
Date: June 2020

IDL4 to Java Language Mapping

Version 1.0

OMG Document Number: ptc/2020-06-08

Normative Reference: http s ://www.omg.org/spec/ IDL4-JAVA

https://www.omg.org/spec/IDL4-JAVA
https://www.omg.org/spec/IDL4-JAVA
https://www.omg.org/spec/IDL4-JAVA
https://www.omg.org/spec/IDL4-JAVA

Copyright © 2018-2019, Object Management Group, Inc.
Copyright © 2018-2019, ADLINK Technology Ltd.
Copyright © 2018-2019, Real Time Innovations, Inc.
Copyright © 2018-2019, Twin Oaks Computing, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES
The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change without
notice.

LICENSES
The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have
infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
of those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective
users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED
ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR

ii IDL4 to Java Language Mapping 1.0

PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF
PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated
above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http s ://www.omg.org/legal/tm_list.htm . All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using
this specification may claim compliance or conformance with the specification only if the software satisfactorily
completes the testing suites.

IDL4 to Java Language Mapping 1.0 iii

http://www.omg.org/legal/tm_list.htm
http://www.omg.org/legal/tm_list.htm
http://www.omg.org/legal/tm_list.htm

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

iv IDL4 to Java Language Mapping 1.0

Table of Contents
1 Scope...1

2 Conformance...1

3 Normative References...1

4 Terms and Definitions..2

5 Symbols...2

6 Additional Information..3
6.1 Changes to Adopted OMG Specifications..3

6.2 Acknowledgments...3

7 IDL to Java Language Mapping...5
7.1 General...5

7.1.1 Names... 5
7.1.2 Reserved Names... 8
7.1.3 Holder class... 9
7.1.4 Java Language Version Requirements..9
7.1.5 Code Examples... 9

7.2 Core Data Types...9
7.2.1 IDL Specification.. 9
7.2.2 Modules... 10
7.2.3 Constants.. 10
7.2.4 Data Types.. 12

7.3 Any..22

7.4 Interfaces – Basic...22
7.4.1 Exceptions... 23
7.4.2 Interface Forward Declaration...24

7.5 Interfaces – Full..24

7.6 Value Types..25

7.7 CORBA-Specific – Interfaces..27

7.8 CORBA-Specific – Value Types..27

7.9 Components – Basic...27

7.10 Components – Homes..27

7.11 CCM-Specific..27

7.12 Components – Ports and Connectors...27

7.13 Template Modules...27

7.14 Extended Data Types..27
7.14.1 Structures with Single Inheritance...27
7.14.2 Union Discriminators.. 28
7.14.3 Additional Template Types...28

7.15 Anonymous Types...31

7.16 Annotations...31
7.16.1 Defining Annotations.. 31
7.16.2 Applying User-Defined Annotations...32

7.17 Standardized Annotations...33
7.17.1 Group of Annotations: General Purpose..34
7.17.2 Group of Annotations: Data Modeling..34

IDL4 to Java Language Mapping 1.0 v

7.17.3 Group of Annotations: Units and Ranges...34
7.17.4 Group of Annotations: Data Implementation..35
7.17.5 Group of Annotations: Code Generation..35
7.17.6 Group of Annotations: Interfaces...35

8 IDL to Java Language Mapping Annotations...37
8.1 @java_mapping Annotation..37

8.1.1 apply_naming_convention Parameter...37
8.1.2 constants_container Parameter...39
8.1.3 promote_integer_width Parameter..39
8.1.4 apply_naming_convention Parameter...40
8.1.5 string_type Parameter... 41

Annex A: Platform-Specific Mappings...43
A.1 CORBA-Specific Mappings...43

A.1.1 Exceptions... 43
A.1.2 TypeCode.. 43
A.1.3 Object.. 44
A.1.4 Any.. 44
A.1.5 Interfaces... 45
A.1.6 Value Types... 45

A.2 DDS-Specific Mappings..45

Annex B: Building Block Traceability Matrix..47

vi IDL4 to Java Language Mapping 1.0

Table of Tables
Table 2.1: Conformance Points...1
Table 5.1: Acronyms... 3
Table 7.1: Java Language Versions and Features..9
Table 7.2: Mapping of Integer Types...12
Table 7.3: Floating-Point Types Mapping..13
Table 7.4: Mapping of Sequences of Basic Types..13
Table 7.5: Mapping of Map key type...28
Table 7.6: General Purpose Annotation Impact..34
Table 7.7: Data Modeling Annotation Impact..34
Table 7.8: Units And Ranges Annotation Impact...35
Table 7.9: Data Implementation Annotation Impact..35
Table 7.10: Code Generation Annotation Impact..35
Table 7.11: Interface Annotation Impact..36
Table 8.1: Type Identifier and Member Name Mapping According to apply_naming_convention Value..........37
Table 8.2: Mapping of Integer Types According to promote_integer_width...39
Table 8.3: Type Identifier and Member Name Mapping According to apply_naming_convention Value..........40
Table B.1: Building Block Traceability Matrix..47

IDL4 to Java Language Mapping 1.0 vii

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML® (Unified
Modeling Language®); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel™); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

viii IDL4 to Java Language Mapping 1.0

1 Scope
This specification defines the mapping of OMG Interface Definition Language v4 [IDL4] to the Java programming
language. The language mapping covers all of the IDL constructs in the current Interface Definition Language
specification (http s :// www. omg.org/spec/IDL) with the exception of middleware specific constructs that are better
addressed in separate specifications. The language mapping makes use of modern Java language features as
appropriate and natural.

2 Conformance
Conformance to this specification can be considered from two perspectives:

1. implementations (for example, a tool [compiler] that applies the mapping to generate Java source code from
IDL); and

2. users (for example, application source code that interacts with the Java source code generated by a
compiler).

Table 2.1: Conformance Points

Implementation A conformant implementation shall transform IDL input into Java source code output
as specified in clause 7.

User Application source code that conforms to this specification makes use of the Java data
types and API’s as defined in clause 7. Conformant application source code must make
no assumptions about the underlying implementation or utilize any unspecified API or
behavior beyond what is specified in the language mapping. Conformant application
source code, as a result, will be portable across implementations.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

[CORBA-IFC] OMG, Common Object Request Broker Architecture, Part 1: CORBA Interfaces, Version
3.3, https://www.omg.org/spec/CORBA/3.3

[IDL4] OMG, Interface Definition Language, Version 4.2, 2018

[J2SE 8.0] James Gosling, The Java Language Specification Java SE 8 Edition, 2015

[JavaBeans] Graham Hamilton, JavaBeans, 1997

IDL4 to Java Language Mapping 1.0 1

https://omg.org/spec/IDL
https://omg.org/spec/IDL
https://omg.org/spec/IDL
https://omg.org/spec/IDL
https://omg.org/spec/IDL

4 Terms and Definitions
For the purposes of this specification, the following terms and definitions apply.

Building Block

A Building Block is a consistent set of IDL rules that together form a piece of IDL functionality. Building blocks are
atomic, meaning that if selected, they must be totally supported. Building blocks are described in [IDL4] clause 7,
IDL Syntax and Semantics.

Camel Case

A naming convention that represents phrases composed of multiple words using a single word where spaces and
punctuation are removed, and every word begins with a capital letter.

In this specification, the term Camel Case refers to the variation of Camel Case commonly-known as Lower Camel
Case, where the first letter is not capitalized. For example, the Camel Case representation of “these are my words”
would be “theseAreMyWords”.

Java

Java is a general-purpose computer programming language.

Language Mapping

An association of elements in one language to elements in another language (from IDL to Java, in this case) that
facilitates a transformation from one language to another.

Pascal Case

Also known as Upper Camel Case, is a variation of Camel Case where the first letter is capitalized. For example, the
Pascal Case representation of the phrase “these are my words” would be “TheseAreMyWords”.

5 Symbols
The following acronyms are used in this specification.

Table 5.1: Acronyms

Acronym Meaning

CCM CORBA Component Model

CORBA Common Object Request Broker Architecture

DDS Data Distribution Service

J2SE Java 2 Platform Standard Edition

IDL Interface Definition Language

2 IDL4 to Java Language Mapping 1.0

Acronym Meaning

OMG Object Management Group

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This specification is an alternative to the existing OMG IDL to Java Mapping specification; it is distinct in that it
provides a mapping for the constructs of IDL4, and the mapping exploits newer Java language features.

6.2 Acknowledgments
The following companies submitted this specification:

• ADLINK Technology Ltd.

• Real-Time Innovations, Inc.

• Twin Oaks Computing, Inc.

The following companies supported this specification:

• Kongsberg Defence & Aerospace

• Object Computing, Inc.

IDL4 to Java Language Mapping 1.0 3

7 IDL to Java Language Mapping

7.1 General

7.1.1 Names

IDL member names and type identifiers shall map to equivalent Java names and identifiers. This specification defines
two naming schemes that determine the name transformation behavior:

• IDL Naming Scheme (defined in Clause 7.1.1.1), which preserves the naming conventions of the original IDL
names and type identifiers.

• Java Naming Scheme (defined in Clause 7.1.1.2), which transforms names and type identifiers to follow the
naming conventions of the Java programming language.

The @java_mapping annotation defined in Clause 8.1 provides a mechanism to select the appropriate naming
scheme. Implementations of this specification may also provide custom compiler settings or compiler parameters for
such purpose.

Regardless of the naming scheme of choice, if a mapped name or identifier collides with one of the names reserved in
Clause 7.1.2, the collision shall be resolved by prepending an underscore ("_") to the mapped name.

NOTE—Name conflict resolutions also apply to name collisions caused by compiler-specific settings, such as those
that enable users to customize Java package prefixes. In such cases, conflicting attributes in generated code should
also be resolved prepending a leading underscore ("_").

