
Internationalization, Time Operations,
and Related Facilities

New Edition: January 2000

Copyright 1999, IBM

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1

1
1

2

2

-1
1-1

1-2

1-2

1-2

1-3
-3

1-4

1-4

2-1
2-1
-1

2-2

2-2

2-2
-3
-5

2-6
1. Preface .

1.1 About the Object Management Group
1.1.1 What is CORBA? .

1.2 Associated OMG Documents .

1.3 Acknowledgments .

2. Summary of Facilities . 1
2.1 Overview .

2.2 Time Operations. .

2.3 Locales .

2.4 Language-sensitive Text Analysis

2.5 Formatting .
2.5.1 Localizable Number, Date, and Time Formatting 1

2.6 Localized Calendar Operations .

2.7 Localizable Message Formatting .

3. Conceptual Model. .
3.1 Overview .

3.1.1 Organization . 2
3.1.2 Assumptions .

3.2 Locales .

3.3 Text Analysis .
3.3.1 Comparing and Collating Text 2
3.3.2 Pattern Matching . 2

3.4 Text Scanning and Formatting .
Internationalization & Time V1.0 January 2000 i

Contents

2-7
2-7
2-8
-8
-9
-9

-11
2
-14

-21
22
-22
-22
-22
23
-23
-24
25

-1

3-2

3-2

3-3

3-3

3-4

3-4

3-4

3-5

3-5

3-5

3-5

3-6

3-6

3-7

3-7

3-7

3-7

3-8
3.4.1 Types of Formatters .
3.4.2 Conversion Results .
3.4.3 Using a ParameterFormatter
3.4.4 SpecifyingConditional Formatters 2
3.4.5 Simple Text Formatting 2
3.4.6 Number Formatting . 2
3.4.7 Number Conversion Operations 2
3.4.8 Controlling Basic NumberFormatter Behavior . 2-1
3.4.9 Using NumberFormatter Subclasses. 2

3.5 Date and Time Formatting . 2
3.5.1 Definition . 2-
3.5.2 Scanning . 2
3.5.3 Formatting . 2
3.5.4 Operations . 2
3.5.5 DateTimeFormatter Protocol 2-
3.5.6 Calendars . 2
3.5.7 Changing Calendar Fields 2
3.5.8 Converting Absolute and Relative Time 2-

4. Interface Description . 3

4.1 General Comments. .

4.2 Collation. .

4.3 CollationFactory. .

4.4 TextPatternIterator .

4.5 TextIteratorFactory. .

4.6 AbstractFormatter .

4.7 SimpleTextFormatter .

4.8 SimpleTextFormatterFactory .

4.9 ParameterFormatter .

4.10 ParameterFormatterFactory .

4.11 ChoiceFormatter. .

4.12 ChoiceFormatterFactory. .

4.13 Numerals .

4.14 HybridNumerals. .

4.15 HybridNumeralsFactory .

4.16 DecimalNumerals. .

4.17 DecimalNumeralsFactory. .

4.18 NumberFormatter .
ii Internationalization & Time V1.0 January 2000

Contents

3-8

3-9

3-9

-10

-10

-10

-10

-10

-11

-12

-12

3-12

3-13

3-13

-1

B-1

ry-1
4.19 PositionalNumberFormatter .

4.20 FloatingPointNumberFormatter .

4.21 RationalNumberFormatter .

4.22 AdditiveNumberFormatter . 3

4.23 RomanNumberFormatter . 3

4.24 HybridNumberFormatter . 3

4.25 HanNumberFormatter . 3

4.26 OutlineNumberFormatter . 3

4.27 NumberFormatterFactory . 3

4.28 DateTimeFormatter . 3

4.29 DateTimeFormatterFactory . 3

4.30 Calendar .

4.31 Dependencies .

4.32 Standards .

Appendix A - Complete IDL . A

Appendix B - References.

Glossary. Glossa
Internationalization & Time V1.0 January 2000 iii

Contents
iv Internationalization & Time V1.0 January 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Internationalization & Time V1.0 January 2000 1

ards
o

only
e

mat.
ons,
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for
Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards
when representatives of the OMG membership accept them as such by vote. (Th
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701
USA

Tel: +1-508-820 4300

Fax: +1-508-820 4303
pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• IBM
2 Internationalization & Time V1.0 January 2000

Summary of Facilities 1

.
, and
s as to

rding
, and

al
n
Contents

This chapter contains the following sections.

1.1 Overview

Users of the same application, perhaps even on the same server, may have very
different preferences as to language and linguistic representation of certain items
Cultures differ widely on the preferred representation of dates, times and numbers
even languages which use the same character set may have different convention
collating, punctuation, capitalization and so on. It therefore behooves the prudent
system developer to provide a means for localizing the representation of data acco
to the cultural preferences of users. Much work has already been done in this area
the generally accepted approach is to define locales which specify a set of cultur
preferences, and to let users choose (or create) a locale which matches their ow

Section Title Page

“Overview” 1-1

“Time Operations” 1-2

“Locales” 1-2

“Language-sensitive Text Analysis” 1-2

“Formatting” 1-3

“Localized Calendar Operations” 1-4

“Localizable Message Formatting” 1-4
Internationalization & Time V1.0 January 2000 1-1

1

 then
ation

les.

data
s of

), to
lows

g

six

ive
his

 or
 may
stead
ism
mmer.

ly for
:

preferences. Application writers who understand the contents of these locales can
write code which provides appropriate representations of data based on the inform
contained in the locale.

In this proposal, we define a set of interfaces for extracting information from loca
Since much of this information has to do with formatting, we also introduce an
interface which allows the specification of patterns to govern the transformation of
from a canonical form to a preferred form. Finally, we provide some specialization
this facility to numbers, and to date and time data.

1.2 Time Operations

We use the TimeT type, as defined in the OMG Object Time Service (module Time
represent time. Since TimeT consists of a single 64 bit integer, this immediately al
ordinary arithmetic operations to be used for basic time operations, such as the
subtraction of two stopwatch values. More complicated operations, such as addin
sixty days to a specific date, depend on local calendars, and are discussed later.

1.3 Locales

We use the definition of locale given by POSIX and X/Open: a “subset of a user’s
environment that depends on language and cultural conventions.” POSIX names
categories of information controlled by a locale:

• LC_CTYPE (Character classification and case conversion)

• LC_COLLATE (Collation order)

• LC_TIME (Date and time formats)

• LC_NUMERIC (Numeric, non-monetary formatting)

• LC_MONETARY (monetary formatting)

• LC_MESSAGES (formats of informative and diagnostic messages and interact
responses). Locale information is stored in files in a format defined by POSIX. T
proposal also transparently supports the use of other formats.

End users select a particular locale as the default for their system. For language-
region-sensitive features, such as number formatting or text collating, applications
use the needed resources from the current locale or from a user-specified locale in
of supporting specific languages or regions directly. In this way, the locale mechan
provides transparent native language support for both the end user and the progra

1.4 Language-sensitive Text Analysis

Text analysis and formatting capabilities use localized data to process text correct
particular languages or regions. This provides language-sensitive functionality for

• Collating

• Pattern matching
1-2 Internationalization & Time V1.0 January 2000

1

e an

nce of

nsitive
l text

sitive
r
ine
t

le-

allow
ar

s

e
an

the
• Analyzing boundaries

Instances of the text ordering classes use tables of collation rules that define the
ordering of characters for a particular language. These classes provide member
functions for simple comparison operations on text strings. These interfaces provid
implementation basis for sorting algorithms.

The text analysis classes include a group of pattern iterator classes that support
language-sensitive pattern matching. These pattern iterators use a particular insta
a text ordering class to provide language-sensitive searching capabilities for that
language. You can use these iterators to implement language-sensitive, case-inse
searching. You can customize collation sequences or merge them for multilingua
analysis.

The text analysis classes also include a set of classes that provide language-sen
analysis for character, word, and sentence boundaries, providing the capability fo
language-sensitive text selection. These classes also perform analysis to determ
proper line breaking. The analysis is based on a table of word-break rules for tha
language. For example, Taligent’s CommonPoint Text Editing framework currently
uses these classes to implement the ability for end users to select words by doub
clicking the mouse, and to provide correct line breaking in formatted text.

1.5 Formatting

1.5.1 Localizable Number, Date, and Time Formatting

Use formatters to perform conversions between binary data and text. Formatters
the same data to be scanned or displayed in the format appropriate for a particul
language or region.

Number formatters translate binary representations of numbers into text. Feature
include:

• Normalization for numeric fields

• Decimal alignment

• Scientific notation

• Non-decimal formats such as Roman numerals and fractions

Date and time formatters convert binary representations of time to a meaningful
expression for a particular locale, first converting the system time to the local tim
zone, and then mapping the local time to the fields of a particular calendar. You c
access individual fields of the calendar and create specific patterns of data. For
example, depending on what information you are interested in, you could create
following formats from the same system time representation:

• Friday, January 1, 1999

• 1-1-99

• 12:01 A.M.
Internationalization & Time V1.0 Formatting Jan. 2000 1-3

1

rs

you
 the

Formatters may be freely combined, to allow, for example, the use of Japanese
numbers in a Japanese date.

1.6 Localized Calendar Operations

Operations on dates, such as adding sixty days to a specific date, depend on the
calendar being used, which mean they depend on locale. The locale includes
information about such things as the lengths of months and the numbering of yea
which support a variety of calendar operations.

1.7 Localizable Message Formatting

A string formatter integrates text, number, and date and time formatting, allowing
to create text strings containing variable formattable data. This formatter provides
functionality of the C printf function with additional capabilities, allowing you to:

• Completely localize the message:

• Translate the string

• Rearrange the parameters

• Use localized formatters for each parameter

• Use subformatters based on the numeric value of a variable—for example,
substituting month names for the values 1 through 12, or providing singular or
plural noun and verb forms as appropriate.
1-4 Internationalization & Time V1.0 January 2000

 Conceptual Model 2
to
rn

ules:
Contents

This chapter contains the following sections.

2.1 Overview

2.1.1 Organization

Timing and Internationalization both depend on the ability to format binary data in
displayable text strings according to user-specifiable patterns. These facilities in tu
depend on the ability to correctly compare and collate text according to cultural
expectations. Thus we have organized this material into three interdependent mod

1. Text Analysis (Comparison and Collation)

2. Text and Number Formatting

3. Time Operations

Section Title Page

“Overview” 2-1

“Locales” 2-2

“Text Analysis” 2-2

“Text Scanning and Formatting” 2-6

“Date and Time Formatting” 2-21
Internationalization & Time V1.0 January 2000 2-1

2

g of

oring
me

s in

al

ive

ve
 are
le

ata in
2.1.2 Assumptions

The term“characters” means “entities of type wchar.” The term text means “a strin
characters,” or wstring. The wchar and wstring types are defined in the IDL
extensions, in the OMG Document orbos/96-05-04.

It is assumed that there will be at least one locale file available to the server for st
localization preferences, and that any available locale file will have a well-known na
(locale key). Although the system described here was designed with POSIX locale
mind, it will work with any other system of locales which can represent the same
information.

2.2 Locales

A locale is a subset of a user’s environment that depends on language and cultur
conventions. POSIX names six categories of information controlled by a locale:

1. LC_CTYPE (Character classification and case conversion)

2. LC_COLLATE (Collation order)

3. LC_TIME (Date and time formats)

4. LC_NUMERIC (Numeric, non-monetary formatting)

5. LC_MONETARY (monetary formatting)

6. LC_MESSAGES (formats of informative and diagnostic messages and interact
responses).

Locale information may be stored in files in a format defined by POSIX, or other
formats may be used.

A locale key is a well-known name for a particular locale. The same locale may ha
more than one locale key (especially in a cross-system environment). Operations
localized by allowing the specification of a locale key for that operation. If no loca
key is specified, the system-level default on the server is used.

2.3 Text Analysis

The native language support services provide classes that enable analyzing text d
a language-sensitive manner. These classes support:

• Comparing and ordering text strings

• Searching for a specific text pattern

• Text selection at the character or word level
2-2 Internationalization & Time V1.0 January 2000

2

ing to
f the

sitive
, in

ide
y a

this
ver
es for

alues
e

cale.
n
racter

g

ry

For

. For
Use language-sensitive text analysis when you want to compare text data accord
the alphabetical ordering rules of a natural language rather than the byte-values o
character encoding set. Language-sensitive processing is required for case-insen
ordering and matching. For example, without using language-sensitive processing
the Roman script the letter Z would be ordered before the letter a.

