OBJECT MANAGEMENT GROUP

Interaction Flow Modeling Language

Version 1.0

Date: February 2015

OMG Document Number: formal/2015-02-05

Standard Document URL.: http://www.omg.org/spec/IFML/1.0/

Normative Machine Consumable Files:
http://www.omg.org/spec/IFML/20140301/IFML-Metamodel.xmi
http://www.omg.org/spec/IFML/20140301/IFML-Profile.xmi
http://www.omg.org/spec/IFML/20140301/IFML-DI.xmi

Copyright © 2014 88Solutions

Copyright © 2014 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2014 Fujitsu Limited

Copyright © 2014 Ivar Jacobson International

Copyright © 2015 Object Management Group

Copyright © 2014 Softeam

Copyright © 2014 Thales
Copyright © 2014 WebRatio

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual , worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regul ations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "AS1S' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.FR. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™ MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software complianceis of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG'SISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the I ssue Reporting Form listed on the main web
page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

Table of Contents

P O A ..o \Y;
S Yo 0] o 1 PP UPT PPN 1
2 CONTOIMANCE .o e e 1
3 NOMMALIVE RETEIENCES ... 1
4 Terms and DefiNITIONS ...c.on e e 2
5 SYMDOIS o 2
6 AdAItioNal INTOIrMATION ...eeeee e e e eaes 2
0.1 BUSINESS MOUIVALION . ..eneeieee e e e eeeen 2

6.2 DeSIgN PrINCIPIES ... e e e e e e e e e eeeeaeaeeaeeeas 3

SR I 1 = |V, | Y 1] = (o1 £ 3

6.4 ACKNOWIEAGMENTS ..ot e e e e e e e e e e aaaaas 3

7 IFEML SPECITICALION ...iieeiiiiii e e e e e eeeaean 5
7.1 Key CoNCEPLS OF IFML ..ot s s e e e e e e e e e e e eeeeenaeennnnns 5

7.2 TFEML N @ NUESNEI ..o e e 6

7.3 EXIENSIDIIILY oeeeeeieiee e 10

A o T o =T o) A I 11

8 IFML METAMOUE! . eeceeeeee e e e 17
8.1 High-Level DESCIIPLONcooviiiiiiiiiiiaeie et e e e e e e e eeeeeeeeanee 17

811 IFEML MOUE .o ettt ettt e et et e e 18

8.1.2 INEraction FIOW MOUEI ettt e et e et r e e e e e e et e e e e eerreen 19

8.1.3 INteraction FIOW EIEMENTSiveiiiiiit ettt e et e et r e et e e e e et e e e e eerrean 20

S I N AT VA 1= 0 11T 0] £ 21

LS ST = U= 1 1 0] (=] £ 23

LS ST Y= £ 24

o T A {0 (=TT (o] [PP UPT TR T PP 25

8.1.8 CONLENE BINGINGieitiiieieiiiie ettt ettt e e e e e e e e s e e be e e e e e e e e e e e annbbnbeneeees 26

LS I 0 1 0] (5 27

8.1.10 Specific VIEWCOMPONENLScoiiiiiiiiiiieiit ettt e et e e e e e e e e e enbanbeeeeeas 28

LI I R Y [Yo (W1 F=X 4= £ 0] IR 29

8.2 Package DataTyYPEScccoiiiiiiiiiiiiiiiiiiiiis s e e e e e e e e e e et s e e s e e e e e e aeaaaeeeesennnne 30

Interaction Flow Modeling Language, v1.0 i

L T A o T0 T =T = a o] T (=T 1[0 o 30

8.2.2 Enumeration ContextVariableScope DeSCriptioN.........c.uuuveivereeiiiiiiiiiieieeee e e e e s 30
8.2.3 Enumeration SYStEMEVENITYPE ...cociiieiiiiieiie e s e e e e e e s s rrr e e e e e e e e s s e e nnnenes 30
SR I o= (o = (o [T O = USSP 31
S T 0 A @ - T Yo 1o 1 SRR 31
8.3.2 Class ACHONEVENTcccuiiiiiieiiie e e e e e e et e e e e s e e e e e e e e e aeeeas s snanrenbeeeeeeaeeeseeannnnnns 31
8.3.3 Class ACHVAtIONEXPIESSIONccviiiiiiiiiiciiiiieieeeeee e s e s ssenee e e e e e e e e s es s s e e e eaeeeseesnnnnes 31
8.3.4 Class ACHVILYCONCEPL ...uvuriiiiiiieeee e e ittt e e e e e e s s e s s e e e e e e e e e e s e st eeeeeaeeeesa s anreneees 32
8.3.5 Class ANNOLALIONueiiiiiiiie e e s e s e e e e e e e s e e e s e e e e e e e e e e s e e nnrnrenes 32
8.3.6 Class BENAVIOTCONCEPLuuiiiiieeeeeieiiiciiitiieee et e e e e s e e s st e e e e e e e e e s essnneennreereeeaaeseesannnnns 32
8.3.7 Class BehavioralFeatur€CONCEPLuuuriiiiieeeeeiiiiiiieiiiieeereeee e e e s s ssanreeeereeeeaeeeseeannneene 33
8.3.8 Class BOOIEANEXPIESSIONccceeeiiiiictiiiiiieiete e e e e et sseseietteeee e e aee e s s e s ssnsastaaeeeeeeeeeeesn s nnnnnnnnes 33
8.3.9 Class BPMNACHVItYCONCEPL ...veveeeiieiiiieiiee et e e e e e e s s s st e e e e e e e e e s s e e e e e e aeeeseeennnnnes 33
8.3.10 Class CatChiNGEVENLuiiiiiiieiiee i e e s e s r e e e e e e e e s s s ereeeaaeseesennans 33
8.3.11 Class ConditioNaIEXPrESSIONccccciiiieiiiiiiieiieeeeeeeeissseteeree e e eee e e e s s ssnsnnrrereereaaeeessnanns 34
8.3.12 Class CONSIIAINTccceuieiiiiiieieeeee e it e e e e ee e e s s s st r e e eeeaeesannsnnrenreeeeeeeeeasesannsnnns 34
8.3.13 Class ConteNtBINAINGuuivriiiieeiieiiiiiiiir e e s s s e e e e e e s se e e e eeeaeeeseennnnnne 34
ST T O @ - 1T 0] (5 P EESERRP 35
8.3.15 Class CONtEXIDIMENSIONvuiiieeeeieieiiiieiiie e e e e e e e s s s st e e e e e e aeessessnnrenreeeeeeeeeasesannsnnes 35
8.3.16 Class ContexXtVariableccciieiiiiiiiiiieeice e e e 35
8.3.17 Class DataBindiNgccccvueeiiiiieeiie i cciie e e e e e s s s r e e e e e e e s rraaa e e s e e annnann 36
8.3.18 Class DataContextVariableccocoiiiiiiiiiii e 36
8.3.19 Class DAtaFIOWuuiiiiiiiiieie i e e e e e s e e e e e 36
8.3.20 Class DOMAINCONCEPL ...uvuuiriiiieeeeieiiiiiititiieereeeeeesssssanteeearreeeaeeesassasnresrarereeeeeeseesannnns 37
8.3.21 Class DOMAINEIEMENTooeiiiieiiiiiiicce e e e e e e e s e e e eee e e s e e annnnnns 37
8.3.22 Class DOMAINMOUE]uuuiiiiiiieeeie it e e se e e e e e e e se s e e e e eaeeeseeannenes 37
8.3.23 Class DYNamMICBENAVIOLcccoiiiiiiiiiiie et r e e e e s e e 38
IR I B @ - TS [T 1= o | SRR 38
TG IS T O - TS YT o | SRR 38
8.3.26 ClasSS EXPIrESSIONcceceueeiiieiiieeeeeeeisiesitttteeeeeeaeesesssssnteeeareeeeaeeesassnntenraneeeeeaeeseesnnnsnns 39
8.3.27 Class FEAUIECONCEPL ...uvuiiiiiiieeeeiiiii ettt tier et e eee s e s e e st er e eaeeaeessnssssbesreeraeeaeesseeannsnnes 39
8.3.28 Class IFMLIMOEIeeiiiiiieieiee e e s e e e e e e e e e e et n e e e e e aeeeseeannnnn 39
8.3.29 Class INtEraCtioNFIOWcueiiiiiieiiiiiiiiieir e e e e e e e e e s e e e e e ee e e s e e snnnnes 40
8.3.30 Class InteraCtionFIOWEIEMENLooo it e e e e e enaes 40
8.3.31 Class InteraCtioNFIOWEXPIESSION.uuuuriiieieeeeie ittt ee e e e e s s esssere e e e eeee e e s s nnnnnrneeeees 41
8.3.32 Class InteraCtioNFIOWMOAE!cocoooiiiiiiiec e e e e e e e e e neenes 41
8.3.33 Class InteractionFIoOWMOdEIEIEMENLcovvieeiiiiiiee e 41
8.3.34 Class ModularizatioNEIEMENTccoicciiiiiiiiieee e e e e e e e e e e enenes 42
8.3.35 ClasS MOAUIEccoiiiiiteiee e s e e e e e e s e e et n e e e e e aeeeseeannnnn 42
8.3.36 Class ModUIEDEFINILIONuuiiiereeiiiiiiiiie e e e e e e s e e e e ee e e s e e ennenes 43
8.3.37 ClasS MOAUIEPACKAGEeevieieeeiee ittt et e e e e e s s e e e e e e e e e s s st r e e e e e e e e s e annnnrneneees 43
8.3.38 Class NaMEAEIEMENLoeuiiiieeiei e e e e e e e e e s e ar e e e e aae e e e e e nnnenes 44
8.3.39 Class NaVIgAtiONFIOWccuiiieieiiiiiiiieiieeee e s er e e e e e e s s e e e e e e e e s e e snnnnes 44
8.3.40 ClasSS PaAramMELEIcccccuieiiiieiiie e e e e e et et e e e e e e s e s e s aeeeeeaeeesanannranberereeeeeeseeaannnnns 44
8.3.41 Class ParameterBiNGINGccceieiiiiiiiiieeiriee e e e s ess st e et e e e s s e s s e e e e e e e e e s e nnneeeees 45
8.3.42 Class ParameterBiNdINGGIOUDcccooeiuviiiiiiriereees e e eseeteeeeeeeeeseeesessnntnnnneeeeeeeeeseesnnnnnes 45
IR 5 @ - TS = o] o SRR 46
8.3.44 Class POMDEINITIONuuviiiiiiieeis i e e e e e e s s e e e e e e e e e s s s nnneneees 46
8.3.45 Class SImpleContextVariablecccciiiiiiiiiie e 46
8.3.46 Class SYSIEMEVENTuviiiiiiieii e e e e e s e s e e e e e e e e e s e s nreeeees 47

Interaction Flow Modeling Language, v1.0

8.3.47 Class TRrOWINGEVENTcoceiiiiii e e e e e e e e e ene e e e a7

8.3.48 Class UMLBENAVIONu.iiiiiiiii et e e e e e e e e e e e e e e e e eeaaans 47

8.3.49 Class UMLBENAVIOFAIFEALUIEuueiiiiieeiiie et eevaaan s 48

8.3.50 Class UMLSTIUCIUTAIFEALUIEcuuvuiiiiiieeiie e e e e e e e eaaba e e e e s eabaaa s 48

8.3.51 Class UMLDOMAINCONCEPLccueeiieiiiiiieiie e et e e ettt e e s e e e e e e e sss st e e e e ae e e s e e snnsnnrnneeees 48

8.3.52 Class VIEWCOMPONENTccceiiiiiiiiiieiiieeeeee e e s s s sttt e e e e e e e e s e e s s aeeeeeaaeesansansenneneeeees 49

8.3.53 Class VIieWCOMPONENTPAITuuviiiiiieieeeei e e e e e e e e s e e e e e e e s e enrenrreeeeees 49

8.3.54 ClasS VIEWECONTAINETcccieeieeiiiiieeeeiee et e e e e e st e e e e e e e s s e s s s e et s e eeseesabb e eeseerraaanes 49

8.3.55 ClasS VIEWEIBIMENTciiiieeeei ettt e e e e e s e e s e e et s e e e s e eaaba s e e e s eebaaanas 50

8.3.56 Class VIEWEIEMENTEVENTciiiiiieiiie it e e e eee e e e e e eaaba s e e e s eebaaan s 51

8.3.57 ClasS VIEWPOINT ...uveeiiiiiiieeiii ittt et e e e e s e s e e e e e e e e e e s s er e e aaeeeseessnnnnnraneeeeeaeaes 51

8.3.58 Class VisualizatioNALIHDULEcooieeiiiiie et r e e e e aa s 51

8.4 Package EXIENSIONSccccoiiiiiiiiiiiieeie et e e e e e e e e e e 52
I O F= 1T I L= = | £ 52

I O F= T3 Lo o7 < Y, 52

I R O F= 113 = (o 52

I O F= YT o 2 R 53

I S O F= 17 I 1= 53

8.4.6 Class LANAINGEVENLouiiiiieieiiii st s e s st e e e e e e e e s s st ban e e eeaeeseeannennrnnneees 53

8.4.7 ClasS JUMPEVENLuuiiiiiiieeie s it ee e e e e e s s st r e e e e e e e e s anna e ee e e aaeeeeessnsanraanreanaaeaeas 54

I S R O F= 113N Y, 1= T 54

R e O P T @ T o] M0 F=To | V7T o | 54

8.4.10 ClasS ONSEIECIEVENToceveiiiiiieeeee e e e e e e et e e e e e e aaba s e e e s eeraaaaes 54

8.4.11 Class ONSUDMITEVENTouveiiiiiiiei e e s e e e e e s eaba s 55

I 2 @ = TS 0 1 11 o T 55

8.4.13 Class SelECONFIEIAccuuuiiiiiiiieee e e e e e e e e ea b e e s eerraaaas 55

8.4.14 Class SEICONEXIEVENTccuuiiiiiiiieie e e e e e s e e s et s e e e e e erab e e e e s eabaaaaes 55

8.4.15 Class SIMPIEFIEIAcouveiieeiiiii e e e e e e e e s e e nreee e e 56

o I I T =T o) 56

8.4.17 ClasS USEIROIEccoeeiei i e e e e e e s e b e e e e e eeaaaaas 56

8.4.18 Class ValidatiONRUIEcouuiiiiiiiiiee e e e e e e e e e e raba e e e s seraaaa s 57

I e T =TTV T o [1 57

9 IFML EXECULION SEMANTICS ...euieiieiieee ettt ettt e e et e e e e e e e e enrens 59
LS I A 010 Yo [1 o) o 59
9.2 Relevant Aspects for IFML Execution SemMantiCsccccceeeviieeeeeeeeeienieeeenennnnns 59
9.2.1 THQQENING EVENLS ..ottt ettt e e e e e e e et e e e eeaeaaa e e s 59

9.2.2 Parameter Propagationcccueueiiiieiiiaae ittt et e e e e e e e s e b e eeaaa e as 59

9.2.3 Navigation HiStory PreServation ... 60

9.3 ViewComponent Computation PrOCESScccceeeeeiiiiiiiiiieeiiiiiisseee e e e e e e e aa e e 60
10 IFML Diagram Definitionoooeuuiiiiiiiiiiie e 63
IO R g o Yo [T3 1T 63
O 2 0 0110141 g =1 g (1T O (1 (=] (- 63
O TR T AN o1 4 11 (T (1= 63

Interaction Flow Modeling Language, v1.0 iii

10.4 IFML Diagram Interchange (DI) Meta-modelooovviiiiiiiiiiiiiiiieeceeeeeeeee, 65

10.5 Package IFMLDIcooiiiiiiccc ettt e e e e e e e e e e e e e eeeeenennnees 66

10.5.1 Enumeration LabelKindcoooiiiiiiiiiiiee e 66

10.5.2 Class IFMLCOMPAMMENTuuiiiiiiiiii ettt e e e e e e e ssnbbe e eeeeeaaeea s 67

10.5.3 Class IFMLCONNECHON ..ottt e e e e e e e eeeeeeeae s 67

10.5.4 Class IFMLDIGGIAIMcoiuiiiiiiieiieie ettt e e e e et e e e e e e e e e e s e asabbsaeeeeaaaaaeeaaannas 68

10.5.5 Class IFMLDIagramEIEMENtcoiiiiiiiiiiiiiiiiiee et e e e e 68

10.5.6 ClasSS IFMLLADELc.coiiiiiiii et e e e e 69

10.5.7 ClaSS IFMLNOUE ...coiiiiiiiiiitee ettt ettt e e e e e e e et be b aeeaaaaaaeeaeas 69

10.5.8 ClasS IFMLSTYIE ..ottt e e e e e e e be e e e e eaaae e as 69

10.6 IFML DI to DG Mapping SPeCIfiCationcoeeevruuuiuiiiiiiiee e eeeeeeeeeeeeeeeinnanens 70

11 UML Profile fOr IFIML ...uuueieeecceceeeei et 75
L1.1 OVEIVIEBW ettt e ettt ettt e e e e e e e e e e e et e e e et ee e s besebnbaaan e e e e e e aeeeaaeeeeees 75

11.2 The IFML Profile Of UMLcoiiiiiiiiie et e e 75

11.3 USING IFML StEIrEOLYPES ...eevvvverrririiiiiiieeeeeeeeeeeeeeeeesaesasannnsaeseeeaeaaeeeeeeeessannnnns 86

11.4 Profile Metamodel MapPINgcooiiiiiiiiiieee e 88

Annex A - IFML by Example: Modeling an Emailcccccooieiiiiiiiiiiiiieiieee 91
Annex B - IFML by Example: Modeling an Online Bookstoreccccuvven... 113
Annex C - Mapping to the Windows Presentation Framework 125
Annex D - Mapping t0 JAVA SWINQG ...ccooeveeiiiiiieeeeeiie e eee et e e e e e 129
Annex E - Mapping t0 HTML ..ot 131

iv Interaction Flow Modeling Language, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Formal
Specifications are available from this URL:

http://mww.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBA/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

Interaction Flow Modeling Language, v1.0 v

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
. CORBAServices
. CORBAFacilities

CORBA Embedded Intelligence Specifications
CORBA Security Specifications
OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http: //www.omg.org/report_issue.htm.

vi Interaction Flow Modeling Language, v1.0

1 Scope

This specification defines the Interaction Flow Modeling Language (IFML). The objective of IFML isto provide system
architects, software engineers, and software developers with tools for the definition of Interaction Flow Models that
describe the principal dimensions of an application front-end: the view part of the application, made of view containers
and view components; the objects that embody the state of the application, and the references to business logic actions
that can be executed; the binding of view components to data objects and events; the control logic that determines the
actions to be executed after an event occurrence; and the distribution of control, data, and business logic at the different
tiers of the architecture.

2 Conformance

There are five ways in which a tool may demonstrate conformance to the IFML metamodel.

1. Abstract syntax conformance. A tool demonstrating abstract syntax conformance provides a user interface and/or
API that enables instances of concrete IFML metaclasses to be created, read, updated, and deleted. The tool must
also provide a way to validate the well-formedness of models that corresponds to the constraints defined in the
IFML metamodel.

2. Concrete syntax conformance. A tool demonstrating concrete syntax conformance provides a user interface and/or
API that enables instances of IFML notation to be created, read, updated, and deleted.

3. Model interchange conformance. A tool demonstrating model interchange conformance can import and export
conformant XM for all valid IFML models. Model interchange conformance implies abstract syntax conformance.

4. Diagram interchange conformance. A tool demonstrating diagram interchange conformance can import and export
conformant DI for al valid IFML models with diagrams. Diagram interchange conformance implies both concrete
syntax conformance and abstract syntax conformance.

5. Semantic conformance. A tool demonstrating semantic conformance provides a demonstrable way to interpret
IFML semantics, e.g., code generation, model execution, or semantic model analysis.

A tool can claim conformance with the IFML metamodel if and only if the software fully implements the IFML
metamodel in one or more of the above ways. A tool that only partially implements the metamodel can claim only that it
is based on this specification, but cannot claim conformance with the specification.

A tool already conforming to the UML specification may demonstrate conformance with the UML Profile for IFML by
providing the means to apply the profile to a UML model, as specified in Clause 11.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« S Bradner, Key words for usein RFCs to Indicate Requirement Levels, RFC2119, http://ietf.org/rfc/rfc2119, March
1997

Interaction Flow Modeling Language, v1.0 1

e OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-05, August 2011.
¢ OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, formal/2011-08-06, August 2011.
¢ OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, formal/2011-08-07, August 2011

¢« OMG MOF 2 XMI Mapping Specification, Version 2.4.1, formal/2011-08-09, August 2011

« Diagram Definition (DD), Version 1.0, formal/2012-07-01, July 2012

4 Terms and Definitions

There are no formal definitions of terms in this specification.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Business Motivation

In the last twenty years, capabilities such as form-based interaction, information browsing, link navigation, multimedia
content fruition, and interface personalization have become mainstream in many business-to-consumer (B2C), business-
to-business (B2B), and business-to-employee (B2E) applications. These are implemented on top of a variety of
technologies and platforms: desktop applications, client-server applications, web applications, rich internet applications,
mobile applications, and even human machine interfaces for industrial control, where more and more embedded systems
are equipped with browser-based GUIs. This convergence in technologies is reflected in the HTML 5 initiative, which
aims at establishing a unified set of concepts and a common technological platform for the development of a broad
spectrum of interaction front-ends.

However, the emergence of such an unprecedented range of devices, technological platforms, and communication
channelsis not accompanied by the advent of an adequate approach for creating a Platform Independent Model (PIM) that
can be used to express the interaction design decisions independently of the implementation platform. This causes front-
end development to be a costly and inefficient process, where manual coding is the predominant development approach,
reuse of design artifacts is low, and portability of applications across platforms remains difficult.

Using IFML for PIM-level interaction flow modeling, brings several benefits to the development process of application
front-ends:

< It permits the formal specification of the different perspectives of the front-end: content, interface composition,
interaction and navigation options, and connection with the business logic and the presentation.

* |t separates the stakeholder concerns by isolating the specification of the front-end from its implementati on-specific
issues.

2 Interaction Flow Modeling Language, v1.0

6.2

It improves the development process, by fostering the separation of concerns in the user interaction design, thus
granting the maximum efficiency to al the different developer roles.

It enables the communication of interface and interaction design to non-technical stakeholders, permitting validation
of requirements from subject matter experts (SMESs) and clients sooner in the development process.

Design Principles

Front-end design is a complex and multidisciplinary task, where many perspectives intersect. Therefore, IFML is
particularly attentive to model usability and understandability, by explicitly addressing all the factors that contribute to
making a PIM quickly learned, easy to use, and open to extensibility:

6.3

It is concise, avoiding redundancy and reducing the number of diagram types and concepts needed to express the
salient interface and interaction design decisions.

It includes extensibility in the definition of new concepts (e.g., novel interface components or event types).

It ensures implementability, that is, it supports the construction of model transformation frameworks and code
generators that can map the PIM into a suitable PSM and ultimately into executabl e applications for a wide range of
technological platforms and access devices.

It ensures model-level reuse, that is, it supports the definition of reusable design patterns that can be stored,
documented, searched and retrieved, and re-used in other applications.

It allows the application of inference rules at the modeling level that automatically apply default modeling patterns and
details whenever they can be determined from the context, giving the possibility to avoid the need for modelersto
specify inferable information (e.g., automatic inference of the parameters that need to be passed from a component to
another at the modeling level).

IFML Artifacts

The IFML specification consists of four main technical artifacts:

1. The IFML metamodel specifies the structure and semantics of the IFML constructs using MOF.

2. The IFML UML profile defines a UML-based syntax for expressing IFML models. In particular, the UML profile

extends concepts of the following UML diagrams: class diagrams, state machine, and composite structure
diagrams.

3. The IFML visual syntax offers a dedicated visual syntax for expressing IFML modelsin a particularly concise way.

Specificaly, it provides a unique diagram capable of compacting the aspects of the user interface that are otherwise
expressed separately with UML class diagrams, state machine, and composite structure diagrams.

4. The IFML XMI provides the IFML model exchange format, for tool portability.

6.4

Acknowledgments

The standardization initiative and the FTF of IFML have been lead by Marco Brambilla.

This specification was originally authored by:

Interaction Flow Modeling Language, v1.0

Marco Brambilla (WebRatio and Politecnico di Milano)
Piero Fraternali (WebRatio and Politecnico di Milano)

Other authors that contributed to the current version include:

Aldo Bongio (WebRatio)

Stefano Butti (WebRatio)

Adriano Comai (Soluta.net and WebRatio)

Wolfgang Kling (Ecole des Mines de Nantes and WebRatio)
Manfred R. Koethe (88Solutions)

Andrea Mauri (WebRatio and Politecnico di Milano)
Emanuele Molteni (WebRatio)

Ed Seidewitz (Model Driven Solutions and Ivar Jacobson International)

We wish to thank all the other contributors that provided useful input, feedback, and discussions on the IFML
specification.

Interaction Flow Modeling Language, v1.0

7 IFML Specification

7.1 Key Concepts of IFML

The Interaction Flow Modeling Language (IFML) supports the platform independent description of graphical user
interfaces for applications accessed or deployed on such systems as desktop computers, laptop computers, PDAs, mobile
phones, and tablets. The focus of the description is on the structure and behavior of the application as perceived by the
end user. The description of the structure and behavior of the business and data components of the application is limited
to those aspects that have a direct influence on the user’s experience.

With respect to the popular Model-View-Controller (MVC) model of an interactive application,l the focus of IFML ison
the view part. Furthermore, IFML describes how the view references or is depended on by the model and control parts of
the application. In particular:

» With respect to the view, IFML deals with the view composition and the description of the elementsthat it exposes to
the user for interaction.

< With respect to the controller, IFML lets the designer specify the effects of user interactions and system events on the
application by defining the relevant events that the controller must take care of.

« With respect to the model, IFML allows for specification of the references to the data objects that embody the state of
the application and are published in the user interface, aswell as of the reference to the actionsthat are triggered by the
interaction of the user.

IFML can be complemented with external models for the complete specification of applications with aspects that are not
directly connected with the user interface and interaction:

« Theinternal functioning of the actions triggered by the user’s interaction can be described using any action model. For
example, if the action refers to the invocation of an object’s method, this can be described using UML class and
collaboration diagrams; if the action refers to the invocation of aweb service, this can be described using a SoaM L

diagram.2

« The object model underlying the application can be described with any structural diagram, for example with a UML
class diagram or a Common Warehouse Metamodel (CWM) diagram3.

Modeling the user interface and interaction with IFML amounts to addressing the following aspects:

* The composition of the view, in terms of its partition into independent4 visualization units, which can be displayed
simultaneously or in mutual exclusion, and can be nested hierarchically.

« The content of the view, in terms of both the data elements published from the application to the user and of the data
elements input from the user to the application.

< The commands enabling the user’s interaction and the corresponding events.

« Thereference to actions triggered by the user’s commands.

See, for example, http://en.wikipedia.org/wiki/M ode-view-controller.
See http://www.omg.org/spec/SoaML .

See http://www.omg.org/spec/SoaML .

