

Date: May 2007

IT Portfolio Management Facility (ITPMF), v1.0

OMG Available Specification
formal/07-05-02

Copyright © 2004, Adaptive
Copyright © 2007, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER
DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of the Object
Management Group. All other products or company names mentioned are used for identification purposes only, and may be
trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a
Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ... v

1 Scope ...1

2 Conformance ...1

3 Normative References ...1

4 Terms and Conventions ...1

5 Symbols ...2

6 Additional Information ..2
6.1 Acknowledgements ... 2

 6.1.1 Submitters ... 3
 6.1.2 Supporters .. 3

7 The Metamodel ..5
7.1 ExtendedPrimitiveTypes Package .. 5

 7.1.1 Date .. 5
 7.1.2 Timestamp .. 5
 7.1.3 Blob ... 5

7.2 Linkage Package ... 5
 7.2.1 Reference .. 6
 7.2.2 ExternalReference .. 6
 7.2.3 ExternalSystem ... 7
 7.2.4 InternalContent ... 7
 7.2.5 InternalReference .. 7

7.3 ITPortfolio Package ... 8
 7.3.1 Diagrams ... 8
 7.3.2 Agreement .. 14
 7.3.3 AssetPackage ... 15
 7.3.4 CommunicationConnection ... 16
 7.3.5 ContactInfo .. 16
 7.3.6 DataUsage .. 17
 7.3.7 Dependency .. 17
 7.3.8 DeployableElement ... 18
 7.3.9 Deployment ... 18
 7.3.10 Element ... 19
 7.3.11 EventOccurrence .. 19
 7.3.12 HardwareInstance ... 20
 7.3.13 InformationElement ... 20
 7.3.14 Interest .. 21
 7.3.15 Kind ... 21
 7.3.16 Lifecycle .. 22
IT Portfolio Management Facility, v1.0 i

 7.3.17 LifecycleState .. 22
 7.3.18 Location ... 23
 7.3.19 ManagedElement .. 23
 7.3.20 Measurement .. 24
 7.3.21 Party .. 25
 7.3.22 PlatformElement .. 25
 7.3.23 Process ... 25
 7.3.24 PropertyValue ... 25
 7.3.25 PropertyDefinition .. 26
 7.3.26 Requirement .. 26
 7.3.27 Service .. 27
 7.3.28 SoftwareElement ... 27
 7.3.29 SoftwareUsage .. 28

8 Kind Library ..29
8.1 AgreementKind .. 30
8.2 ContactKind ... 30
8.3 CommunicationConnectionKind .. 30
8.4 DependencyKind ... 31
8.5 EventKind .. 31
8.6 InformationElementKind .. 31
8.7 InterestKind ... 32
8.8 LocationKind .. 32
8.9 ObservationKind .. 32
8.10 PartyKind ... 33
8.11 PlatformKind .. 33
8.12 ProcessKind .. 34
8.13 RequirementKind ... 34
8.14 ServiceKind ... 34
ii IT Portfolio Management Facility, v1.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAservices
IT Portfolio Management Facility, v1.0 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A - Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi IT Portfolio Management Facility, v1.0

1 Scope

The fundamental approach taken has been to supply only a core model that can be linked to any external model (or not at
all). A Linkage package is specified for supporting this linking. In the future a user of a MOF 2.0 version of Interface
Portfolio Management Facility (ITPMF) could use Model merging to incorporate the ITPMF classes directly into their
metamodels.

The Facility is designed to be extensible and so 'Kind' objects (which are akin to Unified Modeling Language (UML)
Stereotypes) are used extensively. To provide commonality of support for frequently used elements, a library of Kind
instance elements is also specified.

It is a design aim that the specification should be implementable using conventional database approaches - so the design
decision was taken not to assume the presence of UML.

Overall there are a number of options for extensibility:

• Extend the supplied model directly - by defining subclasses.

• Link with other models - using the Linkage package or just defining new MOF Associations.

• Use the generic Kind and Property mechanisms within the specification itself: this means that this ITPMF specification
can be used to create a stand-alone facility that is still extensible.

2 Conformance

There are 2 compliance points.

1. To be compliant software must import and export XMI documents compliant with the XMI DTD generated from the
ITPMF metamodel.

2. An optional compliance point is to provide the instances specified in the Kind Library.

3 Normative References

There are no normative references for this specification.

4 Terms and Conventions

For the purposes of this specification, the following terms and conventions apply.
IT Portfolio Management Facility, v1.0 1

5 Symbols

There are no specific symbols for this specification.

6 Additional Information

6.1 Acknowledgements
The following individuals are acknowledged for their contribution to this specification:

BPDM Business Process Definition Metamodel - in-process OMG specification: RFP is bei/03-01-06

CCA Collaborating Component Architecture - part of EDOC (qv) covering components at any level of
granularity and their composition.

CWM Common Warehouse Metamodel.- despite its name covers all all aspects of information resources.
See OMG document formal/03-03-02.

EAI UML Profile and Interchange Models for Enterprise Application Integration. See OMG document
formal/04-03-26.

EDOC UML Profile for Enterprise Distributed Object Computing - key specification bridging business and
component architectures. See OMG document formal/04-02-01.

ITPMF IT Portfolio Management Facility. This specification.

MOF Meta Object Facility. See OMG document formal/06-01-01.

ODP Open Distributed Processing. Architectural approach advocated by International Standards
Organization (ISO).

RAS Reusable Asset Specification covering the classification and cataloguing of (usually software)
assets. See OMG document formal/05-11-02.

SPEM Software Process Engineering Metamodel. See OMG document formal/05-01-06. Covers how
software development is organized and representation of the formal processes deployed. Covers
organization, planning and responsibilities

UML Unified Modeling Language. See OMG documents formal/05-07-04 and 05-07-05. Originally
designed for object-oriented analysis and design, it has evolved into a general-purpose language for
modeling information and systems. It is the core of many different modeling efforts including CWM
and SPEM. It is MOF compliant.