Language-sensitive text comparisons are based on text-ordering objects that prov
correct collation and selection for a particular natural language. End users specif
preferred text-ordering object in their locale. Text comparison functions use the
preferred object to analyze text according to the rules of that language. By using
mechanism, you can implement functions that will be language-sensitive in whate
language the current end user specifies. You can also use the text analysis class
language-insensitive text comparison.

2.3.1 Comparing and Collating Text

Text comparison based on a simple character by character comparison of binary v
will rarely yield culturally expected results. Such comparisons do not correctly tak
into account:

• letter combinations that should be treated as a single letter

• ligatures that should be expanded into several letters

• the effect of diacritical marks

• the effect of capitalization

• non-alphabetic characters (e.g., Kanji)

You can create a text-ordering object (a collation) for a particular language or script by
specifying an appropriate set of ordering rules, such as those found in a POSIX lo
The ordering object builds a collation table from these rules and uses this table whe
comparing text. These rules define a ranking, from least to greatest, for each cha
in the script.

For language-sensitive comparison, the rules are capable of reflecting the followin
features of natural language:

• Ordering priorities, which determine whether differences are treated as primary,
secondary, or tertiary differences.

• Base letters represent a primary difference (a and b).

• Diacritical marks on the same base letter represent a secondary difference (a and
á).

• Uppercase and lowercase versions of the same base letter represent a tertia
difference (a and A).

• Grouped characters, sequences of characters that are treated as single letters.
example, in Spanish ch is a grouped character; thus, cx is less than chx.

• Expanding characters, single letters that are treated as a sequence of characters
example, in some versions of German ordering, the letter ä might be treated as the
sequence ae.
Internationalization & Time V1.0 Text Analysis Jan. 2000 2-3

2

e

lly
the

a
e
 two
ing

 the
 if

g
ns
• Ignored characters, which are ignored unless there are no other differences in th
strings being compared. For example, in English blackbird is less than black-bird,
which is less than blackbirds.

The CollationFactory takes a locale key as an argument and creates a Collation
based on the collation preferences of that locale. Collations may be defined to fu
capture the collation aspects of a language. If the special value Null is supplied,
resulting object performs bitwise value comparisons.

2.3.1.1 Collation functions

A Collation object provides comparison functions that compare two text objects—
source string and a target string—and return information about whether the sourc
string is greater than, less than, or equal to the target string. When you compare
strings, the first primary difference determines the ordering regardless of the follow
characters. If there are no primary differences, the first secondary difference
determines the ordering. Finally, if there are no primary or secondary differences,
first tertiary difference determines the ordering. Strings are considered equal only
their values are identical or equivalent (e.g., equivalent composed characters or
equivalent spellings). For example, the character ü is equivalent to the sequence u and
¨.

The primary function for comparing strings is the compare function. This function
compares two text objects and returns a TextComparisonResult value indicating
both the result and the ordering strength of the difference. For example, Table 2-1
shows the results when comparing strings using the English collation table.

If you are not interested in the ordering strength of the difference, the text-orderin
class includes a set of functions that provide a simple ordering test. These functio
call the Compare function and return one of the following values:

• text_is_greater_than

• text_is_less_than

• text_is_equal

Table 2-1 String Comparisons

Source Target Result

abc abc source_equal

abc def source_primary_less

abc âbc source_secondary_less

abc Abc source_tertiary_less

def abc source_primary_greater

âbc abc source_secondary_greater

Abc abc source_tertiary_greater
2-4 Internationalization & Time V1.0 January 2000

2

ore
ple,
 can
g

itive

In

t way.

cter

tch

ns

tch

o

ay
e

es a
2.3.1.2 Comparison options

To control the level of comparison, you can also specify that the text-ordering ign
tertiary differences or to ignore both secondary and tertiary differences. For exam
in an ordering system in which case differences are tertiary, such as English, you
implement case-insensitive matching by ignoring tertiary differences. In an orderin
system in which case differences are secondary, you can implement case-insens
matching by ignoring both secondary and tertiary differences.

Use the max_difference attribute to control this behavior. The factory sets
max_difference to DifferenceLevel::tertiary at creation time, so all levels of
differences are considered initially. Set it to primary to consider only primary
differences, or to secondary to consider only primary and secondary differences.

2.3.1.3 Language-insensitive collation

To implement language-insensitive comparison functions, create a null Collation.
this case, compare will always result in either source_equal ,
source_primary_less , or source_primary_greater .

2.3.2 Pattern Matching

A text pattern iterator is an object that searches through a text string looking for a
pattern. There are four different types of iterators and each searches in a differen

1. Standard match: the iterator looks for a substring that matches the pattern chara
for character.

Example: a search through “now is the time” for the pattern “is” produces a ma
of length 2 at offset 4. No other matches are found.

2. Inclusive span match: the iterator looks for the longest substring that only contai
characters from the pattern.

Example: a search through “now is the time” for the pattern “is” produces a ma
of length 2 at offset 4.

Example: a search through “now is the time” for the pattern “aeiou” produces a
match of length 1 at offset 1. The next match is of length 1 at offset 4.

3. Exclusive span match: the iterator looks for the longest substring that contains n
characters from the pattern.

Example: a search through “now is the time” for the pattern “aeiou” produces a
match of length 1 at offset 0. The next match is of length 2 at offset 2.

4. Boundary match: the iterator looks for a character cluster (e.g., the character á m
be represented as a combination of a and ‘) or a word boundary. Words includ
trailing punctuation, but not trailing whitespace.

Example: a search through “now is the time” for the pattern match_word produc
match of length 3 at offset 0. The next match is of length 2 at offset 4.
Internationalization & Time V1.0 Text Analysis Jan. 2000 2-5

2

h

xt
ast

tch is

nism
dent

data
The TextIteratorFactory can create all four kinds of iterators. It takes a Collation
object as an argument, whose operations are used by the iterators.

You can use the max_difference attribute in the Collation object to control the level
of pattern matching. For example, set max_difference to secondary to perform a
case-insensitive match. Use a null collation to perform a strict binary match.

To use any of these iterators, follow these steps:

1. Use TextIteratorFactory to create a TextPatternIterator , specifying the target
text to search and a search pattern, a Collation , and a MatchType to control the
type of iterator that gets created.

2. Initialize the TextPatternIterator by invoking either the First or Last operation to
set the iterator to the first or the last occurrence of the pattern within the searc
target.

3. Iterate either forward or backward through occurrences of the pattern in the te
with the Next or Previous operations (these will raise an exception if First or L
has not previously been invoked).

These operations return a TextRange structure consisting of the offset of the first
character in the located pattern and the length of the located string. When no ma
found, the iterator returns a null TextRange (offset and length equal to 0).

Use the following attributes to alter the parameters of the search:

• range , to expand or reduce the range of the search within the target

• pattern , to change the pattern

• search_text , to change the target

• comparator , to change the rules of the search

You can examine, but not change, the match_type attribute.

2.4 Text Scanning and Formatting

Text strings that represent formatted data such as numbers or dates may be scanned to
extract their binary representation; binary data may be formatted to create displayable
text representations.

Formatting objects perform conversions between text and binary data. This mecha
allows data to be converted between language-dependent and language-indepen
forms, enabling you to create easily localizable interfaces.

These interfaces can be used to correctly scan and format the following types of
using the correct format for a particular locale:

• Text strings

• Numbers

• Dates
2-6 Internationalization & Time V1.0 January 2000

2

y
t
e

e

ting

e

gs,

text

 in a

ates,

lue of

ting
• Times

One kind of formatter, ParameterFormatter, allows you to specify a text string
containing variable information that is formatted at run time, providing functionalit
similar to the C library function printf . You can also use this interface to implemen
conditional formats that are chosen by number. For example, you could specify th
singular and plural forms of a text string to be used with a numeric variable so th
output is grammatically correct.

2.4.1 Types of Formatters

Five kinds of formatter objects are available:

1. DateTimeFormatter converts between an unsigned long long number represen
time and its culturally appropriate text representation.

2. NumberFormatter converts between numeric data and its culturally appropriat
text representation.

3. SimpleTextFormatter formats and scans Text values.

4. ParameterFormatter takes a list of parameters and formats them into text strin
or scans text into a list of data parameters.

5. ChoiceFormatter specifies a mapping between numerical values and a set of
strings or ParameterFormatter objects. Use this class to create conditional
formatters.

Each object provides scan and format operations.

All formatter interfaces inherit from AbstractFormatter , which specifies common
interfaces to all formatters. AbstractFormatter interfaces are not intended to be
instantiated directly.

2.4.2 Conversion Results

Formatting and scanning operations always return information about the operation
FormatResult or ScanResult structure. Each structure contains the result of the
operation and an indicator of the accuracy of the operation. The scan result indic
additionally, the number of characters within the input text that were actually read
during the scanning. Numeric formatters return additional information.
ParameterFormatter returns a sequence of indexed format or scan results
corresponding to the list of parameters.

Information about the accuracy of the operation is returned as an enumerated va
type ConfidenceLevel :

• perfect—The formatter is very confident about the operation. Performing the
reverse operation on the output (scanning the text you just formatted or format
the data you just scanned) produces the original input.
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-7

2

out
he

ome

r
ttach
e.

of

d).

the

cified

mple,

.

iable.

of

a
• minor_error—The formatter had minor trouble but completed the operation with
losing significant data. It cannot guarantee that you can successfully perform t
reverse operation on the output.

• recognizable—The formatter completed the operation but is likely to have lost s
data. You probably cannot perform the reverse operation on the output.

• unsatisfactory—The formatter could not complete the operation. The output is
unusable.

2.4.3 Using a ParameterFormatter

A ParameterFormatter is an object that handles a string of text containing one o
more variable elements. Each variable can be any type of formattable data. You a
the appropriate formatter to each variable so that it is handled correctly at run tim

Each ParameterFormatter has a text template attribute which defines the format
the ultimate result, such as “As of %date there are %n files owned by
%name.” Use a sequence of Substitution structures to specify the range of each
substitution point in the template, the number of the parameter that should be
formatted for substitution, and the formatter object to be used. Thereafter, invoke
format with a ParameterList (that is, a sequence of arbitrary values to be formatte
The ParameterFormatter will replace each parameter with the appropriately
formatted string from the input ParameterList . The ParameterFormatter raises the
standard exception BAD_OPCODE if it receives a parameter which cannot be
formatted with the specified formatter.

A ParameterFormatter can also scan text strings and return data parameters in
manner of the C sscanf function. You pass the Scan operation a text string which
the formatter compares against the template string to extract values using the spe
formatter for each parameter. The results are returned as a sequence of ScanResult
structures inside a single, overall ScanResult structure.

If a sequence of one or more AlternativeMatch structures is supplied in the attribute
alt_match, they will be tested during scanning at the appropriate ranges. For exa
if the template is “He has %n books” and “She” is specified as an alternative for
(offset=0, length=2), the string “She has 999 books” will produce the number 999

2.4.4 SpecifyingConditional Formatters

A ChoiceFormatter provides a set of ParameterFormatter objects, identified by
number, that can be chosen from at run time based on the value of a numeric var
In the example shown above, you could add a ChoiceFormatter that replaces are
with is and files with file when the value of parameter 1, representing the number
files, is 1.

The simplest way to use a ChoiceFormatter is to use the choice attribute to specify
sequence of text strings, each associated (implicitly) with an integer. The format
operation takes an integer index as an argument, and processes it as follows:
2-8 Internationalization & Time V1.0 January 2000

2

h

r
d

t

tring

e

ut

ly

eric

d text
1. If the choice sequence has a value for the index, that string is returned in a
FormatResult structure along with accuracy = perfect.

2. If the choice sequence has no value for the index, but the attribute valid_default is
TRUE, the value of default_choice is returned in a FormatResult structure
along with accuracy=minor_error.

3. If the choice sequence has no value for the index and valid_default is FALSE, an
empty string is returned along with accuracy=unsatisfactory.

