March 2014

Interaction Flow Modeling Language (IFML)
FTF — Beta 2- Revision 21

OMG Document Number: ptc/2014-03-14
Standard document URL: http://www.omg.org/spec/IFML/1.0

Associated Machine Readable File(s)*:

ptc/2014-03-16 IFML-Metamodel.xmi
ptc/2014-03-17 IFML-Profile.xmi
ptc/2014-03-18 IFML-DI.xmi

*original files: ad/2013-02-05 (Metamodel XMI), ad/2013-02-06 (Profile XMl), ad/2013-02-07
(Diagram Interchange XMI)

This OMG document replaces document ptc/2013-03-08.

http://www.omg.org/spec/IFML/1.0

Copyright © 2014 WebRatio

Copyright © 2014 Fujitsu Limited

Copyright © 2014 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2014 Thales

Copyright © 2014 Softeam

Copyright © 2014 Ivar Jacobson International

Copyright © 2014 88Solutions

Copyright © 2014 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Table of Contents

PrO ACE ottt v
L S GO ettt ettt ettt e et e e eaeeenn 1
2 CONFOIMANCE, . .eeiiiiiitie ettt ettt ettt ettt ettt e e ee e e 2
3 NOrMAtiVe REFETENCES. uuiiuuiiiuiiitiiiiiiiiiii ettt 3
4 Terms and DefiNitioNS. .oeueeeeiiiiiiiiiie it i ettt 4
S SYMBOLS ettt 5
6 Additional INfOrMIATION . ecuueiiiitieiiii ettt e e e, 6
6.1 BUSINESS MOtIVALION . 1eeiitiieiieiiiieetieeeieeeee ettt ettt eee e et e e e e e ee e eeeeeee e 6
6.2 DESIGN PriNCIPLES. .eeiesiiiiiiiiieee ettt e et 6
6.3 TEMI ATETACES . .eiuiiiiiiitii ittt ettt ettt e e 7
6.4 ACKNOWIEAGEMENES . ..eeuviitiiieiiitieiti ettt ettt ettt e e e e 7

T IEML SPECITICAtION. 1utiitiiitiiite ettt ettt e e 8
7.1 Key ConceptS OFf TFMIL..oeuiiieiiiiiiiiiiiiiiiieeeie ettt ee e eee e eee e 8
T2TFEML in @ NUESNCIL cuveiiiiiiiiiiiiiiiie ettt 9

7.3 EXECNSTDIIIEY eeueiiitiieiitie ettt ee e 13
7.4 CONCEPE LASE ettt et eeeeeeeeeeiaaes 14

8 IFML MetamOAEl. ..ueeiiueiiiiuiiiiiiii it 18
8.1 High-1.eVel DeSCIIPtiON. c.uviiusiieuiiitiiiiiitiieit ettt ettt ee e e eeeeee e e e 18
L1 TFML MOACL ittt ettt 19

8.1.2 Interaction FIOW MoOd@l.....ueiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieei e 20

8.1.3 Interaction FIOW EI@MENtS. . cuuiieiiiriiiiiiiiiiiiiitiiiii ittt eeeeeeaens 21

8.1.4 VIEW BICMENES. ..uueiiiiiiiiiiiiiiiiiiii et 22

8.1.5 PATAMICLOTS. cuueeeutiiiiiie ittt 23

81,0 VOIS, oeiiiiiiiiiiieieeiee ettt ettt eeeeeeee e e 24

81,7 EXPIESSIONS. o uueieiieiiiiie ittt 25

8.1.8 Content Binding@......ccoueiiiiiiiiiiiiiiiiiiiiieii e 26

81,9 COMEOXE et eutitiitit ettt ettt 27

8.1.10 Specific VIEeWC OMPONENES. ..euuiiriieiiiitiiiiiiitiiitie it eeie ettt ettt ettt et ieeeeeeeeeneeens 28

8.1.11 MOAUIATTZATION. 1 eutviiieiiiieiiiieiie it e ettt e e e e et eieeeeeenn 29

8.2 Package DataTVPCS ..ocoueiiiiiiiiiiiiiiii ittt 30
8.2.1 Enumeration DiIr@CtiONeeuuueeiiuieeiiiiiiiiiiiiie ettt 30

8.2.2 Enumeration ContextVariableScopeDeSCriptionoc.eeeeeeeeieeeeiiieiiiiiiieeeiieieeeeeeeeeeeeeeeeeen 30

8.2.3 Enumeration SyStemEVENtTYPC. ..ouveiiiuiiiiiiiiiiiiiiiiiii i 30

8.3 PACKAGE COT . iuuiitiiitiiiii ittt ettt ettt 30
8.3.1 ClaSS ACHON. .eeeuiiieiiiiieiit ettt ettt e e e 30

8.3.2 Class ACHONEVEN..euuuiiitiieiiiii ittt 31

8.3.3 Class ActivatioNEXPIe@SSIONeuuiitiiiiiiitiietieii ettt ee ettt e e eeeeeeeiieeenns 31

8.3.4 Class ACtIVItYCONCEPE . cuuueiiuiieiiie ittt ettt 31

8.3.5 Class ANNOtAtION. c.uueiiutiiiitii ittt 32

8.3.6 Class BehaviorCONCEPt . euureiiieeieieieeeeiiieeeeeeeeeee et 32

8.3.7 Class Behavioral FeatureCONCED .. uuuuuiiiieiiiiiie it 32

8.3.8 Class BOOIEANEXPIeSSION ...eeuuiiiuiiitiiitiietiietie ettt ettt e et eee e eieeeens 32

8.3.9 Class BPMNA CtIVItYCONCEP . eutiitiiiuiiitiiiiiei ettt ettt eeeeeeiese e 32

8.3.10 Class CatChiN@EVENt.eiiuiiiiiiiiiiiiiiiiie ittt 33

8.3.11 Class ConditioNalEXPIeSSIONeeuieiueiitiieiiitiiite et eee et eee ettt et ee e eeeeeeeeiiaeeens 33

8.3.12 Class CONSIATNT. c..eeieusiiiiiiieiiie ettt ettt ettt eee et eeeieeeenne 33

8.3.13 Class ContentBINAING.oeieueiiieiiiiiiiiiiiiiiiiiiiee e 33

8.3.14 ClasSS COMIEXEuueeiuriiieeiieieieeeieeeee ettt ettt ettt e eeeee e e e et eeeeeeeeiaeeeeenn 34

8.3.15 Class ConteXtDIMENSION . ..uuuiiiieeeeiiiiiiiiiiiieieieei e ee e eeeeeeeeeeeeeeeeeeeen 34

8.3.16 Class ConteXtVariable. . .oueeuiiiuiiiiiiiiiiiiiieieiii ittt 34

8.3.17 Class DataBinding........ceeeiiuiiiiiiiiiiiiiiieeieiii ettt 35

8.3.18 Class DataConteXtVariable........coouueiiiiiiiiiiiiiiiiiiiii it 35

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 i

8.3.19 Class DataFTIOWuvviieeiiiiiiiiieiiiiiii ettt 35

8.3.20 Cl1ass DOMATNCONCEPE . .eeuiiitiiieiiiteiiie ittt ettt et eee ettt ettt eeeeee e eieeeeeeeeaes 36
8.3.21 Class DOMAINEICMENTcouuiiitiiiuiiiiiiiiiii ettt 36
8.3.22 Class DOMAINMOACL....cuuiiuiieuiiiiiiiiiiiiiiiiee et 36
8.3.23 Class DynamicBeNaVIOT.ecuuiiiiiiiiiiiiiiiiiiiiiii e 37
8.3.24 Class EICIMIONt. eeuuiiiiueiiiiiiiiiiiii ittt 37
8.3.25 ClasSS EVENT...uviiieueiiiieeieiieeeeeeeeeee ettt 37
8.3.26 Class EXPIeSSION. ..viiieusiiiiesieeeieeeeie ettt ettt eeeeeaeeeenn 38
8.3.27 Class FeatureCONCED . e uiiuiieuiiitiieii it eeie ettt ettt ettt eei e 38
8.3.28 Class IFMIMOAE...cuuviiiiiiuiiiiiiiiii ettt eieeeeeees 38
8.3.29 Class INteraCtioNFIOW. . ..ceuuiieuiiieiitiiiiiiti ettt eeee e, 39
8.3.30 Class InteractionFIOWEISMENtccuviiiuiiiiiiiiiiiiiiiiiiiiiieeei e, 39
8.3.31 Class InteractionFlOWEXPreSSION. ...eeuveiiieiiiiiiiiiiiieeiii et 40
8.3.32 Class InteractionFIOWMOAel.....ccuuiiiiiiiiiiiiiiiiiiiiiiii e 40
8.3.33 Class InteractionFlowMOdelEICMENtceuvviieeiiiiiiieeeeiieeiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 40
8.3.34 Class ModularizationEIemeNt ...oooouveeiiiiiieiiiiiiiiiiiiiiiiiiiiiiieeieieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeee 40
8.3.35 ClasS MOAUIC. ..c.uvieueiiiuiiiiiiiii ettt e 41
8.3.36 Class ModuleDefINItiON. .eueeeueiitiiiiiiiiiiiiieiie ettt 41
8.3.37 Class MOAUIECPACKAZE ..ouvvieiiiuiiiiiiiiiiiiiiiiei ettt 42
8.3.38 Class NamMeEAEICMENtocouiieuiiisiiiiiiiieii ettt eeeeeennns 42
8.3.39 Class NavigatioNFIOW . ..o.uviiiuiieiiiiiiiiii ittt 42
8.3.40 Class ParQmMICOr .. .cuuuiiisiieiiuiiiiiiie ettt 43
8.3.41 Class ParameterBinding.........oouveiieeeiiiiiiiieiiiiiiie e 43
8.3.42 Class ParameterBindingGrOUDuueeeeuueeiiiiiiiiii i 43
8.3.43 ClaSS POTT..iiuiiiiiiiiiiiiieie ettt ettt et eie e 44
8.3.44 Class POrtDefINItiON. .euueeeutietiiiiiitiiiiiet ittt 44
8.3.45 Class SimpleConteXtVariable.ooueeuiieiiiiiiiiiiiiiiiiiii e, 44
8.3.46 ClasS SYStEMEVENT....cuiiiutiiiiiiiiitiiiei ettt ettt ettt et ettt et 45
8.3.47 Class ThrOWINGEVENTeeeuuiiiiiiiiiiiii ittt eeee e 45
8.3.48 Class UMILBENAVIOT . ..cuueiiiiuiiiieiiii ittt eeeiaeeenn 45
8.3.49 Class UMILBehavioralFEature.o.vviieueieieeiiieiiiiiieeeeieeee e 45
8.3.50 Class UMLStructuralFEature. .. .ouvveieeeiiiiiiiiiiiiiiieiiiee it 46
8.3.51 Class UMLDOMAINCONCEPE. eeuutiiuriiiuiiitiiitiiitieetii it eete ettt ettt e ettt eeeeeeeiieeeieeeens 46
8.3.52 ClasS VieWCOMPONMENT. ...eiuiieuiiitiieiiitiiiie ettt ettt ettt ettt et e et eieeeee e 46
8.3.53 Class ViewComMPONENtPAIt.vieiiiiiiiiiiiiiiiiiii ittt 46
8.3.54 ClasS VIeWCONTAINETeeuiiiutiiitiiiiiie ettt ettt e ettt eeeee e eeee e 47
8.3.55 Class VIEWEICMCNE . c...eeieuiiiiiiiieiiiiiiiii ettt 48
8.3.56 Class VieWEIemMeNtEVENt. . .ccuiiiiiiiiiiiiiiiiiiiiiiiiiieei e 48
8.3.57 ClasS VICWPOIN..eeiueeeeieeiiieeeeeeiiie ettt ettt eeeeeeeeeeeeaeeeenn, 48
8.3.58 Class VisualizatioNAIIDULEvveieeiiiiiieiiiiiiiiiiieiieieee e 49
8.4 Package EXTENSTIONS. ..ccuiiiiiitiiiiiitiiite ettt ettt ettt ettt ettt e e e e e e e 49
8.4.1 ClaSS DANNS. ..eeuviiiiiiiiiiiiiett ettt ettt ee e 49
8.4.2 ClaSS DI@VICE. cuuuiiiuiiiiiiiiiii ettt ettt 49
8.4.3 Class FIeld...cuoeiuiiuiiiiiiiiiiii ittt 49
8.4.4 Class FOIM.ueiiuiiiiiiiiiiiiii ittt 50
8.4.5 ClaSS LS. eeiuriiiitiiiiiie ittt 50
8.4.6 Class LandingEVeNuiiuiisiiiiiieiieiiieeeeii ittt e et eeeeiaeeeaans 50
8.4.7 Class JUMPEVENT.oiiiiiiiiiiiiiiii i 51
8.4.8 ClaSS MIOMUL..uueiiutiiiuiiiiiitii ettt ettt ettt ettt ettt ettt et ee e 51
8.4.9 Class ONLOAAEVENT. ...cuuiiiuiiiiiiiiiiiiiieiii ettt 51
8.4.10 Class ONSEIECtEVENT. . .cuiieuiiiiiieiiitiiiie ettt eeeeeeeeeeeens 51
8.4.11 Class ONSUDMIEEVENT. ..e.uviiitiiiiiiisiiiiiii ittt e eeeee e, 51
8.4.12 Class POSIHION. ..eeiiueeieiiteii ittt 52

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 ii

8.4.14 Class SelectioNFIeld. ..uuviieeiiiiiiiiieiiiieiiiiiieeeieeeieeeeeeeieeee et 52

8.4.15 Class SetCONtEXtEVENt. euuiitiiiiiitiiiiiiiiiie ettt 52

8.4.16 Class SIMPIEFIEId...uuiiiuiiiiiiiiiiiiiii i, 52

8417 ClaSS SIOt..uuieuuiiiuiiiiiiii ettt ee e e 53

8.4.18 Class USEIROIC. ..ocuueiiiiuiiiieiiiiiiii ittt 53

8.4.19 Class ValidatioNRUIC.oeuuiiiiiiiiiiiiiiiiii it 53

8.4.20 ClaSS WINAOW...oeivviiiueiiieeiieeieeeeee ettt eeaeeeenn 53

9 IFML EX€CUtion SEMANTICS .vvveiisiieiieiiiieeiieieee oottt ettt et et e e e et e eeieeeeeeeeeennns 54

9.1 INEEOAUCHION. ettt ettt ettt e et e e e e 54

9.2 Relevant Aspects for IFML EXecution SemantiCS.......ceuuieuuieeiiiiiiiiiiiiiiiiiiiiiiiiieeii e i eiiieeeenen, 54

9.2.1 Triggering EVENES. . oouieeuiiiiuiiiiiiiieie ittt ettt 54

9.2.2 Parameter Propagation.ceeeeeuiiiiieitiiiiiiitiiiiiie et 54

9.2.3 Navigation HiStOry PreServation...........eeeeueiieeiiiiiiiiiiiiiieiiii i eieeeeeeeeeeeeanns 54

9.3 ViewComponent Computation PrOCESS. .. .ouuuiiiuiiieuiiiiiiiiiiiiiiie it eeiieeeie et 55

10 IFML Diagram Definition. . .oe.ueiieeieieeiiieiiiiiiieeeeie ettt e e e e e e 56

10.1 INtrOAUCHION . .eeiiiiieiiii ittt 56

10.2 CoNfOrmManCe CrIteITaL uuueuuiesiiiiiietieiie ittt ettt ettt ettt ettt e eee e e e e eieeee e 56

10.3 ATCHITECTUIC. oeuiietiiiii ittt ettt ettt ettt ettt et et e e e e 56

10.4 TFML Diagram Interchange (DI) Meta-moOdel.......ceviiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeeeeeeeieee e 58

10.5 Packag@e TEMILD ..oiiuiiiiiiiiiiii ettt 59

10.5.1 Enumeration LabelKind.oeeuiiiieiiiiiiiiiiiiiiiiiiiiiieeeeieeeeei e 59

10.5.2 Class IFMLCOMPATtMI@NE . .euveieitiiiiiiiiiiie it eeeee ettt eeeeeieeene 60

10.5.3 Class IFMILCONNECHON, e .vuveietiiiieeieeetieeeeeeeeee ettt eeeeeeeeeeeeeene 60

10.5.4 Class IFMIDIAGIAM . ..eecuuiiiiiiieiieiiiieie ettt eeeieeeeee 61

10.5.5 Class IEFEMLDiagramEISMENT. ..c.eeiiiieuiiiiiiitiiiiiiiiiiii it eeiieee 61

10.5.6 Class IEMILADE]ueeuiiiiiiiiiiiiiitieiii ettt eeee e 61

10.5.7 Class TEMIINOAC. ...ocuuiiiuiiieiiiii ittt e e 62

10.5.8 Class TEMILSEYIC. ..eueiiiiiiiiiiiiiii ittt eee e eeieeeeans 62

10.6 IFML DI to DG Mapping SpeCifiCatioN. ...uueiiseeeeiiiiiitiiiiiiiiiiiiieiie et 62

11 UML Profile fOr IFMIL . c..uiiiiuiiiiiiiiiiiie ittt ettt e eiee e e 66

D11 OVOTVICW ettt ettt ettt ettt e et e et eeee e e et e e et e eeeeeeteeeeeeeeeeeeineaes 66

11.2 The IFML Profile OFf UM . c.oiiiuiiiiiiiiiiiiiiiiiii et eeeinaeeee e 67

11.3 USING IFML St@I@OtYPOS. 1eeuuiiiuiiitiiiiiiiiiie ittt ettt ettt ettt ettt ee e e eeeeeeenane 80

11.4 Profile Metamodel MapPing.......ceuieeuiiiiiiiiiiiiieieiii ettt 82

Annex A IFML by Example: Modeling an Email (informative)......cooooveeeeiiiiieiiieiiiiiiiiiiiiieiiiieiiieeieieeiieeeeeeeennns 86

AL INErOAUCTION. ettt ettt ei e eiaeeeeans 86

A.2 The Domain MOAEL....ocuueiiiuiiiiiiiiiiiiiiiiiii e 86

A.3 Model of the TNterface. ..oceeuiiiiiiiiiiiiiiiiiiiiiii e 88
Annex B IFML by Example: Modeling an Online Bookstore (Informative)...

B.1 DOMAIN MOA@L..uuiiiiiiiiiiiiiiiiiiiiiii e 109

B.2 Process MO .uuiiuiiiiiiiiiiiiiiieiie e 110

B.3 Model of the User Interaction FIOWcc.ccouiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it 111

B.4 System MOAEIING woouviiiuiiiiiiiiiii ittt 119

Annex C Mapping to the Windows Presentation Framework (Informative).......oooovveeeeveiieeiiiiiniiiiiiiiiiiiiiiiieeeenn, 122

Col INtrOAUCHION. ettt ettt 122

C.2 The WPF mMeta-MOACL....oiiiuiiiiiniiiiiiiiiiiiiiiie ettt eieeeeeennn 123

C.3 Model to Model TranSfOrmMation.cueieeeiieiieeiiiiiieeieeiieeiie ettt eeeeeeeeeeeeenen 125

Annex D Mapping to Java Swing (INformative)........oeeeeiieiiiiiiiiiiiiiiiiiiiiiiiiieieeeieieeeeeeeeeeeee e 126

D1 INtrOAUCHION. .ttt ettt ettt e e e 126

D.2 The Java SWing meta-mMoOdel.......eeiuiiiiiiiiiiiiiiiiiiiiiiiieeii ettt 126

D.3 Model to Model TranSformation.eieueieeiiiiieiiiiei ittt 127

Annex E Mapping to HTML (InfOrmMative)......ceeeiiuiiiiiiiiiiiiiiitiiiiiiiiieieii et 128

E. 1 INtrOAUCHION. oeiuiiiiiiii ittt 128

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 il

E.2 The HTML mMeta-TOA@L . .uvviiiuiiiiieeiiiiiiiiiiiieeiiieeiiieeieeeee e eeie e eeeeeeeeeenns 128
E.3 Model to Model TranSformation.......o...iieeiiieeiiiieeiiiieiiiieiiieeeii e, 129
Interaction Flow Modeling Language (IFML) 1.0, Beta 1 iv

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®
(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications
Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

UML
+ MOF
« XMI
+ CWM

* Profile specifications

OMG Middleware Specifications
* CORBA/IIOP
+ IDL/Language Mappings
» Specialized CORBA specifications
*+ CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
* CORBAservices
* CORBAfacilities
* OMG Domain specifications
* OMG Embedded Intelligence specifications
* OMG Security specifications

Interaction Flow Modeling Language (IFML) 1.0, Beta 1

http://www.omg.org/

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters

109 Highland Ave

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Interaction Flow Modeling Language (IFML) 1.0, Beta 1 vi

http://www.iso.org/

1 Scope

This specification defines the Interaction Flow Modeling Language (IFML). The objective of IFML is to provide
system architects, software engineers, and software developers with tools for the definition of Interaction Flow
Models that describe the principal dimensions of an application front-end: the view part of the application, made of
view containers and view components; the objects that embody the state of the application and the references to
business logic actions that can be executed; the binding of view components to data objects and events; the control
logic that determines the actions to be executed after an event occurrence; and the distribution of control, data and
business logic at the different tiers of the architecture.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

2 Conformance

There are five ways in which a tool may demonstrate conformance to the IFML metamodel.

1. Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface
and/or API that enables instances of concrete IFML metaclasses to be created, read, updated and deleted. The
tool must also provide a way to validate the well-formedness of models that corresponds to the constraints
defined in the IFML metamodel.

2. Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface
and/or API that enables instances of IFML notation to be created, read, updated and deleted.

3. Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XMI for all valid IFML models. Model interchange conformance implies abstract syntax
conformance.

4. Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and
export conformant DI for all valid IFML models with diagrams. Diagram interchange conformance implies
both concrete syntax conformance and abstract syntax conformance.

5. Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
IFML semantics, e.g. code generation, model execution, or semantic model analysis.

A tool can claim conformance with the IFML metamodel if and only if the software fully implements the [FML
metamodel in one or more of the above ways. A tool that only partially implements the metamodel can claim only
that it is based on this specification, but cannot claim conformance with the specification.

A tool already conforming to the UML specification may demonstrate conformance with the UML Profile for [IFML
by providing the means to apply the profile to a UML model, as specified in Clause 11.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 2

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

. S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, RFC2119, http://ietf.org/rfc/rfc2119,

March 1997

. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-05, August
2011.

. OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-06, August
2011.

. OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, formal/2011-08-07, August 2011
. OMG MOF 2 XMI Mapping Specification, Version 2.4.1, formal/2011-08-09, August 2011
. Diagram Definition (DD), Version 1.0, formal/2012-07-01, July 2012

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 3

4 Terms and Definitions

There are no formal definitions of terms in this specification.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

5 Symbols

There are no symbols defined in this specification.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

6 Additional Information

6.1 Business Motivation

In the last twenty years, capabilities such as form-based interaction, information browsing, link navigation,
multimedia content fruition, and interface personalization have become mainstream in many business-to-consumer
(B2C), business-to-business(B2B), and business-to-employee (B2E) applications. These are implemented on top of a
variety of technologies and platforms: desktop applications, client-server applications, web applications, rich
internet applications, mobile applications, and even human machine interfaces for industrial control, where more and
more embedded systems are equipped with browser-based GUIs. This convergence in technologies is reflected in
the HTML 5 initiative, which aims at establishing a unified set of concepts and a common technological platform for
the development of a broad spectrum of interaction front-ends.

However, the emergence of such an unprecedented range of devices, technological platforms, and communication
channels is not accompanied by the advent of an adequate approach for creating a Platform Independent Model
(PIM) that can be used to express the interaction design decisions independently of the implementation platform.
This causes front-end development to be a costly and inefficient process, where manual coding is the predominant
development approach, reuse of design artifacts is low, and portability of applications across platforms remains
difficult.

Using IFML for PIM-level interaction flow modeling, brings several benefits to the development process of
application front-ends:

+ It permits the formal specification of the different perspectives of the front-end: content, interface
composition, interaction and navigation options, and connection with the business logic and the
presentation.

» It separates the stakeholder concerns by isolating the specification of the front-end from its
implementation-specific issues.

« It improves the development process, by fostering the separation of concerns in the user interaction design,
thus granting the maximum efficiency to all the different developer roles.

+ It enables the communication of interface and interaction design to non-technical stakeholders, permitting
validation of requirements from subject matter experts (SMEs) and clients sooner in the development
process.

6.2 Design Principles

Front-end design is a complex and multidisciplinary task, where many perspectives intersect. Therefore, IFML is
particularly attentive to model usability and understandability, by explicitly addressing all the factors that contribute
to making a PIM quickly learned, easy to use, and open to extensibility:

» Itis concise, avoiding redundancy and reducing the number of diagram types and concepts needed to
express the salient interface and interaction design decisions.
. It includes extensibility in the definition of new concepts (e.g., novel interface components or event types).

« It ensures implementability, that is, it supports the construction of model transformation frameworks and
code generators that can map the PIM into a suitable PSM and ultimately into executable applications for a
wide range of technological platforms and access devices.

» It ensures model-level reuse, that is, it supports the definition of reusable design patterns that can be stored,
documented, searched and retrieved, and re-used in other applications.

» It allows the application of inference rules at the modeling level that automatically apply default modeling
patterns and details whenever they can be determined from the context, giving the possibility to avoid the
need for modelers to specify inferable information (e.g., automatic inference of the parameters that need to
be passed from a component to another at the modeling level).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 6

6.3 IFML Artifacts

The IFML specification consists of four main technical artifacts:
. The IFML metamodel specifies the structure and semantics of the IFML constructs using MOF.

. The IFML UML profile defines a UML-based syntax for expressing IFML models. In particular, the UML
profile extends concepts of the following UML diagrams: class diagrams, state machine, and composite
structure diagrams.

