March 2013

Interaction Flow Modeling Language (IFML)
FTF - Beta 1l

OMG Document Number: ptc/2013-03-08
Standard document URL: http://www.omg.org/spec/IFML/1.0

Associated Machine Readable File(s)*:

http://www.omg.org/spec/IFML/20130218/IFML-Metamodel.xmi
http://www.omg.org/spec/IFML/20130218/IFML-Profile.xmi
http://www.omg.org/spec/IFML/20130218/IFML-DI.xmi

*original files: ad/2013-02-05 (Metamodel XMI), ad/2013-02-06 (Profile XMI), ad/2013-02-07
(Diagram Interchange XMI)

This OMG document replaces the submission document (ad/2013-02-04, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content
of this document are welcome, and should be directed to issues@omg.org by December 9, 2013.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on March 28,
2014. If you are reading this after that date, please download the available specification from the
OMG Specifications Catalog.

http://www.omg.org/spec/IFML/1.0
http://www.omg.org/spec/IFML/20130218/IFML-Metamodel.xmi
http://www.omg.org/spec/IFML/20130218/IFML-Profile.xmi
http://www.omg.org/spec/IFML/20130218/IFML-DI.xmi
mailto:issues@omg.org
http://www.omg.org/issues/

Copyright © 2013 WebRatio (WebRatio Srl)

Copyright © 2013 Fujitsu Limited

Copyright © 2013 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2013 Thales

Copyright © 2013 Softeam

Copyright © 2013 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as
specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 109 Highland Avenue,
Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, I[IOP™ | IMM™ | MOF™ | OMG Interface Definition Language
(IDL)™ | and OMG SysML™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm).

Table of Contents

(OIS oTo] o L= TP TP SO TP VPP PROP PP 1
@0) {14 1T o (ot SO TRTOPTSPPR 2
2 NOIMALIVE RETEIEICES ... ittt ettt et e e et e e be e be e s e e s teesteesbeesbeebeesbeeaeesabesbeesbeebeesteebeeseesrnes 3
3 TErmS and DEFINITIONSoiiiiiiie ettt e et e st e e s te e st e e s beesbeesteeaeesasesteesbeebeesbeeteeseesnees 4
4 SYMDIOIS ...ttt b bR bR R bR bR R R R R R Rt bbbt n e 5
5 AddItional INFOMMELIONo.viviiiiieciite bbbttt bbbttt b et b bbbttt ene b e nnenes 6
5.1 BUSINESS IMOTIVALION........iviiiitiieiistiitei ettt bbbtk b et b ettt st et et e bt e et r e 6
oI 1 (o o T ToTT o] =TSSP 6
B3 IFIMIL ATLITACES ...ttt etttk b ket b et b e bbbt n bt e 7
oI o (01T oo Tty gL o) S 7

OB L Y o =T 1 o= o SRS 8
6.1 KEY CONCEPLS OF IFIMIL ...t bbbt bbbt b et bbb 8
6.2 IFIMIL N @ NUESNEIL......ceeieei ettt st be et e et e et e s b e e s be e beesbesreesreesbeesbeenbeenns 9
8.3 EXEENSIDIIITY ...ttt bbb bbbt bbbt bbb et n s 13
8.4 CONCEPE LLISE ...ttt b bbbk bbbk b bbb bbb bbb bbbt b e 13

T IFML MELAMOGEIveiveiceeecee ettt ettt et e et e st e st e e s be e be e ebeeabeeabeebeesbeesbeesbaesbesseesaeesbeeabeenbeenns 18
7.1 High-LeVel DESCIIPIION. .. .c.eitiieiiitiiteiietiit ettt ettt sttt b bbb bbb bbb bbbttt n s 18

T LLIFML MOGEL ..t ettt ettt st b ettt e et st nnebe st 19

7.1.2 Interaction FIOW IMOGEIoueiiiieieice ettt nre e 20

7.1.3 Interaction FIOW EIBIMENEScoiiiiiieiee e et sne e 21

T LA NVIBW ELBMENTS ...ttt bbbttt b bbbt b e bt e b et sb e eb e b e e bt e s e e e b nne s 22

R =T 4011 £ T TP PR PR PPPR 23

A LI =] o1 £ SR 24

7. 1.7 EXPIESSIONS ...ttt ettt ettt ettt sttt b et b bt b bbbt e b e e bt b e e bbb e bt e bbbt bt e bt bt b e b r et b 25

7.1.8 CONLENE BINAING ...c.vetiitiieiiite ettt ettt b e bbbt b e bbbttt b ettt b e bt b e 26

0 I 011 (-4 F USRS 27

7.1.10 Specific Events and VIEWCOMPONENTSoiiiiririerieesesiee sttt 28

7.2 PaCKAGE DAIATYPES ...eiveeeiiitiiteieet ettt sttt bbbt bbbt bbb bbbt e bbbt e bbbt e bt b e bbbt n e bt 29
7.2.1 Enumeration ParameterKinNg...........oooiiiiiiiiieie et be e 29

7.2.2 ENUMEration SYStEMEVENITYPE....ccviiuieitiecii ettt se sttt te e re ettt teebe e aeeraesnaesraesreenreereenes 29

I o Tod T Uo [T O USROS 29
7.3 1 ClASS ACTION ...ttt b e bbbt a b e b e bt bbbt e bt e st e b e b sh e eb e b ebe e e e r e b nae s 29

7.3.2 ClaSS ACTIONEVENT. ..ottt bbbttt b e bbbt bt e bt e st e b e b sbeeb e s beebeeseenebeneea 30

7.3.3 Class ACtIVAIONEXPIESSIONecuviiiiieiciti ettt sttt te e te e e e saesreenreesaeenreereenes 30

7.3.4 Class ANNOTALIONcoiiiiiie ettt ettt sttt e eb e e be et e e at e e baesbeesbeebeesbessaesreesreesbeesbeenbeenns 30

7.3.5 Class BOOIEANEXPIESSION.........cuiiuiieieiterieieite ettt sttt sttt sttt b bbb bbb b et st nn st st ene 30

7.3.6 Class ConditioNAIEXPIESSIONcoveiiuirieiiiterietesie ettt bbbttt be e 30

7.3.7 Class CONSIIAINTc.eiiiiitii ettt ettt re e e st e sbe e s be e ebe e ebeeabeeaseebaesbeesbeesbeesbesteestaesbeesbeeabeenbeenns 31

7.3.8 Class ContENtBINGINGc.coueriiiiiieiie ettt ettt b e 31

7.3.9 Class CONENTIMIOUEL..........eoiueiie ettt ettt et be e be e te e s te e s beesbe e ebeenreenns 31

A (O O T 0] o (= ST SS 31

7.3.11 Class CONtEXIDIMENSION......cc.iiiuiiiiirecte ettt ee et e et et e e e s esta e s teesbe e be e aeeraesreesraesaeesreenreenns 32

7.3.12 Class DAtaBINGINGcoeiuereiieieiieiie ettt sttt st b e bbb e st et e b et sbesbesbeeneeseeneenbesaen 32

7.3.13 Class DAtAFIOWcoiiiiiiiece ettt et e et e st e s be e be e e e e e s reesteesteenreenreenns 32

7.3.14 Class DYNAMICBENAVIONccuiiiiiiiiiiitieeeeee ettt bttt se et bbb eenne st e 33

7.3.15 ClASS EIBMENT ..ottt ettt ettt sttt e et e et e e et e e bs e s be e ebeebeesbeeteesaeesbeesbeeeteenreenns 33

T.3.16 ClASS EVENLvviiviecieeitee ettt ettt ettt et et be e s be e ebe e ebeeabeeateebseebeesbeebeesbeereesreesbeesbeeateenbeenns 33

7.3.07 ClaSS EXPIrESSIONeviieiiiteieeteste ettt ettt bttt ettt sttt sttt st e bt 34

7.3.18 ClasS IFMLIMOEL........cceiiiiiie ettt ettt be e be e st e be e sbe e sbe b enns 34

7.3.19 Class INtEIACLIONFIOWcoiuiiiiiiiciiccte ettt et ettt be e be e be e s reesreesbeeebeebeenns 34

7.3.20 Class INteraCtioNFIOWEIEMENTc..oiiiiriiieiece ettt et be e sre e ere b enns 35

7.3.21 Class InteraCtionFIOWEXPIESSIONcouiitiiiiiieie ittt sttt st e b sae s 35

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 i

7.3.22 Class INteraCtioNFIOWMOUELooouiiiiiici e 35

7.3.23 Class InteractioNFIOWMOUEBIEIEMENT..........coviiviiiiiie ettt st sre e ere e 36

T.3.24 ClaSS IMIOUUIEveveeireeiie ettt ettt ettt et st b e et e et e et e st e e b b e ebe e ebeebeesbestaesreesbeesbeesbeenbeenns 36

7.3.25 Class NAMEAEIBMENToiiiiiiiei ittt st e e s et e e e sttt e e s bt e e e s sabaeessbaasesbbeeesssbenesanes 36

7.3.26 Class NaVIgAtIONFIOWcoiiiiiiiiie ettt 37

T.3.27 ClaSS PATGMELETuveeeeietiii ettt ettt ettt e ettt e s ettt e e s bt e e e s sab e e e e st aseessbaeessabaeessbassesbannesasbenesanes 37

7.3.28 Class ParameterBiNGiNg........cccoeieeririeiiterieie sttt b et sb bbbttt r e 37

7.3.29 Class ParameterBiNdiNGGrOUD........ccuerieiiuerieiiaie ettt sttt b et sb bbb bbbt be e 38

R O F- Ty o] o TR 38

7.3.31 ClasS SYSIEMEVENT.......cciiieieieie e ste st ste et ae st et st e st e te e e e e st e testestesseesseseeseteseestesseenseseeseeeneens 38

7.3.32 Class VIEWCOMPONENLcviieieiieiieseeteeeeee e st estesteste e essesee st e stestestesseassessessesteseestesseensessensensessens 38

7.3.33 Class VIeWCOMPONENTPAITcoiiiieireeeeeie st este e ste e e st e te e s te e ess e e e seestestestesneaneeseeneeneesneas 39

7.3.34 Class VIBWECONTAINETveiiveiiveiieiieirteiteeeteeiteeteeaesteesbeesbe e eteeteenbesaseebeeebeesbeebessbeateesrsesbeesbeeareenbeenns 39

7.3.35 Class VIBWEIBIMENT.......cviiiieeiiie ettt ettt st e e st e e s be e s be e sabeeesbeesbeeenbeesnreenares 39

7.3.36 Class VIEWEIEMENTEVENT.........uii ittt ebe e s be e s be e s be e s be e s sbeeereeeees 40

7.3.37 ClaSS VIBWPOINT......ccueiiiiiteiieiiite ettt ettt bbb et b bbbttt b ettt b e b b 40

7.3.38 Class ViSUaliZAtIONALITIDULEoveieiieiii ettt e e st e e e st et e e st eeessabaeessaseesessbeeeessbeeeesan 40

7.4 PaCKAGE EXLENSIONSuiiiiiitiieiiitiit ettt etttk b ekt b bbb bbb bbbttt b et bbbttt ab e 41
TA.D ClaSS DEBLANISeeeee ittt ettt e ettt e e et e e sttt e e s et e e e s sabteessbateesasteaesssbaaessasaasessbeeeesasbensesan 41

T4.2 ClaSS DBVICE ...eeeeie i ieeeee ettt e ettt et e e ettt e s ettt e e s sab et e s sttt e e saabeeessabeeessabaeeesstaaesssbeeesssessesbeeeesasrensesans 41

A N O P TI T=1 [TR 41

A O £ T o o OSSPSR 41

AT O £ T I 1) ST OPSPTPON 42

T4.6 Class POSITION......cciiiiiie ittt et s e st e st e e st e e sab e e s abeesabeesbeesabeeesbeesnbeesabeesnreenaees 42

TA.T Class SEIBCIEVENL.......c.veiiii ettt ettt e e st e e st e e st e e s be e s beesabeessbeesabeesabeesnreenares 42

7.4.8 Class SEIECHIONFIEIU.cvieiee et be e s be e s b e e s be e s be e sabeesreeenres 43

7.4.9 Class SIMPIEFTEIA ..o bbbt 43

S (O O F- T o] AT RR TR 43

T.A.11 Class SUDMITEVENT......ccoiciiieieeeie ettt ettt ettt e e ettt e e s ettt e e s st e e e s stateessasaeesssteeessasassesssseeesasrenesane 43

TA.12 ClaSS USEIROIE. ...ttt ettt ettt e e ettt e s ettt e s et e e e sabateeseaaaeessabeeessasaesesssaeaesasrenesane 44

T.4.13 Class ValidAtIONRUIEoooieiiee ettt e e s et e e et e e s et e e e s st aeesseaaeeeseraeeesareeesaaes 44

T4 14 ClaSS WINUOWeeiiieeiee ettt ettt e ettt e et et e e sttt eseteteeseateaessateeesssaseesassaaessateeessasaseessseeeesasrenesane 44

8 IFML EXECULION SEMANTICSviiiiiiiiiiieiitie ittt ettt ettt et e b e et e e ebe e e ebe e e ebeeebee e ebeeebeeebeessbeeebaesabeeenbeesabeeebeesanes 45
S0] (o To [0 Tod 1o D PP P OO PRROPRRPRRROPO 45
8.2 Relevant Aspects for IFML EXeCULION SEMANTICScccvviiiiiiiiciie ettt 45
S R I 1o o[- AT g Lo =T L £ SS 45

8.2.2 Parameter ProPAQgALIONcciuiiie ittt te et et et et e e te e te e e s e raenreenreereenes 45

8.2.3 Navigation HiStOry PreSErVALIONccviiiieiice sttt e sttt ste e e e s reesaeesreene s 45

8.3 ViewComponent COMPULALION POCESSc.oiuiiiiriiiaiirieieiisteieie sttt sb ettt sbe s 46
9 IFML Diagram DEfINITIONcovoiiiieiieie etk bbbttt bbbt et sb et ebeseeseebenbe e 48
Lo a1 (o 1o [Uo3 £ o) o PR 48
A O 01 (0] 1 ol OA A1 (=T - NPT 48
LRI AN (ol A TL=To (U PR 48
9.4 IFML Diagram Interchange (DI) Meta-mOdel ..ot 50
0.5 PACKAGE TFIMILDI ..ottt e bbbt e e bbb £ bt e st et e b e b sbeebeebeeb e e s e e benbenae 51
9.5.1 ENUMEration LaDEIKING.........coouiiiiiiiie ettt sttt e bt s bt e e e s eab e e e s s bae s e s sbbeeesssbaeeesans 51

9.5.2 Class IFMLCOMPAITMENTeiuiiiiieeiterieste ettt ettt bbbt e e b e besaesbesbeene e e e nbenbesreas 52

9.5.3 ClaSS IFIMLCONNECTIONvviiiiieiiee ittt ettt e e ettt e e st e e s st it e e s s b et e e sebbeeesssbasesssbassessbbeeesssbensesans 52

0.5.4 ClaSS IFIMILDIAGIAMvitiitiitieiieee ettt b bttt e bbbt bt s e st e e et sbesbesbeeneese e e e benaen 53

9.5.5 Class IFMLDIAQramEIBMENTcoviiiiiiiiiee ettt 53

0.5.6 ClaSS IFIMILLLLANELoeeeeeeeeeee ettt ettt e et e e et e e et e e e et et e e s et e e e s et eeessenaeeessrseeesarenenaans 53

O.5.7 ClaSS IFIMILLNOGE ...ttt ettt e e e et e e ettt e s et e e s st e e e satateesaaseeessaraeessasaeeesssseeesnrenenaan 54

0.5.8 ClaSS IFIVILSEYIEoeeieie sttt ettt ettt e et ae st s seena e s e e e aesaestesneeneeseeneeeenrens 54

9.6 IFML DI to DG Mapping SPECITICALION..........eivieeieiieiiiie ettt sttt et s re e e ne e e e seeseennea 54

10 UML PrOfile FOI TFIMIL ..ottt ettt et b et b e ettt sttt et e e ne st r s 58
10,1 OVEIVIBW. ...ttt ettt sttt sttt e s et st e ek s bbb s e e bt eb e s e e b e e bt e e e bt ek e s b e st e b e e b e s e ek e s b e s e eb e s b e s e et e nbe s e ebenbereebenrereas 58
10.2 The IFML Profile Of UMLc.ciiiiicicieccece sttt sttt bbb a et st e etesaeseetesnereas 59
10.3 SEFUCTUFAL ASPECLS ...ttt ettt ettt b e bbbt b e b e e bt s b e bt s b e st eb e nb e s e eb e s b e e e bt nb e s e ebenr e e ebenne e 68
10.4 DYNAMIC ASPECESveteteeeteete ettt ettt ettt ettt sttt e b sees e bt s e e bt eb e e e e s e eb e eb e s e eb e s E e s e eb e n b e s e eb e nb e s e eben b e s e ebenb e s b ebenbeseebenne e 69
10.5 Profile Metamodel IMBPPINGc.viveiieiiiieiee ettt eb et b bbbt b e bbb e b nn e b nneneas 69

Annex A IFML by Example: Modeling an Email (informative) ... 72
A 11 1o To 1 o o OSSP 72
A2 The CONENT IMOGET ...ttt bbbt b et b ettt be e b et ene 72
A3 MOUEl OF the INTEITACE ...ttt b et bbb 74

Annex B IFML by Example: Modeling an Online Bookstore (INfOrmative)c.ccoovviveievenenie s 92
B.1 CONENT IMOUEL ...ttt ettt et b ettt b e bbbt s bt e b s b e et st e e et nb s e ebesbe e ebenne e 93
B.2 PrOCESS IMOTEN ... bbbttt b bbbt bbb e b bbbt b et n e b b 94
B.3 Model of the User INteraCtion FIOWccooiiiiiiiii it 95
B.4 SYSEM IMOUEIING ...t bbb b e bbb bbbt b bbb et b 103

Annex C Mapping to the Windows Presentation Framework (INformative)cocoovreniininiinineneenes 106
L@ 1 o1 1 0o 1 1 To o ISP 106
C.2 The WPF MELA-MOUENc.eeiveieieieiiiee ettt sttt et e et stesteere e s e neenne e e 107
C.3 Model to Model TranSfOrMALIONc.oiiiiiiiieieiee et sr et sbe e e e nee e e 109

Annex D Mapping to Java SWing (INFOrMALIVE) ..ot 110
DL INEFOOUCTION ...ttt bbb bbbt b bt a e e et e b s bt b e e b e e bt e s e e b et sb e eb e e bt e be e e e b e nnesbenes 110
D.2 The Java SWING Meta-MOGElcoooiii e et sre e sre e nreeneeenes 110
D.3 Model to Model TransforMationcoiiiiiiieieee et se b e e sre e 111

Annex E Mapping to HTML (INFOrMALIVE)ccvviiiii ettt te e sne e nneene s 112
B L INEFOTUCTION 1.ttt ettt e bbbt h et e e et b e bt b e e bt ekt e s s et ekt eb e eb e e bt ebe e e e b e nnenbenes 112
E.2 The HTML META-MOUEL........ociieeeeiece sttt sttt e e e teseestesreeneeneeneeneeneeneas 112

E.3 Model to Model TranSTOrMELIONcocueeiiiiriie ettt e ettt s et e e s st e e st et e e s et e e e s sbaeessasaeeessbeeessarrenesn 113

0 Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from this URL:

http://www.omg.org/spec
Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
-CORBA/IIOP
- Data Distribution Services
- Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

-UML, MOF, CWM, XMI
-UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

-CORBAservices
- CORBAfacilities

OMG Domain Specifications

http://www.omg.org/

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the above URL or by contacting the Object Management Group, Inc. (as of
November 2012) at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1 -781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso/org.

mailto:pubs@omg.org
http://www.iso/org

1 Scope

This specification defines the Interaction Flow Modeling Language (IFML). The objective of IFML is to provide
system architects, software engineers, and software developers with tools for the definition of Interaction Flow
Models that describe the principal dimensions of an application front-end: the view part of the application, made of
containers and view components; the objects that embody the state of the application and the business logic actions
that can be executed; the binding of view components to data objects and events; the control logic that determines
the sequence of actions to be executed after an event occurrence; and the distribution of control, data and business
logic at the different tiers of the architecture.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

2 Conformance

There are five ways in which a tool may demonstrate conformance to the IFML metamodel.

1. Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete IFML metaclasses to be created, read, updated and deleted. The
tool must also provide a way to validate the well-formedness of models that corresponds to the constraints
defined in the IFML metamodel.

2. Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of IFML notation to be created, read, updated and deleted.

3. Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMl for all valid IFML models. Model interchange conformance implies abstract syntax
conformance.

4. Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and
export conformant DI for all valid IFML models with diagrams. Diagram interchange conformance implies
both concrete syntax conformance and abstract syntax conformance.

5. Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
IFML semantics, e.g. code generation, model execution, or semantic model analysis.

A tool can claim conformance with the IFML metamodel if and only if the software fully implements the IFML
metamodel in one or more of the above ways. A tool that only partially implements the metamodel can claim only
that it is based on this specification, but cannot claim conformance with the specification.

A tool already conforming to the UML specification may demonstrate conformance with the UML Profile for IFML
by providing the means to apply the profile to a UML model, as specified in Clause 59.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 2

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC2119, http://ietf.org/rfc/rfc2119,
March 1997

eOMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-05, August 2011.
eOMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-06, August 2011.
*OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, formal/2011-08-07, August 2011

eOMG MOF 2 XMI Mapping Specification, Version 2.4.1, formal/2011-08-09, August 2011

eDiagram Definition (DD), Version 1.0, formal/2012-07-01, July 2012

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 3

4 Terms and Definitions

There are no formal definitions of terms in this specification.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

5 Symbols

There are no symbols defined in this specification.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

6 Additional Information

6.1 Business Motivation

In the last twenty years, capabilities such as form-based interaction, information browsing, link navigation,
multimedia content fruition, and interface personalization have become mainstream in many business-to-consumer
(B2C), business-to-business(B2B), and business-to-employee (B2E) applications. These are implemented on top of a
variety of technologies and platforms: desktop applications, client-server applications, web applications, rich

internet applications, mobile applications, and even human machine interfaces for industrial control, where more and
more embedded systems are equipped with browser-based GUIs. This convergence in technologies is reflected in
the HTML 5 initiative, which aims at establishing a unified set of concepts and a common technological platform for
the development of a broad spectrum of interaction front-ends.

However, the emergence of such an unprecedented range of devices, technological platforms, and communication
channels is not accompanied by the advent of an adequate approach for creating a Platform Independent Model
(P1M) that can be used to express the interaction design decisions independently of the implementation platform.
This causes front-end development to be a costly and inefficient process, where manual coding is the predominant
development approach, reuse of design artifacts is low, and portability of applications across platforms remains
difficult.

Using IFML for PIM-level interaction flow modeling, brings several benefits to the development process of
application front-ends:

- It permits the formal specification of the different perspectives of the front-end: content, interface
composition, interaction and navigation options, and connection with the business logic and the
presentation.

- It separates the stakeholder concerns by isolating the specification of the front-end from its
implementation-specific issues.

-1t improves the development process, by fostering the separation of concerns in the user interaction
design, thus granting the maximum efficiency to all the different developer roles.

- It enables the communication of interface and interaction design to non-technical stakeholders, permitting
validation of requirements from subject matter experts (SMEs) and clients sooner in the development
process.

