Java’ Languageto IDL Mapping 1

Note —The Java Language to IDL Mapping specification is aligned with CORBA
version 3.0.

This is OMG document ptc/2002-01-12.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 1-1
“The RMI/IDL Subset of Java” 1-2
“The IDL Mapping” 1-6
“Run-Time Issues” 1-32
“Portability Interfaces” 1-42
“Application Programming Interfaces” 1-62
“Generated IDL File Structure” 1-64

1.1 Overview

The Java distributed programming community has until now been forced to choose
between two different mechanisms for distributed programming, Java Remote Method
Invocation (RMI) and OMG IDL.

Javato IDL Mapping January 2002 1-1

The RMI style of distributed programming has proven extremely popular because it is
easy to use and avoids the need for Java programmers to learn a separate interface
definition language. However, RMI lacks interoperability with other languages and it is
not currently supported over standard protocols.

The mapping from Java RMI to OMG IDL and IIOP described in this chapter is
intended to unify the ease-of-programming of Java RMI with support for cross-
language operation (through OMG IDL) and support for standard protocols (through
[IOP).

To encourage convergence between the RMI and CORBA programming communities,
it is important to define a solution that is both fully compatible with current RMI
semantics and fully compatible with OMG IDL, IIOP, and the CORBA object model.

The subset of Java that meets these goals is referred to as RMI/IDL.

1.2 The RMI/IDL Subset of Java

This section describes the subset of Java RMI that is mapped to IDL and can run over
GIOP.

1.2.1 Overview of Conforming RMI/IDL Types

A conformingRMI/IDL type is a Java type whose values may be transmitted across an
RMI/IDL remote interface at run-time.

A Java data type is a conforming RMI/IDL type if it is:
* one of the Java primitive types (see Section 1.2.2, “Primitive Types,” on page 1-2).

® a conforming remote interface (as defined in Section 1.2.3, “RMI/IDL Remote
Interfaces,” on page 1-3).

® a conforming value type (as defined in Section 1.2.4, “RMI/IDL Value Types,” on
page 1-4).

® an array of conforming RMI/IDL types (see Section 1.2.5, “RMI/IDL Arrays,” on
page 1-5).

® a conforming exception type (see Section 1.2.6, “RMI/IDL Exception Types,” on
page 1-5).

® a conforming CORBA object reference type (see Section 1.2.7, “CORBA Object
Reference Types,” on page 1-6).

® a conforming IDL entity type (see Section 1.2.8, “IDL Entity Types,” on page 1-6).

1.2.2 Primitive Types

All the standard Java primitive types are supported as part of RMI/IDL. These are:

® void , boolean , byte , char, short , int , long , float
double

Javato IDL Mapping January 2002

1.2.3 RMI/IDL Remote Interfaces

An RMI remote interfacalefines a Java interface that can be invoked remotely. A Java
interface is a conforming RMI/IDL remote interface if:

1
2

. The interface is or inherits frofava.rmi.Remote either directly or indirectly.
. All methods in the interface are defined to throw
java.rmi.RemoteException or a superclass of
java.rmi.RemoteException . Throughout this section, references to methods

in the interface include methods in any inherited interfaces.

. There are no restrictions on method arguments and result types. However at run-
time, the actual values passed as arguments or returned as results must be
conforming RMI/IDL types (see Section 1.2.1, “Overview of Conforming RMI/IDL
Types,” on page 1-2). In addition, for each RMI/IDL remote interface reference, the
actual value passed or returned must be either a stub object or a remote interface
implementation object (see Section 1.2.3.1, “Stubs and remote implementation
classes,” on page 1-4).

. All checked exception classes used in method declarations (other than
java.rmi.RemoteException and its subclasses) are conforming RMI/IDL
exception types (see Section 1.2.6, “RMI/IDL Exception Types,” on page'1-5).

. Method names may be overloaded. However, when an interface directly inherits

from several base interfaces, it is forbidden for there to be method name conflicts
between the inherited interfaces. This outlaws the case where an interface A defines
a method “foo,” an interface B also defines a method “foo,” and an interface C tries
to inherit from both A and B.

Constant definitions in the form of interface variables are permitted. The constant
value must be a compile-time constant of one of the RMI/IDL primitive types or
String

. Method and constant names must not cause name collisions when mapped to IDL

(see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,” on
page 1-10).

The following is an example of a conforming RMI/IDL interface definition:

I
p

Java

ublic interface Wombat extends java.rmi.Remote {
String BLEAT_CONSTANT = “bleat”;
boolean bleat(Wombat other)
throws java.rmi.RemoteException;

1.Because unchecked exception classegaval rmi.RemoteException and its

subclasses are not mapped to IDL exceptions, itis not necessary for them to be conforming
RMI/IDL exception types.

Javato IDL Mapping The RMI/IDL Subsetof Java January 2002 1-3

}

While the following is an example of a non-conforming RMI/IDL interface:

/I Java

/I lllegalinterface fails to extend Remote!!

public interface lllegalinterface {
/I illegalExceptions fails to throw RemoteException.
void illegalExceptions();

1.2.3.1 Stubs and remote implementation classes

At run time, when a reference to an RMI/IDL remote interface is passed across a
remote interface, the class of the actual object that is passed must be either a stub class
or a remote implementation class.

A stub class is a class that has been created (normally by tools) to manage a remote
object reference.

A remote implementation class is a class that acts as the server side implementation for
a given RMI/IDL remote interface.

A given remote implementation class may implement several distinct RMI/IDL
interfaces.

1.2.4 RMI/IDL Value Types

An RMI/IDL value typerepresents a class whose values can be moved between
systems. So rather than transmitting a reference between systems, the actual state of
the object is transmitted between systems. This requires that the receiving system have
an analogous class that can be used to hold the received value.

Value types may be passed as arguments or results of remote methods, or as fields
within other objects that are passed remotely.

A Java class is a conforming RMI/IDL value type if the following applies:

1. The class must implement tfeeva.io.Serializable interface, either directly
or indirectly, and must be serializable at run-time. It may serialize references to
other RMI/IDL types, including value types and remote interfaces.

2. The class may implemefava.io.Externalizable . (This indicates it
overrides some of the standard serialization machinery.)

3. If the class is a non-static inner class, then its containing class must also be a
conforming RMI/IDL value type.

4. A value type must not either directly or indirectly implement the
java.rmi.Remote interface. (If this were allowed, then there would be potential
confusion between value types and remote interface references.)

Javato IDL Mapping January 2002

A value type may implement any interface exceptjéa.rmi.Remote.
There are no restrictions on the method signatures for a value type.
There are no restrictions atatic fields for a value type.

There are no restrictions dransient fields for a value type.

© © N o 0

Method, constant, and field names must not cause name collisions when mapped to
IDL (see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,”
on page 1-10).

Here is an example of a conforming RMI/IDL value type:

/I Java

public class Point implements java.io.Serializable {
public final static int CONSTANT_FOO = 3+3;
private int x;
private int vy;
public Point(int x, y) { ... }
public int getX() { ... }
public int getY() { ... }

1.2.4.1 The Java String Type

Thejava.lang.String class is a conforming RMI/IDL value type following these
rules. Note, however, th&tring is handled specially when mapping Java to OMG
IDL (see Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21).

1.2.5 RMI/IDL Arrays

Arrays of any conforming RMI/IDL type are also conforming RMI/IDL types. So

int]] andString[][][] are conforming RMI/IDL types. Similarly iiWombat is
a conforming RMI/IDL interface type, theWombat[] is a conforming RMI/IDL
type.

1.2.6 RMI/IDL Exception Types

An RMI/IDL exception type is a checked exception class (as defined by the Java
Language Specification). Since checked exception classes extend
java.lang.Throwable , which implementgava.io.Serializable ,itis
unnecessary for an RMI/IDL exception class to directly implement
java.io.Serializable

A type is a conforming RMI/IDL exception if the class:
® is a checked exception class.

®* meets the requirements for RMI/IDL value types defined in Section 1.2.4,
“RMI/IDL Value Types,” on page 1-4.

Javato IDL Mapping The RMI/IDL Subsetof Java January 2002 1-5

1-6

Here’s an example of a conforming RMI/IDL exception type:

/I Java
public class MammalOverload extends MammalException {
public MammalOverload(String message) {
super(message);

}

1.2.7 CORBA Object Reference Types

A conforming CORBA object reference type is either
® the Java interfacerg.omg.CORBA.Object , or

® a Java interface that extendsy.omg.CORBA.Object directly or indirectly and
conforms to the rules specified in the Java Language Mapping (i.e., could have been
generated by applying the mapping to an OMG IDL definition).

1.2.8 IDL Entity Types

A Java class is a conforming IDL entity type if it extends
org.omg.CORBA.portable.IDLEntity and conforms to the rules specified in

the Java Language Mapping (i.e., could have been generated by applying the mapping
to an OMG IDL definition) and is not an OMG IDL user exception.

1.3 The IDL Mapping

1.3.1 Overview

This section defines the mapping between RMI/IDL data types and OMG IDL. It
includes general rules for mapping Java names to OMG IDL and mappings for:

® Primitive types

®* RMI/IDL remote interfaces

* RMI/IDL value types

* RMI/IDL arrays

* RMI/IDL exception types

®* CORBA object reference types
* |IDL entity types

® Java types that are referenced in RMI/IDL remote interfaces or inherited by
RMI/IDL value types, but which are not themselves conforming RMI/IDL types.

®* RMI/IDL abstract interfaces

®* RMI/IDL implementation classes

Javato IDL Mapping January 2002

1.3.1.1 Summary of Special Case Mappings

Some standard Java class and interface types benefit from special case mappings to
specific CORBA types. These are described in the appropriate sections below, but for
convenience Table 1-1 summarizes these mappings:

Table 1-1 Special Case Mappings

Java OMG IDL

java.lang.Object ;Java::lang::_Object

java.lang.String ::CORBA::WStringValue orwstring *
java.lang.Class ;javax::rmi::CORBA::ClassDesc
java.io.Serializable java::io::Serializable
java.io.Externalizable ;java::io::Externalizable
java.rmi.Remote javaiirmi;:Remote
org.omg.CORBA.Object Object

1.String constants are mapped differently tHatring variables. See Section 1.3.5.11,
“Mapping for java.lang.String,” on page 1-21.

1.3.2 Mapping Java Names to IDL Names

In general, each Java name is mapped to an equivalent OMG IDL name. However,
there are some exceptions when the Java name is not a legal identifier in OMG IDL.

1.3.2.1 Mapping packages to modules

1.3.2.2

1.3.2.3

We map Java package names to OMG IDL modules. Each Java package becomes a
separate OMG IDL module. Packages within packages are represented as modules
within modules.

So a Java packageb.c would turn into an OMG IDL module:a::b::c .

Java names that clash with IDL keywords

For Java names that collide with OMG IDL keywords, the Java names are mapped to
OMG IDL by adding a leading underscore. So the Java nansvay is mapped to
the OMG IDL identifier_oneway (an escaped identifier).

Java names with leading underscores

For Java names that have leading underscores, the leading underscore is replaced with
“J_". So_fred is mapped ta)_fred.

Javato IDL Mapping The IDL Mapping January 2002 1-7

1-8

1.3.2.4

1.3.25

1.3.2.6

Java names with illegal IDL identifier characters

Given the current lack of support for Unicode in OMG IDL, we define a simple name
mangling scheme to support the mapping of Java identifiers to OMG IDL identifiers.

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ or
Unicode characters outside of ISO Latin 1, any such illegal characters are replaced by
“U” followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value. So, the Java nana$b is mapped taU0024b andx\u03bCy is mapped to
xUO3BCy.

Names for inner classes

When mapping names for Java inner classes, a composite name is formed by
concatenating the name for the outer class, two underscores, and the name of the inner
class. The corrections for illegal OMG IDL identifiers described above are then

applied.

For example, an inner clagsed inside a clas8ert will get mapped to an OMG
IDL name ofBert__Fred .

Overloaded method names

If a Java RMI/IDL method isn’t overloaded, then the same method name is used in
OMG IDL as was used in Java.

Given the absence of overloaded methods in current OMG IDL, we define a simple
name mangling for overloaded methods.

Note that a method may be uniquely defined in a base interface (and therefore its name
will not be mangled in that interface) and then be overloaded in a derived interface (in
which case the name will be mangled in the derived interface).

For overloaded RMI/IDL methods, the mangled OMG IDL name is formed by taking
the Java method name and then appending two underscores, followed by each of the
fully qualified OMG IDL types of the arguments (removing any leading “::” and
replacing embedded “::” with “_") separated by two underscores. Any spaces (such as
in the OMG IDL typelong long) are replaced with underscores, and any leading
underscores in OMG IDL escaped identifiers are removed.

For example, the four overloaded Java methods:

void hello();

void hello(int x, a.b.c y, int z);
void hello(int z[]);

void hello(Object 0);

are mapped to the OMG IDL methods:

void hello__();
void hello__long__a_b_c__long(in long x, in ::a::b::cy, in long z);

Javato IDL Mapping January 2002

1.3.2.7

1.3.2.8

1.3.2.9

void hello__org_omg_boxedRMI_seql_long(
in ::org::omg::boxedRMI::seql_long x);
void hello__java_lang_Object(in ::java::lang::_Object 0);

Names differing only in case

While Java supports case-sensitive names, OMG IDL does not. Therefore, a general
name mangling rule is provided to allow unique OMG IDL identifiers to be generated
for Java names that differ only in case.

To simplify the mapping, the use of Java package names differing only in case is not
supported. Nor do we support the use of class or interface hames within the same
package that differ only in case. Both of these are treated as errors.

For other case-sensitive collisions, the rule is that if two (or more) names that need to
be defined in the same OMG IDL name scope differ only in case, then a mangled name
is generated consisting of the original name followed by an underscore, followed by an
underscore separated list of decimal indices into the string, where the indices identify
all the upper case characters in the original string. Indices are zero based.

Thus if a Java remote interface has methjzatk, Jack andjAcK these names are
mapped tgack_, Jack_0, andjAcK_1 3.

Method names that collide with other names

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between method names and constant or field names. This is because Java
constants and fields can have the same names as methods, but OMG IDL constants and
fields cannot. The following rules are used to avoid such name collisions in OMG IDL:

* Method names are mapped unchanged (subject to other mangling rules).

® Java constant or field names whose mapped name collides with the mapped name of
a Java method (or would collide if the Java method were mapped to OMG IDL) are
mapped with an additional trailing underscore.

For example, if a Java class has both a condtamtand a methodoo , the OMG IDL
method is calledoo (if it is mapped) and the OMG IDL constant is calléab_
(whether or not the methoibo is mapped).

Container names that clash with their members

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between a container name and members of the container. This is because a
Java member can have the same name as its container, but OMG IDL members cannot.
The following rules are used to avoid such name collisions in OMG IDL:

® Container names are mapped unchanged (subject to other mangling rules).

* Java method, constant, or field names whose mapped name collides with the
mapped name of their Java container are mapped with an additional trailing
underscore.

