantics

An any is a type that may represent any valid data type. At IDL level, it is j7st declared with the keyword any.

[IDL42-7 Miscellaneous typos and readability improvements]

38 IDL, v4.2

An any logically contains a val7e and some means that specifiesto specify the act7al type of the val7e. However, the
specific way in which the act7al type is defined This means is middleware-specific5. Each IDL lang7age mapping
provides operations that allow programmers to insert and access the val7e contained in an any as well as the act7al
type of that val7e.

7.4.2.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-15: Keywords specific to Building Block Any

any

7.4.3 Building Block Interfaces – Basic

7.4.3.1 Purpose

This b7ilding block gathers all the r7les needed to define basic interfaces, i.e., consistent gro7pings of operations. At
this stage, there is no other implicit behavior attached to interfaces.

7.4.3.2 Dependencies with other Building Blocks

This b7ilding block relies on B7ilding Block Core Data Types.

5 For CORBA this means is a TypeCode (see [CORBA], Part1, S7b cla7se 8.11 “TypeCodes”).
IDL, v4.2 39

7.4.3.3 Syntax

The following r7les form the b7ilding block:

(71) <definition> ::+ <except_dcl> ";"
| <interface_dcl> ";"

(72) <except_dcl> ::= "exception" <identifier> "{" <member>* "}"

(73) <interface_dcl> ::= <interface_def>
| <interface_forward_dcl>

(74) <interface_def> ::= <interface_header> "{" <interface_body> "}"

(75) <interface_forward_dcl> ::= <interface_kind> <identifier>

(76) <interface_header> ::= <interface_kind> <identifier>
[<interface_inheritance_spec>]

(77) <interface_kind> ::= "interface"

(78) <interface_inheritance_spec>
::= ":" <interface_name> { "," <interface_name> }*

(79) <interface_name> ::= <scoped_name>

(80) <interface_body> ::= <export>*

(81) <export> ::= <op_dcl> ";"
 | <attr_dcl> ";"

(82) <op_dcl> ::= <op_type_spec> <identifier> "(" [<parameter_dcls>] ")" [<raises_expr>]

(83) <op_type_spec> ::= <type_spec>
| "void"

(84) <parameter_dcls> ::= <param_dcl> { "," <param_dcl> } *

(85) <param_dcl> ::= <param_attribute> <type_spec> <simple_declarator>

(86) <param_attribute> ::= "in"
| "out"
| "inout"

(87) <raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> } * ")"

(88) <attr_dcl> ::= <readonly_attr_spec>
| <attr_spec>

(89) <readonly_attr_spec> ::= "readonly" "attribute" <type_spec> <readonly_attr_declarator>

(90) <readonly_attr_declarator>
::= <simple_declarator> <raises_expr>
| <simple_declarator> { "," <simple_declarator> }*

(91) <attr_spec> ::= "attribute" <type_spec> <attr_declarator>

(92) <attr_declarator> ::= <simple_declarator> <attr_raises_expr>
| <simple_declarator> { "," <simple_declarator> }*

(93) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>]
| <set_excep_expr>

(94) <get_excep_expr> ::= "getraises" <exception_list>

(95) <set_excep_expr> ::= "setraises" <exception_list>

(96) <exception_list> ::= "(" <scoped_name> { "," <scoped_name> } * ")"

40 IDL, v4.2

7.4.3.4 Explanations and Semantics

7.4.3.4.1 IDL specification

With that b7ilding block, an IDL specification may declare exceptions and interfaces (that are merely gro7ps of
operations).

(71) <definition> ::+ <except_dcl> ";" | <interface_dcl> ";"

7.4.3.4.2 Exceptions

Exceptions are specific data str7ct7res, which may be ret7rned to indicate that an exceptional condition has occ7rred
d7ring the exec7tion of an operation. The syntax to declare an exception is as follows:

(72) <except_dcl> ::= "exception" <identifier> "{" <member>* "}"

An exception declaration is made of:

 The exception keyword.

 An identifier (<identifier>) - each exception is typed with its exception identifier.

 A body enclosed within braces ({}) - the body may be void or comprise members (<member>*), very similar to
str7ct7re members. See 7.4.1.4.4.4, Constr7cted Types for more details on member declaration.

[IDL42-7 Miscellaneous typos and readability improvements]

If an exception is ret7rned as the o7tcome to an operation invocation, then the val7e of the exception identifier is shall
be accessible to the programmer for determining which partic7lar exception was raised.

If an exception is declared with members, a programmer will shall be able to access the val7es of those members when
s7ch an exception is raised. If no members are specified, no additional information is shall be accessible when s7ch an
exception is raised.

The way this information is made available is lang7age-mapping specific.

An identifier declared to be an exception identifier may thereafter appear only in a raises expression of an operation or
attrib7te declaration, and nowhere else.

7.4.3.4.3 Interfaces

Interfaces are gro7pings of elements (in this b7ilding block operations and attrib7tes).

[IDL42-7 Miscellaneous typos and readability improvements]

As defined by the following r7les, an interface is made of a header (<interface_header>) and a body
(<interface_body>) enclosed in braces ({}). An interface may also be declared with no definition with 7sing a forward
declaration (<interface_forward_dcl>).

(73) <interface_dcl> ::= <interface_def> | <interface_forward_dcl>

(74) <interface_def> ::= <interface_header> "{" <interface_body> "}"

 All those constr7cts are detailed in the following cla7ses.

IDL, v4.2 41

7.4.3.4.3.1 Interface Header

An interface header is declared with the following syntax:

(76) <interface_header> ::= <interface_kind> <identifier> [<interface_inheritance_spec>]

(77) <interface_kind> ::= "interface"

An interface header comprises:

 The interface keyword.

 The interface name (<identifier>).

 Optionally an inheritance specification (<interface_inheritance_spec>).

[IDL42-7 Miscellaneous typos and readability improvements]

The <identifier> that names an interface defines a new legal type. S7ch a type may be 7sed anywhere a type is legal in
the grammar, s7bject to semantic constraints as described in the following s7b cla7ses. A parameter or str7ct7re member
which is of an interface type is act7ally semantically as a reference to an object implementing that interface. Each
lang7age binding describes how the programmer m7st represent s7ch interface references.

7.4.3.4.3.2 Interface Inheritance

Interface inheritance is introd7ced by a colon (:) and m7st follow the following syntax:

(78) <interface_inheritance_spec> ::= ":" <interface_name> { "," <interface_name> }*

(79) <interface_name> ::= <scoped_name>

Each <scoped_name> in an <interface_inheritance_spec> m7st be the name of a previo7sly defined interface or an
alias to a previo7sly defined interface (defined 7sing a typedef declaration).

7.4.3.4.3.2.1 Inheritance Rules

An interface can be derived from another interface, which is then called a base interface of the derived interface. A
derived interface, like all interfaces, may declare new elements (in this b7ilding block, operations and attrib7tes). In
addition the elements of a base interface can be referred to as if they were elements of the derived interface.

An interface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is
not a direct base b7t is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any n7mber of base interfaces. S7ch 7se of more than one direct base interface is
often called multiple inheritance. The order of derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more than oncet it may be an indirect
base interface more than once. Consider the following example:

interface A { ... };
interface B: A { ... };
interface C: A { ... };
interface D: B, C { ... }; // OK
interface E: A, B { ... }; // OK

42 IDL, v4.2

The relationships between these interfaces are shown in Fig7re 7 -1. This "diamond" shape is legal, as is the definition
of E on the right.

Figure 7-1: Examples of Legal Multiple Inheritance

It is forbidden to redefine an operation or an attrib7te in a derived interface, as well as inheriting two different
operations or attrib7tes with the same name.

interface A {
void make_it_so();
};

interface B: A {
short make_it_so(in long times); // Error: redefinition of make_it_so
};

7.4.3.4.3.3 Interface Body

[IDL42-7 Miscellaneous typos and readability improvements]

As stated in the following r7les, within an interface body, can be defined operations and attrib7tes can be defined.
Those constr7cts are defined in the scope of the interface and exported (i.e., accessible o7tside the interface definition
thro7gh 7sing their name scoped by the interface name).

(80) <interface_body> ::= <export>*

(81) <export> ::= <op_dcl> ";" | <attr_dcl> ";"

Operations and attrib7tes are detailed in the following s7b cla7ses.

7.4.3.4.3.3.1 Operations

Operation declarations in IDL are similar to C f7nction declarations. To define an operation, the syntax is:

(82) <op_dcl> ::= <op_type_spec> <identifier> "(" [<parameter_dcls>] ")" [<raises_expr>]

(83) <op_type_spec> ::= <type_spec> | "void"

(84) <parameter_dcls> ::= <param_dcl> { "," <param_dcl> } *

(85) <param_dcl> ::= <param_attribute> <type_spec> <simple_declarator>

(86) <param_attribute> ::= "in" | "out" | "inout"

(87) <raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> } * ")"

IDL, v4.2 43

A

D

CB E

A

D

CB

 [IDL42-7 Miscellaneous typos and readability improvements]

An operation declaration consists of:

 The type of the operation’s ret7rn res7lt (<op_type_spec>)t the type may be any type that can be defined in
IDL. Operations that do not ret7rn a res7lt m7st shall specify void as ret7rn type.

 An identifier (<identifier>) that names the operation in the scope of the interface in which it is defined.

 A parameter list that specifies zero or more parameter declarations. The parameter list is enclosed between
brackets (()). In case more than one parameter is declared, parameter declarations are separated by commas (,).
Each parameter declaration is made of:

 A q7alifier (<param_attribute>) that specifies the direction in which the parameter is to be passed. The
possible val7es are:

 in - the parameter is passed from caller to operation.

 out - the parameter is passed from operation to caller.

 inout - the parameter is passed in both directions.

 The type of the parameter (<type_spec>) that may be any valid IDL type specification.

 The name of the parameter (<simple_declarator>).

 An optional expression that indicates which exceptions may be raised as a res7lt of an invocation of this
operation. This expression is made of:

 The raises keyword.

 The list of the operation-specific exceptions, enclosed between brackets (()) and separated by commas (,) in
case more than one exception is specified. Each of the scoped names (<scoped_name>) in the list m7st denote
a previo7sly defined exception.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
lang7age-mapping specifict the effect of s7ch an action is 7ndefined.

In addition to any operation-specific exceptions specified in the raises expression, other middleware-specific standard
exceptions may be raised. These exceptions are described in the related profiles.

[IDL42-7 Miscellaneous typos and readability improvements]

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations
of s7ch an operation are may still liable to receiveraise one of the middleware-specific standard exceptions.

If an exception is raised as a res7lt of an invocation, the val7es of the return res7lt and any out and inout parameters
are 7ndefined.

Note – A native type (cf. 7.4.1.4.4.6) may be 7sed to define operation parameters, res7lts, and exceptions. If a native
type is 7sed for an exception, it m7st be mapped to a type in a programming lang7age that can be 7sed as an exception.

7.4.3.4.3.3.2 Attributes

[IDL42-7 Miscellaneous typos and readability improvements]

Attrib7tes can may also be declared within an interface. Declaring an attrib7te is logically eq7ivalent to declaring a pair
of accessor f7nctionst one to retrieve the val7e of the attrib7te and one to set the val7e of the attrib7te.

44 IDL, v4.2

To create an attrib7te, the syntax is as follows:

(88) <attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

(89) <readonly_attr_spec> ::= "readonly" "attribute" <type_spec> <readonly_attr_declarator>

(90) <readonly_attr_declarator> ::= <simple_declarator> <raises_expr> | <simple_declarator> { ","
<simple_declarator> }*

(91) <attr_spec> ::= "attribute" <type_spec> <attr_declarator>

(92) <attr_declarator> ::= <simple_declarator> <attr_raises_expr> | <simple_declarator> { ","
<simple_declarator> }*

(93) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>] | <set_excep_expr>

(94) <get_excep_expr> ::= "getraises" <exception_list>

(95) <set_excep_expr> ::= "setraises" <exception_list>

(96) <exception_list> ::= "(" <scoped_name> { "," <scoped_name> } * ")"

An attrib7te declaration is made of:

 An optional q7alifier (readonly) that indicates that the attrib7te cannot be written. In this case, the attrib7te is
said read-only and the declaration is eq7ivalent to only a read accessor.

 The attribute keyword.

 The type of the attrib7te that may be any valid IDL type specification (<type_spec>).

 The name of the attrib7te (<simple_declarator>).

 An optional raises expression.

[IDL42-7 Miscellaneous typos and readability improvements]

The optional raises expressions take different forms according to the attrib7te kinds:

 For read-only attrib7tes, raises expressions are similar to those of operations (cf. r7le (90) above).

 For plain attrib7tes, raises expressions allow to indicate which of the potential 7ser-defined exceptions are may
be raised when the attrib7te is read (getraises) and which the ones are when the attrib7te is written (setraises).
A plain attrib7te may have a getraises expression, a setraises expression or both of them. In the latter case,
the getraises expression m7st be declared in first place.

The absence of a raises expression (raises, getraises or setraises) on an attrib7te implies that there are no attrib7te-
specific exceptions. Accesses to s7ch an attrib7te are may still liable to receiveraise middleware-specific standard
exceptions.

As a shortc7t, several attrib7tes can be declared in a single attrib7te declaration, provided that there are no attached
raises cla7ses. In that case, the names of the attrib7tes are listed, separated by a comma (,).

Note – A native type (cf. 7.4.1.4.4.6) may be 7sed to define attrib7te types, and exceptions. If a native type is 7sed for
an exception, it m7st be mapped to a type in a programming lang7age that can be 7sed as an exception.

7.4.3.4.3.4 Forward Declaration

A forward declaration declares the name of an interface witho7t defining it. This permits the definition of interfaces
that refer to each other.

IDL, v4.2 45

As stated in the following r7le, the syntax for a forward declaration is simply the declaration of the kind of interface6,
followed by the interface name:

(75) <interface_forward_dcl> ::= <interface_kind> <identifier>

(77) <interface_kind> ::= "interface"

It is illegal to inherit from a forward-declared interface not previo7sly defined.

module Example {
interface base; // Forward declaration
// ...
interface derived : base {}; // Error
interface base {}; // Define base
interface derived : base {}; // OK
};

M7ltiple forward declarations of the same interface name are legal, provided that they are all consistent.

7.4.3.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-16: Keywords specific to Building Block Interfaces – Basic

attribute

exception

getraises

in inout interface

out

raises readonly setraises

6 The definition of a forward-declared interface m7st be consistent with the forward declaration: they m7st share the same
interface kind. With this b7ilding block, there is only one interface kind (namely interface) however other interface-related
b7ilding blocks will add other kinds (s7ch as abstract interface).
46 IDL, v4.2

7.4.4 Building Block Interfaces – Full

7.4.4.1 Purpose

This b7ilding block complements the former one with the ability to embed in the interface body, additional
declarations s7ch as types, exceptions and constants.

7.4.4.2 Dependencies with other Building Blocks

This b7ilding block complements B7ilding Block Interfaces – Basic. Transitively, it relies on B7ilding Block Core
Data Types.

7.4.4.3 Syntax

The following r7le is added by this b7ilding block:

(97) <export> ::+ <type_dcl> ";"
| <const_dcl> ";"
| <except_dcl> ";"

7.4.4.4 Explanations and Semantics

[IDL42-7 Miscellaneous typos and readability improvements]

This b7ilding block adds the possibility to embed inside an interface declaration, declarations of types, constants and
exceptions inside an interface declaration.

The syntax for those embedded elements is exactly the same as if they were top-level constr7cts.

All those elements are exported (i.e., visible 7nder the scope of their hosting interface). As opposedIn contrast to
attrib7tes and operations, they may be redefined in a derived interface, which has the following conseq7ences:

 In a derived interface, all elements of a base class may be referred to as if they were elements of the derived
class, 7nless they are redefined in the derived class. The name resol7tion operator (::) may be 7sed to refer to a
base element explicitlyt this permits reference to a name that has been redefined in the derived interface. The
scope r7les for s7ch names are described in 7.5, Names and Scoping.

 References to base interface elements m7st be 7nambig7o7s. A reference to a base interface element is
ambiguous if the name is declared as a constant, type, or exception in more than one base interface.
Ambig7ities can be resolved by q7alifying a name with its interface name (that is, 7sing a <scoped_name>). It
is illegal to inherit from two interfaces with the same operation or attrib7te name, or to redefine an operation or
attrib7te name in the derived interface.
For example in:

interface A {
typedef long L1;
short opA (in L1 l_1);
};

IDL, v4.2 47

interface B {
typedef short L1;
 L1 opB (in long l);
};

interface C: B, A {
typedef L1 L2; // Error: L1 ambiguous
typedef A::L1 L3; // A::L1 is OK
B::L1 opC (in L3 l_3); // All OK no ambiguities
};

 References to constants, types, and exceptions are bo7nd to an interface when it is defined (i.e., replaced with
the eq7ivalent global scoped names). This g7arantees that the syntax and semantics of an interface are not
changed when the interface is a base interface for a derived interface.

Consider the following example:

const long L = 3;
interface A {

typedef float coord[L]:
void f (in coord s); // s has three floats
};

interface B {
const long L = 4;
};

interface C: B, A { }; // What is C::f()’s signature?

The early binding of constants, types, and exceptions at interface definition g7arantees that the signat7re of
operation f in interface C is typedef float coord[3]; void f (in coord s)t which is identical to that in interface
A. This r7le also prevents redefinition of a constant, type, or exception in the derived interface from affecting
the operations and attrib7tes inherited from a base interface.

[IDL42-7 Miscellaneous typos and readability improvements]

 Interface inheritance ca7ses all identifiers defined in base interfaces, both direct and indirect, to be visible in the
c7rrent naming scope. A type name, constant name, en7meration val7e name, or exception name from an
enclosing scope can be redefined in the c7rrent scope. An attempt to 7se an ambig7o7s name witho7t
q7alification prod7ces a compilationshall be treated as an error. Th7s in:

interface A {
typedef string<128> string_t;
};

interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Title; // Error: string_t ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK
};

7.4.4.5 Specific Keywords

There are no additional keywords with this b7ilding block.

48 IDL, v4.2

7.4.5 Building Block Value Types

7.4.5.1 Purpose

This b7ilding block adds the ability to declare plain val7e types.

As opposed to interfaces which are merely gro7ps of operations7, val7es carry also state contents. A val7e type is, in
some sense, half way between a "reg7lar" IDL interface type and a str7ct7re.

[IDL42-7 Miscellaneous typos and readability improvements]

Val7e types add the following feat7res to the expressive power of str7ct7res:

 Single derivation (from other val7e types).

 S7pports a single Single interface s7pport.

 Arbitrary rec7rsive val7e type definitions, with sharing semantics providing the ability to define lists, trees,
lattices, and more generally arbitrary graphs 7sing val7e types.

 N7ll val7e semantics.

Designing a val7e type req7ires that some additional properties (state) and implementation details be specified beyond
that of an interface type. Specification of this information p7ts some additional constraints on the implementation
choices beyond that of interface types. This is reflected in both the semantics specified herein, and in the lang7age
mappings.

An essential property of val7e types is that their implementations are always collocated with their clients. That is, the
explicit 7se of val7es in a concrete programming lang7age is always g7aranteed to 7se local implementations, and will
not req7ire remote calls. They have th7s no system-wide identity (their val7e is their identity).

7.4.5.2 Dependencies with other Building Blocks

This b7ilding block req7ires B7ilding Block Interfaces – Basic. Transitively, it relies on B7ilding Block Core Data
Types.

7.4.5.3 Syntax

The following r7les are added by this b7ilding block:

(98) <definition> ::+ <value_dcl> ";"

(99) <value_dcl> ::= <value_def>
| <value_forward_dcl>

(100) <value_def> ::= <value_header> "{" <value_element>* "}"

(101) <value_header> ::= <value_kind> <identifier> [<value_inheritance_spec>]

(102) <value_kind> ::= "valuetype"

(103) <value_inheritance_spec>
::= [":" <value_name>] ["supports" <interface_name>]

7 Interface attrib7tes are act7ally eq7ivalent to accessors.
IDL, v4.2 49

(104) <value_name> ::= <scoped_name>

(105) <value_element> ::= <export>
| <state_member>
| <init_dcl>

(106) <state_member> ::= ("public" | "private") <type_spec> <declarators> ";"

(107) <init_dcl> ::= "factory" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>] ";"

(108) <init_param_dcls> ::= <init_param_dcl> { "," <init_param_dcl>}*

(109) <init_param_dcl> ::= "in" <type_spec> <simple_declarator>

(110) <value_forward_dcl> ::= <value_kind> <identifier>

7.4.5.4 Explanations and Semantics

With that b7ilding block, an IDL specification may additionally declare val7e types, as expressed in:

(98) <definition> ::+ <value_dcl> ";"

There are two kinds of val7e type declarations: definitions of concrete (statef7l) val7e types, and forward declarations.