6.2 Design Principles

Front-end design is a complex and multidisciplinary task, where many perspectives intersect. Therefore, IFML is
particularly attentive to model usability and understandability, by explicitly addressing all the factors that contribute
to making a PIM quickly learned, easy to use, and open to extensibility:

-1t is concise, avoiding redundancy and reducing the number of diagram types and concepts needed to
express the salient interface and interaction design decisions.

- It provides model inference rules at the modeling level that automatically apply default modeling patterns
and details whenever they can be determined from the context, giving the possibility to avoid the need for
modelers to specify inferable information (e.g., automatic inference of the parameters that need to be
passed from a component to another at the modeling level).

-1t includes extensibility in the definition of new concepts (e.g., novel interface components or event
types).

- It ensures implementability, that is, it supports the construction of model transformation frameworks and
code generators that can map the PIM into a suitable PSM and ultimately into executable applications for a
wide range of technological platforms and access devices.

-1t ensures model-level reuse, that is, it supports the definition of reusable design patterns that can be

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 6

stored, documented, searched and retrieved, and re-used in other applications.

6.3 IFML Artifacts

The IFML specification consists of five main technical artifacts:
- The IFML metamodel specifies the structure and semantics of the IFML constructs using MOF.

- The IFML UML profile defines a UML-based syntax for expressing IFML models. In particular, the UML
profile extends concepts of the following UML diagrams: class diagrams, state machine, and composite
structure diagrams.

- The IFML visual syntax offers a dedicated visual syntax for expressing IFML models in a particularly
concise way. Specifically, it provides a unique diagram capable of compacting the aspects of the user
interface that are otherwise expressed separately with UML class diagrams, state machine and composite
structure diagrams.

- The IFML textual syntax offers a textual syntax for expressing IFML models alternative, but equivalent, to
the visual syntax.

- The IFML XMI provides the IFML model exchange format, for tool portability.

6.4 Acknowledgements

This specification was originally authored by:

- Aldo Bongio (WebRatio)

-Marco Brambilla (WebRatio and Politecnico di Milano)

- Stefano Butti (WebRatio)

-Piero Fraternali (WebRatio and Politecnico di Milano)
-Wolfgang Kling (Ecole des Mines de Nantes and WebRatio)
-Emanuele Molteni (WebRatio)

-Ed Seidewitz (Model Driven Solutions)

IFML is the result of 15 years of experiences in model-driven development of Web interfaces carried out at
WebRatio and Politecnico di Milano. WebML (the Web Modeling Language), invented in 1998 by Piero Fraternali
and Stefano Ceri at Politecnico di Milano, has been a useful source of inspiration for IFML.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 7

7 IFML Specification
7.1 Key Concepts of IFML

The Interaction Flow Modeling Language (IFML) supports the platform independent description of graphical user
interfaces for applications accessed or deployed on such systems as desktop computers, laptop computers, PDAs,
mobile phones, and tablets. The focus of the description is on the structure and behavior of the application as
perceived by the end user. The description of the structure and behavior of the business and data components of the
application is limited to those aspects that have a direct influence on the user’s experience.

With respect to the popular Model-View-Controller (MVC) model of an interactive application, the focus of IFML
is on the view part. Furthermore, IFML describes how the view references or is depended on by the model and
control parts of the application. In particular:

o\With respect to the view, IFML deals with the view composition and the description of the elements that it exposes
to the user for interaction.

o\With respect to the controller, IFML lets the designer specify the effects of user interactions and system events on
the application by defining the relevant events that the controller must take care of.

o\With respect to the model, IFML allows for specification of the references to the data objects that embody the state
of the application and are published in the user interface, as well as of the reference to the actions that are triggered
by the interaction of the user.

IFML can be complemented with external models for the complete specification of applications with aspects that are
not directly connected with the user interface and interaction:

oThe internal functioning of the actions triggered by the user’s interaction can be described using any action model.
For example, if the action refers to the invocation of an object’s method, this can be described using UML class and
collaboration diagrams; if the action refers to the invocation of a web service, this can be described using a SoaML
diagram.?

oThe object model underlying the application can be described with any structural diagram, for example with a
UML class diagram or a Common Warehouse Metamodel (CWM) diagram.®

Modeling the user interface and interaction with IFML amounts to addressing the following aspects:

eThe composition of the view, in terms of its partition into independent visualization units, which can be displayed
simultaneously or in mutual exclusion, and can be nested hierarchically.

oThe content of the view, in terms of both the data elements published from the application to the user and of the
data elements input from the user to the application.

oThe commands enabling the user’s interaction and the corresponding events.

oThe reference to actions triggered by the user’s commands.

oThe effects of the user’s interaction and of the action execution on the state of the user interface.
oThe parameter binding between the elements of the user interface and the triggered actions.
Consequently, an IFML model supports the following design perspectives:

oThe view structure specification, which consists of the definition of view containers, their nesting relationships,
their visibility, and their reachability.

oThe view content specification, which consists of the definition of view components, i.e., content and data entry
elements contained within view containers.

oThe events specification, which consists of the definition of events that may affect the state of the user interface.

See, for example, http://en.wikipedia.org/wiki/Mode-view-controller.
See http://www.omg.org/spec/SoaML.
See http://www.omg.org/cwm/

3

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 8

http://en.wikipedia.org/wiki/Model–view–controller
http://www.omg.org/spec/SoaML
http://www.omg.org/cwm/

Events can be produced by the user’s interaction, by the application, or by an external system.

oThe event transition specification, which consists of the definition of the effect of an event on the user interface.
The effect can be the change of the view container or of the content displayed, the triggering of an action, or both.

oThe parameter binding specification, which consists of the definition of the input-output dependencies between
view components and between view components and actions.

7.2 IFML in a Nutshell

An IFML diagram consists of one or more top-level view containers. For example, a desktop application or a rich
Internet application (RIA) can be modeled as having one top-level container, the main window; instead, a Web
application can be modeled as having multiple top-containers, one for every dynamic page template.

Each view container can be internally structured in a hierarchy of sub-containers. For example, in a desktop or RIA
application, the main window can contain multiple tabbed frames, which in turn may contain several nested panes.
The child view containers nested within a parent view container can be displayed simultaneously (e.g., an object
pane and a property pane) or in mutual exclusion (e.g., two alternative tabs). In case of mutually exclusive (XOR)
containers one could be the default container, displayed by default when the parent container is accessed.

A view container can contain view components, which denote the publication of content or interface elements for
data entry (e.g., input forms). A view component can have input and output parameters. For example, a view
component for showing the properties of an object can have as an input parameter the identifier of the object to
display; a data entry form or a list of items can have as output parameters the values input or the item selected by the
user.

A view container and a view component can be associated with events, to denote that they support the user’s
interaction. For example, a view component can represent: a list associated with an event for selecting one or more
items, a form associated with an event for input submission, or an image gallery associated with an event for
scrolling though the gallery. Events in concrete are rendered as interactors, which depend on the specific platform
and therefore are not modeled in IFML but produced by the PIM to Platform-Specific Model (PSM) transformation
rules. For example, the scrolling of an image gallery may be implemented as a link in an HTML application and as a
flip gesture in a mobile phone application.

The effect of an event is represented by an interaction flow connection, which connects the event to the view
container or component affected by the event. For example, in an HTML web application the event caused by the
selection of one item from a list may cause the display of a new page with the details of the selected object. This
may be represented by an interaction flow connecting the event associated with the list component in a top-level
view container (the web page) with the view component representing the object detail, positioned in a different view
container (the target web page). The interaction flow expresses a change of state of the user interface: the occurrence
of the event causes a transition of state that produces a change in the user interface.

An event can also cause the triggering of an action, which is executed prior to updating the state of the user
interface; for example, in a web content management application the user can select from a list the elements to
delete; the selection event triggers a delete action, after which the page with the list is redisplayed. The effect of an
event triggering an action is represented by an interaction flow that connects the action to the view container or
component affected by the event.

An input-output dependency between view elements (view containers and view components) or between view
elements and actions is denoted by parameter bindings associated with navigation flows (interaction flows for
navigating between view elements). For example, in Figure 1, the navigation flow that goes from the event denoting
the selection of an item of the Artist Index view component to the Artist view component (showing the selection
details), has a parameter binding that associates an output parameter of the Artists Index view component with an
input parameter of the Artist view component. See also further examples in Figure 2, Figure 3 and Figure 4.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 9

Artists
— Artist Index — Artist
First Name: Celine
Dion

Andrea Bocelli
Celine Dion Last Name:
Photo:

Frank Sinatra

The Beatles
/ wParamBindingGroups A Parameter
i i SelectedArtist = AnArtist, L
View Container £ @ . r Binding

/

Artists
/ _

i View
N Component
Artist
y

Event /

Figure 1: Example of user interface (top) and corresponding IFML model (bottom). The user selects an item

in the list and displays its details in the same view container.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

Albums&Artists)
Artist / wParamBindingGroups
Andrea Bocelli) /SelectedArtist 3 AnArtist
Bocelli First Name: Andrea)
el Last Nome: Bocelli AlbumsEArtists

- Romanza Photo:

Celine Dion >< | [XOR] Album or Artist

- All the way AlbumsaArtists] Artist

- Let's talk .. P -) -

Mﬁs';lJ";'t":mrrI Artist Details
I__.:'_.—
Albums&Artists

Andrea Bocelli Album

ndrea Bocelli .

- Title: All the Way Album
= i Year 1999 N
- Romanza Cover:
- o

Celine Dion X ,—/ #» Album Details
- All the way / wParamBindingGroups AN
- Let's talk .. /SelectedAlbum = AnAlbum

Figure 2: Example of user interface (left) and corresponding IFML model (right). One top-level container
comprises three view containers: one with a list of artists and of their albums, one with the details of an artist,
and one with the details of an album. The latter two view containers are mutually exclusive: only one at a
time is displayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 11

Albums

Albums

- Delete Album

— Delete Album

All the Way Del Anthology Del
Anthology Del Born in the USA Del
Born in the USA Del Bridges to Babylon Del
Bridges te Babylen Del Imagine Del
Imagine Del Let's talk... Del
Let's talk... Del Sing-a-long Del
Sing-a-long Del
f.:’quaramBindingl“_fcup» y
/SelectedAlbum = AnAlbum /
" Albums Albums
K'. '_I L s '\.
Album ., Album > Album
List - Deletion 'x & List
A _/'I '__

Figure 3: Example of user interface supporting action invocation (top) and corresponding IFML model
(bottom). The user can select an item from a list of objects; the selection causes a delete action to be triggered
after which the updated list of objects is redisplayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

12

AlbumSearch Albums Alburm

— 2 Albums Found mm—— - Alburm
All the Way Title: All the Way

Title: Let's talk .. Year: 1999
: Cover:
X

= Album Search

A ParamBindingGroups ;'l.eParamBindingGrnupn

/' Tile = AlbumTitle
7 vear < AlbumYear ;__-‘.Selected.ﬁ.lhum > Anﬁ.lhur{},«

(=Windows AlbumSearch «Windows Albums aWindows Alburm
«Forms ™ 7" aLists " «Detailss ™
Albumn ! Album Album
Search “* List Details
A p oy _

Figure 4: Example of user interface (top) and corresponding IFML model (bottom). The user enters data into
an input form and submits them; this event causes a distinct view container to appear with a list of matching
objects; finally, the selection of an item in the list causes the display of the corresponding details in a third
view container.

7.3 Extensibility

IFML uses the extensibility mechanisms of UML to allow the definition of stereotypes, tagged values and
constraints. The Extensions package exemplifies how the extension mechanism works: it contains concepts that
extend concepts from the Core package. In the same way, new packages may be introduced containing new
constructs, to model platform-independent or platform-specific concepts.

7.4 Concept List

Table 1 lists the core concepts of IFML and Table 2 lists a set of extension concepts provided as an example for the
IFML extension mechanism.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 13

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level

View An element of the interface that _ Web page
Container comprises elements displaying MailBox Window

content and supporting interaction Pane.

and/or other ViewContainers.
XOR View A ViewContainer comprising child . : : Tabbed panes in Java
Container ViewContainers that are displayed [XOR] MessigeSearch | Frames in HTML.

alternatively.
Landmark A ViewContainer that is reachable A logout link in
View from any other element of the user [L] Message Writter HTML sites which is
Container interface without having explicit visible in every page.

incoming InteractionFlows.
Default View | A ViewContainer that will be [0 Search A welcome page.
Container presented by default to the user,

when its enclosing container is

accessed.
View An element of the interface that An HTML list.
Component displays content or accepts input A JavaScript image

Message List gallery.
An input form.

Event An occurrence that affects the state

of the application

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

14

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level

Action A piece of business logic triggered A database update.

by an event; it can be server side The sending of an

(the default) or client-side, denoted email.

as [Client] Send The spell checking of

a text.

Navigation An input-output dependency. The Sending and
Flow source of the link has some output receiving of

that is associated with the input of e parameters in the

the target of the link HTTP request
Data Flow Data passing between

ViewComponents or Action as

consequence of a previoususer | T >

interaction.

Parameter A typed and named value Normally not shown. HTTP query string
If necessary can be denoted as parameters
follows: HTTP post

parameters
<<Parameter>> State :String JavaScript variables

and function

parameters

Parameter Specification that an input

Binding parameter of a source is associated Ll

with an output parameter of a target

Parameter Set of ParameterBindings —

Binding associated to an InteractionFlow il D

Group (being it navigation or data flow) Year - Album'ear

Activation Boolean expression associated with

Expression a ViewElement, «ActivationExpressions

ViewComponentPart or Event: if
true the element is enabled

State = “Reply” or "ReplyToall”

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

15

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level
Interaction Determine which of the Event triggered after
Flow InteractionFlows are going to be slnteractionFlowExpressions selecting a given
Expression followed as consequence of the if AlbumDetails selected then valueina
AlbumDetails
occurrence of an Event. else Album details ComboBox.
Module Piece of user interface and its
corresponding actions, which may
be reused for improving IFML
models maintainability Module
Input Port An interaction point between a
Module and its environment that ~— /'
collects InteractionFlows and o .
parameters arriving at the module. 4
Outside the Inside the
module module
Output Port An interaction point between the
Module and its environment that /" ~a
collects the InteractionFlows and L 0y
parameters going out from the »
module.
Outside the Inside the
modu'e module

View
Component
Part

A part of a ViewComponent that
may not live by its own. It can
trigger Events and have outgoing
and incoming InteractionFlows. A
ViewComponentPart may contain
other ViewComponentParts.

u TypeName: [Name][...]

wSubTypeNames [Name] [...]

wSubTypeNamen [Name][...]

Fields in a form

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

16

Table 1: Essential IFML Concepts

Concept

Meaning

IFML Notation

Example at
implementation
level

Examples:

«DataBinding» MailMessage

aConditionalExpression» MailMessage in
MailMessageGroup2MailMessage{MBox)

«SimpleFields to: String

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

17

Table 2: Extension IFML Concepts

Concept
Extension
Examples

Meaning

IFML Notation

Example at
implementation
level

Select Event

Event denoting the selection of a
single item of the user interface

A selection of a row
in a table.

Submit Event

Event that triggers a parameter
passing between interaction flow
elements

A form submission
in HTML.

ViewComponent used to display a

«List» MBoxList

Table with rows of

i «DataBinding» MailMessageGroup
List list of DataBinding instances ﬁliir;ents of the same
«Form» Message Keyword Search
Form V|eWCom_ponent used to dl_splay a «SimpleField» Key: String HTML form.
form that is composed of Fields
ViewComponent used to display .)
. A . .o «Details» M Detail
Details details of a specific DataBinding 1ov Hessage BERls
instance
. . . [Modal] Alert
A ViewContainer rendered in a
Modal new window that, when displayed, A modal pop-up in
Window blocks interaction in all other HTML
previously active containers.
A ViewContainer rendered in a [Modeless] Tag Chooser
new window, that when displayed,
Modeless . .
: is superimposed over all other
Window

previously active containers, which
remain active

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

18

8 IFML Metamodel
8.1 High-Level Description

The IFML metamodel is divided in three packages: the Core package, the Extension package and the DataTypes
package. The Core package contains the concepts that build up the interaction infrastructure of the language in terms
of InteractionFlowElements, InteractionFlows and Parameters. Core package concepts are extended by concrete
concepts in the Extension package with more complex behaviors. The DataTypes package contains the custom data
types defined by IFML.

The IFML metamodel uses the basic data types from the UML metamodel, specializes a number of UML
metaclasses as the basis for IFML metaclasses, and presumes that the IFML ContentModel is represented in UML.

The high level description of the IFML metamodel given in the remainder of this subclause is structured into the
following areas of concern:

o|FML Model

eInteraction Flow Model

eInteraction Flow Elements

oView Elements

eEvents

eSpecific Events and View Components

eParameters

eExpressions

eContentBinding

Subsequent subclauses provide detailed descriptions of the content of each of the three packages.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 19

8.1.1 IFML Model

T:!;fcclassﬁ “Mﬂa”‘:msf «Metaclass s
A ..t;re.. +annotation +glement | 'FMLICOTN | yoement +constraing) IFML::Core::
nnotation e — p Element 1 g+ | Censtraint
+text : String [1] +id : String [1] -
«Metaclassy» it SonFlowhodelBle i «Metaclasss
IFML::Cora:: Hinteractiontiow eliemen IFML::Cora:
InteractionFlowModeiEiement | O--* NamedElement
+name : String [1]

+interactionFlowModelElement |0..°

i

riiewpoint |0.. tinteractionFlowModel |1
«Mataclasss «Mataclass s)) 1 «Metaclassy] i «Mataclass s
IFML::Cora: IFML::Cora:: +interactionFlowhModel IFML::Cora:: +imibodel IFML::Core::
Viewpoint InteractionFlowModel | 1 +ifmiModel | IFMLModel 1 +contenthodel | ContentModel
+interactionFlowModeNiewpoint [0, simiModal |1 +contenitodel |1
+alement [0..*
«Metaclass s
UML Standard Profile: UML2 Metamodel::
Elernent

Figure 5: IFML Model

IFMLModel, as its name suggests, represents an IFML model and is the top-level container of all the rest of the
model elements. It contains an InteractionFlowModel, a ContentModel and may optionally contain ViewPoints.

InteractionFlowModel is the user view of the whole application while ViewPoints present only specific aspects of
the system by means of references to sets of InteractionFlowModelElements, which as a whole define a fully
functional portion of the system. The purpose of a ViewPoint is to facilitate the comprehension of a complex
system, to allow or disallow access to the system by a specific UserRole, or to show an adapted piece of the system
to a specific context change.

InteractionFlowModelElement is an abstract class, which is the generalization of every element of an
InteractionFlowModel.

ContentModel represents the business domain view of the application, i.e., the description of the content that is dealt
with (and referenced) within the InteractionFlowModel. IFML uses UML in order to be able to express any kind of
content model, and thus the ContentModel has a reference to the top-level abstract UML metaclass Element that
represents any UML element.

NamedElement is an abstract class that specializes the Element class (the most general class in the model) denoting
the elements that have a name. Besides IFMLModel, InteractionFlowModel, ContentModel and ViewPoint,
NamedElement has other subclasses, which will be described in the contexts where they play a major role.

For any Element, Constraints and Comments can be specified. Constraints are an extension mechanism to the IFML,
in the sense that they may constrain further, for a specific model, the existing IFML syntactical rules.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 20

8.1.2 Interaction Flow Model

«Metaclasss
IFML::Core::
IFMLMaodel

+ifmiModel |1

+interactionFlowModel 11
«Metaclasss
IFML::Core::

InteractionFlowModel

+interactionFlowhodel |1

+interactionFlowModelElement {0..°

«Metaclass»
+interactionFlowhiedelElement IFML::Core::
1.+ |dmteractionFlowModelElement
«Metaclass» Metacl Matacl «Metaclass» «Metaclassy «Metaclassy «Metaclass»
IFML:Cora:: IFML::Core: IFML::Cora:: IFML::Cora:: IFML::Cora:: IFML::Cora:: IFML::Cora::
fonFi fe fr fonFi Module Parameter P: Binding P; BindingG P fe
+kind : ParameterKind = ordinary k String [1]

+body : String [1
+module [0..1 y : String [1)

Figure 6: Interaction Flow Model

An InteractionFlowModel contains all the elements of the user view of the application represented by the
InteractionFlowModelElement. InteractionFlowElement has seven direct subtypes: InteractionFlowElement,
InteractionFlow, ParameterBindingGroup, ParameterBinding, Parameter, Expression and Module.

InteractionFlowElements are the building blocks of interactions. They represent the pieces of the system, which
participate in interaction flows through InteractionFlow connections.

An InteractionFlow is a directed connection between two InteractionFlowElements. InteractionFlows may imply
navigation along the user interface or only a transfer of information by carrying parameter values from one
InteractionFlowElement to another.

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElements i.e.
ViewElements, ViewComponentPart,s Ports and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Considering the flow of a Parameter P from an InteractionFlowElement A to an
InteractionFlowElement B, the Parameter P is considered as an output parameter of InteractionFlowElement A and
as an input Parameter of InteractionFlowElement B.

ParameterBindings determine to which input Parameter of a target InteractionFlowElement an output Parameter of a
source InteractionFlowElement is bound. ParameterBindings are in turn grouped into ParameterBindingGroups.

A Module is a fully functional collection of InteractionFlowModelElements, which may be reused for improving
IFML maintainability. Modules may be replaced by other Modules or InteractionFlowElements with the same input
and output parameters.

An Expression defines a statement that will evaluate in a given context to a single instance, a set of instances, or an
empty result. An Expression is side effect free. Specific kinds of expression, such as boolean expressions, etc., are
represented as specializations of Expression.

The interactions between all these elements will be described in the following subclauses.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 21

8.1.3 Interaction Flow Elements

T — +S0Ur actionFlowElement +outinteractionFlow
. - .) - 1 o +interactionFlow
IFML::Core:: 0. +interactionFlowElement \FML:Core:: \FML:Core::
Parameter +parameter 1 . q 0. PR 2,
+kind . ParameterKind = ordinary actisnFlowElement ininteractionFlow
+viawElemant Metacl Metacl Metack Metaclk «Metaclassy 0. «Metaclass s
0.+ | IFML:Core:: IFML:Core:: IFML:Core: IFML::Core:: IFML:Core:: | | +navigationFlow | IFML:Gore:: | *navigationFlow B Jiewy core::
ViewElement ViewComponentPart Action Port Event +event 0.* |NavigationFlew | 1 +dataFlow | DataFlow

0.* | +viewComponentPart +inputPort’| 1.* 1.°| +outputPort 1 +avent

+viewContainer |g..1

1| +viewComponent +maodule |1 1 | +module
aMetaclasss
aMetackass » aMetackass » Py — _ o1 IFML:Gore: 0.1
IFML::Core:: IFML::Core: \FML::Core:: +#interactionFlowExpression |InteractionFlowExpression +interactionFlowExpression
ViewCaontainer ViewComponent Module
+isLandmark : Boolean

tisDefault : Boolsan
+isXOR : Boolean

Figure 7: Interaction Flow Elements

The InteractionFlowElement is one of the key concepts of IFML. InteractionFlowElements represent pieces of the
system, such as ViewElements, ViewComponentParts, Ports, Actions and Events, which participate in
InteractionFlow connections. InteractionFlowElements contain Parameters, which usually flow between
InteractionFlowElements as a consequence of ViewElementEvents (user events), ActionEvents or SystemEvents.
InteractionFlowElements may have both incoming and outgoing interaction flows.