. The IFML visual syntax offers a dedicated visual syntax for expressing IFML models in a particularly
concise way. Specifically, it provides a unique diagram capable of compacting the aspects of the user
interface that are otherwise expressed separately with UML class diagrams, state machine and composite
structure diagrams.

. The IFML XMI provides the IFML model exchange format, for tool portability.

6.4 Acknowledgements

The standardization initiative and the FTF of IFML have been lead by Marco Brambilla.
This specification was originally authored by:

* Marco Brambilla (WebRatio and Politecnico di Milano)

* Piero Fraternali (WebRatio and Politecnico di Milano)
Other authors that contributed to the current version include:

* Aldo Bongio (WebRatio)

» Stefano Butti (WebRatio)

* Adriano Comai (Soluta.net and WebRatio)

* Wolfgang Kling (Ecole des Mines de Nantes and WebRatio)

* Manfred R. Koethe (88Solutions)

* Andrea Mauri (WebRatio and Politecnico di Milano)

* Emanuele Molteni (WebRatio)

» Ed Seidewitz (Model Driven Solutions and Ivar Jacobson International)

We wish to thank all the other contributors that provided useful input, feedback and discussions on the IFML
specification.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

7

71

IFML Specification
Key Concepts of IFML

The Interaction Flow Modeling Language (IFML) supports the platform independent description of graphical user
interfaces for applications accessed or deployed on such systems as desktop computers, laptop computers, PDAs,
mobile phones, and tablets. The focus of the description is on the structure and behavior of the application as
perceived by the end user. The description of the structure and behavior of the business and data components of the
application is limited to those aspects that have a direct influence on the user’s experience.

With respect to the popular Model-View-Controller (MVC) model of an interactive application,' the focus of IFML
is on the view part. Furthermore, IFML describes how the view references or is depended on by the model and
control parts of the application. In particular:

With respect to the view, IFML deals with the view composition and the description of the elements that it
exposes to the user for interaction.

With respect to the controller, IFML lets the designer specify the effects of user interactions and system
events on the application by defining the relevant events that the controller must take care of.

With respect to the model, IFML allows for specification of the references to the data objects that embody
the state of the application and are published in the user interface, as well as of the reference to the actions
that are triggered by the interaction of the user.

IFML can be complemented with external models for the complete specification of applications with aspects that are
not directly connected with the user interface and interaction:

The internal functioning of the actions triggered by the user’s interaction can be described using any action
model. For example, if the action refers to the invocation of an object’s method, this can be described using
UML class and collaboration diagrams; if the action refers to the invocation of a web service, this can be
described using a SoaML diagram.’

The object model underlying the application can be described with any structural diagram, for example with
a UML class diagram or a Common Warehouse Metamodel (CWM) diagram.®

Modeling the user interface and interaction with IFML amounts to addressing the following aspects:

The composition of the view, in terms of its partition into independent visualization units, which can be
displayed simultaneously or in mutual exclusion, and can be nested hierarchically.

The content of the view, in terms of both the data elements published from the application to the user and of
the data elements input from the user to the application.

The commands enabling the user’s interaction and the corresponding events.
The reference to actions triggered by the user’s commands.
The effects of the user’s interaction and of the action execution on the state of the user interface.

The parameter binding between the elements of the user interface and the triggered actions.

Consequently, an IFML model supports the following design perspectives:

The view structure specification, which consists of the definition of view containers, their nesting
relationships, their visibility, and their reachability.

The view content specification, which consists of the definition of view components, i.e., content and data
entry elements contained within view containers.

The events specification, which consists of the definition of events that may affect the state of the user

1
2
3

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

See, for example, http://en.wikipedia.org/wiki/Mode-view-controller.

See http://www.omg.org/spec/SoaML.
See http://www.omg.org/cwm/

http://www.omg.org/cwm/
http://www.omg.org/spec/SoaML
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

interface. Events can be produced by the user’s interaction, by the application, or by an external system.

. The event transition specification, which consists of the definition of the effect of an event on the user
interface. The effect can be the change of the view container or of the content displayed, the triggering of an
action, or both.

. The parameter binding specification, which consists of the definition of the input-output dependencies
between view components and between view components and actions.

7.2 IFML in a Nutshell

An IFML diagram consists of one or more top-level view containers. For example, a desktop application or a rich
Internet application (RIA) can be modeled as having one top-level container, the main window; instead, a Web
application can be modeled as having multiple top-containers, one for every dynamic page template.

Each view container can be internally structured in a hierarchy of sub-containers. For example, in a desktop or RIA
application, the main window can contain multiple tabbed frames, which in turn may contain several nested panes.
The child view containers nested within a parent view container can be displayed simultaneously (e.g., an object
pane and a property pane) or in mutual exclusion (e.g., two alternative tabs). In case of mutually exclusive (XOR)
containers one could be the default container, displayed by default when the parent container is accessed.

A view container can contain view components, which denote the publication of content or interface elements for
data entry (e.g., input forms). A view component can have input and output parameters. For example, a view
component for showing the properties of an object can have as an input parameter the identifier of the object to
display; a data entry form or a list of items can have as output parameters the values input or the item selected by the
user.

A view container and a view component can be associated with events, to denote that they support the user’s
interaction. For example, a view component can represent: a list associated with an event for selecting one or more
items, a form associated with an event for input submission, or an image gallery associated with an event for
scrolling though the gallery. Events in concrete are rendered as interactors, which depend on the specific platform
and therefore are not modeled in IFML but produced by the PIM to Platform-Specific Model (PSM) transformation
rules. For example, the scrolling of an image gallery may be implemented as a link in an HTML application and as a
flip gesture in a mobile phone application.

The effect of an event is represented by an interaction flow connection, which connects the event to the view
container or component affected by the event. For example, in an HTML web application the event caused by the
selection of one item from a list may cause the display of a new page with the details of the selected object. This
may be represented by an interaction flow connecting the event associated with the list component in a top-level
view container (the web page) with the view component representing the object detail, positioned in a different view
container (the target web page). The interaction flow expresses a change of state of the user interface: the occurrence
of the event causes a transition of state that produces a change in the user interface.

An event can also cause the triggering of an action, which is executed prior to updating the state of the user
interface; for example, in a web content management application the user can select from a list the elements to
delete; the selection event triggers a delete action, after which the page with the list is redisplayed. The effect of an
event triggering an action is represented by an interaction flow that connects the action to the view container or
component affected by the event.

An input-output dependency between view elements (view containers and view components) or between view
elements and actions is denoted by parameter bindings associated with navigation flows (interaction flows for
navigating between view elements). For example, in Figure 1, the navigation flow that goes from the event denoting
the selection of an item of the Artist Index view component to the Artist view component (showing the selection
details), has a parameter binding that associates an output parameter of the Artists Index view component with an
input parameter of the Artist view component. See also further examples in Figure 2, Figure 3 and Figure 4.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 9

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

10

Artists
= Artist Index - Artist
Andrea Bocelli First Name: Celine
Celine Dion Lost Name: Dion
Frank Sinatra Phote:

The Beatles

Parameter

«ParameterBindingGroup»

SelectedArtist > AnArti;/

/
|
/

|

/
/

Binding

View Container \
Artists

Event /

View
Component

Figure 1: Example of user interface (top) and corresponding IFML model (bottom). The user selects an item

in the list and displays its details in the same view container.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

11

«ParameterBindingGroup»
SelectedArtist > AnArtist

Albums&Artists
Artist
Andrea Bocelli N i
" irst Name: ndrea
- Bocell Last Name: Bocelli
- Roemanza Photo:
Celine Dion
- All the way
- Let's talk ..
Albums&Artists
e Alburm
sl All the Way
- Bocall Year: 1999
- Romanza Cover:
Celine Dion ><
- All the way
- Let's talk ..

Albums&aArtists
[XOR] Album or Artist
Albums&aArtists Artist
Select Artist

P

Artist and . .

Album List Select Album Artist Details
Album

P Album Details

«ParameterBindingGroup»
SelectedAlbum -> AnAlbum

Figure 2: Example of user interface (left) and corresponding IFML model (right). One top-level container

comprises three view containers: one with a list of artists and of their albums, one with the details of an artist,

and one with the details of an album. The latter two view containers are mutually exclusive: only one at a

time is displayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

12

Albums

Albums

= Delete Album

= Delete Album
Anthology Del
Born in the USA Del
Bridges to Babylon Del

Imagine Del
Let's talk. Del
Sing-a-long Del

«ParameterBindingGroup»
SelectedAlbum - AnAlbum

All the Way Del
Anthology Del
Born in the USA Del
Bridges to Babylon Del
Imagine Del
Let's talk... Del
Sing-a-long Del
Albums

Album
List

A

Figure 3: Example of user interface supporting action invocation (top) and corresponding IFML model

Album
Deletion

(bottom). The user can select an item from a list of objects; the selection causes a delete action to be triggered

after which the updated list of objects is redisplayed.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

13

AlbumSearch Albums Album

=2 Albums Found e — Alourmn

All the Way Title: All the Way
Title: Let's talk .. Year: 1999
Cover:

1

- Alburm Search

«ParameterBindingGroup»
Title > AlbumTitle
Year > AlbumYear

«ParameterBindingGroup»
SelectedAlbum > AnAlbu

«Details»

Album
Details

«List»

Album
List

«Window» AlbumSearch «Window» Albums «Window» Album
«Form» §

Album
Search

Figure 4: Example of user interface (top) and corresponding IFML model (bottom). The user enters data into
an input form and submits them; this event causes a distinct view container to appear with a list of matching
objects; finally, the selection of an item in the list causes the display of the corresponding details in a third
view container.

7.3 Extensibility

IFML uses the extensibility mechanisms of UML to allow the definition of stereotypes, tagged values and
constraints. The Extensions package exemplifies how the extension mechanism works: it contains concepts that
extend concepts from the Core package. In the same way, new packages may be introduced containing new
constructs, to model platform-independent or platform-specific concepts.

Extensions are meant to refine the semantics of the core concepts or to provide specific cases of core concepts. As
such, they must therefore refine the semantics of the IFML concepts, and not modify it. The following concepts (and
their extensions) can be extended in IFML while still achieving compliance to the standard:

» ViewContainer

* ViewComponent

* ViewComponentPart
*+ Event

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 14

* DomainConcept and FeatureConcept
* BehaviorConcept and BehavioralFeatureConcept

Extensions of other elements are not allowed.

7.4 Concept List

Table 1 lists the core concepts of IFML and Table 2 lists a set of extension concepts provided as an example for the
IFML extension mechanism.

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level

View An element of the interface that Web page
Container comprises elements displaying Mailbox Window

content and supporting interaction Pane.

and/or other ViewContainers.
XOR View A ViewContainer comprising child Tabbed panes in Java
Container ViewContainers that are displayed _[XOR] MessageSearch | Frames in HTML.

alternatively.
Landmark A ViewContainer that is reachable A logout link in
View from any other element of the user [L] Message Writer HTML sites which is
Container interface without having explicit visible in every page.

incoming InteractionFlows.
Default View | A ViewContainer that will be A welcome page.
Container presented by default to the user, [D] Search

when its enclosing container is

accessed.
View An element of the interface that An HTML list.
Component displays content or accepts input A JavaScript image

Message List gallery.
An input form.

Event An occurrence that affects the state

of the application

Name Name

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

15

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level

Action A piece of business logic triggered A database update.

by an event; it can be server side The sending of an
(the default) or client-side, denoted email.
as [Client] The spell checking of
a text.
Navigation An input-output dependency. The Sending and
Flow source of the link has some output receiving of
that is associated with the input of parameters in the
the target of the link > HTTP request

Data Flow Data passing between

ViewComponents or Actionas | e >
consequence of a previous user
interaction.

Parameter A typed and named value Optionally shown. HTTP query string
If necessary can be denoted as parameters
follows: HTTP post

parameters
«Parameter» State: String \ JavaScript variables

and function

parameters

Parameter Specification that an input

Binding parameter of a source is associated —

with an output parameter of a target A 2> 1O

Parameter Set of ParameterBindings

Binding associated to an InteractionFlow «ParamBindingGroup»

Group (being it navigation or data flow) ?etéer 3 ﬁ:gﬂm'etfr

Activation Boolean expression associated with -

Expression a ViewElement, «ActivationExpression»

ViewComponentPart or Event: if State = “Reply” or “ReplyToAll”
true the element is enabled

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

16

Table 1: Essential IFML Concepts

Example at
Concept Meaning IFML Notation implementation
level
Interaction Determine which of the Event triggered after
Flow InteractionFlows are going to be) : — selecting a given
. «InteractionFlowExpression» .
Expression followed as consequence of the If AlbumDetails selected then value in a
occurrence of an Event. AlbumDetails ComboBox.
Else Album details
Module Piece of user interface and its
corresponding actions, which may
be reused for improving [FML
models maintainability ‘!_—{] Module ._!_>
- Ly
Input Port An interaction point between a
Module and its environment that
collects InteractionFlows and W
parameters arriving at the module. P L
Inside the
module
Outside the
module
Output Port An interaction point between the
Module and its environment that
collects the InteractionFlows and
parameters going out from the
module.
Outside the Inside the
module module
View A part of a ViewComponent that Fields in a form
Component may not live by its own. It can « TypeName» [Name][...] \
Part trigger Events and have outgoing

and incoming InteractionFlows. A
ViewComponentPart may contain
other ViewComponentParts.

«SubTypeName» [Name] [...]

«SubTypeName» [Name][...] ‘

Examples:
«DataBinding» MailMessage

«ConditionalExpression» MailMessage in
MailMessageGroup2MailMessage(MBox)

«SimpleField» to: String

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

17

Table 2: Extension IFML Concepts

Concept Example at
Extension Meaning IFML Notation implementation
Examples level

Select Event

Event denoting the selection of a
single item of the user interface

)

A selection of a row
in a table.

Event that triggers a parameter

@

A form submission

previously active containers, which
remain active

Submit Event assing between interaction flo .
h v p g betw W button in HTML.
elements
«List» MBoxList
. ViewCOmponent used to dlsplay a «DataBinding» MaiIMessageGroup Table Wlth rows Of
List . PR elements of the same
list of DataBinding instances .
kind.
«Form» Message Keyword Search
Vi t to displ i i : Stri
Form 1ewComp0nen used to dl.Sp ay a «SimpleField» Key: String HTML form.
form that is composed of Fields
. . «List» MBoxList
ViewComponent used to display
Details details of a specific DataBinding «DataBinding» MailMessageGroup
instance
«Window» Main Screen
. A ViewContainer rendered as a An HTML page or a
Window . ‘
window. desktop window.
A ViewContainer rendered in a «Modal» Alert
Modal new window that, when displayed, A modal pop-up in
Window blocks interaction in all other HTML.
previously active containers.
A ViewContainer rendered in a
| N «Modeless» Tag Chooser
new window, that when displayed,
Modeless is superimposed over all other A modeless pop-up
Window perinp in HTML.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

18

8 IFML Metamodel
8.1 High-Level Description

The IFML metamodel is divided in three packages: the Core package, the Extension package and the DataTypes
package. The Core package contains the concepts that build up the interaction infrastructure of the language in terms
of InteractionFlowElements, InteractionFlows and Parameters. Core package concepts are extended by concrete
concepts in the Extension package with more complex behaviors. The DataTypes package contains the custom data
types defined by IFML.

The IFML metamodel uses the basic data types from the UML metamodel, specializes a number of UML
metaclasses as the basis for [IFML metaclasses, and presumes that the IF'ML DomainModel is represented in UML.

The high level description of the IFML metamodel given in the remainder of this subclause is structured into the
following areas of concern:

. IFML Model
. Interaction Flow Model
. Interaction Flow Elements

. View Elements

. Events

. Specific Events and View Components
. Parameters

. Expressions

. ContentBinding
Subsequent subclauses provide detailed descriptions of the content of each of the three packages.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 19

8.1.1 IFML Model

«Mete-l-class-»- . «Metaclass») «Metaclass»
IFML..Co.re.. +annotations +element IFML::Core:: +element +constraints IEML::Core::
Annotation Ele .
- 0.* 1 1 0. Constraint
+text : String [1] +id : String [1] -
«Metaclass» " tionFlowModelEl " «Metaclass»
+
IFML::Core:: interactionrlowModellements IFML::Core::
InteractionFlowModelElement | O- NamedElement
+name : String [1]
+interactionFlowModelElements | 0..* T

+viewpoints 0. +interactionFlowModel |1

«Metaclass» «Metaclass» . . 4 «Metaclass» . 1 «Metaclass»
IFML::Core:: IFML::Core:: interactionFlowModel IFML::Core:: +ifmiModel IFML::Core::
Viewpoint InteractionFlowModel | 1 +ifmiModel| IFMLModel 1 +domainModel | DomainModel
. +domainModel | 1
+interactionFlowModelViewpoint | 0.. +ifmiModel | 1
+domainElements | 0..*
«Metaclass»
IFML::Core::
DomainElement
«Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core::
FeatureConcept DomainConcept BehavioralFeatureConcept BehaviorConcept

Figure 5: IFML Model

IFMLModel, as its name suggests, represents an IFML model and is the top-level container of all the rest of the
model elements. It contains an InteractionFlowModel, a DomainModel and may optionally contain ViewPoints.

InteractionFlowModel is the user view of the whole application while ViewPoints present only specific aspects of
the system by means of references to sets of InteractionFlowModelElements, which as a whole define a fully
functional portion of the system. The purpose of a ViewPoint is to facilitate the comprehension of a complex
system, to allow or disallow access to the system by a specific UserRole, or to show an adapted piece of the system
to a specific context change.

InteractionFlowModelElement is an abstract class, which is the generalization of every element of an
InteractionFlowModel.

DomainModel represents the business domain view of the application, i.e., the description of the content and
behaviour that is dealt with (and referenced) within the InteractionFlowModel. The DomainModel comprises
DomainElements, which are specialized as concepts, properties, behaviors and methods (DomainConcept,
FeatureConcept, BehaviorConcept, and BehavioralFeatureConcept respectively).

NamedElement is an abstract class that specializes the Element class (the most general class in the model) denoting
the elements that have a name. Besides IFMLModel, InteractionFlowModel, DomainModel, DomainElement and
ViewPoint, NamedElement has other subclasses, which will be described in the contexts where they play a major
role.

For any Element, Constraints and Comments can be specified. Constraints are an extension mechanism to the IFML,
in the sense that they may constrain further, for a specific model, the existing IFML syntactical rules.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 20

8.1.2 Interaction Flow Model

«Metaclass»
IFML::Core::
IFMLModel

+ifmiModel | 1

+interactionFlowModely1

«Metaclass»
IFML::Core::
InteractionFlowModel

+interactionFlowModel | 1

+interactionFlowModelElements 0..*

«Metaclass»
IFML::Core:;
InteractionFlowModelElement
yAY
«Metaclass» «Metaclass» «Metaclass » «Metaclass» «Metaclass» «Metaclass»
IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core:: IFML::Core::
InteractionFlowElement InteractionFlow Parameter ParameterBinding ParameterBindingGroup Expression
+direction : Direction = in +language : String [1]

+body : String [1]

Figure 6: Interaction Flow Model

An InteractionFlowModel contains all the elements of the user view of the application represented by the
InteractionFlowModelElement. InteractionFlowElement has seven direct subtypes: InteractionFlowElement,
InteractionFlow, ParameterBindingGroup, ParameterBinding, Parameter, Expression and Module.

InteractionFlowElements are the building blocks of interactions. They represent the pieces of the system, which
participate in interaction flows through InteractionFlow connections.

An InteractionFlow is a directed connection between two InteractionFlowElements. InteractionFlows may imply
navigation along the user interface or only a transfer of information by carrying parameter values from one
InteractionFlowElement to another.

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElements i.e.
ViewElements, ViewComponentPart,s Ports and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Considering the flow of a Parameter P from an InteractionFlowElement A to an
InteractionFlowElement B, the Parameter P is considered as an output parameter of InteractionFlowElement A and
as an input Parameter of InteractionFlowElement B.

ParameterBindings determine to which input Parameter of a target InteractionFlowElement an output Parameter of a
source InteractionFlowElement is bound. ParameterBindings are in turn grouped into ParameterBindingGroups.

A Module is a fully functional collection of InteractionFlowModelElements, which may be reused for improving
IFML maintainability. Modules may be replaced by other Modules or InteractionFlowElements with the same input
and output parameters.

An Expression defines a statement that will evaluate in a given context to a single instance, a set of instances, or an
empty result. An Expression is side effect free. Specific kinds of expression, such as boolean expressions, etc., are
represented as specializations of Expression.

The interactions between all these elements will be described in the following subclauses.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 21

8.1.3 Interaction Flow Elements

Metaclass» +sourcelnteractionFlowElement+outinteractionFlows -
- - * ; " 1 0.* i +interactionFlow
IFML::Core:: 0.. +interactionFlowElement IEML::Core:: IFML::Core:: -
Parameter +parameters 1 7 1 0.* jonFlow | 2
+direction : Direction =in lr +argetinteractionFlowElement ~ *ininteractionFlows %
«Metaclass» prVRT— «Metaclass» «Metaclass»
IFML::Core:: IFML::Core:: IFML::Core:: JFMLCore:: IFML::Core:: IFML::Core:: IFML::Core::
ViewElement ViewComponentPart Action Por'r‘“ . Event NavigationFlow DataFlow
0..* | +viewComponentParts +inputPorts | 0.* 0.4 +outputPorts 1 +event
+actions [0..*
+viewContainer |0. 1 1| +viewComponent +module |1 1 | +module
«Metaclass»
«Metaclass» «Metaclass» 0.1 IFML::Core: 0.1
- - IFML::Core:: i i i i i
IFML::Core::) ore: IFML::Core:: +interactionFlowExpression | InteractionFlowExpression +interactionFlowExpression
ViewContai ViewComponent ModuleDefinition
+isLandmark : Boolean
+isDefault : Boolean
+isXOR : Boolean
+viewContainer i 0.1

Figure 7: Interaction Flow Elements

The InteractionFlowElement is one of the key concepts of [IFML. InteractionFlowElements represent pieces of the
system, such as ViewElements, ViewComponentParts, Ports, Actions and Events, which participate in
InteractionFlow connections. InteractionFlowElements contain Parameters, which usually flow between
InteractionFlowElements as a consequence of ViewElementEvents (user events), ActionEvents or SystemEvents.
InteractionFlowElements may have both incoming and outgoing interaction flows.

InteractionFlows are specialized into NavigationFlows and DataFlows. A NavigationFlow represents navigation or
change of ViewElement focus, the triggering of an Action processing or a SystemEvent. NavigationFlows are
followed when Events are triggered. NavigationFlows connect Events of ViewContainers, ViewComponents,
ViewComponentParts or Actions with other InteractionFlowElements. When a NavigationFlow is followed
Parameters may be passed from the source InteractionFlowElement to the target InteractionFlowElement through
ParameterBindings. A DataFlow is a kind of InteractionFlow used for passing context information between
InteractionFlowElements. DataFlows are triggered by NavigationFlows, causing Parameter passing but no
navigation.

Events may be associated with an InteractionFlowExpression when they have more than one outgoing
NavigationFlow. An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed
as a consequence of the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all
the InteractionFlows associated with the event are followed.

ViewContainers can contain ViewElements (namely other ViewContainers or ViewComponents) or Actions.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 22

8.1.4 View Elements

+viewElements | «Metaclass»
o IFML::Core::
© | ViewElement
+viewContainer |0..1
+parentViewComponentPart 1
«Metaclass» «Metaclass»
- . «Metaclass»
V'IFMI(;"C:r-e“ IFML:Core: AviswComponant o IFML::Core::
iewContainer i
sUandinark:: Book ViewComponent = +viewComponentParts | ViewComponentPart | +subViewComponentParts
+isLandmark : Boolean
+isDefault : Boolean
+isXOR : Boolean
eheciasss IFML::Extensions:: «Mstaclas.s» : : ; «Metacb5§»
IFML::Extensions:: Window IEML: b IFML IFML: : IFML . IFML::Extensions::
“Menu : +isModal : Boolean List Details Form Field Slot
i dow : Boolean

Figure 8: View Elements

The elements of an IFML model that are visible at the user interface level are called ViewElements, which are
specialized in ViewContainers and ViewComponents. ViewContainers, like HTML pages or windows, are
containers of other ViewContainers or ViewComponents, while ViewComponents are elements of the interface that
display content or accept input from the user.

A ViewContainer may be landmark, XOR, and/or default. A landmark ViewContainer may be reached from any
other ViewElement without the need of explicit InteractionFlows. ViewContainers that are not landmark may be
reached only with an InteractionFlow.

In case a ViewContainer (the enclosed ViewContainer) is contained in another ViewContainer (the enclosing
ViewContainer), like a frame in an HTML page, if it is marked as default, it will be presented to the user when its
enclosing ViewContainer is accessed. Enclosing ViewContainers may be marked as XOR. In this case, the
contained ViewElements of the current ViewContainer will be presented to the user only one at the time, as the user
interacts with the system. A ViewContainer may be also opened as a new window. This new window may
be“modal”. Modal windows are meant to block any user interaction in all other previously active containers, until
the new window is closed. Another special kind of ViewContainer is the Menu. Menus represent sets of interactive
buttons or links that lead to some target container. Menus cannot contain subcontainers or ViewComponents.

ViewComponents exist only inside ViewContainers. A ViewComponent is an element of the interface that may have
dynamic behavior, display content or accept input. It may correspond e.g. to a form, a data grid or an image gallery.

A ViewComponent may be build up from ViewComponentParts. A ViewComponentPart is a part of the
ViewComponent that cannot live outside the context of a ViewComponent but may have Events and incoming and
outgoing InteractionFlows. ViewComponentParts may hierarchically contain other ViewComponentParts. A
ViewComponentPart may be visible or not at the level of the user interface depending on the kind of
ViewComponentPart. For instance, a RichTextField is a ViewComponentPart that is visible to the user, may trigger
events, and may receive values through parameter passing, while a Slot is a value placeholder that is not visible to
the user.

