Java™ Languageto|DL Mapping 1

Note — The Java Language to IDL Mapping specification is aligned with CORBA
version 3.0.2.

Thisis OMG document ptc/2003-01-17.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 11
“The RMI/IDL Subset of Java’ 1-2
“The IDL Mapping” 1-6
“Run-Time |ssues’ 1-32
“Portability Interfaces’ 1-42
“Application Programming Interfaces’ 1-62
“Generated IDL File Structure” 1-64

1.1 Oveview

The Java distributed programming community has until now been forced to choose
between two different mechanisms for distributed programming, Java Remote Method
Invocation (RM1) and OMG IDL.

Javato IDL Mapping January 2002 11

The RMI style of distributed programming has proven extremely popular because it is
easy to use and avoids the need for Java programmers to learn a separate interface
definition language. However, RMI lacks interoperability with other languagesand it is
not currently supported over standard protocols.

The mapping from Java RMI to OMG IDL and 110OP described in this chapter is
intended to unify the ease-of-programming of Java RMI with support for cross-
language operation (through OMG IDL) and support for standard protocols (through
[1OP).

To encourage convergence between the RMI and CORBA programming communities,
it is important to define a solution that is both fully compatible with current RMI
semantics and fully compatible with OMG IDL, I10OP, and the CORBA object model.

The subset of Java that meets these goals is referred to as RMI/IDL.

1.2 TheRMI/IDL Subset of Java

This section describes the subset of Java RMI that is mapped to IDL and can run over
GIOP.

1.2.1 Overview of Conforming RMI/IDL Types

A conforming RMI/IDL type is a Java type whose values may be transmitted across an
RMI/IDL remote interface at run-time.

A Java data type is a conforming RMI/IDL type if it is:
® one of the Java primitive types (see Section 1.2.2, “Primitive Types,” on page 1-2).

® aconforming remote interface (as defined in Section 1.2.3, “RMI/IDL Remote
Interfaces,” on page 1-3).

® aconforming value type (as defined in Section 1.2.4, “RMI/IDL Vaue Types,” on

page 1-4).

® an array of conforming RMI/IDL types (see Section 1.2.5, “RMI/IDL Arrays,” on
page 1-5).

® aconforming exception type (see Section 1.2.6, “RMI/IDL Exception Types,” on
page 1-5).

® aconforming CORBA object reference type (see Section 1.2.7, “CORBA Object
Reference Types,” on page 1-6).

® aconforming IDL entity type (see Section 1.2.8, “IDL Entity Types,” on page 1-6).

1.2.2 Primitive Types

All the standard Java primitive types are supported as part of RMI/IDL. These are:

® void, boolean, byte, char, short, int, long, float,
doubl e

Javato IDL Mapping January 2002

1.2.3 RMI/IDL Remote Interfaces

An RMI remote interface defines a Java interface that can be invoked remotely. A Java
interface is a conforming RMI/IDL remote interface if:

1
2.

The interface is or inherits from j ava. r m . Renot e either directly or indirectly.

All methods in the interface are defined to throw

j ava. rm . Renot eExcepti on or asuperclass of

j ava. rm . Renot eExcept i on. Throughout this section, references to methods
in the interface include methods in any inherited interfaces.

There are no restrictions on method arguments and result types. However at run-
time, the actual values passed as arguments or returned as results must be
conforming RMI/IDL types (see Section 1.2.1, “Overview of Conforming RMI/IDL
Types,” on page 1-2). In addition, for each RMI/IDL remote interface reference, the
actual value passed or returned must be either a stub object or a remote interface
implementation object (see Section 1.2.3.1, “ Stubs and remote implementation
classes,” on page 1-4).

All checked exception classes used in method declarations (other than
j ava. rm . Renot eExcepti on and its subclasses) are conforming RMI/IDL
exception types (see Section 1.2.6, “RMI/IDL Exception Types,” on page 1-5).%

Method names may be overloaded. However, when an interface directly inherits
from several base interfaces, it is forbidden for there to be method name conflicts
between the inherited interfaces. This outlaws the case where an interface A defines
amethod “foo,” an interface B also defines a method “foo,” and an interface C tries
to inherit from both A and B.

Constant definitions in the form of interface variables are permitted. The constant
value must be a compile-time constant of one of the RMI/IDL primitive types or
String.

Method and constant names must not cause name collisions when mapped to IDL
(see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,” on

page 1-10).

The following is an example of a conforming RMI/IDL interface definition:

/1 Java
public interface Wonbat extends java.rni.Renpte {

String BLEAT_CONSTANT = “bl eat”;
bool ean bl eat (Wnbat ot her)
throws java.rm . Renot eExcepti on;

1.Because unchecked exception classesandj ava. r mi . Renot eExcept i onandits
subclasses are not mapped to IDL exceptions, it isnot necessary for them to be conforming
RMI/IDL exceptiontypes.

JavatoIDL Mapping TheRMI/IDL Subset of Java January 2002

1-3

1-4

1231

}

While the following is an example of a non-conforming RMI/IDL interface:

/1 Java

/1 1llegallnterface fails to extend Renpte!!

public interface Illegallnterface {
/1 illegal Exceptions fails to throw RenpteExcepti on.
void illegal Exceptions();

Subs and remote i mplementation classes

At run time, when a reference to an RMI/IDL remote interface is passed across a
remote interface, the class of the actual object that is passed must be either a stub class
or a remote implementation class.

A stub classis a class that has been created (normally by tools) to manage a remote
object reference.

A remote implementation classis a class that acts as the server side implementation for
a given RMI/IDL remote interface.

A given remote implementation class may implement severa distinct RMI/IDL
interfaces.

1.2.4 RMI/IDL Value Types

An RMI/IDL value type represents a class whose values can be moved between
systems. So rather than transmitting a reference between systems, the actual state of
the object is transmitted between systems. This requires that the receiving system have
an analogous class that can be used to hold the received value.

Value types may be passed as arguments or results of remote methods, or as fields
within other objects that are passed remotely.

A Java class is a conforming RMI/IDL value type if the following applies:

1. Theclassmust implement thej ava. i 0. Seri al i zabl e interface, either directly
or indirectly, and must be serializable at run-time. It may serialize references to
other RMI/IDL types, including value types and remote interfaces.

2. The class may implement j ava. i 0. Ext er nal i zabl e. (Thisindicates it
overrides some of the standard serialization machinery.)

3. If the class is a non-static inner class, then its containing class must also be a
conforming RMI/IDL value type.

4. A value type must not either directly or indirectly implement the
j ava. rm . Renot e interface. (If this were allowed, then there would be potential
confusion between value types and remote interface references.)

Javato IDL Mapping January 2002

A value type may implement any interface except for j ava. rm . Renot e.
There are no restrictions on the method signatures for a value type.
There are no restrictions on st at i ¢ fields for a value type.

There are no restrictionson t r ansi ent fields for a value type.

© © N o o

Method, constant, and field names must not cause name collisions when mapped to
IDL (see Section 1.3.2.10, “Names that would cause OMG IDL name collisions,”
on page 1-10).

Here is an example of a conforming RMI/IDL value type:

/1 Java

public class Point inplenments java.io.Serializable {
public final static int CONSTANT_FOO = 3+3;
private int x;
private int vy;

public Point(int x, y) { ... }
public int getX() { ... }
public int getY() { ... }

1.2.4.1 TheJava Sring Type

Thej ava. | ang. Stri ng classisaconforming RMI/IDL value type following these
rules. Note, however, that St ri ng is handled specially when mapping Javato OMG
IDL (see Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21).

1.2.5 RMI/IDL Arrays

Arrays of any conforming RMI/IDL type are also conforming RMI/IDL types. So
int[] andString[][][] areconforming RMI/IDL types. Similarly if Wonbat is
a conforming RMI/IDL interface type, then Wonbat [] is a conforming RMI/IDL
type.

1.2.6 RMI/IDL Exception Types

An RMI/IDL exception type is a checked exception class (as defined by the Java
Language Specification). Since checked exception classes extend

j ava. |l ang. Thr owabl e, which implementsj ava. i 0. Seri al i zabl e, itis
unnecessary for an RMI/IDL exception class to directly implement

java.io. Serializable.

A typeis a conforming RMI/IDL exception if the class:
® isachecked exception class.

® meets the requirements for RMI/IDL value types defined in Section 1.2.4,
“RMI/IDL Value Types,” on page 1-4.

JavatoIDL Mapping TheRMI/IDL Subset of Java January 2002 1-5

1-6

Here's an example of a conforming RMI/IDL exception type:

/1 Java
public class Mammal Over| oad extends Mammal Exception {

public Mammal Overl oad(String nessage) {
super (nessage) ;

}

1.2.7 CORBA Object Reference Types

A conforming CORBA object reference type is either

the Java interface or g. ong. CORBA. Obj ect, or

a Javainterface that extends or g. ong. CORBA. Cbj ect directly or indirectly and
conformsto the rules specified in the Java Language Mapping (i.e., could have been
generated by applying the mapping to an OMG IDL definition).

1.2.8 IDL Entity Types

A Java class is a conforming IDL entity type if it extends

org. ong. CORBA. portabl e. | DLEnti ty and conforms to the rules specified in
the Java Language Mapping (i.e., could have been generated by applying the mapping
to an OMG IDL definition) and is not an OMG IDL user exception.

1.3 ThelDL Mapping

1.3.1 Overview

This section defines the mapping between RMI/IDL data types and OMG IDL. It
includes general rules for mapping Java names to OMG IDL and mappings for:

Primitive types

RMI/IDL remote interfaces
RMI/IDL value types
RMI/IDL arrays

RMI/IDL exception types
CORBA object reference types
IDL entity types

Java types that are referenced in RMI/IDL remote interfaces or inherited by
RMI/IDL value types, but which are not themselves conforming RMI/IDL types.

RMI/IDL abstract interfaces

RMI/IDL implementation classes

Javato IDL Mapping January 2002

1311

Summary of Special Case Mappings

Some standard Java class and interface types benefit from special case mappings to
specific CORBA types. These are described in the appropriate sections below, but for
convenience Table 1-1 summarizes these mappings:

Table 1-1 Specia Case Mappings

Java OMG IDL

J ava.l ang. Ooj ect ;Java::lang::_Object

java.lang. String ::CORBA::WStringValue or wstring?!
java.l ang. d ass sjavax::rmi::CORBA::ClassDesc
java.io. Serializable :;java::io::Serializable
java.io.Externalizable :;java::io::Externalizable

java.rm . Renote :;java::rmi::Remote

or g. ong. CORBA. Obj ect Object

1. St r i ng constants are mapped differently than St r i ng variables. See Section 1.3.5.11,
“Mapping for java.lang.String,” on page 1-21.

1.3.2 Mapping Java Names to IDL Names

1321

1322

1.3.2.3

In general, each Java name is mapped to an equivalent OMG IDL name. However,
there are some exceptions when the Java name is not a legal identifier in OMG IDL.

Mapping packages to modules

We map Java package names to OMG IDL modules. Each Java package becomes a
separate OMG IDL module. Packages within packages are represented as modules
within modules.

So a Java package a. b. ¢ would turn into an OMG IDL module ::a::b::c.

Java namesthat clash with IDL keywords

For Java names that collide with OMG IDL keywords, the Java names are mapped to
OMG IDL by adding a leading underscore. So the Java name oneway is mapped to
the OMG IDL identifier _oneway (an escaped identifier).

Java names with |eading under scores

For Java names that have leading underscores, the leading underscore is replaced with
“J".So _fredismappedtoJ fred.

JavatoIDL Mapping ThelDL Mapping January 2002 1-7

1-8

1324

1.3.25

1.3.2.6

Java nameswithillegal IDL identifier characters

Given the current lack of support for Unicode in OMG IDL, we define a simple name
mangling scheme to support the mapping of Java identifiers to OMG IDL identifiers.

For Javaidentifiers that contain illegal OMG IDL identifier characters such as‘$' or
Unicode characters outside of ASCII, any such illegal characters are replaced by “U”
followed by the 4 hexadecimal characters (in upper case) representing the Unicode
value. So, the Java name a$b is mapped to aU0024b and x\ u03bCy is mapped to
xUO3BCy.