Javato IDL Mapping The IDL Mapping January 2002 1-9

1-10

For example, if a remote Java interfaéeo has a methodoo , the OMG IDL
interface is called~oo and the OMG IDL operation is callefdo_ .

1.3.2.10 Names that would cause OMG IDL name collisions

If the name mappings defined in this specification would produce OMG IDL method,
constant, field, or attribute names that are not unique within their declared scope, this
is treated as an error. For example, if a Java remote interface has mébo@ds,

foo(int x) , andfoo__long() , the corresponding OMG IDL names would be
foo__, foo__long , andfoo__long , which is not legal OMG IDL.

1.3.3 Mappings for Primitive Types

Here are the OMG IDL mappings for the Java primitive types:

Java OMG IDL
void void
boolean boolean
char wchar

byte octet

short short

int long

long long long
float float
double double

The mappings for the Jawaid , boolean , short ,int ,long , float , and
double types are straightforward as they have exact OMG IDL analogues.

The 8 bit signed Java typeyte is mapped to the 8 bit unsigned OMG IDL type
octet. The mapping is bit-for-bit so that Java byte value “-1” is transmitted as GIOP
octet “OxFF,” and the GIOP octet “OxFF” is mapped back to the Java byte value “-1.”
Thus when using this mapping, we will preserve full value and sign information when
using RMI/IDL between a Java client and a Java server over GIOP.

The 16 bit Java Unicodehar type is mapped to the OMG IDlvchar type.

1.3.4 Mapping for RMI/IDL Remote Interfaces

An RMI/IDL remote interface is mapped into an OMG IDL interface with the
corresponding name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on
page 1-7) in the OMG IDL module corresponding to the Java interface’s package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Javato IDL Mapping January 2002

1.34.1

1.3.4.2

1.3.4.3

Special case for java.rmi.Remote

As a special case, any explicit usejafa.rmi.Remote as a parameter, result, or
field is mapped to the OMG IDL typejava::rmi::Remote , which is defined as
follows:

//'1DL
module java {
module rmi {
typedef Object Remote;
I3
3

All RMI/IDL remote interfaces inherit fronjava.rmi.Remote . This inheritance is
represented in the RMI to OMG IDL mapping as the implicit inheritance of IDL
interface types fronCORBA::Object .

Inherited interfaces

Each inherited interface (other thfava.rmi.Remote) in the Java interface is
represented by an equivalent inherited interface in the OMG IDL interface. If the
inherited interface is an RMI/IDL remote interface, then it is mapped as specified here.
If not, it is mapped as specified in Section 1.3.11, “Mapping Abstract Interfaces,” on
page 1-30.

Property accessor methods

Methods that follow the JavaBedhsiesign patterns for simple read-write properties
or simple read-only properties are mapped to OMG IDL interface attributes. No special
mapping is done for indexed properties or write-only properties.

Read-Write properties

If an RMI/IDL remote interface has a pair of methogst<name> andset<name>
where

® the get<name> method has no arguments,
* theset<name> method has a single argument and a void return type,

® the result type of thget<name> method is the same as the argument type of the
set<name> method,

® get<name> andset<name> do not throw any checked exceptions except for
java.rmi.RemoteException and its subclasses,

then this is mapped to an OMG IDL read-write attribute where the attribute has the
OMG IDL type corresponding to theet<name> method’s argument type.

Javato IDL Mapping The IDL Mapping January 2002 1-11

1-12

Read-only properties
If there is aget<name> method that

® has no arguments,
® has a non-void return type,

® does not throw any checked exceptions except for
java.rmi.RemoteException and its subclasses,

but if there is no correspondirget<name> method that satisfies the rules defined in
“Read-Write properties” on page 1-11, then thet<name> method is mapped to a
read-only OMG IDL attribute whose type is obtained by mapping the method’s return

type.

Boolean properties

For boolean properties @a<name> method may take the place of tiget<name>
method. For example, a pair of methods, as shown below, define a read-write attribute
foo.

boolean isFoo() throws java.rmi.RemoteException;
void setFoo(boolean b) throws java.rmi.RemoteException;

Theis<name> method may be provided instead ofjat<name> method, or it may
be provided in addition to get<name> method. In either case, if the<name>
method is present for a boolean property tieemame> will be mapped to the OMG
IDL attribute <name> andget<name> (if present) will be mapped to an OMG IDL
operationget<name> . For example, the following Java methods:

/I Java

boolean getBar();
boolean isBar();

void setBar(boolean x);

are mapped to the following OMG IDL.:

/I DL
boolean getBar();
attribute boolean bar;

Attribute names

The JavaBeandesign pattern for property names is that the property name is obtained
from the method name(s) by:

® Extracting the characters after the initial “get,” “is,” or “set” of the method name.

® Converting the first character to lower case unless both the first and second
characters are upper case.

So thegetFoo method implies a “foo” property, theetX method implies an “x”
property, and thgetURL method implies a “URL” property.

Javato IDL Mapping January 2002

1

The OMG IDL attribute name is obtained by taking the JavaBeans property name and
applying the normal mapping rules (see Section 1.3.2, “Mapping Java Names to IDL
Names,” on page 1-7). However, if this OMG IDL attribute name conflicts with an
OMG IDL method name, then an extra pair of underscores' s added to the end of

the attribute name to attempt to disambiguate it.

1.3.4.4 Methods

Except for property accessors (see Section 1.3.4.3, “Property accessor methods,” on
page 1-11), each method in the interface is mapped to an OMG IDL method where:

1. The OMG IDL method name is generated as described in Section 1.3.2.6,
“Overloaded method names,” on page 1-8.

2. The Java return type is mapped to the corresponding OMG IDL return type.

3. Each Java argument is mapped to an OMG [Dlparameter with the
corresponding OMG IDL type.

4. The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument name%.

5. Each declared RMI/IDL exception (other thgva.rmi.RemoteException
and its subclasses) is mapped to the corresponding OMG IDL exception.

6. java.rmi.RemoteException and its subclasses, and unchecked exception
classes, are assumed to be mapped to the implicit CORBA system exception, and
are therefore not explicitly declared in OMG IDL.

1.3.4.5 Constants

Compile-time constants ublic final static " fields with compile-time

constant values) for primitive types adrings are mapped to similarly named IDL
constants in the target interface with the same values, except for byte constants which
are mapped bit-for-bit. For example, -1 maps to 255. Individustting andwchar
character values may need to be escaped as defined in the OMG IDL specification.

2. Thisis not always possible, since Java method argument names do not appear in the .class
file output from the javac compiler.

Javato IDL Mapping The IDL Mapping January 2002 1-13

1.3.4.6 Repository ID

A #pragma ID is generated to assign each mapped OMG IDL interface type an RMI
Hashed format repository ID derived from the Java interface name using the rules
specified inThe Common Object Request Broker: Architecture and Specifications
Interface Repositorghapter, with a hash code of zero and no SUID. See

Section 1.3.5.7, “Repository ID,” on page 1-18 for more information.

1.3.4.7 Anexample

Here is an example of an RMI/IDL remote interface:

/I Java
package alpha.bravo;
public interface Wombat extends java.rmi.Remote,
omega.Wallaby {
String BLEAT_CONSTANT = “bleat”;
void chirp(int x) throws RemoteException;
void buzz() throws RemoteException, omega.MammalOverload;
int getFoo() throws RemoteException;
void setFoo(int x) throws RemoteException;
String getURL() throws RemoteException;
void eat() throws Exception;
void drink() throws RemoteException,
java.rmi.NoSuchObjectException;

}
that gets mapped to the following IDL:

// 1DL
module alpha {
module bravo {
interface Wombat: ::omega::Wallaby {
const wstring BLEAT _CONSTANT = “bleat”;
void chirp(in long arg0);
void buzz() raises (::omega::MammalOverloadEx);
attribute long foo;
readonly attribute ::CORBA::WStringValue URL,;
void eat() raises (::;java::lang::Ex);

void drink();
h
#pragma ID Wombat “RMlI:alpha.bravo.Wombat:0000000000000000”
h
h

Note thatString constants are mapped differently th@tring variables. See
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21.

1-14 Javato IDL Mapping January 2002

1.3.5 Mapping for RMI/IDL Value Types

1351

1.3.5.2

1.3.5.3

This section covers the general mapping for RMI/IDL value types, including inner
classes and conforming exception classes that are not RMI/IDL exception types.

However, note that there are special case mappingg¥arlang.String (see
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21) and
java.lang.Class (see Section 1.3.5.12, “Mapping for java.lang.Class,” on
page 1-21).

RMI/IDL value classes that implementg.omg.CORBA.portable.IDLEnNtity
andorg.omg.CORBA.portable.ValueBase directly or indirectly are not

mapped to OMG IDL, because these Java classes correspond to existing OMG IDL
value types that were mapped to Java using the OMG IDL to Java mapping. Instead,
the original OMG IDL definitions are used.

Exception classes that implemesrg.omg.CORBA.portable.IDLEntity may
appear only in Javihrows clauses. This is because they correspond to existing OMG
IDL exception types, and OMG IDLexception types may appear only in IDL

raises clauses.

Each RMI/IDL value class (except for those mapped from OMG IDL using the OMG
IDL to Java mapping) is mapped to an OMG IDL value type with the corresponding
OMG IDL name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on

page 1-7) in the OMG IDL module corresponding to the Java class’s package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Inherited base class

If the RMI/IDL class extends some base class (other jaga.lang.Object),

then this inheritance is represented by having the OMG IDL value type inherit from an
IDL value type corresponding to the base class. See Section, “module org {,” on
page 1-27 for details.

Inherited interfaces
Each inherited interface (other thgava.io.Serializable and
java.io.Externalizable) in the Java class is represented by an equivalent

inherited or supported type in the mapped OMG IDL type. If the inherited interface is
mapped to an OMG IDL abstract valuetype, then it is inherited by the mapped OMG
IDL type. If the inherited interface is mapped to an OMG IDL abstract interface, then
it is supported by the mapped OMG IDL type. It is not possible for the inherited
interface to be mapped to a non-abstract OMG IDL interface, because RMI/IDL value
types cannot implement RMI/IDL remote interfaces (see Section 1.2.4, “RMI/IDL
Value Types,” on page 1-4). See Section , “module org {,” on page 1-27 for details of
how inherited interfaces are mapped.

Methods

It is not required that methods in RMI/IDL value classes be mapped into OMG IDL.

Javato IDL Mapping The IDL Mapping January 2002 1-15

1-16

This is partly due to concern that an automatic mapping would have a spaghetti effect,
where referencing a single value type would result in mappings for methods that would
pull in other RMI/IDL types, that would pull in other value types.

In addition, many of the methods in common Java value types cannot be mapped
usefully to OMG IDL (because they reference non RMI/IDL types) or to other
languages.

However, there may be cases where it is useful to map value type methods to OMG
IDL and tools may choose to support options to map methods. In those cases, each
mapped method in a Java value type is mapped to an OMG IDL method using the rules
specified in Section 1.3.4.3, “Property accessor methods,” on page 1-11 and

Section 1.3.4.4, “Methods,” on page 1-13.

Java private methods are not mapped to OMG IDL.

1.3.5.4 Constructors

As with methods, it is not required that RMI/IDL value type constructors be mapped to
OMG IDL. However, in those cases where constructors are mapped to OMG IDL
(including the default constructor, if any), we require that the following mapping be
used:

Each mapped constructor in a Java value type is mapped to an OMG IDL initializer
where:

1. If there is a single IDL initializer, its name tgeate . If there are multiple IDL
initializers, this name is mangled as specified in Section 1.3.2.6, “Overloaded
method names,” on page 1-8.

2. Each Java argument is mapped to an iBDlparameter with the corresponding IDL
type.

3. The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument names.

4. Each declared RMI/IDL exception type (other than
java.rmi.RemoteException and its subclasses) is mapped to the
corresponding OMG IDL exception.

5. java.rmi.RemoteException and its subclasses, and unchecked exception
classes, are not explicitly declared in OMG IDL.

Java private constructors are not mapped to OMG IDL.

For example, the Java classes:

/I Java

public class foo implements java.io.Serializable {
foo(int x);

}

public class bar implements java.io.Serializable {

Javato IDL Mapping January 2002

1.3.55

1.3.5.6

bar(int x);
bar(char y);
}

would be mapped to the OMG IDL valuetypes:

// 1DL

valuetype foo {
factory create(in long x);

h

valuetype bar {
factory create__long(in long x);
factory create__wchar(in long y);

k

Constants

Compile-time constants ublic final static " fields with compile-time
constant values) for primitive types adrings are mapped to similarly named IDL
constants in the target value type with the same values. Individstaing andwchar
character values may need to be escaped as defined in the OMG IDL specification.

Data

If the class implementigva.io.Externalizable , then the serialized state of the
Java class is treated as an opaque type, and it is defined as an OM@uUBtbm
valuetype .” Java non-static non-transieptiblic fields are mapped to OMG IDL
public data members, and other Java fields are not mapped.

If the class does not implemejatva.io.Externalizable but does have a
writeObject method,, or extends such a class directly or indirectly, then it is mapped

to an OMG IDL “custom valuetype ” using the rules for mapping data members
specified below. An additional IDL custom valuetype in the module
::org::omg::customRMI is also generated to assist with marshaling and unmarshaling
instances of the class. See Section 1.3.5.8, “Secondary custom valuetype,” on page 1-19
for details. In this case and for Java classes that implement

java.io.Externalizable , all the semantics of

java.io.ObjectOutputStream andjava.io.ObjectInputStream

supported by RMI over JRMP are supported over IIOP.

If the class does not implemejatva.io.Externalizable and has a declared
private static final field namedserialPersistentFields of type
java.io.ObjectStreamField[] , then the mapping of data fields to OMG IDL

is governed by the value of that field. If the Java class hawrite Object method,
then eaclObjectStreamField instance in the array must correspond to a declared
field in the class with the same name and the same declared type. For each
ObjectStreamField instanceosf in the array, there is an OMG IDL data member
with name equal tosf.getName() and type equal to the standard mapping of the

Javato IDL Mapping The IDL Mapping January 2002 1-17

1-18

Java typeosf.getType().getName() to OMG IDL. If the corresponding field
exists in the Java class and is declapedblic , then the OMG IDL field is also
declaredpublic ; otherwise, the OMG IDL field is declaregrivate .

If the class does not implemejatva.io.Externalizable and does not have a
declaredprivate static final field namedserialPersistentFields of
typejava.io.ObjectStreamField[] , then each non-static non-transient field of

the Java class is mapped to a corresponding OMG IDL data member with the same
name, with the corresponding OMG IDL type. Jguablic fields are mapped to

OMG IDL public data members. Non-public Java fields are mapped to OMG IDL
private data members.

The following rules apply to the ordering of fields in an OMG IDL value type mapped
from Java.

¢ All non-constant fields whose Java type is a primitive precede all other non-
constant fields.