XMI XML Metadata Interchange. See OMG document formal/05-09-01. Defines a mapping of any
MOF-compliant metamodel to a XML Document Type Definition and content documents.

XML eXtensible Markup Language. A very widely used tag-based format for exchanging information.
2 IT Portfolio Management Facility, v1.0

6.1.1 Submitters

• Adaptive

The following colleague at Adaptive has helped review and improve the metamodel on which this specification has been
based:

Nick Dowler

Thanks are also due to other consultants at Adaptive and its customers who have contributed to the ideas behind this
specification over a number of years.

6.1.2 Supporters

• Deere & Company

• Interoperability Clearing House
IT Portfolio Management Facility, v1.0 3

4 IT Portfolio Management Facility, v1.0

7 The Metamodel

The metamodel is illustrated through a set of UML diagrams. Two supplementary and reusable packages are first
presented as generic MOF extensions.

7.1 ExtendedPrimitiveTypes Package
In order to represent the business information and artifacts involved in ITPMF, it is necessary to add additional datatypes
to those provided by MOF. These are contained in a separate package that is imported by the ITPortfolio package as
follows:

7.1.1 Date
This represents dates: in a language binding it should be mapped to a type that allows ordered comparison. For XMI it is
mapped to the XML Schema date type.

7.1.2 Timestamp
This represents a point in time: for example, a combination of a date and a time within the day. For XMI it is mapped to
the XML dateTime type.

7.1.3 Blob
This represents an opaque Binary Large Object as supported by most database systems. For XMI it is mapped to an href
referencing an external file that will typically be local and the name of which will typically be system-allocated. For
remote communication the external files will typically be transmitted together with the XMI file as SOAP attachments.

7.2 Linkage Package
This provides some generic modeling capability to allow linking between ITPMF elements and other elements that they
may represent. These may be held as fully modeled MOF elements (InternalReference), opaque internal BLOBs
(InternalContent), or references to external systems (ExternalReference).

This package imports the class Element, which is the implicit supertype of all MOF classes: thus references may be
attached to any element or may reference any element.

Blob
<<primit ive>>

Timestamp
<<primitive>>

Date
<<primitive>>
IT Portfolio Management Facility, v1.0 5

7.2.1 Reference
This abstract class represents an objectified reference that can be owned by any object.

Attributes

References

7.2.2 ExternalReference
Where a ModelElement is ‘mastered’ in an external system, this provides a link back to that system.

Attributes

String name[0..1] A reference may optionally have a name: for example, to allow different references to be
distinguished.

Element origin [1] This is the object owning the reference.

String externalId An identifier unique within the context of the externalSystem that can be used to locate
the object.

 Element
 (from Reflective)

InternalReference InternalContent

blob : Blob
MIMEType : String[0..1]
filename : String[0..1]
filesize : Integer[0..1]

Reference

name : String[0..1]

ExternalSystem

name : String
systemType : String
systemLocator : String

ExternalReference

externalID : String

+origin

1
 1

+referenceObject

ObjectReferences

+internalReferences
 *

*+contents

0..1 +system

ExternalReferenceSystem

* +ref
6 IT Portfolio Management Facility, v1.0

References

7.2.3 ExternalSystem
This represents an instance of an external system that can be used to access the objects indicated by ExternalReferences.

Attributes

7.2.4 InternalContent
This represents an artifact held internally to the ITPMF Facility as a Blob.

Attributes

7.2.5 InternalReference
Where an element is held in the same Facility, this provides the ability to reference that directly, without ‘corrupting’
either the ITPMF or the external metamodel.

References

System externalSystem[0..1] The external system used to resolve the object referenced. If absent, it is assumed that
the externalId can be resolved using normal internet protocols.

String name A label for the external system.

String systemType A string that represents the method/protocol used to access the external system.

String systemLocator A locator for the external system within the context of the systemType, and which can
be used to access it for resolution of external references.

Blob blob The actual content.

String MIMEType[0..1] Optional MIME type for the content, as a convenience to simplify client-side processing.

String filename[0..1] Optional file name for the content when externalized, as a convenience to simplify client-
side processing. If not specified, then a system-generated name will be used. The filename
may include an extension that may be used to guide client-side processing in the absence
of a MIMEtype.

Integer fileSize[0..1] Optional size of the content when externalized, as a convenience to simplify client-side
processing.

referenceObject Element The element referenced.
IT Portfolio Management Facility, v1.0 7

7.3 ITPortfolio Package
This constitutes the bulk of the metamodel. It is represented here for convenience in a number of separate diagrams. The
diagrams are shown first, then the classes in alphabetical order. Note that xKind objects (any class ending in ‘Kind’) are
covered in Chapter 8 except for the class Kind itself. In terms of metamodel, each Kind class has a standard association
with the element it classifies.

7.3.1 Diagrams

7.3.1.1 Control Diagram

EventKind

Interest

EventOccurrence
priority : Integer
when : Date
body : String

0..1

*

+parentEvent

0..1

EventHierarchy

+childEvent

*
0..1

*

+kind0..1

+event

*

EventCategory

*

*

+involvement

*

+eventInvolved *

EventInvolvement
Element

name : String[0..1]
description : String[0..1]

*

*

+event*

+impactedElement *

EventImpact

LifecycleState

0..1

*

+state 0..1

+event *

EventState

Lifecycle

*

0..1

+state *

+lifecycle 0..1

LifecycleStates

Dependency

1

*

+source

1

+outgoing *

OutgoingDependency

1

*

+target1

+incoming

*IncomingDependency

DependencyKind
0..1

*

+kind0..1

+dependency
*

DependencyCategory

ManagedElement

0..1

*
+state

0..1

+element*
ElementState

Kind
name : String
description : String

*0..1

+elementKind

*

+lifecycle

0..1

ElementKindLifecycle

*

*

+permittedSourceKind
*

+permittedDependencyAsSource*

PermittedSource

*

*

+permittedtargetKind
*

+permittedDependencyAsTarget *

PermittedTarget

PropertyValue
name : String
value : String

1

*

+element

+property

PropertyDefinition
name : String *

*

+permittedProperty

*

+kind
*

PermittedProperty

0..1*

*

1

+value

*

+definition

0..1

PropertyValueDefinition

ElementProperty
{ordered}
8 IT Portfolio Management Facility, v1.0

7.3.1.2 Context Diagram

This diagram addresses the context of software elements within the business.