The scan operation of ChoiceFormatter can be used to map strings to integers, whic
in turn can be used for lexical analysis. In this context, the attribute
use_longest_match may be used when choice strings have initial substrings in
common.

Choice formatters and parameter formatters can be combined in different ways fo
more complex message formatting. In particular, they provide a basis for localize
message substitution.

2.4.5 Simple Text Formatting

A SimpleTextFormatter provides the mechanism for scanning and formatting tex
strings. This is mainly provided to allow the use of text strings with parameter
formatters, but also can be used to provide substring and data-based truncation
functions.

The SimpleTextFormatter::Format function copies that part of the input string
which lies within the bounds specified by the attribute format_bounds to the
FormatResult structure. The SimpleTextFormatterFactory sets format_bounds
to (offset=0, length=ul_infinity) at creation, but this can be reset to produce a subs
function.

The SimpleTextFormatter::Scan operation scans the input text until it reaches th
string stored in the scan_terminator attribute. It does not scan in any part of the
terminating string. By default, the terminating string is empty, which will cause the
entire string to be scanned. Also by default, a binary-value comparator is used, b
language-sensitive scanning can be enabled by setting the comparator attribute.

A perfect accuracy (which implies guaranteed reversibility of the operation) will on
occur when format_bounds and scan_terminator are set to their defaults;
otherwise, recognizable accuracy indicates success.

2.4.6 Number Formatting

Number formatters covert between binary and displayable representations of num
data. Because a wide range of numbering systems, with diverse rules, are
simultaneously in use throughout the world, a number of different formatters are
required. Each one converts between a double precision floating point number an
representations in various formats.
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-9

2

. Its
:

rs
otal
es

ction

s
the

 East

d by

ger

rs.
NumberFormatter is an abstract class which provides the common interface for
classes that scan and format numerical data. It is not designed to be instantiated
subclasses cover most of the commonly used number formats in most languages

• AdditiveNumberFormatter provides the basic protocol for manipulating numbe
based on additive systems in which each digit has an inherent value and the t
value of a number is determined by adding the value of each digit. Its subclass
include:

• RomanNumberFormatter formats and scans Roman numerals. It lets you
specify the case of formatted numbers and control the extent to which subtra
is used to represent certain numbers (for example, 4 as IIII or IV).

• HybridNumberFormatter formats and scans numerals for numbering system
that have a threshold at which number values are determined by multiplying
individual digits in the number in some way.

• HanNumberFormatter , derived from HybridNumberFormatter , formats and
scans Han numbers, the numbering system used commonly in many parts of
Asia.

• OutlineNumberFormatter allows you to implement an outline-style numbering
scheme—for example, a sequence such as {a,b,c,...,z,aa,bb,...} where a has the
value 1, b has the value 2, aa has the value 27, and so on.

• PositionalNumberFormatter provides the protocol for manipulating integers
within a value-based system in which the total value of a number is determine
both the value of each digit and the position of the digit within the number. A
PositionalNumberFormatter formats numbers according to the decimal
numbering system used in the West. Subclasses include:

• FloatingPointNumberFormatter formats non-integer values as decimals (for
example, 3.14159). It lets you specify the character used to separate the inte
from the decimal, the number of decimal positions to display and the use of
scientific notation.

• RationalNumberFormatter formats non-integer values as a ratio of two
integers (for example, 22/7). It lets you specify:

•Whether to format into a proper (3 1/7) or improper fraction (22/7)

•The character used to separate the integer from the fraction

•The character used to separate the numerator from the denominator

•The number format used to format the integers in the fraction

• The UniversalNumberFormatter , a special case of
FloatingPointNumberFormatter , can handle any number, including infinity
and NaN. Other formatters use this formatter to handle out-of-bounds numbe

Numerals provides the character-value mapping rules used by a NumberFormatter .
Two subclasses are provided:

1. DecimalNumerals map values to characters defined by the code set as digits.

2. HybridNumerals encapsulate a set of arbitrary character-value mappings.
2-10 Internationalization & Time V1.0 January 2000

2

 text

 of

.234;

r

e

xt
 the

ut

 for
ber

ge

the
turn
2.4.7 Number Conversion Operations

The NumberFormatter::format operation takes a double precision floating point
number and produces a textual representation. The NumberFormatter::scan
operation parses a text string to convert it into a double. Any leading zeroes in the
string are skipped.

Each NumberFormatter returns information about the results of a conversion in
either a FormatResult or a ScanResult structure. In addition to returning
information about the accuracy of the formatting operation, NumberFormatter
classes return the following additional information in the additional_info member of
the FormatResult structure:

• can_normalize , a boolean value which indicates whether the string could be
normalized. Normalization means you can attach the same numeral to the end
both the number and the text string representing the number, and still have
equivalent expressions. For example, for the text string 1.23, you can add the
character 4 at the end, and the text string 1.234 is equivalent to the number 1
the string can be normalized. However, for the text string 1.23E1, adding the
character 4 results in the string 1.23E14, which is not equivalent to the numbe
1.23. This string cannot be normalized.

• digit_sequence_end , an unsigned long value which specifies an index into the
text string indicating where the text representing the number ends and any
surrounding text data begins. Example: for a number formatted like ($1,000) th
DigitSequenceEnd field indicates the position of the closing text, the right
parenthesis.

• integer_boundary , an unsigned long value which specifies an index into the te
string indicating the separation point between the integer and decimal parts of
number.

• out_of_bounds_error , a boolean value which indicates that the number was o
of the range of the number formatter.

NumberFormatter classes return the following additional information in the
additional_info member of the ScanResult structure:

• can_normalize , as above, indicates whether the string could be normalized.

• incomplete_sign , a boolean value which indicates an error involving a plus or
minus sign. For example, if you set the number formatter to display the prefix +
positive numbers, and then scan the text 999.99, the operation returns the num
positive 999.99 but flags an incomplete sign error.

• out_of_bounds_error , as above, indicates that the number was out of the ran
of the number formatter.

• separator_error , a boolean value which indicates an error in the placement of
digit separator. Example: if you scanned the text 9,99.99, the operation would re
the number 999.99 but would flag a separator error.
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-11

2

he
 the

e

tions
 set

d by

er.

pty

r
• value_order_error , a boolean value which indicates an error in the ordering of t
digits, for some numbering systems sensitive to order. Example: if you scanned
Roman numeral IIV, the value order error would be flagged.

2.4.8 Controlling Basic NumberFormatter Behavior

NumberFormatter objects allow you to specify:

• How positive and negative numbers are formatted

• The text used to indicate infinity or NaNs

• The valid numeric range of each formatter and how out-of-bounds numbers ar
handled

• What character-value mapping is used

Other formatting characteristics—for example, the character used to separate por
of the integer or the character used to separate the integer from the decimal—are
within the NumberFormatter subclass that formats that type of number.

NumberFormatter objects provide default functionality for all aspects of number
formatting. You can use default number formatters in many situations simply by
creating and calling the formatter. You can also use the number formatter specifie
the current locale. You can also change each number formatting characteristic to
produce customized number formatters for different needs.

2.4.8.1 Formatting Positive and Negative Numbers

Each NumberFormatter instance can produce distinct formatting for positive and
negative numbers by appending text to the beginning or end of a formatted numb
Some examples are:

• + 9,999

• - 9,999

• (9,999)

The affix strings are maintained in the attributes minus_prefix, minus_suffix,
plus_prefix and plus_suffix. By default, NumberFormatter assumes that text is
provided to append before and after every number. You can, however, provide em
text strings for some or all of the affixes. You can also set the attribute
plus_sign_enabled = FALSE to suppress plus_prefix and plus_suffix.

2.4.8.2 Setting text identifiers

You can specify the text symbols to indicate infinity or NaN—the number formatte
stores the text strings and uses them when both formatting and scanning.

To set a string to indicate infinity, use the infinity_sign attribute. By default, number
formatters use “•” To set a string to indicate a NaN, use the NaN_sign attribute. By
default, number formatters use the “?” symbol.
2-12 Internationalization & Time V1.0 January 2000

2

 the
1 and

ses

s

ter

e code

ing
de
 map

se so
s

of
2.4.8.3 Setting the Formatting Range

Each NumberFormatter has an associated numerical range within which it can
produce valid results. The NumberFormatter default for this range is negative
infinity to positive infinity, but you might want the number formatters for some
numbering systems to manipulate only a certain range of numbers. For example,
Roman numbering system is generally used only to represent numbers between
5,000. To change the valid range for a number formatter, use the min_number and
max_number attributes.

Each NumberFormatter instance also has an associated number formatter that it u
whenever you ask it to handle any number out of its range. Use the
out_of_bounds_formatter attribute to change the default out-of-bounds number
formatter.

2.4.8.4 Mapping Characters to Numeric Values

Each NumberFormatter instance uses a class derived from Numerals that provide
the correct set of individual character-value mappings—for example, mapping the
characters “1” or “I” to the value 1. During conversion operations, NumberFormat
calls either Numerals::numeral_to_value or Numerals::value_to_numeral to
get the correct mapping.

There are two concrete subclasses of Numerals: DecimalNumerals and
HybridNumerals . Use DecimalNumerals for a mapping of the characters and
associated digit values defined by the code set, and use HybridNumerals for arbitrary
character-value mappings.

2.4.8.5 Using DecimalNumerals

DecimalNumerals uses the numeric characteristics defined by the code set. It
recognizes the characters defined by the code set as digits, and maps them to th
set assigned values.

During text scanning, the DecimalNumerals::numeral_to_value function accepts
any character defined by the code set as a digit and converts it to the correspond
value. Character-value mappings can be many-to-one. For example, in the Unico
code set, digit characters ArabicIndicOne, MalayalamOne, and DevanagariOne all
to the value 1.

During formatting, the DecimalNumerals::value_to_numeral function formats a
numeric value into a character based on the mappings for a particular script. For
example, when the function receives the value 1, it needs to know what script to u
that it knows whether ArabicIndicOne, DevanagariOne, or some other character i
appropriate.

You can specify a code set script when you instantiate DecimalNumerals , or later, by
setting the codeset_script attribute. Specify the script with an enumerated value
CodeSetScript . The default value is CodeSetScript::Roman .
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-13

2

ning

o

value
, you

e

r
n of
ple,
f the
er of
PositionalNumberFormatter , FloatingPointNumberFormatter , and
RationalNumberFormatter use DecimalNumerals by default.

2.4.8.6 Using HybridNumerals

Each HybridNumerals instance contains two sets of numeral-value pairs: one set
used only for scanning and the other set used only for formatting.

The set of scanning pairs can represent many-to-one relationships; multiple scan
pairs can map different characters to the same value. For example, in the Roman
numeral system, the characters i and I can both map to the value 1. You add a pair t
the set of scanning pairs with the HybridNumerals::add_scanning_pair operation.

The set of formatting pairs defines one-to-one relationships, and each numerical
can be mapped to only one character. For example, in the Roman numeral system
have to choose whether to convert the value 1 into the character i or I. You add a pair
to the set of formatting pairs with the HybridNumerals::add_formatting_pair
operation.

You can also retrieve formatting and scanning pairs with the operations
get_formatting_pair and get_scanning_pair .

2.4.9 Using NumberFormatter Subclasses

There are NumberFormatter subclasses for several different types of numbering
systems:

• PositionalNumberFormatter (for integral and floating-point numbers)

• RationalNumberFormatter

• AdditiveNumberFormatter

• OutlineNumberFormatter

You can use these formatting classes to produce almost any number format for th
numeric characters of any natural language.

2.4.9.1 Formatting Integers

The PositionalNumberFormatter class provides the protocol to manipulate intege
numbers in a system where the value of a number is determined by a combinatio
the value of each digit and the position of each digit within the number. For exam
the decimal system used in the United States is this type of system. The value o
number 99 is determined by both the value 9 and its position indicating the numb
tens or ones.

PositionalNumberFormatter uses an instance of DecimalNumerals to determine
character-value mappings.

Here are some examples of formatted numbers produced by a
PositionalNumberFormatter with default behavior:
2-14 Internationalization & Time V1.0 January 2000

2

n

or in
• 1

• 9,999

• -9,999

PositionalNumberFormatter attributes let you control integer formatting, as show
in Table 2-2.

