
Java Languageto IDLMapping 1
e
hod
Note – The Java Language to IDL Mapping specification is aligned with CORBA
version 3.0.

This is OMG document ptc/2002-01-12.

Contents

This chapter contains the following sections.

1.1 Overview

The Java distributed programming community has until now been forced to choos
between two different mechanisms for distributed programming, Java Remote Met
Invocation (RMI) and OMG IDL.

Section Title Page

“Overview” 1-1

“The RMI/IDL Subset of Java” 1-2

“The IDL Mapping” 1-6

“Run-Time Issues” 1-32

“Portability Interfaces” 1-42

“Application Programming Interfaces” 1-62

“Generated IDL File Structure” 1-64
Java to IDL Mapping January 2002 1-1

1

it is
ce

t is

h

ties,

l.

over

an

-2).

n

t

).

:

The RMI style of distributed programming has proven extremely popular because
easy to use and avoids the need for Java programmers to learn a separate interfa
definition language. However, RMI lacks interoperability with other languages and i
not currently supported over standard protocols.

The mapping from Java RMI to OMG IDL and IIOP described in this chapter is
intended to unify the ease-of-programming of Java RMI with support for cross-
language operation (through OMG IDL) and support for standard protocols (throug
IIOP).

To encourage convergence between the RMI and CORBA programming communi
it is important to define a solution that is both fully compatible with current RMI
semantics and fully compatible with OMG IDL, IIOP, and the CORBA object mode

The subset of Java that meets these goals is referred to as RMI/IDL.

1.2 The RMI/IDL Subset of Java

This section describes the subset of Java RMI that is mapped to IDL and can run
GIOP.

1.2.1 Overview of Conforming RMI/IDL Types

A conformingRMI/IDL type is a Java type whose values may be transmitted across
RMI/IDL remote interface at run-time.

A Java data type is a conforming RMI/IDL type if it is:

• one of the Java primitive types (see Section 1.2.2, “Primitive Types,” on page 1

• a conforming remote interface (as defined in Section 1.2.3, “RMI/IDL Remote
Interfaces,” on page 1-3).

• a conforming value type (as defined in Section 1.2.4, “RMI/IDL Value Types,” o
page 1-4).

• an array of conforming RMI/IDL types (see Section 1.2.5, “RMI/IDL Arrays,” on
page 1-5).

• a conforming exception type (see Section 1.2.6, “RMI/IDL Exception Types,” on
page 1-5).

• a conforming CORBA object reference type (see Section 1.2.7, “CORBA Objec
Reference Types,” on page 1-6).

• a conforming IDL entity type (see Section 1.2.8, “IDL Entity Types,” on page 1-6

1.2.2 Primitive Types

All the standard Java primitive types are supported as part of RMI/IDL. These are

• void , boolean , byte , char , short , int , long , float ,
double
1-2 Java to IDL Mapping January 2002

1

va

s

n-

he
ce

s
cts
fines
ies

nt

IDL
1.2.3 RMI/IDL Remote Interfaces

An RMI remote interfacedefines a Java interface that can be invoked remotely. A Ja
interface is a conforming RMI/IDL remote interface if:

1. The interface is or inherits fromjava.rmi.Remote either directly or indirectly.

2. All methods in the interface are defined to throw
java.rmi.RemoteException or a superclass of
java.rmi.RemoteException . Throughout this section, references to method
in the interface include methods in any inherited interfaces.

3. There are no restrictions on method arguments and result types. However at ru
time, the actual values passed as arguments or returned as results must be
conforming RMI/IDL types (see Section 1.2.1, “Overview of Conforming RMI/IDL
Types,” on page 1-2). In addition, for each RMI/IDL remote interface reference, t
actual value passed or returned must be either a stub object or a remote interfa
implementation object (see Section 1.2.3.1, “Stubs and remote implementation
classes,” on page 1-4).

4. All checked exception classes used in method declarations (other than
java.rmi.RemoteException and its subclasses) are conforming RMI/IDL
exception types (see Section 1.2.6, “RMI/IDL Exception Types,” on page 1-5).1

5. Method names may be overloaded. However, when an interface directly inherit
from several base interfaces, it is forbidden for there to be method name confli
between the inherited interfaces. This outlaws the case where an interface A de
a method “foo,” an interface B also defines a method “foo,” and an interface C tr
to inherit from both A and B.

6. Constant definitions in the form of interface variables are permitted. The consta
value must be a compile-time constant of one of the RMI/IDL primitive types or
String .

7. Method and constant names must not cause name collisions when mapped to
(see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,” on
page 1-10).

The following is an example of a conforming RMI/IDL interface definition:

// Java
public interface Wombat extends java.rmi.Remote {

String BLEAT_CONSTANT = “bleat”;
boolean bleat(Wombat other)
throws java.rmi.RemoteException;

1.Because unchecked exception classes andjava.rmi.RemoteException and its
subclasses are not mapped to IDL exceptions, it is not necessary for them to be conforming
RMI/IDL exception types.
Java to IDL Mapping The RMI/IDL Subset of Java January 2002 1-3

1

class

ote

n for

te of
have

ds

l

}

While the following is an example of a non-conforming RMI/IDL interface:

// Java
// IllegalInterface fails to extend Remote!!
public interface IllegalInterface {

// illegalExceptions fails to throw RemoteException.
void illegalExceptions();

}

1.2.3.1 Stubs and remote implementation classes

At run time, when a reference to an RMI/IDL remote interface is passed across a
remote interface, the class of the actual object that is passed must be either a stub
or a remote implementation class.

A stub class is a class that has been created (normally by tools) to manage a rem
object reference.

A remote implementation class is a class that acts as the server side implementatio
a given RMI/IDL remote interface.

A given remote implementation class may implement several distinct RMI/IDL
interfaces.

1.2.4 RMI/IDL Value Types

An RMI/IDL value typerepresents a class whose values can be moved between
systems. So rather than transmitting a reference between systems, the actual sta
the object is transmitted between systems. This requires that the receiving system
an analogous class that can be used to hold the received value.

Value types may be passed as arguments or results of remote methods, or as fiel
within other objects that are passed remotely.

A Java class is a conforming RMI/IDL value type if the following applies:

1. The class must implement thejava.io.Serializable interface, either directly
or indirectly, and must be serializable at run-time. It may serialize references to
other RMI/IDL types, including value types and remote interfaces.

2. The class may implementjava.io.Externalizable . (This indicates it
overrides some of the standard serialization machinery.)

3. If the class is a non-static inner class, then its containing class must also be a
conforming RMI/IDL value type.

4. A value type must not either directly or indirectly implement the
java.rmi.Remote interface. (If this were allowed, then there would be potentia
confusion between value types and remote interface references.)
1-4 Java to IDL Mapping January 2002

1

ed to
,”
5. A value type may implement any interface except forjava.rmi.Remote.

6. There are no restrictions on the method signatures for a value type.

7. There are no restrictions onstatic fields for a value type.

8. There are no restrictions ontransient fields for a value type.

9. Method, constant, and field names must not cause name collisions when mapp
IDL (see Section 1.3.2.10, “Names that would cause OMG IDL name collisions
on page 1-10).

Here is an example of a conforming RMI/IDL value type:

// Java
public class Point implements java.io.Serializable {

public final static int CONSTANT_FOO = 3+3;
private int x;
private int y;
public Point(int x, y) { ... }
public int getX() { ... }
public int getY() { ... }

}

1.2.4.1 The Java String Type

The java.lang.String class is a conforming RMI/IDL value type following these
rules. Note, however, thatString is handled specially when mapping Java to OMG
IDL (see Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21).

1.2.5 RMI/IDL Arrays

Arrays of any conforming RMI/IDL type are also conforming RMI/IDL types. So
int[] andString[][][] are conforming RMI/IDL types. Similarly ifWombat is
a conforming RMI/IDL interface type, thenWombat[] is a conforming RMI/IDL
type.

1.2.6 RMI/IDL Exception Types

An RMI/IDL exception type is a checked exception class (as defined by the Java
Language Specification). Since checked exception classes extend
java.lang.Throwable , which implementsjava.io.Serializable , it is
unnecessary for an RMI/IDL exception class to directly implement
java.io.Serializable .

A type is a conforming RMI/IDL exception if the class:

• is a checked exception class.

• meets the requirements for RMI/IDL value types defined in Section 1.2.4,
“RMI/IDL Value Types,” on page 1-4.
Java to IDL Mapping The RMI/IDL Subset of Java January 2002 1-5

1

een

ping
Here’s an example of a conforming RMI/IDL exception type:

// Java
public class MammalOverload extends MammalException {

public MammalOverload(String message) {
super(message);

}
}

1.2.7 CORBA Object Reference Types

A conforming CORBA object reference type is either

• the Java interfaceorg.omg.CORBA.Object , or

• a Java interface that extendsorg.omg.CORBA.Object directly or indirectly and
conforms to the rules specified in the Java Language Mapping (i.e., could have b
generated by applying the mapping to an OMG IDL definition).

1.2.8 IDL Entity Types

A Java class is a conforming IDL entity type if it extends
org.omg.CORBA.portable.IDLEntity and conforms to the rules specified in
the Java Language Mapping (i.e., could have been generated by applying the map
to an OMG IDL definition) and is not an OMG IDL user exception.

1.3 The IDL Mapping

1.3.1 Overview

This section defines the mapping between RMI/IDL data types and OMG IDL. It
includes general rules for mapping Java names to OMG IDL and mappings for:

• Primitive types

• RMI/IDL remote interfaces

• RMI/IDL value types

• RMI/IDL arrays

• RMI/IDL exception types

• CORBA object reference types

• IDL entity types

• Java types that are referenced in RMI/IDL remote interfaces or inherited by
RMI/IDL value types, but which are not themselves conforming RMI/IDL types.

• RMI/IDL abstract interfaces

• RMI/IDL implementation classes
1-6 Java to IDL Mapping January 2002

1

s to
t for

r,
L.

s a
es

d to

d with
1.3.1.1 Summary of Special Case Mappings

Some standard Java class and interface types benefit from special case mapping
specific CORBA types. These are described in the appropriate sections below, bu
convenience Table 1-1 summarizes these mappings:

1.3.2 Mapping Java Names to IDL Names

In general, each Java name is mapped to an equivalent OMG IDL name. Howeve
there are some exceptions when the Java name is not a legal identifier in OMG ID

1.3.2.1 Mapping packages to modules

We map Java package names to OMG IDL modules. Each Java package become
separate OMG IDL module. Packages within packages are represented as modul
within modules.

So a Java packagea.b.c would turn into an OMG IDL module::a::b::c .

1.3.2.2 Java names that clash with IDL keywords

For Java names that collide with OMG IDL keywords, the Java names are mappe
OMG IDL by adding a leading underscore. So the Java nameoneway is mapped to
the OMG IDL identifier_oneway (an escaped identifier).

1.3.2.3 Java names with leading underscores

For Java names that have leading underscores, the leading underscore is replace
“J_”. So _fred is mapped toJ_fred .

Table 1-1 Special Case Mappings

Java OMG IDL

java.lang.Object ::java::lang::_Object
java.lang.String ::CORBA::WStringValue or wstring 1

1.String constants are mapped differently thanString variables. See Section 1.3.5.11,
“Mapping for java.lang.String,” on page 1-21.

java.lang.Class ::javax::rmi::CORBA::ClassDesc
java.io.Serializable ::java::io::Serializable
java.io.Externalizable ::java::io::Externalizable
java.rmi.Remote ::java::rmi::Remote
org.omg.CORBA.Object Object
Java to IDL Mapping The IDL Mapping January 2002 1-7

1

e
s.

r
d by
ode

inner

n

e

ame
(in

g
the

h as
1.3.2.4 Java names with illegal IDL identifier characters

Given the current lack of support for Unicode in OMG IDL, we define a simple nam
mangling scheme to support the mapping of Java identifiers to OMG IDL identifier

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ o
Unicode characters outside of ISO Latin 1, any such illegal characters are replace
“U” followed by the 4 hexadecimal characters (in upper case) representing the Unic
value. So, the Java namea$b is mapped toaU0024b andx\u03bCy is mapped to
xU03BCy .

1.3.2.5 Names for inner classes

When mapping names for Java inner classes, a composite name is formed by
concatenating the name for the outer class, two underscores, and the name of the
class. The corrections for illegal OMG IDL identifiers described above are then
applied.

For example, an inner classFred inside a classBert will get mapped to an OMG
IDL name ofBert__Fred .

1.3.2.6 Overloaded method names

If a Java RMI/IDL method isn’t overloaded, then the same method name is used i
OMG IDL as was used in Java.

Given the absence of overloaded methods in current OMG IDL, we define a simpl
name mangling for overloaded methods.

Note that a method may be uniquely defined in a base interface (and therefore its n
will not be mangled in that interface) and then be overloaded in a derived interface
which case the name will be mangled in the derived interface).

For overloaded RMI/IDL methods, the mangled OMG IDL name is formed by takin
the Java method name and then appending two underscores, followed by each of
fully qualified OMG IDL types of the arguments (removing any leading “::” and
replacing embedded “::” with “_”) separated by two underscores. Any spaces (suc
in the OMG IDL typelong long) are replaced with underscores, and any leading
underscores in OMG IDL escaped identifiers are removed.

For example, the four overloaded Java methods:

void hello();
void hello(int x, a.b.c y, int z);
void hello(int z[]);
void hello(Object o);

are mapped to the OMG IDL methods:

void hello__();
void hello__long__a_b_c__long(in long x, in ::a::b::c y, in long z);
1-8 Java to IDL Mapping January 2002

1

ral
ed

not

d to
ame

an
tify

with
ava
ts and

L:

e of
are

with
se a
nnot.
void hello__org_omg_boxedRMI_seq1_long(
in ::org::omg::boxedRMI::seq1_long x);

void hello__java_lang_Object(in ::java::lang::_Object o);

1.3.2.7 Names differing only in case

While Java supports case-sensitive names, OMG IDL does not. Therefore, a gene
name mangling rule is provided to allow unique OMG IDL identifiers to be generat
for Java names that differ only in case.

To simplify the mapping, the use of Java package names differing only in case is
supported. Nor do we support the use of class or interface names within the same
package that differ only in case. Both of these are treated as errors.

For other case-sensitive collisions, the rule is that if two (or more) names that nee
be defined in the same OMG IDL name scope differ only in case, then a mangled n
is generated consisting of the original name followed by an underscore, followed by
underscore separated list of decimal indices into the string, where the indices iden
all the upper case characters in the original string. Indices are zero based.

Thus if a Java remote interface has methodsjack, Jack and jAcK these names are
mapped tojack_, Jack_0, and jAcK_1_3 .

1.3.2.8 Method names that collide with other names

In some cases, applying these rules for name mappings would generate OMG IDL
collisions between method names and constant or field names. This is because J
constants and fields can have the same names as methods, but OMG IDL constan
fields cannot. The following rules are used to avoid such name collisions in OMG ID

• Method names are mapped unchanged (subject to other mangling rules).

• Java constant or field names whose mapped name collides with the mapped nam
a Java method (or would collide if the Java method were mapped to OMG IDL)
mapped with an additional trailing underscore.

For example, if a Java class has both a constantfoo and a methodfoo , the OMG IDL
method is calledfoo (if it is mapped) and the OMG IDL constant is calledfoo_
(whether or not the methodfoo is mapped).

