
 ISO/IEC 19516

© ISO 2018 – All rights reserved i

ISO/IEC 19516
Date: August 2018

Information technology - Object Management Group
Interface Definition Language (IDL), 4.2
Formal/22-06-02

This version has been formally published by ISO as the 2018 addition standard: ISO/IEC 19516.

ISO/IEC 19516

ii © ISO 2018 – All rights reserved

 ISO/IEC 19516

© ISO 2018 – All rights reserved iii

ISO/IEC 19516

iv © ISO 2018 – All rights reserved

Contents

Foreword .. vi
Introduction ... vii

1 Scope .. 1
1.1 Overview ... 1

2 Conformance ... 1

3 Normative References .. 2

4 Terms and Definitions ... 2

5 Symbols .. 2

6 Additional Information .. 3
6.1 Acknowledgments ... 3
6.2 History .. 3

7 IDL Syntax and Semantics ... 5
7.1 Overview ... 5
7.2 Lexical Conventions ... 6
7.2.1 Tokens .. 9
7.2.2 Comments .. 9
7.2.3 Identifiers .. 9
7.2.4 Keywords .. 10
7.2.5 Other Characters Recognized by IDL .. 11
7.2.6 Literals .. 12
7.3 Preprocessing.. 14
7.4 IDL Grammar .. 15
7.4.1 Building Block Core Data Types .. 16
7.4.2 Building Block Any .. 31
7.4.3 Building Block Interfaces – Basic .. 32
7.4.4 Building Block Interfaces – Full ... 38
7.4.5 Building Block Value Types ... 40
7.4.6 Building Block CORBA-Specific – Interfaces ... 44
7.4.7 Building Block CORBA-Specific – Value Types ... 49
7.4.8 Building Block Components – Basic ... 54
7.4.9 Building Block Components – Homes .. 58
7.4.10 Building Block CCM-Specific ... 60
7.4.11 Building Block Components – Ports and Connectors ... 66
7.4.12 Building Block Template Modules ... 69
7.4.13 Building Block Extended Data-Types .. 72
7.4.14 Building Block Anonymous Types .. 78
7.4.15 Building Block Annotations ... 79
7.4.16 Relationships between the Building Blocks ... 82
7.5 Names and Scoping .. 82
7.5.1 Qualified Names ... 83
7.5.2 Scoping Rules and Name Resolution .. 84
7.5.3 Special Scoping Rules for Type Names .. 86

8 Standardized Annotations .. 89
8.1 Overview ... 89
8.2 Introduction .. 89
8.2.1 Rules for Defining Standardized Annotations .. 89
8.2.2 Rules for Using Standardized Annotations .. 90
8.3 Standardized Groups of Annotations ... 90
8.3.1 Group of Annotations General Purpose ... 90
8.3.2 Group of Annotations Data Modeling .. 92
8.3.3 Group of Annotations: Units and Ranges ... 93

 ISO/IEC 19516

© ISO 2018 – All rights reserved v

8.3.4 Group of Annotations Data Implementation ... 94
8.3.5 Group of Annotations Code Generation ... 95
8.3.6 Group of Annotations Interfaces ... 96

9 Profiles ... 97
9.1 Overview ... 97
9.2 CORBA and CCM Profiles .. 98
9.2.1 Plain CORBA Profile .. 98
9.2.2 Minimum CORBA Profile .. 98
9.2.3 CCM Profile .. 98
9.2.4 CCM with Generic Interaction Support Profile ... 99
9.3 DDS Profiles ... 99
9.3.1 Plain DDS Profile ... 99
9.3.2 Extensible DDS Profile .. 99
9.3.3 RPC over DDS Profile .. 100

Annex A Consolidated IDL Grammar ... 102

ISO/IEC 19516

vi © ISO 2018 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields
of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are described in the
ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of document
should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2
(see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights.
ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights
identified during the development of the document will be in the Introduction and/or on the ISO list of patent
declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an
endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to
conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO)
principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared by the Object Management Group (OMG) and was adopted, under the PAS procedure,
by Joint Technical Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies
of ISO and IEC.

This document is related to:

• ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, Information Technology - Open
Distributed Processing - Reference Model: Foundations

• ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, Information Technology - Open
Distributed Processing - Reference Model: Architecture

• ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open
Distributed Processing - Interface Definition Language

Apart from this Foreword, the text of this document is identical with that for the OMG specification for Interface
Definition Language (IDL), v4.2.

 ISO/IEC 19516

© ISO 2018 – All rights reserved vii

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and ITU-
T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability, and portability
can be integrated.

RM-ODP Part 2 (ISO RM-ODP Part 2 (ISO/IEC 10746-2) defines the foundational concepts and modeling framework for
describing distributed systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the
same and, in a number of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which are
related but not identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed
using UML with appropriate extensions (using stereotypes, tags, and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
3 of the RM-ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint specifications
defined by the RM-ODP.

This International Standard defines a method for automating the counting of Function Points that is generally consistent
with the Function Point Counting Practices Manual, Release 4.3.1 (IFPUG CPM) produced by the International Function
Point Users Group (IFPUG). Guidelines in this International Standard may differ from those in the IFPUG CPM at points
where subjective judgments have to be replaced by the rules needed for automation. The IFPUG CPM was selected as the
anchor for this International Standard because it is the most widely used functional measurement specification with a large
supporting infrastructure maintained by a professional organization.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 1

Information technology - Object Management Group
Information Definition Language (IDL 4.2)

1 Scope
1.1 Overview
This International Standard specifies the OMG Interface Definition Language (IDL). IDL is a descriptive language
used to define data types and interfaces in a way that is independent of the programming language or operating
system/processor platform.

The IDL specifies only the syntax used to define the data types and interfaces. It is normally used in connection with
other standards that further define how these types/interfaces are utilized in specific contexts and platforms:

• Separate “language mapping” standards define how the IDL-defined constructs map to specific programming
languages, such as, C/C++, Java, C#, etc.

• Separate “serialization” standards define how data objects and method invocations are serialized into a format
suitable for network transmission.

• Separate “middleware” standards, such as, DDS or CORBA leverage the IDL to define data-types, services, and
interfaces.

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF).

2 Conformance Criteria
This International Standard defines IDL such that it can be referenced by other standards. It contains no independent
conformance points. It is up to the standards that depend on this International Standard to define their own conformance
criteria. However, the general organization of the clauses (by means of atomic building blocks and profiles that group
them) is intended to ease conformance description and scoping. That means that no standard using IDL 4.0 will be forced
to be compliant with IDL constructs that are not relevant in its usage of IDL.

Conformance to this International Standard must follow these rules:

 1. Future standards that use IDL shall reference this IDL International Standard or a future revision thereof.

 2. Future revisions of current standards that use IDL may reference this IDL International Standard or a future
revision thereof.

 3. Reference to this International Standard shall result in a selection of building blocks possibly complemented by
groups of annotations.

 a. All selected building blocks shall be supported entirely.

 b. Selected annotations shall be either supported as described in 8.2.2 Rules for Using Standardized
 Annotations, or fully ignored. In the latter case, the IDL-dependent standard shall not define a
 specific annotation, either with the same name and another meaning or with the same meaning and
 another name.

ISO/IEC 19516

2 © ISO 2018 – All rights reserved

3 Normative References
The following referenced documents are indispensable for the application of this International Standard. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments):

• ISO/IEC 14882:2003, Information Technology - Programming languages - C++

• [RFC2119] IETF RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997.
Available from http://ietf.org/rfc/rfc2119

• [CORBA] Common Object Request Broker Architecture. OMG specification: formal/2012-11-12 (part1),
formal/2012-11-14 (part2), formal/2012-11-16 (part3)

The following referenced documents were used as input to this International Standard:

• [DDS-XTypes]. Extensible and Dynamic Topic Types for DDS, Version 1.2. Available from:
 http://www.omg.org/spec/DDS-XTypes/1.2

• [DDS]. Data Distribution Service, Version 1.4. Available from: http://www.omg.org/spec/DDS/1.4

• [DDS-RPC]. Remote Procedure Call over DDS, Version 1.0. Available from:
 http://www.omg.org/spec/DDS-RPC/1.0

4 Terms and Definitions

In this International Standard:

• A building block is a consistent set of IDL rules that together form a piece of IDL functionality. Building blocks
are atomic, meaning that if selected, they must be totally supported. Building blocks are described in Clause 7,
IDL Syntax and Semantics.

• A group of annotations is a consistent set of annotations, expressed in IDL. Groups of annotations are described in
Clause 8, Standardized Annotations.

• A profile is a selection of building blocks possibly complemented with groups of annotations that determines a
specific IDL usage. Profiles are described in Clause 9, Profiles.

5 Symbols
The following abbreviations are used throughout this International Standard.

Acronym Meaning

ASCII American Standard Code for Information Interchange

BIPM Bureau International des Poids et Mesures

CCM CORBA Component Model

http://www.omg.org/spec/DDS-XTypes/1.2
http://www.omg.org/spec/DDS/1.4

 ISO/IEC 19516

© ISO 2018 – All rights reserved 3

CORBA Common Object Request Broker Architecture

DDS Data Distribution Service

EBNF Extended Backus Naur Form

IDL Interface Definition Language

ISO International Organization for Standardization

LwCCM Lightweight CCM

OMG Object Management Group

ORB Object Request Broker

XTypes eXtensible and dynamic topic Types (for DDS)

6 Additional Information
6.1 Acknowledgments

The following companies submitted this International Standard:

Thales

RTI

The following companies supported this International Standard:

Mitre

Northrop Grumman

Remedy IT

6.2 History

Historically, IDL was designed to specify CORBA interfaces and subsequently CORBA components. For this reason
the IDL standard was embedded in the CORBA documentation. However its expressive power made it very suitable
for defining non-CORBA interfaces and data types. Consequently, it was used in the DDS standard and extended to
support that usage. In recognition of these new usages, and expected future ones, IDL was separated into its own
stand-alone standard, independent of its use by specific middleware technologies.

This International Standard completes the definition of IDL as a separate standard, an effort started with IDL 3.5.

IDL 3.5 gathered in a single standard all the CORBA-dedicated IDL, formerly specified as a collection of clauses
within the CORBA 3 standard.

IDL 4.0 extended that corpus with the other source for IDL definitions, namely "Extensible and Dynamic Topic Types
for DDS" in order to group all IDL constructs in a single comprehensive standard. It organized the IDL description
into modular "Building Blocks" so that different levels of compliance are easier to specify and that future evolutions,
if needed, can be made without side-effects on existing IDL usages.

ISO/IEC 19516

4 © ISO 2018 – All rights reserved

IDL 4.1 improved the definition of the bitset type, added a bitmap type, and resolved some inconsistencies in the
grammar.

IDL 4.2 added support for 8-bit integer types, added size-explicit keywords for integer types, enhanced the readability,
and reordered the building blocks to follow a logical dependency progression.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 5

7 IDL Syntax and Semantics
7.1 Overview
This clause describes OMG Interface Definition Language (IDL) middleware1-agnostic semantics2 and defines the
syntax for IDL grammatical constructs.

OMG IDL is a language that allows unambiguous specification of the interfaces that client objects3 may use and (server)
object implementations provide as well as all needed related constructs such as exceptions and data types. Data types are
needed to specify parameters and return value of interfaces' operations. They can be used also as first class constructs.

IDL is a purely descriptive language. This means that actual programs that use these interfaces or create the associated
data types cannot be written in IDL, but in a programming language, for which mappings from IDL constructs have been
defined. The mapping of IDL constructs to a programming language will depend on the facilities available in that
programming language. For example, an IDL exception might be mapped to a structure in a language that has no notion
of exceptions, or to an exception in a language that does. The binding of IDL constructs to several programming
languages is described in separate standards.

The clause is organized as follows:

• The description of IDL’s lexical conventions is presented in 7.2 Lexical Conventions.

• A description of IDL preprocessing is presented in 7.3 Preprocessing

• The grammar itself is presented in 7.4 IDL Grammar

• The scoping rules for identifiers in an IDL standard are described in 7.5.

IDL-specific pragmas may appear anywhere in a standard; the textual location of these pragmas may be semantically
constrained by a particular implementation.

A source file containing specifications written in IDL shall have a ".idl" extension.

The description of IDL grammar uses a syntax notation that is similar to Extended Backus-Naur Format (EBNF).
However, to allow composition of specific parts of the description, while avoiding redundancy; a new operator (::+)
has been added. This operator allows adding alternatives to an existing definition. For example, assuming the rule x
::= y, the rule x ::+ z shall be interpreted as x ::= y | z.

1 In this document the word middleware refers to any piece of software that will make use of IDL-derived artifacts. CORBA and
 DDS implementations are examples of middleware. The word compiler refers to any piece of software that produces these
 IDL-derived artifacts based on an IDL specification.

2 I.e., abstract semantics that is applicable to all IDL usages. When needed, middleware-specific interpretations of that abstract
 semantics will be given afterwards in dedicated clauses.

3 Accordingly, client objects should be understood here as abstract clients, i.e., entities invoking operations provided by object
 implementations, regardless of the means used to perform this invocation or even whether those implementations are
 co-located or remotely accessible.

ISO/IEC 19516

6 © ISO 2018 – All rights reserved

Table 7.1 lists the symbols used in this EBNF format and their meaning.

 Table 7.1 - IDL EBNF

Symbol Meaning

::= Is defined to be (left part of the rule is defined to be right part of the rule)
| Alternatively

::+ Is added as alternative (left part of the rule is completed with right part of the
rule as a new alternative)

<text> Nonterminal
"text" Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit must be repeated at least once
{} The enclosed syntactic units are grouped as a single syntactic unit
[] The enclosed syntactic unit is optional – may occur zero or one time

7.2 Lexical Conventions
This sub clause4 presents the lexical conventions of IDL. It defines tokens in an IDL specification and describes
comments, identifiers, keywords, and literals - integer, character, and floating point constants and string literals.

An IDL specification logically consists of one or more files. A file is conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

IDL uses the ASCII character set, except for string literals and character literals, which use the ISO Latin-1 (8859-1)
character set. The ISO Latin-1 character set is divided into alphabetic characters (letters) digits, graphic characters, the
space (blank) character, and formatting characters. Table 7.2 shows the ISO Latin-1 alphabetic characters; upper and
lower case equivalences are paired. The ASCII alphabetic characters are shown in the left-hand column of Table 7.2.

 Table 7.2 – Characters
Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with dieresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

4 This sub clause is an adaptation of The Annotated C++ Reference Manual, Clause 2; it differs in the list of legal keywords and
 punctuation.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 7

Char. Description Char. Description

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with dieresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with dieresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with dieresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

 Üü Upper/Lower-case U with dieresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with dieresis

Table 7.3 lists the decimal digit characters.

 Table 7.3 – Decimal Digits
0 1 2 3 4 5 6 7 8 9

Table 7.4 shows the graphic characters.

 Table 7.4 – Graphic Characters
Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

ISO/IEC 19516

8 © ISO 2018 – All rights reserved

Char. Description Char. Description

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand ¦ broken bar

’ apostrophe § section/paragraph sign

(left parenthesis ¨ dieresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave ¼

vulgar fraction 1/4

{ left curly bracket ½

vulgar fraction 1/2

| vertical line ¾

vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

 ÷ division sign

The formatting characters are shown in Table 7.5.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 9

 Table 7.5 – Formatting Characters
Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

7.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators.

Blanks, horizontal and vertical tabs, newlines, form feeds, and comments (collective, "white space") as described below
are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

7.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest.

The characters // start a comment, which terminates at the end of the line on which they occur.

The comment characters //, /*, and */ have no special meaning within a // comment and are treated just like other
characters. Similarly, the comment characters // and /* have no special meaning within a /* comment.

Comments may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed, and newline characters.

7.2.3 Identifiers

An identifier is an arbitrarily long sequence of ASCII alphabetic, digit, and underscore (_) characters. The first character
must be an ASCII alphabetic character. All characters are significant.

IDL identifiers are case insensitive. However, all references to a definition must use the same case as the defining
occurrence. This allows natural mappings to case-sensitive languages.

7.2.3.1 Collision Rules

When comparing two identifiers to see if they collide:

ISO/IEC 19516

10 © ISO 2018 – All rights reserved

• Upper- and lower-case letters are treated as the same letter. Table 7.2 defines the equivalence mapping of
upper- and lower-case letters.

• All characters are significant.

Identifiers that differ only in case collide, and will yield a compilation error under certain circumstances. An identifier for
a given definition must be spelled identically (e.g., with respect to case) throughout a specification.

There is only one namespace for IDL identifiers in each scope. Using the same identifier for a constant and an interface,
for example, produces a compilation error.

Example:

module M {
 typedef long Foo;
 const long thing = 1;
 interface thing { // Error: reuse of identifier thing
 void doit (
 in Foo foo // Error: Foo and foo collide…
); // … and refer to different things
 readonly attribute long Attribute; // Error: Attribute collides with keyword…
 // … attribute
 };
 };

7.2.3.2 Escaped Identifiers

As all languages, IDL uses some reserved words called keywords (see 7.2.4).

As IDL evolves, new keywords that are added to the IDL language may inadvertently collide with identifiers used in
existing IDL and programs that use that IDL. Fixing these collisions will require not only the IDL to be modified, but
programming language code that depends upon that IDL will have to change as well. The language mapping rules for the
renamed IDL identifiers will cause the mapped identifier names (e.g., method names) to be changed.

To minimize the amount of work, users may lexically "escape" identifiers by prepending an underscore (_) to an
identifier. This is a purely lexical convention that ONLY turns off keyword checking. The resulting identifier follows all
the other rules for identifier processing. For example, the identifier _AnIdentifier is treated as if it were AnIdentifier.

 Example:

 module M {
 interface thing {
 attribute boolean abstract; // Error: abstract collides with keyword abstract
 attribute boolean _abstract; // OK: abstract is an identifier
 };
 };

Note: To avoid unnecessary confusion for readers of IDL, it is recommended that IDL specifications only use the
escaped form of identifiers when the non-escaped form clashes with a newly introduced IDL keyword. It is also
recommended that interface designers avoid defining new identifiers that are known to require escaping. Escaped literals
are only recommended for IDL that expresses legacy items, or for IDL that is mechanically generated.

7.2.4 Keywords

The identifiers listed in Table 7.6 are reserved for use as keywords and may not be used for another purpose, unless
escaped with a leading underscore.

 Table 7.6 – All IDL Keywords

 ISO/IEC 19516

© ISO 2018 – All rights reserved 11

abstract any alias attribute bitfield

bitmask bitset boolean case char

component connector const consumes context

custom default double exception emits

enum eventtype factory FALSE finder

fixed float getraises home import

in inout interface local long

manages map mirrorport module multiple

native Object octet oneway out

primarykey private port porttype provides

public publishes raises readonly setraises

sequence short string struct supports

switch TRUE truncatable typedef typeid

typename typeprefix unsigned union uses

ValueBase valuetype void wchar wstring

int8 uint8 int16 int32 int64

uint16 uint32 uint64

Keywords must be written exactly as shown in the above list. Identifiers that collide with keywords (see 7.2.3) are illegal.
For example, boolean is a valid keyword; Boolean and BOOLEAN are illegal identifiers.

Example:

module M {
 typedef Long Foo; // Error: keyword is long not Long
 typedef boolean BOOLEAN; // Error: BOOLEAN collides with the keyword…
 // …boolean;
};

Note: As the IDL grammar is now organized in building blocks that dedicated profiles may include or not, some of these
keywords may be irrelevant to some profiles. Each building block description (see 7.4) includes the set of keywords that
are specific to it. The minimum set of keywords for a given profile results from the union of all the ones of the included
building blocks. However, to avoid unnecessary confusion for readers of IDL and to allow IDL compilers supporting
several profiles in a single tool, it is recommended that IDL specifications avoid using any of the keywords listed in
Table 7.6.

7.2.5 Other Characters Recognized by IDL

IDL specifications use the characters shown in Table 7.7 as punctuation.

 Table 7.7 – Punctuation

; { } : , = + - () < > []

' " \ | ^ & * / % ~ @

In addition, the tokens listed in Table 7.8 are used by the preprocessor.

ISO/IEC 19516

12 © ISO 2018 – All rights reserved

 Table 7.8 – Tokens

! || &&

7.2.6 Literals

This sub clause describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

7.2.6.1 Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).

A sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits and
thus are not allowed in an octal integer literal.

A sequence of digits preceded by 0x (or 0X) is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a (or A) through f (or F) with decimal values ten through fifteen, respectively.

For example, the number twelve can be written 12, 014, or 0XC.

7.2.6.2 Character Literals

7.2.6.2.1 Wide and Non-wide Characters

Character literals may have type char (non-wide character) or wchar (wide character).

Both wide and non-wide character literals must be specified using characters from the ISO Latin-1 (8859-1) character set.

A char is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic, digit, or
graphic character literal is the numerical value of the character as defined in the ISO Latin-1 (8859-1) character set standard
(see Table 7.2, Table 7.3, and Table 7.4). The value of a null is 0. The value of a formatting character literal is the numerical
value of the character as defined in the ISO 646 standard (see Table 7.5). The meaning of all other characters is
implementation-dependent.

A wchar (wide character) is intended to encode wide characters from any character set. Its size is implementation
dependent.

A character literal is one or more characters enclosed in single quotes, as in:

 const char C1 = 'X';

Wide character literals have in addition an L prefix, as in:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 13

 const wchar C2 = L'X';

Attempts to assign a wide character literal to a non-wide character constant, or to assign a non-wide character literal to a
wide character constant, shall be treated as an error.

7.2.6.2.2 Escape Sequences to Represent Character Literals

Nongraphic characters shall be represented using escape sequences as defined below in Table 7.9. Note that escape
sequences shall be used to represent single quote and backslash characters in character literals.

 Table 7.9 – Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal number \xhh

Unicode character \uhhhh

If the character following a backslash is not one of those specified, the behavior is undefined. An escape sequence specifies
a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backslash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character.

A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal
digit, respectively. The value of a character constant is implementation dependent if it exceeds that of the largest char.

The escape \uhhhh consists of a backslash followed by the character u, followed by one, two, three, or four hexadecimal
digits. This represents a Unicode character literal. For example, the literal \u002E represents the Unicode period ‘.’
character and the literal \u3BC represents the Unicode Greek small letter ‘µ’ (mu). The \u escape is valid only with
wchar and wstring types. Because a wide string literal is defined as a sequence of wide character literals, a sequence of
\u literals can be used to define a wide string literal.

Attempts to set a char type to a \u defined literal or a string type to a sequence of \u literals result in an error.

ISO/IEC 19516

14 © ISO 2018 – All rights reserved

7.2.6.3 String Literals

Strings are null-terminated sequences of characters. Strings are of type string if they are made of non-wide characters or
wstring (wide string) if they are made of wide characters.