2.4.9.2 Formatting Floating-point Numbers

FloatingPointNumberFormatter extends the PositionalNumberFormatter
protocol to include non-integers, displaying non-integral values as decimal points,
exponential notation when the number is outside the range specified for decimal
formatting.

Here are some examples of formatted numbers produced by a
FloatingPointNumberFormatter with default behavior:

• 1

• 9,999.99999

• -9,999.99999

• 9.009E+9

Table 2-2 PositionalNumberFormatter Attributes

Attribute Description Default

digit_group_separator The text used to separate groups of digits
within an integer (for example, the comma in
the number 1,000,000).

“,”

use_dg_separator Indicates whether the digit group separator
should be used.

TRUE

dg_separator_spacing The number of digits in each group separated
by the digit group separator (for example, 3
in the number 1,000,000).

3

precision_increment Increment value, or number that rounded
numbers should be a multiple of. For
example, you might round currency amounts
to multiples of 1,000.

0

rounding_type RoundingType value, specifying whether
numbers are rounded up, down, or to the
closest increment value.

round_up

min_integer_digits Minimum number of digits to insert when
converting a number to text (also known as
zero-padding).

0

Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-15

2

,
FloatingPointNumberFormatter attributes let you control decimal value formatting
as shown in Table 2-3.

Table 2-3 FloatingPointNumberFormatter Attributes

Attribute Description Default

decimal_separator The text used to separate the left (integer)
value from the right (decimal) value.

“.”

decimal_with_integer Indicates whether to include the decimal
separator when the value is an integer (it
has no value to the right of the decimal
separator).

FALSE

upper_exponent_threshold The upper limit of the range within which
numbers are formatted in decimal points;
above this limit, numbers are formatted
using exponential notation.

1,000,000 (1E+6)

lower_exponent_threshold The lower limit of the range within which
numbers are formatted in decimal points;
below this limit, numbers are formatted
using exponential notation.

0.0000001 (1E-6)

exponent_separator_text The text used to separate the decimal
value from the exponential factor (for
example, the E in 1.23E+4, or the x10 in
1.23x104).

“E”

fraction_separator Indicates whether to display the digit
group separator in the right (decimal) part
of the value (for example, the second
comma in 1,234.567,89).

FALSE

min_fraction_digits Minimum number of digits displayed in
the non-integer part of the value.

0

max_fraction_digits Maximum number of digits displayed in
the non-integer part of the value.

6

exponent_phase The number that the exponent must be a
multiple of. For example, if the phase is 3,
the behavior for formatting multiples of
10 from the number 1.23 is: 1.23E+0,
12.3E+0, 123.0E+0, 1.23E+3, 12.3E+3,
and so on. A value of 0 disables phase
control, which is effectively the same
thing as phase=1.

1

2-16 Internationalization & Time V1.0 January 2000

2

n
2.4.9.3 Handling Out-of-bounds Numbers

Some bit configurations of double types do not result in valid IEEE floating-point
numbers. A special case of FloatingPointNumberFormatter called
UniversalNumberFormatter is created that will always return a text representatio
for a number, even if this representation is not numeric (e.g., “NAN” or
“+INFINITY”). The is_valid_number operation for UniversalNumberFormatter
always returns TRUE.

Since UniversalNumberFormatter always returns a value, it is a good choice to
associate with any other formatter for handling out-of-bounds numbers.

2.4.9.4 Formatting Rational Numbers

RationalNumberFormatter extends the NumberFormatter protocol to display
non-integral values as the ratio of two integers (a fraction).

Here are some examples of formatted numbers produced by a default
RationalNumberFormatter object:

• 1

• 3 1/7

• -9,999 4/9

RationalNumberFormatter uses a DecimalNumerals object to determine
character-value mappings.

mantissa_type MantissaType enumerated value
indicating whether mantissa should be
less than 10 or less than 1. Only used if
exponent_phase<2.

less_than_10

show_base_type Indicates ShowBaseType value
specifying whether to display the base
number used for exponential notation. For
example, the notation 1.23E+4 does not
display the base, while the notation
1.23E10+4 does.

FALSE

Table 2-3 FloatingPointNumberFormatter Attributes (Continued)

Attribute Description Default
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-17

2

g the

m

. The
an

 in
ge
RationalNumberFormatter provides member functions allowing you to control the
following aspects of formatting fractions.

2.4.9.5 Formatting in Additive Numbering Systems

The AdditiveNumberFormatter interface provides the protocol to manipulate
integer numbers in a system where the value of a number is determined by addin
values of each digit. For example, in the classical Greek numeral system, m represents
40, z represents 7, and mz represents 40+7, or 47.

AdditiveNumberFormatter uses an instance of HybridNumerals to determine
character-value mappings. Classes created to support a specific numbering syste
create, by default, an instance of HybridNumerals containing the appropriate data for
the numbering system. Change this by altering the value of the numerals attribute
RomanNumberFormatter is provided for the commonly used special case of Rom
numerals.

2.4.9.6 Formatting Roman Numbers

RomanNumberFormatter supports the Roman numbering system still seen today
some specialized usages—for example, as the number format for front matter pa
numbers or for outlines.

Table 2-4 RationalNumberFormatter Attributes

Attribute Description Default

variance The precision requirement for how close the text
representation must be to the actual value.

0.0000005

fraction_space The text used to separate the integer part of the
value from the fraction.

“ “

fraction_sign The text used to separate the numerator from the
denominator.

“/”

proper Indicates whether formatted fractions are proper
(the numerator is always less than the denominator
and the integer value is expressed separately, as in 3
1/7) or improper (the numerator can be greater than
the denominator, as in 22/7).

TRUE

numerator_first Indicates whether the numerator or the denominator
appears first.

TRUE

superscript_use Indicates whether the numerator should be
superscripted and the denominator subscripted, as in
1/2, or not, as in 1/2. If the fraction direction is
reset, the denominator is superscripted and the
numerator is subscripted.

TRUE

integer_format Sets a number formatter for use on each integer
portion within the value (the integer, the numerator,
and the denominator).

default
integer
formatter
2-18 Internationalization & Time V1.0 January 2000

2

ters.
e
ion

an

ng

a

ed as

g
RomanNumberFormatter accurately scans either uppercase or lowercase charac
However, you control whether numbers are formatted into uppercase or lowercas
during conversion to text. Use the case attribute to control this feature. This funct
takes a RomanNumeralCase enumerated value; the default value is upper.

RomanNumberFormatter also supports several different variations of the Roman
numbering system that use the subtractive principle (expressing 4 as IV rather th
IIII) to different degrees. Each system is identified by the type attribute, a
RomanNumeralType enumerated value as shown in Table 2-5.

RomanNumberFormatter lets you use one more variation of the Roman numberi
system. In some contexts the letter J is used instead of I for the last character in a
numeral—for example, VJ instead of VI. Use the j_terminate attribute to implement
this formatting variation. The default behavior is to terminate numerals with I.

2.4.9.7 Formatting in Hybrid Numbering Schemes

HybridNumberFormatter can handle any numbering system in which numbers
above a certain threshold are expressed in a multiplicative way.
HybridNumberFormatter supports numbering systems in which numbers above
certain threshold are expressed in a multiplicative rather than additive way. For
example, in the Chinese numbering system, the number 1729 could be represent

([1][1000][7][100][2][10][9]), signifying (1 * 1000) + (7 * 100) + (2 * 10) + 9, or
1729.

Create a HybridNumberFormatter for this type of system by providing the
appropriate HybridNumerals object and setting multiplicative_threshold .

2.4.9.8 Formatting Han Numbers

HanNumberFormatter supports the Han numbering system, the hybrid numberin
system commonly used in East Asian countries.

Table 2-5 RomanNumberFormatter

type 4 8 9 1999

short_all IV IIX IX IM

long4_long8 IIII VIII IX MCMXCIX

long4_short8 IIII IIX IX MCMXCIX

short4_long8 IV VIII IX MCMXCIX

short4_short8 IV IIX IX MCMXCIX

long_all IIII VIII VIIII MDCCCCLXXXXVIIII
Internationalization & Time V1.0 Text Scanning and Formatting Jan. 2000 2-19

2

There are currently several variations of the Han numbering system in use. The
standard system used most frequently provides a uniform approach for writing
numbers up to the value 99,999. Larger numbers are written using one of three
systems:

• The xiadeng (low-level) system

• The zhongdeng (mid-level) system

• The shangdeng (upper-level) system

Table 2-6 HanNumberFormatter

Character Name Xiadeng value Zhongdeng value Shangdeng value

HanNumeralYi 10
5

10
8

10
8

HanNumeralZhao 10
6

10
12

10
16

HanNumeralJing 10
7

10
16

10
32

HanNumeralGai 10
8

10
20

10
64

HanNumeralBu 10
9

10
24

10
128

HanNumeralZi 10
9

10
24

10
128

HanNumeralRang 10
10

10
28

10
256

HanNumeralGou 10
11

10
32

10
512

HanNumeralJian 10
12

10
36

10
1024

HanNumeralZheng 10
13

10
40

10
2048

HanNumeralZai 10
14

10
44

10
4096
2-20 Internationalization & Time V1.0 January 2000

2

al
he

used

for

erals

26

s
 can

ted. If
ill be
f a

ned

d in
time
rsa.
For details on these numbering systems, see From One to Zero, by Georges Ifrah.

Other Han numbering variations are based on Western numbers and are position
rather than hybrid. There is also a variation in which special shortened forms of t
numbers 21 through 39 (called calendar numbers) are used.

HanNumberFormatter supports each of these variations. You can identify the
numbering system by setting the type attribute to a HanNumberType enumerated
value. The default behavior is to use the standard numbering system.

When formatting from numbers to text, HanNumberFormatter also lets you choose
between traditional character forms and the simplified character forms commonly
in the People’s Republic of China. HanNumberFormatter recognizes both set of
characters when scanning text. Control this with the simplification attribute, which
takes a HanSimplification enumerated value. The default behavior is to format
numbers using the traditional characters.

2.4.9.9 Creating Outline-style Sequences

OutlineNumberFormatter lets you create an outline-style numbering sequence—
example, {a,b,c,...,z,aa,bb,...,zz,...}.

To implement an OutlineNumberFormatter , create an instance of HybridNumerals
containing the character-value mappings you want to use, and use it to set the num
attribute.

If you do not create your own HybridNumerals instance,
OutlineNumberFormatter uses a default instance mapping the values 1 through
to the characters a through z.

2.4.9.10 Creating a Number Formatter

Use NumberFormatterFactory to create a number formatter. It contains operation
to create all of the formatters we have discussed. It also contains attributes which
be used to set the default behavior of the number formatters before they are crea
not altered, these attributes have the default values specified above. Attributes w
ignored as appropriate when creating number formatter objects (e.g., the result o
create_han_number_formatter operation is independent of the value of
roman_numeral_type).

2.5 Date and Time Formatting

Current date and time are expressed in the UTCSSeconds type which is an unsig
long long that holds time in units of seconds with the base time 1/1/1 00:00:00
representing 0 seconds in UTCSSeconds. Spans of time are similarly represente
seconds. Conversion functions are provided for converting absolute and relative
in UTCSSeconds to TimeT type as defined in the Object Time Service and vice-ve
The following sections describe how it works.
Internationalization & Time V1.0 Date and Time Formatting Jan. 2000 2-21

2

tc.

es of

he
text

. The

 into

in the

he

eful

d in

ay
his
2.5.1 Definition

Definition:

• Maintains a fixed, ordered array of date/time fields such as year, month, day, e

• Keeps a Calendar object which can manipulate these fields according to the rul
a specific calendar.

• Has a ParameterFormatter object which can scan text strings which represent t
date and time into text representations of the date/time fields, and can format
representations of the date/time fields into date/time text strings.

• Has a NumberFormatter that scans and formats between text and binary
representations of numbers.

2.5.2 Scanning

• A text string representing the date/time is processed by the parameter formatter
result is a sequence of text values representing the individual date/time fields.

• The text values are each processed by a number formatter which converts them
unsigned long long numbers.

• These values are converted to integers and stored in the date/time value array
Calendar.