1.3.2.9 Container names that clash with their members

In some cases, applying these rules for name mappings would generate OMG IDL
collisions between a container name and members of the container. This is becau
Java member can have the same name as its container, but OMG IDL members ca
The following rules are used to avoid such name collisions in OMG IDL:

• Container names are mapped unchanged (subject to other mangling rules).

• Java method, constant, or field names whose mapped name collides with the
mapped name of their Java container are mapped with an additional trailing
underscore.
Java to IDL Mapping The IDL Mapping January 2002 1-9

1

d,
this

P
1.”
en

ame
For example, if a remote Java interfaceFoo has a methodfoo , the OMG IDL
interface is calledFoo and the OMG IDL operation is calledfoo_ .

1.3.2.10 Names that would cause OMG IDL name collisions

If the name mappings defined in this specification would produce OMG IDL metho
constant, field, or attribute names that are not unique within their declared scope,
is treated as an error. For example, if a Java remote interface has methodsfoo() ,
foo(int x) , and foo__long() , the corresponding OMG IDL names would be
foo__ , foo__long , and foo__long , which is not legal OMG IDL.

1.3.3 Mappings for Primitive Types

Here are the OMG IDL mappings for the Java primitive types:

The mappings for the Javavoid , boolean , short , int , long , float , and
double types are straightforward as they have exact OMG IDL analogues.

The 8 bit signed Java typebyte is mapped to the 8 bit unsigned OMG IDL type
octet . The mapping is bit-for-bit so that Java byte value “-1” is transmitted as GIO
octet “0xFF,” and the GIOP octet “0xFF” is mapped back to the Java byte value “-
Thus when using this mapping, we will preserve full value and sign information wh
using RMI/IDL between a Java client and a Java server over GIOP.

The 16 bit Java Unicodechar type is mapped to the OMG IDLwchar type.

1.3.4 Mapping for RMI/IDL Remote Interfaces

An RMI/IDL remote interface is mapped into an OMG IDL interface with the
corresponding name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on
page 1-7) in the OMG IDL module corresponding to the Java interface’s package n
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Java OMG IDL
void void
boolean boolean
char wchar
byte octet
short short
int long
long long long
float float
double double
1-10 Java to IDL Mapping January 2002

1

ere.
n

cial

e

e

1.3.4.1 Special case for java.rmi.Remote

As a special case, any explicit use ofjava.rmi.Remote as a parameter, result, or
field is mapped to the OMG IDL type::java::rmi::Remote , which is defined as
follows:

// IDL
module java {
module rmi {

typedef Object Remote;
};
};

All RMI/IDL remote interfaces inherit fromjava.rmi.Remote . This inheritance is
represented in the RMI to OMG IDL mapping as the implicit inheritance of IDL
interface types fromCORBA::Object .

1.3.4.2 Inherited interfaces

Each inherited interface (other thanjava.rmi.Remote) in the Java interface is
represented by an equivalent inherited interface in the OMG IDL interface. If the
inherited interface is an RMI/IDL remote interface, then it is mapped as specified h
If not, it is mapped as specified in Section 1.3.11, “Mapping Abstract Interfaces,” o
page 1-30.

1.3.4.3 Property accessor methods

Methods that follow the JavaBeans design patterns for simple read-write properties
or simple read-only properties are mapped to OMG IDL interface attributes. No spe
mapping is done for indexed properties or write-only properties.

Read-Write properties

If an RMI/IDL remote interface has a pair of methodsget<name> andset<name>
where

• the get<name> method has no arguments,

• the set<name> method has a single argument and a void return type,

• the result type of theget<name> method is the same as the argument type of th
set<name> method,

• get<name> andset<name> do not throw any checked exceptions except for
java.rmi.RemoteException and its subclasses,

then this is mapped to an OMG IDL read-write attribute where the attribute has th
OMG IDL type corresponding to theset<name> method’s argument type.
Java to IDL Mapping The IDL Mapping January 2002 1-11

1

rn

bute

ed

.

Read-only properties

If there is aget<name> method that

• has no arguments,

• has a non-void return type,

• does not throw any checked exceptions except for
java.rmi.RemoteException and its subclasses,

but if there is no correspondingset<name> method that satisfies the rules defined in
“Read-Write properties” on page 1-11, then theget<name> method is mapped to a
read-only OMG IDL attribute whose type is obtained by mapping the method’s retu
type.

Boolean properties

For boolean properties anis<name> method may take the place of theget<name>
method. For example, a pair of methods, as shown below, define a read-write attri
foo.

boolean isFoo() throws java.rmi.RemoteException;
void setFoo(boolean b) throws java.rmi.RemoteException;

The is<name> method may be provided instead of aget<name> method, or it may
be provided in addition to aget<name> method. In either case, if theis<name>
method is present for a boolean property thenis<name> will be mapped to the OMG
IDL attribute <name> andget<name> (if present) will be mapped to an OMG IDL
operationget<name> . For example, the following Java methods:

// Java
boolean getBar();
boolean isBar();
void setBar(boolean x);

are mapped to the following OMG IDL:

// IDL
boolean getBar();
attribute boolean bar;

Attribute names

The JavaBeans design pattern for property names is that the property name is obtain
from the method name(s) by:

• Extracting the characters after the initial “get,” “is,” or “set” of the method name

• Converting the first character to lower case unless both the first and second
characters are upper case.

So thegetFoo method implies a “foo” property, thesetX method implies an “x”
property, and thegetURL method implies a “URL” property.
1-12 Java to IDL Mapping January 2002

1

and
L

on
e:

d
ava

nd

hich

n.
The OMG IDL attribute name is obtained by taking the JavaBeans property name
applying the normal mapping rules (see Section 1.3.2, “Mapping Java Names to ID
Names,” on page 1-7). However, if this OMG IDL attribute name conflicts with an
OMG IDL method name, then an extra pair of underscores “__” is added to the end of
the attribute name to attempt to disambiguate it.

1.3.4.4 Methods

Except for property accessors (see Section 1.3.4.3, “Property accessor methods,”
page 1-11), each method in the interface is mapped to an OMG IDL method wher

1. The OMG IDL method name is generated as described in Section 1.3.2.6,
“Overloaded method names,” on page 1-8.

2. The Java return type is mapped to the corresponding OMG IDL return type.

3. Each Java argument is mapped to an OMG IDLin parameter with the
corresponding OMG IDL type.

4. The OMG IDL parameters may be given arbitrary names, but it is recommende
that, where possible, the OMG IDL names should be obtained by mapping the J
argument names.2

5. Each declared RMI/IDL exception (other thanjava.rmi.RemoteException
and its subclasses) is mapped to the corresponding OMG IDL exception.

6. java.rmi.RemoteException and its subclasses, and unchecked exception
classes, are assumed to be mapped to the implicit CORBA system exception, a
are therefore not explicitly declared in OMG IDL.

1.3.4.5 Constants

Compile-time constants (“public final static ” fields with compile-time
constant values) for primitive types andStrings are mapped to similarly named IDL
constants in the target interface with the same values, except for byte constants w
are mapped bit-for-bit. For example, -1 maps to 255. Individualwstring andwchar
character values may need to be escaped as defined in the OMG IDL specificatio

2. This is not always possible, since Java method argument names do not appear in the .class
file output from the javac compiler.
Java to IDL Mapping The IDL Mapping January 2002 1-13

1

MI
1.3.4.6 Repository ID

A #pragma ID is generated to assign each mapped OMG IDL interface type an R
Hashed format repository ID derived from the Java interface name using the rules
specified inThe Common Object Request Broker: Architecture and Specifications,
Interface Repositorychapter, with a hash code of zero and no SUID. See
Section 1.3.5.7, “Repository ID,” on page 1-18 for more information.

1.3.4.7 An example

Here is an example of an RMI/IDL remote interface:

// Java
package alpha.bravo;
public interface Wombat extends java.rmi.Remote,

omega.Wallaby {
String BLEAT_CONSTANT = “bleat”;
void chirp(int x) throws RemoteException;
void buzz() throws RemoteException, omega.MammalOverload;
int getFoo() throws RemoteException;
void setFoo(int x) throws RemoteException;
String getURL() throws RemoteException;
void eat() throws Exception;
void drink() throws RemoteException,

java.rmi.NoSuchObjectException;
}

that gets mapped to the following IDL:

// IDL
module alpha {
module bravo {

interface Wombat: ::omega::Wallaby {
const wstring BLEAT_CONSTANT = “bleat”;
void chirp(in long arg0);
void buzz() raises (::omega::MammalOverloadEx);
attribute long foo;
readonly attribute ::CORBA::WStringValue URL;
void eat() raises (::java::lang::Ex);
void drink();

};
#pragma ID Wombat “RMI:alpha.bravo.Wombat:0000000000000000”
};
};

Note thatString constants are mapped differently thanString variables. See
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21.
1-14 Java to IDL Mapping January 2002

1

L
ad,

G

G
g

e

an

is
G
en

lue

of

.

1.3.5 Mapping for RMI/IDL Value Types

This section covers the general mapping for RMI/IDL value types, including inner
classes and conforming exception classes that are not RMI/IDL exception types.
However, note that there are special case mappings forjava.lang.String (see
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21) and
java.lang.Class (see Section 1.3.5.12, “Mapping for java.lang.Class,” on
page 1-21).

RMI/IDL value classes that implementorg.omg.CORBA.portable.IDLEntity
andorg.omg.CORBA.portable.ValueBase directly or indirectly are not
mapped to OMG IDL, because these Java classes correspond to existing OMG ID
value types that were mapped to Java using the OMG IDL to Java mapping. Inste
the original OMG IDL definitions are used.

Exception classes that implementorg.omg.CORBA.portable.IDLEntity may
appear only in Javathrows clauses. This is because they correspond to existing OM
IDL exception types, and OMG IDLexception types may appear only in IDL
raises clauses.

Each RMI/IDL value class (except for those mapped from OMG IDL using the OM
IDL to Java mapping) is mapped to an OMG IDL value type with the correspondin
OMG IDL name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on
page 1-7) in the OMG IDL module corresponding to the Java class’s package nam
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

1.3.5.1 Inherited base class

If the RMI/IDL class extends some base class (other thanjava.lang.Object),
then this inheritance is represented by having the OMG IDL value type inherit from
IDL value type corresponding to the base class. See Section , “module org {,” on
page 1-27 for details.

1.3.5.2 Inherited interfaces

Each inherited interface (other thanjava.io.Serializable and
java.io.Externalizable) in the Java class is represented by an equivalent
inherited or supported type in the mapped OMG IDL type. If the inherited interface
mapped to an OMG IDL abstract valuetype, then it is inherited by the mapped OM
IDL type. If the inherited interface is mapped to an OMG IDL abstract interface, th
it is supported by the mapped OMG IDL type. It is not possible for the inherited
interface to be mapped to a non-abstract OMG IDL interface, because RMI/IDL va
types cannot implement RMI/IDL remote interfaces (see Section 1.2.4, “RMI/IDL
Value Types,” on page 1-4). See Section , “module org {,” on page 1-27 for details
how inherited interfaces are mapped.

1.3.5.3 Methods

It is not required that methods in RMI/IDL value classes be mapped into OMG IDL
Java to IDL Mapping The IDL Mapping January 2002 1-15

1

fect,
uld

G
ch
ules

to

r

d
ava
This is partly due to concern that an automatic mapping would have a spaghetti ef
where referencing a single value type would result in mappings for methods that wo
pull in other RMI/IDL types, that would pull in other value types.

In addition, many of the methods in common Java value types cannot be mapped
usefully to OMG IDL (because they reference non RMI/IDL types) or to other
languages.

However, there may be cases where it is useful to map value type methods to OM
IDL and tools may choose to support options to map methods. In those cases, ea
mapped method in a Java value type is mapped to an OMG IDL method using the r
specified in Section 1.3.4.3, “Property accessor methods,” on page 1-11 and
Section 1.3.4.4, “Methods,” on page 1-13.

Java private methods are not mapped to OMG IDL.

1.3.5.4 Constructors

As with methods, it is not required that RMI/IDL value type constructors be mapped
OMG IDL. However, in those cases where constructors are mapped to OMG IDL
(including the default constructor, if any), we require that the following mapping be
used:

Each mapped constructor in a Java value type is mapped to an OMG IDL initialize
where:

1. If there is a single IDL initializer, its name iscreate . If there are multiple IDL
initializers, this name is mangled as specified in Section 1.3.2.6, “Overloaded
method names,” on page 1-8.

2. Each Java argument is mapped to an IDLin parameter with the corresponding IDL
type.

3. The OMG IDL parameters may be given arbitrary names, but it is recommende
that, where possible, the OMG IDL names should be obtained by mapping the J
argument names.

4. Each declared RMI/IDL exception type (other than
java.rmi.RemoteException and its subclasses) is mapped to the
corresponding OMG IDL exception.

5. java.rmi.RemoteException and its subclasses, and unchecked exception
classes, are not explicitly declared in OMG IDL.

Java private constructors are not mapped to OMG IDL.

For example, the Java classes:

// Java
public class foo implements java.io.Serializable {

foo(int x);
}
public class bar implements java.io.Serializable {
1-16 Java to IDL Mapping January 2002

1

n.

ed

ing
1-19

d

r

bar(int x);
bar(char y);

}

would be mapped to the OMG IDL valuetypes:

// IDL
valuetype foo {

factory create(in long x);
};
valuetype bar {

factory create__long(in long x);
factory create__wchar(in long y);

};

1.3.5.5 Constants

Compile-time constants (“public final static ” fields with compile-time
constant values) for primitive types andStrings are mapped to similarly named IDL
constants in the target value type with the same values. Individualwstring andwchar
character values may need to be escaped as defined in the OMG IDL specificatio

1.3.5.6 Data

If the class implementsjava.io.Externalizable , then the serialized state of the
Java class is treated as an opaque type, and it is defined as an OMG IDL“custom
valuetype .” Java non-static non-transientpublic fields are mapped to OMG IDL
public data members, and other Java fields are not mapped.

If the class does not implementjava.io.Externalizable but does have a
writeObject method,, or extends such a class directly or indirectly, then it is mapp
to an OMG IDL “custom valuetype ” using the rules for mapping data members
specified below. An additional IDL custom valuetype in the module
::org::omg::customRMI is also generated to assist with marshaling and unmarshal
instances of the class. See Section 1.3.5.8, “Secondary custom valuetype,” on page
for details. In this case and for Java classes that implement
java.io.Externalizable , all the semantics of
java.io.ObjectOutputStream and java.io.ObjectInputStream
supported by RMI over JRMP are supported over IIOP.

If the class does not implementjava.io.Externalizable and has a declared
private static final field namedserialPersistentFields of type
java.io.ObjectStreamField[] , then the mapping of data fields to OMG IDL
is governed by the value of that field. If the Java class has nowriteObject method,
then eachObjectStreamField instance in the array must correspond to a declare
field in the class with the same name and the same declared type. For each
ObjectStreamField instanceosf in the array, there is an OMG IDL data membe
with name equal toosf.getName() and type equal to the standard mapping of the
Java to IDL Mapping The IDL Mapping January 2002 1-17

1

f
e

d

in
he

es

.

r
d by

le
Java typeosf.getType().getName() to OMG IDL. If the corresponding field
exists in the Java class and is declaredpublic , then the OMG IDL field is also
declaredpublic ; otherwise, the OMG IDL field is declaredprivate .