See http://www.omg.org/cwm/

Bl

Interaction Flow Modeling Language, v1.0 5

http://en.wikipedia.org/wiki/Model
http://www.omg.org/spec/SoaML
http://www.omg.org/spec/SoaML
http://www.omg.org/cwm/

» The effects of the user’sinteraction and of the action execution on the state of the user interface.
* The parameter binding between the elements of the user interface and the triggered actions.
Consequently, an IFML model supports the following design perspectives:

« The view structure specification, which consists of the definition of view containers, their nesting relationships, their
visibility, and their reachability.

< The view content specification, which consists of the definition of view components, i.e., content and data entry
elements contained within view containers.

» The events specification, which consists of the definition of events that may affect the state of the user interface.
Events can be produced by the user’s interaction, by the application, or by an external system.

« The event transition specification, which consists of the definition of the effect of an event on the user interface. The
effect can be the change of the view container or of the content displayed, the triggering of an action, or both.

« The parameter binding specification, which consists of the definition of the input-output dependencies between view
components and between view components and actions.

7.2 IFML in a Nutshell

Internet application (RIA) can be modeled as having one top-level container, the main window; instead, a Web application
can be modeled as having multiple top-containers, one for every dynamic page template.

Each view container can be internally structured in a hierarchy of sub-containers. For example, in a desktop or RIA
application, the main window can contain multiple tabbed frames, which in turn may contain severa nested panes. The
child view containers nested within a parent view container can be displayed simultaneously (e.g., an object pane and a
property pane) or in mutual exclusion (e.g., two alternative tabs). In case of mutually exclusive (XOR) containers one
could be the default container, displayed by default when the parent container is accessed.

A view container can contain view components, which denote the publication of content or interface elements for data
entry (e.g., input forms). A view component can have input and output parameters. For example, a view component for
showing the properties of an object can have as an input parameter the identifier of the object to display; a data entry form
or alist of items can have as output parameters the values input or the item selected by the user.

A view container and a view component can be associated with events, to denote that they support the user’s interaction.
For example, a view component can represent: a list associated with an event for selecting one or more items, a form
associated with an event for input submission, or an image gallery associated with an event for scrolling though the
gallery. Events in concrete are rendered as interactors, which depend on the specific platform and therefore are not
modeled in IFML but produced by the PIM to Platform-Specific Model (PSM) transformation rules. For example, the
scrolling of an image gallery may be implemented as a link in an HTML application and as a flip gesture in a mobile
phone application.

The effect of an event is represented by an interaction flow connection, which connects the event to the view container or
component affected by the event. For example, in an HTML web application the event caused by the selection of one item
from alist may cause the display of a new page with the details of the selected object. This may be represented by an
interaction flow connecting the event associated with the list component in a top-level view container (the web page) with
the view component representing the object detail, positioned in a different view container (the target web page). The
interaction flow expresses a change of state of the user interface: the occurrence of the event causes a transition of state
that produces a change in the user interface.

6 Interaction Flow Modeling Language, v1.0

An event can also cause the triggering of an action, which is executed prior to updating the state of the user interface; for
example, in aweb content management application the user can select from a list the elements to delete; the selection
event triggers a delete action, after which the page with the list is redisplayed. The effect of an event triggering an action
is represented by an interaction flow that connects the action to the view container or component affected by the event.

An input-output dependency between view elements (view containers and view components) or between view elements
and actions is denoted by parameter bindings associated with navigation flows (interaction flows for navigating between
view elements). For example, in Figure 7.1, the navigation flow that goes from the event denoting the selection of an
item of the Artist Index view component to the Artist view component (showing the selection details), has a parameter
binding that associates an output parameter of the Artists Index view component with an input parameter of the Artist
view component. See also further examples in Figure 7.2, Figure 7.3, and Figure 7.4.

Artists
= Artist [Nde) c— e Artist
Andrea Bocelli First Name: Celine
Celine Dion Last Name: Dien
Frank Sinatra R
The Beatles ><
=
_ = wParamBindingGroups _~ _______ Parameter
View Container +_ SelectedAutist - AnArtist Binding
o
View
/ Component
= ey
Artists = Artist

List

Event /

Figure 7.1 - Example of user interface (top) and corresponding IFML model (bottom). The user selects an item in the
list and displays its details in the same view container.

Interaction Flow Modeling Language, v1.0 7

it Lk _ " «ParameterBindingGroup»
Andrea Bocelli ‘:\nISt 4 SelectedArtist = AnArtist .
Bocelli First Name: Andrea

. celll Last Name: Bocelli b g

- Romanza Photo: Albums&Artists

Celine Dion X

- All the way [XOR] Album or Artist

- Let's talk ...

Albums&Artists Artist
Albums& Artists ST Select Artist

1 Alum y () '

ncrea Socell FEh Artist an

i Title: All the Way . .
- Emel Year: 1999 Album List ___].___Selsct Album arieisenll
- Romaenza Cover: \
Celine Dion b
- All the way
- Let's talk ..
Album
‘ Album Details
40N
Y «ParameterBindingGroup»
< SelectedAlburmn 2 AnAlbum 7

Figure 7.2 - Example of user interface (left) and corresponding IFML model (right). One top-level container comprises
three view containers: one with a list of artists and of their albums, one with the details of an artist, and one with the
details of an album. The latter two view containers are mutually exclusive: only one at a time is displayed.

8 Interaction Flow Modeling Language, v1.0

Albums Albums
= Delete Album — Delete Album
All the Way Del Anthology Del
Anthology Del Born in the USA Del
Born in the USA Del Bridges to Babylon Del
Bridges to Babylon Del Imagine Del
Imagine Del Let's talk... Del
Let's talk... Del Sing-a-long Del
Sing-a-long Del
=

__,-""::ParameterBindingGroup:o
/SelectedAlbum > AnAlbum /

Albums

Album . Album » N
List [' Deletion

+__

Figure 7.3 - Example of user interface supporting action invocation (top) and corresponding IFML model (bottom). The
user can select an item from a list of objects; the selection causes a delete action to be triggered after which the
updated list of objects is redisplayed.

Interaction Flow Modeling Language, v1.0 9

AlbumSearch Albums Album
— Albumn Search = 2 Albums Found _ Album
All the Way Title: All the Way
Title: |:] Let's talk .. Year: 1999
Cover:

X

__.<'c'ParameterBinding Group»
/ Title = AlbumTitle
Year = AlbumYear

/ «ParameterBindingGroup»
/' SelectedAlbum = AnAlbum

«\Windows AlbumSearch

«Windows» Albums

«Windows Album

«Details»

«Forma» | wlist» |
Album J \ Album .~ Album
Search ' List Details

] |

Figure 7.4 - Example of user interface (top) and corresponding IFML model (bottom). The user enters data into an input
form and submits them; this event causes a distinct view container to appear with a list of matching objects; finally,
the selection of an item in the list causes the display of the corresponding details in a third view container.

7.3 Extensibility

IFML uses the extensibility mechanisms of UML to allow the definition of stereotypes, tagged values, and constraints.
The Extensions package exemplifies how the extension mechanism works: it contains concepts that extend concepts from
the Core package. In the same way, new packages may be introduced containing new constructs, to model platform-
independent or platform-specific concepts.

Extensions are meant to refine the semantics of the core concepts or to provide specific cases of core concepts. As such,
they must therefore refine the semantics of the IFML concepts, and not modify it. The following concepts (and their
extensions) can be extended in IFML while still achieving compliance to the standard:

¢ ViewContainer

* ViewComponent

« ViewComponentPart
* Event

10 Interaction Flow Modeling Language, v1.0

« DomainConcept and FeatureConcept

« BehaviorConcept and Behavioral FeatureConcept

Extensions of other elements are not allowed.

7.4 Concept List

Table 7.1 lists the core concepts of IFML and Table 7.2 lists a set of extension concepts provided as an example for the
IFML extension mechanism.

Table 7.1 - Essential IFML Concepts

elements displaying
content and supporting
interaction and/or other
ViewContainers.

MailBox

Concept Meaning IFML Notation Example at
Implementation
level

View Container An element of the Web page Window

interface that comprises Pane

XOR View
Container

A ViewContainer
comprising child
ViewContainers that are
displayed alternatively.

[XOR] MessageSearch

Tabbed panesin Java
Framesin HTML

Landmark View
Container

A ViewContainer that is
reachable from any other
element of the user
interface without having
explicit incoming
InteractionFlows.

[L] MessageWriter

A logout link in HTML
sitesthat isvisiblein
every page.

Default View
Container

A ViewContainer that will
be presented by default to
the user, when its
enclosing container is
accessed.

[D] Search

A welcome page

Interaction Flow Modeling Language, v1.0

11

Table 7.1 - Essential IFML Concepts

Concept

Meaning

IFML Notation

Example at
Implementation
level

View Component

An element of the
interface that displays
content or accepts input.

Message List

AnHTML list. A
JavaScript image
galery. Aninput form.

denoted as [Client].

Event An occurrence that affects
the state of the application.
. @
— Name Name
Action A piece of businesslogic A database update. The
triggered by an event; it sending of an email.
can be server side (the The spell checking of a
default) or client-side, Send text.

Navigation Flow

Update of the interface
elementsin view or
triggering of an action
caused by the occurrence
of an event. Data may be
associated with the flow
through parameter
bindings.

Sending and receiving
of parametersin the
HTTP request.

Data Flow

Data passing between
ViewComponents or
Action as consequence of
aprevious user
interaction.

Parameter

A typed and named value

Optionally shown. If necessary can be denoted as
follows:

«Parameters State: String

HTTP query string
parameters

HTTP post parameters
JavaScript variablesand
function parameters

Parameter Binding

Specification that an input
parameter of asourceis
associated with an output
parameter of atarget.

/- from = to

12

Interaction Flow Modeling Language, v1.0

Table 7.1 - Essential IFML Concepts

Concept

Meaning

IFML Notation

Example at
Implementation
level

Parameter Binding
Group

Set of ParameterBindings
associated to an
InteractionFlow (being it
navigation or data flow).

/' «ParameterBindingGroup»
Title = AlbumTitle
Year = AlbumYear

Activation
Expression

Boolean expression
associated with a
ViewElement,
ViewComponentPart or
Event: if true the e ement
isenabled

«fActivationExpression:s
not MessageSet.isEmpty()

Interaction Flow
Expression

Determine which of the
InteractionFlowsaregoing
to befollowed as
consequence of the
occurrence of an Event.

«InteractionFlowExpressions

if AlbumDetails selected then
AlbumDetails

else Album details

Event triggered after

selecting a given value

in a ComboBox.

Module

Piece of user interface and
its corresponding actions,
which may be reused for
improving IFML models
maintainability.

Module -—rb

o L

Input Port

An interaction point
between aModule and its
environment that collects
I nteractionFlows and
parameters arriving at the
module.

B

| o

outside the module definition inside the module definition

Interaction Flow Modeling Language, v1.0

13

Table 7.1 - Essential

IFML Concepts

between the Module and
its environment that
collects the

I nteractionFlows and
parameters going out from
the module.

>

n,

outside the module definition inside the module definition

Concept Meaning IFML Notation Example at
Implementation
level

Output Port An interaction point

View Component
Part

A part of a
ViewComponent that may
not live by itsown. It can
trigger Events and have
outgoing and incoming
InteractionFlows. A
ViewComponentPart may
contain other
ViewComponentParts.

« TypeNames [Name][...] ‘

«StbTypeName» [Name] [...]

‘ wSubTypeNamer [Name][...] ‘

Examples

«DataBinding» MailMessage

«ConditionalExpression» MailMessage in
MailMessageGroup2MailMessage(MBox)

«SimpleField» to: String

Fieldsin aform

Table 7.2 - Extension IFML Concepts

Concept Extension

Meaning

IFML Notation

Example at

Examples implementation
level
Select Event Event denoting the A selection of arow in
selection of asingleitem atable.
of the user interface. @
14 Interaction Flow Modeling Language, v1.0

Table 7.2 - Extension IFML Concepts

rendered as a window.

«Window» Main Screen

Submit Event Event that triggers a A form submission
parameter passing button in HTML.
between interaction flow
elements.

List ViewComponent used to Table with rows of
display alist of elements of the same
DataBinding instances. («List» MBoxList kind.

«DataBinding» MailMessageGroup

Form ViewComponent used to HTML form
display aformthat is
composed of Fields. " «Form» Message Keyword Search

«SimpleField» Key: String
Details ViewComponent used to
display details of a S -
s - («List» MBoxList
specific DataBinding (Hsty HEOXEES
Instance. «DataBinding» MailMessageGroup
Window A ViewContainer AnHTML pageor a

desktop window.

Interaction Flow Modeling Language, v1.0

15

Table 7.2 - Extension IFML Concepts

Modal Window

A ViewContainer
rendered in anew window
that, when displayed,
blocksinteraction in all
other previously active
containers.

«Modal» Alert

A moda pop-upin
HTML.

Modeless Window

A ViewContainer
rendered in anew window,
that when displayed, is
superimposed over al
other previoudly active
containers, which remain
active.

«Modeless» Tag Chooser

A modeless pop-up in
HTML.

16

Interaction Flow Modeling Language, v1.0

8 IFML Metamodel

8.1 High-Level Description

The IFML metamodel is divided in three packages: the Core package, the Extension package, and the DataTypes package.
The Core package contains the concepts that build up the interaction infrastructure of the language in terms of

I nteractionFlowElements, InteractionFlows, and Parameters. Core package concepts are extended by concrete conceptsin
the Extension package with more complex behaviors. The DataTypes package contains the custom data types defined by
IFML.

The IFML metamodel uses the basic data types from the UML metamodel, specializes a number of UML metaclasses as
the basis for IFML metaclasses, and presumes that the IFML DomainModel is represented in UML.

The high level description of the IFML metamodel given in the remainder of this sub clause is structured into the
following areas of concern:

* IFML Model

* Interaction Flow Model

* Interaction Flow Elements

e View Elements

* Events

* Specific Events and View Components
e Parameters

e Expressions

¢ ContentBinding

Subsequent sub clauses provide detailed descriptions of the content of each of the three packages.

Interaction Flow Modeling Language, v1.0 17

8.1.1 IFML Model

sMataclasssy
IFML-Coves: | +annolations +element
Annolalion l"'n

. 1

+exl . Sy ng l‘ |

ehiptacksse

IFRAL: Cane:
Efamant

+id : Siring [1]

=Mataclasss

+element #+conskraints N IFML - Coer

7| Censtraint

L 0.

aMelaciasss . o «hetaciasgs
IFML Core M_iu‘..eraﬂm:-bahhdeﬂema IFML Care
InteractionFlowModeiSemant | 0 MamedElement
¥ +Hame : String [1]
+inleractonFlowhodelElements | 0,.”

4T

Hiewpeints |5+ HinteractionFlowhodel +1
ahlataclagss ablataclagss 3 «Mataciasss aMataclagss
IFML::Ciorac: IFML=Core:: HnloraclonFlowModel 11 ey - cora: IFML::Cora::
Viewpoint InteractionFlowModel | 1 +ilmiModel| IFMLModel | 1 +domanhiodel | DemainMedel
[] .
+inlaractonFlowhodaliewpoint |0..* +'rﬁ-nlMadeli1 +domainiodel (1
+domanElements | 0.*
aMetaclasss
IFML:Core:
DomainElement
«Metaclasgs «Metaclzsss «Metaclzsss «Metaclasss
IFML::Core: IFML::Core:: IFML: Corer: IFML: - Core::
FeatureConcept | |DomainConcept BehavioralFeatureConcept | | BehaviorConcept
|

Figure 8.1 - IFML Model

IFMLModel, as its name suggests, represents an IFML model and is the top-level container of all the rest of the model

elements. It contains an InteractionFlowModel, a DomainModel, and may optionally contain ViewPoints.

InteractionFlowModel is the user view of the whole application while ViewPoints present only specific aspects of the
system by means of references to sets of InteractionFlowM odel Elements, which as a whole define a fully functional
portion of the system. The purpose of a ViewPoint is to facilitate the comprehension of a complex system, to allow or
disallow access to the system by a specific UserRole, or to show an adapted piece of the system to a specific context

change.

InteractionFlowM odel Element is an abstract class, which is the generalization of every element of an

InteractionFlowM odel.

DomainModel represents the business domain view of the application, i.e., the description of the content and behavior
that is dealt with (and referenced) within the InteractionFlowModel. The DomainModel comprises DomainElements,

which are specialized as concepts, properties, behaviors, and methods (DomainConcept, FeatureConcept,

BehaviorConcept, and Behaviora FeatureConcept respectively).

18

Interaction Flow Modeling Language, v1.0

NamedElement is an abstract class that specializes the Element class (the most general class in the model) denoting the
elements that have a name. Besides IFMLModel, I nteractionFlowModel, DomainModel, DomainElement, and ViewPoint,
NamedElement has other subclasses, which will be described in the contexts where they play a major role.

For any Element, Constraints and Annotations can be specified. Constraints are an extension mechanism to the IFML, in
the sense that they may constrain further, for a specific model, the existing IFML syntactical rules.

8.1.2 Interaction Flow Model

abdatacinga s
IFML::Core
IFMLModel

silrnilioged [1

sinferaciont iowhoded |1

alElaciin g s
IFMAL::Coore:
InteraciionFlowModel

sinfioracionF iowhioded | 1

vinleractionF iowhicdsEemants (0.

ahApincisue
IFML: Core
interactionFlowModeiSioment
-u!.hrl;l.'uun -Mm.lu lnys [abdataclrns e ahinclnane alMaimlan ablalasliks s
IFML: Core IFMIL: Corn IFML.:Coro FiL- Cona IFMAL: Corm IFML - Core
interactionFiowSament interactionFiow Parameter ParameterBinding ParameterBindingGroup Expression
sdemction - Denclon = in “AaEnguinge * Siring [1]

shady - Birng [1]

Figure 8.2 - Interaction Flow Model

An InteractionFlowModel contains all the elements of the user view of the application represented by the
I nteractionFlowM odel Element. I nteractionFlowM odel Element has seven direct subtypes: InteractionFlowElement,
InteractionFlow, ParameterBindingGroup, ParameterBinding, Parameter, Expression, and Module.

I nteractionFlowElements are the building blocks of interactions. They represent the pieces of the system, which
participate in interaction flows through InteractionFlow connections.

An InteractionFlow is a directed connection between two InteractionFlowElements. InteractionFlows may imply
navigation along the user interface or only a transfer of information by carrying parameter values from one
I nteractionFlowElement to another.

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElementsi.e.,
ViewElements, ViewComponentParts, Ports, and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Considering the flow of a Parameter P from an InteractionFlowElement A to an

I nteractionFlowElement B, the Parameter P is considered as an output parameter of InteractionFlowElement A and as an
input Parameter of InteractionFlowElement B.

ParameterBindings determine to which input Parameter of a target InteractionFlowElement an output Parameter of a
source InteractionFlowElement is bound. ParameterBindings are in turn grouped into ParameterBindingGroups.

Interaction Flow Modeling Language, v1.0 19

A Moduleis afully functiona collection of InteractionFlowM odel Elements, which may be reused for improving IFML
maintainability. Modules may be replaced by other Modules or InteractionFlowElements with the same input and output
parameters.

An Expression defines a statement that will evaluate in a given context to a single instance, a set of instances, or an empty
result. An Expression is side effect free. Specific kinds of expression, such as boolean expressions, etc., are represented
as specializations of Expression.

The interactions between all these elements will be described in the following sub clauses.

8.1.3 Interaction Flow Elements

Melaclassy +sourcelnteractionFlowElementtoutinteractionFlows
0 «Metaclass» ’ e «Metaclassy sinteractonF
Cara- v . . inleractionFlow
IFML::Core - interaclionFlowElement IFML-Core:: IFML:Core:;
Parameter +parameters 1| InteractionFiowEiement |, 1 0." | InteractionFiow |
Hirection : Direction =in ? +targetinteractionFlowElement +interactionFlows ?
+viewElements | «Melaclass» «Metaclassy «Metaclassy Melacaser Metaclass» «Metaclassn «Metaclassy
|
0.+ | IFML:Core: IFML::Core:: IFML:Core:; EML:Core: IFML:Core:: IFML:Core: IFML:Core:;
ViewElement | | ViewComponentPart Action Event NavigationFlow DataFlow
PortDefinition
| i)
0.° | +vewComponentPart tinputPorts | 0.* 0.* +outputPorts 1 tevent
+actions 0.
+viewContainer |0, 1 ‘
1] +viewComponent +module |1 1 | +module
0 «Metaclass» o
«Metaclass» r:ﬁaiaesn Metaclass IFML::Core:: "
-Core:: Core:, + i i
lIFML.Corfa.. Vo t IEMLCarer interactionFlowExpression | InteractionFlowExpression iteractionFlowExpression
ViewContainer ewLompanen ModuleDefinition
+isLandmark : Boolean
+isDefault : Boolean
+5XOR : Boolean
+viewConlainer ‘0”1

Figure 8.3 - Interaction Flow Elements

The InteractionFlowElement is one of the key concepts of IFML. InteractionFlowElements represent pieces of the system,
such as ViewElements, ViewComponentParts, Ports, Actions and Events, which participate in I nteractionFl ow
connections. |nteractionFlowElements contain Parameters, which usually flow between InteractionFlowElements as a
consequence of ViewElementEvents (user events), ActionEvents, or SystemEvents. InteractionFlowElements may have
both incoming and outgoing interaction flows.

InteractionFlows are specialized into NavigationFlows and DataFlows. A NavigationFlow represents navigation or change
of ViewElement focus, the triggering of an Action processing, or a SystemEvent. NavigationFlows are followed when
Events are triggered. NavigationFlows connect Events of ViewContainers, ViewComponents, ViewComponentParts, or
Actions with other InteractionFlowElements. When a NavigationFlow is followed Parameters may be passed from the

20 Interaction Flow Modeling Language, v1.0

source I nteractionFlowElement to the target I nteractionFlowElement through ParameterBindings. A DataFlow is akind of
InteractionFlow used for passing context information between InteractionFlowElements. DataFlows are triggered by
NavigationFlows, causing Parameter passing but no navigation.

Events may be associated with an InteractionFlowExpression when they have more than one outgoing NavigationFlow.
An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed as a consequence of
the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all the InteractionFlows
associated with the event are followed.

ViewContainers can contain ViewElements (namely other ViewContainers or ViewComponents) or Actions.

8.1.4 View Elements

+iewElements | (Metaclass»
X [FML::Core::
" | ViewElement
+viewContainer [0..1
+parentViewComponentPart 1
«Metaclass» «Metaclass» Metaclassy
IFML::Core:: IFML::Core:: +viewComponent 0. IFML-Core- 0.f
ViewContainer i e
Vinetompoasi 1 +viewComponentParts | ViewComponentPart | +subViewComponentParts
+sLandmark : Boolean

+sXOR : Boolean

7

+sDefault : Boolean T

«Metaclass»

«Metaclass» IFML::Extensions:: «Metaclass» «Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML:Exiansions:: Window IFML::Extensions:: IFML::Extensions::| [IFML::Extensions:: IFML::Extensions:: IFML::Extensions::
Menu +isModal - Boolean List Details Form Field Slot

+isNewWindow : Boolean

Figure 8.4 - View Elements

The elements of an IFML model that are visible at the user interface level are called ViewElements, which are specialized
in ViewContainers and ViewComponents. ViewContainers, like HTML pages or windows, are containers of other
ViewContainers or ViewComponents, while ViewComponents are elements of the interface that display content or accept
input from the user.

A ViewContainer may be landmark, XOR, and/or default. A landmark ViewContainer may be reached from any other
ViewElement without the need of explicit InteractionFlows. ViewContainers that are not landmark may be reached only
with an InteractionFlow.

Interaction Flow Modeling Language, v1.0 21

In case a ViewContainer (the enclosed ViewContainer) is contained in another ViewContainer (the enclosing
ViewContainer), like a frame in an HTML page, if it is marked as default, it will be presented to the user when its
enclosing ViewContainer is accessed. Enclosing ViewContainers may be marked as XOR. In this case, the contained
ViewElements of the current ViewContainer will be presented to the user only one at atime, as the user interacts with the
system. A ViewContainer may be also opened as a new window. This new window may be “modal.” Modal windows are
meant to block any user interaction in all other previously active containers, until the new window is closed. Another
specia kind of ViewContainer is the Menu. Menus represent sets of interactive buttons or links that lead to some target
container. Menus cannot contain subcontainers or ViewComponents.

ViewComponents exist only inside ViewContainers. A ViewComponent is an element of the interface that may have
dynamic behavior, display content, or accept input. It may correspond e.g., to a form, a data grid, or an image galery.

A ViewComponent may be built up from ViewComponentParts. A ViewComponentPart is a part of the ViewComponent
that cannot live outside the context of a ViewComponent but may have Events and incoming and outgoing
InteractionFlows. ViewComponentParts may hierarchically contain other ViewComponentParts. A ViewComponentPart
may be visible or not at the level of the user interface depending on the kind of ViewComponentPart. For instance, a
RichTextField is a ViewComponentPart that is visible to the user, may trigger events, and may receive values through
parameter passing, while a Slot is a value placeholder that is not visible to the user.

The extension package includes concrete examples of ViewComponents such as List, Details and Form, and
ViewComponentParts such as Fields and Slots. A List isfor displaying, selecting, and capturing lists of items of the same
kind. Details is a component for displaying detailed information on a content element. A Form is for capturing user input
through forms. All these elements will be described in detail in the following sub clauses.

22 Interaction Flow Modeling Language, v1.0

8.1.5 Parameters

+ininteractionFlows 1
Metaclass» . - 1 Metaclassy g « +argetinteractionFlowElement Metaclass»
IFML:Core:: parameterBindingGroup IFML:Core: IFML::Core:;
ParameterBindingGroup | 0.1 HinteractionFlow | InteractionFlow | +outinteractionFlows 1| InteractionFiowElement
0. +sourcelnteractionFlowElement
+parameteerdmgGroup 1 1| +interactionFlowElement
«Metaclass» «Metaclass»
IFML::Core:: IFML::Core::
NamedElement InteractionFlowModelElement
+name : String [1]

0.* #parameters

+parameterBindings y1.”

. Metaclass
«Metaclass» parameterinding souoPanesy ;(FML"Coref
IFML:Core:: |1 1 Pm‘ﬁmer"

ParameterBinding | +parameterBinding +argelParameter wdrecton Drecton=]

irection : Direction = in
1 1 |+defautivalue : Expression

Figure 8.5 - Parameters

A Parameter is a typed element with multiplicity, whose instances hold values. A Parameter may be of a primitive type or
a complex type such as object or collection of objects. Parameters are held by InteractionFlowElements and flow between
them when Events are triggered. Parameters may be mapped to a single element of the user interface i.e.,
ViewComponentPart or to a complex hierarchical set of ViewComponentParts.

Parameters have a direction property, which can be input (in), output (out), or input-output (inout). Default direction is
input. An input Parameter allows an InteractionFlowElement to receive one or more values through an incoming
NavigationFlow or DataFlow. An output Parameter allows an InteractionFlowElement to expose one or more values
through an outgoing NavigationFlow or DataFlow. A input-output Parameter allows for both behaviors.