Namesfor inner classes

When mapping names for Java inner classes, a composite name is formed by
concatenating the name for the outer class, two underscores, and the name of the inner
class. The corrections for illegal OMG IDL identifiers described above are then

applied.

For example, an inner class Fr ed inside a class Bert will get mapped to an OMG
IDL name of Bert__Fred.

Overloaded method names

If a Java RMI/IDL method isn’t overloaded, then the same method name is used in
OMG IDL as was used in Java.

Given the absence of overloaded methods in current OMG IDL, we define a simple
name mangling for overloaded methods.

Note that a method may be uniquely defined in a base interface (and therefore its name
will not be mangled in that interface) and then be overloaded in a derived interface (in
which case the name will be mangled in the derived interface).

For overloaded RMI/IDL methods, the mangled OMG IDL name is formed by taking
the Java method name and then appending two underscores, followed by each of the
fully qualified OMG IDL types of the arguments (removing any leading “::" and
replacing embedded “::” with “_") separated by two underscores. Any spaces (such as
in the OMG IDL type long long) are replaced with underscores, and any leading
underscores in OMG IDL escaped identifiers are removed.

For example, the four overloaded Java methods:

void hello();

void hello(int x, a.b.c vy, int z);
void hello(int z[]);

void hell o(Obj ect 0);

are mapped to the OMG IDL methods:

void hello__ ();
void hello__long__a b_c__long(in long x, in ::a::b::cy, in long 2);

Javato IDL Mapping January 2002

13.2.7

1.3.2.8

1.3.29

void hello__org omg_boxedRMI_seql long(
in ::org::omg::boxedRMI::seql_long x);
void hello__java_lang_Object(in ::java::lang::_Object o0);

Namesdiffering only in case

While Java supports case-sensitive names, OMG IDL does not. Therefore, a general
name mangling rule is provided to allow uniqgue OMG IDL identifiers to be generated
for Java names that differ only in case.

To simplify the mapping, the use of Java package names differing only in case is not
supported. Nor do we support the use of class or interface names within the same
package that differ only in case. Both of these are treated as errors.

For other case-sensitive collisions, the rule is that if two (or more) names that need to
be defined in the same OMG IDL name scope differ only in case, then a mangled name
is generated consisting of the original name followed by an underscore, followed by an
underscore separated list of decimal indices into the string, where the indices identify
all the upper case charactersin the original string. Indices are zero based.

Thus if a Java remote interface has methodsj ack, Jack andj AcK these names are
mapped to jack_, Jack_0, and jAcK_1_3.

Method namesthat collide with other names

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between method names and constant or field names. This is because Java

constants and fields can have the same names as methods, but OMG IDL constants and
fields cannot. The following rules are used to avoid such name collisionsin OMG IDL.:

* Method names are mapped unchanged (subject to other mangling rules).

® Javaconstant or field names whose mapped name collides with the mapped name of
a Java method (or would collide if the Java method were mapped to OMG IDL) are
mapped with an additional trailing underscore.

For example, if a Java class has both a constant f 0o and a method f 0o, the OMG IDL
method is called foo (if it is mapped) and the OMG IDL constant is called foo_
(whether or not the method foo is mapped).

Container namesthat clash with their members

In some cases, applying these rules for name mappings would generate OMG IDL with
collisions between a container name and members of the container. This is because a
Java member can have the same name as its container, but OMG IDL members cannot.
The following rules are used to avoid such name collisions in OMG IDL:

® Container names are mapped unchanged (subject to other mangling rules).

® Java method, constant, or field names whose mapped name collides with the
mapped name of their Java container are mapped with an additional trailing
underscore.

JavatoIDL Mapping ThelDL Mapping January 2002 1-9

1-10

1.3.2.10

For example, if a remote Java interface Foo has a method f 0o, the OMG IDL
interface is called Foo and the OMG IDL operation is called foo_.

Names that would cause OMG IDL name collisions

If the name mappings defined in this specification would produce OMG IDL method,
constant, field, or attribute names that are not unique within their declared scope, this
is treated as an error. For example, if a Java remote interface has methods f oo() ,
foo(int x),andfoo__|ong(), the corresponding OMG IDL names would be
foo__, foo__long, and foo__long, which is not legal OMG IDL.

1.3.3 Mappings for Primitive Types

Here are the OMG IDL mappings for the Java primitive types:

Java OMG IDL
voi d void

bool ean boolean
char wchar

byt e octet
short short

i nt long

| ong long long
fl oat float
doubl e double

The mappings for the Javavoi d, bool ean, short,int, | ong,fl oat, and
doubl e types are straightforward as they have exact OMG IDL analogues.

The 8 bit signed Java type byt e is mapped to the 8 bit unsigned OMG IDL type
octet. The mapping is bit-for-bit so that Java byte value “-1” is transmitted as GIOP
octet “OxFF,” and the GIOP octet “OxFF" is mapped back to the Java byte value “-1.”
Thus when using this mapping, we will preserve full value and sign information when
using RMI/IDL between a Java client and a Java server over GIOP.

The 16 bit Java Unicode char type is mapped to the OMG IDL wchar type.

1.3.4 Mapping for RMI/IDL Remote Interfaces

An RMI/IDL remote interface is mapped into an OMG IDL interface with the
corresponding name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on
page 1-7) in the OMG IDL module corresponding to the Java interface's package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Javato IDL Mapping January 2002

1341

1.34.2

1.34.3

Soecial casefor java.rmi.Remote

As a special case, any explicit use of j ava. r mi . Renot e as a parameter, result, or
field is mapped to the OMG IDL type ::java::rmi::Remote, which is defined as
follows:

/I IDL
module java {
module rmi {
typedef Object Remote;
I3
3

All RMI/IDL remote interfaces inherit from j ava. r m . Renot e. Thisinheritance is
represented in the RMI to OMG IDL mapping as the implicit inheritance of IDL
interface types from CORBA::Object.

Inherited interfaces

Each inherited interface (other than j ava. r mi . Renot e) in the Javainterface is
represented by an equivalent inherited interface in the OMG IDL interface. If the
inherited interface is an RMI/IDL remote interface, then it is mapped as specified here.
If not, it is mapped as specified in Section 1.3.11, “Mapping Abstract Interfaces,” on
page 1-30.

Property accessor methods

Methods that follow the JavaBeans” design patterns for simple read-write properties
or simple read-only properties are mapped to OMG IDL interface attributes. No special
mapping is done for indexed properties or write-only properties.

Read-Write properties

If an RMI/IDL remote interface has a pair of methods get <name> and set <name>
where

® the get <name> method has no arguments,
® the set <name> method has a single argument and a void return type,

® the result type of the get <name> method is the same as the argument type of the
set <nane> method,

® get <nane> and set <name> do not throw any checked exceptions except for
j ava. rm . Renot eExcepti on and its subclasses,

then this is mapped to an OMG IDL read-write attribute where the attribute has the
OMG IDL type corresponding to the set <name> method's argument type.

JavatoIDL Mapping ThelDL Mapping January 2002 1-11

1-12

Read-only properties
If there is a get <nanme> method that

® has no arguments,
® has a non-void return type,

® does not throw any checked exceptions except for
j ava. rm . Renot eExcepti on and its subclasses,

but if there is no corresponding set <name> method that satisfies the rules defined in
“Read-Write properties’ on page 1-11, then the get <name> method is mapped to a
read-only OMG IDL attribute whose type is obtained by mapping the method’s return

type.

Boolean properties

For boolean properties an i s<name> method may take the place of the get <name>
method. For example, a pair of methods, as shown below, define a read-write attribute
foo.

bool ean i sFoo() throws java.rm . Renot eExcepti on;
voi d set Foo(bool ean b) throws java.rm . RenoteException;

Thei s<name> method may be provided instead of a get <name> method, or it may
be provided in addition to a get <nane> method. In either case, if thei s<nane>
method is present for a boolean property then i s<name> will be mapped to the OMG
IDL attribute <nane> and get <name> (if present) will be mapped to an OMG IDL
operation get <nane>. For example, the following Java methods:

/1 Java

bool ean getBar ();

bool ean isBar();

voi d set Bar (bool ean x);

are mapped to the following OMG IDL:

/I IDL
boolean getBar();
attribute boolean bar;

Attribute names

The JavaBeans design pattern for property names is that the property name is obtained
from the method name(s) by:

® Extracting the characters after the initial “get,” “is,” or “set” of the method name.

® Converting the first character to lower case unless both the first and second
characters are upper case.

So the get Foo method implies a “foo” property, the set X method implies an “x”
property, and the get URL method implies a“URL" property.

Javato IDL Mapping January 2002

1

1344

1345

The OMG IDL attribute name is obtained by taking the JavaBeans property name and
applying the normal mapping rules (see Section 1.3.2, “Mapping Java Names to IDL
Names,” on page 1-7). However, if this OMG IDL attribute name conflicts with an
OMG IDL method name, then an extra pair of underscores“ " is added to the end of
the attribute name to attempt to disambiguate it.

Methods

Except for property accessors (see Section 1.3.4.3, “Property accessor methods,” on
page 1-11), each method in the interface is mapped to an OMG IDL method where:

1. The OMG IDL method name is generated as described in Section 1.3.2.6,
“Overloaded method names,” on page 1-8.

2. The Javareturn type is mapped to the corresponding OMG IDL return type.

3. Each Java argument is mapped to an OMG IDL in parameter with the
corresponding OMG IDL type.

4. The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument names.?

5. Each declared RMI/IDL exception (other than j ava. r mi . Renot eExcepti on
and its subclasses) is mapped to the corresponding OMG IDL exception.

6. j ava. rm . Renot eExcepti on and its subclasses, and unchecked exception
classes, are assumed to be mapped to the implicit CORBA system exception, and
are therefore not explicitly declared in OMG IDL.

Constants

Compile-time constants (“publ i c final static” fieldswith compile-time
constant values) for primitive types and St ri ngs are mapped to similarly named IDL
constants in the target interface with the same values, except for byte constants which
are mapped bit-for-bit. For example, -1 maps to 255. Individual wstring and wchar
character values may need to be escaped as defined in the OMG IDL specification.

2. Thisisnot always possible, since Javamethod argument names do not appear in the .class
file output from thejavac compiler.

JavatoIDL Mapping ThelDL Mapping January 2002 1-13

1-14

1.3.4.6

1.3.4.7

Repository ID

A #pragma ID is generated to assign each mapped OMG IDL interface type an RMI
Hashed format repository ID derived from the Java interface name using the rules
specified in The Common Object Request Broker: Architecture and Specifications,
Interface Repository chapter, with a hash code of zero and no SUID. See

Section 1.3.5.7, “Repository ID,” on page 1-18 for more information.

An example

Here is an example of an RMI/IDL remote interface:

/1 Java
package al pha. bravo;
public interface Wnbat extends java.rni.Renote,
omega. Wl | aby {
String BLEAT_CONSTANT = “bl eat”;
void chirp(int x) throws RenoteException;
void buzz() throws RenoteException, onega. Mammal Overl oad,;
int getFoo() throws RenpteException;
voi d set Foo(int x) throws RenoteException;
String getURL() throws RenoteException;
void eat() throws Exception;
void drink() throws RenoteException,
java. rm . NoSuchObj ect Excepti on;

}
that gets mapped to the following IDL:

/I IDL
module alpha {
module bravo {
interface Wombat: ::omega::Wallaby {
const wstring BLEAT_CONSTANT = “bleat”;
void chirp(in long argO0);
void buzz() raises (::omega::MammalOverloadEx);
attribute long foo;
readonly attribute ::CORBA::WStringValue URL;
void eat() raises (::java::lang::Ex);

void drink();
h
#pragma ID Wombat “RMl:alpha.bravo.Wombat:0000000000000000”
3
h

Note that St ri ng constants are mapped differently than St ri ng variables. See
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21.

Javato IDL Mapping January 2002

1.3.5 Mapping for RMI/IDL Value Types

1351

1.35.2

1353

This section covers the general mapping for RMI/IDL value types, including inner
classes and conforming exception classes that are not RMI/IDL exception types.
However, note that there are special case mappings for j ava. | ang. Stri ng (see
Section 1.3.5.11, “Mapping for java.lang.String,” on page 1-21) and

java.l ang. C ass (see Section 1.3.5.12, “Mapping for java.lang.Class,” on
page 1-21).