The extension package includes concrete examples of ViewComponents such as List, Details, and Form and
ViewComponentParts such as Fields and Slots. A List is for displaying, selecting and capturing lists of items of the
same kind, Details is a component for displaying detailed information on a content element and a Form is for
capturing user input through forms. All these elements will be described in detail in the following subclauses.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 23

8.1.5 Parameters

+inlnteractionFlows 1
«Metaclass» - ’ «Metaclass» 0. HargetinteractionFlowElement «Metaclass»
IFML::Core:: +parameterBindingGroup IFML::Core:: IFML::Core::
ParameterBindingGroup | 0.1 +interactionFlow | /nteractionFlow | +outinteractionFlows 1 InteractionFlowElement
0.* +sourcelnteractionFlowElement
+parameterBindingGroup | 1 1 | +interactionFlowElement
«Metaclass» «Metaclass»
IFML::Core:: IFML::Core::
NamedElement InteractionFlowModelElement

+name : String [1]

0.* [parameters

+parameterBindings y1..* |

«Metaclass» +parameterBinding FeourceParamets, ;":N’\l:ﬁ%li’;:’?
IFML::Corez: |1 ! Paravr'neter”
ParameterBinding | +parameterBinding +argetParameter “drection Direction =]
irection : Direction = In
1 1

Figure 9: Parameters

A Parameter is a typed element with multiplicity, whose instances hold values. A Parameter may be of a primitive
type or a complex type such as object or collection of objects. Parameters are held by InteractionFlowElements and
flow between them when Events are triggered. Parameters may be mapped to a single element of the user interface
i.e. ViewComponentPart or to a complex hierarchical set of ViewComponentParts.

Parameters have a direction property, which can be input (in), output (out) or input-output (inout). Default direction
is input. An input Parameter allows an InteractionFlowElement to receive one or more values through an incoming
NavigationFlow or DataFlow. An output Parameter allows an InteractionFlowElement to expose one or more values
through an outgoing NavigationFlow or DataFlow. A input-output Parameter allows for both behaviours.

A ParameterBinding determines to which input Parameter of a target InteractionFlowElement an output Parameter
of a source InteractionFlowElement is connected and thus how the parameter value will flow when an Event is
triggered and the InteractionFlow is followed. ParameterBindings that flow together with an InteractionFlow are
grouped by a ParameterBindingGroup, which in turn is related to the InteractionFlow.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 24

8.1.6 Events

«Metaclass»
IFML::Core:
InteractionFlowElement

i

«Metaclass» +actiyationExpression |0..1
IFML::Core::

InteractionFlowExpression «Metaclass»
IFML::Core::

ActivationExpression

+activationExpression

+interactionFlowExpression

«Metaclass»
IFML::Core:

+viewElement (0..1 Action 1

+activationExpression |0..1 +action

«Metaclass» t «Metaclass»
+event | IFML:Core:: reven IFML::Core::
p Event 0.1 ViewElement
i o 1
[) +viewElement
«Metaclass» ‘;:"’\;‘_acc'ass”
IFML::Core:: cat ore:
ThrowingEvent atchingEvent - +viewComponentPart
? +viewElementEvents 0.1
" [Metaclass»
YR IFML::Core:: +i nts viewC art IFML::Core:: +subViewComponentParts
«Metaclass» - :Core:: o
\FML: Core:: «Metaclass» ViewElementEvent | - 0.1 ViewComponentPart

Expression +systemEvent IFML::Core::
+language : String [1]| 0.* 1 .
+hodgy :gsmng [1]g[! triggeringExpressions | *type : EventType % +parentViewComponentPart | 1
T IFML i IFML

«Metaclass» «Metaclass» o o
IFML::Extensions:: IFML::Core::
onl i +actipnEvents
«Metaclass» «Metaclass» * ':D B
IFML i IFML
SetContextEvent JumpEvent
T +landingEvent «Metaclassy
IEML i

Hump ©
0.1 LandingEvent

Figure 10: Events

Events are occurrences that can affect the state of the application, and they are a subtype of InteractionFlowElement.
Events are classified in two main categories: CatchingEvents (events that are captured in the Ul and that trigger a
subsequent interface change) and ThrowingEvents (events that are generated by the UI). There are three types of
CatchingEvents: ViewElementEvents, resulting from a user interaction (with specific subtypes OnSelectEvent and
OnSubmitEvent), ActionEvents and SystemEvents (such as OnLoadEvent).

ViewElementEvents are owned by their related ViewElements. This means that ViewElements contain Events that
allow a user to activate an interaction in the application, e.g., with the click on a hyperlink or on a button.
ActionEvents are owned by their related Actions. An Action may trigger ActionEvents during its execution or when
it terminates, normally or with an exception.

SystemEvents are stand-alone events, which are at the level of the InteractionFlowModel. SystemEvents result from
an Action execution termination event or a triggeringExpression such as a specific moment in time, or special
condition events such as a problem in the network connection.

CatchingEvents own a set of NavigationFlows. An InteractionFlowExpression is used to determine which of the
NavigationFlows are followed as a consequence of the occurrence of an Event. When an Event occurs and it has no
InteractionFlowExpression, all the NavigationFlows associated with the event are followed.

An Event may have an ActivationExpression that determines whether the Event is enabled or disabled. In practical
terms, disabling a ViewElementEvent means, for example, that the UI element (e.g. a button) that triggers an
InteractionFlow is disabled.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 25

8.1.7 Expressions

«Metaclass»
IFML::Core::
InteractionFlowModelElement
«Metaclass»
«Metaclass» IFML::Core:: 0. ﬁMeta"cIassTt
IFML::Core:: Expressi o +systemEvent IFML::Core::
ViewComponentPart Hanguage - String [1] +riggeringExpressions 1 SystemEvent
+body ; S"_ing 1] +ype : SystemEventType
+viewComponentPart [0..1 Y
«Metaclass» «Metaclass» «Metaclass»
IFML::Core:: IFML::Core:: IFML::Core::
ConditionalExpression InteractionFlowExpression BooleanExpression
Fay
+interactionFlowExpression | 0..1
+event (1
«Metaclass»
IFML::Core:: [*event
Event 0.1
+activationExpression |0..1
«Metaclass» «Metaclass»
+activationExpression IFML::Core:: IFML::Core::
0.1 | ActivationExpression Constraint
+activationExpression | 0..1
+viewElement |0..1
«Metaclass» «Metaclass»
IFML::Core:: IFML::Extensions::
ViewElement ValidationRule

Figure 11: Expressions

An Expression defines a side-effect free statement that will evaluate in a given context to a single instance, a set of
instances, or an empty result.

The subtypes of Expression are InteractionFlowExpression, BooleanExpression and ConditionalExpression.

An InteractionFlowExpression, as discussed in 8.1.3, determines which NavigationFlow should be followed, when
more than one NavigationFlow comes out from an Event.

A ConditionalExpression is a ViewComponentPart representing predefined queries contained by DataBindings (see
8.1.8) that may be executed on them to obtain specific content information from the DomainModel.
ConditionalExpressions can be defined only inside a DataBinding ViewComponentPart.

A BooleanExpression is an expression that evaluates to true or false. BooleanExpression has the specializations
ActivationExpression and Constraint. An ActivationExpression determines if a ViewElement, ViewComponentPart
or Event is enabled, and thus available to the user for interaction, while a Constraint restricts the behavior of any
element.

Thevalues used to evaluate the expressions are defined depending on the specific Expression type. For instance
SystemEvent expressions may have as scope specific system condition values, the current date and time, etc., not
modeled in IFML.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 26

8.1.8 Content Binding

«Metaclass»
IFML::Core::
ViewComponentPart
«Metaclass»
«Metaclass» |FML:-Core::) «Metaclass»
IFML:Core:: cont .}5‘/":./. +action | |FML::Core::
"ontentBindin,
Expression g 0.1 Action
- +uniformResourceldentifier : String [0..1]
+language : String [1]
+body : String [1] T
1| +dynamicBehavior
«Metaclass» » : «Metaclass» lynami ior
IFML::Core:: reonditionalExpression IFML::Core:: IFML::Core:: 01
Conditi i 0. inding 1 D indi DynamicBehavior|
0..1 +dataBinding +dynamicBehavior +behaviorConcept |0..1
ionAttribute +dataBinding |1 +behavioralFeatureConcept |0..1 «Metaclass»
- - 0. " IFML::Core::
IFML::Core:: +domainConcept |1 «Metaclass» BehaviorConcept
VisualizationAttribute - .
«Metaclass» IFML::Core::
o - IFML::Core:: BehavioralFeatureConcept
+visualizationAttribute (0..1 D inC t
+featureConcept |1 omainConcep ‘r
«Metaclass» ? «Metaclass» ;‘:’I’:SC:SS».
IFML::Core:: IFML::Core:: - ore_.
«Metaclass» UMLBehavior
FeatureConcept o . UMLBehavioralFeature
IFML::Core::
? UMLDomainConcept _umiBehavioralFeature | 0.1 -umiBehavior |0..1

«Metaclass» -umiDomainConcept | 0..1 +behavioralFeature | 0..1 +behavior |0..1

IFML::Core:: +classifier |0..1
UMLStructuralFeature

-umiStructuralFeature (0..1

+structuralFeature (0.1

Figure 12: Content Binding

ViewComponents may retrieve content by means of the ContentBinding. ContentBinding represents any source of
content. ContentBinding has as an optional attribute the URI of the resource from which the content may be
obtained.

ContentBinding is specialized in two concepts, DataBinding and DynamicBehavior. A DataBinding references a
DomainConcept (for instance, a Classifier in UML) that may represent an object, an XML file, a table in a database
etc. A DataBinding is associated with a ConditionalExpression, which determines the specific content to be obtained
from the content source. A DynamicBehavior represents a content access or business logic such as a service or
method that returns a result after an invocation, as represented by a BehavioralFeature or Behavior in UML.

A DataBinding contains VisualizationAttributes used by ViewComponents to determine the features accessed from
the DataBinding that may be shown to the user, such as a data base column or an XML element or attribute, as
represented using UML StructuralFeatures.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 27

8.1.9 Context

«Metaclass» «Metaclass»
! JiIFMLzCorer: +context +contextVariables IFML::Core::
+context| Context 1 0.+ ContextVariable
+scope : ContextVariableScope
+context |1 2
«Metaclass» «Metaclass»
+viewpoint | 1 +contextDimensions %0.. IFML::Core:: IFML::Core::
«Metaclass» «Metaclass» DataContextVariable SimpleContextVariable
IFML::Core:: IFML::Core::
Viewpoint ContextDimension +dataContextVariables | 0..*
+dataBinding | 1
«Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Extensions:: IFML::Extensions:: IFML::Extensions:: IFML::Core::
Position UserRole Device DataBinding

Figure 13: Context

The Context is a runtime aspect of the system that determines how the user interface should be configured and the
content that it may display. The configuration and content of the user interface is determined by the ViewPoint, and
thus Context is related to ViewPoint.

A Context has several dimension called ContextDimensions, which represent not only the user’s id and preferences
but also the interaction environment of the system. ContextDimension has the specializations UserRole, Device and
Position. When the user context satisfies all the ContextDimensions, access is granted to the ViewElements of the
ViewPoint and to the Events that may be triggered on them.

UserRole represents the profile that a user should have for satisfying the UserRole dimension.

A Device represent a specific kind of device for which the ViewPoint is configured. When a user accesses the
application through such a device, the Device dimension is satisfied.

Position represents the location and orientation of the device for which a ViewPoint is configured. When the device
the user uses for accessing the application reaches the given position or orientation, the Position dimension is
satisfied.

ContextDimension may be specialized to represent other dimensions, such as user preferences, etc.

ContextVariables can be associated to the Context to store primitive values (SimpleContextVariable) or objects
(DataContextVariable) that store the state of the system in the current context.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 28

8.1.10 Specific ViewComponents

+parentViewComponentPart

«Metaclass» iews WG o «Metaclass»
IFML:-Core:: viewComponent +viewComponentParts IFML::Core::
ViewComponent | ' 0. ViewComponentPart | sybViewComponentParts
A [A)
«Metaclass» «Metaclass»
IFML::Core:: IFML::C?re::.
DataBinding E— ContentBinding
+uniformResourceldentifier : String [0..1]

«Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»

IFML::Extensions:: IFML::Extensions:: IFML::Extensions:: IFML::Extensions:: IFML::Extensions::
Details List Form Field Slot
v

«Metaclass» «Metaclass» «Metaclass»

IFML::Extensions:: IFML::Extensions:: IFML::Core::

SimpleField SelectionField Parameter
+isMultiSelection : Boolean +direction : Direction = in

Figure 14: Specific ViewComponents

IFML includes a basic set of extensions to the core elements that exemplify how IFML may be extended.

List, Details and Form are specializations of ViewComponent (see 8.1.4). The List ViewComponent is used to
display a list of DataBinding instances. When a List ViewComponent is associated with an Event, it means that each
DataBinding instance displayed by the component may trigger that Event. The Event will in turn cause the passing
of the parameter values mapped to the DataBinding instance to a target InteractionFlowElement. The Details
ViewComponent is used to display detailed information of a DataBinding instance. When the Details
ViewComponent is associated with an Event, the triggering of the Event will cause the passing of the Parameter
values mapped to the DataBinding instance to a target InteractionFlowElement. The Form ViewComponent is used
to display a form, which is composed of Fields that may display or capture content from the user. Fields have Slots
that hold their value. When the Field is a SelectionField, its associated Slots contain the available selection options
and the selected one. When the Field is a SimpleField, the Slot contains the Field value. A Slot value of a
SimpleField and the Slots corresponding to the selected options of SelectionFields also behaves as Parameters in
order to be passed to other ViewElements or Actions when an Event is triggered. Form ViewComponents have
ValidationRules, which determine if a Field value is valid or not.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 29

8.1.11 Modularization

«Metaclass»
IFML::Core::
T +activity | 0..1
«Metaclass»
+modularizationElements IFML::Core::
0.* | ModularizationElement +concept |0..1
+activityG ¢ «Metaclass» «Metaclass»
activityt-oncep IFML::Core:: < IFML::Core::
0.1 ActivityConcept BPMNACctivityConcept
+modulePackage |0..1
+moduleDefinition | 1
+module +outputPorts
«Metaclass» «Metaclass» P «Metaclass»
IFML::Core:: IFML::Core:: 1) ‘OP--t IFML::Core::
+i
ModulePackage ModuleDefinition | tModule *INPUTTOMS | o, pefinition
1 0.*

+moduleDefinition |1 +portDefinition |1

+modules |0..* *ports |0..

«Metaclass»

«Metaclass» | +module +ports | |EML:Core::

IFML::Core:: 1 0.~ P“rt ;

Module - i

Figure 15: Modularization concepts in IFML

IFML includes a set of concepts that help improving reuse and modularization of models.

The main concept is ModuleDefinition, which allows the definition of an arbitrary piece of [FML model, which can
be subsequently reused in models. ModuleDefinitions can be aggregated in a hierarchical structure of
ModulePackages. ModuleDefinitions may comprise PortDefinitions.

PortDefinitions represent interaction points with a Module. PortDefinitions hold Parameters, for transferring values
to and from the ModuleDefinition. An input PortDefinition has outgoing InteractionFlows to the inside of the
Module. An output PortDefinition has incoming InteractionFlows from the inside of the Module.

Module is the concept that enables reuse of ModuleDefinitions. Module has a reference to the relevant
ModuleDefinition and is associated with a set of Ports, which in turn reference the corresponding PortDefinitions.
An input Port (i.e., a Port referencing an input PortDefinition) has incoming InteractionFlows from the outside of the
Module, for receiving input Parameters. An output Port has outgoing InteractionFlows to the outside of the Module,
for shipping output Parameters.

8.2 Package DataTypes

8.2.1 Enumeration Direction
Description

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 30

Enumeration specifying the different possible directions of parameters.
Literals

. in (input): An input Parameter allows an InteractionFlowElement to receive one or more values through
an incoming NavigationFlow or DataFlow..

. inout (input-output): An output Parameter allows an InteractionFlowElement to expose one or more
values through an outgoing NavigationFlow or DataFlow.

. out (output): A Parameter of kind input-output allows for both behaviours.

8.2.2 Enumeration ContextVariableScopeDescription
Description

Enumeration specifying the different scope levels for ContextVariables.

Literals

. ApplicationScope: Scope of the ContextVariable is the application
. SessionScope: Scope of the ContextVariable is the user session

. ViewContainerScope: Scope of the ContextVariable is the ViewContainer (for instance, the Web page
or the window)

8.2.3 Enumeration SystemEventType
Description

Enumeration specifying the different system event types.
Literals

. actionCompletion: Kind of Event triggered by a business operation completion.
. specialCondition: System special condition event such as data base connection loss, network loss, etc.

. time: System event of time kind, such as absolute time event, periodic time event and time out event.

8.3 Package Core

8.3.1 Class Action
Abstract: No

Generalization:

. InteractionFlowElement

. NamedElement

Description

An Action is an InteractionFlowElement that represents a piece of business logic triggered by an Event. Actions may
reference behavior models describing the actual business logic to be performed. Actions may trigger different
Events called ActionEvents as the result of business logic computation termination or the occurrence of exceptions.
Actions may reside on the server or on the client side. If no ActionEvent (and corresponding outgoing flow) is
specified, IFML assumes as default an ActionEvent and NavigationFlow that lead back to the ViewComponent or

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 31

ViewContainer from which the navigation to the Action was launched.
Constraints

. actionsCannotCallActions
self.actionEvent->forAll(e | e.navigationFlow->forAll(nf | not
nf.targetInteractionFlowElement.oclIsTypeOf(IFML::Core::Action)))

Association Ends
. actionEvents[0..*]: ActionEvent - Events triggered by the Action.
. dynamicBehavior [1]: DynamicBehavior — The business logic to be carried out by the Action.

. viewContainer [0..1]: ViewContainer — The ViewContainer that contains the current Action.

8.3.2 Class ActionEvent
Abstract: No
Generalization:
. CatchingEvent
Description

An ActionEvent is an Event that may be triggered by an Action such as a normal termination event or exception
event.

8.3.3 Class ActivationExpression
Abstract: No
Generalization:

. BooleanExpression

Description

ActivationExpressions are used by ViewElements, Events or ViewComponentParts to determine if they are enabled
or not. An ActivationExpression is a BooleanExpression such that, if it evaluates to true, the element is active,
otherwise the element is inactive. ActivationExpressions use Parameter values for the expression evaluation.

8.34 Class ActivityConcept
Abstract: No
Generalization:
. NamedElement
Description

ActivityConcepts are an abstract concept describing the idea of business action that can be implemented through an
IFML ModuleDefinition. Typical examples could be BPMN Activities or Activities in UML Activity Diagrams.

Association Ends

. moduleDefinition [1]: ModuleDefinition — The ModuleDefinition that implements the business process
ActivityConcept.

8.3.5 Class Annotation
Abstract: No

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 32

Description

An Annotation represents a comment, note, explanation, or other type of documentation that can be attached to any
Element.

Attributes

. text: String - Annotation text.

8.3.6 Class BehaviorConcept
Abstract: No
Generalization:

. DomainElement

Description

BehaviorConcept represents the generic Behavior (for instance, a UML dynamic diagram) which can be referenced
as DynamicBehavior in a ContentBinding.

Association Ends

. dynamicBehavior [0..1]: DynamicBehavior — Placeholder in a ContentBinding of the Behavior to be
executed by the Action or ViewComponent.

8.3.7 Class BehavioralFeatureConcept
Abstract: No
Generalization:

. DomainElement

Description

BehavioralFeatureConcept represents the generic BehavioralFeature of a DomainModel element (for instance, a
Class method) which can be referenced as DynamicBehavior in a ContentBinding.

Association Ends

. dynamicBehavior: DynamicBehavior — Placeholder in a ContentBinding of the BehavioralFeature to be
executed by the Action or ViewComponent.

8.3.8 Class BooleanExpression
Abstract: No
Generalization:
« Expression
Description
A BooleanExpression is a kind of Expression that evaluates to true or false.

8.3.9 Class BPMNActivityConcept
Abstract: No
Generalization:

. ActivityConcept
Description

BPMNActivityConcepts are a specialization of ActivityConcept for representing the particular case of BPMN
Activities.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 33

Association Ends:

. Activity [0..1] : Activity — Reference to a BPMN Activity

8.3.10 Class CatchingEvent
Abstract: No
Generalization:

. Event

Description

A CatchingEvent is an occurrence that can affect the state of the application, by causing navigation and/or Parameter
value passing between InteractionFlowElements. CatchingEvents may be produced by a user interaction
(ViewElementEvent), by an action when it finishes its execution (ActionEvent), or by the system in the form of
notifications (SystemEvent), or by a navigational jump (JumpEvent) in the model that reaches a LandingEvent.

8.3.11 Class ConditionalExpression
Abstract: No
Generalization:

. Expression

. ViewComponentPart

Description

A ConditionalExpression is a predefined query expression associated with a DataBinding. When a
Conditional Expression is present, the DataBinding is queried by applying the query in the ConditionalExpression
for retrieving content.

8.3.12 Class Constraint
Abstract: No

Generalization:

. BooleanExpression

Description
A Constraint is a BooleanExpression that may be defined for any model Element in order to restrict its behavior.

8.3.13 Class ContentBinding
Abstract: Yes
Generalization:

. ViewComponentPart

Description

A ContentBinding allows the system to access a given source of content. A content source access may be done
through a DataBinding or a DynamicBehavior of a DomainModel element.

Attributes

. uniformResourceldentifier[0..1] : String - URI used to identify or locate the resource from which the

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 34

content may be obtained.
Constraints

. noViewElementEvent
self.viewElementEvent -> isEmpty()

8.3.14 Class Context
Abstract: No
Generalization:

. Element

Description

The Context is a runtime aspect of the system that determines how the user interface should be configured. A
Context has several dimensions that represent not only the user’s identity and preferences, but also the interaction
environment of the system. Context is composed of one or more ContextDimensions and may comprise
ContextVariables.

Association Ends

. contextDimensions [0..*]: ContextDimension - ContextDimensions the user context must satisfy to have
access to one or more Viewpoints.

. contextVariables [0..*]: ContextVariable — set of ContextVariables whose values are relevant for the
current Context.

8.3.15 Class ContextDimension
Abstract: No
Generalization:
. NamedElement
Description

ContextDimensions are dimensions of the Context that represent not only the user’s identity and preferences, but
also the interaction environment of the system. ContextDimension has the specializations UserRole, Device, and
Position. When the user context satisfies all required ContextDimensions, access is granted to the ViewElements of
the Viewpoint and to the Events that may be triggered on them.

8.3.16 Class ContextVariable
Abstract: No
Generalization:

. NamedElement

Description

ContextVariable is a name-value pair that allows to store information associated to the current Context. It can be a
SimpleContextVariable, storing a primitive type value, or a DataContextVariable, referencing a DataBinding.

Attributes
. scope : ContextVariableScope — scope of the ContextVariable.

Association Ends

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 35

. context [1] : Context — Context within which the ContextVariable is relevant.

8.3.17 Class DataBinding
Abstract: No
Generalization:

. ContentBinding

Description

DataBinding represents the binding of the system with an instance of an element of the DomainModel such as a
table, an object, an XML file etc.

Association Ends

. domainConcept [1]: domainConcept — A concept specifying the data structure to which the
ViewComponent is bound, such as a UML class, a table in a relational data base or an XML file.

. conditionalExpressions [0..*]: ConditionalExpression - ConditionalExpressions that determine how to
access the content.

. visualizationAttributes[0..*]: VisualizationAttribute - VisualizationAttributes that determine the
StructuralFeatures that should be shown to the user, such as a data base column or an XML element or
attribute.

. dataContextVariables [0..*]: DataContextVariable — reference to the ContextVariable that makes use of
the DataBinding.

8.3.18 Class DataContextVariable
Abstract: No
Generalization:

. ContextVariable

Description
DataContextVariable allows to associate a DataBinding to the current Context.

Association Ends

. dataBinding [1]: DataBinding - Reference to the DomainModel concept used as ContextVariable.

8.3.19 Class DataFlow
Abstract: No
Generalization:

. InteractionFlow

Description
A DataFlow is a kind of InteractionFlow used for passing context information between InteractionFlowElements.

DataFlows are triggered by NavigationFlows causing Parameter passing but no navigation. DataFlows are triggered

any time a parameter is available in output from the source InteractionFlowElement and transfer the Parameter
values to the target InteractionFlowElement. The target of a DataFlow cannot be an Event.

Constraints

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

36

. targetNotInstanceOfEvent
not self.targetInteractionFlowElement.ocllsTypeOf(IFML::Core::Event)

8.3.20 Class DomainConcept
Abstract: No

Generalization:
. DomainElement

Description

The DomainConcept represents a generic concept, class, entity of the DomainModel, which can be referenced in a
DataBinding. Its purpose is to allow extensibility in terms of concepts from different modeling languages
representing the DomainModel.

Association Ends

. dataBinding [0..1]: DataBinding - Reference to the DataBinding in a ViewComponent that uses the
current DomainConcept.

8.3.21 Class DomainElement
Abstract: No
Generalization:

. NamedElement

Description

The DomainElement represents a generic element of the DomainModel, which can describe a concept, a property, a
behavior, or a behavioral feature. It is a generic representative for classes DomainConcept, FeatureConcept,
BehavioralFeatureConcept, BehaviorConcept.

Association Ends

. domainModel [1]: DomainModel - Reference to the DomainModel comprising the DomainElement.

8.3.22 Class DomainModel
Abstract: No
Generalization:

* NamedElement

Description

The DomainModel is a model that contains content elements that ViewComponents may access to retrieve
information, process it, and show it to the user. The DomainModel also stores information captured from the user.
The DomainModel is presumed to be represented in UML and therefore consists of a set of UML model elements .