If the class does not implementjava.io.Externalizable and does not have a
declaredprivate static final field namedserialPersistentFields of
type java.io.ObjectStreamField[] , then each non-static non-transient field o
the Java class is mapped to a corresponding OMG IDL data member with the sam
name, with the corresponding OMG IDL type. Javapublic fields are mapped to
OMG IDL public data members. Non-public Java fields are mapped to OMG IDL
private data members.

The following rules apply to the ordering of fields in an OMG IDL value type mappe
from Java.

• All non-constant fields whose Java type is a primitive precede all other non-
constant fields.

• The non-constant primitive fields are ordered by sorting their Java field names
increasing order. The sort compares the field name strings lexicographically. T
comparison is based on the Unicode value of each character in the strings.

• The non-constant non-primitive fields are ordered by sorting their Java field nam
in the same way as non-constant primitive fields.

1.3.5.7 Repository ID

To allow reliable detection of version mismatches, a#pragma ID is generated to
assign each value type a specific repository ID string with a specific version string

The syntax of the repository ID is the standard OMG RMI Hashed format, with an
initial “RMI:” followed by the Java class name, followed by a hash code string,
followed optionally by a serialization version UID string.

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ o
Unicode characters outside of ISO Latin 1, any such illegal characters are replace
“\U” followed by the 4 hexadecimal characters (in upper case) representing the
Unicode value. The use of a “\” is legal within a repository ID and it allows a reliab
demangling from a repository ID back to the Java class name.

For example, the Java typejava.util.Hashtable would be mapped to the OMG
IDL type ::java::util::Hashtable with a repository ID of
“RMI:java.util.Hashtable:C03324C0EA357270:13BB0F25214AE4B8” .

Similarly, a Java classa.x\u03bCy might be mapped to the OMG IDL type
::a::xU03BCy with repository ID
“RMI:a.x\U03BCy:0123456789ABCDEF:123456789ABCDEF0” .
1-18 Java to IDL Mapping January 2002

1

ing
ule

e

ng

the
1.3.5.8 Secondary custom valuetype

In addition to the primary mapping described above, an RMI/IDL value type contain
a writeObject method is mapped to a secondary IDL custom valuetype. The mod
name for this valuetype is formed by taking the::org::omg::customRMI prefix and
then adding the primary mapped type’s module name. The name of the secondary
valuetype is the same as the name of the primary IDL custom value type to which th
RMI/IDL value type was mapped. The secondary valuetype has no inheritance, data
members, methods, or initializers. It has a#pragma ID specifying a repository ID
formed by taking the repository ID of the primary custom valuetype and prefixing the
Java package name with"org.omg.customRMI." . The secondary custom valuetype
represents the enclosure ofwriteObject data that is wriitten to the serialization
stream when the primary custom valuetype or any of its subclasses is serialized usi
format version 2, as described in item 1d of Section 1.4.10, “Custom Marshaling
Format,” on page 1-40.

For IDL custom marshaling and unmarshaling of the primary mapped IDL valuetype,
marshal andunmarshal methods can callwrite_Value() andread_Value() to write
and read the nested valuetype enclosure. This will cause themarshal andunmarshal
methods of the secondary mapped IDL valuetype to be called to write and read the
custom serialized data.

1.3.5.9 Example without writeObject

The RMI/IDL value type:

// Java
package alpha.bravo;
public class Hedgehog extends Warthog

implements java.io.Serializable {
public final static short MAX_WARTS = 12;
private int length;
protected boolean foobah;
int height;
public int size;
public void snuffle() { ... }
public int getLength() { ... }

}

gets mapped to the IDL value type:

// IDL
module alpha {
module bravo {

valuetype Hedgehog: ::alpha::bravo::Warthog {
const short MAX_WARTS = 12;
private boolean foobah;
private long height;
private long length_;
public long size;
Java to IDL Mapping The IDL Mapping January 2002 1-19

1

// mapping of methods, attributes, and initializers is optional
void snuffle();
readonly attribute long length();
factory create();

};
#pragma ID Hedgehog

“RMI:alpha.bravo.Hedgehog:12345678ABCDEF00:0123456789ABCDEF”
};
};

1.3.5.10 Example with writeObject

The RMI/IDL value type:

// Java
package alpha.bravo;
public class Kangaroo extends Wallaby

implements java.io.Serializable {
private int length;
private Kangaroo(int length) { ... }
private void writeObject(java.io.ObjectOutputStream s)

{ ... }
public int hop() { ... }

}

gets mapped to the IDL value types:

// IDL
module alpha {
module bravo {

custom valuetype Kangaroo: ::alpha::bravo::Wallaby {
private long length;
// mapping of methods shown below is optional
long hop();

};
#pragma ID Kangaroo

“RMI:alpha.bravo.Kangaroo:87654321ABCDEF01:9876543210FEDCBA”
};
};

module org {
module omg {
module customRMI {
module alpha {
module bravo {

custom valuetype Kangaroo {};
#pragma ID Kangaroo

"RMI:org.omg.customRMI.alpha.bravo.Kangaroo:87654321ABCDEF01:
9876543210FEDCBA"
};
1-20 Java to IDL Mapping January 2002

1

e

ent,
};
};
};
};

1.3.5.11 Mapping for java.lang.String

When used as a parameter type, return type, or data member, the JavaString type is
mapped to the type::CORBA::WStringValue . However when mapping Java
String constant definitions, a JavaString is simply mapped to awstring .

::CORBA::WStringValue is a standard type that is part of theCORBA module. It is
defined as

valuetype WStringValue wstring;

which is semantically equivalent to:

valuetype WStringValue {
public wstring data;

};

1.3.5.12 Mapping for java.lang.Class

When used as a parameter type, return type, or data member, the JavaClass type is
mapped to the OMG IDL type::javax::rmi::CORBA::ClassDesc . This OMG IDL
type is the result of mapping the following Java class to OMG IDL:

// Java
package javax.rmi.CORBA;
public class ClassDesc implements java.io.Serializable {

public String repid;
public String codebase; // space-separated list of URLs
static final long serialVersionUID

= -3477057297839810709L;
}

1.3.6 Mapping for RMI/IDL Arrays

An RMI/IDL array is mapped to a “boxed” value type containing an IDL sequence. W
use the syntax “valuetype xyz foo ” as a shorthand for defining a value type named
“xyz ” that contains a single field of type “foo .”

The module for each such value type is determined by the IDL type of the array
element. For multi-dimensional arrays, this is the type of the innermost array elem
after all the dimensions are resolved.
Java to IDL Mapping The IDL Mapping January 2002 1-21

1

g
e

s and

g

a

Primitive OMG IDL types such aslong , boolean , etc. are mapped directly into the
::org::omg::boxedRMI module. For other types, a module name is formed by takin
the ::org::omg::boxedRMI prefix and then adding the type’s existing module nam
to identify a sub-module. So the type::a::b::c is mapped into the module
::org::omg::boxedRMI::a::b .

For each “boxed” value type generated for a Java array, a#pragma ID is generated to
specify an RMI Hashed format repository ID for the IDL type.

The OMG IDL value type name within the module is formed by prefixing the OMG
IDL element type name with “seq<n>_ ” where <n> is the number of dimensions of
the array. Any spaces (such as in the OMG IDL typelong long) are replaced with
underscores.

Some example value definitions resulting from Java arrays:

boolean[] => in the module::org::omg::boxedRMI the definition:

valuetype seq1_boolean sequence<boolean>;

long[] => in the module::org::omg::boxedRMI the definition:

valuetype seq1_long_long sequence<long long>;

a.b.C[] => in the module::org::omg::boxedRMI::a::b the definition:

valuetype seq1_C sequence<::a::b::C>;

x.Y[][] => in the module::org::omg::boxedRMI::x the definitions:

valuetype seq1_Y sequence<::x::Y>;
valuetype seq2_Y sequence<seq1_Y>;

1.3.6.1 Preventing redefinitions of boxed sequence types

Each generated boxed sequence type must be protected against multiple definition
there are various ways in which this could be accomplished. For example, each
generated boxed sequence type could be wrapped in an#ifndef and#endif pair where
the tag of the#ifndef is the fully scoped name of the sequence value type, replacin
the leading ‘:: ’ with two underbars, replacing each inner ‘:: ’ with one underbar, and
adding two underbar characters at the end. The#ifndef would be followed by a
#define of the tag, followed by the sequence definition, followed by an#endif .

A definition for a sequence ofboolean that uses this approach would be wrapped in
preamble of

#ifndef __org_omg_boxedRMI_seq1_boolean__
#define __org_omg_boxedRMI_seq1_boolean__

and would be followed by an

#endif
1-22 Java to IDL Mapping January 2002

1

e

s

an
1.3.6.2 Array example

Here’s a more complete example. The Java definition:

// Java
package alpha.bravo;
public class Charlie implements java.io.Serializable {

public omega.Dolphin fins[];
}

would result in the following OMG IDL definition:

// IDL
#ifndef __org_omg_boxedRMI_omega_seq1_Dolphin__
#define __org_omg_boxedRMI_omega_seq1_Dolphin__
module org {
module omg {
module boxedRMI {
module omega {

valuetype seq1_Dolphin sequence<::omega::Dolphin>;
#pragma ID seq1_Dolphin

“RMI:[Lomega.Dolphin;:ABCDEF0123456789:01ABCDEF23456789”
};
};
};
};
#endif

module alpha {
module bravo {

valuetype Charlie {
public ::org::omg::boxedRMI::omega::seq1_Dolphin fins;

};
#pragma ID Charlie

“RMI:alpha.bravo.Charlie:0123456789ABCDEF:ABCDEF9876543210”
};
};

1.3.7 Mapping RMI/IDL Exceptions

OMG IDL does not allow subclassing of exception types. By contrast Java
programmers tend to make heavy use of exception subclassing, and the Java typ
system is used to distinguish different flavors of exceptions at run time. It is very
common for a Java interface to say it raises a fairly generic exception (such as
java.io.IOException) but for implementations to throw more specific sub-type
(such asjava.io.InterruptedIOException) and for clients to use the Java
instanceof operator to check for specific subtypes. In addition, RMI/IDL
exceptions can be passed as normal value types, whereas OMG IDL exceptions c
only be used inraises clauses.
Java to IDL Mapping The IDL Mapping January 2002 1-23

1

to

s,

L
,
y

).

G

G
.2.1,

a

This mismatch of exception styles makes the mapping of RMI/IDL exception types
OMG IDL problematic.

To allow full support for subclassing when communicating Java to Java we use a
mapping where an RMI/IDL exception type is mapped to both a specific OMG IDL
exception and to an OMG IDL value type that allows subclassing. The OMG IDL
exception has a single field that holds the corresponding value object.

This solution allows RMI/IDL to support the normal idiomatic use of Java exception
while still being correctly mappable into OMG IDL.

1.3.7.1 The IDL value type

Each RMI/IDL exception type is mapped to an OMG IDL value type in the OMG ID
module corresponding to the Java exception’s package name (see Section 1.3.2.1
“Mapping packages to modules,” on page 1-7). The value type’s name is formed b
taking the RMI/IDL exception name and applying the normal corrections for illegal
IDL names (see Section 1.3.2, “Mapping Java Names to IDL Names,” on page 1-7

The OMG IDL value type inherits from an OMG IDL parent value type that
corresponds to the base class of the RMI/IDL exception class. If an RMI/IDL
exception typeFred extendsBert , then its OMG IDL value typeFred will inherit
Bert .

The mapping of the fields, methods, constants, and inherited interfaces to the OM
IDL value type follow the same rules defined for other RMI/IDL value types in
Section 1.3.5.2, “Inherited interfaces,” on page 1-15 through Section 1.3.5.7,
“Repository ID,” on page 1-18.

1.3.7.2 The IDL exception

Each RMI/IDL exception type is also mapped to an OMG IDL exception in the OM
IDL module corresponding to the Java exception’s package name (see Section 1.3
“Mapping packages to modules,” on page 1-7). The OMG IDL exception name is
formed from the Java exception name by

• removing any trailing “Exception ” suffix.

• adding an “Ex” at the end of the name.

• applying the normal corrections for illegal OMG IDL names (see Section 1.3.2,
“Mapping Java Names to IDL Names,” on page 1-7).

If applying the above rules yields the same OMG IDL name for more than one Jav
exception name (e.g., there are Java exception namesfoo and fooException ,
which both map to the OMG IDL namefooEx), then this is treated as an error.

For example:

java.lang.IllegalAccessException is mapped to
::java::lang::IllegalAccessEx

alpha.bravo.Foo is mapped to::alpha::bravo::FooEx
1-24 Java to IDL Mapping January 2002

1

it is
This OMG IDL exception name can then be used in theraises clause of OMG IDL
method definitions.

The OMG IDL exception type is defined with a single data member namedvalue that
has the type of the associated value object.

1.3.7.3 Mapping References to RMI/IDL Exceptions

Whenever an RMI/IDL exception is used in a Javathrows clause, it is mapped to a
use of the corresponding OMG IDL exception type in the OMG IDLraises clause.

Whenever an RMI/IDL exception is used as a data field or as a method argument,
mapped to the corresponding OMG IDL value type.

1.3.7.4 Example

The Java RMI/IDL definitions:

// Java
package omega;
public class FruitbatException extends MammalException {

public FruitbatException(String message, int count) {
...

}
public int getCount() { ... }
private int count;

}

public interface Thrower extends java.rmi.Remote {
void doThrowFruitbat() throws FruitbatException,

RemoteException;
FruitbatException getLastException()

throws RemoteException;
}

are mapped to OMG IDL as:

// IDL
module omega {

valuetype FruitbatException: ::omega::MammalException {
private long count_;
// mapping of attributes shown below is optional
readonly attribute long count();

};
#pragma ID FruitbatException

“RMI:omega/FruitbatException:1234567899775511:3344556645678901”

exception FruitbatEx {
FruitbatException value;

};
Java to IDL Mapping The IDL Mapping January 2002 1-25

1

d"

r

om

er
interface Thrower {
void doThrowFruitbat() raises (FruitbatEx);
readonly attribute FruitbatException lastException;

};
#pragma ID Thrower “RMI:omega.Thrower:0000000000000000”
};

1.3.8 Mapping CORBA Object Reference Types

A CORBA object reference type is mapped directly to its corresponding OMG IDL
interface or toObject if it is org.omg.CORBA.Object .

1.3.9 Mapping IDL Entity Types

An IDL entity type that is not a CORBA object reference type is mapped to a "boxe
value type containing the IDL entity type, except as specified in Section 1.3.5,
“Mapping for RMI/IDL Value Types,” on page 1-15 and Section 1.3.10, “Mapping fo
Non-conforming Classes and Interfaces,” on page 1-27.

The containing module for the boxed type is determined by the IDL entity type's
containing module. A module name is formed by taking the::org::omg::boxedIDL
prefix and appending the IDL entity type's fully scoped IDL module name. A boxed
value type corresponding to the IDL entity type is defined within this module. The
name of the value type is the same as the name of the IDL definition it is boxing.

For example, assume we have the following IDL and the Java class that results fr
applying the forward mapping:

// IDL
module hello {

struct world {
short x;

};
};

// Java
package hello;
public final class world implements

org.omg.CORBA.portable.IDLEntity {
...
}

Now assume thathello.world is used as an argument to a method or as a memb
of an RMI/IDL value type. The Java classhello.world is mapped as follows:
1-26 Java to IDL Mapping January 2002

1

for

ped
module org {
module omg {
module boxedIDL {
module hello {

valuetype world ::hello::world;
#pragma ID world “RMI:hello.world:1234567890ABCDEF”
};
};
};
};

The exact mechanism by which the IDL for::hello::world is created is a tools issue
and is not specified.