®* The non-constant primitive fields are ordered by sorting their Java field names in
increasing order. The sort compares the field name strings lexicographically. The
comparison is based on the Unicode value of each character in the strings.

®* The non-constant non-primitive fields are ordered by sorting their Java field names
in the same way as non-constant primitive fields.

1.3.5.7 Repository ID

To allow reliable detection of version mismatchestfaagma ID is generated to
assign each value type a specific repository ID string with a specific version string.

The syntax of the repository ID is the standard OMG RMI Hashed format, with an
initial “RMI:” followed by the Java class name, followed by a hash code string,
followed optionally by a serialization version UID string.

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ or
Unicode characters outside of ISO Latin 1, any such illegal characters are replaced by
“\U” followed by the 4 hexadecimal characters (in upper case) representing the
Unicode value. The use of a “\" is legal within a repository ID and it allows a reliable
demangling from a repository ID back to the Java class name.

For example, the Java typava.util. Hashtable would be mapped to the OMG
IDL type ::java::util::Hashtable with a repository ID of
“RMl:java.util. Hashtable:C03324C0EA357270:13BBOF25214AE4B8”

Similarly, a Java clasa.x\u03bCy might be mapped to the OMG IDL type
::a::xU03BCy with repository ID
“RMI:a.x\UO3BCy:0123456789ABCDEF:123456789ABCDEFO0”

Javato IDL Mapping January 2002

1.3.5.8 Secondary custom valuetype

In addition to the primary mapping described above, an RMI/IDL value type containing
awriteObject method is mapped to a secondary IDL custom valuetype. The module
name for this valuetype is formed by taking therg::omg::customRMI prefix and

then adding the primary mapped type’s module name. The name of the secondary
valuetype is the same as the name of the primary IDL custom value type to which the
RMV/IDL value type was mapped. The secondary valuetype has no inheritance, data
members, methods, or initializers. It hag@ragma ID specifying a repository 1D

formed by taking the repository ID of the primary custom valuetype and prefixing the
Java package name withrg.omg.customRMI." . The secondary custom valuetype
represents the enclosurewfiteObject data that is wriitten to the serialization

stream when the primary custom valuetype or any of its subclasses is serialized using
format version 2, as described in item 1d of Section 1.4.10, “Custom Marshaling
Format,” on page 1-40.

For IDL custom marshaling and unmarshaling of the primary mapped IDL valuetype, the
marshal andunmarshal methods can calirite_Value() andread_Value() to write

and read the nested valuetype enclosure. This will causm#tishal andunmarshal
methods of the secondary mapped IDL valuetype to be called to write and read the
custom serialized data.

1.3.5.9 Example without writeObject

The RMI/IDL value type:

/I Java
package alpha.bravo;
public class Hedgehog extends Warthog
implements java.io.Serializable {
public final static short MAX_WARTS = 12;
private int length;
protected boolean foobah;
int height;
public int size;
public void snuffle() { ... }
public int getLength() { ... }

}
gets mapped to the IDL value type:

// IDL

module alpha {

module bravo {

valuetype Hedgehog: ::alpha::bravo::Warthog {

const short MAX_WARTS = 12;
private boolean foobabh;
private long height;
private long length_;
public long size;

Javato IDL Mapping The IDL Mapping January 2002 1-19

1-20

/I mapping of methods, attributes, and initializers is optional
void snuffle();
readonly attribute long length();
factory create();
3
#pragma ID Hedgehog
“RMl:alpha.bravo.Hedgehog:12345678ABCDEF00:0123456789ABCDEF”
I3
h

1.3.5.10 Example with writeObject

The RMI/IDL value type:

/I Java
package alpha.bravo;
public class Kangaroo extends Wallaby
implements java.io.Serializable {
private int length;
private Kangaroo(int length) { ... }
private void writeObject(java.io.ObjectOutputStream s)
{..}
public int hop() { ... }
}

gets mapped to the IDL value types:

/I'IDL
module alpha {
module bravo {
custom valuetype Kangaroo: ::alpha::bravo::Wallaby {
private long length;
/l mapping of methods shown below is optional
long hop();
h
#pragma ID Kangaroo
“RMl:alpha.bravo.Kangaroo:87654321ABCDEF01:9876543210FEDCBA”
h
h

module org {

module omg {

module customRMI {

module alpha {

module bravo {
custom valuetype Kangaroo {};

#pragma ID Kangaroo
"RMI:org.omg.customRMIl.alpha.bravo.Kangaroo:87654321ABCDEF01:

9876543210FEDCBA"

J3

Javato IDL Mapping January 2002

- R -

1.3.5.11 Mapping for java.lang.String

When used as a parameter type, return type, or data member, th8tfiaga type is
mapped to the typeCORBA::WStringValue . However when mapping Java
String constant definitions, a Jagtring is simply mapped to avstring .

::CORBA::WStringValue is a standard type that is part of tk@®ORBA module. It is
defined as

valuetype WStringValue wstring;

which is semantically equivalent to:

valuetype WStringValue {
public wstring data;

k

1.3.5.12 Mapping forjava.lang.Class

When used as a parameter type, return type, or data member, th€ladaga type is
mapped to the OMG IDL typejavax::rmi::CORBA::ClassDesc . This OMG IDL
type is the result of mapping the following Java class to OMG IDL.:

/I Java
package javax.rmi.CORBA,;
public class ClassDesc implements java.io.Serializable {
public String repid;
public String codebase; // space-separated list of URLs
static final long serialVersionUID
= -3477057297839810709L;

1.3.6 Mapping for RMI/IDL Arrays

An RMI/IDL array is mapped to a “boxed” value type containing an IDL sequence. We
use the syntaxvaluetype xyz foo " as a shorthand for defining a value type named
“xyz” that contains a single field of typefdo.”

The module for each such value type is determined by the IDL type of the array
element. For multi-dimensional arrays, this is the type of the innermost array element,
after all the dimensions are resolved.

Javato IDL Mapping The IDL Mapping January 2002 1-21

Primitive OMG IDL types such akng, boolean , etc. are mapped directly into the
:;org::omg::boxedRMI module. For other types, a module name is formed by taking
the ::org::omg::boxedRMI prefix and then adding the type’s existing module name
to identify a sub-module. So the typ&::b::c is mapped into the module
:;org::omg::boxedRMI::a::b

For each “boxed” value type generated for a Java arrégpragma ID is generated to
specify an RMI Hashed format repository ID for the IDL type.

The OMG IDL value type name within the module is formed by prefixing the OMG
IDL element type name withseq<n>_" where<n> is the number of dimensions of
the array. Any spaces (such as in the OMG IDL typeg long) are replaced with
underscores.

Some example value definitions resulting from Java arrays:

boolean[] =>in the module:org::omg::boxedRMI the definition:
valuetype seql_boolean sequence<boolean>;

long[] =>in the module:org::omg::boxedRMI the definition:
valuetype seql_long_long sequence<long long>;

a.b.C[] =>inthe module:org::omg::boxedRMI::a::b the definition:
valuetype seql_C sequence<:a:b:C>;

x.Y(I[] => in the module:org::omg::boxedRMI::x the definitions:
valuetype seql_Y sequence<::X::Y>;
valuetype seq2_Y sequence<seql_Y>;

1.3.6.1 Preventing redefinitions of boxed sequence types

Each generated boxed sequence type must be protected against multiple definitions and
there are various ways in which this could be accomplished. For example, each
generated boxed sequence type could be wrapped#ifraef and#endif pair where

the tag of thetifndef is the fully scoped name of the sequence value type, replacing
the leading !’ with two underbars, replacing each inner ‘with one underbar, and

adding two underbar characters at the end. #ifiedef would be followed by a

#define of the tag, followed by the sequence definition, followed by#@mdif .

A definition for a sequence dfoolean that uses this approach would be wrapped in a
preamble of

#ifndef __org_omg_boxedRMI_seql_boolean__

#define __org_omg_boxedRMI_seql boolean___
and would be followed by an

#endif

1-22 Javato IDL Mapping January 2002

1.3.6.2 Array example

Here’s a more complete example. The Java definition:

/I Java

package alpha.bravo;

public class Charlie implements java.io.Serializable {
public omega.Dolphin fins[];

}

would result in the following OMG IDL definition:

// DL

#ifndef __org_omg_boxedRMI_omega_seql Dolphin__

#define __org_omg_boxedRMI_omega_seql_ Dolphin__

module org {

module omg {

module boxedRMI {

module omega {
valuetype seql_Dolphin sequence<::omega::Dolphin>;

#pragma ID seql_Dolphin
“RMI:[Lomega.Dolphin;:ABCDEF0123456789:01ABCDEF23456789"

}
}
}.
¥

endif

module alpha {
module bravo {
valuetype Charlie {
public ::org::omg::boxedRMI::omega::seql_Dolphin fins;
h
#pragma ID Charlie
“RMl:alpha.bravo.Charlie:0123456789ABCDEF:ABCDEF9876543210"
h
h

1.3.7 Mapping RMI/IDL Exceptions

OMG IDL does not allow subclassing of exception types. By contrast Java
programmers tend to make heavy use of exception subclassing, and the Java type
system is used to distinguish different flavors of exceptions at run time. It is very
common for a Java interface to say it raises a fairly generic exception (such as
java.io.lOException) but for implementations to throw more specific sub-types
(such agava.io.InterruptedlOException) and for clients to use the Java
instanceof operator to check for specific subtypes. In addition, RMI/IDL
exceptions can be passed as normal value types, whereas OMG IDL exceptions can
only be used irraises clauses.

Javato IDL Mapping The IDL Mapping January 2002 1-23

This mismatch of exception styles makes the mapping of RMI/IDL exception types to
OMG IDL problematic.

To allow full support for subclassing when communicating Java to Java we use a
mapping where an RMI/IDL exception type is mapped to both a specific OMG IDL
exception and to an OMG IDL value type that allows subclassing. The OMG IDL
exception has a single field that holds the corresponding value object.

This solution allows RMI/IDL to support the normal idiomatic use of Java exceptions,
while still being correctly mappable into OMG IDL.

1.3.7.1 TheIDL value type

Each RMI/IDL exception type is mapped to an OMG IDL value type in the OMG IDL
module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The value type’'s name is formed by
taking the RMI/IDL exception name and applying the normal corrections for illegal

IDL names (see Section 1.3.2, “Mapping Java Names to IDL Names,” on page 1-7).

The OMG IDL value type inherits from an OMG IDL parent value type that
corresponds to the base class of the RMI/IDL exception class. If an RMI/IDL
exception type-red extendsBert , then its OMG IDL value typd-red will inherit
Bert.

The mapping of the fields, methods, constants, and inherited interfaces to the OMG
IDL value type follow the same rules defined for other RMI/IDL value types in
Section 1.3.5.2, “Inherited interfaces,” on page 1-15 through Section 1.3.5.7,
“Repository ID,” on page 1-18.

1.3.7.2 The IDL exception

Each RMI/IDL exception type is also mapped to an OMG IDL exception in the OMG
IDL module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The OMG IDL exception name is
formed from the Java exception name by

® removing any trailing Exception 7 suffix.
® adding an Ex” at the end of the name.

® applying the normal corrections for illegal OMG IDL names (see Section 1.3.2,
“Mapping Java Names to IDL Names,” on page 1-7).

If applying the above rules yields the same OMG IDL name for more than one Java
exception name (e.g., there are Java exception némoesandfooException
which both map to the OMG IDL nam®oEXx), then this is treated as an error.

For example:

java.lang.lllegalAccessException is mapped to
:;java::lang::lllegalAccessEx

alpha.bravo.Foo is mapped ta:alpha::bravo::FoOoEx

1-24 Javato IDL Mapping January 2002

1

This OMG IDL exception name can then be used in thises clause of OMG IDL
method definitions.

The OMG IDL exception type is defined with a single data member navakdc that
has the type of the associated value object.

1.3.7.3 Mapping References to RMI/IDL Exceptions

Whenever an RMI/IDL exception is used in a Jakeows clause, it is mapped to a
use of the corresponding OMG IDL exception type in the OMG IRises clause.

Whenever an RMI/IDL exception is used as a data field or as a method argument, it is
mapped to the corresponding OMG IDL value type.

1.3.7.4 Example

The Java RMI/IDL definitions:

/I Java

package omega;

public class FruitbatException extends MammalException {
public FruitbatException(String message, int count) {

}
public int getCount() { ... }
private int count;

}

public interface Thrower extends java.rmi.Remote {
void doThrowFruitbat() throws FruitbatException,
RemoteException;
FruitbatException getLastException()
throws RemoteException;

}
are mapped to OMG IDL as:

// 1DL
module omega {
valuetype FruitbatException: ::omega::MammalException {
private long count_;
/l mapping of attributes shown below is optional
readonly attribute long count();
h
#pragma ID FruitbatException
“RMI:omega/FruitbatException:1234567899775511:3344556645678901”

exception FruitbatEx {
FruitbatException value;

J3

Javato IDL Mapping The IDL Mapping January 2002 1-25

1-26

interface Thrower {
void doThrowFruitbat() raises (FruitbatEx);
readonly attribute FruitbatException lastException;
3
#pragma ID Thrower “RMIl:omega.Thrower:0000000000000000”
I3

1.3.8 Mapping CORBA Object Reference Types

A CORBA object reference type is mapped directly to its corresponding OMG IDL
interface or toObject if it is org.omg.CORBA.Object

1.3.9 Mapping IDL Entity Types

An IDL entity type that is not a CORBA object reference type is mapped to a "boxed"
value type containing the IDL entity type, except as specified in Section 1.3.5,
“Mapping for RMI/IDL Value Types,” on page 1-15 and Section 1.3.10, “Mapping for
Non-conforming Classes and Interfaces,” on page 1-27.

The containing module for the boxed type is determined by the IDL entity type's
containing module. A module name is formed by taking tloeg::omg::boxedIDL
prefix and appending the IDL entity type's fully scoped IDL module name. A boxed
value type corresponding to the IDL entity type is defined within this module. The
name of the value type is the same as the name of the IDL definition it is boxing.

For example, assume we have the following IDL and the Java class that results from
applying the forward mapping:

/I'IDL
module hello {
struct world {
short x;
h
h

Il Java

package hello;

public final class world implements
org.omg.CORBA.portable.IDLEntity {

}
Now assume thatello.world is used as an argument to a method or as a member
of an RMI/IDL value type. The Java clasello.world is mapped as follows:

Javato IDL Mapping January 2002

module org {
module omg {
module boxedIDL {
module hello {
valuetype world ::hello::world;
#pragma ID world “RMI:hello.world:1234567890ABCDEF"
h
h
h
h
The exact mechanism by which the IDL fohello::world is created is a tools issue
and is not specified.

These generated types must be protected against multiple definitions. See
Section 1.3.6.1, “Preventing redefinitions of boxed sequence types,” on page 1-22 for
an example of an approach that could be used.