7.1.1.1 IDL Naming Scheme

IDL member names and type identifiers shall map to Java names and identifiers without case transformation,
maintaining the original IDL names.

Table 8.1 (apply_naming_convention = IDL_NAMING_CONVENTION column) defines the name mapping for
every IDL construct according to the naming scheme.

7.1.1.2 Java Naming Scheme

IDL member names and type identifiers shall map to Java names and identifiers that follow the coding guidelines
defined in the JavaBeans 1.01 [JavaBeans] specification.

Table 8.1 (apply_naming_convention = JAVA_NAMING_CONVENTION column) defines the name mapping for
every IDL construct according to this naming scheme. Most of the rules defined in Table 8.1 require transforming IDL
names into Pascal Case, Camel Case, All Uppercase, or All Lowercase; in such cases, the transformation shall be
performed according to the rules defined in Clauses 7.1.1.2.1, 7.1.1.2.2, 7.1.1.2.3, and 7.1.1.2.4, respectively.

NOTE—Implementations of this specification should report as an error collisions caused by the transformation of
IDL member names and type identifiers resulting in the same name. For example, without the appropriate error
handling, two IDL structs named MyType and My_Type within the same scope, will be mapped onto two different
classes named MyType.

7.1.1.2.1 Pascal Case Transformation

When required, an IDL member name or type identifier shall be transformed into Pascal Case according to the
following rules:

IDL4 to Java Language Mapping 1.0 5

• The first letter after each underscore shall be capitalized and all underscores shall be removed.

• The first letter of the IDL name shall be capitalized.

For example:

• “pascalcase” maps to “Pascalcase”.

• “PASCALCASE” remains “PASCALCASE”.

• “Pascal_Case” maps to “PascalCase”, “pascal_case” to “PascalCase”, “Pascal_case” to “PascalCase”,
“PASCAL_case” to “PASCALCase”, “PASCAL_CASE” to “PASCALCASE”, “_pascalCase” to
“PascalCase”, “_PascalCase” to “PascalCase”, and “pascal_case_” to “PascalCase”.

• “pascalCase” maps to “PascalCase”, “PascalCase” remains “PascalCase”, “PASCALcase” remains
“PASCALcase”, and “PASCALCase” remains “PASCALCase”.

7.1.1.2.2 Camel Case Transformation

When required, an IDL member name or type identifier shall be transformed into Camel Case according to the
following rules:

• The first letter after each underscore shall be capitalized and all underscores shall be removed.

• The first letter of the IDL name shall be lower case.

For example:

• “camelcase” remains “camelcase”.

• “CAMELCASE” becomes “cAMELCASE”.

• “Camel_Case” maps to “camelCase”, “camel_case” to “camelCase”, “Camel_case” to “camelCase”,
“camel_Case” to “camelCase”, “CAMEL_case” to “cAMELCase”, “CAMEL_CASE” to “cAMELCASE”,
“_camelCase” to “camelCase”, “_CamelCase” to “camelCase”, and “camel_case_” to “camelCase”.

• “camelCase” remains “camelCase”, “CamelCase” maps to “camelCase”, “CAMELcase” to “cAMELcase”,
and “CAMELCase” to “cAMELCase”.

7.1.1.2.3 All Uppercase Transformation

When required, an IDL member name or type identifier shall be transformed into All Uppercase according to the
following rules:

• Every letter shall be capitalized.

• All underscores shall remain unchanged.

For example:

• “ALL” remains “ALL” and “ALL_UPPERCASE” remains “ALL_UPPERCASE”.

• “all” maps to “ALL” and “all_uppercase” maps to “ALL_UPPERCASE”.

• “allUppercase” maps to “ALLUPPERCASE”, “AllUppercase” to “ALLUPPERCASE”, and
“ALLUppercase” to “ALLUPPERCASE”.

7.1.1.2.4 All Lowercase Transformation

When required, an IDL member name or type identifier shall be transformed into All Lowercase according to the
following rules:

6 IDL4 to Java Language Mapping 1.0

• Every letter shall be lowercase.

• All underscores shall remain unchanged.

For example:

• “ALL” maps to “all” and “ALL_LOWERCASE” to “all_lowercase”.

• “all” remains “all” and “all_lowercase” remains “all_lowercase”.

• “allLowercase” maps to “alllowercase”, “AllLowercase” to “alllowercase”, and “ALLLowercase” to
“alllowercase”.

7.1.1.3 Suffixes

In addition, because of the nature of the Java language, a single IDL construct may be mapped to several (differently
named) Java constructs. The additional names are constructed by appending a descriptive suffix. If an IDL name ends
in a reserved suffix (for example, Abstract), then an underscore is prepended to the mapped name. For example, an
IDL struct whose name is FooAbstract shall be mapped to _FooAbstract, regardless of whether another IDL type
named Foo exists. Any synthesized names (for example the abstract class in clause 7.6) will be based on the modified
IDL name. For example, the abstract class for struct FooAbstract is named _FooAbstractAbstract.

7.1.2 Reserved Names

The mapping in effect reserves the use of several names for its own purposes. These are:

• The Java class <type>Abstract, where <type> is the name of an IDL defined valuetype.

• The Java class Constants, defined in each Java package <moduleName> resulting from an IDL defined
module named <moduleName>.

• The keywords in the Java language. For example for the Java Language Specification [J2SE 8.0], clause 3.9
the keywords are:

abstract
assert
boolean
break
byte
case
catch
char
class
const
continue
default
do
double
else
enum
extends

final
finally
float
for
goto
if
implements
import
instanceof
int
interface
long
native
new
package
private
protected

public
return
short
static
strictfp
super
switch
synchronized
this
throw
throws
transient
try
void
volatile
while

• The additional Java constants/literals:
true false null

• The following names are treated as reserved if used in a context where the mapping collides with the
following methods on java.lang.Object (from [J2SE 8.0], clause 4.3.2):

clone
notify

equals
notifyAll

finalize
toString

IDL4 to Java Language Mapping 1.0 7

getClass wait hashCode

The use of any of these names for a user defined IDL type or interface (assuming it is also a legal IDL name) will
result in the mapped name having an underscore ("_") prepended.

7.1.3 Holder class

The following classes shall be used as a box to hold objects of a related type. These holder types are required in cases
when an IDL defined data type is passed to an operation as an inout or out parameter. Primitive types utilize the
Holder<E> class parameterized with the associated box type (e.g., Holder<Integer> for the int primitive). Non-
primitive types utilize the generic Holder<E> class parameterized with the non-primitive type,

package org.omg.type;
public class Holder<E> {
 public E value;
};

7.1.4 Java Language Version Requirements

Some features of this language mapping depend on certain Java language support that is not available in some older
versions of the Java Language. The following table identifies pertinent Java language features, and in which Java
language version they become available.

Table 7.1: Java Language Versions and Features

Feature Java Version Minimum

Enumerations J2SE 5.0

Generics (e.g., List<T>, Map<K,V>) J2SE 5.0

Annotation application (type declaration) J2SE 5.0

Annotation application (type use) Java SE 8.0

7.1.5 Code Examples

In various places the notation {...} is used in describing Java code. This indicates that concrete Java code will be
generated for the method body and that the method is concrete, not abstract. The generated code is specific to a
particular vendor’s implementation and is internal to their implementation.

7.2 Core Data Types

7.2.1 IDL Specification

There is no direct mapping of the IDL Specification itself. The elements contained in the IDL specification are
mapped as described in the following clauses.

8 IDL4 to Java Language Mapping 1.0

7.2.2 Modules

An IDL module is mapped to a Java package with the same name. All IDL declarations within the module are
mapped to Java class or interface declarations within the corresponding package.

IDL declarations not enclosed in any modules are mapped to classes or interfaces in the (unnamed) Java global scope.

For example, the following module declaration in IDL:

// ...
module MY_MATH {
 // ...
};

would map to the following Java package declaration according to the IDL Naming Scheme:

package MY_MATH;

or to the following Java package declaration when using the Java Naming Scheme:

package my_math;

7.2.3 Constants

IDL constants shall be mapped to public final classes of the same name within the equivalent scope and
package. The mapped class shall contain a public final static field named value with the value of the
original IDL constant.

For example, the IDL const declarations below:

module MY_MATH {
 const double PI = 3.141592;
 const double e = 2.718282;
 const string my_string = "My String Value";
};

would map to the following Java according to the IDL Naming Scheme:

package MY_MATH;

public final class PI {
 public final static double value = 3.141592;
}
public final class e {
 public final static double value = 2.718282;
}
public final class my_string {
 public final static String value = "My String Value";
}

or to the following Java when using the Java Naming Scheme:

package my_math;

public final class PI {
 public final static double value = 3.141592;
}
public final class E {
 public final static double value = 2.718282;
}
public final class MyString {
 public final static String value = "My String Value";

IDL4 to Java Language Mapping 1.0 9

}

NOTE—The mapping rules defined above provide a complete solution for mapping IDL constants to the Java
programming language. In practice, they enable code generators to perform partial compilation of IDL files, where
the code for constants can be generated independently of other constants that separate IDL files may be declaring
within the same scope (e.g., the same module). However, we acknowledge that grouping related constants in a
holding class is a common practice in the Java programming language. Therefore, this specification defines in Clause
7.2.3.1 an alternative mapping that constructs classes composed of public final static fields with the value of
every constant within a scope. Such alternative mapping may be exercised by partial compilers, as long as all
constants within a scope are defined in a single IDL file; and by advanced compilers capable of parsing multiple IDL
files before generating code for all constants within a scope, which may or may not be defined in a single IDL file.