2.5.3 Formatting

• The Calendar values are converted to unsigned long long integers.

• These values are processed by the number formatter into text strings.

• These strings are formatted by the parameter formatter into a text string with t
desired format.

• The combination of parameter formatters and choice formatters can be very us
in date/time scanning. For example, you can scan both UK and US dates by
plugging a choice formatter with the following templates:

• “%m/%d/%y”

• “%d-%m-%y”

These formatters can also handle a variable number of digits in the key fields.

2.5.4 Operations

Date/time operations, such as adding and subtracting dates, are provided by the
Calendar object. Times of day (i.e., times with no dates attached) are represente
terms of seconds from 0 (“01:30:00” = 5400). Dates without times are
TimeBase::TimeT represented as even multiples of the number of seconds in a d
(in a system whose clock starts at September 16, 1952: “9/17/52” = 86400). In t
way, time stamps can be simply created and split.
2-22 Internationalization & Time V1.0 January 2000

2

rent
l

s

 used
f

read

mit
per
ding

lt

2.5.5 DateTimeFormatter Protocol

Each DateTimeFormatter object is designed to work with only a single calendar
system (e.g., the Gregorian calendar). Within a calendar system, you create diffe
DateTimeFormatter objects to produce different date formats. For example, a ful
date (January 1, 1999) or a numeric date (1-1-99).

DateTimeFormatter provides attributes for controlling specific formatting options, a
shown in Table 2-7.

2.5.6 Calendars

Calendar provides the basic protocol for all calendar classes. A calendar class is
by a DateTimeFormatter to map a local time to text fields representing aspects o
time and date information.

Due to irregularities (such as leap years, lunar cycles, etc.) in all currently widesp
calendars, it is unlikely that a simple instantiation of Calendar will be of any use.

Each calendar contains a specific set of date and time fields, enumerated by
DateTimeFieldType , with a range of possible values. Calendar allows the upper li
of the range to have a minimum and maximum value, providing for fields whose up
limit can vary. For example, the maximum number of days in a month varies depen
on the specific month.

Table 2-8 lists the Calendar fields, along with the values that appear in the defau
Gregorian calendar.

Table 2-7 DateTimeFormatter

Attribute Description

military_time Indicates use of military (24-hour) time.

zero_hour Indicates that midnight is represented as 0 hour.

abbreviate_year Indicates that only last two digits of year are used.

number_formatter Formatter object to use when formatting and scanning
individual date time fields.

parameter_formatter Formatter object to use when formatting or scanning
entire date/time string.

Table 2-8 Calendar Attributes

Field Minimum
value

Lower
maximum value

Upper
maximum
value

Value for date
12:12:12 p.m.
January 1, 1999

era 0 (B.C.) 1 (A.D.) 1 1

year_in_era 1 5,000,000 5,000,000 1999

month_in_year 1 (January) 12 (December) 12 1
Internationalization & Time V1.0 Date and Time Formatting Jan. 2000 2-23

2

ge the

e

ny
9 by
sary to
an.
 value

lds
wrap-
989

irst

rent
2.5.7 Changing Calendar Fields

Calendar includes operations that enforce consistent, valid results when you chan
value of individual fields. You can change a field in one of three ways:

1. Setting—Specifying a specific value for an individual field. Calendar adjusts th
minimum number of fields necessary to produce valid results.

2. Rolling—Incrementing or decrementing a field without changing the value of a
other field. For example, incrementing the month field in the date Dec. 30, 198
one produces the date Jan. 30, 1989. Calendar adjusts other fields when neces
produce a valid result. For example, incrementing the month field in the date J
30, 1989 by one produces the invalid date Feb. 30, 1989. Calendar adjusts the
in the invalid field to the closest valid date, producing Feb. 28, 1989.

3. Shifting—Incrementing or decrementing a field, adjusting the values of other fie
as appropriate, and keeping them within their range. This function produces a
around effect. For example, incrementing the month field in the date Dec. 30, 1
by one produces the date Jan. 30, 1990.

Table 2-9 compares the results of the Calendar field modification functions. The f
argument indicates the field to modify. For the SetField function, the second argument
indicates the value to set that field to. For the RollField and ShiftField functions, the
second argument indicates the value by which to increment or decrement the cur
value of that field.

day_in_month 1 28 31 1

hour_in_day 0 23 23 12

minute_in_hour 0 59 59 12

second_in_minute 0 59 59 12

half_day_in_day 0 (A.M.) 1 (P.M.) 1 1

hour_in_half_day 0 11 11 0

week_in_year 1 53 54 1

day_in_week 0 (Sunday) 6 (Saturday) 6 5 (Friday)

day_in_year 1 365 366 1

Table 2-9 Calendar Modifications

Operation Result (Current date: 6-26-1999)

set_field(month_in_year,1) 1-26-1999

set_field(month_in_year,13) 1-26-1999

Table 2-8 Calendar Attributes

Field Minimum
value

Lower
maximum value

Upper
maximum
value

Value for date
12:12:12 p.m.
January 1, 1999
2-24 Internationalization & Time V1.0 January 2000

2

 used
the

reed
e

ted

ed
2.5.8 Converting Absolute and Relative Time

The operations described in this section enable users to convert time from the
representation used in the Object Time Service (TimeT) and this facility
(UTCSSeconds), thus enhancing the usefulness of both. The term absolute time is
to refer to time represented as displacement from a fixed base, which in case of
Object Time Service is 15 October 1582 00:00:00, and in case of this facility is 1
January 1 00:00:00. Relative time refers to a time displacement relative to any ag
upon base as used by the application. The conversion operations provided are th
following:

1. UTCSSeconds get_UTCS_seconds(in TimeBase::TimeT time_t);

converts absolute time from TimeT form to UTCSSeconds form.

2. TimeBase::TimeT get_timet(in UTCSSeconds UTCS_seconds);

converts absolute time from UTCSSeconds to TimeT form. If the time represen
by UTCS_seconds is out of range for TimeT, then the BAD_PARAM exception is
raised.

3. UTCSSeconds get_relative_UTCS_seconds(in TimeBase::TimeT time_t);

converts relative time from TimeT form to UTCSSeconds form.

4. TimeBase::TimeT get_relative_timet(in UTCSSeconds UTCS_seconds);

converts relative time from UTCSSeconds to TimeT form. If the time represent
by UTCS_seconds is out of range for TimeT, then the BAD_PARAM exception is
raised.

roll_field(month_in_year,1) 7-26-1999

roll_field(month_in_year,7) 1-26-1999

shift_field(month_in_year, 1) 7-26-1999

shift_field(month_in_year,7) 1-26-2000

Table 2-9 Calendar Modifications (Continued)

Operation Result (Current date: 6-26-1999)
Internationalization & Time V1.0 Date and Time Formatting Jan. 2000 2-25

2

2-26 Internationalization & Time V1.0 January 2000

 Interface Description 3
Contents

This chapter contains the following sections.

Section Title Page

“General Comments” 3-2

“Collation” 3-2

“CollationFactory” 3-3

“TextPatternIterator” 3-3

“TextIteratorFactory” 3-4

“AbstractFormatter” 3-4

“SimpleTextFormatter” 3-4

“SimpleTextFormatterFactory” 3-5

“ParameterFormatter” 3-5

“ParameterFormatterFactory” 3-5

“ChoiceFormatter” 3-5

“ChoiceFormatterFactory” 3-6

“Numerals” 3-6

“HybridNumerals” 3-7

“HybridNumeralsFactory” 3-7

“DecimalNumerals” 3-7

“DecimalNumeralsFactory” 3-7
Internationalization & Time V1.0 January 2000 3-1

3

tory
3.1 General Comments

All non-factory interfaces descend from LifeCycleObject so that they can be
transparently copied. All factory interfaces descend from LifeCycleObject so that
they can be found using the FactoryFinder .

Non-factory interfaces without factories are not designed to be instantiated. All fac
interfaces are designed to be instantiated.

3.2 Collation

interface Collation : LifeCycleObject
{

TextComparisonResult compare
(in wstring source, in wstring target);

 boolean text_is_greater_than
(in wstring source, in wstring target);

 boolean text_is_less_than
(in wstring source, in wstring target);

 boolean text_is_equal
(in wstring source, in wstring target);

 attribute DifferenceLevel max_difference;
};

“NumberFormatter” 3-8

“PositionalNumberFormatter” 3-8

“FloatingPointNumberFormatter” 3-9

“RationalNumberFormatter” 3-9

“AdditiveNumberFormatter” 3-10

“RomanNumberFormatter” 3-10

“HybridNumberFormatter” 3-10

“HanNumberFormatter” 3-10

“OutlineNumberFormatter” 3-10

“NumberFormatterFactory” 3-11

“DateTimeFormatter” 3-12

“DateTimeFormatterFactory” 3-12

“Calendar” 3-12

“Dependencies” 3-13

“Standards” 3-13

Section Title Page
3-2 Internationalization & Time V1.0 January 2000

3

ied at
n

el at

ected

 it to

al to

ns.

The operations all provide basic text comparison based on a collation table specif
creation time. The collation table may specify several levels of differences betwee
characters.

The compare operation returns an enumerated value that details the difference lev
which the comparison was able to be performed.

The other operations return a boolean value. Differences at all levels are still resp
unless disabled by the max_difference attribute.

The collation table is not given as an attribute because the factory may wish to use
create “optimal” code which cannot be reset.

3.3 CollationFactory

interface CollationFactory : LifeCycleObject
{

Collation create_collation (in LocaleKey locale)
raises(BadLocaleKey);

};

If no locale matches that specified by the parameter and the parameter is not equ
the constants default_locale or null_locale , then BadLocaleKey is raised.

If null_locale is specified, the result is a collation that performs bitwise compariso
In this case, Collation::compare should only produce source_equal ,
source_primary_less , or source_primary_greater .

If a locale is specified, the collation table data for that locale is used to create the
resulting collation. If default_locale is specified, the collation table data for the
current system default locale is used.

3.4 TextPatternIterator

interface TextPatternIterator : LifeCycleObject
{

TextRange first ();
TextRange last ();
TextRange next () raises(UninitializedIterator);
TextRange previous () raises(UninitializedIterator);
attribute TextRange range;
attribute wstring pattern;
attribute wstring search_text;
attribute Collation comparator;
readonly attribute match_type;

};

The object iterates through search_text looking for pattern in a fashion determined
by match_type .
Internationalization & Time V1.0 CollationFactory Jan. 2000 3-3

3

d.

,
t or
The iterator must be initialized with a first or last operation.

• first searches for the leftmost pattern in the search_text .

• last searches for the rightmost pattern in the search_text .

• next searches for the next pattern to the right of the current one.

• previous searches for the next pattern to the left of the current one.

• first, last, next and previous all return an empty range if the pattern is not foun

The search can be restricted by the range attribute. The default range is (offset=0
length=2**32). Resetting the range requires the search to be reinitialized with firs
last, even if the value of the range is not changed.

The match_type attribute is a readonly because the factory may wish to create
“optimal” matching code which cannot be reset.

3.5 TextIteratorFactory

interface TextIteratorFactory : LifeCycleObject
{

TextMatchIterator create_iterator
(in Collation tc, in wstring search_text,
in wstring pattern, in MatchType type)

 raises(InvalidBoundaryPattern);
};

Type defines the type of iterator to create.

The other inputs to the create_iterator operation define defaults, and may be
changed.

3.6 AbstractFormatter

interface AbstractFormatter : LifeCycleObject
{

FormatResult format (in any source);
ScanResult scan (in wstring source);
attribute Collation comparator;

};

Do not instantiate this.

All subclasses of AbstractFormatter must override format and scan.

3.7 SimpleTextFormatter

interface SimpleTextFormatter : AbstractFormatter
{

3-4 Internationalization & Time V1.0 January 2000

3

m

gain.
attribute wstring scan_terminator;
attribute TextRange format_bounds;

};

Format raises the BAD_PARAM exception if its input is not Text.

Format copies its input text from within the format_bounds to the result.

Scan copies its input text until it encounters the complete text of scan_terminator , or
until it reaches the end of the search string.