The IDL entity typesorg.omg.CORBA.Any andorg.omg.CORBA.TypeCode are
mapped as follows:

module org {
module omg {
module boxedIDL {
module CORBA {
valuetype _Any any;
#pragma ID _Any “RMl.org.omg.CORBA.Any:0000000000000000"
3

J3
k
}.

module org {

module omg {

module boxedIDL {

module CORBA {
valuetype _TypeCode ::CORBA:: TypeCode;

#pragma ID _TypeCode
“RMI:org.omg.CORBA.TypeCode:0000000000000000”

AR U S 4

1.3.10 Mapping for Non-conforming Classes and Interfaces

In addition to generating OMG IDL for each conforming RMI/IDL type, OMG IDL
definitions are also required for each Java class or interface that

® isinherited (either directly or indirectly) by another Java type that has been mapped
to OMG IDL.

Javato IDL Mapping The IDL Mapping January 2002 1-27

® s specified as an argument type or as a result type to an RMI/IDL remote interface
method.

® has been mapped to a data member of an OMG IDL value type.

Each such Java class or interface (except for interfaces that extend
org.omg.CORBA.portable.IDLEntity directly or indirectly) is mapped to an
OMG IDL type with the corresponding name (see Section 1.3.2, “Mapping Java
Names to IDL Names,” on page 1-7) in the OMG IDL module corresponding to the
Java type’s package name (see Section 1.3.2.1, “Mapping packages to modules,” on
page 1-7).

Java interfaces that extemdg.omg.CORBA.portable.IDLEntity directly or
indirectly are not mapped to OMG IDL, because these Java interfaces correspond to
existing OMG IDL interfaces that were mapped to Java using the OMG IDL to Java

mapping.

Non-conforming Java classes are mapped to OMG IDL abstract value types with no
data members. Non-conforming Java interfaces are mapped as follows:

® Java interfaces whose method definitions (including inherited method definitions)
all throw java.rmi.RemoteException or a superclass of
java.rmi.RemoteException are RMI/IDL abstract interfaces. They are
mapped to OMG IDL abstract interfaces as described in Section 1.3.11, “Mapping
Abstract Interfaces,” on page 1-30.

® All other Java interfaces are mapped to OMG IDL abstract value types with no data
members.

1.3.10.1 java.io.Serializable and java.io.Externalizable

As a special case, any usesja¥a.io.Serializable or
java.io.Externalizable as a parameter, result, or field are mapped to the OMG
IDL types::java:io::Serializable and::java:io::Externalizable respectively.

These OMG IDL types are defined as follows:

// 1DL
module java {
module io {
typedef any Serializable;
typedef any Externalizable;
h
h

1-28 Javato IDL Mapping January 2002

1.3.10.2 Mapping for java.lang.Object

The Java typgava.lang.Object is mapped to the OMG IDL type
:;java::lang::_Object , which is defined as follows:

/I'IDL
module java {
module lang {
typedef any _Obiject;

h

h

This is used whelfava.lang.Object is specified as the type of a parameter,
result, or field. All Java classes implicitly inherit frojava.lang.Object , but this

implicit inheritance is not exposed as part of the RMI to OMG IDL mapping.

1.3.10.3 Inherited interfaces

Each inherited Java class or interface (other tjaaa.io.Serializable and
java.io.Externalizable) in the Java type is represented by an equivalent
inherited value type or abstract interface type in OMG IDL.

1.3.10.4 Methods and constants

The methods and constants in these classes and interfaces are mapped as specified fo
value classes in Section 1.3.4.4, “Methods,” on page 1-13 and Section 1.3.4.5,
“Constants,” on page 1-13.

1.3.10.5 Examples

The following non-conforming Java types:

/I Java

package alpha.bravo;

public interface Mammal {
public int getSize();

}

public class PolarBear {
private int length;
public int weight;
public PolarBear(int length, int weight) { ... }
public int getSize() { ... }
public int getWeight() { ... }

Javato IDL Mapping The IDL Mapping January 2002 1-29

get mapped to the OMG IDL value types:

// DL
module alpha {
module bravo {
abstract valuetype Mammal {

k
abstract valuetype PolarBear {
k

k

k

1.3.11 Mapping Abstract Interfaces

Java interfaces that do not extejagda.rmi.Remote directly or indirectly and
whose method definitions (including inherited method definitions) all throw
java.rmi.RemoteException or a superclass of

java.rmi.RemoteException are mapped to OMG IDL abstract interfaces. Java
interfaces that do not exterjdva.rmi.Remote directly or indirectly and have no
methods are also mapped to OMG IDL abstract interfaces.

1.3.11.1 Inherited interfaces

Each inherited Java interface in the Java type is represented by an equivalent inherited
abstract interface in the OMG IDL type.

1.3.11.2 Methods and constants

Methods and constants are mapped according to the rules specified in Section 1.3.4.3,
“Property accessor methods,” on page 1-11, Section 1.3.4.4, “Methods,” on page 1-13,
and Section 1.3.4.5, “Constants,” on page 1-13.

1.3.11.3 Examples

The following Java type:

/I Java
package alpha.bravo;
public interface Bear {
public int getSize() throws
java.rmi.RemoteException;

}
gets mapped to the OMG IDL type:
// DL

module alpha {
module bravo {

1-30 Javato IDL Mapping January 2002

abstract interface Bear {
readonly attribute long size();

h
#pragma ID Bear “RMI:alpha.bravo.Bear:0000000000000000”
2
h

1.3.12 Mapping Implementation Classes

In general, mapping RMI implementation classes to OMG IDL is not needed.

However, if a given RMI implementation class implements multiple distinct RMI/IDL
remote interfaces, then it is necessary to generate an OMG IDL type that represents the
unification of the distinct RMI/IDL types.

Any such composite RMI/IDL implementation class is mapped into an OMG IDL
interface with the corresponding name (see Section 1.3.2, “Mapping Java Names to
IDL Names,” on page 1-7) in the OMG IDL module corresponding to the Java class’s
package name (see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Each inherited RMI/IDL remote interface (other th@va.rmi.Remote) inherited

by the Java implementation class is represented by an equivalent inherited interface in
the OMG IDL interface. Inherited classes and inherited interfaces that are not
RMI/IDL remote interfaces are ignored.

At run time, any instances of the composite implementation class must, from a
CORBA perspective, implement the corresponding composite OMG IDL interface.
This implies, for example, they must return true to any callsisf&4” on any of the
OMG IDL interfaces associated with the distinct RMI/IDL interfaces.

1.3.12.1 Example

The RMI/IDL implementation clasalpha.bravo.AB that implements the RMI/IDL
remote interfacealpha.bravo.A andalpha.bravo.B

/I Java

package alpha.bravo;

public class AB extends javax.rmi.PortableRemoteObject
implements alpha.bravo.A, alpha.bravo.B {

}
is mapped to the OMG IDL:

// IDL
module alpha {
module bravo {
interface AB: ::alpha::bravo::A, ::alpha::bravo::B {
h
#pragma ID AB “RMl:alpha.bravo.AB:0000000000000000”

Javato IDL Mapping The IDL Mapping January 2002 1-31

1.4 Run-Time Issues

1-32

In addition to the RMI/IDL mapping there are also run-time issues about how to
implement Java RMI/IDL calls over GIOP.

1.4.1 Subclasses of Value Objects

It should be possible to send a subclass of an RMI/IDL value type where a base value
type was specified in the OMG IDL.

If this occurs, the recipient is responsible for locating a suitable implementation
subclass to represent the value object subtype. In cases where a Java virtual machine is
available, this might include attempting to load Java bytecodes for the subclass. In the
Java to C++ case this might involve attempting to locate a suitable C++ subclass.

The name of the subclass can be obtained by parsing the value object’s repository 1D,
which must be in the standard OMG RMI Hashed format (see Section 1.3.5.7,
“Repository ID,” on page 1-18).

If a suitable subclass is not available, then the recipient must raise an exception. It is
not acceptable for an implementation to attempt to substitute a base class of the
subclass value that was transmitted.

1.4.2 Locating Stubs for Remote References

When receiving an IOR from another system, it is the responsibility of the receiving
system to know which RMI/IDL type is expected. The receiving system should be
prepared to use stubs associated with this RMI/IDL type to manage the received object
reference. However, the receiving system may also optionally use the Repository ID of
the incoming IOR to locate and use stubs that more accurately reflect the true run-time
type of the object reference.

1.4.3 Narrowing

To narrow an RMI/IDL object reference to a different type, application programmers
must use the staticarrow method provided by the

javax.rmi.PortableRemoteObject class (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Thus for example they might do:
/I Java

alpha.bravo.Mamma | m = getMammal();
try {

Javato IDL Mapping January 2002

b = (alpha.bravo.Bandicoot)
javax.rmi.PortableRemoteObject.narrow(
m, alpha.bravo.Bandicoot.class);
} catch (ClassCastException ex) {

}

1.4.4 Allocating Ties for Remote Values

Following normal RMI semantics, an RMI server-side implementation object may be
passed across an RMI remote interface as though it were a remote reference.

The javax.rmi.CORBA.Util.writeRemoteObject method checks whether a
transmitted object is an implementation object and if so, allocates or reuses a suitable
tie object. The type of the tie object should correspond to the OMG IDL type that the
implementation object implements.

This tie class is located at run time by finding the class of the implementation object
and checking for a corresponding tie class (see Section 1.4.6, “Locating Stubs and
Ties,” on page 1-33). If no suitable tie class is found, the check is repeated on the
implementation class’s base class and so on up the inheritance chain, excluding
java.lang.Object . If no suitable tie class is found, a marshaling error occurs.

1.4.5 Wide Character Support

Since Java supports Unicode characters and strings, ORBs supporting RMI/IDL must
provide some form of wide character support.

Note that as part of IIOP code set negotiation, ORBs are required to accept Unicode
UTF16 for use as a fallback transmission format for wide characters, though they may
negotiate to use other formats.

1.4.6 Locating Stubs and Ties

At various times it may be necessary for the ORB to locate either a stub class for a
given RMI/IDL remote interface or abstract interface, or a tie class for a given
RMI/IDL implementation class. The name of the stub class is formed by taking the
name of the RMI/IDL interface, prepending “_” and appending "_Stub.” The name of
the tie class is formed by taking the name of the RMI/IDL implementation class,
prepending “_" and appending "_Tie." For RMI/IDL implementation classes that are
mapped to IDL (see Section 1.3.12, “Mapping Implementation Classes,” on

page 1-31), the name of the stub class for the composite interface is formed by taking
the name of the RMI/IDL implementation class, prepending “_" and appending

“ Stub.”

The stub class corresponding to an RMI/IDL interface or implementation class may
either be in the same package as its associated interface or class, or may be further
qualified by theorg.omg.stub package prefix. For example, the stub class for an

Javato IDL Mapping Run-Time Issues January 2002 1-33

1-34

RMI/IDL interface classa.b.Fred would be named eithea.b. Fred_Stub or
org.omg.stub.a.b._Fred_Stub . For an RMI/IDL implementation class
x.y.Z , the tie class would be namedy. Z Tie

When loading a stub class corresponding to an interface or class
<packagename>.<typename>, the class <packagename>. <typename>_Stub shall be
used if it exists; otherwise, the class org.omg.stub.<packagename>. <typename>_Stub
shall be used.

A given Java virtual machine may have several different “class loaders” active
simultaneously. Each of these class loaders provides a separate naming context for
Java classes. For example, a browser might be running applets from several different
hosts. To avoid class name conflicts it will run the applets in different class loaders.
Thus, two different applets might both reference a class c<em but each of them

will get its own version of thd=00 class from its own class loader.

Thejava.lang.Class.getClassloader method returns the class loader for a
givenClass . So given oneClass it is possible to generate new class names and
then attempt to load those additional classes from the original class’s class loader.

It is important in Java APIs to use an appropriate class loader when trying to locate a
named class. To ease this problem in the ORB Portability APIs we normally pass
aroundjava.lang.Class objects rather than simply class names. When it is
necessary to load named classes, runtime code should take care to use an appropriate
class loader (e.g., by using one from an exist@igss object).

1.4.7 Mapping RMI Exceptions to CORBA Exceptions

To ensure correct RMI exception passing semantics when running over IIOP, all Java
exceptions thrown by the server implementation must be passed back to the client. Any
exception that is an instance of an RMI/IDL exception type declared by the method or
any subclass of such a type (other thava.rmi.RemoteException and its
subclasses) is marshaled as the mapped IDL exception corresponding to the declared
RMI/IDL exception (see Section 1.3.7.2, “The IDL exception,” on page 1-24) containing
a mapped IDL valuetype corresponding to the actual runtime RMI/IDL exception type
(see Section 1.3.7.1, “The IDL value type,” on page 1-24). On the client side, the mapped
IDL valuetype is unmarshaled and thrown back to the application.

For example, if a method in an RMI/IDL remote interface declares an exception type
MammalException and its implementation throws an instance of
WombatException (a subclass ofMammalException), then this exception is
marshaled as an IDL exceptidthammalEx containing an IDL valuetype
WombatException , and awombatException is thrown to the client application.

All other Java exceptions are marshaled as CORB¥YKNOWN system exceptions
whose GIOP Reply message includesldmknownExceptioninfo service context
containing the marshaled Java exception thrown by the server implementation. The
Java exception is marshaled using the rules for CDR marshaling of value types as
defined by the GIOP specification, applied in conjunction with the rules for mapping
RMI/IDL value types to IDL as defined in Section 1.3.5, “Mapping for RMI/IDL Value
Types,” on page 1-15 of this specification.

Javato IDL Mapping January 2002

In order to support versioning of the Java exception marshaled within an
UnknownExceptioninfo service context, &endingContextRunTime service

context must previously have been processed for the connection. If a GIOP message
carrying both arlJnknownExceptioninfo service context and a
SendingContextRunTime service context is received, and no
SendingContextRunTime service context has previously been processed for this
connection, then th8endingContextRunTime service context must be processed
before the data within thenknownExceptioninfo service context is unmarshaled

1.4.8 Mapping CORBA System Exceptions to RMI Exceptions

In general CORBA system exceptions are simply mapped to instances of

java.rmi.RemoteException ; however, some CORBA system exceptions are
mapped to more specific subclasseReimoteException . These are listed in
Table 1-2.

Table 1-2 CORBA and RMI Exceptions

CORBA Exception RMI Exception

COMM_FAILURE java.rmi.MarshalException
INV_OBJREF java.rmi.NoSuchObjectException
NO_PERMISSION java.rmi.AccessException

MARSHAL java.rmi.MarshalException
BAD_PARAM java.rmi.MarshalException
OBJECT_NOT_EXIST java.rmi.NoSuchObjectException

TRANSACTION_REQUIRED javax.transaction.
TransactionRequiredException
TRANSACTION_ROLLEDBACK |javax.transaction.
TransactionRolledbackException

INVALID_TRANSACTION javax.transaction.
InvalidTransactionException

In all cases, the RMI exception is created with a detail string that consists of:
® the string “CORBA”

¢ followed by the CORBA name of the system exception

¢ followed by a space

¢ followed by the hexadecimal value of the system exception’s minor code
¢ followed by a space

¢ followed by the completion status of “Yes,” “No,” or “Maybe.”