RMI/IDL value classes that implement or g. ong. CORBA. portabl e. I DLEntity
and or g. ong. CORBA. port abl e. Val ueBase directly or indirectly are not
mapped to OMG IDL, because these Java classes correspond to existing OMG IDL
value types that were mapped to Java using the OMG IDL to Java mapping. Instead,
the original OMG IDL definitions are used.

Exception classes that implement or g. ong. CORBA. port abl e. | DLEnti ty may
appear only in Javat hr ows clauses. Thisis because they correspond to existing OMG
IDL exception types, and OMG IDL exception types may appear only in IDL
raises clauses.

Each RMI/IDL value class (except for those mapped from OMG IDL using the OMG
IDL to Java mapping) is mapped to an OMG IDL value type with the corresponding
OMG IDL name (see Section 1.3.2, “Mapping Java Names to IDL Names,” on

page 1-7) in the OMG IDL module corresponding to the Java class's package name
(see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Inherited base class

If the RMI/IDL class extends some base class (other than j ava. | ang. Qbj ect),
then this inheritance is represented by having the OMG IDL value type inherit from an
IDL value type corresponding to the base class. See Section , “module org {,” on
page 1-27 for details.

Inherited interfaces

Each inherited interface (other than j ava. i 0. Seri al i zabl e and

j ava. i o. Ext ernal i zabl e) in the Java class is represented by an equivalent
inherited or supported type in the mapped OMG IDL type. If the inherited interface is
mapped to an OMG IDL abstract valuetype, then it is inherited by the mapped OMG
IDL type. If the inherited interface is mapped to an OMG IDL abstract interface, then
it is supported by the mapped OMG IDL type. It is not possible for the inherited
interface to be mapped to a non-abstract OMG IDL interface, because RMI/IDL value
types cannot implement RMI/IDL remote interfaces (see Section 1.2.4, “RMI/IDL
Value Types,” on page 1-4). See Section, “module org {,” on page 1-27 for details of
how inherited interfaces are mapped.

Methods

It is not required that methods in RMI/IDL value classes be mapped into OMG IDL.

JavatoIDL Mapping ThelDL Mapping January 2002 1-15

1-16

1354

Thisis partly due to concern that an automatic mapping would have a spaghetti effect,
where referencing a single value type would result in mappings for methods that would
pull in other RMI/IDL types, that would pull in other value types.

In addition, many of the methods in common Java value types cannot be mapped
usefully to OMG IDL (because they reference non RMI/IDL types) or to other
languages.

However, there may be cases where it is useful to map value type methods to OMG
IDL and tools may choose to support options to map methods. In those cases, each
mapped method in a Java value type is mapped to an OMG IDL method using the rules
specified in Section 1.3.4.3, “Property accessor methods,” on page 1-11 and

Section 1.3.4.4, “Methods,” on page 1-13.

Java private methods are not mapped to OMG IDL.

Constructors

Aswith methods, it is not required that RM1/IDL value type constructors be mapped to
OMG IDL. However, in those cases where constructors are mapped to OMG IDL
(including the default constructor, if any), we require that the following mapping be
used:

Each mapped constructor in a Java value type is mapped to an OMG IDL initializer
where:

1. If thereisasingle IDL initializer, its name is create. If there are multiple IDL
initializers, this name is mangled as specified in Section 1.3.2.6, “ Overloaded
method names,” on page 1-8.

2. Each Java argument is mapped to an IDL in parameter with the corresponding IDL
type.

3. The OMG IDL parameters may be given arbitrary names, but it is recommended
that, where possible, the OMG IDL names should be obtained by mapping the Java
argument names.

4. Each declared RMI/IDL exception type (other than
java. rm . Renot eExcepti on and its subclasses) is mapped to the
corresponding OMG IDL exception.

5. java. rm . Renpt eExcepti on and its subclasses, and unchecked exception
classes, are not explicitly declared in OMG IDL.

Java private constructors are not mapped to OMG IDL.

For example, the Java classes:

/1 Java

public class foo inplenents java.io.Serializable {
foo(int x);

}

public class bar inplenents java.io.Serializable {

Javato IDL Mapping January 2002

1355

1.35.6

bar (int x);
bar (char y);
}

would be mapped to the OMG IDL valuetypes:

/I 'DL
valuetype foo {
factory create(in long Xx);
b
valuetype bar {
factory create__long(in long x);
factory create__wchar(in long y);

I3

Constants

Compile-time constants (“publ i ¢ final static” fieldswith compile-time
constant values) for primitive types and St ri ngs are mapped to similarly named IDL
constants in the target value type with the same values. Individual wstring and wchar
character values may need to be escaped as defined in the OMG IDL specification.

Data

If the classimplementsj ava. i 0. Ext er nal i zabl e, then the serialized state of the
Java class is treated as an opaque type, and it is defined as an OMG IDL “custom
valuetype.” Java non-static non-transient publ i ¢ fields are mapped to OMG IDL
public data members, and other Java fields are not mapped.

If the class does not implement j ava. i 0. Ext er nal i zabl e but does have a

wr i t eObj ect method,, or extends such a class directly or indirectly, then it is mapped
to an OMG IDL “custom valuetype” using the rules for mapping data members
specified below. An additional IDL custom valuetype in the module
:;org::omg::customRMI is also generated to assist with marshaling and unmarshaling
instances of the class. See Section 1.3.5.8, “ Secondary custom valuetype,” on page 1-19
for details. In this case and for Java classes that implement

j ava. i o. Ext ernal i zabl e, all the semantics of

java.io. Obj ect Qut put St reamand j ava. i 0. Obj ect | nput St ream
supported by RMI over JRMP are supported over I1OP.

If the class does not implement j ava. i 0. Ext er nal i zabl e and has a declared
private static final field named seri al Persi stent Fi el ds of type
java.io. Qbj ect Streanti el d[], then the mapping of data fieldsto OMG IDL
is governed by the value of that field. If the Java classhasnowr i t eCbj ect method,
then each Obj ect St r eanti el d instance in the array must correspond to a declared
field in the class with the same name and the same declared type. For each

oj ect St r eanfFi el d instance osf in the array, thereisan OMG IDL data member
with name equal to osf . get Nanme() and type equal to the standard mapping of the

JavatoIDL Mapping ThelDL Mapping January 2002 1-17

Javatype osf . get Type() . get Nanme() to OMG IDL. If the corresponding field
exists in the Java class and is declared publ i ¢, then the OMG IDL field is also
declared public; otherwise, the OMG IDL field is declared private.

If the class does not implement j ava. i 0. Ext er nal i zabl e and does not have a
declared private static final field named seri al Per si st ent Fi el ds of
typej ava. i 0. Qbj ect St r eantFi el d[], then each non-static non-transient field of
the Java class is mapped to a corresponding OMG IDL data member with the same
name, with the corresponding OMG IDL type. Java publ i ¢ fields are mapped to
OMG IDL public data members. Non-public Java fields are mapped to OMG IDL
private data members.

The following rules apply to the ordering of fieldsin an OMG IDL value type mapped
from Java.

® All non-constant fields whose Java type is a primitive precede all other non-
constant fields.

® The non-constant primitive fields are ordered by sorting their Java field names in
increasing order. The sort compares the field name strings lexicographically. The
comparison is based on the Unicode value of each character in the strings.

® The non-constant non-primitive fields are ordered by sorting their Java field names
in the same way as non-constant primitive fields.

1.3.5.7 RepositoryID

To allow reliable detection of version mismatches, a#pragma ID is generated to
assign each value type a specific repository ID string with a specific version string.

The syntax of the repository ID is the standard OMG RMI Hashed format, with an
initial “RMI:” followed by the Java class name, followed by a hash code string,
followed optionally by a serialization version UID string.

For Javaidentifiers that contain illegal OMG IDL identifier characters such as‘$' or
Unicode characters outside of 1SO Latin 1, any such illegal characters are replaced by
“\U” followed by the 4 hexadecimal characters (in upper case) representing the
Unicode value. The use of a“\” islegal within a repository ID and it allows areliable
demangling from a repository ID back to the Java class name.

For example, the Javatypej ava. uti | . Hasht abl e would be mapped to the OMG
IDL type ::java::util::Hashtable with a repository 1D of
“RMl:java.util.Hashtable:C03324COEA357270:13BBOF25214AE4B8” .

Similarly, a Java class a. x\ u03bCy might be mapped to the OMG IDL type
::a::xU03BCy with repository 1D
“RMI:a.x\UO3BCy:0123456789ABCDEF:123456789ABCDEFO0".

1-18 Javato IDL Mapping January 2002

1.3.5.8 Secondary custom valuetype

In addition to the primary mapping described above, an RMI/IDL value type containing
awriteObj ect method is mapped to a secondary IDL custom valuetype. The module
name for this valuetype is formed by taking the ::org::omg::customRMI prefix and
then adding the primary mapped type's module name. The name of the secondary
valuetype is the same as the name of the primary IDL custom value type to which the
RMI/IDL value type was mapped. The secondary valuetype has no inheritance, data
members, methods, or initidizers. It has a#pragma ID specifying a repository ID
formed by taking the repository ID of the primary custom valuetype and prefixing the
Java package name with " or g. ong. cust onRM . " . The secondary custom valuetype
represents the enclosure of wr i t eCbj ect datathat is wriitten to the serialization
stream when the primary custom valuetype or any of its subclasses is serialized using
format version 2, as described in item 1d of Section 1.4.10, “Custom Marshaling
Format,” on page 1-40.

For IDL custom marshaling and unmarshaling of the primary mapped IDL valuetype, the
marshal and unmarshal methods can call write_Value() and read_Value() to write
and read the nested valuetype enclosure. This will cause the marshal and unmarshal
methods of the secondary mapped IDL valuetype to be called to write and read the
custom serialized data.

1.3.5.9 Example without writeObject
The RMI/IDL value type:

/1 Java
package al pha. bravo;
public class Hedgehog ext ends Wart hog
i mpl enents java.io.Serializable {
public final static short MAX WARTS = 12;
private int |ength;
prot ect ed bool ean foobabh;

i nt hei ght;

public int size;

public void snuffle() { ... }
public int getLength() { ... }

}
gets mapped to the IDL value type:

/I IDL

module alpha {

module bravo {

valuetype Hedgehog: ::alpha::bravo::Warthog {

const short MAX_WARTS = 12;
private boolean foobabh;
private long height;
private long length_;
public long size;

JavatoIDL Mapping ThelDL Mapping January 2002 1-19

1-20

1.3.5.10

/I mapping of methods, attributes, and initializers is optional
void snuffle();
readonly attribute long length();
factory create();
b
#pragma ID Hedgehog
“RMIl:alpha.bravo.Hedgehog:12345678ABCDEF00:0123456789ABCDEF"
b
b

Example with writeObject
The RMI/IDL value type:

/1 Java
package al pha. bravo;
public class Kangaroo extends Wl | aby
i npl enents java.io. Serializable {
private int |ength;

private Kangaroo(int length) { ... }

private void witeObject(java.io.bjectQutputStreams)
{ ...}

public int hop() { ... }

}
gets mapped to the IDL value types:

// 1DL
module alpha {
module bravo {
custom valuetype Kangaroo: ::alpha::bravo::Wallaby {
private long length;
/I mapping of methods shown below is optional
long hop();
h
#pragma ID Kangaroo
“RMl:alpha.bravo.Kangaroo:87654321ABCDEF01:9876543210FEDCBA"
5
h

module org {

module omg {

module customRMI {

module alpha {

module bravo {
custom valuetype Kangaroo {};

#pragma ID Kangaroo
"RMI:org.omg.customRMl.alpha.bravo.Kangaroo:87654321ABCDEFO01:

9876543210FEDCBA"

h

Javato IDL Mapping January 2002

[i W)

1.3.5.11 Mapping for java.lang.Sring

When used as a parameter type, return type, or data member, the Java St r i ng type is
mapped to the type ::CORBA::WStringValue. However when mapping Java
St ri ng constant definitions, aJava St ri ng is simply mapped to awstring.