InteractionFlows are specialized into NavigationFlows and DataFlows. A NavigationFlow represents navigation or
change of ViewElement focus, the triggering of an Action processing or a SystemEvent. NavigationFlows are
followed when Events are triggered. NavigationFlows connect Events of ViewContainers, ViewComponents,
ViewComponentParts or Actions with other InteractionFlowElements. When a NavigationFlow is followed
Parameters may be passed from the source InteractionFlowElement to the target InteractionFlowElement through
ParameterBindings. A DataFlow is a kind of InteractionFlow used for passing context information between
InteractionFlowElements. DataFlows are triggered by NavigationFlows, causing Parameter passing but no
navigation.

Events may be associated with an InteractionFlowExpression when they have more than one outgoing
NavigationFlow. An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed
as a consequence of the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all
the InteractionFlows associated with the event are followed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 22

8.14

+viewElement

View Elements

«Metaclass s
IFML: Core:

0.

ViewElement

|

+viewContainer 0.1

«Metaclass»
IFML::Core::
ViewContainar

+isLandmark : Boolean
+isDefault : Boolean
+isXOR : Boolean

|

«Metaclass s
IFML: Core:

+parentViewComponentPart

+viewComponent

1

0"

ViewComponent

1

+igwComponentPart

wMetaclasss
IFML::Core:: 0.
ViewCompenentPart

«Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Extensions:: IFML:: Extensions:: IFML::Extensions:: IFML::Extensions:: IFML:: Extensions:: IFML::Extensions::
Window List Details Form Fleld Slot

+subViewComponentPart

+isModal | Boolean
+is NewWindow : Boolean

Figure 8: View Elements

The elements of an IFML model that are visible at the user interface level are called ViewElements, which are
specialized in ViewContainers and ViewComponents. ViewContainers, like HTML pages or windows, are
containers of other ViewContainers or ViewComponents, while ViewComponents are elements of the interface that
display content or accept input from the user.

A ViewContainer may be landmark, XOR, and/or default, and may be opened in a new window. A landmark
ViewContainer may be reached from any other ViewElement without the need of explicit InteractionFlows.
ViewContainers that are not landmark may be reached only with an InteractionFlow.

In case a ViewContainer (the enclosed ViewContainer) is contained in another ViewContainer (the enclosing
ViewContainer), like a frame in an HTML page, if it is marked as default, it will be presented to the user when its
enclosing ViewContainer is accessed. Enclosing ViewContainers may be marked as XOR. In this case, the
contained ViewElements of the current ViewContainer will be presented to the user only one at the time, as the user
interacts with the system. A ViewContainer may be also opened as a new window. This new window may be a
modal blocking interaction in all other previously active containers.

ViewComponents exist only inside ViewContainers. A ViewComponent is an element of the interface that may have
dynamic behavior, display content or accept input. It may correspond e.g. to a form, a data grid or an image gallery.

A ViewComponent may be build up from ViewComponentParts. A ViewComponentPart is a part of the
ViewComponent that cannot live outside the context of a ViewComponent but may have Events and incoming and
outgoing InteractionFlows. ViewComponentParts may hierarchically contain other ViewComponentParts. A
ViewComponentPart may be visible or not at the level of the user interface depending on the kind of
ViewComponentPart. For instance, a RichTextField is a ViewComponentPart that is visible to the user, may trigger
events, and may receive values through parameter passing, while a Slot is a value placeholder that is not visible to
the user.

The extension package includes concrete examples of ViewComponents such as List, Details, and Form and
ViewComponentParts such as Fields and Slots. A List is for displaying, selecting and capturing lists of items of the
same kind, Details is a component for displaying detailed information on a content element and a Form is for
capturing user input through forms. All these elements will be described in detail in the following subclauses.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 23

8.1.5 Parameters

aMetaclasss

UML Standard Profile::UML2 Metamodel.:
TemplateableElament
+inlnteractionFlow 1 “'
«Metaclass» A 1 «Metaclasss g - +targetinteractionFlowElement «Metaclassy» «Metaclass s
IFML::Core:: *parameterBindingGroup IFML::Core: IFML::Core:: \FML::Core:
ParameterBindingGroup | 0.1 +interactionFlow |/MnteractionFiow | +outinteractionFlow 1 InteractionFfowElement ViewCompaonentPart
0.* +sourcelnteractionFlowElement
+parameterBindingGroup |1 1 | +interactionFlowElement
sMetaclass» «Metaclass» «Metaclass» sMetaclass»
UML Profile::UML2 UML Profile:: UML2 Metamodel:: IFML::Core:: IFML::Core::
MultiplicityElement TypedElement NarmedElement InteractionFlowModelElement
+name : String [1]
“' “V -" 0.* +parameter
+parameterBinding 20.."
— +parameterBinding +sourceParameter «Metaclassy
IFML::Core::
IFML:Core:: |1 1 ore
Parameter
ParameterBinding |+parameterBinding targetParametar |— - -
" 7 +kind : ParameterKind = ordinary
+parameterf0..1
+slot 0.1
«Metaclass» «Metaclass»
IFML::Extensions:: IFML: Extensions::
Slot Field

Figure 9: Parameters

A Parameter is a typed element with multiplicity, whose instances hold values. A Parameter may be of a primitive
type or a complex type such as objects or collection of objects. Parameters are held by InteractionFlowElements and
flow between them when Events are triggered. Parameters may be mapped to a single element of the user interface
i.e. ViewComponentPart or to a complex hierarchical set of ViewComponentParts.

Parameters may be of kind ordinary, input, output or input-output. Ordinary parameters are not mapped to elements
of the user interface, while input, output and input-output parameters are. A Parameter of kind input allows the user
to modify its value through a user interface element. A Parameter of kind output may not be modified by the user,
i.e., it is mapped to a read-only element of the user interface such as a label. A Parameter of kind input-output is a
two-way mapping between the user interface element and the Parameter, i.e., the Parameter value is shown by the
user interface and may then be modified by the user.

A ParameterBinding determines to which Parameter of a target InteractionFlowElement a Parameter of a source
InteractionFlowElement is connected and thus how the parameter value will flow when an Event is triggered and the
InteractionFlow is followed. ParameterBindings that flow together with an InteractionFlow are grouped by a
ParameterBindingGroup, which in turn is related to the InteractionFlow.

One possible way Parameters may be mapped to elements of the user interface is through Fields and Slots. Fields
contain Slots that hold the Field value, thus Parameters are mapped to Slots to show or capture their value from the
user interface.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 24

8.1.6 Events

«Metaclass»
IFML::Caore:
InteractionFlowElement
«Metaclass» sMetaclass» fivationEx)
IFML::Cora:: IFML::Core: Factivationtxpression
NavigationFlow ActivationExpression 0.1
+navigationFlow |0..” +activatienExpressicn |0..1
+vigwElement (0.1
t
reven sMetaclassn» ; uMetaclass» whMetaclassn»
1 IFML:Gore:: | T2¥E0 IFML::Core:: IFML:Cora::
+avent 0.1 X X
Event - ViewElement Action
1

T 0.1 | +viewElement .

1 taction
+interactionFlowExpression |0..1 0..%| *actionEvent
«Metaclass» aMetaclass» aMetaclass» 0. aMetaclass»
IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core::
InteractionFlowExpression SystemEvent ViewElementEvent | +viewElemantEvent ActionEvent
Hype : SystemEventType

+gystemEvent |1

+iriggeringExpressiony1..” ‘ |

«Metaclassy «Metaclass»
sMetaclassy i i
B . IFML::Extensicns:: IFML::Extensions::
IFML::Core:: i
. SelectEvent SubmitEvent
Expression

+anguage : String [1]
+body : String [1]

Figure 10: Events

Events are occurrences that can affect the state of the application, and they are a subtype of InteractionFlowElement.
There are three types of Events: ViewElementEvents, resulting from a user interaction (with specific subtypes
SelectEvent and SubmitEvent), ActionEvents and SystemEvents.

ViewElementEvents are owned by their related ViewElements. This means that ViewElements contain Events that
allow a user to activate an interaction in the application, e.g., with the click on a hyperlink or on a button.
ActionEvents are owned by their related Actions. An Action may trigger ActionEvents during its execution or when
it terminates, normally or with an exception.

SystemEvents are stand-alone events, which are at the level of the InteractionFlowModel. SystemEvents result from
an Action execution termination event or a triggeringExpression such as a specific moment in time, or special
condition events such as a problem in the network connection.

Events own a set of NavigationFlows. An InteractionFlowExpression is used to determine which of the

NavigationFlows are followed as a consequence of the occurrence of an Event. When an Event occurs and it has no
InteractionFlowExpression, all the NavigationFlows associated with the event are followed.

An Event may have an ActivationExpression that determines whether the Event is enabled or disabled. In practical
terms, disabling a ViewElementEvent means, for example, that the Ul element (e.g. a button) that triggers an
InteractionFlow is disabled.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 25

8.1.7

Expressions

«Metaclass»
IFML::Cora::
InteractionFlowModel/Elerment

X

«Metaclass» “Motaciasss
«Metaclass» IFML::Core:: .
IFML::Core:: Exprossion 1 +systemEvent SIF::I;mC;:m
ViewCemponentPart o +triggeringExpression 1 Y
+language : String [1] +type : SystemEventTy
+body : String [1] pa . aystambventType
+vigwComponentPart [0..1
«Metaclass» «Metaclass» sMetaclass»
IFML::Core: IFML::Cora:: IFML::Cora::

ConditionalExpression

InteractionFlowExpression

BooleanExpression

+interactionFlowExpression [0..1

+avent

1

Figure 11: Expressions

«Metaclass»
IFML::Core:; | *event
Event 0.1
+activationExpression |0..1
«Metaclass» «Metaclasss
+activationExprassion IFML::Core:: IFML::Core::
0.1 ActivationExpression Constraint
+activatiocnExpression (0..1
+viewElement |0..1
«Metaclasss «Metaclass»
IFML::Core:: IFML::Extensions::
ViewElement ValidationRule

An Expression defines a side-effect free statement that will evaluate in a given context to a single instance, a set of
instances, or an empty result.

The subtypes of Expression are InteractionFlowExpression, BooleanExpression and ConditionalExpression.

An InteractionFlowExpression, as discussed in 22, determines which NavigationFlow should be followed, when
more than one NavigationFlow comes out from an Event.

A ConditionalExpression is a ViewComponentPart representing predefined queries contained by DataBindings (see
27) that may be executed on them to obtain specific content information from the ContentModel.

A BooleanExpression is an expression that evaluates to true or false. BooleanExpression has the specializations
ActivationExpression and Constraint. An ActivationExpression determines if a ViewElement, ViewComponentPart
or Event is enabled, and thus available to the user for interaction, while a Constraint restricts the behavior of any

element.

The Expression's context is any IFML element denoted by Element. The Expression values used to evaluate the
expressions (scope) are defined depending on the specific Expression type. For instance SystemEvent expressions
may have as scope specific system condition values, the current date and time, etc., not modeled in IFML.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

26

8.1.8

Content Binding

aMetaclass»
IFML::Core::

ViewComponentPart

Metacla:
«Metaclasss uhielaciassy »
IFML::Core: c ‘FML":'?F:;. +action
et
Expression ontentBinding 0.1
Hanguaga | String [1] +uniformResourceldentifier : String [1]
+body : String [1] "'
1| +dynamicBehavior
«hetaclass» - . «Mataclass» «Metaclassy
IFML: Cora:: +conditionalExpression IFML::Core:: IFML::Core:: +dynamicBehavior
ConditionalExpression | 0. +dataBinding 1 |DataBinding DynamicBehavior [0 1
0.1 +dynamicBehaviour (0..1
+dataBinding |1 +ataBinding
«Metaclass» iz ationAtiribut
\FML::Core: +visualzaton. rioute
VisualizationAttribute | 0
+isualizationAttribute |01
+structuralFeature | 1 +classifier |1 +behavioralFeature |0..1 +behavior |0..1
«Metaclass» «Metaclassy «Metaclassy wMetaclassy
UML Standard Profile::UML2 Metamedel.: uML Profila: UML2 UML Profila: UML2 UML Standard Profila;: UML2 Metamodal:
StructuralFeature Classifier BehavioralFeature Behavior

Figure 12: Content Binding

ViewComponents may retrieve content by means of the ContentBinding. ContentBinding represents any source of
content. ContentBinding has as an attribute the URI of the resource from which the content may be obtained.

ContentBinding is specialized in two concepts, DataBinding and DynamicBehavior. A DataBinding references a
UML Classifier that may represent an object, an XML file, a table in a database etc. A ContentAccess is associated
with a ConditionalExpression, which determines the specific content to be obtained from the content source. A
DynamicBehavior represents a content access such as a service or method that returns content after an invocation, as
represented by a UMLBehavioralFeature for representing it.

A DataBinding contains VisualizationAttributes used by ViewComponents to determine the features accessed from

the DataBinding that may be shown to the user, such as a data base column or an XML element or attribute, as
represented using UML StructuralFeatures.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

27

8.1.9 Context

s«Metaclass»
. IFML::Core;:
+context | Context

1

+context (1

+vigwpoint |1 +oontextDimension 40, "

«Metaclassys sMetaclassy
IFML::Core:: IFML::Core::
Viewpoint ContextDimension

fu

«Metaclass s sMetaclasss «Metaclass s
IFML::Extensions:: IFML::Extensions:: IFML::Extensions::
Position UserRole Device

Figure 13: Context

The Context is a runtime aspect of the system that determines how the user interface should be configured and the
content that it may display. The configuration and content of the user interface is determined by the ViewPoint, and
thus Context is related to ViewPoint.

A Context has several dimension called ContextDimensions, which represent not only the user’s id and preferences
but also the interaction environment of the system. ContextDimension has the specializations UserRole, Device and
Position. When the user context satisfies all the ContextDimensions, access is granted to the ViewElements of the
ViewPoint and to the Events that may be triggered on them.

UserRole represents the profile that a user should have for satisfying the UserRole dimension.

A Device represent a specific kind of device for which the ViewPoint is configured. When a user accesses the
application through such a device, the Device dimension is satisfied.

Position represents the location and orientation of the device for which a ViewPoint is configured. When the device
the user uses for accessing the application reaches the given position or orientation, the Position dimension is
satisfied.

ContextDimension may be specialized to represent other dimensions, such as user preferences, etc.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 28

8.1.10 Specific Events and ViewComponents

+parentViewComponentPart
1
«Metaclass» e " e tPart «Metaclass» 0.
IFML::Core:: tviewb.ompanen tviewbomponentta IFML::Core:: -
ViewComponant 1 0. ViewComponantPart | ssybviewComponentPart

«Mataclass» «Metaclass»

IFML::Core: IFML::C'E_”E::_

DataBinding —A ContentBinding

+uniformResourceldentifier : String [1]
«Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Extensions:: IFML::Extensions:: +ist IFML::Extensions:: IFML::Extensions:: IFML::Extensions::
Details List 1 Farm Flald Slot
+index |1 +form |1
+selectEvent | 0. +submitEvent (0..* ‘
s«Metaclass» «Metaclass» 0.* aMetaclass» «Metaclass»
IFML::Extensions IFML::Extensions:: IFML::Extensions:: IFML::Extensions::
SelectEvent SubmitEvent +submitEvent SimpleField SelectionField
+isMultiSelection : Boolean
«Mataclass»
IFML::Core:
ViewElementEvent

Figure 14: Specific Events and ViewComponents

IFML includes a basic set of extensions to the core elements that exemplify how IFML may be extended.

List and Entry are specializations of ViewComponent (see 23). The List ViewComponent is used to display a list of
DataBinding instances. When a List ViewComponent is associated with an Event, it means that each DataBinding
instance displayed by the component may trigger that Event. The Event will in turn cause the passing of the
parameter values mapped to the DataBinding instance to a target InteractionFlowElement. The Details
ViewComponent is used to display detailed information of a DataBinding instance. When the Details
ViewComponent is associated with an Event, the triggering of the Event will cause the passing of the Parameter
values mapped to the DataBinding instance to a target InteractionFlowElement. The Form ViewComponent is used
to display a form, which is composed of Fields that may display or capture content from the user. Fields have Slots
that hold their value. When the Field is a SelectionField, its associated Slots contain the available selection options
and the selected one. When the Field is a SimpleField, the Slot contains the Field value. A Slot value of a
SimpleField and the Slots corresponding to the selected options of SelectionFields are copied to Parameters fin order
to be passed to other ViewElements or Actions when an Event is triggered. Form ViewComponents have
ValidationRules, which determine if a Field value is valid or not

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 29

SubmitEvent and SelectEvent are subtypes of ViewElementEvent (see 25). SubmitEvents are linked to Form and
List ViewComponents and, as Events, contain InteractionFlows. When a SubmitEvent is triggered it causes the
mapping of all the Field values to the ViewComponent parameters and a navigation which passes those parameter
values to one or more target InteractionFlowElements. The SelectEvent is an Event that is triggered when the user
select a DataBinding instance. When the event is triggered, it causes the mapping of only the selected DataBinding
instance values to the Parameters and a navigation that passes the selected value as Parameter to a target
InteractionFlowElement.

8.2 Package DataTypes

8.2.1 Enumeration ParameterKind
Description

Enumeration specifying the different kinds of parameters.
Literals

einput: Parameter that is mapped to the user interface and gets its value from the user.

einput_output: Parameter that is mapped to the user interface and shows its value to the user and may also be
modified by the user.

eordinary: Parameter that is not mapped to user interface elements.

eoutput: Parameter that is mapped to the user interface and shows its value to the user.

8.2.2 Enumeration SystemEventType
Description

Enumeration specifying the different system event types.
Literals

eactionCompletion: Kind of Event triggered by a business operation completion.
especialCondition: System special condition event such as data base connection loss, network loss, etc.

stime: System event of time kind, such as absolute time event, periodic time event and time out event.

8.3 Package Core

8.3.1 Class Action
Abstract: No
Generalization:

- InteractionFlowElement

Description

An Action is an InteractionViewElement that represents a piece of business logic triggered by an Event. Actions
may trigger different Events called ActionEvents as the result of business logic computation termination or the
occurrence of exceptions. Actions may reside on the server or on the client side.

Constraints

eactionsCannotCallActions
self.actionEvent->forAll(e | e.navigationFlow->forAll(nf | not
nf.targetinteractionFlowElement.oclisTypeOf(IFML::Core::Action)))

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

Association Ends
eactionEvent [0..*]: ActionEvent - Events triggered by the Action.

edynamicBehavior: DynamicBehavior [1] — The business logic to be carried out by the Action.

8.3.2 Class ActionEvent
Abstract: No
Generalization:

-Event

Description

An ActionEvent is an Event that may be triggered by an Action such as a normal termination event or exception
event.

8.3.3 Class ActivationExpression
Abstract: No
Generalization:

- BooleanExpression

Description

ActivationExpressions are used by ViewElements, Events or ViewComponentParts to determine if they are enabled
or not. An ActivationExpression is a BooleanExpression such that, if it evaluates to true, the element is active,
otherwise the element is inactive. ActivationExpressions use Parameter values for the expression evaluation.

8.3.4 Class Annotation
Abstract: No
Description

An Annotation represents a comment, note, explanation, or other type of documentation that can be attached to any
Element.

Attributes

etext: String - Annotation text.

8.3.5 Class BooleanExpression
Abstract: No
Generalization:

- Expression

Description
A BooleanExpression is a kind of Expression that evaluates to true or false.

8.3.6 Class ConditionalExpression
Abstract: No
Generalization:

- Expression

-ViewComponentPart

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 31

Description

A ConditionalExpression is a predefined query expression associated with a DataBinding. A ConditionalExpression
is a ViewComponentPart, so it may have incoming NavigationFlows. When a ConditionalExpression has an
incoming NavigationFlow it means that the DataBinding is queried with the query expression represented by the
ConditionalExpression for retrieving content.

8.3.7 Class Constraint
Abstract: No
Generalization:

- BooleanExpression

Description
A Constraint is a BooleanExpression that may be defined for any model Element in order to restrict its behavior.

8.3.8 Class ContentBinding
Abstract: Yes
Generalization:

-ViewComponentPart

Description

A ContentBinding allows the system to access a given source of content. A content source access may be done
through a DataBinding or a DynamicBehavior of a ContentModel element.

Attributes

suniformResourceldentifier: String [1] - URI used to identify or locate the resource from which the content may
be obtained.

Constraints

enoViewElementEvent
self.viewElementEvent -> isEmpty()

8.3.9 Class ContentModel
Abstract: No
Generalization:

-NamedElement

Description

The ContentModel is a model that contains content elements that ViewComponents may access to retrieve
information, process it, and show it to the user. The ContentModel also stores information captured from the user.
The ContentModel is presumed to be represented in UML and therefore consists of a set of UML model elements .

Association Ends
eclement [0..*]: UML::Element - References to the UML elements of the ContentModel.

8.3.10 Class Context
Abstract: No
Generalization:

-Element

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 32

Description

The Context is a runtime aspect of the system that determines how the user interface should be configured. A
Context has several dimensions that represent not only the user’s identity and preferences, but also the interaction
environment of the system. Context is composed of one or more ContextDimensions.

Association Ends

econtextDimension [0..*]: ContextDimension - ContextDimensions the user context must satisfy to have access
to one or more Viewpoints.

8.3.11 Class ContextDimension
Abstract: No
Generalization:

-NamedElement

Description

ContextDimensions are dimensions of the Context that represent not only the user’s identity and preferences, but
also the interaction environment of the system. ContextDimension has the specializations UserRole, Device, and

Position. When the user context satisfies all required ContextDimensions, access is granted to the ViewElements of

the Viewpoint and to the Events that may be triggered on them.

8.3.12 Class DataBinding
Abstract: No
Generalization:
- ContentBinding
Description

DataBinding represents the binding of the system with an element of the ContentModel such as a table, an object, an

XML file etc.
Association Ends

eclassifier [1]: UML.::Classifier — A Classifier specifying the data structure to which the ViewComponent is
bound, such as a table in a relational data base or an XML file.

econditionalExpression [0..*]: ConditionalExpression - ConditionalExpressions that determine how to access
the content.

evisualizationAttribute [0..*]: VisualizationAttribute - VisualizationAttributes that determine the

StructuralFeatures that should be shown to the user, such as a data base column or an XML element or attribute.

8.3.13 Class DataFlow
Abstract: No
Generalization:

- InteractionFlow

Description

A DataFlow is a kind of InteractionFlow used for passing context information between InteractionFlowElements.
DataFlows are triggered by NavigationFlows causing Parameter passing but no navigation.

Constraints

etargetNotInstanceOfEvent

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

33

not self.targetinteractionFlowElement.oclisTypeOf(IFML.::Core::Event)

8.3.14 Class DynamicBehavior
Abstract: No
Generalization:

- ContentBinding

Description

DynamicBehavior represents the binding of the system with a service or operation, which may be invoked in order
to carry out business logic or return content.

Constraints

ecitherBehavioralFeatureOrBehavior
self.behavioralFeature -> notEmpty() xor self.behavior -> notEmpty()

Association Ends

ebehavioralFeature [0..1]: UML.::BehavioralFeature - BehavioralFeature representing a procedure, method,
function etc, that may be invoked by a ViewComponent to carry out business logic or obtain content.

ebehavior [0..1]: Behavior representing a procedure, method, function etc, that may be invoked by a
ViewComponent to carry out business logic or obtain content.

8.3.15 Class Element

Abstract: Yes

Description

Element is the base class for the representation of all model elements in an IFML model.
Attributes

eid: String [1] - String for unequivocally identifying a model element.
Association Ends
eannotation [0..*]: Annotation - Annotations, comments, tags, etc., owned by the Element.

econstraint [0..*]: Constraint - Constraints applied to the Element.