Thus a CORBAUNKNOWN system exception with a minor code of 0x31 and a
completion status of Maybe would be mapped tBemoteException with the
following detail string:

“CORBA UNKNOWN 0x31 Maybe”

Javato IDL Mapping Run-Time Issues January 2002 1-35

1-36

1481

The RemoteException returned bymapSystemException must preserve the
original CORBA system exception as the detail field, except when the original
CORBA system exception BAD_PARAM with a minor code of 6, which is mapped
to java.io.NotSerializableException

Mapping of UnknownExceptioninfo Service Context

CORBA UNKNOWN exceptions whose GIOP Reply message includes an
UnknownExceptionInfo service context containing a marshaled instance of
java.lang.Throwable or one of its subclasses are mapped to RMI exceptions
according to the type of the object contained in the service context, as shown in
Table 1-3.

Table 1-3 UnknownExceptioninfo and RMI Exceptions

UnknownExceptioninfo RMI Exception
java.lang.Error (or subclass) [java.rmi.ServerError
java.rmi.RemoteException (or |java.rmi.ServerException
subclass)

java.lang.RuntimeException java.rmi.

(or subclass) ServerRuntimeException
(JDK 1.1)
java.lang.RuntimeException
(Java 2)

1.4.9 Code Downloading

1491

Class downloading is supported for stubs, ties, values, and value helpers. The
specification has been designed to be implementable using either JDK 1.1.6 or Java 2
APIs, allows transmission of codebase information on the wire for stubs and ties, and
enables usage of pre-existing ClassLoaders when relevant.

Definitions

"codebase" - Aava.lang.String containing a space-separated array of URLs
(e.g., "http://acme.com/classes" or "http://abc.net/classes http://abc.net/ext/classes”).

"localCodebase" - The System Property "java.rmi.server.codebase" whose value is a
codebase or null. Defaults to null.

"remoteCodebase" - The codebase transmitted from a remote system. May be null.

"useCodebaseOnly" - The System Property "java.rmi.server.useCodebaseOnly" whose
value is either "true" or "false." Defaults to "false." If "true" (ignoring case), any
remote codebase is ignored and only the local codebase used.

"loader"” - A class loader that specifies a context within which class loading is initiated.
May be null.

Javato IDL Mapping January 2002

1.4.9.2 Codebase Selection

The Util.getCodeBase(Class clz) method (see Section 1.5.1.6, “Util,” on
page 1-50) performs codebase selection.

On Java 2, this method returns the same string as
java.rmi.server.RMIClassLoader.getClassAnnotation(clz)

On JDK 1.1, this method works as follows:

1. If the name ofclz has a top-level package qualifier @iva , then return null,
else...

2. If clz has a ClassLoader with a URL security context, then return this URL, else...

3. If there is a security manager with a URL security context, then return this URL,
else...

4. Return localCodebase.

When sending RMI/IDL values from Java, the codebase transmitted over GIOP must
be the codebase that this method would return for the value's class.

When sending RMI/IDL object references from Java, the codebase transmitted over
GIOP is selected by calling the method
org.omg.CORBA_2_3.portable.Objectimpl._get_codebase() on the

stub object.

1.4.9.3 Codebase Transmission
For values and value helpers, the codebase is transmitted after the value tag.

For stubs and ties, the codebase is transmitted asapgedComponent

TAG_JAVA _CODEBASE in the IOR profile, where theomponent_data is a CDR
encapsulation of the codebase written as an IDL string. The codebase is a space-
separated list of one or more URLSs.

In all cases, th&endingContextRunTime service context may provide a default
codebase that is used if not overridden by a more specific codebase encoded in a
valuetype or IOR.

For object references created usingutStream.read_Object or
InputStream.read_abstract_interface , the transmitted codebase is stored
in the object reference (stub) and can be retrieved subsequently using the
org.omg.CORBA_2_3.portable.Objectimpl._get_codebase() method,
described below.

If no codebase was transmitted, localCodebase is stored in the object reference (stub).

Javato IDL Mapping Run-Time Issues January 2002 1-37

1-38

1494

1495

Codebase Access

In the event thaPortableRemoteObject.narrow() must load a stub, it needs

to call a portable API to extract codebase information from the original stub. This API
is also used by th®utputStream methodswrite_Object and
write_abstract_interface to obtain the codebase to be transmitted in the
TAG_JAVA_CODEBASE TaggedComponent . The API that is provided for these
purposes is theget _codebase() method of the
org.omg.CORBA_2_3.portable.Objectimpl class. See thibL/Java

Language Mappinglocument.

Codebase Usage

The following method (see Section 1.5.1.6, “Util,” on page 1-50) is used to load
classes.

Util.loadClass(String className,
String remoteCodebase,
ClassLoader loader)
throws ClassNotFoundException { ... }

On Java 2, this method works as follows:

1. Find the first non-null ClassLoader on the call stack and attempt to load the class
using this ClassLoader. If this fails...

2. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass
(remoteCodebase, className)

3. If remoteCodebase is null or useCodebaseOnly is true, then call
java.rmi.server.RMIClassLoader.loadClass(className)

4. If a class was not successfully loaded by step 1, 2, or 3j@adkr is non-null,
then callClass.forName(className, false, loader)

5. If a class was successfully loaded by step 1, 2, 3, or 4, then return the loaded class.
On JDK 1.1, this method works as follows:

1. If className is an array type, extract the array element type. If this is a primitive
type, then callClass.forName(className) , else proceed using the array
element class name atassName .

2. Search the call stack for the first non-null ClassLoader. If a ClassLoader is found,
then attempt to load the class using this ClassLoader, else attempt to load the class
using Class.ForName(className) . If this fails...

3. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass(codebaseURL,
className) for each remote codebase URL in treamoteCodebase string
until the class is found.

Javato IDL Mapping January 2002

4. If remoteCodebase is null or useCodebaseOnly is true, then call
java.rmi.server.RMIClassLoader.loadClass(className)

5. If a class was not successfully loaded by step 1, 2, 3, or 4lcaakr is non-null,
then callloader.loadClass(className)

6. If a class was successfully loaded by step 1, 2, 3, 4, or 5, then return the loaded
class, unless thelassName parameter was a non-primitive array type, in which
case return a suitably dimensioned array class for the element class that was loaded.

When loading classes for RMI/IDL values, stubs, and ties, the class loaded must be the
same as that returned by this method except where stated below.

For values and their helper classesmoteCodebase is the codebase that was
transmitted in the GIOP valuetype encoding (if any), or else the codebase obtained
from the SendingContextRunTime service context associated with the IIOP
connection. Ipader is null or the class loader of the expected value class, if known.)

For ties created bfortableRemoteObject.exportObject,
remoteCodebase is obtained by callingJtil.getCodebase on the class of the
implementation objectldader is null.)

For stubs created byputStream.read_Object() , remoteCodebase is the
codebase transmitted in the 10RggedComponent TAG_JAVA_CODEBASE (if

any), or else the codebase obtained from $SleadingContextRunTime service

context associated with the IIOP connection. This method may either create a generic
stub for subsequent narrowing or may attempt to create a stub by loading a stub class
that matches the Repositoryld in the IORagder is null.)

For stubs created byputStream.read_Object(clz) , remoteCodebase is
the same as foinputStream.read_Object() . If clz is a stub class, then the
implementation ofead_Object(clz) may either use the actual parametér to

create a stub or may attempt to create a stub by loading a stub class whose name is
derived from the Repositoryld in the IOR. ¢fz is an RMI/IDL remote interface,

then the implementation atad_Object(clz) creates a stub whose class name is
derived from either the name of the interface tyghe or the Repositoryld in the IOR.
(loader is clz.getClassLoader() J)

For stubs created biortableRemoteObject.narrow , remoteCodebase is
obtained from thenarrowFrom object by calling the
Objectimpl._get_codebase() method. For stubs created by
PortableRemoteObject.toStub , Util.writeRemoteObject or
Util.writeAbstractObject , remoteCodebase is obtained by calling
Util.getCodebase() on the class of the implementation objedtaer is
narrowFrom.getClassLoader())

For all stubsyremoteCodebase is stored by the Delegate and can be retrieved
subsequently using th@bjectimpl._get_codebase() method.

Javato IDL Mapping Run-Time Issues January 2002 1-39

1-40

1.4.10 Custom Marshaling Format

When an RMI/IDL value type is custom marshaled over GIOP, the following data is
transmitted:

a.octet - Format version. 1 or 2.

For serializable objects with ariteObject method:

b. boolean - True if defaultWriteObject was called, false otherwise.

c. (optional) Data written bylefaultWriteObject . The ordering of the fields
is the same as the order in which they appear in the mapped IDL valuetype, and
these fields are encoded exactly as they would be if the class did not have a
writeObject method.

d. (optional) Additional data written bwriteObject , encoded as specified
below. For format version 1, the data is written "as is". For format version 2, the
data is enclosed within a CDR custom valuetype with no codebase and repid
"RMI:org.omg.custom.<class>" where<class> is the fully-qualified
name of the class whoseriteObject method is being invoked.

For externalizable objects:
b. (optional) Data written byriteExternal , encoded as specified below.

Primitive Java types are marshaled as their corresponding IDL primitives (see
Section 1.3.3, “Mappings for Primitive Types,” on page 1-10). Java strings written by
the java.io.ObjectOutputStream.writeUTF() method and read by the
java.io.ObjectinputStream.readUTF() method are marshaled as IDL

wstring s. Javaint s andString s written by thewriteByte |, writeChar

writeBytes , andwriteChars methods ofiava.io.ObjectOutputStream

are marshaled as specified by the definitions of these methods in the
java.io.DataOutput interface. Other Java objects are marshaled in the form of an
IDL abstract interface (i.e., a union with a boolean discriminator containing either an
object reference if the discriminator is true or a value type if the discriminator is false).

RMI/IDL stubs, RMI/IDL remote implementations, and IDL stubs are marshaled as
object references (IORs). All other Java objects are marshaled as value types. The
value type encoding is determined from the object's runtime type by applying the
mappings specified in Section 1.3.5, “Mapping for RMI/IDL Value Types,” on

page 1-15 and Section 1.3.6, “Mapping for RMI/IDL Arrays,” on page 1-21.

The default custom stream format is 1 for GIOP 1.2 and 2 for GIOP 1.3. For RMI/IDL
custom value types marshaled within GIOP requests, a format version not greater than
the default for the GIOP message level must be sent, except where the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see

Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) is part of the IOR profile. For RMI/IDL custom value types marshaled within
GIOP replies (including th&/nknownExceptioninfo service context), a format

version not greater than the default for the GIOP message level must be sent, except
where theRMICustomMaxStreamFormat service context (see Section 1.4.12,
“RMICustomMaxStreamFormat Service Context,” on page 1-41) was sent on the
associated GIOP request

Javato IDL Mapping January 2002

1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component

Although the IIOP level of an IOR specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of GIOP requests to this IOR, there
are cases when it may be necessary to override this default.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component has an associated
value of type octet, encoded as a CDR encapsulation, designating the maximum stream
format version for RMI/IDL custom value types that can be used in GIOP messages sent
to this IOR.

TheTAG_RMI_CUSTOM_MAX_STREAM_FORMAT component can appear at most
once in any IOR profile. For profiles supporting IIOP 1.2 or greater, it is optionally
present. If this component is omitted, then the default maximum stream format version
for RMI/IDL custom value types sent to this IOR is 1 for IIOP 1.2 and 2 for IIOP 1.3.

1.4.12 RMICustomMaxStreamFormat Service Context

Although the GIOP level of a request specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of the associated reply, there are
cases when it may be necessary to override this default.

RMICustomMaxStreamFormat identifies a CDR encapsulation of a single octet that
specifies the highest RMI/IDL custom stream format version that can be used for
RMI/IDL custom valuetypes marshaled within a GIOP reply associated with the GIOP
request that carries this service context. If this service context is omitted from a GIOP
request, then the default maximum stream format version for RMI/IDL custom value
types marshaled within a GIOP reply associated with this request is 1 for GIOP 1.2 and
2 for GIOP 1.3.

1.4.13 Marshaling RMI/IDL Arrays

RMI/IDL arrays must be marshaled with a repository ID indicating their runtime type.
Also, RMI/IDL arrays must be unmarshaled according to the type specified in the
repository ID.

1.4.14 Runtime Limitations

Our mapping implies three runtime limitations relative to current Java RMI.

Shared reference objects

In Java, remote object references are represented as Java objects. This means that ther
can be several Java pointers to one object reference. This pointer sharing may be lost
when transmitting graphs of Java objects across RMI/IDL.

In practice this is likely to have only very minor impact on Java programmers.

Javato IDL Mapping Run-Time Issues January 2002 1-41

Distributed garbage collection

Java provides automatic garbage collection and RMI using its native protocol extends
this to the net with distributed garbage collection.

CORBA does not currently provide support for distributed garbage collection;
therefore, distributed garbage collection is not supported as part of RMI/IDL. It is
instead each server’s responsibility to maintain references to any server objects it
wishes to keep active, and to free these references when it wishes the server object to
be garbage collected. This is done usingekportObject andunexportObject

methods ofjavax.rmi.PortableRemoteObject (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Narrowing

Java provides type-checked casts as part of the language. RMI using its native protocol
dynamically downloads stubs that accurately reflect the RMI interface types of each
remote object reference, thereby allowing Java language casts to be used to narrow
remote object references.

Downloadable stubs are not required by the CORBA object model. Since we cannot
rely on downloadable stubs, we cannot rely on simple Java casts to implement
narrowing of object references. We have therefore defined an expéicibw method
(see Section 1.4.3, “Narrowing,” on page 1-32) that programmers must use when
narrowing portable RMI object references.

1.5 Portability Interfaces

This section describes extensions to the portable stubs and skeletons architecture
defined in the IDL/Java language mapping. These extensions allow stubs and skeletons
to be created for this Java to IDL mapping that can rely on a standard set of Java ORB
Portability APls, including APIs for serializing Java objects to GIOP format.

These ORB portability APIs also allow alternative implementations of the RMI/IDL
APls.

See Section 1.5.2.1, “Stub classes,” on page 1-54 and Section 1.5.2.3, “Tie classes,” on
page 1-57 for simple example stubs and ties.

1.5.1 Portability APIs
1.5.1.1 Tie

The interfacgavax.rmi.CORBA.Tie defines methods that all RMI/IDL server
side ties must implement.

1-42 Javato IDL Mapping January 2002

1

Thejavax prefix indicates these classes are part of a standard extension. The use of
this prefix allows these interfaces and classes to be delivered as an add-on to existing
JDKs. Security checks in the browsers prevent downloading of classes whose top-level
package qualifier igava , so Sun has defined the convention of using a top-level
qualifier of javax for extensions.
/I Java
public interface Tie extends

org.omg.CORBA .portable.InvokeHandler {

org.omg.CORBA.Object thisObject();

void deactivate() throws java.rmi.NoSuchObjectException;

org.omg.CORBA.ORB orh();

void orb(org.omg.CORBA.ORB orb);

void setTarget(java.rmi.Remote target);

java.rmi.Remote getTarget();

}

ThethisObject method returns an object reference for the target object represented
by theTie . It is semantically equivalent to thethis_object() method of the
org.omg.PortableServer.Servant class.