7.2.3.1 Alternative Mapping

Every scope containing a constant declaration shall contain a public final class. By default, the mapped class
shall be named "Constants". The class name may be modified using the @java_mapping annotation defined in
Clause 8.1, preceding the declaration of the IDL module containing the constants or the constant declaration itself:

@java_mapping(constants_container="<ContainerName>")

For every IDL constant, the mapped public final class shall contain a public final static field
declaration of the equivalent type with the same name and value. In accordance with Clause 7.2.2, if the constants are
not enclosed in any module, the public final class shall be placed under the (unnamed) Java global scope.

For example, the IDL const declarations below:

@java_mapping(constants_container="Constants")
module MY_MATH {
 const double PI = 3.141592;
 const double e = 2.718282;
 const string my_string = "My String Value";
};

would map to the following Java according to the IDL Naming Scheme:

package MY_MATH;

public final class Constants {
 public final static double PI = 3.141592;
 public final static double e = 2.718282;
 public final static string my_string = "My String Value";
}

or to the following Java when using the Java Naming Scheme:

package my_math;

public final class Constants {
 public final static double PI = 3.141592;
 public final static double E = 2.718282;
 public final static string MY_STRING = "My String Value";
}

10 IDL4 to Java Language Mapping 1.0

7.2.4 Data Types

7.2.4.1 Basic Types

7.2.4.1.1 Integer Types

IDL integer types shall be mapped as shown in Table 7.2.

Table 7.2: Mapping of Integer Types

IDL Type Java Type

int8
uint8

byte

short
int16
unsigned short
uint16

short

long
int32
unsigned long
uint32

int

long long
int64
unsigned long long
uint64

long

7.2.4.1.2 Floating-Point Types

IDL floating-point types shall be mapped as shown in Table 7.3.

Table 7.3: Floating-Point Types Mapping

IDL Type Java Type

float float

double double

long double java.math.BigDecimal

7.2.4.1.3 Char Types

The IDL char shall be mapped to the Java primitive type char1.

7.2.4.1.4 Wide Char Types

The IDL wchar shall be mapped to the Java primitive type char.

1 IDL characters are 8-bit quantities representing elements of a character set while Java characters are 16-bit unsigned
quantities representing Unicode characters.

IDL4 to Java Language Mapping 1.0 11

7.2.4.1.5 Boolean Types

The IDL boolean type shall be mapped to the Java boolean, and the IDL constants TRUE and FALSE shall be
mapped to the corresponding Java boolean literals true and false.

7.2.4.1.6 Octet Type

The IDL type octet, an 8-bit quantity, shall be mapped to the Java type byte.

7.2.4.2 Template Types

7.2.4.2.1 Sequences

7.2.4.2.1.1 Sequence of Basic Types

IDL sequences of Basic Types shall be mapped to the interfaces shown in Table 7.4. Each interface provides a type-
specific sequence interface to the underlying sequence primitives, facilitating a more performant implementation
when compared to the List<E> generic list interface.

Table 7.4: Mapping of Sequences of Basic Types

IDL Type Java Interface

sequence<boolean> BooleanSeq extends
 java.util.List<Boolean>

sequence<char>
sequence<wchar>

CharSeq extends
 java.util.List<Char>

sequence<octet>
sequence<int8>
sequence<uint8>

ByteSeq extends
 java.util.List<Byte>

sequence<int16>
sequence<short>
sequence<uint16>
sequence<unsigned short>

ShortSeq extends
 java.util.List<Short>

sequence<int32>
sequence<long>
sequence<uint32>
sequence<unsigned long>

IntegerSeq extends
 java.util.List<Integer>

sequence<int64>
sequence<long long>
sequence<uint64>
sequence<unsigned long long>

LongSeq extends
 java.util.List<Long>

sequence<float> FloatSeq extends
 java.util.List<Float>

sequence<double> DoubleSeq extends
 java.util.List<Double>

12 IDL4 to Java Language Mapping 1.0

IDL Type Java Interface

sequence<long double> BigDecimalSeq extends
 java.util.List<BigDecimal>

These type-specific interfaces shall be defined as follows for every primitive type:

package org.omg.type;

interface <InterfaceName> extends java.util.List<MappedType> {
 public <InterfaceName>(int initialCapacity);
 public <InterfaceName>(<PrimitiveType>[] array);

 public void add(<PrimitiveType> element);
 public void add(int index, <PrimitiveType> element);

 public <PrimitiveType> add(<PrimitiveType>[] elements);
 public <PrimitiveType> add(<PrimitiveType>[] elements, int index);
 public <PrimitiveType> add(<PrimitiveType>[] elements, int index, int count);

 public <PrimitiveType> get(int index);
 public void set(int index, <PrimitiveType> element);
 public void set(int dstIndex, <PrimitiveType>[] elements,
 int srcIndex, int length);

 public <PrimitiveType>[] toArray(<PrimitiveType>[] array);
}

Where:

• <InterfaceName> is the interface name indicated in Table 7.4.

• <MappedType> is the corresponding primitive type in Java, following the mapping rules specified in clause
7.2.4.1.

Bounds checking on bounded sequences shall raise a java.lang.IndexOutOfBoundsException exception if
necessary.

For example, the interface for BooleanSeq would be:

package org.omg.type;

interface BooleanSeq extends java.util.List<Boolean> {
 public BooleanSeq(int initialCapacity {...}
 public BooleanSeq(boolean[] array) {...}

 public void add(boolean element) {...}
 public void add(int index, boolean element) {...}

 public boolean add(boolean[] elements) {...}
 public boolean add(boolean[] elements, int index) {...}
 public boolean add(boolean[] elements, int index, int count) {...}

 public boolean get(int index) {...}
 public void set(int index, boolean element) {...}
 public void set(int dstIndex, boolean[] elements,
 int srcIndex, int length) {...}

 public boolean[] toArray(boolean[] array) {...}
}

IDL4 to Java Language Mapping 1.0 13

7.2.4.2.1.2 Sequence of non Basic Types

IDL sequences of non basic types shall be mapped to the Java generic java.util.List<E> interface, instantiated
with the mapped type E of the sequence element. In the mapping, everywhere the sequence type is needed, a
List<E> shall be used.

Typo fixes

Bounds checking on bounded sequences shall raise a java.lang.IndexOutOfBoundsException exception if
necessary.

For example the IDL declaration:

struct Foo {
 ...
};

struct MyType {
 sequence<long> long_sequence;
 sequence<Foo> foo_sequence;
};

would map to the following Java according to the IDL Naming Scheme:

import java.util.List;

public class Foo implements java.io.Serializable {
 ...
}

public class MyType implements java.io.Serializable {
 public MyType() {...}
 public MyType(LongSeq long_sequence, List<Foo> foo_sequence) {...}
 public LongSeq get_long_sequence() {...}
 public void set_long_sequence(LongSeq long_sequence) {...}
 public List<Foo> get_foo_sequence() {...}
 public void set_foo_sequence(List<Foo> foo_sequence) {...}
}

or to the following Java when using the Java Naming Scheme:

import java.util.List;

public class Foo implements java.io.Serializable {
 ...
}

public class MyType implements java.io.Serializable {
 public MyType() {...}
 public MyType(LongSeq longSequence, List<Foo> fooSequence) {...}
 public LongSeq getLongSequence() {...}
 public void setLongSequence(LongSeq longSequence) {...}
 public List<Foo> getFooSequence() {...}
 public void setFooSequence(List<Foo> fooSequence) {...}
}

7.2.4.2.2 Strings

The IDL string, both bounded and unbounded variants, shall be mapped to java.lang.String.

Range checking for characters in the string as well as bounds checking of the string shall raise a
java.lang.IndexOutOfBoundsException exception if necessary.

14 IDL4 to Java Language Mapping 1.0

7.2.4.2.3 Wstrings

The IDL wstring, both bounded and unbounded variants, shall be mapped to java.lang.String.

Range checking for characters in the string as well as bounds checking of the string shall raise a
java.lang.IndexOutOfBoundsException exception if necessary.

7.2.4.2.4 Fixed Type

The IDL fixed type shall be mapped to the Java java.math.BigDecimal class. Range checking shall raise a
java.lang.ArithmeticException if necessary.

7.2.4.3 Constructed Types

7.2.4.3.1 Structures

An IDL struct shall be mapped to a Java public class of the same name. The class shall provide the following:

• implements java.io.Serializable2

• a public accessor (getter) method for each member

• a public modifier (setter) method for each member

• a public constructor that accepts parameters for each members (the all values constructor)

• a public constructor that takes no parameters (the default constructor)

The all values constructor shall initialize member fields from the corresponding parameter.

The default constructor shall initialize member fields as follows:

• all primitive members shall be left as initialized by the Java default initialization

• all string members shall be initialized to the empty string ("")

• all array members shall be initialized to an array of declared size whose elements are initialized with their
default constructor

• all sequence members shall be initialized to zero-length sequences of the corresponding type

• all other members shall be initialized to an object created with their respective default constructor

• these rules may be modified by annotations as described in clause 8.

The name of the accessor and modifier methods shall follow the pattern get_<MemberName>() and
set_<MemberName>() when using the IDL Naming Scheme, and get<MemberName>() and set<MemberName>()
when using the Java Naming Scheme. The accessor return type shall match the member type and the modifier method
shall accept a parameter of the member type.

For example, the following IDL:

struct S1 {
 long long_variable;
 short short_variable;
 long long longlong_variable;

2 Implementers of this specification may override the default Java serialization by providing an implementation of the
writeObject() and readObject() method.