A string literal is a sequence of character literals with the exception of the character with numeric value 0, surrounded by
double quotes, as in:

 const string S1 = "Hello";

Wide string literals have in addition an L prefix, for example:

 const wstring S2 = L"Hello";

Both wide and non-wide string literals must be specified using characters from the ISO Latin-1 (8859-1) character set. A
string literal shall not contain the character ‘\0’. A wide string literal shall not contain the wide character with value zero.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example, "\xA" "B"
contains the two characters ‘\xA’ and ‘B’ after concatenation (and not the single hexadecimal character ‘\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. Within a string,
the double quote character " must be preceded by a \.

Attempts to assign a wide string literal to a non-wide string constant or to assign a non-wide string literal to a wide string
constant result in a compile-time diagnostic.

7.2.6.4 Floating-point Literals

A floating-point literal consists of an integer part, a decimal point (.), a fraction part, an e or E, and an optionally signed
integer exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer
part or the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but
not both) may be missing.

7.2.6.5 Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point (.), a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point (but not the letter d or D) may be missing.

7.3 Preprocessing
IDL shall be preprocessed according to the specification of the preprocessor in ISO/IEC 14882:2003. The preprocessor
may be implemented as a separate process or built into the IDL compiler.

Lines beginning with # (also called "directives") communicate with this preprocessor. White space may appear before the
#. These lines have syntax independent of the rest of IDL; they may appear anywhere and have effects that last
(independent of the IDL scoping rules) until the end of the translation unit. The textual location of IDL-specific pragmas
may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash character
(\), immediately before the newline at the end of the line to be continued. The preprocessor effects the continuation by
deleting the backslash and the newline before the input sequence is divided into tokens. A backslash character may not be
the last character in a source file.

A preprocessing token is an IDL token (see 7.2.1), a file name as in a #include directive, or any single character other
than white space that does not match another preprocessing token.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 15

The primary use of the preprocessing facilities is to include definitions from other IDL specifications. Text in files
included with a #include directive is treated as if it appeared in the including file.

Note: Generating code for included files is an IDL compiler implementation-specific issue. To support separate
compilation, IDL compilers may not generate code for included files, or do so only if explicitly instructed.

7.4 IDL Grammar
The grammar for a well-formed IDL specification is described by rules expressed in Extended Backus Naur Form (EBNF)
completed to support rule extensions as explained in 7.1. Table 7.1 gathers all the symbols used in rules.

These rules are grouped in atomic building blocks that will be themselves grouped to form dedicated profiles. Atomic
means that they cannot be split (in other words a given profile will contain or not a given building block, but never just
parts of it).

In all the building block descriptions, the normative rules are grouped in a sub clause entitled "Syntax" and written in Arial
bold. They are then detailed in a sub clause entitled "Explanations and Semantics", where they are copied to ease
understanding. These copies are actually hyperlinks to the originals and are written in Arial bold-italics.

In all the rules, the following non-terminals pre-exist and are not detailed.

 Table 7.10 – List of pre-existing non-terminals in IDL rules
Token Explanation

<identifier> A valid identifier, as explained in Error! Reference
source not found., Error! Reference source not
found.

<integer_literal> A valid integer literal as explained in Error!
Reference source not found., Error! Reference
source not found.

<string_literal> A valid string literal as explained in Error! Reference
source not found., Error! Reference source not
found.

<wide_string_literal> A valid wide string literal as explained in Error!
Reference source not found., Error! Reference
source not found.

<character_literal> A valid character literal as explained in Error!
Reference source not found., Error! Reference
source not found.

<wide_character_literal> A valid wide character literal as explained in Error!
Reference source not found., Error! Reference
source not found.

<fixed_pt_literal> A valid fixed point literal as explained in Error!
Reference source not found., Error! Reference
source not found.

<floating_pt_literal> A valid floating point literal as explained in Error!
Reference source not found., Error! Reference
source not found.

ISO/IEC 19516

16 © ISO 2018 – All rights reserved

7.4.1 Building Block Core Data Types

7.4.1.1 Purpose

This building block constitutes the core of any IDL specialization (all other building blocks assume that this one is
included). It contains the syntax rules that allow defining most data types and the syntax rules that allow IDL basic
structuring (i.e., modules). Since it is the only mandatory building block, it also contains the root nonterminal
<specification> for the grammar itself.

7.4.1.2 Dependencies with other Building Blocks

This building block is the root for all other building blocks and requires no other ones.

7.4.1.3 Syntax

The following set of rules form the building block:
(1) <specification> ::= <definition>
(2) <definition> ::= <module_dcl> ";"

 | <const_dcl> ";"
 | <type_dcl> ";"

(3) <module_dcl> ::= "module" <identifier> "{" <definition>+ "}"
(4) <scoped_name> ::= <identifier>

 | "::" <identifier>
 | <scoped_name> "::" <identifier>

(5) <const_dcl> ::= "const" <const_type> <identifier> "=" <const_expr>
(6) <const_type> ::= <integer_type>

 | <floating_pt_type>
 | <fixed_pt_const_type>
 | <char_type>
 | <wide_char_type>
 | <boolean_type>
 | <octet_type>
 | <string_type>
 | <wide_string_type>
 | <scoped_name>

(7) <const_expr> ::= <or_expr>
(8) <or_expr> ::= <xor_expr>

 | <or_expr> "|" <xor_expr>
(9) <xor_expr> ::= <and_expr>

 | <xor_expr> "^" <and_expr>
(10) <and_expr> ::= <shift_expr>

 | <and_expr> "&" <shift_expr>
(11) <shift_expr> ::= <add_expr>

 | <shift_expr> ">>" <add_expr>
 | <shift_expr> "<<" <add_expr>

(12) <add_expr> ::= <mult_expr>
 | <add_expr> "+" <mult_expr>
 | <add_expr> "-" <mult_expr>

(13) <mult_expr> ::= <unary_expr>
 | <mult_expr> "*" <unary_expr>
 | <mult_expr> "/" <unary_expr>
 | <mult_expr> "%" <unary_expr>

(14) <unary_expr> ::= <unary_operator> <primary_expr>
 | <primary_expr>

(15) <unary_operator> ::= "-"
 | "+"
 | "~"

(16) <primary_expr> ::= <scoped_name>
 | <literal>
 | "(" <const_expr> ")"

(17) <literal> ::= <integer_literal>
 | <floating_pt_literal>
 | <fixed_pt_literal>
 | <character_literal>
 | <wide_character_literal>
 | <boolean_literal>

 ISO/IEC 19516

© ISO 2018 – All rights reserved 17

 | <string_literal>
 | <wide_string_literal>

(18) <boolean_literal> ::= "TRUE"
 | "FALSE"

(19) <positive_int_const> ::= <const_expr>
(20) <type_dcl> ::= <constr_type_dcl>

 | <native_dcl>
 | <typedef_dcl>

(21) <type_spec> ::= <simple_type_spec>
(22) <simple_type_spec> ::= <base_type_spec>

 | <scoped_name>
(23) <base_type_spec> ::= <integer_type>

 | <floating_pt_type>
 | <char_type>
 | <wide_char_type>
 | <boolean_type>
 | <octet_type>

(24) <floating_pt_type> ::= "float"
 | "double"
 | "long" "double"

(25) <integer_type> ::= <signed_int>
 | <unsigned_int>

(26) <signed_int> ::= <signed_short_int>
 | <signed_long_int>
 | <signed_longlong_int>

(27) <signed_short_int> ::= "short"
(28) <signed_long_int> ::= "long"
(29) <signed_longlong_int> ::= "long" "long"

 (30) <unsigned_int> ::= <unsigned_short_int>
 | <unsigned_long_int>
 | <unsigned_longlong_int>

(31) <unsigned_short_int> ::= "unsigned" "short"
(32) <unsigned_long_int> ::= "unsigned" "long"
(33) <unsigned_longlong_int> ::= "unsigned" "long" "long"
(34) <char_type> ::= "char"
(35) <wide_char_type> ::= "wchar"
(36) <boolean_type> ::= "boolean"
(37) <octet_type> ::= "octet"
(38) <template_type_spec> ::= <sequence_type>

 | <string_type>
 | <wide_string_type>
 | <fixed_pt_type>

(39) <sequence_type> ::= "sequence" "<" <type_spec> "," <positive_int_const> ">"
 | "sequence" "<" <type_spec> ">"

(40) <string_type> ::= "string" "<" <positive_int_const> ">"
 | "string"

(41) <wide_string_type> ::= "wstring" "<" <positive_int_const> ">"
 | "wstring"

(42) <fixed_pt_type> ::= "fixed" "<" <positive_int_const> "," <positive_int_const> ">"
(43) <fixed_pt_const_type> ::= "fixed"
(44) <constr_type_dcl> ::= <struct_dcl>

 | <union_dcl>
 | <enum_dcl>

(45) <struct_dcl> ::= <struct_def>
 | <struct_forward_dcl>

(46) <struct_def> ::= "struct" <identifier> "{" <member>+ "}"
(47) <member> ::= <type_spec> <declarators> ";"
(48) <struct_forward_dcl> ::= "struct" <identifier>
(49) <union_dcl> ::= <union_def>

 | <union_forward_dcl>
(50) <union_def> ::= "union" <identifier> "switch" "(" <switch_type_spec> ")"

 "{" <switch_body> "}"
(51) <switch_type_spec> ::= <integer_type>

 | <char_type>
 | <boolean_type>

ISO/IEC 19516

18 © ISO 2018 – All rights reserved

 | <scoped_name>
(52) <switch_body> ::= <case>+
(53) <case> ::= <case_label>+ <element_spec> ";"
(54) <case_label> ::= "case" <const_expr> ":"

 | "default" ":"
(55) <element_spec> ::= <type_spec> <declarator>
(56) <union_forward_dcl> ::= "union" <identifier>
(57) <enum_dcl> ::= "enum" <identifier>

 "{" <enumerator> { "," <enumerator> } * "}"
(58) <enumerator> ::= <identifier>
(59) <array_declarator> ::= <identifier> <fixed_array_size>+
(60) <fixed_array_size> ::= "[" <positive_int_const> "]"
(61) <native_dcl> ::= "native" <simple_declarator>
(62) <simple_declarator> ::= <identifier>
(63) <typedef_dcl> ::= "typedef" <type_declarator>
(64) <type_declarator> ::= { <simple_type_spec>

 | <template_type_spec>
 | <constr_type_dcl>
 } <any_declarators>

(65) <any_declarators> ::= <any_declarator> { "," <any_declarator> }*
(66) <any_declarator> ::= <simple_declarator>

 | <array_declarator>
(67) <declarators> ::= <declarator> { "," <declarator> }*
(68) <declarator> ::= <simple_declarator>

7.4.1.4 Explanations and Semantics

7.4.1.4.1 IDL Specification

An IDL specification consists of one or more definitions.
Error! Reference source not found. Error! Reference source not found.

In this building block, supported definitions are: module definitions, constant definitions and (data) type definitions as
expressed in the following rule:

Error! Reference source not found. Error! Reference source not found.

7.4.1.4.2 Modules

A module is a grouping construct. Its definition satisfies the following rule:

Error! Reference source not found. Error! Reference source not found.

A module is declared with:

• The module keyword.

• An identifier (<identifier>) which is the name of the module. That name is then used to scope embedded IDL
identifiers.

• A list of at least one definition (<definition>+) enclosed within braces ({}). Those definitions form the module
body.

A scoped name is built according to the following rule:

Error! Reference source not found. Error! Reference source not found.

For more details on scoping rules, see 7.5.

An IDL module can be reopened, which means that when a module declaration is encountered with a name already given
to an existing module, all the enclosed definitions are appended to that existing module: the two module statements are
thus considered as subsequent parts of the same module description.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 19

7.4.1.4.3 Constants

Well-formed constants shall follow the following rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

According to those rules, a constant is defined by:

• The const keyword.

• A type declaration, which shall denote a type suitable for a constant (<const_type>), i.e.,:

o Either one of the following: <integer_type>, <floating_pt_type>, <fixed_pt_const_type>,
<char_type>, <wide_char_type>, <boolean_type>, <octet_type>, <string_type>,
<wide_string_type>, or a previously defined enumeration. For a definition of those types, see Error!
Reference source not found., Error! Reference source not found..

o Or a <scoped_name>, which shall be a previously defined name of one of the above.

• The name given to the constant (<identifier>).

• The operator =.

• A value expression (<const_expr>), which shall be consistent with the type declared for the constant.

For evaluating the value expression (right hand side of the constant declaration), the following rules shall be applied:

• If the type of an integer constant is long or unsigned long, then each sub-expression of the associated constant
expression is treated as an unsigned long by default, or a signed long for negated literals or negative integer
constants. It is an error if any sub-expression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of type unsigned long) exceeds the precision of the target type (long).

• If the type of an integer constant is long long or unsigned long long, then each sub-expression of the associated
constant expression is treated as an unsigned long long by default, or a signed long long for negated literals or
negative integer constants. It is an error if any sub-expression values exceed the precision of the assigned type
(long long or unsigned long long), or if a final expression value (of type unsigned long long) exceeds the
precision of the target type (long long).

• If the type of a floating-point constant is double, then each sub-expression of the associated constant expression
is treated as a double. It is an error if any sub-expression value exceeds the precision of double.

ISO/IEC 19516

20 © ISO 2018 – All rights reserved

• If the type of a floating-point constant is long double, then each sub-expression of the associated constant
expression is treated as a long double. It is an error if any sub-expression value exceeds the precision of long
double.

• An infix operator may combine two integer types, floating point types or fixed point types, but not mixtures of
these. Infix operators shall be applicable only to integer, floating point, and fixed point types.

• Integer expressions shall be evaluated based on the type of each argument of a binary operator in turn. If either
argument is unsigned long long, it shall use unsigned long long. If either argument is long long, it shall use
long long. If either argument is unsigned long, it shall use unsigned long. Otherwise it shall use long. The final
result of an integer arithmetic expression shall fit in the range of the declared type of the constant; otherwise it
shall be treated as an error. In addition to the integer types, the final result of an integer arithmetic expression may
be assigned to an octet constant, subject to it fitting in the range for octet type.

• Floating point expressions shall be evaluated based on the type of each argument of a binary operator in turn. If
either argument is long double, it shall use long double. Otherwise it shall use double. The final result of a
floating point arithmetic expression shall fit in the range of the declared type of the constant; otherwise it shall be
treated as an error.

• Fixed-point decimal constant expressions shall be evaluated as follows. A fixed-point literal has the apparent
number of total and fractional digits. For example, 0123.450d is considered to be fixed<7,3> and 3000.00d is
fixed<6,2>. Prefix operators do not affect the precision; a prefix + is optional, and does not change the result. The
upper bounds on the number of digits and scale of the result of an infix expression, fixed<d1 ,s1> op
fixed<d2,s2>, are shown in the following table.

 Table 7.11 – Operations on fixed-point decimal constants
Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + sinf , sinf>

• A quotient may have an arbitrary number of decimal places, denoted by a scale of sinf. The computation proceeds

pairwise, with the usual rules for left-to-right association, operator precedence, and parentheses. All intermediate
computations shall be performed using double precision (i.e., 62 digits) arithmetic. If an individual computation
between a pair of fixed-point literals actually generates more than 31 significant digits, then a 31-digit result is
retained as follows:

 fixed<d,s> => fixed<31, 31-d+s>

• Leading and trailing zeros shall not be considered significant. The omitted digits shall be discarded; rounding

shall not be performed. The result of the individual computation then proceeds as one literal operand of the next
pair of fixed-point literals to be computed.

• Unary (+ -) and binary (* / + -) operators shall be applicable in floating-point and fixed-point expressions.

o The + unary operator shall have no effect; the – unary operator indicates that the sign of the following
expression is inverted.

o The * binary operator indicates that the two operands shall be multiplied; the / binary operator indicates
that the first operand shall be divided by the second one; the + binary operator indicates that the two
operands shall be added; the – binary operator indicates that the second operand shall be subtracted
from the first one.

• Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are applicable in integer expressions.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 21

o The + unary operator shall have no effect; the – unary operator indicates that the sign of the following
expression is inverted.

o The * binary operator indicates that the two operands shall be multiplied; the / binary operator indicates
that the first operand shall be divided by the second one; the + binary operator indicates that the two
operands shall be added; the – binary operator indicates that the second operand shall be subtracted
from the first one.

o The ~ unary operator indicates that the bit-complement of the expression to which it is applied shall be
generated. For the purposes of such expressions, the values are 2’s complement numbers. As such, the
complement can be generated as follows:

 Table 7.12 – 2’s complement numbers
Integer Constant Expression
Type

Generated 2’s Complement
Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

o The % binary operator yields the remainder from the division of the first expression by the second.
If the second operand of % is 0, the result is undefined; otherwise (a/b)*b + a%b is equal to a.
If both operands are non-negative, then the remainder is non-negative; if not, the sign of the
remainder is implementation dependent.

o The << binary operator indicates that the value of the left operand shall be shifted left the number
of bits specified by the right operand, with 0 fill for the vacated bits. The right operand shall be in
the range 0 <= right operand < 64.

o The >> binary operator indicates that the value of the left operand shall be shifted right the number
of bits specified by the right operand, with 0 fill for the vacated bits. The right operand shall be in
the range 0 <= right operand < 64.

o The & binary operator indicates that the logical, bitwise AND of the left and right operands shall be
generated.

o The | binary operator indicates that the logical, bitwise OR of the left and right operands shall be
generated.

o The ^ binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the left and right
operands shall be generated.

• <positive_int_const> shall evaluate to a positive integer constant.

The consistency rules between the value (right hand side of the constant declaration) and the constant type declaration (left
hand side) are as follows:

• Integer literals have positive integer values. Constant integer literals shall be considered unsigned long unless
the value is too large, then they shall be considered unsigned long long. Unary minus shall be considered an
operator, not a part of an integer literal. Only integer values can be assigned to integer type (short, long, long
long) constants, and octet constants. Only positive integer values can be assigned to unsigned integer type
constants. If the value of an integer constant declaration is too large to fit in the actual type of the constant on the
left hand side (for example const short s = 655592;) or is inappropriate for the actual type of the constant (for
example const octet o = -54;) it shall be treated as an error.

ISO/IEC 19516

22 © ISO 2018 – All rights reserved

• Octet literals have integer value in the range 0…255. If the right hand side of an octet constant declaration is
outside this range, it shall be treated as an error.

• An octet constant can be defined using an integer literal or an integer constant expression but values outside the
range 0…255 shall be treated as an error.

• Floating point literals have floating point values. Only floating point values can be assigned to floating point type
(float, double, long double) constants. Constant floating point literals are considered double unless the value is
too large, then they are considered long double. If the value of the right hand side is too large to fit in the actual
type of the constant to which it is being assigned, it shall be treated as an error. Truncation on the right for floating
point types is OK.

• Fixed point literals have fixed point values. Only fixed point values can be assigned to fixed point type constants.
If the fixed point value in the expression on the right hand side is too large to fit in the actual fixed point type of
the constant on the left hand side, then it shall be treated as an error. Truncation on the right for fixed point types
is OK.

• An enum constant can only be defined using a scoped name for the enumerator. The scoped name is resolved
using the normal scope resolution rules (see 7.5). For example:

 enum Color { red, green, blue };
 const Color FAVORITE_COLOR = red;
 module M {
 enum Size { small, medium, large };
 };
 const M::Size MYSIZE = M::medium;

• The constant name for the value of an enumerated constant definition shall denote one of the enumerators
defined for the enumerated type of the constant. For example:

 const Color col = red; // is OK but
 const Color another = M::medium; // is an error

7.4.1.4.4 Data Types

A data type may be either a simple type or a constructed one. Those different kinds are detailed in the following clauses.

7.4.1.4.4.1 Referencing Types

Type declarations may reference other types. These type references can be split in several categories:

• References to basic types representing primitive builtin types such as numbers and characters. These use the
keyword that identifies the type.

• References to types explicitly constructed or explictly named types. These use the scoped name of the type.

• References to anonymous template types that must be instantiated with a length (e.g., strings) or a length and
an element type (e.g., sequences).

These categories are detailed in the subsequent clauses.

Note: Within this building block, anonymous types, that is, the type resulting from an instantiation of a template type
(see Building Block Anonymous Types) cannot be used directly. Instead, prior to any use, template types must be given a
name through a typedef declaration. Therefore, as expressed in the following rules, referring to a simple type can be
done either using directly its name, if it is a basic type, or using a scoped name, in all other cases:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 23

7.4.1.4.4.2 Basic Types

Basic types are pre-existing types that represent numbers or characters. The set of basic types is defined by the following
rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Integer Types

IDL integer types are short, unsigned short, long, unsigned long, long long, and unsigned long long representing
integer values in the range indicated below in Table 7.13.

 Table 7.13 – Integer types
Integer type Value range
N/A. See 7.4.1.3 Error! Reference source not found. -27 … 27 - 1

short -215 … 215 - 1

long -231 … 231 - 1

long long -263 … 263 - 1

N/A. See 7.4.1.3 Error! Reference source not found. 0 … 28 - 1

unsigned short 0 … 216 - 1

unsigned long 0 … 232 - 1

unsigned long long 0 ….264 - 1

Floating-Point Types

IDL floating-point types are float, double, and long double. The float type represents IEEE single-precision floating
point numbers; the double type represents IEEE double-precision floating point numbers. The long double data type
represents an IEEE double-extended floating-point number, which has an exponent of at least 15 bits in length and a
signed fraction of at least 64 bits. See IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-

ISO/IEC 19516

24 © ISO 2018 – All rights reserved

1985, for a detailed specification.

Char Type

IDL defines a char data type that is an 8-bit quantity that (1) encodes a single-byte character from any byte-oriented
code set, or (2) when used in an array, encodes a multi-byte character from a multi-byte code set.

Wide Char Type

IDL defines a wchar data type that encodes wide characters from any character set. The size of wchar is
implementation-dependent.

Boolean Type

The boolean data type is used to denote a data item that can only take one of the values TRUE and FALSE.

Octet Type

The octet type is an opaque 8-bit quantity that is guaranteed not to undergo any change by the middleware.

7.4.1.4.4.3 Template Types

Template types are generic types that are parameterized by type of underlying elements and/or the number of elements. To
be used as an actual type, such a generic definition must be instantiated, i.e., given parameter values, whose nature depends
on the template type.

As specified in the following rule, template types are sequences (<sequence_type>), strings (<string_type>, wide strings
(<wide_string_type>) and fixed-point numbers (<fixed_pt_type>).

Error! Reference source not found. Error! Reference source not found.

Sequences

Sequences are defined according to the following syntax.
Error! Reference source not found. Error! Reference source not found.

As a template type, sequence has two parameters:

• The first non-optional parameter (<type_spec>) gives the type of each item in the sequence.

• The second optional parameter (<positive_int_const> is a positive integer constant that indicates the
maximum size of the sequence. If it is given, the sequence is termed a bounded sequence. Otherwise the
sequence is said unbounded and no maximum size is specified.