The deactivate method deactivates the target object represented byithe It is
semantically equivalent to théeactivate object method of the
org.omg.PortableServer.POA class. If the target object could not be
deactivated (e.g., because it is not currently activéyp&uchObjectException is
thrown.

Theorb() method returns the ORB for thHEe . It is semantically equivalent to the
_orb() method of theorg.omg.PortableServer.Servant class.

Theorb(ORB orb) method sets the ORB for thEe . It is semantically equivalent
to calling ORB.set_delegate() with an actual parameter of type
org.omg.PortableServer.Servant

ThesetTarget method must be implemented by tie classes. It will be called by
Util.registerTarget to notify the tie of its registered target implementation
object.

ThegetTarget method must be implemented by tie classes. It returns the registered
target implementation object for the tie.

Javato IDL Mapping Portability Interfaces ~ January 2002 1-43

1-44

1.5.1.2 Stub

The clasgavax.rmi.CORBA.Stub is the standard base class from which all
RMI/IDL stubs must inherit. Its main reason for existence is to act as a convenience
base class to handle stub serialization.

/I Java

public abstract class Stub
extends org.omg.CORBA_2_3.portable.Objectimpl
implements java.io.Serializable {

public int hashCode() { ... }
public boolean equals(java.lang.Object obj) { ... }
public String toString() { ... }

public void connect(org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException { ... }

private void writeObject(java.io.ObjectOutputStream s)
throws java.io.lOException { ... }

private void readObject(java.io.ObjectinputStream s)
throws java.io.lOException,
ClassNotFoundException { ... }

}

The hashCode method shall return the same hash code for all stubs that represent the
same remote object. Theguals method shall returtrue when used to compare

stubs that represent the same remote objectfalsd otherwise. TheaoString

method shall return the same string for all stubs that represent the same remote object.

Theconnect method makes the stub ready for remote communication using the
specified ORB objecbrb . Connection normally happens implicitly when the stub is
received or sent as an argument on a remote method call, but it is sometimes useful to
do this by making an explicit call (e.g., following deserialization). If the stub is already
connected tmrb (i.e., has a delegate set forb), thenconnect takes no action. If

the stub is connected to some other ORB, thétemoteException is thrown.
Otherwise, a delegate is created for this stub and the ORB obijbct

The Stub.connect method is not intended to be called directly by application code.
Instead, application code should call tRertableRemoteObject.connect

method (see Section 1.6.1, “PortableRemoteObject,” on page 1-62), which will in turn
call theStub.connect method. This allows the application code to remain portable
between IIOP and JRMP. RMI/IDL stubs may also be connected to an ORB implicitly
by being passed t®utputStream.write_Object

The writeObject andreadObject methods support stub serialization and
deserialization by saving and restoring the IOR associated with the stub. The
writeObject method writes the following data to the serialization stream:

1. int - length of IOR type id

Javato IDL Mapping January 2002

1

2. byte[] - IOR type ID encoded using ISO 8859-1 (written usingrde call, not a
writeObject call)

3. int - number of IOR profiles
4. For each IOR profile:

a. int - profile tag
b. int - length of profile data
c. byte[] - profile data (written using arite call, not awriteObject call)

1.5.1.3 ValueOutputStream

The interfaceorg.omg.CORBA.portable.ValueOutputStream defines
methods that allow serialization of custom-marshaled RMI/IDL objects to GIOP streams.

/I Java
public interface ValueOutputStream {

void start_value(java.lang.String rep_id);

void end_value();

}

The start_value method ends any currently open chunk, writes a valuetype header
for a nested custom valuetype (with a null codebase and the specified repository ID),
and increments the valuetype nesting depth.

Theend_value method ends any currently open chunk, writes the end tag for the
nested custom valuetype, and decrements the valuetype nesting depth.

1.5.1.4 ValuelnputStream

The interfaceorg.omg.CORBA.portable.ValuelnputStream defines methods
that allow deserialization of custom-marshaled RMI/IDL objects froim GIOP streams.

Il Java
public interface ValuelnputStream {

void start_value();

void end_value();

}

The start_value method reads a valuetype header for a nested custom valuetype
and increments the valuetype nesting depth.

Theend_value method reads the end tag for the nested custom valuetype (after
skipping any data that precedes the end tag) and decrements the valuetype nesting
depth.

Javato IDL Mapping Portability Interfaces ~ January 2002 1-45

1.5.1.5 ValueHandler and ValueHandlerMultiFormat

The interfacegavax.rmi.CORBA.ValueHandler and
javax.rmi.CORBA.ValueHandlerMultiFormat define methods that allow
serialization of Java objects to and from GIOP streams.

/I Java
public interface ValueHandler {

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value);

java.io.Serializable readValue(
org.omg.CORBA.portable.InputStream in,
int offset,
Class clz,
String repositorylD,
org.omg.SendingContext.RunTime sender);

String getRMIRepositorylD(Class clz);
boolean isCustomMarshaled(Class clz);
org.omg.SendingContext.RunTime getRunTimeCodeBase();

java.io.Serializable writeReplace(
java.io.Serializable value);

}

public interface ValueHandlerMultiFormat
extends ValueHandler {

byte getMaximumStreamFormatVersion();

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value,
byte streamFormatVersion);

}

ThewriteValue method can be used to write GIOP data, including RMI remote
objects and serialized data objects, to an underlying portahbtputStream

The implementation of thaerriteValue method interacts with the core Java
serialization machinery. The data generated during serialization is written using the
underlyingOutputStream object.

ThereadValue method can be used to read GIOP data, including RMI remote
objects and serialized data objects, from an underlying porfable&Stream . The
offset parameter is the offset in the stream of the value being unmarshaled!ZThe
parameter is the Java class of the value to be unmarshaledepbsitorylD

parameter is the repository ID unmarshaled from the value header by the caller of

1-46 Javato IDL Mapping January 2002

1

readValue . Thesender parameter is the sending context object passed in the
optional service context taggeendingContextRunTime in the GIOP header, if
any, or null if no sending context was passed.

The implementation of theeadValue method interacts with the core Java
serialization machinery. The data required during deserialization is read using the
underlyinglnputStream object.

The getRMIRepositorylD method returns the RMI-style repository ID string for
clz .

TheisCustomMarshaled method returngrue if the value is custom marshaled
and therefore requires a chunked encoding, fatek otherwise.

The getRunTimeCodeBase method returns th¥alueHandler object's
SendingContext::RunTime object reference, which is used to construct the
SendingContextRunTime service context.

ThewriteReplace method returns the serialization replacement forvhkele
object. This is the object returned by callinglue.writeReplace() , if value
has awriteReplace method.

The ValueHandlerMultiFormat interface introduces a method
getMaximumStreamFormatVersion that returns the maximum stream format
version for RMI/IDL custom value types that is supported by WedueHandler

object. ThevalueHandler object must support the returned stream format version and
all lower versions. The format versions currently defined are 1 and 2. See Section 1.4.10,
“Custom Marshaling Format,” on page 1-40 for more details.

TheValueHandlerMultiFormat interface introduces an overloadedteValue

method that allows the ORB to pass the required stream format version for RMI/IDL
custom value types. If the ORB calls this method, it must pass a stream format version
between 1 and the value returned by geMaximumStreamFormatVersion

method inclusive, or else BAD_PARAM exception with standard minor coda [note

to editor: number to be assigned by OM@&just be thrown. If the ORB calls the
ValueHandler.writeValue method, stream format version 1 is implied.

Execution model for Serialization

Sun will provide an implementation of théalueHandler interface that handles
writing and reading RMI/IDL objects by making calls to lower-level CORBA
OutputStream andInputStream objects, which can be provided by an
independent ORB vendor. The Sun-provided implementation will handle the
interactions with the Java serialization machinery and will write any serialized data
through to the lower level stream.

Typically the ORB vendors will implement their own GIOP input and output streams.
Before transmitting RMI/IDL data they will create an object that supports the
ValueHandler interface by calling thereateValueHandler method of the
javax.rmi.CORBA.Util class (see Section 1.5.1.6, “Util,” on page 1-50). When

Javato IDL Mapping Portability Interfaces ~ January 2002 1-47

1-48

they need to marshal a non-IDL value, they will cdlllueHandler.writeValue ,
and when they need to unmarshal a non-IDL value, they will call
ValueHandler.readValue

The ORB output stream passed to YedueHandlerMultiFormat.writeValue

method must implement théalueOutputStream interface (see Section 1.5.1.3,
“ValueOutputStream,” on page 1-45), and the ORB input stream passed to the
ValueHandler.readValue method must implement théaluelnputStream
interface (see Section 1.5.1.4, “ValuelnputStream,” on page 1-45).

Value Marshaling

When marshaling an RMI value, the ORB stream must déllgetCodeBase to
get the codebase stringalueHandler.getRMIRepositorylD to get the
repository ID string, and/alueHandler.isCustomMarshaled to see if the value
is custom marshaled and therefore requires a chunked encoding.

The ORB stream writes the value tag, codebase (if any), and repository ID. It calls
ValueHandler.writeValue to write the state of the value. The ORB stream deals
with nulls, indirections, chunking, and end tags.

The ORB obtains th&endingContextRunTime service context from the
ValueHandler object by calling thevalueHandler.getRunTimeCodeBase

method. Clients must send this service context on the first GIOP request that flows
over a connection that may be used to send RMI values to the server. Servers must
send this service context on the first GIOP reply that flows over a connection that may
be used to send RMI values to the client.

The ORB calls thevriteReplace =~ method before callingvriteValue . The result
from calling this method is passed WalueHandler.writeValue unless either

® itis a previously marshaled value, in which case it is marshaled as an indirection, or

® jts class implementsrg.omg.CORBA.Object , in which case it is marshaled as
an object reference.

An ORB stream instance must only calfiteReplace once for each value that it
marshals.

Before calling thewnriteValue method of thevalueHandler object, the ORB must
determine the stream format version to be used. This is the maximum format version that
is supported by both the loc®lalueHandler object and the remote connection
endpoint. The maximum local format version is the value returned by the
getMaximumStreamFormatVersion method of thevalueHandler object, or 1

if the ValueHandler object doesn't support théalueHandlerMultiFormat

interface. The maximum remote format version is 1 for GIOP 1.2 messages and 2 for
GIOP 1.3 messages, except where these default values are overridden by either the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see

Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) or th&MICustomMaxStreamFormat service context (see Section 1.4.12,
“RMICustomMaxStreamFormat Service Context,” on page 1-41). For GIOP 1.2
messages, recognition of these overrides is optional.

Javato IDL Mapping January 2002

1

If the stream format version computed in this way is 2 or greater, the ORB must call the

ValueHandlerMultiFormat.writeValue method, passing this value. If the
stream format version computed in this way is 1, the ORB may call either the
ValueHandlerMultiFormat.writeVValue method (with stream format 1) or the
ValueHandler.writeValue method.

If the ORB's call to the/alueHandler object'swriteValue method specified
RMI/IDL custom value type stream format version 2, then WadueHandler object
must call theValueOutputStream.start_value and
ValueOutputStream.end_value methods of the ORB stream before and after
writing the data specified by item 1d of Section 1.4.10, “Custom Marshaling Format,” on
page 1-40. Theep_id string passed to thstart_value method must be
"RMI:org.omg.custom.<class>:<hashcode>:<suid>" where<class> is
the fully-qualified name of the class whoggiteObject method is being invoked
and<hashcode> and<suid> are the class's hashcode and SUID. For format version
2, if the ORB stream passed to thl@alueHandler object doesn't support the
ValueOutputStream interface, then 8AD_PARAM exception with standard minor
codebb [note to editor: number to be assigned by OM@iist be thrown.

Value Unmarshaling

When unmarshaling an RMI value, the ORB stream must read the value tag, codebase
(if any), and repository ID. The ORB stream call$il.loadClass to load the

value's class, passing the Java class name contained in the RMI-style repository ID and
the codebase string from the value's GIOP encoding (if present) or the
SendingContextRunTime service context.

The ORB stream call¥alueHandler.readValue to read the state of the value,
passing the current stream offset, the class returnedtibyjoadClass , the

repository 1D, and the sendeiSendingContext::RunTime object reference. The
repository ID is needed so that tMalueHandler object can determine if the class
passed in is structurally identical to the class used by the sender to marshal the value.
The ORB stream deals with nulls, indirections, chunking, and end tags.

TheValueHandler object may receive aaorg.omg.CORBA.portable
IndirectionException from the ORB stream. The ORB input stream throws this
exception when it is called to unmarshal a value encoded as an indirection that is in the
process of being unmarshaled. This can occur when the ORB stream calls the
ValueHandler object to unmarshal an RMI value whose state contains a recursive
reference to itself. Because the top-lev@lueHandler.readValue call has not

yet returned a value, the ORB stream's indirection table contains no entry for an object
with the stream offset specified by the indirection tag. This stream offset is returned in
the exception'sffset field.

If the ValueHandler object receives aimdirectionException ,itis

responsible for ensuring that the correct Java object reference is assigned to the value
field that would have held the result returned by the ORB stream if an
IndirectionException had not occurred. The manner in which this is done (e.g.,
eager or lazy) is not specified. If the offset in budirectionException does not

Javato IDL Mapping Portability Interfaces ~ January 2002 1-49

1-50

correspond to any offset previously passed toWaéueHandler objectin a
ValueHandler.readValue method call, thé/alueHandler.readValue
method shall throw MARSHAL exception.

If the RMI/IDL custom data unmarshaled from the input stream was encoded using
stream format 2, then théalueHandler object must call the
ValuelnputStream.start_value andValuelnputStream.end_value

methods of the ORB stream before and after reading the data specified by item 1d of
Section 1.4.10, “Custom Marshaling Format,” on page 1-40. For format version 2, if the
ORB stream passed to tMalueHandler object doesn't support the
ValuelnputStream interface, then 8AD_PARAM exception with standard minor
codecc [note to editor: number to be assigned by OM@list be thrown. If the format
version unmarshaled by thélueHandler object is greater than the maximum
version that it supports, thenMARSHAL exception with standard minor code [note

to editor: number to be assigned by OM@&ust be thrown

1.5.1.6 Uil

A utility classjavax.rmi.CORBA.Util provides methods that can be used by
stubs to perform common operations.