8.3.16 Class Event
Abstract: No
Generalization:

- InteractionFlowElement

Description

An Event is an occurrence that can affect the state of the application, by causing navigation and/or Parameter value
passing between InteractionFlowElements. Events may be produced by a user interaction (ViewElementEvent), by
an action when it finishes its execution, normally or exceptionally (ActionEvent), or by the system in the form of
notifications (SystemEvent).

Association Ends

eactivationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation
result determines if the Event is active or inactive. If no ActivationExpression is given, the default is that the
Event is active.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 34

einteractionFlowExpression [0..1]: InteractionFlowExpression - InteractionFlowExpression determining the
InteractionFlows to be followed after the occurrence of the Event.

-navigationFlow [0..*]: NavigationFlow - NavigationFlows triggered by the Event.

8.3.17 Class Expression
Abstract: Yes
Generalization:

- InteractionFlowModelElement

Description

An Expression is an element that, in a given context, evaluates to a single instance, a set of instances. or an empty
result. An Expression must be side effect free. Specific expression types, such as BooleanExpression, etc., specialize
this concept.

Attributes
ebody: String - Code of the Expression.

elanguage: String - Language in which the Expression is written, e.g. OCL, Java, etc.

8.3.18 Class IFMLModel
Abstract: No
Generalization:

-NamedElement

Description

An IFMLModel is the top-level container of all other elements in an IFML model. All model elements are grouped
into two submodels, the InteractionFlowModel and the ContentModel. An IFMLModel may also contain a number
of Viewpoints of the InteractionFlowModel.

Association Ends

econtentModel [1]: ContentModel - Model that holds the business model of the system being described in
IFML.

einteractionFlowModel [1]: InteractionFlowModel - The complete model that describes the interaction of the
user with the system.

esinteractionFlowModelViewpoint [0..*]: Viewpoint - Viewpoints of the InteractionFlowModel.

8.3.19 Class InteractionFlow
Abstract: Yes
Generalization:

- InteractionFlowModelElement

Description

An InteractionFlow is a directed connection between ViewElements or ViewElements and Actions, which enables
communication between them by means of Parameter passing. InteractionFlows are divided into NavigationFlows
and DataFlows. NavigationFlows cause navigation or change of focus to the target element and Parameter passing,
while DataFlows cause only Parameter passing to the target element.

Association Ends

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 35

eparameterBindingGroup [0..1]: ParameterBindingGroup - Group of parameters that are passed to the target
interaction flow element by following the InteractionFlow.

estargetinteractionFlowElement [1]: InteractionFlowElement - Target InteractionFlowElement of the
InteractionFlow.

esourcelnteractionFlowElement [1]: InteractionFlowElement - Source InteractionFlowElement of the
InteractionFlow.

8.3.20 Class InteractionFlowElement
Abstract: Yes
Generalization:

- InteractionFlowModelElement

-NamedElement
-UML::TemplateableElement

Description

InteractionFlowElements represent pieces of the system such as Actions, Events, ViewElements, and
ViewComponentParts, which participate in user interaction flows through InteractionFlow connections. Usually
there is a flow of Parameter values between InteractionFlowElements as a consequence of user, action, or system
events.

Association Ends
eininteractionFlow [0..*]: InteractionFlow - Incoming InteractionFlows.
eoutInteractionFlow [0..*]: InteractionFlow - Outgoing InteractionFlows.

eparameter [0..*]: Parameter - Parameters contained by the InteractionFlowElement.

8.3.21 Class InteractionFlowExpression
Abstract: No
Generalization:
- Expression
Description

An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed as a consequence

of the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all the
InteractionFlows associated with the event are followed. At least two InteractionFlows must be associated with an
InteractionFlowExpression. An InteractionFlowExpression uses the ViewElement Parameter values and the
InteractionFlows for the evaluation of the expression.

Association Ends

einteractionFlow [2..*]: InteractionFlow - InteractionsFlows for which the expression is evaluated.

8.3.22 Class InteractionFlowModel
Abstract: No
Generalization:

-NamedElement

Description

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

36

An InteractionFlowModel aggregates all the elements modeling interaction with the user.
Association Ends

einteractionFlowModelElement [0..*]: InteractionFlowModelElement - Elements of the InteractionFlowModel.

8.3.23 Class InteractionFlowModelElement
Abstract: Yes
Generalization:

-Element

Description

An InteractionFlowModelElement is the top-level class that generalizes all the elements that are part of an
InteractionFlowModel.

8.3.24 Class Module
Abstract: No
Generalization:

- InteractionFlowModelElement

Description

A Module is a fully functional collection of user InteractionFlowModellements and their corresponding Actions,
which may be reused for improving IFML model maintainability. A Module receives Parameter values from other
InteractionFlowElements and provides Parameter values to other InteractionFlowElements. Modules may be
replaced by other InteractionFlowElements with the same input and output Parameters. Modules exchange
Parameters with other InteractionFlowElements by mean of input and output Ports. InteractionFlowModelElements
contained in a Module may not be shared or referenced by other Modules or by the main InteractionFlowModel.

Association Ends
einputPort [1..*]: Port - Ports that collect InteractionFlows and Parameters coming into the Module.

einteractionFlowModelElement [1..*]: InteractionFlowModelElement - InteractionFlowModelElements
contained by the Module.

eoutputPort [1..*]: Port - Ports that collect the InteractionFlows and Parameters going out from the Module.

8.3.25 Class NamedElement
Abstract: Yes
Generalization:

-Element

Description

A NamedElement is an Element that requires a name for easy visual identification in diagrams or for being handled
as a named variables in a concrete textual syntax.

Attributes

ename: String - Element name.
8.3.26 Class NavigationFlow

Abstract: No
Generalization:

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 37

- InteractionFlow

Description

A NavigationFlow represents navigation or change of ViewElement focus, the triggering of Action processing, or a
SystemEvent. NavigationFlows are followed when Events are triggered. NavigationFlows connect Events of
ViewContainers, ViewComponents, ViewComponentParts, or Actions with other InteractionFlowElements. When a
NavigationFlow is followed, Parameters may be passed from the container of the source Event to the target
InteractionFlowElement through ParameterBindings.

Association Ends

-dataFlow [0..*]: DataFlow - DataFlows triggered by the NavigationFlow.

8.3.27 Class Parameter
Abstract: No
Generalization:

- InteractionFlowModelElement
-UML.::MultiplicityElement

-UML.:: TypedElement
Description

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElements, i.e.,
ViewElements, ViewComponentParts, Ports, and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Parameters may be mapped to elements of the user interface, determining whether the element
of the user interface is read-only or modifiable. For instance, an element of the user interface mapped to an input or
input-output Parameter may be modified by the user while an element mapped to an output Parameter is read-only,
such as a label.

Attributes

okind: ParameterKind - Determines if the parameter is ordinary, input, output or input_output.

8.3.28 Class ParameterBinding
Abstract: No
Generalization:

- InteractionFlowModelElement

Description

A ParameterBinding determines how data flow between components. A ParameterBinding connects a Parameter of a
source InteractionFlowElement with a Parameter of a target InteractionFlowElement. When an Event is triggered,
InteractionFlows are followed and Parameter values flow from source InteractionFlowElements to target
InteractionFlowElements, according to how they have been bound.

Association Ends

esourceParameter [1]: Parameter - Parameter of the source InteractionFlowElement that participates in the
ParameterBinding.

stargetParameter [1]: Parameter - Parameter of the target InteractionFlowElement that participates in the
ParameterBinding.

8.3.29 Class ParameterBindingGroup
Abstract: No

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 38

Generalization:

- InteractionFlowModelElement

Description
A ParameterBindingGroup aggregates all the ParameterBindings of an InteractionFlow.
Association Ends

eparameterBinding [0..*]: ParameterBinding - The ParameterBindings composing the ParameterBindingGroup.

8.3.30 Class Port
Abstract: No
Generalization:

- InteractionFlowElement

Description

A Port is an interaction point between a Module and its environment and between the Module and its internal parts.
An input Port has incoming InteractionFlows from the outside of the Module and outgoing InteractionFlows to the
inside of the Module. An output Port has incoming InteractionFlows from the inside of the Module and outgoing
InteractionFlows to the outside of the Module.

8.3.31 Class SystemEvent
Abstract: No
Generalization:

-Event

Description

A SystemEvent is an Event produced by the system, which triggers a computation reflected in the user interface.
Examples of SystemEvents are time events, which are triggered after an elapsed frame of time, or system special
conditions events, such as a database connection loss event.

Attributes
stype: SystemEventType - Determines the kind of SystemEvent.
Association Ends

striggeringExpression [1..*]: Expression - Expressions that determines when or under what conditions the
SystemEvent should be triggered.

8.3.32 Class ViewComponent
Abstract: No
Generalization:

-ViewElement

Description

A ViewComponent is an element of the user interface that displays content or accepts input. A ViewComponent
may be bound to a ContentBinding through its association with ViewComponentPart.

Association Ends

sviewComponentPart [0..*]: ViewComponentPart - Parts of the ViewComponent.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

8.3.33 Class ViewComponentPart
Abstract: No
Generalization:

- InteractionFlowElement

Description
A ViewComponentPart is an InteractionFlowElement that may not live outside the context of ViewComponent. A
ViewComponentPart may trigger Events and have incoming and outgoing InteractionFlows.

Association Ends
eactivationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation

result determines whether the ViewComponentPart is active or inactive. If no ActivationExpression is given, by
default the ViewComponent is active.

esubViewComponentPart [0..*]: ViewComponentPart - Nested ViewComponentParts.

sviewElementEvent [0..*]: ViewElementEvent - Events that this ViewComponentPart may trigger.

eparentViewComponentPart [1]: ViewComponentPart - Parent ViewComponentPart.

8.3.34 Class ViewContainer
Abstract: No
Generalization:

-ViewElement

Description

A ViewContainer is an element of the interface that aggregates other ViewContainers and/or ViewElements
displaying content.

Attributes

eisDefault: Boolean - If true, the ViewContainer will be presented to the user when its enclosing ViewContainer
is accessed. This attribute is relevant when this vViewContainer shares the same parent ViewContainer with
other ViewContainers.

eisLandmark: Boolean - If true, the ViewContainer is directly reachable from any ViewElement. It represents an
implicit link between all the other ViewElements and the ViewContainer.

¢isXOR: Boolean - If true, the contained ViewElements of thisViewContainer will be presented to the user only
one at the time, as the user interacts with the system.

Association Ends

sviewElement [0..*]: ViewElement - The ViewElements owned by the ViewContainer.

8.3.35 Class ViewElement
Abstract: No
Generalization:

- InteractionFlowElement

Description

ViewElements are elements of the user interface that display content. ViewElements are divided into
ViewContainers and ViewComponents. ViewContainers are aggregations of other ViewContainers and/or
ViewComponents.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 40

Association Ends

eactivationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation
result determines whether the ViewElement is active or inactive. If no ActivationExpression is given, by default
the ViewElement is active.

-viewElementEvent [0..*]: ViewElementEvent - ViewElementEvents contained by the ViewElement.

-viewContainer [0..1]: ViewContainer - ViewContainer of the current ViewElement.

8.3.36 Class ViewElementEvent
Abstract: No
Generalization:

-Event

Description

A ViewElementEvent represents a user interaction Event, which may be triggered by ViewElements
(ViewContainers and ViewComponents).

8.3.37 Class Viewpoint
Abstract: No
Generalization:

-NamedElement

Description

A Viewpoint is a reference to an interrelated set of InteractionFlowModelElements, which as a whole define a
functional portion of the system. The purpose of a Viewpoint is to facilitate the comprehension of a complex system,
to allow or disallow access to the system by a specific UserRole, or to adapt the system to a specific context change.

Association Ends

einteractionFlowModelElement [0..*]: InteractionFlowModelElement - InteractionFlowModelElements that
build up this Viewpoint.

econtext [1]: Context - Application context that determines the Viewpoint to be used.

8.3.38 Class VisualizationAttribute
Abstract: No
Generalization:

-ViewComponentPart

Description

The VisualizationAttributes used by a ViewComponent determine the features obtained from a DataBinding that
may be shown to the user, such as a data base column or an XML element or attribute. A feature is represented using
a UML.::StructuralFeature.

Association Ends

estructuralFeature [1]: UML.::StructuralFeature— A StructuralFeature of the classifier bound to a DataBinding to
be shown to the user, such as a data base column or an XML element or attribute.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 41

8.4 Package Extensions

8.4.1 Class Details
Abstract: No
Generalization:

- Core::ViewComponent

Description

A Details ViewComponent is used to display the details of a DataBinding instance. When the Details
ViewComponent is associated with an Event, it means that the DataBinding instance displayed by the component
may trigger the Event. The Event will in turn cause the passing of the Parameter values mapped to the DataBinding
instance to a target InteractionFlowElement.

Constraints

emustHaveOneDataBinding
self.viewComponentPart -> select(v | v.ocllsTypeOf(DataBinding)) -> size() = 1

8.4.2 Class Device
Abstract: No
Generalization:

- Core::ContextDimension

Description

A Device is a ContextDimension that represents any device such as desktop, laptop, smart phone, tablet, or any other
device from which the application may be accessed. A Device is associated with one or more Viewpoints (through
the association from Viewpoint to Context). When the user context specifies the same device as the one specified by
Device, the ContextDimension is satisfied and access is granted to the Viewpoint elements.

8.4.3 Class Field
Abstract: Yes
Generalization:

- Core::ViewComponentPart

Description

A Field is a value-type pair whose value may be displayed to the user or serves as a meand for capturing input from
the user. Fields are usually mapped to Parameters for passing their values to other InteractionFlowElements. There
are two kinds of fields, SimpleFields and SelectionFields.

Constraints

esviewComponentPartsAreSlots
self.subViewComponentPart -> forAll(v | v.ocllsTypeOf(Slot))

8.4.4 Class Form
Abstract: No
Generalization:

- Core::ViewComponent

Description

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 42

Order in which the ValidationRules are going to be applied to the Fields of the ViewComponent.
Constraints

emustHaveAtLeastOneField
self.viewComponentPart -> select(v | v.oclisTypeOf(Field)) -> notEmpty()

Association Ends

-submitEvent [0..1]: SubmitEvent - Event that triggers a navigation, which passes the Field's values as
Parameters to the target InteractionFlowElement.

8.45 Class List
Abstract: No
Generalization:

- Core::ViewComponent

Description

The List ViewComponent is used to display a list of DataBinding instances. When the List ViewComponent is
associated with an Event, it means that each DataBinding instance displayed by the component may trigger the
Event. The Event will in turn cause the passing of the Parameter values mapped to the DataBinding instance to a
target InteractionFlowElement.

Constraints

emustHaveAtOneDataBinding
self.viewComponentPart -> select(v | v.ocllsTypeOf(DataBinding)) -> size() = 1

Association Ends

eselectEvent [0..*]: SelectEvent - Events that represent the selection of a DataBinding instance of the List
ViewComponent and the passing of the value as Parameter.

esubmitEvent [0..1]: SubmitEvent - Event for passing the values of the selected DataBinding instances to an
InteractionFlowElement.

8.4.6 Class Position
Abstract: No
Generalization:

- Core::ContextDimension

Description

A Position is a ContextDimension representing the location and orientation of a device from which the application is
accessed. A Position is associated with one or more ViewPoints (through the assoication between ViewPoint and
Context). When the user context indicates having reached the location or orientation described by a Position, the
ContextDimension is satisfied and access is granted to the ViewPoint elements and presented to the user.

8.4.7 Class SelectEvent
Abstract: No
Generalization:

- Core::ViewElementEvent

Description
A SelectEvent is a kind of Event that, when triggered, results in a selected value being passed as a Parameter to the

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 43

target InteractionFlowElement of its associated NavigationFlow.

8.4.8 Class SelectionField
Abstract: No
Generalization:

-Field

Description

A SelectionField is a kind of Field that enables the selection of one or more values from the predefined set of values
given in its Slots.

Attributes

eisMultiSelection: Boolean - If true, the SelectionField allows the selection of multiple values.

8.4.9 Class SimpleField
Abstract: No
Generalization:

-Field

Description

A SimpleField is a kind of Field that displays a value or captures a textual input from the user. A SimpleField also
behaves as a Parameter,so that its value may be passed to other ViewElements or Actions.

8.4.10 Class Slot
Abstract: No
Generalization:

eCore::ViewComponentPart

Description

A Slot is a value placeholder for a Field. When the Field is a SelectionField, its associated Slots contain the available
selection options and the selected one. When the Field is a SimpleField, the Slot contains the Field value. A Slot
value of a SimpleField and the Slots corresponding to the selected options of SelectionFields are copied to
Parameters in order to be passed to other ViewElements or Actions when an Event is triggered.

Association Ends

eparameter [0..1]: Core::Parameter - Parameter that gets a copy of the Slot value when the Slot holds the value
of a SimpleField or a selected option of a SelectionField.

8.4.11 Class SubmitEvent
Abstract: No
Generalization:

eCore::ViewElementEvent

Description

A SubmitEvent triggers the Parameter passing of a ViewComponent to the target ViewElement or Action of its
corresponding NavigationFlow. A SubmitEvent is found in Form ViewComponents.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 44

8.4.12 Class UserRole
Abstract: No
Generalization:

eCore::ContextDimension

Description

A UserRole is a ContextDimension that represents a role played by a human user or external system that accesses
the application through its user interface. A UserRole is associated with one or more ViewPoints (trough the
association between ViewPoint and Context). When the user context has the same user role as the one specified by
the UserRole, the ContextDimension is satisfied and access is granted to the ViewPoint elements.

8.4.13 Class ValidationRule
Abstract: No

Generalization:

eCore::Constraint

Description

A ValidationRule is a Constraint, which, when evaluated, determines if the content of a Field or group of Fields is
valid or not.

8.4.14 Class Window
Abstract: No
Generalization:

-ifml::core::ViewContainer

Description:

A Window is a special kind of ViewContainer used to model the concept of a window in IFML.
Attributes

eisNewWindow: Boolean — If true, the container will be opened as a new window.

eisModal: Boolean — If true, the window will be rendered as a modal window.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

45

9 IFML Execution Semantics

9.1 Introduction

This clause specifies the execution semantics of IFML. The purpose is to define when and how to compute the
values to be shown to the user, based on an IFMLModel . A few aspects affect the execution semantics:

1. Computation of triggering events
2. Parameter propagation
3. Navigation history preservation

9.2 Relevant Aspects for IFML Execution Semantics

9.21 Triggering Events
The content of a ViewContainer must be (partially or completely) computed when the following events arise:

1. Inter-container navigation flow traversal: The container is entered through a NavigationFlow originated by an
Event in another container.

2. Intra-container navigation flow traversal: The user produces an Event inside a container that triggers the
navigation of a flow targeting an Element in the same top-level ViewContainer (e.g., Window). Firing the
navigation may have side effects on the content of the currently visualized Elements (e.g., it may modify
content currently shown to the user) and may invalidate (partially or totally) the information used to compute
the container.

9.2.2 Parameter Propagation

A ViewContainer typically contains several pieces of related information. This corresponds to having several
ViewComponents linked in a network topology through NavigationFlows and DataFlows. Information may be
propagated from one ViewComponents to other ViewComponents through ParameterBindings. Actual propagation
depends on the Events that trigger the flows.

Conflicts may arise in the propagation of Parameters. A conflict arises when a ViewComponent receives more than
one input value for the same Parameter. This could happen due to multiple incoming flows in a ViewComponent or
ViewContainer. A conflict resolution strategy (CRS) specifies which Parameter value is selected to compute the
data content of the ViewComponent. A conforming tool shall use one of the following possible strategies:

1. Non-deterministic choice: One input parameter is chosen non-deterministically at run-time among the set of
available inputs.

2. With priorities: Priorities are assigned at design-time to the incoming flows (for the ViewComponent or
ViewContainer), and, in case of run-time conflict, the Parameter value transported by the flow with highest
priority is chosen.

3. Mixed: A partial order of prioritization is defined at design-time over the input flows, and, in case of run-time
conflict, the context transported by the flow with highest priority (if unique) is chosen. If the ViewContainer is
accessed at run-time in such a way that multiple flows with highest priority are in conflict, a non-deterministic
choice is taken.

9.2.3 Navigation History Preservation

When the user triggers an Event, the content of the destination ViewContainer is refreshed, in a way that may
depend on the past history of the user interaction. The alternatives for re-computing a ViewContainer (or a part
thereof) depends on the “degree of memory” used for computation. A conforming tool may use one of the following
possible interaction history policies

1. Without history: The contents of the ViewComponents are computed as if the ViewContainer was accessed for

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 46

the first time. The computation without context history policy may be used to “reset” and forget the choices
done by the user in a container.

2. With history: The contents of the ViewComponents are computed based on the input history of the
ViewComponents existing prior to the last navigation event.

9.3 ViewComponent Computation Process

In this section we provide a brief description of an algorithm for computing the content of a generic ViewContainer,
with particular attention to containers of type Window.

The computation process is performed every time an Event arises. The process tries to determine the data content of
all the ViewComponents of the ViewContainer, taking into account the semantic aspects discussed in 46. Intuitively,
the process determines at each step the set of computable ViewComponents, i.e., the subset of ViewComponents
that receive their input Parameters and therefore can be calculated.

A ViewComponent is computable if it has no incoming InteractionFlows or if it has incoming InteractionFlows and
the following conditions are satisfied:

1. The ViewComponent has not been already computed (a ViewComponent cannot be computed more than once
upon the same Event).

2. All the ViewComponents from which the ViewComponent may receive Parameters have been computed
already.

3. All the input Parameters needed to compute the ViewComponent have a value.

If the computation semantics of the ViewContainer is without history, default contexts are considered in point 3. if
the computation semantics is with context history, components may draw their input values either from default
contexts or from the past context existing prior to the last flow navigation.

The algorithm computes a the contents of the ViewComponents starting from the following input parameters: it must
receive the ViewContainer to compute, the set of ViewComponents to be considered in the computation (initially all
the ViewComponents of the ViewContainer), the conflict resolution strategy, the interaction history policy, the past
context of all the ViewComponents prior to the last flow navigation, the destination ViewComponent of the
fInteractionFlow whose navigation has produced the computation event together with the past Parameters
transported by the flow. The following steps of the algorithm are then carried out:

1. Component invalidation: If the destination of the navigated flow is a ViewComponent, all its dependent
ViewComponents are invalidated. (We say that ViewComponent ul depends onViewComponent u2 if ul can
be reached through contextual flows from u2.)

2. Non-invalidated component computation: One ViewComponent at a time is computed, until all possible
components are considered. At each step, if there is at least one computable ViewComponent, one of them is
selected and its content is computed, based on the conflict resolution strategy, the interaction history policy,
and the values in the past context. In particular:

2.1 If a ViewComponent does not depend on any other ViewComponent, i.e. it does not receive any input
context, it can always be computed.

2.2 If a ViewComponent is the destination ViewComponent of the InteractionFlow whose navigation has
produced the computation event, then the past context and the new values of the flow Parameters are used
for instantiating the component.