IDL4 to Java Language Mapping 1.0 15

 string URL;
};

would map to the following Java according to the IDL Naming Scheme:

public class S1 implements java.io.Serializable {
 public S1() {...}
 public S1(int long_variable, short short_variable,
 long longlong_variable, String URL) {...}
 public int get_long_variable() {...}
 public void set_long_variable(int long_variable) {...}
 public short get_short_variable() {...}
 public void set_short_variable(short short_variable) {...}
 public long get_longlong_variable() {...}
 public void set_longlong_variable(long longlong_variable) {...}
 public String get_URL() {...}
 public void set_URL(String URL) {...}
}

or to the following Java when using the Java Naming Scheme:

public class S1 implements java.io.Serializable {
 public S1() {...}
 public S1(int longVariable, short shortVariable,
 long longLongVariable, String URL) {...}
 public int getLongVariable() {...}
 public void setLongVariable(int longVariable) {...}
 public short getShortVariable() {...}
 public void setShortVariable(short shortVariable) {...}
 public long getLongLongVariable() {...}
 public void setLongLongVariable(long longLongVariable) {...}
 public String getURL() {...}
 public void setURL(String URL) {...}
}

7.2.4.3.2 Unions

An IDL union shall be mapped to a Java public final class with the same name.

The class shall implement java.io.Serializable and provide the following:

• a public default constructor, which shall set the discriminator to the default value for the discriminator type.
If this selects a branch, then the selected member shall also be set to the default value for the member type.

• a public accessor method for the discriminator, named get_discriminator() when using the IDL
Naming Scheme or getDiscriminator() when using the Java Naming Scheme

• a public accessor method for each member

• a public modifier method for each member

• for each member that has more than one case label, an additional public modifier method that takes the
discriminator value

• a public modifier method for the member corresponding to the default label, if present

• a public default modifier method, if needed

The normal name conflict resolution rule shall apply (i.e., prepend an "_") to the discriminator if there is a name
clash with the mapped union type name or any of the field names.

16 IDL4 to Java Language Mapping 1.0

The member accessor and modifier methods shall be named get_<MemberName>() and set_<MemberName>()
when using the IDL Naming Scheme, and get<MemberName>() and set<MemberName>() when using the Java
Naming Scheme. The accessor method return type shall match the member type. The modifier method shall accept a
parameter of the member type. Accessor methods shall raise a java.lang.IllegalStateException exception if
the expected member has not been set.

If there is more than one case label corresponding to a member, an extra modifier method (set_<MemberName>() or
set<MemberName>(), depending on the naming scheme) that takes an explicit discriminator parameter of the
discriminator type shall be generated. The extra modifier method shall throw a
java.lang.IllegalArgumentException exception when a value is passed for the discriminator that is not
among the case labels for the member.

If a member corresponds to the default case label, its simple modifier shall set the discriminant to the first available
default value starting from a 0 index of the discriminant type. In addition, an extra modifier that takes an explicit
discriminator parameter shall be generated. The extra modifier method shall throw a
java.lang.IllegalArgumentException exception when a value is passed for the discriminator that is not
among the case labels for the default branch.

Two default modifier methods, both named __default(), are generated if there is no explicit default case label, and
the set of case labels does not completely cover the possible values of the discriminant. The first modifier method
shall take no arguments, return void, and set the discriminant to the first available default value starting from a 0
index of the discriminant type. The second modifier method method shall take a discriminator parameter of the
discriminator type and return void. Both methods shall leave the union with a discriminator value set, and the value
member uninitialized.

For example, the following IDL:

union U1 switch (octet) {
 case 1: long long_variable;
 case 2:
 case 3: short short_variable;
 default: octet octet_variable;
};

would map to the following Java according to the IDL Naming Scheme:

final public class U1 implements java.io.Serializable {
 public U1() {...}
 public byte get_discriminator() {...}

 public int get_long_variable() {...}
 public void set_long_variable(int long_variable) {...}
 public short get_short_variable() {...}
 public void set_short_variable(short short_variable) {...}
 public void set_short_variable(short short_variable, byte discriminator) {...}
 public byte get_octet_variable() {...}
 public void set_octet_variable(byte octet_variable) {...}
 public void set_octet_variable(byte octet_variable, byte discriminator) {...}
}

or to the following Java when using the Java Naming Scheme:

final public class U1 implements java.io.Serializable {
 public U1() {...}
 public byte getDiscriminator() {...}

 public int getLongVariable() {...}
 public void setLongVariable(int val) {...}
 public short getShortVariable() {...}

IDL4 to Java Language Mapping 1.0 17

 public void setShortVariable(short shortVariable) {...}
 public void setShortVariable(short shortVariable, byte discriminator) {...}
 public byte getOctetVariable() {...}
 public void setOctetVariable(byte octetVariable) {...}
 public void setOctetVariable(byte octetVariable, byte discriminator) {...}
}

Accordingly, the following IDL:

union U2 switch (long) {
 case 1: short short_variable;
 case 2: long long_variable;
};

would map to the following Java according to the IDL Naming Scheme:

final public class U2 implements java.io.Serializable {
 public U2() {...}
 public int get_discriminator() {...}
 public int get_short_variable() {...}
 public void set_short_variable(short short_variable) {...}
 public long get_long_variable() {...}
 public void set_long_variable(long long_variable) {...}
 public void __default() {...}
 public void __default(int discriminator) {...}
}

or to the following Java when using the Java Naming Scheme:

final public class U2 implements java.io.Serializable {
 public U2() {...}
 public int getDiscriminator() {...}
 public int getShortVariable() {...}
 public void setShortVariable(short shortVariable) {...}
 public long getLongVariable() {...}
 public void setLongVariable(long longVariable) {...}
 public void __default() {...}
 public void __default(int discriminator) {...}
}

7.2.4.3.3 Enumerations

An IDL enum shall be mapped to a Java public enum with the same name as the IDL enum type.

The Java enum type shall include a list of the enumerators, a private member to hold the value, and a private
constructor to initialize the enumerators with the constant value and name. Additionally, the Java enum type shall
have the helper method valueOf(int) to get an enumerator instance from an int.

For example, the IDL:

enum AnEnum {
 @value(1) one,
 @value(2) two
};

would map to the following Java according to the IDL Naming Scheme:

public enum AnEnum {
 one(1),
 two(2);

 private int value;
 private AnEnum(int value) {

18 IDL4 to Java Language Mapping 1.0

 this.value = value;
 }
 public int getValue() {
 return value;
 }
 public static AnEnum valueOf(int v) {
 // return one, two, or raise java.lang.RuntimeException
 }
}

or to the following Java when using the Java Naming Scheme:

public enum AnEnum {
 ONE(1),
 TWO(2);

 private int value;
 private AnEnum(int value) {
 this.value = value;
 }
 public int getValue() {
 return value;
 }
 public static AnEnum valueOf(int v) {
 // return ONE, TWO, or raise java.lang.RuntimeException
 }
}

7.2.4.3.4 Constructed Recursive Types

Constructed recursive types are supported by mapping the involved types directly to Java as described elsewhere in
clause 7.

7.2.4.4 Arrays

An IDL array shall be mapped to a Java array of the mapped element type. In the mapping, everywhere the array type
is needed, an array of the mapped element type shall be used. Bound violations for the array shall raise a
java.lang.IndexOutOfBoundsException exception.

For example the IDL declaration3:

const long foo_array_length = 200;

struct S2 {
 long array1[100];
 short array2[10];
 Foo array3[foo_array_length];
 Bar array4[12];
};

would map to the following Java according to the IDL Naming Scheme:

public final class foo_array_length {
 public final static double value = 200;
}

public class S2 implements java.io.Serializable {

3 The length of the array can be made available in the mapped Java source code, by bounding the IDL array with an IDL
constant, which will be mapped as per the rules for constants. For example, see foo_array_length in the example
above.

IDL4 to Java Language Mapping 1.0 19

 public S2() {...}
 public S2(int[] array1, short[] array2, Foo[] array3, Bar[] array4) {...}
 public int[] get_array1() {...}
 public void set_array1(int[] array1) {...}
 public short[] get_array2() {...}
 public void set_array2(short[] array2) {...}
 public Foo[] get_array3() {...}
 public void set_array3(Foo[] array3) {...}
 public Bar[] get_array4() {...}
 public void set_array4(Bar[] array4) {...}
}

or to the following Java when using the Java Naming Scheme:

public final class FooArrayLength {
 public final static double value = 200;
}

public class S2 implements java.io.Serializable {
 public S2() {...}
 public S2(int[] array1, short[] array2, Foo[] array3, Bar[] array4) {...}
 public int[] getArray1() {...}
 public void setArray1(int[] array1) {...}
 public short[] getArray2() {...}
 public void setArray2(short[] array2) {...}
 public Foo[] getArray3() {...}
 public void setArray3(Foo[] array3) {...}
 public Bar[] getArray4() {...}
 public void setArray4(Bar[] array4) {...}
}

7.2.4.5 Native Types

IDL provides a declaration to define an opaque type whose representation is specified by the language mapping. This
language mapping specification does not define any native types.

7.2.4.6 Naming Data Types [typedef]

Java does not have a typedef construct; therefore, the IDL typedef does not result in any Java types. The use of an
IDL typedef type shall be replaced with the type referenced by the typedef type. This rule shall apply recursively.

For example the IDL declaration:

typedef long Length;

struct S3 {
 Length member_length;
};

would map to the following Java according to the IDL Naming Scheme:

public class S3 implements java.io.Serializable {
 public S3() {...}
 public S3(int member_length) {...}
 public int get_member_length() {...}
 public void set_member_length(int member_length) {...}
}

or to the following Java when using the Java Naming Scheme:

public class S3 implements java.io.Serializable {
 public S3() {...}

20 IDL4 to Java Language Mapping 1.0

 public S3(int memberLength) {...}
 public int getMemberLength() {...}
 public void setMemberLength(int memberLength) {...}
}

That is, the typedef type Length is replaced with IDL long (i.e., the type it references) which then maps to Java as
int.