A ParameterBinding determines to which input Parameter of a target InteractionFlowElement an output Parameter of a
source InteractionFlowElement is connected and thus how the parameter value will flow when an Event is triggered and
the InteractionFlow is followed. ParameterBindings that flow together with an InteractionFlow are grouped by a
ParameterBindingGroup, which in turn is related to the InteractionFlow.

Interaction Flow Modeling Language, v1.0 23

8.1.6 Events

hhptac iy
Fill Core
ey
s hhpaCintn s At monEapresion |01
FNL Corn i . S—
Wt s v
inderactank lowFrpransan . - stz spres e
H s P -Corm e

ActptionBxpemaen | 0 | A

seractonf s | FrTr—
FML-Caw
st eerEs e 01 r L hon
FuewEimrenn 1.1 i il
Tre—— TEr—
wvend | AL Cpres | T Pl Com
— Evnt Lel VewEwman
i
— T T]
Mataciasss shasmacauns |
Jfresen WL Cow
'Tnm-;uluh'm Cabichingvenl xmwC ot
 e— - . *vwwilemrilivets 0.1
b I.“"' . . i '_i [T —
ow weimn il vt by e ssbiewomporeriFan
it | ’ Vewlimmsettymed T - Y] O e | -
L Corw alhetar brin o | L | port | 0
. snphlerE o FML- Con 2 |- —]
-~ = Systemivan| lII
smrguigs Sareg (1] 0 e | P —— LA m———atl
ooty “rggrrgleprrsom | *ype SysmeEoet Ty e A on poneil
‘l‘ll_' Exiwrmions ‘l‘ll_m .
ryee——. alisiacignns D SeieiBven Sl mmiErer]
FML Erwruen. ML G L L
: OnLosEven ActionEves | aiEnEreln
=T, [wlirtwcinii \)
FAa-E 0 I e,
SetConianitivent | | | Juplives e | B
1 - - | it
B - AWML Pt -
| LandingEvwn |

Figure 8.6 - Events

Events are occurrences that can affect the state of the application, and they are a subtype of InteractionFlowElement.
Events are classified in two main categories: CatchingEvents (events that are captured in the Ul and that trigger a
subsequent interface change) and ThrowingEvents (events that are generated by the Ul). There are three types of
CatchingEvents. ViewElementEvents, resulting from a user interaction (with specific subtypes OnSelectEvent and
OnSubmitEvent), ActionEvents, and SystemEvents (such as OnLoadEvent).

ViewElementEvents are owned by their related ViewElements. This means that ViewElements contain Events that allow
a user to activate an interaction in the application, e.g., with the click on a hyperlink or on a button. ActionEvents are
owned by their related Actions. An Action may trigger ActionEvents during its execution or when it terminates, normally
or with an exception.

SystemEvents are stand-alone events, which are at the level of the InteractionFlowModel. SystemEvents result from an
Action execution termination event or a triggeringExpression such as a specific moment in time, or special condition
events such as a problem in the network connection.

CatchingEvents own a set of NavigationFlows. An InteractionFlowExpression is used to determine which of the
NavigationFlows are followed as a consequence of the occurrence of an Event. When an Event occurs and it has no
InteractionFlowExpression, all the NavigationFlows associated with the event are followed.

24 Interaction Flow Modeling Language, v1.0

An Event may have an ActivationExpression that determines whether the Event is enabled or disabled. In practical terms,
disabling a ViewElementEvent means, for example, that the Ul element (e.g., a button) that triggers an InteractionFlow is
disabled.

8.1.7 Expressions

«Melaciasss
IFML:-Cora::
lnrevactionFlowMode/Slemant

ahetaclasss

ahglacinns s
0. +5yslamEvent IFML::Core::
T SystemEvent
I-rhg.- pe : SyabemEventTypa

«Melaclasss IFMIL::Core::

IFML: :Core:: Expression
ViewComponentPart slanguage : Siring [1]

ray +hody : Biring [1]

+iriggeringExpressions

+viowComponentPart (0.1

- ahletaclasse qut-aciassn . alMetaclass s
IFML Caras: IFML:Goree: IFML:Core:
ConditionalExpression InteractionFlowExprassion BooleanExpression
riy

HnteractionFlowExpression 0.1
+event |1

«Metaclagsss
IFMAL::Core:: | *event

Evant 0.1
+activationExprassion | 0.1

alledac s s aMetaclasss
+activationExpression IFML::Core:: IFML::Core::
0.1 -] ActivationExpression Canstraint
| 1
FaY

+aclivamonExpression | 0.1

+viewElament | 0.1

aMataclass e aMeataclasse
IFMIL; Core:: IFML:Extensions.:
ViewElement ValidationRuls

Figure 8.7 - Expressions

An Expression defines a side-effect free statement that will evaluate in a given context to a single instance, a set of
instances, or an empty result.

The subtypes of Expression are I nteractionFlowExpression, BooleanExpression, and Conditional Expression.

An InteractionFlowExpression, as discussed in 8.1.3, determines which NavigationFlow should be followed, when more
than one NavigationFlow comes out from an Event.

Interaction Flow Modeling Language, v1.0 25

A ConditionalExpression is a ViewComponentPart representing predefined queries contained by DataBindings (see 8.1.8)
that may be executed on them to obtain specific content information from the DomainModel. Conditional Expressions can
be defined only inside a DataBinding ViewComponentPart.

A BooleanExpression is an expression that evaluates to true or false. BooleanExpression has the specializations
ActivationExpression and Constraint. An ActivationExpression determines if a ViewElement, ViewComponentPart or
Event is enabled, and thus available to the user for interaction, while a Constraint restricts the behavior of any element.

The values used to evaluate the expressions are defined depending on the specific Expression type. For instance
SystemEvent expressions may have as scope specific system condition values, the current date and time, etc., not modeled
inIFML.

8.1.8 Content Binding

«Metaclass»
IFML:Care::
ViewComponentPart

aMetaclass» Txfﬁgﬁssf «Metaclass»
IFML::Core:: - a?re- +action | |FML-Core::
N ContentBinding .
Expression 0.1 Action
- +uniformResourceldentifier : String [0..1]
+anguage : String [1]
+body : String [1] T
T 1| +dynamicBehavior
«Melaclass» » . «Metaclass» «Metaclass» +dynamicBehavior
IFML:Care:: reandiionalExpression IFML::Core:: IFML::Core:: 01
ConditionalExpressicn | 0. +dataBinding 1 |DataBinding DynamicBehavior "
+
0.1 +dataBinding +dynamicBehavior behaviorConcept | 0..1
Metaolassn +visualizationAttribute +dataBinding 1 sbehavioralF eatureConzept | 0.1 Py
. . 0. . IFML::Core:
IFML::Core:: +domainConcept 1 «Melaclass» BehaviorConcept
VisualizationAttribute . -
«Metaclass» IFML::Core::
o - IFML:Gore:: BehavioralFeatureConcept
+visualizationAttribute 0.1 D G t
+eatureConcept |1 omainGoncep ‘T
«Melaclass» ? «Metaclass» T:”:‘f_‘iﬂss »
IFML:-Care:: IFML::Core: ore
«Melaclass» UMLBehavior
FeatureConcept IEML:Core UMLBehaviaralFeature
[F UMLDomainConcept _umiBehavioralFeature 0.1 -umiBehavior [0..1
«Metaclass» -umiDomainConcept | 0.1 +behavioralFeature |0..1 +behavior |0..1
IFML::Core:: +elassifier | 0.1

UMLStructuralFeature

-umlStructuralFeature |0..1

+structuralFeature |0..1

Figure 8.8 - Content Binding

ViewComponents may retrieve content by means of the ContentBinding. ContentBinding represents any source of
content. ContentBinding has as an optional attribute the URI of the resource from which the content may be obtained.

26

Interaction Flow Modeling Language, v1.0

ContentBinding is specialized in two concepts, DataBinding and DynamicBehavior. A DataBinding references a
DomainConcept (for instance, a Classifier in UML) that may represent an object, an XML file, atable in a database, etc.
A DataBinding is associated with a Conditional Expression, which determines the specific content to be obtained from the
content source. A DynamicBehavior represents a content access or business logic such as a service or method that returns
aresult after an invocation, as represented by a Behavioral Feature or Behavior in UML.

A DataBinding contains VisualizationAttributes used by ViewComponents to determine the features accessed from the
DataBinding that may be shown to the user, such as a data base column or an XML element or attribute, as represented
using UML Structural Features.

8.1.9 Context

«Metaclass» «Metaclass»
1 Cora:)
IFML::Core:: +context +contextVariables IFML::Core::
+context| Context 1 0.* ContextVariable
+scope : ContextVariableScope
+context 1 4.‘|S
«Metaclass» «Metaclass»
+viewpoint | 1 +contextDimensions y0..* IFML:-Core:: IFML::Core::
«Metaclass» «Metaclass» DataContextVariable SimpleContextVariable
IFML::Core:: IFML::Core::
Viewpoint ContextDimension +dataContextVariables | 0..*
+dataBinding |1
«Metaclass» «Metaclass» «Metaclass» «Metaclass»
IFML::Extensions:: IFML::Extensions:: IFML::Extensions:: IFML::Core::
Position UserRole Device DataBinding

Figure 8.9 - Context

The Context is a runtime aspect of the system that determines how the user interface should be configured and the content
that it may display. The configuration and content of the user interface is determined by the ViewPoint, and thus Context
isrelated to ViewPoint.

A Context has several dimensions called ContextDimensions, which represent not only the user’s id and preferences but
also the interaction environment of the system. ContextDimension has the specializations UserRole, Device, and Position.
When the user context satisfies al the ContextDimensions, access is granted to the ViewElements of the ViewPoint and
to the Events that may be triggered on them.

UserRole represents the profile that a user should have for satisfying the UserRole dimension.

A Device represents a specific kind of device for which the ViewPoint is configured. When a user accesses the
application through such a device, the Device dimension is satisfied.

Position represents the location and orientation of the device for which a ViewPoint is configured. When the device the
user uses for accessing the application reaches the given position or orientation, the Position dimension is satisfied.

Interaction Flow Modeling Language, v1.0 27

ContextDimension may be specialized to represent other dimensions, such as user preferences, etc.

ContextVariables can be associated to the Context to store primitive values (SimpleContextVariable) or objects
(DataContextVariable) that store the state of the system in the current context.

8.1.10 Specific ViewComponents

+parentVewComponantPart
1

i

whMptaciass w . ol aMetacings s
IFML:Core *viewComponant viewComponantParts IFML:-Cone
ViewComponent 1 0. ViewComponentPart | .oybyfewComponentParts
£ iy
sMeolaclass s uMetaciasss
IFML: Core:] IFNAL: Gorc._
BataBIndlng {1 G‘an.l"ml'ﬂ#rd’.rny
+uniformResourcaldentfier 1 String [0..1]
«Melaclasss «Mataclasss aMelaclasss «Mataclasss «Metaclasss
IFML:: Extensions:: IFML::Extensions:: IFML: Extensions:: IFML::Extemsions:: IFML::Extensions::
Details List Form Field Slot
[| &
aMeiaclasss «Metaciasgs aMelaciases
IFML:Extanzions:: IFML:Extansions:: IFML:Cora::
SimplaField SelectionFiald Paramater
+isMuliSelection : Boolean +direction : Direction = in

Figure 8.10 - Specific ViewComponents
IFML includes a basic set of extensions to the core elements that exemplify how IFML may be extended.

List, Details, and Form are specializations of ViewComponent (see 8.1.4). The List ViewComponent is used to display a
list of DataBinding instances. When a List ViewComponent is associated with an Event, it means that each DataBinding
instance displayed by the component may trigger that Event. The Event will in turn cause the passing of the parameter
values mapped to the DataBinding instance to a target InteractionFlowElement. The Details ViewComponent is used to
display detailed information of a DataBinding instance. When the Details ViewComponent is associated with an Event,
the triggering of the Event will cause the passing of the Parameter values mapped to the DataBinding instance to a target
InteractionFlowElement. The Form ViewComponent is used to display a form, which is composed of Fields that may
display or capture content from the user. Fields have Slots that hold their value. When the Field is a SelectionField, its
associated Slots contain the available selection options and the selected one. When the Field is a SimpleField, the Slot

28 Interaction Flow Modeling Language, v1.0

contains the Field value. A Slot value of a SimpleField and the Slots corresponding to the selected options of
SelectionFields also behaves as Parameters in order to be passed to other ViewElements or Actions when an Event is
triggered. Form ViewComponents have ValidationRules, which determine if a Field value is valid or not.

8.1.11 Modularization

aMetaclasss
IFML:: Core::
InteractionFlowMode/Element
T +activity |0..1
«Metaclass»
+micdularizationElements - -
ol IFML::Core::

0.* | MedularizationElement

+eongept 10..1

s . aMetaclasse eMetaclasse
ACVIVONCOr o IFML:Core:: | IFML.-Core:;
ActivityConcept BPMMActivityConcept

+rmodulePackage | 0.1
1 +miadulaDefinition (1

+module +oulputForts
«Melaclasss aMelaclasss = aMelaclass»
IFML::Core:: IFML::Core:: 1 “ g IFML::Core::
ModulePackage MaduleDefinition [*+module *input ms} PortDefinition
1 0.t
+moduleDefinition |1 +portDefinition | 1
+modules | 0.
aMetaclasss | Lmadle +parts 4rl:.-1=:l2.1lea$$.».
IFML::Care::] 0" o FML-Core::
Module h el

Figure 8.11 - Modularization concepts in IFML
IFML includes a set of concepts that help improving reuse and modularization of models.

The main concept is ModuleDefinition, which allows the definition of an arbitrary piece of IFML model, which can be
subsequently reused in models. ModuleDefinitions can be aggregated in a hierarchical structure of Modul ePackages.
ModuleDefinitions may comprise PortDefinitions.

PortDefinitions represent interaction points with a Module. PortDefinitions hold Parameters, for transferring values to and
from the ModuleDefinition. An input PortDefinition has outgoing InteractionFlows to the inside of the Module. An output
PortDefinition has incoming InteractionFlows from the inside of the Module.

Interaction Flow Modeling Language, v1.0 29

Module is the concept that enables reuse of ModuleDefinitions. Module has a reference to the relevant ModuleDefinition
and is associated with a set of Ports, which in turn reference the corresponding PortDefinitions. An input Port (i.e., a Port
referencing an input PortDefinition) has incoming InteractionFlows from the outside of the Module, for receiving input

Parameters. An output Port has outgoing InteractionFlows to the outside of the Maodule, for shipping output Parameters.

8.2 Package DataTypes

8.2.1 Enumeration Direction

Description

Enumeration specifying the different possible directions of parameters.
Literals

e in(input): Aninput Parameter allows an InteractionFlowElement to receive one or more values through an incoming
NavigationFlow or DataFl ow.

e out (output): An output Parameter allows an InteractionFlowElement to expose one or more values through an
outgoing NavigationFlow or DataFlow.

« inout (input-output): A Parameter of kind input-output allows for both behaviors.

8.2.2 Enumeration ContextVariableScope Description
Description
Enumeration specifying the different scope levels for ContextVariables.
Literals

e ApplicationScope: Scope of the ContextVariable is the application

* SessionScope: Scope of the ContextVariable is the user session

* ViewContainerScope: Scope of the ContextVariableis the ViewContainer (for instance, the Web page or the window)

8.2.3 Enumeration SystemEventType
Description
Enumeration specifying the different system event types.
Literals
« actionCompletion: Kind of Event triggered by a business operation completion.
« gpecialCondition: System specia condition event such as data base connection loss, network loss, etc.

« time: System event of time kind, such as absolute time event, periodic time event, and time out event.

30 Interaction Flow Modeling Language, v1.0

8.3 Package Core

8.3.1 Class Action
Abstract: No
Generalization:

* |nteractionFlowElement
* NamedElement

Description

An Action is an InteractionFlowElement that represents a piece of business logic triggered by an Event. Actions may
reference behavior models describing the actual business logic to be performed. Actions may trigger different Events
called ActionEvents as the result of business logic computation termination or the occurrence of exceptions. Actions may
reside on the server or on the client side. If no ActionEvent (and corresponding outgoing flow) is specified, IFML
assumes as default an ActionEvent and NavigationFlow that lead back to the ViewComponent or ViewContainer from
which the navigation to the Action was launched.

Constraints

» actionsCannotCallActions
self.actionEvent->forAll(e | e.navigationFlow->forAll(nf | not
nf targetlnteractionFlowElement.ocl sTypeOf(IFML::Core::Action)))

Association Ends
« actionEventg[0..*]: ActionEvent - Eventstriggered by the Action.

« dynamicBehavior [1]: DynamicBehavior - The business logic to be carried out by the Action.

e viewContainer [0..1]: ViewContainer - The ViewContainer that contains the current Action.

8.3.2 Class ActionEvent
Abstract: No
Generalization:

e CatchingEvent
Description

An ActionEvent is an Event that may be triggered by an Action such as a normal termination event or exception event.

8.3.3 Class ActivationExpression
Abstract: No
Generalization:

* BooleanExpression

Interaction Flow Modeling Language, v1.0 31

Description
ActivationExpressions are used by ViewElements, Events, or ViewComponentParts to determine if they are enabled or
not. An ActivationExpression is a BooleanExpression such that, if it evaluates to true, the element is active, otherwise the
element is inactive. ActivationExpressions use Parameter values for the expression evaluation.
8.3.4 Class ActivityConcept
Abstract: No
Generalization:
* NamedElement
Description

ActivityConcepts are an abstract concept describing the idea of business action that can be implemented through an IFML
ModuleDefinition. Typical examples could be BPMN Activities or Activities in UML Activity Diagrams.

Association Ends

« moduleDefinition [1]: ModuleDefinition - The ModuleDefinition that implements the business process
ActivityConcept.

8.3.5 Class Annotation
Abstract: No
Description

An Annotation represents a comment, note, explanation, or other type of documentation that can be attached to any
Element.

Attributes

e text: String - Annotation text.

8.3.6 Class BehaviorConcept
Abstract: No
Generalization:
» DomainElement
Description

BehaviorConcept represents the generic Behavior (for instance, a UML dynamic diagram) that can be referenced as
DynamicBehavior in a ContentBinding.

Association Ends

e dynamicBehavior [0..1]: DynamicBehavior - Placeholder in a ContentBinding of the Behavior to be executed by the
Action or ViewComponent.

32 Interaction Flow Modeling Language, v1.0

8.3.7 Class BehavioralFeatureConcept
Abstract: No
Generalization:
» DomainElement
Description

Behavioral FeatureConcept represents the generic Behavioral Feature of a DomainModel element (for instance, a Class
method) that can be referenced as DynamicBehavior in a ContentBinding.

Association Ends

« dynamicBehavior: DynamicBehavior - Placeholder in a ContentBinding of the Behavioral Feature to be executed by

the Action or ViewComponent.

8.3.8 Class BooleanExpression
Abstract: No
Generalization:
e Expression
Description:

A BooleanExpression is a kind of Expression that evaluates to true or false.

8.3.9 Class BPMNActivityConcept
Abstract: No
Generalization:

e ActivityConcept

Description

BPMNActivityConcepts are a specialization of ActivityConcept for representing the particular case of BPMN Activities.

Association Ends:

e Activity [0..1] : Activity - Referenceto aBPMN Activity

8.3.10 Class CatchingEvent

Abstract: No
Generalization:

e Event

Interaction Flow Modeling Language, v1.0

33

Description
A CatchingEvent is an occurrence that can affect the state of the application, by causing navigation and/or Parameter
value passing between InteractionFlowElements. CatchingEvents may be produced by a user interaction
(ViewElementEvent), by an action when it finishes its execution (ActionEvent), or by the system in the form of
notifications (SystemEvent), or by a navigational jump (JumpEvent) in the model that reaches a LandingEvent.
8.3.11 Class ConditionalExpression
Abstract: No
Generalization:

e Expression

* ViewComponentPart

Description

A Conditional Expression is a predefined query expression associated with a DataBinding. When a Conditional Expression
is present, the DataBinding is queried by applying the query in the Conditional Expression for retrieving content.

8.3.12 Class Constraint
Abstract: No
Generalization:

* BooleanExpression

Description

A Constraint is a BooleanExpression that may be defined for any model Element in order to restrict its behavior.

8.3.13 Class ContentBinding
Abstract: Yes
Generalization:

* ViewComponentPart

Description

A ContentBinding allows the system to access a given source of content. A content source access may be done through a
DataBinding or a DynamicBehavior of a DomainModel element.

Attributes

« uniformResourcel dentifier[0..1] : String - URI used to identify or locate the resource from which the content may be
obtained.

Constraints
* noViewElementEvent

self.viewElementEvent -> isEmpty()

34 Interaction Flow Modeling Language, v1.0

8.3.14 Class Context
Abstract: No
Generalization:

 Element
Description

The Context is a runtime aspect of the system that determines how the user interface should be configured. A Context has
several dimensions that represent not only the user's identity and preferences, but also the interaction environment of the
system. Context is composed of one or more ContextDimensions and may comprise ContextVariables.

Association Ends

« contextDimensions [0..*]: ContextDimension - ContextDimensions the user context must satisfy to have accessto one
or more Viewpoints.

e contextVariables[0..*]: ContextVariable - set of ContextVariables whose values are relevant for the current Context.

8.3.15 Class ContextDimension
Abstract: No
Generalization:
* NamedElement
Description
ContextDimensions are dimensions of the Context that represent not only the user's identity and preferences, but also the
interaction environment of the system. ContextDimension has the specializations UserRole, Device, and Position. When
the user context satisfies all required ContextDimensions, access is granted to the ViewElements of the Viewpoint and to
the Events that may be triggered on them.
8.3.16 Class ContextVariable
Abstract: No
Generalization:
* NamedElement
Description

ContextVariable is a name-value pair that allows to store information associated to the current Context. It can be a
SimpleContextVariable, storing a primitive type value, or a DataContextVariable, referencing a DataBinding.

Attributes
« scope : ContextVariableScope - scope of the ContextVariable.
Association Ends

e context [1] : Context - Context within which the ContextVariableis relevant.

Interaction Flow Modeling Language, v1.0 35

8.3.17 Class DataBinding
Abstract: No
Generalization:

» ContentBinding
Description

DataBinding represents the binding of the system with an instance of an element of the DomainModel such as a table, an
object, an XML file, etc.

Association Ends

¢ domainConcept [1]: domainConcept - A concept specifying the data structure to which the ViewComponent is bound,
suchasaUML class, atablein arelationa data base, or an XML file.

 conditional Expressions [0..*]: Conditional Expression - Conditional Expressions that determine how to access the
content.

« visualizationAttributes[0..*]: VisualizationAttribute - VisualizationAttributes that determine the Structural Features
that should be shown to the user, such as a data base column or an XML element or attribute.

« dataContextVariables[0..*]: DataContextVariable - reference to the ContextVariable that makes use of the
DataBinding.
8.3.18 Class DataContextVariable
Abstract: No
Generalization:
» ContextVariable
Description
DataContextVariable allows to associate a DataBinding to the current Context.
Association Ends

« dataBinding [1]: DataBinding - Reference to the DomainModel concept used as ContextVariable.

8.3.19 Class DataFlow
Abstract: No
Generalization:

* InteractionFlow
Description

A DataFlow is a kind of InteractionFlow used for passing context information between | nteractionFlowElements.
DataFlows are triggered by NavigationFlows causing Parameter passing but no navigation. DataFlows are triggered any
time a parameter is available in output from the source InteractionFlowElement and transfer the Parameter values to the
target InteractionFlowElement. The target of a DataFlow cannot be an Event.

36 Interaction Flow Modeling Language, v1.0

Constraints

 targetNotlnstanceOf Event
not self.targetl nteractionFlowElement.ocl | sTypeOf(IFML::Core:: Event)

8.3.20 Class DomainConcept
Abstract: No
Generalization:
» DomainElement
Description

The DomainConcept represents a generic concept, class, entity of the DomainModel, which can be referenced in a
DataBinding. Its purpose is to alow extensibility in terms of concepts from different modeling languages representing the
DomainModel.

Association Ends

e dataBinding [0..1]: DataBinding - Reference to the DataBinding in a ViewComponent that uses the current
DomainConcept.

8.3.21 Class DomainElement
Abstract: No
Generalization:
* NamedElement
Description

The DomainElement represents a generic element of the DomainModel, which can describe a concept, a property, a
behavior, or a behavioral feature. It is a generic representative for classes DomainConcept, FeatureConcept,
Behavioral FeatureConcept, BehaviorConcept.

Association Ends

¢ domainModel [1]: DomainModel - Reference to the DomainModel comprising the Domai nElement.

8.3.22 Class DomainModel
Abstract: No
Generalization:
* NamedElement
Description

The DomainModel is a model that contains content elements that ViewComponents may access to retrieve information,
process it, and show it to the user. The DomainModel aso stores information captured from the user. The DomainM odel
is presumed to be represented in UML and therefore consists of a set of UML model elements.

Interaction Flow Modeling Language, v1.0 37

Association Ends

e elementg[0..*]: DomainElement - References to the elements of the DomainModel.

8.3.23 Class DynamicBehavior
Abstract: No
Generalization:
» ContentBinding
Description

DynamicBehavior represents the binding of the system with a service or operation, which may be invoked in order to
carry out business logic or return content.

Constraints

 eitherBehavioral FeatureOrBehavior
self.behavioral Feature -> notEmpty() xor self.behavior -> notEmpty/()

Association Ends

» behavioral FeatureConcept [0..1]: Behavioral FeatureConcept - Representing a procedure, method, function, etc., that
may beinvoked by a ViewComponent to carry out businesslogic or obtain content.

« behaviorConcept [0..1]: BehaviorConcept - Representing a complex behavior specified for instance as a process,
activity, or sequence model.

8.3.24 Class Element
Abstract: Yes
Description
Element is the base class for the representation of all model elementsin an IFML model.
Attributes
e id: String [1] - String for unequivocally identifying a model element.
Association Ends
« annotations [0..*]: Annotation - Annotations, comments, tags, etc., owned by the Element.

e congtraints [0..*]: Constraint - Constraints applied to the Element.

8.3.25 Class Event
Abstract: No
Generalization:

* |nteractionFlowElement

38 Interaction Flow Modeling Language, v1.0

Description

An Event is an occurrence that can affect the state of the application. Events can be ThrowingEvent (events that are
thrown by the modeled interaction) or CatchingEvent (events that are captured by the modeled interaction and used as
triggers causing navigation and/or Parameter value passing between InteractionFlowElements.

Association Ends

« activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation result
determinesif the Event is active or inactive. If no ActivationExpression is given, the default is that the Event is active.

 interactionFlowExpression [0..1]: InteractionFlowExpression - InteractionFlowExpression determining the
InteractionFlows to be followed after the occurrence of the Event.

8.3.26 Class Expression
Abstract: Yes
Generalization:

* |nteractionFlowM odel Element

Description

An Expression is an element that, evaluates to a single instance, a set of instances, or an empty result. An Expression
must be side effect free. Specific expression types, such as BooleanExpression, etc., specialize this concept.

Attributes
* body[1]: String - Code of the Expression.
« language[1]: String - Language in which the Expression is written, e.g., OCL, Java, etc.