These generated types must be protected against multiple definitions. See
Section 1.3.6.1, “Preventing redefinitions of boxed sequence types,” on page 1-22
an example of an approach that could be used.

The IDL entity typesorg.omg.CORBA.Any andorg.omg.CORBA.TypeCode are
mapped as follows:

module org {
module omg {
module boxedIDL {
module CORBA {

valuetype _Any any;
#pragma ID _Any “RMI:org.omg.CORBA.Any:0000000000000000”
};
};
};
};

module org {
module omg {
module boxedIDL {
module CORBA {

valuetype _TypeCode ::CORBA::TypeCode;
#pragma ID _TypeCode

“RMI:org.omg.CORBA.TypeCode:0000000000000000”
};
};
};
};

1.3.10 Mapping for Non-conforming Classes and Interfaces

In addition to generating OMG IDL for each conforming RMI/IDL type, OMG IDL
definitions are also required for each Java class or interface that

• is inherited (either directly or indirectly) by another Java type that has been map
to OMG IDL.
Java to IDL Mapping The IDL Mapping January 2002 1-27

1

ace

on

to
a

no

s)

ing

ata

G

• is specified as an argument type or as a result type to an RMI/IDL remote interf
method.

• has been mapped to a data member of an OMG IDL value type.

Each such Java class or interface (except for interfaces that extend
org.omg.CORBA.portable.IDLEntity directly or indirectly) is mapped to an
OMG IDL type with the corresponding name (see Section 1.3.2, “Mapping Java
Names to IDL Names,” on page 1-7) in the OMG IDL module corresponding to the
Java type’s package name (see Section 1.3.2.1, “Mapping packages to modules,”
page 1-7).

Java interfaces that extendorg.omg.CORBA.portable.IDLEntity directly or
indirectly are not mapped to OMG IDL, because these Java interfaces correspond
existing OMG IDL interfaces that were mapped to Java using the OMG IDL to Jav
mapping.

Non-conforming Java classes are mapped to OMG IDL abstract value types with
data members. Non-conforming Java interfaces are mapped as follows:

• Java interfaces whose method definitions (including inherited method definition
all throw java.rmi.RemoteException or a superclass of
java.rmi.RemoteException are RMI/IDL abstract interfaces. They are
mapped to OMG IDL abstract interfaces as described in Section 1.3.11, “Mapp
Abstract Interfaces,” on page 1-30.

• All other Java interfaces are mapped to OMG IDL abstract value types with no d
members.

1.3.10.1 java.io.Serializable and java.io.Externalizable

As a special case, any uses ofjava.io.Serializable or
java.io.Externalizable as a parameter, result, or field are mapped to the OM
IDL types ::java::io::Serializable and ::java::io::Externalizable respectively.

These OMG IDL types are defined as follows:

// IDL
module java {
module io {

typedef any Serializable;
typedef any Externalizable;

};
};
1-28 Java to IDL Mapping January 2002

1

ied for
1.3.10.2 Mapping for java.lang.Object

The Java typejava.lang.Object is mapped to the OMG IDL type
::java::lang::_Object , which is defined as follows:

// IDL
module java {
module lang {

typedef any _Object;
};
};

This is used whenjava.lang.Object is specified as the type of a parameter,
result, or field. All Java classes implicitly inherit fromjava.lang.Object , but this
implicit inheritance is not exposed as part of the RMI to OMG IDL mapping.

1.3.10.3 Inherited interfaces

Each inherited Java class or interface (other thanjava.io.Serializable and
java.io.Externalizable) in the Java type is represented by an equivalent
inherited value type or abstract interface type in OMG IDL.

1.3.10.4 Methods and constants

The methods and constants in these classes and interfaces are mapped as specif
value classes in Section 1.3.4.4, “Methods,” on page 1-13 and Section 1.3.4.5,
“Constants,” on page 1-13.

1.3.10.5 Examples

The following non-conforming Java types:

// Java
package alpha.bravo;
public interface Mammal {

public int getSize();
}

public class PolarBear {
private int length;
public int weight;
public PolarBear(int length, int weight) { ... }
public int getSize() { ... }
public int getWeight() { ... }

}

Java to IDL Mapping The IDL Mapping January 2002 1-29

1

a

rited

.4.3,
-13,
get mapped to the OMG IDL value types:

// IDL
module alpha {
module bravo {

abstract valuetype Mammal {
};

abstract valuetype PolarBear {
};

};
};

1.3.11 Mapping Abstract Interfaces

Java interfaces that do not extendjava.rmi.Remote directly or indirectly and
whose method definitions (including inherited method definitions) all throw
java.rmi.RemoteException or a superclass of
java.rmi.RemoteException are mapped to OMG IDL abstract interfaces. Jav
interfaces that do not extendjava.rmi.Remote directly or indirectly and have no
methods are also mapped to OMG IDL abstract interfaces.

1.3.11.1 Inherited interfaces

Each inherited Java interface in the Java type is represented by an equivalent inhe
abstract interface in the OMG IDL type.

1.3.11.2 Methods and constants

Methods and constants are mapped according to the rules specified in Section 1.3
“Property accessor methods,” on page 1-11, Section 1.3.4.4, “Methods,” on page 1
and Section 1.3.4.5, “Constants,” on page 1-13.

1.3.11.3 Examples

The following Java type:

// Java
package alpha.bravo;
public interface Bear {

public int getSize() throws
java.rmi.RemoteException;

}

gets mapped to the OMG IDL type:

// IDL
module alpha {
module bravo {
1-30 Java to IDL Mapping January 2002

1

L
s the

to
s’s
).

ce in
abstract interface Bear {
readonly attribute long size();

};
#pragma ID Bear “RMI:alpha.bravo.Bear:0000000000000000”
};
};

1.3.12 Mapping Implementation Classes

In general, mapping RMI implementation classes to OMG IDL is not needed.
However, if a given RMI implementation class implements multiple distinct RMI/ID
remote interfaces, then it is necessary to generate an OMG IDL type that represent
unification of the distinct RMI/IDL types.

Any such composite RMI/IDL implementation class is mapped into an OMG IDL
interface with the corresponding name (see Section 1.3.2, “Mapping Java Names
IDL Names,” on page 1-7) in the OMG IDL module corresponding to the Java clas
package name (see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7

Each inherited RMI/IDL remote interface (other thanjava.rmi.Remote) inherited
by the Java implementation class is represented by an equivalent inherited interfa
the OMG IDL interface. Inherited classes and inherited interfaces that are not
RMI/IDL remote interfaces are ignored.

At run time, any instances of the composite implementation class must, from a
CORBA perspective, implement the corresponding composite OMG IDL interface.
This implies, for example, they must return true to any calls of “is_a ” on any of the
OMG IDL interfaces associated with the distinct RMI/IDL interfaces.

1.3.12.1 Example

The RMI/IDL implementation classalpha.bravo.AB that implements the RMI/IDL
remote interfacesalpha.bravo.A andalpha.bravo.B :

// Java
package alpha.bravo;
public class AB extends javax.rmi.PortableRemoteObject

implements alpha.bravo.A, alpha.bravo.B {
...

}

is mapped to the OMG IDL:

// IDL
module alpha {
module bravo {

interface AB: ::alpha::bravo::A, ::alpha::bravo::B {
};

#pragma ID AB “RMI:alpha.bravo.AB:0000000000000000”
Java to IDL Mapping The IDL Mapping January 2002 1-31

1

alue

ine is
the

y ID,

It is

g

ject
D of
time

rs
};
};

1.4 Run-Time Issues

In addition to the RMI/IDL mapping there are also run-time issues about how to
implement Java RMI/IDL calls over GIOP.

1.4.1 Subclasses of Value Objects

It should be possible to send a subclass of an RMI/IDL value type where a base v
type was specified in the OMG IDL.

If this occurs, the recipient is responsible for locating a suitable implementation
subclass to represent the value object subtype. In cases where a Java virtual mach
available, this might include attempting to load Java bytecodes for the subclass. In
Java to C++ case this might involve attempting to locate a suitable C++ subclass.

The name of the subclass can be obtained by parsing the value object’s repositor
which must be in the standard OMG RMI Hashed format (see Section 1.3.5.7,
“Repository ID,” on page 1-18).

If a suitable subclass is not available, then the recipient must raise an exception.
not acceptable for an implementation to attempt to substitute a base class of the
subclass value that was transmitted.

1.4.2 Locating Stubs for Remote References

When receiving an IOR from another system, it is the responsibility of the receivin
system to know which RMI/IDL type is expected. The receiving system should be
prepared to use stubs associated with this RMI/IDL type to manage the received ob
reference. However, the receiving system may also optionally use the Repository I
the incoming IOR to locate and use stubs that more accurately reflect the true run-
type of the object reference.

1.4.3 Narrowing

To narrow an RMI/IDL object reference to a different type, application programme
must use the staticnarrow method provided by the
javax.rmi.PortableRemoteObject class (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Thus for example they might do:

// Java
alpha.bravo.Mamma l m = getMammal();
try {
1-32 Java to IDL Mapping January 2002

1

e

able
he

ct
d
e

ust

de
ay

a

of

e

king

y
er

n

b = (alpha.bravo.Bandicoot)
javax.rmi.PortableRemoteObject.narrow(

m, alpha.bravo.Bandicoot.class);
} catch (ClassCastException ex) {

...
}

1.4.4 Allocating Ties for Remote Values

Following normal RMI semantics, an RMI server-side implementation object may b
passed across an RMI remote interface as though it were a remote reference.

The javax.rmi.CORBA.Util.writeRemoteObject method checks whether a
transmitted object is an implementation object and if so, allocates or reuses a suit
tie object. The type of the tie object should correspond to the OMG IDL type that t
implementation object implements.

This tie class is located at run time by finding the class of the implementation obje
and checking for a corresponding tie class (see Section 1.4.6, “Locating Stubs an
Ties,” on page 1-33). If no suitable tie class is found, the check is repeated on th
implementation class’s base class and so on up the inheritance chain, excluding
java.lang.Object . If no suitable tie class is found, a marshaling error occurs.

1.4.5 Wide Character Support

Since Java supports Unicode characters and strings, ORBs supporting RMI/IDL m
provide some form of wide character support.

Note that as part of IIOP code set negotiation, ORBs are required to accept Unico
UTF16 for use as a fallback transmission format for wide characters, though they m
negotiate to use other formats.

1.4.6 Locating Stubs and Ties

At various times it may be necessary for the ORB to locate either a stub class for
given RMI/IDL remote interface or abstract interface, or a tie class for a given
RMI/IDL implementation class. The name of the stub class is formed by taking the
name of the RMI/IDL interface, prepending “_” and appending "_Stub." The name
the tie class is formed by taking the name of the RMI/IDL implementation class,
prepending “_” and appending "_Tie." For RMI/IDL implementation classes that ar
mapped to IDL (see Section 1.3.12, “Mapping Implementation Classes,” on
page 1-31), the name of the stub class for the composite interface is formed by ta
the name of the RMI/IDL implementation class, prepending “_” and appending
“_Stub.”

The stub class corresponding to an RMI/IDL interface or implementation class ma
either be in the same package as its associated interface or class, or may be furth
qualified by theorg.omg.stub package prefix. For example, the stub class for a
Java to IDL Mapping Run-Time Issues January 2002 1-33

1

ll be
Stub

for
rent

rs.

.

te a

priate

ava
Any
or

ed
ng
e
ped

e

g

RMI/IDL interface classa.b.Fred would be named eithera.b._Fred_Stub or
org.omg.stub.a.b._Fred_Stub . For an RMI/IDL implementation class
x.y.Z , the tie class would be namedx.y._Z_Tie .

When loading a stub class corresponding to an interface or class
<packagename>.<typename>, the class <packagename>._<typename>_Stub sha
used if it exists; otherwise, the class org.omg.stub.<packagename>._<typename>_
shall be used.

A given Java virtual machine may have several different “class loaders” active
simultaneously. Each of these class loaders provides a separate naming context
Java classes. For example, a browser might be running applets from several diffe
hosts. To avoid class name conflicts it will run the applets in different class loade
Thus, two different applets might both reference a class calledFoo, but each of them
will get its own version of theFoo class from its own class loader.

The java.lang.Class.getClassloader method returns the class loader for a
given Class . So given oneClass it is possible to generate new class names and
then attempt to load those additional classes from the original class’s class loader

It is important in Java APIs to use an appropriate class loader when trying to loca
named class. To ease this problem in the ORB Portability APIs we normally pass
aroundjava.lang.Class objects rather than simply class names. When it is
necessary to load named classes, runtime code should take care to use an appro
class loader (e.g., by using one from an existingClass object).

1.4.7 Mapping RMI Exceptions to CORBA Exceptions

To ensure correct RMI exception passing semantics when running over IIOP, all J
exceptions thrown by the server implementation must be passed back to the client.
exception that is an instance of an RMI/IDL exception type declared by the method
any subclass of such a type (other thanjava.rmi.RemoteException and its
subclasses) is marshaled as the mapped IDL exception corresponding to the declar
RMI/IDL exception (see Section 1.3.7.2, “The IDL exception,” on page 1-24) containi
a mapped IDL valuetype corresponding to the actual runtime RMI/IDL exception typ
(see Section 1.3.7.1, “The IDL value type,” on page 1-24). On the client side, the map
IDL valuetype is unmarshaled and thrown back to the application.

For example, if a method in an RMI/IDL remote interface declares an exception type
MammalException and its implementation throws an instance of
WombatException (a subclass ofMammalException), then this exception is
marshaled as an IDL exceptionMammalEx containing an IDL valuetype
WombatException , and aWombatException is thrown to the client application.

All other Java exceptions are marshaled as CORBAUNKNOWN system exceptions
whose GIOP Reply message includes anUnknownExceptionInfo service context
containing the marshaled Java exception thrown by the server implementation. Th
Java exception is marshaled using the rules for CDR marshaling of value types as
defined by the GIOP specification, applied in conjunction with the rules for mappin
RMI/IDL value types to IDL as defined in Section 1.3.5, “Mapping for RMI/IDL Value
Types,” on page 1-15 of this specification.
1-34 Java to IDL Mapping January 2002

1

e

In order to support versioning of the Java exception marshaled within an
UnknownExceptionInfo service context, aSendingContextRunTime service
context must previously have been processed for the connection. If a GIOP messag
carrying both anUnknownExceptionInfo service context and a
SendingContextRunTime service context is received, and no
SendingContextRunTime service context has previously been processed for this
connection, then theSendingContextRunTime service context must be processed
before the data within theUnknownExceptionInfo service context is unmarshaled

1.4.8 Mapping CORBA System Exceptions to RMI Exceptions

In general CORBA system exceptions are simply mapped to instances of
java.rmi.RemoteException ; however, some CORBA system exceptions are
mapped to more specific subclasses ofRemoteException . These are listed in
Table 1-2.

In all cases, the RMI exception is created with a detail string that consists of:

• the string “CORBA”

• followed by the CORBA name of the system exception

• followed by a space

• followed by the hexadecimal value of the system exception’s minor code

• followed by a space

• followed by the completion status of “Yes,” “No,” or “Maybe.”