::CORBA::WStringValue is a standard type that is part of the CORBA module. It is
defined as

valuetype WStringValue wstring;

which is semantically equivalent to:

valuetype WStringValue {
public wstring data;

b

1.3.5.12 Mapping for java.lang.Class

When used as a parameter type, return type, or data member, the Java C ass typeis
mapped to the OMG IDL type ::javax::rmi:;;:CORBA::ClassDesc. This OMG IDL
type is the result of mapping the following Java class to OMG IDL:

/1 Java
package javax. rm . CORBA;
public class C assDesc inplenments java.io. Serializable {
public String repid,;
public String codebase; // space-separated |ist of URLs
static final |ong serial VersionU D
= -3477057297839810709L

1.3.6 Mapping for RMI/IDL Arrays

An RMI/IDL array is mapped to a “boxed” value type containing an IDL sequence. We
use the syntax “valuetype xyz foo” as a shorthand for defining a value type named
“xyz” that contains a single field of type “foo.”

The module for each such value type is determined by the IDL type of the array
element. For multi-dimensional arrays, this is the type of the innermost array element,
after al the dimensions are resolved.

JavatoIDL Mapping ThelDL Mapping January 2002 1-21

1-22

1.3.6.1

Primitive OMG IDL types such as long, boolean, etc. are mapped directly into the
:zorg::omg::boxedRMI module. For other types, amodule name isformed by taking
the ::org::omg::boxedRMI prefix and then adding the type's existing module name
to identify a sub-module. So the type ::a::b::c is mapped into the module
:rorg::omg::boxedRMlI::a::b.

For each “boxed” value type generated for a Java array, a#pragma ID is generated to
specify an RMI Hashed format repository 1D for the IDL type.

The OMG IDL value type name within the module is formed by prefixing the OMG
IDL element type name with “seq<n>_" where <n> is the number of dimensions of
the array. Any spaces (such as in the OMG IDL type long long) are replaced with
underscores.

Some example value definitions resulting from Java arrays:

bool ean[] =>inthe module ::org::omg::boxedRMI the definition:
valuetype seql_boolean sequence<boolean>;

[ong[] =>inthe module ::org::omg::boxedRMI the definition:
valuetype seql_long_long sequence<long long>;

a.b. C[] =>inthemodule ::org::omg::boxedRMlI::a::b the definition:
valuetype seql C sequence<:a::b::C>;

X.Y[]1[] =>inthe module ::org::omg::boxedRMI::x the definitions:
valuetype seql_Y sequence<::x::Y>;
valuetype seq2_Y sequence<seql_Y>;

Preventing redefinitions of boxed sequence types

Each generated boxed sequence type must be protected against multiple definitions and
there are various ways in which this could be accomplished. For example, each
generated boxed sequence type could be wrapped in an #ifndef and #endif pair where
the tag of the #ifndef is the fully scoped name of the sequence value type, replacing
the leading ‘::’ with two underbars, replacing each inner *::" with one underbar, and
adding two underbar characters at the end. The #ifndef would be followed by a
#define of the tag, followed by the sequence definition, followed by an #endif.

A definition for a sequence of boolean that uses this approach would be wrapped in a
preamble of

#ifndef __org_omg_boxedRMI_seql boolean_

#define __org_omg_boxedRMI_seql boolean_
and would be followed by an

#endif

Javato IDL Mapping January 2002

1.3.6.2 Array example

Here's a more complete example. The Java definition:

/1 Java

package al pha. bravo;

public class Charlie inplenents java.io.Serializable {
publ i c onega. Dol phin fins[];

}

would result in the following OMG IDL definition:

/I IDL

#ifndef __org_omg_boxedRMI_omega_seql_Dolphin__

#define __org_omg_boxedRMI_omega_seql_Dolphin__

module org {

module omg {

module boxedRMI {

module omega {
valuetype seql_Dolphin sequence<::omega::Dolphin>;

#pragma ID seql_Dolphin
“RMI:[Lomega.Dolphin;:ABCDEF0123456789:01ABCDEF23456789"

}
}
}.
I3

endif

module alpha {
module bravo {
valuetype Charlie {
public ::org::omg::boxedRMI::omega::seql_Dolphin fins;
h
#pragma ID Charlie
“RMl:alpha.bravo.Charlie:0123456789ABCDEF:ABCDEF9876543210"
3
h

1.3.7 Mapping RMI/IDL Exceptions

OMG IDL does not allow subclassing of exception types. By contrast Java
programmers tend to make heavy use of exception subclassing, and the Java type
system is used to distinguish different flavors of exceptions at run time. It is very
common for a Java interface to say it raises a fairly generic exception (such as

j ava. i o. | CExcept i on) but for implementations to throw more specific sub-types
(such asjava.io. | nterruptedl OExcepti on) and for clients to use the Java

i nst anceof operator to check for specific subtypes. In addition, RMI/IDL
exceptions can be passed as normal value types, whereas OMG IDL exceptions can
only be used in raises clauses.

JavatoIDL Mapping ThelDL Mapping January 2002 1-23

1-24

1371

13.7.2

This mismatch of exception styles makes the mapping of RMI/IDL exception types to
OMG IDL problematic.

To allow full support for subclassing when communicating Java to Java we use a
mapping where an RMI/IDL exception type is mapped to both a specific OMG IDL
exception and to an OMG IDL value type that allows subclassing. The OMG IDL
exception has a single field that holds the corresponding value object.

This solution allows RMI/IDL to support the normal idiomatic use of Java exceptions,
while still being correctly mappable into OMG IDL.

ThelDL valuetype

Each RMI/IDL exception type is mapped to an OMG IDL value type in the OMG IDL
module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The value type's name is formed by
taking the RMI/IDL exception name and applying the normal corrections for illegal
IDL names (see Section 1.3.2, “Mapping Java Names to IDL Names,” on page 1-7).

The OMG IDL value type inherits from an OMG IDL parent value type that
corresponds to the base class of the RMI/IDL exception class. If an RMI/IDL
exception type Fr ed extends Ber t , then its OMG IDL value type Fred will inherit
Bert.

The mapping of the fields, methods, constants, and inherited interfaces to the OMG
IDL value type follow the same rules defined for other RMI/IDL value typesin
Section 1.3.5.2, “Inherited interfaces,” on page 1-15 through Section 1.3.5.7,
“Repository ID,” on page 1-18.

ThelDL exception

Each RMI/IDL exception type is also mapped to an OMG IDL exception in the OMG
IDL module corresponding to the Java exception’s package name (see Section 1.3.2.1,
“Mapping packages to modules,” on page 1-7). The OMG IDL exception name is
formed from the Java exception name by

® removing any trailing “Except i on” suffix.
® adding an “Ex” at the end of the name.

® applying the normal corrections for illegal OMG IDL names (see Section 1.3.2,
“Mapping Java Names to IDL Names,” on page 1-7).

If applying the above rules yields the same OMG IDL name for more than one Java
exception name (e.g., there are Java exception names f oo and f ooExcepti on,
which both map to the OMG IDL name fooEx), then this is treated as an error.

For example:

java.l ang. |11 egal AccessExcepti on is mapped to
:;java::lang::lllegalAccessEx

al pha. br avo. Foo is mapped to ::alpha::bravo::FoOoEx

Javato IDL Mapping January 2002

1

1.3.7.3

1374

This OMG IDL exception name can then be used in the raises clause of OMG IDL
method definitions.

The OMG IDL exception type is defined with a single data member named value that
has the type of the associated value object.

Mapping Referencesto RMI/IDL Exceptions

Whenever an RMI/IDL exception is used in a Javat hr ows clause, it is mapped to a
use of the corresponding OMG IDL exception type in the OMG IDL raises clause.

Whenever an RMI/IDL exception is used as a data field or as a method argument, it is
mapped to the corresponding OMG IDL value type.

Example
The Java RMI/IDL definitions:

/1 Java

package onega;

public class Fruitbat Excepti on extends Mamal Exception {
public Fruitbat Exception(String nmessage, int count) {

}
public int getCount() { ... }

private int count;

}

public interface Thrower extends java.rm .Renmote {
voi d doThrowFruitbat () throws Fruitbat Exception,
Renot eExcept i on;
Frui t bat Excepti on get Last Exception()
t hrows Renpt eExcepti on;

}
are mapped to OMG IDL as:

// IDL
module omega {
valuetype FruitbatException: ::omega::MammalException {
private long count_;
/I mapping of attributes shown below is optional
readonly attribute long count();
b
#pragma ID FruitbatException
“RMIl:omega/FruitbatException:1234567899775511:3344556645678901"

exception FruitbatEx {

FruitbatException value;

h

JavatoIDL Mapping ThelDL Mapping January 2002 1-25

1-26

interface Thrower {
void doThrowFruitbat() raises (FruitbatEx);
readonly attribute FruitbatException lastException;
h
#pragma ID Thrower “RMI:omega.Thrower:0000000000000000”
h

1.3.8 Mapping CORBA Object Reference Types

A CORBA object reference type is mapped directly to its corresponding OMG IDL
interface or to Object if it isor g. ong. CORBA. (bj ect .

1.3.9 Mapping IDL Entity Types

An IDL entity type that is not a CORBA abject reference type is mapped to a "boxed"
value type containing the IDL entity type, except as specified in Section 1.3.5,
“Mapping for RMI/IDL Value Types,” on page 1-15 and Section 1.3.10, “Mapping for
Non-conforming Classes and Interfaces,” on page 1-27.

The containing module for the boxed type is determined by the IDL entity type's
containing module. A module name is formed by taking the ::org::omg::boxedIDL
prefix and appending the IDL entity type's fully scoped IDL module name. A boxed
value type corresponding to the IDL entity type is defined within this module. The
name of the value type is the same as the name of the IDL definition it is boxing.

For example, assume we have the following IDL and the Java class that results from
applying the forward mapping:

/I IDL
module hello {
struct world {
short x;
b
h

/1 Java
package hell o;
public final class world inplenments
org. ong. CORBA. portable. IDLEntity {

Now assume that hel | 0. wor | d is used as an argument to a method or as a member
of an RMI/IDL value type. The Java class hel | 0. wor | d is mapped as follows:

Javato IDL Mapping January 2002

module org {
module omg {
module boxedIDL {
module hello {
valuetype world ::hello::world;
#pragma ID world “RMI:hello.world:1234567890ABCDEF”
b
b
b
h

The exact mechanism by which the IDL for ::hello::world is created is a tools issue
and is not specified.

These generated types must be protected against multiple definitions. See
Section 1.3.6.1, “Preventing redefinitions of boxed sequence types,” on page 1-22 for
an example of an approach that could be used.

The IDL entity typesor g. ong. CORBA. Any and or g. ong. CORBA. TypeCode are
mapped as follows:

module org {
module omg {
module boxedIDL {
module CORBA {
valuetype _Any any;
#pragma ID _Any “RMI:org.omg.CORBA.Any:0000000000000000"

b
b
b
b

module org {

module omg {

module boxedIDL {

module CORBA {
valuetype _TypeCode ::CORBA::TypeCode;

#pragma ID _TypeCode
“RMIl:org.omg.CORBA.TypeCode:0000000000000000”

(S I S)

1.3.10 Mapping for Non-conforming Classes and Interfaces

In addition to generating OMG IDL for each conforming RMI/IDL type, OMG IDL
definitions are also required for each Java class or interface that

® jsinherited (either directly or indirectly) by another Javatype that has been mapped
to OMG IDL.

JavatoIDL Mapping ThelDL Mapping January 2002 1-27

® jsgpecified as an argument type or as aresult type to an RMI/IDL remote interface
method.

® has been mapped to a data member of an OMG IDL value type.

Each such Java class or interface (except for interfaces that extend

or g. ong. CORBA. portabl e. | DLEnt i ty directly or indirectly) is mapped to an
OMG IDL type with the corresponding name (see Section 1.3.2, “Mapping Java
Names to IDL Names,” on page 1-7) in the OMG IDL module corresponding to the
Java type's package name (see Section 1.3.2.1, “Mapping packages to modules,” on

page 1-7).