(99) <value_dcl> ::= <value_def> | <value_forward_dcl>

7.4.5.4.1 Concrete (Stateful) Value Types

Reg7lar val7e types (also named concrete or stateful) are declared with the following syntax:

(100) <value_def> ::= <value_header> "{" <value_element>* "}"

A val7e declaration consists of a header (<value_header>) and a body, made of val7e elements (<value_element>*)
enclosed within braces ({}). Those constr7cts are detailed in the following cla7ses.

7.4.5.4.1.1 Value Header

The val7e header is declared with the following syntax:

(101) <value_header> ::= <value_kind> <identifier> [<value_inheritance_spec>]

(102) <value_kind> ::= "valuetype"

The val7e header consists of:

 The valuetype keyword.

 An identifier (<identifier>) to name the val7e type. Val7e types may also be named by a typedef declaration.

 An optional val7e inheritance specification (<value_inheritance_spec>).

The name of a val7e type defines a new legal type that may be 7sed anywhere s7ch a type is legal in the grammar.

7.4.5.4.1.2 Value Inheritance Specification

As expressed in the following r7les, val7e types may inherit from one val7e type and may s7pport one interface:

(103) <value_inheritance_spec> ::= [":" <value_name>] ["supports" <interface_name>]

(104) <value_name> ::= <scoped_name>

50 IDL, v4.2

The val7e inheritance specification is th7s made of two parts (both being optional):

 The inheritance from another val7e type, introd7ced by a colon sign (:) where the <value_name> m7st be the
name of a previo7sly defined val7e type or an alias8 to a previo7sly defined val7e type.

 The inheritance from an interface, introd7ced by the supports keyword, where the <interface_name> m7st be
the name of a previo7sly defined interface or an alias to a previo7sly defined interface.

7.4.5.4.1.3 Value Element

A val7e can contain all the elements that an interface can (<export> in the following r7le) as well as definitions of state
members and initializers for that state.

(105) <value_element> ::= <export> | <state_member> | <init_dcl>

7.4.5.4.1.3.1 State Members

State members follow the following syntax:

(106) <state_member> ::= ("public" | "private") <type_spec> <declarators> ";"

[IDL42-7 Miscellaneous typos and readability improvements]

Each <state_member> defines an element of the state, which is transmitted to the receiver when the val7e type is
passed as a parameter. A state member is either public or private. The annotation directs the lang7age mapping to
expose or hide the different parts of the state to the clients of the val7e type. While its p7blic part is exposed to all, the
private part of the state is only accessible to the implementation code and the marshaling ro7tines.

Note – Some programming lang7ages may not have the b7ilt in facilities needed to disting7ish between p7blic and
private members. In these cases, the lang7age mapping specifies the r7les that programmers are responsible for.

7.4.5.4.1.3.2 Initializers

In order to ens7re portability of val7e implementations, designers may also define the signat7res of initializers (or
constr7ctors) for concrete val7e types. Syntactically these look like local operation signat7res except that they are
prefixed with the keyword factory, have no ret7rn type, and m7st 7se only in parameters.

(107) <init_dcl> ::= "factory" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>] ";"

(108) <init_param_dcls> ::= <init_param_dcl> { "," <init_param_dcl>}*

(109) <init_param_dcl> ::= "in" <type_spec> <simple_declarator>

There may be any n7mber of factory declarations. The names of the initializers are part of the name scope of the val7e
type. Initializers defined in a val7e type are not inherited by derived val7e types, and hence the names of the initializers
are free to be re7sed in a derived val7e type.

7.4.5.4.2 Forward Declarations

[IDL42-7 Miscellaneous typos and readability improvements]

Like Similar to interfaces, val7e types may be forward-declared, with the following syntax:

(110) <value_forward_dcl> ::= <value_kind> <identifier>

8 i.e., created by a typedef declaration.
IDL, v4.2 51

A forward declaration declares the name of a val7e type witho7t defining it. This permits the definition of val7e types
that refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names
the val7e type.

M7ltiple forward declarations of the same val7e type name are legal.

It is illegal to inherit from a forward-declared val7e type not previo7sly defined.

It is illegal for a val7e type to s7pport a forward-declared interface not previo7sly defined.

7.4.5.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-17: Keywords specific to Building Block Value Types

factory

private

public

supports

valuetype

7.4.6 Building Block CORBA-Specific – Interfaces

7.4.6.1 Purpose

This b7ilding block adds the syntactical elements that are specific to CORBA as well as provides explanations specific
to a CORBA 7sage of the imported elements.

52 IDL, v4.2

7.4.6.2 Dependencies with other Building Blocks

This b7ilding block is based on B7ilding Block Interfaces – F7ll. Transitively, it relies on B7ilding Block Interfaces –
Basic and B7ilding Block Core Data Types.

7.4.6.3 Syntax

This b7ilding block adds the following r7les:

(111) <definition> ::+ <type_id_dcl> ";"
| <type_prefix_dcl> ";"
| <import_dcl> ";"

(112) <export> ::+ <type_id_dcl> ";"
| <type_prefix_dcl> ";"
| <import_dcl> ";"
| <op_oneway_dcl> ";"
| <op_with_context> ";"

(113) <type_id_dcl> ::= "typeid" <scoped_name> <string_literal>

(114) <type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>

(115) <import_dcl> ::= "import" <imported_scope>

(116) <imported_scope> ::= <scoped_name> | <string_literal>

(117) <base_type_spec> ::+ <object_type>

(118) <object_type> ::= "Object"

(119) <interface_kind> ::+ "local" "interface"

(120) <op_oneway_dcl> ::= "oneway" "void" <identifier> "(" [<in_parameter_dcls>] ")"

(121) <in_parameter_dcls> ::= <in_param_dcl> { "," <in_param_dcl> } *

(122) <in_param_dcl> ::= "in" <type_spec> <simple_declarator>

(123) <op_with_context> ::= {<op_dcl> | <op_oneway_dcl>} <context_expr>

(124) <context_expr> ::= "context" "(" <string_literal> { "," <string_literal>* } ")"

7.4.6.4 Explanations and Semantics

This b7ilding block adds mainly:

 Constr7cts related to Interface Repository.

 A named root for all interfaces (Object).

 Local interfaces.

 One-way operations.

 Operations with context.

 CORBA mod7le.

All these constr7cts are presented in the following s7b cla7ses as far as it is needed to 7nderstand their syntax. For
more details on their precise semantics, refer to the CORBA doc7mentation.

IDL, v4.2 53

7.4.6.4.1 Interface Repository Related Declarations

A few new constr7cts related to the Interface Repository are parts of this b7ilding block:

(111) <definition> ::+ <type_id_dcl> ";" | <type_prefix_dcl> ";" | <import_dcl> ";"

(112) <export> ::+ <type_id_dcl> ";" | <type_prefix_dcl> ";" | <import_dcl> ";" | <op_oneway_dcl>

7.4.6.4.1.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:

(113) <type_id_dcl> ::= "typeid" <scoped_name> <string_literal>

A repository identifier declaration incl7des the following elements:

 The typeid keyword.

 A <scoped_name> that denotes the named IDL constr7ct to which the repository identifier is assigned. It m7st
denote a previo7sly-declared name of one of the IDL constr7cts that may define a scope, as explained in cla7se
7.5.2 Scoping R7les and Name Resol7tion.

 A string literal (<string_literal>) that m7st contain a valid repository identifier val7e. This val7e will be
assigned as the repository identity of the specified type definition.

At most one repository identity declaration may occ7r for any named type definition. An attempt to redefine the
repository identity for a type definition is illegal, regardless of the val7e of the redefinition.

7.4.6.4.1.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:

(114) <type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>

A repository identifier declaration incl7des the following elements:

 The typeprefix keyword.

 A <scoped _name> that denotes an IDL name scope to which the prefix applies. It m7st denote a previo7sly-
declared name of one of the following IDL constr7cts: mod7le, interface (incl7ding abstract or local interface),
val7e type9 (incl7ding abstract, c7stom, and box val7e types) or event type9 9 9 (incl7ding abstract and c7stom
val7e types). A void scope ("::" as scoped name) denotes the specification scope.

 A string literal (<string_literal>) that m7st contain the string to be prefixed to repository identifiers in the
specified name scope. The specified string shall be a list of one or more identifiers, separated by slashes (/).
These identifiers are arbitrarily long seq7ences of alphabetic, digit, 7nderscore (_), hyphen (-), and period (.)
characters. The string shall not contain a trailing slash (/), and it shall not begin with the characters 7nderscore
(_), hyphen (-) or period (.).

Note – "prefixed to the body of a repository identifier" means that the specified string is inserted into the defa7lt IDL
format repository identifier immediately after the format name and colon ("IDL:") at the beginning of the identifier. A
forward slash (/) character is inserted between the end of the specified string and the remaining body of the repository
identifier.

9 Ass7ming that those constr7cts are part of the c7rrent profile.
54 IDL, v4.2

Note – The prefix is only applied to repository identifiers whose val7es are not explicitly assigned by a typeid
declaration. The prefix is applied to all s7ch repository identifiers in the specified name scope, incl7ding the identifier
of the constr7ct that constit7tes the name scope.

7.4.6.4.1.3 Repository Id Conflict

In IDL that contains pragma prefix/ID declarations (as defined in [CORBA] , Part1, S7b cla7se 14.7.5 "Pragma
Directives for RepositoryId") and typeprefix/typeid declarations as explained below, both mechanisms m7st ret7rn the
same repository id for the same IDL element otherwise an error sho7ld be raised.

Note that this r7le applies only when the repository id val7e comp7tation 7ses explicitly declared val7es from
declarations of both kinds. If the repository id comp7ted 7sing explicitly declared val7es of one kind conflicts with one
comp7ted with implicit val7es of the other kind, the repository id based on explicitly declared val7es shall prevail.

7.4.6.4.1.4 Imports

Imports may be specified according to the following syntax:

(115) <import_dcl> ::= "import" <imported_scope>

(116) <imported_scope> ::= <scoped_name> | <string_literal>

The <imported_scope> non-terminal may be either a f7lly-q7alified scoped name denoting an IDL name scope, or a
string containing the interface repository ID of an IDL name scope, i.e., a definition object in the repository whose
interface derives from CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constr7cts in terms of "file scopes." This
standard defines the concepts of a specification as a 7nit of IDL expression. In the abstract, a specification consists of a
finite seq7ence of ISO Latin-1 (8859-1) characters that form a legal IDL sentence. The physical representation of the
specification is of no conseq7ence to the definition of IDL, tho7gh it is generally associated with a file in practice.

Any scoped name that begins with the scope token (::) is resolved relative to the global scope of the specification in
which it is defined. In isolation, the scope token represents the scope of the specification in which it occ7rs.

A specification that imports name scopes m7st be interpreted in the context of a well-defined set of IDL specifications
whose 7nion constit7tes the space from within which name scopes are imported. A "well-defined set of IDL
specifications," means any identifiable representation of IDL specifications, s7ch as an interface repository. The
specific representation from which name scopes are imported is not specified, nor is the means by which importing is
implemented, nor is the means by which a partic7lar set of IDL specifications (s7ch as an interface repository) is
associated with the context in which the importing specification is to be interpreted.

The effects of an import statement are as follows:

 The contents of the specified name scope are visible in the context of the importing specification. Names that
occ7r in IDL declarations within the importing specification may be resolved to definitions in imported scopes.

 Imported IDL name scopes exist in the same space as names defined in s7bseq7ent declarations in the
importing specification.

 IDL mod7le definitions may re-open mod7les defined in imported name scopes.

 Importing an inner name scope (i.e., a name scope nested within one or more enclosing name scopes) does not
implicitly import the contents of any of the enclosing name scopes.

IDL, v4.2 55

 When a name scope is imported, the names of the enclosing scopes in the f7lly-q7alified pathname of the
enclosing scope are exposed within the context of the importing specification, b7t their contents are not
imported. An importing specification may not redefine or reopen a name scope that has been exposed (b7t not
imported) by an import statement.

 Importing a name scope rec7rsively imports all name scopes nested within it.

 For the p7rposes of this International Standard, name scopes that can be imported (i.e., specified in an import
statement) incl7de the following: mod7les, interfaces, val7e types10, and event types10 10 10.

 Red7ndant imports (e.g., importing an inner scope and one of its enclosing scopes in the same specification) are
disregarded. The 7nion of all imported scopes is visible to the importing program.

 This International Standard does not define a partic7lar form for generated st7bs and skeletons in any given
programming lang7age. In partic7lar, it does not imply any normative relationship between 7nits of
specification and 7nits of generation and/or compilation for any lang7age mapping.

7.4.6.4.2 Object

In a CORBA scope, all interfaces inherit either directly or indirectly from a common root named Object
(CORBA::Object). The IDL Object keyword allows designating that common root in any place where an interface is
allowed. This is expressed by the following additional r7les:

(117) <base_type_spec> ::+ <oboect_type>

(118) <oboect_type> ::= "Oboect"

7.4.6.4.3 Local Interfaces

In a CORBA scope, interfaces are by defa7lt potentially remote interfaces. The keyword local allows declaring
interfaces that cannot be remote.

(119) <interface_kind> ::+ "local" "interface"

An interface declaration containing the keyword local in its header declares a local interface. An interface declaration
not containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface
is referred to as a local object. The following special r7les apply to local interfaces:

 A local interface may inherit from other local or 7nconstrained interfaces.

 An 7nconstrained interface may not inherit from a local interface. An interface derived from a local interface
m7st be explicitly declared local.

 A val7e type11 may s7pport a local interface.

 Any IDL type, incl7ding an 7nconstrained interface, may appear as a parameter, attrib7te, ret7rn type, or
exception declaration of a local interface.

 A local interface is a local type, as is any non-interface type declaration constr7cted 7sing a local interface or
other local type. For example, a str7ct7re, 7nion, or exception with a member that is a local interface is also
itself a local type.

 A local type may be 7sed as a parameter, attrib7te, ret7rn type, or exception declaration of a local interface or of
a val7e type.

10 Ass7ming that these constr7cts are part of the c7rrent profile.
11 Ass7ming that this constr7ct is part of the c7rrent profile.
56 IDL, v4.2

 A local type may not appear as a parameter, attrib7te, ret7rn type, or exception declaration of an 7nconstrained
interface.

See the [CORBA], Part1, S7b cla7se 8.3.14 "Local Object Operations" for CORBA implementation semantics
associated with local objects.

7.4.6.4.4 Use of Native types

In a CORBA context, native type parameters are not permitted in operations of remote interfaces. Any attempt to
transmit a val7e of a native type in a remote invocation may raise the MARSHAL standard system exception.

Note – The native type declaration is provided specifically for 7se in object adapter interfaces, which req7ire
parameters whose val7es are concrete representations of object implementation instances. It is strongly recommended
that it not be 7sed in service or application interfaces. The native type declaration allows object adapters to define new
primitive types witho7t req7iring changes to the IDL lang7age or to the IDL compiler.

7.4.6.4.5 One-way Operations

By defa7lt calling applications are blocked 7ntil the called operations are complete. One-way operations are special
operations that ret7rn the control to the calling applications immediately after the call. How this semantics is
implemented is middleware-specific b7t in all cases one-way operations:

 Cannot have a res7lt (ret7rn type m7st be void, no out or inout parameters).

 Cannot trigger exceptions.

One-way operations are declared with the following syntax:

(120) <op_oneway_dcl> ::= "oneway" "void" <identifier> "(" [<in_parameter_dcls>] ")"

(121) <in_parameter_dcls> ::= <in_param_dcl> { "," <in_param_dcl> } *

(122) <in_param_dcl> ::= "in" <type_spec> <simple_declarator>

7.4.6.4.6 Context Expressions

In a CORBA scope, operations may be added a context expression, as specified in the following additional r7les:

(123) <op_with_context> ::= {<op_dcl> | <op_oneway_dcl>} <context_expr>

(124) <context_expr> ::= "context" "(" <string_literal> { "," <string_literal>* } ")"

A context expression specifies which elements of the client’s context may affect the performance of a req7est by the
object. The r7n-time system g7arantees to make the val7e (if any) associated with each <string_literal> in the client’s
context available to the object implementation when the req7est is delivered. The ORB and/or object is free to 7se
information in this req7est context d7ring req7est resol7tion and performance.

The absence of a context expression indicates that there is no req7est context associated with req7ests for this
operation.

Each <string_literal> is a non-empty string. If the character * appears in a <string_literal>, it m7st appear only once,
as the last character of the <string_literal>, and m7st be preceded by one or more characters other than *.

The mechanism by which a client associates val7es with the context identifiers is described in [CORBA], part 1, S7b
cla7se 8.6 "Context Object" .

IDL, v4.2 57

7.4.6.4.7 CORBA Module

Names defined by the CORBA specification are in a mod7le named CORBA. In an IDL specification, however, IDL
keywords s7ch as Object m7st not be preceded by a "CORBA::" prefix. Other interface names s7ch as TypeCode are
not IDL keywords, so they m7st be referred to by their f7lly scoped names (e.g., CORBA::TypeCode) within an IDL
specification.

For example in:

#include <orb.idl>
module M {

typedef CORBA::Object myObjRef; // Error: keyword Object scoped
typedef TypeCode myTypeCode; // Error: TypeCode undefined
typedef CORBA::TypeCode TypeCode; // OK
};

The file orb.idl contains the IDL definitions for the CORBA mod7le. Except for CORBA::TypeCode, the file orb.idl
m7st be incl7ded in IDL files that 7se names defined in the CORBA mod7le. IDL files that 7se CORBA::TypeCode
may obtain its definition by incl7ding either the file orb.idl or the file TypeCode.idl.

7.4.6.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-18: Keywords specific to Building Block CORBA-Specific – Interfaces

context

import

local

Object oneway

typeid

typeprefix

58 IDL, v4.2

7.4.7 Building Block CORBA-Specific – Value Types

7.4.7.1 Purpose

This b7ilding block adds the syntactical elements that are specific to val7e types when 7sed in CORBA as well as
provides explanations specific to a CORBA 7sage of the imported elements.

Note – This b7ilding block has been designed as separated from B7ilding Block CORBA-Specific – Interfaces, to
allow CORBA profiles witho7t val7e types.

7.4.7.2 Dependencies with other Building Blocks

This b7ilding-bock is based on B7ilding Block Val7e Types and complements B7ilding Block CORBA-Specific –
Interfaces. Transitively, it relies on B7ilding Block Interfaces – F7ll, B7ilding Block Interfaces – Basic and B7ilding
Block Core Data Types.

7.4.7.3 Syntax

This b7ilding block adds the following r7les:

(125) <value_dcl> ::+ <value_box_def>
| <value_abs_def>

(126) <value_box_def> ::= "valuetype" <identifier> <type_spec>

(127) <value_abs_def> ::= "abstract" "valuetype" <identifier> [<value_inheritance_spec>]
"{" <export>* "}"

(128) <value_kind> ::+ "custom" "valuetype"

(129) <interface_kind> ::+ "abstract" "interface"

(130) <value_inheritance_spec>
::+ ":" ["truncatable"] <value_name> { "," <value_name> }*

["supports" <interface_name> { "," <interface_name> }*]

(131) <base_type_spec> ::+ <value_base_type>

(132) <value_base_type> ::= "ValueBase"

7.4.7.4 Explanations and Semantics

Main additions concern:

 Boxed val7e types.

 Abstract val7e types and interfaces as well as their impact on inheritance r7les.

 C7stom marshaling.

 Tr7ncatable val7e types.

 Val7eBase as a root for all val7e types.

IDL, v4.2 59

All these constr7cts are presented in the following s7b cla7ses as far as it is needed to 7nderstand their syntax. For
more details on their precise semantics, refer to the CORBA doc7mentation.

7.4.7.4.1 Boxed Value Types

It is often convenient to define a val7e type with no inheritance or operations and with a single state member. A
shorthand IDL notation is 7sed to simplify the 7se of val7e types for this kind of simple containment, referred to as a
value box. S7ch boxed val7e types are defined with the following syntax:

(126) <value_box_def> ::= "valuetype" <identifier> <type_spec>

A boxed val7e type declaration simply consists of:

 The valuetype keyword.

 An identifier (<identifier>) to name the boxed val7e type.

 The type specification of the 7niq7e state member of the boxed val7e type. (<type_spec>).

Since "boxing" a val7e type wo7ld add no additional properties to the val7e type, it is an error to box val7e types. Any
IDL type may be 7sed to declare a val7e box except a val7e type.

Val7e boxes are partic7larly 7sef7l for strings and seq7ences. Basically they avoid creating what wo7ld act7ally be an
additional namespace that wo7ld contain only one name.

An example is the following IDL:

module Example {
interface Foo {

... /* anything */
};
valuetype FooSeq sequence<Foo>;
interface Bar {

void doIt (in FooSeq seq);
};

};

The above IDL provides similar f7nctionality to writing the following one. However the type identities wo7ld be
different.

module Example {
interface Foo {
... /* anything */
};
valuetype FooSeq {

public sequence<Foo> data;
};
interface Bar {

void doIt (in FooSeq seq);
};

};

The former is easier to manip7late after it is mapped to a concrete programming lang7age.