Annotations on an IDL typedef shall be applied to uses of the typedef in other type declarations. For example the
IDL declaration:

typedef @max(100) long Length;
struct MyType {
 Length a;
 sequence<Length> lengths;
};

shall be mapped as if the IDL declaration had been:

struct MyType {
 @max(100) long a;
 sequence<@max(100) long> lengths;
};

7.3 Any
The IDL any type shall be mapped to org.omg.type.Any type. The implementation of the org.omg.type.Any is
middleware specific, and should include operations that allow programmers to insert and access the value contained
in an any instance as well as the actual type of that value.

7.4 Interfaces – Basic
Each IDL interface shall be mapped to a Java public interface with the same name. The Java interface
shall be defined in the package corresponding to the IDL module of the interface. If the IDL interface derives
from other IDL interfaces, then the Java interface shall be declared to extend the Java classes resulting from
the mapping of the base interfaces.

Each attribute defined in the IDL interface shall map to two methods in the Java interface: One method to get
the attribute and the other to set the attribute. The name of the get and set methods shall be
get_<AttributeName>() and set_<AttributeName>(), when using the IDL Naming Scheme, and
get<AttributeName>() and set<AttributeName>() when using the Java Naming Scheme. The get method
shall take no parameters and its return type shall match the type of the attribute. The set method shall take one
parameter of the type of the attribute, and shall return no value. If the attribute is readonly, the set method
shall be omitted.

Each operation defined in the IDL interface shall map to a method in the Java interface. The name of the
method shall be the same as the name of the IDL operation. The number and order of the method arguments shall be
as defined in the IDL. The types of arguments to the method shall be mapped according to the mapping rules
specified in this chapter, and their name shall be the name of the IDL argument. The method declaration shall specify
any exceptions listed in the IDL with a throws clause. Any out or inout arguments shall be mapped to their
Holder types.

For example, the following IDL:

interface AnInterface {
 attribute long long_attribute;

IDL4 to Java Language Mapping 1.0 21

 readonly attribute long long_ro_attribute;
 void op1(in long in_param, inout long inout_param, out long out_param);
};

would map to the following Java according to the IDL Naming Scheme:

public interface AnInterface {
 public AnInterface() {...}
 public AnInterface(int long_attribute, int long_ro_attribute) {...}
 public int get_long_attribute() {...}
 public void set_long_attribute(int long_attribute) {...}
 public int get_long_ro_attribute() {...}
 public abstract void op1(int in_param,
 org.omg.type.Holder<Integer> inout_param,
 org.omg.type.Holder<Integer> out_param);
}

or to the following Java when using the Java Naming Scheme:

public interface AnInterface {
 public AnInterface() {...}
 public AnInterface(int longAttribute, int longRoAttribute) {...}
 public int getLongAttribute() {...}
 public void setLongAttribute(int longAttribute) {...}
 public int getLongRoAttribute() {...}
 public abstract void op1(int inParam,
 org.omg.type.Holder<Integer> inOutParam,
 org.omg.type.Holder<Integer> outParam);
}

7.4.1 Exceptions
An IDL exception shall be mapped to a Java class extending the java.lang.RuntimeException class with the
same name as the IDL exception. Any members in the IDL exception are mapped to members in the Java class
following the rules of the IDL struct mapping defined in 7.2.4.3.1. The mapped exception shall also include
constructors that follow the rules of the IDL struct mapping as well.

For example, the following IDL:

exception CustomException {
 long error_code;
};
interface InterfaceException {
 void op1(in long in_param) raises(AnException);
};

would map to the following Java according to the IDL Naming Scheme:

public class CustomException extends java.lang.RuntimeException {
 public CustomException() {...}
 public CustomException(int error_code) {...}
 public int get_error_code() {...}
 public void set_error_code(int error_code) {...}
}

public interface InterfaceException {
 void op1(int in_param) throws CustomException;
}

or to the following Java when using the Java Naming Scheme:

public class CustomException extends java.lang.RuntimeException {

22 IDL4 to Java Language Mapping 1.0

 public CustomException() {...}
 public CustomException(int errorCode) {...}
 public int getErrorCode() {...}
 public void setErrorCode(int errorCode) {...}
}

public interface InterfaceException {
 void op1(int inParam) throws CustomException;
}

7.4.2 Interface Forward Declaration

An interface forward declaration has no mapping to the Java language.

7.5 Interfaces – Full
This building block complements Interfaces – Basic adding the ability to embed in the interface body additional
declarations such as types, exceptions, and constants. The embedded elements (types, exceptions, and constants) shall
be mapped to a public declaration within the scope of the Java interface.

For example, the following IDL:

interface FullInterface {
 struct S {
 long a;
 };
 const double PI = 3.14;
 void op1(in S s_in);
};

would map to the following Java according to the IDL Naming Scheme:

public interface FullInterface {
 public class S implements java.io.Serializable {
 public S() {...}
 public S(int a) {...}
 public int get_a() {...}
 public void set_a(int a) {...}
 }

 public final class PI {
 public final static double value = 3.14;
 }
 public void op1(S s_in);
}

or to the following Java when using the Java Naming Scheme:

public interface FullInterface {
 public class S implements java.io.Serializable {
 public S() {...}
 public S(int a) {...}
 public int getA() {...}
 public void setA(int a) {...}
 }

 public final class PI {
 public final static double value = 3.14;
 }
 public void op1(S sIn);

IDL4 to Java Language Mapping 1.0 23

}

7.6 Value Types
An IDL valuetype type shall be mapped to two Java classes:

• A helper abstract class with the suffix Abstract (the “abstract” class).

• A class with the same name as the IDL valuetype (the “non-abstract” class).

The mapped non-abstract class shall inherit from the abstract class. If the IDL valuetype inherits from a base
valuetype, the mapped abstract class shall inherit from the non-abstract class that resulted from mapping the base
valuetype. If the IDL valuetype supports an interface type, then the mapped abstract class shall implement
the corresponding mapped Java interface.

The valuetype members shall be mapped onto the abstract class the same way as class members, with the addition
that private members are protected with the Java protected access modifier. The valuetype operations shall be
mapped onto the abstract class the same way as for interfaces. Each valuetype initializer (i.e., factory operation)
is mapped onto the abstract class to a method returning void and accepting the specified in parameters.

The non-abstract class has @Override for all the methods in the abstract class and any implemented interfaces, and
it is expected to fill them. These operations have empty implementations (or throw a not-implemented exception).

References to the value type from other classes map to references to the non-abstract class.

For example, the following IDL:

valuetype VT1 {
 attribute long a_long_attr;
 void vt_op(in long p_long);
 public long a_public_long;
 private long a_private_long;
 factory vt_factory (in long a_long, in short a_short);
};
interface MyInterface {
 void op();
};
valuetype VT2 : VT1 supports MyInterface {
 public long third_long;
};

would map to the following Java according to the IDL Naming Scheme:

public abstract class VT1Abstract {
 public int a_long_attr;
 public abstract void vt_op(int p_long);
 public int a_public_long;
 protected int a_private_long;
 public abstract void vt_factory(int a_long, short a_short);
}
public class VT1 extends VT1Abstract {
 public VT1() {...}
 @Override
 public void vt_op(int p_long) {...}
 @Override
 public void vt_factory(int a_long, short a_short) {...}
}
public interface MyInterface {
 ...
}
public abstract class VT2Abstract extends VT1 implements MyInterface {

24 IDL4 to Java Language Mapping 1.0

 ...
}
public class VT2 extends VT2Abstract {
 ...
}

or to the following Java when using the Java Naming Scheme:

public abstract class VT1Abstract {
 public int aLongAttr;
 public abstract void vtOp(int pLong);
 public int aPublicLong;
 protected int aPrivateLong;
 public abstract void vtFactory(int aLong, short aShort);
}
public class VT1 extends VT1Abstract {
 public VT1() {...}
 @Override
 public void vtOp(int pLong) {...}
 @Override
 public void vtFactory(int aLong, short aShort) {...}
}
public interface MyInterface {
 ...
}
public abstract class VT2Abstract extends VT1 implements MyInterface {
 ...
}
public class VT2 extends VT2Abstract {
 ...
}

7.7 CORBA-Specific – Interfaces
CORBA-specific mappings are defined in clause A.1 of Annex A: Platform-Specific Mappings.

7.8 CORBA-Specific – Value Types
CORBA-specific mappings are defined in clause A.1 of Annex A: Platform-Specific Mappings.

7.9 Components – Basic
Basic components have no direct language mapping; they shall be mapped to intermediate IDL, as specified in
[IDL4], and mapped to Java accordingly.

7.10 Components – Homes
Homes have no direct language mapping; they shall be mapped to intermediate IDL, as specified in [IDL4], and
mapped to Java accordingly.

7.11 CCM-Specific
CORBA-specific mappings are defined in clause A.1 of Annex A: Platform-Specific Mappings.

IDL4 to Java Language Mapping 1.0 25

7.12 Components – Ports and Connectors
Ports and connectors have direct language mapping; they shall be mapped to intermediate IDL, as specified in
[IDL4], and mapped to Java accordingly.

7.13 Template Modules
Template module instances have no direct language mapping; they shall be mapped to intermediate IDL, as specified
in [IDL4], and mapped accordingly.

7.14 Extended Data Types

7.14.1 Structures with Single Inheritance

If the IDL struct inherits from a base IDL struct, then the Java class shall be declared to extend the base class
that resulted from mapping the base IDL struct. The “all values” constructor for the derived struct’s Java class
shall take as its first parameter a non-null instance of the base struct’s Java class.