Java interfaces that extend or g. ong. CORBA. port abl e. | DLEnt ity directly or
indirectly are not mapped to OMG IDL, because these Java interfaces correspond to
existing OMG IDL interfaces that were mapped to Java using the OMG IDL to Java

mapping.

Non-conforming Java classes are mapped to OMG IDL abstract value types with no
data members. Non-conforming Java interfaces are mapped as follows:

® Javainterfaces whose method definitions (including inherited method definitions)
al throw j ava. r m . Renot eExcept i on or a superclass of
j ava. rm . Renot eExcepti on are RMI/IDL abstract interfaces. They are
mapped to OMG IDL abstract interfaces as described in Section 1.3.11, “Mapping
Abstract Interfaces,” on page 1-30.

® All other Java interfaces are mapped to OMG IDL abstract value types with no data
members.

1.3.10.1 java.io.Serializableand java.io.Externalizable

As a special case, any uses of j ava. i 0. Seri al i zabl e or
j ava. i o. Ext ernal i zabl e asa parameter, result, or field are mapped to the OMG
IDL types ::java::io::Serializable and ::java::io::Externalizable respectively.

These OMG IDL types are defined as follows:

/I IDL

module java {

moduleio {
typedef any Serializable;
typedef any Externalizable;

1-28 Javato IDL Mapping January 2002

1.3.10.2 Mapping for java.lang.Object

The Javatypej ava. | ang. Qbj ect is mapped to the OMG IDL type
:;java::lang::_Object, which is defined as follows:

/I IDL
module java {
module lang {
typedef any _Object;
b
b

Thisisused when j ava. | ang. Obj ect is specified as the type of a parameter,
result, or field. All Java classes implicitly inherit fromj ava. | ang. Obj ect, but this
implicit inheritance is not exposed as part of the RMI to OMG IDL mapping.

1.3.10.3 Inheritedinterfaces

Each inherited Java class or interface (other thanj ava. i 0. Seri al i zabl e and
java. i o. Ext ernal i zabl e) in the Java type is represented by an equivalent
inherited value type or abstract interface type in OMG IDL.

1.3.10.4 Methods and constants

The methods and constants in these classes and interfaces are mapped as specified for
value classes in Section 1.3.4.4, “Methods,” on page 1-13 and Section 1.3.4.5,
“Constants,” on page 1-13.

1.3.10.5 Examples

The following non-conforming Java types:

/1 Java

package al pha. bravo;

public interface Mammal ({
public int getSize();

}

public class Pol arBear {
private int |ength;
public int weight;

public PolarBear(int length, int weight) { ... }
public int getSize() { ... }
public int getWeight() { ... }

JavatoIDL Mapping ThelDL Mapping January 2002 1-29

1-30

get mapped to the OMG IDL value types:

/I IDL
module alpha {
module bravo {
abstract valuetype Mammal {

h
abstract valuetype PolarBear {
h

I3

h

1.3.11 Mapping Abstract Interfaces

1311

1.3.11.2

1.3.11.3

Java interfaces that do not extend j ava. r m . Renot e directly or indirectly and
whose method definitions (including inherited method definitions) all throw

java. rm . Renot eExcept i on or a superclass of

java.rm . Renot eExcept i on are mapped to OMG IDL abstract interfaces. Java
interfaces that do not extend j ava. r mi . Renot e directly or indirectly and have no
methods are also mapped to OMG IDL abstract interfaces.

Inherited interfaces

Each inherited Java interface in the Java type is represented by an equivalent inherited
abstract interface in the OMG IDL type.

Methods and constants

Methods and constants are mapped according to the rules specified in Section 1.3.4.3,
“Property accessor methods,” on page 1-11, Section 1.3.4.4, “Methods,” on page 1-13,
and Section 1.3.4.5, “Constants,” on page 1-13.

Examples

The following Java type:

/1 Java
package al pha. bravo;
public interface Bear {
public int getSize() throws
java. rm . Renot eExcepti on

}
gets mapped to the OMG IDL type:
/I IDL

module alpha {
module bravo {

Javato IDL Mapping January 2002

abstract interface Bear {
readonly attribute long size();

h
#pragma ID Bear “RMIl:alpha.bravo.Bear:0000000000000000”
5
h

1.3.12 Mapping Implementation Classes

13121

In general, mapping RMI implementation classes to OMG IDL is not needed.
However, if a given RMI implementation class implements multiple distinct RMI/IDL
remote interfaces, then it is necessary to generate an OMG IDL type that represents the
unification of the distinct RMI/IDL types.

Any such composite RMI/IDL implementation class is mapped into an OMG IDL
interface with the corresponding name (see Section 1.3.2, “Mapping Java Names to
IDL Names,” on page 1-7) in the OMG IDL module corresponding to the Java class's
package name (see Section 1.3.2.1, “Mapping packages to modules,” on page 1-7).

Each inherited RMI/IDL remote interface (other than j ava. r mi . Renot e) inherited
by the Java implementation class is represented by an equivalent inherited interface in
the OMG IDL interface. Inherited classes and inherited interfaces that are not
RMI/IDL remote interfaces are ignored.

At run time, any instances of the composite implementation class must, from a
CORBA perspective, implement the corresponding composite OMG IDL interface.
This implies, for example, they must return true to any calls of “is_a” on any of the
OMG IDL interfaces associated with the distinct RMI/IDL interfaces.

Example

The RMI/IDL implementation classal pha. br avo. AB that implements the RMI/IDL
remote interfaces al pha. bravo. A and al pha. bravo. B:

/1 Java

package al pha. bravo;

public class AB extends javax.rm . Portabl eRenmpot eObj ect
i mpl enent s al pha. bravo. A, al pha. bravo. B {

}
is mapped to the OMG IDL:

/I IDL
module alpha {
module bravo {
interface AB: ::alpha::bravo::A, ::alpha::bravo::B {
h
#pragma ID AB “RMl:alpha.bravo.AB:0000000000000000”

JavatoIDL Mapping ThelDL Mapping January 2002 1-31

1.4 Run-Timelssues

In addition to the RMI/IDL mapping there are also run-time issues about how to
implement Java RMI/IDL calls over GIOP.

1.4.1 Subclasses of Value Objects

It should be possible to send a subclass of an RMI/IDL value type where a base value
type was specified in the OMG IDL.

If this occurs, the recipient is responsible for locating a suitable implementation
subclass to represent the val ue object subtype. In cases where a Java virtual machineis
available, this might include attempting to load Java bytecodes for the subclass. In the
Javato C++ case this might involve attempting to locate a suitable C++ subclass.

The name of the subclass can be obtained by parsing the value object’s repository 1D,
which must be in the standard OMG RMI Hashed format (see Section 1.3.5.7,
“Repository ID,” on page 1-18).

If a suitable subclass is not available, then the recipient must raise an exception. It is
not acceptable for an implementation to attempt to substitute a base class of the
subclass value that was transmitted.

1.4.2 Locating Subs for Remote References

When receiving an IOR from another system, it is the responsibility of the receiving
system to know which RMI/IDL type is expected. The receiving system should be
prepared to use stubs associated with this RMI/IDL type to manage the received object
reference. However, the receiving system may also optionally use the Repository ID of
the incoming IOR to locate and use stubs that more accurately reflect the true run-time
type of the object reference.

1.4.3 Narrowing

To narrow an RMI/IDL object reference to a different type, application programmers
must use the static nar r ow method provided by the

javax. rm . Port abl eRenpt eObj ect class (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Thus for example they might do:
/1 Java

al pha. bravo. Marmal m = get Manmal () ;
try {

1-32 Javato IDL Mapping January 2002

b = (al pha. bravo. Bandi coot)
j avax. rm . Port abl eRenpt e(bj ect . narr ow(
m al pha. bravo. Bandi coot . cl ass);
} catch (C assCast Exception ex) {

}

1.4.4 Allocating Ties for Remote Values

Following normal RMI semantics, an RMI server-side implementation object may be
passed across an RMI remote interface as though it were a remote reference.

Thejavax.rm . CORBA. Util.witeRenot eCbj ect method checks whether a
transmitted object is an implementation object and if so, allocates or reuses a suitable
tie object. The type of the tie object should correspond to the OMG IDL type that the
implementation object implements.

Thistie classis located at run time by finding the class of the implementation object
and checking for a corresponding tie class (see Section 1.4.6, “Locating Stubs and
Ties,” on page 1-33). If no suitable tie class is found, the check is repeated on the
implementation class's base class and so on up the inheritance chain, excluding

j ava. | ang. Obj ect . If no suitable tie class is found, a marshaling error occurs.

1.4.5 Wide Character Support

Since Java supports Unicode characters and strings, ORBs supporting RMI/IDL must
provide some form of wide character support.

Note that as part of 11OP code set negotiation, ORBs are required to accept Unicode
UTF16 for use as a fallback transmission format for wide characters, though they may
negotiate to use other formats.

1.4.6 Locating Subs and Ties

At various times it may be necessary for the ORB to locate either a stub class for a
given RMI/IDL remote interface or abstract interface, or atie class for a given
RMI/IDL implementation class. The name of the stub class is formed by taking the
name of the RMI/IDL interface, prepending “_" and appending "_Stub." The name of
the tie class is formed by taking the name of the RMI/IDL implementation class,
prepending “ " and appending "_Tie." For RMI/IDL implementation classes that are
mapped to IDL (see Section 1.3.12, “Mapping Implementation Classes,” on

page 1-31), the name of the stub class for the composite interface is formed by taking
the name of the RMI/IDL implementation class, prepending “_" and appending

“_ Stub.”

The stub class corresponding to an RMI/IDL interface or implementation class may
either be in the same package as its associated interface or class, or may be further
qualified by the or g. ong. st ub package prefix. For example, the stub class for an

JavatoIDL Mapping Run-Timelssues January 2002 1-33

1-34

RMI/IDL interface class a. b. Fr ed would be named either a. b. _Fred_St ub or
org. ong. stub. a. b. _Fred_St ub. For an RMI/IDL implementation class
X. Y. Z, thetie classwould benamed x. y. _Z Ti e.

When loading a stub class corresponding to an interface or class
<packagename>.<typename>, the class <packagename>. <typename>_Stub shall be
used if it exists; otherwise, the class org.omg.stub.<packagename>._<typename>_Stub
shall be used.

A given Java virtual machine may have several different “class loaders’ active
simultaneously. Each of these class loaders provides a separate naming context for
Java classes. For example, a browser might be running applets from several different
hosts. To avoid class name conflicts it will run the applets in different class loaders.
Thus, two different applets might both reference a class called Foo, but each of them
will get its own version of the Foo class from its own class loader.

Thej ava. |l ang. C ass. get C assl oader method returns the class loader for a
given C ass. So given one Cl ass it is possible to generate new class names and
then attempt to load those additional classes from the original class's class loader.

It is important in Java APIs to use an appropriate class loader when trying to locate a
named class. To ease this problem in the ORB Portability APIs we normally pass
around j ava. | ang. Cl ass objects rather than simply class names. When it is
necessary to load named classes, runtime code should take care to use an appropriate
class loader (e.g., by using one from an existing Cl ass object).

1.4.7 Mapping RMI Exceptions to CORBA Exceptions

To ensure correct RMI exception passing semantics when running over 110P, all Java
exceptions thrown by the server implementation must be passed back to the client. Any
exception that is an instance of an RMI/IDL exception type declared by the method or
any subclass of such atype (other thanj ava. r m . Renot eExcepti on and its
subclasses) is marshaled as the mapped IDL exception corresponding to the declared
RMI/IDL exception (see Section 1.3.7.2, “The IDL exception,” on page 1-24) containing
amapped IDL valuetype corresponding to the actual runtime RMI/IDL exception type
(see Section 1.3.7.1, “The IDL value type,” on page 1-24). On the client side, the mapped
IDL valuetype is unmarshaled and thrown back to the application.

For example, if a method in an RMI/IDL remote interface declares an exception type
Mammal Excepti on and its implementation throws an instance of

Worrbat Except i on (asubclass of Mammal Except i on), then this exception is
marshaled as an IDL exception MammalEx containing an IDL valuetype
WombatException, and aWnbat Except i on isthrown to the client application.