Note – The declaration of a boxed val7e type does not open a new scope. Th7s a constr7ction s7ch as: valuetype
FooSeq sequence <FooSeq>; is not legal IDL. The identifier being declared as a boxed val7e type cannot be 7sed
s7bseq7ent to its initial 7se and prior to the completion of the boxed val7e declaration.

60 IDL, v4.2

7.4.7.4.2 Abstract Value Types and Interfaces

In this b7ilding block, val7e types as well as interfaces may be abstract. They are called abstract beca7se they cannot
be instantiated. Only concrete types derived from them may be act7ally instantiated and implemented.

Abstract types may be 7sed to specify a type where a type specification is req7ired (for example as a ret7rn type of an
operation).

7.4.7.4.2.1 Abstract Value Types

As opposed to concrete val7e types, abstract val7e types are stateless (essentially they are a b7ndle of operation
signat7res with a p7rely local implementation). To create an abstract val7e type, the following syntax applies:

(127) <value_abs_def> ::= "abstract" "valuetype" <identifier> [<value_inheritance_spec>] "{" <export>* "}"

No <state_member> or <initializers> may be specified. However, local operations may be specified.

Beca7se no state information may be specified (only local operations are allowed), abstract val7e types are not s7bject
to the single inheritance restrictions placed 7pon concrete val7e types. Therefore a val7e type may inherit from several
abstract val7e types. In ret7rn an abstract val7e type cannot inherit from a concrete one.

Note – A concrete val7e type with an empty state is not an abstract val7e type.

7.4.7.4.2.2 Abstract Interfaces

An abstract interface is an entity, which may at r7ntime represent either a reg7lar interface or a val7e type. Like an
abstract val7e type, it is a p7re b7ndle of operations with no state. It is declared with specifying abstract interface as
interface kind.

(129) <interface_kind> ::+ "abstract" "interface"

Unlike an abstract val7e type, it does not imply pass-by-val7e semantics, and 7nlike a reg7lar interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s r7ntime type determines which of these semantics are 7sed.

An abstract interface may only inherit from abstract interfaces.

A val7e type may s7pport several abstract interfaces (and only one concrete one).

7.4.7.4.3 Value Inheritance Rules

The terminology that is 7sed to describe val7e type inheritance is directly analogo7s to that 7sed to describe interface
inheritance (see 7.4.3.4.3.2.1, Inheritance R7les).

The name scoping and name collision r7les for val7e types are identical to those for interfaces.

Val7es may be derived from other val7es and can s7pport an interface.

Once implementation (state) is specified at a partic7lar point in the inheritance hierarchy, all derived val7e types
(which m7st of co7rse implement the state) may only derive from a single (concrete) val7e type. They can however
s7pport an additional interface.

IDL, v4.2 61

The single immediate base concrete val7e type, if present, m7st be the first element specified in the inheritance list of
the val7e declaration’s IDL. The interfaces it s7pports are listed following the supports keyword.

While a val7e type may only directly s7pport one interface, it is possible for the val7e type to s7pport other interfaces
as well thro7gh inheritance. In this case, the s7pported interface m7st be derived, directly or indirectly, from each
interface that the val7e type s7pports thro7gh inheritance. For example:

interface I1 { };
interface I2 { };
interface I3: I1, I2 { };

abstract valuetype V1 supports I1 { };
abstract valuetype V2 supports I2 { };
valuetype V3: V1, V2 supports I3 { }; // Legal
valuetype V4: V1 supports I2 { }; // Illegal

Boxed val7e types may not be derived from, nor may they derive from, anything else.

These r7les are s7mmarized in the following table.

Table 7-19: Possible inheritance relationships between value types and interfaces

May
inherit
from 

Abstract
Interface

Interface Abstract
Value

Concrete
Value

Boxed
value

Abstract
Interface

multiple no no no no

Interface multiple multiple no no no

Abstract
Value

supports
multiple

supports
single

multiple no no

Concrete
Value

supports
multiple

supports
single

multiple single no

Boxed
Value

no no no no no

7.4.7.4.4 Custom Marshaling

In a CORBA context, a val7e type may optionally indicate that its marshaling is c7stom-made by prefixing the
valuetype keyword with custom, as shown in the following r7le:

(128) <value_kind> ::+ "custom" "valuetype"

By this mean, val7e types can override the defa7lt marshaling/7nmarshaling model and provide their own way to
encode/decode their state. C7stom marshaling is intended to be 7sed to facilitate integration of existing "class libraries"
and other legacy systems. It is explicitly not intended to be a standard practice, nor 7sed in other OMG specifications
to avoid "standard ORB" marshaling.

62 IDL, v4.2

The fact that a val7e type has some c7stom marshaling code is declared explicitly in the IDL. This explicit declaration
has two goals:

 Type safety - st7bs and skeleton can know statically that a given type is c7stom marshaled and can then do a
sanity-check on what is coming over the wire.

 Efficiency - for val7e types that are not c7stom marshaled no r7n time test is necessary in the marshaling code.

If a c7stom marshaled val7e type has a state definition, the state definition is treated the same as that of a non-c7stom
val7e type for mapping p7rposes (i.e., the fields show 7p in the same fashion in the concrete programming lang7age). It
is provided to help with application portability.

A c7stom marshaled val7e type is always a statef7l val7e type.

C7stom val7e types can never be safely tr7ncated to base (i.e., they always req7ire an exact match for their
RepositoryId in the receiving context).

Once a val7e type has been marked as custom, it needs to provide an implementation that marshals and 7nmarshals the
val7e type. The marshaling code encaps7lates the application code that can marshal and 7nmarshal instances of the
val7e type over a stream 7sing the CDR encoding. It is the responsibility of the implementation to marshal the state of
all of its base types.

For more details regarding the implementation of c7stom marshaling, refer to [CORBA].

7.4.7.4.5 Truncatable

A statef7l val7e that derives from another statef7l val7e may specify that it is tr7ncatable by prefixing the inheritance
specification with the truncatable keyword as shown on the following r7le:

(130) <value_inheritance_spec> ::+ ":" ["truncatable"] <value_name> { "," <value_name> }* ["supports"
<interface_name> { "," <interface_name> }*]

This means that the middleware is allowed to "tr7ncate" an instance to become an instance of any of its tr7ncatable
parent (statef7l) val7e types 7nder certain conditions (see the CORBA doc7mentation for more details). Note that all
the intervening types in the inheritance hierarchy m7st be tr7ncatable in order for tr7ncation to a partic7lar type to be
allowed.

Beca7se c7stom val7es req7ire an exact type match between the sending and receiving context, truncatable may not
be specified for a c7stom val7e type.

Non-c7stom val7e types may not (transitively) inherit from c7stom val7e types. Boxed val7e types may not be
derived from, nor may they derive from, anything else.

7.4.7.4.6 Value Base

In a CORBA context, all val7e types have a conventional base type called ValueBase. This is a type, which f7lfills a
role that is similar to that played by Object for interfaces. That root may be 7sed in an IDL specification wherever a
val7e type may be 7sed.

(131) <base_type_spec> ::+ <value_base_type>

(132) <value_base_type> ::= "‎alueuase"

IDL, v4.2 63

Concept7ally it s7pports the common operations available on all val7e types. See Val7e Base Type Operation for a
description of those operations. In each lang7age mapping ValueBase will be mapped to an appropriate base type that
s7pports the marshaling/7nmarshaling protocol as well as the model for c7stom marshaling.

The mapping for other operations, which all val7e types m7st s7pport, s7ch as getting meta information abo7t the type,
may be fo7nd in the specifics for each lang7age mapping.

7.4.7.5 Specific Keywords

The following table selects in

[IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are specific to this b7ilding block
and removes the others.

Table 7-20: Keywords specific to Building Block CORBA-Specific – Value Types

abstract

custom

truncatable

ValueBase

7.4.8 Building Block Components – Basic

7.4.8.1 Purpose

P7rpose of that b7ilding block is to gather the minimal s7bset of CCM that wo7ld be 7sef7l to any component model.

64 IDL, v4.2

7.4.8.2 Dependencies with other Building Blocks

This b7ilding block complements B7ilding Block Interfaces – Basic. Transitively, it relies on B7ilding Block Core
Data Types.

7.4.8.3 Syntax

Th7s b7ilding block adds the following r7les:

(133) <definition> ::+ <component_dcl> ";"

(134) <component_dcl> ::= <component_def>
| <component_forward_dcl>

(135) <component_forward_dcl>
::= "component" <identifier>

(136) <component_def> ::= <component_header> "{" <component_body> "}"

(137) <component_header> ::= "component" <identifier> [<component_inheritance_spec>]

(138) <component_inheritance_spec>
::= ":" <scoped_name>

(139) <component_body> ::= <component_export>*

(140) <component_export> ::= <provides_dcl> ";"
| <uses_dcl> ";"
| <attr_dcl> ";"

(141) <provides_dcl> ::= "provides" <interface_type> <identifier>

(142) <interface_type> ::= <scoped_name>

(143) <uses_dcl> ::= "uses" <interface_type> <identifier>

7.4.8.4 Explanations and Semantics

This b7ilding block allows declaring simple components with basic ports.

(133) <definition> ::+ <component_dcl> ";"

The salient characteristics of a component declaration are as follows:

 A component declaration specifies the name of the component.

 A component may inherit from another component.

 A component declaration may incl7de in its body any attrib7te declarations that are legal in normal interface
declarations, together with declarations of facets and receptacles that the component defines (facets and
receptacles are also called basic ports).

The syntax for declaring a component is as follows:

(134) <component_dcl> ::= <component_def> | <component_forward_dcl>

(136) <component_def> ::= <component_header> "{" <component_body> "}"

Basically a component definition comprises:

 A component header (<component_header>).

IDL, v4.2 65

 Followed with a body (<component_body>) enclosed within braces ({}).

Those constr7cts are detailed in the following cla7ses.

7.4.8.4.1 Component Header

A <component_header> declares the primary characteristics of a component interface. Its syntax is as follows:

(137) <component_header> ::= "component" <identifier> [<component_inheritance_spec>]

(138) <component_inheritance_spec> ::= ":" <scoped_name>

A component header comprises the following elements:

 The component keyword.

 An identifier (<identifier>) that names the component type.

 An optional inheritance specification (<component_inheritance_spec>), consisting of a colon (:) and a single
<scoped_name> that m7st denote a previo7sly-defined component type.

Note – A component may inherit from at most one component. The feat7res that are inherited by the derived
component are its attrib7tes and basic ports (facets and/or receptacles).

Note – A component forms a naming scope, nested within the scope in which the component is declared.

7.4.8.4.2 Component Body

Its syntax is as follows:

(139) <component_body> ::= <component_export>*

(140) <component_export> ::= <provides_dcl> ";" | <uses_dcl> ";" | <attr_dcl> ";"

A component body can contain the following declarations:

 Facet declarations (provides).

 Receptacle declarations (uses).

 Attrib7te declarations (attribute and readonly attribute).

Note – Facets and receptacles are jointly named basic ports.

7.4.8.4.2.1 Facets

A component type may provide several independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle thro7gh which a component exposes its f7nctional application behavior to clients d7ring normal
exec7tion. A component may exhibit zero or more facets.

A facet is declared with the following syntax:

(141) <provides_dcl> ::= "provides" <interface_type> <identifier>

(142) <interface_type> ::= <scoped_name>

66 IDL, v4.2

A facet declaration comprises the following elements:

 The provides keyword.

 An <interface_type>, which m7st be a scoped name that denotes the interface type that is provided by the
facet. The scoped name m7st denote a previo7sly-defined non-component interface type.

 An <identifier> that names the facet in the scope of the component, th7s allowing m7ltiple facets of the same
type to be provided by the component.

7.4.8.4.2.2 Receptacles

A component definition can describe the ability to accept object references 7pon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and
the referent object is called a connectiont they are said to be connected. The concept7al point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for
establishing and managing connections. A component may exhibit zero or more receptacles.

The syntax for describing a receptacle is as follows:

(143) <uses_dcl> ::= "uses" <interface_type> <identifier>

A receptacle declaration comprises the following elements:

 The uses keyword.

 An <interface_type>, which m7st be a scoped name that denotes the interface type that the receptacle will
accept. The scoped name m7st denote a previo7sly-defined non-component interface type.

 An <identifier> that names the receptacle in the scope of the component.

7.4.8.4.2.3 Attributes

In addition to basic ports, components may be given attrib7tes, which are declared exactly as interface attrib7tes. For
more details see the related cla7se (7.4.3.4.3.3.2, Attrib7tes).

Note – Component attrib7tes are intended to be 7sed d7ring a component instance’s initialization to establish its
f7ndamental behavioral properties. Altho7gh the component model does not constrain the visibility or 7se of attrib7tes
defined on the component, it is generally ass7med that they will not be of interest to the same clients that will 7se the
component after it is config7red. Rather, it is intended for 7se by component factories or by deployment tools in the
process of instantiating an assembly of components.

7.4.8.4.3 Forward Declaration

Components may be forward-declared, which allows the definition of components that refer to each other.

As expressed in the following r7le, a forward declaration consists simply of the component keyword followed by an
<identifier> that names the component. The act7al definition m7st follow later in the specification.

(135) <component_forward_dcl> ::= "component" <identifier>

M7ltiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component not previo7sly defined.

IDL, v4.2 67

7.4.8.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-21: Keywords specific to Building Block Components – Basic

component

provides

uses

7.4.9 Building Block Components – Homes

7.4.9.1 Purpose

This b7ilding block adds to the former the concept of homes. Homes are special interfaces for creating and managing
instances of components.

7.4.9.2 Dependencies with Other Building Blocks

This b7ilding block complements B7ilding Block Components – Basic. Transitively, it relies on B7ilding Block
Interfaces – Basic and B7ilding Block Core Data Types.

7.4.9.3 Syntax

The following set of r7les form the b7ilding block:

(144) <definition> ::+ <home_dcl> ";"

(145) <home_dcl> ::= <home_header> "{" <home_body> "}"

68 IDL, v4.2

(146) <home_header> ::= "home" <identifier> [<home_inheritance_spec>]
"manages" <scoped_name>

(147) <home_inheritance_spec> ::= ":" <scoped_name>

(148) <home_body> ::= <home_export>*

(149) <home_export> ::= <export>
| <factory_dcl> ";"

(150) <factory_dcl> ::= "factory" <identifier> "(" [<factory_param_dcls>] ")" [<raises_expr>]

(151) <factory_param_dcls> ::= <factory_param_dcl> {"," <factory_param_dcl>}*

(152) <factory_param_dcl> ::= "in" <type_spec> <simple_declarator>

7.4.9.4 Explanations and Semantics

A home declaration describes an interface for managing instances of a specified component type. The salient
characteristics of a home declaration are as follows:

 A home declaration m7st specify exactly one component type that it manages. M7ltiple homes may manage the
same component type.

 Home declarations may incl7de any declarations that are legal in normal interface declarations.

 Home declarations s7pport single inheritance from other home definitions.

The syntax for a home definition is as follows:

(145) <home_dcl> ::= <home_header> "{" <home_body> "}"

Basically a home definition comprises:

 A home header (<home_header>).

 Followed with a body (<home_body>) enclosed within braces ({}).

Those constr7cts are detailed in the following cla7ses.

7.4.9.4.1 Home Header

A home header describes f7ndamental characteristics of a home interface. It is declared according to the following
syntax:

(146) <home_header> ::= "home" <identifier> [<home_inheritance_spec>] "manages" <scoped_name>

(147) <home_inheritance_spec> ::= ":" <scoped_name>

A home header consists of the following elements:

 The home keyword.

 An identifier (<identifier>) that names the home in the enclosing name scope.

 An optional inheritance specification (<home_inheritance_spec>), consisting of a colon (:) and a single
scoped name that denotes a previo7sly defined home type.

 The manages keyword followed by a scoped name that denotes the previo7sly defined component type that is
7nder the home's management.

IDL, v4.2 69

7.4.9.4.2 Home Body

Its syntax is as follows:

(148) <home_body> ::= <home_export>*

(149) <home_export> ::= <export> | <factory_dcl> ";"

In addition to plain operations and attrib7tes, identical to the ones an interface body may comprise, a home body may
also comprise factory operations, which are specific operations dedicated to creating component instances.

The syntax of a factory operation is as follows:

(150) <factory_dcl> ::= "factory" <identifier> "(" [<factory_param_dcls>] ")" [<raises_expr>]

(151) <factory_param_dcls> ::= <factory_param_dcl> {"," <factory_param_dcl>}*

(152) <factory_param_dcl> ::= "in" <type_spec> <simple_declarator>

A factory operation declaration consists of the following elements:

 The factory keyword.

 An identifier (<identifier>) that names the operation in the scope of the home declaration.

 An optional list of initialization parameters (<factory_param_dcls>) enclosed in parentheses (()). These
parameters are similar to in parameters for operations. In case there are several parameters, they m7st be
separated by a comma (,).

 An optional list of exceptions that may be raised by the operation (<raises_expr>).

A factory declaration has an implicit ret7rn val7e of type reference to component.

7.4.9.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-22: Keywords specific to Building Block Components – Homes

factory

home

manages

70 IDL, v4.2

7.4.10 Building Block CCM-Specific

7.4.10.1 Purpose

This b7ilding block complements the former one in order to s7pport the f7ll CCM extension to CORBA.

7.4.10.2 Dependencies with other Building Blocks

This b7ilding block relies on B7ilding Block Components – Basic and B7ilding Block CORBA-Specific – Val7e
Types. Transitively, it relies on B7ilding Block CORBA-Specific – Interfaces, B7ilding Block Val7e Types, B7ilding
Block Interfaces – F7ll, B7ilding Block Interfaces – Basic and B7ilding Block Core Data Types.

7.4.10.3 Syntax

This b7ilding block adds the following r7les:

(153) <definition> ::+ <event_dcl> ";"

(154) <component_header> ::+ "component" <identifier> [<component_inheritance_spec>]
<supported_interface_spec>

(155) <supported_interface_spec>
::= "supports" <scoped_name> { "," <scoped_name> }*

(156) <component_export> ::+ <emits_dcl> ";"
| <publishes_dcl> ";"
| <consumes_dcl> ";"

(157) <interface_type> ::+ "Object"

(158) <uses_dcl> ::+ "uses" "multiple" <interface_type> <identifier>

(159) <emits_dcl> ::= "emits" <scoped_name> <identifier>

(160) <publishes_dcl> ::= "publishes" <scoped_name> <identifier>

(161) <consumes_dcl> ::= "consumes" <scoped_name> <identifier>

(162) <home_header> ::+ "home" <identifier> [<home_inheritance_spec>]
[<supported_interface_spec>]
"manages" <scoped_name> [<primary_key_spec>]

(163) <primary_key_spec> ::= "primarykey" <scoped_name>

(164) <home_export> ::+ <finder_dcl> ";"

(165) <finder_dcl> ::= "finder" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>]

IDL, v4.2 71

(166) <event_dcl> ::= (<event_def>
| <event_abs_def>
| <event_forward_dcl>)

(167) <event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>

(168) <event_abs_def> ::= "abstract" "eventtype" <identifier> [<value_inheritance_spec>]
"{" <export>* "}"

(169) <event_def> ::= <event_header> "{" <value_element> * "}"

(170) <event_header> ::= ["custom"] "eventtype" <identifier> [<value_inheritance_spec>]

7.4.10.4 Explanations and Semantics

This b7ilding block adds mainly the following:

 Event ports.

 Finder operations in homes and keys for managed components.

 M7ltiple 7ses.

 Alignment with other CORBA specificities regarding interfaces and val7e types.

All these constr7cts are presented in the following s7b cla7ses as far as it is needed to 7nderstand their syntax. For
more details on their precise semantics, refer to [CORBA], Part3.

7.4.10.4.1 Event Support

The main addition of this b7ilding block consists in s7pport for event interactions, namely

 The ability to define event types.

 The ability to add ports to send (p7blish or emit) and receive (cons7me) events.

The following r7les express these additions:.

(153) <definition> ::+ <event_dcl> ";"

(156) <component_export> ::+ <emits_dcl> ";" | <publishes_dcl> ";" | <consumes_dcl> ";"

7.4.10.4.1.1 Event Types

Event type is a specialization of val7e type dedicated to asynchrono7s component comm7nication. There are several
kinds of event type declarations: "reg7lar" event types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

(166) <event_dcl> ::= (<event_def> | <event_abs_def> | <event_forward_dcl>)

7.4.10.4.1.1.1 Regular Event Types

A reg7lar event type satisfies the following syntax:

(169) <event_def> ::= <event_header> "{" <value_element> * "}"

(170) <event_header> ::= ["custom"] "eventtype" <identifier> [<value_inheritance_spec>]

72 IDL, v4.2

The event header consists of the following elements:

 An optional modifier (custom) specifying whether the event type 7ses c7stom marshaling.