For example, extending the IDL struct in clause 7.2.4.3.1 with the following:

struct S5 : S1 {
 float float_variable;
};

would map to the following Java according to the IDL Naming Scheme:

public class S5 extends S1 implements java.io.Serializable {
 public S5() {...}
 public S2(S1 parent, float float_variable) {...}
 public float get_float_variable() {...}
 public void set_float_variable(float float_variable) {...}
}

or to the following Java when using the Java Naming Scheme:

public class S5 extends S1 implements java.io.Serializable {
 public S5() {...}
 public S2(S1 parent, float floatVariable) {...}
 public float getFloatVariable() {...}
 public void setFloatVariable(float floatVariable) {...}
}

7.14.2 Union Discriminators

This IDL4 block adds int8, uint8, wchar and octet to the set of valid types for a discriminator. The mapping of
these union discriminator types are covered in clause 7.2.4.3.2.

7.14.3 Additional Template Types

7.14.3.1 Maps

An IDL map shall be mapped to a Java generic java.util.Map instantiated with the Java equivalent key type and
value type. In the mapping, everywhere the map type is needed, a Map of the key type and value type shall be used. If

26 IDL4 to Java Language Mapping 1.0

the IDL type of the key or the value is a Basic Type, the mapped type shall be the Java boxed type specified in the
table below. For example, if the IDL key type is int32, the map shall have key of type Integer.

Table 7.5: Mapping of Map key type

IDL Basic Type Java Boxed Type

boolean Boolean

char
wchar

Char

octet
int8
uint8

Byte

int16
short

Short

uint16
unsigned short

Integer

int32
long

Integer

uint32
unsigned long

Long

int64
long long

Long

uint64
unsigned long long

java.math.BigInteger

float Float

double Double

long double java.math.BigDecimal

Bounds checking shall raise a java.lang.IndexOutOfBoundsException exception if necessary.

For example the IDL declaration:

struct S4 {
 map<long, string> map1;
 map<string, Foo> map2;
};

would map to the following Java according to the IDL Naming Scheme:

public class S4 implements java.io.Serializable {
 public S4() {...}
 public S4(java.lang.Map<Integer, String> map1,
 java.lang.Map<String, Foo> map2) {...}
 public java.lang.Map<Integer, String> get_map1() {...}
 public void set_map1(java.lang.Map<Integer, String> map1) {...}

IDL4 to Java Language Mapping 1.0 27

 public java.lang.Map<String,Foo> get_map2() {...}
 public void set_map2(java.lang.Map<String, Foo> map2) {...}
}

or to the following Java when using the Java Naming Scheme:
public class S4 implements java.io.Serializable {
 public S4() {...}
 public S4(java.lang.Map<Integer, String> map1,
 java.lang.Map<String,Foo> map2) {...}
 public java.lang.Map<Integer, String> getMap1() {...}
 public void setMap1(java.lang.Map<Integer, String> map1) {...}
 public java.lang.Map<String,Foo> getMap2() {...}
 public void setMap2(java.lang.Map<String, Foo> map2) {...}
}

7.14.3.2 Bitsets

An IDL bitset shall map to Java as a public class with the same name.

The class shall contain accessor and modifier methods for each named bitfield in the set. The name of the
accessor and modifier methods shall follow the pattern get_<BitfieldName>() and set_<BitfieldName>()
when using the IDL Naming Scheme, and get<BitfieldName>() and set<BitfieldName>() when using the
Java Naming Scheme. The accessor method return type shall match the member type and the modifier method shall
accept a parameter of the member type.

The IDL type of each bitfield member, if not specified in the IDL, shall take as default value the smallest type
able to store the bit field with no loss (i.e. boolean if size is 1, octet if it is between 2 and 8, unsigned short if
it is between 9 and 16, unsigned long if it is between 17 and 32 and unsigned long long if it is between 33
and 64).

For example the IDL declaration:

bitset MyBitset {
 bitfield<3> a;
 bitfield<1> b;
 bitfield<4>;
 bitfield<12, short> d;
};

would map to the following Java according to the IDL Naming Scheme:

public class MyBitset {
 public byte get_a() {...}
 public void set_a(byte a) {...}
 public boolean get_b() {...}
 public void set_b(boolean b) {...}
 public short get_c() {...}
 public void set_c(short c) {...}
 public short set_d() {...}
 public void get_d(short d) {...}
}

or to the following Java when using the Java Naming Scheme:

public class MyBitset {
 public byte getA() {...}
 public void setA(byte a) {...}
 public boolean getB() {...}
 public void setB(boolean b) {...}
 public short getC() {...}

28 IDL4 to Java Language Mapping 1.0

 public void setC(short c) {...}
 public short setD() {...}
 public void getD(short d) {...}
}

7.14.3.3 Bitmask type

The IDL bitmask type shall map to a Java enum and a java.util.BitSet. The Java enum name shall be the IDL
bitmask name with the Flags suffix appended.

The Java enum shall contain a member for each named member of the IDL bitmask. The value of each Java enum
member is dictated by the position property (@position) of the corresponding IDL bitmask member. If no position
is specified for a literal, the Java enum literal shall be set to the value of the next power of 2, relative to the previous
literal. The enum constants can be used to set, clear, and or test individual bits in the java.util.BitSet instance4.

If the size (number of bits) exceeds that specified by the @bit_bound annotation, a
java.lang.IndexOutOfBoundsException exception shall be raised.

For example:

bitmask MyBitMask {
 flag0, flag1, flag2
};

struct BitmaskExample {
 MyBitMask a_bitset;
};

would map to the following Java according to the IDL Naming Scheme:

enum MyBitMaskFlags {
 flag0, flag1, flag2
}

class BitmaskExample implements java.io.Serializable {
 java.util.BitSet a_bitset;
}

or to the following Java when using the Java Naming Scheme:

enum MyBitMaskFlags {
 FLAG0, FLAG1, FLAG2
}

class BitmaskExample implements java.io.Serializable {
 java.util.BitSet aBitset;
}

7.15 Anonymous Types
No impact to the Java language mapping.

4 In addition to set(), clear(), and get() to operate on individual bits in the bitset, the java.util.BitSet
implementation provides common logical operations such as AND, OR, XOR etc, which are also useful.

IDL4 to Java Language Mapping 1.0 29

7.16 Annotations

7.16.1 Defining Annotations

User-defined annotations may be propagated to the generated code. If user defined annotations are mapped to Java,
then the following requirements apply.

An IDL annotation type named <AnnotationName>, defining members <Member1> through <MemberN>, shall be
represented by the following Java annotation types:

public @interface <AnnotationName> {
 <Member1Type> <Member1Name>() [default <DefaultValue>];
 ...
 <MemberNType> <MemberNName>() [default <DefaultValue>];
}

public @interface <AnnotationName>Group {
 <AnnotationName>[] getValue();
}

The <MemberXType> shall be the Java type corresponding to the type of the IDL member. If a default value is
specified for a given member, it shall be reflected in the Java definition. Otherwise, the Java definition shall have no
default value.

For example, the IDL user defined annotation,

@annotation MyAnnotation {
 boolean value default TRUE;
};

maps to Java like this:

public @interface MyAnnotation {
 boolean value() default true;
}
public @interface MyAnnotationGroup {
 MyAnnotation[] getValue();
}

7.16.2 Applying User-Defined Annotations

For each IDL element to which a single instance user-defined annotation is applied, the corresponding Java element
shall be annotated with the mapped Java annotation of the same name.

For example, the IDL user defined annotation,

@annotation MyAnnotation {
 boolean value default TRUE;
};

@MyAnnotation
struct AnnotatedStruct {
 long a_long;
};

would map to the following Java according to the IDL Naming Scheme:

30 IDL4 to Java Language Mapping 1.0

public @interface MyAnnotation {
 boolean value() default true;
}
public @interface MyAnnotationGroup {
 MyAnnotation[] value();
}

@MyAnnotation
public class AnnotatedStruct {
 public int a_long;
}

or to the following Java when using the Java Naming Scheme:
public @interface MyAnnotation {
 boolean value() default true;
}
public @interface MyAnnotationGroup {
 MyAnnotation[] value();
}

@MyAnnotation
public class AnnotatedStruct {
 public int aLong;
}

For each IDL element to which multiple instances of the annotation are applied, the corresponding Java element shall
be annotated with the mapped annotation bearing the Group suffix; each application of the user-defined annotation
shall correspond to a member of the array in the group.

For example, the IDL user defined annotation,

@annotation MyAnnotation {
 boolean value default TRUE;
};

@MyAnnotation(true)
@MyAnnotation(false)
struct MultiAnnotatedStruct {
 long a_long;
};

would map to the following Java according to the IDL Naming Scheme:

public @interface MyAnnotation {
 boolean value() default true;
}
public @interface MyAnnotationGroup {
 MyAnnotation[] value();
}

@MyAnnotationGroup({@MyAnnotation(value=true), @MyAnnotation(value=false)})
public class MultiAnnotatedStruct {
 public int a_long;
}

or to the following Java when using the Java Naming Scheme:
public @interface MyAnnotation {
 boolean value() default true;
}
public @interface MyAnnotationGroup {
 MyAnnotation[] value();

IDL4 to Java Language Mapping 1.0 31

}

@MyAnnotationGroup({@MyAnnotation(value=true), @MyAnnotation(value=false)})
public class MultiAnnotatedStruct {
 public int aLong;
}

7.17 Standardized Annotations
The IDL4 specification defines some annotations and assigns them to logical groups. These annotations may be
applied to various constructs throughout the IDL specification, and their impact on the language mapping is
dependent on the context in which they are applied. The following clauses summarize the impact these defined
annotations have on the language mapping, and provide cross references to earlier document clauses where the details
are given.