8.3.27 Class FeatureConcept
Abstract: No
Generalization:
e DomainElement
Description

FeatureConcept represents the generic attribute or property of a DomainModel element, which can be referenced as
VisualizationAttribute.

Association Ends

« visualizationAttribute [0..1]: VisualizationAttribute - Placeholder in a DataBinding of the FeatureConcept to be
visualized.

8.3.28 Class IFMLModel

Abstract: No

Interaction Flow Modeling Language, v1.0 39

Generalization:
* NamedElement
Description

An IFMLModel is the top-level container of all other elements in an IFML model. All model elements are grouped into
two submodels, the InteractionFlowModel and the DomainModel. An IFMLModel may also contain a number of
Viewpoints of the InteractionFlowModel.

Association Ends

e domainModel [1]: DomainModel - Model describing the domain concepts and behaviors used in the user interaction
modeled by the IFML model.

¢ interactionFlowModel [1]: InteractionFlowModel - The complete model that describes the interaction of the user with
the system.

« viewpoints[0..*]: Viewpoaint - Viewpoints of the I nteractionFlowModel.

8.3.29 Class InteractionFlow
Abstract: Yes
Generalization:

* | nteractionFlowM odel Element

Description

An InteractionFlow is a directed connection between ViewElements or ViewElements and Actions, which enables
communication between them by means of Parameter passing. InteractionFlows are divided into NavigationFlows and
DataFlows. NavigationFlows cause navigation or change of focus to the target element and Parameter passing, while
DataFlows cause only Parameter passing to the target element.

Association Ends

e parameterBindingGroup [0..1]: ParameterBindingGroup - Group of parameters that are passed to the target interaction
flow element by following the InteractionFlow.

 targetinteractionFlowElement [1]: InteractionFlowElement - Target InteractionF owElement of the InteractionFlow.

« sourcelnteractionFlowElement [1]: InteractionFlowElement - Source | nteractionFlowElement of the InteractionFlow.

8.3.30 Class InteractionFlowElement
Abstract: Yes
Generalization:

* | nteractionFlowM odel Element

* NamedElement

* TemplateableElement

40 Interaction Flow Modeling Language, v1.0

Description

I nteractionFlowElements represent pieces of the system such as Actions, Events, ViewElements, and
ViewComponentParts, which participate in user interaction flows through InteractionFlow connections. Usually thereis a
flow of Parameter values between InteractionFlowElements as a consequence of user, action, or system events.

Association Ends
* inlnteractionFlows [0..*]: InteractionFlow - Incoming InteractionFlows.
< outlnteractionFlows[0..*]: InteractionFlow - Outgoing I nteractionFlows.

e parameters[0..*]: Parameter - Parameters contained by the InteractionF owElement.

8.3.31 Class InteractionFlowExpression
Abstract: No
Generalization:
e Expression
Description

An InteractionFlowExpression is used to determine which of the InteractionFlows will be followed as a consequence of
the occurrence of an Event. When an Event occurs and it has no InteractionFlowExpression, all the InteractionFlows
associated with the event are followed. At least two InteractionFlows must be associated with an

I nteractionFlowExpression. An InteractionFlowExpression uses the ViewElement Parameter values and the
InteractionFlows for the evaluation of the expression.

Association Ends

* interactionFlows[2..*]: InteractionFlow - InteractionsF ows for which the expression is eval uated.

8.3.32 Class InteractionFlowModel
Abstract: No
Generalization:
* NamedElement
Description
An InteractionFlowModel aggregates all the elements modeling interaction with the user.
Association Ends

 interactionFlowModelElements [0..*]: InteractionFlowM odel Element - Elements of the InteractionFlowModel.

8.3.33 Class InteractionFlowModelElement

Abstract: Yes

Interaction Flow Modeling Language, v1.0 41

Generalization:
* Element
Description
An InteractionFlowModel Element is the top-level class that generalizes all the elements that are part of an
InteractionFlowModel.
8.3.34 Class ModularizationElement
Abstract: No
Generalization:

* |nteractionFlowM odel Element

* NamedElement
Description
A ModularizationElement is an abstract concept that represents both ModulePackages and ModuleDefinitions.
Association Ends

« modulePackage [0..1]: ModulePackage - The ModulePackage containing the ModularizationElement.

8.3.35 Class Module
Abstract: No
Generalization:

* | nteractionFlowM odel Element

* NamedElement
Description

A Module is a named reference to a ModuleDefinition, which allows reuse of the model part specified in the
ModuleDefinition. Module has a reference to the relevant ModuleDefinition and may be associated with a set of Ports,
which in turn reference the corresponding PortDefinitions. For every PortDefinition in the ModuleDefinition there shall
be 0 or 1 Ports in each corresponding Module. An input Port (i.e., a Port referencing an input PortDefinition) has
incoming InteractionFlows from the outside of the Module, for receiving input Parameters. An output Port has outgoing
InteractionFlows to the outside of the Module, for shipping output Parameters.

Constraints

« onlyOnePortPerPortDefinition
self.moduleDefinition.portDefinitions -> forAll(pd | pd.ports -> select(p|p.module = self) -> size() = 1)

Association Ends
e portg0..*]: Port - Ports that collect InteractionFlows and Parameters incoming or outgoing from the Module.

* ModuleDefinition [1]: ModuleDefinition - The ModuleDefinition that is instantiated by the current Module.

42 Interaction Flow Modeling Language, v1.0

8.3.36 Class ModuleDefinition
Abstract: No
Generalization:

¢ ModularizationElement

Description

A ModuleDefinition is a fully functional collection of user InteractionFlowM odel Elements and their corresponding
Actions, which may be reused for improving IFML model maintainability. ModuleDefinitions can be aggregated in a
hierarchical structure of ModulePackages. ModuleDefinitions may comprise PortDefinitions. A ModuleDefinition
receives Parameter values from outside and provides Parameter values to the outside. ModuleDefinitions exchange
Parameters by means of input and output PortDefinitions. InteractionFlowM odel Elements contained in a Module may not
be shared or referenced by other Modules or by the main InteractionFlowModel. A ModuleDefinition may comprise a
reference to a BPMN Activity (meaning that the Module implements that Activity). Reuse of ModuleDefinition is
obtained by adding Modules referencing that ModuleDefinition in IFML models.

Association Ends
e inputPorts[0..*]: PortDefinition - Ports that distributes InteractionFlows and Parameters coming into the Module.

 interactionFlowModelElements[1..*]: InteractionFlowM odel Element - | nteractionFlowM odel Elements contained by
the Module.

« outputPorts [0..*]: PortDefinition - Ports that collect the InteractionFlows and Parameters going out from the Module.

e modules[0..*]: Module - The set of Modules that are defined in the IFML model and reference the current
ModuleDefinition.

« activityConcept [0..1]: ActivityConcept - Reference to a process activity (e.g., aBPMN Activity). If present, the
current modul e describes the technical implementation of the process activity.
8.3.37 Class ModulePackage
Abstract: No
Generalization:
* ModularizationElement
Description

A ModulePackage is a container of ModuleDefinitions. ModulePackages can be nested in arbitrarily deep hierarchical
structure.

Association Ends
e inputPorts[1..*]: Port - Ports that distribute InteractionFlows and Parameters coming into the Module.

¢ modularizationElements [0..*]: ModularizationElement - Set of ModularizationElements contained in the current
M odul ePackage.

Interaction Flow Modeling Language, v1.0 43

8.3.38 Class NamedElement
Abstract: Yes
Generalization:
 Element
Description

A NamedElement is an Element that requires a name for easy visual identification in diagrams or for being handled as a
named variable in a concrete textua syntax.

Attributes

e name[1]: String - Element name.

8.3.39 Class NavigationFlow
Abstract: No
Generalization:
* InteractionFlow
Description

A NavigationFlow represents navigation or change of ViewElement focus, the triggering of Action processing, or a
SystemEvent. NavigationFlows are followed when Events are triggered. NavigationFlows connect Events of
ViewContainers, ViewComponents, ViewComponentParts, or Actions with other InteractionFlowElements. When a
NavigationFlow is followed, Parameters may be passed from the container of the source Event to the target
InteractionFlowElement through ParameterBindings. When a NavigationFlow is triggered, a corresponding set of
DataFlows may be triggered, at the purpose of carrying further parameters to the target InteractionFlowElement. The
DataFlows that are triggered are al the ones having some parameter values available as an effect of the last interface
status change.

8.3.40 Class Parameter
Abstract: No
Generalization:

* | nteractionFlowM odel Element

e MultiplicityElement
* TypedElement

* NamedElement

44 Interaction Flow Modeling Language, v1.0

Description

A Parameter is a typed name, whose instances hold values. Parameters are held by InteractionFlowElements, i.e.,
ViewElements, ViewComponentParts, Ports, and Actions. Parameters flow between InteractionFlowElements when
Events are triggered. Parameters may correspond to elements of the user interface (for instance, fields in a form),
determining whether the element of the user interface is read-only or modifiable. Parameters have a direction property,
which can be input (in), output (out), or input-output (inout). Default direction is input.

The scope of a Parameter (i.e., the model space where it can be used or referenced) is the InteractionFlowElement that
holds the Parameter, plus the incoming and outgoing InteractionFlows. This means that:

 if the parameter is held by a ViewComponent, it can be referenced only within the ViewComponent itself and the
contained ViewComponentParts (plus the incoming and outgoing | nteractionFlows);

« if the parameter is held by a ViewContainer, it can be referenced within the ViewContainer itself, and within the
contained ViewContainers, ViewComponents, and ViewComponentParts (plus the incoming and outgoing
InteractionFlows).

A Parameter can have a default value.
Attributes
« direction: Direction - Determines if the parameter direction isinput, output, or input-output.

« defaultValue: Expression - default value of the parameter, calculated through the specified expression.

8.3.41 Class ParameterBinding
Abstract: No
Generalization:

* |nteractionFlowM odel Element

Description

A ParameterBinding determines how data flow between components. A ParameterBinding connects an output Parameter
of a source InteractionFlowElement with an input Parameter of a target InteractionFlowElement. When an Event is
triggered, InteractionFlows are followed and Parameter values flow from source InteractionFlowElements to target

I nteractionFlowElements, according to how they have been bound.

Association Ends

« sourceParameter [1]: Parameter - Output Parameter of the source I nteractionFlowElement that participatesin the
ParameterBinding.

« targetParameter [1]: Parameter - Input Parameter of the target I nteractionFlowElement that participatesin the
ParameterBinding.

8.3.42 Class ParameterBindingGroup
Abstract: No
Generalization:

* |nteractionFlowM odel Element

Interaction Flow Modeling Language, v1.0 45

Description
A ParameterBindingGroup aggregates all the ParameterBindings of an InteractionFlow.
Association Ends

e parameterBindings[1..*]: ParameterBinding - The ParameterBindings composing the ParameterBindingGroup.

8.3.43 Class Port
Abstract: No
Generalization:

* |nteractionFlowElement

Description
A Port is an interaction point between a Module and the surrounding model within which it is defined.

Module is associated with a set of Ports, which in turn reference the corresponding PortDefinitions. An input Port (i.e., a
Port referencing an input PortDefinition) has incoming InteractionFlows from the outside of the Module, for receiving
input Parameters. An output Port has outgoing I nteractionFlows to the outside of the Module, for shipping output
Parameters.

Association Ends
« PortDefinition [1]: PortDefinition - Reference to the PortDefinition that defines the interface of the current Port.

e module[1]: Module - Module that contains the current Port.

8.3.44 Class PortDefinition
Abstract: No
Generalization:

* |nteractionFlowElement

Description

PortDefinitions represent interaction points with a ModuleDefinition. They are defined within a ModuleDefinition. They
hold Parameters, for transferring values to and from the ModuleDefinition. An input PortDefinition has outgoing
InteractionFlows to the inside of the Module. An output PortDefinition has incoming InteractionFlows from the inside of
the Module. Modules that reference a ModuleDefinition may comprise Ports, which in turn reference the corresponding
PortDefinitions.

Association Ends

e ports[0..*]: Port - Set of Ports referencing the current PortDefinition in some Modules implementing the
M oduleDefinition within which the current PortDefinition is defined.

8.3.45 Class SimpleContextVariable

Abstract: No

46 Interaction Flow Modeling Language, v1.0

Generalization:
e ValueSpecification
Description
SimpleContextVariable is a typed name-value pair that can be associated to the current Context. Allowed types are the
primitive ones.
8.3.46 Class SystemEvent
Abstract: No
Generalization:
e CatchingEvent
Description

A SystemEvent is an Event produced by the system, which triggers a computation reflected in the user interface.
Examples of SystemEvents are time events, which are triggered after an elapsed frame of time, or system special
conditions events, such as a database connection loss event.

Attributes
* type: SystemEventType - Determines the kind of SystemEvent.
Association Ends

 triggeringExpressions [0..*]: Expression - Expressions that determine when or under what conditions the SystemEvent
should be triggered.

8.3.47 Class ThrowingEvent
Abstract: No
Generalization:
* Event
Description

A ThrowingEvent is an occurrence of event that is generated by the modeled application. Event occurrences generated by
ThrowingEvent can be captured by CatchingEvents.

8.3.48 Class UMLBehavior
Abstract: No
Generalization:

« BehaviorConcept

Interaction Flow Modeling Language, v1.0 47

Description

UMLBehavior represents a Behavior specified in UML (that is, a UML dynamic diagram) which can be referenced as
DynamicBehavior in a ContentBinding.

Association Ends

e behavior [0..1]: UML::Behavior - UML Behavior to be executed by the Action or ViewComponent.

8.3.49 Class UMLBehavioralFeature
Abstract: No
Generalization:
« Behavioral FeatureConcept
Description

UMLBehavioral Feature represents a Behavioral Feature specified in UML (typically, a UML method in a Class) which
can be referenced as DynamicBehavior in a ContentBinding.

Association Ends

e behavioralFeature[0..1]: UML::BehavioralFeature - UML Behavioral Feature to be executed by the Action or
ViewComponent.

8.3.50 Class UMLStructuralFeature
Abstract: No
Generalization:
¢ FeatureConcept
Description
The UML Structural Feature is a specific FeatureConcept referring to a UML Structural Feature.
Association Ends

e structuralFeature [0..1]: UML::Structural Feature - Reference to the UML element of the DomainModel.

8.3.51 Class UMLDomainConcept
Abstract: No
Generalization:
« DomainConcept
Description

The UMLDomainConcept is a specific DomainConcept referring to a UML Classifier.

48 Interaction Flow Modeling Language, v1.0

Association Ends
e classifier [0..1]: UML::Classifier - Referenceto the UML Classifier of the DomainModel that will be connected to a
ViewElement through a DataBinding.
8.3.52 Class ViewComponent
Abstract: No
Generalization:
* ViewElement
Description

A ViewComponent is an element of the user interface that displays content or accepts input. A ViewComponent may be
bound to a ContentBinding through its association with ViewComponentPart.

Association Ends

« viewComponentParts [0..*]: ViewComponentPart - Parts of the ViewComponent.

8.3.53 Class ViewComponentPart
Abstract: No
Generalization:

* |nteractionFlowElement

Description

A ViewComponentPart is an InteractionFlowElement that may not live outside the context of a ViewComponent. A
ViewComponentPart may trigger Events and have incoming and outgoing | nteractionFlows.

Association Ends

« activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation result
determines whether the ViewComponentPart is active or inactive. If no ActivationExpression is given, by default the
ViewComponent is active.

* subViewComponentParts [0..*]: ViewComponentPart - Nested ViewComponentParts.

e viewElementEvents [0..*]: ViewElementEvent - Events that this ViewComponentPart may trigger.

e parentViewComponentPart [1]: ViewComponentPart - Parent ViewComponentPart.

8.3.54 Class ViewContainer
Abstract: No
Generalization:

¢ ViewElement

Interaction Flow Modeling Language, v1.0 49

Description

A ViewContainer is an element of the interface that aggregates other ViewContainers and/or ViewElements displaying
content.

Constraints:

+ defaultMustHaveX orParent
self.viewContainer and self.viewContainer.isXor

» xorMustHaveADefaultParent
self.isXor implies self.viewElements -> sel ect(c|c.ocl TypeOf (ViewContainer) and
¢.as0cl TypeOf (ViewContainer).isDefault) -> size()=1

Attributes

« isDefault: Boolean - If true, the ViewContainer will be presented to the user when its enclosing ViewContainer is
accessed. This attribute is relevant when this ViewContainer shares the same parent ViewContainer with other
ViewContainers, and the parent ViewContainer has property isXOR = true.

e isLandmark: Boolean - If true, the ViewContainer is directly reachable from any ViewElement from any ViewElement
contained, directly or indirectly, in the same ViewContainer. It represents an implicit link between al the other
ViewElements and the ViewContainer.

¢ isXOR: Boolean - If true, the contained ViewElements of thisViewContainer will be presented to the user only one at a
time, as the user interacts with the system. One of the contained ViewContainers must have attribute isDefault = true.

Association Ends
* viewElements [0..*]: ViewElement - The ViewElements owned by the ViewContainer.

e actions[0..*]: Action - The Actions owned by the ViewContainer.

8.3.55 Class ViewElement
Abstract: No
Generalization:

* |nteractionFlowElement

Description

ViewElements are elements of the user interface that display content. ViewElements are divided into ViewContainers and
ViewComponents. ViewContainers are aggregations of other ViewContainers and/or ViewComponents.

Association Ends

« activationExpression [0..1]: ActivationExpression - Reference to an ActivationExpression whose evaluation result
determines whether the ViewElement is active or inactive. If no ActivationExpression is given, by default the
ViewElement is active.

« viewElementEvents[0..*]: ViewElementEvent - ViewElementEvents contained by the ViewElement.

« viewContainer [0..1]: ViewContainer - ViewContainer of the current ViewElement.

50 Interaction Flow Modeling Language, v1.0

8.3.56 Class ViewElementEvent
Abstract: No
Generalization:
e CatchingEvent
Description

A ViewElementEvent represents a user interaction Event, which may be triggered by ViewElements (ViewContainers and
ViewComponents).

Association Ends

e viewElement [1]: ViewElement - ViewElement owning the ViewElementEvent.

8.3.57 Class Viewpoint
Abstract: No
Generalization:

* NamedElement
Description

A Viewpoint is a reference to an interrelated set of InteractionFlowM odel Elements, which as a whole define a functional
portion of the system. The purpose of a Viewpoint is to facilitate the comprehension of a complex system, to alow or
disallow access to the system by a specific UserRole, or to adapt the system to a specific context change.

Association Ends

 interactionFlowModelElements [0..*]: InteractionFl owM odel Element - InteractionFlowM odel Elements that build up
this Viewpoint.

e context [1]: Context - Application context that determines the Viewpoint to be used.

8.3.58 Class VisualizationAttribute
Abstract: No
Generalization:

* ViewComponentPart

Description

The VisualizationAttributes used by a ViewComponent determine the features obtained from a DataBinding that may be
shown to the user, such as a data base column or an XML element or attribute. A feature is represented using a
UML::Structural Feature.

Association Ends

« featureConcept [1]: FeatureConcept - A FeatureConcept of the DomainConcept bound to a DataBinding to be shown
to the user, such as a data base column, an XML element or attribute, or aUML class attribute.

Interaction Flow Modeling Language, v1.0 51

8.4 Package Extensions

8.4.1 Class Details
Abstract: No
Generalization:

* ViewComponent
Description

A Details ViewComponent is used to display the details of a DataBinding instance. When the Details ViewComponent is
associated with an Event, it means that the DataBinding instance displayed by the component may trigger the Event. The
Event will in turn cause the passing of the Parameter values mapped to the DataBinding instance to a target
InteractionFlowElement.

Constraints

¢ mustHaveOneDataBinding
self.viewComponentPart -> select(v | v.ocllsTypeOf(DataBinding)) -> size() = 1

8.4.2 Class Device
Abstract: No
Generalization:

¢ ContextDimension

Description

A Device is a ContextDimension that represents any device such as desktop, laptop, smart phone, tablet, or any other
device from which the application may be accessed. A Device is associated with one or more Viewpoints (through the
association from Viewpoint to Context). When the user context specifies the same device as the one specified by Device,
the ContextDimension is satisfied and access is granted to the Viewpoint elements.

8.4.3 Class Field
Abstract: Yes
Generalization:

* ViewComponentPart

e Parameter
Description

A Field is a value-type pair whose value may be displayed to the user or serves as a means for capturing input from the
user. Fields also behave as Parameters for passing their values to and from other InteractionFlowElements. There are two
kinds of fields, SimpleFields and SelectionFields.

52 Interaction Flow Modeling Language, v1.0

8.4.4 Class Form
Abstract: No
Generalization:

* ViewComponent
Description

The Form ViewComponent represents input forms where user can submit information through Fields (SimpleFields or
SelectionFields). It comprises at least one Field and typically at least one OnSubmitEvent.

Constraints

* mustHaveAtL eastOneField
self.viewComponentPart -> select(v | v.oclIsTypeOf(Field)) -> notEmpty()

8.4.5 Class List
Abstract: No
Generalization:

* ViewComponent
Description

The List ViewComponent is used to display alist of DataBinding instances. When the List ViewComponent is associated
with an Event, it means that each DataBinding instance displayed by the component may trigger the Event. The Event
will in turn cause the passing of the Parameter values mapped to the DataBinding instance to a target

I nteractionFlowElement.

Constraints

¢ mustHaveOneDataBinding
self.viewComponentPart -> select(v | v.oclIsTypeOf(DataBinding)) -> size() = 1

Association Ends

» selectEvent [0..*]: OnSelectEvent - Events that represent the selection of a DataBinding instance of the List
ViewComponent and the passing of the value as a Parameter.

8.4.6 Class LandingEvent
Abstract: No
Generalization:
e CatchingEvent
Description

A LandingEvent is the destination of a JumpEvent.

Interaction Flow Modeling Language, v1.0 53

Association Ends

e jumpingEvents [0..*]: JumpEvent - Reference to the JumpEvents targeting the current LandingEvent.

8.4.7 Class JumpEvent
Abstract: No
Generalization:

e ThrowingEvent
Description

* A JumpEvent isa ThrowingEvent that, when launched, redirects the NavigationFlow entering the event to areferenced
LandingEvent.

Association Ends

e landingEvent [0..1]: LandingEvent - Reference to the LandingEvent targeted by the JumpEvent.

8.4.8 Class Menu
Abstract: No
Generalization:

* ViewContainer
Description

A Menu is a special kind of ViewContainer used to model the concept of a menu of options in IFML. It cannot contain
ViewComponents or sub-ViewContainers.

8.4.9 Class OnLoadEvent
Abstract: No
Generalization:
* SystemEvent
Description

An OnLoadEvent is triggered by the system when a ViewElement is completely computed and rendered.

8.4.10 Class OnSelectEvent
Abstract: No
Generalization:

* ViewElementEvent

54 Interaction Flow Modeling Language, v1.0

Description

An OnSelectEvent is a kind of Event that, when triggered, results in a selected value being passed as a Parameter to the
target InteractionFlowElement of its associated NavigationFlow.

8.4.11 Class OnSubmitEvent
Abstract: No
Generalization:

* ViewElementEvent

Description

An OnSubmitEvent triggers the Parameter passing of a ViewComponent to the target ViewElement or Action of its
corresponding NavigationFlow. An OnSubmitEvent is typically found in Form ViewComponents.

8.4.12 Class Position
Abstract: No
Generalization:

¢ ContextDimension

Description

A Position is a ContextDimension representing the location and orientation of a device from which the application is
accessed. A Position is associated with one or more ViewPoints (through the association between ViewPoint and
Context). When the user context indicates having reached the location or orientation described by a Position, the
ContextDimension is satisfied and access is granted to the ViewPoint elements and presented to the user.

8.4.13 Class SelectionField
Abstract: No
Generalization:
» Field
Description

A SelectionField is a kind of Field that enables the selection of one or more values from the predefined set of values
given in its Slots.

Attributes

* isMultiSelection: Boolean - If true, the SelectionField allows the selection of multiple values.

8.4.14 Class SetContextEvent

Abstract: No

Interaction Flow Modeling Language, v1.0 55

Generalization:
e ThrowingEvent
Description

A SetContextEvent is launched every time a ContextVariable is set or assigned a new value.

8.4.15 Class SimpleField
Abstract: No
Generalization:
» Field
Description

A SimpleField is akind of Field that displays a value or captures a textual input from the user. A SimpleField also
behaves as a Parameter, so that its value may be passed to other ViewElements or Actions.

8.4.16 Class Slot
Abstract: No
Generalization:

* ViewComponentPart

* Parameter
Description

A Slot is avalue placeholder for a Field. When the Field is a SelectionField, its associated Slots contain the available
selection options and the selected one. When the Field is a SimpleField, the Slot contains the Field value. A Slot value of
a SimpleField and the Slots corresponding to the selected options of SelectionFields also act as Parameters in order to be
passed to other ViewElements or Actions when an Event is triggered.

8.4.17 Class UserRole
Abstract: No
Generalization:

¢ ContextDimension

Description

A UserRole is a ContextDimension that represents a role played by a human user or external system that accesses the
application through its user interface. A UserRole is associated with one or more ViewPoints (through the association
between ViewPoint and Context). When the user context has the same user role as the one specified by the UserRole, the
ContextDimension is satisfied and access is granted to the ViewPoint elements.

56 Interaction Flow Modeling Language, v1.0

8.4.18 Class ValidationRule
Abstract: No
Generalization:
e Constraint
Description
A ValidationRule is a Constraint, which, when evaluated, determines if the content of a Field or group of Fieldsis valid
or not.
8.4.19 Class Window
Abstract: No
Generalization:
¢ ViewContainer
Description
A Window is a special kind of ViewContainer used to model the concept of a window in IFML.
Attributes
< isNewWindow: Boolean - If true, the container will be opened as a new window.

* isModal: Boolean - If true, the window will be rendered as a modal window.

Interaction Flow Modeling Language, v1.0 57

58

Interaction Flow Modeling Language, v1.0

9 IFML Execution Semantics

9.1 Introduction

This clause specifies the execution semantics of IFML. The purpose is to define when and how to compute the values to
be shown to the user, based on an IFMLModel. A few aspects affect the execution semantics:

1. Computation of triggering events
2. Parameter propagation

3. Navigation history preservation

9.2 Relevant Aspects for IFML Execution Semantics

9.2.1 Triggering Events
The content of a ViewContainer must be (partially or completely) computed when the following events arise:

1. Inter-container navigation flow traversal: The container is entered through a NavigationFlow originated by an
Event in another container.

2. Intra-container navigation flow traversal: The user produces an Event inside a container that triggers the
navigation of a flow targeting an Element in the same top-level ViewContainer (e.g., Window). Firing the
navigation may have side effects on the content of the currently visualized Elements (e.g., it may modify content
currently shown to the user) and may invalidate (partially or totally) the information used to compute the container.

9.2.2 Parameter Propagation

A ViewContainer typically contains several pieces of related information. This corresponds to having several
ViewComponents linked in a network topology through NavigationFlows and DataFlows. Information may be propagated
from one ViewComponent to other ViewComponents through ParameterBindings. Actual propagation depends on the
Events that trigger the flows.