ElementInterest

{xor}

ProcessKind

AgreementKind

{xor} RequirementKind

InterestKind

Agreement
startDate : Date[0..1]
endDate : Date[0..1]
body : String

0..1

*

+kind 0..1

+agreement *
AgreementCategory

ManagedElement

ContactKind

Location

MeasurementKind

Requirement
id : String
priority : Integer
body : String *

0..1

+subRequirement

*

RequirementHierarchy

+parentRequirement

0..1

*

0..1

+requirement

*

+kind 0..1

RequirementCategory* *

+subjectElement

*

+requirement

*ElementRequirements

Element

PartyKind

ContactInfo
contactDetail : String

0..1

* +kind

0..1
+contactInfo

*
ContactInfoCategory

*

*

+contactInfo *
+location

*

ContactLocation

Measurement
whenObserved : Date[0..1]
stringValue : String[0..1]
numericValue : Float[0..1]
unitOfMeasure : String[0..1]

0..1

*

+kind 0..1

+measurement *

MeasurementCategory

*

0..1

+targetMeasurement
*

+requirement 0..1

RequirementTarget

*0..1
+measurement

*

+measuredElement

0..1

Observation

Party *

0..1 +childParty
*

PartyHierarchy

+parentParty
0..1

*

0..1

+party
*

+kind 0..1
PartyCategory

*

*

+party *

+contactInfo *

PartyContact

*

0..1

+observation

*

+observer0..1

Observer

Process

**

+parentProcess

*

ProcessHierarchy

+subProcess
*

0..1

*

+kind 0..1

+process *

ProcessCategory

*

*

+processEnabled*

+enablingElement

*ElementEnablesProcess

Interest

0..1

*

+kind 0..1

+interest
*

InterestCategory

*
0..1

+interest *+agreement

0..1

AgreementGovernsInterest

0..1

*

+elementOfInterest

0..1

+interest
* *

0..1

+interest
*

+requirementOfInterest

0..1

RequirementInterest

* 1

+interest

*

+interestedParty

1PartyInterest*

0..1

ProcessInterest

+interest

+processOfInterest

*

0..1
IT Portfolio Management Facility, v1.0 9

7.3.1.3 Deployable Elements Diagram

This diagram represents the elements that may be deployed.

InformationElementKind

Plat formElementKind

PlatformElement

0..1

*

+kind
0..1

+platform*

Plat formCategory

InformationElement
constraints : String[0..*]

0..1

*

+kind 0..1

+InformationElement*

InformationElementCategory

ServiceKind

AssetPackage
overview : String
usage : String
solution : String
classification : String[0..*]

DeployableElement
*

*+assetPackage

* +elementPackaged

*

AssetPackaging

EnumCRUD
Create
Read
Update
Delete

<<enumeration>>

DataUsage
mode : enumCRUD[0..*]

1

*

+informationElement

1

+usage
*

InformationElementUsage

Service
locator : String[0..1]

0..1

*

+kind 0..1

+service

*

ServiceCategory

SoftwareElementKind

SoftwareUsage
mode : String

SoftwareElement

*

0..1

+informationUsed
*

+usingSoftware

0..1

SoftwareAccessesInformation

*

*

+serviceConsumed

*

+consumingSoftware

*

SoftwareConsumesServices

*

*

+providingSoftware
*

+serviceSupported

*

SoftwareProvidesServices *

0..1

+softwareElement

*

+kind
0..1

Sof twareElementCategory

*

1

+softwareUsing*

+server
1

UsageServer

*

1

+softwareUsed
*

+client
1

UsageClient
10 IT Portfolio Management Facility, v1.0

7.3.1.4 Deployment Diagram

This diagram covers the deployment of elements onto hardware.

LocationKind

Location

0..1 *

+parentLocation

0..1

LocationHierarchy

+childLocation*

0..1

*

+kind
0..1

+location
*

LocationCategory

HardwareInstance

DeployableElement CommunicationConnectionKind

Deployment

0..1

*

+location
0..1

+deployment

*
DeploymentLocation

*

0..1

+deployment
*

+platform0..1

DeploymentPlatform

*

1

+deployment

*

+deployed 1

Deployment

CommunicationConnection

0..1

*

+kind0..1

+communicationConnection

*

CommunicationConnectionCategory

*

*

+connectedElement

*
{ordered}

+communicationConnection

*

DeploymentConnection

ManagedElement
registerIdentifier : String[0..1]

*

0..1

+childElement*

ElementHierarchy

+parentElement

0..1
IT Portfolio Management Facility, v1.0

7.3.1.5 The ‘Essential’ Diagram

This diagram combines all the key classes (excluding less important ones such as xKind).