7.17.1 Group of Annotations: General Purpose

Table 7.6 identifies the mapping impact of the IDL defined General Purpose Annotations.

Table 7.6: General Purpose Annotation Impact

General Purpose Annotation Impact on Language Mapping

@id No impact on mapping

@autoid No impact on mapping

@optional Replaces type with boxed type, for Basic Types. No impact on other types.

@position Impacts the mapping of bitmask. See clause 7.14.3.3.

@value Impacts the mapping of enum. See clause 7.2.4.3.3.

@extensibility No impact on mapping

@final No impact on mapping

@mutable No impact on mapping

@appendable No impact on mapping

7.17.2 Group of Annotations: Data Modeling

Table 7.7 identifies the mapping impact of the IDL defined Data Modeling Annotations.

Table 7.7: Data Modeling Annotation Impact

Data Modeling Annotation Impact on Language Mapping

@key No impact on mapping

32 IDL4 to Java Language Mapping 1.0

Data Modeling Annotation Impact on Language Mapping

@must_understand No impact on mapping

@default_literal Value used in default constructor

7.17.3 Group of Annotations: Units and Ranges

Table 7.8 identifies the mapping impact of the IDL defined Units and Ranges Annotations.

Table 7.8: Units And Ranges Annotation Impact

Unit and Ranges Annotation Impact on Language Mapping

@default Value used in default constructor

@range The provided value is tested in the member modifier (setter), and a
java.lang.IllegalArgumentException is raised if the parameter does not
meet requirements

@min The provided value is tested in the member modifier (setter), and a
java.lang.IllegalArgumentException is raised if the parameter does not
meet requirements

@max The provided value is tested in the member modifier (setter), and a
java.lang.IllegalArgumentException is raised if the parameter does not
meet requirements

@unit No impact on mapping

7.17.4 Group of Annotations: Data Implementation

Table 7.9 identifies the mapping impact of the IDL defined Data Implementation Annotations.

Table 7.9: Data Implementation Annotation Impact

Data Implementation
Annotation

Impact on Language Mapping

@bit_bound Impacts the mapping of bitmask. See clause 7.14.3.3.

@external Replaces type with boxed type, for Basic Types. No impact on other types.

@nested No impact on mapping

7.17.5 Group of Annotations: Code Generation

Table 7.10 identifies the mapping impact of the IDL defined Code Generation Annotations.

IDL4 to Java Language Mapping 1.0 33

Table 7.10: Code Generation Annotation Impact

Code Generation Annotation Impact on Language Mapping

@verbatim Copies verbatim text to the indicated output position when the indicated
language is "*" or "java".

7.17.6 Group of Annotations: Interfaces

Table 7.11 identifies the mapping impact of the IDL defined Interface Annotations.

Table 7.11: Interface Annotation Impact

Interface Annotation Impact on Language Mapping

@service Options are "CORBA", "DDS", "*". Impact is middleware specific.

@oneway Impact is middleware specific.

@ami Impact is middleware specific.

34 IDL4 to Java Language Mapping 1.0

8 IDL to Java Language Mapping Annotations
This chapter defines specialized annotations that extend the standard set defined in [IDL4] to control the Java code
generation.

8.1 @java_mapping Annotation
This annotation provides the means to customize the way a number of IDL constructs are mapped to the Java
programming language. This annotation can therefore be used to modify the default mapping behavior of the
mappings specified in chapter 7.

The IDL definition of the @java_mapping annotation is:

@annotation java_mapping {
 enum NamingConvention {
 IDL_NAMING_CONVENTION,
 JAVA_NAMING_CONVENTION
 };
 NamingConvention apply_naming_convention;
 string constants_container default "Constants";
 boolean promote_integer_width default FALSE;
 string string_type default "java.lang.String";
}

The behavior associated with each parameter is defined below.

8.1.1 apply_naming_convention Parameter

apply_naming_convention specifies whether the IDL to Java language mapping shall apply the IDL Naming
Scheme or the Java Naming Scheme when mapping IDL names to Java. In particular:

• If apply_naming_convention is IDL_NAMING_CONVENTION, the code generator shall generate type
identifiers and names according to the IDL Naming Scheme, leaving the name of the corresponding IDL
construct unchanged, as shown in Table 8.1.

• If apply_naming_convention is JAVA_NAMING_CONVENTION, the code generator shall generate type
identifiers and names according to the Java Naming Scheme, following the rules defined in Table 8.1 for the
corresponding IDL construct.

Table 8.1: Type Identifier and Member Name Mapping According to apply_naming_convention Value

IDL Construct Java Mapping Naming Convention

apply_naming_convention
= IDL_NAMING_CONVENTION

apply_naming_convention
= JAVA_NAMING_CONVENTION

Module Name Name as in IDL definition Name in All Lowercase

Constant Variable Name (for
alternative mapping defined in
Clause 7.2.3.1)

Name as in IDL definition Name in All Uppercase

Structure Type Name Name as in IDL definition Name in Pascal Case

IDL4 to Java Language Mapping 1.0 35

IDL Construct Java Mapping Naming Convention

apply_naming_convention
= IDL_NAMING_CONVENTION

apply_naming_convention
= JAVA_NAMING_CONVENTION

Structure Member Name in
Accessor/Modifier Methods

Name as in IDL definition Name in Pascal Case

Structure Member Name in
Modifier Method Parameter

Name as in IDL definition Name in Camel Case

Union Type Name Name as in IDL definition Name in Pascal Case

Union Member Name in Accessor/
Modifier Methods

Name as in IDL definition Name in Pascal Case

Union Member Name in Modifier
Method Parameter

Name as in IDL definition Name in Camel Case

Enumeration Type Name Name as in IDL definition Name in Pascal Case

Enumeration Value Name Name as in IDL definition Name in All Uppercase

Interface Type Name Name as in IDL definition Name in Pascal Case

Interface Attribute Name in
Accessor/Modifier Methods

Name as in IDL definition Name in Pascal Case

Interface Attribute Name in
Modifier Method Parameter

Name as in IDL definition Name in Camel Case

Interface Method Name Name as in IDL definition Name in Camel Case

Interface Method Parameter Name Name as in IDL definition Name in Camel Case

Exception Type Name Name as in IDL definition Name in Pascal Case

Exception Member Name in
Accessor/Modifier Methods

Name as in IDL definition Name in Pascal Case

Bitset Type Name Name as in IDL definition Name in Pascal Case

Bitfield Name in Bitset
Accessor/Modifier Methods

Name as in IDL definition Name in Pascal Case

Bitfield Name in BitSet Modifier
Method Parameter

Name as in IDL definition Name in Camel Case

Bitmask Type Name Name as in IDL definition Name in Pascal Case

8.1.2 constants_container Parameter

36 IDL4 to Java Language Mapping 1.0

constants_container activates the alternative mapping for constants defined in Clause 7.2.3.1 and specifies the
name of the Java class that holds the constants, changing it from its default value (i.e., Constants) to a user-
defined value.

For example, the IDL const declarations below:

@java_mapping(constants_container="MathematicalConstants")
module MY_MATH {
 const double PI = 3.141592;
 const double e = 2.718282;
};

would map to the following Java according to the IDL Naming Scheme:

package MY_MATH;

public final class MathematicalConstants {
 public final static double PI = 3.141592;
 public final static double e = 2.718282;
}

or to the following Java when using the Java Naming Scheme:

package my_math;

public final class MathematicalConstants {
 public final static double PI = 3.141592;
 public final static double E = 2.718282;
}

8.1.3 promote_integer_width Parameter

The lack of unsigned primitives in the Java language introduces a challenge when mapping the IDL unsigned
integral types. For example, in order to support the full range of an IDL unsigned short which has a range of [0,
65535], it is mapped to the Java primitive int, with range [-2147483648, 2147483647], instead of the Java short
which has a range of only [-32768, 32767].

promote_integer_width specifies whether IDL unsigned integers shall be mapped to a Java primitive type of
the same size or to a bigger type capable of holding the full range of the corresponding unsigned integer. By default,
as specified in clause 7.2.4.1.1, integer width is preserved (i.e., promote_integer_width is FALSE).

Table 8.2 shows the mapping of IDL integer types according to the value of promote_integer_width.

Table 8.2: Mapping of Integer Types According to promote_integer_width

IDL Type Java Type

promote_integer_width = FALSE promote_integer_width = TRUE

int8 byte byte

uint8 byte short

short
int16

short short

IDL4 to Java Language Mapping 1.0 37

IDL Type Java Type

promote_integer_width = FALSE promote_integer_width = TRUE

unsigned short
uint16

short int

long
int32

int int

unsigned long
uint32

int long

long long
int64

long long

unsigned long long
uint64

long java.math.BigInteger

8.1.4 string_type Parameter

string_type defines the Java type IDL string and wstring types shall be mapped to. By default, as specified in
clause 7.2.4.2.2 and 7.2.4.2.3, IDL string and wstring types are mapped to java.lang.String (i.e.,
string_type = "java.lang.String").

Examples of alternative values for string_type may include "java.lang.StringBuilder" and
"java.lang.StringBuffer".

38 IDL4 to Java Language Mapping 1.0

Annex A: Platform-Specific Mappings

(normative)

A.1 CORBA-Specific Mappings
This clause describes platform-specific mapping rules that shall be followed when mapping IDL constructs to the Java
programming language for CORBA. These mappings rules are built upon the platform-independent rules defined in
Chapters 7 and 8 for the building blocks that compose the CORBA profiles defined in Clause 9.2 of [IDL4].