All other Java exceptions are marshaled as CORBA UNKNOWN system exceptions
whose GIOP Reply message includes an UnknownExceptioninfo service context
containing the marshaled Java exception thrown by the server implementation. The
Java exception is marshaled using the rules for CDR marshaling of value types as
defined by the GIOP specification, applied in conjunction with the rules for mapping
RMI/IDL valuetypesto IDL asdefined in Section 1.3.5, “Mapping for RMI/IDL Value
Types,” on page 1-15 of this specification.

Javato IDL Mapping January 2002

In order to support versioning of the Java exception marshaled within an
UnknownExceptioninfo service context, a SendingContextRunTime service
context must previously have been processed for the connection. If a GIOP message
carrying both an UnknownExceptioninfo service context and a
SendingContextRunTime service context is received, and no
SendingContextRunTime service context has previously been processed for this
connection, then the SendingContextRunTime service context must be processed
before the data within the UnknownExceptioninfo service context is unmarshaled

1.4.8 Mapping CORBA System Exceptions to RMI Exceptions

In general CORBA system exceptions are simply mapped to instances of
j ava. rm . Renot eExcept i on; however, some CORBA system exceptions are
mapped to more specific subclasses of Renpt eExcept i on. These are listed in

Table 1-2.

Table1-2 CORBA and RMI Exceptions

CORBA Exception RMI1 Exception

COMM_FAILURE java. rm . Marshal Exception
INV_OBJREF java. rm . NoSuchQhj ect Excepti on
NO_PERMISSION java.rm . AccessException
MARSHAL java. rm . Marshal Excepti on

BAD_ PARAM java. rm . Marshal Excepti on
OBJECT_NOT_EXIST java.rm . NoSuchChj ect Excepti on

TRANSACTION_REQUIRED j avax. transacti on.
Transact i onRequi r edExcepti on

TRANSACTION_ROLLEDBACK |j avax. transacti on.
Transacti onRol | edbackExcepti on

INVALID_TRANSACTION j avax. transacti on.
I nval i dTransact i onExcepti on

In all cases, the RMI exception is created with a detail string that consists of:
® the string “CORBA”

¢ followed by the CORBA name of the system exception

* followed by a space

¢ followed by the hexadecimal value of the system exception’s minor code
* followed by a space

¢ followed by the completion status of “Yes,” “No,” or “Maybe.”

Thus a CORBA UNKNOWN system exception with a minor code of 0x31 and a
completion status of Maybe would be mapped to a Renrot eExcept i on with the
following detail string:

“ CORBA UNKNOMW 0x31 Maybe”

JavatoIDL Mapping Run-Timelssues January 2002 1-35

1-36

1481

The Renot eExcept i on returned by mapSyst enExcept i on must preserve the
original CORBA system exception as the detail field, except when the original
CORBA system exception is BAD_PARAM with a minor code of 6, which is mapped
tojava.i o. Not Seri al i zabl eExcepti on.

Maypping of UnknownExceptionlnfo Service Context

CORBA UNKNOWN exceptions whose GIOP Reply message includes an
UnknownExceptioninfo service context containing a marshaled instance of

j ava. | ang. Thr owabl e or one of its subclasses are mapped to RMI exceptions
according to the type of the object contained in the service context, as shown in
Table 1-3.

Table 1-3 UnknownExceptioninfo and RMI Exceptions

UnknownExceptionlnfo RMI1 Exception
java.l ang. Error (orsubclass) |java.rm . ServerError

java.rm . Renot eException(or|j ava. rmni . Server Excepti on
subclass)

java. |l ang. Runti neException |java.rm.

(or subclass) Server Runt i neExcepti on
(JDK 1.1)
j ava. | ang. Runt i mneExcepti on
(Java 2)

1.4.9 Code Downloading

1491

Class downloading is supported for stubs, ties, values, and value helpers. The
specification has been designed to be implementable using either JDK 1.1.6 or Java 2
APIs, allows transmission of codebase information on the wire for stubs and ties, and
enables usage of pre-existing ClassL oaders when relevant.

Definitions

"codebase" - A j ava. | ang. St ri ng containing a space-separated array of URLS
(e.g., "http://facme.com/classes" or "http://abc.net/classes http://abc.net/ext/classes").

"local Codebase" - The System Property “java.rmi.server.codebase” whose value is a
codebase or null. Defaults to null.

"remoteCodebase" - The codebase transmitted from a remote system. May be null.

"useCodebaseOnly" - The System Property "java.rmi.server.useCodebaseOnly" whose
value is either "true” or "false." Defaults to "false." If "true" (ignoring case), any
remote codebase is ignored and only the local codebase used.

"loader" - A class loader that specifies a context within which classloading is initiated.
May be null.

Javato IDL Mapping January 2002

1.4.9.2

1493

Codebase Selection

TheUtil . get CodeBase(Cl ass cl z) method (see Section 1.5.1.6, “Util,” on
page 1-51) performs codebase selection.

On Java 2, this method returns the same string as
java.rm .server. RM Cl assLoader. get O assAnnot ati on(cl z)

On JDK 1.1, this method works as follows:

1. If the name of cl z has atop-level package qualifier of j ava, then return null,
else...

2. If ¢l z has a ClassLoader with a URL security context, then return this URL, else...

3. If there is a security manager with a URL security context, then return this URL,
else...

4. Return localCodebase.

When sending RMI/IDL values from Java, the codebase transmitted over GIOP must
be the codebase that this method would return for the value's class.

When sending RMI/IDL object references from Java, the codebase transmitted over
GIOP is selected by calling the method

org. ong. CORBA 2 3. portabl e. bjectlnpl._get _codebase() onthe
stub object.

Codebase Transmission
For values and value helpers, the codebase is transmitted after the value tag.

For stubs and ties, the codebase is transmitted as the TaggedComponent
TAG_JAVA_CODEBASE inthe IOR profile, where the component_dataisa CDR
encapsulation of the codebase written as an IDL string. The codebase is a space-
separated list of one or more URLSs.

In all cases, the SendingContextRunTime service context may provide a default
codebase that is used if not overridden by a more specific codebase encoded in a
valuetype or IOR.

For object references created using | nput St ream read_(Chj ect or

I nput St ream read_abstract _i nt er f ace, the transmitted codebase is stored
in the object reference (stub) and can be retrieved subsequently using the

org. ong. CORBA 2 3. portable. Objectlnpl._get codebase() method,
described below.

If no codebase was transmitted, localCodebase is stored in the object reference (stub).

JavatoIDL Mapping Run-Timelssues January 2002 1-37

1-38

1494

1.4.95

Codebase Access

In the event that Por t abl eRenot eCbj ect . nar r ow() must load a stub, it needs
to call aportable API to extract codebase information from the original stub. This API
is also used by the Qut put St r eammethodswr i t e_Cbj ect and

write abstract _interface to obtain the codebase to be transmitted in the
TAG_JAVA CODEBASE TaggedComponent. The API that is provided for these
purposes isthe get codebase() method of the

org. ong. CORBA 2 3. portabl e. Obj ect| npl class. See the IDL/Java
Language Mapping document.

Codebase Usage

The following method (see Section 1.5.1.6, “Util,” on page 1-51) is used to load
classes.

Util.loadd ass(String cl assNane,
String renoteCodebase,
Cl assLoader | oader)
throws C assNot FoundException { ... }

On Java 2, this method works as follows:

1. Find the first non-null ClassL oader on the call stack and attempt to load the class
using this ClassLoader. If this fails...

2. If renot eCodebase is non-null and useCodebaseOnly is false, then call
java.rm .server.RM Cl assLoader. | oadd ass
(renot eCodebase, cl assNane)

3. If renot eCodebase is null or useCodebaseOnly is true, then call
java.rm .server.RM C assLoader. | oadd ass(cl assNane)

4. If aclass was not successfully loaded by step 1, 2, or 3, and | oader is non-null,
then call d ass. f or Nane(cl assNane, fal se, |oader)

5. If aclass was successfully loaded by step 1, 2, 3, or 4, then return the loaded class.
On JDK 1.1, this method works as follows:

1. If cl assNane isan array type, extract the array element type. If thisisaprimitive
type, then call A ass. f or Name(cl assNane) , else proceed using the array
element class name as cl assNane.

2. Search the call stack for the first non-null ClassLoader. If a ClassLoader is found,
then attempt to load the class using this ClassL oader, else attempt to load the class
using Cl ass. For Name(cl assNane) . If thisfails...

3. If renot eCodebase is non-null and useCodebaseOnly is false, then call
java.rm .server. RM C assLoader. | oadC ass(codebaseURL,
cl assNane) for each remote codebase URL in the r enot eCodebase string
until the class is found.

Javato IDL Mapping January 2002

4. If renot eCodebase is null or useCodebaseOnly is true, then call
java.rm .server. RM C assLoader. | oadC ass(cl assNane)

5. If aclasswas not successfully loaded by step 1, 2, 3, or 4, and | oader isnon-null,
then call | oader . | oadCl ass(cl assNane)

6. If aclass was successfully loaded by step 1, 2, 3, 4, or 5, then return the loaded
class, unless the cl assName parameter was a non-primitive array type, in which
case return a suitably dimensioned array class for the element class that was |oaded.

JavatoIDL Mapping Run-Timelssues January 2002 1-39

1-40

1.4.10 Custom Marshaling Format

When an RMI/IDL value type is custom marshaled over GIOP, the following data is
transmitted:

a octet - Format version. 1 or 2.

For serializable objects with awr i t eQhj ect method:

b. boolean - Trueif def aul t Wit eCbj ect was called, false otherwise.

c. (optional) Data written by def aul t Wi t eQbj ect . The ordering of the fields
is the same as the order in which they appear in the mapped IDL valuetype, and
these fields are encoded exactly as they would be if the class did not have a
writ eCbj ect method.

d. Additional datawritten by wr i t eObj ect , encoded as specified below. For format
version 1, this data is optional and if present must be written "as is". For format
version 2, if optional datais present then it must be enclosed within a CDR custom
valuetype with no codebase and repid " RM : or g. ong. cust om <cl ass>"
where <cl ass> is the fully-qualified name of the class whose wr i t eQhj ect
method is being invoked. For format version 2, if optional datais not present then
anull valuetype (0x00000000) must be written to indicate the absence of optional
data.

For externalizable objects:
b. (optional) Data written by wr i t eExt er nal , encoded as specified below.

Primitive Java types are marshaled as their corresponding IDL primitives (see
Section 1.3.3, “Mappings for Primitive Types,” on page 1-10). Java strings written by
thej ava.i 0. Obj ect Qut put Stream wr i t eUTF() method and read by the
java.io. Qoj ect | nput Stream readUTF() method are marshaled as IDL
wstrings. Javai nt sand St ri ngs written by thewri t eByt e, wi t eChar,
writeBytes,andwiteChars methodsof j ava. i 0. Obj ect Qut put St r eam
are marshaled as specified by the definitions of these methods in the

j ava. i 0. Dat aQut put interface. Other Java objects are marshaled in the form of an
IDL abstract interface (i.e., a union with a boolean discriminator containing either an
object reference if the discriminator is true or a value type if the discriminator is false).

RMI/IDL stubs, RMI/IDL remote implementations, and IDL stubs are marshaled as
object references (IORs). All other Java objects are marshaled as value types. The
value type encoding is determined from the object's runtime type by applying the
mappings specified in Section 1.3.5, “Mapping for RMI/IDL Vaue Types,” on
page 1-15 and Section 1.3.6, “Mapping for RMI/IDL Arrays,” on page 1-21.

The default custom stream format is 1 for GIOP 1.2 and 2 for GIOP 1.3. For RMI/IDL
custom value types marshaled within GIOP requests, a format version not greater than
the default for the GIOP message level must be sent, except where the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) is part of the IOR profile. For RMI/IDL custom value types marshaled within
GIOP replies (including the UnknownExceptioninfo service context), a format
version not greater than the default for the GIOP message level must be sent, except

Javato IDL Mapping January 2002

where the RMICustomMaxStreamFormat service context (see Section 1.4.12,
“RMICustomMaxStreamFormat Service Context,” on page 1-41) was sent on the
associated GIOP request

1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component

Although the I10P level of an IOR specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of GIOP requests to this IOR, there
are cases when it may be necessary to override this default.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component has an associated
value of type octet, encoded as a CDR encapsulation, designating the maximum stream
format version for RMI/IDL custom value types that can be used in GIOP messages sent
to this IOR.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component can appear at most
once in any IOR profile. For profiles supporting [1OP 1.2 or greater, it is optionally
present. If this component is omitted, then the default maximum stream format version
for RMI/IDL custom value types sent to thisIOR is 1 for IOP 1.2 and 2 for 110P 1.3.