Before using a bounded or unbounded sequence, the length of the sequence must be set in a language-mapping dependent
manner. If the bounded form is used, the length must be less than or equal to the maximum. Similarly after receiving a
sequence, this value may be obtained in a language-mapping dependent manner.

Strings

IDL defines the string type string consisting of a list of all possible 8-bit quantities except null. A string is similar to a
sequence of char. As with sequences of any type, prior to passing a string as a function argument (or as a field in a
structure or union), the length of the string must be set in a language-mapping dependent manner. The syntax is:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 25

Error! Reference source not found. Error! Reference source not found.

The argument to the string declaration is the maximum size of the string (<positive_int_const>). If a positive integer
maximum size is specified, the string is termed a bounded string. If no maximum size is specified, the string is termed an
unbounded string. The actual length of a string is set at run-time and, if the bounded form is used, must be less than or
equal to the maximum.

Strings are singled out as a separate type because many languages have special built-in functions or standard library
functions for string manipulation. A separate string type may permit substantial optimization in the handling of strings
compared to what can be done with sequences of general types.

Wstrings

The wstring data type represents a sequence of wchar, except the wide character null. The type wstring is similar to
that of type string, except that its element type is wchar instead of char. The syntax for defining a wstring is:

Error! Reference source not found. Error! Reference source not found.

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant digits. The syntax to declare a
fixed data type is:

Error! Reference source not found. Error! Reference source not found.

The first parameter is the number of total digits (up to 31), the second one the number of fractional digits, which must be
less or equal to the former.

In case the fixed type specification is used in a constant declaration, those two parameters are omitted as they are
automatically deduced from the constant value. The syntax is thus as follows:

Error! Reference source not found. Error! Reference source not found.

Note: The fixed data type will be mapped to the native fixed point capability of a programming language, if available. If
there is not a native fixed point type, then the IDL mapping for that language will provide a fixed point data type.
Applications that use the IDL fixed point type across multiple programming languages must take into account differences
between the languages in handling rounding, overflow, and arithmetic precision.

7.4.1.4.4.4 Constructed Types

Constructed types are types that are created by an IDL specification.

As expressed in the following rule, structures (<struct_dcl>), unions (<union_dcl>) and enumerations (<enum_dcl>)
are the constructed types supported in this building block:

Error! Reference source not found. Error! Reference source not found.

All those constructs are presented in the following clauses.

Structures

A structure is a grouping of at least one member. The syntax to declare a structure is as follows:
Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

26 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A structure definition comprises:

• The struct keyword.

• The name given to the structure (<identifier>).

• The list of all structure members (<member>+) enclosed within braces ({}). Each member (<member>) is
defined with a type specification (<type_spec>) followed by a list of at least one declarator (<declarators>).
At least one member is required.

The name of a structure defines a new legal type that may be used anywhere such a type is legal in the grammar.

Note: Members may be of any data type, including sequences or arrays. However, except when anonymous types are
supported (cf. 7.4.14, for more details), sequences or arrays need to be given a name (with typedef) to be used in the
member declaration.

Structures may be forward declared, in particular to allow the definition of recursive structures.

Unions

IDL unions are a cross between C unions and switch statements. They may host a value of one type to be chosen
between several possible cases. IDL unions must be discriminated: they embed a discriminator that indicates which
case is to be used for the current instance. The possible cases as well as the type of the discriminator are part of the
union declaration, whose syntax is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.+

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A union declaration comprises:

• The union keyword.

• The name given to the union (<identifier>).

• The type for the discriminator (<switch_type_spec>). That type may be either one of the following types:
integer, char, boolean or an enumeration, or a reference (<scoped_name>) to one of these.

• The list of all possible cases for the union (<switch_body>), enclosed within braces ({}). At least one case is
required. Each possibility (<case>) comprises the form that the union takes (<element_spec>) when the
discriminator takes the list of specified values (<case_label>+). Several case labels may be associated in a
single case.

o A case label must be:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 27

 Either a constant expression (<const_expr>) matching (or automatically castable)
 to, the defined type of the discriminator.

 Or the default keyword, to tag the case when the discriminator's value does not
 match the other possibilities. A default case can appear at most once.

o Each possible form for the union value is made of an existing IDL type (<type_spec>)
followed by the name given to that form (<declarator>).

The name of a union defines a new legal type that may be used anywhere such a type is legal in the grammar.

It is not required that all possible values of the union discriminator be listed in the <switch_body>. The value of a
union is the value of the discriminator together with one of the following:

1. If the discriminator value was explicitly listed in a case statement, the value of the element associated with
that case statement.

2. If a default case label was specified, the value of the element associated with the default case label.

3. No additional value.

Access to the discriminator and to the related element is language-mapping dependent.

Note: Name scoping rules require that the element declarators (all the <declarator> in the different <element_spec>)
in a particular union be unique. If the <switch_type_spec> is an enumeration, the identifier for the enumeration is as
well in the scope of the union; as a result, it must be distinct from the element declarators. The values of the constant
expressions for the case labels of a single union definition must be distinct. A union type can contain a default label only
where the values given in the non-default labels do not cover the entire range of the union's discriminant type.

Note: While any ISO Latin-1 (8859-1) IDL character literal may be used in a <case_label> in a union definition whose
discriminator type is char, not all of these characters are present in all code sets that may be used by implementation
language compilers and/or runtimes, which may lead to some interoperability issue (typically leading to a
DATA_CONVERSION system exception). Therefore, to ensure portability and interoperability, care must be exercised
when assigning the <case_label> for a union member whose discriminator type is char. Due to this potential issue, use of
char types as the discriminator type for unions is not recommended.

Enumerations

Enumerated types (enumerations) consist of ordered lists of enumerators. The syntax to create such a type is as
follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

An enumeration declaration comprises:

• The enum keyword.

• The name given to the enumeration (<identifier>).

• The list of the possible values (enumerators) that makes the enumeration, enclosed within braces ({}). Each
enumerator is identified by a specific name (<identifier>). In case there are several enumerators, their names
are separated by commas (,). An enumeration must contain at least one enumerator and no more than 232.

ISO/IEC 19516

28 © ISO 2018 – All rights reserved

The name of an enumeration defines a new legal type that may be used anywhere such a type is legal in the grammar.

Note: The enumerated names must be mapped to a native data type capable of representing a maximally-sized
enumeration. The order in which the identifiers are named in the specification of an enumeration defines the relative
order of the identifiers. Any language mapping that permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.

Constructed Recursive Types and Forward Declarations

The IDL syntax allows the generation of recursive structures and unions via members that have a sequence type. For
example, the following:

struct Foo; // Forward declaration
typedef sequence<Foo> FooSeq;
struct Foo {
 long value;
 FooSeq chain; // Recursive
 };

The forward declaration for the structure enables the definition of the sequence type FooSeq, which is used as the type of
the recursive member.

Forward declarations are legal for structures and unions. Their syntax is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A structure or union type is termed incomplete until its full definition is provided; that is, until the scope of the
structure or union definition is closed by a terminating };. For example:

struct Foo; // Introduces Foo type name,
 // Foo is incomplete now
// ...
struct Foo {
 // ...
 }; // Foo is complete at this point

If a structure or union is forward declared, a definition of that structure or union must follow the forward declaration in
the same compilation unit. If this rule is violated it shall be treated as an error. Multiple forward declarations of the same
structure or union are legal.

If a sequence member of a structure or union refers to an incomplete type, the structure or union itself remains
incomplete until the member’s definition is completed. For example:

struct Foo;
typedef sequence<Foo> FooSeq;
struct Bar {
 long value;
 FooSeq chain; // Use of incomplete type
 }; // Bar itself remains incomplete
struct Foo {
 // ...
 }; // Foo and Bar are complete

If this rule is violated, it shall be treated as an error.

Recursive definitions can span multiple levels. For example:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 29

union Bar; //Forward declaration;
typedef sequence<Bar> BarSeq;
uniswitch (long) { //Define incomplete union
 case 0:
 long l_mem;
 case 1:
 struct Foo {
 double d_mem;
 BarSeq nested; //OK, recurse on enclosing incomplete type
 } s_mem;
 };

An incomplete type can only appear as the element type of a sequence definition. A sequence with incomplete element
type is termed an incomplete sequence type. For example:

struct Foo; //Forward declaration;
typedef sequence<Foo> FooSeq; //Incomplete

An incomplete sequence type can appear only as the element type of another sequence, or as the member type of a
structure or union definition. If this rule is violated it shall be treated as an error.

7.4.1.4.4.5 Arrays

IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for each dimension. The syntax for
arrays is very similar to the one of C or C++ as stated in the following rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

The array size (in each dimension) is fixed at compile time. The implementation of array indices is language mapping
specific.

Declaring an array with all its dimensions creates an anonymous type. Within this building block, such a type cannot be
used as is but needs to be given a name through a typedef declaration prior to any use.

7.4.1.4.4.6 Native Types

IDL provides a declaration to define an opaque type whose representation is specified by the language mapping.

As stated in the following rules, declaring a native type is done prefixing the type name (<simple_declarator>) with the
native keyword:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

This declaration defines a new type with the specified name. A native type is similar to an IDL basic type. The possible
values of a native type are language-mapping dependent, as are the means for constructing and manipulating them. Any
IDL specification that defines a native type requires each language mapping to define how the native type is mapped into
that programming language.

Note: It is recommended that native types be mapped to equivalent type names in each programming language, subject to
the normal mapping rules for type names in that language.

ISO/IEC 19516

30 © ISO 2018 – All rights reserved

7.4.1.4.4.7 Naming Data Types

IDL provides constructs for naming types; that is, it provides C language-like declarations that associate an identifier
with a type. The syntax for type declaration is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Such a declaration is made of:

• The typedef keyword.

• The type specification, which may be a simple type specification (<simple_type_spec>), that is either a
basic type or a scoped name denoting any IDL legal type, or a template type specification
(<template_type_spec>), or a declaration for a constructed type (<constr_type_dcl>).

• A list of at least one declarator, which will provide the new type name. Each declarator can be either a simple
identifier (<simple_declarator>), which will be then the name allocated to the type, or an array declarator
(<array_declarator>), in which case the new name (<identifier> enclosed within the array declarator) will
denote an array of specified type.

Note: As previously seen, a name is also associated with a data type via the struct, union, enum, and native
declarations.

Note: Within this building block where anonymous types are forbidden, a typedef declaration is needed to name,
prior to any use, an array or a template instantiation.

7.4.1.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.14 – Keywords specific to Building Block Core Data Types

 ISO/IEC 19516

© ISO 2018 – All rights reserved 31

 boolean case char

 const

 default double

enum FALSE

fixed float

 long

 module

native octet

sequence short string struct

switch TRUE typedef

 unsigned union

 void wchar wstring

7.4.2 Building Block Any

7.4.2.1 Purpose

This building block adds the ability to declare a type that may represent any valid data type.

7.4.2.2 Dependencies with other Building Blocks

This building block relies on Building Block Code Data Type.

7.4.2.3 Syntax

The following rules are added by this building block:

(69) <base_type_spec> ::+<any_type>

(70) <any_type: ::=<any>

7.4.2.4 Explanations and Semantics

An any is a type that may represent any valid data type. At IDL level, it is just declared with the keyword any.

An any logically contains a value and some means to specify the actual type of the value. However, the specific way in
which the actual type is defined is middleware-specific5. Each IDL language mapping provides operations that allow
programmers to insert and access the value contained in an any as well as the actual type of that value.

5 For CORBA this means is a TypeCode (see [CORBA], Part1, Sub clause 8.11 “TypeCodes”).

ISO/IEC 19516

32 © ISO 2018 – All rights reserved

7.4.2.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.15 – Keywords specific to Building Block Any
 any

7.4.3 Building Block Interfaces – Basic

7.4.3.1 Purpose

This building block gathers all the rules needed to define basic interfaces, i.e., consistent groupings of operations. At this
stage, there is no other implicit behavior attached to interfaces.

7.4.3.2 Dependencies with other Building Blocks

This building block relies on Building Block Core Data Types.

7.4.3.3 Syntax

The following rules form the building block:

(71) <definition> ::+<except_dcl> ";"
 | <interface_dcl> ";"
(72) <except_dcl> ::= "exception" <identifier> "{" <member>* "}"
(73) <interface_dcl>: := <interface_def>
 |<interface_forward_dcl>
(74) <interface_def> ::= <interface_header> "{" <interface_body> "}"
(75) <interface_forward_dcl> ::= <interface_kind> <identifier>
(76) <interface_header> ::= <interface_kind> <identifier>
 [<interface_inheritance_spec>]
(77) <interface_kind> ::="interface"
(78) <interface_inheritance_spec>
 ::= ":" <interface_name> { "," <interface_name> }*

 ISO/IEC 19516

© ISO 2018 – All rights reserved 33

(79) <interface_name> ::= <scoped_name>
(80) <interface_body> ::= <export>*
(81) <export> ::= <op_dcl> ";"
 |<attr_dcl> ";"
(82) <op_dcl> ::=<op_type_spec> <identifier> "(" [<parameter_dcls>] ")"
 [<raises_expr>]
(83) <op_type_spec> ::=<type_spec>
 | "void"
(84) <parameter_dcls> ::= <param_dcl> { "," <param_dcl> } *
(85) <param_dcl> ::=<param_attribute> <type_spec> <simple_declarator>
(86) <param_attribute> ::= "in"
 | "out"
 | "inout"
(87) <raises_expr> ::= "raises" "(" <scoped_name> { "," <scoped_name> } * ")"
(88) <attr_dcl> ::=<readonly_attr_spec>
 |<attr_spec>
(89) <readonly_attr_spec> ::="readonly" "attribute" <type_spec> <readonly_attr_declarator>
(90) <readonly_attr_declarator>
 ::=<simple_declarator> <raises_expr>
 |<simple_declarator> { "," <simple_declarator> }*
(91) <attr_spec> ::="attribute" <type_spec> <attr_declarator>
(92) <attr_declarator> ::=<simple_declarator> <attr_raises_expr>
 |<simple_declarator> { "," <simple_declarator> }*
(93) <attr_raises_expr> ::=<get_excep_expr> [<set_excep_expr>]
 |<set_excep_expr>
(94) <get_excep_expr> ::="getraises" <exception_list>
(95) <set_excep_expr> ::="setraises" <exception_list>
(96) <exception_list> ::="(" <scoped_name> { "," <scoped_name> } * ")"

7.4.3.4 Explanations and Semantics

7.4.3.4.1 IDL specification

With that building block, an IDL specification may declare exceptions and interfaces (that are merely groups of operations).

Error! Reference source not found. Error! Reference source not found.
7.4.3.4.2 Exceptions

Exceptions are specific data structures, which may be returned to indicate that an exceptional condition has occurred during
the execution of an operation. The syntax to declare an exception is as follows:

Error! Reference source not found. Error! Reference source not found.

An exception declaration is made of:

• The exception keyword.
• An identifier (<identifier>) - each exception is typed with its exception identifier.
• A body enclosed within braces ({}) - the body may be void or comprise members (<member>*), very similar to

structure members.

If an exception is returned as the outcome to an operation invocation, then the value of the exception identifier shall be
accessible to the programmer for determining which particular exception was raised.

If an exception is declared with members, a programmer shall be able to access the values of those members when such an
exception is raised. If no members are specified, no additional information shall be accessible when such an exception is
raised.

ISO/IEC 19516

34 © ISO 2018 – All rights reserved

The way this information is made available is language-mapping specific.

An identifier declared to be an exception identifier may appear only in a raises expression of an operation or attribute
declaration, and nowhere else.

7.4.3.4.3 Interfaces

Interfaces are groupings of elements (in this building block operations and attributes).

As defined by the following rules, an interface is made of a header (<interface_header>) and a body
(<interface_body>) enclosed in braces ({}). An interface may also be declared with no definition using a forward
declaration (<interface_forward_dcl>).

<interface_dcl> ::=<interface_def>
 |<interface_forward_dcl>
<interface_def> ::=<interface_header> "{" <interface_body> "}

All those constructs are detailed in the following clauses.

7.4.3.4.3.1 Interface Header

An interface header is declared with the following syntax:

<interface_header> ::=<interface_kind> <identifier>
 [<interface_inheritance_spec>]
<interface_kind> ::="interface"

An interface header comprises:

• The interface keyword.
• The interface name (<identifier>).
• Optionally an inheritance specification (<interface_inheritance_spec>).

The <identifier> that names an interface defines a new legal type. Such a type may be used anywhere a type is legal in the
grammar, subject to semantic constraints as described in the following sub clauses. A parameter or structure member which
is of an interface type is semantically a reference to an object implementing that interface. Each language binding describes
how the programmer must represent such interface references.

7.4.3.4.3.2 Interface Inheritance

Interface inheritance is introduced by a colon (:) and must follow the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Each <scoped_name> in an <interface_inheritance_spec> must be the name of a previously defined interface or an alias
to a previously defined interface (defined using a typedef declaration).

Inheritance Rules

An interface can be derived from another interface, which is then called a base interface of the derived interface. A derived
interface, like all interfaces, may declare new elements (in this building block, operations and attributes). In addition the
elements of a base interface can be referred to as if they were elements of the derived interface.

An interface is called a direct base if it is mentioned in the <interface_inheritance_spec> and an indirect base if it is not
a direct base but is a base interface of one of the interfaces mentioned in the <interface_inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more than one direct base interface is often
called multiple inheritance. The order of derivation is not significant.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 35

An interface may not be specified as a direct base interface of a derived interface more than once; it may be an indirect
base interface more than once. Consider the following example:

 interface A { ... };
 interface B: A { ... };
 interface C: A { ... };
 interface D: B, C { ... }; // OK
 interface E: A, B { ... }; // OK

The relationships between these interfaces are shown in Figure 7.1. This "diamond" shape is legal, as is the definition of E
on the right.

Figure 7.1 - Examples of Legal Multiple Inheritance

It is forbidden to redefine an operation or an attribute in a derived interface, as well as inheriting two different operations
or attributes with the same name.

interface A {
 void make_it_so();
 };
interface B: A {
 short make_it_so(in long times); // Error: redefinition of make_it_so
 };

7.4.3.4.3.3 Interface Body

As stated in the following rules, within an interface body, operations and attributes can be defined. Those constructs are
defined in the scope of the interface and exported (i.e., accessible outside the interface definition using their name scoped
by the interface name).

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Operations and attributes are detailed in the following sub clauses.

Operations

Operation declarations in IDL are similar to C function declarations. To define an operation, the syntax is:

A

D

C B E

A

D

C B

ISO/IEC 19516

36 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

An operation declaration consists of:

• The type of the operation’s return result (<op_type_spec>); the type may be any type that can be defined in IDL.
Operations that do not return a result shall specify void as return type.

• An identifier (<identifier>) that names the operation in the scope of the interface in which it is defined.
• A parameter list that specifies zero or more parameter declarations. The parameter list is enclosed between

brackets (()). In case more than one parameter is declared, parameter declarations are separated by commas (,).
Each parameter declaration is made of:

o A qualifier (<param_attribute>) that specifies the direction in which the parameter is to be passed.
The possible values are:

 in - the parameter is passed from caller to operation.

 out - the parameter is passed from operation to caller.

 inout - the parameter is passed in both directions.

o The type of the parameter (<type_spec>) that may be any valid IDL type specification.

o The name of the parameter (<simple_declarator>).

• An optional expression that indicates which exceptions may be raised as a result of an invocation of this
operation. This expression is made of:

o The raises keyword.

o The list of the operation-specific exceptions, enclosed between brackets (()) and separated by
 commas (,) in case more than one exception is specified. Each of the scoped names
 (<scoped_name>) in the list must denote a previously defined exception.

It is expected that an implementation will not attempt to modify an in parameter. The ability to even attempt to do so is
language-mapping specific; the effect of such an action is undefined.

In addition to any operation-specific exceptions specified in the raises expression, other middleware-specific standard
exceptions may be raised. These exceptions are described in the related profiles.

The absence of a raises expression on an operation implies that there are no operation-specific exceptions. Invocations of
such an operation may still raise one of the middleware-specific standard exceptions.

If an exception is raised as a result of an invocation, the values of the return result and any out and inout parameters are
undefined.

Note: A native type (cf. 7.4.1.4.4.6) may be used to define operation parameters, results, and exceptions. If a native type
is used for an exception, it must be mapped to a type in a programming language that can be used as an exception.

Attributes

Attributes may also be declared within an interface. Declaring an attribute is logically equivalent to declaring a pair of
accessor functions; one to retrieve the value of the attribute and one to set the value of the attribute.

To create an attribute, the syntax is as follows:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 37

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

An attribute declaration is made of:

• An optional qualifier (readonly) that indicates that the attribute cannot be written. In this case, the attribute is said
read-only and the declaration is equivalent to only a read accessor.

• The attribute keyword.
• The type of the attribute that may be any valid IDL type specification (<type_spec>).
• The name of the attribute (<simple_declarator>).
• An optional raises expression.

The optional raises expressions take different forms according to the attribute kinds:

• For read-only attributes, raises expressions are similar to those of operations (cf. rule (90) above).
• For plain attributes, raises expressions indicate which of the potential user-defined exceptions may be raised when

the attribute is read (getraises) and which when the attribute is written (setraises). A plain attribute may have a
getraises expression, a setraises expression or both of them. In the latter case, the getraises expression must be
declared in first place.

The absence of a raises expression (raises, getraises or setraises) on an attribute implies that there are no attribute-
specific exceptions. Accesses to such an attribute may still raise middleware-specific standard exceptions.

As a shortcut, several attributes can be declared in a single attribute declaration, provided that there are no attached raises
clauses. In that case, the names of the attributes are listed, separated by a comma (,).

Note: A native type (cf 7.4.1.4.4.6) may be used to define attribute types, and exceptions. If a native type is used for an
exception, it must be mapped to a type in a programming language that can be used as an exception.

7.4.3.4.3.4 Forward Declaration

A forward declaration declares the name of an interface without defining it. This permits the definition of interfaces that
refer to each other.

As stated in the following rule, the syntax for a forward declaration is simply the declaration of the kind of interface6,
followed by the interface name:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

6 The definition of a forward-declared interface must be consistent with the forward declaration: they must share the same interface kind.
With this building block, there is only one interface kind (namely interface) however other interface-related building blocks will add
other kinds (such as abstract interface).

ISO/IEC 19516

38 © ISO 2018 – All rights reserved

It is illegal to inherit from a forward-declared interface not previously defined.

module Example {
 interface base; // Forward declaration
 // ...
 interface derived : base {}; // Error
 interface base {}; // Define base
 interface derived : base {}; // OK
 };

Multiple forward declarations of the same interface name are legal, provided that they are all consistent.