 The eventype keyword.

 The event type’s name (<identifier>).

 An optional val7e inheritance specification as described in 7.4.7.4.3 Val7e Inheritance R7les.

An event can contain all the elements that a val7e can as described in 7.4.5.4.1.3 Val7e Element (i.e., attrib7tes,
operations, initializers, state members).

7.4.10.4.1.1.2 Abstract Event Types

Event types may also be abstract. They are called abstract beca7se an abstract event type may not be instantiated. No
state members or initializers may be specified. However, local operations may be specified. Essentially they are a
b7ndle of operation signat7res with a p7rely local implementation.

S7ch an event type is declared according to the following syntax:

(168) <event_abs_def> ::= "abstract" "eventtype" <identifier> [<value_inheritance_spec>] "{" <export>* "}"

Note – A concrete event type with an empty state is not an abstract event type.

7.4.10.4.1.1.3 Forward Declarations

A forward declaration declares the name of an event type witho7t defining it. This permits the definition of event types
that refer to each other. The syntax consists simply of the eventtype keyword followed by an <identifier> that names
the event type, as expressed in the following r7le:

(167) <event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>

M7ltiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type not previo7sly defined.

7.4.10.4.1.1.4 Event Type Inheritance

As event type is a specialization of val7e type then event type inheritance is directly analogo7s to val7e inheritance
(see 7.4.7.4.3, Val7e Inheritance R7les for a detailed description of the analogo7s properties for val7e types). In
addition, an event type co7ld inherit from a single immediate base concrete event type, which m7st be the first element
specified in the inheritance list of the event declaration’s IDL. It may be followed by other abstract val7es or events
from which it inherits.

7.4.10.4.1.2 Event Ports

Event ports can be split into event so7rces and event sinks.

7.4.10.4.1.2.1 Event Sources – Publishers and Emitters

An event so7rce embodies the potential for the component to generate events of a specified type, and provides
mechanisms for associating cons7mers with so7rces.

IDL, v4.2 73

There are two categories of event so7rces, publishers and emitters. Both are implemented 7sing event channels
s7pplied by the container. An emitter can be connected to at most one cons7mer. A p7blisher can be connected thro7gh
the channel to an arbitrary n7mber of cons7mers, who are said to s7bscribe to the p7blisher event so7rce. A component
may exhibit zero or more emitters and p7blishers.

7.4.10.4.1.2.1.1 Publishers

The syntax for an event p7blisher is as follows:

(160) <publishes_dcl> ::= "publishes" <scoped_name> <identifier>

A p7blisher declaration consists of the following elements:

 The publishes keyword.

 A <scoped_name> that denotes a previo7sly-defined event type.

 An <identifier> that names the p7blisher event so7rce in the scope of the component.

7.4.10.4.1.2.1.2 Emitters

The syntax for an emitter declaration is as follows:

(159) <emits_dcl> ::= "emits" <scoped_name> <identifier>

 An emitter declaration consists of the following elements:

 The emits keyword.

 A <scoped_name> that denotes a previo7sly-defined event type.

 An <identifier> that names the event so7rce in the scope of the component.

7.4.10.4.1.2.2 Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in
essence, a special-p7rpose facet whose type is an event cons7mer. External entities, s7ch as clients or config7ration
services, can obtain the reference for the cons7mer interface associated with the sink.

The syntax for an event sink declaration is as follows:

(161) <consumes_dcl> ::= "consumes" <scoped_name> <identifier>

An event sink declaration contains the following elements:

 The consumes keyword.

 A scoped name (<scoped_name>) that denotes a previo7sly-defined event type.

 An identifier (<identifier>) that names the event sink in the component’s scope.

A component may exhibit zero or more cons7mers.

74 IDL, v4.2

7.4.10.4.2 Home Extensions

The second extension concerns homes.

(162) <home_header> ::+ "home" <identifier> [<home_inheritance_spec>] [<supported_interface_spec>]
"manages" <scoped_name> [<primary_key_spec>]

(164) <home_export> ::+ <finder_dcl> ";"

In this profile:

 A home declaration may specify a list of interfaces that the home s7pports.

 A home declaration may specify a primary key type. Primary keys are val7es assigned by the application
environment that 7niq7ely identify component instances managed by a partic7lar home.

 Home operations may incl7de finder operations. Finder operations aim at retrieving components managed by
the home.

7.4.10.4.2.1 Supported Interfaces

The syntax to add s7pported interfaces declaration within the home header is as follows:

(155) <supported_interface_spec> ::= "supports" <scoped_name> { "," <scoped_name> }*

S7ch a declaration consists of:

 The supports keyword.

 A list of <scoped_name>, separated by a comma (,). These scoped names m7st denote previo7sly declared
interfaces.

7.4.10.4.2.2 Primary Keys

The syntax for adding a primary key definition within the home header is as follows:

(163) <primary_key_spec> ::= "primarykey" <scoped_name>

S7ch a declaration consists of:

 The primarykey keyword.

 A scoped name (<scoped_name>) that denotes the primary key type. Primary key types m7st be val7e types
derived from Components::PrimaryKeyBase. There are more specific constraints placed on primary key
types, which are specified in [CORBA], Part3, "Primary key type constraints" s7b cla7se.

7.4.10.4.2.3 Finder Operations

The syntax of a finder operation is as follows:

(165) <finder_dcl> ::= "finder" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>]

A finder operation declaration consists of the following elements:

 The finder keyword.

 An identifier that names the operation in the scope of the storage home declaration.

 An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.

IDL, v4.2 75

 An optional <raises_expr> declaring exceptions that may be raised by the operation.

A finder declaration has an implicit ret7rn val7e of type reference to component.

7.4.10.4.3 Multiple Uses

The third extension consists in the ability for a receptacle to be connected to several facets. This is indicated by adding
the multiple keyword in the receptacle definition as shown in the following r7le:

(158) <uses_dcl> ::+ "uses" "multiple" <interface_type> <identifier>

The presence of this keyword indicates that the receptacle may accept m7ltiple connections sim7ltaneo7sly, and res7lts
in different operations on the component’s associated interface.

7.4.10.4.4 Alignment with CORBA-specific Features related to Interfaces and Value Types

7.4.10.4.4.1 Supported Interfaces in Components

As expressed in the following grammar elements, in this profile components may also s7pport interfaces:

(154) <component_header> ::+ "component" <identifier> [<component_inheritance_spec>]
<supported_interface_spec>

(155) <supported_interface_spec> ::= "supports" <scoped_name> { "," <scoped_name> }*

Within the component header s7ch a declaration consists of:

 The supports keyword.

 A list of <scoped_name>, separated by a comma (,). These scoped names m7st denote previo7sly declared
interfaces.

7.4.10.4.4.2 Object Root

As for all other CORBA interfaces, in this b7ilding block, Object may be 7sed wherever an interface is req7ired.
Object denotes the root for all CORBA interfaces.

(157) <interface_type> ::+ "Oboect"

7.4.10.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-23: Keywords specific to Building Block CCM-Specific

consumes

emits

eventtype finder

76 IDL, v4.2

multiple

primarykey

publishes

7.4.11 Building Block Components – Ports and Connectors

7.4.11.1 Purpose

This b7ilding block complements the B7ilding Block Components – Basic with the ability to define extended ports and
connectors.

7.4.11.2 Dependencies with other Building Blocks

This b7ilding block relies on the B7ilding Block Components – Basic. Transitively, it relies on B7ilding Block
Interfaces – Basic and B7ilding Block Core Data Types.

7.4.11.3 Syntax

The following set of r7les forms the syntax of this b7ilding block:

(171) <definition> ::+ <porttype_dcl> ";"
| <connector_dcl> ";"

(172) <porttype_dcl> ::= <porttype_def>
| <porttype_forward_dcl>

(173) <porttype_forward_dcl> ::= "porttype" <identifier>

[IDL42-1 Rule 174 requires space after the opening curly brace]

(174) <porttype_def> ::= "porttype" <identifier> "{ " <port_body> "}"

(175) <port_body> ::= <port_ref> <port_export>*

(176) <port_ref> ::= <provides_dcl> ";"
| <uses_dcl> ";"
| <port_dcl> ";"

(177) <port_export> ::= <port_ref>
| <attr_dcl> ";"

(178) <port_dcl> ::= {"port" | "mirrorport"} <scoped_name> <identifier>

IDL, v4.2 77

(179) <component_export> ::+ <port_dcl> ";"

(180) <connector_dcl> ::= <connector_header> "{" <connector_export>+ "}"

(181) <connector_header> ::= "connector" <identifier> [<connector_inherit_spec>]

(182) <connector_inherit_spec> ::= ":" <scoped_name>

(183) <connector_export> ::= <port_ref>
| <attr_dcl> ";"

7.4.11.4 Explanations and Semantics

As expressed in the following r7le, this b7ilding block allows creating new port types (aka extended ports) and
connectors.

(171) <definition> ::+ <porttype_dcl> ";" | <connector_dcl> ";"

7.4.11.4.1 Extended Ports

An Extended Port is a gro7ping of basic ports (facets and/or receptacles) that are to be 7sed jointly to s7pport
consistently a given interaction. Those basic ports formalize the programming contract between a component with this
extended port and the connector's fragment (see below) that will realize the related interaction on behalf of the
component. As s7ch, those basic ports are always local and correspond to interfaces to be called (receptacles) or call-
back interfaces (facets).

7.4.11.4.1.1 Port Type Declaration

Before it can be 7sed in a component, an extended port has to be defined thro7gh the declaration of its type.

A port type may be defined or forward declared as expressed in the following r7le:

(172) <porttype_dcl> ::= <porttype_def> | <porttype_forward_dcl>

A forward declaration is made of the porttype keyword followed by the name of the port type (<identifier>). S7ch
declarations allow attaching ports to components or connectors as well as embedding them inside other extended ports
while their port types are not f7lly defined yet.

(173) <porttype_forward_dcl> ::= "porttype" <identifier>

A port type is defined with the following syntax:

[IDL42-1 Rule 174 requires space after the opening curly brace]

(174) <porttype_def> ::= "porttype" <identifier> "{ " <port_body> "}"

(175) <port_body> ::= <port_ref> <port_export>*

(176) <port_ref> ::= <provides_dcl> ";" | <uses_dcl> ";" | <port_dcl> ";"

(177) <port_export> ::= <port_ref> | <attr_dcl> ";"

S7ch a declaration comprises:

 The porttype keyword.

 An identifier that gives a name to the port type (<identifier>).

 A body that comprises between braces ({}):

78 IDL, v4.2

 At least one facet (<provides_dcl>) or receptacle (<uses_dcl>) or port declaration (<port_dcl>) of an already
declared port type (collectively called <port_ref>).

 Optionally other facets receptacles or ports as well as attrib7tes (<attr_dcl>).

Note – An extended port may th7s embed another extended port. However no cycles are allowed among port type
definitions.

7.4.11.4.2 Port Declaration

Once a port type has been declared, ports of that kind may be attached to components with the following syntax:

(178) <port_dcl> ::= {"port" | "mirrorport"} <scoped_name> <identifier>

(179) <component_export> ::+ <port_dcl> ";"

A port declaration comprises:

 The port keyword or the mirrorport keyword.
Ports attached with the port keyword are normal extended ports. Ports attached with the mirrorport keyword
are reverse extended ports. A reverse extended port is an extended port where all its facets are t7rned into
receptacles, all its receptacles t7rned into facets, all its extended ports t7rned into reverse extended ports and its
reverse extended ports into extended ports. Therefore an extended port and its reverse will match. Reverse
extended ports may be 7sed for components' ports altho7gh they are especially 7sef7l in connectors.

 A scoped name that identifies the port type (<scoped_name>). That scoped name m7st denote a previo7sly
declared port type.

 A name that identifies that port within the component (<identifier>). Several ports of the same port type may
th7s be attached to a single component.

7.4.11.4.3 Connectors

Connectors are 7sed to specify interaction mechanisms between components. Connectors can have ports in the same
way as components. They can be composed of simple ports (provides and uses) or extended ports (very likely in their
reverse form).

Syntax to create connectors is as follows:

(180) <connector_dcl> ::= <connector_header> "{" <connector_export>+ "}"

(181) <connector_header> ::= "connector" <identifier> [<connector_inherit_spec>]

(181) <connector_inherit_spec> ::= ":" <scoped_name>

(183) <connector_export> ::= <port_ref> | <attr_dcl> ";"

A connector declaration comprises:

 The connector keyword.

 An identifier which is the name of the connector (<identifier>).

 An optional inheritance specification made of a colon (:) followed by the name of an existing connector
(<scoped_name>).

 A body that comprises between braces ({}):

 At least one port (<provides_dcl>, <uses_dcl> or <port_dcl>).

IDL, v4.2 79

 Optionally other ports as well as attrib7tes (<attr_dcl>).

A connector will concretely be composed of several parts (called fragments) that will consist of exec7tors, each in
charge of realizing a part of the interaction. Each fragment will be co-localized to the component 7sing it.

7.4.11.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-24: Keywords specific to Building Block Components – Ports and Connectors

connector

mirrorport

port porttype

7.4.12 Building Block Template Modules

7.4.12.1 Purpose

[IDL42-7 Miscellaneous typos and readability improvements]

The p7rpose of this b7ilding block is to allow embedding constr7cts in template modules. Template mod7les may be
parameterized by a variety of parameters (called formal parameters), which by transitiontransitively makes all the
embedded constr7cts parameterized by the same parameters. Before 7sing it, a template mod7le needs to be
instantiated with val7es s7ited for the formal parameters. Instantiation of the template mod7le instantiates all the A
template mod7le instantiation res7lts in a de facto instantiation of all its embedded constr7cts.

80 IDL, v4.2

7.4.12.2 Dependencies with other Building Blocks

Altho7gh this b7ilding block relies only on B7ilding Block Core Data Types, it can be seen as orthogonal to all the
other ones, meaning that all the constr7cts that are selected for a profile that embeds this specific b7ilding block may
be embedded in a template mod7le and th7s benefit from parameterization.

7.4.12.3 Syntax

(184) <definition> ::+ <template_module_dcl> ";"
| <template_module_inst> ";"

(185) <template_module_dcl> ::= "module" <identifier> "<" <formal_parameters> ">"
"{" <tpl_definition> +"}"

(186) <formal_parameters> ::= <formal_parameter> {"," <formal_parameter>}*

(187) <formal_parameter> ::= <formal_parameter_type> <identifier>

(188) <formal_parameter_type> ::= "typename" | "interface" | "valuetype" | "eventtype"
| "struct" | "union" | "exception" | "enum" | "sequence"
| "const" <const_type>
| <sequence_type>

(189) <tpl_definition> ::= <definition>
| <template_module_ref> ";"

(190) <template_module_inst> ::= "module" <scoped_name> "<" <actual_parameters> ">" <identifier>

(191) <actual_parameters> ::= <actual_parameter> { "," <actual_parameter>}*

(192) <actual_parameter> ::= <type_spec>
| <const_expr>

(193) <template_module_ref> ::= "alias" <scoped_name> "<" <formal_parameter_names> ">" <identifier>

(194) <formal_parameter_names>
::= <identifier> { "," <identifier>}*

7.4.12.4 Explanations and Semantics

This b7ilding block adds the facility to declare and instantiate template mod7les:

(184) <definition> ::+ <template_module_dcl> ";" | <template_module_inst> ";"

7.4.12.4.1 Template Module Declaration

A template mod7le is declared according to the following r7les:

(185) <template_module_dcl> ::= "module" <identifier> "<" <formal_parameters> ">" "{" <tpl_definition> +"}"

(186) <formal_parameters> ::= <formal_parameter> {"," <formal_parameter>}*

(187) <formal_parameter> ::= <formal_parameter_type> <identifier>

(188) <formal_parameter_type> ::= "typename" | "interface" | "valuetype" | "eventtype" | "struct" | "union" |
"exception" | "enum" | "sequence" | "const" <const_type> |
<sequence_type>

(189) <tpl_definition> ::= <definition> | <template_module_ref> ";"

A template mod7le specification comprises:

IDL, v4.2 81

 The module keyword.

 An identifier for the mod7le name (<identifier>).

 The specification of the formal parameters between ang7lar brackets (< >), each of those formal parameters
consisting of:

 A type classifier (<formal_parameter_type>), which can be:

 typename, to indicate that any valid type can be passed as parameter.

 interface, valuetype, eventtype, struct, union, exception, enum, sequence to indicate that a more restricted
type m7st be passed as parameter.

 A constant type, to indicate that a constant of that type m7st be passed as parameter.

 A seq7ence type declaration, to indicate that a compliant seq7ence type m7st be passed as parameter (the
formal parameters of that seq7ence m7st appear previo7sly in the mod7le list of formal parameters).

 An identifier (<identifier>) for the formal parameter.

 The mod7le body (<tpl_definition>+), which may contain, within braces ({}) any declarations that form a
classical template body (<definition>) as well as other template mod7le references (<template_module_ref> –
cf. 7.4.12.4.3 References to a Template Mod7le). A template mod7le cannot embed another template mod7le. A
template mod7le cannot be re-opened (as opposed to a classical one).

7.4.12.4.2 Template Module Instantiation

A mod7le template instantiation consists in providing val7es to the template parameters and a name to the res7lting
mod7le. Once instantiated, the res7lting mod7le is exactly as a classical mod7le.

The following r7les allow template mod7le instantiations:

(190) <template_module_inst> ::= "module" <scoped_name> "<" <actual_parameters> ">" <identifier>

(191) <actual_parameters> ::= <actual_parameter> { "," <actual_parameter>}*

(192) <actual_parameter> ::= <type_spec> | <const_expr>

A template mod7le instantiation comprises:

 The module keyword.

 The name of the template mod7le to be instantiated (<scoped_name>). This name m7st refer to a previo7sly
declared template mod7le.

 Enclosed within angle brackets (< >), the val7es given to the template parameters (<actual_parameters>). The
provided val7es m7st fit with the parameter specification as described in the previo7s s7b cla7se. In partic7lar,
if the template parameter is of type "seq7ence type declaration," then an instantiated compliant seq7ence m7st
be passed.

 The name given to the res7lting mod7le (<identifier>).

7.4.12.4.3 References to a Template Module

The following r7les allow referencing template mod7les:

(193) <template_module_ref> ::= "alias" <scoped_name> "<" <formal_parameter_names> ">" <identifier>

(194) <formal_parameter_names> ::= <identifier> { "," <identifier>}*

82 IDL, v4.2

An alias directive allows referencing an existing template mod7le inside a template mod7le definition.

This directive allows providing an alias name (which can be identical to the template mod7le name) to the existing
template mod7le and the list of formal parameters to be 7sed for the referenced mod7le instantiation. Note that that list
m7st be a s7bset of the formal parameters of the embedding mod7le and that each specified formal parameter m7st be
of a compliant type for the req7ired one. For example:

module MyTemplModule <typename T, struct S, long n > {
interface Foo {...}
…}

module MySecondTemplModule <typename T1, typename T2, struct S1, struct S2, long m> {
alias MyTemplModule<T2, S2, m> MyTemplModule; // OK
alias MyTemplModule2<S1, S2, m> MyTemplModule; // OK (S1 < T)
alias MyTemplModule3<T2, T1, m> MyTemplModule2; // Error (T1 not compliant for S)

interface Bar : MyTemplModule::Foo {...}
...}

When the embedding mod7le will be instantiated, then the referenced mod7le will be instantiated in the scope of the
embedding one (i.e., as a s7b-mod7le).

7.4.12.5 Specific Keywords

The following table selects in [IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are
specific to this b7ilding block and removes the others.

Table 7-25: Keywords specific to Building Block Template Modules

alias

IDL, v4.2 83

7.4.13 Building Block Extended Data-Types

7.4.13.1 Purpose

This b7ilding block adds a few data constr7cts that are proven to be 7sef7l for describing data models.

7.4.13.2 Dependencies with other Building Blocks

This b7ilding block complements the B7ilding Block Core Data Types.