Agreement
startDate : Date[0..1]
endDate : Date[0..1]
body : String

Requirement
id : String
priority : Integer
body : String

ContactInfo
contactDetail : String

Measurement
whenObserved : Date[0..1]
stringValue : String[0..1]
numericValue : Float[0..1]
unitOfMeasure : String[0..1]

Party

Process

*

0..1

+subRequirement

*

RequirementHierarchy

+parentRequirement

0..1

*

0..1

+targetMeasurement
*

+requirement 0..1

RequirementTarget

*

0..1
+childParty

*

PartyHierarchy

+parentParty
0..1

*

*

+party

*

+contactInfo *

PartyContact

*

0..1

+observation

*

+observer
0..1

Observer

*
*

+parentProcess

*

ProcessHierarchy

+subProcess *

AssetPackage
overview : String
usage : String
solution : String
classification : String[0..*]

PlatformElement

InformationElement
constraints : String[0..*]

DataUsage
mode : enumCRUD[0..*]

SoftwareElement

Service
locator : String[0..1]

SoftwareUsage
mode : String

1

*

+informationElement
1

+usage
*

InformationElementUsage

*

0..1

+informationUsed
*

+usingSoftware

0..1

SoftwareAccessesInformation

*

*

+serviceConsumed

*

+consumingSoftware

*

SoftwareConsumesServices

*

*

+providingSoftware
*

+serviceSupported

*

SoftwareProvidesServices

*

1

+softwareUsing*

+server
1

UsageServer

*

1

+softwareUsed
*

+client
1

UsageClient

HardwareInstance

Deployment

CommunicationConnection

*

0..1

+deployment
*

+platform0..1

DeploymentPlatform

*

*

+connectedElement

*
{ordered}

+communicationConnection

*
DeploymentConnection

DeployableElement*

*+assetPackage

* +elementPackaged

*

AssetPackaging

*

1

+deployment

*

+deployed 1

Deployment

ManagedElement

registerIdentifier : String[0..1]

*

*

+processEnabled*

+enablingElement

*ElementEnablesProcess * *

+subjectElement

*

+requirement

*ElementRequirements
*

0..1

+childElement

*

+parentElement

0..1

ElementHierarchy

EventOccurrence
priority : Integer
when : Date
body : String

Dependency

...

*

+parentEvent

...

EventHierarchy

+childEvent

*

Interest*
*

+interest *+agreement

*

AgreementGovernsInterest

0..1

*

+elementOfInterest
0..1

+interest
*

ElementInterest

*

0..1

+interest
*

+requirementOfInterest

0..1

RequirementInterest

* 1

+interest

*

+interestedParty

1PartyInterest*

0..1

+interest *

+processOfInterest

0..1

ProcessInterest

*

*

+involvement

*

+eventInvolved*

EventInvolvement

Element
name : String[0..1]
description : String[0..1]

*

*

+event*

+impactedElement *

EventImpact

1

*

+source

1

+outgoing*

OutgoingDependency
1

*

+target 1

+incoming

*IncomingDependency

* 0..1
+measurement

*

+measuredElement

0..1

Observation

Location

0..1
*

+parentLocation

0..1

LocationHierarchy

+childLocation*
0..1

*

+location

0..1

+deployment

*
DeploymentLocation

*

*

+contactInfo *

+location

*

ContactLocation
12 IT Portfolio Management Facility, v1.0

7.3.1.6 Kinds Diagram

This diagram shows the different subclasses of Kind.

Kind
name : String
description : String

InformationElementKind

ServiceKind

DependencyKind

RequirementKind

ProcessKind

PlatformElementKind

PartyKind

SoftwareElementKind

LocationKind

InterestKind

EventKind

ContactKind

CommunicationConnectionKind

AgreementKind

MeasurementKind
IT Portfolio Management Facility, v1.0

7.3.1.7 Inheritance Diagram

This shows the inheritance structure, excluding the Kind classes.

7.3.2 Agreement
This represents an agreement entered into by one or more Parties with respect to some sort of Interest in a managed
Element.

SoftwareUsage

LifecycleState

AssetPackage

Service

Requirement

Process

Party

ManagedElement
Location

Interest

EventOccurrence

Lifecycle

ContactInfo

CommunicationConnection

Agreement

PlatformElement
HardwareInstance

DeploymentDeployableElement

Dependency
Measurement

Element
name : String[0..1]
description : String[0..1]

InformationElement

DataUsage

SoftwareElement
14 IT Portfolio Management Facility, v1.0

7.3.2.1 Subclass of Element

Attributes

References

7.3.3 AssetPackage
This represents the package of information that might accompany a ManagedElement ready for deployment. It is intended
to match the structure for an Asset in the Reusable Asset Specification (RAS), and to be extensible to a full RAS
implementation. The package will typically contain overview, classification, and usage information. The actual
deployable artifacts will typically be linked using the Linkage package.

Date startDate[0..1] The effective start date of the Agreement. If no value is present, it can be assumed to
have always been in effect.

Date endDate[0..1] The effective end date of the Agreement. If no value is present, it can be assumed either
to be indefinite or terminable by some action or event described in the Agreement itself.

String body The text of the agreement. This might be a summary with the full text held in a linked
document (see Linkage package).

Interest interest [0..*] The Interests that this Agreement governs. For example if the Agreement represents a
Software License for a software package P, the Interests will have InterestKind of ‘User’
and link P with the different Parties licensed to use P.

A further Support Agreement might link the same ‘User’ Interests with a Support
Agreement that also links to another Interest of InterestKind ‘Technical Support’ and a
Party representing a HelpDesk team.
IT Portfolio Management Facility, v1.0

7.3.3.1 Subclass of Element

Attributes

References

7.3.4 CommunicationConnection
This represents a connection between managed elements through which they can communicate (for example, a network
segment or a telephone line). It can link any number of elements. Network elements such as bridges and routers will
typically appear as the intersection between two CommuncationConnections.

As a subclass of ManagedEement this ‘network’ can be managed in its own right.

7.3.4.1 Subclass of ManagedElement

References

7.3.5 ContactInfo
This represents a means of contacting a Party. A Party may have many different ways of being contacted. A contact may
be associated with Locations.

String Overview Textual overview of the asset and its purpose.

String Usage Textual overview of how to use the asset in different environrnents including
development.

String Solution Information about what gets deployed.

String Classifications[0..*] Classification keywords in order to facilitate searching for reuse.