7.4.3.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.16 – Keywords specific to Building Block Interfaces – Basic
 attribute

 exception

 getraises

in inout interface

 out

 raises readonly setraises

7.4.4 Building Block Interfaces – Full

7.4.4.1 Purpose

This building block complements the former one with the ability to embed in the interface body, additional declarations
such as types, exceptions and constants.

7.4.4.2 Dependencies with other Building Blocks

This building block complements Building Block Interfaces - Basic. Transitively, it relies on Building Block Core Data
Types.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 39

7.4.4.3 Syntax

The following rule is added by this building block:

<export> ::+ <type_dcl> ";"
 | <const_dcl> ";"
 | <except_dcl> ";"

7.4.4.4 Explanations and Semantics

This building block adds the possibility to embed declarations of types, constants and exceptions inside an interface
declaration.

The syntax for those embedded elements is exactly the same as if they were top-level constructs.

All those elements are exported (i.e., visible under the scope of their hosting interface). In contrast to attributes and
operations, they may be redefined in a derived interface, which has the following consequences:

• In a derived interface, all elements of a base class may be referred to as if they were elements of the derived
class, unless they are redefined in the derived class. The name resolution operator (::) may be used to refer to a
base element explicitly; this permits reference to a name that has been redefined in the derived interface. The
scope rules for such names are described in 7.5.

• References to base interface elements must be unambiguous. A reference to a base interface element is
ambiguous if the name is declared as a constant, type, or exception in more than one base interface. Ambiguities
can be resolved by qualifying a name with its interface name (that is, using a <scoped_name>). It is illegal to
inherit from two interfaces with the same operation or attribute name, or to redefine an operation or attribute
name in the derived interface.

For example in:

 interface A {
 typedef long L1;
 short opA (in L1 l_1);
 };
 interface B {
 typedef short L1;
 L1 opB (in long l);
 };
 interface C: B, A {
 typedef L1 L2; // Error: L1 ambiguous
 typedef A::L1 L3; // A::L1 is OK
 B::L1 opC (in L3 l_3); // All OK no ambiguities
 };

• References to constants, types, and exceptions are bound to an interface when it is defined (i.e., replaced with
the equivalent global scoped names). This guarantees that the syntax and semantics of an interface are not
changed when the interface is a base interface for a derived interface.

 Consider the following example:

 const long L = 3;
 interface A {
 typedef float coord[L]:
 void f (in coord s); // s has three floats
 };

ISO/IEC 19516

40 © ISO 2018 – All rights reserved

 interface B {
 const long L = 4;
 };
 interface C: B, A { }; // What is C::f()’s signature?
 The early binding of constants, types, and exceptions at interface definition guarantees that the signature of
 operation f in interface C is typedef float coord[3]; void f (in coord s); which is identical to that in interface A.
 This rule also prevents redefinition of a constant, type, or exception in the derived interface from affecting the
 operations and attributes inherited from a base interface.

• Interface inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in the
current naming scope. A type name, constant name, enumeration value name, or exception name from an
enclosing scope can be redefined in the current scope. An attempt to use an ambiguous name without
qualification shall be treated as an error. Thus in:

 interface A {
 typedef string<128> string_t;
 };
 interface B {
 typedef string<256> string_t;
 };
 interface C: A, B {
 attribute string_t Title; // Error: string_t ambiguous
 attribute A::string_t Name; // OK
 attribute B::string_t City; // OK
 };

7.4.4.5 Specific Keywords

There are no additional keywords with this building block.

7.4.5 Building Block Value Types

7.4.5.1 Purpose

This building block adds the ability to declare plain value types.

As opposed to interfaces which are merely groups of operations7, values carry also state contents. A value type is, in some
sense, half way between a "regular" IDL interface type and a structure.

Value types add the following features to the expressive power of structures:

• Single derivation (from other value types).
• Single interface support.
• Arbitrary recursive value type definitions, with sharing semantics providing the ability to define lists, trees,

lattices, and more generally arbitrary graphs using value types.
• Null value semantics.

Designing a value type requires that some additional properties (state) and implementation details be specified beyond that
of an interface type. Specification of this information puts some additional constraints on the implementation choices
beyond that of interface types. This is reflected in both the semantics specified herein, and in the language mappings.

An essential property of value types is that their implementations are always collocated with their clients. That is, the
explicit use of values in a concrete programming language is always guaranteed to use local implementations, and will not
require remote calls. They have thus no system-wide identity (their value is their identity).

7 Interface attributes are actually equivalent to accessors.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 41

7.4.5.2 Dependencies with other Building Blocks

This building block requires Building Block Interfaces - Basic. Transitively, it relies on Building Block Core Data Types.

7.4.5.3 Syntax

The following rules are added by this building block:

(98) <definition> ::+<value_dcl> ";"
(99) <value_dcl> ::=<value_def>
 |<value_forward_dcl>
(100) <value_def> ::=<value_header> "{" <value_element>* "}"
(101) <value_header> ::= <value_kind> <identifier> [<value_inheritance_spec>]
(102) <value_kind> ::= "valuetype"
(103) <value_inheritance_spec>
 ::= [":" <value_name>] ["supports" <interface_name>]
(104) <value_name> ::=<scoped_name>
(105) <value_element> ::=<export>
 | <state_member>
 | <init_dcl>
(106) <state_member> ::=("public" | "private") <type_spec> <declarators> ";"
(107) <init_dcl> ::="factory" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>] ";"
(108) <init_param_dcls> ::=<init_param_dcl> { "," <init_param_dcl>}*
(109) <init_param_dcl> ::="in" <type_spec> <simple_declarator>
(110) <value_forward_dcl> ::=<value_kind> <identifier>

7.4.5.4 Explanations and Semantics

With that building block, an IDL specification may additionally declare value types, as expressed in:

Error! Reference source not found. Error! Reference source not found.

There are two kinds of value type declarations: definitions of concrete (stateful) value types, and forward declarations.

Error! Reference source not found. Error! Reference source not found.Error! Reference source not found.

7.4.5.4.1 Concrete (Stateful) Value Types

Regular value types (also named concrete or stateful) are declared with the following syntax:

Error! Reference source not found. Error! Reference source not found.

A value declaration consists of a header (<value_header>) and a body, made of value elements (<value_element>*)
enclosed within braces ({}). Those constructs are detailed in the following clauses.

7.4.5.4.1.1 Value Header

The value header is declared with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

42 © ISO 2018 – All rights reserved

The value header consists of:

• The valuetype keyword.
• An identifier (<identifier>) to name the value type. Value types may also be named by a typedef declaration.
• An optional value inheritance specification (<value_inheritance_spec>).

The name of a value type defines a new legal type that may be used anywhere such a type is legal in the grammar.

7.4.5.4.1.2 Value Inheritance Specification

As expressed in the following rules, value types may inherit from one value type and may support one interface:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

The value inheritance specification is thus made of two parts (both being optional):

• The inheritance from another value type, introduced by a colon sign (:) where the <value_name> must be the
name of a previously defined value type or an alias8 to a previously defined value type.

• The inheritance from an interface, introduced by the supports keyword, where the <interface_name> must be the
name of a previously defined interface or an alias to a previously defined interface.

7.4.5.4.1.3 Value Element

A value can contain all the elements that an interface can (<export> in the following rule) as well as definitions of state
members and initializers for that state.

Error! Reference source not found. Error! Reference source not found.

State Members

State members follow the following syntax:

Error! Reference source not found. Error! Reference source not found.

Each <state_member> defines an element of the state, which is transmitted to the receiver when the value type is passed
as a parameter. A state member is either public or private. The annotation directs the language mapping to expose or hide
the different parts of the state to the clients of the value type. While its public part is exposed to all, the private part of the
state is only accessible to the implementation code.

Note: Some programming languages may not have the built in facilities needed to distinguish between public and private
members. In these cases, the language mapping specifies the rules that programmers are responsible for.

Initializers

In order to ensure portability of value implementations, designers may also define the signatures of initializers (or
constructors) for concrete value types. Syntactically these look like local operation signatures except that they are prefixed
with the keyword factory, have no return type, and must use only in parameters.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

8 i.e., created by a typedef declaration.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 43

Error! Reference source not found. Error! Reference source not found.

There may be any number of factory declarations. The names of the initializers are part of the name scope of the value
type. Initializers defined in a value type are not inherited by derived value types, and hence the names of the initializers
are free to be reused in a derived value type.

7.4.5.4.2 Forward Declarations

Similar to interfaces, value types may be forward-declared, with the following syntax:

Error! Reference source not found. Error! Reference source not found.

A forward declaration declares the name of a value type without defining it. This permits the definition of value types
that refer to each other. The syntax consists simply of the keyword valuetype followed by an <identifier> that names the
value type.

Multiple forward declarations of the same value type name are legal.

It is illegal to inherit from a forward-declared value type not previously defined.

It is illegal for a value type to support a forward-declared interface not previously defined.

7.4.5.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.17 - Keywords specific to Building Block Value Types

 factory

 private

public

 supports

 valuetype

ISO/IEC 19516

44 © ISO 2018 – All rights reserved

7.4.6 Building Block CORBA-Specific – Interfaces

7.4.6.1 Purpose

This building block adds the syntactical elements that are specific to CORBA as well as provides explanations specific to
a CORBA usage of the imported elements.

7.4.6.2 Dependencies with other Building Blocks

This building block is based on Building Block Interfaces - Full . Transitively, it relies on Building Block Interfaces - Basic
and Building Block Core Data Types.

7.4.6.3 Syntax

This building block adds the following rules:

(111) <definition> ::+<type_id_dcl> ";"
 | <type_prefix_dcl> ";"
 |<import_dcl> ";"
(112) <export> ::+ <type_id_dcl> ";"
 | <type_prefix_dcl> ";"
 |<import_dcl> ";"
 | <op_oneway_dcl> ";"
 |<op_with_context> ";"
(113) <type_id_dcl> ::="typeid" <scoped_name> <string_literal>
(114) <type_prefix_dcl> ::="typeprefix" <scoped_name> <string_literal>
(115) <import_dcl> ::= "import" <imported_scope>
(116) <imported_scope> ::= <scoped_name> | <string_literal>
(117) <base_type_spec> ::+<object_type>
(118) <object_type> ::="Object"
(119) <interface_kind> ::+"local" "interface"
(120) <op_oneway_dcl> ::="oneway" "void" <identifier> "(" [<in_parameter_dcls>] ")"
(121) <in_parameter_dcls> ::=<in_param_dcl> { "," <in_param_dcl> } *
(122) <in_param_dcl> ::="in" <type_spec> <simple_declarator>
(123) <op_with_context> ::={<op_dcl> | <op_oneway_dcl>} <context_expr>
(124) <context_expr> ::="context" "(" <string_literal> { "," <string_literal>* } ")"

7.4.6.4 Explanations and Semantics

This building block adds mainly:

• Constructs related to Interface Repository
• A named root for all interfaces (Object)
• Local interfaces
• One-way operations
• Operations with context
• CORBA module

All these constructs are presented in the following sub clauses as far as it is needed to understand their syntax. For more
details on their precise semantics, refer to the CORBA documentation.

7.4.6.4.1 Interface Repository Related Declarations

A few new constructs related to the Interface Repository are parts of this building block:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 45

7.4.6.4.1.1 Repository Identity Declaration

The syntax of a repository identity declaration is as follows:

Error! Reference source not found. Error! Reference source not found.

A repository identifier declaration includes the following elements:

• The typeid keyword.
• A <scoped_name> that denotes the named IDL construct to which the repository identifier is assigned. It must

denote a previously-declared name of one of the IDL constructs that may define a scope, as explained in 7.5.2.
• A string literal (<string_literal>) that must contain a valid repository identifier value. This value will be assigned

as the repository identity of the specified type definition.

At most one repository identity declaration may occur for any named type definition. An attempt to redefine the repository
identity for a type definition is illegal, regardless of the value of the redefinition.

7.4.6.4.1.2 Repository Identifier Prefix Declaration

The syntax of a repository identifier prefix declaration is as follows:

Error! Reference source not found. Error! Reference source not found.

A repository identifier declaration includes the following elements:

• The typeprefix keyword.
• A <scoped_name> that denotes an IDL name scope to which the prefix applies. It must denote a previously-

declared name of one of the following IDL constructs: module, interface (including abstract or local interface),
value type9 (including abstract, custom, and box value types) or event type9 (including abstract and custom value
types). A void scope (“::” as scoped name) denotes the specification scope.

• A string literal (<string_literal>) that must contain the string to be prefixed to repository identifiers in the specified
name scope. The specified string shall be a list of one or more identifiers, separated by slashes (/). These identifiers
are arbitrarily long sequences of alphabetic, digit, underscore (_), hyphen (-), and period (.) characters. The string
shall not contain a trailing slash (/), and it shall not begin with the characters underscore (_), hyphen (-) or period
(.).

Note: "prefixed to the body of a repository identifier" means that the specified string is inserted into the default IDL format
repository identifier immediately after the format name and colon ("IDL:") at the beginning of the identifier. A forward
slash (/) character is inserted between the end of the specified string and the remaining body of the repository identifier.

Note: The prefix is only applied to repository identifiers whose values are not explicitly assigned by a typeid declaration.
The prefix is applied to all such repository identifiers in the specified name scope, including the identifier of the construct
that constitutes the name scope.

9 Assuming that those constructs are part of the current profile.

ISO/IEC 19516

46 © ISO 2018 – All rights reserved

7.4.6.4.1.3 Repository Id Conflict

In IDL that contains pragma prefix/ID declarations (as defined in [CORBA], Part1, Sub clause 14.7.5 "Pragma Directives
for RepositoryId") and typeprefix/typeid declarations as explained below, both mechanisms must return the same
repository id for the same IDL element otherwise an error should be raised.

Note that this rule applies only when the repository id value computation uses explicitly declared values from declarations
of both kinds. If the repository id computed using explicitly declared values of one kind conflicts with one computed with
implicit values of the other kind, the repository id based on explicitly declared values shall prevail.

7.4.6.4.1.4 Imports

Imports may be specified according to the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

The <imported_scope> non-terminal may be either a fully-qualified scoped name denoting an IDL name scope, or a string
containing the interface repository ID of an IDL name scope, i.e., a definition object in the repository whose interface
derives from CORBA::Container.

The definition of import obviates the need to define the meaning of IDL constructs in terms of "file scopes." This standard
defines the concepts of a specification as a unit of IDL expression. In the abstract, a specification consists of a finite
sequence of ISO Latin-1 (8859-1) characters that form a legal IDL sentence. The physical representation of the specification
is of no consequence to the definition of IDL, though it is generally associated with a file in practice.

Any scoped name that begins with the scope token (::) is resolved relative to the global scope of the specification in which
it is defined. In isolation, the scope token represents the scope of the specification in which it occurs.

A specification that imports name scopes must be interpreted in the context of a well-defined set of IDL specifications
whose union constitutes the space from within which name scopes are imported. A "well-defined set of IDL specifications,"
means any identifiable representation of IDL specifications, such as an interface repository. The specific representation
from which name scopes are imported is not specified, nor is the means by which importing is implemented, nor is the
means by which a particular set of IDL specifications (such as an interface repository) is associated with the context in
which the importing specification is to be interpreted.

The effects of an import statement are as follows:

• The contents of the specified name scope are visible in the context of the importing specification. Names that
occur in IDL declarations within the importing specification may be resolved to definitions in imported scopes.

• Imported IDL name scopes exist in the same space as names defined in subsequent declarations in the importing
specification.

• IDL module definitions may re-open modules defined in imported name scopes.
• Importing an inner name scope (i.e., a name scope nested within one or more enclosing name scopes) does not

implicitly import the contents of any of the enclosing name scopes.
• When a name scope is imported, the names of the enclosing scopes in the fully-qualified pathname of the enclosing

scope are exposed within the context of the importing specification, but their contents are not imported. An
importing specification may not redefine or reopen a name scope that has been exposed (but not imported) by an
import statement.

• Importing a name scope recursively imports all name scopes nested within it.
• For the purposes of this International Standard, name scopes that can be imported (i.e., specified in an import

statement) include the following: modules, interfaces, value types, and event types.10
• Redundant imports (e.g., importing an inner scope and one of its enclosing scopes in the same specification) are

disregarded. The union of all imported scopes is visible to the importing program.

10 Assuming that these constructs are part of the current profile.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 47

• This International Standard does not define a particular form for generated stubs and skeletons in any given
programming language. In particular, it does not imply any normative relationship between units of specification
and units of generation and/or compilation for any language mapping.

7.4.6.4.2 Object

In a CORBA scope, all interfaces inherit either directly or indirectly from a common root named Object
(CORBA::Object). The IDL Object keyword allows designating that common root in any place where an interface is
allowed. This is expressed by the following additional rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

7.4.6.4.3 Local Interfaces

In a CORBA scope, interfaces are by default potentially remote interfaces. The keyword local allows declaring interfaces
that cannot be remote.

Error! Reference source not found. Error! Reference source not found.

An interface declaration containing the keyword local in its header declares a local interface. An interface declaration not
containing the keyword local is referred to as an unconstrained interface. An object implementing a local interface is
referred to as a local object. The following special rules apply to local interfaces:

• A local interface may inherit from other local or unconstrained interfaces.
• An unconstrained interface may not inherit from a local interface. An interface derived from a local interface must

be explicitly declared local.
• A value type may support a local interface11.
• Any IDL type, including an unconstrained interface, may appear as a parameter, attribute, return type, or exception

declaration of a local interface.
• A local interface is a local type, as is any non-interface type declaration constructed using a local interface or other

local type. For example, a structure, union, or exception with a member that is a local interface is also itself a local
type.

• A local type may be used as a parameter, attribute, return type, or exception declaration of a local interface or of
a value type.

• A local type may not appear as a parameter, attribute, return type, or exception declaration of an unconstrained
interface.

See the [CORBA], Part1, Sub clause 8.3.14 "Local Object Operations" for CORBA implementation semantics associated
with local objects.

7.4.6.4.4 Use of Native types

In a CORBA context, native type parameters are not permitted in operations of remote interfaces. Any attempt to transmit
a value of a native type in a remote invocation may raise the MARSHAL standard system exception.

Note: The native type declaration is provided specifically for use in object adapter interfaces, which require parameters
whose values are concrete representations of object implementation instances. It is strongly recommended that it not be

11 Assuming that those constructs are part of the current profile.

ISO/IEC 19516

48 © ISO 2018 – All rights reserved

used in service or application interfaces. The native type declaration allows object adapters to define new primitive types
without requiring changes to the IDL language or to the IDL compiler.

7.4.6.4.5 One-way Operations

By default calling applications are blocked until the called operations are complete. One-way operations are special
operations that return the control to the calling applications immediately after the call. How this semantics is
implemented is middleware-specific but in all cases one-way operations:

• Cannot have a result (return type must be void, no out or inout parameters).
• Cannot trigger exceptions.

One-way operations are declared with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

7.4.6.4.6 Context Expressions

In a CORBA scope, operations may be added a context expression, as specified in the following additional rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A context expression specifies which elements of the client’s context may affect the performance of a request by the object.
The run-time system guarantees to make the value (if any) associated with each <string_literal> in the client’s context
available to the object implementation when the request is delivered. The ORB and/or object is free to use information in
this request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associated with requests for this operation.

Each <string_literal> is a non-empty string. If the character * appears in a <string_literal>, it must appear only once, as
the last character of the <string_literal>, and must be preceded by one or more characters other than *.

The mechanism by which a client associates values with the context identifiers is described in [CORBA], part 1, Sub clause
8.6 "Context Object".

7.4.6.4.7 CORBA Module

Names defined by the CORBA specification are in a module named CORBA. In an IDL specification, however, IDL
keywords such as Object must not be preceded by a "CORBA::" prefix. Other interface names such as TypeCode are not
IDL keywords, so they must be referred to by their fully scoped names (e.g., CORBA::TypeCode) within an IDL
specification.

For example in:

#include <orb.idl>
module M {
 typedef CORBA::Object myObjRef; // Error: keyword Object scoped
 typedef TypeCode myTypeCode; // Error: TypeCode undefined
 typedef CORBA::TypeCode TypeCode; // OK
 };

The file orb.idl contains the IDL definitions for the CORBA module. Except for CORBA::TypeCode, the file orb.idl must

 ISO/IEC 19516

© ISO 2018 – All rights reserved 49

be included in IDL files that use names defined in the CORBA module. IDL files that use CORBA::TypeCode may obtain
its definition by including either the file orb.idl or the file TypeCode.idl.

7.4.6.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.18 - Keywords specific to Building Block CORBA-Specific-Interfaces

 context

 import

 local

 Object oneway

 typeid

 typeprefix

7.4.7 Building Block CORBA-Specific – Value Types

7.4.7.1 Purpose

This building block adds the syntactical elements that are specific to value types when used in CORBA as well as provides
explanations specific to a CORBA usage of the imported elements.

Note: This building block has been designed as separated from Building Block CORBA-Specific -Interfaces, to allow
CORBA profiles without value types.

7.4.7.2 Dependencies with other Building Blocks

This building-bock is based on Building Block Value Types and complements Building Block CORBA-Specific-
Interfaces. Transitively, it relies on Building Block Interfaces - Full, Building Block Interfaces - Basic, and Building
Block Core Data Types.

7.4.7.3 Syntax

This building block adds the following rules:

ISO/IEC 19516

50 © ISO 2018 – All rights reserved

(125) <value_dcl> ::+ <value_box_def>
 | <value_abs_def>
(126) <value_box_def> ::= "valuetype" <identifier> <type_spec>
(127) <value_abs_def> ::= "abstract" "valuetype" <identifier> [<value_inheritance_spec>]
 "{" <export>* "}"
(128) <value_kind> ::+ "custom" "valuetype"
(129) <interface_kind> ::+ "abstract" "interface"
(130) <value_inheritance_spec>
 ::+ ":" ["truncatable"] <value_name> { "," <value_name> }*
 ["supports" <interface_name> { "," <interface_name> }*]
(131) <base_type_spec> ::+ <value_base_type>
(132) <value_base_type> ::= "ValueBase"

7.4.7.4 Explanations and Semantics

Main additions concern:

• Boxed value types.
• Abstract value types and interfaces as well as their impact on inheritance rules.
• Custom marshaling.
• Truncatable value types.
• ValueBase as a root for all value types.

All these constructs are presented in the following sub clauses as far as it is needed to understand their syntax. For more
details on their precise semantics, refer to the CORBA documentation.

7.4.7.4.1 Boxed Value Types

It is often convenient to define a value type with no inheritance or operations and with a single state member. A shorthand
IDL notation is used to simplify the use of value types for this kind of simple containment, referred to as a value box. Such
boxed value types are defined with the following syntax:

Error! Reference source not found. Error! Reference source not found.

A boxed value type declaration simply consists of:

• The valuetype keyword.
• An identifier (<identifier>) to name the boxed value type.
• The type specification of the unique state member of the boxed value type (<type_spec>).