2.3 In all the other cases, the interaction history policy determines which context must be used. If the
interaction history policy is “without history”, one of the possible input default Parameters is chosen,
according to the conflict resolution strategy. If the interaction history policy is “with context history” the
past context is considered. If the past context is available and valid, it is used to instantiate the
ViewComponent; if it is available but invalid, the ViewComponent cannot be computed and all its
dependent ViewComponents are invalidated; if no past context for the component is available, one of the
possible default contexts is chosen according to the conflict resolution strategy.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 47

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

48

10 IFML Diagram Definition

10.1 Introduction

This clause specifies the metamodel for IFML Diagram Interchange (IFML DI). The IFML DI is meant to facilitate
interchange of IFML diagrams between tools rather than being used for internal diagram representation by the tools.

The IFML DI metamodel, similarly to the IFML abstract syntax metamodel, is defined as a MOF-based metamodel.
As such, its instances can be serialized and interchanged using XMI.

The IFML DI classes only define the visual properties used for depiction. All other properties that are required for
the unambiguous depiction of IFML diagram elements are derived from the referenced IFML model elements.

Multiple depictions of a specific IFML Element in a single diagram are not allowed.

10.2 Conformance Criteria

As stated in the Diagram Definition (DD) specification, Modeling language DD enables a) Diagram Information
Interchange Conformance and b) Diagram Graphics Conformance. Modeling language specifications can

conform to DD in two levels by supporting either (a) only, or (a) and (b). The IFML Diagram Definition provides
(@) and (b).

10.3 Architecture

The IFML language specification provides three normative artifacts at M2 (shown with shaded boxes in Figure 15):
the abstract syntax model (IFML), the IFML diagram interchange model (IFML DI), and the mapping specification
between the IFML DI and the graphics model (IFML Mapping Specification).

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 49

Mapping
M3 MOF
% Language MOF
1 3
Abstract i Diagram Concrete
Syritax i Syrtax Syntax
M2
_ IFML Mapping
* T DD:DG
IFML IFML D! e | DD:DG
! i
I
| group: Group
! shape: IFMLNode
] rectangle: Rectangle
ViewContainer: | label: IFMLLabel
Ml GI:-,a"Dn ainer & abel: | LLabe >
IFML Mapping text: Text
=== Instantiates [DD Spec DI: Diagram Interchange

—{> Specializes B IFMLSpec DG: Diagram Graphics
—» References

Figure 15: Diagram Definition Architecture for IFML

At M1 (left), Figure 15 shows an instance of IFML.::Core::ViewContainer as a model element. Next to it, on the
right, the figure shows an instance of IFMLDI::IFMLNode referencing the ViewContainer element, indicating that
the ViewContainer is depicted as a node on the diagram. The node also contains an instance of IFMLDI::IFMLLabel
representing the textual label of the ViewContainer on the diagram. On the right of M1, the figure shows an instance
of DG::Group containing instances of DG::Rectangle and DG::Text

IFML DI specializes DD:DlI, which specifies the graphics the user has control over, such as the position of nodes
and line routing points. This information is what is captured for interchange between tools.

DD:DG represents the graphics that the user has no control over, such as shape and line styles, because they are the
same in all languages conforming to the DD specification. DD:DG is derived by executing the mapping
specification, in the middle, between IFML DI and DG.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 50

10.4 IFML Diagram Interchange (DI) Meta-model

The IFML DI metamodel extends the DI metamodel, where appropriate. The class IFMLDiagram represents the
diagram, which composes IFMLDiagramElements. An IFMLDiagram is an IFMLNode because it may be rendered
as a figure and be connected to other figures. IFMLDiagramElements optionally reference elements of an IFML
model, the latter denoted by the IFML:Core:Element class. IFMLDiagramElements that do not reference elements
of an IFML model are purely notational diagram elements such as notes and the link that connects the note with the
model element. IFMLDiagramElements may also be styled with instances of class IFMLStyle (e.g. font type and
size).

-sharedStyle 0.1

aenumerations Style
LabelKind sty JocaStyle 0.1

PARAMETER o
VIEW_CONTAINER p .
ACTION styledElement 0. o
NAMED_ELEMENT -
PARAMETER_BINDING_GROUP {readOniy, union}
ACTIVATION_EXPRESSION { {readOnly, unior)

readOnly, union
INTERACTION_FLOW_EXPRESSION “Metaclassn
ENTRY 0.1 -jowr
il Jsource 1 1 -ftarget] Metacla: Element
SIMPLE_FIELD p i «Melaclassy -id : String
SELECTION FIELD (readOnly, unien}| | {readOnly, union} IFMLStyle ‘
VALIDATION_RULE ~fontName : String -modelElsmant T 01

-fontSize : float
-localStyle 0..1 0.1 -sharedStyle
{readOnly, union} {readOnly, union} -diagramElement 1 . .
-IsourceEdge 0..* 0." .MargeEdge ~DiagramiSlement
e eaes aMetaclassn .
Edge IFMLDiagramElement |1 .ifmiDiagramElement

Shape
-bounds : Bounds [0..1]

-waypoint : Point [0..*}{ordered,r

0-" _ownedElement

T T 1 4 | -owningElement
o -targetFlement
| 0
«Metaclass o -diagramElements
Diagram
) 0. -
name Strm_g m 4 - «Metaclass» .node .ownedLabel «Metaclass» (Y- Y
-documentation : String [1] IFMLNode IFMLLabel IFMLConnection
-resolution : Real [1] = 300.0 0.1 0.1 - -
= -kind : LabelKind .
0.1 T -node
0. | -ownedNodes -ownedLabels [0.*
0..*[-ownedCompartments
«Metaclass» “Metaciasss
=cof rtment
IFMLDiagram -compartment IFMLCompartment o
0.1
—diagramT1

Figure 16: IFML Diagram Interchange (DI) Meta-model

Classes are defined for interchanging shapes and edges of the interaction flow diagram and the content diagram,
based on the following notational patterns (see Figure 17):

ePattern (a): A shape that has a label and an optional list of compartments, each of which having an optional list of
labels or other shapes (e.g., the ViewContainer box, ViewComponentPart box, Form ViewComponent rounded box
or the classes of the ContentModel).

ePattern (b): A shape that has a label only (e.g., the Event ball or Action hexagon notation)
ePattern (c): An edge that may be dashed or solid (e.g., NavigationFlows and DataFlows)

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 51

[¥OR] MAIL Top

[D] [L] MailMessages | [[L] Contacts

Module

«List» Message Writter W
Event
«DataBinding» MailMessage

«ConditionalExpression»
MailMessage in
MailMessageGroup2MailMessa
ge(MBox)

«Parameter» State :String .
Action

«[nteractionFlowExpression»

if AlbumDetails selected then
AlbumDetails

else Album details

Pattern (a) Pattern (b) Pattern (c)

Figure 17: Notational patterns

Based on these patterns, three shape classes (IFMLNode, IFMLLabel and IFMLCompartment) and one edge class
(IFMLConnection) are defined and related to realize the patterns. These classes (except IFMLCompartment) are
subclasses of IFMLDiagramElement to allow them to be styled independently and to reference their own IFML
Element.

Some classes have properties to disambiguate the notation and a corresponding enumeration. For instance labels
may be of different kinds such as Parameter, ViewContainer, etc., which will determine how the text decoration will
be rendered.

The following subclause provides the detailed specification of the DI metamodel.

10.5 Package IFMLDI

10.5.1 Enumeration LabelKind
Description
Enumeration defining the kinds of labels, which will determine how to render the label decoration.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 52

Literals
-action: Label of an Action.
-actionExpression: Label of an ActivationExpression.
-entry: Label of an Entry.
-interactionFlowExpression: Label of an InteractionFlowExpression.
-list: Label of a List.
-namedElement: Label of any NamedElement without additional decoration.
-parameter: Label of a Parameter.
- parameterBindingGroup: Label of a ParameterBindingGroup.
-selectionField: Label of a SelectionField.
-simpleField: Label of a SimpleField.
-validationRule: Label of a ValidationRule.

-viewContainer: Label of a ViewContainer.

10.5.2 Class IFMLCompartment
Abstract: No
Generalization:

-DD::DlI::Shape

Description

An IFMLCompartment is a section within an IFMLDiagramElement. An IFMLCompartment organizes the items in

an IFMLDiagramElement so that it is easy to differentiate between them. IFMLCompartments may contain
IFMLNodes or IFMLLabels.

Association Ends
eownedLabel [0..*]: IEFMLLabel - Composite association to the IFMLLabels owned by the compartment.

esownedNode [0..*]: IFEMLNode - Composite association to the IFMLNodes owned by the compartment.

10.5.3 Class IFMLConnection
Abstract: No
Generalization:

-DD::DI::Edge
- IFMLDiagramElement

Description

An IFMLConnection represents a depiction of a connection between two (source and target)
IFMLDiagramElements. It specializes DI::DD::Edge. IFMLConnections do not contain labels. All
IFMLConnections are owned directly by an IFMLDiagram. The way-points of IFMLConnections are always
relative to that diagrams’s origin point and must be positive coordinates.

Association Ends

-sourceElement [1]: IFEMLDiagramElement - Source IFMLDiagramElement of the connection.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

53

-targetElement [1]: IEMLDiagramElement - Target IFMLDiagramElement of the connection.

10.5.4 Class IFMLDiagram
Abstract: No
Generalization:

-DD::Dl::Diagram

-IEMLNode

Description

IFMLDiagram represents a depiction of all or part of an IFMLModel. It specializes DD::DI::Diagram and
IFMLNOode, since a diagram may be seen as a node as in the case of ViewPoint and Module.

Association Ends

ediagramElement [0..*]: IEMLDiagramElement — The diagram elements contained in this diagram.

10.5.5 Class IFMLDiagramElement
Abstract: No
Generalization:

-DD::Dl::DiagramElement

Description

IFMLDiagramElement extends DD::Dl::DiagramElement and is the supertype of all elements in diagrams, including
diagrams themselves. When contained in a diagram, diagram elements are laid out relative to the diagram’s origin.

An IFMLDiagramElement can be useful on its own (i.e., purely notational), or, more commonly, it is used as a
depiction of another IFML Element from an IFMLModel. An IFMLDiagramElement can own other diagram
elements in a graph-like hierarchy. IFMLDiagramElements can own and/or share IFMLStyle elements. Shared
IFMLStyle elements are owned by other IFMLDiagramElements.

Association Ends
elocalStyle [0..1]: IEMLStyle - Composite associations to IFMLStyles owned by the diagram element.
esharedStyle [0..1]: IEMLStyle - Reference to IFMLStyles shared with other diagram elements.

emodelElement [0..1]: ifml::core::Element - Referenced Element from and IFML model.

eownedElement [0..*]: IEMLDiagramElement - Composite association to the IFMLDiagramElements owned by
the current IFMLDiagramElement.

10.5.6 Class IFMLLabel
Abstract: No
Generalization:

oDD::Dl::Shape
-IFMLDiagramElement

Description

An IFMLLabel is a label that depicts textual information about an IFML Element. An IFMLLabel is always
contained (but not always rendered) in an IFMLNode directly or through an IFMLCompartment. In IFML, labels are
not found in IFMLConnections. IFMLLabels may derive the textual information to be depicted from a referenced
IFML model Element that contains the property with the label text.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 54

Attributes

ekind: LabelKind - Determines to what kind of Element the IFMLLabel corresponds, e.g., label of a Parameter,
a ViewContainer, an Action, etc.

10.5.7 Class IFMLNode
Abstract: No
Generalization:

oDD::Dl::Shape
-IEMLDiagramElement

Description

An IFMLNode represents a figure with bounds that is laid out relative to the origin of the diagram. Note that the
bounds’ x and y coordinates are the position of the upper left corner of the node (relative to the upper left corner of
the diagram). IFMLNodes may contain IFMLCompartments and other IFMLNodes and may be connected by
IFMLConnections.

Association Ends

eownedCompartment [0..*]: IEMLCompartment - Composite associations to the IFMLCompartments owned by
the node.

eownedLabel [0..1]: IEMLLabel - Composite association to the label owned by the node.

eownedNode [0..*]: IEMLNode - Nested nodes of the current node. This relation is only valid if the nested node
is fixed to the parent node side.

10.5.8 Class IFMLStyle
Abstract: No
Generalization:
-DD::Dl::Style
Description

An IFMLStyle represents appearance options for IFMLDiagramElements. One or more elements may reference the
same IFMLStyle element, which must be owned by an IFMLDiagramElement.

Attributes
«fillColor: Color - Background color of the figure.
ofontName: String - Name of the font used by the styled IFMLDiagramElement
ofontSize: Real - Size of the font used by the styled IFMLDiagramElement

10.6 IFML DI to DG Mapping Specification

The DD architecture expects language specifications to define mappings between interchanged and non-
interchanged graphical information, but does not restrict how it is done. The IFML DI to DG mapping is shown in
Figure 15 by a shaded box labeled “IFML Mapping Specification” in the middle section and is accomplished in this
specification by means of the following QVT mapping.

1 transformation IFMLDItoDG(in ifmldi: IFMLDI, in ifml: IFML, out DG)
2

3 main () {

4 ifmldi.objectsOfType (IFMLDiagram)->map toGraphics () ;

5 }

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 55

mapping IFMLDiagram::toGraphics(): Canvas {
member += self.diagramElements->map toGraphics () ;
}

mapping IFMLDiagramElement::toGraphics(): Group {
localStyle := copyStyle(self.localStyle);
sharedStyle := copyStyle (self.sharedStyle);
}
mapping IFMLNode::toGraphics(): Group inherits IFMLDiagramElement::toGraphics ()

member += self.modelElement.map toGraphics (self) ;
member += self.ownedCompartments->map toGraphics();
member += self.ownedLabel.map toGraphics();

}

mapping IFMLLabel::toGraphics(): Text inherits IFMLDiagramElement::toGraphics ()
var e := self.modelElement;
bounds := self.bounds;
data := switch {
case (self.kind = LabelKind::NAMEDiELEMENT)
e.name;

case (self.kind = LabelKind::VIEW CONTAINER)
e.oclAsType (ViewContainer) .getLabelText () ;

case (self.kind = LabelKind::ACTION)
e.oclAsType (Action) .getLabelText () ;

case (self.kind = LabelKind::PARAMETER)
"«Parameter» " + e.name + + e.type.name;

case (self.kind = LabelKind::ENTRY)

"«Entry» "

case (self.kind = LabelKind::LIST)

+ e.name;

"«List» " + e.name;

case (self.kind = LabelKind::SIMPLE_FIELD)
"«SimpleField» " + e.name;

case (self.kind = LabelKind::SELECTION_ FIELD)
"«SelectionField» " + e.name;

case (self.kind = LabelKind::PARAMETER_BINDING_GROUP)
"«ParameterBindingGroup»";

case (self.kind = LabelKind::ACTIVATIONiEXPRESSION)
"«ActivationExpression»";

case (self.kind = LabelKind::INTERACTION_FLOW_EXPRESSION)
"«InteractionFlowExpression»";

case (self.kind = LabelKind::VALIDATION RULE)

"«ValidationRule»";
default
}i
}
query ViewContainer::getLabelText (): String {
var text += if self.isXOR then "[XOR] " endif;
text += if self.isLandmark then "[L] " endif;
text += if self.isDefault then "[D] " endif;

return text + self.name;

}

query Window::getLabelText (): String {
var text := if self.isNewWindow and self.isModal then " [Modal] " endif;
text += if self.isNewWindow and not self.isModal then " [Modeless] " endif;
text += if self.islLandmark then "[L] " endif;
text += if self.isDefault then "[D] " endif;

return text + self.name;

{

{

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

56

74 }
75

115 mapping Action::toPolygon(n: IFMLNode): Polygon {
116 var b := n.bounds;

117 point += object Point {b.width * (1/4); y := 0};
118 point += object Point {b.width * (3/4); y := 0};
119 point += object Point {b.width; b.height * (1/4)};
120 point += object Point {b.width; b.height * (3/4)};
121 point += object Point {b.width * (3/4); b.height};
122 point += object Point {b.width * (1/4); b.height};
123 point += object Point {0; b.height * (3/4)};

124 point += object Point {0; b.height * (1/4)};

125 |}

126

127 mapping ViewPoint::toPolygon (n: IFMLNode): Polygon {
128 var b := n.bounds;

129 point += object Point {b.width * (1/2); y := 0};
130 point += object Point {b.width; b.height};

131 point += object Point {0; b.height};

132 |}

133 . . .

134 mapping ParameterBindingGroup::toPolygon (n: IFMLNode): Polygon {
135 var b := n.bounds;

136 point += object Point {x:=0,y:=0};

137 point += object Point {b.width*3/4,y:=0};

138 point += object Point {b.width,b.height};

139 point += object Point {b.width*1/4,b.height};

140 |}

141

76 query Action::getLabelText (): String {

77 var text := if self.isClientSide then " [ClientSide]\n" endif;
78 return text + self.name;

79 }

80

81 i))

82 mapping Element::toGraphics(n: IFMLNode): GraphicalElement

83 disjuncts ViewContainer::toRectangle, ViewComponent::toRectangle,
84 Module: :toRectangle, ViewComponentPart::toRectangle, Event::toCircle,
85 Action::toPolygon, ViewPoint::toPolygon {

86 }

87 i . .

38 mapping ViewContainer::toRectangle (n: IFMLNode): Rectangle {

39 bounds := n.bounds;

90 |}

91 . .

92 mapping ViewComponent::toRectangle (n: IFMLNode): Rectangle {

93 bounds := n.bounds;

94 cornerRadius := 15;

95 }

96 i

97 mapping Module: :toRectangle (n: IFMLNode): Rectangle {

98 bounds := n.bounds;

99 }

100 i)

101 mapping ViewComponentPart::toRectangle (n: IFMLNode): Rectangle {
102 bounds := n.bounds;

103 |}

104 i))

105 mapping Event::toCircle(n: IFMLNode): Circle {

106 var b := n.bounds;

107 center := object Point{b.x + b.width / 2; b.y + b.height / 2};
108 radius := if b.width < b.height then

109 b.width / 2

110 else

111 b.height / 2

112 endif;

113 |}

114

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

57

142 mapping IFMLCompartment::toGraphics(): Group {
143 member += object Rectangle {bounds:= self.bounds};
144 member += self.ownedNodes.map toGraphics();
145 member += self.ownedLabels.map toGraphics();
146 }
147
148 mapping IFMLConnection::toGraphics(): Group inherits
149 IFMLDiagramElement: :toGraphics () {
150 member += self.modelElement.map toGraphics (self);
151 }
152
153 mapping Element::toGraphics(c: IFMLConnection): GraphicalElement
154 disjuncts NavigationFlow::toPolyline, DataFlow::toPolyline {
155 }
156
157
158 mapping NavigationFlow::toPolyline(c: IFMLConnection): Polyline {
159 point := c.waypoint;
160 sharedStyle := solidStyleProp;
161 endMarker := arrowMarkerProp;
162 }
163
164 property solidStyleProp = object DG::Style {
165 strokeDashLength := Sequence({};
166 }
167
168 property arrowMarkerProp = object Marker ({
169 size := object Dimension {width := 2; height := 2};
170 reference := object Point {x := 2; y := 1};
171 member += object Polygon {
172 point += object Point {x := 0; y := 0};
173 point += object Point {x := 2; y := 1};
174 point += object Point {x := 0; y := 2};
175 }
176 }
177
178 mapping DataFlow::toPolyline(c: IFMLConnection): Polyline {
179 point := c.waypoint;
180 sharedStyle := dashedStyleProp;
181 endMarker := arrowMarkerProp;
182 }
183
184 property dashedStyleProp = object DG::Style ({
185 strokeDashLength := Sequence{2, 2};
}
helper copyStyle(s: IFMLStyle): DG::Style {
fontName := s.fontName;
fontSize := s.fontSize;
fillColor := s.fillColor;
}

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

58

11 UML Profile for IFML

11.1 Overview

The UML Profile for IFML enables the use of UML for representing IFML models. The purpose of the profile is to
extend the UML metamodel by customizing it with specific IFML constructs.

The UML Profile for IFML is based on the use of UML components (both basic components and packaging
components).

Components may form hierarchical structures (a packaging component that owns other components) and they may
be connected with dependencies, either through explicit interfaces or directly.

Components may be shown in a structural UML diagram, such as a component diagram.

Their dynamic behavior may be shown in interaction diagrams, such as a communication diagram. The behavior of
components may also be described in a statechart diagram or in an activity diagram. Examples of these diagrams are
not shown here.

Note: In the following diagrams, components are drawn with their typical icon in the top right corner of the
rectangle. This icon is optional and may be removed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 59

11.2 The IFML Profile of UML

The UML Profile for IFML consists of the stereotypes defined in this subclause. These stereotypes are shown in a

set of UML diagrams below, along with a table for each diagram giving the specification of the depicted stereotypes.