Conflicts may arise in the propagation of Parameters. A conflict arises when a ViewComponent receives more than one
input value for the same Parameter. This could happen due to multiple incoming flows in a ViewComponent or
ViewContainer. A conflict resolution strategy (CRS) specifies which Parameter value is selected to compute the data
content of the ViewComponent. A conforming tool shall use one of the following possible strategies:

1. Non-deterministic choice: One input parameter is chosen non-deterministically at run-time among the set of
available inputs.

2. With priorities: Priorities are assigned at design-time to the incoming flows (for the ViewComponent or
ViewContainer), and, in case of run-time conflict, the Parameter value transported by the flow with highest priority
is chosen. Priorities define a total ordering on the incoming flows for the ViewComponent or ViewContainer.

3. Mixed: A partial order of prioritization is defined at design-time over the input flows, and, in case of run-time
conflict, the Parameter values transported by the flow with highest priority is chosen. If the ViewContainer is
accessed at run-time in such a way that multiple flows with highest priority are in conflict, a non-deterministic
choice is taken.

Interaction Flow Modeling Language, v1.0 59

9.2.3 Navigation History Preservation

When the user triggers an Event, the content of the destination ViewContainer is refreshed, in away that may depend on
the past history of the user interaction. The alternatives for re-computing a ViewContainer (or a part thereof) depends on
the “degree of memory” used for computation. A conforming tool may use one of the following possible interaction
history policies:

1. Without history: The contents of the ViewComponents are computed as if the ViewContainer was accessed for the
first time. The computation without history policy may be used to “reset” and forget the choices done by the user
in a container.

2. With history: The contents of the ViewComponents are computed based on the input history of the
ViewComponents existing prior to the last navigation event.

9.3 ViewComponent Computation Process

In this sub clause we provide a brief description of an algorithm for computing the content of a generic ViewContainer,
with particular attention to containers of type Window.

The computation process is performed every time an Event arises. The process tries to determine the data content of all
the ViewComponents of the ViewContainer, taking into account the semantic aspects discussed in 9.2. Intuitively, the
process determines at each step the set of computable ViewComponents, i.e., the subset of ViewComponents that receive
their input Parameters and therefore can be calculated.

A ViewComponent is computable if it has no incoming InteractionFlows or if it has incoming InteractionFlows and the
following conditions are satisfied:

1. The ViewComponent has not been already computed (a ViewComponent cannot be computed more than once upon
the same Event).

2. All the ViewComponents from which the ViewComponent may receive Parameters have been computed already.
3. All the input Parameters needed to compute the ViewComponent have a value.

If the computation semantics of the ViewContainer is without history, only current input parameters are considered in
point 3. If the computation semantics is with history, components may draw their input values either from default input
Parameter values or from the past Parameter values, existing prior to the last flow navigation.

The algorithm computes the contents of the ViewComponents starting from the following input parameters: it must
receive the ViewContainer to compute, the set of ViewComponents to be considered in the computation (initially all the
ViewComponents of the ViewContainer), the conflict resolution strategy, the interaction history policy, the past Parameter
values of all the ViewComponents prior to the last flow navigation, the destination ViewComponent of the
InteractionFlow whose navigation has produced the computation event together with the past Parameters transported by
the flow. The following steps of the algorithm are then carried out:

1. Component invalidation: If the destination of the navigated flow is a ViewComponent, all its dependent
ViewComponents are invalidated. (We say that ViewComponent ul depends onViewComponent u2 if ul can be
reached through NavigationFlows from u2.)

2. Non-invalidated component computation: One ViewComponent at a time is computed, until all possible
components are considered. At each step, if there is at least one computable ViewComponent, one of them is
selected and its content is computed, based on the conflict resolution strategy, the interaction history policy, and
the past Parameter values. In particular:

60 Interaction Flow Modeling Language, v1.0

If a ViewComponent does not depend on any other ViewComponent, i.e., it does not expect any input
Parameter, it can always be computed.

If a ViewComponent is the destination ViewComponent of the | nteractionFlow whose navigation has produced
the computation event, then the past and new values of the flow Parameters are used for computing the
component.

In all the other cases, the interaction history policy determines which input Parameters must be used. If the
interaction history policy is “without history,” one of the possible current input Parameters is chosen, according
to the conflict resolution strategy. If the interaction history policy is“with history,” the past values of the input
Parameters are considered. If the past values are available and no newer valueis available for that Parameter, the
old value is used to instantiate the ViewComponent; if no past values of input Parameter for the component are
available, one of the possible input Parameter values is chosen according to the conflict resolution strategy.

Interaction Flow Modeling Language, v1.0 61

62

Interaction Flow Modeling Language, v1.0

10 IFML Diagram Definition

10.1 Introduction

This clause specifies the metamodel for IFML Diagram Interchange (IFML DI). The IFML DI is meant to facilitate
interchange of IFML diagrams between tools rather than being used for internal diagram representation by the tools.

The IFML DI metamodel, similarly to the IFML abstract syntax metamodel, is defined as a MOF-based metamodel. As
such, its instances can be serialized and interchanged using XMI.

The IFML DI classes only define the visual properties used for depiction. All other properties that are required for the
unambiguous depiction of IFML diagram elements are derived from the referenced IFML model elements.

Multiple depictions of a specific IFML Element in a single diagram are not allowed.

10.2 Conformance Criteria

As stated in the Diagram Definition (DD) specification, Modeling language DD enables a) Diagram Information
Interchange Conformance and b) Diagram Graphics Confor mance. Modeling language specifications can conform to
DD in two levels by supporting either (a) only, or (a) and (b). The IFML Diagram Definition provides (a) and (b).

10.3 Architecture

The IFML language specification provides three normative artifacts at M2 (shown with shaded boxes in Figure 10.1): the
abstract syntax model (IFML), the IFML diagram interchange model (IFML DI), and the mapping specification between
the IFML DI and the graphics model (IFML Mapping Specification).

Interaction Flow Modeling Language, v1.0 63

Mapping
MOF

M3 v Language MOF
i 2
Ahbstract : Diagram Concrate ! :
Syntax H Synitax Syntax ' - i
i : i
i I
I i
X | |
I I
i i
M2 i i
L 1

IFML Mapping
- DD:DG
Ll lFM‘: £ Specification -

group: Group

shape: IFMLNode

»
]
]
]
i
]
]
]
]
]

rectangle: Rectangle

- IR "
M1 ViewContalner: lahel: IFMALLakel

IFML Mapping text: Text

---p Instantiates [0 DD 5pec DI: Diagram Interchange

—{> Specializes B FMLSpec DG: Diagram Graphics
—a References

Figure 10.1 - Diagram Definition Architecture for IFML

At M1 (left), Figure 10.1 shows an instance of IFML::Core::ViewContainer as a model element. Next to it, on the right,
the figure shows an instance of IFMLDI::IFMLNode referencing the ViewContainer element, indicating that the
ViewContainer is depicted as a node on the diagram. The node also contains an instance of IFMLDI::IFMLL abel
representing the textual label of the ViewContainer on the diagram. On the right of M1, the figure shows an instance of
DG::Group containing instances of DG::Rectangle and DG:: Text

IFML DI specializes DD:DI, which specifies the graphics the user has control over, such as the position of nodes and line
routing points. This information is what is captured for interchange between toals.

DD:DG represents the graphics that the user has no control over, such as shape and line styles, because they are the same
in al languages conforming to the DD specification. DD:DG is derived by executing the mapping specification, in the
middle, between IFML DI and DG

64 Interaction Flow Modeling Language, v1.0

10.4 IFML Diagram Interchange (DI) Meta-model

The IFML DI metamodel extends the DI metamodel, where appropriate. The class IFMLDiagram represents the diagram,
which composes IFMLDiagramElements. An IFMLDiagram is an IFMLNode because it may be rendered as a figure and
be connected to other figures. IFMLDiagramElements optionally reference elements of an IFML model, the latter denoted
by the IFML:Core:Element class. IFMLDiagramElements that do not reference elements of an IFML model are purely
notational diagram elements such as notes and the link that connects the note with the model element.

IFML DiagramElements may also be styled with instances of class IFMLStyle (e.g., font type and size).

sharePchyle 0.1)
— 1 sumetaclisssr

st Hityle
Labsilnd -StyiedEanari -ncalhm 0.1
PARKMETER [|
VIEW_CONTAINER - I
R THGH i SR
MAMED ELENENT g e -]
PARAJETER BIWGING GROUP Diegeienloment PR ——
ALTRATION_ EXPRESSION _> :
INTEFAC TION MW _DPRESSION ; i (PeBFCiny, LPe0ey) Pryper—
Fo i [=] Elerant
LIST VBOLETH | 1 harget] | ecmstacipser PR 1
SELECTMON_FIELD oGy sty frendCniy et | udisonenl ind { C 2
WALIDATION RULE | AriMare Sy Tt
COMITIONAL_DPRESHION [toemre ot | o .
DATA_BMNDMNG i |
. sy 0.1 D1 -ahanscitie
|Peaaedy, urun [PemeiQny, wriey v et 1 les 2
fmourceEdge 0.° 0. .mergsfoge) 1 __I -egranmt
cmeta s ccmetaclanees
Sathel aclmiee i
Shape e | P agramBlement |1 feiDugrwrument
ooy Bourd [2.1] A P R | i
07 wreiEwrerin
T .
= 1 | gt
SRRy \arpetf e
&5
e i s Bt
s - Sarng [1 e semat 0 Connegden
e ey 57| Ve | o] R vl i
ronshon, P 1|2 8000 | curripiose | 0.) e —
- X - S E— R] .
0 -owreshodes S ——

Figure 10.2 - Diagram Interchange (DI) Meta-model
Classes are defined for interchanging shapes and edges of the interaction flow diagram and the content diagram, based on the
following notational patterns (see Figure 10.3):

« Pattern (a): A shapethat hasalabel and an optional list of compartments, each of which having an optional list of
labels or other shapes (e.g., the ViewContainer box, ViewComponentPart box, Form ViewComponent rounded box or
the classes of the DomainModel).

Interaction Flow Modeling Language, v1.0 65

< Pattern (b): A shape that has alabel only (e.g., the Event ball or Action hexagon notation).
« Pattern (c): An edge that may be dashed or solid (e.g., NavigationFlows and DataFlows).

[XOR] MAIL Top

[O] [L) MailMassages [L] Contacts

Module >
“«List» Message List =
«DataBinding» MailMeassage
«ConditionalExpressions N
self.mm2MailMessageGroup = ~ Event
MailBox
«Parameter» MailBox : MailBox
Action

——

«InteractionFlowExpression» —

if AlbumDetails selected then
AlbumDetails

else Album details |

Figure 10.3 - Notational patterns

Based on these patterns, three shape classes (IFMLNode, IFMLLabel, and IFMLCompartment) and one edge class
(IFML Connection) are defined and related to realize the patterns. These classes (except |FMLCompartment) are
subclasses of IFMLDiagramElement to allow them to be styled independently and to reference their own IFML Element.

Some classes have properties to disambiguate the notation and a corresponding enumeration. For instance labels may be
of different kinds such as Parameter, ViewContainer, etc., which will determine how the text decoration will be rendered.

The following sub clause provides the detailed specification of the DI metamodel.

10.5 Package IFMLDI

10.5.1 Enumeration LabelKind
Description
Enumeration defining the kinds of labels, which will determine how to render the label decoration.
Literals
» action: Label of an Action.

e activationExpression: Label of an ActivationExpression.

66 Interaction Flow Modeling Language, v1.0

 conditional Expression: Label of a Conditional Expression.

e dataBinding: Label of a DataBinding.

» form: Label of aForm.

 interactionFlowExpression: Label of an InteractionFlowExpression.
e list: Label of aList.

« namedElement: Label of any NamedElement without additional decoration.
e parameter; Label of a Parameter.

¢ parameterBindingGroup: Label of a ParameterBindingGroup.

» selectionField: Label of a SelectionField.

e simpleField: Label of a SimpleField.

 validationRule: Label of aValidationRule.

* viewContainer: Label of aViewContainer.

10.5.2 Class IFMLCompartment
Abstract: No
Generalization:
e DD::Dl::Shape
Description

An IFMLCompartment is a section within an IFMLDiagramElement. An IFMLCompartment organizes the items in an
IFMLDiagramElement so that it is easy to differentiate between them. IFML Compartments may contain IFMLNodes or
IFMLLabels.

Association Ends
e ownedLabels[0..*]: IEMLLabel - Composite association to the IFMLLabels owned by the compartment.

« ownedNodes[0..*]: IFEMLNode - Composite association to the IFMLNodes owned by the compartment.

10.5.3 Class IFMLConnection
Abstract: No
Generalization:

e DD::Dl::Edge

¢ |FMLDiagramElement

Interaction Flow Modeling Language, v1.0 67

Description

An IFML Connection represents a depiction of a connection between two (source and target) IFMLDiagramElements. It
specializes DI::DD::Edge. IFML Connections do not contain labels. All IFMLConnections are owned directly by an
IFMLDiagram. The way-points of IFMLConnections are always relative to that diagrams's origin point and must be
positive coordinates.

Association Ends

« sourceElement [1]: IEML DiagramElement - Source IFML DiagramElement of the connection.

« targetElement [1]: IEML DiagramElement - Target IFML DiagramElement of the connection.

10.5.4 Class IFMLDiagram

Abstract: No
Generalization:

e DD::Dl::Diagram
e |IFMLNode
Description

IFMLDiagram represents a depiction of all or part of an IFMLModel. It specializes DD::Dl::Diagram and IFMLNode,
since a diagram may be seen as a node as in the case of ViewPoint and Module.

Association Ends

e diagramElements [0..*]: IEML DiagramElement — The diagram elements contained in this diagram.

10.5.5 Class IFMLDiagramElement
Abstract: No
Generalization:
e DD::Dl::DiagramElement
Description

IFML DiagramElement extends DD::Dl::DiagramElement and is the supertype of all elements in diagrams, including
diagrams themselves. When contained in a diagram, diagram elements are laid out relative to the diagram’s origin.

An IFMLDiagramElement can be useful on its own (i.e., purely notational), or, more commonly, it is used as a depiction
of another IFML Element from an IFMLModel. An IFMLDiagramElement can own other diagram elements in a graph-
like hierarchy. IFML DiagramElements can own and/or share IFML Style elements. Shared IFML Style elements are owned
by other IFMLDiagramElements.

Association Ends
e localStyle[0..1]: IEML Style - Composite associations to IFML Styles owned by the diagram element.
e sharedStyle [0..1]: IFML Style - Reference to IFML Styles shared with other diagram elements.

* modelElement [0..1]: ifml::core::Element - Referenced Element from an IFML model.

68 Interaction Flow Modeling Language, v1.0

¢ ownedElements[0..*]: IEML DiagramElement - Composite association to the IFML DiagramElements owned by the
current IFML DiagramElement.

10.5.6 Class IFMLLabel
Abstract: No
Generalization:

e DD::Dl::Shape

¢ |FMLDiagramElement

Description

An IFMLLabel is alabel that depicts textual information about an IFML Element. An IFMLLabel is always contained
(but not always rendered) in an IFMLNode directly or through an IFMLCompartment. In IFML, labels are not found in
IFML Connections. IFMLLabels may derive the textual information to be depicted from a referenced IFML model
Element that contains the property with the label text.

Attributes

e kind: LabelKind - Determines to what kind of Element the IFMLLabel corresponds, e.g., label of a Parameter, a
ViewContainer, an Action, etc.

10.5.7 Class IFMLNode
Abstract: No
Generalization:

e DD::Dl::Shape

¢ |FMLDiagramElement

Description

An IFMLNode represents a figure with bounds that is laid out relative to the origin of the diagram. Note that the bounds
x and y coordinates are the position of the upper left corner of the node (relative to the upper left corner of the diagram).
IFMLNodes may contain IFMLCompartments and other IFMLNodes and may be connected by IFML Connections.

Association Ends

e ownedCompartment [0..*]: IFML Compartment - Composite associations to the |FM L Compartments owned by the
node.

e ownedLabel [0..1]: IEMLL abel - Composite association to the label owned by the node.

« ownedNodes[0..*]: IEMLNode - Nested nodes of the current node. This relation is only valid if the nested nodeis
fixed to the parent node side.

10.5.8 Class IFMLStyle

Abstract: No

Interaction Flow Modeling Language, v1.0 69

Generalization:
e DD:Dl:Style
Description

An IFML Style represents appearance options for IFMLDiagramElements. One or more elements may reference the same
IFML Style element, which must be owned by an IFML DiagramElement.

Attributes
« fillColor: Color - Background color of the figure.
« fontName: String - Name of the font used by the styled IFML DiagramElement
« fontSize: Real - Size of the font used by the styled IFML DiagramElement

10.6 IFML DI to DG Mapping Specification

The DD architecture expects language specifications to define mappings between interchanged and non-interchanged
graphical information, but does not restrict how it is done. The IFML DI to DG mapping is shown in Figure 10.1 by a
shaded box labeled “IFML Mapping Specification” in the middle section and is accomplished in this specification by
means of the following QVT mapping.

70 Interaction Flow Modeling Language, v1.0

|

| transformation IFMLOItoDG{in ifmldi: IFMLDI, in ifml: IFML, out DG}

=

3 maini) {

4 ifmldi . objectsOfType (IFMLDiagram) —*map toGraphics();
] }

&

T mapping IFMLDiagram: :toGraphics(): Camwas {

-3 menber += self diagramElements-rmap tofraphics();

9 }

10

11 mapping IFMLDiagramElement: :tofraphics () : Group |

1z localStyle = copyStyle(self. localStyle);

13 sharedStyle := copyStyle(self.sharedStyle);

14 1

15

1& mapping IFMLNode: :toGraphics{): Group inherits IFMLDiagramElement::toGraphics() {
17 memker += self modelElement.map toGraphics (self);

18 menkber += self ownedCompartments-map toFraphics();
18 member += self ownedlabel map toGraphics();

20 1

21

22 mapping IFMLLabel::toSraphics(): Text inherits IFMLDiagramElement::toGraphics() {

23 var e gelf .modelElement;

24 bounds self_bounds;

25 data := awitch |

268 case (self kind = LabelWind: :NAMED ELEMENT)

27 e_name;

28 case (self.kind = LabelFind::VIEW_CONTAINER)

259 e.oclAsType (ViewContainer) .getlabelText () ;

30 case (self_kind = LabelKind: :ACTION)

3 e.oclAsType (Action) .getlabelText (] ;

3z case (self.kind = LabelKind: :PARMMETER)

33 "g¢Parameters " + e_name + ": " + e.type._name;

34 case (self kind = LabelEind: :FORM)

g‘: "gForms " + e_name;

37 case (self.kind = LabelKind::(LIST)

38 "gliste " + e.name;

E case (self kind = LabelWind::SIMPLE FIELD)

44 "gSimpleFields ™ + e.name;

41 case (self.kind = LabelKind: :SELECTICN FIELD)

4z "gSelectionFields "™ + e_name;

i case (self kind = Label¥ind: :PARAMETER BINDING GROUP)
44 "gParameterBindingGroums";

s case (self kind = Label¥ind: :ACTIVATION EXFRESSION)
46 "ghctivationExpressions™;

47 case (self kind = LabelEKind: :INTERACTION FLOW EXPRESSICH)
48 "glnteractionFlowExpressions";

= case (self kind = LabelKind: :VALIDATION RULE)

S0 "gValidationRules”;

St case (self.kind = Label¥ind::CONDITICMAL EXPRESSION)
52 "gConditionalExpression»";

= case (self_kind = LabelKind: :DATA_BINDING)

54 "gDataBindings";

£ default

-1 s

57 -

P ; 1+

5]

&0

61 query ViewContainer::getlabelText{): String {

62 var text := if self.oclTypelf (Window) and self.isModal then "eModals" endif;

63 var text := if self. oclTypeOf (Window) and not self isModal then "«Windowe" endif;
64

gg text += if self is¥OR then "[XOR] " endif;

7 text += if self isLandmark thenm "[L] " endif;

€8 text += if self.isDefaultc then "[D] " endif;

[E]

Interaction Flow Modeling Language, v1.0

72

113
114
115
1l¢
117
1lg
11%
1z0
121
1zz2
123
1z4
125
12¢
127
1z8
1z%
130
131
132
133
134
135
13¢
137

return text + self name;

mapping Element::toGraphics (n: IFMLNode) : GraphicalElement
diajuncta ViewZontainer::toRectangle, ViewComponent::toRectangle,
Hodule: :toRectangle, ViewComponentPart::toRectangle, Event::toCircle,
Action::toPolygon, ViewPoint::toPolygon, ModuleDefinition::toRectangle,
Port: :toRectangle, PortDefinition::toRectangle, ModulePackage::toBectangle |
¥

mapping ViewContainer::toRectangle (n: IFMLMNeode) : Rectangle |
bounds := n_bounds;
¥

mapping ViewComponent: :toRectangle (n: IFMLNode) : Rectangle {
bounds := n_bounds;
cornerRadius = 15;

mapping Module: :toRectangle (n: IFMLNode) : Rectangle |
bounds := n_bounds;
¥

mapping ModuleDefinition: :toRectangle (n: IFMLNode) : Rectangle |
bounds := n_bounds;
¥

mapping PortDefinition::toRectangle (n: IFMLNode): Rectangle |
bounds := n_bounds;
¥

mapping Port::toRectangle {n: IFMLNode): Rectangle |
bounds := n_bounds;
¥

mapping ModulePackage: :toRectangle in: IFMLMNode) : Rectangle {
bounds := n.bounds;
¥

mapping ViewComponentPart::toRectangle{n: IFMLHode) : Rectangle {
bounds := n_bounds;
¥

mapping Event::toCircle{n: IFMINode): Circle {
var b = n.bounds;
center := object Point{b.x + b.width / 2Z; b.y¥ + b.height [/ Z2};
radius := if b_width < b.height then
b.width / 2
else
b_height [2
endif;
¥

mapping Action: :toPolygon{n: IFMINode): Polygon |

var b := n.bounds;

point += object Point {b.width * {1/4); y := 0};
point += cbject Point {b.width * {3/4); y := 0};
point += cbject Point {b.width; b.height * (1/4)};
point += cbject Point {b.width; b.height * (3/74)};
point += cobject Point {b.width * (3/4)}; b_height}:
point += cobject Point {b.width * (1/4)}; b_height}:
point += cbject Point {0; b.height * (3/4)};
point += object Point {0; b.haight * (1/4)};

¥

mapping ViewPoint::toPolygon{n: IFMINode): Polwygon |
var b := n_bounds;

Interaction Flow Modeling Language, v1.0

138 point += cbject Point {b.width * (1/2); y := O};

133 point += cbject Point {b.width; b.height},

140 point += cbject Point {0; b.height};

141 |}

142

143 | mapping ParameterBindingGroup: toPolygoni{n: IFMLNode): Polygon |
144 var b := n_bounds;

145 point += cbject Point {=:=0,y:=0};

l4g point += cbject Point {b.width*3/4,y:=0};

147 point += cbject Point {b.width b_height};

148 point += cbject Point {b.width*1/4 b _height};

143 |}

150

151 | mapping IFMLCompartment: :toGraphics () : Group {

152 menber += object Rectangle [bounds:= self.bounds});
153 menber += self ownedModes map toGraphics();

154 menber += self_ ownedlabels map toGraphics();

155 |}

156

157 | mapping IFMLConnection::toGraphics(): Group inherits
158 IFMLDiagramElement: :toGraphics{) {

153 menber += self modelElement.map toGraphics (self);
160 |}

161

lé2 | mapping Element::toGraphics (c: IFMLConnection): GraphicalElement
163 disjuncts NavigationFlow::toPolyline, DataFlow::toPolyline |
164 | }

165

1€

167 | mapping NavigationFlow::toPolyline(c: IFMLConnecticn): Polyline |
le8 point = c.waypoint;

169 sharedStyle := solidStyleProp;

170 endMarker := arrowMarkerProp;

171 |}

172

173 | property solidStyleProp = cbhiject DG::5tyle |

174 strokeDashLength := Seguence{};

175 |}

17¢

177 | property arrowMarkerProp = cbject

178 zsize := object Dimension [width = Z};
179 reference := cbject Point {x :=

180 menber += object Polygon {

181 point += cbject Point {x := 0;

182 point += cbject Point {x := 2;

183 point += gbject Point {x := 0;

184 1

185 | }

1B€

187 | mapping DataFlow: :toPolyline{c: IFMLConnection): Polyline {
188 point = c.waypoint;

189 sharedStyle := dashedStyleProp;

150 endMarker := arrowMarkerProp;

181 |}

1582

153 | property dashedStyleProp = object DG::Style |

154 strokeDashLength := Seguence{i, 2};

195 |}

18¢€

197 | helper copyStyle(s: IFMLEtyle): DG::Style |

158 fontHame := s_fontHame;

18% fontSize s.fontSize;

200 fillColor = s.fillColorx;

201 |}

202

203

204

205

Interaction Flow Modeling Language, v1.0

74

Interaction Flow Modeling Language, v1.0

11 UML Profile for IFML

11.1 Overview

The UML Profile for IFML enables the use of UML for representing IFML models. The purpose of the profile is to
extend the UML metamodel by customizing it with specific IFML constructs.

The UML Profile for IFML is based on the use of UML components (both basic components and packaging components),
classes and other concepts.

Components may form hierarchical structures (a packaging component that owns other components) and they may be
connected with dependencies, either through explicit interfaces or directly.

Components may be shown in a structural UML diagram, such as a component diagram.

Their dynamic behavior may be shown in interaction diagrams, such as a communication diagram. The behavior of
components may also be described in a statechart diagram or in an activity diagram. Examples of these diagrams are not
shown here.

11.2 The IFML Profile of UML

The UML Profile for IFML consists of the stereotypes defined in this sub clause. These stereotypes are shown in a set of
UML diagrams below, along with a table for each diagram giving the specification of the depicted stereotypes.