/I Java
public class Util {

public static java.rmi.RemoteException
mapSystemException(org.omg.CORBA.SystemException ex)

{ ..}

public static void writeAny(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj{ ... }

public static java.lang.Object readAny(
org.omg.CORBA.portable.InputStream in) { ... }

public static void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void registerTarget(Tie tie,
java.rmi.Remote target) { ... }

public static void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException

{ ..}

Javato IDL Mapping January 2002

public static Tie getTie(java.rmi.Remote target) { ... }
public static ValueHandler createValueHandler() { ... }

public static java.rmi.RemoteException wrapException(
Throwable obj) { ... }

public static java.lang.Object copyObject(
java.lang.Object obj, org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException { ... }

public static java.lang.Object[] copyObjects(
java.lang.Object[] obj, org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException { ... }

public static boolean isLocal(Stub s)
throws java.rmi.RemoteException { ... }

public static String getCodebase(Class clz) {... }

public static Class loadClass(String className,
String remoteCodebase,
ClassLoader loader)
throws ClassNotFoundException { ... }

}
The mapSystemException method maps a CORBA system exception to a
java.rmi.RemoteException or ajava.lang.RuntimeException . The

mapping is described in Section 1.4.8, “Mapping CORBA System Exceptions to RMI
Exceptions,” on page 1-35. If the mapped exception is an instance of
java.rmi.RemoteException or a subclass, the mapped exception is returned,;
otherwise, it is thrown.

ThewriteAny method writes the Java objeabj to the output strearout in the
form of a GIOPany. The contents of the GIOBny are determined by applying the
Java to IDL mapping rules to the actual runtime typeobf . If obj is null, then it is
written as follows: theTypeCodeis tk_abstract_interface, the repository ID is
“IDL:omg.org/CORBA/AbstractBase:1.0” , the name string i§* , and the
any's value is a null abstract interface type (encoded bedaean discriminant of
false followed by along value ofOx00000000).

ThereadAny method reads a GIOBny from the input streann and unmarshals it
as a Java object, which is returned. The followifgpeCodes are valid for the GIOP
any: tk_value, tk_value_box tk_objref, andtk_abstract_interface. For each of
these types, both null and non-null values are valid. IflgpeCodeis anything other
than these, MARSHAL exception is thrown.

The writeRemoteObject method is a utility method for use by stubs when writing
an RMI/IDL object reference to an output streamolfj is a stub object,
writeRemoteObject simply writesobj to out.write_Object . However, if

obj is an exported RMI/IDL implementation object, themiteRemoteObject

Javato IDL Mapping Portability Interfaces ~ January 2002 1-51

1-52

allocates (or reuses) a suitafdlee (see Section 1.4.4, “Allocating Ties for Remote
Values,” on page 1-33), plugs together the tie vatl) , and writes the object reference
for the tie toout.write_Object . This method cannot be used to write a JRMP
object reference to an output stream.

The writeAbstractObject method is another similar utility method for use by
stubs. Ifobj is a value object, or a stub objestriteAbstractObject simply
writesobj to out.write_abstract_interface . However, ifobj is an
exported RMI/IDL implementation object, thewriteAbstractObject allocates

(or reuses) a suitabl€ie (see Section 1.4.4, “Allocating Ties for Remote Values,” on
page 1-33), plugs together the tie withj , and writes the object reference for the tie
to theout.write_abstract_interface . This method cannot be used to write a
JRMP object reference to an output stream.

TheregisterTarget method is needed to suppamexportObject . Because
unexportObject takes a target implementation object as its parameter, it is
necessary for th&til class to maintain a table mapping target objects back to their
associatedie s. It is the responsibility of the code that allocateEi@ to also call the
registerTarget method to notify theJtil class of the target object for a given
tie. TheregisterTarget method will call theTie.setTarget method to notify
the tie object of its target object.

TheunexportObject method deactivates an implementation object and removes its
associatediie from the table maintained by tHétil class. If the object is not
currently exported or could not be deactivatedN@SuchObjectException is

thrown.

ThegetTie method returns the tie object for an implementation objarjet , or
null if no tie is registered for théarget object.

The createValueHandler method returns a singleton instance of a class that
implements the/alueHandler interface.

ThewrapException method wraps an exception thrown by an implementation
method. It returns the corresponding client-side exception. See Section 1.4.8.1,
“Mapping of UnknownExceptioninfo Service Context,” on page 1-36 for details.

The copyObject method is used by local stubs to copy an actual parameter, result
object, or exception. TheopyObjects method is used by local stubs to copy any
number of actual parameters, preserving sharing across parameters as necessary to
support RMI/IDL semantics. The actual paramediject]] array holds the method
parameter objects that need to be copied, and the re&hjdtct]] array holds the
copied results.

ThecopyObject andcopyObjects methods ensure that remote call semantics are
observed for local calls. They observe copy semantics for value objects that are
equivalent to marshaling, and they handle remote objects correctly. Stubs must either
call these methods or generate inline code to provide equivalent semantics.

Javato IDL Mapping January 2002

TheisLocal method has the same semantics as@gectimpl._is_local

method, except that instead of throwing amy.omg.CORBA.SystemException ,
it throws ajava.rmi.RemoteException that is the result of passing the
SystemException to themapSystemException method.

The getCodebase method returns the Java codebase for the Class otliectas a
space-separated list of URLs. See Section 1.4.9.2, “Codebase Selection,” on page 1-37
for details.

TheloadClass method loads a Java class object for the Java class name
className , using additional information passed in tremoteCodebase and
loader parameters. See Section 1.4.9.5, “Codebase Usage,” on page 1-38 for details.

1.5.1.7 Additional Portability APIs

The Java Language to IDL Mapping uses the following portability APIs which are also
used by the OMG IDL to Java Mapping.

org.omg.CORBA.portable.InputStream
org.omg.CORBA.portable.OutputStream
org.omg.CORBA_2_3.portable.InputStream
org.omg.CORBA_2_3.portable.OutputStream
org.omg.CORBA.portable.Objectimpl
org.omg.CORBA.portable.Delegate
org.omg.CORBA_2_3.portable.Objectimpl
org.omg.CORBA_2_3.portable.Delegate
org.omg.CORBA.portable.InvokeHandler
org.omg.CORBA.portable.ResponseHandler
org.omg.CORBA.portable.ApplicationException
org.omg.CORBA.portable.RemarshalException
org.omg.CORBA.portable.UnknownException
org.omg.CORBA.portable.IndirectionException
org.omg.CORBA.portable.ServantObject
org.omg.CORBA.portable.ServantObjectExt

These APIs are described in tHeL to Java Language Mappingocument.

1.5.2 Generated classes
There are two kinds of classes generated as part of this specification.

1. Stub classes. These are used by RMI/IDL clients to send calls to a server. A stub
class is required for each RMI/IDL remote interface.

2. Tie classes. These are used to process incoming calls and dispatch the calls to a
server implementation class. A tie class is required for each RMI/IDL
implementation class.

No generated classes are required for RMI/IDL value types, exceptions, etc.

Javato IDL Mapping Portability Interfaces ~ January 2002 1-53

1.5.2.1 Stubclasses

For each RMI/IDL remote interfacBoo there will be a stub classFoo_Stub that
extendgavax.rmi.CORBA.Stub and implements$-o0.

The stub class supports stub methods for all the RMI/IDL remote methods in the
RMI/IDL remote interfaces that it implements, and must have a public no-argument
constructor.

Here is a simple RMI/IDL interface and an example stub class:

/I Java
public interface Aardvark extends java.rmi.Remote {
public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

public class _Aardvark Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public _Aardvark_Stub() {} // implicit or explicit

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {
org.omg.CORBA_2_3.portable.InputStream in = null;

try {

try {
org.omg.CORBA.OutputStream out =

_request(“echo”, true);

out.write_long(x);

in = (org.omg.CORBA_2_3.portable.InputStream)
_invoke(out);

return in.read_long();

} catch (org.omg.CORBA.portable.
ApplicationException ex) {

in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getinputStream();

String id = in.read_string();

if (id.equals("IDL:BoomerangEx/1.0")) {
throw (Boomerang)in.read_value();

} else {
throw new java.rmi.UnexpectedException(id);

} catch (org.omg.CORBA.portable.RemarshalException
ex) {

return echo(x);

}
} catch (org.omg.CORBA.SystemException ex) {

throw javax.rmi.CORBA.Util.mapSystemException(ex);

} finally {
_releaseReply(in);

1-54 Javato IDL Mapping January 2002

1.5.2.2 Local Stubs

The stub class may provide an optimized call path for local server implementation
objects. For a methodcho(int x) of a remote interfacéardvark |, the
optimized path does the following:

1. Find out if the servant is local by callingtil.isLocal()

2. If the servant is local, cathis._servant_preinvoke("echo",
Aardvark.class)

3. If _servant_preinvoke returned a non-null ServantObjest, do the

following:

a. Call((Aardvark)so.servant).echo(x)

b. If the invocation on the servant completed without throwing an exceptions@and
is an instance ofervantObjectExt , then callso.normalCompletion()

c. If the invocation on the servant threw exceptext , andso is an instance of
ServantObjectExt , then callso.exceptionalCompletion(exc)

d. Callthis._servant_postinvoke(so)

4. If _servant_preinvoke returned null, repeat step 1. The call to
Util.isLocal() will return false, causing the non-optimized path to be
followed.

The _servant_preinvoke method returns non-null if, and only if, an optimized

local call may be used. It performs any security checking that may be necessary. If the
_servant_preinvoke method returns non-null, then tiservant field of the
returnedServantObject must contain an object that implements the RMI/IDL

remote interface and can be used to call the servant implementation

Local stubs are responsible for performing copying of method parameters, results and
exceptions, and handling remote objects correctly in order to provide remote/local-
transparent RMI/IDL semantics.

The following is an example of a stub class that provides this optimized call path.

/I Java
import org.omg.CORBA.portable.ServantObjectExt;

public class _Aardvark Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {
if (Yjavax.rmi.CORBA.Util.isLocal(this)) {
/I remote call path
org.omg.CORBA_2_ 3.portable.InputStream in = null;

try {

Javato IDL Mapping Portability Interfaces ~ January 2002 1-55

try {
org.omg.CORBA.portable.OutputStream out =

_request("echo", true);
out.write_long(x);
in = (org.omg.CORBA_2_3.portable.InputStream)
_invoke(out);
return in.read_long();
} catch (org.omg.CORBA.portable.
ApplicationException ex) {
in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getinputStream();
String id = in.read_string();
if (id.equals("IDL:BoomerangEx/1.0")) {
throw (Boomerang)in.read_value();
} else {
throw new java.rmi.UnexpectedException(id);
}
} catch (org.omg.CORBA.portable.RemarshalException
ex) {
return echo(x);
}
} catch (org.omg.CORBA.SystemException ex) {
throw javax.rmi.CORBA.Util.mapSystemException(ex);

} finally {
_releaseReply(in);
}

} else {
/I local call path
org.omg.CORBA .portable.ServantObject so =
_servant_preinvoke("echo”, Aardvark.class);

if (so == null)
return echo(x);
try {

int result = ((Aardvark)so.servant).echo(x);

if (so instanceof ServantObjectExt)
((ServantObjectExt)so).normalCompletion();

return result;

} catch (Throwable ex) {

if (so instanceof ServantObjectExt)

((ServantObjectExt)so).
exceptionalCompletion(ex);

Throwable ex2 = (Throwable)
javax.rmi.CORBA.Util.copyObject(ex, _orb());

if (ex2 instanceof Boomerang)
throw (Boomerang)ex2;

else
throw javax.CORBA.Util.wrapException(ex2);

} finally {
_servant_postinvoke(so);
}

Javato IDL Mapping January 2002

1.5.2.3 Tieclasses

For each RMI/IDL implementation class there will be a corresponding tie class that

implementgavax.rmi.CORBA.Tie . The tie class is called by the ORB to process
an incoming call and to pass the call through to an associated target implementation
object.

After the Tie object has been constructed, the target implementation object must be
set with a call onJtil.registerTarget

Here is a simple RMI/IDL interface and an examfle class:

/I Java
public interface Aardvark extends java.rmi.Remote {
public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

public class _Aardvark Tie
extends org.omg.PortableServer.Servant
implements javax.rmi.CORBA.Tie {
private Aardvark target;

public void setTarget(java.rmi.Remote targ) {
target = (Aardvark) targ;

}

public java.rmi.Remote getTarget() {
return target;

}

public org.omg.CORBA.OutputStream _invoke(String method,
org.omg.CORBA.InputStream in,
org.omg.CORBA.portable.ResponseHandler rh) {
try {
if (method.equals(“echo”)) {
try {
int x = in.read_long();
int result = target.echo(x);
org.omg.CORBA_2_3.portable.OutputStream out
= (org.omg.CORBA_2_3.portable.OutputStream)
rh.createReply();
out.write_long(result);
return out;
} catch (Boomerang ex) {
String exid = "IDL:BoomerangEx/1.0";

Javato IDL Mapping Portability Interfaces ~ January 2002 1-57

org.omg.CORBA_2_3.portable.OutputStream out

= (org.omg.CORBA_2_3.portable.OutputStream)
rh.createExceptionReply();

out.write_string(exid);

out.write_value(ex);

return out;
}
} else {
throw new org.omg.CORBA.BAD_OPERATIONY();
}
} catch (org.omg.CORBA.SystemException ex) {
throw ex;
} catch (Throwable ex) {
throw new

org.omg.CORBA.portable.UnknownException(ex);
}
public org.omg.CORBA.Object thisObject() { ... }
public void deactivate() { ... }
public org.omg.CORBA.ORB orb() { ... }

public void orb(org.omg.CORBA.ORB orb) { ... }

1.5.3 Replaceability of API Implementations

A framework is provided to enable vendor-specific implementations of the Java
Language to IDL Mapping Portability Interfaces and Application Programming
Interfaces. The affected classes are:

javax.rmi.CORBA.Stub

javax.rmi.CORBA.Util
javax.rmi.PortableRemoteObject

These classes are able to optionally delegate their methods to separate implementation
classes, which can be provided by ORB vendors.