Since "boxing" a value type would add no additional properties to the value type, it is an error to box value types. Any IDL
type may be used to declare a value box except a value type.

Value boxes are particularly useful for strings and sequences. Basically they avoid creating what would actually be an
additional namespace that would contain only one name.

An example is the following IDL:

 module Example {
 interface Foo {
 ... /* anything */
 };
 valuetype FooSeq sequence<Foo>;
 interface Bar {
 void doIt (in FooSeq seq);
 };
 };

The above IDL provides similar functionality to writing the following one. However the type identities would be different.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 51

module Example {
 interface Foo {
 ... /* anything */
 };
 valuetype FooSeq {
 public sequence<Foo> data;
 };
 interface Bar {
 void doIt (in FooSeq seq);
 };
};

The former is easier to manipulate after it is mapped to a concrete programming language.

Note: The declaration of a boxed value type does not open a new scope. Thus a construction such as: valuetype FooSeq
sequence <FooSeq>; is not legal IDL. The identifier being declared as a boxed value type cannot be used subsequent to
its initial use and prior to the completion of the boxed value declaration.

7.4.7.4.2 Abstract Value Types and Interfaces

In this building block, value types as well as interfaces may be abstract. They are called abstract because they cannot be
instantiated. Only concrete types derived from them may be actually instantiated and implemented.

Abstract types may be used to specify a type where a type specification is required (for example as a return type of an
operation).

7.4.7.4.2.1 Abstract Value Types

As opposed to concrete value types, abstract value types are stateless (essentially they are a bundle of operation signatures
with a purely local implementation). To create an abstract value type, the following syntax applies:

Error! Reference source not found. Error! Reference source not found.

No <state_member> or <initializers> may be specified. However, local operations may be specified.

Because no state information may be specified (only local operations are allowed), abstract value types are not subject to
the single inheritance restrictions placed upon concrete value types. Therefore a value type may inherit from several abstract
value types. In return an abstract value type cannot inherit from a concrete one.

Note: A concrete value type with an empty state is not an abstract value type.

7.4.7.4.2.2 Abstract Interfaces

An abstract interface is an entity, which may at runtime represent either a regular interface or a value type. Like an
abstract value type, it is a pure bundle of operations with no state. It is declared with specifying abstract interface as
interface kind.

Error! Reference source not found. Error! Reference source not found.

Unlike an abstract value type, it does not imply pass-by-value semantics, and unlike a regular interface type, it does not
imply pass-by-reference semantics. Instead, the entity’s runtime type determines which of these semantics are used.

An abstract interface may only inherit from abstract interfaces.

ISO/IEC 19516

52 © ISO 2018 – All rights reserved

A value type may support several abstract interfaces (and only one concrete one).

7.4.7.4.3 Value Inheritance Rules

The terminology that is used to describe value type inheritance is directly analogous to that used to describe interface
inheritance.

The name scoping and name collision rules for value types are identical to those for interfaces.

Values may be derived from other values and can support an interface.

Once implementation (state) is specified at a particular point in the inheritance hierarchy, all derived value types (which
must of course implement the state) may only derive from a single (concrete) value type. They can however support an
additional interface.

The single immediate base concrete value type, if present, must be the first element specified in the inheritance list of the
value declaration’s IDL. The interfaces it supports are listed following the supports keyword.

While a value type may only directly support one interface, it is possible for the value type to support other interfaces as
well through inheritance. In this case, the supported interface must be derived, directly or indirectly, from each interface
that the value type supports through inheritance. For example:

interface I1 { };
interface I2 { };
interface I3: I1, I2 { };

abstract valuetype V1 supports I1 { };
abstract valuetype V2 supports I2 { };
valuetype V3: V1, V2 supports I3 { }; // Legal
valuetype V4: V1 supports I2 { }; // Illegal

Boxed value types may not be derived from, nor may they derive from, anything else.

These rules are summarized in the following table.

 Table 7.19 - Possible inheritance relationships between value types and interfaces

May
inherit
from 

Abstract
Interface

Interface Abstract
Value

Concrete
Value

Boxed
value

Abstract
Interface

multiple no no no no

Interface multiple multiple no no no

Abstract
Value

supports
multiple

supports
single

multiple no no

Concrete
Value

supports
multiple

supports
single

multiple single no

Boxed
Value

no no no no no

 ISO/IEC 19516

© ISO 2018 – All rights reserved 53

7.4.7.4.4 Custom Marshaling

In a CORBA context, a value type may optionally indicate that its marshaling is custom-made by prefixing the valuetype
keyword with custom, as shown in the following rule:

Error! Reference source not found. Error! Reference source not found.

By this mean, value types can override the default marshaling/unmarshaling model and provide their own way to
encode/decode their state. Custom marshaling is intended to be used to facilitate integration of existing "class libraries"
and other legacy systems. It is explicitly not intended to be a standard practice, nor used in other OMG specifications to
avoid "standard ORB" marshaling.

The fact that a value type has some custom marshaling code is declared explicitly in the IDL. This explicit declaration has
two goals:

• Type safety - stubs and skeleton can know statically that a given type is custom marshaled and can then do a
sanity-check on what is coming over the wire.

• Efficiency - for value types that are not custom marshaled no run time test is necessary in the marshaling code.

If a custom marshaled value type has a state definition, the state definition is treated the same as that of a non-custom value
type for mapping purposes (i.e., the fields show up in the same fashion in the concrete programming language). It is
provided to help with application portability.

A custom marshaled value type is always a stateful value type.

Custom value types can never be safely truncated to base (i.e., they always require an exact match for their RepositoryId
in the receiving context).

Once a value type has been marked as custom, it needs to provide an implementation that marshals and unmarshals the
value type. The marshaling code encapsulates the application code that can marshal and unmarshal instances of the value
type over a stream using the CDR encoding. It is the responsibility of the implementation to marshal the state of all of its
base types.

For more details regarding the implementation of custom marshaling, refer to [CORBA].

7.4.7.4.5 Truncatable

A stateful value that derives from another stateful value may specify that it is truncatable by prefixing the inheritance
specification with the truncatable keyword as shown on the following rule:

Error! Reference source not found. Error! Reference source not found.

This means that the middleware is allowed to "truncate" an instance to become an instance of any of its truncatable parent
(stateful) value types under certain conditions (see the CORBA documentation for more details). Note that all the
intervening types in the inheritance hierarchy must be truncatable in order for truncation to a particular type to be allowed.

Because custom values require an exact type match between the sending and receiving context, truncatable may not be
specified for a custom value type.

Non-custom value types may not (transitively) inherit from custom value types. Boxed value types may not be derived
from, nor may they derive from, anything else.

ISO/IEC 19516

54 © ISO 2018 – All rights reserved

7.4.7.4.6 Value Base

In a CORBA context, all value types have a conventional base type called ValueBase. This is a type, which fulfills a role
that is similar to that played by Object for interfaces. That root may be used in an IDL specification wherever a value type
may be used.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Conceptually it supports the common operations available on all value types. See Value Base Type Operation for a
description of those operations. In each language mapping ValueBase will be mapped to an appropriate base type that
supports the marshaling/unmarshaling protocol as well as the model for custom marshaling.

The mapping for other operations, which all value types must support, such as getting meta information about the type,
may be found in the specifics for each language mapping.

7.4.7.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.20 - Keywords specific to Building Block CORBA-Specific-Value Types

abstract

custom

 truncatable

ValueBase

7.4.8 Building Block Components – Basic

7.4.8.1 Purpose

Purpose of that building block is to gather the minimal subset of CCM that would be useful to any component model.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 55

7.4.8.2 Dependencies with other Building Blocks

This building block complements Building Block Interfaces - Basic. Transitively, it relies on Building Block Core Data
Types.

7.4.8.3 Syntax

Thus building block adds the following rules:

(133) <definition> ::+ <component_dcl> ";"
(134) <component_dcl> ::= <component_def>
 | <component_forward_dcl>
(135) <component_forward_dcl>
 ::= "component" <identifier>
(136) <component_def> ::= <component_header> "{" <component_body> "}"
(137) <component_header> ::= "component" <identifier> [<component_inheritance_spec>]
(138) <component_inheritance_spec>
 ::= ":" <scoped_name>
(139) <component_body> ::=<component_export>*
(140) <component_export> ::=<provides_dcl> ";"
 | <uses_dcl> ";"
 | <attr_dcl> ";"
(141) <provides_dcl> ::="provides" <interface_type> <identifier>
(142) <interface_type> ::= <scoped_name>
(143) <uses_dcl> ::= "uses" <interface_type> <identifier>

7.4.8.4 Explanations and Semantics

This building block allows declaring simple components with basic ports.

Error! Reference source not found. Error! Reference source not found.

The salient characteristics of a component declaration are as follows:

• A component declaration specifies the name of the component.
• A component may inherit from another component.
• A component declaration may include in its body any attribute declarations that are legal in normal interface

declarations, together with declarations of facets and receptacles that the component defines (facets and
receptacles are also called basic ports).

The syntax for declaring a component is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Basically a component definition comprises:

• A component header (<component_header>).
• Followed with a body (<component_body>) enclosed within braces ({}).

Those constructs are detailed in the following clauses.

ISO/IEC 19516

56 © ISO 2018 – All rights reserved

7.4.8.4.1 Component Header

A <component_header> declares the primary characteristics of a component interface. Its syntax is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A component header comprises the following elements:

• The component keyword.
• An identifier (<identifier>) that names the component type.
• An optional inheritance specification (<component_inheritance_spec>), consisting of a colon (:) and a single

<scoped_name> that must denote a previously-defined component type.

Note: A component may inherit from at most one component. The features that are inherited by the derived component are
its attributes and basic ports (facets and/or receptacles).

Note: A component forms a naming scope, nested within the scope in which the component is declared.

7.4.8.4.2 Component Body

Its syntax is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A component body can contain the following declarations:

• Facet declarations (provides).
• Receptacle declarations (uses).
• Attribute declarations (attribute and readonly attribute).

Note: Facets and receptacles are jointly named basic ports.

7.4.8.4.2.1 Facets

A component type may provide several independent interfaces to its clients in the form of facets. Facets are intended to
be the primary vehicle through which a component exposes its functional application behavior to clients during normal
execution. A component may exhibit zero or more facets.

A facet is declared with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A facet declaration comprises the following elements:

• The provides keyword.
• An <interface_type>, which must be a scoped name that denotes the interface type that is provided by the facet.

The scoped name must denote a previously-defined non-component interface type.
• An <identifier> that names the facet in the scope of the component, thus allowing multiple facets of the same type

to be provided by the component.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 57

7.4.8.4.2.2 Receptacles

A component definition can describe the ability to accept object references upon which the component may invoke
operations. When a component accepts an object reference in this manner, the relationship between the component and the
referent object is called a connection; they are said to be connected. The conceptual point of connection is called a
receptacle. A receptacle is an abstraction that is concretely manifested on a component as a set of operations for establishing
and managing connections. A component may exhibit zero or more receptacles.

The syntax for describing a receptacle is as follows:

Error! Reference source not found. Error! Reference source not found.

A receptacle declaration comprises the following elements:

• The uses keyword.
• An <interface_type>, which must be a scoped name that denotes the interface type that the receptacle will accept.

The scoped name must denote a previously-defined non-component interface type.
• An <identifier> that names the receptacle in the scope of the component.

7.4.8.4.2.3 Attributes

In addition to basic ports, components may be given attributes, which are declared exactly as interface attributes.

Note: Component attributes are intended to be used during a component instance’s initialization to establish its
fundamental behavioral properties. Although the component model does not constrain the visibility or use of attributes
defined on the component, it is generally assumed that they will not be of interest to the same clients that will use the
component after it is configured. Rather, it is intended for use by component factories or by deployment tools in the
process of instantiating an assembly of components.

7.4.8.4.3 Forward Declaration

Components may be forward-declared, which allows the definition of components that refer to each other.

As expressed in the following rule, a forward declaration consists simply of the component keyword followed by an
<identifier> that names the component. The actual definition must follow later in the specification.

Error! Reference source not found. Error! Reference source not found.

Multiple forward declarations of the same component name are legal.

It is illegal to inherit from a forward-declared component not previously defined.

7.4.8.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.21 - Keywords specific to Building Block Components – Basic

component

ISO/IEC 19516

58 © ISO 2018 – All rights reserved

 provides

 uses

7.4.9 Building Block Components – Homes

7.4.9.1 Purpose

This building block adds to the former the concept of homes. Homes are special interfaces for creating and managing
instances of components.

7.4.9.2 Dependencies with Other Building Blocks

This building block complements Building Block Components - Basic. Transitively, it relies on Building Block Interfaces
- Basic and Building Block Core Data Types.

7.4.9.3 Syntax

The following set of rules form the building block:

(144) <definition> ::+ <home_dcl> ";"
(145) <home_dcl> ::= <home_header> "{" <home_body> "}"
(146) <home_header> ::= "home" <identifier> [<home_inheritance_spec>]
 "manages" <scoped_name>
(147) <home_inheritance_spec> ::= ":" <scoped_name>
(148) <home_body> ::= <home_export>*
(149) <home_export> ::=<export>
 | <factory_dcl> ";"
(150) <factory_dcl> ::= "factory" <identifier> "(" [<factory_param_dcls>] ")" <raises_expr>]
(151) <factory_param_dcls> ::=<factory_param_dcl> {"," <factory_param_dcl>}*
(152) <factory_param_dcl> ::="in" <type_spec> <simple_declarator>

7.4.9.4 Explanations and Semantics

A home declaration describes an interface for managing instances of a specified component type. The salient
characteristics of a home declaration are as follows:

• A home declaration must specify exactly one component type that it manages. Multiple homes may manage the
same component type.

• Home declarations may include any declarations that are legal in normal interface declarations.
• Home declarations support single inheritance from other home definitions.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 59

The syntax for a home definition is as follows:

Error! Reference source not found. Error! Reference source not found.

Basically a home definition comprises:

• A home header (<home_header>).
• Followed with a body (<home_body>) enclosed within braces ({}).

Those constructs are detailed in the following clauses.

7.4.9.4.1 Home Header

A home header describes fundamental characteristics of a home interface. It is declared according to the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A home header consists of the following elements:

• The home keyword.
• An identifier (<identifier>) that names the home in the enclosing name scope.
• An optional inheritance specification (<home_inheritance_spec>), consisting of a colon (:) and a single scoped

name that denotes a previously defined home type.
• The manages keyword followed by a scoped name that denotes the previously defined component type that is

under the home's management.

7.4.9.4.2 Home Body

Its syntax is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

In addition to plain operations and attributes, identical to the ones an interface body may comprise, a home body may also
comprise factory operations, which are specific operations dedicated to creating component instances.

The syntax of a factory operation is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A factory operation declaration consists of the following elements:

• The factory keyword.
• An identifier (<identifier>) that names the operation in the scope of the home declaration.

ISO/IEC 19516

60 © ISO 2018 – All rights reserved

• An optional list of initialization parameters (<factory_param_dcls>) enclosed in parentheses (()). These
parameters are similar to in parameters for operations. In case there are several parameters, they must be separated
by a comma (,).

• An optional list of exceptions that may be raised by the operation (<raises_expr>).

A factory declaration has an implicit return value of type reference to component.

7.4.9.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.22 - Keywords specific to Building Block Components – Home

 factory

 home

manages

7.4.10 Building Block CCM-Specific

7.4.10.1 Purpose

This building block complements the former one in order to support the full CCM extension to CORBA.

7.4.10.2 Dependencies with other Building Blocks

This building block relies on Building Block Components - Basic and Building Block CORBA-Specific-Value Types.
Transitively, it relies on Building Block CORBA-Specific - Interfaces, Building Block Value Types, Building Block
Interfaces - Full, Building Block Interfaces - Basic, and Building Block Core Data Types.

7.4.10.3 Syntax

This building block adds the following rules:

(153) <definition> ::+<event_dcl> ";"
(154) <component_header> ::+ "component" <identifier> [<component_inheritance_spec>]
 <supported_interface_spec>
(155) <supported_interface_spec>

 ISO/IEC 19516

© ISO 2018 – All rights reserved 61

 ::= "supports" <scoped_name> { "," <scoped_name> }*
(156) <component_export> ::+ <emits_dcl> ";"
 | <publishes_dcl> ";"
 | <consumes_dcl> ";"
(157) <interface_type> ::+ "Object"
(158) <uses_dcl> ::+ "uses" "multiple" <interface_type> <identifier>
(159) <emits_dcl> ::= "emits" <scoped_name> <identifier>
(160) <publishes_dcl> ::= "publishes" <scoped_name> <identifier>
(161) <consumes_dcl> ::= "consumes" <scoped_name> <identifier>
(162) <home_header> ::+ "home" <identifier> [<home_inheritance_spec>]
 [<supported_interface_spec>]
 "manages" <scoped_name> [<primary_key_spec>]
(163) <primary_key_spec> ::= "primarykey" <scoped_name>
(164) <home_export> ::+ <finder_dcl> ";"
(165) <finder_dcl> ::= "finder" <identifier> "(" [<init_param_dcls>] ")" [<raises_expr>]
(166) <event_dcl> ::= (<event_def>
 | <event_abs_def>
 | <event_forward_dcl>)
(167) <event_forward_dcl> ::= ["abstract"] "eventtype" <identifier>
(168) <event_abs_def> ::="abstract" "eventtype" <identifier> [<value_inheritance_spec>]
 "{" <export>* "}"
(169) <event_def> ::= <event_header> "{" <value_element> * "}"
(170) <event_header> ::= ["custom"] "eventtype" <identifier> [<value_inheritance_spec>]

7.4.10.4 Explanations and Semantics

This building block adds mainly the following:

• Event ports.
• Finder operations in homes and keys for managed components.

• Multiple uses.
• Alignment with other CORBA specificities regarding interfaces and value types.

All these constructs are presented in the following sub clauses as far as it is needed to understand their syntax. For more
details on their precise semantics, refer to [CORBA], Part3.

7.4.10.4.1 Event Support

The main addition of this building block consists in support for event interactions, namely

• The ability to define event types.
• The ability to add ports to send (publish or emit) and receive (consume) events.

The following rules express these additions:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

7.4.10.4.1.1 Event Types

Event type is a specialization of value type dedicated to asynchronous component communication. There are several kinds
of event type declarations: "regular" event types, abstract event types, and forward declarations.

An event declaration satisfies the following syntax:

ISO/IEC 19516

62 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Regular Event Types

A regular event type satisfies the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

The event header consists of the following elements:

• An optional modifier (custom) specifying whether the event type uses custom marshaling.
• The eventype keyword.
• The event type’s name (<identifier>).
• An optional value inheritance specification as described in 7.4.7.4.3.

An event can contain all the elements that a value can as described in 7.4.5.4.1.3 (i.e., attributes, operations, initializers,
state members).

Abstract Event Types

Event types may also be abstract. They are called abstract because an abstract event type may not be instantiated. No
state members or initializers may be specified. However, local operations may be specified. Essentially they are a bundle
of operation signatures with a purely local implementation.

Such an event type is declared according to the following syntax:

Error! Reference source not found. Error! Reference source not found.

A concrete event type with an empty state is not an abstract event type.

7.4.10.4.1.2 Forward Declarations

A forward declaration declares the name of an event type without defining it. This permits the definition of event types
that refer to each other. The syntax consists simply of the eventtype keyword followed by an <identifier> that names the
event type, as expressed in the following rule:

Error! Reference source not found. Error! Reference source not found.

Multiple forward declarations of the same event type name are legal.

It is illegal to inherit from a forward-declared event type not previously defined.

Event Type Inheritance

As event type is a specialization of value type then event type inheritance is directly analogous to value inheritance (see
7.4.7.4.3, for a detailed description of the analogous properties for value types). In addition, an event type could inherit
from a single immediate base concrete event type, which must be the first element specified in the inheritance list of the
event declaration’s IDL. It may be followed by other abstract values or events from which it inherits.

7.4.10.4.1.3 Event Ports

Event ports can be split into event sources and event sinks.

Event Sources – Publishers and Emitters

 ISO/IEC 19516

© ISO 2018 – All rights reserved 63

An event source embodies the potential for the component to generate events of a specified type, and provides mechanisms
for associating consumers with sources.

There are two categories of event sources, publishers and emitters. Both are implemented using event channels supplied
by the container. An emitter can be connected to at most one consumer. A publisher can be connected through the
channel to an arbitrary number of consumers, who are said to subscribe to the publisher event source. A component may
exhibit zero or more emitters and publishers.

Publishers

The syntax for an event publisher is as follows:

Error! Reference source not found. Error! Reference source not found.

A publisher declaration consists of the following elements:

• The publishes keyword.
• A <scoped_name> that denotes a previously-defined event type.
• An <identifier> that names the publisher event source in the scope of the component.

Emitters

The syntax for an emitter declaration is as follows:

(159) <emits_dcl> ::= "emits" <scoped_name> <identifier>

 An emitter declaration consists of the following elements:

• The emits keyword.
• A <scoped_name> that denotes a previously-defined event type.
• An <identifier> that names the event source in the scope of the component.

Event Sinks

An event sink embodies the potential for the component to receive events of a specified type. An event sink is, in
essence, a special-purpose facet whose type is an event consumer. External entities, such as clients or configuration
services, can obtain the reference for the consumer interface associated with the sink.

The syntax for an event sink declaration is as follows:

Error! Reference source not found. Error! Reference source not found.

An event sink declaration contains the following elements:

• The consumes keyword.
• A scoped name (<scoped_name>) that denotes a previously-defined event type.
• An identifier (<identifier>) that names the event sink in the component’s scope.

A component may exhibit zero or more consumers.

7.4.10.4.2 Home Extensions

The second extension concerns homes.

ISO/IEC 19516

64 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

In this profile:

• A home declaration may specify a list of interfaces that the home supports.
• A home declaration may specify a primary key type.
• Primary keys are values assigned by the application environment that uniquely identify component instances

managed by a particular home.
• Home operations may include finder operations.
• Finder operations aim at retrieving components managed by the home.

7.4.10.4.2.1 Supported Interfaces

The syntax to add supported interfaces declaration within the home header is as follows:

Error! Reference source not found. Error! Reference source not found.

Such a declaration consists of:

• The supports keyword.
• A list of <scoped_name>, separated by a comma (,). These scoped names must denote previously declared

interfaces.

7.4.10.4.2.2 Primary Keys

The syntax for adding a primary key definition within the home header is as follows:

Error! Reference source not found. Error! Reference source not found.

Such a declaration consists of:

• The primarykey keyword.
• A scoped name (<scoped_name>) that denotes the primary key type. Primary key types must be value types

derived from Components::PrimaryKeyBase. There are more specific constraints placed on primary key types,
which are specified in [CORBA], Part3, "Primary key type constraints" sub clause.

7.4.10.4.2.3 Finder Operations

The syntax of a finder operation is as follows:

Error! Reference source not found. Error! Reference source not found.