7.4.13.3 Syntax

(195) <struct_def> ::+ "struct" <identifier> ":" <scoped_name> "{" <member>* "}"
| "struct" <identifier> "{" "}"

(196) <switch_type_spec> ::+ <wide_char_type>
| <octet_type>

(197) <template_type_spec> ::+ <map_type>

(198) <constr_type_dcl> ::+ <bitset_dcl>
| <bitmask_dcl>

(199) <map_type> ::= "map" "<" <type_spec> "," <type_spec> "," <positive_int_const> ">"
| "map" "<" <type_spec> "," <type_spec> ">"

(200) <bitset_dcl> ::= "bitset" <identifier> [":" <scoped_name>] "{" <bitfield>* "}"

(201) <bitfield> ::= <bitfield_spec> <identifier>* ";"

(202) <bitfield_spec> ::= "bitfield" "<" <positive_int_const> ">"
| "bitfield" "<" <positive_int_const> "," <destination_type> ">"

(203) <destination_type> ::= <boolean_type> | <octet_type> | <integer_type>

(204) <bitmask_dcl> ::= "bitmask" <identifier> "{" <bit_value> { "," <bit_value> }* "}"

(205) <bit_value> ::= <identifier>

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

(206) <signed_int> ::+ <signed_tiny_int>

(207) <unsigned_int> ::+ <unsigned_tiny_int>

(208) <signed_tiny_int> ::= “int8”

(209) <unsigned_tiny_int> ::= “uint8”

[IDL42-9 IDL should have aliases/typedefs for integer that disambiguate representation size]

(210) <signed_short_int> ::+ “int16”

(211) <signed_long_int> ::+ “int32”

(212) <signed_longlong_int> ::+ “int64”

(213) <unsigned_short_int> ::+ “uint16”

(214) <unsigned_long_int> ::+ “uint32”

(215) <unsigned_longlong_int> ::+ “uint64”

(216) <signed_short_int> ::+ “int16”

84 IDL, v4.2

(217) <signed_long_int> ::+ “int32”

(218) <signed_longlong_int> ::+ “int64”

(219) <unsigned_short_int> ::+ “uint16”

(220) <unsigned_long_int> ::+ “uint32”

(221) <unsigned_longlong_int> ::+ “uint64”

7.4.13.4 Explanations and Semantics

Those complements are:

 Additions to str7ct7re definition in order to s7pport single inheritance and void content (no members).

 Ability to discriminate a 7nion with other types (wide char and octet).

 An additional template type (maps).

 Additional constr7cted types (bitsets and bitmasks).

7.4.13.4.1 Structures with Single Inheritance and/or Void Content

The following r7le complements the str7ct7re definition with the possibility to add a single inheritance specification
and to define a str7ct7re witho7t any member:

(195) <struct_def> ::+ "struct" <identifier> ":" <scoped_name> "{" <member>* "}" | "struct" <identifier> "{"
"}"

Single inheritance is denoted by a colon (:) followed by a scoped name that m7st correspond to the name of a
previo7sly defined str7ct7re.

When a str7ct7re type inherits from another str7ct7re type, it is considered as extending the latter, which is then
considered as its base type. Members of s7ch a str7ct7re consist in all the members of its base type pl7s all the ones
that are declared locally.

7.4.13.4.2 Union Discriminators

In the B7ilding Block Core Data Types, 7nion discriminators co7ld be the following (cf. r7le (51))

 Either one of the following types: integer, char, boolean or an enum type.

 Or a reference (<scoped_name>) to one of these.

Within this b7ilding block the following r7le adds the following types: wchar (wide char) or octet

(196) <switch_type_spec> ::+ <wide_char_type> | <octet_type>

Accordingly, the scoped name may also reference one of these types.

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

7.4.13.4.3 Map, Additional Bitset and Bitmap Types

As expressed in the following r7les, the new types provided by this b7ilding-block are incl7de maps, as well as bit
sets, and bit masks:

IDL, v4.2 85

(197) <template_type_spec> ::+ <map_type>

(198) <constr_type_dcl> ::+ <bitset_dcl> | <bitmask_dcl>

7.4.13.4.3.1 Maps

Maps are collections similar to seq7ences b7t where items are registered (and th7s retrieved) associated with a key. As
seq7ences, maps may be bo7nded or 7nbo7nded. As expressed in the following r7le, the syntax to define map types is
the same as that for seq7ence types with two exceptions:

 The sequence keyword is replaced by the new map keyword.

 The single type parameter that appears in a seq7ence definition is replaced by two type parameters in a map
definition: the first one is the key element typet the second one is the val7e element type.

(199) <map_type> ::= "map" "<" <type_spec> "," <type_spec> "," <positive_int_const> ">" | "map" "<"
<type_spec> "," <type_spec> ">"

7.4.13.4.3.2 Bit Sets (including Bit Fields)

Bit sets are seq7ences of bits stored optimally and organized in concatenated addressable pieces called bit fields,
themselves stored optimally. "Stored optimally" means that one bit 7ses j7st one bit in memory. "Concatenated" means
that each bit field will be placed in memory j7st after its predecessor within the bit set (no alignment considerations
apply).

Bit sets are similar to str7ct7res, with the following differences:

 The members of a bit set can only be bit fields

 A bit field can be anonymo7s, which means that it cannot be addressed. An anonymo7s bit field is j7st a
placeholder to skip 7n7sed bits within a bit set.

The syntax to declare a bit set is as follows:

(200) <bitset_dcl> ::= "bitset" <identifier> [":" <scoped_name>] "{" <bitfield>* "}"

(201) <bitfield> ::= <bitfield_spec> <identifier>* ";"

S7ch a declaration comprises:

 The bitset keyword.

 The name given to the bitset (<identifier>).

 An optional single inheritance specification: S7ch a single inheritance is denoted by a colon (:) followed by a
scoped name (<scoped_name>) that m7st correspond to the name of a previo7sly defined bit set.

 The list of all bit set members (<bitfield>*) enclosed within braces ({}). Each member (<bitfield>) is defined
with a specification (<bitfield_spec>) followed by a list of identifiers (<identifier>*).

Within a bit set, bit fields are seq7ences of bits stored optimally, to be manip7lated as a whole. Their specification is as
follows:

(202) <bitfield_spec> ::= "bitfield" "<" <positive_int_const> ">" | "bitfield" "<" <positive_int_const> ","
<destination_type> ">"

(203) <destination_type> ::= <boolean_type> | <octet_type> | <integer_type>

It comprises:

86 IDL, v4.2

 The bitfield keyword

 One or two parameters between ang7lar brackets (< >):

 The first one (<positive_int_const>) is the n7mber of bits that can be stored (its size). The maxim7m val7e is
64.

 The second optional one (<destination_type>) specifies the type that will be 7sed to manip7late the bit field as
a whole. This type can be boolean, octet or any integer type either signed or 7nsigned (i.e., short, unsigned
short, long, unsigned long, long long, or unsigned long long).

 When the destination type is given, the n7mber of stored bits cannot exceed its size (i.e., 1 for boolean, 8 for
octet, 16 for short or unsigned short, 32 for long or unsigned long and 64 for long long or unsigned long
long).

 When no destination type is given, it takes as defa7lt val7e the smallest type able to store the bit field with no
loss (i.e., boolean if size is 1, octet if it is between 2 and 8, unsigned short if it is between 9 and 16,
unsigned long if it is between 17 and 32 and unsigned long long if it is between 33 and 64).

Note – Bit fields can only exist within a bit set.

Note – P7rpose of bit sets is to minimize as m7ch as possible their memory footprint. In the following example, the
total memory occ7pancy of MyBitset is 30:

bitset MyBitset {
bitfield<3> a; // a is stored in 3 bits (and will be manipulable as a char)
bitfield<1> b; // b is stored in 1 bit (and will be manipulable as a boolean)
bitfield<4>; // 4 unused bits
bitfield<10> c; // c is stored in 10 bits (and will be manipulable as an unsigned short)
bitfield<12, short> d; // d is stored in 12 bits (and will be manipulable as a short)
};

7.4.13.4.3.3 Bit Masks

Bit masks are en7merated types (like en7merations) aiming at easing bit manip7lation.

A bit mask is declared with the following syntax:

(204) <bitmask_dcl> ::= "bitmask" <identifier> "{" <bit_value> { "," <bit_value> }* "}"

(205) <bit_value> ::= <identifier>

A bit mask declaration comprises:

 The bitmask keyword.

 The name given to the bitmask (<identifier>).

 The ordered list of the possible val7es (<bit_value>) that makes the bit mask, enclosed within braces ({}). Each
val7e is identified by a specific name (<identifier>). In case there are several val7es, their names are separated
by commas (,). A bit mask m7st contain at least one val7e and no more than its size expressed in bits.

By defa7lt, the size of a bit mask is 32.

Like an en7meration, a bit mask consists in a seq7ence of val7es named by an identifier. However those val7es are not
like in a classical en7meration b7t computed based on their position within the bit mask, to form a mask that can be
7sed to easily set or test the bit in that position. Those val7es are ordered starting with the less significant bit. For

IDL, v4.2 87

example, the act7al val7e for the first one (which corresponds to bit in position 0) will be 0x01, the val7e for the
second one (position 1) 0x01 << 1 and so on as in the following example:

bitmask MyBitMask {
flag0, // 0x01 << 0
flag1, // 0x01 << 1
flag2, // 0x01 << 2
flag3, // 0x01 << 3
flag4, // 0x01 << 4
flag5, // 0x01 << 5
flag6, // 0x01 << 6
flag7 // 0x01 << 7
};

Two annotations can be 7sed to amend a bit mask definition:

 @bit_bound (cf. 8.3.4.1, @bit_bo7nd Annotation) can annotate the whole bit mask to specify its size, which
m7st be lower than or eq7al to 64. Accordingly the n7mber of val7es cannot then exceed the val7e given to
@bit_bound.

 @position (cf. 8.3.1.4, @position Annotation) can annotate a bit val7e to set explicitly its position, expressed
in bits, within the bit mask. Possible positions range from 0, which corresponds to the less significant bit, 7p to
(size – 1), which corresponds to the most significant one.

The following example ill7strates the 7se of those annotations:

@bit_bound(8) //Actual size will be 8
bitmask MyBitMask {

@position (0) flag0, // 0x01 << 0
@position (1) flag1, // 0x01 << 1
@position (4) flag4, // 0x01 << 4
@position (6) flag6, // 0x01 << 6
};

Note – Thanks to @position annotations, it is possible to give val7es only to bits that are 7sef7l.

Note – Altho7gh it is not recommended, annotated bit val7es can be declared 7nordered. In any cases, no d7plicates
are allowed.

Note – Non-annotated bit val7es may be declared with annotated ones. A non-annotated bit val7e will always be
ass7med as j7st following the one which is before, like in the following example:

bitmask MyBitMask {
@position (0) flag0, // 0x01 << 0
flag1, // 0x01 <<1 (just after 0)
@position (4) flag4, // 0x01 << 4
@position (2) flag2, // 0x01 <<2
flag3, // 0x01 <<3 (just after 2)
flagx, // ERROR, should be 0x01 <<4 but duplicates flag4
};

7.4.13.4.4 Integers restricted to holding 8-bits of information

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

The B7ilding Block Core Data Types, defines integer types that have well defined val7e ranges spanning from “short”
integers that can hold 16 bits of information to “long long” integers that can hold 64 bits, see Table 7 -13: Integer
types. It does not incl7de an integer type restricted to holding 8 bits of information.

88 IDL, v4.2

Within this b7ilding block the following r7les add the following types: int8 (signed 8-bit integer) and uint8 (7nsigned
8-bit integer):

(206) <signed_int> ::+ <signed_tiny_int>

(207) <unsigned_int> ::+ <unsigned_tiny_int>

(208) <signed_tiny_int> ::= “int8”

(209) <unsigned_tiny_int> ::= “uint8”

7.4.13.4.5 Explicitly-named Integer Types

[IDL42-9 IDL should have aliases/typedefs for integer that disambiguate representation size]

The B7ilding Block Core Data Types, defines integer types 7sing the keywords short, long, long long, unsigned
short, unsigned long, and unsigned long long. These integer types have specified val7e ranges, see Table 7 -13:
Integer types. However the val7e range is not explicit in the type name. This co7ld lead to ambig7ity especially for
people familiar with programming lang7ages, s7ch as C or C++, which 7se the same keywords and yet don’t f7lly
specify the val7e range.

Within this b7ilding block the following r7les add new keywords int16, int32, int64, uint16, uint32, uint64 for the
same primitive types, which make the val7e ranges explicit:

(210) <signed_short_int> ::+ “int16”

(211) <signed_long_int> ::+ “int32”

(212) <signed_longlong_int> ::+ “int64”

(213) <unsigned_short_int> ::+ “uint16”

(214) <unsigned_long_int> ::+ “uint32”

(215) <unsigned_longlong_int> ::+ “uint64”

7.4.13.4.6 Ranges for all Integer Types

IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

The integer types defined in the B7ilding Block Core Data Types have their val7e ranges defined in see Table 7 -13:
Integer types. The table below defines the ranges for the integer in the B7ilding Block Extended Data-Types and their
relation to the B7ilding Block Core Data Types where appropriate.

Table 7-26: Ranges for all Integer types

Building Block Extended
Data-Types Integer type

Value range
Building Block Core Data Types
equivalent Integer type in (see Table 7
-13)

int8 -27 … 27 - 1 N/A

int16 -215 … 215 - 1 short

int32 -231 … 231 - 1 long

int64 -263 … 263 - 1 long long

uint8 0 … 28 - 1 N/A

uint16 0 … 216 - 1 unsigned short

IDL, v4.2 89

Building Block Extended
Data-Types Integer type

Value range
Building Block Core Data Types
equivalent Integer type in (see Table 7
-13)

uint32 0 … 232 - 1 unsigned long

uint64 0 ….264 - 1 unsigned long long

7.4.13.5 Specific Keywords

The following table selects in

[IDL42-2 IDL Lacks S7pport for 8-bit Signed/Unsigned Integers] the keywords that are specific to this b7ilding block
and removes the others.

Table 7-27: Keywords specific to Building Block Extended Data-Types

bitfield

bitmask bitset

map

int8 uint8 int16 int32 int64

uint16 uint32 uint64

7.4.14 Building Block Anonymous Types

7.4.14.1 Purpose

The only p7rpose of this b7ilding block is to allow the 7se of anonymo7s types, i.e., template types or arrays that were
not given a name by a typedef directive.

90 IDL, v4.2

Anonymo7s types may ca7se a n7mber of problems for lang7age mappings and were therefore deprecated in a
previo7s version of CORBA IDL. However, they offer an increased expression power that proves to be 7sef7l in many
occasions.

The new IDL organization in b7ilding blocks allows defining profiles where anonymo7s types are forbidden as well as
others where they will be s7pported:

 Profiles that do not s7pport 7se of anonymo7s types m7st not embed this b7ilding block. With s7ch a profile, all
anonymo7s types m7st be given a name with a typedef directive before any 7se (see 7.4.1.4.4.7, Naming Data
TypesNaming Data Types).

 Profiles that do s7pport 7se of anonymo7s types m7st embed this b7ilding block.

7.4.14.2 Dependencies with other Building Blocks

This b7ilding block relies on B7ilding Block Core Data Types.

7.4.14.3 Syntax

The two additional r7les allow 7sing anonymo7s types:

(222) <type_spec> ::+ <template_type_spec>

(223) <declarator> ::+ <array_declarator>

7.4.14.4 Explanations and Semantics

With the following r7le, template types may be 7sed at any place where a type specification is req7ired:

(222) <type_spec> ::+ <template_type_spec>

Note – A template type may be 7sed as the type parameter for another template type. For instance, the following:
sequence<sequence<long> > declares the type "7nbo7nded seq7ence of 7nbo7nded seq7ence of long". For those
nested template declarations, white space m7st be 7sed to separate the two > tokens ending the declaration so they are
not parsed as a single >> token.

With the following r7le, arrays may be directly declared:

(223) <declarator> ::+ <array_declarator>

7.4.14.5 Specific keywords

There are no additional keywords with this b7ilding block.

IDL, v4.2 91

7.4.15 Building Block Annotations

7.4.15.1 Purpose

This b7ilding block defines a framework to add meta-data to IDL constr7cts, by means of annotations. This facility,
very similar to the one provided by Java, is a powerf7l means to extend the lang7age witho7t changing its syntax.

7.4.15.2 Dependencies with other Building Blocks

This b7ilding block only relies on B7ilding Block Core Data Types. It is act7ally orthogonal to all others. This means
that once defined, annotations may be applied to all the IDL constr7cts bro7ght by all the b7ilding blocks that are
selected to form a profile jointly with this b7ilding block.

7.4.15.3 Syntax

The following r7les form the b7ilding block:

(224) <definition> ::+ <annotation_dcl> " ;"

(225) <annotation_dcl> ::= <annotation_header> "{" <annotation_body> "}"

(226) <annotation_header> ::= "@annotation" <identifier>

(227) <annotation_body> ::= { <annotation_member>
| <enum_dcl> ";"
| <const_dcl> ";"
| <typedef_dcl> ";" }*

(228) <annotation_member> ::= <annotation_member_type> <simple_declarator>
["default" <const_expr>] ";"

(229) <annotation_member_type>
::= <const_type> | <any_const_type> | <scoped_name>

(230) <any_const_type> ::= "any"

(231) <annotation_appl> ::= "@" <scoped_name> ["(" <annotation_appl_params> ")"]

(232) <annotation_appl_params>
::= <const_expr>
| <annotation_appl_param> { "," <annotation_appl_param> }*

(233) <annotation_appl_param>
::= <identifier> "=" <const_expr>

7.4.15.4 Explanations and Semantics

This b7ilding block specifies how to 1) define annotations and 2) attach previo7sly defined annotations to most IDL
constr7cts.

92 IDL, v4.2

7.4.15.4.1 Defining Annotations

An annotation type is a form of aggregated type similar to a str7ct7re with members that co7ld be given constant
val7es. An annotation is defined with a header (<annotation_header>) and a body (<annotation_body>) enclosed
within braces ({ }):

(224) <definition> ::+ <annotation_dcl> " ;"

(225) <annotation_dcl> ::= <annotation_header> "{" <annotation_body> "}"

As expressed in the following r7le:

(226) <annotation_header> ::= "@annotation" <identifier>

The annotation header consists of the @annotation keyword, followed by an identifier that is the name given to the
annotation (<identifier>).

As expressed in the following r7le:

(227) <annotation_body> ::= { <annotation_member> | <enum_dcl> ";" | <const_dcl> ";" | <typedef_dcl>
";" }*

An annotation body may contain:

 Annotation members (<annotation_member>)

 Declarations of en7meration types (<enum_dcl>)

 Declarations of constant val7es (const_dcl>)

 Typedef declarations (<typedef_dcl>)

An annotation body may be void.

As stated in the following r7les:

(228) <annotation_member> ::= <annotation_member_type> <simple_declarator> ["default" <const_expr>]
";"

(229) <annotation_member_type> ::= <const_type> | <any_const_type> | <scoped_name>

(230) <any_const_type> ::= "any"

An annotation member is ended by a semi-colon (;) and consists of:

 The member type (<annotation_member_type>), which m7st be a constant type (<const_type>) or the any
keyword that means in this context any constant type12 or a scoped name (<scoped_name>) which m7st refer
to a constant type.

 The name given to the member (<simple_declarator>).

 An optional defa7lt val7e, given by a constant expression (<const_expr>) prefixed with the default keyword.
The constant expression m7st be compatible with the member type.

En7merations, constants, and typedefs declared within the annotation body may be 7sed 7nscoped s7bseq7ently in the
annotation body or f7rther when applying the annotation. They are not significant anywhere else.

[IDL42-7 Miscellaneous typos and readability improvements]

12 This form is 7sef7l when the annotation carries a val7e whose act7al type depends on the element 7nder annotation (a defa7lt
val7e for instance).
IDL, v4.2 93

Note – Annotations may be 7ser-defined, 7sing this syntax. They can also be implicitly defined by a compilerthe IDL-
processing tools. In the latter case, the behavior sho7ld be as if the related definitions were incl7ded at the beginning of
the IDL specification.

Note – Annotations sho7ld not ca7se more compile IDL-processing errors than strictly needed. Therefore, in case of
m7ltiple definitions of the same annotation in one IDL specification13, the compiler IDL-processing tools sho7ld accept
them, provided that they are consistent. In ret7rn, compilers sho7ld raise an error in case ofIn contrast, m malformed
definitions shall be treated as an error.

7.4.15.4.2 Applying Annotations

An annotation, once its type is defined, may be applied with the following syntax:

(231) <annotation_appl> ::= "@" <scoped_name> ["(" <annotation_appl_params> ")"]

(232) <annotation_appl_params> ::= <const_expr> | <annotation_appl_param> { "," <annotation_appl_param>
}*

(233) <annotation_appl_param> ::= <identifier> "=" <const_expr>

Applying an annotation consists in prefixing the element 7nder annotation with:

[IDL42-7 Miscellaneous typos and readability improvements]

 The annotation name (<scoped_name>) prefixed with a commercial at the at symbol(@), also known as
commercial at.

 Followed by the list of val7es given to the annotation's members within parentheses (()) and separated by a
comma (,). Each parameter val7e consists of:

 The name of the member (<identifier>).

 The symbol =.

 A constant expression, whose type m7st be compatible with the member's declaration (<const_expr>).

Members may appear in any order.

Members with no defa7lt val7e m7st be given a val7e. Members with defa7lt val7e may be omitted. In that case, the
member is considered as val7ed with its defa7lt val7e.