Association Ends

. elements[0..*]: DomainElement - References to the elements of the DomainModel.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 37

8.3.23 Class DynamicBehavior
Abstract: No
Generalization:

. ContentBinding

Description

DynamicBehavior represents the binding of the system with a service or operation, which may be invoked in order
to carry out business logic or return content.

Constraints

. eitherBehavioralFeatureOrBehavior
self.behavioralFeature -> notEmpty() xor self.behavior -> notEmpty()

Association Ends

. behavioralFeatureConcept [0..1]: behavioralFeatureConcept - BehavioralFeatureConcept representing a
procedure, method, function etc, that may be invoked by a ViewComponent to carry out business logic
or obtain content.

. behaviorConcept [0..1]: BehaviorConcept - Representing a procedure, method, function etc, that may be
invoked by a ViewComponent to carry out business logic or obtain content.

8.3.24 Class Element

Abstract: Yes

Description

Element is the base class for the representation of all model elements in an IFML model.
Attributes

. id: String [1] - String for unequivocally identifying a model element.
Association Ends
. annotations [0..*]: Annotation - Annotations, comments, tags, etc., owned by the Element.

. constraints [0..*]: Constraint - Constraints applied to the Element.

8.3.25 Class Event
Abstract: No

Generalization:

. InteractionFlowElement

Description

An Event is an occurrence that can affect the state of the application. Events can be ThrowingEvent (events that are
thrown by the modeled interaction) or CatchingEvent (events that are captured by the modeled interaction and used
as triggers causing navigation and/or Parameter value passing between InteractionFlowElements.

Constraints

. onlyOneInAndOutFlow
self.outInteractionFlow -> size() <= 1 and self.inInteractionFlow -> size() <= 1

Association Ends

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 38

. activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose
evaluation result determines if the Event is active or inactive. If no ActivationExpression is given, the
default is that the Event is active.

. interactionFlowExpression [0..1]: InteractionFlowExpression - InteractionFlowExpression determining
the InteractionFlows to be followed after the occurrence of the Event.

. navigationFlows [0..*]: NavigationFlow - NavigationFlows triggered by the Event.

8.3.26 Class Expression
Abstract: Yes
Generalization:

. InteractionFlowModelElement

Description

An Expression is an element that, evaluates to a single instance, a set of instances, or an empty result. An Expression
must be side effect free. Specific expression types, such as BooleanExpression, etc., specialize this concept.

Attributes
. body[1]: String - Code of the Expression.

. language[1]: String - Language in which the Expression is written, e.g. OCL, Java, etc.

8.3.27 Class FeatureConcept
Abstract: No
Generalization:

. DomainElement

Description

FeatureConcept represents the generic attribute or property of a DomainModel element, which can be referenced as
VisualizationAttribute.

Association Ends

. visualizationAttribute [0..1]: VisualizationAttribute — Placeholder in a DataBinding of the
FeatureConcept to be visualized.

8.3.28 Class IFMLModel
Abstract: No
Generalization:

. NamedElement

Description

An IFMLModel is the top-level container of all other elements in an IFML model. All model elements are grouped
into two submodels, the InteractionFlowModel and the DomainModel. An IFMLModel may also contain a number
of Viewpoints of the InteractionFlowModel.

Association Ends

. DomainModel [1]: DomainModel - Model describing the domain concepts and behaviors used in the

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 39

user interaction modeled by the [FML model.

. interactionFlowModel [1]: InteractionFlowModel - The complete model that describes the interaction of
the user with the system.

. interactionFlowModelViewpoints [0..*]: Viewpoint - Viewpoints of the InteractionFlowModel.

8.3.29 Class InteractionFlow
Abstract: Yes
Generalization:

. InteractionFlowModelElement

Description

An InteractionFlow is a directed connection between ViewElements or ViewElements and Actions, which enables
communication between them by means of Parameter passing. InteractionFlows are divided into NavigationFlows
and DataFlows. NavigationFlows cause navigation or change of focus to the target element and Parameter passing,
while DataFlows cause only Parameter passing to the target element.

Association Ends

. parameterBindingGroup [0..1]: ParameterBindingGroup - Group of parameters that are passed to the
target interaction flow element by following the InteractionFlow.

. targetinteractionFlowElement [1]: InteractionFlowElement - Target InteractionFlowElement of the
InteractionFlow.

. sourcelnteractionFlowElement [1]: InteractionFlowElement - Source InteractionFlowElement of the
InteractionFlow.

8.3.30 Class InteractionFlowElement
Abstract: Yes
Generalization:

. InteractionFlowModelElement

. NamedElement
* TemplateableElement

Description

InteractionFlowElements represent pieces of the system such as Actions, Events, ViewElements, and
ViewComponentParts, which participate in user interaction flows through InteractionFlow connections. Usually
there is a flow of Parameter values between InteractionFlowElements as a consequence of user, action, or system
events.

Association Ends
. inInteractionFlows [0..*]: InteractionFlow - Incoming InteractionFlows.
. outInteractionFlows [0..*]: InteractionFlow - Outgoing InteractionFlows.

. parameters [0..*]: Parameter - Parameters contained by the InteractionFlowElement.

8.3.31 Class InteractionFlowExpression
Abstract: No
Generalization:

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 40

. Expression
Description

An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed as a consequence
of the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all the
InteractionFlows associated with the event are followed. At least two InteractionFlows must be associated with an
InteractionFlowExpression. An InteractionFlowExpression uses the ViewElement Parameter values and the
InteractionFlows for the evaluation of the expression.

Association Ends

. interactionFlows [2..*]: InteractionFlow - InteractionsFlows for which the expression is evaluated.

8.3.32 Class InteractionFlowModel
Abstract: No
Generalization:
. NamedElement
Description
An InteractionFlowModel aggregates all the elements modeling interaction with the user.

Association Ends

. interactionFlowModelElements [0..*]: InteractionFlowModelElement - Elements of the
InteractionFlowModel.

8.3.33 Class InteractionFlowModelElement
Abstract: Yes
Generalization:

. Element

Description

An InteractionFlowModelElement is the top-level class that generalizes all the elements that are part of an
InteractionFlowModel.

8.3.34 Class ModularizationElement
Abstract: No
Generalization:

. InteractionFlowModelElement

. NamedElement

Description
A ModularizationElement is an abstract concept that represents both ModulePackages and ModuleDefinitions.
Association Ends

. modulePackage [0..1]: ModulePackage — The ModulePackage containing the ModularizationElement

8.3.35 Class Module
Abstract: No
Generalization:

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 41

. InteractionFlowModelElement

. NamedElement

Description

A Module is a named reference to a ModuleDefinition, which allows reuse of the model part specified in the
ModuleDefinition. Module has a reference to the relevant ModuleDefinition and may be associated with a set of
Ports, which in turn reference the corresponding PortDefinitions. For every PortDefinition in the ModuleDefinition
there shall be 0 or 1 Ports in each corresponding Module. An input Port (i.e., a Port referencing an input
PortDefinition) has incoming InteractionFlows from the outside of the Module, for receiving input Parameters. An
output Port has outgoing InteractionFlows to the outside of the Module, for shipping output Parameters.

Constraints

. onlyOnePortPerPortDefinition
self.moduleDefinition.portDefinitions -> forAll(pd | pd.ports -> select(p|p.module = self) -> size() = 1)

Association Ends
. ports[0..*]: Port - Ports that collect InteractionFlows and Parameters incoming or outgoing from the
Module.

. ModuleDefinition [1]: ModuleDefinition — The ModuleDefinition that is instantiated by the current
Module.

8.3.36 Class ModuleDefinition
Abstract: No
Generalization:

e ModularizationElement

Description

A ModuleDefinition is a fully functional collection of user InteractionFlowModelElements and their corresponding
Actions, which may be reused for improving IFML model maintainability. ModuleDefinitions can be aggregated in
a hierarchical structure of ModulePackages. ModuleDefinitions may comprise PortDefinitions. A ModuleDefinition
receives Parameter values from outside and provides Parameter values to the outside. ModuleDefinitions exchange
Parameters by mean of input and output PortDefinitions. InteractionFlowModelElements contained in a Module
may not be shared or referenced by other Modules or by the main InteractionFlowModel. A ModuleDefinition may
comprise a reference to a BPMN Activity (meaning that the Module implements that Activity). Reuse of
ModuleDefinition is obtained by adding Modules referencing that ModuleDefinition in IFML models.

Association Ends

. inputPorts [0..*]: PortDefinition - Ports that distributes InteractionFlows and Parameters coming into the
Module.

. interactionFlowModelElements [1..*]: InteractionFlowModelElement - InteractionFlowModelElements
contained by the Module.

. outputPorts [0..*]: PortDefinition - Ports that collect the InteractionFlows and Parameters going out
from the Module.

. modules [0..*]: Module — The set of Modules that are defined in the IFML model and reference the
current ModuleDefinition.

. activityConcept [0..1]: ActivityConcept — Reference to a process activity (e.g., a BPMN Activity). If

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 42

present, the current module is describes the technical implementation of the process activity.

8.3.37 Class ModulePackage
Abstract: No

Generalization:
. ModularizationElement

Description

A ModulePackage is a container of ModuleDefinitions. ModulePackages can be nested in arbitrarily deep
hierarchical structure.

Association Ends
. inputPorts [1..*]: Port - Ports that distributes InteractionFlows and Parameters coming into the Module.

. modularizationElements [0..*]: ModularizationElement — Set of ModularizationElements contained in
the current ModulePackage

8.3.38 Class NamedElement
Abstract: Yes

Generalization:
. Element

Description

A NamedElement is an Element that requires a name for easy visual identification in diagrams or for being handled
as a named variables in a concrete textual syntax.

Attributes

. name[1]: String - Element name.

8.3.39 Class NavigationFlow
Abstract: No
Generalization:

. InteractionFlow

Description

A NavigationFlow represents navigation or change of ViewElement focus, the triggering of Action processing, or a
SystemEvent. NavigationFlows are followed when Events are triggered. NavigationFlows connect Events of
ViewContainers, ViewComponents, ViewComponentParts, or Actions with other InteractionFlowElements. When a
NavigationFlow is followed, Parameters may be passed from the container of the source Event to the target
InteractionFlowElement through ParameterBindings. When a NavigationFlow is triggered, a corresponding set of
DataFlows may be triggered, at the purpose of carrying further parameters to the target InteractionFlowElement. The
DataFlows that are triggered are all the ones having some parameter values available as an effect of the last interface
status change.

8.3.40 Class Parameter
Abstract: No

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 43

Generalization:

. InteractionFlowModelElement

. MultiplicityElement
. TypedElement

. NamedElement
Description

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElements, i.e.,
ViewElements, ViewComponentParts, Ports, and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Parameters may correspond to elements of the user interface (for instance, fields in a form),
determining whether the element of the user interface is read-only or modifiable. Parameters have a direction
property, which can be input (in), output (out) or input-output (inout). Default direction is input.

The scope of a Parameter (i.e., the model space where it can be used or referenced) is the InteractionFlowElement
that holds the Parameter, plus the incoming and outgoing InteractionFlows. This means that: if the parameter is held
by a ViewComponent, it can be referenced only within the ViewComponent itself and the contained
ViewComponentParts (plus the incoming and outgoing InteractionFlows); if the parameter is held by a
ViewContainer, it can be referenced within the ViewContainer itself, and within the contained ViewContainers,
ViewComponents, and ViewComponentParts (plus the incoming and outgoing InteractionFlows).

A Parameter can have a default value.Attributes
. direction: Direction - Determines if the parameter direction is input, output or input-output.

. defaultValue: Expression — default value of the parameter, calculated through the specified expression.

8.3.41 Class ParameterBinding
Abstract: No
Generalization:

. InteractionFlowModelElement

Description

A ParameterBinding determines how data flow between components. A ParameterBinding connects an output
Parameter of a source InteractionFlowElement with an input Parameter of a target InteractionFlowElement. When
an Event is triggered, InteractionFlows are followed and Parameter values flow from source
InteractionFlowElements to target InteractionFlowElements, according to how they have been bound.

Association Ends

. sourceParameter [1]: Parameter — Output Parameter of the source InteractionFlowElement that
participates in the ParameterBinding.

. targetParameter [1]: Parameter — Input Parameter of the target InteractionFlowElement that participates
in the ParameterBinding.

8.3.42 Class ParameterBindingGroup
Abstract: No

Generalization:

. InteractionFlowModelElement

Description
A ParameterBindingGroup aggregates all the ParameterBindings of an InteractionFlow.
Association Ends

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 44

. parameterBindings [1..*]: ParameterBinding - The ParameterBindings composing the
ParameterBindingGroup.

8.3.43 Class Port
Abstract: No
Generalization:

. InteractionFlowElement

Description
A Port is an interaction point between a Module and the surrounding model within which it is defined.

Module is associated with a set of Ports, which in turn reference the corresponding PortDefinitions. An input Port
(i.e., a Port referencing an input PortDefinition) has incoming InteractionFlows from the outside of the Module, for
receiving input Parameters. An output Port has outgoing InteractionFlows to the outside of the Module, for shipping
output Parameters.

Association Ends

* PortDefinition [1]: PortDefinition — Reference to the PortDefinition that defines the interface of the
current Port

. module [1]: Module - Module that contains the current Port

8.3.44 Class PortDefinition
Abstract: No
Generalization:

. InteractionFlowElement

Description

PortDefinitions represent interaction points with a ModuleDefinition. They are defined within a ModuleDefinition.
They hold Parameters, for transferring values to and from the ModuleDefinition. An input PortDefinition has
outgoing InteractionFlows to the inside of the Module. An output PortDefinition has incoming InteractionFlows
from the inside of the Module. Modules that reference a ModuleDefinition may comprise Ports, which in turn
reference the corresponding PortDefinitions.

Association Ends

. ports [0..*]: Port — Set of Ports referencing the current PortDefinition in some Modules implementing
the ModuleDefinition within which the current PortDefinition is defined.

8.3.45 Class SimpleContextVariable
Abstract: No
Generalization:

. ValueSpecification

Description
SimpleContextVariable is a typed name-value pair that can be associated to the current Context. Allowed types are

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 45

the primitive ones.

8.3.46 Class SystemEvent
Abstract: No

Generalization:

. CatchingEvent

Description

A SystemEvent is an Event produced by the system, which triggers a computation reflected in the user interface.
Examples of SystemEvents are time events, which are triggered after an elapsed frame of time, or system special
conditions events, such as a database connection loss event.

Attributes
. type: SystemEventType - Determines the kind of SystemEvent.
Association Ends

. triggeringExpressions [0..*]: Expression - Expressions that determines when or under what conditions
the SystemEvent should be triggered.

8.3.47 Class ThrowingEvent
Abstract: No
Generalization:

. Event

Description

A ThrowingEvent is an occurrence of event that is generated by the modeled application. Event occurences
generated by ThrowingEvent can be captured by CatchingEvents.

8.3.48 Class UMLBehavior
Abstract: No
Generalization:

. BehaviorConcept

Description

UMLBehavior represents a Behavior specified in UML (that is, a UML dynamic diagram) which can be referenced
as DynamicBehavior in a ContentBinding.

Association Ends

. behavior [0..1]: UML::Behavior — UML Behavior to be executed by the Action or ViewComponent.

8.3.49 Class UMLBehavioralFeature
Abstract: No
Generalization:

. BehavioralFeatureConcept

Description

UMLBehavioralFeature represents a BehavioralFeature specified in UML (typically, a UML method in a Class)
which can be referenced as DynamicBehavior in a ContentBinding.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 46

Association Ends

. behavioralFeature [0..1]: UML::BehavioralFeature — UML BehavioralFeature to be executed by the
Action or ViewComponent.

8.3.50 Class UMLStructuralFeature
Abstract: No
Generalization:
. FeatureConcept
Description

The UMLStructuralFeature is a specific FeatureConcept referring to a UML StructuralFeature.
Association Ends

. structuralFeature [0..1]: UML::StructuralFeature - Reference to the UML element of the DomainModel.

8.3.51 Class UMLDomainConcept
Abstract: No
Generalization:
. DomainConcept
Description
The UMLDomainConcept is a specific DomainConcept referring to a UML Classifier.
Association Ends

. classifier [0..1]: UML::Classifier - Reference to the UML Classifier of the DomainModel that will be
connected to a ViewElement through a DataBinding.

8.3.52 Class ViewComponent
Abstract: No
Generalization:

. ViewElement

Description

A ViewComponent is an element of the user interface that displays content or accepts input. A ViewComponent
may be bound to a ContentBinding through its association with ViewComponentPart.

Association Ends

. viewComponentParts [0..*]: ViewComponentPart - Parts of the ViewComponent.

8.3.53 Class ViewComponentPart
Abstract: No

Generalization:
. InteractionFlowElement

Description

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 47

A ViewComponentPart is an InteractionFlowElement that may not live outside the context of a ViewComponent. A
ViewComponentPart may trigger Events and have incoming and outgoing InteractionFlows.

Association Ends
. activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose

evaluation result determines whether the ViewComponentPart is active or inactive. If no
ActivationExpression is given, by default the ViewComponent is active.

. subViewComponentParts [0..*]: ViewComponentPart - Nested ViewComponentParts.

. viewElementEvents [0..*]: ViewElementEvent - Events that this ViewComponentPart may trigger.

. parentViewComponentPart [1]: ViewComponentPart - Parent ViewComponentPart.

8.3.54 Class ViewContainer
Abstract: No
Generalization:

. ViewElement

Description
A ViewContainer is an element of the interface that aggregates other ViewContainers and/or ViewElements
displaying content.
Constraints:
. deafultMustHaveXorParent
self.viewContainer and self.viewContainer.isXor
+ xorMustHaveADefaultParent

self.isXor implies self.viewElements -> select(c|c.oclTypeOf(ViewContainer) and
c.asOclTypeOf(ViewContainer).isDefault) -> size()=1

Attributes

. isDefault: Boolean - If true, the ViewContainer will be presented to the user when its enclosing
ViewContainer is accessed. This attribute is relevant when this ViewContainer shares the same parent
ViewContainer with other ViewContainers, and the parent ViewContainer has property isXOR = true.

. isLandmark: Boolean - If true, the ViewContainer is directly reachable from any ViewElement from any
ViewElement contained, directly or indirectly, in the same ViewContainer. It represents an implicit link
between all the other ViewElements and the ViewContainer.

. isXOR: Boolean - If true, the contained ViewElements of thisViewContainer will be presented to the
user only one at the time, as the user interacts with the system. One of the contained ViewContainers
must have attribute isDefault = true.

Association Ends
. viewElements [0..*]: ViewElement - The ViewElements owned by the ViewContainer.

. actions [0..*]: Action — The Actions owned by the ViewContainer.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 48

8.3.55 Class ViewElement
Abstract: No
Generalization:

. InteractionFlowElement

Description

ViewElements are elements of the user interface that display content. ViewElements are divided into
ViewContainers and ViewComponents. ViewContainers are aggregations of other ViewContainers and/or
ViewComponents.

Association Ends
. activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose

evaluation result determines whether the ViewElement is active or inactive. If no ActivationExpression
is given, by default the ViewElement is active.

. viewElementEvents [0..*]: ViewElementEvent - ViewElementEvents contained by the ViewElement.

. viewContainer [0..1]: ViewContainer - ViewContainer of the current ViewElement.

8.3.56 Class ViewElementEvent
Abstract: No
Generalization:

. CatchingEvent

Description

A ViewElementEvent represents a user interaction Event, which may be triggered by ViewElements
(ViewContainers and ViewComponents).

Association Ends

. viewElement [1]: ViewElement — ViewElement owning the ViewElementEvent.

8.3.57 Class Viewpoint
Abstract: No
Generalization:

. NamedElement

Description

A Viewpoint is a reference to an interrelated set of InteractionFlowModelElements, which as a whole define a
functional portion of the system. The purpose of a Viewpoint is to facilitate the comprehension of a complex system,
to allow or disallow access to the system by a specific UserRole, or to adapt the system to a specific context change.

Association Ends

. interactionFlowModelElements [0..*]: InteractionFlowModelElement - InteractionFlowModelElements
that build up this Viewpoint.

. context [1]: Context - Application context that determines the Viewpoint to be used.

8.3.58 Class VisualizationAttribute
Abstract: No

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 49

Generalization:

. ViewComponentPart

Description

The VisualizationAttributes used by a ViewComponent determine the features obtained from a DataBinding that
may be shown to the user, such as a data base column or an XML element or attribute. A feature is represented using
a UML::StructuralFeature.

Association Ends

. featureConcept [1]: FeatureConcept — A FeatureConcept of the DomainConcept bound to a
DataBinding to be shown to the user, such as a data base column, an XML element or attribute, or a
UML class attribute.

8.4 Package Extensions

8.4.1 Class Details
Abstract: No
Generalization:

. ViewComponent
Description

A Details ViewComponent is used to display the details of a DataBinding instance. When the Details
ViewComponent is associated with an Event, it means that the DataBinding instance displayed by the component
may trigger the Event. The Event will in turn cause the passing of the Parameter values mapped to the DataBinding
instance to a target InteractionFlowElement.

Constraints

. mustHaveOneDataBinding
self.viewComponentPart -> select(v | v.ocllsTypeOf(DataBinding)) -> size() = |

8.4.2 Class Device
Abstract: No
Generalization:

. ContextDimension

Description

A Device is a ContextDimension that represents any device such as desktop, laptop, smart phone, tablet, or any other
device from which the application may be accessed. A Device is associated with one or more Viewpoints (through
the association from Viewpoint to Context). When the user context specifies the same device as the one specified by
Device, the ContextDimension is satisfied and access is granted to the Viewpoint elements.

8.4.3 Class Field
Abstract: Yes
Generalization:

. ViewComponentPart

. Parameter

Description

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 50

A Field is a value-type pair whose value may be displayed to the user or serves as a mean for capturing input from

the user. Fields also behave as Parameters for passing their values to and from other InteractionFlowElements.
There are two kinds of fields, SimpleFields and SelectionFields.

8.4.4 Class Form
Abstract: No
Generalization:

* ViewComponent

Description

The Form ViewComponent represents input forms where user can submit information through Fields (SimpleFields

or SelectionFields). It comprises at least one Field and typically at least one OnSubmitEvent.
Constraints

. mustHaveAtLeastOneField
self.viewComponentPart -> select(v | v.ocllsTypeOf(Field)) -> notEmpty()

8.4.5 Class List
Abstract: No
Generalization:

. ViewComponent
Description

The List ViewComponent is used to display a list of DataBinding instances. When the List ViewComponent is
associated with an Event, it means that each DataBinding instance displayed by the component may trigger the
Event. The Event will in turn cause the passing of the Parameter values mapped to the DataBinding instance to a
target InteractionFlowElement.

Constraints

. mustHaveOneDataBinding
self.viewComponentPart -> select(v | v.ocllsTypeOf(DataBinding)) -> size() = 1

Association Ends

. selectEvent [0..*]: OnSelectEvent - Events that represent the selection of a DataBinding instance of the
List ViewComponent and the passing of the value as a Parameter.

8.4.6 Class LandingEvent
Abstract: No

Generalization:
. CatchingEvent

Description
A LandingEvent is the destination of a JumpEvent.
Association Ends

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

51

* jumpingEvents [0..*]: JumpEvent - Reference to the JumpEvents targeting the current LandingEvent.

8.4.7 Class JumpEvent
Abstract: No
Generalization:

. ThrowingEvent

Description

. A JumpEvent is a ThrowingEvent that, when launched, redirects the NavigationFlow entering the event to a
referenced LandingEvent.

Association Ends

. landingEvent [0..1]: LandingEvent - Reference to the LandingEvent targeted by the JumpEvent.

8.4.8 Class Menu
Abstract: No
Generalization:

Description:

A Menu is a special kind of ViewContainer used to model the concept of a menu of options in IFML. It cannot
contain ViewComponents or sub-ViewContainers.

8.4.9 Class OnLoadEvent
Abstract: No
Generalization:

. SystemEvent
Description
An OnLoadEvent is triggered by the system when a ViewElement is completely computed and rendered.

8.4.10 Class OnSelectEvent
Abstract: No

Generalization:

. ViewElementEvent

Description

An OnSelectEvent is a kind of Event that, when triggered, results in a selected value being passed as a Parameter to
the target InteractionFlowElement of its associated NavigationFlow.

8.4.11 Class OnSubmitEvent
Abstract: No
Generalization:

. ViewElementEvent

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 52

Description

An OnSubmitEvent triggers the Parameter passing of a ViewComponent to the target ViewElement or Action of its
corresponding NavigationFlow. An OnSubmitEvent is typically found in Form ViewComponents.

8.412 Class Position
Abstract: No
Generalization:

. ContextDimension
Description

A Position is a ContextDimension representing the location and orientation of a device from which the application is
accessed. A Position is associated with one or more ViewPoints (through the association between ViewPoint and
Context). When the user context indicates having reached the location or orientation described by a Position, the
ContextDimension is satisfied and access is granted to the ViewPoint elements and presented to the user.

8.4.13

8.4.14 Class SelectionField
Abstract: No

Generalization:
. Field

Description

A SelectionField is a kind of Field that enables the selection of one or more values from the predefined set of values
given in its Slots.

Attributes

. isMultiSelection: Boolean - If true, the SelectionField allows the selection of multiple values.

8.4.15 Class SetContextEvent
Abstract: No
Generalization:

. ThrowingEvent

Description
A SetContextEvent is launched every time a ContextVariable is set or assigned a new value.

8.4.16 Class SimpleField
Abstract: No
Generalization:

. Field

Description

A SimpleField is a kind of Field that displays a value or captures a textual input from the user. A SimpleField also
behaves as a Parameter,so that its value may be passed to other ViewElements or Actions.

8.4.17 Class Slot
Abstract: No

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 53

Generalization:

. ViewComponentPart

. Parameter

Description

A Slot is a value placeholder for a Field. When the Field is a SelectionField, its associated Slots contain the available
selection options and the selected one. When the Field is a SimpleField, the Slot contains the Field value. A Slot
value of a SimpleField and the Slots corresponding to the selected options of SelectionFields are copied to
Parameters in order to be passed to other ViewElements or Actions when an Event is triggered.