Interest elementPackaged [0..*] The DeployableElements packaged.

CommunicationConnectionKind kind [0..1] An optional reference to a category for the Connection.

Deployment connectedElement [* ordered] The deployed elements connected via this connection.
16 IT Portfolio Management Facility, v1.0

7.3.5.1 Subclass of Element

Attributes

References

7.3.6 DataUsage
This represents the usage of information by software.

7.3.6.1 Subclass of Element

Attributes

References

7.3.7 Dependency
Represents a design-time or run-time dependency between elements that is not tracked by the specifically modeled
associations. So it can link dependencies between Elements (e.g., Application X depends on an Application Sender) and
between Deployments (the deployment of Application X on Server S123 is dependent on the Tomcat Application Server
deployed on machine S124) needs a dependency is directional and links one source to one target Element. It may be types
by a DependencyKind. This is designed for fairly dynamic extensibility. To make the solution manageable it is possible to
limit which Kinds of Element each DependencyKind can link.

CommunicationConnectionKind kind [0..1] An optional reference to a category for the Connection.

String contactDetail The detail of the contact information (e.g., an email address or a physical
address). The interpretation will depend on the ContactInfoKind.

ContactInfoKind kind [0..1] An optional reference to a category for the ContactInfo.

Party party[*] The Parties that can be contacted using this ContactInfo.

Location location[*] The Locations corresponding to this ContactInfo.

EnumCRUD mode[0..*] unique How the software is accessing the information: this will be one or more or
Create, Read, Update, Delete.

informationElement[1] The informationElement being used/accessed.

usingSoftware[0..1] The software doing the accessing.
IT Portfolio Management Facility, v1.0

7.3.7.1 Subclass of Element

References

7.3.8 DeployableElement
This is an abstract class that represents elements that are deployable onto hardware at a specific location.

7.3.8.1 Abstract subclass of Element

References

7.3.9 Deployment
This represents an instance of a DeployableElement placed on a HardwareInstance. Importantly, it is itself a
ManagedElement. And can participate in Dependencies (e.g., one Deployment is emergency backup for another).
Deployments can also be grouped hierarchically. This allows one to compose a System as a combination of deployed
hardware and software elements. And, further still, allows the creation of ‘environments’ such as Production and
Development.

Element source The source, or client, of the dependency.

Element target The target, or supplier, of the dependency.

DependencyKind kind[0..1] The nature of the dependency.

Deployment deployment [0..*] Where the element is deployed.

AssetPackage assetPackage [0..1] The package of asset information to help use and deploy it, if present.
18 IT Portfolio Management Facility, v1.0

7.3.9.1 Subclass of ManagedElement

References

7.3.10 Element
This is the abstract root class from which all others inherit (apart from Kind and its derivatives – see below).

Attributes

7.3.11 EventOccurrence
This represents something that has happened or may happen which may have an impact on one or more elements. It could
range from a Project through to a particular Change or Issue or Risk, or just an installation/upgrade. Such events have
their own Kind, which in turn can have a Lifecycle that will determine how the events should be processed.

Note that Events can be nested inside other ‘larger’ events and have Dependencies between them.

DeployableElement deployed The element deployed in this case. Note that this is really a type-instance
relationship and allows the same software element (for example) to be
instantiated/copied and deployed many times.

HardwareInstance platform [0..1] The specific hardware where the deployment occurs. Note that
HardwareInstance, as a ManagedElement, can be recursively decomposed.
So it would be possible to track the disk or even folder within a machine.

location Location[0..1] Where the deployment is located. Note that this will normally be used for
the hardware itself since HardwareInstance inherits from Deployment.

CommunicationConnection
communicationConnection[0..*]

The networks or other communications that this deployment participates
in. Among other things the communicationConnections should be used to
realize dependencies (e.g., one deployment is dependent on another) there
usually needs to be a mutual CommunicationConnection.

String name[0..1] An optional name for the element, used as the label for display purposes.
Note that it is not required to be unique.

String description[0..1] An optional description for the element, used as the label for explanatory
purposes.
IT Portfolio Management Facility, v1.0

7.3.11.1 Subclass of Element

Attributes

References

7.3.12 HardwareInstance
This represents a physical platform, for example, a particular item of hardware or a particular (set of) directory on a
specific hard disk.

HardwareInstance itself inherits from Deployment – indicating that each item of hardware is the deployment of the
PlatformElement representing the Model of server. Even if at a specific time it is ‘deployed’ onto a shelf in a warehouse
for storage.

Note that it inherits PropertyValues from ManagedElement.

7.3.12.1 Subclass of Deployment

References

7.3.13 InformationElement
This represents information that may be accessed by portfolio elements. It may represent anything from databases to
individual database columns, and logical or physical information. Information elements may be decomposed: for example
a database into tables into columns.

Integer priority The priority of dealing with the Event, with larger numbers indicating
greater priority.

IDate when The date associated with the event – the interpretation will depend on the
nature of the ImpactElementKind.

String body The full description of the event.

EventKind kind [0..1] An optional reference to a category for the ImpactElement.

ManagedElement impactedElement[*] The portfolio elements that are impacted.

LifecycleState state [0..1] The current state of the event with respect to the lifecycle of the EventKind.

EventOccurrence parentEvent[0..1] A larger event in which this is nested. For example, a major upgrade may
require a number of sub-events, such as: adding more RAM, upgrading
Windows, upgrading Office, downloading and applying latest patches, etc.

EventOccurrence childEvent[*] The inverse of parentEvent.

Deployment deployment [*] The Deployments deployed in this platform.
20 IT Portfolio Management Facility, v1.0

7.3.13.1 Subclass of Element

Attributes

References

7.3.14 Interest
This represents a vested interest or accountability that a party has in a managed element or requirement (for example, use
of software, business ownership, support responsibility). The Interest may be subject to an Agreement.