«Metaclass» «sterectypes
e i Package ModulePackage
Viewpoint > £ o
F
astaraotypas astareoty pas watareotypeas
DoemainModel InteractionFlowModal IFMLModal

Figure 11.1 - Package stereotypes

Table 11.1 - Package stereotypes

Ster eotype UML Metaclass Tagged Values Constraints Icon
«DomainM odel » UML::Kernel::Package
«IFMLModel» UML::Kernel::Package
«InteractionFlowModel» | UML::Kernel::Package
«ModulePackage» UML::Kernel::Package
«Viewpoint» UML::Kernel::Package

Interaction Flow Modeling Language, v1.0 75

walaraoty pas
Annotation

Figure 11.2 - Annotation stereotype

Table 11.2 - Annotation stereotype
Stereotype UML Metaclass Tagged Values Constraints Icon

«Annotation» UML::Kernel::Comment '

«ViewComponents «OnSubmitEvents aViewComponents

AlbumSearchForm - = = = = AlbumList
«NavigatidnFlow» | [500 rotar-name : String(direction = in}

wusen

|
|

wParameters=keyWord : String{direction = out}

«ParameterBinding»
ParameterBinding

«Parameters+keyWord : String{direction = out}
«Parameters+name : String{direction = in}

Figure 11.3 - ViewContainer, ParameterBindingGroup, and Module Definition stereotypes

76 Interaction Flow Modeling Language, v1.0

Table 11.3 - ViewContainer, ParameterBindingGroup, and ModuleDefinition stereotypes

isXor: Boolean

Ster eotype UML Metaclass Tagged Values Constraints Icon

UML::Components:: : ;ar;uit contain at
«ModuleDefinition» BasicComponents:: .
Component InteractionFlow-
P Model Element
UML::Components::
«ParameterBindingGroup» | BasicComponents::

Component
UML::Components:: IsandMark:

. . . Boolean

«ViewContainer» BasicComponents:: .
isDefault: Boolean

Component

Table 11.4 - ViewContainer and ModuleDefinition stereotypes (extension)

Ster eotype UML Metaclass Tagged Values Constraints Icon
«Menu» UML.::Components::
BasicComponents::
Component
«Window» UML::Components:: |isNewWindow:]
BasicComponents:: | Boolean
Component isModal: Boolean

Interaction Flow Modeling Language, v1.0

77

«Metaclass»

ustereotype»
InferactionFlowElerment

ll}.

«stereotypes»
ViewElement wstereotype» wstereotypes
Module Action
astereotype»
View ComponentPart
wstereotype»
ViewComponent wstereotype» ustereotypew «stereotype»
ConditionalExpression Slot Field
iy
astereotype» wstereotype» ustereotype»
Details Form List

Figure 11.4 - InteractionFlowElements stereotypes (except events)

Table 11.5 - InteractionFlowElements stereotypes (except events)
Ster eotype UML Metaclass Tagged Values Constraints Icon

«ViewElement» UML::Kernel:: Classifier

«InteractionFlowElement>» UML::Kernel:: Classifier

«Module» UML::Kernel:: Classifier ED

«ViewComponent» UML::Kernel:: Classifier

«ViewComponentPart» UML::Kernel::Classifier

78 Interaction Flow Modeling Language, v1.0

Table 11.6 - InteractionFlowElements stereotypes (except events) (extensions)

Ster eotype UML Metaclass Tagged Values Constraints Icon
«List» UML::Kernel::
Classifier —_—
«Formp» UML::Kernel::
Classifier /
«Details» UML::Kernel::
Classifier 0=
«Field» UML::Kernel::
Classifier
«Metaclass»
OpaqueExpression
b
«stereotypen
Expression
Fiy
I
«stereotype» «stereotypes» ustereotype»
BooleanExpression InteractionFlowExpression ConditionalExpression
Fay
«stereotype» «stereotype»
Constraint ActivationExpression
wstereotypen

ValidationRule

Figure 11.5 - Expressions stereotypes

Interaction Flow Modeling Language, v1.0

79

Table 11.7 - Expressions stereotypes

Ster eotype UML Metaclass Tagged Values | Constraints Icon
«ActivationExpression» UML::Kernel:)
OpagqueExpression
«BooleanExpression» UML::Kernel::
pres OpaqueExpression
UML::Kerndl::
«Conditional Expressions» OpagueExpression
UML::Kernel:: Classifier
«Constraint» UML::KerneI::.
OpagueExpression
«EXDEsS N UML::Kerndl::
P OpagueExpression
. . UML::Kerndl:
«InteractionFlowExpression» .
OpagueExpression
«alidationRule» UML :Kernel::
OpagueExpression

«Metaclass»
Property
«stereotype» «stereotype»
Parameter ContextVariable

+direction : Direction +scope : ContextVariableScope
| * |

ustereotype» usterectypen

DataContextVariable SimpleContextVariable

Figure 11.6 - Parameter and context variable stereotypes

80 Interaction Flow Modeling Language, v1.0

Table 11.8 - Parameter and context variable stereotypes

Ster eotype UML Metaclass Tagged Values Constraints Icon
«Parameter» UML.::Kernel::Property direction: Direction
«ContextVariable» UML.::Kernel::Property scope: ContextV ariableScope
«SimpleContextVariable» |UML::Kernel::Property
«DataContextVariable» | UML::Kernel::Property
«Metaclass»
Port
A A
astereotype» «stereolypen «slereotypen
PortDefinition Event Port
astereotype» «slereotypes
CatchingEvent ThrowingEvent
wstereotypex» wstereotypex»
JumpEvent SetContextEvent
astereotypen «stereotype» sttt [astereotypen
ActionEvent ViewElementEvent SystemEvent LandingEvent
":F' +ype : SystemEventType
«sterectypes astereotypen astereotypes
OnSelectEvent OnSubmitEvent OnLoadEvent

Figure 11.7 - Port and Events stereotypes

Interaction Flow Modeling Language, v1.0

81

Table 11.9 - Ports and Events stereotypes

Ster eotype UML Metaclass Tagged Values Constraints Icon
«ActionEvents UML::CompositeStructures::
Ports::Port
«Events UML::CompositeStructures::
Ports::Port
. type:
UML::CompositeStructures::
«SystemEvent» Ports-Port SystemEventType
«CatchingEventy UML::CompositeStructures::
Ports::Port
. UML::CompositeStructures::
«ThrowingEvent» | 5 o .
JUMpEvents UML::CompositeStructures::
P Ports::Port °
. UML::CompositeStructures::
«LandingEvent» Ports-Port
«ViewElement |UML::CompositeStructures:
Event» Ports::Port
«Ports UML.::CompositeStructures::
Ports::Port
N UML::CompositeStructures::
«PortDefinition» Ports:-Port

82

Interaction Flow Modeling Language, v1.0

Table 11.10 - Ports and Events stereotypes (extensions)

Ster eotype UML Metaclass Tagged Values Constraints Icon
«OnSedlectEvent» | UML::CompositeStructures::
Ports::Port
«OnSubmitEvent» | UML::CompositeStructures::
Ports::Port @
«SetContextEvent» | UML::CompositeStructures::
Ports::Port
«OnLoadEvent» | UML::CompositeStructures::
Ports::Port

wMetaclass»
DirectedRelationshiip

wstereotype»
fntferactionfFlow

T

wstereotype»
DataFlow

ustereotype»
MavigationFlow

Figure 11.8 - InteractionFlow stereotypes

Interaction Flow Modeling Language, v1.0

83

Table 11.11 - InteractionFlow stereotypes

Ster eotype UML Metaclass Tagged Values Constraints Icon
Must be associated v
«DataFlow» UML::Kernel::DirectedRel ationShip witha %"
ParameterBinding .
«InteractionFlow» | UML::Kernel::DirectedRelationShip
«NavigationFlow» |UML::Kernel::DirectedRelationShip /v
«Metaclass»
Actor
F 3
ustereotype»
ContextDimension
Y
«stereotype» «stereotype» «stereotype»
UserRole Position Device
Figure 11.9 - ContextDimensions
Table 11.12 - ContextDimensions stereotypes
Ster eotype UML Metaclass Tagged Values Constraints Icon

«ContextDimension» UML::UseCases::Actor

84 Interaction Flow Modeling Language, v1.0

Table 11.13 - ContextDimensions stereotypes (extension)

Ster eotype UML Metaclass Tagged Values Constraints Icon
«Device» UML::UseCases::Actor Q
«UserRole» UML::UseCases::Actor
«Position» UML::UseCases::Actor v
aMetaclasse
Tl Classiffer 7
— 1
ustereoty pes asierentypes
ContentBinding ParameterBinding
i)
ocS'Iar&o{ypﬁm
Context
s berectypes wslereotypes
DataBinding DynamicBehavior
wslereoly poe aslerealypen aglerealypen wslereoly pes wslareoly pes
FeatureConcept DomainConcept ActivityConcept BehaviorConcept BehavioralFeatureConcept
Fa
aslerectypex aslerenty pes wilerectypen wilereotypen wilereotypen
UMLStructuralFeature UMLDomainConcept BFMMNActivityConcept UMLBehavior UMLBehavioralF eature

Figure 11.10 - ContentBindings, Context, and ParameterBindings stereotypes

Interaction Flow Modeling Language, v1.0

85

Table 11.14 - ContentBindings, Context, and ParameterBindings stereotypes

Stereotype UML Metaclass Tagged Values Congtraints Icon
«ContentBinding» UML::Kernel::Classifier
«Context» UML::Kernel::Classifier
«DataBinding» UML::Kernel::Classifier

«DynamicBehavior» UML::Kernel::Classifier aF

e
«ParameterBinding» UML::Kernel::Classifier
«ActivityConcept» UML::Kernel::Classifier
«FeatureConcept» UML::Kernel::Classifier
«DomainConcept» UML::Kernel::Classifier
«BehaviorConcept» UML::Kernel::Classifier
«BehavioralFeatureConcept» | UML::Kernel::Classifier
«BPMNActivityConcept» UML::Kernel::Classifier
«UML Structural Feature» UML::Kernel::Classifier
«UMLDomainConcept» UML::Kernel::Classifier
«UMLBehavior» UML::Kerndl::Classifier
«UMLBehaviora Feature» UML::Kernel::Classifier

11.3 Using IFML Stereotypes

IFML stereotypes can be user with different abstraction levels, i.e. using stereotypes that correspond to the IFML Core
package, the IFML Extension package, or user provided platform-specific stereotypes.

MailBoxList Messagelist

«ViewComponent lﬂ__r ViewElementEvent» «ViewComponents

— «NavigationFlow»
]
Figure 11.11 - Stereotyped UML diagram with IFML Core

For instance, for stereotyping with IFML Core concepts, classes, components and ports may be stereotyped with
ViewContainer, ViewComponent, ViewComponentPart, Event, and Action concepts, and directed relationships with
NavigationFlow and DataFlow concepts as shown in Figure 11.11.

86 Interaction Flow Modeling Language, v1.0

wlists

MailBoxList

! «OnSelectEvent:
2 cﬁla@ ati_o n FEW»_

wListy
MessageList

Figure 11.12 - Stereotyped UML diagram with IFML Extensions

For stereotyping with IFML Extension concepts, classes may be stereotyped as List, Details and Form concepts, and ports
with events like OnSelectEvent and OnSubmitEvent as shown in Figure 11.12.

Components own (or import) classes. In Figure 11.13, ViewContainers are shown as components and contain classes
stereotyped as ViewComponents.

«\iewContainers
AlbumSearch
{isLandmark}

=

aViewComponents
AlbumSearchForm

»

«OnSubmitEvents
1_ a«MavigationFlowxs

«ViewConlainers
Albums

=

«ViewComponeants
AlbumList

Figure 11.13 - Stereotyped UML diagram with ViewContainers containing ViewComponents

Parameters are defined as properties of the ViewComponents, with a tagged value represeting their direction.

ParameterBindingGroups are asociated to NavigationFlows and DataFlows and contain classes stereotyped as
ParameterBindings.

Figure 11.14 shows the representation of Parameters, ParameterBindingGroups, and ParameterBindings on the previous

example.

Interaction Flow Modeling Language, v1.0

87

aVigwContainers
AlbumSearch

{isLandmark}

=]

aViewComponents
AlbumSearchForm

der-keyWord : String{diractis

Figure 11.14 - Stereotyped UML diagram including Parameters, ParameterBindings, and ParameterBindingGroups

«OnSubmitEvents

ﬁ]—————-a-

aViewContainers
Albums

=l

aViewComponenis
AlbumList

«Navigaudn Flows P

srameatars=—name ; String{directis

! wusen

|

|
W

«ParamelerBindingGroup»

=

«ParameterBinding»
ParameterBinding

+kayWord : String{dir
+namae ; String{directio

11.4 Profile Metamodel Mapping

Table 11.15 shows, for each metaclass from the IFML metamodel in Clause 8, the mapping to the respective stereotype of

the IFML UML profile.

Table 11.15 - Profile metamodel mapping

IFML Metaclass Stereotype
IFML::Core::Action «Action»
IFML::Core::ActionEvent «ActionEvent»

IFML::

Core:: ActivationExpression

«ActivationExpression»

IFML::

Core:: ActivityConcept

«ActivityConcept»

IFML::

Core;:Annotation

«Annotation»

IFML:

:Core:: BehaviorConcept

«BehaviorConcept»

IFML:

:Core:: Behavioral FeaureConcept

«Behavioral FeatureConcept»

IFML:

:Core::BooleanExpression

«Bool eanExpressiony»

IFML::

Core::BPMNAcctivityConcept

«BPMNAcctivityConcept»

IFML:

:Core::CatchingEvent

«CatchingEvent»

IFML::

Core::Conditional Expression

«Conditional Expression»

IFML::

Core::Constraint

«Constraint»

88

Interaction Flow Modeling Language, v1.0

Table 11.15 - Profile metamodel mapping

IFML::Core::ContentBinding «ContentBinding»
IFML::Core::DomainModel «DomainM odel»
IFML::Core::Context «Context»
IFML::Core::ContextDimension «ContextDimension»
IFML::Core::ContextVariable «ContextV ariable»
IFML::Core::DataBinding «DataBinding»
IFML::Core::DataContextVariable «DataContextV ariable»
IFML::Core::DataFlow «DataFlow»
IFML::Core::DomainConcept «DomainConcept»
IFML::Core::DomainModel «DomainM odel»
IFML::Core::DynamicBehavior «DynamicBehaviors»
IFML::Core::Element «Element»
IFML::Core::Event «Event»
IFML::Core::Expression «Expression»
IFML::Core::FeatureConcept «FeatureConcept»
IFML::Core::IFMLModel «IFMLModel»
IFML::Core::InteractionFlow «InteractionFlow»
IFML::Core::InteractionFlowElement «InteractionFlowElement»
IFML::Core::InteractionFlowEXxpression «I nteractionFlowEXxpression»
IFML::Core::InteractionFlowModel «I nteractionFlowM odel »
IFML::Core::InteractionFlowM odel Element «InteractionFlowM odel Element»
IFML::Core::Module «Module»
IFML::Core::ModuleDefinition «ModuleDefinition»
IFML::Core::ModulePackage «M odul ePackage»
IFML::Core::NamedElement «NamedElement»
IFML::Core::NavigationFlow «NavigationFlow>
IFML::Core::Parameter «Parameter»
IFML::Core::ParameterBinding «ParameterBinding»
IFML::Core::ParameterBindingGroup «ParameterBindingGroup»
IFML::Core::Port «Port»
IFML::Core::PortDefinition «PortDefinition»
IFML::Core::SimpleContextVariable «SimpleContextV ariable»
IFML::Core::SystemEvent «SystemEvent»
IFML::Core:: ThrowingEvent «ThrowingEvent»
IFML::Core::UMLBehavior «UMLBehavior»
IFML::Core::UMLBehaviora Feature «UM L Behavioral Feature»

Interaction Flow Modeling Language, v1.0

Table 11.15 - Profile metamodel mapping

IFML::

Core::UMLDomainConcept

«UMLDomainConcept»

IFML::

Core::UML Structura Feature

«UML Structural »

IFML:

:Core::ViewComponent

«ViewComponent»

IFML:

:Core::ViewComponentPart

«ViewComponentPart»

IFML::Core::ViewContainer «ViewContainer»
IFML::Core::ViewElement «ViewElement»
IFML::Core::ViewElementEvent «ViewElementEvent»
IFML::Core::ViewPoint «ViewPoint»
IFML::DataTypes::ParameterKind «ParameterKind»
IFML::DataTypes::SystemEventTypeEnum «SystemEventTypeEnum»
IFML::Extensions::Device «Device»
IFML::Extensions::Form «Form»
IFML::Extensions::Field «Field»
IFML::Extensions::List «List»
IFML::Extensions::LandingEvent «LandingEvent»
IFML::Extensions::JumpEvent «JumpEvent»
IFML::Extensions::Menu «Menu»
IFML::Extensions::Details «Details»
IFML::Extensions::Window «Window»
IFML::Extensions::Position «Position»
IFML::Extensions::OnL oadEvent «OnL oadEvent»
IFML::Extensions::OnSelectEvent «OnSelectEvent»
IFML::Extensions::SetContextEvent «SetContextEvent»
IFML::Extensions::Slot «Slot»
IFML::Extensions::OnSubmitEvent «OnSubmitEvent»
IFML::Extensions::UserRole «UserRole»

IFML::

Extensions::ValidationRule

«ValidationRule»

90

Interaction Flow Modeling Language, v1.0

Annex A
IFML by Example: Modeling an Email

(informative)

A.1 Introduction

This annex exemplifies the modeling construct and the expressive power of IFML by modeling a popular Internet
Application specialized on email service.

A.2 The Domain Model

The email application manages mail messages and contacts of users.

A User possesses a set of MailBoxes. A MailBox (aka System Tag) consists of a set of M ailM essages,
MailMessages are organized not only in MailBoxes but also in user-defined clusters, called Tags. Therefore,
MailBoxes and Tags can be seen as special cases of a common concept of MailM essageGroup. A user can also
manage ChatConver sations, which are composed of ChatM essages. A User is also associated with a set of
Contacts. Contacts are clustered in ContactGroups.

Interaction Flow Modeling Language, v1.0 91

wdataTypes «dataTypes wdataTypas «dataTypes
Date Time Blob Password
«Classn) «Classn «Classs A WC:SS)?
ChatConversation 1 -chatConversation2C Chath " ttachement
" ———— -name : String
bchatMessage2ChatConversation 1.% |-recipient : String -value | Blob
-message | String
* | -mm2Attachement

-user2ChatConversation |* 1.* |-user2ChatMessage

-chatConversation2User |1

-chatMessage2lUser
«Classn 9 1 | -attachement2MaiMessage
User 1
°_‘Cla“” 1. -bec2mailMessage
«Class» «Class» Maill
MailBox i Group mm2maill roup , |sublect : String 1.+ -cc2maiMessage
 p— 1..* |-body : String =
1 faroup2user -colour : String 1.0 N date : Date
-time : Time -toZmailMessage
-read : Boolean e
1. |-from2maiMessage
* | -tag2subTag
«Classn
Tag 1
subTag2Tag
4+ | -user2group 10 o o|oge |+ eC
«Classy «Classy «Class» -from «Classy
Group ContactGroup Contact . EmailUser
- 1 -contactGroup2contact F— -
-name : String — -picture : Blob r~-name: String
feontact2contactGroup 1.* [-phene : String -emailAddress : String

Figure A.1 - The Domain Model of the online mailing application

A.3 Model of the Interface

The email application interface consists of a top-level container, which is logically divided into two alternative sub-
containers: one for managing MailMessages and one for managing Contacts.

92 Interaction Flow Modeling Language, v1.0

Your E-Mail
<3 o x Q { hitp://wwwmail. com/inbox/ 4 ybEbox) @
-
mal [=]
Mail v 0- Q Morew 1.130i13 £ | D> &
Inbox (2) Brandy Lewis People Company Reporting Anomalie Jun 18
Starred WaltersCompany ADY Review- Maybe normal in diferent.. Jun 15
Important Youtv Your Youtv Digest - Jan 20, 2013 Jan 1
Chats Mandy Batilla Request to share ADY_P_WorkPlan.doc Jun 10 .I
Sent Mail Brandy Lewis ADY Company Reporting 2 Jun 10
Drafts WaltersCompany ADY brainstorming - The send action is .. May &
All Mail WaltersCompany IFML brainstorming - What kind of containers... Jan 5
Spam me test May 2
Trash Flor Jenkings ADY Verona meeting minutes May 1
Water Fracesco Tietto (no subject) Apr 31
More w Daniel Parinni Research Project Apr 30
Camil James Internship in Asmat S A Apr 16
WaltersComopany ADY bainstorming Mar 15
Ld
o
Figure A.2 - The mail application view container for MailMessages
Your E-Mail
O Q x Q { http://wwwmail com/inbox/contacts —j @
:)
v =1
Contacts v O~ 2 +v Mores 1-50f5 &£ D B
My Contacts (5) Brandy Lewis brandylewis18@mail com .I
WaterGroup Walter Miran walmir@mail. com
Most Mandy Batilla mantilla_org12 @mail.com
Other John Master masterjohn54@mail.com
New Group Richard Burke richard burke d@mail com
Import
hd

Figure A.3 - email application view container for Contacts

By default, when the application is accessed, the container for managing MailMessages is presented. At any moment,
it is possible to Switch from the MailMessages to the Contacts view components, by means of a menu, shown in

Figure A 4.

Interaction Flow Modeling Language, v1.0

93

mai [121

Mail » - = I} [A SR
Mail
E Contacts
In Tasks WaltersCompany IFML brainstorming - Wh

Figure A.4 - A menu allows one to switch from the MailMessages to the Contacts view components

The model of the top level container of the application is shown in Figure A.5.

[XOR] MAIL Top

[D] [L] MailMessages [L] Contacts

Figure A.5 - IFML model of the Top Container of the email application

Notations

1. Thenesting of mutually exclusive view containersinto aview container (isXOR property equal true) is denoted

with a[XOR] icon.

2. The default view container (isDefault property equal true) of a set of mutually exclusive view sibling containers

is denoted with a[D] icon on container.

3. Theglobal reachability of view container from all the other sibling containers and their children sub-containersis

denoted with an [L] (Landmark) icon on container.

Model usability

e Theuseof the[L] (Landmark) icon reduces the number of navigation events that need to be explicitly represented
(otherwise one event should be necessary in al the view containers from which the target view container is

reachable), resulting in simpler models.
The MailMessages view container comprises five main nested elements:

e aview component (MboxList) showing alist of MailBoxes and Tags;

« aview container (MessageSearch) permitting the user to input search keywords to be matched against the

MailMessages;

« aMailBox view container, permitting one to access the messages of a specific MailBox or associated with a

specific Tag and the details of a specific message;
« aMessageWriter view container, permitting one to access the details of a specific message;

e aSettings view container, permitting one to modify the settings of the email application.

94 Interaction Flow Modeling Language, v1.0

The MailBox, MessageWriter, and Settings view containers are in alternative: only one at atime is displayed. None
of these alternate view containers is the default one, because they are all accessed as a consequence of an explicit
user’s choice. The MessageWriter and Settings view containers are denoted as landmark, because they are reachable
from all the other sibling view containers of the MailMessages view container. Conversely, the MailBox view
container is not denoted as landmark, because it is accessed only by means of a specific interaction event: the
selection of a MailBox from the MboxList view component.

The MailBox view container comprises the view component (MessageL.ist) showing the MailMessages associated to
agiven MailBox or Tag. The MboxList allows user interaction: selecting a specific MailBox or Tag the user produces
a navigation event that results in changing the content of the MessageL.ist, so to display the messages of the selected
MailBox or Tag. This behavior is represented in the model fragment shown in Figure A.6.

«Window» [XOR] MAIL Top

[D] [L] Messages

[XOR] MessageSearch

~ «List» P)

MailBoxList (/|
4

[XOR] MessageManagement

MailBox [L] Settings
" «Listn
P Message List [L] MessageWriter

Figure A.6 - Model of the MailMessages view container: a navigation event and parameter passing flow between
the MailBoxList view component and the MessageList view component denote that the user can select one mail
box and view a list of its messages

Semantics

1. TheMBoxList view component is associated with an event, denoted by acircle. A interaction flow connects the
event to the target components affected by it: MessageL.ist. The semantics of this pattern is that a user's
interaction with the MailBoxList view component determines: 1) the display of the view container that comprises
the Messagel.ist view component (the MailBox XOR child of the MessageManagement) the computation and 2)
the display of the target view component (in this case, the Messagel ist component is computed with the selected
MailBox as input parameter and displayed).

The model of Figure A.6 can be refined to show the parameter binding that binds the selection of a MailBox in the
MailBoxList component and the display of the messages of that MailBox in the Messagel.ist view component.

Interaction Flow Modeling Language, v1.0 95

«Window» [XOR] MAIL Top

[D] [L] Messages

[XOR] MessageSearch

«List» \]_
MailBoxList (+v/ —

J

[XOR] MessageManagement

Vi MailBox [L] Settings
y | e
','" P
/ { alist» i
/
r .
,’[Message List [L] MessageWriter

‘«ParameterBindingGroup» /
/ SelectedMailBox = MailBox /

Figure A.7 - Notations to express (or infer) parameter dependencies between view components

Messagelist
/«List» MBoxList
«DataBinding» MailMessageGroup d
V)=
& JT //’
‘ // /«lList» MessageList B
7 «DataBinding» MailMessage
Vi
,»'hParametetﬁindEngqup}} /J «Conditional Expressions
/ SelectedMailBox > MailBox/ self. mm2MailMessageGroup = MailBox
I\\. 4

Figure A.8 - Notations to express (or infer) parameter dependencies between view components with extension
mechanism

96 Interaction Flow Modeling Language, v1.0

L anguage extension and notation

1

In the upper part of Figure A.8, aUML-style annotation explicitly expresses that an output parameter of the
source component is associated with an input parameter of the target component.

In the lower part of Figure A.8, the model makes use of the IFML extension mechanism. A «List» component is
introduced, which extend the basic view component to represent alist of dynamically extracted data objects>.
The component refers a content binding of the DomainModel where the objects of thelist belong; it may also
refer to an expression to denote afilter on the instancesto display. In this case, thejoin expression on relationship
mm2MailMessageGroup (see the example DomainModel) dictates that only the messages of the mail box
received as an input parameter are displayed. The semantics of the component may specify default input and
output parameters, so that the parameter binding can be inferred and need not be explicitly represented: the
default output of the MailboxList list component is defined as the selected object of type MailBox: the default
input of the MessageL.ist list component is an object of type MailMessageGroup, as specified by the join
expression on the relationship mm2MailM essageGroup. Since these two parameters match, there is no need of
expressing the parameter binding explicitly.

The Messagel.ist component supports the interaction with mail messages, individually or in sets. On the entire set of
messages, the MarkAllAsRead event permits the user to update the message in the current MailBox, setting their
status to “read” (see Figure A.9).

Dv

O Morew
Mark all a& read
WaltersCon] Sefect messages Your Youtv Digest
to see more aclions

Figure A.9 - The MarkAllAsRead user-generated event marks all messages in the current mail box as “read”

As shown in Figure A.10, the MessageL.ist supports a second kind of interaction: the selection of a subset of
messages, when there is at least one selected message, a view container is displayed (MessageToolbar), which
permits the user to perform several actions in the selected messages: archiving, deleting, moving to a MailBox/Tag,
reporting as spam, etc.

In summary, the Messagel.ist component supports three types of interactive events:

1

an event for selecting the entire set of messagesand triggering an action upon them, marking al as read (Figure
A.9);

an event for sel ecting/desel ecting one or more messages (Figure A.10);

an event for selecting an individual message and opening it for reading.

5.

IFML has an extension mechanism whereby generic view and business components can be extended to introduce
domain-specific view and business logic. Object publishing and CRUD operations on objects are typical examples of
extended components.

Interaction Flow Modeling Language, v1.0 97

D v E:;—j 'l' “l:'[S » More w

[\ Brandy Lewis People Company Reporting Anomalie

[&> Youty Your Youtv Digest - Jan 20, 2013
M®> Mandy Batilla Reguest to share ADY_P_WorkPlan.doc

Figure A.10 - When one or more messages are selected in the MessagelList component, the MessageToolbar view
container is displayed, which allow the user to perform several actions of the selected set of messages. If all
messages are deselected, such view container is no longer displayed.