8.4.18 Class UserRole
Abstract: No
Generalization:

. ContextDimension

Description

A UserRole is a ContextDimension that represents a role played by a human user or external system that accesses
the application through its user interface. A UserRole is associated with one or more ViewPoints (trough the
association between ViewPoint and Context). When the user context has the same user role as the one specified by
the UserRole, the ContextDimension is satisfied and access is granted to the ViewPoint elements.

8.4.19 Class ValidationRule
Abstract: No
Generalization:

e Constraint

Description

A ValidationRule is a Constraint, which, when evaluated, determines if the content of a Field or group of Fields is
valid or not.

8.4.20 Class Window
Abstract: No
Generalization:

Description:
A Window is a special kind of ViewContainer used to model the concept of a window in IFML.
Attributes

. isNewWindow: Boolean — If true, the container will be opened as a new window.

. isModal: Boolean — If true, the window will be rendered as a modal window.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 54

9 IFML Execution Semantics

9.1 Introduction

This clause specifies the execution semantics of IFML. The purpose is to define when and how to compute the
values to be shown to the user, based on an IFMLModel . A few aspects affect the execution semantics:

1. Computation of triggering events
2. Parameter propagation
3. Navigation history preservation

9.2 Relevant Aspects for IFML Execution Semantics

9.21 Triggering Events
The content of a ViewContainer must be (partially or completely) computed when the following events arise:

1. Inter-container navigation flow traversal: The container is entered through a NavigationFlow originated by an
Event in another container.

2. Intra-container navigation flow traversal: The user produces an Event inside a container that triggers the
navigation of a flow targeting an Element in the same top-level ViewContainer (e.g., Window). Firing the
navigation may have side effects on the content of the currently visualized Elements (e.g., it may modify
content currently shown to the user) and may invalidate (partially or totally) the information used to compute
the container.

9.2.2 Parameter Propagation

A ViewContainer typically contains several pieces of related information. This corresponds to having several
ViewComponents linked in a network topology through NavigationFlows and DataFlows. Information may be
propagated from one ViewComponents to other ViewComponents through ParameterBindings. Actual propagation
depends on the Events that trigger the flows.

Conlflicts may arise in the propagation of Parameters. A conflict arises when a ViewComponent receives more than
one input value for the same Parameter. This could happen due to multiple incoming flows in a ViewComponent or
ViewContainer. A conflict resolution strategy (CRS) specifies which Parameter value is selected to compute the
data content of the ViewComponent. A conforming tool shall use one of the following possible strategies:

1. Non-deterministic choice: One input parameter is chosen non-deterministically at run-time among the set of
available inputs.

2. With priorities: Priorities are assigned at design-time to the incoming flows (for the ViewComponent or
ViewContainer), and, in case of run-time conflict, the Parameter value transported by the flow with highest
priority is chosen. Priorities define a total ordering on the incoming flows for the ViewComponent or
ViewContainer.

3. Mixed: A partial order of prioritization is defined at design-time over the input flows, and, in case of run-time
conflict, the Parameter values transported by the flow with highest priority is chosen. If the ViewContainer is
accessed at run-time in such a way that multiple flows with highest priority are in conflict, a non-deterministic
choice is taken.

9.2.3 Navigation History Preservation

When the user triggers an Event, the content of the destination ViewContainer is refreshed, in a way that may
depend on the past history of the user interaction. The alternatives for re-computing a ViewContainer (or a part
thereof) depends on the “degree of memory” used for computation. A conforming tool may use one of the following
possible interaction history policies:

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 55

1. Without history: The contents of the ViewComponents are computed as if the ViewContainer was accessed for
the first time. The computation without history policy may be used to “reset” and forget the choices done by
the user in a container.

2. With history: The contents of the ViewComponents are computed based on the input history of the
ViewComponents existing prior to the last navigation event.

9.3 ViewComponent Computation Process

In this section we provide a brief description of an algorithm for computing the content of a generic ViewContainer,
with particular attention to containers of type Window.

The computation process is performed every time an Event arises. The process tries to determine the data content of
all the ViewComponents of the ViewContainer, taking into account the semantic aspects discussed in 9.2.
Intuitively, the process determines at each step the set of computable ViewComponents, i.e., the subset of
ViewComponents that receive their input Parameters and therefore can be calculated.

A ViewComponent is computable if it has no incoming InteractionFlows or if it has incoming InteractionFlows and
the following conditions are satisfied:

1. The ViewComponent has not been already computed (a ViewComponent cannot be computed more than once
upon the same Event).

2. All the ViewComponents from which the ViewComponent may receive Parameters have been computed
already.

3. All the input Parameters needed to compute the ViewComponent have a value.

If the computation semantics of the ViewContainer is without history, only current input parameters are considered
in point 3. If the computation semantics is with history, components may draw their input values either from default
input Parameter values or from the past Parameter values, existing prior to the last flow navigation.

The algorithm computes a the contents of the ViewComponents starting from the following input parameters: it must
receive the ViewContainer to compute, the set of ViewComponents to be considered in the computation (initially all
the ViewComponents of the ViewContainer), the conflict resolution strategy, the interaction history policy, the past
Parameter values of all the ViewComponents prior to the last flow navigation, the destination ViewComponent of
the fInteractionFlow whose navigation has produced the computation event together with the past Parameters
transported by the flow. The following steps of the algorithm are then carried out:

1. Component invalidation: If the destination of the navigated flow is a ViewComponent, all its dependent
ViewComponents are invalidated. (We say that ViewComponent ul depends onViewComponent u2 if ul can
be reached through NavigatioFlows from u2.)

2. Non-invalidated component computation: One ViewComponent at a time is computed, until all possible
components are considered. At each step, if there is at least one computable ViewComponent, one of them is
selected and its content is computed, based on the conflict resolution strategy, the interaction history policy,
and the past Parameter values. In particular:

2.1 If a ViewComponent does not depend on any other ViewComponent, i.e. it does not expect any input
Parameter , it can always be computed.

2.2 If a ViewComponent is the destination ViewComponent of the InteractionFlow whose navigation has
produced the computation event, then the past and new values of the flow Parameters are used for
computing the component.

2.3 In all the other cases, the interaction history policy determines which input Parameters must be used. If the
interaction history policy is “without history”, one of the possible current input Parameters is chosen,
according to the conflict resolution strategy. If the interaction history policy is “with history” the past
values of the input Parameters are considered. If the past values are available and no newer value is
available for that Parameter, the old value is used to instantiate the ViewComponent; if no past values of
input Parameter for the component is available, one of the possible input Parameter values is chosen
according to the conflict resolution strategy.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 56

10 IFML Diagram Definition

10.1 Introduction

This clause specifies the metamodel for IFML Diagram Interchange (IFML DI). The IFML DI is meant to facilitate
interchange of IFML diagrams between tools rather than being used for internal diagram representation by the tools.

The IFML DI metamodel, similarly to the IFML abstract syntax metamodel, is defined as a MOF-based metamodel.
As such, its instances can be serialized and interchanged using XMI.

The IFML DI classes only define the visual properties used for depiction. All other properties that are required for
the unambiguous depiction of IFML diagram elements are derived from the referenced IFML model elements.

Multiple depictions of a specific IFML Element in a single diagram are not allowed.

10.2 Conformance Criteria

As stated in the Diagram Definition (DD) specification, Modeling language DD enables a) Diagram Information
Interchange Conformance and b) Diagram Graphics Conformance. Modeling language specifications can
conform to DD in two levels by supporting either (a) only, or (a) and (b). The IFML Diagram Definition provides
(a) and (b).

10.3 Architecture

The IFML language specification provides three normative artifacts at M2 (shown with shaded boxes in Figure 16):
the abstract syntax model (IFML), the IFML diagram interchange model (IFML DI), and the mapping specification
between the [IFML DI and the graphics model (IFML Mapping Specification).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 57

Mapping
MOF
M3 Language MOF
7 ; 7
Abstract ! Diagram Concrete E
Syntax i Syntax Syntax :
!
| DD:DI | ‘
i
M2 T]
1
IFML Mapping
< .
IFML 12l Dl Specification DD:DG
1
1
1

F-mam >

group: Group

shape: IFMLNode

i inar |l — label: IFMLLabel
M1)

IFML Mapping text: Text

e

rectangle: Rectangle

---> Instantiates [DD Spec DI: Diagram Interchange
—{> Specializes &) IFML Spec DG: Diagram Graphics
——> References

Figure 16: Diagram Definition Architecture for IFML

At M1 (left), Figure 16 shows an instance of IFML::Core::ViewContainer as a model element. Next to it, on the
right, the figure shows an instance of [IFMLDI::IFMLNode referencing the ViewContainer element, indicating that
the ViewContainer is depicted as a node on the diagram. The node also contains an instance of IFMLDI::IFMLLabel
representing the textual label of the ViewContainer on the diagram. On the right of M1, the figure shows an instance
of DG::Group containing instances of DG::Rectangle and DG::Text

IFML DI specializes DD:DI, which specifies the graphics the user has control over, such as the position of nodes
and line routing points. This information is what is captured for interchange between tools.

DD:DG represents the graphics that the user has no control over, such as shape and line styles, because they are the
same in all languages conforming to the DD specification. DD:DG is derived by executing the mapping
specification, in the middle, between IFML DI and DG.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 58

10.4 IFML Diagram Interchange (DI) Meta-model

The IFML DI metamodel extends the DI metamodel, where appropriate. The class [FMLDiagram represents the
diagram, which composes IFMLDiagramElements. An IFMLDiagram is an IFMLNode because it may be rendered
as a figure and be connected to other figures. IFMLDiagramElements optionally reference elements of an IFML
model, the latter denoted by the IFML:Core:Element class. [IF'MLDiagramElements that do not reference elements
of an IFML model are purely notational diagram elements such as notes and the link that connects the note with the
model element. IFMLDiagramElements may also be styled with instances of class IFMLStyle (e.g. font type and

size).

yle 0.1
«enumeration» Style
LabelKind -StyledElement localStyle 0.1
PARAMETER 0.1
VIEW_CONTAINER B
= -styledElk t 0.
ACTION styledEiemen o . ‘
NAMED_ELEMENT -
PARAMETER_BINDING_GROUP DiagramElement {readOnly, union}
ACTIVATION_EXPRESSION > {readOnh jon}
readOnly, union]
INTERACTION_FLOW_EXPRESSION Y prerpm—
FoR 0.1 it Element
-Isource 1 1 -/target <<metaclass>>
SIMPLE_FIELD ° L -id : String
SELECTION_FIELD {readOnly, union} {readOnly,|union} IFMLStyle
VALIDATION_RULE ~fontName : String _modelElement] 0.1
CONDITIONAL_EXPRESSION -fontSize : float
DATA_BINDING
-localStyle 0..1 0.1 -sharedStyle
{readOnly, union} {readOnly, union} -diagramElement 1 .
-/sourceEdge 0. | |0.* -ftargeEdge " -DiagramElement
<<metaclass>> «meé:GIaSS» IFMLDi:
Shape ge 1 _ifmIDiagramElement
» int - Poi e o
“bounds)} BoUnds [0A1] -waypoint : Point [0..*]{ordered,nonunique}
0-" _ownedElement
T 1 1 4 -owningElement
-sour¢eElement
-targetfElement
0.*
<<metaclass>> -diagramElements
Diagram
-owr
-name : String (1] T <<metaclass>> <<metaclass>> <<metaclass>> [0 -Connegtion
< Sl 0. IFMLNode -node -ownedLabel| iy L ael IFMLConnection
-resolution : Real [1] = 300. i
- r -owningNode 0.1 0-1 [ind - Labelkin 0.
0.1 1 -node
0. | -ownedNodes -ownedLabels |0..
0..*| -ownedCompartments
<<metaclass>> <<metaclass>>
IFMLDiagram —compartment IFMLCompartment -compartment
0.1 0-
-d\agramT1

Figure 17: IFML Diagram Interchange (DI) Meta-model
Classes are defined for interchanging shapes and edges of the interaction flow diagram and the content diagram,
based on the following notational patterns (see Figure 18):

. Pattern (a): A shape that has a label and an optional list of compartments, each of which having an optional
list of labels or other shapes (e.g., the ViewContainer box, ViewComponentPart box, Form ViewComponent
rounded box or the classes of the DomainModel).

. Pattern (b): A shape that has a label only (e.g., the Event ball or Action hexagon notation)
. Pattern (c): An edge that may be dashed or solid (e.g., NavigationFlows and DataFlows)

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 59

[XOR] MALL Top

[D] [L] MailMessages [L] Contacts >

Module

«List» Message List

«DataBinding» MailMessage Event

«ConditionalExpression»
self.mm2MailMessageGroup =
MailBox

«Parameter» MailBox : MailBox

«InteractionFlowExpression»

if AlbumDetails selected then
AlbumDetails

else Album details

Pattern (a) Pattern (b) Pattern (c)

Figure 18: Notational patterns

Based on these patterns, three shape classes (IFMLNode, IFMLLabel and IFMLCompartment) and one edge class
(IFMLConnection) are defined and related to realize the patterns. These classes (except IFMLCompartment) are
subclasses of IFMLDiagramElement to allow them to be styled independently and to reference their own IFML
Element.

Some classes have properties to disambiguate the notation and a corresponding enumeration. For instance labels
may be of different kinds such as Parameter, ViewContainer, etc., which will determine how the text decoration will
be rendered.

The following subclause provides the detailed specification of the DI metamodel.

10.5 Package IFMLDI

10.5.1 Enumeration LabelKind

Description
Enumeration defining the kinds of labels, which will determine how to render the label decoration.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 60

Literals
+ action: Label of an Action.
» activationExpression: Label of an ActivationExpression.
+ conditionalExpression: Label of a ConditionalExpression.
+ dataBinding: Label of a DataBinding.
* form: Label of a Form.
* interactionFlowExpression: Label of an InteractionFlowExpression.
+ list: Label of a List.
+ namedElement: Label of any NamedElement without additional decoration.
+ parameter: Label of a Parameter.
* parameterBindingGroup: Label of a ParameterBindingGroup.
+ selectionField: Label of a SelectionField.
+ simpleField: Label of a SimpleField.
» validationRule: Label of a ValidationRule.

. viewContainer: Label of a ViewContainer.

10.5.2 Class IFMLCompartment
Abstract: No
Generalization:
. DD::DI::Shape
Description

An IFMLCompartment is a section within an IFMLDiagramElement. An IFMLCompartment organizes the items in
an [IFMLDiagramElement so that it is easy to differentiate between them. IFMLCompartments may contain
IFMLNodes or IFMLLabels.

Association Ends

. ownedLabels [0..*]: [FMLLabel - Composite association to the IFMLLabels owned by the
compartment.

. ownedNodes [0..*]: IFMLNode - Composite association to the IF'MLNodes owned by the compartment.

10.5.3 Class IFMLConnection
Abstract: No
Generalization:

. DD::DI::Edge
. IFMLDiagramFElement

Description

An IFMLConnection represents a depiction of a connection between two (source and target)
IFMLDiagramFElements. It specializes DI::DD::Edge. [IFMLConnections do not contain labels. All
IFMLConnections are owned directly by an IFMLDiagram. The way-points of IF'MLConnections are always
relative to that diagrams’s origin point and must be positive coordinates.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 61

Association Ends
. sourceElement [1]: IFMLDiagramElement - Source IFMLDiagramElement of the connection.
. targetElement [1]: IFMLDiagramElement - Target IFMLDiagramElement of the connection.

10.5.4 Class IFMLDiagram
Abstract: No
Generalization:

. DD::DI::Diagram

. IFMLNode

Description

IFMLDiagram represents a depiction of all or part of an IFMLModel. It specializes DD::DI::Diagram and
IFMLNode, since a diagram may be seen as a node as in the case of ViewPoint and Module.

Association Ends

. diagramElements [0..*]: [IEMLDiagramElement — The diagram elements contained in this diagram.

10.5.5 Class IFMLDiagramElement
Abstract: No
Generalization:

. DD::DI::DiagramElement

Description

IFMLDiagramElement extends DD::DI::DiagramElement and is the supertype of all elements in diagrams, including
diagrams themselves. When contained in a diagram, diagram elements are laid out relative to the diagram’s origin.

An IFMLDiagramElement can be useful on its own (i.e., purely notational), or, more commonly, it is used as a
depiction of another IFML Element from an IFMLModel. An IFMLDiagramElement can own other diagram
elements in a graph-like hierarchy. IFMLDiagramElements can own and/or share IFMLStyle elements. Shared
IFMLStyle elements are owned by other IFMLDiagramElements.

Association Ends
. localStyle [0..1]: IFMLStyle - Composite associations to IFMLStyles owned by the diagram element.
. sharedStyle [0..1]: IEMLStyle - Reference to IFMLStyles shared with other diagram elements.

. modelElement [0..1]: ifml::core::Element - Referenced Element from and IFML model.

. ownedElements [0..*]: IEMLDiagramElement - Composite association to the IFMLDiagramElements
owned by the current IFMLDiagramElement.

10.5.6 Class IFMLLabel
Abstract: No
Generalization:

. DD::DI::Shape
. IFMLDiagramFElement

Description
An IFMLLabel is a label that depicts textual information about an IFML Element. An [IFMLLabel is always

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 62

contained (but not always rendered) in an IFMLNode directly or through an IFMLCompartment. In IFML, labels are
not found in [IFMLConnections. IFMLLabels may derive the textual information to be depicted from a referenced
IFML model Element that contains the property with the label text.

Attributes

. kind: LabelKind - Determines to what kind of Element the IFMLLabel corresponds, e.g., label of a
Parameter, a ViewContainer, an Action, etc.

10.5.7 Class IFMLNode
Abstract: No
Generalization:

. DD::DI::Shape

. IFMLDiagramElement

Description

An IFMLNode represents a figure with bounds that is laid out relative to the origin of the diagram. Note that the
bounds’ x and y coordinates are the position of the upper left corner of the node (relative to the upper left corner of
the diagram). IFMLNodes may contain [IFMLCompartments and other IFMLNodes and may be connected by
IFMLConnections.

Association Ends

. ownedCompartment [0..*]: IEFMLCompartment - Composite associations to the IFMLCompartments
owned by the node.

. ownedLabel [0..1]: [FMLLabel - Composite association to the label owned by the node.

. ownedNodes [0..*]: [IEMLNode - Nested nodes of the current node. This relation is only valid if the
nested node is fixed to the parent node side.

10.5.8 Class IFMLStyle
Abstract: No
Generalization:

* DD::DI:Style
Description

An IFMLStyle represents appearance options for IFMLDiagramElements. One or more elements may reference the
same IFMLStyle element, which must be owned by an IFMLDiagramElement.

Attributes
. fillColor: Color - Background color of the figure.
. fontName: String - Name of the font used by the styled [IF'MLDiagramElement
. fontSize: Real - Size of the font used by the styled IF'MLDiagramElement

10.6 IFML DI to DG Mapping Specification

The DD architecture expects language specifications to define mappings between interchanged and non-
interchanged graphical information, but does not restrict how it is done. The IFML DI to DG mapping is shown in
Figure 16 by a shaded box labeled “IFML Mapping Specification” in the middle section and is accomplished in this
specification by means of the following QVT mapping.

[1 [transformation IFM.DitoDGin ifnidi: IFMD, in ifni: IFM, out DG |

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 63

main() {
i fm di.objectsO Type(l FM.Di agran) - >map t oG aphics();
}

©CoOo~NOUTAWN

61 query Vi ewCont ai ner:: getLabel Text(): String {

62 var text :=if self.ocl TypeOf (Wndow) and self.isMdal then
63 var text := if self.ocl TypeOf (Wndow) and not self.isMbdal
64

gg text += if self.isXOR then "[XOR] " endif;

67 text += if self.isLandmark then "[L] endi f;

68 text += if self.isDefault then "[D] endi f;

69

" «Nbdal »"
then " «W ndow»"

mappi ng | FMLDi agram : t oG aphi cs(): Canvas {
menber += sel f.di agranEl enment s->map t oG aphics();

}
10
11 mappi ng | FMLDi agr antl ement : : t oG aphics(): Goup {
12 local Style := copyStyle(self.local Style);
13 sharedStyl e : = copyStyl e(sel f.sharedStyl e);
14 }
15
16 mappi ng | FM_Node: : t oGraphi cs(): Goup inherits | FM.Di agranEl enent::toG aphics() {
17 menber += sel f. nodel El enent. map t oG aphi cs(sel f);
18 menber += sel f. ownedConpart nment s- >map t oG aphi cs();
19 menber += sel f. ownedLabel . map t oG aphics();
20 }
21
22 mappi ng | FM_Label : : t oG aphi cs(): Text inherits | FM.Di agrantl enent::toG aphics() {
23 var e := self.nodel El enent;
24 bounds : = sel f. bounds;
25 data := switch {
26 case (sel f.kind = Label Ki nd: : NAVMED_ELEMENT)
27 e. name;
28 case (self.kind = Label Ki nd: : VI EW_CONTAI NER)
29 e. ocl AsType(Vi ewCont ai ner) . get Label Text ();
30 case (sel f.kind = Label Ki nd: : ACTI ON)
31 e. ocl AsType(Action). get Label Text();
32 case (self.kind = Label Ki nd: : PARAVETER)
33 "«Paranmeter» " + e.nane + " + e.type. nane;
34 case (self.kind = Label Ki nd: : FORM
22 "«Forms " + e.namne;
37 case (self.kind = Label Ki nd: : LI ST)
38 "«List» " + e.nane;
39 case (self.kind = Label Ki nd:: SI MPLE_FI ELD)
40 "«Simpl eField» " + e.nane;
41 case (self.kind = Label Ki nd: : SELECTI ON_FI ELD)
42 "«Sel ectionFiel d» " + e.nane;
43 case (self.kind = Label Ki nd: : PARAMETER Bl NDI NG_GROUP)
44 " «Par amet er Bi ndi ngGr oup»";
45 case (self.kind = Label Ki nd: : ACTI VATI ON_EXPRESSI ON)
46 "«Act i vat i OnExpr essi on»";
47 case (self.kind = Label Ki nd: : | NTERACTI ON_FLOW EXPRESSI ON)
48 "«l nteracti onFl owExpr essi on»";
49 case (self.kind = Label Ki nd: : VALI DATI ON_RULE)
50 "«Val i dat i onRul e»";
51 case (self.kind = Label Ki nd: : CONDI TI ONAL_EXPRESSI ON)
52 "«Condi ti onal Expressi on»";
53 case (self.kind = Label Ki nd: : DATA_BI NDI NG)
54 " «Dat aBi ndi ng»";
55 def aul t
56 v
57 . '
c8 , H
59
60

endi f;

endi f;

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

64

return text + self.nang;

}

mappi ng El enent::toG aphics(n: | FM_.Node): G aphical El ement
di sjuncts Vi ewCont ai ner::toRectangle, ViewConmponent::toRectangle,
Modul e: : t oRect angl e, Vi ewConponent Part::toRectangle, Event::toCircle,
Action: :toPol ygon, ViewPoint::toPolygon, Mdul eDefinition::toRectangle,
Port::toRectangle, PortDefinition::toRectangle, Mdul ePackage::toRectangle {

}

mappi ng Vi ewCont ai ner: :toRectangl e(n: | FM_Node): Rectangl e {
bounds : = n. bounds;
}

mappi ng Vi ewConponent: :toRectangl e(n: | FM_.Node): Rectangle {
bounds : = n. bounds;
cornerRadi us : = 15;

}

mappi ng Modul e: : toRectangl e(n: | FM_Node): Rectangle {
bounds : = n.bounds;
}

mappi ng Modul eDefinition::toRectangl e(n: | FM_Node): Rectangle {
bounds := n.bounds;

}

mappi ng PortDefinition::toRectangl e(n: | FM.Node): Rectangle {
bounds : = n. bounds;

}

mappi ng Port::toRectangl e(n: |FM.Node): Rectangle {
bounds : = n. bounds;

}

mappi ng Modul ePackage: : t oRect angl e(n: | FM_LNode): Rectangle {
bounds : = n. bounds;

}

mappi ng Vi ewConponent Part::toRectangl e(n: | FM_Node): Rectangle {
bounds : = n. bounds;

}

mappi ng Event::toCircle(n: |FM.Node): GCrcle {
var b := n. bounds;
center := object Point{b.x + b.width / 2; b.y + b.height / 2};
radius :=if b.width < b.height then

b.width / 2
el se
b. height / 2
endi f;

}

mappi ng Action::toPol ygon(n: | FMNode): Pol ygon {
var b := n.bounds;
poi nt += object Point {b.width * (1/4); y := 0};
poi nt += object Point {b.width * (3/4); y := 0};
poi nt += object Point {b.width; b.height * (1/4)};
poi nt += object Point {b.width; b.height * (3/4)};
poi nt += object Point {b.width * (3/4); b.height};
poi nt += object Point {b.width * (1/4); b.height};
poi nt += object Point {0; b.height * (3/4)};
poi nt += object Point {0; b.height * (1/4)};

}

mappi ng Vi ewPoi nt: :toPol ygon(n: | FM.Node): Pol ygon {

var b := n.bounds;

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

65

138 poi nt += object Point {b.width * (1/2); y := 0};
139 poi nt += object Point {b.w dth; b.height};

140 poi nt += object Point {0O; b.height};

141 |}

142

143 | mappi ng Par anet er Bi ndi ngG oup: : t oPol ygon(n: | FM_Node): Pol ygon {
144 var b := n.bounds;

145 poi nt += object Point {x:=0,y:=0};

146 poi nt += object Point {b.w dth*3/4,y: =0};

147 poi nt += object Point {b.w dth,b.height};

148 poi nt += object Point {b.w dth*1/4,b. height};

149 |}

150

151 | mapping | FM_.Conpartnent::toG aphics(): Goup {

152 menber += obj ect Rectangle {bounds: = self.bounds};
153 menber += sel f. ownedNodes. map t oG aphics();

154 menber += sel f. ownedLabel s. map t oG aphi cs();

155 |}

156

157 | mappi ng | FM_.Connection::toG aphics(): Goup inherits
158 [| FMLDi agr antEl enent: :t oG aphi cs() {

159 menber += sel f.nodel El ement. map t oG aphi cs(sel f);
160 |}

161

162 | mappi ng El ement::toG aphics(c: | FM.Connection): Graphical El ement
163 di sjuncts Navi gati onFl ow: : t oPol yl i ne, DataFl ow. :toPol yline {
164 |}

165

166

167 | mappi ng Navi gati onFl ow: :toPol yl i ne(c: | FM.Connection): Polyline {
168 point := c.waypoint;

169 sharedStyle : = solidStyl eProp;

170 endMar ker : = arrow\var ker Prop;

171 |}

172

173 | property solidStyl eProp = object DG :Style {

174 strokeDashLength : = Sequence{};

175 |}

176

177 | property arrowvarkerProp = object Marker {

178 size := object Dimension {width := 2; height := 2};
179 reference := object Point {x :=2; y := 1};

180 menber += object Pol ygon {

181 poi nt += object Point {x :=0; y := 0};

182 point += object Point {x :=2; y := 1};

183 point += object Point {x :=0; y := 2};

184 }

185 |}

186

187 | mappi ng Dat aFl ow. : toPol yl i ne(c: | FM_.Connection): Polyline {
188 point := c.waypoint;

189 sharedStyl e : = dashedStyl eProp;

190 endMar ker : = arrowMar ker Prop;

191 |}

192

193 | property dashedStyl eProp = object DG :Style {

194 strokeDashLength : = Sequence{2, 2};

195 |}

196

197 | hel per copyStyle(s: IFM.Style): DG :Style {

198 fontNane : = s.fontNang;

199 fontSize := s.fontSize;

200 fillColor := s.fillColor;

201 |}

202

203

204

205

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

66

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

67

11 UML Profile for IFML

11.1 Overview

The UML Profile for IFML enables the use of UML for representing IFML models. The purpose of the profile is to
extend the UML metamodel by customizing it with specific IFML constructs.