Thus a CORBAUNKNOWN system exception with a minor code of 0x31 and a
completion status of Maybe would be mapped to aRemoteException with the
following detail string:

“CORBA UNKNOWN 0x31 Maybe”

Table 1-2 CORBA and RMI Exceptions

CORBA Exception RMI Exception
COMM_FAILURE java.rmi.MarshalException

INV_OBJREF java.rmi.NoSuchObjectException

NO_PERMISSION java.rmi.AccessException

MARSHAL java.rmi.MarshalException

BAD_PARAM java.rmi.MarshalException

OBJECT_NOT_EXIST java.rmi.NoSuchObjectException

TRANSACTION_REQUIRED javax.transaction.
TransactionRequiredException

TRANSACTION_ROLLEDBACK javax.transaction.
TransactionRolledbackException

INVALID_TRANSACTION javax.transaction.
InvalidTransactionException
Java to IDL Mapping Run-Time Issues January 2002 1-35

1

va 2
and

s").

s a

ll.

hose

d.
The RemoteException returned bymapSystemException must preserve the
original CORBA system exception as the detail field, except when the original
CORBA system exception isBAD_PARAM with a minor code of 6, which is mapped
to java.io.NotSerializableException .

1.4.8.1 Mapping of UnknownExceptionInfo Service Context

CORBA UNKNOWN exceptions whose GIOP Reply message includes an
UnknownExceptionInfo service context containing a marshaled instance of
java.lang.Throwable or one of its subclasses are mapped to RMI exceptions
according to the type of the object contained in the service context, as shown in
Table 1-3.

1.4.9 Code Downloading

Class downloading is supported for stubs, ties, values, and value helpers. The
specification has been designed to be implementable using either JDK 1.1.6 or Ja
APIs, allows transmission of codebase information on the wire for stubs and ties,
enables usage of pre-existing ClassLoaders when relevant.

1.4.9.1 Definitions

"codebase" - Ajava.lang.String containing a space-separated array of URLs
(e.g., "http://acme.com/classes" or "http://abc.net/classes http://abc.net/ext/classe

"localCodebase" - The System Property "java.rmi.server.codebase" whose value i
codebase or null. Defaults to null.

"remoteCodebase" - The codebase transmitted from a remote system. May be nu

"useCodebaseOnly" - The System Property "java.rmi.server.useCodebaseOnly" w
value is either "true" or "false." Defaults to "false." If "true" (ignoring case), any
remote codebase is ignored and only the local codebase used.

"loader" - A class loader that specifies a context within which class loading is initiate
May be null.

Table 1-3 UnknownExceptionInfo and RMI Exceptions

UnknownExceptionInfo RMI Exception
java.lang.Error (or subclass) java.rmi.ServerError

java.rmi.RemoteException (or
subclass)

java.rmi.ServerException

java.lang.RuntimeException
(or subclass)

java.rmi.
ServerRuntimeException
(JDK 1.1)
java.lang.RuntimeException
(Java 2)
1-36 Java to IDL Mapping January 2002

1

e...

,

ust

er

-

stub).
1.4.9.2 Codebase Selection

The Util.getCodeBase(Class clz) method (see Section 1.5.1.6, “Util,” on
page 1-50) performs codebase selection.

On Java 2, this method returns the same string as
java.rmi.server.RMIClassLoader.getClassAnnotation(clz)

On JDK 1.1, this method works as follows:

1. If the name ofclz has a top-level package qualifier ofjava , then return null,
else...

2. If clz has a ClassLoader with a URL security context, then return this URL, els

3. If there is a security manager with a URL security context, then return this URL
else...

4. Return localCodebase.

When sending RMI/IDL values from Java, the codebase transmitted over GIOP m
be the codebase that this method would return for the value's class.

When sending RMI/IDL object references from Java, the codebase transmitted ov
GIOP is selected by calling the method
org.omg.CORBA_2_3.portable.ObjectImpl._get_codebase() on the
stub object.

1.4.9.3 Codebase Transmission

For values and value helpers, the codebase is transmitted after the value tag.

For stubs and ties, the codebase is transmitted as theTaggedComponent
TAG_JAVA_CODEBASE in the IOR profile, where thecomponent_data is a CDR
encapsulation of the codebase written as an IDL string. The codebase is a space
separated list of one or more URLs.

In all cases, theSendingContextRunTime service context may provide a default
codebase that is used if not overridden by a more specific codebase encoded in a
valuetype or IOR.

For object references created usingInputStream.read_Object or
InputStream.read_abstract_interface , the transmitted codebase is stored
in the object reference (stub) and can be retrieved subsequently using the
org.omg.CORBA_2_3.portable.ObjectImpl._get_codebase() method,
described below.

If no codebase was transmitted, localCodebase is stored in the object reference (
Java to IDL Mapping Run-Time Issues January 2002 1-37

1

PI

ss

class.

e

nd,
class
1.4.9.4 Codebase Access

In the event thatPortableRemoteObject.narrow() must load a stub, it needs
to call a portable API to extract codebase information from the original stub. This A
is also used by theOutputStream methodswrite_Object and
write_abstract_interface to obtain the codebase to be transmitted in the
TAG_JAVA_CODEBASE TaggedComponent . The API that is provided for these
purposes is the_get_codebase() method of the
org.omg.CORBA_2_3.portable.ObjectImpl class. See theIDL/Java
Language Mappingdocument.

1.4.9.5 Codebase Usage

The following method (see Section 1.5.1.6, “Util,” on page 1-50) is used to load
classes.

Util.loadClass(String className,
String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException { ... }

On Java 2, this method works as follows:

1. Find the first non-null ClassLoader on the call stack and attempt to load the cla
using this ClassLoader. If this fails...

2. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass

(remoteCodebase, className)

3. If remoteCodebase is null or useCodebaseOnly is true, then call
java.rmi.server.RMIClassLoader.loadClass(className)

4. If a class was not successfully loaded by step 1, 2, or 3, andloader is non-null,
then callClass.forName(className, false, loader)

5. If a class was successfully loaded by step 1, 2, 3, or 4, then return the loaded

On JDK 1.1, this method works as follows:

1. If className is an array type, extract the array element type. If this is a primitiv
type, then callClass.forName(className) , else proceed using the array
element class name asclassName .

2. Search the call stack for the first non-null ClassLoader. If a ClassLoader is fou
then attempt to load the class using this ClassLoader, else attempt to load the
usingClass.ForName(className) . If this fails...

3. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass(codebaseURL,
className) for each remote codebase URL in theremoteCodebase string
until the class is found.
1-38 Java to IDL Mapping January 2002

1

d

aded.

the

d

n.)

eric
lass

is

s

4. If remoteCodebase is null or useCodebaseOnly is true, then call
java.rmi.server.RMIClassLoader.loadClass(className)

5. If a class was not successfully loaded by step 1, 2, 3, or 4, andloader is non-null,
then callloader.loadClass(className)

6. If a class was successfully loaded by step 1, 2, 3, 4, or 5, then return the loade
class, unless theclassName parameter was a non-primitive array type, in which
case return a suitably dimensioned array class for the element class that was lo

When loading classes for RMI/IDL values, stubs, and ties, the class loaded must be
same as that returned by this method except where stated below.

For values and their helper classes,remoteCodebase is the codebase that was
transmitted in the GIOP valuetype encoding (if any), or else the codebase obtaine
from theSendingContextRunTime service context associated with the IIOP
connection. (loader is null or the class loader of the expected value class, if know

For ties created byPortableRemoteObject.exportObject,
remoteCodebase is obtained by callingUtil.getCodebase on the class of the
implementation object. (loader is null.)

For stubs created byInputStream.read_Object() , remoteCodebase is the
codebase transmitted in the IORTaggedComponent TAG_JAVA_CODEBASE (if
any), or else the codebase obtained from theSendingContextRunTime service
context associated with the IIOP connection. This method may either create a gen
stub for subsequent narrowing or may attempt to create a stub by loading a stub c
that matches the RepositoryId in the IOR. (loader is null.)

For stubs created byInputStream.read_Object(clz) , remoteCodebase is
the same as forInputStream.read_Object() . If clz is a stub class, then the
implementation ofread_Object(clz) may either use the actual parameterclz to
create a stub or may attempt to create a stub by loading a stub class whose name
derived from the RepositoryId in the IOR. Ifclz is an RMI/IDL remote interface,
then the implementation ofread_Object(clz) creates a stub whose class name i
derived from either the name of the interface typeclz or the RepositoryId in the IOR.
(loader is clz.getClassLoader() .)

For stubs created byPortableRemoteObject.narrow , remoteCodebase is
obtained from thenarrowFrom object by calling the
ObjectImpl._get_codebase() method. For stubs created by
PortableRemoteObject.toStub , Util.writeRemoteObject or
Util.writeAbstractObject , remoteCodebase is obtained by calling
Util.getCodebase() on the class of the implementation object. (loader is
narrowFrom.getClassLoader() .)

For all stubs,remoteCodebase is stored by the Delegate and can be retrieved
subsequently using theObjectImpl._get_codebase() method.
Java to IDL Mapping Run-Time Issues January 2002 1-39

1

s

and

e

by

an
an
se).

he

L
han

in

pt
1.4.10 Custom Marshaling Format

When an RMI/IDL value type is custom marshaled over GIOP, the following data i
transmitted:

a. octet - Format version. 1 or 2.

For serializable objects with awriteObject method:
b. boolean - True if defaultWriteObject was called, false otherwise.
c. (optional) Data written bydefaultWriteObject . The ordering of the fields

is the same as the order in which they appear in the mapped IDL valuetype,
these fields are encoded exactly as they would be if the class did not have a
writeObject method.

d. (optional) Additional data written bywriteObject , encoded as specified
below. For format version 1, the data is written "as is". For format version 2, th
data is enclosed within a CDR custom valuetype with no codebase and repid
"RMI:org.omg.custom.<class>" where<class> is the fully-qualified
name of the class whosewriteObject method is being invoked.

For externalizable objects:
b. (optional) Data written bywriteExternal , encoded as specified below.

Primitive Java types are marshaled as their corresponding IDL primitives (see
Section 1.3.3, “Mappings for Primitive Types,” on page 1-10). Java strings written
the java.io.ObjectOutputStream.writeUTF() method and read by the
java.io.ObjectInputStream.readUTF() method are marshaled as IDL
wstring s. Javaint s andString s written by thewriteByte , writeChar ,
writeBytes , andwriteChars methods ofjava.io.ObjectOutputStream
are marshaled as specified by the definitions of these methods in the
java.io.DataOutput interface. Other Java objects are marshaled in the form of
IDL abstract interface (i.e., a union with a boolean discriminator containing either
object reference if the discriminator is true or a value type if the discriminator is fal

RMI/IDL stubs, RMI/IDL remote implementations, and IDL stubs are marshaled as
object references (IORs). All other Java objects are marshaled as value types. T
value type encoding is determined from the object's runtime type by applying the
mappings specified in Section 1.3.5, “Mapping for RMI/IDL Value Types,” on
page 1-15 and Section 1.3.6, “Mapping for RMI/IDL Arrays,” on page 1-21.

The default custom stream format is 1 for GIOP 1.2 and 2 for GIOP 1.3. For RMI/ID
custom value types marshaled within GIOP requests, a format version not greater t
the default for the GIOP message level must be sent, except where the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) is part of the IOR profile. For RMI/IDL custom value types marshaled with
GIOP replies (including theUnknownExceptionInfo service context), a format
version not greater than the default for the GIOP message level must be sent, exce
where theRMICustomMaxStreamFormat service context (see Section 1.4.12,
“RMICustomMaxStreamFormat Service Context,” on page 1-41) was sent on the
associated GIOP request
1-40 Java to IDL Mapping January 2002

1

n
ere

eam
sent

t

ion
.

sion

t

P
P

and

e.

t there
lost
1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component

Although the IIOP level of an IOR specifies a default maximum stream format versio
for RMI/IDL custom value types marshaled as part of GIOP requests to this IOR, th
are cases when it may be necessary to override this default.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component has an associated
value of type octet, encoded as a CDR encapsulation, designating the maximum str
format version for RMI/IDL custom value types that can be used in GIOP messages
to this IOR.

TheTAG_RMI_CUSTOM_MAX_STREAM_FORMAT component can appear at mos
once in any IOR profile. For profiles supporting IIOP 1.2 or greater, it is optionally
present. If this component is omitted, then the default maximum stream format vers
for RMI/IDL custom value types sent to this IOR is 1 for IIOP 1.2 and 2 for IIOP 1.3

1.4.12 RMICustomMaxStreamFormat Service Context

Although the GIOP level of a request specifies a default maximum stream format ver
for RMI/IDL custom value types marshaled as part of the associated reply, there are
cases when it may be necessary to override this default.

RMICustomMaxStreamFormat identifies a CDR encapsulation of a single octet tha
specifies the highest RMI/IDL custom stream format version that can be used for
RMI/IDL custom valuetypes marshaled within a GIOP reply associated with the GIO
request that carries this service context. If this service context is omitted from a GIO
request, then the default maximum stream format version for RMI/IDL custom value
types marshaled within a GIOP reply associated with this request is 1 for GIOP 1.2
2 for GIOP 1.3.

1.4.13 Marshaling RMI/IDL Arrays

RMI/IDL arrays must be marshaled with a repository ID indicating their runtime typ
Also, RMI/IDL arrays must be unmarshaled according to the type specified in the
repository ID.

1.4.14 Runtime Limitations

Our mapping implies three runtime limitations relative to current Java RMI.

Shared reference objects

In Java, remote object references are represented as Java objects. This means tha
can be several Java pointers to one object reference. This pointer sharing may be
when transmitting graphs of Java objects across RMI/IDL.

In practice this is likely to have only very minor impact on Java programmers.
Java to IDL Mapping Run-Time Issues January 2002 1-41

1

nds

ct to

tocol
h

ow

ot

tons
RB

,” on
Distributed garbage collection

Java provides automatic garbage collection and RMI using its native protocol exte
this to the net with distributed garbage collection.

CORBA does not currently provide support for distributed garbage collection;
therefore, distributed garbage collection is not supported as part of RMI/IDL. It is
instead each server’s responsibility to maintain references to any server objects it
wishes to keep active, and to free these references when it wishes the server obje
be garbage collected. This is done using theexportObject andunexportObject
methods ofjavax.rmi.PortableRemoteObject (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Narrowing

Java provides type-checked casts as part of the language. RMI using its native pro
dynamically downloads stubs that accurately reflect the RMI interface types of eac
remote object reference, thereby allowing Java language casts to be used to narr
remote object references.

Downloadable stubs are not required by the CORBA object model. Since we cann
rely on downloadable stubs, we cannot rely on simple Java casts to implement
narrowing of object references. We have therefore defined an explicitnarrow method
(see Section 1.4.3, “Narrowing,” on page 1-32) that programmers must use when
narrowing portable RMI object references.

1.5 Portability Interfaces

This section describes extensions to the portable stubs and skeletons architecture
defined in the IDL/Java language mapping. These extensions allow stubs and skele
to be created for this Java to IDL mapping that can rely on a standard set of Java O
Portability APIs, including APIs for serializing Java objects to GIOP format.

These ORB portability APIs also allow alternative implementations of the RMI/IDL
APIs.

See Section 1.5.2.1, “Stub classes,” on page 1-54 and Section 1.5.2.3, “Tie classes
page 1-57 for simple example stubs and ties.