Two shortened forms exist:

 In case there is no member or only one member with a defa7lt val7e, the annotation application may be
shortened to j7st the name of the annotation prefixed with @.

 In case there is only one member, the annotation application may be shortened to the name of the annotation
prefixed with @ and followed with the constant val7e of that 7niq7e member within (). The type of the provided
constant expression m7st be compatible with the member's declaration.

An annotation may be applied to any IDL constr7cts or s7b-constr7cts. Applying an annotation consists act7ally in
adding the related meta-data to the element 7nder annotation.

Note – In case the applied annotation contains a member of type any, the val7e provided for that member m7st match
with the element 7nder annotation.

13 This may happen in partic7lar when IDL files are incl7ded.
94 IDL, v4.2

[IDL42-7 Miscellaneous typos and readability improvements]

Note – Annotations sho7ld not ca7se more compile IDL-processing errors than strictly needed. Therefore, in case an
7nknown annotation is enco7ntered, it sho7ld be simply ignored by the compilerIDL-processing tools. In
ret7rncontrast, malformed definitions shall be treated as an errorcompilers sho7ld raise an error in case of malformed
annotations.

7.4.15.5 Specific Keywords

This b7ilding block re7ses the any keyword. There is no other new keyword, if keyword is taken as "a word, built as a
valid identifier, but with a specific meaning within the language". However, any word starting with a commercial at
(@) will now potentially denote an annotation, starting with @annotation that allows creating annotation types.

Table 7-28: Keywords specific to Building Block Annotations

any

IDL, v4.2 95

7.4.16 Relationships between the Building Blocks

Even if the b7ilding blocks have been designed as independent as possible, they are linked by some dependencies. The
following fig7re represents the graph of their relationships (act7ally a lattice).

Figure 7-2: Relationships between Building Blocks

7.5 Names and Scoping

This cla7se defines the visibility r7les that apply to names. Those r7les are considering the whole IDL grammar (i.e.,
the 7nion of all b7ilding blocks). In case only a s7bset is 7sed, all the considerations that apply to constr7cts that are
not part of that s7bset may be simply ignored.

7.5.1 Qualified Names

A q7alified name (one of the form <scoped_name>::<identifier>) is resolved by first resolving the q7alifier <scoped-
_name> to a scope S, and then locating the definition of <identifier> within S. The identifier m7st be directly defined
in S or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a q7alified name begins with "::", the resol7tion process starts with the file scope and locates s7bseq7ent
identifiers in the q7alified name by the r7le described in the previo7s paragraph.

96 IDL, v4.2

Every IDL definition in a file has a global name within that file. The global name for a definition is constr7cted as
follows:

 Prior to starting to scan a file containing an IDL specification, the name of the c7rrent root is initially empty
("") and the name of the c7rrent scope is initially empty ("").

 Whenever a module keyword is enco7ntered, the string "::" and the associated identifier are appended to the
name of the c7rrent roott 7pon detection of the termination of the mod7le, the trailing "::" and mod7le identifier
are deleted from the name of the c7rrent root.

 Whenever an interface, struct, union, or exception keyword is enco7ntered, the string "::" and the associated
identifier are appended to the name of the c7rrent scopet 7pon detection of the termination of the interface,
struct, union, or exception, the trailing "::" and associated identifier are deleted from the name of the c7rrent
scope.

 Additionally, a new, 7nnamed, scope is entered when the parameters of an operation declaration are processedt
this allows the parameter names to d7plicate other identifierst when parameter processing has completed, the
7nnamed scope is exited.

 The global name of an IDL definition is the concatenation of the c7rrent root, the c7rrent scope, a "::", and the
<identifier>, which is the local name for that definition.

Inheritance ca7ses all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
S7ch identifiers are considered to be semantically the same as the original definition. M7ltiple paths to the same
original identifier (as res7lts from the diamond shape in Fig7re 7 -1: Examples of Legal M7ltiple Inheritance on page
43) do not conflict with each other.

Inheritance introd7ces m7ltiple global IDL names for the inherited identifiers. Consider the following example:

interface A {
exception E {

long L;
};

void f () raises(E);
};

interface B: A {
void g () raises(E);
};

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambig7ity can arise in specifications d7e to the nested naming scopes. For example:

interface A {
typedef string<128> string_t;
};

interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Title; // Error: Ambiguous
attribute A::string_t Name; // OK
attribute B::string_t City; // OK
};

[IDL42-7 Miscellaneous typos and readability improvements]

IDL, v4.2 97

The declaration of attrib7te Title in interface C is ambig7o7s, since the compiler IDL-processor does not know which
string_t is desired. Ambig7o7s declarations yield compilationshall be treated as errors.

7.5.2 Scoping Rules and Name Resolution

Contents of an entire IDL file, together with the contents of any files referenced by #include statements, forms a
naming scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global
scope, irrespective of the n7mber of so7rce files that form a specification.

The following kinds of definitions form scopes: mod7les, str7ct7res, 7nions, maps14 14 14, interfaces14, val7e types14 14 14,
operations14 14 14, exceptions14 14 14, event types14 14 14, components14 14 14, homes14 14 14. Scope applies as follows:

 The scope for a mod7le, str7ct7re, map, interface, val7e type, event type, exception or home begins
immediately following its opening { and ends immediately preceding its closing }.

 The scope of an operation begins immediately following its opening (and ends immediately preceding its
closing).

 The scope of a 7nion begins immediately following the (following the switch keyword, and ends immediately
preceding its closing }.

The appearance of the declaration of any of these kinds in any scope, s7bject to semantic validity of s7ch declaration,
opens a nested scope associated with that declaration.

An identifier can only be defined once in a scope. However, identifiers can be redefined in nested scopes.

An identifier declaring a mod7le is considered to be defined by its first occ7rrence in a scope. S7bseq7ent occ7rrences
of a mod7le declaration with the same identifier within the same scope reopens the mod7le and hence its scope,
allowing additional definitions to be added to it.

The name of a mod7le, str7ct7re, 7nion, map, interface, val7e type, event type, exception or home may not be
redefined within the immediate scope of the mod7le, str7ct7re, 7nion, map, interface, val7e type, event type, exception
or home. For example:

module M {
typedef short M; // Error: M is the name of the module…

// …in the scope of which the typedef is.
interface I {

void i (in short j); // Error: i clashes with the interface name I
};

};

An identifier from a s7rro7nding scope is introd7ced into a scope if it is 7sed in that scope. An identifier is not
introd7ced into a scope by merely being visible in that scope. The 7se of a scoped name introd7ces the identifier of the
o7termost scope of the scoped name.

14Ass7ming that these constr7cts are part of the c7rrent profile.
98 IDL, v4.2

For example in:

module M {
module Inner1 {

typedef string S1;
};

module Inner2 {
typedef string inner1; // OK
};

};

The declaration of Inner2::inner1 is OK beca7se the identifier Inner1, while visible in mod7le Inner2, has not been
introd7ced into mod7le Inner2 by act7al 7se of it. On the other hand, if mod7le Inner2 were:

module Inner2 {
typedef Inner1::S1 S2; // Inner1 introduced
typedef string inner1; // Error
typedef string S1; // OK
};

The definition of inner1 is now an error beca7se the identifier Inner1 referring to the mod7le Inner1 has been
introd7ced in the scope of mod7le Inner2 in the first line of the mod7le declaration. Also, the declaration of S1 in the
last line is OK since the identifier S1 was not introd7ced into the scope by the 7se of Inner1 ::S1 in the first line.

Only the first identifier in a q7alified name is introd7ced into the c7rrent scope. This is ill7strated by Inner1::S1 in the
example above, which introd7ces Inner1 into the scope of Inner2 b7t does not introd7ce S1. A q7alified name of the
form ::X::Y::Z does not ca7se X to be introd7ced, b7t a q7alified name of the form X::Y::Z does.

En7meration val7e names are introd7ced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
enum E { E1, E2, E3 }; // line 1
enum BadE { E3, E4, E5 }; // Error: E3 is already introduced…

// …into the A scope in line 1 above
};

interface C {
enum AnotherE { E1, E2, E3 };
};

interface D : C, A {
union U switch (E) {

case A::E1 : boolean b; // OK.
case E2 : long l; // Error: E2 is ambiguous (notwithstanding…

// … the switch type specification)
};

};

Type names defined in a scope are available for immediate 7se within that scope. In partic7lar, see 7.4.1.4.4.4.4,
Constr7cted Rec7rsive Types and Forward Declarations on cycles in type definitions.

A name can be 7sed in an 7nq7alified form within a partic7lar scopet it will be resolved by s7ccessively searching
farther o7t in enclosing scopes, while taking into consideration inheritance relationships among interfaces.

IDL, v4.2 99

 For example:

module M {
typedef long ArgType;
typedef ArgType AType; // line l1
interface B {

typedef string ArgType; // line l3
ArgType opb(in AType i); // line l2
};

};

module N {
typedef char ArgType; // line l4
interface Y : M::B {

void opy(in ArgType i); // line l5
};

};

The following scopes are searched for the declaration of ArgType 7sed on line l5:

1. Scope of N::Y before the 7se of ArgType.

2. Scope of N::Y’s base interface M:: B. (inherited scope).

3. Scope of mod7le N before the definition of N::Y.

4. Global scope before the definition of N.

M::B::ArgType is fo7nd in step 2 in line l3, and that is the definition that is 7sed in line l5, hence ArgType in line l5 is
string. It sho7ld be noted that ArgType is not char in line l5. Now if line l3 were removed from the definition of
interface M::B, then ArgType on line l5 wo7ld be char from line l4, which is fo7nd in step 3.

Following analogo7s search steps for the types 7sed in the operation M:: B::opb on line l2, the type of AType 7sed on
line l2 is long from the typedef in line l1 and the ret7rn type ArgType is string from line l3.

7.5.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a mod7le, interface or val7e type, it may not be redefined
except within the scope of a nested mod7le, interface or val7e type, or within the scope of a derived interface or val7e
type. For example:

typedef short TempType; // Scope of TempType begins here
module M {

typedef string ArgType; // Scope of ArgType begins here
struct S {

::M::ArgType a1; // Nothing introduced here
M::ArgType a2; // M introduced here
::TempType temp; // Nothing introduced here
}; // Scope of (introduced) M ends here

// ...
}; // Scope of ArgType ends here

// Scope of global TempType ends here (at end of file)

The scope of an introd7ced type name is from the point of introd7ction to the end of its enclosing scope.

100 IDL, v4.2

However, if a type name is introd7ced into a scope that is nested in a non-mod7le scope definition its potential scope
extends over all its enclosing scopes o7t to the enclosing non-mod7le scope. (For types that are defined o7tside a non--
mod7le scope, the scope and the potential scope are identical.) For example:

module M {
typedef long ArgType;
const long I = 10;
typedef short Y;

interface A {
struct S {

struct T {
ArgType x[I]; // ArgType and I introduced
long y; // a new y is defined, the existing Y is not used
} m;

};
typedef string ArgType; // Error: ArgType redefined
enum I { I1, I2 }; // Error: I redefined
typedef short Y; // OK
}; // Potential scope of ArgType and I ends here

interface B : A {
typedef long ArgType // OK, redefined in derived interface
struct S { // OK, redefined in derived interface

ArgType x; // x is a long
A::ArgType y; // y is a string
};

};
};

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This r7le prevents
type names from changing their meaning thro7gho7t a non-mod7le scope definition, and ens7res that reordering of
definitions in the presence of introd7ced types does not affect the semantics of a specification.

Note – In the following, the definition of M::A:: U::I is legal beca7se it is o7tside the potential scope of the I
introd7ced in the definition of M::A::S::T::ArgType. However, the definition of M::A::I is still illegal beca7se it is
within the potential scope of the I introd7ced in the definition of M::A::S::T::ArgType.

module M {
typedef long ArgType;
const long I = 10;
interface A {

struct S {
struct T {

ArgType x[I]; // ArgType and I introduced
} m;

};
struct U {

long I; // OK, I is not a type name
};

enum I { I1, I2 }; // Error: I redefined
}; // Potential scope of ArgType and I ends here

};

IDL, v4.2 101

Note – Redefinition of a type after 7se in a mod7le is OK as in the example:

typedef long ArgType;
module M {

struct S {
ArgType x; // x is a long
};

typedef string ArgType; // OK!
struct T {

ArgType y; // Ugly but OK, y is a string
};

};

102 IDL, v4.2

8 Standardized Annotations

8.1 Overview

The syntax to define annotations is given in the cla7se 7.4.15, B7ilding Block Annotations. Any profile that embeds
that b7ilding block will s7pport annotations.

In addition, this cla7se defines some annotations and gro7ps them in Gro7ps of Annotations. Gro7ps of annotations
may be part of a given profile to complement the selected b7ilding blocks.

Any profile that incl7des s7ch a gro7p of annotations m7st incl7de the B7ilding Block Annotations.

8.2 Introduction

8.2.1 Rules for Defining Standardized Annotations

The annotations that are standardized here have been selected for their general p7rpose nat7re, meaning that their
application can be considered in vario7s contexts.

For each annotation is given:

 Its precise syntax.

 Its meaning as general as possible while remaining significant.

 The kinds of elements on which applying the annotation may make sense. Even if, from the syntactical
viewpoint, an annotation may be applied on any IDL constr7ct or s7b-constr7ct, a specific annotation is often
meaningf7l only for a s7bset of those.

Proposed gro7ps of annotations gather annotations per concern, in order to ease their selection.

8.2.2 Rules for Using Standardized Annotations

The fact that a standardized annotation is proposed in its largest possible scope doesn't mean that any specification
deciding to make 7se of s7ch an annotation (and th7s selecting it in its compliance profile) is forced to s7pport its
whole possible set of applications. In ret7rn it m7st specify the act7al 7sage of the annotation in its specific context.
This act7al 7sage m7st remain compliant with the standardized description provided here b7t may be more restrictive.
More precisely the 7sing specification:

[IDL42-7 Miscellaneous typos and readability improvements]

 M7st Shall respect totally the standardized annotation syntax.

IDL, v4.2 103

 May clarify the act7al meaning of the annotation in the specific targeted context. That act7al meaning may be
more precise than, b7t m7st shall remain compliant with, the general one expressed here.

 May precise on which elements the annotation is valid in that specific context. That list may be only a s7bset of
all the possible ones.

 M7st Shall indicate the defa7lt behavior when no annotation is placed on an element that may be annotated.
Note that this defa7lt is never identical tonot the same as the defa7lt val7es provided defined for the annotation
members (when these defa7lt val7es exist). This is beca7se as the later ones val7es are j7st intended to be the
most logical val7es when the annotation is present.

8.3 Standardized Groups of Annotations

8.3.1 Group of Annotations General Purpose

The following standardized annotations are of general p7rpose. They may be applied on almost all kinds of elements.

8.3.1.1 @id Annotation

This annotation allows assigning a 32-bit integer identifier to an element, with the 7nderlying ass7mption that an
identifier sho7ld be 7niq7e inside its scope of application. The precise scope of 7niq7eness depends on the type of
element on which the annotation is applied and the p7rpose of s7ch an identification. It has to be given by the
specification making 7se of it.

@annotation id {
unsigned long value;
};

This annotation is applicable to any elements that are parts of a set, s7ch as data members within a constr7cted type or
operations within an interface.

8.3.1.2 @autoid Annotation

This annotation complements the former and is applicable to any set containing elements to which allocating a 32-bit
integer identifier makes sense. It instr7cts to a7tomatically allocate identifiers to the elements.

@annotation autoid {
enum AutoidKind {

SEQUENTIAL,
HASH
};

AutoidKind value default HASH;
};

The parameter allows choosing the way the identifiers are created. It co7ld be as follows:

 SEQUENTIAL indicates that the next identifier sho7ld be comp7ted by incrementing the previo7s one.

 HASH indicates that the identifiers sho7ld be comp7ted with a hashing algorithm that gives val7es regardless
the order on which the elements are declared. This is the defa7lt val7e.

104 IDL, v4.2

8.3.1.3 @optional Annotation

This annotation allows setting an element as optional.

@annotation optional {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is present (this means that 7sing the compact form
@optional will set the element as optional, which is what is expected int7itively). It does not mean that by defa7lt (i.e.,
when no annotation is present) an element is optional.

This annotation may be 7sed to set optionality on any element that makes sense to be optional.

8.3.1.4 @position Annotation

This annotation allows setting a position to an element or a gro7p of elements.

@annotation position {
unsigned short value;
};

Note – The general idea with a position is that it defines an order (position 2 being between position 1 and position 3).
However, what act7ally means "position" is to be precised when 7sing this annotation.

This annotation is applicable to any elements that are parts of a set, s7ch as data members within a constr7cted type or
operations within an interface.

8.3.1.5 @value Annotation

This annotation allows setting a constant val7e to any element that may be given a constant val7e. As opposed to @id,
@value is more versatile as it may carry any constant val7e. In ret7rn it does not carry any concept of 7niq7eness
among a set.

@annotation value {
any value;
};

When applied, the provided val7e m7st be compliant with the type of the annotated element.

This annotation may be 7sed to set a constant val7e each time it is relevant. One classical example is to set specific
val7es to members of en7merations.

8.3.1.6 @extensibility Annotation

This annotation applies to any element that is constr7cted s7ch as a data type or an interface. It allows specifying how
the element is allowed to evolve.

[IDL42-3 Missing and inconsistently named annotations]

IDL, v4.2 105

@annotation extensibility {
enum ExtensibilityKind {

FINAL,
APPENDABLE ,
MUTABLE
};

ExtensibililtyKind value;
};

The possibilities are:

 FINAL: no evol7tion is allowed.

 APPENDABLE: the type may be complemented (elements may be appended at the end) b7t not reorganized.

 MUTABLE: the type may evolve.

8.3.1.7 @final Annotation

This annotation is a shortc7t for @extensibility(FINAL).

@annotation final {
};

[IDL42-3 Missing and inconsistently named annotations]

8.3.1.8 @appendable Annotation

This annotation is a shortc7t for @extensibility(APPENDABLE).

@annotation appendable {
 };

8.3.1.9 @mutable Annotation

This annotation is a shortc7t for @extensibility(MUTABLE).

@annotation mutable {
};

8.3.2 Group of Annotations Data Modeling

This gro7p of annotations gathers annotations that are especially 7sef7l to define a data model. They can th7s either
concern data types (i.e., constr7cted types) or elements of those (i.e., members of constr7cted types).

8.3.2.1 @key Annotation

This annotation allows indicating that a data member is part of the key for the objects whose type is the constr7cted
data type owning this element. The key allows identifying an object among the set of objects of a given type. All data
items sharing the same key val7e are ass7med to represent the same object.

106 IDL, v4.2

@annotation key {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is present (this means that 7sing the compact form
@key will set the element as part of the key definition, which is what is expected int7itively). It does not mean that by
defa7lt (i.e., when no annotation is present) an element is part of the key.

8.3.2.2 @must_understand Annotation

The annotation allows indicating that the data member m7st be 7nderstood by any application making 7se of that piece
of data. This does not mean that the data member cannot be optional. It j7st means that if the member is present, then it
cannot be 7nknown to the recipient.

@annotation must_understand {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is present (this means that 7sing the compact form
@must_understand will set the element as needed to be 7nderstood, which is what is expected int7itively). It does not
mean that by defa7lt (i.e., when no annotation is present) an element is of that kind.

[IDL42-3 Missing and inconsistently named annotations]

8.3.2.3 @ default_literal Annotation

The annotation allows selecting one member as the defa7lt within a collection. It may be applied to one of the
en7merators within an en7meration declaration to indicate the defa7lt val7e for the en7meration.

@annotation default_literal {
 };

8.3.3 Group of Annotations: Units and Ranges

This gro7p of annotations gathers means to q7alify any element that can be given a constant val7e. Those annotations
can be applied directly to data elements s7ch as members of constr7cted types or parameters of interfaces.

They can also be applied to a new type created based on a constant type (7sing a typedef declaration). This means that
all restrictions bro7ght by the annotations placed on the created type will apply to all f7t7re members declared with that
new type, as shown in the following example.

[IDL42-7 Miscellaneous typos and readability improvements]

@range (min=10, max=20)
typedef long MyLong;
…

sStruct Foo {
@range (min=10, max=20)
long bar1; // direct application

MyLong bar2; // indirect application trough type MyLong
};

IDL, v4.2 107

8.3.3.1 @default Annotation

This annotation allows specifying a defa7lt val7e for the annotated element.

@annotation default {
any value;
};

The provided val7e m7st be compliant with the type of the annotated element.

8.3.3.2 @range Annotation

This annotation allows specifying a range of allowed val7es for the annotated element.

@annotation range {
any min;
any max;
};

The provided val7es (min and max) m7st be compliant with the type of the annotated element. The max val7e m7st be
greater or eq7al to the min val7e.

8.3.3.3 @min Annotation

This annotation allows specifying a minim7m val7e for the annotated element.