7.3.14.1 Subclass of Element

References

Constraints

Exactly one of requirementOfInterest, elementOfInterest, eventOfInterest, processOfInterest must be set.

7.3.15 Kind
This is the abstract root class from which all xKind elements inherit. It is akin to the class Stereotype in UML. It is
possible to add some type checking – for the DependencyKinds that can apply either as source or target.

String constraints[0..*] Any rules applying to the information.

InformationElementKind kind [0..1] An optional reference to a category for the Information Element.

DataUsage accessingSoftware[*] The software access to this information.

InformationElement
parentInformation[0..1]

The higher level/aggregated information of which this is a part.

InformationElement childInformation[*] The lower level information into which this is decomposed.

InterestKind kind [0..1] An optional reference to a category for the Interest, allowing similar
interests to be grouped.

Party interestedParty The Party with the interest.

Requirement requirementOfInterest[0..1] The requirement in which the Party has an interest.

Process processOfInterest[0..1] The process in which the Party has an interest.
IT Portfolio Management Facility, v1.0

Attributes

References

7.3.16 Lifecycle
This represents a sequence of states through which elements with certain Kinds may progress.

7.3.16.1 Subclass of Element

References

7.3.17 LifecycleState
This represents a state which is part of a Lifecycle. For example ‘under development,’ ‘testing,’ ‘live,’ ‘complete’ (for an
event).

String name A name for the kind, used as the label for display purposes. Note that it is
required to be unique among all other instances of the same Kind class
within a Facility.

String description A description for the kind, used as the label for explanatory purposes.

DependencyKind permitted
DependencyAsTarget[0..*

Declares that instances of this Kind are permitted to be the target of
instances of the referenced DependencyKind.

DependencyKind permitted
DependencyAsSource[0..*]

Declares that instances of this Kind are permitted to be the source of
instances of the referenced DependencyKind.

PropertyKind permittedProperty[0..*] Declares that instances of this Kind are permitted to have values for the
referenced PropertyKind.

LifecycleState state [*] {ordered} The states that belong to the Lifecycle.

EventKind eventKind [*] The EventKinds making use of this Lifecycle.

Kind elementKind [*] The Kinds making use of this Lifecycle.
22 IT Portfolio Management Facility, v1.0

7.3.17.1 Subclass of Element

References

7.3.18 Location
This represents a physical or logical location where software or hardware may be deployed: for example “Regional
Office” (of which there are several) or “4th Floor of HQ Building.”

7.3.18.1 Subclass of Element

References

7.3.19 ManagedElement
This abstract class represents those elements which may be managed as part of the ITPMF. It allows the grouping of
elements into hierarchies, which allows management at a higher level of granularity (e.g., System).

Lifecycle lifecycle [0..1] The Lifecycle to which this state belongs.

EventOccurrence eventOccurrence [*] The Events that currently have this state.

ManagedElementKind element [*] The ManagedElements that currently have this state.

LocationKind kind [0..1] An optional reference to a category for the Location.

ContactInfo contactInfo [*] The contact information corresponding to this location (e.g., a fax number
or full physical address).

Deployment deployment [*] The deployments for this location.

Location parentLocation[0..1] The containing location of this location.

Location childLocation [*] The locations into which this is decomposed.
IT Portfolio Management Facility, v1.0

7.3.19.1 Abstract subclass of Element

Attributes

References

7.3.20 Measurement
This represents a potential measure or observation of relevance to the software portfolio, for example the number of
actual users, the Total Cost of Ownership.

An instance of Measurement may either be linked to an Element as an actual measurement, or linked to a Requirement as
a target.

7.3.20.1 Subclass of Element

Attributes

References

Constraints

Exactly one of stringValue and numericValue must be set.

String registerIdentifier [0..1] The identifier used for the element in a corporate asset register or similar.

ManagedElement parentElement[0..1] The element containing or composing this element.

ManagedElement childElement[0..*] The elements contained or composed by this element.

Process processEnabled[0..*] The organization processes enabled by this managed element – in order to
track business impact and achieve traceability.

PropertyValue property[0..*] A dynamically extensible set of values relevant to the Kind of the element.
This can represent factors such as capacity (memory, disk) for hardware,
protocols, etc.

Date whenObserved [0..1] When the observation was made.

String stringValue [0..1] The observation value if a String.

Float integerValue [0..1] The observation value if a number.

String unitOfMeasure [0..1] What the value represents (e.g., Dollars, 100 users).

MeasurementKind kind [0..1] An optional reference to a category for the Measurement.

Party observer[0..1] Who made the observation/measurement.

Element measuredElement[0..1] The element that has been observed.

Requirement requirement[0..1] The requirement for which this measure is a target.
24 IT Portfolio Management Facility, v1.0

7.3.21 Party
This represents a human entity – person or organization – of relevance to the software portfolio. It could also represent a
position – allowing links by role rather than the person in the position. It will include users, vendors, support staff,
business owners.

7.3.21.1 Subclass of Element

References

7.3.22 PlatformElement
This represents a physical or logical platform on which software may be deployed. It may represent a hardware device or
a software environment (e.g., combination of operating system and database) or a class of platforms – for example
‘Departmental Server’ or ‘Mainframe’. It may be deployed as a HardwareInstance.

7.3.22.1 Subclass of ManagedElement

7.3.23 Process
This is the business processing that is enabled by managed elements. It may represent a high level business process, a
largely manual procedure, or an automated workflow.

7.3.23.1 Subclass of Element

References

7.3.24 PropertyValue
This represents a value associated with ManagedElement. This is provided as a generic extensible capability, though can
also be controlled by element Kind by linking the Value to a PropertyValueKind.

PartyKind kind [0..1] An optional reference to a category for the Party.

ContactInfo contactInfo[*] How to contact the Party. If not specified, it can be assumed that the
contactInfo on the parentParty (or its parent, etc.) will apply.