1.4.12 RMICustomMaxSreamFormat Service Context

Although the GIOP level of arequest specifies a default maximum stream format version
for RMI/IDL custom value types marshaled as part of the associated reply, there are
cases when it may be necessary to override this default.

RMICustomMaxStreamFormat identifies a CDR encapsulation of a single octet that
specifies the highest RMI/IDL custom stream format version that can be used for
RMI/IDL custom valuetypes marshaled within a GIOP reply associated with the GIOP
request that carries this service context. If this service context is omitted from a GIOP
request, then the default maximum stream format version for RMI/IDL custom value
types marshaled within a GIOP reply associated with this request is 1 for GIOP 1.2 and
2 for GIOP 1.3.

1.4.13 Marshaling RMI/IDL Arrays

RMI/IDL arrays must be marshaled with arepository ID indicating their runtime type.
Also, RMI/IDL arrays must be unmarshaled according to the type specified in the
repository ID.

1.4.14 Creating ORB Instances

The Portability APIs (see Section 1.5, “Portability Interfaces,” on page 1-42) and
Application Programming Interfaces (see Section 1.6, “ Application Programming
Interfaces,” on page 1-62) in the java.rmi.CORBA package define functionality that is
not part of the ORB and requires the use of an existing ORB instance for certain
operations. Nothing in this specification requires an implementation of these
javax.rmi.CORBA APIsto create a new ORB instance.

JavatoIDL Mapping Run-Timelssues January 2002 1-41

1.4.15 Runtime Limitations

Our mapping implies three runtime limitations relative to current Java RMI.

Shared reference objects

In Java, remote object references are represented as Java objects. This means that there
can be several Java pointers to one object reference. This pointer sharing may be lost
when transmitting graphs of Java objects across RMI/IDL.

In practice this is likely to have only very minor impact on Java programmers.

Distributed garbage collection

Java provides automatic garbage collection and RMI using its native protocol extends
this to the net with distributed garbage collection.

CORBA does not currently provide support for distributed garbage collection;
therefore, distributed garbage collection is not supported as part of RMI/IDL. It is
instead each server’s responsibility to maintain references to any server objects it
wishes to keep active, and to free these references when it wishes the server object to
be garbage collected. Thisis done using the expor t bj ect and unexport Gbj ect
methods of j avax. rmi . Port abl eRenot eCbj ect (see Section 1.6.1,
“PortableRemoteObject,” on page 1-62).

Narrowing

Java provides type-checked casts as part of the language. RMI using its native protocol
dynamically downloads stubs that accurately reflect the RMI interface types of each
remote object reference, thereby allowing Java language casts to be used to narrow
remote object references.

Downloadable stubs are not required by the CORBA object model. Since we cannot
rely on downloadable stubs, we cannot rely on simple Java casts to implement
narrowing of object references. We have therefore defined an explicit nar r ow method
(see Section 1.4.3, “Narrowing,” on page 1-32) that programmers must use when
narrowing portable RMI object references.

1.5 Portability Interfaces

1-42

This section describes extensions to the portable stubs and skeletons architecture
defined in the IDL/Javalanguage mapping. These extensions allow stubs and skeletons
to be created for this Javato IDL mapping that can rely on a standard set of Java ORB
Portability APIs, including APIs for serializing Java objects to GIOP format.

These ORB portability APIs also allow alternative implementations of the RMI/IDL
APls.

See Section 1.5.2.1, “Stub classes,” on page 1-54 and Section 1.5.2.3, “Tie classes,” on
page 1-57 for simple example stubs and ties.

Javato IDL Mapping January 2002

1.5.1 Portability APIs

1511 Tie

The interface j avax. rm . CORBA. Ti e defines methods that all RMI/IDL server
side ties must implement.

The | avax prefix indicates these classes are part of a standard extension. The use of
this prefix allows these interfaces and classes to be delivered as an add-on to existing
JDKs. Security checks in the browsers prevent downloading of classes whose top-level
package qualifier isj ava, so Sun has defined the convention of using a top-level
qualifier of j avax for extensions.

/1 Java
public interface Tie extends
or g. ong. CORBA. port abl e. | nvokeHandl er {

or g. ong. CORBA. (bj ect thisObject();

voi d deactivate() throws java.rm . NoSuchObj ect Excepti on;
org. ong. CORBA. CRB orb();

voi d orb(org. ong. CORBA. ORB orb);

voi d setTarget(java.rm . Renote target);

java.rm . Remote get Target ();

}

Thet hi sObj ect method returns an object reference for the target object represented
by the Ti e. It is semantically equivalent to the _t hi s_obj ect () method of the
org. ong. Port abl eServer. Servant class.

The deact i vat e method deactivates the target object represented by the Ti e. Itis
semantically equivalent to the deact i vat e_obj ect method of the

or g. ong. Port abl eSer ver. POA class. If the target object could not be
deactivated (e.g., because it is not currently active), aNoSuchCbj ect Excepti onis
thrown.

The or b() method returns the ORB for the Ti e. It is semantically equivalent to the
_orb() method of the or g. ong. Por t abl eSer ver. Ser vant class.

The or b(ORB or b) method sets the ORB for the Ti e. It is semantically equivalent
to calling ORB. set _del egat e() with an actual parameter of type
org. ong. Port abl eServer. Servant .

The set Tar get method must be implemented by tie classes. It will be called by
Util.registerTarget tonotify the tie of its registered target implementation
object.

JavatoIDL Mapping Portability Interfaces January 2002 1-43

1-44

1512

The get Tar get method must be implemented by tie classes. It returns the registered
target implementation object for the tie.

Sub

The classj avax. rm . CORBA. St ub is the standard base class from which all
RMI/IDL stubs must inherit. Its main reason for existence is to act as a convenience
base class to handle stub serialization.

/1 Java

public abstract class Stub
ext ends org. ong. CORBA 2 3. portabl e. Objectl npl
i npl enents java.io. Serializable {

private static final long serial VersionU D =

1087775603798577179L;
public int hashCode() { ... }
public bool ean equal s(java.lang. Gbject obj) { ... }
public String toString() { ... }

public void connect (org. ong. CORBA. ORB orb)
throws java.rm . RenoteException { ... }

private void witeQObject(java.io.bjectQutputStreams)
throws java.io.lOexception { ... }

private void readQbject(java.io. ojectlnputStream s)
throws java.io.| OException,
Cl assNot FoundException { ... }

}

The hashCode method shall return the same hash code for all stubs that represent the
same remote object. The equal s method shall return t r ue when used to compare
stubs that represent the same remote object, and f al se otherwise. Thet oSt ri ng
method shall return the same string for all stubs that represent the same remote object.

The connect method makes the stub ready for remote communication using the
specified ORB object or b. Connection normally happens implicitly when the stub is
received or sent as an argument on a remote method call, but it is sometimes useful to
do this by making an explicit call (e.g., following deserialization). If the stub is already
connected to or b (i.e., has a delegate set for or b), then connect takes no action. If
the stub is connected to some other ORB, then a Renpt eExcept i on is thrown.
Otherwise, a delegate is created for this stub and the ORB object or b.

The St ub. connect method is not intended to be called directly by application code.
Instead, application code should call the Por t abl eRenpt eCbj ect . connect
method (see Section 1.6.1, “PortableRemoteObject,” on page 1-62), which will in turn

Javato IDL Mapping January 2002

1

1513

1514

call the St ub. connect method. This allows the application code to remain portable
between 110P and JRMP. RMI/IDL stubs may also be connected to an ORB implicitly
by being passed to Qut put Stream wri te_Obj ect .

Thew it eCbj ect and r eadCbj ect methods support stub serialization and
deserialization by saving and restoring the IOR associated with the stub. The
wri t eObj ect method writes the following data to the serialization stream:

1. int - length of IOR type id

2. byte[] - IOR type ID encoded using 1SO 8859-1 (written usingawri t e call, not a
writeQbject cal)

3. int - number of IOR profiles
4. For each IOR profile;

a. int - profile tag
b. int - length of profile data
c. byte]] - profile data (written using awr i t e call, not awr i t eCbj ect call)

ValueOutputSream

The interface or g. ong. CORBA. port abl e. Val ueQut put St r eamdefines
methods that allow serialization of custom-marshaled RMI/IDL objects to GIOP streams.

/1 Java
public interface Val ueQut put Stream {

void start_value(java.lang. String rep_id);

voi d end_val ue();

}

The st art _val ue method ends any currently open chunk, writes a valuetype header
for a nested custom valuetype (with a null codebase and the specified repository 1D),
and increments the valuetype nesting depth.

The end_val ue method ends any currently open chunk, writes the end tag for the
nested custom valuetype, and decrements the valuetype nesting depth.

Valuel nputSream

Theinterface or g. ong. CORBA. port abl e. Val uel nput St r eamdefines methods
that allow deserialization of custom-marshaled RMI/IDL objects froim GIOP streams.

/1 Java
public interface Val uel nput Stream {

void start_val ue();

voi d end_val ue();

JavatoIDL Mapping Portability Interfaces January 2002 1-45

}

The st art_val ue method reads a valuetype header for a nested custom valuetype
and increments the valuetype nesting depth.

The end_val ue method reads the end tag for the nested custom valuetype (after
skipping any data that precedes the end tag) and decrements the valuetype nesting
depth.

1.5.1.5 ValueHandler and Related Interfaces

The interfaces j avax. r m . CORBA. Val ueHandl er,

j avax. rm . CORBA. Val ueHandl er Mul ti For mat, and

j avax. rm . CORBA. Val ueHandl er CodeBaseDel egat e define methods that
allow seriaization of Java objects to and from GIOP streams.

/1 Java
public interface Val ueHandl er {

void witeVal ue(org. ong. CORBA. portabl e. Qut put Stream out,
java.io. Serializable val ue);

java.io. Serializabl e readVal ue(
org. ong. CORBA. portabl e. I nput Streamin,
int offset,
Cl ass cl z,
String repositoryl D,
or g. ong. Sendi ngCont ext . RunTi ne sender);

String getRM Repositoryl D(Cl ass cl z);

bool ean i sCust omvar shal ed(d ass cl z);

/**

* @epr ecat ed

*/

or g. ong. Sendi ngCont ext . RunTi ne get RunTi mneCodeBase() ;

java.io. Serializable witeReplace(
java.io. Serializable val ue);

}

public interface Val ueHandl er Mul ti For nat
ext ends Val ueHandl er {

byt e get Maxi muntt r eanfor mat Ver si on() ;
void witeVal ue(org. ong. CORBA. portabl e. Qut put Stream out,

java.io. Serializable val ue,
byt e streantor nat Ver si on);

1-46 Javato IDL Mapping January 2002

public interface Val ueHandl er CodeBaseDel egat e {
or g. ong. Sendi ngCont ext . CodeBaseOper ati ons
get RunTi neCodeBaseDel egat e() ;

}

Thewr i t eVal ue method can be used to write GIOP data, including RMI remote
objects and serialized data objects, to an underlying portable Qut put St r eam

The implementation of the wr i t eVal ue method interacts with the core Java
serialization machinery. The data generated during serialization is written using the
underlying Qut put St r eamobject.

Ther eadVal ue method can be used to read GIOP data, including RMI remote
objects and serialized data objects, from an underlying portable | nput St r eam The
of f set parameter isthe offset in the stream of the value being unmarshaled. Thecl z
parameter is the Java class of the value to be unmarshaled. Ther eposi t oryl D
parameter is the repository ID unmarshaled from the value header by the caller of
readVal ue. The sender parameter is the sending context object passed in the
optional service context tagged SendingContextRunTime in the GIOP header, if
any, or null if no sending context was passed.

The implementation of the r eadVal ue method interacts with the core Java
serialization machinery. The data required during deserialization is read using the
underlying | nput St r eamaobject.