The UML Profile for IFML is based on the use of UML components (both basic components and packaging
components), classes and other concepts.

Components may form hierarchical structures (a packaging component that owns other components) and they may
be connected with dependencies, either through explicit interfaces or directly.

Components may be shown in a structural UML diagram, such as a component diagram.

Their dynamic behavior may be shown in interaction diagrams, such as a communication diagram. The behavior of
components may also be described in a statechart diagram or in an activity diagram. Examples of these diagrams ar
not shown here.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

©

68

11.2 The IFML Profile of UML

The UML Profile for IFML consists of the stereotypes defined in this subclause. These stereotypes are shown in a

set of UML diagrams below, along with a table for each diagram giving the specification of the depicted stereotypes.

: " «Metaclass» «stereotype»
« _ereo y.pe» Package ModulePackage
Viewpoint
«stereotype» «stereotype» «stereotype»
DomainModel InteractionFlowModel IFMLModel
Figure 19: Package stereotypes
Table 3: Package stereotypes
Stereotype UML Metaclass Tagged Values Constraints Icon
«DomainModel» UML::Kernel::Package
«IFMLModel» UML::Kernel::Package
«InteractionFlowModel» | UML::Kernel::Package
«ModulePackage» UML::Kernel::Package
«Viewpoint» UML::Kernel::Package
«Metaclass»
Comment
«stereotype»
Annotation
Figure 20: Annotation stereotype
Table 4: Annotation stereotype
Stereotype UML Metaclass Tagged Values Constraints Icon
«Annotation» UML::Kernel::Comment

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

69

Figure 21: ViewContainer, ParameterBindingGroup, and ModuleDefinition stereotypes

Table 5: ViewContainer, ParameterBindingGroup, and ModuleDefinition stereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon
UML::Components:: {é:sltuit contain at
«ModuleDefinition» BasicComponents:: .
Component InteractionFlow-
p ModelElement
UML::Components::
«ParameterBindingGroup» BasicComponents::
Component
UML::Components:: isLandMark:
. . . Boolean
«ViewContainer» BasicComponents:: .
Component isDefault: Boolean
p isXor: Boolean
Table 6: ViewContainer and ModuleDefinition stereotypes (extension)
Stereotype UML Metaclass Tagged Values Constraints Icon
«Menuy» UML::Components::
BasicComponents::
Component
«Window» UML::Components:: |isNewWindow: &
BasicComponents:: | Boolean
Component isModal: Boolean

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

70

«Metaclass»
Classifier

«stereotype»
InteractionFlowElement

T

«stereotype»
ViewElement «stereotype» «stereotype»
Module Action
«stereotype»
ViewComponentPart
«stereotype»
ViewComponent «stereotype» «stereotype» «ster.eotype»
ConditionalExpression Slot Field
AN
«stereotype» «stereotype» «stereotype»
Details Form List
Figure 22: InteractionFlowElements stereotypes (except events)
Table 7: InteractionFlowElements stereotypes (except events)
Stereotype UML Metaclass Tagged Values Constraints Icon
. UML::Kernel::
«ViewElement» .
Classifier
. UML::Kernel::
«InteractionFlowElement» .
Classifier
UML::Kernel::
«Module» .
Classifier
. UML::Kernel::
«ViewComponent» ;
Classifier
«ViewComponentParty» UML::Kernel::Classifier

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

71

Table 8: InteractionFlowElements stereotypes (except events) (extensions)

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

Stereotype UML Metaclass Tagged Values Constraints Icon
«List» UML::Kernel::
Classifier —
«Form» UML::Kernel::
Classifier /
«Details» UML::Kernel::
Classifier =
«Field» UML::Kernel::
Classifier

72

«Metaclass»
OpaqueExpression

f

«stereotype»
Expression
JAN
[|
«stereotype» «stereotype» «stereotype»
BooleanExpression InteractionFlowExpression ConditionalExpression
JAN
«stereotype» «stereotype»
Constraint ActivationExpression
«stereotype»
ValidationRule
Figure 23: Expressions stereotypes
Table 9: EXpressions stereotypes
Stereotype UML Metaclass Tagged Values | Constraints Icon
«ActivationExpression» UML::Kernel:: .
OpaqueExpression
. UML::Kernel::
«BooleanExpression» .
OpaqueExpression
UML::Kernel::
«Conditional Expression» OpaqueExpression
UML::Kernel:: Classifier
. UML::Kernel::
«Constrainty .
OpaqueExpression
«Expression» UML::Kernel::
OpaqueExpression
. . ML::Kernel::
«InteractionFlowExpression» u ermnet.:
OpaqueExpression
«ValidationRuley UML::Kernel:: .
OpaqueExpression

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

«Metaclass»
Property

«stereotype»
Parameter

+direction : Direction

«stereotype»
ContextVariable

+scope : ContextVariableScope

Ay
| |

DataContextVariable

«stereotype» «stereotype»
SimpleContextVariable

Figure 24: Parameter and context variable stereotypes

Table 10: Parameter and context variable stereotypes

Stereotype

UML Metaclass

Tagged Values Constraints

Icon

«Parameter»

UML::Kernel::Property

direction: Direction

«ContextVariable»

UML::Kernel::Property

scope:ContextVaria
bleScope

«SimpleContextVariable»

UML::Kernel::Property

«DataContextVariable»

UML::Kernel::Property

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

74

«Metaclass»
Port

«stereotype»

«stereotype»

«stereotype»

ActionEvent

[P

«stereotype»
OnSelectEvent

PortDefinition Event Port
«stereotype» «stereotype»
CatchingEvent ThrowingEvent
«stereotype» «stereotype»
JumpEvent SetContextEvent
«stereotype» «stereotypen» «stereotype»
ViewElementEvent SystemEvent

+type : SystemEventType

«stereotype»
LandingEvent

«stereotype»
OnSubmitEvent

«stereotype»
OnLoadEvent

Figure 25: Port and Events stereotypes

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

75

Table 11: Portsand Events stereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon
. UML::CompositeStructures::
«ActionEvent» Ports--Port
«Eventy UML::CompositeStructures::
Ports::Port
UML::CompositeStructures:: | type:
«SystemEvent Ports::Port SystemEventType
. UML::CompositeStructures::
«CatchingEvent Ports:-Port
. UML::CompositeStructures:: ‘
«ThrowingEvent» Ports:-Port
«JumoEvents UML::CompositeStructures::
P Ports::Port
. UML::CompositeStructures::
«LandingEvent» Ports:-Port
. UML::CompositeStructures::
«ViewElementEvent» Ports:-Port
Porby UML::CompositeStructures::
Ports::Port
. UML::CompositeStructures::
«PortDefinition» Ports: Port

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

Table 12: Ports and Events stereotypes (extensions)

Stereotype UML Metaclass Tagged Values Constraints Icon
«OnSelectEventy | UML::CompositeStru
ctures:: Ports::Port
«OnSubmitEventy | UML::CompositeStru
ctures:: Ports::Port @
«SetContextEvent» | UML::CompositeStru
ctures:: Ports::Port
«OnLoadEventy | UML::CompositeStru

ctures:: Ports::Port

«Metaclass»
DirectedRelationship

«stereotype»

InteractionFlow
«stereotype» «stereotype»
DataFlow NavigationFlow

Figure 26: InteractionFlow stereotypes

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

77

Table 13: I nteractionFlow stereotypes

Stereotype UML Metaclass Tagged Constraints Icon
Values
. . . Must be
«DataFlows UML::Kernel::DirectedRelationShip associated with a o v
ParameterBinding #
«InteractionFlow» | UML::Kernel::DirectedRelationShip
«NavigationFlow» |UML::Kernel::DirectedRelationShip /v
«Metaclass»
Actor
«stereotype»
ContextDimension
~
«stereotype» «stereotype» «stereotype»
UserRole Position Device

Figure 27: ContextDimensions
Table 14: ContextDimensions stereotypes

Stereotype UML Metaclass Tagged Values Constraints Icon

«ContextDimension» UML::UseCases::Actor

Table 15: ContextDimensions stereotypes (extension)

Stereotype UML Metaclass Tagged Values Constraints Icon

«Device» UML.::UseCases::Actor [_.]
«UserRole» UML::UseCases::Actor

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

78

«Position» UML::UseCases::Actor v

«Metaclass»
Classifier
«stereotype» «stereotype»
ContentBinding ParameterBinding
T «stereotype»
Context
«stereotype» «stereotype»

DataBinding DynamicBehavior

«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
FeatureConcept DomainConcept ActivityConcept BehaviorConcept BehavioralFeatureConcept
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
UMLStructuralFeature UMLDomainConcept BPMNActivityConcept UMLBehavior UMLBehavioralFeature

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

Figure 28: ContentBindings, Context, and ParameterBindings stereotypes

79

Table 16: ContentBindings, Context, and Parameter Bindings ster eotypes.

Stereotype UML Metaclass Tagged Values Constraints Icon
«ContentBinding UML::Kernel::Classifier
«Contexty UML::Kernel::Classifier
«DataBinding» UML::Kernel::Classifier

«DynamicBehavior» UML.::Kernel::Classifier L—
«ParameterBindingy UML::Kernel::Classifier
«ActivityConcept» UML::Kernel::Classifier
«FeatureConcept» UML::Kernel::Classifier
«DomainConcept» UML::Kernel::Classifier
«BehaviorConcept» UML::Kernel::Classifier
«BehavioralFeatureConcept» | UML::Kernel::Classifier
«BPMNACctivityConcept» | UML::Kernel::Classifier
«UMLStructuralFeature» | UML::Kernel::Classifier
«UMLDomainConcept» | UML::Kernel::Classifier
«UMLBehavior» UML::Kernel::Classifier
«UMLBehavioralFeature» | UML::Kernel::Classifier

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

80

11.3 Using IFML Stereotypes

IFML stereotypes can be user with different abstraction levels, i.e. using stereotypes that correspond to the [FML
Core package, the IFML Extension package, or user provided platform-specific stereotypes.

«ViewComponent» | v/iewElementEvent» «ViewComponent»
MailBoxList — — — — — — > Messagelist
T «NavigationFlow»

|

Figure 29: Stereotyped UML diagram with IFML Core

For instance, for stereotyping with IFML Core concepts, classes, components and ports may be stereotyped with
ViewContainer, ViewComponent, ViewComponentPart, Event, and Action concepts, and directed relationships
with NavigationFlow and DataFlow concepts as shown in Figure 29.

«List» |£<<On8electEvent>> «List»

MailBoxList — — — — — — > Messagelist
T «NavigationFlow»
|

Figure 30: Stereotyped UML diagram with IFML Extensions

For stereotyping with IFML Extension concepts, classes may be stereotyped as List, Details and Form concepts, and

ports with events like OnSelectEvent and OnSubmitEvent as shown in Figure 30.

Components own (or import) classes. In Figure 31, ViewContainers are shown as components and contain classes
stereotyped as ViewComponents.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

81

«ViewContainer» =

AlbumSearch «ViewContainer» =]
{isLandmark} Albums
- «OnSubmitEvent»
«ViewComponent» Ll «NavigationFlow» «ViewComponent»
AlbumSearchForm -]— - = — — — — |3 AlbumList

Figure 31: Stereotyped UML diagram with ViewContainers containing ViewComponents

Parameters are defined as properties of the ViewComponents, with a tagged value represeting their direction.
ParameterBindingGroups are asociated to NavigationFlows and DataFlows and contain classes stereotyped as
ParameterBindings.

Figure 32 shows the representation of Parameters, ParameterBindingGroups and ParameterBindings on the previous
example.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 82

«ViewContainer» =l
AlbumSearch
{isLandmark}

«ViewComponent» If
AlbumSearchForm

«Parameter»-keyWord : String{direction = out}

«OnSubmitEvent»

«Navigati&n Flow»

«ViewContainer» E]

Albums

«ViewComponent»
AlbumList

«Parameter»-name : String{direction = in}

1«use»

Figure 32: Stereotyped UML diagram including Parameters, ParameterBindings and

ParameterBindingGroups

|
Y

«ParameterBindingGroup» =]

«ParameterBinding»
ParameterBinding

«Parameter»+keyWord : String{direction = out}
«Parameter»+name : String{direction = in}

11.4 Profile Metamodel Mapping

Table 17 Shows, for each metaclass from the IFML metamodel in Clause 8, the mapping to the respective stereotype

of the IFML UML profile.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

83

Table 17: Profile metamodel mapping

IFML Metaclass Stereotype
IFML::Core::Action «Actiony
IFML::Core::ActionEvent «ActionEventy
IFML::Core:: ActivationExpression «ActivationExpression»
IFML::Core:: ActivityConcept «ActivityConcept»
IFML::Core:: Annotation «Annotationy»
IFML::Core:: BehavioralConcept «BehavioralConcept»
IFML::Core:: BehavioralFeaureConcept «BehavioralFeatureConcept»
IFML::Core::BooleanExpression «BooleanExpression»
IFML::Core::BPMNActivityConcept «BPMNACctivityConcept»
IFML::Core::CatchingEvent «CatchingEvent»
IFML::Core::ConditionalExpression «ConditionalExpression»
IFML::Core::Constraint «Constraint»
IFML::Core::ContentBinding «ContentBinding»
IFML::Core::DomainModel «DomainModel»
IFML::Core::Context «Contexty
IFML::Core::ContextDimension «ContextDimension»
IFML::Core::ContextVariable «ContextVariable»
IFML::Core::DataBinding «DataBinding»
IFML::Core::DataContextVariable «DataContextVariable»
IFML::Core::DataFlow «DataFlow»
IFML::Core::DomainConcept «DomainConcept»
IFML::Core::DomainModel «DomainModel»
IFML::Core::DynamicBehavior «DynamicBehavior»
IFML::Core::Element «Elementy
IFML::Core::Event «Event»
IFML::Core::Expression «Expression»
IFML::Core::FeatureConcept «FeatureConcept»
IFML::Core::IFMLModel «IFMLModel»
IFML::Core::InteractionFlow «InteractionFlow»
IFML::Core::InteractionFlowElement «InteractionFlowElement»
IFML::Core::InteractionFlowExpression «InteractionFlowExpression»
IFML::Core::InteractionFlowModel «InteractionFlowModel»
IFML::Core::InteractionFlowModelElement | «InteractionFlowModelElement»
IFML::Core::Module «Module»

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

84

Table 17: Profile metamodel mapping

IFML Metaclass Stereotype
IFML::Core::ModuleDefinition «ModuleDefinitiony
IFML::Core::ModulePackage «ModulePackage»
IFML::Core::NamedElement «NamedElement»
IFML::Core::NavigationFlow «NavigationFlow»
IFML::Core::Parameter «Parameter»
IFML::Core::ParameterBinding «ParameterBinding»
IFML::Core::ParameterBindingGroup «ParameterBindingGroup»
IFML::Core::Port «Port»
IFML::Core::PortDefinition «PortDefinition»
IFML::Core::SimpleContextVariable «SimpleContextVariable»
IFML::Core::SystemEvent «SystemEvent»
IFML::Core::ThrowingEvent «ThrowingEvent»
IFML::Core::UMLBehavior «UMLBehavior»
IFML::Core::UMLBehavioralFeature «UMLBehavioralFeature»
IFML::Core::UMLDomainConcept «UMLDomainConcept»
IFML::Core::UMLStructuralFeature «UMLStructuraly
IFML::Core::ViewComponent «ViewComponenty
IFML::Core::ViewComponentPart «ViewComponentPart»
IFML::Core::ViewContainer «ViewContainer»
IFML::Core::ViewElement «ViewElement»
IFML::Core::ViewElementEvent «ViewElementEvent»
IFML::Core::ViewPoint «ViewPointy
IFML::DataTypes::ParameterKind «ParameterKind»
IFML::DataTypes::SystemEventTypeEnum | «SystemEventTypeEnum»
IFML::Extensions::Device «Device»
IFML::Extensions::Form «Form»
IFML::Extensions::Field «Field»
IFML::Extensions::List «List»
IFML::Extensions::LandingEvent «LandingEvent»
IFML::Extensions::JumpEvent «JumpEvent»
IFML::Extensions::Menu «Menu»
IFML::Extensions::Details «Details»
IFML::Extensions:: Window «Window»
IFML::Extensions::Position «Position»

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

85

Table 17: Profile metamodel mapping

IFML Metaclass Stereotype
IFML::Extensions::OnLoadEvent «OnLoadEvent»
IFML::Extensions::OnSelectEvent «OnSelectEventy
IFML::Extensions::SetContextEvent «SetContextEvent»
IFML::Extensions::Slot «Sloty»
IFML::Extensions::OnSubmitEvent «OnSubmitEvent»
IFML::Extensions::UserRole «UserRole»
IFML::Extensions::ValidationRule «ValidationRuley

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

86

Annex A IFML by Example: Modeling an Email
(informative)

A.1 Introduction

This annex exemplifies the modeling construct and the expressive power of IFML by modeling a popular Internet
Application specialized on email service.

A.2 The Domain Model

The email application manages mail messages and contacts of users.

An User possesses a set of MailBoxes. A MailBox (aka System Tag) consists of a set of MailMessages,
MailMessages are organized not only in MailBoxes but also in user-defined clusters, called Tags. Therefore,
MailBoxes and Tags can be seen as special cases of a common concept of MailMessageGroup. A user can also
manage ChatConversations, which are composed of ChatMessages.. A User is also associated with a set of
Contacts. Contacts are clustered in ContactGroups.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

87

wdataTypes wdataTypes «dataTypes «dataTypes
Date Time Blob Password
«Class» . «Class» «Class»
ChatConversation 1 -chatConversation2Chathessage ChatMessage S Message
chatMessage2ChatConversation 1. |-recipient : String
-message . String
-user2ChatConversation * 1. |-user2ChatMessage [

-chatConversation2User (1

«Class»
Attachement

-name : String
-value : Blob

* | -mm2Attachement

1 | -attachement2MailMessage

1..* <bcc2maiMessage

1.+ -cc2maiMessage

-to2maiMessage
1.

1.% -from2mailMessage

-fram

1.° [Ho *|-co
«Class»

«Classn -chatMessage2User
User 1
wClass»
«Class» «Class» MailMessage
MailBox MailMessageGroup mmZmaiMessageGroup , . -subject : String
1 o - |-body : String
group2user ~colour ; String 1.0] -date : Date
1 mmgZmailMessage time : Time
-read : Boolean
* |-tag2subTag
wClass»
Tag 1
subTag2Tag
1. -User2group
«Class» «Class» «Class»
Group ContactGroup Contact -
- 1 -contactGroupZcontact —
-name : String — -picture : Blob
tcontact?contactGroup 1.* |-phone : String

L ry-name: String

EmailUser

-emaildddress ; String

Figure 33: the Domain Model of the online mailing application.
Interaction Flow Modeling Language (IFML) 1.0, Beta 1

A.3 Model of the Interface

The email application interface consists of a top-level container, which is logically divided into two alternative sub-

containers: one for managing MailMessages and one for managing Contacts.

Your E-Mail
<3 Q x Q {http:waw.rna-l.com.’lnbox!4yb6bo:-<] @
Y
Mail [~7] I 121 B
Mail v a- (@) Morew 1-1Bef13 £ | D> B
Inbox (2) Brandy Lewis People Company Reporting Anomalie Jun 18
Starred WaltersCompany ADY Review- Maybe normal in diferent... Jun 15
Impertant Youtw Your Youtv Digest - Jan 20, 2013 Jan 11
Chats Mandy Batilla Request to share ADY_F_WorkFlan.doc Jun 10 .
Sent Mail Brandy Lewis ADY Company Reporting 2 Jun 10
Drafts WaltersCompany ADY brainstorming - The send action is ... May 6
All Mail WaltersCompany ALW brainstorming - What kind of containers... Jan 5
Spam me test May 2
Trash Flor Jenkings ADY Verona meeting minutes May 1
Water Fracesco Tietto (no subject) Apr 31
More w Daniel Parinni Research Project Apr 30
Camil James Internship in Asmat SA Apr 16
WaltersComopany ADY bainstorming Mar 15
[v]
o
Figure 34: The email application view container for MailMessages
Your E-Mail
<: i: > x Q { hitp://wwwmail. com/inbox/contacts] @
: =
Mail E I I | Q]
Contacts L D L] ,ﬁ +w More w 1-50f 5 < > ﬁ‘

My Contacts (5) Brandy Lewis brandylewis 18@mail com

WaterGroup Walter Miran walmir@mail.com
Most Mandy Batilla mantilla_org 12 @mail com
Other John Master masterjohn54@mail.com
New Group Richard Burke richard burke. d@mail com
Import
a
L4
Figure 35: email application view container for Contacts
By default, when the application is accessed, the container for managing MailMessages is presented. At any
moment, it is possible to Switch from the MailMessages to the Contacts view components, by means of a menu,
shown in Figure 36.
Interaction Flow Modeling Language (IFML) 1.0, Beta 2 89

vl 121

Mail v - B 1 & [I S
Mail
E Contacts
Il Tasks WaltersCompany IFML brainstorming - Wh

Figure 36: A menu allows one to switch from the MailMessages to the Contacts view components

The model of the top level container of the application is shown in Figure 37

[XOR] MAIL Top

[D] [L] MailMessages [L] Contacts

Figure 37: IFML model of the Top Container of the email application.

Notations

1. The nesting of mutually exclusive view containers into a view container (isXOR property equal true) is
denoted with a [XOR] icon.

2. The default view container (isDefault property equal true) of a set of mutually exclusive view sibling
containers is denoted with a [D] icon on container.

3. The global reachability of view container from all the other sibling containers and their children sub-
containers is denoted with a [L] (Landmark) icon on container.

Model usability

* The use of the [L] (Landmark) icon reduces the number of navigation events that need to be explicitly
represented (otherwise one event should be necessary in all the view containers from which the target view
container is reachable), resulting in simpler models.

The MailMessages view container comprises five main nested elements:
* aview component (MboxList) showing a list of MailBoxes and Tags;

* aview container (MessageSearch) permitting the user to input search keywords to be matched against the
MailMessages;

* a MailBox view container, permitting one to access the messages of a specific MailBox or associated with a
specific Tag and the details of a specific message;

* a MessageWriter view container, permitting one to access the details of a specific message;
» aSettings view container, permitting one to modify the settings of the email application.

The MailBox, MessageWriter, and Settings view containers are in alternative: only one at a time is displayed. None
of these alternate view containers is the default one, because they are all accessed as a consequence of an explicit
user’s choice. The MessageWriter and Settings view containers are denoted as landmark, because they are reachable
from all the other sibling view containers of the MailMessages view container. Conversely, the MailBox view

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 90

container is not denoted as landmark, because it is accessed only by means of a specific interaction event: the
selection of a MailBox from the MboxList view component.

The MailBox view container comprises the view component (MessageList) showing the MailMessages associated to
a given MailBox or Tag. The MboxList allows user interaction: selecting a specific MailBox or Tag the user
produces a navigation event that results in changing the content of the MessageList, so to display the messages of
the selected MailBox or Tag. This behavior is represented in the model fragment shown in Figure 38.

«Window» [XOR] MAIL Top

[D] [L] Messages

[XOR] MessageSearch

«List»
MailBoxList

[XOR] MessageManagement

MailBox [L] Settings

«List»

Message List

[L] MessageWriter

Figure 38: Model of the MailMessages view container: a navigation event and parameter passing flow
between the MailBoxList view component and the MessageList view component denote that the user can select
one mail box and view a list of its messages

Semantics

1. The MBoxList view component is associated with an event, denoted by a circle. A interaction flow connects
the event to the target components affected by it: MessageList. The semantics of this pattern is that a user’s
interaction with the MailBoxList view component determines: 1) the display of the view container that
comprises the MessageList view component (the MailBox XOR child of the MessageManagement) the
computation and 2) the display of the target view component (in this case, the MessageList component is
computed with the selected MailBox as input parameter and displayed).