L anguage extension and notation

1. For making the model more self-explaining and supporting code generation better, it is possible to further extend
IFML with a specific view component: the MultiChoicelist (Figure A.11). The multi choice list would extend
the behavior of thelist view component with more event types: the default type (denoted by the default notation)
expresses the selection of one element of the list; the selection/de-sel ection event type, denoted by aticker icon,
expresses the selection or de-selection of any number of elements; the set selection event type, denoted by an
asterisk, denotes the triggering of an action on the entire set of element of thelist.

Messagelist

“eList» MessagelList

«DataBinding» MailMessage

«ConditionalExpressions
self.mm2MailMessageGroup =
MailBox

«Parameter» MailBox

)

MMessage Selection

Figure A.11 - The «Multi-choice List» view component extends the «List» view component to enable more types of
interaction events with the element of the list.

The behavior of the MessageSelection event of the MessageL.ist view component that triggers the display of the
MessageToolbar view container is modeled as shown in Figure A.12.

98 Interaction Flow Modeling Language, v1.0

MailBox

uListn

Messagelist

o «ParameterBindingGroup»

=177/ SelectedMessages = MessageSet

Messageselection - P

Delete | «Menu» Message toolbar

«ActivationExpression»
‘ not MessageSet.isEmpty() |

archive 1| «Parameter» MessageSet ‘

Report T

T

MoveTo - “_ 4 Labels

Figure A.12 - User events that mark one or more messages in the current mail box produce the display of the
MessageToolbar view container, which remains visible/active if at least one message is selected.

The MessageSel ection event has a parameter binding, which associates the (possibly empty) set of currently selected
messages with an input parameter of the MessageToolbar view component. The MessageToolbar view component is
associated with an (activation) expression, which tests that at least one message is selected.

Notation

1. For better readability of the modél, it is possible to name the events, as shown in Figure A.11 and in Figure A.12.
This annotation can be a guide for producing the implementation, for example it can be used to generate the
labels of buttons and links, the tool tips of commands, and other similar usability aids.

Semantics

1. Theassociation of a boolean expression to aview container means that the view container is active/visible if the
expression evaluatesto true.

The actions performed by the user on the messages (all, or a subset thereof) are represented as shown in Figure A.13.
An interaction flow arrow connects the event responsible of triggering the action to the action itself, supporting the
specification of parameter bindings.

Interaction Flow Modeling Language, v1.0 99

MailBox

«Listy
--: T) 4 ‘ <cParameterB\nwngGroup»
. 4 < / MessageList SelectedMessages - MessageSet

MessageSelection

.4—_ Archive 4—-—

pelet= | «Menu» Message toolbar

«ActivationExpression»

«Parameters MessageSet ‘
‘ not MessageSet.isEmpty() |

Archive -|
Yy

.1—) Report Y
':-. Report. iy)

T

MaveTo ™ " Labels

«ParameteerdmgGroup»
/ SelectedMessages > MessageSet /

Figure A.13 - The MessageList view component and the MessageToolbar view container are associated with
events that trigger actions on messages. Actions are represented as components placed outside the view
containers, with input and output parameters.

For example, the output parameter (MessageSet) of the MessageToolbar view container is associated with an input
parameter of the business actions Delete, Archive, and Report.

The execution of an action produces an action completion event and the sending of an asynchronous throwingEvent
notification, denoted as a black circle reached by the outgoing InteractionFlow from the Action box. Such a
notification throwing event is matched by a catching event, which triggers the display of a MessageNotification view
component, shown in Figure A.14.

100 Interaction Flow Modeling Language, v1.0

1Hal
I_— The message has been moved to the Trash Bead more Undo

- Q More -

«Windown [XOR] MAIL Top
[D] [L] Messages
B SN
[XOR] MessageSearch
«Listy M
; o essage
) — Notification
1 [XOR] MessageManagement
4 I
i
f MailBox [L] Settings
Vi
__,f{‘ (" Listy
f"" Message List [L] MessageWriter
«ParameterBindingGroup» 4
/ SelectedMailBox = MailBox

Figure A.14 - The Messages view container comprises a message notification component, which displays
notifications of executed actions on Messages (illustrated above).

Note that the notification reception event is associated with the parameter MessageSet, which can be used in the
MessageNotification component, e.g., to support the undo of the action® (not modeled for brevity).

Some actions on mail messages require a more elaborate interaction flow: Move to folder and Associate with tag (see
Figure A.18). For example, moving a set of selected messages to a folder is done by first accessing a view container
in a new window with the list of available MailBox and Tags (shown in Figure A.15) and then selecting from such list
the destination MailBox or Tag.

6. Maodeling the undo also requires discriminating the action to undo, which can be simply modeled, e.g., with an
additional parameter denoting the type of action (e.g., delete) set by each action when creating an instance of the
notification sending event.

Interaction Flow Modeling Language, v1.0 101

D v t':_:_] T fil i L A <3 More w
Move to:
' Brandy Lewis People Anomalie
| J4k > WaltersCompany ADY R4 Fisitinc Bos in
M WaltersCompany IFML b fieracondHo ind of
: Mandy Batilla Reque: Yatar
Brandy Lewis ADY G Spom
WaltersCompany ADY br] Trash hd action
me test Create New
Flor Jenkings ADY Vg Manage labels |s
Fracesco Tietto (no subject)

Figure A.15 - The MoveTo action is activated by first accessing a modal view container with the list of the available
MailBoxes and Tags and then selecting the target one. The view container comprising the list of MailBoxes and
Tags is also associated with navigation events for creating new tags and managing existing tags.

The view container comprising the list of MailBoxes and Tags is also associated with navigation events for creating
new tags and managing existing tags. For example, the Create New event causes a modal view container to be
displayed, whereby the user can create a new tag and associate the selected messages with it (see Figure A.16).

'::f;.l-ew-l-._cfﬁel' _X

Please enter a new label name

O Nest label under .
| I*] |
| Create Il Cancel I |

Figure A.16 - The Create New event causes a modal view container to be displayed, whereby the user can create a
new tag and associate the selected messages with it.

The interaction flow for moving a message to an existing or newly created tag is represented in Figure A.17. The
view container stereotypes «Modal» and «Modeless» annotate the view containers to specify that they open in a new
window and are modal or model ess.

102 Interaction Flow Modeling Language, v1.0

Mailbox

«lList»

Messagelist

. T
4

- MessageSelection

. «Menu» Message toolbar
Delete| |
;-‘«ru:hi\.fe."/- \|
. /| «Parameter» MessageSet
-
Report Ix] _.,--—--\lMessageSeIectiDn
e | 1
Message toolbar
[XOR] Tags

h 4

«Modeless» Tag Chooser

~ «Listy
selectTag () Tag Folder List

i,

i -.
1

l’ Create Mew

«Modal» Tag Creator

| «Formp
Create -‘, _:.INEW Tag Folder

y

i,

Figure A.17 - The model of the interaction flow for moving a message to an existing or newly created tag. The view
container TagChooser is a modeless view container (which hides when clicking outside of it) and the TagCreator

is a modal view container.

Archiving, reporting, and associating messages to existing/new tags imply the invocation of business logic

components, as shown in Figure A.18.

Interaction Flow Modeling Language, v1.0

103

MailBox

[_ | Delete - - ‘ i

Messagelist

.4—) Archive 4——'— 7 (/) Messageserecton

.4—:’ ’ | Report

Delete| -

l'-. «Menu» Message toolbar

. T
Archivg .| «Parameters MessageSet

Report| L
y «ParameterBinding Group» —
/ SelectedMessages = MessageSet e __/
y /! ' MoveTo
y &%IParameterBinding Group» A i ’
p———r ‘
/ SelectedMessages > MessageSet v «Modeless» Tag Chooser
i #Eis_?_:atf i SelectTog [«List> .
@<« Movegto rt : -'T_.i' Tag Folder List
folder i PR)
) i . ~Create New
/«ParameterBindingGroup» : i
/ SelectedTag = ATag !
)) i «Modal» Tag Creator
/' Create Tag :] ._
o/ — < 4 """"""""" —— |" «Formp» i
.4_3:____) Associate - —()New Tag Folder
Tag / Move i
to folder)

/«ParameterBindingGroup» ;
7 NewTagName = TagName /

Figure A.18 - The model of the interaction flow for moving a message to an existing or newly created tag

In Figure A.18 the parameter bindings are modeled explicitly: 1) the selected mail messages are associated with the
input of the Delete, Archive, and Report actions; 2) the SelectedTag parameter, which corresponds to the user’s choice
of atag to associate with a set of messages, is the input of the AssociateToTag action’. Note that the AssociateToTag
action receives the selected message set through a DataFlow (dashed arrow) coming from the MessageTool bar
ViewContainer; 3) the NewTagName parameter, which corresponds to the new label entered by the user, is the input
of the CreateTag action.

The specification of composite action flows is not allowed but the internal functioning of an action could be specified
with an orchestration model (e.g., a UML activity diagram, a SOAML specification, etc.).

The access to the messages can also occur through a search functionality. An input field supports simple keyword
based search; with a click, the user can also access a more powerful search input form, where he can specify several
criteria to be matched, as shown in Figure A.19.

7. For simplicity, which only model the AddToTag functionality; the MoveToFolder command is similar.

104 Interaction Flow Modeling Language, v1.0

Mail [] |_ v | (3]

Mail v E;ﬁ;ﬂh E X [v T = More w
| Compose I ITa I
Inbox (2) l I lany Reporting Anomalie
Starred Subject Maybe normal in
Impeortant Research Project igest - Jan 20, 2013
Chats Has the words hare
Sent Mail l I ly Reporting 2
Drafts Doesn't have irming - The send action
All Mail l I irming - What kind of
Spam

O Has ottachement

Trash : imeeting minutes
Day within [1 day |=J of l | 9
Water Examples: Friday, today, Mar 26, 3/26/04
AnotherBox et
Create filter with this search == |
L= IAsmat S.A
| WaltersComopany ADY bainstorming

Figure A.19 - The message search functionality (full search modal view container)

The IFML model of the search functionality (shown in Figure A.20) comprises a view component
(MessageKeywordSearch) for entering a string to be matched to the mail messages and filter those to be displayed in
the Messagel.ist view component. Such an interaction flow can be represented with an event associated to the
MessageKeywordSearch and an interaction flow to the MessageL.ist view component; a parameter bindings specifies
that the output parameter of the MessageKeywordSearch view component is associated with the input parameter of
the Messagel.ist view component. From the MessageKeywordSearch another event (Show search options) opens a
modal view container (FullSearch), where the user can input more information to drive the search. In this latter case,
the parameter binding associates each field value of the Form view component to a respective input parameter of the
Messagelist component. Note that after giving the input of the Full Search two navigations occur. One for the
Messagel.ist for showing the search result and another to the Search container for passing and displaying the keyword
search.

The example shown in the right part of Figure A.20 illustrates how extending the basic IFML view components with
domain specific view and business logic can make the model more self-descriptive. For instance, one could define a
view component abstracting the notion of input forms for data entry (denoted by the stereotype «Form»), composed
of aset of typed fields (e.g., denoted as nested view components of type «SimpleField»); a «Form» component could
expose as default parameters, the values of the contained fields. The parameter binding would then couple each input
field with the respective parameters of the Conditional Expression expression of the dynamic list component (as
shown in the right part of Figure A.20). Note that the «List» view component is associated with multiple
Conditional Expression expressions, which are used to compute the component when different navigation events
occur. Which expression has to be evaluated is dictated by the parameter binding associated with the interaction
flows of the event triggering the computation.

Interaction Flow Modeling Language, v1.0 105

[XOR] MessageSearch
[D] Search «Modeless» FullSearch
«Form» J_Sho v zearch options y «Form»
=
Message keyword L) o E— Message Full
search k Y Search
¥)
\ ./j\. J/ \ ~— f‘j\
W /search mail ".\ ‘Search mail
!
,_\
/«ParameterBinding Group»
K d= K /«ParameterBindingGroup»
i i MailBox / Keyword = Keyword /
k. 4
wlist»
Message List
\
/«ParameterBindingGroup»
/ Keyword = Key
" From = FromKey /
/ To = TokKey
[XOR] MessageSearch
[D] Search «Modeless» FullSearch
" «Form» Message Keyword Search B shbw scarkh /«Form» Message Full Search B
/«ParameterBindingGroup» / options I B . .
SimpleField» Keyword: Strin ‘
Keyword = Key ‘ «SimpleField» Keyword: String ‘ (. \, «Imp > EYW 9
A b \‘ «SimpleField» From: String ‘
Y1) ——) ,.
% W search mail T '_K@ o
Y S, 2 search mail
\\\ .\\
\\ e,
Y e
LY ., i
\,“ MailBox /«ParameterBinding Group» /
% B Keyword = Keyword
b) " «list» Message List ™ |
/| «DataBinding» MailMessage \ ““\.N
_\\
«ConditionalExpression» MailMessage IN \“-\.q‘
self.mm2MailMessageGroup = Mailbox T
«Conditional Expressions{ if (Key.size() <= title.size()) then y «ParameterBlndlngGmupn//
Sequence(1. title.size() - Key.size()) -= exists(i | g
—— E‘.lsst‘.itle.substring[i,i+ Key.size()) = Key) N / ﬁfﬂyﬂ\l—\:{:—r}d F_r)c:rl](‘|ey /
false) OR / / :
(if (from.size() <= self.from.size()) then
Sequencel1..self.from.size() - from.size()) -= exists(i |
self.from.substring(i,i+ from.size()) = from)
else
false
1) |
\\ y
\\\.__ _//

Figure A.20 - The model of the message search functionality (top). The same model refined with the use of the
extended view components «Form» and «List» (bottom).

106 Interaction Flow Modeling Language, v1.0

As shown in Figure A.21, the selection of a message from the MessageL.ist view component causes the
MessageDetails view component to be displayed. Such a component permits the user to access one specific message
at atime. The XOR MessageReader ViewContainer enables alternative visualization of the MessageDetails and
MessageL ist ViewComponents.

[XOR] GMAIL Tap

[D][L] Messages

[XOR] MessageSearch

[D] Search [Modeless] Fullsearch
T p " Shofvsearch aptions p Message
" «lists N «Farms arch optio <Forme g
A Message keyword Natification
Ma\lonL\st'.g/_ — search . Message Full Search
) {)
Ssarchpmad - searchma

[%OR] MessageManaggment

MailBox [L] Settings

[XOR] Message Regder

[D] Message List Iflessage Details
{ alists ~| (" uDetailss \
| Message List |<__.__) Message Details

T

N

o— \ Delete

[L] Message Writer

[XOR] Tags
Assnmat\‘x «Windows [Modeless] Tag Chooser
« etoTag —
.(—‘._g' Move. / seiettag [aliste
. tofolder ’T‘l Tag Folder List

Nindows -
EEET, «Windows [Modal] Tag Creator

V. ant:lt . Il «Forms
()< () S—f—;;‘? = > '] INew Tag Folder

*,_ Moveto

Figure A.21 - The MessageList and the MessageDetails view components are shown in alternative

The example continues with the model of the message composer functionality. This can be activated in two ways: 1)
from any view containers inside the Messages top view container as denoted by the landmark icon of the
MessageWriter view component; 2) from the MessageDetails view component, by activating the Reply, ReplyToAll,
or Forward command, as denoted by the three event and interaction flows from the MessageDetails view component
(shown in Figure A.22).

Interaction Flow Modeling Language, v1.0 107

XOR] M Read /iParameterBindingGroups
R / “Forward™ State /
[Message Details] / Messageld 3 Messageld AParameterBindingGroup=
yd . "Reply” < State 4
pram——s / =" Messageld - Messageld
" eDetallss |':J e i
Message keyword ' sl A ' “ParameterBindingGroups
(W—1— ' o "Rephy A" State 4
| Messageld = Hmﬂddf
sActivalionExpressions
_— — State <> "Reply All” |
— -
sActivationExpression L__,---"'J / r ——
y | sParameterBindingGroups
MessageRedplents.size() = 1 | /’J _* “Rg'+5|l:rje1:t-}smjﬂ:t /
I A Yy 4,-' from = to
owsacd | uForms Message Writer // 1 v /
*57)| esimplefieldy to: String [§Reensedt !ﬁ‘,’;}ﬁ Stats
,—. aSimpleFields co: String —_—
" AT | S —== «wActivationExpressions
——» «Simplefields bee: String (= State <> "Reply” |
_ e —b!-i sSimpleFields: subject: String | i \'“\-T
wActivationExpressions AR ./ sParameterBmdingGroups |
State = “Reply” or)| «SimpleFields body: String | Y e + subject 5 nbim:
State = “Reply All* [! from3 to
‘ - «Simplefield= attachment: ... 1 — Ji

[f e
|T i / body = body
~_| £ “Reply All" State

L — I LY ;-l
Add nttacherdet ‘iJ Seng 1 Save \ «ActivationExpressions
i l k‘-. Sme <> “Forward”
I'\
- -\ I" i i
i £ A "\ P+ subject > subject
; y) T+ & 4
) Send o Sawe / body b body 4
4 ;N\) J/ J "Forward” 3 State

Figure A.22 - The different ways to access the MessageWriter view component

The link ReplyToAll is active only when the message displayed in the MessageDetails view component is associated
with more than one recipient. This can be expressed as a activation expression associated with the ReplyToAll event
(seeFigure A.22). The MessageWriter view component has an internal structure, shown in Figure A.23.

108 Interaction Flow Modeling Language, v1.0

| “~ Reply j * Reply to oll‘ e F°r‘f-'ﬂ"d\

Send Save now Discard

To I Brandy Lewis <brandylewis18@mail.com> I

Cec I Walter Miran <walmir@mail.com:=> I

Add Bec Edit Subject Attach File Insert: Inwitation

Rich Formatting >> Check Spelling v

On Sat, Jan 18 2013 at 5:34 FM. Walter Miran <walmir@maoil.com> wrote:

= Wealcome to our newsest program, [sent you some documentation that 1 think will be
= uaeful for you in this process.

=

= Enjoy!

=
= Walter Miran

Figure A.23 - The internal structure of the MessageWriter view component

The view component permits the user to edit a new message, reply to an existing message (to the sender only or to
all) and to forward an existing message. The view component can be represented as a form composed of different

fields: To, Cc, Bcc, Subject, Body, and Attachment.

Interaction Flow Modeling Language, v1.0

109

[XOR] Message Reader __.-'éiParameterBindingGroup»
/ "Forward"= State .
Message Details Messageld > MESSEQEId «'ParameteerdmgGroup»
7 ./ "Reply” = State
T ek 'y Message[d - Messageld /
«Details» ‘J A ’
Message keyword J e {:;ParameteerdmgGroup»
search " “Reply All" State
.J Rerlv Al Message[d-) MessageId
«ActivationExpression»
— e State <> "Reply All” |
—
«ActivationExpression» . / —
MessageRecipients.size() >1 | [L] Message Writer / | «ParameterBindingGroup» |
| l v / / "Re" + subject < subject |
P v v / / from= to
Dls_.:afd-.\._‘; «Form» Message Writer / T D e
{Replysosli| | body = body

addec ‘
{ J

«SimpleField» to: String

«SimpleField» cc: String

«SimpleField» bec: String

«SimpleField» subject: String

“Reply All" = State

1" «ActivationExpression»

State <> "Reply” |

«ActivationExpression» /[«ParameterBindin Group» |
State = "Reply” or |)| «SimpleField» body: String \ oo +sub]ect-)g Subjgct,-’
State = "Reply All” ' from—) to /
L. «SimpleField» attachment: ... P Forward Rt
7 T / body = body
duitsupkat /| «Parameters State ‘T |/ "Reply Al" > State |
Add attachment ‘T[l 'send C}I Save «ActivationExpression»

i i \“\\ State <> "Forward” |

\ '_.-"«ParameterBindingGroup»

¥ UFw" + subject 2 sub]ect
body = body /
"Forward” 2 State

Figure A.24 - The IFML model of the internal structure of the MessageWriter view component, with the names of
the event displayed for clarity.

Note that some form fields can be automatically filled with content (e.g., the To field is automatically set to the mail
address of the sender when the ReplyTo event is raised). This is modeled by considering that each «SimpleField»
component of a «Form» component is associated to an implicit input parameter that denotes the value of the field.

In addition to the form fields view component parts, the MessageWriter view component has an explicit parameter
(Sate), which denotes four different edit configurations: 1) when the user is editing a new message, 2) replying to the
sender of an existing message, 3) replying to the sender of an existing message and to all recipients in copy, or 4)
forwarding an existing message. These edit configuration differ in the subset of fields that are automatically filled-in
and in the commands that are enabled: for example Figure A.23 shows the edit configuration when the user is
replying to the sender of an existing message and to all recipientsin copy.

110 Interaction Flow Modeling Language, v1.0

The MessageWriter view component is associated with three events (Reply, ReplyToAll, Forward) for switching from
one of the ReplyTo, ReplyToAll, and Forward editing configurations to the other two. For example, Figure A.24

shows that the event ReplyToAll is active only when the Sate parameter has the value Reply or Forward and that its
effect is to assign a value to the Subject, To, Cc and Body field, and set the Sate parameter to the value ReplyToAll.

Another example of conditional event is the EditSubject one: the event for editing the subject field is available only
when the Sate parameter is ReplyToAll or Reply.

The model refinement of the MessageWriter view component can go on, by zooming-in inside the Body field. The
Body field can be refined by a nested component, which supports client-side business logic like the rich formatting
and the spell checking of the text.

Send Save now Discard

Tol I

Cc I I
Add Bee Edit Subject Attach File Insert: Invitation

BIQ*@E}-EI‘_‘JC"HE@ Check Speling wv

Welcome to our newest program, [sent you some documentation that I think will be
useful for you m this process

Enjeyt

Walter Miran

Figure A.25 - The rich text editing toolbar in the Body input field of the MessageWriter view component

Figure A.25 shows the rich text editing toolbar in the Body input field of the MessageWriter view component, which
appears when the user clicks on the RichFormatting link shown in Figure A.23.

A number of editing commands apply to the text, which rewrite the content of the view component at the client side.
Similarly, the CheckSpelling command triggers a client-side action that highlights in red the misspelled words.

[L] Message Writer

~wForm» MessageWriter

«RichTextSimpleField» Body

X . I.-"" > sl ve format | «Modal» Alert

P[\CI':%nFtS'de]t ey «RichTextToolBar» Toolbar)

pplyrForma < - >|—
- e

> B f :"T-'clancel -' : ok

() A

P Y

[Clientside] > /7 [Clientside]
ApplyFormat 4 ' ApplyFormat

Figure A.26 - The rich text editing toolbar in the Body input field of the MessageWriter view component

Interaction Flow Modeling Language, v1.0 111

Figure A.26 shows the IFML model of the rich text editor field. An event corresponding to the RichFormatting
interaction flow permits the user to access the Rich Text Toolbar view container, which comprises a number of
commands for applying formatting to the text; for brevity, we summarize these commands as the invocation of the
ApplyFormat Action, which is shown with the [ClientSide] icon to denote that it actuates at the client side. Similarly,
an event permits the user to trigger the SpellCheck Action, which is aso client-side. Finally, from the RichText
Toolbar view container an event (the PlainText link visible in Figure A.25) permits one to remove the formatting and
go back to the plain text mode; before firing the action, tough, an alert modal view container is presented where the
user can confirm or discard the format removal action. Discarding the action leads one back to the Body component
and to the Rich Text Toolbar.

112 Interaction Flow Modeling Language, v1.0

B.1 Introduction

This annex exemplifies the the versatility and adaptability of IFML by modeling the most common features available

in asimple Ul for a point of sale (POS) management, specifically targeted to a bookstore environment.

B.2 Domain Model

During the session, a User is assigned a Shopping cart that at the beginning is empty. As the user browses through the

page and gets information about the products available, adds products to the shopping cart. The list of products

Annex B
IFML by Example: Modeling an Online Bookstore

(informative)

selected at the moment by the user, can be consulted at any time, offering the option of pay the current order, empty
the cart, or continue browsing in order to add more products.

gdataTypes
Name

gdataTypes
Address

wClassy
Sheopping Cart

-Carld : Integer{id}
-Created : date
-OrderTotal : double
-Customerld : String

«Class»
Order

«Class»
Customer
-Id : String{id
-Email : String
-Title : String =
-Mame : Name 1 0.
-Address : Address =
-Phone : String +Update()
1
wClass»
CreditCard

-CardMumber : long
-ExpirationDate : date
-Customerld : String

Figure B.1 - Domain Model of the Online Bookstore

Interaction Flow Modeling Language, v1.0

-Cartld : Integer{id
-Productid : Integer{id
-PreductQuantity : Integer

+Empty()

1

«Class»
Product

-Preductid : Integer
-MName : String
-Diescription : String
-Price : float

+AddToCart()

113

B.3 Process Model

When the user enters into the website, starts exploring the products available. Once he finds a product of interest,
selects it, and the item goes to the shopping cart. The user can either keep exploring products in order to add more
items to his order, or continue to manage the shopping cart by deleting all the products, or updating quantities of the
selected ones. Once the user is ready to proceed with the payment, performs the checkout.

In order to authorize the payment, it’s necessary to send the customer information to the bank entity, and wait for the
confirmation. This procedure isillustrated in Figure B.2.

>

() F’Eraégljgtes F;Sr:':jef:l Manage Cart Checkout Confirm _.©

-
|
|
|
v

Bookstore POS
Customer

Bank

Figure B.2 - Process Model of the Online Bookstore

B.4 Model of the User Interaction Flow

Figure B.3 shows the home page of the online Bookstore. In this sub clause, the user can select one of the product
categories, or go directly to the shopping cart.

On-line Bookstore X

G @‘ x Q { http:/ /' wwwonlinebook store.com/home] @

098N On-Line Book Store

-E Shopping Cart

X X X

Books Recordings Software

Figure B.3 - Online Bookstore Home Page

After selecting a category, a list of products is displayed. For instance, Figure B.4 shows all the products belonging
to the books category.

114 Interaction Flow Modeling Language, v1.0

080 On-Line Book Store |

/} Home 4 See categories H Shopping Cart X Exit
a

Home /Books =

= 7] &Standard QWE: A new modalling propasal
Degcription:

QWE iz a majer mnovatien in the field of software development. It
is independent of the croanzation of the software imolementation .

Ses mors

e -
Graphic Interfeees: In the hands of the user

Degcription:
This book intreduces, documants and explaing the implications of a
ooor desian in the user experience

Bea moress

I«

 ——————

Figure B.4 - List of products belonging to the books category

When the user selects a product obtains the details of the selected item (such as full description and price) along with

the option to add the product to the cart, as shown in Figure B.5.

o¥en On-Line Book Store

"\ Home 4 See all Books) shopping cart X Exit

Home /Books /Product

Standard QWE: A new moedelling proposal

Description:

QWE iz @ majer mnovation in the field of software development. It
& independent of the crganization of the software implementation
It iz a highly abstract thinking tool that aids in the formalization of

up abstract ssfutions to sof tware development preblemsa
Thig tmely bock thoroughly mtreduces, documents, and explaing this imgortant new
technolegy The authors show QWE can formalize requirements ond use coses nto a rich

and how these models can be tronsloted directly inte code. In addition, the book explans
how individual system domaoing are woven tegether by an executable QWE model
comgier

Figure B.5 - Details of the Selected Product

knowledge, ond is alse a way of describing the concepts that make

set of werifiable dugroma, how it con be used to produce executabie and testable madels,

Price: $44.99

The procedure described in Figure B.3, Figure B.4, and Figure B.5 is represented in IFML as shown in Figure B.6.