3.8 SimpleTextFormatterFactory

interface SimpleTextFormatterFactory : LifeCycleObject
{

SimpleTextFormatter create_simple_text_formatter
(in Collation tc);

};

3.9 ParameterFormatter

interface ParameterFormatter : AbstractFormatter
{

attribute wstring template;
attribute sequence<Substitution> subst;
attribute sequence<AlternativeMatch> alt_match;

};

Template provides a string into which various parameters will be formatted (or fro
parameters will be scanned) at ranges specified in the structures of subst , using the
formatters specified there.

During scan, if no match is initially found, strings from alt_match should be
substituted into template at the given offsets, and the scan should be attempted a

Format raises the BAD_OPERATION if its input cannot be formatted.

3.10 ParameterFormatterFactory

interface ParameterFormatterFactory : LifeCycleObject
{

ParameterFormatter create_parameter_formatter ();
};

3.11 ChoiceFormatter

interface ChoiceFormatter : AbstractFormatter
{

Internationalization & Time V1.0 SimpleTextFormatterFactory Jan. 2000 3-5

3

e

, an

ry

he
attribute sequence<wstring> choice;
attribute wstring default_choice;
attribute boolean use_longest_match;
attribute boolean valid_default;
void clear_choices();

};

Format takes an integer index as an argument, and processes it as follows:

• If the choice sequence has a value for the index, that string is returned in th
FormatResult structure along with accuracy = perfect.

• If the choice sequence has no value for the index, but the attribute valid_default
is TRUE, the value of default_choice is returned in the FormatResult
structure along with accuracy=minor_error.

• If the choice sequence has no value for the index and valid_default is FALSE
empty string is returned along with accuracy=unsatisfactory.

During scan operations, the attribute use_longest_match may be used when choice
strings have initial substrings in common.

3.12 ChoiceFormatterFactory

interface ChoiceFormatterFactory : LifeCycleObject
{
 ChoiceFormatter create_choice_formatter ();
};

3.13 Numerals

interface Numerals : LifeCycleObject
{

boolean numeral_to_value (in wchar ch, out long value);
boolean value_to_numeral (in long value, out wchar ch);
attribute short max_base;
attribute short min_base;
attribute short base;

};

The numeral_to_value provides the binary value of a character interpreted as
numeral, and returns FALSE if the character does not match a numeral.

The value_to_numeral provides the character of the numeral that matches a bina
value, and returns FALSE if the binary value is greater than base.

Some sets of numerals may be used for multiples bases: max_base and min_base
define the limits. If base does not lie between these two values (inclusive), then t
BAD_PARAM exception is raised when base is set.
3-6 Internationalization & Time V1.0 January 2000

3

le
3.14 HybridNumerals

interface HybridNumerals : Numerals
{

unsigned short formatting_count();
unsigned short scanning_count();
void get_formatting_pair (in unsigned short index,

 out wchar ch, out long value)
raises (NotEnoughNumerals);

void get_scanning_pair (in unsigned short index,
 out wchar ch, out long value)

raises (NotEnoughNumerals);
void add_formatting_pair (in wchar ch, in long value);
void add_scanning_pair (in wchar ch, in long value);

};

A particular binary value will always format into a specific numeral; however, multip
numerals may be recognized as the same binary value during scan.

If index < formatting_count, then get_formatting_pair raises NotEnoughNumerals.

If index < scanning_count, then get_scanning_pair raises NotEnoughNumerals.

3.15 HybridNumeralsFactory

interface HybridNumeralsFactory : LifeCycleObject
{

HybridNumerals create_hybrid_numerals
 (in short min_base, in short max_base);
};

3.16 DecimalNumerals

interface DecimalNumerals : Numerals
{

attribute wstring codeset_script;
};

Note that min_base = 2; max_base = 10.

3.17 DecimalNumeralsFactory

interface DecimalNumeralsFactory : LifeCycleObject
{

DecimalNumerals create_decimal_numerals
 (in wstring codeset_script);
};
Internationalization & Time V1.0 HybridNumerals Jan. 2000 3-7

3

to

ber

s
3.18 NumberFormatter

interface NumberFormatter : LifeCycleObject
{

attribute double min_number;
attribute double max_number;
attribute unsigned short base;
attribute boolean plus_sign_enabled;
attribute wstring minus_prefix;
attribute wstring minus_suffix;
attribute wstring plus_prefix;
attribute wstring plus_suffix;
attribute wstring infinity_sign;
attribute wstring NaN_sign;
attribute Numerals numerals;
attribute NumberFormatter out_of_bounds_formatter;
boolean is_text_number (in wstring test_string);
boolean is_valid_number (in double test_num);
boolean is_numeral (in wchar test_char);

};

Do not instantiate this.

All subclasses of NumberFormatter must override the following operations:

• is_text_number returns TRUE if test_string can be scanned to produce a
number (taking into account prefixes, suffixes, and the base).

• is_valid_number returns TRUE if the contents of test_num can be interpreted
as a valid floating point number.

• is_numeral returns TRUE if the test_char is in the set denoted by numerals.

• format returns the text string that represents the input binary value, taking in
account prefixes, suffixes, and the base. If the number is outside the bounds
specified by min_number and max_number , format invokes
out_of_bounds_formatter , and passes the result back as its own. If the num
cannot be formatted (i.e., if is_valid_number returns FALSE), then format
raises BAD_OPERATION.

• scan returns a binary value which is represented by the input string, or raise
BAD_OPERATION if this is not possible (i.e., if is_text_number returns
FALSE).

3.19 PositionalNumberFormatter

interface PositionalNumberFormatter : NumberFormatter
{

attribute wchar digit_group_separator;
attribute boolean use_dg_separator;
attribute unsigned short dg_separator_spacing;
attribute unsigned short precision_increment;
attribute RoundingType rounding_type;
3-8 Internationalization & Time V1.0 January 2000

3

 the

ount

e
attribute unsigned short min_integer_digits;
};

Format returns the text string which represents the input binary value, rounded to
nearest precision_increment using the rounding method indicated by
rounding_type , and taking into account prefixes, suffixes, and the base (inherited
from NumberFormatter). If this does not result in the minimum number of integer
digits specified, leading zeroes are added.

If use_dg_separator is set, the digit_group_separator is inserted into the result
according to the dg_separator_spacing .

3.20 FloatingPointNumberFormatter

interface FloatingPointNumberFormatter : PositionalNumberFormatter
{

attribute wchar decimal_separator;
attribute boolean decimal_with_integer;
attribute double upper_exponent_threshold;
attribute double lower_exponent_threshold;
attribute wchar exponent_separator_text;
attribute boolean fraction_separator;
attribute unsigned short min_fraction_digits;
attribute unsigned short max_fraction_digits;
attribute unsigned short exponent_phase;
attribute MantissaType mantissa_type;
attribute boolean show_base_type;

};

Format returns the text string that represents the input binary value, taking into acc
prefixes, suffixes, and the base (inherited from NumberFormatter) as well as
separators, precision increment, rounding type and minimum number of digits
(inherited from PositionalNumberFormatter), and the attributes specified here. Se
Table 2-3 on page 2-16 for the use of these attributes.

3.21 RationalNumberFormatter

 interface RationalNumberFormatter : NumberFormatter
 {
 attribute double variance;
 attribute wchar fraction_space;
 attribute wchar fraction_sign;
 attribute boolean proper;
 attribute boolean numerator_first;
 attribute boolean subscript_use;
 attribute PositionalNumberFormatter integer_formatter;
 };
Internationalization & Time V1.0 FloatingPointNumberFormatter Jan. 2000 3-9

3

ibutes.

hese

e
Format returns the text string which represents the input binary value, taking into
account prefixes, suffixes, and the base (inherited from NumberFormatter) as well as
the attributes specified here. See Table 2-4 on page 2-18 for the use of these attr

3.22 AdditiveNumberFormatter

interface AdditiveNumberFormatter : NumberFormatter
{
};

3.23 RomanNumberFormatter

interface RomanNumberFormatter : AdditiveNumberFormatter
{

attribute RomanNumeralCase case;
attribute RomanNumeralType type;
attribute boolean j_terminate;

};

See Section 2.4.9.6, “Formatting Roman Numbers,” on page 2-18 for the use of t
attributes.

3.24 HybridNumberFormatter

interface HybridNumberFormatter : AdditiveNumberFormatter
{

attribute long multiplicative_threshold;
};

3.25 HanNumberFormatter

interface HanNumberFormatter : HybridNumberFormatter
{

attribute HanNumberType type;
attribute HanSimplification simplification;

};

See Section 2.4.9.8, “Formatting Han Numbers,” on page 2-19 for the use of thes
attributes.

3.26 OutlineNumberFormatter

interface OutlineNumberFormatter : NumberFormatter
{
};
3-10 Internationalization & Time V1.0 January 2000

3

3.27 NumberFormatterFactory

interface NumberFormatterFactory : LifeCycleObject
{

attribute Numerals numerals;
attribute NumberFormatter out_of_bounds_formatter;
attribute double min_number;
attribute double max_number;
attribute unsigned short base;
attribute boolean plus_sign_enabled;
attribute wstring minus_prefix;
attribute wstring minus_suffix;
attribute wstring plus_prefix;
attribute wstring plus_suffix;
attribute wstring infinity_sign;
attribute wstring NaN_sign;
attribute wchar digit_group_separator;
attribute boolean use_dg_separator;
attribute unsigned short dg_separator_spacing;
attribute unsigned short precision_increment;
attribute RoundingType rounding_type;
attribute unsigned short min_integer_digits;
attribute wchar decimal_separator;
attribute boolean decimal_with_integer;
attribute double upper_exponent_threshold;
attribute double lower_exponent_threshold;
attribute wchar exponent_separator_text;
arrtibute boolean fraction_separator;
attribute unsigned short min_fraction_digits;
attribute unsigned short max_fraction_digits;
attribute unsigned short exponent_phase;
attribute MantissaType mantissa_type;
attribute boolean show_base_type;
attribute double variance;
attribute wchar fraction_space;
attribute wchar fraction_sign;
attribute boolean proper;
attribute boolean numerator_first;
attribute boolean subscript_use;
attribute PositionalNumberFormatter integer_formatter;
attribute RomanNumeralCase roman_numeral_case;
attribute RomanNumeralType roman_numeral_type;
attribute boolean j_terminate;
attribute long multiplicative_threshold;
attribute HanNumberType han_number_type;
attribute HanSimplification simplification;

PositionalNumberFormatter create_positional_number_formatter ();
FloatingPointNumberFormatter create_floating_point_number_formatter ();
RationalNumberFormatter create_rational_number_formatter ();
FloatingPointNumberFormatter create_universal_number_formatter ();
AdditiveNumberFormatter create_universal_number_formatter ();
RomanNumberFormatter create_roman_number_formatter ();
HybridNumberFormatter create_hybrid_number_formatter ();
HanNumberFormatter create_han_number_formatter ();
Internationalization & Time V1.0 NumberFormatterFactory Jan. 2000 3-11

3

on of

OutlineNumberFormatter create_outline_number_formatter ();
};

3.28 DateTimeFormatter

interface DateTimeFormatter : AbstractFormatter
{

attribute NumberFormatter number_formatter;
attribute ParameterFormatter parameter_formatter;
attribute boolean military_time;
attribute boolean zero_hour;
attribute boolean abbreviate_year;
attribute Calendar calendar;
attribute DateTimeFieldValue field[DateTimeFieldType::max_fields];

};

See Section 2.5, “Date and Time Formatting,” on page 2-21 for a general discussi
the scan and format behavior for this interface.

See Section 2.5.5, “DateTimeFormatter Protocol,” on page 2-23 for the use of the
attributes.