A.1.1 Exceptions

An IDL exception shall be mapped to a Java class following the mapping rules defined in Clause 7.4.1. The
resulting Java class shall inherit from the org.omg.corba.UserException class, which is defined as follows:

package org.omg.CORBA;

public class UserException extends java.lang.RuntimeException {}

For example, the following IDL;

exception AnException {
 long error_code;
};

would map to the following Java for CORBA according to the IDL Naming Scheme:

public class AnException extends org.omg.CORBA.UserException {
 public AnException() {...}
 public AnException(int error_code) {...}
 public int get_error_code() {...}
 public void set_error_code() {...}
}

or to the following Java when using the Java Naming Scheme:

public class AnException extends org.omg.CORBA.UserException {
 public AnException() {...}
 public AnException(int errorCode) {...}
 public int getErrorCode() {...}
 public void setErrorCode() {...}
}

A.1.2 TypeCode

A CORBA TypeCode represents type information. The IDL TypeCode type shall map to a Java public class
named org.omg.CORBA.TypeCode according to the following definition:

package org.omg.CORBA;

public class TypeCode {
 public static class Bounds extends UserException {
 }

 public static class BadKind extends UserException {
 }

 public boolean equal(TypeCode tc) {...}

IDL4 to Java Language Mapping 1.0 39

 public boolean equivalent(TypeCode tc) {...}
 public TypeCode get_compact_typecode() {...}
 public TCKind kind() {...}
 public String id() throws BadKind {...}
 public String name() throws BadKind {...}
 public int member_count() throws BadKind {...}
 public String member_name(int index) throws BadKind, Bounds {...}
 public TypeCode member_type(int index) throws BadKind, Bounds {...}
 public Any member_label(int index) throws BadKind, Bounds {...}
 public TypeCode discriminator_type() throws BadKind {...}
 public int default_index() throws BadKind {...}
 public int length() throws BadKind {...}
 public TypeCode content_type() throws BadKind {...}
 public short fixed_digits() throws BadKind {...}
 public short fixed_scale() throws BadKind {...}
 public Visibility member_visibility(int index) throws BadKind, Bounds {...}
 public ValueModifier type_modifier() throws BadKind {...}
 public TypeCode concrete_base_type() throws BadKind {...}
}

Except Any (which is defined Clause A.1.4) and TypeCode, all types used in the declaration of TypeCode shall be
derived from their IDL definition in [CORBA-IFC] following the mapping rules defined in Chapter 7, applying the
IDL Naming Scheme defined in Clause 7.1.1.1. The resulting Java definitions shall be placed in the org.omg.CORBA
package.

NOTE—The use of IDL Naming Scheme is mandated here to define classes and interfaces that follow the PIDL
names defined in [CORBA-IFC].

A.1.3 Object

The CORBA Object interface shall be mapped to Java according to the mapping rules for Interfaces – Full defined
in Clause 7.5. The resulting Object interface shall be placed in the org.omg.CORBA package. The mapping of the
CORBA Object interface shall be done according to the IDL Naming Scheme defined in Clause 7.1.1.

NOTE—The use of IDL Naming Scheme is mandated here to define classes and interfaces that follow the PIDL
names defined in [CORBA-IFC].

A.1.4 Any

The IDL type any maps to a public class named org.omg.CORBA.Any with the following definition:

package org.omg.CORBA;

public class Any {
 public boolean equal(Any a) {...}

 public TypeCode type() {...}

 public void type(TypeCode t) {...}

 public void insert_short(short value) {...}
 public short extract_short() {…}

 public void insert_long(int value) {...}
 public int extract_long() {...}

 public void insert_longlong(long value) {...}

 public long extract_longlong() {...}

40 IDL4 to Java Language Mapping 1.0

 public void insert_ushort(short value) {...}

 public short extract_ushort() {...}
 public void insert_ulong(int value) {...}

 public int extract_ulong() {...}
 public void insert_ulonglong(long value) {...}

 public long extract_ulonglong() {...}

 public void insert_float(float value) {...}
 public float extract_float() {...}

 public void insert_double(double value) {...}
 public double extract_double() {...}

 public void insert_boolean(boolean value) {...}
 public boolean extract_boolean() {...}

 public void insert_char(char value) {...}
 public char extract_char() {...}

 public void insert_wchar(char value) {...}
 public char extract_wchar() {...}

 public void insert_octet(byte value) {...}
 public byte extract_octet() {...}

 public void insert_any(Any value) {...}
 public Any extract_any() {...}

 public void insert_object(Object value) {...}
 public Object extract_object() {...}
}

A.1.5 Interfaces

IDL interfaces shall be mapped to Java according to the mapping rules for Interfaces – Full defined in Clause 7.5.

A.1.6 Value Types

IDL valuetypes shall be mapped to Java according to the mapping rules for Value Types defined in Clause 7.6.

A.2 DDS-Specific Mappings
DDS requires no additional platform-specific language mappings. Implementations of this specification targeting
DDS shall therefore be based solely on the IDL to Java mappings defined in chapters 7 and 8 for the building blocks
that compose the DDS profiles defined in clause 9.3 of [IDL4].

IDL4 to Java Language Mapping 1.0 41

Annex B: Building Block Traceability Matrix

(non-normative)

The building block traceability matrix provides an indication of where (which document clause) each IDL building
block is addressed in this language mapping.

Table B.1: Building Block Traceability Matrix

Building Block Clause

Core DataTypes 7.2 Core Data Types

Any 7.3 Any

Interfaces – Basic 7.4 Interfaces – Basic

Interfaces – Full 7.5 Interfaces – Full

Value Types 7.6 Value Types

CORBA-Specific – Interfaces 7.7 CORBA-Specific – Interfaces

CORBA-Specific – Value Types 7.8 CORBA-Specific – Value Types

Components – Basic 7.9 Components – Basic

Components – Homes 7.10 Components – Homes

CCM-Specific 7.11 CCM-Specific

Components – Ports and Connectors 7.12 Components – Ports and Connectors

Template Modules 7.13 Template Modules

Extended Data Types 7.14 Extended Data Types

Anonymous Types 7.15 Anonymous Types

Annotations 7.16 Annotations

IDL4 to Java Language Mapping 1.0 43

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Acknowledgments

	7 IDL to Java Language Mapping
	7.1 General
	7.1.1 Names
	7.1.1.1 IDL Naming Scheme
	7.1.1.2 Java Naming Scheme
	7.1.1.2.1 Pascal Case Transformation
	7.1.1.2.2 Camel Case Transformation
	7.1.1.2.3 All Uppercase Transformation
	7.1.1.2.4 All Lowercase Transformation

	7.1.1.3 Suffixes

	7.1.2 Reserved Names
	7.1.3 Holder class
	7.1.4 Java Language Version Requirements
	7.1.5 Code Examples

	7.2 Core Data Types
	7.2.1 IDL Specification
	7.2.2 Modules
	7.2.3 Constants
	7.2.3.1 Alternative Mapping

	7.2.4 Data Types
	7.2.4.1 Basic Types
	7.2.4.1.1 Integer Types
	7.2.4.1.2 Floating-Point Types
	7.2.4.1.3 Char Types
	7.2.4.1.4 Wide Char Types
	7.2.4.1.5 Boolean Types
	7.2.4.1.6 Octet Type

	7.2.4.2 Template Types
	7.2.4.2.1 Sequences
	7.2.4.2.1.1 Sequence of Basic Types
	7.2.4.2.1.2 Sequence of non Basic Types

	7.2.4.2.2 Strings
	7.2.4.2.3 Wstrings
	7.2.4.2.4 Fixed Type

	7.2.4.3 Constructed Types
	7.2.4.3.1 Structures
	7.2.4.3.2 Unions
	7.2.4.3.3 Enumerations
	7.2.4.3.4 Constructed Recursive Types

	7.2.4.4 Arrays
	7.2.4.5 Native Types
	7.2.4.6 Naming Data Types [typedef]

	7.3 Any
	7.4 Interfaces – Basic
	7.4.1 Exceptions
	7.4.2 Interface Forward Declaration

	7.5 Interfaces – Full
	7.6 Value Types
	7.7 CORBA-Specific – Interfaces
	7.8 CORBA-Specific – Value Types
	7.9 Components – Basic
	7.10 Components – Homes
	7.11 CCM-Specific
	7.12 Components – Ports and Connectors
	7.13 Template Modules
	7.14 Extended Data Types
	7.14.1 Structures with Single Inheritance
	7.14.2 Union Discriminators
	7.14.3 Additional Template Types
	7.14.3.1 Maps
	7.14.3.2 Bitsets
	7.14.3.3 Bitmask type

	7.15 Anonymous Types
	7.16 Annotations
	7.16.1 Defining Annotations
	7.16.2 Applying User-Defined Annotations

	7.17 Standardized Annotations
	7.17.1 Group of Annotations: General Purpose
	7.17.2 Group of Annotations: Data Modeling
	7.17.3 Group of Annotations: Units and Ranges
	7.17.4 Group of Annotations: Data Implementation
	7.17.5 Group of Annotations: Code Generation
	7.17.6 Group of Annotations: Interfaces

	8 IDL to Java Language Mapping Annotations
	8.1 @java_mapping Annotation
	8.1.1 apply_naming_convention Parameter
	8.1.2 constants_container Parameter
	8.1.3 promote_integer_width Parameter
	8.1.4 string_type Parameter

	Annex A: Platform-Specific Mappings
	A.1 CORBA-Specific Mappings
	A.1.1 Exceptions
	A.1.2 TypeCode
	A.1.3 Object
	A.1.4 Any
	A.1.5 Interfaces
	A.1.6 Value Types

	A.2 DDS-Specific Mappings

	Annex B: Building Block Traceability Matrix