A finder operation declaration consists of the following elements:

• The finder keyword.
• An identifier that names the operation in the scope of the storage home declaration.
• An optional list of initialization parameters (<init_param_decls>) enclosed in parentheses.
• An optional <raises_expr> declaring exceptions that may be raised by the operation.

A finder declaration has an implicit return value of type reference to component.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 65

7.4.10.4.3 Multiple Uses

The third extension consists in the ability for a receptacle to be connected to several facets. This is indicated by adding the
multiple keyword in the receptacle definition as shown in the following rule:

Error! Reference source not found. Error! Reference source not found.

The presence of this keyword indicates that the receptacle may accept multiple connections simultaneously, and results in
different operations on the component’s associated interface.

7.4.10.4.4 Alignment with CORBA-specific Features related to Interfaces and Value Types

7.4.10.4.4.1 Supported Interfaces in Components

As expressed in the following grammar elements, in this profile components may also support interfaces:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Within the component header such a declaration consists of:

• The supports keyword.
• A list of <scoped_name>, separated by a comma (,). These scoped names must denote previously declared

interfaces.

7.4.10.4.4.2 Object Root

As for all other CORBA interfaces, in this building block, Object may be used wherever an interface is required. Object
denotes the root for all CORBA interfaces.

Error! Reference source not found. Error! Reference source not found.

7.4.10.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.23 - Keywords specific to Building Block CCM – Specific

 consumes

 emits

 eventtype finder

 multiple

ISO/IEC 19516

66 © ISO 2018 – All rights reserved

primarykey

 publishes

7.4.11 Building Block Components – Ports and Connectors

7.4.11.1 Purpose

This building block complements the ability to define extended ports and connectors.

7.4.11.2 Dependencies with other Building Blocks

This building block relies on the Building Block Components - Basic. Transitively, it relies on Building Block Interfaces -
Basic and Building Block Core Data Types.

7.4.11.3 Syntax

The following set of rules forms the syntax of this building block:

(171) <definition> ::+<porttype_dcl> ";"
 |<connector_dcl> ";"
(172) <porttype_dcl> ::=<porttype_def>
 |<porttype_forward_dcl>
(173) <porttype_forward_dcl> ::="porttype" <identifier>
(174) <porttype_def> ::="porttype" <identifier> "{" <port_body> "}"
(175) <port_body> ::=<port_ref> <port_export>*
(176) <port_ref> ::=<provides_dcl> ";"
 | <uses_dcl> ";"
 |<port_dcl> ";"
(177) <port_export> ::=<port_ref>
 | <attr_dcl> ";"
(178) <port_dcl> ::={"port" | "mirrorport"} <scoped_name> <identifier>
(179) <component_export> ::+<port_dcl> ";"
(180) <connector_dcl> ::=<connector_header> "{" <connector_export>+ "}"
(181) <connector_header> ::="connector" <identifier> [<connector_inherit_spec>]
(182) <connector_inherit_spec> ::=":" <scoped_name>
(183) <connector_export> ::=<port_ref>
 | <attr_dcl> ";"

7.4.11.4 Explanations and Semantics

As expressed in the following rule, this building block allows creating new port types (aka extended ports) and
connectors.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 67

7.4.11.4.1 Extended Ports

An Extended Port is a grouping of basic ports (facets and/or receptacles) that are to be used jointly to support
consistently a given interaction. Those basic ports formalize the programming contract between a component with this
extended port and the connector's fragment (see below) that will realize the related interaction on behalf of the
component. As such, those basic ports are always local and correspond to interfaces to be called (receptacles) or call-back
interfaces (facets).

7.4.11.4.1.1 Port Type Declaration

Before it can be used in a component, an extended port has to be defined through the declaration of its type.

A port type may be defined or forward declared as expressed in the following rule:

Error! Reference source not found. Error! Reference source not found.

A forward declaration is made of the porttype keyword followed by the name of the port type (<identifier>). Such
declarations allow attaching ports to components or connectors as well as embedding them inside other extended ports
while their port types are not fully defined yet.

Error! Reference source not found. Error! Reference source not found.

A port type is defined with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Such a declaration comprises:

• The porttype keyword.
• An identifier that gives a name to the port type (<identifier>).
• A body that comprises between braces ({}):

o At least one facet (<provides_dcl>) or receptacle (<uses_dcl>) or port declaration (<port_dcl>)
of an already declared port type (collectively called <port_ref>).

o Optionally other facets receptacles or ports as well as attributes (<attr_dcl>).

Note: An extended port may thus embed another extended port. However no cycles are allowed among port type definitions.

7.4.11.4.2 Port Declaration

Once a port type has been declared, ports of that kind may be attached to components with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A port declaration comprises:

ISO/IEC 19516

68 © ISO 2018 – All rights reserved

• The port keyword or the mirrorport keyword.
Ports attached with the port keyword are normal extended ports. Ports attached with the mirrorport keyword are
reverse extended ports. A reverse extended port is an extended port where all its facets are turned into receptacles,
all its receptacles turned into facets, all its extended ports turned into reverse extended ports and its reverse
extended ports into extended ports. Therefore an extended port and its reverse will match. Reverse extended ports
may be used for components' ports although they are especially useful in connectors.

• A scoped name that identifies the port type (<scoped_name>). That scoped name must denote a previously
declared port type.

• A name that identifies that port within the component (<identifier>). Several ports of the same port type may thus
be attached to a single component.

7.4.11.4.3 Connectors

Connectors are used to specify interaction mechanisms between components. Connectors can have ports in the same way
as components. They can be composed of simple ports (provides and uses) or extended ports (very likely in their reverse
form).

Syntax to create connectors is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A connector declaration comprises:

• The connector keyword.
• An identifier which is the name of the connector (<identifier>).
• An optional inheritance specification made of a colon (:) followed by the name of an existing connector

(<scoped_name>).
• A body that comprises between braces ({}):

o At least one port (<provides_dcl>, <uses_dcl> or <port_dcl>).

o Optionally other ports as well as attributes (<attr_dcl>).

A connector will concretely be composed of several parts (called fragments) that will consist of executors, each in charge
of realizing a part of the interaction. Each fragment will be co-localized to the component using it.

7.4.11.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.24 - Keywords specific to Building Block Components – Ports and Connectors

 connector

 mirrorport

 ISO/IEC 19516

© ISO 2018 – All rights reserved 69

 port porttype

7.4.12 Building Block Template Modules

7.4.12.1 Purpose

The purpose of this building block is to allow embedding constructs in template modules. Template modules may be
parameterized by a variety of parameters (called formal parameters), which transitively makes all the embedded constructs
parameterized by the same parameters. Before using it, a template module needs to be instantiated with values suited for
the formal parameters. Instantiation of the template module instantiates all the embedded constructs.

7.4.12.2 Dependencies with other Building Blocks

Although this building block relies only on , it can be seen as orthogonal to all the other ones, meaning that all the constructs
that are selected for a profile that embeds this specific building block may be embedded in a template module and thus
benefit from parameterization.

7.4.12.3 Syntax

(184) <definition > ::+<template_module_dcl> ";"
 | <template_module_inst> ";"
(185) <template_module_dcl> ::= "module" <identifier> "<" <formal_parameters> ">"
 "{" <tpl_definition> +"}"
(186) <formal_parameters> ::=<formal_parameter> {"," <formal_parameter>}*
(187) <formal_parameter> ::=<formal_parameter_type> <identifier>
(188) <formal_parameter_type> ::= "typename" | "interface" | "valuetype" | "eventtype"
 | "struct" | "union" | "exception" | "enum" | "sequence"
 | "const" <const_type>
 | <sequence_type>
(189) <tpl_definition> :: =<definition>
 | <template_module_ref> ";"
(190) <template_module_inst> :: ="module" <scoped_name> "<" <actual_parameters> ">" <identifier>
(191) <actual_parameters> :: =<actual_parameter> { "," <actual_parameter>}*
(192) <actual_parameter> ::=<type_spec>
 | <const_expr>
(193) <template_module_ref> :: ="alias" <scoped_name> "<" <formal_parameter_names> ">" <identifier>
(194) <formal_parameter_names>
 :: =<identifier> { "," <identifier>}*

7.4.12.4 Explanations and Semantics

This building block adds the facility to declare and instantiate template modules:

ISO/IEC 19516

70 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

7.4.12.4.1 Template Module Declaration

A template module is declared according to the following rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A template module specification comprises:

• The module keyword.
• An identifier for the module name (<identifier>).
• The specification of the formal parameters between angular brackets (< >), each of those formal parameters

consisting of:

o A type classifier (<formal_parameter_type>) which can be:

 typename – to indicate that any valid type can be passed as parameter.

 Interface, valuetype, eventtype, struct, union, exception, enum, sequence – to
indicate that a more restricted type must be passed as parameter.

 A constant type, to indicate that a constant of that type must be passed as parameter.

 A sequence type declaration, to indicate that a compliant sequence type must be passed
as parameter (the formal parameters of that sequence must appear previously in the
module list of formal parameters.

o An identifier (<identifier>) for the formal parameter.

• The module body (<tpl_definition>+), which may contain, within braces ({}) any declarations that form a
classical template body (<definition>) as well as other template module references (<template_module_ref> –
cf. 7.4.12.4.3). A template module cannot embed another template module. A template module cannot be re-
opened (as opposed to a classical one).

7.4.12.4.2 Template Module Instantiation

A module template instantiation consists in providing values to the template parameters and a name to the resulting module.
Once instantiated, the resulting module is exactly as a classical module.

The following rules allow template module instantiations:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A template module instantiation comprises:

• The module keyword.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 71

• The name of the template module to be instantiated (<scoped_name>). This name must refer to a previously
declared template module.

• Enclosed within angle brackets (< >), the values given to the template parameters (<actual_parameters>). The
provided values must fit with the parameter specification as described in the previous sub clause. In particular, if
the template parameter is of type "sequence type declaration," then an instantiated compliant sequence must be
passed.

• The name given to the resulting module (<identifier>).

7.4.12.4.3 References to a Template Module

The following rules allow referencing template modules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

An alias directive allows referencing an existing template module inside a template module definition.

This directive allows providing an alias name (which can be identical to the template module name) to the existing template
module and the list of formal parameters to be used for the referenced module instantiation. Note that that list must be a
subset of the formal parameters of the embedding module and that each specified formal parameter must be of a compliant
type for the required one. For example:

module MyTemplModule <typename T, struct S, long n > {
 interface Foo {...}
 …}

module MySecondTemplModule <typename T1, typename T2, struct S1, struct S2, long m> {
 alias MyTemplModule<T2, S2, m> MyTemplModule; // OK
 alias MyTemplModule2<S1, S2, m> MyTemplModule; // OK (S1 < T)
 alias MyTemplModule3<T2, T1, m> MyTemplModule2; // Error (T1 not compliant for S)

 interface Bar : MyTemplModule::Foo {...}
 ...}

When the embedding module will be instantiated, then the referenced module will be instantiated in the scope of the
embedding one (i.e., as a sub-module).

7.4.12.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.25 - Keywords specific to Building Block Template – Modules

 alias

ISO/IEC 19516

72 © ISO 2018 – All rights reserved

7.4.13 Building Block Extended Data-Types

7.4.13.1 Purpose

This building block adds a few data constructs that are proven to be useful for describing data models.

7.4.13.2 Dependencies with other Building Blocks

This building block complements the Building Block Core Data Types.

7.4.13.3 Syntax

(195) <struct_def> ::+"struct" <identifier> ":" <scoped_name> "{" <member>* "}"
 | "struct" <identifier> "{" "}"
(196) <switch_type_spec> ::+<wide_char_type>
 | <octet_type>
(197) <template_type_spec> ::+<map_type>
(198) <constr_type_dcl> ::+ <bitset_dcl>
 |<bitmask_dcl>
(199) <map_type> ::="map" "<"<type_spec> "," <type_spec> "," <positive_int_const> ">"
 |"map" "<" <type_spec> "," <type_spec> ">"
(200) <bitset_dcl> ::= "bitset" <identifier> [":" <scoped_name>] "{" <bitfield>* "}"
(201) <bitfield> ::= <bitfield_spec> <identifier>* ";"
(202) <bitfield_spec> ::="bitfield" "<" <positive_int_const> ">"
 |"bitfield" "<" <positive_int_const> "," <destination_type> ">"
(203) <destination_type> ::= <boolean_type> | <octet_type> | <integer_type>
(204) <bitmask_dcl> ::= "bitmask" <identifier> "{" <bit_value> { "," <bit_value> }* "}"
(205) <bit_value> ::= <identifier>
(206) <signed_int> ::+ <signed_tiny_int>
(207) <unsigned_int> ::+ <unsigned_tiny_int>
(208) <signed_tiny_int> ::= “int8”
(209) <unsigned_tiny_int> ::= “uint8”
(210) <signed_short_int> ::+ “int16”
(211) <signed_long_int> ::+ “int32”
(212) <signed_longlong_int> ::+ “int64”
(213) <unsigned_short_int> ::+ “uint16”
(214) <unsigned_long_int> ::+ “uint32”
(215) <unsigned_longlong_int> ::+ “uint64”

7.4.13.4 Explanations and Semantics

Those complements are:

• Additions to structure definition in order to support single inheritance and void content (no members).
• Ability to discriminate a union with other types (wide char and octet).

 ISO/IEC 19516

© ISO 2018 – All rights reserved 73

• An additional template type (maps).
• Additional constructed types (bitsets and bitmasks).

7.4.13.4.1 Structures with Single Inheritance and/or Void Content

The following rule complements the structure definition with the possibility to add a single inheritance specification and
to define a structure without any member:

Error! Reference source not found. Error! Reference source not found.

Single inheritance is denoted by a colon (:) followed by a scoped name that must correspond to the name of a previously
defined structure.

When a structure type inherits from another structure type, it is considered as extending the latter, which is then considered
as its base type. Members of such a structure consist in all the members of its base type plus all the ones that are declared
locally.

7.4.13.4.2 Union Discriminators

In the Building Block Core Data Types, union discriminators could be the following (cf. rule (51)<union_def> ::= "union"
<identifier> "switch" "(" <switch_type_spec> ")" "{" <switch_body> "}")

• Either one of the following types: integer, char, boolean or an enum type.
• Or a reference (<scoped_name>) to one of these.

Within this building block the following rule adds the following types: wchar (wide char) or octet

Error! Reference source not found. Error! Reference source not found.

Accordingly, the scoped name may also reference one of these types.

7.4.13.4.3 Map, Bitset and Bitmap Types

As expressed in the following rules, the new types provided by this building-block include maps, bit sets, and bit masks:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

7.4.13.4.3.1 Maps

Maps are collections similar to sequences but where items are registered (and thus retrieved) associated with a key. As
sequences, maps may be bounded or unbounded. As expressed in the following rule, the syntax to define map types is the
same as that for sequence types with two exceptions:

• The sequence keyword is replaced by the new map keyword.
• The single type parameter that appears in a sequence definition is replaced by two type parameters in a map

definition: the first one is the key element type; the second one is the value element type.

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

74 © ISO 2018 – All rights reserved

7.4.13.4.3.2 Bit Sets (including Bit Fields)

Bit sets are sequences of bits stored optimally and organized in concatenated addressable pieces called bit fields, themselves
stored optimally. "Stored optimally" means that one bit uses just one bit in memory. "Concatenated" means that each bit
field will be placed in memory just after its predecessor within the bit set (no alignment considerations apply).

Bit sets are similar to structures, with the following differences:

• The members of a bit set can only be bit fields
• A bit field can be anonymous, which means that it cannot be addressed. An anonymous bit field is just a

placeholder to skip unused bits within a bit set.

The syntax to declare a bit set is as follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Such a declaration comprises:

• The bitset keyword.
• The name given to the bitset (<identifier>).
• An optional single inheritance specification: Such a single inheritance is denoted by a colon (:) followed by a

scoped name (<scoped_name>) that must correspond to the name of a previously defined bit set.
• The list of all bit set members (<bitfield>*) enclosed within braces ({}). Each member (<bitfield>) is defined

with a specification (<bitfield_spec>) followed by a list of identifiers (<identifier>*).

Within a bit set, bit fields are sequences of bits stored optimally, to be manipulated as a whole. Their specification is as
follows:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

It comprises:

• The bitfield keyword
• One or two parameters between angular brackets (< >):

o The first one (<positive_int_const>) is the number of bits that can be stored (its size). The
maximum value is 64.

o The second optional one (<destination_type>) specifies the type that will be used to manipulate
the bit field as a whole. This type can be boolean, octet or any integer type either signed or
unsigned (i.e., short, unsigned short, long, unsigned long, long long, or unsigned long long).

 When the destination type is given, the number of stored bits cannot exceed its size
(i.e., 1 for boolean, 8 for octet, 16 for short or unsigned short, 32 for long or
unsigned long and 64 for long long or unsigned long long).

 When no destination type is given, it takes as default value the smallest type able to
store the bit field with no loss (i.e., boolean if size is 1, octet if it is between 2 and
8, unsigned short if it is between 9 and 16, unsigned long if it is between 17 and
32 and unsigned long long if it is between 33 and 64).

Note: Bit fields can only exist within a bit set.

Note: Purpose of bit sets is to minimize as much as possible their memory footprint. In the following example, the total
memory occupancy of MyBitset is 30:

 ISO/IEC 19516

© ISO 2018 – All rights reserved 75

bitset MyBitset {
 bitfield<3> a; // a is stored in 3 bits (and will be manipulable as a char)
 bitfield<1> b; // b is stored in 1 bit (and will be manipulable as a boolean)
 bitfield<4>; // 4 unused bits
 bitfield<10> c; // c is stored in 10 bits (and will be manipulable as an unsigned short)
 bitfield<12, short> d; // d is stored in 12 bits (and will be manipulable as a short)
 };

7.4.13.4.3.3 Bit Masks

Bit masks are enumerated types (like enumerations) aiming at easing bit manipulation.

A bit mask is declared with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

A bit mask declaration comprises:

• The bitmask keyword.
• The name given to the bitmask (<identifier>).
• The ordered list of the possible values (<bit_value>) that makes the bit mask, enclosed within braces ({}). Each

value is identified by a specific name (<identifier>). In case there are several values, their names are separated by
commas (,). A bit mask must contain at least one value and no more than its size expressed in bits.

By default, the size of a bit mask is 32.

Like an enumeration, a bit mask consists in a sequence of values named by an identifier. However those values are not like
in a classical enumeration but computed based on their position within the bit mask, to form a mask that can be used to
easily set or test the bit in that position. Those values are ordered starting with the less significant bit. For example, the
actual value for the first one (which corresponds to bit in position 0) will be 0x01, the value for the second one (position
1) 0x01 << 1 and so on as in the following example:

bitmask MyBitMask {
 flag0, // 0x01 << 0
 flag1, // 0x01 << 1
 flag2, // 0x01 << 2
 flag3, // 0x01 << 3
 flag4, // 0x01 << 4
 flag5, // 0x01 << 5
 flag6, // 0x01 << 6
 flag7 // 0x01 << 7
 };

Two annotations can be used to amend a bit mask definition:

• @bit_bound (cf. 8.3.4.1) can annotate the whole bit mask to specify its size, which must be lower than or equal
to 64. Accordingly the number of values cannot then exceed the value given to @bit_bound.

• @position (cf. 8.3.4.1) can annotate a bit value to set explicitly its position, expressed in bits, within the bit mask.
Possible positions range from 0, which corresponds to the less significant bit, up to (size – 1), which corresponds
to the most significant one.

The following example illustrates the use of those annotations:

@bit_bound(8) //Actual size will be 8

ISO/IEC 19516

76 © ISO 2018 – All rights reserved

bitmask MyBitMask {
 @position (0) flag0, // 0x01 << 0
 @position (1) flag1, // 0x01 << 1
 @position (4) flag4, // 0x01 << 4
 @position (6) flag6, // 0x01 << 6
 };

Note: Thanks to @position annotations, it is possible to give values only to bits that are useful.

Note: Although it is not recommended, annotated bit values can be declared unordered. In any cases, no duplicates are
allowed.

Note: Non-annotated bit values may be declared with annotated ones. A non-annotated bit value will always be assumed
as just following the one which is before, like in the following example:

bitmask MyBitMask {
 @position (0) flag0, // 0x01 << 0
 flag1, // 0x01 <<1 (just after 0)
 @position (4) flag4, // 0x01 << 4
 @position (2) flag2, // 0x01 <<2
 flag3, // 0x01 <<3 (just after 2)
 flagx, // ERROR, should be 0x01 <<4 but duplicates flag4
 };

7.4.13.4.4 Integers restricted to holding 8-bits of information

The Building Block Core Data Types defines integer types that have well defined value ranges spanning from “short”
integers that can hold 16 bits of information to “long long” integers that can hold 64 bits, see Table 7.13. It does not include
an integer type restricted to holding 8 bits of information.

Within this building block the following rules add the following types: int8 (signed 8-bit integer) and uint8 (unsigned 8-
bit integer):

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

7.4.13.4.5 Explicitly-named Integer Types

The Building Block Core Data Types defines integer types using the keywords short, long, long long, unsigned short,
unsigned long, and unsigned long long. These integer types have specified value ranges, see Table 7.13. However the
value range is not explicit in the type name. This could lead to ambiguity especially for people familiar with programming
languages, such as C or C++, which use the same keywords and yet don’t fully specify the value range.

Within this building block the following rules add new keywords int16, int32, int64, uint16, uint32, uint64 for the same
primitive types, which make the value ranges explicit:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 77

7.4.13.4.6 Ranges for all Integer Types

The integer types defined in the Building Block Core Data Types have their value ranges defined in see Table 7.13. The
table below defines the ranges for the integer in the Building Block Extended Data-Types and their relation to the Building
Block Core Data Types where appropriate.

 Table 7.26 - Ranges for all integer types

Error! Reference source not
found. Integer type Value range

Error! Reference source not found. equivalent
Integer type in (see Error! Reference source not
found.)

int8 -27 … 27- 1 N/A

int16 -215 … 215 - 1 short

int32 -231 … 231 - 1 long

int64 -263 … 263 - 1 long long

uint8 0 … 28 - 1 N/A

uint16 0 … 216 - 1 unsigned short

uint32 0 … 232 - 1 unsigned long

uint64 0 ….264 - 1 unsigned long long

7.4.13.5 Specific Keywords

The following table selects in Table 7.6 the keywords that are specific to this building block and removes the others.

 Table 7.27 - Keywords specific to Building Block Extended Data-Types

 bitfield

bitmask bitset

 map

int8 uint8 int16 int32 int64

uint16 uint32 uint64

ISO/IEC 19516

78 © ISO 2018 – All rights reserved

7.4.14 Building Block Anonymous Types

7.4.14.1 Purpose

The only purpose of this building block is to allow the use of anonymous types, i.e., template types or arrays that were not
given a name by a typedef directive.