3.29 DateTimeFormatterFactory

interface DateTimeFormatterFactory: LifeCycleObject
{

DateTimeFormatter create_date_time_formatter ();
};

3.30 Calendar

interface Calendar : LifeCycleObject
{

attribute TimeBase::TdfT tz;
attribute UTCSSecond UTCS_seconds;
attribute boolean use_zero_hour;
attribute unsigned short first_day_of_the_week;
attribute DateTimeFieldValue min_val[DateTimeFieldType::max_fields];
attribute DateTimeFieldValue lower_max_val[DateTimeFieldType::max_fields];
attribute DateTimeFieldValue upper_max_val[DateTimeFieldType::max_fields];
void roll_field (in DateTimeFieldType f, in DateTimeFieldValue v);
void shift_field (in DateTimeFieldType f, in DateTimeFieldValue v);
void set_field (in DateTimeFieldType f, in DateTimeFieldValue v);
DateTimeFieldValue get_field (in DateTimeFieldType f);
void clear_all_fields ();

UTCSSeconds get_UTCS_seconds(in TimeBase::TimeT time_t);
TimeBase::TimeT get_timet(in UTCSSeconds UTCS_seconds);
UTCSSeconds get_relative_UTCS_seconds(in TimeBase::TimeT time_t);
TimeBase::TimeT get_relative_timet(in UTCSSeconds UTCS_seconds);
3-12 Internationalization & Time V1.0 January 2000

3

the

ch as
 the
rd’s
hin
};

See Section 2.5.6, “Calendars,” on page 2-23 for the use of the attributes.

See Section 2.5.7, “Changing Calendar Fields,” on page 2-24 for a description of
calendar field operations.

See Section 2.5.8, “Converting Absolute and Relative Time,” on page 2-25 for a
description of the behavior of conversion operations.

3.31 Dependencies

These facilities have explicit dependencies on:

• CORBA Life Cycle Services

• CORBA Object Time Service

• CORBA IDL extensions

The also depend implicitly on the POSIX locale specification.

3.32 Standards

This specification is consistent with, but not an extension of, several standards, su
POSIX locales, DCE time, etc. The most important potentially relevant standard in
object technology world is the ANSI C++ draft standard. Unfortunately, this standa
heavy reliance on templates and pointers makes it difficult to follow its design wit
the framework of CORBA.
Internationalization & Time V1.0 Dependencies Jan. 2000 3-13

3

3-14 Internationalization & Time V1.0 January 2000

OMG IDL A
A.1 Full IDL

module CfI18N
{

 /**/
/* Data Types */
/**/

 typedef sequence<any> ParameterList;
 typedef long DateTimeFieldValue;
 typedef wstring LocaleKey;

 enum TextComparisonResult {
 source_equal,
 source_primary_less,
 source_secondary_less,
 source_tertiary_less,
 source_primary_greater,
 source_secondary_greater,
 source_tertiary_greater
 };

 enum DifferenceLevel {
 primary,
 secondary,
 tertiary
 };

 enum MatchType {
 standard,
 inclusive,
 exclusive,
 boundary
 };
Internationalization & Time V1.0 January 2000 A-1

A

 enum ConfidenceLevel {
 perfect,
 minor_error,
 recognizable,
 unsatisfactory
 };

 enum RoundingType {
 round_down,
 round_up,
 round_even
 };

enum MantissaType {
less_than_1,
less_than_10

};

 enum RomanNumeralCase {
 upper,
 lower
 };

 enum RomanNumeralType {
 short_all,
 long4_long8,
 long4_short8,
 short4_long8,
 short4_short8,
 long_all
 };

 enum HanSimplification {
 simplified,
 traditional
 };

 enum HanNumberType {
 han_calendar,
 standard_han,
 xiadeng,
 zhongdeng,
 shangdeng
 };

 enum DateTimeFieldType {
 era,
 year_in_era,
 month_in_year,
 day_in_month,
 hour_in_day,
 minute_in_hour,
 second_in_minute,
A-2 Internationalization & Time V1.0 January 2000

A

 half_day_in_day,
 hour_in_half_day,
 week_in_year,
 day_in_week,
 day_in_year,
 max_fields
 };

 struct TextRange {
 unsigned long offset;
 unsigned long length;
};

 struct ScanResult {
 any result;
 unsigned long chars_processed;
 ConfidenceLevel accuracy;
 sequence<any> additional_info;
 };

 struct FormatResult {
 wstring result;
 ConfidenceLevel accuracy;
 sequence<any> additional_info;
 };

 interface Collation;

 interface AbstractFormatter : LifeCycleObject
 {
 FormatResult Format (in any source);
 ScanResult Scan (in wstring source);
 attribute Collation comparator;
 };

 struct Substitution {
 TextRange range;
 unsigned short parameter_num;
 AbstractFormatter formatter;
 };

 struct AlternativeMatch {
 TextRange range;
 unsigned short parameter_num;
 wstring match;
 };

 struct NumeralPair {
 wchar ch;
 long value;
 };

 /**/
 /* Constants */
 /**/
Internationalization & Time V1.0 January 2000 A-3

A

 const unsigned long ul_infinity = 4294967295; /* = (2**32) -1, the maximum unsigned
long. */
 const LocaleKey default_locale = “SYSTEM_DEFAULT”;
 const LocaleKey null_locale = “NULL”;
 const wstring match_cluster = “.”;
 const wstring match_word = “*”;
const DateTimeFieldValue seconds_in_minute = 60;
 const DateTimeFieldValue seconds_in_hour = 60*60;
 const DateTimeFieldValue seconds_in_day = 3600*24;

 /**/
 /* Exceptions */
 /**/

 exception BadLocaleKey {};
 exception UninitializedIterator{};
 exception InvalidBoundaryPattern{};
 exception NotEnoughNumerals{};

 /**/
 /* Interface Definitions */
 /**/

 interface Collation : LifeCycleObject
 {
 TextComparisonResult compare
 (in wstring source, in wstring target);
 boolean text_is_greater_than
 (in wstring source, in wstring target);
 boolean text_is_less_than
 (in wstring source, in wstring target);
 boolean text_is_equal
 (in wstring source, in wstring target);
 attribute DifferenceLevel max_difference;
 };

 interface CollationFactory : LifeCycleObject
 {
 Collation create_collation (in LocaleKey locale)
 raises(BadLocaleKey);
 };

 interface TextPatternIterator : LifeCycleObject
 {
 TextRange first ();
 TextRange last ();
 TextRange next ()
 raises(UninitializedIterator);
 TextRange previous ()
 raises(UninitializedIterator);
 attribute TextRange range;
 attribute wstring pattern;
 attribute wstring search_text;
 attribute Collation comparator;
A-4 Internationalization & Time V1.0 January 2000

A

 readonly attribute MatchType match_type;
 };

 interface TextIteratorFactory : LifeCycleObject
 {
 TextPatternIterator create_iterator
 (in Collation tc,in wstring search_text,
 in wstring pattern, in MatchType type)
 raises(InvalidBoundaryPattern);
 };

 interface SimpleTextFormatter : AbstractFormatter
 {
 attribute wstring scan_terminator;
 attribute TextRange format_bounds;
 };

 interface SimpleTextFormatterFactory : LifeCycleObject
 {
 SimpleTextFormatter create_simple_text_formatter
 (in Collation tc);
 };

 interface ParameterFormatter : AbstractFormatter
 {
 attribute wstring template;
 attribute sequence<Substitution> subst;
 attribute sequence<AlternativeMatch> alt_match;
 };

 interface ParameterFormatterFactory : LifeCycleObject
 {
 SimpleTextFormatter create_parameter_formatter ();
 };

 interface ChoiceFormatter : AbstractFormatter
 {
 attribute sequence<wstring> choice;
 attribute wstring default_choice;
 attribute boolean use_longest_match;
 attribute boolean valid_default;
 void clear_choices();
 };

 interface ChoiceFormatterFactory : LifeCycleObject
 {
 ChoiceFormatter create_choice_formatter ();
 };

 interface Numerals : LifeCycleObject
 {

 boolean numeral_to_value (in wchar ch, out long value);
Internationalization & Time V1.0 January 2000 A-5

A

 boolean value_to_numeral (in long value, out wchar ch);
 attribute short max_base;
 attribute short min_base;
 attribute short base;
 };

 interface HybridNumerals : Numerals
 {
 unsigned short formatting_count();
 unsigned short scanning_count();
 void get_formatting_pair
 (in unsigned short index, out wchar ch, out long value)
 raises (NotEnoughNumerals);
 void get_scanning_pair
 (in unsigned short index, out wchar ch, out long value)
 raises (NotEnoughNumerals);
 void add_formatting_pair (in wchar ch, in long value);
 void add_scanning_pair (in wchar ch, in long value);
 };

 interface HybridNumeralsFactory : LifeCycleObject
 {
 HybridNumerals create_hybrid_numerals
 (in short min_base, in short max_base);
 };

 interface CodesetDecimalNumerals : Numerals
 {
 attribute wstring codeset_script;
 };

 interface CodesetDecimalNumeralsFactory : LifeCycleObject
 {
 CodesetDecimalNumerals create_codeset_decimal_numerals
 (in wstring codeset_script);
 };

 interface NumberFormatter : LifeCycleObject
 {
 attribute double min_number;
 attribute double max_number;
 attribute unsigned short base;
 attribute boolean plus_sign_enabled;
 attribute wstring minus_prefix;
 attribute wstring minus_suffix;
 attribute wstring plus_prefix;
 attribute wstring plus_suffix;
 attribute wstring infinity_sign;
 attribute wstring NaN_sign;

 attribute Numerals numerals;
 attribute NumberFormatter out_of_bounds_formatter;
 boolean is_text_number (in wstring test_string);
 boolean is_valid_number (in double test_num);
 boolean is_numeral (in wchar test_char);
A-6 Internationalization & Time V1.0 January 2000

A

 };

 interface PositionalNumberFormatter : NumberFormatter
 {
 attribute wchar digit_group_separator;
 attribute boolean use_dg_separator;
 attribute unsigned short dg_separator_spacing;
 attribute unsigned short precision_increment;
 attribute RoundingType rounding_type;
 attribute unsigned short min_integer_digits;
 };

 interface FloatingPointNumberFormatter :
 PositionalNumberFormatter
 {
 attribute wchar decimal_separator;
 attribute boolean decimal_with_integer;
 attribute double upper_exponent_threshold;
 attribute double lower_exponent_threshold;
 attribute wchar exponent_separator_text;
 attribute boolean fraction_separator;
 attribute unsigned short min_fraction_digits;
 attribute unsigned short max_fraction_digits;
 attribute unsigned short exponent_phase;
 attribute MantissaType mantissa_type;
 attribute boolean show_base_type;
 };

 interface RationalNumberFormatter : NumberFormatter
 {
 attribute double variance;
 attribute wchar fraction_space;
 attribute wchar fraction_sign;
 attribute boolean proper;
 attribute boolean numerator_first;
 attribute boolean subscript_use;
 attribute PositionalNumberFormatter integer_formatter;
 };

 interface AdditiveNumberFormatter : NumberFormatter
 {
};

 interface RomanNumberFormatter : AdditiveNumberFormatter
 {

 attribute RomanNumeralCase numeralCase;
 attribute RomanNumeralType type;
 attribute boolean j_terminate;
 };

 interface HybridNumberFormatter : AdditiveNumberFormatter
 {
 attribute long multiplicative_threshold;
 };
Internationalization & Time V1.0 January 2000 A-7

A

 interface HanNumberFormatter : HybridNumberFormatter
 {
 attribute HanNumberType type;
 attribute HanSimplification simplification;
 };

 interface OutlineNumberFormatter : NumberFormatter
 {
 };

 interface NumberFormatterFactory : LifeCycleObject
 {
 attribute Numerals numerals;
 attribute NumberFormatter out_of_bounds_formatter;
 attribute double min_number;
 attribute double max_number;
 attribute unsigned short base;
 attribute boolean plus_sign_enabled;
 attribute wstring minus_prefix;
 attribute wstring minus_suffix;
 attribute wstring plus_prefix;
 attribute wstring plus_suffix;
 attribute wstring infinity_sign;
 attribute wstring NaN_sign;
 attribute wchar digit_group_separator;
 attribute boolean use_dg_separator;
 attribute unsigned short dg_separator_spacing;
 attribute unsigned short precision_increment;
 attribute RoundingType rounding_type;
 attribute unsigned short min_integer_digits;
 attribute wchar decimal_separator;
 attribute boolean decimal_with_integer;
 attribute double upper_exponent_threshold;
 attribute double lower_exponent_threshold;
 attribute wchar exponent_separator_text;
 attribute boolean fraction_separator;
 attribute unsigned short min_fraction_digits;
 attribute unsigned short max_fraction_digits;
 attribute unsigned short exponent_phase;
 attribute MantissaType mantissa_type;

 attribute boolean show_base_type;
 attribute double variance;
 attribute wchar fraction_space;
 attribute wchar fraction_sign;
 attribute boolean proper;
 attribute boolean numerator_first;
 attribute boolean subscript_use;
 attribute PositionalNumberFormatter integer_formatter;
 attribute RomanNumeralCase roman_numeral_case;
 attribute RomanNumeralType roman_numeral_type;
 attribute boolean j_terminate;
 attribute long multiplicative_threshold;
 attribute HanNumberType han_number_type;
A-8 Internationalization & Time V1.0 January 2000