The model of Figure 38 can be refined to show the parameter binding that binds the selection of a MailBox in the
MailBoxList component and the display of the messages of that MailBox in the MessageList view component.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 91

Figure 39: Notations to express (or infer) parameter dependencies between view components.

Figure 40: Notations to express (or infer) parameter dependencies between view components with extension
mechanism.

Language extension and notation
1.

«Window» [XOR] MAIL Top

[D] [L] Messages

«List»

[XOR] MessageSearch

[XOR] MessageManagement

MailBox

[L] Settings

«List»

Message List

«ParameterBindingGroup»
SelectedMailBox -> MailBox

[L] MessageWriter

Messagelist

«List» MBoxList

«DataBinding» MailMessageGroup

«ParameterBindingGroup»
SelectedMailBox > MailBox

«List» MessageList

«DataBinding» MailMessage

«ConditionalExpression»

self.mm2MailMessageGroup = MailBox

4

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

In the upper part of Figure 40, a UML-style annotation explicitly expresses that an output parameter of the
source component is associated with an input parameter of the target component.
In the lower part of Figure 40, the model makes use of the IFML extension mechanism. An «List»

component is introduced, which extend the basic view component to represent a list of dynamically
extracted data objects*. The component refers a content binding of the DomainModel where the objects of

IFML has an extension mechanism whereby generic view and business components can be extended to introduce domain-
specific view and business logic. Object publishing and CRUD operations on objects are typical examples of extended

the list belong; it may also refer to an expression to denote a filter on the instances to display. In this case,
the join expression on relationship mm2MailMessageGroup (see the example DomainModel) dictates that
only the messages of the mail box received as an input parameter are displayed. The semantics of the
component may specify default input and output parameters, so that the parameter binding can be inferred
and need not be explicitly represented: the default output of the MailboxList list component is defined as
the selected object of type MailBox: the default input of the MessageList list component is an object of type
MailMessageGroup, as specified by the join expression on the relationship mm2MailMessageGroup. Since
these two parameters match, there is no need of expressing the parameter binding explicitly.

The MessageList component supports the interaction with mail messages, individually or in sets. On the entire set of
messages, the MarkAllAsRead event permits the user to update the message in the current MailBox, setting their
status to “read” (see Figure 41).

[__] v) More »
Mark all as read

WaltersCon| Select messages Your Youtv Digest
to see more aclions

Figure 41: The MarkAllAsRead user-generated event marks all messages in the current mail box as “read”

As shown in Figure 42, the MessageList supports a second kind of interaction: the selection of a subset of messages;
when there is at least one selected message, a view container is displayed (MessageToolbar), which permits the user
to perform several actions in the selected messages: archiving, deleting, moving to a MailBox/Tag, reporting as
Spam, etc.

In summary, the MessageList component supports three types of interactive events:

1. an event for selecting the entire set of messages and triggering an action upon them, marking all as read
(Figure 41);

an event for selecting/deselecting one or more messages (Figure 42);

3. an event for selecting an individual message and opening it for reading.

D v lii:_f_: r ﬁ"[o - More »
E__i Brandy Lewis People Company Reporting Anomalie

H| Youtw Your Youtv Digest - Jan 20, 2013

& Mandy Batilla Reguest to share ADY_P_WorkPlan.doc

Figure 42: When one or more messages are selected in the MessageList component, the MessageToolbar view
container is displayed, which allow the user to perform several actions of the selected set of messages. If all
messages are deselected, such view container is no longer displayed

Language extension and notation

1. For making the model more self-explaining and supporting code generation better, it is possible to further
extend IFML with a specific view component: the MultiChoiceList (Figure 43). The multi choice list
would extend the behavior of the list view component with more event types: the default type (denoted by
the default notation) expresses the selection of one element of the list; the selection/de-selection event type,
denoted by a ticker icon, expresses the selection or de-selection of any number of elements; the set
selection event type, denoted by an asterisk, denotes the triggering of an action on the entire set of element
of the list.

components.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 93

MessagelList

«List» MessageList

«DataBinding» MailMessage

«ConditionalExpression»
self. nm2MailMessageGroup =
MailBox

«Parameter» MailBox
@)

Message Selection

Figure 43: The «Multi-choice List» view component extends the «List» view component to enable more types
of interaction events with the element of the list

The behavior of the MessageSelection event of the MessageList view component that triggers the display of the
MessageToolbar view container is modeled as shown in Figure 44.

MailBox
«List»
MessagelL.ist
___/«ParameterBindingGroup»
MessageSelection SelectedMessages > MessageSet,
Delete «Menu» Message toolbar
Archive «Parameter» MessageSet «ActivationExpression»
not MessageSet.isEmpty()
Report
M)
MoveTuU U Labels

Figure 44: User events that mark one or more messages in the current mail box produce the display of the
MessageToolbar view container, which remains visible/active if at least one message is selected

The MessageSelection event has a parameter binding, which associates the (possibly empty) set of currently selected
messages with an input parameter of the MessageToolbar view component. The MessageToolbar view component
is associated with an (activation) expression, which tests that at least one message is selected.

Notation

1. For better readability of the model, it is possible to name the events, as shown in Figure 43 and in Figure
44. This annotation can be a guide for producing the implementation, for example it can be used to
generate the labels of buttons and links, the tool tips of commands, and other similar usability aids.

Semantics

1. The association of a boolean expression to a view container means that the view container is active/visible
if the expression evaluates to true.

The actions performed by the user on the messages (all, or a subset thereof) are represented as shown in Figure 45.
An interaction flow arrow connects the event responsible of triggering the action to the action itself, supporting the

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 94

specification of parameter bindings.

MailBox

() Delete

«List»

MessagelList

MessageSelection

«ParameterBindingGroup»

«Menu» Message toolbar

Delete /J\

Archive

«Parameter» MessageSet

i

Report

SelectedMessages > MessageSet

| «ActivationExpression»
not MessageSet.isEmpty()

«ParameterBindingGroup»
SelectedMessages > MessageSet

Figure 45: The MessageList view component and the MessageToolbar view container are associated with
events that trigger actions on messages. Actions are represented as components placed outside the view
containers, with input and output parameters

For example, the output parameter (MessageSet) of the MessageToolbar view container is associated with an input
parameter of the business actions Delete, Archive, and Report.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

95

The execution of an action produces an action completion event and the sending of an asynchronous throwingEvent
notification, denoted as a black circle reached by the outgoing InteractionFlow from the Action box. Such a
notification throwing event is matched by a catching event, which triggers the display of a MessageNotification view
component, shown in Figure 46.

i___ IHal

The message has been moved to the Trash Read mere Unde

D v Q More w

«Window» [XOR] MAIL Top

[D] [L] Messages

[XOR] MessageSearch

«List»

MailBoxList 0

Message

Notification

[XOR] MessageManagement

MailBox [L] Settings

«List»

Message List [L] MessageWriter

«ParameterBindingGroup»
SelectedMailBox > MailBox

Figure 46: The Messages view container comprises a message notification component, which displays
notifications of executed actions on Messages (illustrated above)

Note that the notification reception event is associated with the parameter MessageSet, which can be used in the
MessageNotification component, e.g., to support the undo of the action® (not modeled for brevity).

Some actions on mail messages require a more elaborate interaction flow: Move to folder and Associate with tag (see
Figure 50). For example, moving a set of selected messages to a folder is done by first accessing a view container in
a new window with the list of available MailBox and Tags (shown in Figure 47) and then selecting from such list the
destination MailBox or Tag.

> Modeling the undo also requires discriminating the action to undo, which can be simply modeled, e.g., with an additional

parameter denoting the type of action (e.g., delete) set by each action when creating an instance of the notification sending
event.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 96

Figure 47: The MoveTo action is activated by first accessing a modal view container with the list of the
available MailBoxes and Tags and then selecting the target one. The view container comprising the list of
MailBoxes and Tags is also associated with navigation events for creating new tags and managing existing

tags

O~

o

Brandy Lewis
WaltersCompany
WaltersCompany
Mandy Batilla
Brandy Lewis
WaltersCompany
me

Flor Jenkings
Fracesco Tietto

(e » Morew
Move to:

People Anomalie
ADY R AnotherBox =
ML b ASecondBox ki of
e Water
ADY c{ Spam
ADY brf Trash hd action
test Create New
ADY Vd Manage labels [s

(no subject)

The view container comprising the list of MailBoxes and Tags is also associated with navigation events for creating

new tags and managing existing tags. For example, the Create New event causes a modal view container to be
displayed, whereby the user can create a new tag and associate the selected messages with it (see Figure 48).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

97

MNew Label X

Please enter a new label name:

O Nest label under

l |v]
| Creagte Il Caoncel I

Figure 48: The Create New event causes a modal view container to be displayed, whereby the user can create

a new tag and associate the selected messages with it

The interaction flow for moving a message to an existing or newly created tag is represented in Figure 49. The view

container stereotypes «Modal» and «Modeless» annotate the view containers to specify that they open in a new
window and are modal or modeless.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

98

Mailbox

«List»

MessagelList

MessageSelect on

Delete «Menu» Message toolbar

Archive

«Parameter» MessageSet

Report mMessageSelect on

Message toolbar

[XOR] Tags

A
«Modeless» Tag Chooser

«List»
select Tag () Tag Folder List

~

L Create New

«Modal» Tag Creator

«Form»
create () New Tag Folder

Figure 49: The model of the interaction flow for moving a message to an existing or newly created tag. The
view container TagChooser is a modeless view container (which hides when clicking outside of it) and the
TagCreator is a modal view container.

Archiving, reporting, and associating messages to existing/new tags imply the invocation of business logic
components, as shown in Figure 50.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

MailBox

«List»
MessagelList

() Delete

MessageSelect on

Delete!

«Menu» Message toolbar

Archivel

«Parameter» MessageSet

Report

«ParameterBindingGroup» M
SelectedMessages > MessageSe 7 VoveT
/ /’ ovelo
«ParameterBindingGroup» ! ,
SelectedMessages > MessageSet” (Modeless» Tag Chooser
- I '
Associat | select «List»
e to Tag P | elect Tag .
. / Move < : Tag Folder List
to folder | ~
: Create New
«ParameterBindingGroup» | L
SelectedTag > ATag |
| «Modal» Tag Creator
Create Tag !
4 ,,,,,,,,,,,,,
and Create ST
Associate < New Tag Folder
Tag / Move
to folder

«ParameterBindingGroup»
NewTagName - TagNam

Figure 50: The model of the interaction flow for moving a message to an existing or newly created tag

In Figure 50 the parameter bindings are modeled explicitly: 1) the selected mail messages are associated with the
input of the Delete, Archive, and Report actions; 2) the SelectedTag parameter, which corresponds to the user’s
choice of a tag to associate with a set of messages, is the input of the AssociateToTag action®. Note that the
AssociateToTag action receives the selected message set through a DataFlow (dashed arrow) coming from the
MessageToolbar ViewContainer; 3) the NewTagName parameter, which corresponds to the new label entered by the
user, is the input of the CreateTag action.

The specification of composite action flows is not allowed but the internal functioning of an action could be
specified with an orchestration model (e.g, a UML activity diagram, a SOAML specification, etc.).

The access to the messages can also occur through a search functionality. An input field supports simple keyword
based search; with a click, the user can also access a more powerful search input form, where he can specify several
criteria to be matched, as shown in Figure 51.

¢ For simplicity, which only model the AddToTag functionality; the MoveToFolder command is similar.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 100

Mail [7) |_ '.I]

—

Mail v - Efo‘:;ch A TerD » More »
5 d

Inbox (2) I I lany Reporting Anomalie
Starred Subject | Maybe normal in
Important Research Project _Eigest - Jan 20, 2013
Chats Has the words éﬂore

Sent Mail . I I ,y Reporting 2

Drafts | Doesn't have irming - The send actien
All Mail | | frming - What kind of
Spam

O Has attachement
LG Day within [1 day |i] of I
Water Examples: Friday, today, Mar 28, 3/26/04

AnotherBox Hect
| Create filter with this search > |

JAsmat SA
i WaltersComopany ADY bainstorming

I z'neating minutes

Figure 51: The message search functionality (full search modal view container)

The IFML model of the search functionality (shown in Figure 52) comprises a view component
(MessageKeywordSearch) for entering a string to be matched to the mail messages and filter those to be displayed in
the MessageList view component. Such an interaction flow can be represented with an event associated to the
MessageKeywordSearch and a interaction flow to the MessageList view component; a parameter bindings specifies
that the output parameter of the MessageKeywordSearch view component is associated with the input parameter of
the MessageList view component. From the MessageKeywordSearch another event (Show search options) opens a
modal view container (FullSearch), where the user can input more information to drive the search. In this latter case,
the parameter binding associates each field value of the Form view component to a respective input parameter of
the MessageList component. Note that after giving the input of the FullSearch two navigations occur. One for the
MessagelList for showing the search result and another to the Search container for passing and displaying the
keyword search.

The example shown in the right part of Figure 52 illustrates how extending the basic IFML view components with
domain specific view and business logic can make the model more self-descriptive. For instance, one could define a
view component abstracting the notion of input forms for data entry (denoted by the stereotype «Formy), composed
of a set of typed fields (e.g., denoted as nested view components of type «SimpleField»); a «Form» component
could expose as default parameters, the values of the contained fields. The parameter binding would then couple
each input field with the respective parameters of the ConditionalExpression expression of the dynamic list
component (as shown in the right part of Figure 52). Note that the «List» view component is associated with
multiple ConditionalExpression expressions, which are used to compute the component when different navigation
events occur. Which expression has to be evaluated is dictated by the parameter binding associated with the
interaction flows of the event triggering the computation.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 101

[XOR] MessageSearch

[D] Search «Modeless» FullSearch

«Form» Sho search opt ons
Message keyword
search

«Form»
Message Full
Search

Search mail \\\ Search mail
P B. inaGroun»” | A
;;es‘rsg:gtir Il(réglngGroy «ParameterBindingGroup»
MailBox Keyword > Keyword
A
«List»
Message List T
«ParameterBindingGroup»

«ParameterBindingGroup»
Keyword > Key

Keyword > Key
From -> FromKey
To > ToKey

[XOR] MessageSearch

[D] Search

«Modeless» FullSearch

«Form» Message Keyword Search

«Form» Message Full Search
Show search
options . . .
SimpleField» Keyword: Strin
«SimpleField» Keyword: String ‘ o «>Imp > ey 9 ‘

!
Ladl
I /J\ «SimpleField» From: String

- R \<(\
Search mail Y I
\‘\\ Search mail

MailBox

«ParameterBindingGroup»,

Keyword - Keyword
/ «List» Message List \ -
«DataBinding» MailMessage h

«ConditionalExpression» MailMessage IN -
self. mnm2MailMessageGroup = Mailbox)

«ConditionalExpressionx(if (Key.size() <= title.size()) then

«ParameterBindingGroup»
Sequence(1..title.size() - Key.size()) -> exists(i | Keyword > Ke
P e substngi+ Key.sze0) = Key) D I Frcm’ > From Y
false) OR

(if (from.size() <= self.from.size()) then
Sequence(1..self.from.size() - from.size()) -> exists(i |

self.from.substring(i,i+ from.size()) = from)
else

false

)

>

Figure 52: The model of the message search functionality (top). The same model refined with the use of the
extended view components «Form» and «List» (bottom)

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

102

As shown in Figure 53, the selection of a message from the MessageList view component causes the
MessageDetails view component to be displayed. Such a component permits the user to access one specific message

at a time. The XOR MessageReader ViewContainer enables alternative visualization of the MessageDetails and
MessageList ViewComponents. .

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 103

[XOR] GMAIL Top

[D] [L] Messages

[XOR] MessageSearch

[D] Search [Modeless] FullSearch A
-
(st) (" «Form» ") Shop search options TR Message
v Message keyword (J -—————— Notification
MailBoxList (+/) earch = Message Full Search)
J N\ ﬁv: L —~ J
Search mail ¢ (e) search mail
[XOR] g t
MailBox

[L] Settings

[XOR] Message Reader

[D] Message List Message Details
(T sty) (" «Details»)
J Message List b) Message Details
| AT
~ () > —~
) —(—
Y Messageselection
[7\) Delete)«
\\
A\ v [L] Message Writer
J; NN betete | «Menu» Message toolbar 9
@+ —_— |
N\ - Archive, .| «Parameter» MessageSet
~ \ < Report
@«—) Report) \
-) .
\ / T (
! MoveTo I/
[XOR] Tags }
|
p Y i - «Window» [Modeless] Tag Chooser
. " 4 etoTag > /_4';
/Move / SelectTag [«List»
. to folder /¢

\T) Tag Folder List

8 J

7 Create New

«Window» [Modal] Tag Creator
Create Tag —
(:\/‘ —~ and

creme [¢Form» h
{_) Associate < () New Tag Folder
Tag / Move
to folder

8 J

Figure 53: The MessageList and the MessageDetails view components are shown in alternative

The example continues with the model of the message composer functionality. This can be activated in two ways: 1)
from any view containers inside the Messages top view container as denoted by the landmark icon of the

MessageWriter view component; 2) from the MessageDetails view component, by activating the Reply, ReplyToAll,

or Forward command, as denoted by the three event and interaction flows from the MessageDetails view
component (shown in Figure 54).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 104

[XOR] Message Reader

Message Details

«Details» ely

rward

eplyAll [~ ~

N «ParamBindingGroup»
Messageld > Messageld

[L] Message Writer

«ActivationExpression»
MessageRecipients.size() > 1 4 AR
«Form»

Message Writer

Figure 54: The different ways to access the MessageWriter view component

The link ReplyToAll is active only when the message displayed in the MessageDetails view component is associated
with more than one recipient. This can be expressed as a activation expression associated with the ReplyToAll event
(see Figure 54). The MessageWriter view component has an internal structure, shown in Figure 55.

r"ﬁ Rap!y‘ * Reply to aIN > Furward\

Send Save now Discard
To I Brandy Lewis <brandylewis18@mail com=> I
Ce I Walter Miran <walmir@mail com= I

Add Bee Edit Subject Attach File Insert Inwitation

Rich Formatting = Check Spelling v

On Sat, Jan 18 2013 at 5:34 PM. Walter Miran <walmir@mail com> wrote:

= Welcome to our newest program, [sent you some documentation that [think will be
= useful for you in this process

>

= Enjoy!

>

= Walter Miran

Figure 55: The internal structure of the MessageWriter view component

The view component permits the user to edit a new message, reply to an existing message (to the sender only or to
all) and to forward an existing message. The view component can be represented as a form composed of different
fields: To, Cc, Bcce, Subject, Body, and Attachment.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 105

[XOR] Message Reader

«ParameterBindingGroup»

“Forward"-> State

Message Details

«Details»

Message keyword
search

Messageld > Messageld

Reply

«ParameterBindingGroup»

_7/ “Reply” > State

Messageld > Messageld

rwar

o

Reply All SR

«ParameterBindingGroup»
“Reply All"> State
Messageld > Messageld

«ActivationExpression»
State <> “Reply All”

«ActivationExpression»
MessageRecipients.size() > 1

[L] Message Writer

}‘ «SimpleField» cc: String

y Vv
«Form» Message Writer

«SimpleField» to: String

«ParameterBindingGroup»
“Re:” + subject > subject
from > to

cc > cc

body > body

“Reply All” > State

‘ «SimpleField» bee: String
\

IAdd b

«ActivationExpression»
State = “"Reply” or
State = “Reply All”

cc

| «SimpleField» subject: String

«SimpleField» body: String

«ActivationExpression»
State <> “Reply”

«ParameterBindingGroup»
"/ “Re:” + subject - subject
from > to

«SimpleField» attachment: ... Forward

v

cc > cc
body > body
“Reply All” > State

«Parameter» State

«ActivationExpression»
State <> “Forward”

«ParameterBindingGroup»
“Fw:" + subject > subject
body - body
“Forward” - State

Send Save

Figure 56: The IFML model of the internal structure of the MessageWriter view component, with the names
of the event displayed for clarity

Note that some form fields can be automatically filled with content (e.g., the 7o field is automatically set to the mail
address of the sender when the ReplyTo event is raised). This is modeled by considering that each «SimpleField»
component of a «Form» component is associated to an implicit input parameter that denotes the value of the field.

In addition to the form fields view component parts, the Message Writer view component has an explicit parameter
(State), which denotes four different edit configurations: 1) when the user is editing a new message, 2) replying to
the sender of an existing message, 3) replying to the sender of an existing message and to all recipients in copy, or 4)
forwarding an existing message. These edit configuration differ in the subset of fields that are automatically filled-in
and in the commands that are enabled: for example Figure 55 shows the edit configuration when the user is replying
to the sender of an existing message and to all recipients in copy.

The MessageWriter view component is associated with three events (Reply, ReplyToAll, Forward) for switching
from one of the ReplyTo, ReplyToAll, and Forward editing configurations to the other two ones. For example,
Figure 56 shows that the the event ReplyToA!l is active only when the Stafe parameter has the value Reply or
Forward and that its effect is to assign a value to the Subject, To, Cc and Body field, and set the State parameter to

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 106

the value ReplyToAllL

Another example of conditional event is the EditSubject one: the event for editing the subject field is available only
when the State parameter is ReplyToAll or Reply.

The model refinement of the MessageWriter view component can go on, by zooming-in inside the Body field. The
Body field can be refined by a nested component, which supports client-side business logic like the rich formatting
and the spell checking of the text.

Send Save now Discard
To | |
Cc I |
Add Bee Edit Subject Attach File Insert: Invitation
B7ZU b= i=|C2BEO Check Spelling ¥

Welcome to our mewest program, [sent you some documentation that I think will be
uaeful for you in this process.

Enjoyl

Walter Miran

Figure 57: The rich text editing toolbar in the Body input field of the MessageWriter view component
Figure 57 shows the rich text editing toolbar in the Body input field of the MessageWriter view component, which
appears when the user clicks on the RichFormatting link shown in Figure 55.

A number of editing commands apply to the text, which rewrite the content of the view component at the client side.
Similarly, the CheckSpelling command triggers a client-side action that highlights in red the misspelled words.

[L] Message Writer

«Form» MessageWriter \
«RichTextSimpleField» Body
N Remove format «Modal» Alert
[ClientSide] «RichTextToolBar» Toolbar >
ApplyFormat /g

N
| . — H 0

[ClientSide]
ApplyFormat

[ClientSide]
ApplyFormat

Figure 58: The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure 58 shows the IFML model of the rich text editor field. An event corresponding to the RichFormatting
interaction flow permits the user to access the Rich Text Toolbar view container, which comprises a number of
commands for applying formatting to the text; for brevity, we summarize these commands as the invocation of the
ApplyFormat Action, which is shown with the [ClientSide] icon to denote that it actuates at the client side. Similarly,
an event permits the user to trigger the SpellCheck Action, which is also client-side. Finally, from the RichText

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 107

Toolbar view container an event (the PlainText link visible in Figure 57) permits one to remove the formatting and
go back to the plain text mode; before firing the action, tough, an alert modal view container is presented where the
user can confirm or discard the format removal action. Discarding the action leads one back to the Body component

and to the Rich Text Toolbar.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 108

Annex B IFML by Example: Modeling an Online
Bookstore (Informative)

This annex exemplifies the versatility and adaptability of IFML by modeling the most common features available in
a simple UI for a point of sale (POS) management, specifically targeted to a bookstore environment.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 109

B.1 Domain Model

During the session, an User is assigned a Shopping cart that at the beginning is empty. As the user browses through
the page and gets information about the products available, adds products to the shopping cart. The list of products
selected at the moment by the user, can be consulted at any time, offering the option of pay the current order, empty
the cart or continue browsing in order to add more products.

wdataTypes
Address

wdataTypes
Name

wClassy wClasss wClasss
Customer Shopping Cart Order
=Id : String{id} -Carld : Integer{id) -Cartld : Integer{id}
-Email : String -Created : date 1 0.+ |-Productld : Integer(id]
-Title : String r N -OrderTotal | double -ProductQuantity : Integer
-Mame : Mame B -Customerld : String -
-Address : Address - +Empty ()
-Phone : String +Update()
0.
1
1
1
wClass»
wClassy Product
CreditCard -Productid : Integer
— -Name : String
1.+ |-CardNumber : long 1 -Diescription : String
-ExpiratisnDate : date -Price ' float
-Customerld : String i
+AddToCart()

Figure 59: Domain Model of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 110

B.2 Process Model

When the user enters into the website, starts exploring the products available. Once he finds a product of interest,

selects it, and the item goes to the shopping cart. The user can either keep exploring products in order to add more
items to his order, or continue to manage the shopping cart by deleting all the products, or updating quantities of

the selected ones. Once the user is ready to proceed with the payment, performs the checkout.

In order to authorize the payment, it's necessary to send the customer information to the bank entity, and wait for the
confirmation. This procedure is illustrated in the Figure 60.

Explore
Products

Select
Product

Bookstore POS
Customer

Manage Cart

Checkout

q------

Confirm

Bank

Figure 60: Process Model of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

111

B.3 Model of the User Interaction Flow

Figure 61 shows the home page of the online Bookstore. In this section, the user can select one of the product
categories, or go directly to the shopping cart.

On-line Bockstore X

O o x Q { http://wwwonlinebookstore.com/home] @

48 On-Line Book Store
H Shopping Cart

] XX

Books Recordings Software

Figure 61: Online Bookstore Home Page

After selecting a category, a list of products is displayed. For instance, Figure 62 shows all the products belonging to
the books category.

o8N On-Line Book Store

/} Home 4 See categories JE Shopping Cart X Exit
/Bocks &

Standard QWE: A new medelling prepasal

Description:
QWE is a major mnovatien in the field of software development. It
s independent of the croonization of the software imolementation .