1.5.1 Portability APIs

1.5.1.1 Tie

The interfacejavax.rmi.CORBA.Tie defines methods that all RMI/IDL server
side ties must implement.
1-42 Java to IDL Mapping January 2002

1

e of
sting
level

ted

red
The javax prefix indicates these classes are part of a standard extension. The us
this prefix allows these interfaces and classes to be delivered as an add-on to exi
JDKs. Security checks in the browsers prevent downloading of classes whose top-
package qualifier isjava , so Sun has defined the convention of using a top-level
qualifier of javax for extensions.

// Java
public interface Tie extends

org.omg.CORBA.portable.InvokeHandler {

org.omg.CORBA.Object thisObject();

void deactivate() throws java.rmi.NoSuchObjectException;

org.omg.CORBA.ORB orb();

void orb(org.omg.CORBA.ORB orb);

void setTarget(java.rmi.Remote target);

java.rmi.Remote getTarget();
}

The thisObject method returns an object reference for the target object represen
by theTie . It is semantically equivalent to the_this_object() method of the
org.omg.PortableServer.Servant class.

The deactivate method deactivates the target object represented by theTie . It is
semantically equivalent to thedeactivate_object method of the
org.omg.PortableServer.POA class. If the target object could not be
deactivated (e.g., because it is not currently active), aNoSuchObjectException is
thrown.

The orb() method returns the ORB for theTie . It is semantically equivalent to the
_orb() method of theorg.omg.PortableServer.Servant class.

The orb(ORB orb) method sets the ORB for theTie . It is semantically equivalent
to calling ORB.set_delegate() with an actual parameter of type
org.omg.PortableServer.Servant .

The setTarget method must be implemented by tie classes. It will be called by
Util.registerTarget to notify the tie of its registered target implementation
object.

The getTarget method must be implemented by tie classes. It returns the registe
target implementation object for the tie.
Java to IDL Mapping Portability Interfaces January 2002 1-43

1

ce

the

bject.

ful to
dy

e.

urn
le
itly
1.5.1.2 Stub

The classjavax.rmi.CORBA.Stub is the standard base class from which all
RMI/IDL stubs must inherit. Its main reason for existence is to act as a convenien
base class to handle stub serialization.

// Java
public abstract class Stub

extends org.omg.CORBA_2_3.portable.ObjectImpl
implements java.io.Serializable {

public int hashCode() { ... }
public boolean equals(java.lang.Object obj) { ... }
public String toString() { ... }

public void connect(org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException { ... }

private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException { ... }

private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException,
ClassNotFoundException { ... }

}

ThehashCode method shall return the same hash code for all stubs that represent
same remote object. Theequals method shall returntrue when used to compare
stubs that represent the same remote object, andfalse otherwise. ThetoString
method shall return the same string for all stubs that represent the same remote o

The connect method makes the stub ready for remote communication using the
specified ORB objectorb . Connection normally happens implicitly when the stub is
received or sent as an argument on a remote method call, but it is sometimes use
do this by making an explicit call (e.g., following deserialization). If the stub is alrea
connected toorb (i.e., has a delegate set fororb), thenconnect takes no action. If
the stub is connected to some other ORB, then aRemoteException is thrown.
Otherwise, a delegate is created for this stub and the ORB objectorb .

TheStub.connect method is not intended to be called directly by application cod
Instead, application code should call thePortableRemoteObject.connect
method (see Section 1.6.1, “PortableRemoteObject,” on page 1-62), which will in t
call theStub.connect method. This allows the application code to remain portab
between IIOP and JRMP. RMI/IDL stubs may also be connected to an ORB implic
by being passed toOutputStream.write_Object .

The writeObject and readObject methods support stub serialization and
deserialization by saving and restoring the IOR associated with the stub. The
writeObject method writes the following data to the serialization stream:

1. int - length of IOR type id
1-44 Java to IDL Mapping January 2002

1

ms.

der
ID),

.

pe

g

2. byte[] - IOR type ID encoded using ISO 8859-1 (written using awrite call, not a
writeObject call)

3. int - number of IOR profiles

4. For each IOR profile:

a. int - profile tag
b. int - length of profile data
c. byte[] - profile data (written using awrite call, not awriteObject call)

1.5.1.3 ValueOutputStream

The interfaceorg.omg.CORBA.portable.ValueOutputStream defines
methods that allow serialization of custom-marshaled RMI/IDL objects to GIOP strea

// Java
public interface ValueOutputStream {

void start_value(java.lang.String rep_id);

void end_value();
}

Thestart_value method ends any currently open chunk, writes a valuetype hea
for a nested custom valuetype (with a null codebase and the specified repository
and increments the valuetype nesting depth.

The end_value method ends any currently open chunk, writes the end tag for the
nested custom valuetype, and decrements the valuetype nesting depth.

1.5.1.4 ValueInputStream

The interfaceorg.omg.CORBA.portable.ValueInputStream defines methods
that allow deserialization of custom-marshaled RMI/IDL objects froim GIOP streams

// Java
public interface ValueInputStream {

void start_value();

void end_value();
}

The start_value method reads a valuetype header for a nested custom valuety
and increments the valuetype nesting depth.

The end_value method reads the end tag for the nested custom valuetype (after
skipping any data that precedes the end tag) and decrements the valuetype nestin
depth.
Java to IDL Mapping Portability Interfaces January 2002 1-45

1

e

1.5.1.5 ValueHandler and ValueHandlerMultiFormat

The interfacesjavax.rmi.CORBA.ValueHandler and
javax.rmi.CORBA.ValueHandlerMultiFormat define methods that allow
serialization of Java objects to and from GIOP streams.

// Java
public interface ValueHandler {

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value);

java.io.Serializable readValue(
org.omg.CORBA.portable.InputStream in,
int offset,
Class clz,
String repositoryID,
org.omg.SendingContext.RunTime sender);

String getRMIRepositoryID(Class clz);

boolean isCustomMarshaled(Class clz);

org.omg.SendingContext.RunTime getRunTimeCodeBase();

java.io.Serializable writeReplace(
java.io.Serializable value);

}

public interface ValueHandlerMultiFormat
extends ValueHandler {

byte getMaximumStreamFormatVersion();

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value,
byte streamFormatVersion);

}

The writeValue method can be used to write GIOP data, including RMI remote
objects and serialized data objects, to an underlying portableOutputStream .

The implementation of thewriteValue method interacts with the core Java
serialization machinery. The data generated during serialization is written using th
underlyingOutputStream object.

The readValue method can be used to read GIOP data, including RMI remote
objects and serialized data objects, from an underlying portableInputStream . The
offset parameter is the offset in the stream of the value being unmarshaled. Theclz
parameter is the Java class of the value to be unmarshaled. TherepositoryID
parameter is the repository ID unmarshaled from the value header by the caller of
1-46 Java to IDL Mapping January 2002

1

nd
.10,

ion

s.
readValue . The sender parameter is the sending context object passed in the
optional service context taggedSendingContextRunTime in the GIOP header, if
any, or null if no sending context was passed.

The implementation of thereadValue method interacts with the core Java
serialization machinery. The data required during deserialization is read using the
underlyingInputStream object.

The getRMIRepositoryID method returns the RMI-style repository ID string for
clz .

The isCustomMarshaled method returnstrue if the value is custom marshaled
and therefore requires a chunked encoding, andfalse otherwise.

The getRunTimeCodeBase method returns theValueHandler object's
SendingContext::RunTime object reference, which is used to construct the
SendingContextRunTime service context.

The writeReplace method returns the serialization replacement for thevalue
object. This is the object returned by callingvalue.writeReplace() , if value
has awriteReplace method.

The ValueHandlerMultiFormat interface introduces a method
getMaximumStreamFormatVersion that returns the maximum stream format
version for RMI/IDL custom value types that is supported by thisValueHandler
object. TheValueHandler object must support the returned stream format version a
all lower versions. The format versions currently defined are 1 and 2. See Section 1.4
“Custom Marshaling Format,” on page 1-40 for more details.

TheValueHandlerMultiFormat interface introduces an overloadedwriteValue
method that allows the ORB to pass the required stream format version for RMI/IDL
custom value types. If the ORB calls this method, it must pass a stream format vers
between 1 and the value returned by thegetMaximumStreamFormatVersion
method inclusive, or else aBAD_PARAM exception with standard minor codeaa [note
to editor: number to be assigned by OMG]must be thrown. If the ORB calls the
ValueHandler.writeValue method, stream format version 1 is implied.

Execution model for Serialization

Sun will provide an implementation of theValueHandler interface that handles
writing and reading RMI/IDL objects by making calls to lower-level CORBA
OutputStream andInputStream objects, which can be provided by an
independent ORB vendor. The Sun-provided implementation will handle the
interactions with the Java serialization machinery and will write any serialized data
through to the lower level stream.

Typically the ORB vendors will implement their own GIOP input and output stream
Before transmitting RMI/IDL data they will create an object that supports the
ValueHandler interface by calling thecreateValueHandler method of the
javax.rmi.CORBA.Util class (see Section 1.5.1.6, “Util,” on page 1-50). When
Java to IDL Mapping Portability Interfaces January 2002 1-47

1

ls

s
st
ay

n, or

that

r

,

they need to marshal a non-IDL value, they will callValueHandler.writeValue ,
and when they need to unmarshal a non-IDL value, they will call
ValueHandler.readValue .

The ORB output stream passed to theValueHandlerMultiFormat.writeValue
method must implement theValueOutputStream interface (see Section 1.5.1.3,
“ValueOutputStream,” on page 1-45), and the ORB input stream passed to the
ValueHandler.readValue method must implement theValueInputStream
interface (see Section 1.5.1.4, “ValueInputStream,” on page 1-45).

Value Marshaling

When marshaling an RMI value, the ORB stream must callUtil.getCodeBase to
get the codebase string,ValueHandler.getRMIRepositoryID to get the
repository ID string, andValueHandler.isCustomMarshaled to see if the value
is custom marshaled and therefore requires a chunked encoding.

The ORB stream writes the value tag, codebase (if any), and repository ID. It calls
ValueHandler.writeValue to write the state of the value. The ORB stream dea
with nulls, indirections, chunking, and end tags.

The ORB obtains theSendingContextRunTime service context from the
ValueHandler object by calling theValueHandler.getRunTimeCodeBase
method. Clients must send this service context on the first GIOP request that flow
over a connection that may be used to send RMI values to the server. Servers mu
send this service context on the first GIOP reply that flows over a connection that m
be used to send RMI values to the client.

The ORB calls thewriteReplace method before callingwriteValue . The result
from calling this method is passed toValueHandler.writeValue unless either

• it is a previously marshaled value, in which case it is marshaled as an indirectio

• its class implementsorg.omg.CORBA.Object , in which case it is marshaled as
an object reference.

An ORB stream instance must only callwriteReplace once for each value that it
marshals.

Before calling thewriteValue method of theValueHandler object, the ORB must
determine the stream format version to be used. This is the maximum format version
is supported by both the localValueHandler object and the remote connection
endpoint. The maximum local format version is the value returned by the
getMaximumStreamFormatVersion method of theValueHandler object, or 1
if the ValueHandler object doesn't support theValueHandlerMultiFormat
interface. The maximum remote format version is 1 for GIOP 1.2 messages and 2 fo
GIOP 1.3 messages, except where these default values are overridden by either the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) or theRMICustomMaxStreamFormat service context (see Section 1.4.12
“RMICustomMaxStreamFormat Service Context,” on page 1-41). For GIOP 1.2
messages, recognition of these overrides is optional.
1-48 Java to IDL Mapping January 2002

1

the

on

on

base

and

lue.

s
the

ve

ject
d in

value

.,
If the stream format version computed in this way is 2 or greater, the ORB must call
ValueHandlerMultiFormat.writeValue method, passing this value. If the
stream format version computed in this way is 1, the ORB may call either the
ValueHandlerMultiFormat.writeValue method (with stream format 1) or the
ValueHandler.writeValue method.

If the ORB's call to theValueHandler object'swriteValue method specified
RMI/IDL custom value type stream format version 2, then theValueHandler object
must call theValueOutputStream.start_value and
ValueOutputStream.end_value methods of the ORB stream before and after
writing the data specified by item 1d of Section 1.4.10, “Custom Marshaling Format,”
page 1-40. Therep_id string passed to thestart_value method must be
"RMI:org.omg.custom.<class>:<hashcode>:<suid>" where<class> is
the fully-qualified name of the class whosewriteObject method is being invoked
and<hashcode> and<suid> are the class's hashcode and SUID. For format versi
2, if the ORB stream passed to theValueHandler object doesn't support the
ValueOutputStream interface, then aBAD_PARAM exception with standard minor
codebb [note to editor: number to be assigned by OMG]must be thrown.

Value Unmarshaling

When unmarshaling an RMI value, the ORB stream must read the value tag, code
(if any), and repository ID. The ORB stream callsUtil.loadClass to load the
value's class, passing the Java class name contained in the RMI-style repository ID
the codebase string from the value's GIOP encoding (if present) or the
SendingContextRunTime service context.

The ORB stream callsValueHandler.readValue to read the state of the value,
passing the current stream offset, the class returned byUtil.loadClass , the
repository ID, and the sender'sSendingContext::RunTime object reference. The
repository ID is needed so that theValueHandler object can determine if the class
passed in is structurally identical to the class used by the sender to marshal the va
The ORB stream deals with nulls, indirections, chunking, and end tags.

The ValueHandler object may receive anorg.omg.CORBA.portable .
IndirectionException from the ORB stream. The ORB input stream throws thi
exception when it is called to unmarshal a value encoded as an indirection that is in
process of being unmarshaled. This can occur when the ORB stream calls the
ValueHandler object to unmarshal an RMI value whose state contains a recursi
reference to itself. Because the top-levelValueHandler.readValue call has not
yet returned a value, the ORB stream's indirection table contains no entry for an ob
with the stream offset specified by the indirection tag. This stream offset is returne
the exception'soffset field.

If the ValueHandler object receives anIndirectionException , it is
responsible for ensuring that the correct Java object reference is assigned to the
field that would have held the result returned by the ORB stream if an
IndirectionException had not occurred. The manner in which this is done (e.g
eager or lazy) is not specified. If the offset in anIndirectionException does not
Java to IDL Mapping Portability Interfaces January 2002 1-49

1

of
the
correspond to any offset previously passed to theValueHandler object in a
ValueHandler.readValue method call, theValueHandler.readValue
method shall throw aMARSHAL exception.

If the RMI/IDL custom data unmarshaled from the input stream was encoded using
stream format 2, then theValueHandler object must call the
ValueInputStream.start_value andValueInputStream.end_value
methods of the ORB stream before and after reading the data specified by item 1d
Section 1.4.10, “Custom Marshaling Format,” on page 1-40. For format version 2, if
ORB stream passed to theValueHandler object doesn't support the
ValueInputStream interface, then aBAD_PARAM exception with standard minor
codecc [note to editor: number to be assigned by OMG]must be thrown. If the format
version unmarshaled by theValueHandler object is greater than the maximum
version that it supports, then aMARSHAL exception with standard minor codedd [note
to editor: number to be assigned by OMG]must be thrown

1.5.1.6 Util

A utility class javax.rmi.CORBA.Util provides methods that can be used by
stubs to perform common operations.