A

 attribute HanSimplification simplification;
 PositionalNumberFormatter
 create_positional_number_formatter ();
 FloatingPointNumberFormatter
 create_floating_point_number_formatter ();
 RationalNumberFormatter
 create_rational_number_formatter ();
 AdditiveNumberFormatter
 create_additive_number_formatter ();
 RomanNumberFormatter
 create_roman_number_formatter ();
 HybridNumberFormatter
 create_hybrid_number_formatter ();
 HanNumberFormatter
 create_han_number_formatter ();
 OutlineNumberFormatter
 create_outline_number_formatter ();
 };

 interface DateTimeFormatter : AbstractFormatter
 {
 attribute NumberFormatter number_formatter;
 attribute ParameterFormatter parameter_formatter;
 attribute boolean military_time;
 attribute boolean zero_hour;
 attribute boolean abbreviate_year;
 attribute Calendar calendar;
 attribute DateTimeFieldValue
 field;
 };

 interface DateTimeFormatterFactory: LifeCycleObject
 {
 DateTimeFormatter create_date_time_formatter ();
 };
typedef unsigned long long UTCSSeconds;
 interface Calendar : LifeCycleObject
 {
 attribute TimeBase::TdfT tz;
 attribute UTCSSecond UTCS_seconds;
 attribute boolean use_zero_hour;
 attribute unsigned short first_day_of_the_week;
 attribute DateTimeFieldValue
 min_val;
 attribute DateTimeFieldValue
 lower_max_val;
 attribute DateTimeFieldValue
 upper_max_val;
 void roll_field
 (in DateTimeFieldType f, in DateTimeFieldValue v);
 void shift_field
 (in DateTimeFieldType f, in DateTimeFieldValue v);
 void set_field
 (in DateTimeFieldType f, in DateTimeFieldValue v);
 DateTimeFieldValue get_field
Internationalization & Time V1.0 January 2000 A-9

A

 (in DateTimeFieldType f);
 void clear_all_fields ();
 // Conversion function between TimeT and UTCSSeconds
 TimeBase::TimeT get_timet

// convert from UTCSSeconds to TimeT
// raises BAD_PARAM if UTCS_seconds
// is out of range of TimeT. This happens
// if UTCS_seconds represents time T such
// that T < 15 Oct 1582 00:00:00 or
// T > ~1 Jan 30,000

 (in UTCSSecond UTCS_seconds);
 UTCSSeconds get_UTCS_seconds

// convert from TimeT to UTCSSeconds
 (in TimeBase::TimeT time_t);
 TimeBase::TimeT get_relative_timet

// Convert relative time from
// UTCSSeconds form to TimeT form. Raises
// BAD_PARAM if UTCS_seconds is too large
// to represent as TimeT

 (in UTCSSecond UTCS_seconds);
 UTCSSeconds get_relative_UTCS_seconds

// convert relative time
// from TimeT to UTCSSeconds

 (in TimeBase::TimeT time_t);
 };
};

A-10 Internationalization & Time V1.0 January 2000

References B
96

4),

85)
B.1 Requirements

Common Facilities RFP2 (cf/ 96-10-01), Object Management Group

B.2 Standards

X/Open CAE Specification, X/Open Company Ltd., July 1992

Draft Proposed International Standard for Information Systems--Programming
Language

C++ (Document X3J16/95-6087), American National Standards Institute, April 19

B.3 CORBA Documents

The Common Object Request Broker: Architecture and Specification, (ptc/96-03-0
Object Management Group

Object Time Service (formal/07-02-22), Object Management Group

Life Cycle Services Specification (formal/97-02-11), Object Management Group

IDL Type Extension (ptc/97-01-01), Object Management Group

B.4 Number Formatters

IEEE Standard For Binary Floating Point Arithmetic (ANSI/IEEE Standard 754-19

IEEE Standard For Radix-independent Floating Point Arithmetic (ANSI/IEEE
Standard 854-1987)

From One to Zero, Georges Ifrah, Viking Penguin, 1985.”
Internationalization & Time V1.0 January 2000 B-1

B

B-2 Internationalization & Time V1.0 January 2000

 Glossary

a

List of Terms

additive number A number whose value is determined by adding
together the value of its numerals (e.g., Roman
numerals).

boundary match In the context of a pattern iterator, a substring within a
text string which is either a character cluster (one or
more characters which should be treated as a single
character according to the rules of the governing
TextComparator) or a word.

collation table An array of characters that express a set of rules for
comparing text.

choice formatter A formatter which formats an integer into a keyword,
or a keyword into an index.

exclusive span match In the context of a pattern iterator, a substring within
text string which only contains characters which do
not appear in the pattern.

formatter An object which performs formatting and scanning
functions.

formatting The conversion of a binary data into a displayable
representation.

Han numbering system A hybrid number system widely used in the East.

hybrid numbering system A numbering system which is based on the products
and sums of the values represented by the numerals in
the number.
Internationalization & Time V1.0 January 2000 Glossary -1

a

s

inclusive span match In the context of a pattern iterator, a substring within
text string which only contains characters which
appear in the pattern.

infinity A representation for an out-of-bounds number.

locale A subset of a user’s environment that depends on
language and cultural conventions.

locale key A string of characters representing the name of a
locale.

NaN Not a Number - a term applied to certain bit
configurations which occupy the space of a floating
point number but do not define a valid IEEE floating
point number.

null collation table A collation table consisting of the single character @,
which causes a comparison by binary value only.

outline number One of a sequence of values used in outlines, such a
“A,” “B,” ... “Z,” “AA,” etc.

parameter formatter A formatter which formats a list of data into a string,
like the C printf function, or scans a string for a list
of data, like the C sscanf function.

positional number A number whose value is determined by the sum of
the products of the digits and values associated with
the positions of the digits (e.g., decimal numbers).

primary difference 1. A strong lexical difference between two characters
(e.g., “a” and “b”).

2. A weak lexical difference between two characters
(e.g., “a” and “A”).

scanning The conversion of formatted data into a binary
representation.

secondary difference A medium-weight lexical difference between two
characters (e.g., “a” and “á”).

script A set of characters which is used in a particular
language, style, or convention.
Glossary -2 Internationalization & Time V1.0 January 2000

a

simple text formatter A formatter which performs simple operations such as
substring extraction and truncation on text strings.

standard match In the contect of a pattern iterator, a substring within
text string which is equal to the pattern according to
the collation table in effect, or a pattern within a
string.

text pattern iterator An object which searches through a text string looking
for a pattern.
Internationalization & Time V1.0 Jan. 2000 Glossary -3

Glossary -4 Internationalization & Time V1.0 January 2000

Index
A
Additive Numbering Systems 2-18
AdditiveNumberFormatter 2-14

C
can_normalize 2-11
codeset_script 2-13
conditional formatters 2-8
Converting Absolute and Relative Time 2-25
CORBA

contributors 2
documentation set 2

create_han_number_formatter 2-21

D
Date and Time Formatting 2-21
DecimalNumerals 2-13

numeral_to_value 2-13
value_to_numeral 2-13

digit_sequence_end 2-11

E
expanding characters 2-3

F
Floating-point Numbers 2-15
Formatting Integers 2-14
formatting text

conditional formatters 2-8
conversion results 2-7
messages 2-8
numbers 2-9

See also number formatting
times

See also date and time formatting

G
get_formatting_pair 2-14
get_scanning_pair 2-14
grouped characters 2-3

H
Han number formatting 2-19
Han Numbers 2-19
Hybrid Numbering Schemes 2-19
hybrid numbering systems 2-19
HybridNumerals 2-14

add_formatting_pair 2-14
add_scanning_pair 2-14

I
ignored characters 2-4
incomplete_sign 2-11
integer_boundary 2-11

M
max_number 2-13
messages

conditional formatters 2-8
scanning and formatting 2-8

min_number 2-13

N
Number Formatter 2-21
number formatting

Han numbers 2-19
hybrid

numbering systems 2-19
outline numbering sequences 2-21

NumberFormatter
format 2-11
scan 2-11

NumberFormatter Subclasses 2-14
Numerals

numeral_to_value 2-13
value_to_numeral 2-13

O
Object Management Group 1

address of 2
ordering priorities 2-3
ordering, text

bitwise 2-5
expanding characters 2-3
grouped characters 2-3
ignored characters 2-4
language-insensitive 2-5
ordering priorities 2-3

out_of_bounds_error 2-11
outline numbering sequences 2-21
OutlineNumberFormatter 2-14
Outline-style Sequences 2-21
Out-of-bounds Numbers 2-17

P
PositionalNumberFormatter 2-14

R
Rational Numbers 2-17
RationalNumberFormatter 2-14
Roman Numbers 2-18
roman_numeral_type 2-21

S
Security Service 1
separator_error 2-11
SimpleTextFormatter

Format 2-9
Scan 2-9

T
TChoiceFormatter 2-8
time formatting

See date and time formatting
TParameterFormatter 2-8

V
value_order_error 2-12
 Internationalization & Time January 2000 Index-1

Index
Index-2 Internationalization & Time V1.0 January 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Summary of Facilities
	1.1 Overview
	1.2 Time Operations
	1.3 Locales
	1.4 Language-sensitive Text Analysis
	1.5 Formatting
	1.5.1 Localizable Number, Date, and Time Formatting

	1.6 Localized Calendar Operations
	1.7 Localizable Message Formatting

	2. Conceptual Model
	2.1 Overview
	2.1.1 Organization
	2.1.2 Assumptions

	2.2 Locales
	2.3 Text Analysis
	2.3.1 Comparing and Collating Text
	2.3.2 Pattern Matching

	2.4 Text Scanning and Formatting
	2.4.1 Types of Formatters
	2.4.2 Conversion Results
	2.4.3 Using a ParameterFormatter
	2.4.4 SpecifyingConditional Formatters
	2.4.5 Simple Text Formatting
	2.4.6 Number Formatting
	2.4.7 Number Conversion Operations
	2.4.8 Controlling Basic NumberFormatter Behavior
	2.4.9 Using NumberFormatter Subclasses

	2.5 Date and Time Formatting
	2.5.1 Definition
	2.5.2 Scanning
	2.5.3 Formatting
	2.5.4 Operations
	2.5.5 DateTimeFormatter Protocol
	2.5.6 Calendars
	2.5.7 Changing Calendar Fields
	2.5.8 Converting Absolute and Relative Time

	3. Interface Description
	3.1 General Comments
	3.2 Collation
	3.3 CollationFactory
	3.4 TextPatternIterator
	3.5 TextIteratorFactory
	3.6 AbstractFormatter
	3.7 SimpleTextFormatter
	3.8 SimpleTextFormatterFactory
	3.9 ParameterFormatter
	3.10 ParameterFormatterFactory
	3.11 ChoiceFormatter
	3.12 ChoiceFormatterFactory
	3.13 Numerals
	3.14 HybridNumerals
	3.15 HybridNumeralsFactory
	3.16 DecimalNumerals
	3.17 DecimalNumeralsFactory
	3.18 NumberFormatter
	3.19 PositionalNumberFormatter
	3.20 FloatingPointNumberFormatter
	3.21 RationalNumberFormatter
	3.22 AdditiveNumberFormatter
	3.23 RomanNumberFormatter
	3.24 HybridNumberFormatter
	3.25 HanNumberFormatter
	3.26 OutlineNumberFormatter
	3.27 NumberFormatterFactory
	3.28 DateTimeFormatter
	3.29 DateTimeFormatterFactory
	3.30 Calendar
	3.31 Dependencies
	3.32 Standards

	Appendix A - OMG IDL
	Appendix B - References
	Glossary
	Index