@annotation min {
any value;
};

The provided val7e m7st be compliant with the type of the annotated element.

8.3.3.4 @max Annotation

This annotation allows specifying a maxim7m val7e for the annotated element.

@annotation max {
any value;
};

The provided val7e m7st be compliant with the type of the annotated element.

8.3.3.5 @unit Annotation

This annotation allows specifying a 7nit of meas7rement for the annotated element.

@annotation unit {
string value;
};

108 IDL, v4.2

Note – This standard does not define specific val7es for given 7nits. However, it is recommended to 7se standardized
abbreviations defined by BIPM15, whenever applicable.

8.3.4 Group of Annotations Data Implementation

8.3.4.1 @bit_bound Annotation

This annotation allows setting a size (expressed in bits) to an element or a gro7p of elements.

@annotation bit_bound {
unsigned short value;
};

Note – Typically it may be 7sed to force a size, smaller than the defa7lt one to members of an en7meration or to
integer elements.

8.3.4.2 @external Annotation

Us7ally when a data object is mapped in memory, it is implemented as a whole, meaning that, when feasible, its data
members are placed next to each other in a single data space. This annotation forces the annotated element to be p7t
elsewhere, in a dedicated place. This is 7sef7l for instance to save reso7rces when the element may be h7ge and is not
always present or to allow sharing of the element between data objects.

@annotation external {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is present (this means that 7sing the compact form
@external will set the element as external, which is what is expected int7itively). It does not mean that by defa7lt (i.e.,
when no annotation is present) an element is external.

8.3.4.3 @nested Annotation

This annotation applies to constr7cted types only. It allows indicating that the objects from the type 7nder annotation
will always be nested within another one (i.e., as members of their owning object) and th7s never 7sed as top-level
objects.

@annotation nested {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is present (this means that 7sing the compact form
@nested will set the element as nested, which is what is expected int7itively). It does not mean that by defa7lt (i.e.,
when no annotation is present) an element is nested.

15 B7rea7 International des Poids et Mes7res. Cf. http://www.bipm.org/en/meas7rement-7nits/
IDL, v4.2 109

8.3.5 Group of Annotations Code Generation

8.3.5.1 @verbatim Annotation

This annotation allows injecting some 7ser-provided information into what the compiler will generate.

@annotation verbatim {
enumeration PlacementKind {

BEGIN_FILE,
BEFORE_DECLARATION,
BEGIN_DECLARATION,
END_DECLARATION,
AFTER_DECLARATION,
END_FILE
};

string language default "*";
PlacementKind placement default BEFORE_DECLARATION;
string text;
};

 In addition to the text to be injected (text), this annotation has two parameters:

 The language parameter allows indicating to which lang7age this injection applies. The defined val7es are as
follows:

 "c" indicates the C lang7age.

 "c++" indicates the C++ lang7age.

 "java" indicates the Java lang7age.

 "idl" indicates OMG IDL.

 "*" (an asterisk) indicates any lang7age. This is the defa7lt val7e.

Note – Other val7es may be 7sed when relevant.

 The placement parameter allows indicating where in the generated code, this injection is to be made. The
defined val7es are as follows:

 BEGIN_FILE: The text string shall be copied at the beginning of the file containing the declaration of the
annotated element, before any type declarations. For example, a system implementer may 7se s7ch an
annotation to inject import statements into the o7tp7t.

 BEFORE_DECLARATION: The text string shall be copied immediately before the declaration of the annotated
element. For example, a system implementer may 7se s7ch an annotation to inject doc7mentation comments
into the o7tp7t. This is the defa7lt val7e.

 BEGIN_DECLARATION: The text string shall be copied into the body of the declaration of the annotated
element before any members or constants. For example, a system implementer may 7se s7ch an annotation to
inject additional declarations or implementations into the o7tp7t.

 END_DECLARATION: The text string shall be copied into the body of the declaration of the annotated element
after all members or constants.

 AFTER_DECLARATION: The text string shall be copied immediately after the declaration of the annotated
element.

 END_FILE: The text string shall be copied at the end of the file containing the declaration of the annotated
element after all type declarations.

110 IDL, v4.2

8.3.6 Group of Annotations Interfaces

8.3.6.1 @service Annotation

This annotation allows indicating that an interface is to be treated as a service. An optional parameter allows indicating
by which platform that service invocation is to be s7pported.

@annotation service {
string platform default "*";
};

The defined val7es for the platform parameter are as follows:

 "CORBA" indicates that the service sho7ld be made accessible via CORBA.

 "DDS" indicates that the service sho7ld be made accessible via DDS.

 "*" (an asterisk) indicates any platform. This is the defa7lt val7e.

 Note – Other val7es may be defined if relevant.

8.3.6.2 @oneway Annotation

This annotation allows indicating that an operation is one way only, meaning that related information flow will go from
the client to the server providing the related service, b7t not back from the server to the client.

@annotation oneway {
boolean value default TRUE;
};

This annotation may only concern operations witho7t any ret7rn val7e (void ret7rn type) and witho7t any out or inout
parameters.

Note – The defa7lt val7e (TRUE) is significant when the annotation is 7sed (this means that 7sing the compact form
@oneway will set the operation as one-way, which is what is expected int7itively). It does not mean that by defa7lt
(i.e., when no annotation is 7sed) the operation is one-way.

8.3.6.3 @ami Annotation

This annotation allows indicating that an interface or an operation is to be made callable asynchrono7sly.

@annotation ami {
boolean value default TRUE;
};

Note – The defa7lt val7e (TRUE) is significant when the annotation is 7sed (this means that 7sing the compact form
@ami will set the element as asynchrono7sly callable, which is what is expected int7itively). It does not mean that by
defa7lt (i.e., when no annotation is 7sed) it is the case.

Note – The way asynchrono7s invocations are implemented is middleware dependent.

IDL, v4.2 111

112 IDL, v4.2

9 Profiles

9.1 Overview

This cla7se defines some relevant combinations of b7ilding blocks, called profiles. Profiles are j7st sets of b7ilding
blocks, possibly complemented with gro7ps of annotations. The given profiles correspond to c7rrent 7sages of IDL.
They are split in two categories, the ones that are related to CORBA (incl7ding CCM) and the ones that are related to
DDS.

These profiles are not normative for the related middleware sol7tions (the reference for their compliance to IDL is to
be fo7nd in their respective specifications). However they are given here for ill7stration and a check of the relevant
breakdown in b7ilding blocks.

9.2 CORBA and CCM Profiles

In this cla7se are gro7ped all the profiles that are related to CORBA.

9.2.1 Plain CORBA Profile

This profile corresponds to the plain CORBA 7sage, witho7t Components (i.e., the latest IDL 2 version)

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Any

 B7ilding Block Interfaces – Basic

 B7ilding Block Interfaces – F7ll

 B7ilding Block Val7e Types

 B7ilding Block CORBA-Specific – Interfaces

 B7ilding Block CORBA-Specific – Val7e Types

9.2.2 Minimum CORBA Profile

This version corresponds to CORBA minim7m profile. As opposed to Plain CORBA Profile, it does not embed Any
nor Valuetypes.

It is made of:

 B7ilding Block Core Data Types

IDL, v4.2 113

 B7ilding Block Interfaces – Basic

 B7ilding Block Interfaces – F7ll

 B7ilding Block CORBA-Specific – Interfaces

9.2.3 CCM Profile

This profile corresponds to CCM (or Lw-CCM) mandatory 7sage (i.e., the latest IDL3 version witho7t optional
Generic Interaction S7pport).

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Any

 B7ilding Block Interfaces – Basic

 B7ilding Block Interfaces – F7ll

 B7ilding Block Val7e Types

 B7ilding Block CORBA-Specific – Interfaces

 B7ilding Block CORBA-Specific – Val7e Types

 B7ilding Block Components – Basic

 B7ilding Block CCM-Specific

9.2.4 CCM with Generic Interaction Support Profile

This profile adds to CCM Profile, the Generic Interaction S7pportt which is an optional CCM compliance point (also
known as IDL3+).

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Any

 B7ilding Block Interfaces – Basic

 B7ilding Block Interfaces – F7ll

 B7ilding Block Val7e Types

 B7ilding Block CORBA-Specific – Interfaces

 B7ilding Block CORBA-Specific – Val7e Types

 B7ilding Block Components – Basic

 B7ilding Block CCM-Specific

 B7ilding Block Components – Ports and Connectors

 B7ilding Block Template Mod7les

114 IDL, v4.2

9.3 DDS Profiles

In this cla7se are gathered the DDS-related profiles.

9.3.1 Plain DDS Profile

This profile corresponds to what is basically s7pported by DDS.

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Anonymo7s Types

9.3.2 Extensible DDS Profile

This profile extends Plain DDS Profile with the feat7res provided by Extensible and Dynamic Topic Types for DDS.

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Extended Data-Types

 B7ilding Block Anonymo7s Types

 B7ilding Block Annotations

 Gro7p of Annotations General P7rpose

 Gro7p of Annotations Data Modeling

 Gro7p of Annotations Data Implementation

 Gro7p of Annotations Code Generation

9.3.3 RPC over DDS Profile

This profile allows describing interfaces that may be considered as services by RPC over DDS.

It is made of:

 B7ilding Block Core Data Types

 B7ilding Block Extended Data-Types

 B7ilding Block Anonymo7s Types

 B7ilding Block Interfaces – Basic

 B7ilding Block Annotations

 Gro7p of Annotations General P7rpose

 Gro7p of Annotations Interfaces

IDL, v4.2 115

116 IDL, v4.2

Annex A: Consolidated IDL Grammar
This annex gathers all the r7les from all the b7ilding blocks.

From B7ilding Block Core Data Types:

(1) <specification> ::= <definition>+

(2) <definition> ::= <module_dcl> ";" | <const_dcl> ";" | <type_dcl> ";"

(3) <module_dcl> ::= "module" <identifier> "{" <definition>+ "}"

(4) <scoped_name> ::= <identifier> | "::" <identifier> | <scoped_name> "::" <identifier>

(5) <const_dcl> ::= "const" <const_type> <identifier> "=" <const_expr>

(6) <const_type> ::= <integer_type> | <floating_pt_type> | <fixed_pt_const_type> | <char_type> |
<wide_char_type> | <boolean_type> | <octet_type> | <string_type> |
<wide_string_type> | <scoped_name>

(7) <const_expr> ::= <or_expr>

(8) <or_expr> ::= <xor_expr> | <or_expr> "|" <xor_expr>

(9) <xor_expr> ::= <and_expr> | <xor_expr> "^" <and_expr>

(10) <and_expr> ::= <shift_expr> | <and_expr> "&" <shift_expr>

(11) <shift_expr> ::= <add_expr> | <shift_expr> ">>" <add_expr> | <shift_expr> "<<" <add_expr>

(12) <add_expr> ::= <mult_expr> | <add_expr> "+" <mult_expr> | <add_expr> "-" <mult_expr>

(13) <mult_expr> ::= <unary_expr> | <mult_expr> "*" <unary_expr> | <mult_expr> "/" <unary_expr> |
<mult_expr> "%" <unary_expr>

(14) <unary_expr> ::= <unary_operator> <primary_expr> | <primary_expr>

(15) <unary_operator> ::= "-" | "+" | "~"

(16) <primary_expr> ::= <scoped_name> | <literal> | "(" <const_expr> ")"

(17) <literal> ::= <integer_literal> | <floating_pt_literal> | <fixed_pt_literal> | <character_literal> |
<wide_character_literal> | <boolean_literal> | <string_literal> |
<wide_string_literal>

(18) <boolean_literal> ::= "TRUE" | "FALSE"

(19) <positive_int_const> ::= <const_expr>

(20) <type_dcl> ::= <constr_type_dcl> | <native_dcl> | <typedef_dcl>

(21) <type_spec> ::= <simple_type_spec>

(22) <simple_type_spec> ::= <base_type_spec> | <scoped_name>

(23) <base_type_spec> ::= <integer_type> | <floating_pt_type> | <char_type> | <wide_char_type> |
<boolean_type> | <octet_type>

(24) <floating_pt_type> ::= "float" | "double" | "long" "double"

(25) <integer_type> ::= <signed_int> | <unsigned_int>

(26) <signed_int> ::= <signed_short_int> | <signed_long_int> | <signed_longlong_int>

(27) <signed_short_int> ::= "short"

IDL, v4.2 117

(28) <signed_long_int> ::= "long"

(29) <signed_longlong_int> ::= "long" "long"

(30) <unsigned_int> ::= <unsigned_short_int> | <unsigned_long_int> | <unsigned_longlong_int>

(31) <unsigned_short_int> ::= "unsigned" "short"

(32) <unsigned_long_int> ::= "unsigned" "long"

(33) <unsigned_longlong_int> ::= "unsigned" "long" "long"

(34) <char_type> ::= "char"

(35) <wide_char_type> ::= "wchar"

(36) <boolean_type> ::= "boolean"

(37) <octet_type> ::= "octet"

(38) <template_type_spec> ::= <sequence_type> | <string_type> | <wide_string_type> | <fixed_pt_type>

(39) <sequence_type> ::= "sequence" "<" <type_spec> "," <positive_int_const> ">" | "sequence" "<"
<type_spec> ">"

(40) <string_type> ::= "string" "<" <positive_int_const> ">" | "string"

(41) <wide_string_type> ::= "wstring" "<" <positive_int_const> ">" | "wstring"

(42) <fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"

(43) <fixed_pt_const_type> ::= "fixed"

(44) <constr_type_dcl> ::= <struct_dcl> | <union_dcl> | <enum_dcl>

(45) <struct_dcl> ::= <struct_def> | <struct_forward_dcl>

(46) <struct_def> ::= "struct" <identifier> "{" <member>+ "}"

(47) <member> ::= <type_spec> <declarators> ";"

(48) <struct_forward_dcl> ::= "struct" <identifier>

(49) <union_dcl> ::= <union_def> | <union_forward_dcl>

(50) <union_def> ::= "union" <identifier> "switch" "(" <switch_type_spec> ")" "{" <switch_body> "}"

(51) <switch_type_spec> ::= <integer_type> | <char_type> | <boolean_type> | <scoped_name>

(52) <switch_body> ::= <case>+

(53) <case> ::= <case_label>+ <element_spec> ";"

(54) <case_label> ::= "case" <const_expr> ":" | "default" ":"

(55) <element_spec> ::= <type_spec> <declarator>

(56) <union_forward_dcl> ::= "union" <identifier>

(57) <enum_dcl> ::= "enum" <identifier> "{" <enumerator> { "," <enumerator> } * "}"

(58) <enumerator> ::= <identifier>

(59) <array_declarator> ::= <identifier> <fixed_array_size>+

(60) <fixed_array_size> ::= "[" <positive_int_const> "]"

(61) <native_dcl> ::= "native" <simple_declarator>

(62) <simple_declarator> ::= <identifier>

(63) <typedef_dcl> ::= "typedef" <type_declarator>

(64) <type_declarator> ::= { <simple_type_spec> | <template_type_spec> | <constr_type_dcl> }
<any_declarators>

118 IDL, v4.2

(65) <any_declarators> ::= <any_declarator> { "," <any_declarator> }*

(66) <any_declarator> ::= <simple_declarator> | <array_declarator>

(67) <declarators> ::= <declarator> { "," <declarator> }*

(68) <declarator> ::= <simple_declarator>

From B7ilding Block Any:

(69) <base_type_spec> ::+ <any_type>

(70) <any_type> ::= "any"

From B7ilding Block Interfaces – Basic:

(71) <definition> ::+ <except_dcl> ";" | <interface_dcl> ";"

(72) <except_dcl> ::= "exception" <identifier> "{" <member>* "}"

(73) <interface_dcl> ::= <interface_def> | <interface_forward_dcl>

(74) <interface_def> ::= <interface_header> "{" <interface_body> "}"

(75) <interface_forward_dcl> ::= <interface_kind> <identifier>

(76) <interface_header> ::= <interface_kind> <identifier> [<interface_inheritance_spec>]

(77) <interface_kind> ::= "interface"

(78) <interface_inheritance_spec> ::= ":" <interface_name> { "," <interface_name> }*

(79) <interface_name> ::= <scoped_name>

(80) <interface_body> ::= <export>*

(81) <export> ::= <op_dcl> ";" | <attr_dcl> ";"

(82) <op_dcl> ::= <op_type_spec> <identifier> "(" [<parameter_dcls>] ")" [<raises_expr>]

(83) <op_type_spec> ::= <type_spec> | "void"

(84) <parameter_dcls> ::= <param_dcl> { "," <param_dcl> } *

(85) <param_dcl> ::= <param_attribute> <type_spec> <simple_declarator>

(86) <param_attribute> ::= "in" | "out" | "inout"

(87) <raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> } * ")"

(88) <attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

(89) <readonly_attr_spec> ::= "readonly" "attribute" <type_spec> <readonly_attr_declarator>

(90) <readonly_attr_declarator> ::= <simple_declarator> <raises_expr> | <simple_declarator> { ","
<simple_declarator> }*

(91) <attr_spec> ::= "attribute" <type_spec> <attr_declarator>

(92) <attr_declarator> ::= <simple_declarator> <attr_raises_expr> | <simple_declarator> { ","
<simple_declarator> }*

(93) <attr_raises_expr> ::= <get_excep_expr> [<set_excep_expr>] | <set_excep_expr>

(94) <get_excep_expr> ::= "getraises" <exception_list>

(95) <set_excep_expr> ::= "setraises" <exception_list>

(96) <exception_list> ::= "(" <scoped_name> { "," <scoped_name> } * ")"

From B7ilding Block Interfaces – F7ll:
IDL, v4.2 119

(97) <export> ::+ <type_dcl> ";" | <const_dcl> ";" | <except_dcl> ";"

From B7ilding Block Val7e Types:

(98) <definition> ::+ <value_dcl> ";"

(99) <value_dcl> ::= <value_def> | <value_forward_dcl>

(100) <value_def> ::= <value_header> "{" <value_element>* "}"

(101) <value_header> ::= <value_kind> <identifier> [<value_inheritance_spec>]

(102) <value_kind> ::= "valuetype"

(103) <value_inheritance_spec> ::= [":" <value_name>] ["supports" <interface_name>]

(104) <value_name> ::= <scoped_name>

(105) <value_element> ::= <export> | <state_member> | <init_dcl>

(106) <state_member> ::= ("public" | "private") <type_spec> <declarators> ";"

(107) <init_dcl> ::= "factory" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>] ";"

(108) <init_param_dcls> ::= <init_param_dcl> { "," <init_param_dcl>}*

(109) <init_param_dcl> ::= "in" <type_spec> <simple_declarator>

(110) <value_forward_dcl> ::= <value_kind> <identifier>

From B7ilding Block CORBA-Specific – Interfaces:

(111) <definition> ::+ <type_id_dcl> ";" | <type_prefix_dcl> ";" | <import_dcl> ";"

(112) <export> ::+ <type_id_dcl> ";" | <type_prefix_dcl> ";" | <import_dcl> ";" | <op_oneway_dcl>

(113) <type_id_dcl> ::= "typeid" <scoped_name> <string_literal>

(114) <type_prefix_dcl> ::= "typeprefix" <scoped_name> <string_literal>

(115) <import_dcl> ::= "import" <imported_scope>

(116) <imported_scope> ::= <scoped_name> | <string_literal>

(117) <base_type_spec> ::+ <oboect_type>

(118) <oboect_type> ::= "Oboect"

(119) <interface_kind> ::+ "local" "interface"

(120) <op_oneway_dcl> ::= "oneway" "void" <identifier> "(" [<in_parameter_dcls>] ")"

(121) <in_parameter_dcls> ::= <in_param_dcl> { "," <in_param_dcl> } *

(122) <in_param_dcl> ::= "in" <type_spec> <simple_declarator>

(123) <op_with_context> ::= {<op_dcl> | <op_oneway_dcl>} <context_expr>

(124) <context_expr> ::= "context" "(" <string_literal> { "," <string_literal>* } ")"

From B7ilding Block CORBA-Specific – Val7e Types:

(125) <value_dcl> ::+ <value_box_def> | <value_abs_def>

(126) <value_box_def> ::= "valuetype" <identifier> <type_spec>

(127) <value_abs_def> ::= "abstract" "valuetype" <identifier> [<value_inheritance_spec>] "{" <export>* "}"

(128) <value_kind> ::+ "custom" "valuetype"

(129) <interface_kind> ::+ "abstract" "interface"

120 IDL, v4.2

(130) <value_inheritance_spec> ::+ ":" ["truncatable"] <value_name> { "," <value_name> }* ["supports"
<interface_name> { "," <interface_name> }*]

(131) <base_type_spec> ::+ <value_base_type>

(132) <value_base_type> ::= "‎alueuase"

From B7ilding Block Components – Basic:

(133) <definition> ::+ <component_dcl> ";"