Ses momEF

Graphic Interfaces: In the hands of the user

Description:
This book intreduces, documeants and explaing the implications of a
ooor desian in the user experience

X

I
Sea moras== [¥]

Figure 62: List of products belonging to the books category

When the user selects a product obtains the details of the selected item (such as full description and price) along with
the option to add the product to the cart, as shown in the Figure 63.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 112

#8n On-Line Book Store

{\Home & See all Books ¥ shopping Cart X Exit

/Product

Standard QWE: A new medelling proposal
Description:
QWE iz o majer mnovatien in the field of software development. It
is independent of the organization of the software implementation
It &= a highly abatract thinkmg tool that aids in the formalizatien of
knowledge, and is also o way of desenbing the concepts that make
up abstract sohutions to software development problems
This timely book thoroughly mtroduces, documents, and explaing this important new
technokegy The authors show QWE can formalize requirements and use coses into a rich
set of verfioble dagrams, how it can be used to produce executable and testable models,
and how these models can be tronsloted drectly inte code. In addition, the book explans

compiler

Price: $44.99

Figure 63: Details of the Selected Product

The procedure described in the figures 61,62, and 63 is represented in IFML as shown in the Figure 64. Once the

hiow individual system demaing are woven together by an executable QWE maedel

user selects a category from CategoryList a navigation event is produced, and as a result, the products corresponding

to the SelectedCategory are displayed. Similarly, when the user selects a product from ProductList, the details of the

SelectedProduct are displayed.

[H] [L] ProductCategories ProductList

«List»
CategoryList(«/

«List»
ProductList J

Product

«Details»
Product

«ParameterBindingGroup»
SelectedCategory -> Category

Details

«ParameterBindingGroup»
SelectedProduct > Product

Figure 64: IFML model corresponding to the exploration of products

When the user decides to buy the product and add it to the cart, causes a modal view container to be displayed,
where the user must provide the quantity of items of the desired product (see Figure 65). After accepting the
quantity, the article is added to the cart, and a confirmation window is displayed as shown in the Figure 66.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

113

Enter a quantity:

2

Figure 65: Figure 7.Window displayed in order to catch the number of items desired by the user

0¥ On-Line Book Store |

Q Home . See categories JE Shopping Cart X Exit

me /Books Product added to cart
successiully!
Btas
Des
QWETE o T RITCUOLIoTT W1 e nerg of god twiare desseloprment. It

i independent of the croanization of the software imolementation

Bes mores

Figure 66: Confirmation window for the action add to cart

Figure 67 shows the model fragment that adds a product to the cart: once the user press the add to cart button, a
modal window appears asking for the quantity of items desired. This value, along with the SelectedProduct are
submitted as parameters and represent the input of the add to cart action triggered. Once the action is performed, a
confirmation window is displayed.

«ParameterBindingGroup»
SelectedProducts - Produci

| |

Product } [Modal] Quantity } «Modeless» Confirmation
|
I

«Details» «Form»
Product

Details

«Details»
Confirmation

Add to cart

Quantity

Message

«ParameterBindingGroup»
Quantity > Qty

Figure 67: IFML model corresponding to the add to cart event

The shopping cart is the list of products previously selected by the user. In this section are shown the quantities and

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 114

the order details. The user is able to update the cart by changing the quantities, empty the cart by deleting all the
products of the current order, and start the payment process by clicking in the checkout button (see Figure 68).

When the user chooses to update the cart, the total amount is recalculated.
When the user empties the cart is redirected to a confirmation page as shown in the next Figure 69.

n9en On-Line Book Store

GHome X Exit

Shopping Cart
Produst Price |Quatity . |Total

Standard QWE: A new modelling proposal 4499 4499
Graphic Interfaces: In the hands of the user 2399 71497
Lineal Algebra applied to web 39499 3999

Sub Total Amount: F 156 95
Tax Amount: $ 0.0
Discount Amount: § 0.0

Toetal Amount: $ 156.95

@ Empty the cart 4 Continue Shopping Checkout

Figure 68: Interface of the Shopping Cart

098N On-Line Book Store |

"'lj'r Home 4 See categories JEE Shopping Cart X Exit

‘ i ’ Shopping Cart Empty

Figure 69: Confirmation page for the Empty Shopping Cart Event

As illustrated in the IFML model of the Figure 70, when the user decide to delete all the items from the current
order, the action Empty the cart is triggered, and after its execution, a confirmation message is displayed.

In the Update event, the user modify the values of the quantities and submits them by clicking in the button Update;
this event causes an Update action to be triggered after which the shopping cart is redisplayed (see Figure 70).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 115

«ParamBindingGroup»
Quantity > Qty

Update
the
quantities

Shopping Cart Confirmation

Al Update

«Details»
Empty . Confirmation

Product
List

Message

Figure 70: IFML model corresponding to the events Update and Empty of the Shopping cart

Once the user has decided to perform the payment, he must provide his personal information and press “Next” (see
Figure 71).

oHen On-Line Book Store

/I:I.\ Home 'H Shopping Cart X Exit
= Customer Information
E-Mail: billy@mail. com Address Line 1. Street Hamiton
Title: Mr, Address Line 2 45
First Name: Bill City: New York
Middle Name: State or Province:
Last Name: Feather Postal Code:
Phomne: +51348576444 Country:

Figure 71: The user must provide its personal information and continue

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 116

After providing his personal information, the user must provide his bank account information and confirm the
payment in order to proceed with the transaction (see Figure 72). After performing the transaction, a confirmation
page appears showing the details of the payment as shown in the Figure 73.

80 On-Line Book Store

/I:I.s Home - Back .H Shopping Cart X Exit

- Payment Information
Cardhelder Mame: Mr Bill Feathers

Address Line 1: Street Hamiton Postal Code: 10138
Address Line 2 45 Country: United States
City: New York Bank Card Account | 12763988733562

State or Province: [\o York Bank Card Expiration E

Total Amount: $ 156.95

Figure 72: The user must enter the bank account information and confirm the payment

0380 On-Line Book Store |

Home 4 See categories .H Shopping Cart X Exit

>

Payment Performed Successiully!
= @ Payment Details

CREDIT CARD COMPANY
Charge to: 8765432567876 for: $156.95
Charge APPROVED

CUSTOMER: john feathers@mail com
CHARGE APPROVED

Figure 73: Payment confirmation

When the user chooses the Checkout option, the container Customer Information is displayed. The user must
provide his personal information by filling out the form within this container.

After the user submits his personal information, the container Payment Information is displayed. In this container the

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 117

user must provide his bank account details. The name of the user (sent previously as the parameter: Name), is

forwarded along with the credit card number (CC) and the total amount of the offer (previously sent by the shopping

cart container) to the payment action (Execute the payment).

Shopping Cart

Confirmation

«ParameterBindingGroup»
«List» Total> Amount

Product

«Details»
Confirmation

Message

«Form»
Payment
Information

«Form»
Customer
Information

Execute
the
payment

«ParameterBindingGroup» «ParameterBindingGroup»
Name -> Name Name -> Name
CreditCard > CC

Figure 74: IFML model corresponding to the event Checkout

After the payment execution, a confirmation message is displayed with the transaction details. The IFML
representation of this procedure is shown in the Figure 74.

To increase reusability and modularization in the models, designers may decide to cluster homogeneous parts of the
model into Modules. For instance, the part of the model that deals with the payment management can be packaged

into a specific module. This would simplify the model of the application, which would appear as in Figure 75.
The definition of the corresponding module is shown in Figure 76.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

118

Shopping Cart

«List»

Product
List

Checkout

«ParameterBindingGroup»

Payment
Execution

Total-> Amount

Figure 75: IFML Module usage upon the Checkout Event

Amount)

Confirmation

«Details»
Confirmation

Message

Payment Execution

«Form»
Customer
Information

«Form»
Payment
Information

«ParameterBindingGroup»
Name > Name

«ParameterBindingGroup»
Name > Name
CreditCard > CC

Execute
the
payment

Figure 76: Module Definition of Payment Execution

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

119

B.4 System Modeling

IFML can be suitably used together with UML models and other OMG standards (e.g., BPM models).

For instance, UML sequence diagrams complement IFML models at the purpose of highlighting sequences of
activation of client- and server-side components depending on user interaction events.

In the example, when the customer chooses the option update, the Browser sends a message to the WebServer with
the id of the product and the new quantity, then the WebServer updates the shopping cart and returns a confirmation
message.

If the user decides to delete all the products previously selected, he clicks the empty cart button, sending the message
to the Browser. The Browser sends a message to the WebServer who is in charge of executing the deleting action
and return a confirmation message.

When the user is ready to proceed with the payment, notifies the Browser who asks to the WebServer for the
customer information form. After the WebServer returns the form, the Browser displays it. The next step to continue
with the payment is wait for the user to fill out the form with his personal and bank information. When the user
submits his information, this is sent to the WebServer who asks the DataServer to return the customer information in
order to verify it. After verifying the customer information, the WebServer sends it to a ExternalBankService who is
in charge of authorize the payment. Finally, after the WebServer receives the confirmation from the
ExternalBankService, sends a confirmation message to the Browser

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 120

Browser

| 1. Update | :
1
2: updateCuantity(product, qtyl |

4:
< - - - - — — — T
]
]
5: Empty L :
]
6 emptyCart i

&
e — — 2 — — — — — L

9: Checkout

12: SubmitForm

10: checkQut

=
|
|

13: formData

3: updateShoppingCart

]

7: emptyShoppingCart

14: getCustomerinfo

61__1_5’ _____ 1

&: verifylserinfo

-

ExternalBankService

e - — - — - - — — L

=
|
|
|
|

Figure 77: Sequence Diagram of the Online Bookstore

Additional diagrams can be used to describe the deployment of the components and other aspects, as shown in

Figure 78.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

121

wdevices

UserDevice

ProductionServer

waxecution envirenments
Browser

waxacution environments
WebServer

sexacution envi

it

EJBContainer

ExternalService

DataServer

«execution environments
RDEMS

wartifacts [
ProductSchema

UserSchema

wartifacts Y ‘

Figure 78: Deployment Diagram of the Online Bookstore

Interaction Flow Modeling Language (IFML) 1.0, Beta 2

122

Annex C Mapping to the Windows Presentation
Framework (Informative)

C.1 Introduction

This annex describes an example of mapping from IFML to a platform specific language. In particular, this maps the
main IFML concepts to the .Net Windows Presentation Framework (WFP).

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 123

C.2 The WPF meta-model

Windows Presentation Framework (WPF) is a part of .NET Framework by Microsoft that is meant to be the
substitute of the old WinForms UTI interface. It brings separation of concerns between interface and code-behind.
This is made possible by detaching presentation defined using the XAML language from business logic written in
C#.

Application pages -pages [Page

+name : String

Window
+startWith +windows

1 1.*

Figure 79: WPF metamodel, the Application element

In WPF the interface building blocks are nested. This generates a visual tree that is rendered by the framework.

The target application is modeled by the Application class which is the main container of all the elements of the
model. It has a start window which is the first one to be opened at startup.

DependencyObject

+name : String

|

Visual

ContentElement

-child [\yiElgment | -chid

0.1
Fiy
Resource -SOUMCE Binding
-dataContext .
DataContext FrameworkElement resources ey : Siing | 0.7 “path - String
0.*
1
Panel Contral Page

Figure 80: WPF metamodel, the DependencyObject element

All the visual objects inherit from DependencyObject, a class that allows the attachment of DependencyProperty.
This lets define properties that may be shared among all the objects of the framework and used as target for
bindings.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 124

DependencyObject can be split in two classes, Visual and ContentElement. Visuals elements are actually rendered
by the framework, while ContentElements are used to better define the layout of Visuals.

The main subclass of Visual is UIElement which is used as common superclass to define nesting among elements
of the UL

The main subclass of UIElement is FrameworkElement which is the one that allows to define Resources and the
DataContext. Resources are objects related to the FrameworkElement organized as a dictionary; they are used by
the framework to enhance and better define layout and behavior of the interface. DataContext can be associated
through a Binding to another object to define the source of all the contained Bindings, not otherwise specified.

FrameworkElement

=
[[|

Panel Contral Page

| _|, -|— -linkTo

DockPanel StackPanel Grid TabPanel

ContentControl TextBox ItemControl

Frame Tabltem Window

-header : String

-targetFrame

Hyperlink

Figure 81: WPF metamodel, the FrameworkElement element

FrameworkElements can be divided in Panels, Pages and Controls.
Panels are UI elements which can contain more than one child. They are classified by behavior:

* DockPanel: this container tries to minimize space wasting by expanding all the children to fit all the
available space.

* TabPanel: it defines a XOR behavior (one by one), allowing to select the child to display through a tabbed
header.

» StackPanel: it put all the children in a stack, queuing them one after another.

* Grid: it features a m by n grid in which all the children are placed. The coordinates of the cell in which the
child resides is defined by the attached properties Grid_Column and Grid_Row.

Pages are one-child containers that allow navigation in a Frame.
Controls include TextBoxes, ContentControls and ItemsControls.
ContentControls are Windows, UserControls, TabItems and Frames.
* Windows are the outer containers of all UIElements and have at most one child.
* Tabltems are one-child containers that allow to define the header used by a TabPanel.

* Frames are controls that can dynamically navigate through Pages using Hyperlinks or explicit navigation.

ItemsControls are meant to dynamically define their children applying a template to items to be retrieved by an
ItemsSource.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 125

C.3 Model to Model Transformation

The IFML model is mapped to a WPF application as one window (the startup one) that contains a frame in which
it’s possible to navigate within pages.

All the first level ViewContainers are mapped to pages; to bypass the limitation related to the one-child nature of
pages in WPF, ViewContainers with one child are mapped directly, while the ones with more children are mapped
to pages with a grid as a child.

If there is at least one first level landmark ViewContainer, the main window does not contain directly the frame, but
a grid with two children: the frame and a StackPanel that contains Hyperlinks to all the landmarked pages.

All the sub-ViewContainers are mapped to grids; otherwise, if they are XOR, they are mapped to TabPanels whose
children are surrounded by Tabltems.

All the ViewElementsEvents of type OnSelectEvent that reference a ViewContainer are mapped to a StackPanel
containing Hyperlinks to all the pages linked by outgoing NavigationFlows.

List ViewComponents are mapped to ListBoxes: if they have a ViewElementEvent of type OnSelectEvent with an
outgoing NavigationFlow that links to another ViewComponent, they are also mapped to a ViewSource bound to a
ObjectObservableCollection and to a grid which DataContext is bound to the ViewSource current item.

Forms are mapped to grids; their fields are mapped to TextBox (SimpleField) or ComboBox (SelectField).

Finally since the WPF metamodel is a direct mapping of the entities that compose the .Net framework for desktop
applications, a simple model to text transformation is needed for generating a working application.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 126

Annex D Mapping to Java Swing (Informative)

D.1 Introduction

This annex describes an example of mapping from IFML to Java Swing in order to model very simple Java-based
desktop application.

Java Swing is a Model-View-Controller GUI framework for Java application. Thus it allows to develop desktop
application in Java decoupling the data viewed from the interface from the user interface controls through which it is
viewed.

D.2 The Java Swing meta-model

JavaApplication

-name : String

-parent
-children

Component

1 -application

0..11.-components

-BVents ~COM DDGI'I"E.M
 E— 1
| T|
‘Onchange| |OnC\ick| |OnFocus ‘ Container
1] I] I 1
|JComponem ‘ |Dialog | |Window |
I 1 — I]
‘Abslramsunun ‘ |JTabIe| ‘JT | | | |JScrnIIEar‘ TextComponent JLabel
[| I | [| I | I I | I =
I J [] I ! [] — — -text : String
T

|JMenuIem | |JToggIeBuuon | |JEuuon | ‘JEdiwrPane\ | |JT§xlFieId | ‘ JTextArea ‘
| | | | | [| |]

JCheckBox

Figure 82: The Java Swing metamodel

The desktop application is described by the JavaApplication element, which contains all the Components.

The Component element is the abstract description of the element of a graphical user interface. In particular a
Component can have a set of child element and a set of Event used to enable the user's interaction. Furthermore an
Event can be associated to a set of Actions

Every Component is a Container. In particular there are the Window, Dialog, JComponent elements. The first
two are pure container while the last comprehends a set of elements that can contain other element or just show
data.

The JComponent element is then specialized by a set of class that represent the actual GUI elements, for example
there are: AbstractButton, that model the general button that is more specialized by the class JToggleButton,
JButton, Jmenultem; JTable, that model a table, JPane, JTabbedPane, JScrollBar, Jlist, Jlabel and
TextComponent, that represent the general component to edit text, which is further specialized by the class
JTextField, JTextArea and JeditorPanel.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 127

D.3 Model to Model Transformation

The IFML model is mapped to a JavaApplication element.

Each IFML::Window element is mapped to a Window element (in case of a modal window a Dialog is created
instead).

Each not XOR sub-ViewContainer is mapped as a JPane (while a XOR container is mapped as a JTabbedPane
with each of its child ViewContainer mapped as JPane element).

Forms are mapped as JPane elements, their fields are then mapped as JTextField (in case of SimpleField) or
JCheckBox in case of multi selection field).

List are mapped as JList elements.
Details are mapped as JTable showing at each row an attribute of the DataBinding considered.

If events were defined, the corresponding Event is created and associated to the correct Component. In particular,
in case of Select and Submit a JButton is created in order to trigger the event. If an Action was defined, a element
of type Action will be created.

If one or more ViewContainer marked as “landmark” exist, a JMenuBar element will be created in each Window,
containing all the JMenultem element linking to the landmark ViewContainers.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 128

Annex E Mapping to HTML (Informative)

E.1 Introduction

This annex describes an example of mapping from IFML to HTML in order to model a very simple web application.

E.2 The HTML meta-model

The web application is modeled by the WebSite class, which is the main container of all the other elements. In
particular a WebSite is composed by a set of Pages. Then the metamodel describes in details the structure of each

element.

WebSite
-url : String

-webSite

-pages [1..*
Page

-html -htril
1 1
-parant |1
“Ehidren | HTMLElement
0.*
-value : STRIKE
-body |1
-head HEAD BODYElement BODY
1 -background : String
-text : String
-head |1 -bodyElements |0..* -link : String
-alink : String
_body |-Vink : String
4 -bgcolor : String
-headElements | 0..*
HEADElement
LINK TITLE
-rel : String
-fitle : String
-ahref : String
-type : String

Figure 83: HTML metamodel, the Page and Head element

A Page is composed by a HEAD and a BODY (represeniting the <head> and <body> tags), the HEAD contains a
set of HEADElement while the BODY a set of BODYElement, both of them inhertis from the general class
HTMLEIlement and are abstraction of the concrete html tag.

The HEADElement comprehends the TITLE and LINK tags, while the BODYElement comprehend all the html
tags used for creating web pages (P, TABLE, FORM, DIV, A etc..).

In order to allow the nesting of tags, the HTMLElement class has a reference to a set of children HTMLElement.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 129

~parent (1
~Chiyen [ML Element

o -value : STRIKE

[

BODYElement BODY
-background : String
-bodyFlements -body |-text : String
0.° =link : String
-alink : String
-vlink : String
-bgcolor : String
[sur] FONT [(He] SFTION o '@l sl BR STRIKE
— ~color | String [-typa : String = -clear : String
— -face : String —1 -selected : String -align : String L]
-size : String -optionValue : String Fay

o] ; =
= -ivalug : String -start : String — — [—

Figure 84: HTML metamodel, a fragment of the BODY element

E.3 Model to Model Transformation
The IFML model is mapped to a WebSite element.

Every first level ViewContainer is mapped to a Page element, in particular the one marked as “home” will be named
“index”.

Each sub-ViewContainer will be mapped to a DIV element.

Each NavigationFlow not associated to a SystemEvent is mapped to a A element. If an Action is present, its name
will be appended at the end of the link.

Forms are mapped into FORM element and their fields are mapped to corresponding INPUT elements.
Details are mapped into a UL — LI elements, in which each list item is a attribute of the data binding considered.

Lists are mapped into TABLE, in which the first row is composed by the field of the corresponding data binding. If
an OnSelectEvent is associated to the component, then a last column is added which contains a A element.

If one or more ViewContainer marked as “landmark” exist, a DIV element containing all the A element linking to
the landmark ViewContainers will be created in each Page.

Interaction Flow Modeling Language (IFML) 1.0, Beta 2 130

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Business Motivation
	6.2 Design Principles
	6.3 IFML Artifacts
	6.4 Acknowledgements

	7 IFML Specification
	7.1 Key Concepts of IFML
	7.2 IFML in a Nutshell
	7.3 Extensibility
	7.4 Concept List

	8 IFML Metamodel
	8.1 High-Level Description
	8.1.1 IFML Model
	8.1.2 Interaction Flow Model
	8.1.3 Interaction Flow Elements
	8.1.4 View Elements
	8.1.5 Parameters
	8.1.6 Events
	8.1.7 Expressions
	8.1.8 Content Binding
	8.1.9 Context
	8.1.10 Specific ViewComponents
	8.1.11 Modularization

	8.2 Package DataTypes
	8.2.1 Enumeration Direction
	8.2.2 Enumeration ContextVariableScopeDescription
	8.2.3 Enumeration SystemEventType

	8.3 Package Core
	8.3.1 Class Action
	8.3.2 Class ActionEvent
	8.3.3 Class ActivationExpression
	8.3.4 Class ActivityConcept
	8.3.5 Class Annotation
	8.3.6 Class BehaviorConcept
	8.3.7 Class BehavioralFeatureConcept
	8.3.8 Class BooleanExpression
	8.3.9 Class BPMNActivityConcept
	8.3.10 Class CatchingEvent
	8.3.11 Class ConditionalExpression
	8.3.12 Class Constraint
	8.3.13 Class ContentBinding
	8.3.14 Class Context
	8.3.15 Class ContextDimension
	8.3.16 Class ContextVariable
	8.3.17 Class DataBinding
	8.3.18 Class DataContextVariable
	8.3.19 Class DataFlow
	8.3.20 Class DomainConcept
	8.3.21 Class DomainElement
	8.3.22 Class DomainModel
	8.3.23 Class DynamicBehavior
	8.3.24 Class Element
	8.3.25 Class Event
	8.3.26 Class Expression
	8.3.27 Class FeatureConcept
	8.3.28 Class IFMLModel
	8.3.29 Class InteractionFlow
	8.3.30 Class InteractionFlowElement
	8.3.31 Class InteractionFlowExpression
	8.3.32 Class InteractionFlowModel
	8.3.33 Class InteractionFlowModelElement
	8.3.34 Class ModularizationElement
	8.3.35 Class Module
	8.3.36 Class ModuleDefinition
	8.3.37 Class ModulePackage
	8.3.38 Class NamedElement
	8.3.39 Class NavigationFlow
	8.3.40 Class Parameter
	8.3.41 Class ParameterBinding
	8.3.42 Class ParameterBindingGroup
	8.3.43 Class Port
	8.3.44 Class PortDefinition
	8.3.45 Class SimpleContextVariable
	8.3.46 Class SystemEvent
	8.3.47 Class ThrowingEvent
	8.3.48 Class UMLBehavior
	8.3.49 Class UMLBehavioralFeature
	8.3.50 Class UMLStructuralFeature
	8.3.51 Class UMLDomainConcept
	8.3.52 Class ViewComponent
	8.3.53 Class ViewComponentPart
	8.3.54 Class ViewContainer
	8.3.55 Class ViewElement
	8.3.56 Class ViewElementEvent
	8.3.57 Class Viewpoint
	8.3.58 Class VisualizationAttribute

	8.4 Package Extensions
	8.4.1 Class Details
	8.4.2 Class Device
	8.4.3 Class Field
	8.4.4 Class Form
	8.4.5 Class List
	8.4.6 Class LandingEvent
	8.4.7 Class JumpEvent
	8.4.8 Class Menu
	8.4.9 Class OnLoadEvent
	8.4.10 Class OnSelectEvent
	8.4.11 Class OnSubmitEvent
	8.4.12 Class Position
	8.4.14 Class SelectionField
	8.4.15 Class SetContextEvent
	8.4.16 Class SimpleField
	8.4.17 Class Slot
	8.4.18 Class UserRole
	8.4.19 Class ValidationRule
	8.4.20 Class Window

	9 IFML Execution Semantics
	9.1 Introduction
	9.2 Relevant Aspects for IFML Execution Semantics
	9.2.1 Triggering Events
	9.2.2 Parameter Propagation
	9.2.3 Navigation History Preservation

	9.3 ViewComponent Computation Process

	10 IFML Diagram Definition
	10.1 Introduction
	10.2 Conformance Criteria
	10.3 Architecture
	10.4 IFML Diagram Interchange (DI) Meta-model
	10.5 Package IFMLDI
	10.5.1 Enumeration LabelKind
	10.5.2 Class IFMLCompartment
	10.5.3 Class IFMLConnection
	10.5.4 Class IFMLDiagram
	10.5.5 Class IFMLDiagramElement
	10.5.6 Class IFMLLabel
	10.5.7 Class IFMLNode
	10.5.8 Class IFMLStyle

	10.6 IFML DI to DG Mapping Specification

	11 UML Profile for IFML
	11.1 Overview
	11.2 The IFML Profile of UML
	11.3 Using IFML Stereotypes
	11.4 Profile Metamodel Mapping

	Annex A IFML by Example: Modeling an Email (informative)
	A.1 Introduction
	A.2 The Domain Model
	A.3 Model of the Interface

	Annex B IFML by Example: Modeling an Online Bookstore (Informative)
	B.1 Domain Model
	B.2 Process Model
	B.3 Model of the User Interaction Flow
	B.4 System Modeling

	Annex C Mapping to the Windows Presentation Framework (Informative)
	C.1 Introduction
	C.2 The WPF meta-model
	C.3 Model to Model Transformation

	Annex D Mapping to Java Swing (Informative)
	D.1 Introduction
	D.2 The Java Swing meta-model
	D.3 Model to Model Transformation

	Annex E Mapping to HTML (Informative)
	E.1 Introduction
	E.2 The HTML meta-model
	E.3 Model to Model Transformation