Figure 18: Models

Table 3: Models stereotypes

wMetaclass»
Package
F 3
usterectypes ustereotypes usterectypes
ContentModel InteractionFlowModel IFMLMadel

Stereotype UML Metaclass Tagged Values Constraints Icon
«ContentModel» UML.::Kernel::Package
«IFMLModel» UML.::Kernel::Package
«InteractionFlowModel» UML::Kernel::Package
wMetaclass»
Comment
wstereotypes
Annotation
Figure 19: Annotations
Table 4: Annotations stereotypes
UML Metaclass Tagged Values Constraints Icon

Stereotype

«Annotation»

UML.::Kernel::Comment

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

60

«Metaclass»
Component

T

«sterectypes

fnteractionFlowElerment

]

Figure 20: InteractionFlowElements except events

Table 5: InteractionFlowElements (except events) stereotypes

+isModal : Boolean

wsterectypes wsterectypes wsterectypes wsterectypes
Maodule VFeow ComponentPart ViewElomant Action
wsterectypes wsterectypes wsterectypes wsterectypes
ConditionalExpression Field ViewComponent ViewContainer
- +sXOR : Boolean
B +isLandmark : Boolean
+isDefault | Boolean
wsterectypes wstereotypes wsterectypes wsterectypes
Details List Farm Window
+isMewWindow : Boolean

Stereotype UML Metaclass Tagged Values Constraints Icon
It must be associated
UML.::Components:: with at least 1 event
«Action» BasicComponents::
Component Cannot be linked to
another action
UML.::Components::
«InteractionFlowElement» BasicComponents::
Component
UML.::Components:: It must contains at
«Module» BasicComponents:: least 1 interaction
Component flow model element
UML.::Components:: It must contain at
«ViewComponent» BasicComponents:: least 1
Component ViewComponentPart
Interaction Flow Modeling Language (IFML) 1.0, Beta 1 61

Table 5: InteractionFlowElements (except events) stereotypes

Stereotype

«ViewComponentPart»

«ViewContainer»

UML Metaclass

UML::Components::
BasicComponents::
Component

UML::Components::
BasicComponents::
Component

Tagged Values

isLandMark:
Boolean

isDefault: Boolean
isXor: Boolean

Constraints

Icon

«ViewElement»

UML::Components::
BasicComponents::
Component

Table 6: InteractionFlowElements (except events) stereotypes (extension)

Stereotype UML Metaclass Tagged Values Constraints Icon
«List» UML.::Components:: Must be linked to an
BasicComponents:: entity
Component
«Form» UML.::Components:: Must have at least 1
BasicComponents:: field
Component
«Details» UML.::Components:: Must be linked to an
BasicComponents:: entity
Component
«Field» UML::Components::

«SimpleField»

«Window»

BasicComponents::
Component

UML::Components::

BasicComponents::
Component

UML::Components::

BasicComponents::
Component

isNewWindow:
Boolean
isModal: Boolean

isXor = false

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

62

«Metaclass»
OpagueExpression

wsterectypes
Expression

Ai\

wsterectypes
ConditionalExpression

usterectypes wsterectypes
BooleanExpression InteractionFlowExpression
iy
«sterectypes asterectypes
Constraint ActivationExpression
wsterectypex

ValidationRule

Figure 21: Expressions

Table 7: Expressions stereotypes
Stereotype

«ActivationExpression»

UML Metaclass Tagged Values

UML.::Kernel::
OpaqueExpression

Constraints

Icon

«BooleanExpression»

UML.::Kernel::
OpaqueExpression

«ConditionalExpression»

«Constraint»

UML.::Kernel::
OpaqueExpression

UML::Components::
BasicComponents::Component

UML::Kernel::
OpaqueExpression

«Expression» UML::Kernel::
OpaqueExpression
. . UML::Kernel::
«InteractionFlowExpression» .
OpaqueExpression
UML::Kernel::

«ValidationRule»

OpaqueExpression

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

63

whletaclassy uhetaclassy
Port Property
ssterectypes ssterectypes
Port Parameter
+kind : IFML::DataTypes . Parameterkind

Figure 22: Parameters and ports

Table 8: Parameters and ports stereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon
«Parameter» | UML::Kernel::Property kind: ParameterKind
UML.::CompositeStructures::
«Port»

Ports::Port

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

64

t«Metaclass»
Signal

wstereotypes
Event

|
| |

astareotypes ssterectypes

wstereotypes

ActionEvent ViewElemeantEvent SystemEvent

I

+typa : IFML::DataTypes: SystemEventType

wstereotypes wstereotypes
SelectEvent SubmitEvent
Figure 23: Events
Table 9: Events stereotypes
Stereotype UML Metaclass Tagged Values Constraints Icon
. UML.::CommonBehaviors::
«ActionEvent» S,
Communications::Signal
UML.::CommonBehaviors::
«Event» L. .
Communications::Signal
«SvstemEvent» UML.::CommonBehaviors:: type:
y Communications::Signal SystemEventType
«ViewElementEvents UML::Cqmrr_lonB.,.ehawors::
Communications::Signal
Table 10: Events stereotypes (extension)
Stereotype UML Metaclass Tagged Values Constraints Icon
«SubmitEvent» UML.::CommonBehaviors::

Communications::Signal

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

65

«SelectEvent» UML::CommonBehaviors::
Communications::Signal

«Metaclass» «Metaclass»
Dependency Message

wsterectypes
InteractionFlow

T

wstereotypes wsterectypes
DataFlow NavigationFlow

Figure 24: InteractionFlows

Table 11: InteractionFlows stereotypes

Stereotype UML Metaclass Tagged Constraints Icon
Values
UML::Classes::Dependencies::
Dependency Must be v
«DataFlow»))) associated with a Pty
UML.::Interactions::Basiclnteractions:: ParameterBinding

Message

UML::Classes::Dependencies::
Dependency

«InteractionFlow» - - -
UML.::Interactions::Basiclnteractions::

Message
UML.::Classes::Dependencies::

Dependency
«NavigationFlow» . /v

UML.::Interactions::Basiclnteractions::
Message

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

«Metaclass»
Actor

asterectypes
ContextNmension

s

wsterectypes wsterectypes wstereotypes
UserReole Position Device

Figure 25: ContextDimensions

Table 12: ContextDimensions Sstereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon
«ContextDimension» UML.::UseCases::Actor
Table 13: ContextDimensions stereotypes (extension)
Stereotype UML Metaclass Tagged Values Constraints Icon
«Device» UML.::UseCases::Actor .
«UserRole» UML.::UseCases::Actor iﬂ
«Position» UML::UseCases::Actor v

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

67

«Metaclass»
Classifier
usteraotypes wstereotypes wstereotypes wstereotypes wstereotypes
ContentBinding Context ParameterBinding Viewpaoint Slot
usterectypes usterectypes
DataBinding DynamicBehavior

Figure 26: ContentBindings, Context, ParameterBindings, ViewPoints and Slots

Table 14: ContentBindings, Context, ParameterBindin

s, ViewPoints and Slots stereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon
«ContentBinding» UML::Kernel::Classifier
«Context» UML.::Kernel::Classifier
«DataBinding» UML.::Kernel::Classifier
«DynamicBehavior» | UML::Kernel::Classifier —,_.,;«
«ParameterBinding» UML.::Kernel::Classifier
«ViewPoint» UML::Kernel::Classifier
Table 15: ContentBindings extensions
Stereotype ‘ UML Metaclass Tagged Values ‘ Constraints Icon ‘
«Slot» ‘ UML.::Kernel::Classifier ‘ ‘

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

68

11.3 Structural Aspects

Components and dependencies may be stereotyped with different abstraction levels, i.e. using stereotypes that
correspond to the IFML Core package, the IFML Extension package or user provided platform-specific stereotypes.

«ViewComponents «NavigationFlow «ViewComponents
MailBoxList ~ - — — — — — - MessageList

Figure 27: Stereotyped diagram with IFML Core

For instance, for stereotyping with IFML Core concepts, components may be stereotyped with ViewContainer,
ViewComponent, ViewComponentPart and Action concepts, and dependencies with NavigationFlow and DataFlow
concepts as shown in Figure 27.

¢Listn «SelectEvants wListn
MailBoxList - — — — — — - MessageList

Figure 28: Stereotyped diagram with IFML Extensions

For stereotyping with IFML Extension concepts, components may be stereotyped List and Entry concepts and
dependencies with SelectEvent and SubmitEvent concepts as shown in Figure 28.

Packaging components own (or import) other components. In Figure 29, ViewContainers are shown as packaging
components. They contain other components (ViewComponents), and the contained components are connected by
dependencies.

sViewContainers «ViewContainers
AlbumSearch Albums
{isDefault,
isLandMark}
«WiewComponents NaviaationFloy «ViewComponents
AlbumSearchFrm | | _ wfevestenriowr |) AlbumsList

Figure 29: View components containment and connections

Dependencies, being structural links, allow interactions between linked components. These interactions may be
modeled as asynchronous messages using signals.

Signals in UML are a specific type of classifier, and they may be represented in a Class diagram, with parameters
shown as attributes. The reception of a signal is an event for the receiving component.

Figure 30 shows the representation of signal stereotyped as an IFML Event in a Class diagram. The IFML Event
“SelectMailMessages” is shown as a classifier with the stereotype «Event». Its parameter is shown as an attribute.
The tagged value “out name: selectedMBox” is the name with which the component that sends this signal defines
the parameter “mBox”.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 69

w#Events
SelectMailMessages
+mBox . String Paramater mBox

out name: selectedMBox
in namea: MBax

<<ParameterBindingGroup>>

Figure 30: Signals stereotyped as Events.

11.4 Dynamic Aspects

The navigation among Ul elements can be modeled via a communication diagram, which is one of the four UML
interaction diagrams (the other being the sequence diagram, the interaction overview diagram, the timing diagram).
The communication diagram is the only UML diagram that represents both structural and dynamic aspects: links and
messages. In Figure 31, the signal (asynchronous message) “SelectMailMessages” is sent from the component
“MailBoxList” to “MessageList” carrying the parameter “mBox”.

wlisty selectMailMessages(mBox=) — = wlists
: MailBoxList : MessagelList

Figure 31: Messages between view components

The sending of messages may also be shown between components in a hierarchy, as in the example of Figure 32
which is equivalent to example of Figure 4.

w\igwContainers Vi pE—
: AlbumSearch
: Album
«WigwComponents «WigwComponents
: AlbumSearchFrm selectAlbum(selectedAlbum=) —— : AlbumDatail
w\iewContainer
: Albums
w\igwComponents
- : AlbumsList
searchAlbum(tile=, year=) — =

Figure 32: Messages between view components inside view containers

As said before, the reception of a message is an event from the point of view of the receiving component.
Each message may, if necessary, be represented as a signal in a Class diagram (Figure 30).

11.5 Profile Metamodel Mapping

Table 16 Shows, for each metaclass from the IFML metamodel in Clause 19, the mapping to the respective
stereotype of the IFML UML profile.

Table 16: Profile metamodel mapping
IFML Metaclass Stereotype

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 70

Table 16: Profile metamodel mapping

IFML Metaclass Stereotype
IFML::Core::Action «Action»
IFML::Core::ActionEvent «ActionEvent»
IFML::Core:: ActivationExpression «ActivationExpression»
IFML::Core::Annotation «Annotation»
IFML::Core::BooleanExpression «BooleanExpression»
IFML.::Core::ConditionalExpression «ConditionalExpression»
IFML::Core::Constraint «Constraint»
IFML.::Core::ContentBinding «ContentBinding»
IFML::Core::ContentModel «ContentModel»
IFML::Core::Context «Context»
IFML.::Core::ContextDimension «ContextDimension»
IFML.::Core::DataBinding «DataBinding»
IFML::Core::DataFlow «DataFlow»
IFML.::Core::DynamicBehavior «DynamicBehavior»
IFML::Core::Element «Element»
IFML::Core::Event «Event»
IFML::Core::Expression «Expression»
IFML::Core::IFMLModel «IFMLModel»
IFML::Core::InteractionFlow «InteractionFlow»
IFML::Core::InteractionFlowElement «InteractionFlowElement»
IFML::Core::InteractionFlowExpression «InteractionFlowEXxpression»
IFML::Core::InteractionFlowModel «InteractionFlowModel»
IFML::Core::InteractionFlowModelElement | «InteractionFlowModelElement»
IFML::Core::Module «Modulex»
IFML::Core::NamedElement «NamedElement»
IFML::Core::NavigationFlow «NavigationFlow»
IFML.::Core::Parameter «Parameter»
IFML::Core::ParameterBinding «ParameterBinding»
IFML::Core::ParameterBindingGroup «ParameterBindingGroup»
IFML::Core::Port «Port»
IFML::Core::SystemEvent «SystemEvent»
IFML::Core::ViewComponent «ViewComponent»
IFML::Core::ViewComponentPart «ViewComponentPart»
IFML::Core::ViewContainer «ViewContainer»

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

71

Table 16: Profile metamodel mapping

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

IFML Metaclass Stereotype
IFML::Core::ViewElement «ViewElement»
IFML::Core::ViewElementEvent «ViewElementEvent»
IFML::Core::ViewPoint «ViewPoint»
IFML::DataTypes::ParameterKind «ParameterKind»
IFML::DataTypes::SystemEventTypeEnum | «SystemEventTypeEnum»
IFML::Extensions::Device «Device»
IFML::Extensions::Form «Form»
IFML::Extensions::Field «Field»
IFML.::Extensions::List «List»
IFML.::Extensions::Details «Details»
IFML.::Extensions::Window «Window»
IFML::Extensions::Position «Position»
IFML::Extensions::SelectEvent «SelectEvent»
IFML::Extensions::Slot «Slot»
IFML.::Extensions::SubmitEvent «SubmitEvent»
IFML.::Extensions::UserRole «UserRole»
IFML.::Extensions::ValidationRule «ValidationRule»

72

Annex A - IFML by Example: Modeling an Email
(informative)

A.1 Introduction

This annex exemplifies the modeling construct and the expressive power of IFML by modeling a popular Internet
Application specialized on email service.

A.2 The Content Model

The email application manages mail messages and contacts of users.

An User possesses a set of MailBoxes. A MailBox (aka System Tag) consists of a set of MailMessages,
MailMessages are organized not only in MailBoxes but also in user-defined clusters, called Tags. Therefore,
MailBoxes and Tags can be seen as special cases of a common concept of MailMessageGroup. A user can also
manage ChatConversations, which are composed of ChatMessages.. A User is also associated with a set of
Contacts. Contacts are clustered in ContactGroups.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

73

Figure 33: the content model of the online mailing application.

«Class»
Attachement

-value : Blob

-namsa : String

«dataTypes «dataTypes «dataType» adataTypes
Date Time Elob Password
«Class» «Class» «Class»
ChatConversation 1 -chatConversation2ChatMessage Chath N .
chatMessage2ChatConversation 1.* |-recipient : String
-message : String
-user2ChatConversation 1.* |-user2ChatMessage

-mm2attachement

-chatConversationZUser
-chatMessage2User
«Glass» 9 1 | -attachement2MailMessage
User 1
v.cClaSS» 1.* -bcc2maiMessage
«Class» «Class» MailMessage
MailBox MailMessageGroup mm2mailMessageGroup , |-subject : String 1.» -cc2mailMessage
I——"{-colour : String 1.7)-body : String B
group2user .. -mmp2maiMessage -d_ate : D_a}c]
-time : Time -to2mailMessage
-read : Boolean -
1..° -from2mailMessage
* | -tag2subTag
wClassn
Tag 1
subTag2Tag
- -user2group 1. o -ce

«Classy wClassy wClassy -from wClassn

Group ContactGroup Contact o Emaillser

- 1 -contactGroup2contact F— -

-name : String ke -picture : Blob I {{-name : String
tcontact2contactGroup 1.." |-phone : String -emailAddress : String

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

-bcc

74

A.3 Model of the Interface

The email application interface consists of a top-level container, which is logically divided into two alternative sub-

containers: one for managing MailMessages and one for managing Contacts.

Your E-Mail
c L'> x Q { http:/ A wwwmail.com/inbox/ 4 yb6box] @
[A]
MnllE] I_ II Q I
Mail v O~ Q Morew 1-130f13 £ > &
Inbox (2) Brandy Lewis People Company Reporting Anomalie Jun 18
Starred WaltersCompany ADY Review- Maybe normal in diferent... Jun 15
Impertant Youtv Your Youtwv Digest - Jan 20, 2013 Jan 11
Chats Mandy Batilla Request to share ADY_F_WorkFlan.doc Jun 10 .
Sent Mail Brandy Lewis ADY Company Reporting 2 Jun 10
Drafts WaltersCompany ADY brainstorming - The send action is .. May &
All Mail WaltersCompany ALW brainstorming - What kind of containers... Jan §
Spam me test May 2
Trash Flor Jenkings ADY Verona meeting minutes May 1
Water Fracesco Tietto (no subject) Apr 31
More w» Daniel Parinni Research Project Apr 30
Camil James Internship in Asmat SA Apr 16
WaltersComopany ADY bainstorming Mar 15
(v}
o
Figure 34: The email application view container for MailMessages
Your E-Mail
G E> x {} lhttp:waw.m-I.com!inbox!contocts] @
0
Mail [[] L]
Contqcts v D v S+w Morew 1-50f5 < > @
My Contacts (5) Brandy Lewis brandylewis18@mail. com '
WaterGroup Walter Miran walmir@mail.com
Most Mandy Batilla mantilla_org12@mail.com
Other John Master masterjohn54@mail com
New Group Richard Burke richard burke. d@mail.com
Import
[¥]
L4
Figure 35: email application view container for Contacts
By default, when the application is accessed, the container for managing MailMessages is presented. At any
moment, it is possible to Switch from the MailMessages to the Contacts view components, by means of a menu,
shown in Figure 36.
Interaction Flow Modeling Language (IFML) 1.0, Beta 1 75

Mail [7) [JIEN |

Mail v - B W (e
Mail
E Contacts
Inl Tosks WaltersCompany IFML brainsterming - Wh

Figure 36: A menu allows one to switch from the MailMessages to the Contacts view components

The model of the top level container of the application is shown in Figure 37

[AOR] MAIL Top

[D] [L] MailMessages 1 [[L] Contacts

Figure 37: IFML model of the Top Container of the email application.

Notations

1.The nesting of mutually exclusive view containers into a view container (isXOR property equal true) is denoted
with a [XOR] icon.

2.The default view container (isDefault property equal true) of a set of mutually exclusive view sibling containers is
denoted with a [D] icon on container.

3.The global reachability of view container from all the other sibling containers and their children sub-containers is
denoted with a [L] (Landmark) icon on container.

Model usability

- The use of the [L] (Landmark) icon reduces the number of navigation events that need to be explicitly represented
(otherwise one event should be necessary in all the view containers from which the target view container is
reachable), resulting in simpler models.

The MailMessages view container comprises five main nested elements:
-a view component (MboxList) showing a list of MailBoxes and Tags;

-a view container (MessageSearch) permitting the user to input search keywords to be matched against the
MailMessages;

-a MailBox view container, permitting one to access the messages of a specific MailBox or associated with a
specific Tag and the details of a specific message;

-a MessageWriter view container, permitting one to access the details of a specific message;
-a Settings view container, permitting one to modify the settings of the email application.

The MailBox, MessageWriter, and Settings view containers are in alternative: only one at a time is displayed. None
of these alternate view containers is the default one, because they are all accessed as a consequence of an explicit

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 76

user’s choice. The MessageWriter and Settings view containers are denoted as landmark, because they are reachable
from all the other sibling view containers of the MailMessages view container. Conversely, the MailBox view
container is not denoted as landmark, because it is accessed only by means of a specific interaction event: the
selection of a MailBox from the MboxList view component.

The MailBox view container comprises the view component (MessageL.ist) showing the MailMessages associated to
a given MailBox or Tag. The MboxList allows user interaction: selecting a specific MailBox or Tag the user
produces a navigation event that results in changing the content of the MessageList, so to display the messages of
the selected MailBox or Tag. This behavior is represented in the model fragment shown in Figure 38.

«Windows [X0R] MAIL Top

[D] [L] Messages

[XOR] MessageSearch

[alLists \'I
)

MailBaoxList [+

!

[XOR] MessageManagement

[MailBox | [[L] settings

wlists

‘' Message List [L] MessageWritter

Figure 38: Model of the MailMessages view container: a navigation event and parameter passing flow
between the MailBoxList view component and the MessageL ist view component denote that the user can select
one mail box and view a list of its messages

Semantics

1.The MBoxList view component is associated with an event, denoted by a circle. A interaction flow connects the
event to the target components affected by it: MessageList. The semantics of this pattern is that a user’s interaction
with the MailBoxList view component determines: 1) the display of the view container that comprises the
MessageL.ist view component (the MailBox XOR child of the MessageManagement) the computation and 2) the
display of the target view component (in this case, the MessageList component is computed with the selected
MailBox as input parameter and displayed).

The model of Figure 38 can be refined to show the parameter binding that binds the selection of a MailBox in the
MailBoxList component and the display of the messages of that MailBox in the MessageL.ist view component.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 77

«Windows [XOR] MAIL Top

[D] [L] Messages
— [XOR] MessageSearch
(" wlistw |
MailBoxList (3/ }—
T
[XOR] MessageManagement
MailBox [L] Settings
/ il S—
’ sLists
; » Message List [L] MessageWritter
y. éParamBindingGroupn J
/" SelectedMailBox < MailBox ’

Figure 39: Notations to express (or infer) parameter dependencies between view components.

\.

¢ aListsMBoxList

eDataBindingsMailMessageiGroup

aListsMessageList

«DataBinding»MailMessage

/uParamBindingGraups wConditionalExpressions
/ SelectedMailBox = MailBox MailMessage in

mm2MailMessageGroup(MailBox)

Figure 40: Notations to express (or infer) parameter dependencies between view components with extension
mechanism.

Language extension and notation

1.In the upper part of Figure 40, a UML-style annotation explicitly expresses that an output parameter of the source
component is associated with an input parameter of the target component.

2.In the lower part of Figure 40, the model makes use of the IFML extension mechanism. An «List» component is
introduced, which extend the basic view component to represent a list of dynamically extracted data objects”. The
component refers a content binding of the content model where the objects of the list belong; it may also refer to an
expression to denote a filter on the instances to display. In this case, the join expression on relationship
mm2MailMessageGroup (see content model) dictates that only the messages of the mail box received as an input
parameter are displayed. The semantics of the component may specify default input and output parameters, so that
the parameter binding can be inferred and need not be explicitly represented: the default output of the MailboxList
list component is defined as the selected object of type MailBox: the default input of the MessageList list component

* IFML has an extension mechanism whereby generic view and business components can be extended to introduce domain-
specific view and business logic. Object publishing and CRUD operations on objects are typical examples of extended
components.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 78

is an object of type MailMessageGroup, as specified by the join expression on the relationship
mm2MailMessageGroup. Since these two parameters match, there is no need of expressing the parameter binding

explicitly.

The MessageL.ist component supports the interaction with mail messages, individually or in sets. On the entire set of
messages, the MarkAllAsRead event permits the user to update the message in the current MailBox, setting their
status to “read” (see Figure 41).

O~ 0 More »
Mark all as read

WaltersCon] Select messages Your Youtv Digest
o see more aclions

Figure 41: The MarkAllAsRead user-generated event marks all messages in the current mail box as “read”

As shown in Figure 42, the MessageL.ist supports a second kind of interaction: the selection of a subset of messages;
when there is at least one selected message, a view container is displayed (MessageToolbar), which permits the user
to perform several actions in the selected messages: archiving, deleting, moving to a MailBox/Tag, reporting as
spam, etc.
In summary, the MessageList component supports three types of interactive events:

1.an event for selecting the entire set of messages and triggering an action upon them, marking all as read

(Figure 41);

2.an event for selecting/deselecting one or more messages (Figure 42);

3.an event for selecting an individual message and opening it for reading.

D - lii:_f_]]‘ "ﬂ' ':f LR ~ 3/ More w
|__'j Brandy Lewis People Company Reporting Anomalie
outv our Youtv Digest - Jan 20,
¥ Your Y Di Jan 20, 2013
& Mandy Batilla Request to share ADY_P_WorkPlan.doc

Figure 42: When one or more messages are selected in the MessageList component, the MessageToolbar view
container is displayed, which allow the user to perform several actions of the selected set of messages. If all
messages are deselected, such view container is no longer displayed

Language extension and notation
1.For making the model more self-explaining and supporting code generation better, it is possible to further
extend IFML with a specific view component: the MultiChoiceList (Figure 43). The multi choice list
would extend the behavior of the list view component with more event types: the default type (denoted by
the default notation) expresses the selection of one element of the list; the selection/de-selection event type,
denoted by a ticker icon, expresses the selection or de-selection of any number of elements; the set
selection event type, denoted by an asterisk, denotes the triggering of an action on the entire set of element
of the list.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 79

" uListsMessageList Y

«DatzBinding»MailMessage

«»ConditionalExpression» MailMessage in
mm2MailMessageGrouplMailBox)

p /J __

- Message Selectian

Figure 43: The «Multi-choice List» view component extends the «List» view component to enable more types
of interaction events with the element of the list

The behavior of the MessageSelection event of the MessageL.ist view component that triggers the display of the
MessageToolbar view container is modeled as shown in Figure 44.

_ MailBox
uLists
Messagelist
.) ParamBindingGroups
— o=t SelectedMessages > MessageSet /

MeassagaSelection .‘i’ e

Delate _,.--\Il-1n=_<.sage toolbar

N
«ActivationExpression: |
not MessageSet.isEmpty()

Archive L. | aParameters MessageSet

Ry
Repart ~

- Py P

MayeTn == o’ Labels

Figure 44: User events that mark one or more messages in the current mail box produce the display of the
MessageToolbar view container, which remains visible/active if at least one message is selected

The MessageSelection event has a parameter binding, which associates the (possibly empty) set of currently selected
messages with an input parameter of the MessageToolbar view component. The MessageToolbar view component is
associated with an (activation) expression, which tests that at least one message is selected.

Notation

1.For better readability of the model, it is possible to name the events, as shown in Figure 43 and in Figure
44. This annotation can be a guide for producing the implementation, for example it can be used to
generate the labels of buttons and links, the tool tips of commands, and other similar usability aids.

Semantics

1.The association of a boolean expression to a view container means that the view container is
active/visible if the expression evaluates to true.