(134) <component_dcl> ::= <component_def> | <component_forward_dcl>

(135) <component_forward_dcl> ::= "component" <identifier>

(136) <component_def> ::= <component_header> "{" <component_body> "}"

(137) <component_header> ::= "component" <identifier> [<component_inheritance_spec>]

(138) <component_inheritance_spec> ::= ":" <scoped_name>

(139) <component_body> ::= <component_export>*

(140) <component_export> ::= <provides_dcl> ";" | <uses_dcl> ";" | <attr_dcl> ";"

(141) <provides_dcl> ::= "provides" <interface_type> <identifier>

(142) <interface_type> ::= <scoped_name>

(143) <uses_dcl> ::= "uses" <interface_type> <identifier>

From B7ilding Block Components – Homes:

(144) <definition> ::+ <home_dcl> ";"

(145) <home_dcl> ::= <home_header> "{" <home_body> "}"

(146) <home_header> ::= "home" <identifier> [<home_inheritance_spec>] "manages" <scoped_name>

(147) <home_inheritance_spec> ::= ":" <scoped_name>

(148) <home_body> ::= <home_export>*

(149) <home_export> ::= <export> | <factory_dcl> ";"

(150) <factory_dcl> ::= "factory" <identifier> "(" [<factory_param_dcls>] ")" [<raises_expr>]

(151) <factory_param_dcls> ::= <factory_param_dcl> {"," <factory_param_dcl>}*

(152) <factory_param_dcl> ::= "in" <type_spec> <simple_declarator>

From B7ilding Block CCM-Specific:

(153) <definition> ::+ <event_dcl> ";"

(154) <component_header> ::+ "component" <identifier> [<component_inheritance_spec>]
<supported_interface_spec>

(155) <supported_interface_spec> ::= "supports" <scoped_name> { "," <scoped_name> }*

(156) <component_export> ::+ <emits_dcl> ";" | <publishes_dcl> ";" | <consumes_dcl> ";"

(157) <interface_type> ::+ "Oboect"

(158) <uses_dcl> ::+ "uses" "multiple" <interface_type> <identifier>

(159) <emits_dcl> ::= "emits" <scoped_name> <identifier>

(160) <publishes_dcl> ::= "publishes" <scoped_name> <identifier>

(161) <consumes_dcl> ::= "consumes" <scoped_name> <identifier>
IDL, v4.2 121

(162) <home_header> ::+ "home" <identifier> [<home_inheritance_spec>] [<supported_interface_spec>]
"manages" <scoped_name> [<primary_key_spec>]

(163) <primary_key_spec> ::= "primarykey" <scoped_name>

(164) <home_export> ::+ <finder_dcl> ";"

(165) <finder_dcl> ::= "finder" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>]

(166) <event_dcl> ::= (<event_def> | <event_abs_def> | <event_forward_dcl>)

(167) <event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>

(168) <event_abs_def> ::= "abstract" "eventtype" <identifier> [<value_inheritance_spec>] "{" <export>* "}"

(169) <event_def> ::= <event_header> "{" <value_element> * "}"

(170) <event_header> ::= ["custom"] "eventtype" <identifier> [<value_inheritance_spec>]

From B7ilding Block Components – Ports and Connectors:

(171) <definition> ::+ <porttype_dcl> ";" | <connector_dcl> ";"

(172) <porttype_dcl> ::= <porttype_def> | <porttype_forward_dcl>

(173) <porttype_forward_dcl> ::= "porttype" <identifier>

[IDL42-1 Rule 174 requires space after the opening curly brace]

[IDL42-1 Rule 174 requires space after the opening curly brace]

(174) <porttype_def> ::= "porttype" <identifier> "{ " <port_body> "}"

(175) <port_body> ::= <port_ref> <port_export>*

(176) <port_ref> ::= <provides_dcl> ";" | <uses_dcl> ";" | <port_dcl> ";"

(177) <port_export> ::= <port_ref> | <attr_dcl> ";"

(178) <port_dcl> ::= {"port" | "mirrorport"} <scoped_name> <identifier>

(179) <component_export> ::+ <port_dcl> ";"

(180) <connector_dcl> ::= <connector_header> "{" <connector_export>+ "}"

(181) <connector_header> ::= "connector" <identifier> [<connector_inherit_spec>]

(181) <connector_inherit_spec> ::= ":" <scoped_name>

(183) <connector_export> ::= <port_ref> | <attr_dcl> ";"

From B7ilding Block Template Mod7les:

(184) <definition> ::+ <template_module_dcl> ";" | <template_module_inst> ";"

(185) <template_module_dcl> ::= "module" <identifier> "<" <formal_parameters> ">" "{" <tpl_definition> +"}"

(186) <formal_parameters> ::= <formal_parameter> {"," <formal_parameter>}*

(187) <formal_parameter> ::= <formal_parameter_type> <identifier>

(188) <formal_parameter_type> ::= "typename" | "interface" | "valuetype" | "eventtype" | "struct" | "union" |
"exception" | "enum" | "sequence" | "const" <const_type> |
<sequence_type>

(189) <tpl_definition> ::= <definition> | <template_module_ref> ";"

(190) <template_module_inst> ::= "module" <scoped_name> "<" <actual_parameters> ">" <identifier>

(191) <actual_parameters> ::= <actual_parameter> { "," <actual_parameter>}*

122 IDL, v4.2

(192) <actual_parameter> ::= <type_spec> | <const_expr>

(193) <template_module_ref> ::= "alias" <scoped_name> "<" <formal_parameter_names> ">" <identifier>

(194) <formal_parameter_names> ::= <identifier> { "," <identifier>}*

From B7ilding Block Extended Data-Types:

(195) <struct_def> ::+ "struct" <identifier> ":" <scoped_name> "{" <member>* "}" | "struct" <identifier> "{"
"}"

(196) <switch_type_spec> ::+ <wide_char_type> | <octet_type>

(197) <template_type_spec> ::+ <map_type>

(198) <constr_type_dcl> ::+ <bitset_dcl> | <bitmask_dcl>

(199) <map_type> ::= "map" "<" <type_spec> "," <type_spec> "," <positive_int_const> ">" | "map" "<"
<type_spec> "," <type_spec> ">"

(200) <bitset_dcl> ::= "bitset" <identifier> [":" <scoped_name>] "{" <bitfield>* "}"

(201) <bitfield> ::= <bitfield_spec> <identifier>* ";"

(202) <bitfield_spec> ::= "bitfield" "<" <positive_int_const> ">" | "bitfield" "<" <positive_int_const> ","
<destination_type> ">"

(203) <destination_type> ::= <boolean_type> | <octet_type> | <integer_type>

(204) <bitmask_dcl> ::= "bitmask" <identifier> "{" <bit_value> { "," <bit_value> }* "}"

(205) <bit_value> ::= <identifier>

[IDL42-2 IDL Lacks Support for 8-bit Signed/Unsigned Integers]

(206) <signed_int> ::+ <signed_tiny_int>

(207) <unsigned_int> ::+ <unsigned_tiny_int>

(208) <signed_tiny_int> ::= “int8”

(209) <unsigned_tiny_int> ::= “uint8”

 [IDL42-9 IDL should have aliases/typedefs for integer that disambiguate representation size]

(210) <signed_short_int> ::+ “int16”

(211) <signed_long_int> ::+ “int32”

(212) <signed_longlong_int> ::+ “int64”

(213) <unsigned_short_int> ::+ “uint16”

(214) <unsigned_long_int> ::+ “uint32”

(215) <unsigned_longlong_int> ::+ “uint64”

From B7ilding Block Anonymo7s Types:

(222) <type_spec> ::+ <template_type_spec>

(223) <declarator> ::+ <array_declarator>

From B7ilding Block Annotations:

(224) <definition> ::+ <annotation_dcl> " ;"

(225) <annotation_dcl> ::= <annotation_header> "{" <annotation_body> "}"

(226) <annotation_header> ::= "@annotation" <identifier>

IDL, v4.2 123

(227) <annotation_body> ::= { <annotation_member> | <enum_dcl> ";" | <const_dcl> ";" | <typedef_dcl>
";" }*

(228) <annotation_member> ::= <annotation_member_type> <simple_declarator> ["default" <const_expr>]
";"

(229) <annotation_member_type> ::= <const_type> | <any_const_type> | <scoped_name>

(230) <any_const_type> ::= "any"

(231) <annotation_appl> ::= "@" <scoped_name> ["(" <annotation_appl_params> ")"]

(232) <annotation_appl_params> ::= <const_expr> | <annotation_appl_param> { "," <annotation_appl_param>
}*

(233) <annotation_appl_param> ::= <identifier> "=" <const_expr>

124 IDL, v4.2

	Interface Definition Language (IDL)
	Table of Contents
	Tables
	Figures
	Preface
	1 Scope
	2 Conformance Criteria
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments
	6.2 Specification History

	7 IDL Syntax and Semantics
	7.1 Overview
	7.2 Lexical Conventions
	7.2.1 Tokens
	7.2.2 Comments
	7.2.3 Identifiers
	7.2.3.1 Collision Rules
	7.2.3.2 Escaped Identifiers

	7.2.4 Keywords
	7.2.5 Other Characters Recognized by IDL
	7.2.6 Literals
	7.2.6.1 Integer Literals
	7.2.6.2 Character Literals
	7.2.6.2.1 Wide and Non-wide Characters
	7.2.6.2.2 Escape Sequences to Represent Character Literals

	7.2.6.3 String Literals
	7.2.6.4 Floating-point Literals
	7.2.6.5 Fixed-Point Literals

	7.3 Preprocessing
	7.4 IDL Grammar
	7.4.1 Building Block Core Data Types
	7.4.1.1 Purpose
	7.4.1.2 Dependencies with other Building Blocks
	7.4.1.3 Syntax
	7.4.1.4 Explanations and Semantics
	7.4.1.4.1 IDL Specification>
	7.4.1.4.2 Modules
	7.4.1.4.3 Constants
	7.4.1.4.4 Data Types
	7.4.1.4.4.1 Simple Referencing Types
	7.4.1.4.4.2 Basic Types
	7.4.1.4.4.2.1 Integer Types
	7.4.1.4.4.2.2 Floating-Point Types
	7.4.1.4.4.2.3 Char Type
	7.4.1.4.4.2.4 Wide Char Type
	7.4.1.4.4.2.5 Boolean Type
	7.4.1.4.4.2.6 Octet Type

	7.4.1.4.4.3 Simple Template Types
	7.4.1.4.4.3.1 Sequences
	7.4.1.4.4.3.2 Strings
	7.4.1.4.4.3.3 Wstrings
	7.4.1.4.4.3.4 Fixed Type

	7.4.1.4.4.4 Constructed Types
	7.4.1.4.4.4.1 Structures
	7.4.1.4.4.4.2 Unions
	7.4.1.4.4.4.3 Enumerations
	7.4.1.4.4.4.4 Constructed Recursive Types and Forward Declarations

	7.4.1.4.4.5 Arrays
	7.4.1.4.4.6 Native Types
	7.4.1.4.4.7 Naming Data Types

	7.4.1.5 Specific Keywords

	7.4.2 Building Block Any
	7.4.2.1 Purpose
	7.4.2.2 Dependencies with other Building Blocks
	7.4.2.3 Syntax
	7.4.2.4 Explanations and Semantics
	7.4.2.5 Specific Keywords

	7.4.3 Building Block Interfaces – Basic
	7.4.3.1 Purpose
	7.4.3.2 Dependencies with other Building Blocks
	7.4.3.3 Syntax
	7.4.3.4 Explanations and Semantics
	7.4.3.4.1 IDL specification
	7.4.3.4.2 Exceptions
	7.4.3.4.3 Interfaces
	7.4.3.4.3.1 Interface Header
	7.4.3.4.3.2 Interface Inheritance
	7.4.3.4.3.2.1 Inheritance Rules

	7.4.3.4.3.3 Interface Body
	7.4.3.4.3.3.1 Operations
	7.4.3.4.3.3.2 Attributes

	7.4.3.4.3.4 Forward Declaration

	7.4.3.5 Specific Keywords

	7.4.4 Building Block Interfaces – Full
	7.4.4.1 Purpose
	7.4.4.2 Dependencies with other Building Blocks
	7.4.4.3 Syntax
	7.4.4.4 Explanations and Semantics
	7.4.4.5 Specific Keywords

	7.4.5 Building Block Value Types
	7.4.5.1 Purpose
	7.4.5.2 Dependencies with other Building Blocks
	7.4.5.3 Syntax
	7.4.5.4 ‎‎‎Explanations and Semantics
	7.4.5.4.1 Concrete (Stateful) Value Types
	7.4.5.4.1.1 Value Header
	7.4.5.4.1.2 Value Inheritance Specification
	7.4.5.4.1.3 Value Element
	7.4.5.4.1.3.1 State Members
	7.4.5.4.1.3.2 Initializers

	7.4.5.4.2 Forward Declarations

	7.4.5.5 Specific Keywords

	7.4.6 Building Block CORBA-Specific – Interfaces
	7.4.6.1 Purpose
	7.4.6.2 Dependencies with other Building Blocks
	7.4.6.3 Syntax
	7.4.6.4 Explanations and Semantics
	7.4.6.4.1 Interface Repository Related Declarations
	7.4.6.4.1.1 Repository Identity Declaration
	7.4.6.4.1.2 Repository Identifier Prefix Declaration
	7.4.6.4.1.3 Repository Id Conflict
	7.4.6.4.1.4 Imports

	7.4.6.4.2 Object
	7.4.6.4.3 Local Interfaces
	7.4.6.4.4 Use of Native types
	7.4.6.4.5 One-way Operations
	7.4.6.4.6 Context Expressions
	7.4.6.4.7 CORBA Module

	7.4.6.5 Specific Keywords

	7.4.7 Building Block CORBA-Specific – Value Types
	7.4.7.1 Purpose
	7.4.7.2 Dependencies with other Building Blocks
	7.4.7.3 Syntax
	7.4.7.4 Explanations and Semantics
	7.4.7.4.1 Boxed Value Types
	7.4.7.4.2 Abstract Value Types and Interfaces
	7.4.7.4.2.1 Abstract Value Types
	7.4.7.4.2.2 Abstract Interfaces

	7.4.7.4.3 Value Inheritance Rules
	7.4.7.4.4 Custom Marshaling
	7.4.7.4.5 Truncatable
	7.4.7.4.6 Value Base

	7.4.7.5 Specific Keywords

	7.4.8 Building Block Components – Basic
	7.4.8.1 Purpose
	7.4.8.2 Dependencies with other Building Blocks
	7.4.8.3 Syntax
	7.4.8.4 Explanations and Semantics
	7.4.8.4.1 ‎Component Header
	7.4.8.4.2 Component Body
	7.4.8.4.2.1 Facets
	7.4.8.4.2.2 Receptacles
	7.4.8.4.2.3 Attributes

	7.4.8.4.3 Forward Declaration

	7.4.8.5 Specific Keywords

	7.4.9 Building Block Components – Homes
	7.4.9.1 Purpose
	7.4.9.2 Dependencies with Other Building Blocks
	7.4.9.3 Syntax
	7.4.9.4 Explanations and Semantics
	7.4.9.4.1 ‎Home Header
	7.4.9.4.2 Home Body

	7.4.9.5 Specific Keywords

	7.4.10 Building Block CCM-Specific
	7.4.10.1 Purpose
	7.4.10.2 Dependencies with other Building Blocks
	7.4.10.3 Syntax
	7.4.10.4 Explanations and Semantics
	7.4.10.4.1 Event Support
	7.4.10.4.1.1 Event Types
	7.4.10.4.1.1.1 ‎Regular Event Types
	7.4.10.4.1.1.2 Abstract Event Types
	7.4.10.4.1.1.3 Forward Declarations
	7.4.10.4.1.1.4 Event Type Inheritance

	7.4.10.4.1.2 Event Ports
	7.4.10.4.1.2.1 Event Sources – Publishers and Emitters
	7.4.10.4.1.2.1.1 Publishers
	7.4.10.4.1.2.1.2 Emitters

	7.4.10.4.1.2.2 Event Sinks

	7.4.10.4.2 Home Extensions
	7.4.10.4.2.1 Supported Interfaces
	7.4.10.4.2.2 Primary Keys
	7.4.10.4.2.3 Finder Operations

	7.4.10.4.3 Multiple Uses
	7.4.10.4.4 Alignment with CORBA-specific Features related to Interfaces and Value Types
	7.4.10.4.4.1 Supported Interfaces in Components
	7.4.10.4.4.2 Object Root

	7.4.10.5 Specific Keywords

	7.4.11 Building Block Components – Ports and Connectors
	7.4.11.1 Purpose
	7.4.11.2 Dependencies with other Building Blocks
	7.4.11.3 Syntax
	7.4.11.4 Explanations and Semantics
	7.4.11.4.1 Extended Ports
	7.4.11.4.1.1 Port Type Declaration

	7.4.11.4.2 Port Declaration
	7.4.11.4.3 Connectors

	7.4.11.5 Specific Keywords

	7.4.12 Building Block Template Modules
	7.4.12.1 Purpose
	7.4.12.2 Dependencies with other Building Blocks
	7.4.12.3 Syntax
	7.4.12.4 Explanations and Semantics
	7.4.12.4.1 Template Module Declaration
	7.4.12.4.2 Template Module Instantiation
	7.4.12.4.3 References to a Template Module

	7.4.12.5 Specific Keywords

	7.4.13 Building Block Extended Data-Types
	7.4.13.1 Purpose
	7.4.13.2 Dependencies with other Building Blocks
	7.4.13.3 Syntax
	7.4.13.4 Explanations and Semantics
	7.4.13.4.1 Structures with Single Inheritance and/or Void Content
	7.4.13.4.2 Union Discriminators
	7.4.13.4.3 Map, Additional Bitset and Bitmap Types
	7.4.13.4.3.1 Maps
	7.4.13.4.3.2 Bit Sets (including Bit Fields)
	7.4.13.4.3.3 Bit Masks

	7.4.13.4.4 Integers restricted to holding 8-bits of information
	7.4.13.4.5 Explicitly-named Integer Types
	7.4.13.4.6 Ranges for all Integer Types

	7.4.13.5 Specific Keywords

	7.4.14 Building Block Anonymous Types
	7.4.14.1 Purpose
	7.4.14.2 Dependencies with other Building Blocks
	7.4.14.3 Syntax
	7.4.14.4 Explanations and Semantics
	7.4.14.5 Specific keywords

	7.4.15 Building Block Annotations
	7.4.15.1 Purpose
	7.4.15.2 Dependencies with other Building Blocks
	7.4.15.3 Syntax
	7.4.15.4 Explanations and Semantics
	7.4.15.4.1 Defining Annotations
	7.4.15.4.2 Applying Annotations

	7.4.15.5 Specific Keywords

	7.4.16 Relationships between the Building Blocks

	7.5 Names and Scoping
	7.5.1 Qualified Names
	7.5.2 Scoping Rules and Name Resolution
	7.5.3 Special Scoping Rules for Type Names

	8 Standardized Annotations
	8.1 Overview
	8.2 Introduction
	8.2.1 Rules for Defining Standardized Annotations
	8.2.2 Rules for Using Standardized Annotations

	8.3 Standardized Groups of Annotations
	8.3.1 Group of Annotations General Purpose
	8.3.1.1 @id Annotation
	8.3.1.2 @autoid Annotation
	8.3.1.3 @optional Annotation
	8.3.1.4 @position Annotation
	8.3.1.5 @value Annotation
	8.3.1.6 @extensibility Annotation
	8.3.1.7 @final Annotation
	8.3.1.8 @appendable Annotation
	8.3.1.9 @mutable Annotation

	8.3.2 Group of Annotations Data Modeling
	8.3.2.1 @key Annotation
	8.3.2.2 @must_understand Annotation
	8.3.2.3 @default_literal Annotation

	8.3.3 Group of Annotations: Units and Ranges
	8.3.3.1 @default Annotation
	8.3.3.2 @range Annotation
	8.3.3.3 @min Annotation
	8.3.3.4 @max Annotation
	8.3.3.5 @unit Annotation

	8.3.4 Group of Annotations Data Implementation
	8.3.4.1 @bit_bound Annotation
	8.3.4.2 @external Annotation
	8.3.4.3 @nested Annotation

	8.3.5 Group of Annotations Code Generation
	8.3.5.1 @verbatim Annotation

	8.3.6 Group of Annotations Interfaces
	8.3.6.1 @service Annotation
	8.3.6.2 @oneway Annotation
	8.3.6.3 @ami Annotation

	9 Profiles
	9.1 Overview
	9.2 CORBA and CCM Profiles
	9.2.1 Plain CORBA Profile
	9.2.2 Minimum CORBA Profile
	9.2.3 CCM Profile
	9.2.4 CCM with Generic Interaction Support Profile

	9.3 DDS Profiles
	9.3.1 Plain DDS Profile
	9.3.2 Extensible DDS Profile
	9.3.3 RPC over DDS Profile