// Java
public class Util {

public static java.rmi.RemoteException
mapSystemException(org.omg.CORBA.SystemException ex)

{ ... }

public static void writeAny(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj){ ... }

public static java.lang.Object readAny(
org.omg.CORBA.portable.InputStream in) { ... }

public static void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void registerTarget(Tie tie,
java.rmi.Remote target) { ... }

public static void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException
{ ... }
1-50 Java to IDL Mapping January 2002

1

MI
public static Tie getTie(java.rmi.Remote target) { ... }

public static ValueHandler createValueHandler() { ... }

public static java.rmi.RemoteException wrapException(
Throwable obj) { ... }

public static java.lang.Object copyObject(
java.lang.Object obj, org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException { ... }

public static java.lang.Object[] copyObjects(
java.lang.Object[] obj, org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException { ... }

public static boolean isLocal(Stub s)
throws java.rmi.RemoteException { ... }

public static String getCodebase(Class clz) {... }

public static Class loadClass(String className,
String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException { ... }
}

The mapSystemException method maps a CORBA system exception to a
java.rmi.RemoteException or a java.lang.RuntimeException . The
mapping is described in Section 1.4.8, “Mapping CORBA System Exceptions to R
Exceptions,” on page 1-35. If the mapped exception is an instance of
java.rmi.RemoteException or a subclass, the mapped exception is returned;
otherwise, it is thrown.

The writeAny method writes the Java objectobj to the output streamout in the
form of a GIOPany. The contents of the GIOPany are determined by applying the
Java to IDL mapping rules to the actual runtime type ofobj . If obj is null, then it is
written as follows: theTypeCode is tk_abstract_interface, the repository ID is
“IDL:omg.org/CORBA/AbstractBase:1.0” , the name string is““ , and the
any 's value is a null abstract interface type (encoded as aboolean discriminant of
false followed by along value of0x00000000).

The readAny method reads a GIOPany from the input streamin and unmarshals it
as a Java object, which is returned. The followingTypeCodes are valid for the GIOP
any : tk_value, tk_value_box, tk_objref , andtk_abstract_interface. For each of
these types, both null and non-null values are valid. If theTypeCodeis anything other
than these, aMARSHAL exception is thrown.

ThewriteRemoteObject method is a utility method for use by stubs when writing
an RMI/IDL object reference to an output stream. Ifobj is a stub object,
writeRemoteObject simply writesobj to out.write_Object . However, if
obj is an exported RMI/IDL implementation object, thenwriteRemoteObject
Java to IDL Mapping Portability Interfaces January 2002 1-51

1

n

ir

its

lt

to

re

ther
allocates (or reuses) a suitableTie (see Section 1.4.4, “Allocating Ties for Remote
Values,” on page 1-33), plugs together the tie withobj , and writes the object reference
for the tie toout.write_Object . This method cannot be used to write a JRMP
object reference to an output stream.

The writeAbstractObject method is another similar utility method for use by
stubs. Ifobj is a value object, or a stub object,writeAbstractObject simply
writes obj to out.write_abstract_interface . However, ifobj is an
exported RMI/IDL implementation object, thenwriteAbstractObject allocates
(or reuses) a suitableTie (see Section 1.4.4, “Allocating Ties for Remote Values,” o
page 1-33), plugs together the tie withobj , and writes the object reference for the tie
to theout.write_abstract_interface . This method cannot be used to write a
JRMP object reference to an output stream.

The registerTarget method is needed to supportunexportObject . Because
unexportObject takes a target implementation object as its parameter, it is
necessary for theUtil class to maintain a table mapping target objects back to the
associatedTie s. It is the responsibility of the code that allocates aTie to also call the
registerTarget method to notify theUtil class of the target object for a given
tie. TheregisterTarget method will call theTie.setTarget method to notify
the tie object of its target object.

TheunexportObject method deactivates an implementation object and removes
associatedTie from the table maintained by theUtil class. If the object is not
currently exported or could not be deactivated, aNoSuchObjectException is
thrown.

The getTie method returns the tie object for an implementation objecttarget , or
null if no tie is registered for thetarget object.

The createValueHandler method returns a singleton instance of a class that
implements theValueHandler interface.

The wrapException method wraps an exception thrown by an implementation
method. It returns the corresponding client-side exception. See Section 1.4.8.1,
“Mapping of UnknownExceptionInfo Service Context,” on page 1-36 for details.

The copyObject method is used by local stubs to copy an actual parameter, resu
object, or exception. ThecopyObjects method is used by local stubs to copy any
number of actual parameters, preserving sharing across parameters as necessary
support RMI/IDL semantics. The actual parameterObject[] array holds the method
parameter objects that need to be copied, and the resultObject[] array holds the
copied results.

ThecopyObject andcopyObjects methods ensure that remote call semantics a
observed for local calls. They observe copy semantics for value objects that are
equivalent to marshaling, and they handle remote objects correctly. Stubs must ei
call these methods or generate inline code to provide equivalent semantics.
1-52 Java to IDL Mapping January 2002

1

1-37

tails.

lso

ub

a

The isLocal method has the same semantics as theObjectImpl._is_local
method, except that instead of throwing anorg.omg.CORBA.SystemException ,
it throws ajava.rmi.RemoteException that is the result of passing the
SystemException to themapSystemException method.

The getCodebase method returns the Java codebase for the Class objectclz as a
space-separated list of URLs. See Section 1.4.9.2, “Codebase Selection,” on page
for details.

The loadClass method loads a Java class object for the Java class name
className , using additional information passed in theremoteCodebase and
loader parameters. See Section 1.4.9.5, “Codebase Usage,” on page 1-38 for de

1.5.1.7 Additional Portability APIs

The Java Language to IDL Mapping uses the following portability APIs which are a
used by the OMG IDL to Java Mapping.

org.omg.CORBA.portable.InputStream
org.omg.CORBA.portable.OutputStream
org.omg.CORBA_2_3.portable.InputStream
org.omg.CORBA_2_3.portable.OutputStream
org.omg.CORBA.portable.ObjectImpl
org.omg.CORBA.portable.Delegate
org.omg.CORBA_2_3.portable.ObjectImpl
org.omg.CORBA_2_3.portable.Delegate
org.omg.CORBA.portable.InvokeHandler
org.omg.CORBA.portable.ResponseHandler
org.omg.CORBA.portable.ApplicationException
org.omg.CORBA.portable.RemarshalException
org.omg.CORBA.portable.UnknownException
org.omg.CORBA.portable.IndirectionException
org.omg.CORBA.portable.ServantObject
org.omg.CORBA.portable.ServantObjectExt

These APIs are described in theIDL to Java Language Mappingdocument.

1.5.2 Generated classes

There are two kinds of classes generated as part of this specification.

1. Stub classes. These are used by RMI/IDL clients to send calls to a server. A st
class is required for each RMI/IDL remote interface.

2. Tie classes. These are used to process incoming calls and dispatch the calls to
server implementation class. A tie class is required for each RMI/IDL
implementation class.

No generated classes are required for RMI/IDL value types, exceptions, etc.
Java to IDL Mapping Portability Interfaces January 2002 1-53

1

t

1.5.2.1 Stub classes

For each RMI/IDL remote interfaceFoo there will be a stub class_Foo_Stub that
extendsjavax.rmi.CORBA.Stub and implementsFoo.

The stub class supports stub methods for all the RMI/IDL remote methods in the
RMI/IDL remote interfaces that it implements, and must have a public no-argumen
constructor.

Here is a simple RMI/IDL interface and an example stub class:

// Java
public interface Aardvark extends java.rmi.Remote {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

public class _Aardvark_Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public _Aardvark_Stub() {} // implicit or explicit

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {

org.omg.CORBA_2_3.portable.InputStream in = null;
try {

try {
org.omg.CORBA.OutputStream out =

_request(“echo”, true);
out.write_long(x);
in = (org.omg.CORBA_2_3.portable.InputStream)

_invoke(out);
return in.read_long();

} catch (org.omg.CORBA.portable.
ApplicationException ex) {

in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getInputStream();

String id = in.read_string();
if (id.equals("IDL:BoomerangEx/1.0")) {

throw (Boomerang)in.read_value();
} else {

throw new java.rmi.UnexpectedException(id);
}

} catch (org.omg.CORBA.portable.RemarshalException
ex) {

return echo(x);
}

} catch (org.omg.CORBA.SystemException ex) {
throw javax.rmi.CORBA.Util.mapSystemException(ex);

} finally {
_releaseReply(in);
1-54 Java to IDL Mapping January 2002

1

f the

and
-

}
}

}

1.5.2.2 Local Stubs

The stub class may provide an optimized call path for local server implementation
objects. For a methodecho(int x) of a remote interfaceAardvark , the
optimized path does the following:

1. Find out if the servant is local by callingUtil.isLocal()

2. If the servant is local, callthis._servant_preinvoke("echo",
Aardvark.class)

3. If _servant_preinvoke returned a non-null ServantObjectso , do the
following:
a. Call ((Aardvark)so.servant).echo(x)
b. If the invocation on the servant completed without throwing an exception, andso

is an instance ofServantObjectExt , then callso.normalCompletion()
c. If the invocation on the servant threw exceptionexc , andso is an instance of

ServantObjectExt , then callso.exceptionalCompletion(exc)
d. Call this._servant_postinvoke(so)

4. If _servant_preinvoke returned null, repeat step 1. The call to
Util.isLocal() will return false, causing the non-optimized path to be
followed.

The _servant_preinvoke method returns non-null if, and only if, an optimized
local call may be used. It performs any security checking that may be necessary. I
_servant_preinvoke method returns non-null, then theservant field of the
returnedServantObject must contain an object that implements the RMI/IDL
remote interface and can be used to call the servant implementation

Local stubs are responsible for performing copying of method parameters, results
exceptions, and handling remote objects correctly in order to provide remote/local
transparent RMI/IDL semantics.

The following is an example of a stub class that provides this optimized call path.

// Java
import org.omg.CORBA.portable.ServantObjectExt;

public class _Aardvark_Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {

if (!javax.rmi.CORBA.Util.isLocal(this)) {
// remote call path
org.omg.CORBA_2_3.portable.InputStream in = null;
try {
Java to IDL Mapping Portability Interfaces January 2002 1-55

1

try {
org.omg.CORBA.portable.OutputStream out =

_request("echo", true);
out.write_long(x);
in = (org.omg.CORBA_2_3.portable.InputStream)

_invoke(out);
return in.read_long();

} catch (org.omg.CORBA.portable.
ApplicationException ex) {

in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getInputStream();

String id = in.read_string();
if (id.equals("IDL:BoomerangEx/1.0")) {

throw (Boomerang)in.read_value();
} else {

throw new java.rmi.UnexpectedException(id);
}

} catch (org.omg.CORBA.portable.RemarshalException
ex) {

return echo(x);
}

} catch (org.omg.CORBA.SystemException ex) {
throw javax.rmi.CORBA.Util.mapSystemException(ex);

} finally {
_releaseReply(in);

}

} else {
// local call path
org.omg.CORBA.portable.ServantObject so =

_servant_preinvoke("echo", Aardvark.class);
if (so == null)

return echo(x);
try {

int result = ((Aardvark)so.servant).echo(x);
if (so instanceof ServantObjectExt)

((ServantObjectExt)so).normalCompletion();
return result;

} catch (Throwable ex) {
if (so instanceof ServantObjectExt)

((ServantObjectExt)so).
exceptionalCompletion(ex);

Throwable ex2 = (Throwable)
javax.rmi.CORBA.Util.copyObject(ex, _orb());

if (ex2 instanceof Boomerang)
throw (Boomerang)ex2;

else
throw javax.CORBA.Util.wrapException(ex2);

} finally {
_servant_postinvoke(so);

}

1-56 Java to IDL Mapping January 2002

1

t
s
ion

be
}
}

}

1.5.2.3 Tie classes

For each RMI/IDL implementation class there will be a corresponding tie class tha
implementsjavax.rmi.CORBA.Tie . The tie class is called by the ORB to proces
an incoming call and to pass the call through to an associated target implementat
object.

After the Tie object has been constructed, the target implementation object must
set with a call onUtil.registerTarget .

Here is a simple RMI/IDL interface and an exampleTie class:

// Java
public interface Aardvark extends java.rmi.Remote {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

public class _Aardvark_Tie
extends org.omg.PortableServer.Servant
implements javax.rmi.CORBA.Tie {
private Aardvark target;

public void setTarget(java.rmi.Remote targ) {
target = (Aardvark) targ;

}

public java.rmi.Remote getTarget() {
return target;

}

public org.omg.CORBA.OutputStream _invoke(String method,
org.omg.CORBA.InputStream in,
org.omg.CORBA.portable.ResponseHandler rh) {

try {
if (method.equals(“echo”)) {

try {
int x = in.read_long();
int result = target.echo(x);
org.omg.CORBA_2_3.portable.OutputStream out

= (org.omg.CORBA_2_3.portable.OutputStream)
rh.createReply();

out.write_long(result);
return out;

} catch (Boomerang ex) {
String exid = "IDL:BoomerangEx/1.0";
Java to IDL Mapping Portability Interfaces January 2002 1-57

1

tation
org.omg.CORBA_2_3.portable.OutputStream out
= (org.omg.CORBA_2_3.portable.OutputStream)

rh.createExceptionReply();
out.write_string(exid);
out.write_value(ex);
return out;

}
} else {

throw new org.omg.CORBA.BAD_OPERATION();
}

} catch (org.omg.CORBA.SystemException ex) {
throw ex;

} catch (Throwable ex) {
throw new

org.omg.CORBA.portable.UnknownException(ex);
}

}

public org.omg.CORBA.Object thisObject() { ... }

public void deactivate() { ... }

public org.omg.CORBA.ORB orb() { ... }

public void orb(org.omg.CORBA.ORB orb) { ... }
}

1.5.3 Replaceability of API Implementations

A framework is provided to enable vendor-specific implementations of the Java
Language to IDL Mapping Portability Interfaces and Application Programming
Interfaces. The affected classes are:

javax.rmi.CORBA.Stub
javax.rmi.CORBA.Util
javax.rmi.PortableRemoteObject

These classes are able to optionally delegate their methods to separate implemen
classes, which can be provided by ORB vendors.