Anonymous types may cause a number of problems for language mappings and were therefore deprecated in a previous
version of CORBA IDL. However, they offer an increased expression power that proves to be useful in many occasions.

The new IDL organization in building blocks allows defining profiles where anonymous types are forbidden as well as
others where they will be supported:

• Profiles that do not support use of anonymous types must not embed this building block. With such a profile, all
anonymous types must be given a name with a typedef directive before any use (see 7.4.1.4.4.7).

• Profiles that do support use of anonymous types must embed this building block.

7.4.14.2 Dependencies with other Building Blocks

This building block relies on Building Block Core Data Types.

7.4.14.3 Syntax

The two additional rules allow using anonymous types:

(216) <type_spec> ::+ <template_type_spec>

(217) <declarator> ::+ <array_declarator>

7.4.14.4 Explanations and Semantics

With the following rule, template types may be used at any place where a type specification is required:

0 (216) <type_spec> ::+ <template_type_spec>

Note: A template type may be used as the type parameter for another template type. For instance, the following:
sequence<sequence<long> > declares the type "unbounded sequence of unbounded sequence of long". For those
nested template declarations, white space must be used to separate the two > tokens ending the declaration so they are not
parsed as a single >> token.

With the following rule, arrays may be directly declared:

0 (217) <declarator> ::+ <array_declarator>

7.4.14.5 Specific keywords

There are no additional keywords with this building block.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 79

7.4.15 Building Block Annotations

7.4.15.1 Purpose

This building block defines a framework to add meta-data to IDL constructs, by means of annotations. This facility, very
similar to the one provided by Java, is a powerful means to extend the language without changing its syntax.

7.4.15.2 Dependencies with other Building Blocks

This building block only relies on Building Core Data Types. It is actually orthogonal to all others. This means that once
defined, annotations may be applied to all the IDL constructs brought by all the building blocks that are selected to form a
profile jointly with this building block.

7.4.15.3 Syntax

The following rules form the building block:

(218) <definition> ::+<annotation_dcl> " ;"
(219) <annotation_dcl> ::=<annotation_header> "{" <annotation_body> "}"
(220) <annotation_header> ::="@annotation" <identifier>
(221) <annotation_body> ::= { <annotation_member>
 | <enum_dcl> ";"
 | <const_dcl> ";"
 | <typedef_dcl> ";" }*
(222) <annotation_member> ::=<annotation_member_type> <simple_declarator>
 ["default" <const_expr>] ";"
(223) <annotation_member_type>
 ::= <const_type> | <any_const_type> | <scoped_name>
(224) <any_const_type> ::= "any"
(225) <annotation_appl> ::= "@" <scoped_name> ["(" <annotation_appl_params> ")"]
(226) <annotation_appl_params>
 ::=<const_expr>
 |<annotation_appl_param> { "," <annotation_appl_param> }*
(227) <annotation_appl_param>
 ::= <identifier> "=" <const_expr>

7.4.15.4 Explanations and Semantics

This building block specifies how to 1) define annotations and 2) attach previously defined annotations to most IDL
constructs.

7.4.15.4.1 Defining Annotations

An annotation type is a form of aggregated type similar to a structure with members that could be given constant values.
An annotation is defined with a header (<annotation_header>) and a body (<annotation_body>) enclosed within
braces ({ }):

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

As expressed in the following rule:

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

80 © ISO 2018 – All rights reserved

The annotation header consists of the @annotation keyword, followed by an identifier that is the name given to the
annotation (<identifier>).

As expressed in the following rule:

Error! Reference source not found. Error! Reference source not found.

An annotation body may contain:

• Annotation members (<annotation_member>)
• Declarations of enumeration types (<enum_dcl>)
• Declarations of constant values (const_dcl>)
• Typedef declarations (<typedef_dcl>)

An annotation body may be void.

As stated in the following rules:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

An annotation member is ended by a semi-colon (;) and consists of:

• The member type (<annotation_member_type>), which must be a constant type (<const_type>) or the any
keyword that means in this context any constant type12 or a scoped name (<scoped_name>) which must refer to
a constant type.

• The name given to the member (<simple_declarator>).
• An optional default value, given by a constant expression (<const_expr>) prefixed with the default keyword. The

constant expression must be compatible with the member type.

Enumerations, constants, and typedefs declared within the annotation body may be used unscoped subsequently in the
annotation body or further when applying the annotation. They are not significant anywhere else.

Note: Annotations may be user-defined, using this syntax. They can also be implicitly defined by the IDL-processing tools.
In the latter case, the behavior should be as if the related definitions were included at the beginning of the IDL specification.

Note: Annotations should not cause more IDL-processing errors than strictly needed. Therefore, in case of multiple
definitions of the same annotation in one IDL specification13, the IDL-processing tools should accept them, provided that
they are consistent. In contrast, malformed definitions shall be treated as an error.

7.4.15.4.2 Applying Annotations

An annotation, once its type is defined, may be applied with the following syntax:

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

12 This form is useful when the annotation carries a value whose actual type depends on the element under annotation (a default
 value for instance).
13 This may happen in particular when IDL files are included.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 81

Applying an annotation consists in prefixing the element under annotation with:

• The annotation name (<scoped_name>) prefixed with the at symbol(@), also known as commercial at.
• Followed by the list of values given to the annotation's members within parentheses (()) and separated by a comma

(,). Each parameter value consists of:

o The name of the member (<identifier>).

o The symbol =.

o A constant expression, whose type must be compatible with the member's declaration
(<const_expr>).

Members may appear in any order.

Members with no default value must be given a value. Members with default value may be omitted. In that case, the
member is considered as valued with its default value.

Two shortened forms exist:

• In case there is no member or only one member with a default value, the annotation application may be shortened
to just the name of the annotation prefixed with @.

• In case there is only one member, the annotation application may be shortened to the name of the annotation
prefixed with @ and followed with the constant value of that unique member within (). The type of the provided
constant expression must be compatible with the member's declaration.

An annotation may be applied to any IDL constructs or sub-constructs. Applying an annotation consists actually in adding
the related meta-data to the element under annotation.

Note: In case the applied annotation contains a member of type any, the value provided for that member must match with
the element under annotation.

Note: Annotations should not cause more IDL-processing errors than strictly needed. Therefore, in case an unknown
annotation is encountered, it should be ignored by the IDL-processing tools. In contrast, malformed definitions shall be
treated as an error.

7.4.15.5 Specific Keywords

This building block reuses the any keyword. There is no other new keyword, if keyword is taken as "a word, built as a
valid identifier, but with a specific meaning within the language". However, any word starting with a commercial at (@)
will now potentially denote an annotation, starting with @annotation that allows creating annotation types.

 Table 7.28 - Keywords specific to Building Block Annotations

 any

ISO/IEC 19516

82 © ISO 2018 – All rights reserved

7.4.16 Relationships between the Building Blocks

Even if the building blocks have been designed as independent as possible, they are linked by some dependencies. The
following figure represents the graph of their relationships (actually a lattice).

Figure 7.2 - Relationships between Building Blocks

7.5 Names and Scoping
This clause defines the visibility rules that apply to names. Those rules are considering the whole IDL grammar (i.e., the
union of all building blocks). In case only a subset is used, all the considerations that apply to constructs that are not part
of that subset may be simply ignored.

BB Core Data Types

BB Any
BB Interfaces - Basic

BB CORBA Specific
Interfaces

BB Valuetypes

BB CORBA Specific
Valuetypes

BB Components - Basic

BB CCM Specific

BB Components
Ports and Connectors

BB Template Modules

BB Extended
Data Types

BB Annotations

BB Interfaces - Full

BB Anonymous
Types

BB Components
Homes

 ISO/IEC 19516

© ISO 2018 – All rights reserved 83

7.5.1 Qualified Names

A qualified name (one of the form <scoped_name>::<identifier>) is resolved by first resolving the qualifier
<scoped_name> to a scope S, and then locating the definition of <identifier> within S. The identifier must be directly
defined in S or (if S is an interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with "::", the resolution process starts with the file scope and locates subsequent identifiers
in the qualified name by the rule described in the previous paragraph.

Every IDL definition in a file has a global name within that file. The global name for a definition is constructed as
follows:

• Prior to starting to scan a file containing an IDL specification, the name of the current root is initially empty ("")
and the name of the current scope is initially empty ("").

• Whenever a module keyword is encountered, the string "::" and the associated identifier are appended to the
name of the current root; upon detection of the termination of the module, the trailing "::" and module identifier
are deleted from the name of the current root.

• Whenever an interface, struct, union, or exception keyword is encountered, the string "::" and the associated
identifier are appended to the name of the current scope; upon detection of the termination of the interface,
struct, union, or exception, the trailing "::" and associated identifier are deleted from the name of the current
scope.

• Additionally, a new, unnamed, scope is entered when the parameters of an operation declaration are processed;
this allows the parameter names to duplicate other identifiers; when parameter processing has completed, the
unnamed scope is exited.

• The global name of an IDL definition is the concatenation of the current root, the current scope, a "::", and the
<identifier>, which is the local name for that definition.

Inheritance causes all identifiers defined in base interfaces, both direct and indirect, to be visible in derived interfaces.
Such identifiers are considered to be semantically the same as the original definition. Multiple paths to the same original
identifier do not conflict with each other.

Inheritance introduces multiple global IDL names for the inherited identifiers. Consider the following example:

interface A {
 exception E {
 long L;
 };
 void f () raises(E);
 };
interface B: A {
 void g () raises(E);
 };

In this example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:
interface A {
 typedef string<128> string_t;
 };
interface B {
 typedef string<256> string_t;
 };
interface C: A, B {
 attribute string_t Title; // Error: Ambiguous
 attribute A::string_t Name; // OK
 attribute B::string_t City; // OK
 };

ISO/IEC 19516

84 © ISO 2018 – All rights reserved

The declaration of attribute Title in interface C is ambiguous, since the IDL-processor does not know which string_t is
desired. Ambiguous declarations shall be treated as errors.

7.5.2 Scoping Rules and Name Resolution

Contents of an entire IDL file, together with the contents of any files referenced by #include statements, forms a naming
scope. Definitions that do not appear inside a scope are part of the global scope. There is only a single global scope,
irrespective of the number of source files that form a specification.

The following kinds of definitions form scopes: modules, structures, unions, maps14, interfaces14, value types14,
operations14, exceptions14, event types14, components14, homes14. Scope applies as follows:

• The scope for a module, structure, map, interface, value type, event type, exception or home begins immediately
following its opening { and ends immediately preceding its closing }.

• The scope of an operation begins immediately following its opening (and ends immediately preceding its closing
).

• The scope of a union begins immediately following the (following the switch keyword, and ends immediately
preceding its closing).

The appearance of the declaration of any of these kinds in any scope, subject to semantic validity of such declaration, opens
a nested scope associated with that declaration.

An identifier can only de defined once in a scope. However, identifiers can be redefined in nested scopes.

An identifier declaring a module is considered to be defined by its first occurrence in a scope. Subsequent occurrences of
a module declaration with the same identifier within the same scope reopens the module and hence its scope, allowing
additional definitions to be added to it.

The name of a module, structure, union, map, interface, value type, event type, exception or home may not be redefined
within the immediate scope of the module, structure, union, map, interface, value type, event type, exception or home. For
example:

module M {
 typedef short M; // Error: M is the name of the module…
 // …in the scope of which the typedef is.
 interface I {
 void i (in short j); // Error: i clashes with the interface name I
 };
 };

An identifier from a surrounding scope is introduced into a scope if it is used in that scope. An identifier is not introduced
into a scope by merely being visible in that scope. The use of a scoped name introduces the identifier of the outermost
scope of the scoped name.

For example in:

module M {
 module Inner1 {
 typedef string S1;
 };
 module Inner2 {
 typedef string inner1; // OK
 };
 };

The declaration of Inner2::inner1 is OK because the identifier Inner1, while visible in module Inner2, has not been
introduced into module Inner2 by actual use of it. On the other hand, if module Inner2 were:

14 Assuming that those constructs are part of the current profile.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 85

module Inner2 {
 typedef Inner1::S1 S2; // Inner1 introduced
 typedef string inner1; // Error
 typedef string S1; // OK
 };

The definition of inner1 is now an error because the identifier Inner1 referring to the module Inner1 has been introduced
in the scope of module Inner2 in the first line of the module declaration. Also, the declaration of S1 in the last line is OK
since the identifier S1 was not introduced into the scope by the use of Inner1 ::S1 in the first line.

Only the first identifier in a qualified name is introduced into the current scope. This is illustrated by Inner1::S1 in the
example above, which introduces Inner1 into the scope of Inner2 but does not introduce S1. A qualified name of the form
::X::Y::Z does not cause X to be introduced, but a qualified name of the form X::Y::Z does.

Enumeration value names are introduced into the enclosing scope and then are treated like any other declaration in that
scope. For example:

interface A {
 enum E { E1, E2, E3 }; // line 1
 enum BadE { E3, E4, E5 }; // Error: E3 is already introduced…
 // …into the A scope in line 1 above
 };
interface C {
 enum AnotherE { E1, E2, E3 };
 };
interface D : C, A {
 union U switch (E) {
 case A::E1 : boolean b; // OK.

 case E2 : long l; // Error: E2 is ambiguous (notwithstanding…
 // … the switch type specification)
 };
 };

Type names defined in a scope are available for immediate use within that scope.

A name can be used in an unqualified form within a particular scope; it will be resolved by successively searching farther
out in enclosing scopes, while taking into consideration inheritance relationships among interfaces.

For example:

module M {
 typedef long ArgType;
 typedef ArgType AType; // line l1
 interface B {
 typedef string ArgType; // line l3
 ArgType opb(in AType i); // line l2
 };
 };
module N {
 typedef char ArgType; // line l4
 interface Y : M::B {
 void opy(in ArgType i); // line l5
 };
 };

The following scopes are searched for the declaration of ArgType used on line l5:

ISO/IEC 19516

86 © ISO 2018 – All rights reserved

1. Scope of N::Y before the use of ArgType.
2. Scope of N::Y’s base interface M:: B. (inherited scope).
3. Scope of module N before the definition of N::Y.
4. Global scope before the definition of N.

M::B::ArgType is found in step 2 in line l3, and that is the definition that is used in line l5, hence ArgType in line l5 is
string. It should be noted that ArgType is not char in line l5. Now if line l3 were removed from the definition of interface
M::B, then ArgType on line l5 would be char from line l4, which is found in step 3.

Following analogous search steps for the types used in the operation M:: B::opb on line l2, the type of AType used on line
l2 is long from the typedef in line l1 and the return type ArgType is string from line l3.

7.5.3 Special Scoping Rules for Type Names

Once a type has been defined anywhere within the scope of a module, interface or value type, it may not be redefined
except within the scope of a nested module, interface or value type, or within the scope of a derived interface or value
type. For example:

typedef short TempType; // Scope of TempType begins here
module M {
 typedef string ArgType; // Scope of ArgType begins here
 struct S {
 ::M::ArgType a1; // Nothing introduced here
 M::ArgType a2; // M introduced here
 ::TempType temp; // Nothing introduced here
 }; // Scope of (introduced) M ends here
 // ...
 }; // Scope of ArgType ends here
// Scope of global TempType ends here (at end of file)

The scope of an introduced type name is from the point of introduction to the end of its enclosing scope.

However, if a type name is introduced into a scope that is nested in a non-module scope definition its potential scope
extends over all its enclosing scopes out to the enclosing non-module scope. (For types that are defined outside a non-
module scope, the scope and the potential scope are identical.) For example:

module M {
 typedef long ArgType;
 const long I = 10;
 typedef short Y;
 interface A {
 struct S {
 struct T {
 ArgType x[I]; // ArgType and I introduced
 long y; // a new y is defined, the existing Y is not used
 } m;
 };
 typedef string ArgType; // Error: ArgType redefined
 enum I { I1, I2 }; // Error: I redefined
 typedef short Y; // OK
 }; // Potential scope of ArgType and I ends here
 interface B : A {
 typedef long ArgType // OK, redefined in derived interface
 struct S { // OK, redefined in derived interface
 ArgType x; // x is a long
 A::ArgType y; // y is a string
 };
 };
 };

A type may not be redefined within its scope or potential scope, as shown in the preceding example. This rule prevents
type names from changing their meaning throughout a non-module scope definition, and ensures that reordering of
definitions in the presence of introduced types does not affect the semantics of a specification.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 87

Note: In the following, the definition of M::A:: U::I is legal because it is outside the potential scope of the I introduced in
the definition of M::A::S::T::ArgType. However, the definition of M::A::I is still illegal because it is within the potential
scope of the I introduced in the definition of M::A::S::T::ArgType.

module M {
 typedef long ArgType;
 const long I = 10;
 interface A {
 struct S {
 struct T {
 ArgType x[I]; // ArgType and I introduced
 } m;
 };
 struct U {
 long I; // OK, I is not a type name
 };
 enum I { I1, I2 }; // Error: I redefined
 }; // Potential scope of ArgType and I ends here
 };

Note: Redefinition of a type after use in a module is OK as in the example:

typedef long ArgType;
module M {
 struct S {
 ArgType x; // x is a long
 };
 typedef string ArgType; // OK!
 struct T {
 ArgType y; // Ugly but OK, y is a string
 };
 };

ISO/IEC 19516

88 © ISO 2018 – All rights reserved

This page intentionally left blank.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 89

8 Standardized Annotations
8.1 Overview
The syntax to define annotations is given in the clause 7.4.15.5. Any profile that embeds that building block will support
annotations.

In addition, this clause defines some annotations and groups them in Groups of Annotations. Groups of annotations may
be part of a given profile to complement the selected building blocks.

Any profile that includes such a group of annotations must include the Building Block Annotations.

8.2 Introduction

8.2.1 Rules for Defining Standardized Annotations

The annotations that are standardized here have been selected for their general purpose nature, meaning that their
application can be considered in various contexts.

For each annotation is given:

• Its precise syntax.
• Its meaning as general as possible while remaining significant.
• The kinds of elements on which applying the annotation may make sense. Even if, from the syntactical viewpoint,

an annotation may be applied on any IDL construct or sub-construct, a specific annotation is often meaningful
only for a subset of those.

Proposed groups of annotations gather annotations per concern, in order to ease their selection.

ISO/IEC 19516

90 © ISO 2018 – All rights reserved

8.2.2 Rules for Using Standardized Annotations

The fact that a standardized annotation is proposed in its largest possible scope doesn't mean that any specification deciding
to make use of such an annotation (and thus selecting it in its compliance profile) is forced to support its whole possible
set of applications. In return it must specify the actual usage of the annotation in its specific context. This actual usage must
remain compliant with the standardized description provided here but may be more restrictive. More precisely the using
specification:

• Shall respect totally the standardized annotation syntax.
• May clarify the actual meaning of the annotation in the specific targeted context. That actual meaning may be

more precise than, but shall remain compliant with, the general one expressed here.
• May precise on which elements the annotation is valid in that specific context. That list may be only a subset of

all the possible ones.
• Shall indicate the default behavior when no annotation is placed on an element that may be annotated. Note that

this default is not the same as the default values defined for the annotation members (when these default values
exist). This is because the later values are intended to be the most logical values when the annotation is present.

8.3 Standardized Groups of Annotations

8.3.1 Group of Annotations General Purpose

The following standardized annotations are of general purpose. They may be applied on almost all kinds of elements.

8.3.1.1 @id Annotation

This annotation allows assigning a 32-bit integer identifier to an element, with the underlying assumption that an identifier
should be unique inside its scope of application. The precise scope of uniqueness depends on the type of element on which
the annotation is applied and the purpose of such an identification. It has to be given by the specification making use of it.

@annotation id {
 unsigned long value;
 };

This annotation is applicable to any elements that are parts of a set, such as data members within a constructed type or
operations within an interface.

8.3.1.2 @autoid Annotation

This annotation complements the former and is applicable to any set containing elements to which allocating a 32-bit
integer identifier makes sense. It instructs to automatically allocate identifiers to the elements.

@annotation autoid {
 enum AutoidKind {
 SEQUENTIAL,
 HASH
 };
 AutoidKind value default HASH;
 };

The parameter allows choosing the way the identifiers are created. It could be as follows:

• SEQUENTIAL indicates that the next identifier should be computed by incrementing the previous one.
• HASH indicates that the identifiers should be computed with a hashing algorithm that gives values regardless the

order on which the elements are declared. This is the default value.

8.3.1.3 @optional Annotation

This annotation allows setting an element as optional.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 91

@annotation optional {
 boolean value default TRUE;
 };

Note: The default value (TRUE) is significant when the annotation is present (this means that using the compact form
@optional will set the element as optional, which is what is expected intuitively). It does not mean that by default (i.e.,
when no annotation is present) an element is optional.

This annotation may be used to set optionality on any element that makes sense to be optional.

8.3.1.4 @position Annotation

This annotation allows setting a position to an element or a group of elements.

@annotation position {
 unsigned short value;
 };

Note: The general idea with a position is that it defines an order (position 2 being between position 1 and position 3).
However, what actually means "position" is to be precised when using this annotation.

This annotation is applicable to any elements that are parts of a set, such as data members within a constructed type or
operations within an interface.

8.3.1.5 @value Annotation

This annotation allows setting a constant value to any element that may be given a constant value. As opposed to @id,
@value is more versatile as it may carry any constant value. In return it does not carry any concept of uniqueness among
a set.

@annotation value {
 any value;
 };

When applied, the provided value must be compliant with the type of the annotated element.

This annotation may be used to set a constant value each time it is relevant. One classical example is to set specific values
to members of enumerations.

8.3.1.6 @extensibility Annotation

This annotation applies to any element that is constructed such as a data type or an interface. It allows specifying how the
element is allowed to evolve.

@annotation extensibility {
 enum ExtensibilityKind {
 FINAL,
 APPENDABLE ,
 MUTABLE
 };
 ExtensibililtyKind value;
 };

The possibilities are:

• FINAL: no evolution is allowed.
• APPENDABLE: the type may be complemented (elements may be appended at the end) but not reorganized.

ISO/IEC 19516

92 © ISO 2018 – All rights reserved

• MUTABLE: the type may evolve.

8.3.1.7 @final Annotation

This annotation is a shortcut for @extensibility(FINAL).

@annotation final {
 };

8.3.1.8 @appendable Annotation

This annotation is a shortcut for @extensibility(APPENDABLE).

@annotation appendable {
 };

8.3.1.9 @mutable Annotation

This annotation is a shortcut for @extensibility(MUTABLE).

@annotation mutable {
 };

8.3.2 Group of Annotations Data Modeling

This group of annotations gathers annotations that are especially useful to define a data model. They can thus either concern
data types (i.e., constructed types) or elements of those (i.e., members of constructed types).