1.5.3.1 StubDelegate

The implementation delegate class javax.rmi.CORBA.Stub must implement
the following interface for per-instance delegation:

package javax.rmi.CORBA,;
public interface StubDelegate {

int hashCode(Stub self);

1-58 Javato IDL Mapping January 2002

boolean equals(Stub self, java.lang.Object obj);
String toString(Stub self);

void connect(Stub self, org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

void writeObject(Stub self, java.io.ObjectOutputStream s)
throws java.io.lOException;

void readObject(Stub self, java.io.ObjectinputStream s)
throws java.io.lOException,
ClassNotFoundException;

}

The above methods are called by the corresponding methods of
javax.rmi.CORBA.Stub when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.2 UtilDelegate

The implementation delegate class javax.rmi. CORBA.Util must implement
the following interface for per-class delegation:

package javax.rmi.CORBA,;
public interface UtilDelegate {

java.rmi.RemoteException mapSystemException(
org.omg.CORBA.SystemException ex);

void writeAny(org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

java.lang.Object readAny(
org.omg.CORBA .portable.InputStream in);

void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void registerTarget(Tie tie, java.rmi.Remote target);

void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException;

Javato IDL Mapping Portability Interfaces ~ January 2002 1-59

Tie getTie(java.rmi.Remote target);

ValueHandler createValueHandler();

String getCodebase(Class clz);

Class loadClass(String className, String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException;

boolean isLocal(Stub stub)
throws java.rmi.RemoteException;

java.rmi.RemoteException wrapException(Throwable obj);

java.lang.Object copyObject(java.lang.Object obj,
org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

java.lang.Object[] copyObjects(java.lang.Object[] obj,
org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

}
The above methods are called by the corresponding methods of
javax.rmi.CORBA.Util when delegation has been specified as described in

Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.3 PortableRemoteObjectDelegate

The implementation delegate class javax.rmi.PortableRemoteObject
must implement the following interface for per-class delegation:

package javax.rmi.CORBA,;
public interface PortableRemoteObjectDelegate {

void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException;

java.rmi.Remote toStub (java.rmi.Remote obj)
throws NoSuchObjectException;

void unexportObject(java.rmi.Remote obj)
throws NoSuchObjectException;

java.lang.Object narrow (java.lang.Object narrowFrom,

Class narrowTo)
throws ClassCastException;

1-60 Javato IDL Mapping January 2002

void connect (java.rmi.Remote target,
java.rmi.Remote source)
throws java.rmi.RemoteException;

}
The above methods are called by the corresponding methods of
javax.rmi.PortableRemoteObject when delegation has been specified as

described in Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.4 Delegation Mechanism

Alternate implementations of the standard API classes are enabled by setting system
properties or placing entries in the orb.properties file. The names of the new system
properties are:

javax.rmi.CORBA.StubClass
javax.rmi.CORBA.UtilClass
javax.rmi.CORBA.PortableRemoteObjectClass

For security reasons, each replaceable API class reads its implementation delegate
class system property at static initialization time and uses this information to set up
implementation delegation if this has been specified. The delegation arrangement thus
established cannot be changed subsequently. The search order for implementation
delegate class names is:

1. The system properties
2. The orb.properties file

For each implementation delegate class, an instance is created using the
Class.newlnstance() method. For thaJtil and PortableRemoteObject

delegate classes, this is a singleton instance. FoBthle delegate class, there is one
delegate instance per stub object. The methods in the standard API classes test if a
delegate instance exists and if so, forward the method call on to the delegate instance.

Javato IDL Mapping Portability Interfaces ~ January 2002 1-61

1.6 Application Programming Interfaces

1-62

One new API class is introduced to support RMI/IDL implementations.

1.6.1 PortableRemoteObject

Thejavax.rmi.PortableRemoteObject class is intended to act as a base class
for RMI/IDL server implementation classes (see Section 1.2.3.1, “Stubs and remote
implementation classes,” on page 1-4).

/I Java
public class PortableRemoteObject {

protected PortableRemoteObject()
throws java.rmi.RemoteException { ... }

public static void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException { ... }

public static java.rmi.Remote toStub(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static void unexportObject(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static java.lang.Object narrow(
java.lang.Object obj, Class newClass)
throws ClassCastException { ... }

public static void connect(
java.rmi.Remote target, java.rmi.Remote source)
throws java.rmi.RemoteException { ... }

}

The protected constructor is called by the derived implementation class to initialize the
base class state.

Server side implementation objects may either inherit from
javax.rmi.PortableRemoteObject or they may simply implement an
RMI/IDL remote interface and then use th&portObject method to register
themselves as a server object.

A call to exportObject with no objects exported creates a non-daemon thread that
keeps the Java virtual machine alive until all exported objects have been unexported by
calling unexportObject

It is up to the implementation to decide when to actually export (i.e., connect) remote
objects. It may be done in tHeortableRemoteObject constructor (for objects

that subclas®ortableRemoteObject) or in theexportObject method, or it

may be deferred until the remote object is actually written tdamputStream

Javato IDL Mapping January 2002

It is an error to callexportObject on an object that is already exported.

ThetoStub method takes a server implementation object and returns a stub object
that can be used to access that server object. The argument object must currently be
exported, either because it is a subclasPaftableRemoteObject or by virtue of

a previous call td?ortableRemoteObject.exportObject . If the object is not
currently exported, &loSuchObjectException is thrown. The returned stub

implements the same RMI/IDL remote interfaces as the implementation object. If an
RMI/IDL Tie class is available for the given object, tteStub method will return an

IIOP stub; otherwise, it will return a JRMP stub. TteStub method may be passed

a stub, in which case it simply returns this stub.

The stub returned btoStub has the same connection status as the target
implementation object passedtmStub . So if the target object is connected, the
returned stub is connected to the same ORB. If the target object is unconnected, the
returned stub is unconnected.

The unexportObject method is used to deregister a currently exported server
object from the ORB runtimes, allowing the object to become available for garbage
collection. If the object is not currently exportedN@SuchObjectException is

thrown. This is implemented by calling through thil.unexportObject

The narrow method takes an object reference or an object of an RMI/IDL abstract
interface type and attempts to narrow it to conform to the givewClass RMI/IDL
type. If the operation is successful, the result will be an object of hygeClass ;
otherwise, an exception will be thrown. dbj is null, thennarrow returns null.

The connect method makes the remote objeatget ready for remote
communication using the same communications runtieesource . Connection
normally happens implicitly when the object is sent or received as an argument on a
remote method call, but it is sometimes useful to do this by making an explicit call.
Thetarget object may be either an RMI/IDL stub or an exported RMI/IDL
implementation object, and treurce object may also be either an RMI/IDL stub or
an exported RMI/IDL implementation object.

If target is already connected to the same communications runtisewse , then
connect takes no action. Otherwisgrget must be an unconnected object (i.e., an
RMI/IDL CORBA stub without a delegate or an implementation object whose
RMI/IDL tie has not been associated with an ORB), aodrce must be a connected
object (i.e., an RMI/IDL CORBA stub with a delegate or an implementation object
with an RMI/IDL tie that has been associated with an ORB), or else a
RemoteException is thrown. Thetarget object is connected to the same ORB as
source by calling theStub.connect method if it is a stub (see Section 1.5.1.2,
“Stub,” on page 1-44) or by associating its tie with an ORB if it is an implementation
object.

3.For IIOP, the communications runtime is an ORB; for JRMP, it is the JRMP transport
subsystem.

Javato IDL Mapping Application Programming Interfaces January 2002 1-63

RMI/IDL implementation objects may be connected implicitly by being passed to
Util.writeRemoteObject or Util.writeAbstractObject . RMI/IDL stubs

may be connected implicitly by being passeddotputStream.write_Object

Connecting an implementation object is not the same as exporting it, and RMI/IDL
implementation objects may be unconnected when first exported. RMI/IDL
implementation objects are implicitly connected when they are exported to JRMP, and
RMI-JRMP stubs are implicitly connected when they are created.

1.7 Generated IDL File Structure

1-64

This section is not part of the formal specification of the Java Language to OMG IDL
Mapping, but it contains some suggestions for generated file structure.

Tool vendors may choose to map each RMI/IDL interface, value type, or exception
type to a separate .idl file. This follows the normal Java style and may be easier for
Java RMI/IDL programmers to maintain than requiring that (say) all OMG IDL
definitions be put into a single OMG IDL file.

This approach does raise some issues for the generated OMG IDL, which are briefly
worth mentioning.

First, the use of separate .idl files requires the use of “reopenable” modules, so that
separate files can have separate free-standing module definitions.

Second, although OMG IDL permits forward references to OMG IDL interfaces, it
does not support forward references to structs or exceptions, and there are some limits
on the use of interface references. Any forward references to interfaces must be
satisfied by later definitions of those interfaces.

One possible way of dealing with these difficulties is to use an OMG IDL file layout
similar to the following:

1. The entire OMG IDL definition is bracketed in standard C pre-processor boilerplate
used to guarantee it is only included once:

#ifndef __foo__
#define __ foo__

#endif

2. An OMG IDL forward reference is generated for each OMG IDL interface that is
referenced. (This may require entering and exiting the appropriate target module.)

3. An OMG IDL forward reference is generated for each OMG IDL value type that is
referenced. (This may require entering and exiting the appropriate target module.)

4. Each exception referenced in the OMG IDL#isiclude d, in arbitrary order.
5. If the generated OMG IDL is an interface, th&mclude any inherited interfaces.

6. If the generated OMG IDL is a value type, th&imclude any inherited value
types.

Javato IDL Mapping January 2002

7.

If there are any references to the OMG IDL typgava::rmi::Remote

java:io::Serializable , ::java:.io::Externalizable

, or :;java::lang::_Object ,

then generate the following bracketed definitions as required.

#ifndef __java_rmi_Remote
#define __java_rmi_Remote
module java {
module rmi {
typedef Object Remote;
h
h
#endif

#ifndef __java_io_Serializable__
#define __java_io_Serializable___
module java {
module io {
typedef any Serializable;
h
h
#endif

#ifndef __java_io_Externalizable___
#define __java_io_Externalizable

module java {
module io {
typedef any Externalizable;
h
h
#endif

#ifndef __java_lang_Object
#define __java_lang_Object
module java {
module lang {
typedef any _Object;
h
h
#endif

This allows different OMG IDL files in the same module to independently define

any necessary typedefs.

8. For each OMG IDL sequence type that is referenced, generate a bracketed value

Javato IDL Mapping

definition similar to the following.

#ifndef __org_omg_boxedRMI_fred_seql_Stuff
#define __org_omg_boxedRMI_fred_seql_Stuff _

module org {
module omg {
module boxedRMI {

Generated IDL File Structure

January 2002 1-65

1-66

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

AR FU S 64

#endif

This allows different OMG IDL files to independently define any necessary
sequence valuetypes.

9. Generate the target OMG IDL in the appropriate module.
10. #include any interfaces to which forward references have been declared.
11. #include any value types to which forward references have been declared.

Below is an example of how a chunk of RMI/IDL code would be mapped to OMG IDL
using this approach.

1.7.1 The Java Definition

Here’s a sample RMI/IDL interface, where the referenced tiypd. Stuff is an
RMI/IDL value type,fred.Testl andfred.Test2 are RMI/IDL remote interface
types, andred.OurException is an RMI/IDL exception type.

/I Java

package fred;
import java.rmi.*;

public interface Test extends Testl {
void noop() throws RemoteException;

String echo(String arg) throws RemoteException;
Stuff echoStuff(Stuff p) throws RemoteException;
Test echoTest(Test t) throws RemoteException;
int[] echolnts(int args[]) throws RemoteException;
Stuff[] echoStuffs(Stuff args[]) throws RemoteException;

void manyArgs(char a, byte b, short c, int d,
long e float f, double g) throws RemoteException;

Test2 fetchTest2(Object x) throws RemoteException;

Javato IDL Mapping January 2002

void throwAnException() throws RemoteException,
OurException;

1.7.2 The Generated OMG IDL Definition

// DL
#ifndef _ fred_Test
#define __ fred_Test

#include “orb.idl”

module fred {
interface Test2;
valuetype Stuff;

k

#include “fred/OurEx.idl”
#include “fred/Testl.idl”

#ifndef __java_lang_Object__
#define __java lang_Object__
module java {
module lang {
typedef any _Obiject;
3
h
#endif

#ifndef __org_omg_boxedRMI_seql long___
#define __org_omg_boxedRMI_seql long
module org {
module omg {
module boxedRMI {

valuetype seql_long sequence<long>;
#pragma ID seql_long “RMI:[1:0000000000000000"
h
h
h
#endif

#ifndef __org_omg_boxedRMI_fred_seql_ Stuff

#define __org_omg_boxedRMI_fred_seql_Stuff

module org {

module omg {

module boxedRMI {

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

Javato IDL Mapping Generated IDL File Structure ~ January 2002 1-67

}
}
}.
}.

endif

module fred {
interface Test: Testl {
void noop();

::CORBA::WStringValue echo(in ::CORBA::WStringValue arg0);
fred::Stuff echoStuff(in ::fred::Stuff arg0);
fred::Test echoTest(in ::fred::Test arg0);

:org::omg::boxedRMI::seql_long echolnts(
in ::org::omg::boxedRMI::seql_long arg0);

:org::omg::boxedRMI::fred::seql_Stuff echoStuffs(
in ::org::omg::boxedRMI::fred::seql_Stuff arg0);

void manyArgs(
in wchar argO,
in octet argl,
in short arg2,
in long arg3,
in long long arg4,
in float arg5,
in double arg6);

:fred::Test2 fetchTest2(:;java::lang::_Object);
void throwAnException() raises (::fred::OurEx);
3
#pragma ID Test “RMI:fred. Test:0000000000000000”
h

#include “fred/Test2.idl”
#include “fred/Stuff.idl”

#endif

1-68 Javato IDL Mapping January 2002

	Java‘ Language to IDL Mapping
	1.1 Overview
	1.2 The RMI/IDL Subset of Java
	1.2.1 Overview of Conforming RMI/IDL Types
	1.2.2 Primitive Types
	1.2.3 RMI/IDL Remote Interfaces
	1.2.4 RMI/IDL Value Types
	1.2.5 RMI/IDL Arrays
	1.2.6 RMI/IDL Exception Types
	1.2.7 CORBA Object Reference Types
	1.2.8 IDL Entity Types

	1.3 The IDL Mapping
	1.3.1 Overview
	1.3.2 Mapping Java Names to IDL Names
	1.3.3 Mappings for Primitive Types
	1.3.4 Mapping for RMI/IDL Remote Interfaces
	1.3.5 Mapping for RMI/IDL Value Types
	1.3.6 Mapping for RMI/IDL Arrays
	1.3.7 Mapping RMI/IDL Exceptions
	1.3.8 Mapping CORBA Object Reference Types
	1.3.9 Mapping IDL Entity Types
	1.3.10 Mapping for Non-conforming Classes and Interfaces
	1.3.11 Mapping Abstract Interfaces
	1.3.12 Mapping Implementation Classes

	1.4 Run-Time Issues
	1.4.1 Subclasses of Value Objects
	1.4.2 Locating Stubs for Remote References
	1.4.3 Narrowing
	1.4.4 Allocating Ties for Remote Values
	1.4.5 Wide Character Support
	1.4.6 Locating Stubs and Ties
	1.4.7 Mapping RMI Exceptions to CORBA Exceptions
	1.4.8 Mapping CORBA System Exceptions to RMI Exceptions
	1.4.9 Code Downloading
	1.4.10 Custom Marshaling Format
	1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
	1.4.12 RMICustomMaxStreamFormat Service Context
	1.4.13 Marshaling RMI/IDL Arrays
	1.4.14 Runtime Limitations

	1.5 Portability Interfaces
	1.5.1 Portability APIs
	1.5.2 Generated classes
	1.5.3 Replaceability of API Implementations

	1.6 Application Programming Interfaces
	1.6.1 PortableRemoteObject

	1.7 Generated IDL File Structure
	1.7.1 The Java Definition
	1.7.2 The Generated OMG IDL Definition