The actions performed by the user on the messages (all, or a subset thereof) are represented as shown in Figure 45.
An interaction flow arrow connects the event responsible of triggering the action to the action itself, supporting the
specification of parameter bindings.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 80

MailBox
- Lists ™

e 3 Delete — J,-?ParamBindiru;(‘mup»
e — ¥ Messagelist /' SelectedMessages & MessageSet /
. - IIIIl I.__ Ir. --"| i s L ==)
- d I-'I Mpssagetalection e -"______.--"""-
(4—) Achive 4—— l
; A petete | Message toolbar |
i ‘.' . I-\"‘"\-_u._
nrchive ~ | «PartametersMessageSet | ______ «ActivationExpressions
44— | Report ./ not MessageSet.isEmpty() |
Report]
." b ' P Pt
¥ \ :_' J
/s MoveTo T Labale

iParamBindingGroup»
/ SelectedMessages MssageSet‘;'

Figure 45: The MessageL.ist view component and the MessageToolbar view container are associated with
events that trigger actions on messages. Actions are represented as components placed outside the view

containers, with input and output parameters
For example, the output parameter (MessageSet) of the MessageToolbar view container is associated with an input

parameter of the business actions Delete, Archive, and Report.
The execution of an action produces an action completion event and the sending of an asynchronous notification,

denoted as a circle linked to the action box. Such a notification sending event is matched by a system event, which
triggers the display of a MessageNotification view component, shown in Figure 46.

Mhal
I— The message has been moved to the Trash.Read more Undo

O~ 0Q More

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

81

Figure 46: The Messages view container comprises a message notification component, which displays
notifications of executed actions on Messages (illustrated above)

Note that the notification reception event is associated with the parameter MessageSet, which can be used in the
MessageNotification component, e.g., to support the undo of the action® (not modeled for brevity).

aWindows [XOR] MAIL Top

[D] [L] Messages

(" aliske
MailBaxList ~ /"
|_\.._,:|f_'/.

-

[XIOR.] MessageSearch

Message
Netification

[XOR] MessageManagement

MailBox

/aParamBindingGroups
/ SelectedMailBox = MaiIEG:E,;'

" alists)
b{ Message List

[L] Settings

[L] MessagewWritter

Some actions on mail messages require a more elaborate interaction flow: Move to folder and Associate with tag (see
Figure 50). For example, moving a set of selected messages to a folder is done by first accessing a view container in

a new window with the list of available MailBox and Tags (shown in Figure 47) and then selecting from such list the
destination MailBox or Tag.

5

Modeling the undo also requires discriminating the action to undo, which can be simply modeled, e.g., with an additional
parameter denoting the type of action (e.g., delete) set by each action when creating an instance of the notification sending

event.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

82

D v i:':_f_] r ﬁ'\' g »T v More =

Move to:

Brandy Lewis People Anomalie
WaltersCompany ADY R AnotherBox in

| WaltersCompany IFML b ASecondBox ind of
Mandy Batilla Reque Water
Brandy Lewis ADY c{ Seam
WaltersCompany ADY brf Trash hd action
me test Create New
Flor Jenkings ADY Vd Manage labels |5
Fracesco Tietto (no subject)

Figure 47: The MoveTo action is activated by first accessing a modal view container with the list of the
available MailBoxes and Tags and then selecting the target one. The view container comprising the list of
MailBoxes and Tags is also associated with navigation events for creating new tags and managing existing
tags

The view container comprising the list of MailBoxes and Tags is also associated with navigation events for creating
new tags and managing existing tags. For example, the Create New event causes a modal view container to be
displayed, whereby the user can create a new tag and associate the selected messages with it (see Figure 48).

MNew Label X

Please enter a new label name

O HNest label under

I I+]

| Create ‘I Concel‘

Figure 48: The Create New event causes a modal view container to be displayed, whereby the user can create
a new tag and associate the selected messages with it

The interaction flow for moving a message to an existing or newly created tag is represented in Figure 49. The view
container ([Modal] and [Modeless]) icons annotate the view containers to specify that they open in a new window
and are modal or modeless.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 83

Mailbox

Messagelist

o /
(s

-"l'/ Mesiageselectian

- -
I ulists ‘

-
pele=() MESSage toolbar

.
=

b S

Arehive /| «Parametars MassageSet

r

h

Report I'n g '_IMesaageSuleruun

L
Message toolbar

[[%OR] Tags

cWindows [Modeless] Tag Chooser
" wlists s
Seleet Tag | r‘, Tag Folder List

Y - -

lr Create New

«Windows [Modal] Tag Creator
«Formn !
create | New Tag Folder

L >

Figure 49: The model of the interaction flow for moving a message to an existing or newly created tag. The
view container TagChooser is a modeless view container (which hides when clicking outside of it) and the

TagCreator is a modal view container.

Archiving, reporting, and associating messages to existing/new tags imply the invocation of business logic

components, as shown in Figure 50.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

84

oy P \
(_——) Delete - .'

£ e

(4— | Archive
[_4——) Repoit 4 ;

iq

yf §r

foid
h

,uParamBIndlngGmupw
/ SelectedMessages 2 Hess-ageSet

x«P'aramBIndlngGmupn A
¢ SelectedMessages <» Hess.agESet '

MailBox

'a uLists)
Messagelist
L Y oy
t_q;' Messageselection
Delets (" :\: Message toolbar

7| wParameters MessageSet
ol
Fa
{ | —
R I \I

[XOR] Tags L

.[Mudelnss] Tag Chooser

-,

' -
SE'EE[T.!S/' -, aLists

.f'-;ParamBindlngGruup»

/' SelectedTag = ATag

" Create Tag
e p and

J

T -t,l_,: Tag Folder List

s

'l‘trmlz Mew

[Madal] Tag Creator

Cleah: | «Formz»
 Mew Tag Folder

[J4—— | Assodate B
A Tag / Move J
to folder

mParamBmdlngG'oup»
/ NewTagMame = TagNamE

Figure 50: The model of the interaction flow for moving a message to an existing or newly created tag

In Figure 50 the parameter bindings are modeled explicitly: 1) the selected mail messages are associated with the
input of the Delete, Archive, and Report actions; 2) the SelectedTag parameter, which corresponds to the user’s
choice of a tag to associate with a set of messages, is the input of the AssociateToTag action®. Note that the
AssociateToTag action receives the selected message set through a DataFlow (dashed arrow) coming from the

_.-'

o J

MessageToolbar ViewContainer; 3) the NewTagName parameter, which corresponds to the new label entered by the

user, is the input of the CreateTag action.

The specification of composite action flows is not allowed but the internal functioning of an action could be

specified with an orchestration model (e.g, a UML activity diagram, a SOAML specification, etc.).

The access to the messages can also occur through a search functionality. An input field supports simple keyword

based search; with a click, the user can also access a more powerful search input form, where he can specify several

criteria to be matched, as shown in Figure 51.

6

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

For simplicity, which only model the AddToTag functionality; the MoveToFolder command is similar.

85

Mail [S7] []3]
Search H

Mail v From ey v Morew
- '
Inbox (2} I I any Reporting Anomalie
Starred Subject Maybe nermal in
Important Research Project igest - Jan 20, 2013
Chats Has the words hare
Sent Mail I I ¥ Reporting 2
Drafts Doesn't have rming - The send action
All Mail I I rming - What kind of
Spam

O Haos attachement

Trash : . neeting minutes
Day within | 1 day | 2| of I I
Water [|'—]
Exarnples: Friday, today, Mar 26, 3/26/04

AnotherBox ect
Create filter with this search ==

Asmat SA
WaltersComopany ADY bainstorming

Figure 51: The message search functionality (full search modal view container)

The IFML model of the search functionality (shown in Figure 52) comprises a view component
(MessageKeywordSearch) for entering a string to be matched to the mail messages and filter those to be displayed in
the MessageL.ist view component. Such an interaction flow can be represented with an event associated to the
MessageKeywordSearch and a interaction flow to the MessageL.ist view component; a parameter bindings specifies
that the output parameter of the MessageKeywordSearch view component is associated with the input parameter of
the MessageL.ist view component. From the MessageKeywordSearch another event (Show search options) opens a
modal view container (FullSearch), where the user can input more information to drive the search. In this latter case,
the parameter binding associates each field value of the Form view component to a respective input parameter of
the MessageL.ist component. Note that after giving the input of the FullSearch two navigations occur. One for the
MessageList for showing the search result and another to the Search container for passing and displaying the
keyword search.

The example shown in the right part of Figure 52 illustrates how extending the basic IFML view components with
domain specific view and business logic can make the model more self-descriptive. For instance, one could define a
view component abstracting the notion of input forms for data entry (denoted by the stereotype «Form»), composed
of a set of typed fields (e.g., denoted as nested view components of type «SimpleField»); a «Form» component
could expose as default parameters, the values of the contained fields. The parameter binding would then couple
each input field with the respective parameters of the ConditionalExpression expression of the dynamic list
component (as shown in the right part of Figure 52). Note that the «List» view component is associated with
multiple ConditionalExpression expressions, which are used to compute the component when different navigation
events occur. Which expression has to be evaluated is dictated by the parameter binding associated with the
interaction flows of the event triggering the computation.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 86

| [:0R] MessageSearch

[D] Search

search

) e
h (;)Szarrh madl Yy)

wFormx
(Message keyword ;l

_[Mudelﬁs] FullSearch

Show search optians

: aForma

Message Full
v N J

. Search mail
b

B,]
«ParamBindingGroups oo “Pa .
Kevword = Search wParamBindingGroup:
L5 MailBox i Keyword = SearchKey /
v
s wlists ™
Message List

«ParamBindingGroups
Keyword = Searchiey
From = FromKey

To = Tokey

[XOR | MessageSearch

(D] Search

[Modeless] FullSearch

(nanmMﬂsage Keyword Search

«ParamBindingGroup=
Key

/" wForm Message Full Search

search aptions

wSimpleFields Key: String

«SimpleField» Key: String

/.-* «SimpleField=From: String

»)
— Search mail M -
" Search mail
..
MailBox «ParamBindingGroup=
Keyword < SearchKey
aLists Message List
\ L.
«DataBinding» MailMessage | S
.
«ConditionalExpression: MailMessage IN ‘\‘“-_‘
mm2MailMessageGroup| Mailbox) .
«ConditionalExpression: Key IN m:mm:ldsn;gg:nhu&
MailMessage. Title OR. MailMessage.From OR. From = FromKey
To = Tokey
«ConditionalExpressions ...

Figure 52: The model of the message search functionality (top). The same model refined with the use of the
extended view components «Form» and «List» (bottom)

The selection of a message from the MessageL.ist view component causes the MessageDetails view component to be
displayed. Such a component permits the user to access one specific message at a time. This corresponds to the XOR
(MessageManagement and MessageReader) nesting of view components shown in Figure 53.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

87

[XOR] GMAIL Top

Ay
MessageSelection

I

Archive

Delete r\Messagetonlbar__

4 aParameaters MessageSet

\\-_IJ
Report
Q

[¥OR] Tags

Select Tag [aliste

Create Tag
and

f

\l} Create New

«Windowr [Modeless] Ta

{_) Tag Folder List

Chooser

L'\

4

. ’4—:{ Associate 4
Tag / Move
to folder

.

«Window» [Modal] Tag Creator

(" wForms
¢
__/New Tag Folder

-

[D] [L] Messages
[%OR] h
[D] Search | [Modeless] FullSearch ‘L
P T a— g ™ Shew search options ™ Message
sLists «Form: A Fis aForms e =
1 N Notification
lessane keyw: >
MaiBoxList (v }—— M sieamh ord (&, | Message Full Search
L J e () <L
Searchmad 7~ S Search mail
[XOR] MessageM "
MailBox [L] Settings
E{GR] Message Reader

[D] Message List Message Details
PR S— PR
f wliste \l /" uDetailss S

) <+ |
> ge List —.—'\f_) Message Details
N .
' = (P »> —
— pe (>_/

[L] Message Writter

Figure 53: The MessageL.ist and the MessageReader view components are shown in alternative

The example continues with the model of the message composer functionality. This can be activated in two ways: 1)

from any view containers inside the Messages top view container as denoted by the landmark icon of the

MessageWriter view component; 2) from the MessageDetails view component, by activating the Reply, ReplyToAll,

or Forward command, as denoted by the three event and interaction flows from the MessageReader view
component (shown in Figure 54).

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

[X0OR] Message Reader | .

| «ActivationExpression» |
Message Details " | MessageRecipients.size() > 1
/" Details T RepiyTann
[} 33 l:f\.-) .
LI Message keyword /3\ Fiprwart 5
=, Reply = Y

\ '\,‘_’J L"--_‘_\
—_— 33/ wParamBindingGroups

/ Messageld < Messageld

[L] MeEsagel Writter

yy
': wForms ™
Message Full Search
-\- /"'\\ .4"

kl'/ Send

Figure 54: The different ways to access the MessageWriter view component

The link ReplyToAll is active only when the message displayed in the MessageDetails view component is associated
with more than one recipient. This can be expressed as a activation expression associated with the ReplyToAll event

(see Figure 54). The MessageWriter view component has an internal structure, shown in Figure 55.

r"\ RGPW‘ * Reply to alm Fﬂ"“'ﬂfd\

Send Sove now Discard

Te I Brandy Lewis <brandylewis18@mail.com=> I

Cc I Walter Miran <walmir@mail.com=> I

Add Bece Edit Subject Attach File Insert: Invitation

Rich Formatting = Check Spelling v

Om Sat, Jan 18 2013 at 5:34 PM. Walter Miran <walmir@mail com> wrote:

= Welcome to our newest program, [sent you some docurnentation that 1 think will be
= uaeful for you in this processa.

>

= Enjoy!

>

= Walter Miramn

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

89

[XOR] Message Reader

Message Details

Figure 55: The internal structure of the MessageWriter view component

The view component permits the user to edit a new message, reply to an existing message (to the sender only or to
all) and to forward an existing message. The view component can be represented as a form composed of different
fields: To, Cc, Bcc, Subject, Body, and Attachment.

==

1 «ActivationExpressions
" MessageRecipients.size() > 1

«Detailse — TeplyTaa

N

™ ge ki rd ./;\' Farward
search P

()

W T

Reply

.[L_] Message Writer

.

x“ ParamBindingGroups A
7 Messageld < Messageld

wActivationExpressions

v

Yv

1 v

Di-.g.nii'ni_," «Form» Message Writter

fidd ce” : wSimpleFields to: String

aSimpleFields cc: String

aSimpleFields» boe: String
— aSimpleField» subject: Siring
«ActivationExpression= |

State = “Reply” or "ReplyToAll" A aSimpleField» body: String

aSimpleField» attachment: ...

J «Parameters State

Add attachment '\%/Sun:

Figure 56: The IFML model of the internal structure of the MessageWriter view component, with the names

of the event displayed for clarity

S

_/

‘Save

"Reply All" > State

«ActivationExpressions

from < to

o < oC

body = body
"Reply All" 2 State

N | «ParamBindingGroups ;
™./ Subject = "Re” + subject |

.| wActivationExpressions

State = "Reply" or "Forward” |

2 /' sParamBindingGroups |
< / Subject 2 “Re” + subject /
. / from = to f
N L7 e
~Repiysasii |/ body > bady

State = “Reply” or "Forward” _l

=]
| state = "Reply” or "Forward”

/ wParamBindingGroups

“/ subject "Fw” + subject //

/ body < body
/' "Forward” < State

Note that some form fields can be automatically filled with content (e.g., the To field is automatically set to the mail

address of the sender when the ReplyTo event is raised). This is modeled by considering that each «SimpleField»
component of a «<Form» component is associated to an implicit input parameter that denotes the value of the field.

In addition to the form fields view component parts, the MessageWriter view component has an explicit parameter
(State), which denotes four different edit configurations: 1) when the user is editing a new message, 2) replying to

the sender of an existing message, 3) replying to the sender of an existing message and to all recipients in copy, or 4)
forwarding an existing message. These edit configuration differ in the subset of fields that are automatically filled-in
and in the commands that are enabled: for example Figure 55 shows the edit configuration when the user is replying
to the sender of an existing message and to all recipients in copy.

The MessageWriter view component is associated with three events (Reply, ReplyToAll, Forward) for switching
from one of the ReplyTo, ReplyToAll, and Forward editing configurations to the other two ones. For example,
Figure 56 shows that the the event ReplyToAll is active only when the State parameter has the value Reply or
Forward and that its effect is to assign a value to the Subject, To, Cc and Body field, and set the State parameter to

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

90

the value ReplyToAll.

Another example of conditional event is the EditSubject one: the event for editing the subject field is available only
when the State parameter is ReplyToAll or Reply.

The model refinement of the MessageWriter view component can go on, by zooming-in inside the Body field. The
Body field can be refined by a nested component, which supports client-side business logic like the rich formatting
and the spell checking of the text.

Send Save now Discard
To I I
Cc I I

Add Bocc Edit Subject Attach File Insert Inwvitation

B7U wlnEl:=i=|CEO Check Spelling ¥

Welcome to our newest program, I sent you some documentation that [think will be
uzsaful for you in this process.

Enjoy!

Walter Miran

Figure 57: The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure 57 shows the rich text editing toolbar in the Body input field of the MessageWriter view component, which
appears when the user clicks on the RichFormatting link shown in Figure 55.

A number of editing commands apply to the text, which rewrite the content of the view component at the client side.
Similarly, the CheckSpelling command triggers a client-side action that highlights in red the misspelled words.

/ wRichTextSimpleFields Body

. Remaue farmat | wWindows [Modal] Alert
[C"EI'ItSidE] L P

r 1 «RichTextToolBars Toclbar {3
" ApplyFormat = . .
‘ ' -+ () 9
T Cancel Ok
- - J
[ClientSide] . /7 [Clientide]

ApplyFormat / ApplyFormat

Figure 58: The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure 58 shows the IFML model of the rich text editor field. An event corresponding to the RichFormatting
interaction flow permits the user to access the Rich Text Toolbar view container, which comprises a number of
commands for applying formatting to the text; for brevity, we summarize these commands as the invocation of the
ApplyFormat Action, which is shown with the [ClientSide] icon to denote that it actuates at the client side. Similarly,
an event permits the user to trigger the SpellCheck Action, which is also client-side. Finally, from the RichText
Toolbar view container an event (the PlainText link visible in Figure 57) permits one to remove the formatting and
go back to the plain text mode; before firing the action, tough, an alert modal view container is presented where the
user can confirm or discard the format removal action. Discarding the action leads one back to the Body component
and to the Rich Text Toolbar.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 91

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

92

Annex B - IFML by Example: Modeling an Online
Bookstore (Informative)

This annex exemplifies the versatility and adaptability of IFML by modeling the most common features available in
a simple Ul for a point of sale (POS) management, specifically targeted to a bookstore environment.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 93

B.1 Content Model

During the session, a User is assigned a Shopping cart that at the beginning is empty. As the user browses through
the page and gets information about the products available, adds products to the shopping cart. The list of products
selected at the moment by the user, can be consulted at any time, offering the option of pay the current order, empty
the cart or continue browsing in order to add more products.

wdataTypes wdataTypes
Name Address
wClasss wClasss wClassy
Customer Shopping Cart Order
=Id : String{id) -Carld : Integer{id} -Cartld : Integer{id}
=Email : String -Created : date 1 0.+ |-Productld : Integer(id)
-Title : String 1 e -OrderTotal : double -ProductQuantity : Integer
-Name : Name v -Customerld : String -
-Mddress : Address _ +Empty()
-Phone : String +Update()
0.*
1
1
1
«Class»
wClassy Product
CreditCard -Productld : Integer
— -Name : String
1.+ |-CardNumber : long 1 -Description : String
-ExpirationDate : date -Price : float
-Customerld : String)
+AddToCart()

Figure 59: Content Model of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

B.2 Process Model

When the user enters into the website, starts exploring the products available. Once he finds a product of interest,
selects it, and the item goes to the shopping cart. The user can either keep exploring products in order to add more
items to his order, or continue to manage the shopping cart by deleting all the products, or updating quantities of

the selected ones. Once the user is ready to proceed with the payment, performs the checkout.

In order to authorize the payment, it's necessary to send the customer information to the bank entity, and wait for the
confirmation. This procedure is illustrated in the Figure 60.

Explore
Products

Select
Product

Bookstore POS
Customer

Cart

Checkout

3
|
|
|

Vv

Confirm

Bank

Figure 60: Process Model of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

95

B.3 Model of the User Interaction Flow

Figure 61 shows the home page of the online Bookstore. In this section, the user can select one of the product
categories, or go directly to the shopping cart.

On-line Bookstore

<J Q x {} { http://wwweonlinebockstore com/home) @

o8N On-Line Book Store

.H' Shopping Cart

Books

Recordings

Software

Figure 61: Online Bookstore Home Page

After selecting a category, a list of products is displayed. For instance, Figure 62 shows all the products belonging to

the books category.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

96

080 On-Line Book Store |

ﬁ Home o See categories H Shopping Cart X Exit
< 'y
Home /Books =

Standard QWE: A new modelling proposal

Description:
QWE is o major mnovatizn in the field of softwore developrment. It
s independant of the craonzation of the softwars imolementation .

Bea mnmEF

—
IXI
* .
X Graphie Interfaces: In the hands of the user
—

Description:
This book introduces, documents and explaing the implications of a
woor desian in the user experience

Ses moras=>

[«

Figure 62: List of products belonging to the books category

When the user selects a product obtains the details of the selected item (such as full description and price) along with
the option to add the product to the cart, as shown in the Figure 63.

f8n On-Line Book Store

G Home 4 See all Books ‘H shopping Cart X Exit

Home /Books /Product

Standard QWE: A new medelling proposal

Description:

QWE is o majer mnovatizn in the field of saftware development. It

is independent of the organization of the software implementation

It iz a highly abstract thinkng teol that aids in the formalization of

knowledge, and is alzo o woy of descnbing the concepts that make

up abstract sclutions to softwore development preblems
This timely book theraughly mtroduces, documents, and explaing this important new
technokagy The authors show QWE can fermalize requirements and use coses inte a rich
st of verifioble dagrams, how it can be used to produce executoble and testable madels,
ond how these models can be transloted drectly inte code. In addition, the book explans
Ficre iriudi-.ridunl aystem domains are wowen together by an executable OWE maodel
compier

Price: $44.99

Figure 63: Details of the Selected Product

The procedure described in the figures 61, 62, and 63 is represented in IFML as shown in the Figure 64. Once the
user selects a category from CategoryList a navigation event is produced, and as a result, the products corresponding
to the SelectedCategory are displayed. Similarly, when the user selects a product from ProductList, the details of the

SelectedProduct are displayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 97

_[H] [L] ProductCategories | ProductList Product
oo Y I 2 '_ -
(" lists alListe 7 «Detailss
a3 -
CategoryList(+/ | : ProductList (/"] w Product
N 7 V) 7T " Detls
J I LY I ___
’.f'a /
/ ","
i'lr; y
;‘zpﬂmmmndmgﬁrﬂﬂpﬁ #ParamBindingGroups /
/ SelectedCategory - Category/ /' SelectedProduct < Product y

Figure 64: IFML model corresponding to the exploration of products

When the user decides to buy the product and add it to the cart, causes a modal view container to be displayed,
where the user must provide the quantity of items of the desired product (see Figure 65). After accepting the
quantity, the article is added to the cart, and a confirmation window is displayed as shown in the Figure 66.