1.5.3.1 StubDelegate

The implementation delegate class forjavax.rmi.CORBA.Stub must implement
the following interface for per-instance delegation:

package javax.rmi.CORBA;

public interface StubDelegate {

int hashCode(Stub self);
1-58 Java to IDL Mapping January 2002

1

boolean equals(Stub self, java.lang.Object obj);

String toString(Stub self);

void connect(Stub self, org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

void writeObject(Stub self, java.io.ObjectOutputStream s)
throws java.io.IOException;

void readObject(Stub self, java.io.ObjectInputStream s)
throws java.io.IOException,

ClassNotFoundException;
}

The above methods are called by the corresponding methods of
javax.rmi.CORBA.Stub when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.2 UtilDelegate

The implementation delegate class forjavax.rmi.CORBA.Util must implement
the following interface for per-class delegation:

package javax.rmi.CORBA;

public interface UtilDelegate {

java.rmi.RemoteException mapSystemException(
org.omg.CORBA.SystemException ex);

void writeAny(org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

java.lang.Object readAny(
org.omg.CORBA.portable.InputStream in);

void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void registerTarget(Tie tie, java.rmi.Remote target);

void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException;
Java to IDL Mapping Portability Interfaces January 2002 1-59

1

Tie getTie(java.rmi.Remote target);

ValueHandler createValueHandler();

String getCodebase(Class clz);

Class loadClass(String className, String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException;

boolean isLocal(Stub stub)
throws java.rmi.RemoteException;

java.rmi.RemoteException wrapException(Throwable obj);

java.lang.Object copyObject(java.lang.Object obj,
org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException;

java.lang.Object[] copyObjects(java.lang.Object[] obj,
org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException;
}

The above methods are called by the corresponding methods of
javax.rmi.CORBA.Util when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.3 PortableRemoteObjectDelegate

The implementation delegate class forjavax.rmi.PortableRemoteObject
must implement the following interface for per-class delegation:

package javax.rmi.CORBA;

public interface PortableRemoteObjectDelegate {

void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException;

java.rmi.Remote toStub (java.rmi.Remote obj)
throws NoSuchObjectException;

void unexportObject(java.rmi.Remote obj)
throws NoSuchObjectException;

java.lang.Object narrow (java.lang.Object narrowFrom,
Class narrowTo)

throws ClassCastException;
1-60 Java to IDL Mapping January 2002

1

tem
m

te
p
thus
n

f a
ance.
void connect (java.rmi.Remote target,
java.rmi.Remote source)

throws java.rmi.RemoteException;
}

The above methods are called by the corresponding methods of
javax.rmi.PortableRemoteObject when delegation has been specified as
described in Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.4 Delegation Mechanism

Alternate implementations of the standard API classes are enabled by setting sys
properties or placing entries in the orb.properties file. The names of the new syste
properties are:

javax.rmi.CORBA.StubClass
javax.rmi.CORBA.UtilClass
javax.rmi.CORBA.PortableRemoteObjectClass

For security reasons, each replaceable API class reads its implementation delega
class system property at static initialization time and uses this information to set u
implementation delegation if this has been specified. The delegation arrangement
established cannot be changed subsequently. The search order for implementatio
delegate class names is:

1. The system properties

2. The orb.properties file

For each implementation delegate class, an instance is created using the
Class.newInstance() method. For theUtil andPortableRemoteObject
delegate classes, this is a singleton instance. For theStub delegate class, there is one
delegate instance per stub object. The methods in the standard API classes test i
delegate instance exists and if so, forward the method call on to the delegate inst
Java to IDL Mapping Portability Interfaces January 2002 1-61

1

s
te

the

at
d by

ote
1.6 Application Programming Interfaces

One new API class is introduced to support RMI/IDL implementations.

1.6.1 PortableRemoteObject

The javax.rmi.PortableRemoteObject class is intended to act as a base clas
for RMI/IDL server implementation classes (see Section 1.2.3.1, “Stubs and remo
implementation classes,” on page 1-4).

// Java
public class PortableRemoteObject {

protected PortableRemoteObject()
throws java.rmi.RemoteException { ... }

public static void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException { ... }

public static java.rmi.Remote toStub(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static void unexportObject(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static java.lang.Object narrow(
java.lang.Object obj, Class newClass)

throws ClassCastException { ... }

public static void connect(
java.rmi.Remote target, java.rmi.Remote source)

throws java.rmi.RemoteException { ... }
}

The protected constructor is called by the derived implementation class to initialize
base class state.

Server side implementation objects may either inherit from
javax.rmi.PortableRemoteObject or they may simply implement an
RMI/IDL remote interface and then use theexportObject method to register
themselves as a server object.

A call to exportObject with no objects exported creates a non-daemon thread th
keeps the Java virtual machine alive until all exported objects have been unexporte
calling unexportObject .

It is up to the implementation to decide when to actually export (i.e., connect) rem
objects. It may be done in thePortableRemoteObject constructor (for objects
that subclassPortableRemoteObject) or in theexportObject method, or it
may be deferred until the remote object is actually written to anOutputStream .
1-62 Java to IDL Mapping January 2002

1

ct
be

an

the

e

t

a
l.

n

n

It is an error to callexportObject on an object that is already exported.

The toStub method takes a server implementation object and returns a stub obje
that can be used to access that server object. The argument object must currently
exported, either because it is a subclass ofPortableRemoteObject or by virtue of
a previous call toPortableRemoteObject.exportObject . If the object is not
currently exported, aNoSuchObjectException is thrown. The returned stub
implements the same RMI/IDL remote interfaces as the implementation object. If
RMI/IDL Tie class is available for the given object, thetoStub method will return an
IIOP stub; otherwise, it will return a JRMP stub. ThetoStub method may be passed
a stub, in which case it simply returns this stub.

The stub returned bytoStub has the same connection status as the target
implementation object passed totoStub . So if the target object is connected, the
returned stub is connected to the same ORB. If the target object is unconnected,
returned stub is unconnected.

The unexportObject method is used to deregister a currently exported server
object from the ORB runtimes, allowing the object to become available for garbag
collection. If the object is not currently exported, aNoSuchObjectException is
thrown. This is implemented by calling through toUtil.unexportObject .

The narrow method takes an object reference or an object of an RMI/IDL abstrac
interface type and attempts to narrow it to conform to the givennewClass RMI/IDL
type. If the operation is successful, the result will be an object of typenewClass ;
otherwise, an exception will be thrown. Ifobj is null, thennarrow returns null.

The connect method makes the remote objecttarget ready for remote
communication using the same communications runtime3 assource . Connection
normally happens implicitly when the object is sent or received as an argument on
remote method call, but it is sometimes useful to do this by making an explicit cal
The target object may be either an RMI/IDL stub or an exported RMI/IDL
implementation object, and thesource object may also be either an RMI/IDL stub or
an exported RMI/IDL implementation object.

If target is already connected to the same communications runtime assource , then
connect takes no action. Otherwise,target must be an unconnected object (i.e., a
RMI/IDL CORBA stub without a delegate or an implementation object whose
RMI/IDL tie has not been associated with an ORB), andsource must be a connected
object (i.e., an RMI/IDL CORBA stub with a delegate or an implementation object
with an RMI/IDL tie that has been associated with an ORB), or else a
RemoteException is thrown. Thetarget object is connected to the same ORB as
source by calling theStub.connect method if it is a stub (see Section 1.5.1.2,
“Stub,” on page 1-44) or by associating its tie with an ORB if it is an implementatio
object.

3.For IIOP, the communications runtime is an ORB; for JRMP, it is the JRMP transport
subsystem.
Java to IDL Mapping Application Programming Interfaces January 2002 1-63

1

and

L

or

fly

at

limits

t

ate

s
le.)

is
le.)
RMI/IDL implementation objects may be connected implicitly by being passed to
Util.writeRemoteObject or Util.writeAbstractObject . RMI/IDL stubs
may be connected implicitly by being passed toOutputStream.write_Object .
Connecting an implementation object is not the same as exporting it, and RMI/IDL
implementation objects may be unconnected when first exported. RMI/IDL
implementation objects are implicitly connected when they are exported to JRMP,
RMI-JRMP stubs are implicitly connected when they are created.

1.7 Generated IDL File Structure

This section is not part of the formal specification of the Java Language to OMG ID
Mapping, but it contains some suggestions for generated file structure.

Tool vendors may choose to map each RMI/IDL interface, value type, or exception
type to a separate .idl file. This follows the normal Java style and may be easier f
Java RMI/IDL programmers to maintain than requiring that (say) all OMG IDL
definitions be put into a single OMG IDL file.

This approach does raise some issues for the generated OMG IDL, which are brie
worth mentioning.

First, the use of separate .idl files requires the use of “reopenable” modules, so th
separate files can have separate free-standing module definitions.

Second, although OMG IDL permits forward references to OMG IDL interfaces, it
does not support forward references to structs or exceptions, and there are some
on the use of interface references. Any forward references to interfaces must be
satisfied by later definitions of those interfaces.

One possible way of dealing with these difficulties is to use an OMG IDL file layou
similar to the following:

1. The entire OMG IDL definition is bracketed in standard C pre-processor boilerpl
used to guarantee it is only included once:

#ifndef __foo__
#define __foo__

...
#endif

2. An OMG IDL forward reference is generated for each OMG IDL interface that i
referenced. (This may require entering and exiting the appropriate target modu

3. An OMG IDL forward reference is generated for each OMG IDL value type that
referenced. (This may require entering and exiting the appropriate target modu

4. Each exception referenced in the OMG IDL is#include d, in arbitrary order.

5. If the generated OMG IDL is an interface, then#include any inherited interfaces.

6. If the generated OMG IDL is a value type, then#include any inherited value
types.
1-64 Java to IDL Mapping January 2002

1

lue
7. If there are any references to the OMG IDL types::java::rmi::Remote ,
java::io::Serializable , ::java::io::Externalizable , or ::java::lang::_Object ,
then generate the following bracketed definitions as required.

#ifndef __java_rmi_Remote__
#define __java_rmi_Remote__
module java {
module rmi {

typedef Object Remote;
};
};
#endif

#ifndef __java_io_Serializable__
#define __java_io_Serializable__
module java {
module io {

typedef any Serializable;
};
};
#endif

#ifndef __java_io_Externalizable__
#define __java_io_Externalizable__
module java {
module io {

typedef any Externalizable;
};
};
#endif

#ifndef __java_lang_Object__
#define __java_lang_Object__
module java {
module lang {

typedef any _Object;
};
};
#endif

This allows different OMG IDL files in the same module to independently define
any necessary typedefs.

8. For each OMG IDL sequence type that is referenced, generate a bracketed va
definition similar to the following.

#ifndef __org_omg_boxedRMI_fred_seq1_Stuff__
#define __org_omg_boxedRMI_fred_seq1_Stuff__
module org {
module omg {
module boxedRMI {
Java to IDL Mapping Generated IDL File Structure January 2002 1-65

1

L

module fred {
valuetype seq1_Stuff sequence<::fred::Stuff>;

#pragma ID seq1_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654”

};
};
};
};
#endif

This allows different OMG IDL files to independently define any necessary
sequence valuetypes.

9. Generate the target OMG IDL in the appropriate module.

10. #include any interfaces to which forward references have been declared.

11. #include any value types to which forward references have been declared.

Below is an example of how a chunk of RMI/IDL code would be mapped to OMG ID
using this approach.

1.7.1 The Java Definition

Here’s a sample RMI/IDL interface, where the referenced typefred.Stuff is an
RMI/IDL value type,fred.Test1 andfred.Test2 are RMI/IDL remote interface
types, andfred.OurException is an RMI/IDL exception type.

// Java
package fred;

import java.rmi.*;

public interface Test extends Test1 {
void noop() throws RemoteException;

String echo(String arg) throws RemoteException;

Stuff echoStuff(Stuff p) throws RemoteException;

Test echoTest(Test t) throws RemoteException;

int[] echoInts(int args[]) throws RemoteException;

Stuff[] echoStuffs(Stuff args[]) throws RemoteException;

void manyArgs(char a, byte b, short c, int d,
long e,float f, double g) throws RemoteException;

Test2 fetchTest2(Object x) throws RemoteException;
1-66 Java to IDL Mapping January 2002

1

void throwAnException() throws RemoteException,
OurException;

}

1.7.2 The Generated OMG IDL Definition

// IDL
#ifndef __fred_Test__
#define __fred_Test__

#include “orb.idl”

module fred {
interface Test2;
valuetype Stuff;

};

#include “fred/OurEx.idl”
#include “fred/Test1.idl”

#ifndef __java_lang_Object__
#define __java_lang_Object__
module java {
module lang {

typedef any _Object;
};
};
#endif

#ifndef __org_omg_boxedRMI_seq1_long__
#define __org_omg_boxedRMI_seq1_long__
module org {
module omg {
module boxedRMI {

valuetype seq1_long sequence<long>;
#pragma ID seq1_long “RMI:[I:0000000000000000”
};
};
};
#endif

#ifndef __org_omg_boxedRMI_fred_seq1_Stuff__
#define __org_omg_boxedRMI_fred_seq1_Stuff__
module org {
module omg {
module boxedRMI {
module fred {

valuetype seq1_Stuff sequence<::fred::Stuff>;
#pragma ID seq1_Stuff

“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654”
Java to IDL Mapping Generated IDL File Structure January 2002 1-67

1

};
};
};
};
#endif

module fred {
interface Test: Test1 {

void noop();

::CORBA::WStringValue echo(in ::CORBA::WStringValue arg0);

::fred::Stuff echoStuff(in ::fred::Stuff arg0);

::fred::Test echoTest(in ::fred::Test arg0);

::org::omg::boxedRMI::seq1_long echoInts(
in ::org::omg::boxedRMI::seq1_long arg0);

::org::omg::boxedRMI::fred::seq1_Stuff echoStuffs(
in ::org::omg::boxedRMI::fred::seq1_Stuff arg0);

void manyArgs(
in wchar arg0,
in octet arg1,
in short arg2,
in long arg3,
in long long arg4,
in float arg5,
in double arg6);

::fred::Test2 fetchTest2(::java::lang::_Object);

void throwAnException() raises (::fred::OurEx);
};

#pragma ID Test “RMI:fred.Test:0000000000000000”
};

#include “fred/Test2.idl”
#include “fred/Stuff.idl”

#endif
1-68 Java to IDL Mapping January 2002

	Java‘ Language to IDL Mapping
	1.1 Overview
	1.2 The RMI/IDL Subset of Java
	1.2.1 Overview of Conforming RMI/IDL Types
	1.2.2 Primitive Types
	1.2.3 RMI/IDL Remote Interfaces
	1.2.4 RMI/IDL Value Types
	1.2.5 RMI/IDL Arrays
	1.2.6 RMI/IDL Exception Types
	1.2.7 CORBA Object Reference Types
	1.2.8 IDL Entity Types

	1.3 The IDL Mapping
	1.3.1 Overview
	1.3.2 Mapping Java Names to IDL Names
	1.3.3 Mappings for Primitive Types
	1.3.4 Mapping for RMI/IDL Remote Interfaces
	1.3.5 Mapping for RMI/IDL Value Types
	1.3.6 Mapping for RMI/IDL Arrays
	1.3.7 Mapping RMI/IDL Exceptions
	1.3.8 Mapping CORBA Object Reference Types
	1.3.9 Mapping IDL Entity Types
	1.3.10 Mapping for Non-conforming Classes and Interfaces
	1.3.11 Mapping Abstract Interfaces
	1.3.12 Mapping Implementation Classes

	1.4 Run-Time Issues
	1.4.1 Subclasses of Value Objects
	1.4.2 Locating Stubs for Remote References
	1.4.3 Narrowing
	1.4.4 Allocating Ties for Remote Values
	1.4.5 Wide Character Support
	1.4.6 Locating Stubs and Ties
	1.4.7 Mapping RMI Exceptions to CORBA Exceptions
	1.4.8 Mapping CORBA System Exceptions to RMI Exceptions
	1.4.9 Code Downloading
	1.4.10 Custom Marshaling Format
	1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
	1.4.12 RMICustomMaxStreamFormat Service Context
	1.4.13 Marshaling RMI/IDL Arrays
	1.4.14 Runtime Limitations

	1.5 Portability Interfaces
	1.5.1 Portability APIs
	1.5.2 Generated classes
	1.5.3 Replaceability of API Implementations

	1.6 Application Programming Interfaces
	1.6.1 PortableRemoteObject

	1.7 Generated IDL File Structure
	1.7.1 The Java Definition
	1.7.2 The Generated OMG IDL Definition