8.3.2.1 @key Annotation

This annotation allows indicating that a data member is part of the key for the objects whose type is the constructed data
type owning this element. The key allows identifying an object among the set of objects of a given type. All data items
sharing the same key value are assumed to represent the same object.

@annotation key {
 boolean value default TRUE;
 };

Note: The default value (TRUE) is significant when the annotation is present (this means that using the compact form
@key will set the element as part of the key definition, which is what is expected intuitively). It does not mean that by
default (i.e., when no annotation is present) an element is part of the key.

8.3.2.2 @must_understand Annotation

The annotation allows indicating that the data member must be understood by any application making use of that piece of
data. This does not mean that the data member cannot be optional. It just means that if the member is present, then it cannot
be unknown to the recipient.

@annotation must_understand {
 boolean value default TRUE;
 };

Note: The default value (TRUE) is significant when the annotation is present (this means that using the compact form
@must_understand will set the element as needed to be understood, which is what is expected intuitively). It does not
mean that by default (i.e., when no annotation is present) an element is of that kind.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 93

8.3.2.3 @default_literal Annotation

The annotation allows selecting one member as the default within a collection. It may be applied to one of the enumerators
within an enumeration declaration to indicate the default value for the enumeration.

@annotation default_literal {
 };

8.3.3 Group of Annotations: Units and Ranges

This group of annotations gathers means to qualify any element that can be given a constant value. Those annotations can
be applied directly to data elements such as members of constructed types or parameters of interfaces.

They can also be applied to a new type created based on a constant type (using a typedef declaration). This means that all
restrictions brought by the annotations placed on the created type will apply to all future members declared with that new
type, as shown in the following example.

@range (min=10, max=20)
typedef long MyLong;
…
struct Foo {
 @range (min=10, max=20)
 long bar1; // direct application

 MyLong bar2; // indirect application trough type MyLong
 };
8.3.3.1 @default Annotation

This annotation allows specifying a default value for the annotated element.

@annotation default {
 any value;
 };

The provided value must be compliant with the type of the annotated element.

8.3.3.2 @range Annotation

This annotation allows specifying a range of allowed values for the annotated element.

@annotation range {
 any min;
 any max;
 };

The provided values (min and max) must be compliant with the type of the annotated element. The max value must be
greater or equal to the min value.

8.3.3.3 @min Annotation

This annotation allows specifying a minimum value for the annotated element.

@annotation min {
 any value;
 };

ISO/IEC 19516

94 © ISO 2018 – All rights reserved

The provided value must be compliant with the type of the annotated element.

8.3.3.4 @max Annotation

This annotation allows specifying a maximum value for the annotated element.

@annotation max {
 any value;
 };

The provided value must be compliant with the type of the annotated element.

8.3.3.5 @unit Annotation

This annotation allows specifying a unit of measurement for the annotated element.

@annotation unit {
 string value;
 };

Note: This standard does not define specific values for given units. However, it is recommended to use standardized
abbreviations defined by BIPM15, whenever applicable.

8.3.4 Group of Annotations Data Implementation

8.3.4.1 @bit_bound Annotation

This annotation allows setting a size (expressed in bits) to an element or a group of elements.

@annotation bit_bound {
 unsigned short value;
 };

Note: Typically it may be used to force a size, smaller than the default one to members of an enumeration or to integer
elements.

8.3.4.2 @external Annotation

Usually when a data object is mapped in memory, it is implemented as a whole, meaning that, when feasible, its data
members are placed next to each other in a single data space. This annotation forces the annotated element to be put
elsewhere, in a dedicated place. This is useful for instance to save resources when the element may be huge and is not
always present or to allow sharing of the element between data objects.

@annotation external {
 boolean value default TRUE;
 };

The default value (TRUE) is significant when the annotation is present (this means that using the compact form
@external will set the element as external, which is what is expected intuitively). It does not mean that by default (i.e.,
when no annotation is present) an element is external.

15 Bureau International des Poids et Mesures. Cf. http://www.bipm.org/en/measurement-units/

 ISO/IEC 19516

© ISO 2018 – All rights reserved 95

8.3.4.3 @nested Annotation

This annotation applies to constructed types only. It allows indicating that the objects from the type under annotation will
always be nested within another one (i.e., as members of their owning object) and thus never used as top-level objects.

@annotation nested {
 boolean value default TRUE;
 };

The default value (TRUE) is significant when the annotation is present (this means that using the compact form @nested
will set the element as nested, which is what is expected intuitively). It does not mean that by default (i.e., when no
annotation is present) an element is nested.

8.3.5 Group of Annotations Code Generation

8.3.5.1 @verbatim Annotation

This annotation allows injecting some user-provided information into what the compiler will generate.

@annotation verbatim {
 enumeration PlacementKind {
 BEGIN_FILE,
 BEFORE_DECLARATION,
 BEGIN_DECLARATION,
 END_DECLARATION,
 AFTER_DECLARATION,
 END_FILE
 };
 string language default "*";
 PlacementKind placement default BEFORE_DECLARATION;
 string text;
 };

In addition to the text to be injected (text), this annotation has two parameters:

1 - The language parameter allows indicating to which language this injection applies. The defined values are as follows:

• "c" indicates the C language.

• "c++" indicates the C++ language.

• "java" indicates the Java language.

• "idl" indicates OMG IDL.

• "*" (an asterisk) indicates any language. This is the default value.

Note: Other values may be used when relevant.

2 - The placement parameter allows indicating where in the generated code, this injection is to be made. The defined
values are as follows:

• BEGIN_FILE: The text string shall be copied at the beginning of the file containing the declaration of the annotated
element, before any type declarations. For example, a system implementer may use such an annotation to inject
import statements into the output.

• BEFORE_DECLARATION: The text string shall be copied immediately before the declaration of the annotated
element. For example, a system implementer may use such an annotation to inject documentation comments into
the output. This is the default value.

ISO/IEC 19516

96 © ISO 2018 – All rights reserved

• BEGIN_DECLARATION: The text string shall be copied into the body of the declaration of the annotated element
before any members or constants. For example, a system implementer may use such an annotation to inject
additional declarations or implementations into the output.

• END_DECLARATION: The text string shall be copied into the body of the declaration of the annotated element
after all members or constants.

• AFTER_DECLARATION: The text string shall be copied immediately after the declaration of the annotated
element.

• END_FILE: The text string shall be copied at the end of the file containing the declaration of the annotated element
after all type declarations.

8.3.6 Group of Annotations Interfaces

8.3.6.1 @service Annotation

This annotation allows indicating that an interface is to be treated as a service. An optional parameter allows indicating by
which platform that service invocation is to be supported.

@annotation service {
 string platform default "*";
 };

The defined values for the platform parameter are as follows:

• "CORBA" indicates that the service should be made accessible via CORBA.
• "DDS" indicates that the service should be made accessible via DDS.
• "*" (an asterisk) indicates any platform. This is the default value.

 Note: Other values may be defined if relevant.

8.3.6.2 @oneway Annotation

This annotation allows indicating that an operation is one way only, meaning that related information flow will go from
the client to the server providing the related service, but not back from the server to the client.

@annotation oneway {
 boolean value default TRUE;
 };

This annotation may only concern operations without any return value (void return type) and without any out or inout
parameters.

Note: The default value (TRUE) is significant when the annotation is used (this means that using the compact form
@oneway will set the operation as one-way, which is what is expected intuitively). It does not mean that by default (i.e.,
when no annotation is used) the operation is one-way.

8.3.6.3 @ami Annotation

This annotation allows indicating that an interface or an operation is to be made callable asynchronously.

@annotation ami {
 boolean value default TRUE;
 };

Note: The default value (TRUE) is significant when the annotation is used (this means that using the compact form @ami
will set the element as asynchronously callable, which is what is expected intuitively). It does not mean that by default (i.e.,
when no annotation is used) it is the case.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 97

Note: The way asynchronous invocations are implemented is middleware dependent.

9 Profiles
9.1 Overview

This clause defines some relevant combinations of building blocks, called profiles. Profiles are just sets of building
blocks, possibly complemented with groups of annotations. The given profiles correspond to current usages of IDL.
They are split in two categories, the ones that are related to CORBA (including CCM) and the ones that are related to
DDS.

These profiles are not normative for the related middleware solutions (the reference for their compliance to IDL is to
be found in their respective specifications). However they are given here for illustration and a check of the relevant
breakdown in building blocks.

ISO/IEC 19516

98 © ISO 2018 – All rights reserved

9.2 CORBA and CCM Profiles

This clause groups all the profiles that are related to CORBA.

9.2.1 Plain CORBA Profile

This profile corresponds to the plain CORBA usage, without Components (i.e., the latest IDL 2 version)

It is made of:

• Building Block Core Data Types

• Building Block Any

• Building Block Interfaces - Basic

• Building Block Interfaces - Full

• Building Block Value Types

• Building Block CORBA-Specific - Interfaces

• Building Block CORBA-Specific - Value Types

9.2.2 Minimum CORBA Profile

This version corresponds to CORBA minimum profile. As opposed to , it does not embed Any nor Valuetypes.

It is made of:

• Building Block Core Data Types

• Building Block Interfaces - Basic

• Building Block Interfaces - Full

• Building Block CORBA-Specific - Interfaces

9.2.3 CCM Profile

This profile corresponds to CCM (or Lw-CCM) mandatory usage (i.e., the latest IDL3 version without optional
Generic Interaction Support).

It is made of:

• Building Block Core Data Types

• Building Block Any

• Building Block Interfaces - Basic

• Building Block Interfaces - Full

• Building Block Value Types

• Building Block CORBA-Specific - Interfaces

• Building Block CORBA-Specific - Value Types

• Building Block Components - Basic

 ISO/IEC 19516

© ISO 2018 – All rights reserved 99

• Building Block CCM-Specific

9.2.4 CCM with Generic Interaction Support Profile

This profile adds to CCM Profile, the Generic Interaction Support; which is an optional CCM compliance point (also
known as IDL3+).

It is made of:

• Building Block Core Data Types

• Building Block Any

• Building Block Interfaces - Basic

• Building Block Interfaces - Full

• Building Block Value Types

• Building Block CORBA-Specific - Interfaces

• Building Block CORBA-Specific - Value Types

• Building Block Components - Basic

• Building Block CCM-Specific

• Building Block Components - Ports and Connectors

• Building Block Template Modules

9.3 DDS Profiles

This clause groups the DDS-related profiles.

9.3.1 Plain DDS Profile

This profile corresponds to what is basically supported by DDS.

It is made of:

• Building Block Core Data Types

• Building Block Anonymous Types
9.3.2 Extensible DDS Profile

This profile extends Plain DDS Profile with the features provided by Extensible and Dynamic Topic Types for DDS.

It is made of:

• Building Block Core Data Types

• Building Block Extended Data-Types

• Building Block Anonymous Types

• Building Block Annotations

ISO/IEC 19516

100 © ISO 2018 – All rights reserved

• Group of Annotations General Purpose

• Group of Annotations Data Modeling

• Group of Annotations Data Implementation

• Group of Annotations Code Generation

9.3.3 RPC over DDS Profile

This profile allows describing interfaces that may be considered as services by RPC over DDS.

It is made of:

• Building Block Core Data Types

• Building Block Extended Data-Types

• Building Block Anonymous Types

• Building Block Interfaces - Basic

• Building Block Annotations

• Group of Annotations General Purpose

• Group of Annotations Interfaces

 ISO/IEC 19516

© ISO 2018 – All rights reserved 101

This page intentionally left blank.

ISO/IEC 19516

102 © ISO 2018 – All rights reserved

Annex A
Consolidated IDL Grammar

This annex gathers all the rules from all the building blocks.

Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 103

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.+

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

104 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 105

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

106 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 107

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

From Error! Reference source not found.:
0 (216) <type_spec> ::+ <template_type_spec>

0 (217) <declarator> ::+ <array_declarator>

From Error! Reference source not found.:
Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

ISO/IEC 19516

108 © ISO 2018 – All rights reserved

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

Error! Reference source not found. Error! Reference source not found.

 ISO/IEC 19516

© ISO 2018 – All rights reserved 109

	Foreword
	Introduction
	1 Scope
	1.1 Overview

	2 Conformance Criteria
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgments
	6.2 History

	7 IDL Syntax and Semantics
	7.1 Overview
	7.2 Lexical Conventions
	7.2.1 Tokens
	7.2.2 Comments
	7.2.3 Identifiers
	7.2.3.1 Collision Rules
	7.2.3.2 Escaped Identifiers

	7.2.4 Keywords
	7.2.5 Other Characters Recognized by IDL
	7.2.6 Literals
	7.2.6.1 Integer Literals
	7.2.6.2 Character Literals
	7.2.6.2.1 Wide and Non-wide Characters
	7.2.6.2.2 Escape Sequences to Represent Character Literals

	7.2.6.3 String Literals
	7.2.6.4 Floating-point Literals
	7.2.6.5 Fixed-Point Literals

	7.3 Preprocessing
	7.4 IDL Grammar
	7.4.1 Building Block Core Data Types
	7.4.1.1 Purpose
	7.4.1.2 Dependencies with other Building Blocks
	7.4.1.3 Syntax
	7.4.1.4 Explanations and Semantics
	7.4.1.4.1 IDL Specification
	7.4.1.4.2 Modules
	7.4.1.4.3 Constants
	7.4.1.4.4 Data Types
	7.4.1.4.4.1 Referencing Types
	7.4.1.4.4.2 Basic Types
	7.4.1.4.4.3 Template Types
	7.4.1.4.4.4 Constructed Types
	7.4.1.4.4.5 Arrays
	7.4.1.4.4.6 Native Types
	7.4.1.4.4.7 Naming Data Types

	7.4.1.5 Specific Keywords

	7.4.2 Building Block Any
	7.4.2.1 Purpose
	7.4.2.2 Dependencies with other Building Blocks
	7.4.2.3 Syntax
	7.4.2.4 Explanations and Semantics
	7.4.2.5 Specific Keywords

	7.4.3 Building Block Interfaces – Basic
	7.4.3.1 Purpose
	7.4.3.2 Dependencies with other Building Blocks
	7.4.3.3 Syntax
	7.4.3.4 Explanations and Semantics
	7.4.3.4.1 IDL specification
	7.4.3.4.2 Exceptions
	7.4.3.4.3 Interfaces
	7.4.3.4.3.1 Interface Header
	7.4.3.4.3.2 Interface Inheritance
	7.4.3.4.3.3 Interface Body
	7.4.3.4.3.4 Forward Declaration

	7.4.3.5 Specific Keywords

	7.4.4 Building Block Interfaces – Full
	7.4.4.1 Purpose
	7.4.4.2 Dependencies with other Building Blocks
	7.4.4.3 Syntax
	7.4.4.4 Explanations and Semantics
	7.4.4.5 Specific Keywords

	7.4.5 Building Block Value Types
	7.4.5.1 Purpose
	7.4.5.2 Dependencies with other Building Blocks
	7.4.5.3 Syntax
	7.4.5.4 Explanations and Semantics
	7.4.5.4.1 Concrete (Stateful) Value Types
	7.4.5.4.1.1 Value Header
	7.4.5.4.1.2 Value Inheritance Specification
	7.4.5.4.1.3 Value Element

	7.4.5.4.2 Forward Declarations

	7.4.5.5 Specific Keywords

	7.4.6 Building Block CORBA-Specific – Interfaces
	7.4.6.1 Purpose
	7.4.6.2 Dependencies with other Building Blocks
	7.4.6.3 Syntax
	7.4.6.4 Explanations and Semantics
	7.4.6.4.1 Interface Repository Related Declarations
	7.4.6.4.1.1 Repository Identity Declaration
	7.4.6.4.1.2 Repository Identifier Prefix Declaration
	7.4.6.4.1.3 Repository Id Conflict
	7.4.6.4.1.4 Imports

	7.4.6.4.2 Object
	7.4.6.4.3 Local Interfaces
	7.4.6.4.4 Use of Native types
	7.4.6.4.5 One-way Operations
	7.4.6.4.6 Context Expressions
	7.4.6.4.7 CORBA Module

	7.4.6.5 Specific Keywords

	7.4.7 Building Block CORBA-Specific – Value Types
	7.4.7.1 Purpose
	7.4.7.2 Dependencies with other Building Blocks
	7.4.7.3 Syntax
	7.4.7.4 Explanations and Semantics
	7.4.7.4.1 Boxed Value Types
	7.4.7.4.2 Abstract Value Types and Interfaces
	7.4.7.4.2.1 Abstract Value Types
	7.4.7.4.2.2 Abstract Interfaces

	7.4.7.4.3 Value Inheritance Rules
	7.4.7.4.4 Custom Marshaling
	7.4.7.4.5 Truncatable
	7.4.7.4.6 Value Base

	7.4.7.5 Specific Keywords

	7.4.8 Building Block Components – Basic
	7.4.8.1 Purpose
	7.4.8.2 Dependencies with other Building Blocks
	7.4.8.3 Syntax
	7.4.8.4 Explanations and Semantics
	7.4.8.4.1 ‎Component Header
	7.4.8.4.2 Component Body
	7.4.8.4.2.1 Facets
	7.4.8.4.2.2 Receptacles
	7.4.8.4.2.3 Attributes

	7.4.8.4.3 Forward Declaration

	7.4.8.5 Specific Keywords

	7.4.9 Building Block Components – Homes
	7.4.9.1 Purpose
	7.4.9.2 Dependencies with Other Building Blocks
	7.4.9.3 Syntax
	7.4.9.4 Explanations and Semantics
	7.4.9.4.1 ‎Home Header
	7.4.9.4.2 Home Body

	7.4.9.5 Specific Keywords

	7.4.10 Building Block CCM-Specific
	7.4.10.1 Purpose
	7.4.10.2 Dependencies with other Building Blocks
	7.4.10.3 Syntax
	7.4.10.4 Explanations and Semantics
	7.4.10.4.1 Event Support
	7.4.10.4.1.1 Event Types
	7.4.10.4.1.2 Forward Declarations
	7.4.10.4.1.3 Event Ports

	7.4.10.4.2 Home Extensions
	7.4.10.4.2.1 Supported Interfaces
	7.4.10.4.2.2 Primary Keys
	7.4.10.4.2.3 Finder Operations

	7.4.10.4.3 Multiple Uses
	7.4.10.4.4 Alignment with CORBA-specific Features related to Interfaces and Value Types
	7.4.10.4.4.1 Supported Interfaces in Components
	7.4.10.4.4.2 Object Root

	7.4.10.5 Specific Keywords

	7.4.11 Building Block Components – Ports and Connectors
	7.4.11.1 Purpose
	7.4.11.2 Dependencies with other Building Blocks
	7.4.11.3 Syntax
	7.4.11.4 Explanations and Semantics
	7.4.11.4.1 Extended Ports
	7.4.11.4.1.1 Port Type Declaration

	7.4.11.4.2 Port Declaration
	7.4.11.4.3 Connectors

	7.4.11.5 Specific Keywords

	7.4.12 Building Block Template Modules
	7.4.12.1 Purpose
	7.4.12.2 Dependencies with other Building Blocks
	7.4.12.3 Syntax
	7.4.12.4 Explanations and Semantics
	7.4.12.4.1 Template Module Declaration
	7.4.12.4.2 Template Module Instantiation
	7.4.12.4.3 References to a Template Module

	7.4.12.5 Specific Keywords

	7.4.13 Building Block Extended Data-Types
	7.4.13.1 Purpose
	7.4.13.2 Dependencies with other Building Blocks
	7.4.13.3 Syntax
	7.4.13.4 Explanations and Semantics
	7.4.13.4.1 Structures with Single Inheritance and/or Void Content
	7.4.13.4.2 Union Discriminators
	7.4.13.4.3 Map, Bitset and Bitmap Types
	7.4.13.4.3.1 Maps
	7.4.13.4.3.2 Bit Sets (including Bit Fields)
	7.4.13.4.3.3 Bit Masks

	7.4.13.4.4 Integers restricted to holding 8-bits of information
	7.4.13.4.5 Explicitly-named Integer Types
	7.4.13.4.6 Ranges for all Integer Types

	7.4.13.5 Specific Keywords

	7.4.14 Building Block Anonymous Types
	7.4.14.1 Purpose
	7.4.14.2 Dependencies with other Building Blocks
	7.4.14.3 Syntax
	7.4.14.4 Explanations and Semantics
	7.4.14.5 Specific keywords

	7.4.15 Building Block Annotations
	7.4.15.1 Purpose
	7.4.15.2 Dependencies with other Building Blocks
	7.4.15.3 Syntax
	7.4.15.4 Explanations and Semantics
	7.4.15.4.1 Defining Annotations
	7.4.15.4.2 Applying Annotations

	7.4.15.5 Specific Keywords

	7.4.16 Relationships between the Building Blocks

	7.5 Names and Scoping
	7.5.1 Qualified Names
	7.5.2 Scoping Rules and Name Resolution
	7.5.3 Special Scoping Rules for Type Names

	8 Standardized Annotations
	8.1 Overview
	8.2 Introduction
	8.2.1 Rules for Defining Standardized Annotations
	8.2.2 Rules for Using Standardized Annotations

	8.3 Standardized Groups of Annotations
	8.3.1 Group of Annotations General Purpose
	8.3.1.1 @id Annotation
	8.3.1.2 @autoid Annotation
	8.3.1.3 @optional Annotation
	8.3.1.4 @position Annotation
	8.3.1.5 @value Annotation
	8.3.1.6 @extensibility Annotation
	8.3.1.7 @final Annotation
	8.3.1.8 @appendable Annotation
	8.3.1.9 @mutable Annotation

	8.3.2 Group of Annotations Data Modeling
	8.3.2.1 @key Annotation
	8.3.2.2 @must_understand Annotation
	8.3.2.3 @default_literal Annotation

	8.3.3 Group of Annotations: Units and Ranges
	8.3.3.1 @default Annotation
	8.3.3.2 @range Annotation
	8.3.3.3 @min Annotation
	8.3.3.4 @max Annotation
	8.3.3.5 @unit Annotation

	8.3.4 Group of Annotations Data Implementation
	8.3.4.1 @bit_bound Annotation
	8.3.4.2 @external Annotation
	8.3.4.3 @nested Annotation

	8.3.5 Group of Annotations Code Generation
	8.3.5.1 @verbatim Annotation

	8.3.6 Group of Annotations Interfaces
	8.3.6.1 @service Annotation
	8.3.6.2 @oneway Annotation
	8.3.6.3 @ami Annotation

	9 Profiles
	9.1 Overview
	9.2 CORBA and CCM Profiles
	9.2.1 Plain CORBA Profile
	9.2.2 Minimum CORBA Profile
	9.2.3 CCM Profile
	9.2.4 CCM with Generic Interaction Support Profile

	9.3 DDS Profiles
	9.3.1 Plain DDS Profile
	9.3.2 Extensible DDS Profile
	9.3.3 RPC over DDS Profile

	Annex A Consolidated IDL Grammar