Enter a gquantity:

2

Figure 65: Figure 7.Window displayed in order to catch the number of items desired by the user

04N On-Line Book Store)

ﬁ Home See categories E Shopping Cart X Exit
Home /Books Product added to cart
successiully!

Ston
Close
Des

CWETE o TTTCICT I TLIeIrTT 1T T nery o ot tware developrment. [t
s independent of the croanization of the software imolementation

Ses morgs>

Figure 66: Confirmation window for the action add to cart

Figure 67 shows the model fragment that adds a product to the cart: once the user press the add to cart button, a
modal window appears asking for the quantity of items desired. This value, along with the SelectedProduct are
submitted as parameters and represent the input of the add to cart action triggered. Once the action is performed, a
confirmation window is displayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

,&fParamBIndingGmups
/ SelectedProducts < Product

|
Product | | [Modal] Quantity : [Modeless] Confirmation
—
I o)4 .
© «Detailsx | " «Form») P n

| Add to cart . A «Detailss
ErociicE Sy,) Quantity | —————# Addto —™ Confirmation
Details - . /N @t o Message

J
F,
¥

_4ParamBindingGroups
/ Quantity = Qty

Figure 67: IFML model corresponding to the add to cart event

The shopping cart is the list of products previously selected by the user. In this section are shown the quantities and
the order details. The user is able to update the cart by changing the quantities, empty the cart by deleting all the
products of the current order, and start the payment process by clicking in the checkout button (see Figure 68).

When the user chooses to update the cart, the total amount is recalculated.
When the user empties the cart is redirected to a confirmation page as shown in the next Figure 69.

=9en On-Line Book Store

G Home X Exit
Shepping Cart

Product Price |Cluatity . |Total
Standard QWE: A new modelling proposal 4499 4499
Graphic Interfaces: In the hands of the user 2399 71497
Lineal Algebra applied to web 3999 39.99

Sub Total Amount: $ 156 95
Tax Amount: § 0.0
Dizcount Amount: § 0.0

Total Amount: $ 156.95

@ Empty the cart ¥ Ceontinue Shopping

Figure 68: Interface of the Shopping Cart

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

99

08 On-Line Book Store

ﬁ Home 4 See categories 'H Shopping Cart X Exit

@ Shopping Cart Empty

Figure 69: Confirmation page for the Empty Shopping Cart Event

As illustrated in the IFML model of the Figure 70, when the user decide to delete all the items from the current
order, the action Empty the cart is triggered, and after its execution, a confirmation message is displayed.

In the Update event, the user modifies the values of the quantities and submits them by clicking in the button
Update; this event causes an Update action to be triggered after which the shopping cart is redisplayed (see Figure
70).

_:@Paramﬁ-indingﬁmup»
/ Quanitity = Gty /
Y / Update
) B L L the w,
Shopping Cart FpEantiiaee: Confirmation
T el -~ Update .) _
= |Empty " N «Details»
Product [mp) 5/ Empty the I Confirmation
List] £ Message
'._‘. 4
A

Figure 70: IFML model corresponding to the events Update and Empty of the Shopping cart

Once the user has decided to perform the payment, he must provide his personal information and press “Next” (see
Figure 71).

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 100

98 On-Line Book Store

ﬁ Home 'H Shopping Cart X Exit
- Customer Information
E-Mail billy@mail.com Address Line 1. [gireet Hamiton
Title: Mr. Address Line 2 45
First Name: Bill City: New York
Middle Mame: State or Province:
Last Name: Feather Postal Code:
Phone: +5134857644 4 Country:

Figure 71: The user must provide its personal information and continue

After providing his personal information, the user must provide his bank account information and confirm the
payment in order to proceed with the transaction (see Figure 72). After performing the transaction, a confirmation
page appears showing the details of the payment as shown in the Figure 73.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 101

80 On-Line Book Store

G Home 4 Back .H Shopping Cart X Exit

- Payment Information
Cardhelder Name: Mr Bill Feathers

Address Line 1. Street Hamiten

Postal Code: 10138
Address Line 2 45 Country: United Stotes
City: New York Bank Card Account | 12763988733562

State or Province: [y vork Bank Card Expiration E

Total Amount: $ 156.95

Figure 72: The user must enter the bank account information and confirm the payment

080 On-Line Book Store

Home 4 See categories H Shopping Cart X Exit

)

Payment Performed Successfully!
— @ Payment Details

CREDIT CARD COMPANY
Charge to: 8765432567876 for: 15695
Charge APPROVED

CUSTOMER: john feathers@mail com
CHARGE APPROVED

Figure 73: Payment confirmation

When the user chooses the Checkout option, the container Customer Information is displayed. The user must
provide his personal information by filling out the form within this container.

After the user submits his personal information, the container Payment Information is displayed. In this container the
user must provide his bank account details. The name of the user (sent previously as the parameter: Name), is
forwarded along with the credit card number (CC) and the total amount of the offer (previously sent by the shopping
cart container) to the payment action (Execute the payment).

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 102

' Shopping Cart
«List»

Product
List

b o
“rCheckout

.Custumer Infarmation

e =

«Formz=

s =

/| «ParamBindingGroups
/' Name < Namea

-\,

Customer .f""‘- - > Payment f"

Information - [»' /

/| «ParamBindingGroups
[Total=» Amount

Confirmation

(" «Details»
Confirmation
Message

. R, R,

Payment Information

P =,

«Form:

T
Information .~

I ps = /

—
% payment /

f=ParamBindingGroup=
/ Name < Name

Execute
the !

| CreditCard > CC

Figure 74: IFML model corresponding to the event Checkout
After the payment execution, a confirmation message is displayed with the transaction details. The IFML
representation of this procedure is shown in the Figure 74.

To increase reusability and modularization in the models, designers may decide to cluster homogeneous parts of the
model into Modules. For instance, the part of the model that deals with the payment management can be packaged
into a specific module. This would simplify the model of the application, which would appear as in Figure 75.

The definition of the corresponding module is shown in Figure 76.

Shopping Cart | Confirmation
~ s Y ; i
' “Liste (" «Details»
Praduct Confirmation
List Message
L -
- (o) 4
“Checkout
Payment [
s Execution
r/.-
/' «ParamBindingGroup»
Total=+ Amount

Figure 75: IFML Module Representation of the Checkout Event

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 103

Payment Execution

Customer Information Payment Information I
«Forms «Forms)
Customer (*\ > Payment fi Ex;:te
. } -
Information - / Information -)/ payment
W, h,
/
i /
J .-
.r
aParamBIndIngGmupa

Mame = Name

CreditCard = CC

rrBIndIngGmupa
Name < Name

Figure 76: Inner Process of the Module Payment Execution

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

_-: D{iunﬁrmamq

104

B.4 System Modeling

IFML can be suitably used together with UML models and other OMG standards (e.g., BPM models).

For instance, UML sequence diagrams complement IFML models at the purpose of highlighting sequences of
activation of client- and server-side components depending on user interaction events.

In the example, when the customer chooses the option update, the Browser sends a message to the WebServer with
the id of the product and the new quantity, then the WebServer updates the shopping cart and returns a confirmation
message.

If the user decides to delete all the products previously selected, he clicks the empty cart button, sending the message
to the Browser. The Browser sends a message to the WebServer who is in charge of executing the deleting action
and return a confirmation message.

When the user is ready to proceed with the payment, notifies the Browser who asks to the WebServer for the
customer information form. After the WebServer returns the form, the Browser displays it. The next step to continue
with the payment is wait for the user to fill out the form with his personal and bank information. When the user
submits his information, this is sent to the WebServer who asks the DataServer to return the customer information in
order to verify it. After verifying the customer information, the WebServer sends it to a ExternalBankService who is
in charge of authorize the payment. Finally, after the WebServer receives the confirmation from the
ExternalBankService, sends a confirmation message to the Browser

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 105

Browser

3: updateShoppingCart

A

| 1. Update | :
]
2: updateQuantity(product, qtyl |

4:
k- — - - — — — — T
]
]
5: Empty || :
1
6: emptyCart i

a:
e — — 2 — — — — — L]

9: Checkout

12: SubmitForm

10: checkOut

7: emptyShoppingCart

e
|
|

13: formData

T
|
|
|
|

14: getCustomerinfo

oo T 1

&: verifyUserinfo

-

ExternalBankService

=

Figure 77: Sequence Diagram of the Online Bookstore

Additional diagrams can be used to describe the deployment of the components and other aspects, as shown in

Figure 78.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

106

wdevicen

UserDevice

ProductionServer

«axacution environments
Browser

waxecution environments waxecution environments
WebServer EJBContainer

ExternalService

DataServer

«wexecution environments

RDBMS

wartifacts ™ wartifacts [
ProductSchema UserSchema

Figure 78: Deployment Diagram of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

107

Annex C - Mapping to the Windows Presentation
Framework (Informative)

C.1 Introduction

This annex describes an example of mapping from IFML to a platform specific language. In particular, this maps the
main IFML concepts to the .Net Windows Presentation Framework (WFP).

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 108

C.2 The WPF meta-model

Windows Presentation Framework (WPF) is a part of NET Framework by Microsoft that is meant to be the
substitute of the old WinForms Ul interface. It brings separation of concerns between interface and code-behind.
This is made possible by detaching presentation defined using the XAML language from business logic written in

Application

pages

-pages

+name ; String

Window

+startWith

+windows

C#.

1.7

Figure 79: WPF metamodel, the Application element

In WPF the interface building blocks are nested. This generates a visual tree that is rendered by the framework.

Page

The target application is modeled by the Application class which is the main container of all the elements of the

model. It has a start window which is the first one to be opened at startup.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

109

DependencyObject

+name : String

|

Visual
ContentElement
“chid [yiElement | -chid
0.1
Fay
Resource -SOUICE Binding
-dataContext .
DataContext FrameworkElement reS0oUrces ey Sting| o1 “path : String
0.
1 Fay
Panel Contral Page

Figure 80: WPF metamodel, the DependencyObject element

All the visual objects inherit from DependencyObject, a class that allows the attachment of DependencyProperty.
This lets define properties that may be shared among all the objects of the framework and used as target for
bindings.

DependencyObiject can be split in two classes, Visual and ContentElement. Visuals elements are actually rendered
by the framework, while ContentElements are used to better define the layout of Visuals.

The main subclass of Visual is UIElement which is used as common superclass to define nesting among elements
of the UL.

The main subclass of UIElement is FrameworkElement which is the one that allows to define Resources and the
DataContext. Resources are objects related to the FrameworkElement organized as a dictionary; they are used by
the framework to enhance and better define layout and behavior of the interface. DataContext can be associated
through a Binding to another object to define the source of all the contained Bindings, not otherwise specified.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 110

FrameworkElement

=

Panel

i

DockPanel

StackPanel

Grid

TabPanel

Control

Page

-linkTo

ContentControl

TextBox

ltemControl

Frame

Tabltem

Window

-header : String

-targetFrame

Hyperlink

Figure 81: WPF metamodel, the FrameworkElement element

FrameworkElements can be divided in Panels, Pages and Controls.
Panels are Ul elements which can contain more than one child. They are classified by behavior:

- DockPanel: this container tries to minimize space wasting by expanding all the children to fit all the available

space.

- TabPanel: it defines a XOR behavior (one by one), allowing to select the child to display through a tabbed header.
- StackPanel: it put all the children in a stack, queuing them one after another.

-Grid: it features a m by n grid in which all the children are placed. The coordinates of the cell in which the child

resides is defined by the attached properties Grid_Column and Grid_Row.
Pages are one-child containers that allow navigation in a Frame.
Controls include TextBoxes, ContentControls and ItemsControls.
ContentControls are Windows, UserControls, Tabltems and Frames.
-Windows are the outer containers of all UIElements and have at most one child.

- Tabltems are one-child containers that allow to define the header used by a TabPanel.
-Frames are controls that can dynamically navigate through Pages using Hyperlinks or explicit navigation.

ItemsControls are meant to dynamically define their children applying a template to items to be retrieved by an

ItemsSource.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

111

C.3 Model to Model Transformation

The IFML model is mapped to a WPF application as one window (the startup one) that contains a frame in which
it’s possible to navigate within pages.

All the first level ViewContainers are mapped to pages; to bypass the limitation related to the one-child nature of
pages in WPF, ViewContainers with one child are mapped directly, while the ones with more children are mapped
to pages with a grid as a child.

If there is at least one first level landmark ViewContainer, the main window does not contain directly the frame, but
a grid with two children: the frame and a StackPanel that contains Hyperlinks to all the landmarked pages.

All the sub-ViewContainers are mapped to grids; otherwise, if they are XOR, they are mapped to TabPanels whose
children are surrounded by Tabltems.

All the ViewElementsEvents of type SelectEvent that reference a ViewContainer are mapped to a StackPanel
containing Hyperlinks to all the pages linked by outgoing NavigationFlows.

List ViewComponents are mapped to ListBoxes: if they have a ViewElementEvent of type SelectEvent with an
outgoing NavigationFlow that links to another ViewComponent, they are also mapped to a ViewSource bound to a
ObjectObservableCollection and to a grid which DataContext is bound to the ViewSource current item.

Forms are mapped to grids; their fields are mapped to TextBox (SimpleField) or ComboBox (SelectField).

Finally since the WPF metamodel is a direct mapping of the entities that compose the .Net framework for desktop
applications, a simple model to text transformation is needed for generating a working application.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 112

Annex D - Mapping to Java Swing (Informative)

D.1 Introduction

This annex describes an example of mapping from IFML to Java Swing in order to model very simple Java-based

desktop application.

Java Swing is a Model-View-Controller GUI framework for Java application. Thus it allows to develop desktop

application in Java decoupling the data viewed from the interface from the user interface controls through which it is

viewed.

D.2 The Java Swing meta-model

-avents

JavaApplication

-name . String

1 -application

 —
7

|0ncnange|
I |

|0nchck| |0nFm:us|
| I |

ant
0.1 -components
Component
1

~pari
-children
-
-component
1

Container

|JCnmpnn9m |

|Dialug| |Windnw ‘

[AbstractButton | [4Table | [T | \ |
I |] I
[

|.J8umm |
| |

|JMenuIam | ‘JTcggleBuncn|
| | [|

JCheckBox

Figure 82: The Java Swing metamodel

L]
|JScroIIBar|
| |

TextComponent

1

[

‘ JEditorPanel ‘
[]

[4TextFieid |
i

| JTextArea |
|

The desktop application is described by the JavaApplication element, which contains all the Components.

The Component element is the abstract description of the element of a graphical user interface. In particular a

JLabel

-text : String

Component can have a set of child element and a set of Event used to enable the user's interaction. Furthermore an

Event can be associated to a set of Actions

Every Component is a Container. In particular there are the Window, Dialog, JComponent elements. The first
two are pure container while the last comprehends a set of elements that can contain other element or just show data.

The JComponent element is then specialized by a set of class that represent the actual GUI elements, for example

there are: AbstractButton, that model the general button that is more specialized by the class JToggleButton,

JButton, Jmenultem; JTable, that model a table, JPane, JTabbedPane, JScrollBar, Jlist, Jlabel and

TextComponent, that represent the general component to edit text, which is further specialized by the class

JTextField, JTextArea and JeditorPanel.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

113

D.3 Model to Model Transformation

The IFML model is mapped to a JavaApplication element.

Each IFML::Window element is mapped to a Window element (in case of a modal window a Dialog is created
instead).

Each not XOR sub-ViewContainer is mapped as a JPane (while a XOR container is mapped as a JTabbedPane
with each of its child ViewContainer mapped as JPane element).

Forms are mapped as JPane elements, their fields are then mapped as JTextField (in case of SimpleField) or
JCheckBox in case of multi selection field).

Lists are mapped as JL.ist elements.
Details are mapped as JTable showing at each row an attribute of the DataBinding considered.

If events were defined, the corresponding Event is created and associated to the correct Component. In particular,
in case of Select and Submit a JButton is created in order to trigger the event. If an Action was defined, a element
of type Action will be created.

If one or more ViewContainer marked as “landmark” exist, a JMenuBar element will be created in each Window,
containing all the JMenultem element linking to the landmark ViewContainers.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 114

Annex E - Mapping to HTML (Informative)

E.1 Introduction

This annex describes an example of mapping from IFML to HTML in order to model a very simple web application.

E.2 The HTML meta-model

The web application is modeled by the WebSite class, which is the main container of all the other elements. In
particular a WebSite is composed by a set of Pages. Then the metamodel describes in details the structure of each
element.

WebSite
-url : String

-webSite

-pages |1..
-htmi Page -htmi

1 1

Tk
-ghildren | HTMLElement

0. -valug : STRIKE

-body (1
-head HEAD EODYElement EODY
1 -background : String
-text : String
-head (1 -bodyElements |0.. =link : String

-alink : String
-body |~Viink : String
¥ | -bgcolor : String

-headElements |0.*
HEADElement

!—T—\

LINK TITLE

-rel : String
-fitle : String
-ahref ; String
-type : String

Figure 83: HTML metamodel, the Page and Head element

A Page is composed by a HEAD and a BODY (represeniting the <head> and <body> tags), the HEAD contains a
set of HEADElement while the BODY a set of BODY Element, both of them inhertis from the general class
HTMLElement and are abstraction of the concrete html tag.

The HEADEIlement comprehends the TITLE and LINK tags, while the BODYElement comprehend all the html
tags used for creating web pages (P, TABLE, FORM, DIV, A etc.).

In order to allow the nesting of tags, the HTMLEIlement class has a reference to a set of children HTMLElement.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 115

-parent |1
'“h‘”[e" HTMLElement

o -value : STRIKE

|

BODYElement BopY
=background : String
-bodyElements -body |-text : String
0. -link : String
-alink : String
=viink : String
=bgcolor : String
SUP FONT SMALL ListElement PRE BR STRIKE
OPTION DIV 3 — 5
— —color - String — I ‘ -type : String — -clear : String
E— . String —] -selacted : Strin __ -align : Strin
-face : String -optionValue ‘-“fnn:] b i
-size . String - T
E3 u o
= -livalue : String -start : String = = =

Figure 84: HTML metamodel, a fragment of the BODY element

E.3 Model to Model Transformation

The IFML model is mapped to a WebSite element.

Every first level ViewContainer is mapped to a Page element, in particular the one marked as “home” will be named
“index”.

Each sub-ViewContainer will be mapped to a DIV element.

Each NavigationFlow not associated to a SystemEvent is mapped to a A element. If an Action is present, its name
will be appended at the end of the link.

Forms are mapped into FORM element and their fields are mapped to corresponding INPUT elements.

Details are mapped into a UL — LI elements, in which each list item is a attribute of the data binding considered.

Lists are mapped into TABLE, in which the first row is composed by the field of the corresponding data binding. If
a SelectEvent is associated to the component, then a last column is added which contains a A element.

If one or more ViewContainer marked as “landmark” exist, a DIV element containing all the A element linking to
the landmark ViewContainers will be created in each Page.

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 116

	0 Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Business Motivation
	6.2 Design Principles
	6.3 IFML Artifacts
	6.4 Acknowledgements

	7 IFML Specification
	7.1 Key Concepts of IFML
	7.2 IFML in a Nutshell
	7.3 Extensibility
	7.4 Concept List

	8 IFML Metamodel
	8.1 High-Level Description
	8.1.1 IFML Model
	8.1.2 Interaction Flow Model
	8.1.3 Interaction Flow Elements
	8.1.4 View Elements
	8.1.5 Parameters
	8.1.6 Events
	8.1.7 Expressions
	8.1.8 Content Binding
	8.1.9 Context
	8.1.10 Specific Events and ViewComponents

	8.2 Package DataTypes
	8.2.1 Enumeration ParameterKind
	8.2.2 Enumeration SystemEventType

	8.3 Package Core
	8.3.1 Class Action
	8.3.2 Class ActionEvent
	8.3.3 Class ActivationExpression
	8.3.4 Class Annotation
	8.3.5 Class BooleanExpression
	8.3.6 Class ConditionalExpression
	8.3.7 Class Constraint
	8.3.8 Class ContentBinding
	8.3.9 Class ContentModel
	8.3.10 Class Context
	8.3.11 Class ContextDimension
	8.3.12 Class DataBinding
	8.3.13 Class DataFlow
	8.3.14 Class DynamicBehavior
	8.3.15 Class Element
	8.3.16 Class Event
	8.3.17 Class Expression
	8.3.18 Class IFMLModel
	8.3.19 Class InteractionFlow
	8.3.20 Class InteractionFlowElement
	8.3.21 Class InteractionFlowExpression
	8.3.22 Class InteractionFlowModel
	8.3.23 Class InteractionFlowModelElement
	8.3.24 Class Module
	8.3.25 Class NamedElement
	8.3.26 Class NavigationFlow
	8.3.27 Class Parameter
	8.3.28 Class ParameterBinding
	8.3.29 Class ParameterBindingGroup
	8.3.30 Class Port
	8.3.31 Class SystemEvent
	8.3.32 Class ViewComponent
	8.3.33 Class ViewComponentPart
	8.3.34 Class ViewContainer
	8.3.35 Class ViewElement
	8.3.36 Class ViewElementEvent
	8.3.37 Class Viewpoint
	8.3.38 Class VisualizationAttribute

	8.4 Package Extensions
	8.4.1 Class Details
	8.4.2 Class Device
	8.4.3 Class Field
	8.4.4 Class Form
	8.4.5 Class List
	8.4.6 Class Position
	8.4.7 Class SelectEvent
	8.4.8 Class SelectionField
	8.4.9 Class SimpleField
	8.4.10 Class Slot
	8.4.11 Class SubmitEvent
	8.4.12 Class UserRole
	8.4.13 Class ValidationRule
	8.4.14 Class Window

	9 IFML Execution Semantics
	9.1 Introduction
	9.2 Relevant Aspects for IFML Execution Semantics
	9.2.1 Triggering Events
	9.2.2 Parameter Propagation
	9.2.3 Navigation History Preservation

	9.3 ViewComponent Computation Process

	10 IFML Diagram Definition
	10.1 Introduction
	10.2 Conformance Criteria
	10.3 Architecture
	10.4 IFML Diagram Interchange (DI) Meta-model
	10.5 Package IFMLDI
	10.5.1 Enumeration LabelKind
	10.5.2 Class IFMLCompartment
	10.5.3 Class IFMLConnection
	10.5.4 Class IFMLDiagram
	10.5.5 Class IFMLDiagramElement
	10.5.6 Class IFMLLabel
	10.5.7 Class IFMLNode
	10.5.8 Class IFMLStyle

	10.6 IFML DI to DG Mapping Specification

	11 UML Profile for IFML
	11.1 Overview
	11.2 The IFML Profile of UML
	11.3 Structural Aspects
	11.4 Dynamic Aspects
	11.5 Profile Metamodel Mapping

	Annex A - IFML by Example: Modeling an Email (informative)
	A.1 Introduction
	A.2 The Content Model
	A.3 Model of the Interface

	Annex B - IFML by Example: Modeling an Online Bookstore (Informative)
	B.1 Content Model
	B.2 Process Model
	B.3 Model of the User Interaction Flow
	B.4 System Modeling

	Annex C - Mapping to the Windows Presentation Framework (Informative)
	C.1 Introduction
	C.2 The WPF meta-model
	C.3 Model to Model Transformation

	Annex D - Mapping to Java Swing (Informative)
	D.1 Introduction
	D.2 The Java Swing meta-model
	D.3 Model to Model Transformation

	Annex E - Mapping to HTML (Informative)
	E.1 Introduction
	E.2 The HTML meta-model
	E.3 Model to Model Transformation