Once the user selects a category from CategoryList a navigation event is produced, and as a result, the products

corresponding to the SelectedCategory are displayed. Similarly, when the user selects a product from ProductList, the

details of the SelectedProduct are displayed.

Interaction Flow Modeling Language, v1.0

115

[H] [L] ProductCateqgories ProductList EeiEa
«List» J «list») " «Details»
CategoryList (+/) : ProductList (/) Product
T r, : ~ g Details
f'r‘ ‘,-’"rl
’f;" Jr'rru
<ParameterBindingGroup» ¢ParameterBindingGroup»
/ SelectedCategory = Category / SelectedProduct = Product

Figure B.6 - IFML model corresponding to the exploration of products

When the user decides to buy the product and add it to the cart, causes a modal view container to be displayed, where
the user must provide the quantity of items of the desired product (see Figure B.7). After accepting the quantity, the
article is added to the cart, and a confirmation window is displayed as shown in Figure B.8.

Enter o guantity

2

Figure B.7 - Window displayed in order to catch the number of items desired by the user

o0 On-Line Book Store

/_I} Home 4 See categories 'B Shopping Gart X Exit
Home /Books Preduct added te cart
successfully!
Btan
Close
Des
W E TS T T T T BT 2 tware development, It

s independent of the croonization of the software imolemen tation

Ses morg>>

Figure B.8 - Confirmations window for the action add to cart

116 Interaction Flow Modeling Language, v1.0

Figure B.9 shows the model fragment that adds a product to the cart: once the user press the add to cart button, a
modal window appears asking for the quantity of items desired. This value, along with the SelectedProduct are
submitted as parameters and represent the input of the add to cart action triggered. Once the action is performed, a
confirmation window is displayed.

‘«ParameterBindingGroup» ;
/' SelectedProducts < Product /

Product [Modal] Quantity «Modeless» Confirmation
I y
"~ «Details» | 7 «Form») —Detales
| | «Details»
Product i Add to cart ity [| 3 / Addto FarimEiior
Details Quantity { jf———7® o T ®
Il] Message

/

/ «ParameterBindingGroup=»

Quantity = Qty

Figure B.9 - IFML model corresponding to the add to cart event

The shopping cart is the list of products previously selected by the user. In this sub clause are shown the quantities
and the order details. The user is able to update the cart by changing the quantities, empty the cart by deleting all the
products of the current order, and start the payment process by clicking in the checkout button (see Figure B.10).

When the user chooses to update the cart, the total amount is recal cul ated.

When the user empties the cart is redirected to a confirmation page as shown in Figure B.11.

Interaction Flow Modeling Language, v1.0 117

QSE;;\ On-Line Book Store

ﬁHome ¥ Exit

Shopping Cart

Product Price |Quatity . [Total

Standard QWE: A new modelling proposal 4499 44 99
Graphic Interfaces: In the hands of the user 2399 a7z
Lineal Algebra applied to web 3999 39.99

2ub Total Amount: % 15695
Tax Amount: § 0.0
Discount Amount: § 0.0

Total Amount: $ 156.95

Ef? Empty the cart ¥ Continue Shopping Checkout

Figure B.10 - Interface of the Shopping Cart

080 On-Line Book Store

Home 4 See categories 'H Shopping Cart X Exit

@ Shopping Cart Empty

Figure B.11 - Confirmation page for the Empty Shopping Cart Event

>

Asillustrated in the IFML model of Figure B.12, when the user decides to delete all the items from the current order,
the action Empty the cart is triggered, and after its execution, a confirmation message is displayed.

In the Update event, the user modifies the values of the quantities and submits them by clicking in the button Update;
this event causes an Update action to be triggered after which the shopping cart is redisplayed (see Figure B.12).

118 Interaction Flow Modeling Language, v1.0

“ParamBindingGroup>

Quantity = Qty
. Update
the B
Shopping Cart quantities Confirmation

«List» -

\ &/ «Details»
Product () Empty p/ Emptythe ~ Confirmation

List ' [' cart e Message

Figure B.12 - IFML model corresponding to the events Update and Empty of the Shopping cart

Once the user has decided to perform the payment, he must provide his personal information and press “Next” (see
Figure B.13).

o¥en On-Line Book Store

G Horna-e- .H' Shopping Cart - x Exit
— Customer Information

E-Mail: | billy@mail com | Address Line 1 | Street Hamiton 1
Title: ™ | Addressline2 35]
First Name: [&i] civ [New York]
Middle Name: I] State or Province:

Last Name: [Feather] Postal Code: B]
Phene: | +51348576444 | Country: []

Figure B.13 - The user must provide its personal information and continue

After providing his personal information, the user must provide his bank account information and confirm the
payment in order to proceed with the transaction (see Figure B.14). After performing the transaction, a confirmation
page appears showing the details of the payment as shown in Figure B.15.

Interaction Flow Modeling Language, v1.0 119

&80 On-Line Book Store

G Home % Back ¥ shopping Cart . X Exit

= Payment Information
Cardholder Name: Mr. Bill Feathers

Address Line 1. I_Slreet Hamiten Poital Code: LIO138 I
Address Line 2 IjS Country: I_United States I

City: LNew York Bank Card Account I_TE?EBQES?BBSGZ I

Bank Card Expiration E

Total Amount: % 156.95

State or Province: Il.,]ew York

Figure B.14 - The user must enter the bank account information and confirm the payment

040 On-Line Book Store

ﬁ Home 4 See categories .H Shopping Cart X Exit

Payment Performed Successfully!
= @ Payment Details
CREDIT CARD COMPANY

Charge to: B7654 32567876 for: $156.95
Charge AFFPROVED

CUSTOMER: jehn feathers@muail com
CHARGE APPRONVED

Figure B.15 - Payment confirmation

When the user chooses the Checkout option, the container Customer Information is displayed. The user must provide
his personal information by filling out the form within this container.

After the user submits his personal information, the container Payment Information is displayed. In this container the
user must provide his bank account details. The name of the user (sent previously as the parameter: Name), is
forwarded along with the credit card number (CC) and the total amount of the offer (previously sent by the shopping

cart container) to the payment action (Execute the payment).

120 Interaction Flow Modeling Language, v1.0

Shopping Cart Confirmation
_..-""«ParameterBindingGroup» e
«listw / Total= Amount CZE]‘eirt’?r:I;t:?Oﬂ
Product ;_/ Message
List Vi
4
\ O S /‘
— — Vi
“—iCheckout V.
:. ___________________ _Jir _____________________ 1
]
]
Customer Information Payment Information :
]
«Farm» «Form»
Customer | Payment J Ex;er;:;te
Information Vi Information'\._l.. / 7 > A

7
¥ |

«ParameterBinding Group»
' Name = Name

s
i
/

._.-";<ParameterBindir|gGroup»
/ Name = Name
" CreditCard = CC

Figure B.16 - IMFL model corresponding to the event Checkout

. payment /

After the payment execution, a confirmation message is displayed with the transaction details. The IFML
representation of this procedure is shown in Figure B.16.

To increase reusability and modularization in the models, designers may decide to cluster homogeneous parts of the
model into Modules. For instance, the part of the model that deals with the payment management can be packaged
into a specific module. This would simplify the model of the application, which would appear asin Figure B.17.

The definition of the corresponding module is shown in Figure B.18.

Shopping Cart

«list»»

Product

List
- I/"'-“\. -/.
—Checkout

Confirmation

-

‘ Message

«Details»
Confirmation

.
-
r

y

i

Payment
Execution

«ParameterBinding Groups
Total= Amount

Figure B.17 - IFML Module usage upon the Checkout Event

Interaction Flow Modeling Language, v1.0

121

Payment Execution
e e :
i Customer Information Payment Information :
l («Form» «Form» Execute Confirmati
|)) J onfirmation
Customer /g Payment &
Amount = () 7 P N e e the L *—D
4{? ‘ Information S | Information Y/ \ payment /
P /
."f /
J_.r' 'f.f'
| «ParameterBindingGroup» | J«ParameterBindingGroup» |
/ Name = Name / Name = Name
; : / CreditCard < CC

Figure B.18 - Module Definition of Payment Execution

B.5 System Modeling

IFML can be suitably used together with UML models and other OMG standards (e.g., BPM models).

For instance, UML sequence diagrams complement IFML models at the purpose of highlighting sequences of
activation of client- and server-side components depending on user interaction events.

In the example, when the customer chooses the option update, the Browser sends a message to the WebServer with
the id of the product and the new quantity, then the WebServer updates the shopping cart and returns a confirmation

message.

If the user decides to delete all the products previously selected, he clicks the empty cart button, sending the message
to the Browser. The Browser sends a message to the WebServer who is in charge of executing the deleting action and
return a confirmation message.

When the user is ready to proceed with the payment, notifies the Browser who asks to the WebServer for the customer
information form. After the WebServer returns the form, the Browser displays it. The next step to continue with the
payment is wait for the user to fill out the form with his personal and bank information. When the user submits his
information, this is sent to the WebServer who asks the DataServer to return the customer information in order to
verify it. After verifying the customer information, the WebServer sends it to a ExternalBankService who isin charge
of authorize the payment. Finally, after the WebServer receives the confirmation from the External BankService, sends
a confirmation message to the Browser.

122 Interaction Flow Modeling Language, v1.0

s | [waserr

ExternalBankService

3: updateShoppingCart

.|

7: emptyShoppingCart

Browser
I I]
| 1: Update | |
1
2: updateCluantity(product, qtyl |
4:
e o B
1
)
5: Empty L :
1
1
G: emptyCart |
&
b momcess Eifiess sopees oy
9: Checkout

12: SubmitForm

10: checkCut

- -]

oo
|
I
|
|

13: formData
14: getCustomerinfo
156:
e __®_ - il
16: verifyUserinfo i
]
| |
17: author|zePayment
]
18: |
e S T T e e T T T T
18 |
I e =i o e o |
]
]
|
]
]
]
|
]
]

Figure B.19 - Sequence Diagram of the Online Bookstore

Additional diagrams can be used to describe the deployment of the components and other aspects, as shown in Figure

B.20.

Interaction Flow Modeling Language, v1.0

123

ProductionServer

wdevicen
UserDevice
ExternalService
: 5 «axecution environments saxecution environments
«@xecution environments :
Browser WebServer EJBContainer
DataServer

«execution environments
RDEMS

sarfifacts [sartifacte [
ProductSchema UsarSchema

Figure B.20 - Deployment Diagram of the Online Bookstore

124 Interaction Flow Modeling Language, v1.0

Annex C
Mapping to the Windows Presentation Framework

(informative)

C.1 Introduction

This annex describes an example of mapping from IFML to a platform specific language. In particular, this maps the
main IFML concepts to the .Net Windows Presentation Framework (WFP).

C.2 The WPF meta-model

Windows Presentation Framework (WPF) is apart of .NET Framework by Microsoft that is meant to be the substitute
of the old WinForms Ul interface. It brings separation of concerns between interface and code-behind. Thisis made
possible by detaching presentation defined using the XAML language from business logic written in C#.

Application pages -pages [Page

+name : String

Window
+startWith +windows

1 1.7

Figure C.1 - WPF metamodel, the Application element
In WPF the interface building blocks are nested. This generates a visual tree that is rendered by the framework.

The target application is modeled by the Application class which is the main container of all the elements of the
model. It has a start window which is the first one to be opened at startup.

Interaction Flow Modeling Language, v1.0 125

DependencyObject

+name : 3tring

T

Visual

ContentElemeant

Fiy

-child [yiElement | -child

0.1
Resource -SOUTCE Binding
-dataContext 5
DataContext FrameworkElemant resources ~key : String 5.1 -path : String
1 0.*
Fiy
Panel Control Page

Figure C.2 - WPF metamodel, the DependencyObject element

All the visual objects inherit from DependencyObject, a class that alows the attachment of DependencyProperty.
This lets define properties that may be shared among all the objects of the framework and used as target for bindings.

DependencyObject can be split in two classes, Visual and ContentElement. Visuals elements are actually rendered
by the framework, while ContentElements are used to better define the layout of Visuals.

The main subclass of Visual is UlElement which is used as common superclass to define nesting among elements of
the UI.

The main subclass of UlElement is Framewor kElement which is the one that allows to define Resources and the
DataContext. Resources are objects related to the Framewor kElement organized as a dictionary; they are used by
the framework to enhance and better define layout and behavior of the interface. DataContext can be associated
through a Binding to another object to define the source of all the contained Bindings, not otherwise specified.

126 Interaction Flow Modeling Language, v1.0

FrameworkElement

i
| | |
Panel Contral Page
T ‘T‘ inkTo
DockPanel StackPanel Grid TabPanel
ContentControl TextBox ItemCentrol
Fiy
Frame Tabltem Window
-headar : String
-targetFrame
Hyperlink

Figure C.3 - WPF metamodel, the FrameworkElement element
Framework Elements can be divided in Panels, Pages, and Contrals.
Panels are Ul elements which can contain more than one child. They are classified by behavior:

« DockPanel: this container tries to minimize space wasting by expanding all the children to fit al the available
space.

e TabPandl: it defines a X OR behavior (one by one), allowing to select the child to display through a tabbed header.
e SackPandl: it put al the children in a stack, queuing them one after another.

e Grid: it featuresam by n grid in which all the children are placed. The coordinates of the cell in which the child
resides is defined by the attached properties Grid_Column and Grid_Row.

Pages are one-child containers that allow navigation in a Frame.
Controals include TextBoxes, ContentControls, and |temsControls.
ContentControls are Windows, User Controls, Tabltems, and Frames.
* Windows are the outer containers of al Ul Elements and have at most one child.
« Tabltemsare one-child containers that allow to define the header used by a TabPanel.
« Framesare controlsthat can dynamically navigate through Pages using Hyperlinks or explicit navigation.

ItemsControls are meant to dynamically define their children applying a template to items to be retrieved by an
ItemsSour ce.

Interaction Flow Modeling Language, v1.0 127

C.3 Model to Model Transformation

The IFML model is mapped to a WPF application as one window (the startup one) that contains a frame in which it's
possible to navigate within pages.

All the first level ViewContainers are mapped to pages; to bypass the limitation related to the one-child nature of
pages in WPF, ViewContainers with one child are mapped directly, while the ones with more children are mapped to
pages with a grid as a child.

If there is at least one first level landmark ViewContainer, the main window does not contain directly the frame, but
a grid with two children: the frame and a StackPanel that contains Hyperlinks to all the landmarked pages.

All the sub-ViewContainers are mapped to grids; otherwise, if they are XOR, they are mapped to TabPanels whose
children are surrounded by Tabltems.

All the ViewElementsEvents of type OnSelectEvent that reference a ViewContainer are mapped to a StackPanel
containing Hyperlinks to all the pages linked by outgoing NavigationF ows.

List ViewComponents are mapped to ListBoxes: if they have a ViewElementEvent of type OnSelectEvent with an
outgoing NavigationFlow that links to another ViewComponent, they are also mapped to a ViewSource bound to a
ObjectObservableCollection and to a grid which DataContext is bound to the ViewSource current item.

Forms are mapped to grids; their fields are mapped to TextBox (SimpleField) or ComboBox (SelectField).

Finally since the WPF metamodel is a direct mapping of the entities that compose the .Net framework for desktop
applications, a simple model to text transformation is needed for generating a working application.

128 Interaction Flow Modeling Language, v1.0

Annex D
Mapping to Java Swing

(informative)

D.1 Introduction

This annex describes an example of mapping from IFML to Java Swing in order to model very simple Java-based
desktop application.

Java Swing is a Model-View-Controller GUI framework for Java application. Thus it allows to develop desktop
application in Java decoupling the data viewed from the interface from the user interface controls through which it is

viewed.

D.2 The Java Swing meta-model

JavaApplication

-name ; 3tring
1 -application
“parsod 0..11.-€ompanents
~children 2
Event = omponent
-gvents =Componént
T 1
OnChange OnClick OnFocus Container
fi
JCompenent Dialog Window
fi
AbstractButton JTable JTabbedPane JMenuBar i J5croliBar TextComponent JPane JLabel
<text : String
[y
JMenulem JToggleButten JButten JEditerPanel JTextField JTextArea
JCheckBox

Figure D.1 - The Java Swing metamodel

The desktop application is described by the JavaApplication element, which contains all the Components.

Interaction Flow Modeling Language, v1.0 129

The Component element is the abstract description of the element of a graphical user interface. In particular a
Component can have a set of child element and a set of Event used to enable the user's interaction. Furthermore an
Event can be associated to a set of Actions.

Every Component is a Container. In particular there are the Window, Dialog, JComponent elements. The first two
are pure container while the last comprehends a set of elements that can contain other element or just show data.

The JComponent element is then specialized by a set of class that represent the actual GUI elements, for example
there are: AbstractButton, that model the general button that is more specialized by the class JToggleButton,
JButton, Jmenultem; JTable, that model atable, JPane, JTabbedPane, JScrollBar, Jlist, Jlabel, and
TextComponent, that represent the general component to edit text, which is further specialized by the class
JTextField, JTextArea, and JeditorPanel.

D.3 Model to Model Transformation

The IFML model is mapped to a JavaApplication element.

Each IFML::Window element is mapped to a Window element (in case of a modal window a Dialog is created
instead).

Each not XOR sub-ViewContainer is mapped as a JPane (while a XOR container is mapped as a JTabbedPane with
each of its child ViewContainer mapped as JPane element).

Forms are mapped as JPane elements, their fields are then mapped as JTextField (in case of SimpleField) or
JCheckBox in case of multi selection field).

List are mapped as JList elements.
Details are mapped as JTable showing at each row an attribute of the DataBinding considered.

If events were defined, the corresponding Event is created and associated to the correct Component. In particular, in
case of Select and Submit a JButton is created in order to trigger the event. If an Action was defined, a element of
type Action will be created.

If one or more ViewContainer marked as “landmark” exist, a JMenuBar element will be created in each Window,
containing all the JIMenultem element linking to the landmark ViewContainers.

130 Interaction Flow Modeling Language, v1.0

Annex E
Mapping to HTML

(informative)

E.1 Introduction

This annex describes an example of mapping from IFML to HTML in order to model a very simple web application.

E.2 The HTML meta-model

The web application is modeled by the WebSite class, which is the main container of all the other elements. In
particular a WebSite is composed by a set of Pages. Then the metamodel describes in details the structure of each

element.

Web Site
-url : String
-wehSitd
-pages |1..°
~htrrd Fige -htmi
1 1
-parent |1
-ghildren | HTMLElement
0"
-value : STRIKE
Fas
-body |1
-head HEAD BODYElement BODY
1 -background : String
-text : String
-head |1 -bodyElements |0.." -link : String
-alink : String
-beod -ylink . String
id -bgocodor | String
-headElements (0.."
HEADElement
LINK TITLE
-red : String
-title : String
-ahref : String
-type : String

Figure E.1 - HTML metamodel, the Page and Head element

Interaction Flow Modeling Language, v1.0 131

A Page is composed by aHEAD and aBODY (represeniting the <head> and <body> tags), the HEAD contains a set
of HEADEIlement while the BODY a set of BODY Element, both of them inhertis from the general class
HTMLElement and are abstraction of the concrete html tag.

The HEADEIlement comprehends the TITLE and LINK tags, while the BODY Element comprehend all the html
tags used for creating web pages (P, TABLE, FORM, DIV, A etc.).

In order to allow the nesting of tags, the HTMLElement class has a reference to a set of children HTML Element.

_ |-parent 1
'Ch'”[e" HTMLElement

0 -value | STRIKE
BODY

-background : String
-body Elements -body |.text : String
0. -link : String

BODYElement

-glink : String
-viink : String

-bgcolor : String
EQ FONT (4] SMALL ListEloment | | PRE | Br (1] STRIKE
OPTION DIV T — e
_ -color ; String _ -type : String 1 -clear : String]
face : String -selected : String -align : String —
-siza : String -optionV/alue : String
[o0] X o
= -iValug : String -start : String = _ -

Figure E.2 - HTML metamodel, a fragment of the BODY element

E.3 Model to Model Transformation

The IFML model is mapped to a WebSite element. Every first level ViewContainer is mapped to a Page element, in
particular the one marked as “home” will be named “index.”

Each sub-ViewContainer will be mapped to a DIV element.

Each NavigationFlow not associated to a SystemEvent is mapped to an A element. If an Action is present, its name
will be appended at the end of the link.

Forms are mapped into FORM element and their fields are mapped to corresponding INPUT elements.

Details are mapped into a UL — L1 elements, in which each list item is a attribute of the data binding considered.

132 Interaction Flow Modeling Language, v1.0

Lists are mapped into TABLE, in which the first row is composed by the field of the corresponding data binding. If
an OnSelectEvent is associated to the component, then a last column is added which contains an A element.

If one or more ViewContainer marked as “landmark” exist, aDIV element containing all the A element linking to the
landmark ViewContainers will be created in each Page.

Interaction Flow Modeling Language, v1.0 133

134 Interaction Flow Modeling Language, v1.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Business Motivation
	6.2 Design Principles
	6.3 IFML Artifacts
	6.4 Acknowledgments

	7 IFML Specification
	7.1 Key Concepts of IFML
	7.2 IFML in a Nutshell
	7.3 Extensibility
	7.4 Concept List

	8 IFML Metamodel
	8.1 High-Level Description
	8.1.1 IFML Model
	8.1.2 Interaction Flow Model
	8.1.3 Interaction Flow Elements
	8.1.4 View Elements
	8.1.5 Parameters
	8.1.6 Events
	8.1.7 Expressions
	8.1.8 Content Binding
	8.1.9 Context
	8.1.10 Specific ViewComponents
	8.1.11 Modularization

	8.2 Package DataTypes
	8.2.1 Enumeration Direction
	8.2.2 Enumeration ContextVariableScope Description
	8.2.3 Enumeration SystemEventType

	8.3 Package Core
	8.3.1 Class Action
	8.3.2 Class ActionEvent
	8.3.3 Class ActivationExpression
	8.3.4 Class ActivityConcept
	8.3.5 Class Annotation
	8.3.6 Class BehaviorConcept
	8.3.7 Class BehavioralFeatureConcept
	8.3.8 Class BooleanExpression
	8.3.9 Class BPMNActivityConcept
	8.3.10 Class CatchingEvent
	8.3.11 Class ConditionalExpression
	8.3.12 Class Constraint
	8.3.13 Class ContentBinding
	8.3.14 Class Context
	8.3.15 Class ContextDimension
	8.3.16 Class ContextVariable
	8.3.17 Class DataBinding
	8.3.18 Class DataContextVariable
	8.3.19 Class DataFlow
	8.3.20 Class DomainConcept
	8.3.21 Class DomainElement
	8.3.22 Class DomainModel
	8.3.23 Class DynamicBehavior
	8.3.24 Class Element
	8.3.25 Class Event
	8.3.26 Class Expression
	8.3.27 Class FeatureConcept
	8.3.28 Class IFMLModel
	8.3.29 Class InteractionFlow
	8.3.30 Class InteractionFlowElement
	8.3.31 Class InteractionFlowExpression
	8.3.32 Class InteractionFlowModel
	8.3.33 Class InteractionFlowModelElement
	8.3.34 Class ModularizationElement
	8.3.35 Class Module
	8.3.36 Class ModuleDefinition
	8.3.37 Class ModulePackage
	8.3.38 Class NamedElement
	8.3.39 Class NavigationFlow
	8.3.40 Class Parameter
	8.3.41 Class ParameterBinding
	8.3.42 Class ParameterBindingGroup
	8.3.43 Class Port
	8.3.44 Class PortDefinition
	8.3.45 Class SimpleContextVariable
	8.3.46 Class SystemEvent
	8.3.47 Class ThrowingEvent
	8.3.48 Class UMLBehavior
	8.3.49 Class UMLBehavioralFeature
	8.3.50 Class UMLStructuralFeature
	8.3.51 Class UMLDomainConcept
	8.3.52 Class ViewComponent
	8.3.53 Class ViewComponentPart
	8.3.54 Class ViewContainer
	8.3.55 Class ViewElement
	8.3.56 Class ViewElementEvent
	8.3.57 Class Viewpoint
	8.3.58 Class VisualizationAttribute

	8.4 Package Extensions
	8.4.1 Class Details
	8.4.2 Class Device
	8.4.3 Class Field
	8.4.4 Class Form
	8.4.5 Class List
	8.4.6 Class LandingEvent
	8.4.7 Class JumpEvent
	8.4.8 Class Menu
	8.4.9 Class OnLoadEvent
	8.4.10 Class OnSelectEvent
	8.4.11 Class OnSubmitEvent
	8.4.12 Class Position
	8.4.13 Class SelectionField
	8.4.14 Class SetContextEvent
	8.4.15 Class SimpleField
	8.4.16 Class Slot
	8.4.17 Class UserRole
	8.4.18 Class ValidationRule
	8.4.19 Class Window

	9 IFML Execution Semantics
	9.1 Introduction
	9.2 Relevant Aspects for IFML Execution Semantics
	9.2.1 Triggering Events
	9.2.2 Parameter Propagation
	9.2.3 Navigation History Preservation

	9.3 ViewComponent Computation Process

	10 IFML Diagram Definition
	10.1 Introduction
	10.2 Conformance Criteria
	10.3 Architecture
	10.4 IFML Diagram Interchange (DI) Meta-model
	10.5 Package IFMLDI
	10.5.1 Enumeration LabelKind
	10.5.2 Class IFMLCompartment
	10.5.3 Class IFMLConnection
	10.5.4 Class IFMLDiagram
	10.5.5 Class IFMLDiagramElement
	10.5.6 Class IFMLLabel
	10.5.7 Class IFMLNode
	10.5.8 Class IFMLStyle

	10.6 IFML DI to DG Mapping Specification

	11 UML Profile for IFML
	11.1 Overview
	11.2 The IFML Profile of UML
	11.3 Using IFML Stereotypes
	11.4 Profile Metamodel Mapping

	Annex A IFML by Example: Modeling an Email
	A.1 Introduction
	A.2 The Domain Model
	A.3 Model of the Interface

	Annex B IFML by Example: Modeling an Online Bookstore
	B.1 Introduction
	B.2 Domain Model
	B.3 Process Model
	B.4 Model of the User Interaction Flow
	B.5 System Modeling

	Annex C Mapping to the Windows Presentation Framework
	C.1 Introduction
	C.2 The WPF meta-model
	C.3 Model to Model Transformation

	Annex D Mapping to Java Swing
	D.1 Introduction
	D.2 The Java Swing meta-model
	D.3 Model to Model Transformation

	Annex E Mapping to HTML
	E.1 Introduction
	E.2 The HTML meta-model
	E.3 Model to Model Transformation