Party parentParty[0..1] The organization (usually) or position of which this party is a part.

Party childParty[*] The people, organizations, and positions that comprise this party.

Measurement observation[0..*] The measurements observed by the party.

ProcessKind kind [0..1] An optional reference to a category for the process.

ManagedElement enablingElement[*] The portfolio elements that enable the process.

Interest interest[0..*] The stakeholders for the process across the organization(s).

Process parentProcess[*] The higher level/aggregated process or processes of which this is a part.

Process subProcess[*] The subprocesses into which this is decomposed.
IT Portfolio Management Facility, v1.0

Attributes

References

Constraints

If there is an attached definition, its name must be the same as the PropertyValue name.

7.3.25 PropertyDefinition

Attributes

References

7.3.26 Requirement
This represents a need that is applicable to the software portfolio. Requirements can be decomposed in a hierarchy.

String name The name of the property.

String value The value of this property for the managed element.

ManagedElement element The element that the property is for.

PropertyDefinition definition[0..1] The definition for the property.

String name The name of the property.

Kind kind[0..*] The element Kinds that the property is permitted for.
26 IT Portfolio Management Facility, v1.0

7.3.26.1 Subclass of Element

Attributes

References

7.3.27 Service
This represents a service that a software element provides to the business. It may be a logical service (business function)
or a technical service (e.g., a web service or a more traditional API).

7.3.27.1 Subclass of ManagedElement

Attributes

References

7.3.28 SoftwareElement
Represents software providing some aspect of business related functionality (middleware, etc. may be represented as
PlatformElement). Can represent different levels of granularity from components/libraries up to whole ERP suites. The
inherited association from ManagedElement allows the use of aggregation hierarchies.

String id A formal identifier for the requirement, typically multi-part to represent the
hierarchical structure (e.g., 2.3.6).

Integer priority The priority of the requirement, with larger numbers indicating greater
priority.

String body The full expression of the requirement.

RequirementKind kind [0..1] An optional reference to a category for the Requirement.

ManagedElement subjectElement[*] The portfolio elements that are subject to this requirement.

Interest interest[*] Those who have a vested interest in this requirement – either because they
want to see it met or they are responsible for meeting it.

Requirement parentRequirement[0..1] The higher level requirement of which this is a part.

Requirement childRequirement[*] The lower level requirements into which this is decomposed.

Measurement targetMeasurement[0..*] Target measurements to quantify the requirement.

String locator[0..1] For an enactable service, how to access it on a network – including full
details of their interfaces (e.g., location of a WSDL file).

ServiceKind kind [0..1] An optional reference to a category for the Service.

SoftwareElement providingSoftware[*] The software elements that are used to provide the service.

SoftwareElement consumingSoftware[*] The software elements that access the service.
IT Portfolio Management Facility, v1.0

7.3.28.1 Subclass of ManagedElement

References

7.3.29 SoftwareUsage
Represents the use of one software element by another. This is at the design level and does not represent a specific
runtime connection – though it will usually prompt the need for one.

7.3.29.1 Subclass of Element

Attributes

References

SoftwareElementKind kind [0..1] An optional reference to a category for the Software.

SoftwareUsage softwareUsed[0..*] Other software elements that are used by this one.

SoftwareUsage softwareusing[0..*] Other software elements that use this one.

String mode The nature of the usage.

SoftwareElement client The client of this usage requesting capability.

SoftwareElement server The server of this usage providing a capability to the client
28 IT Portfolio Management Facility, v1.0

8 Kind Library
The metamodel is illustrated through a set of UML diagrams. Two supplementary and reusable packages are first
presented as generic MOF extensions.

ServiceKind

Kind
name : String
description : String

InformationElementKind

DependencyKind

RequirementKind

ProcessKind

PlatformKind

PartyKind

ManagedElementKind

LocationKind

InterestKind

ImpactElementKind

ContactKind

ConnectionKind

AgreementKind
IT Portfolio Management Facility, v1.0

8.1 AgreementKind

8.2 ContactKind

8.3 CommunicationConnectionKind
Connections between Platforms will tend to be more physical in nature (e.g., LAN Connection) whereas those between
SoftwareElements will tend to be more software-oriented (e.g., Middleware Connection).

Service Level Agreement Maintain an ongoing quantifiable level of service to a set of users according to a
set of agreed parameters/objectives.

Software License Agreement Provision of software for a specified number of users.

Support Agreement Provision of incident resolution.

Services Agreement Carry out specified service activities.

Maintenance Agreement Maintain a capability by providing updates (patches, new releases) as needed.

Sales Contact Maintain an ongoing quantifiable level of service to a set of users according to a
set of agreed parameters/objectives.

Support Contact Provision of software for a specified number of users.

Emergency Contact Provision of incident resolution.

Management Contact Carry out specified service actitivities.

HQ Contact Maintain a capability by providing updates (patches, new releases) as needed.

Local Contact

Mobile Contact

LAN Connection Connection over Local Area Network (with no intervening firewalls).

Public Internet Connection

VPN Connection

Private WAN Connection

Wireless Connection

Middleware Connection

Message Queue Connection

Web Services Connection

SAN Connection Storage Area Network (typically fiber-optic).
30 IT Portfolio Management Facility, v1.0

8.4 DependencyKind

8.5 EventKind
This represents

8.6 InformationElementKind

Platform Dependency An element depends on a platform to run (not exclusive –
there may be alternatives).

Change

Risk

Installation

Decommissioning

Commissioning

Relational Table Maintain an ongoing quantifiable level of service to a set of
users according to a set of agreed parameters/objectives.

Record

File

XML Schema Provision of incident resolution.

Database Carry out specified service actitivities.

Maintenance Agreement Maintain a capability by providing updates (patches, new
releases) as needed.
IT Portfolio Management Facility, v1.0

8.7 InterestKind

8.8 LocationKind

8.9 ObservationKind

Technical Owner

Technical Assigneee

Business Owner

Steward

Customer

Sponsor

Owner

User

Vendor

Developer

Supporter

Reviewer

Country

State

City

District

Campus

Building

Floor

Room

Position

Total Cost of Ownership

Number of Users

Response Time

Acquisition Cost
32 IT Portfolio Management Facility, v1.0

8.10 PartyKind

8.11 PlatformKind

Person A human being.

Company A legally-constituted company.

Organization Unit Part of a company such as a Department or Division.

Position The role to which one or more people are assigned.

Consortium A grouping of companies.

Project A temporary grouping of people constituted for a specific duration and a
specific purpose.

Server

Desktop

Laptop

Database

Networking Hardware

Firewall

Operating System

Application Server

Web Server
IT Portfolio Management Facility, v1.0

8.12 ProcessKind

8.13 RequirementKind

8.14 ServiceKind

Business Process

Procedure

Development Method

Outsourced Process

Line of Business

Governance Process

Automated Workflow

Functional Requirement Provision of functionality.

System Use Case Requirement specified as one or more system use cases.

Business Use Case Requirement specified as one or more business use cases.

Non Functional Requirement

Performance Requirement

Cost Requirement

Business Function

Web Service

Service Product Service provided on a commercial basis (internally or externally).

API
34 IT Portfolio Management Facility, v1.0

INDEX

A
Acknowledgements 2
Additional Information 2
Agreement 14
AgreementKind 30
AssetPackage 15

B
Business Process Definition Metamodel (BPDM) 2

C
Collaborating Component Architecture (CCA) 2
Common Warehouse Metamodel (CWM) 2
CommunicationConnection 16
CommunicationConnectionKind 30
Compliance points 1
Conformance 1
ContactInfo 16
ContactKind 30
Context Diagram 9
Control Diagram 8

D
DataUsage 17
Definitions 1
Dependency 17
DependencyKind 31
Deployable Elements Diagram 10
DeployableElement 18
Deployment 18
Deployment Diagram 11

E
Element 19
EventKind 31
EventOccurrence 19
ExtendedPrimitiveTypes Package 5
Extensibility 1
eXtensible Markup Language (XML) 2
ExternalReference 6
ExternalSystem 7

H
HardwareInstance 20

I
InformationElement 20
InformationElementKind 31
Inheritance Diagram 14
Interest 21
InterestKind 32
InternalContent 7
InternalReference 7
International Standards Organization (ISO) 2
Issues/problems vi
ITPortfolio Package 8

K
Kind 21
Kind instance elements library 1
Kind Library 29
Kind objects 1
Kinds Diagram 13

L
Lifecycle 22
LifecycleState 22
Linkage Package 5
Location 23
LocationKind 32

M
ManagedElement 23
Measurement 24
Meta Object Facility (MOF) 2

N
Normative References 1

O
Object Management Group, Inc. (OMG) v
ObservationKind 32
OMG specifications v
Open Distributed Processing (ODP) 2

P
Party 25
PartyKind 33
PlatformElement 25
PlatformKind 33
Process 25
ProcessKind 34
PropertyDefinition 26
PropertyValue 25

R
Reference 6
References 1
Requirement 26
RequirementKind 34
Reusable Asset Specification (RAS) 2

S
Scope 1
Service 27
ServiceKind 34
Software Process Engineering Metamodel (SPEM) 2
SoftwareElement 27
SoftwareUsage 28
Symbols 2

T
Terms and definitions 1
The ‘Essential’ Diagram 12
Typographical conventions vi

U
UML diagrams 5
UML Profile and Interchange Models for Enterprise Application

Integration (EAI) 2
IT Portfolio Management Facility, v1.0 35

UML Profile for Enterprise Distributed Object Computing
(EDOC) 2

Unified Modeling Language (UML) 1, 2

X
XML Metadata Interchange (XMI) 2
36 IT Portfolio Management Facility, v1.0

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Conventions
	5 Symbols
	6 Additional Information
	6.1 Acknowledgements
	6.1.1 Submitters
	6.1.2 Supporters

	7 The Metamodel
	7.1 ExtendedPrimitiveTypes Package
	7.1.1 Date
	7.1.2 Timestamp
	7.1.3 Blob

	7.2 Linkage Package
	7.2.1 Reference
	7.2.2 ExternalReference
	7.2.3 ExternalSystem
	7.2.4 InternalContent
	7.2.5 InternalReference

	7.3 ITPortfolio Package
	7.3.1 Diagrams
	7.3.2 Agreement
	7.3.3 AssetPackage
	7.3.4 CommunicationConnection
	7.3.5 ContactInfo
	7.3.6 DataUsage
	7.3.7 Dependency
	7.3.8 DeployableElement
	7.3.9 Deployment
	7.3.10 Element
	7.3.11 EventOccurrence
	7.3.12 HardwareInstance
	7.3.13 InformationElement
	7.3.14 Interest
	7.3.15 Kind
	7.3.16 Lifecycle
	7.3.17 LifecycleState
	7.3.18 Location
	7.3.19 ManagedElement
	7.3.20 Measurement
	7.3.21 Party
	7.3.22 PlatformElement
	7.3.23 Process
	7.3.24 PropertyValue
	7.3.25 PropertyDefinition
	7.3.26 Requirement
	7.3.27 Service
	7.3.28 SoftwareElement
	7.3.29 SoftwareUsage

	8 Kind Library
	8.1 AgreementKind
	8.2 ContactKind
	8.3 CommunicationConnectionKind
	8.4 DependencyKind
	8.5 EventKind
	8.6 InformationElementKind
	8.7 InterestKind
	8.8 LocationKind
	8.9 ObservationKind
	8.10 PartyKind
	8.11 PlatformKind
	8.12 ProcessKind
	8.13 RequirementKind
	8.14 ServiceKind