The get RM Reposi t or yl D method returns the RMI-style repository 1D string for
cl z.

Thei sCust omMar shal ed method returnst r ue if the value is custom marshaled
and therefore requires a chunked encoding, and f al se otherwise.

The get RunTi neCodeBase method returns the Val ueHandl er object's
SendingContext::RunTime object reference, which is used to construct the
SendingContextRunTime service context.

Thewr i t eRepl ace method returns the serialization replacement for the val ue
object. This is the object returned by calling val ue. wri t eRepl ace(), if val ue
hasawr it eRepl ace method.

The Val ueHandl er Mul ti For mat interface introduces a method

get Maxi muntt r eantor nmat Ver si on that returns the maximum stream format
version for RMI/IDL custom value types that is supported by this Val ueHandl er
object. The Val ueHandl er object must support the returned stream format version and
all lower versions. The format versions currently defined are 1 and 2. See Section 1.4.10,
“Custom Marshaling Format,” on page 1-40 for more details.

TheVal ueHand| er Mul t i For mat interface introduces an overloaded wr i t eVal ue
method that allows the ORB to pass the required stream format version for RMI/IDL
custom value types. If the ORB calls this method, it must pass a stream format version
between 1 and the value returned by the get Maxi muntt r eanfor mat Ver si on

JavatoIDL Mapping Portability Interfaces January 2002 1-47

1-48

method inclusive, or else a BAD_PARAM exception with standard minor code 39 must
be thrown. If the ORB calls the Val ueHandl er . wr i t eVal ue method, stream
format version 1 isimplied.

The val ueHandl er CodeBaseDel egat e interface introduces a method

get RunTi meCodeBaseDel egat e. This method returns an implementation delegate
that an ORB can use to create a SendingContext::RunTime object reference and a
SendingContextRunTime service context. This method replaces the

Val ueHandl er. get RunTi neCodeBase method, which is deprecated. The

Val ueHandl er object returned by the Ut i | . cr eat eVal ueHandl er method must
also implement the Val ueHandl er CodeBaseDel egat e interface.

Execution model for Serialization

Sun will provide an implementation of the Val ueHandl er interface that handles
writing and reading RMI/IDL objects by making calls to lower-level CORBA

Qut put St r eamand | nput St r eamobjects, which can be provided by an
independent ORB vendor. The Sun-provided implementation will handle the
interactions with the Java serialization machinery and will write any serialized data
through to the lower level stream.

Typically the ORB vendors will implement their own GIOP input and output streams.
Before transmitting RMI/IDL data they will create an object that supports the

Val ueHandl er interface by calling the cr eat eVal ueHandl er method of the
javax.rm . CORBA. Util class (see Section 1.5.1.6, “Util,” on page 1-51). When
they need to marshal a non-IDL value, they will call Val ueHandl er. wri t eVal ue,
and when they need to unmarshal a non-IDL value, they will call

Val ueHandl er. readVal ue.

The ORB output stream passed to the Val ueHandl er Mul ti For mat . wri t eVal ue
method must implement the Val ueCQut put St r eaminterface (see Section 1.5.1.3,
“ValueOutputStream,” on page 1-45), and the ORB input stream passed to the

Val ueHandl er . r eadVal ue method must implement the Val uel nput St r eam
interface (see Section 1.5.1.4, “ValuelnputStream,” on page 1-45).

Value Marshaling

When marshaling an RMI value, the ORB stream must call Uti | . get CodeBase to
get the codebase string, Val ueHandl| er . get RM Reposi t or yl D to get the
repository ID string, and Val ueHandl er . i sCust omvar shal ed to seeif thevalue
is custom marshaled and therefore requires a chunked encoding.

The ORB stream writes the value tag, codebase (if any), and repository ID. It calls
Val ueHandl er . wri t eVal ue to write the state of the value. The ORB stream deals
with nulls, indirections, chunking, and end tags.

The ORB casts the Val ueHandl er object to type

Val ueHandl er CodeBaseDel egat e and calsits

get RunTi neCodeBaseDel egat e method to obtain an implementation delegate of
type CodeBaseQper at i ons. The ORB creates a SendingContextRunTime
service context containing an object reference for atied implementation whose delegate

Javato IDL Mapping January 2002

1

isthis CodeBaseQOper at i ons object. Clients must send this service context on the
first GIOP request that flows over a connection that may be used to send RMI values
to the server. Servers must send this service context on the first GIOP reply that flows
over a connection that may be used to send RMI values to the client.

The ORB callsthe wr i t eRepl ace method before calling wri t eVal ue. The result
from calling this method is passed to Val ueHandl er. wri t eVal ue unless either

® jtisapreviously marshaled value, in which case it is marshaled as an indirection, or

® jtsclass implements or g. ong. CORBA. Obj ect, in which case it is marshaled as
an object reference.

An ORB stream instance must only call wri t eRepl ace once for each value that it
marshals.

Before calling thewr i t eVal ue method of the Val ueHandl er object, the ORB must
determine the stream format version to be used. Thisis the maximum format version that
is supported by both the local Val ueHandl er object and the remote connection
endpoint. The maximum local format version is the value returned by the

get Maxi muntt r eantor nat Ver si on method of the Val ueHandl er object, or 1
if the Val ueHandl er object doesn't support the Val ueHandl er Mul ti For mat
interface. The maximum remote format version is 1 for GIOP 1.2 messages and 2 for
GIOP 1.3 messages, except where these default values are overridden by either the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
Section 1.4.11, “TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component,” on
page 1-41) or the RM Cust onmVax St r eanfor nat service context (see Section 1.4.12,
“RMICustomMaxStreamFormat Service Context,” on page 1-41). For GIOP 1.2
messages, recognition of these overrides is optional.

If the stream format version computed in this way is 2 or greater, the ORB must call the
Val ueHandl er Mul ti For mat . wri t eVal ue method, passing this value. If the
stream format version computed in this way is 1, the ORB may call either the

Val ueHandl er Mul ti For mat . wri t eVal ue method (with stream format 1) or the
Val ueHandl er. wri t eVal ue method.

If the ORB's call to the Val ueHandl| er object'swr i t eVal ue method specified
RMI/IDL custom value type stream format version 2, then the Val ueHand!| er object
must call the Val ueCut put St ream st art _val ue and

Val ueCQut put St r eam end_val ue methods of the ORB stream before and after
writing the data specified by item 1d of Section 1.4.10, “Custom Marshaling Format,” on
page 1-40. Ther ep_i d string passed to the st art _val ue method must be

"RM : org. ong. cust om <cl ass>: <hashcode>: <sui d>" where <cl ass>is
the fully-qualified name of the class whose wr i t eObj ect method is being invoked
and <hashcode> and <sui d> are the class's hashcode and SUID. For format version
2, if the ORB stream passed to the Val ueHand!l er object doesn't support the

Val ueQut put St r eaminterface, then aBAD_PARAM exception with standard minor
code 40 must be thrown.

JavatoIDL Mapping Portability Interfaces January 2002 1-49

1-50

ValueUnmarshaling

When unmarshaling an RM1 value, the ORB stream must read the value tag, codebase
(if any), and repository ID. The ORB stream callsUti | . | oadC ass to load the
value's class, passing the Java class name contained in the RMI-style repository 1D and
the codebase string from the value's GIOP encoding (if present) or the
SendingContextRunTime service context.

The ORB stream calls Val ueHandl| er . r eadVal ue to read the state of the value,
passing the current stream offset, the class returned by Ut i | . | oadCl ass, the
repository 1D, and the sender's SendingContext::RunTime object reference. The
repository ID is needed so that the Val ueHandl er object can determine if the class
passed in is structurally identical to the class used by the sender to marshal the value.
The ORB stream deals with nulls, indirections, chunking, and end tags.

The Val ueHandl er object may receive an or g. ong. CORBA. port abl e.

I ndi recti onExcepti on from the ORB stream. The ORB input stream throws this
exception when it is called to unmarshal avalue encoded as an indirection that isin the
process of being unmarshaled. This can occur when the ORB stream calls the

Val ueHandl er object to unmarshal an RMI value whose state contains a recursive

reference to itself. Because the top-level Val ueHandl er . r eadVal ue call has not
yet returned a value, the ORB stream'’s indirection table contains no entry for an object
with the stream offset specified by the indirection tag. This stream offset is returned in
the exception's of f set field.

If the Val ueHandl er object receivesan | ndi recti onExcepti on,itis
responsible for ensuring that the correct Java object reference is assigned to the value
field that would have held the result returned by the ORB stream if an

I ndi recti onExcepti on had not occurred. The manner in which thisis done (e.g.,
eager or lazy) is not specified. If the offsetinan | ndi rect i onExcept i on does not
correspond to any offset previously passed to the Val ueHandl er objectin a

Val ueHandl er. r eadVal ue method call, the Val ueHandl er . r eadVal ue
method shall throw a MARSHAL exception.

If the RMI/IDL custom data unmarshaled from the input stream was encoded using
stream format 2, then the Val ueHandl| er object must call the

Val uel nput St ream start _val ue and Val uel nput Stream end_val ue
methods of the ORB stream before and after reading the data specified by item 1d of
Section 1.4.10, “Custom Marshaling Format,” on page 1-40. For format version 2, if the
ORB stream passed to the Val ueHandl er object doesn't support the

Val uel nput St r eaminterface, then a BAD_PARAM exception with standard minor
code 41 must be thrown. If the format version unmarshaled by the Val ueHandl er
object is greater than the maximum version that it supports, then aMARSHAL exception
with standard minor code 7 must be thrown.

When using stream version 2, the ORB input stream must throw a MARSHAL exception
with standard minor code [note to editor: number to be assigned by OMG] to signal an
incompatibility between the custom data on the wire and read operations from the

Val ueHandl er object until end_val ue iscaled. This can occur when a sender's
version of a class does not write custom data, but the receiver's version attempts to
perform a read operation.

Javato IDL Mapping January 2002

1.5.1.6 Util

A utility classj avax. rmi . CORBA. Uti | provides methods that can be used by
stubs to perform common operations.

/1l Java

public class Util {

public static java.rm . RenoteException
mapSyst enExcepti on(or g. ong. CORBA. Syst enExcepti on ex)

{ ...

public static void witeAny(

publ |

publ i

publ i

publ i

publ i

publ i

publ i

publ i

or g. ong. CORBA. port abl e. Qut put St ream out,
java.lang. Object obj){ ... }

static java.lang. Obj ect readAny(
org. ong. CORBA. portable. InputStreamin) { ... }

static void witeRenoteject(
or g. ong. CORBA. port abl e. Qut put St ream out,
java.lang. Object obj) { ... }

static void witeAbstract Object(
or g. ong. CORBA. port abl e. Qut put St ream out,
java.lang. Object obj) { ... }

static void registerTarget(Tie tie,
java.rm .Renote target) { ... }

static void unexportObject(java.rni.Renpte target)
throws java.rm . NoSuchObj ect Excepti on

{ ...}
static Tie getTie(java.rm .Renote target) { ... }
static Val ueHandl er createValueHandler() { ... }

static java.rni.Renot eExcepti on wapExcepti on(
Throwabl e obj) { ... }

public static java.lang. Object copyQnject(

java. |l ang. Obj ect obj, org.ong. CORBA. ORB orb)

throws java.rm . RenoteException { ... }

public static java.lang. Object[] copyQnjects(

java.l ang. Obj ect[] obj, org.ong. CORBA. ORB orb)

throws java.rm . RenoteException { ... }

public static boolean islLocal (Stub s)
throws java.rm . RenoteException { ... }

JavatoIDL Mapping Portability Interfaces January 2002 1-51

1-52

public static String get Codebase(C ass clz) {... }

public static Cass |oadC ass(String cl assNane,
String renoteCodebase,
Cl assLoader | oader)
throws C assNot FoundException { ... }

}

The mapSyst enExcept i on method maps a CORBA system exception to a
java.rm . Remot eException or aj ava. | ang. Runt i meExcepti on. The
mapping is described in Section 1.4.8, “Mapping CORBA System Exceptions to RMI
Exceptions,” on page 1-35. If the mapped exception is an instance of

java.rm . Renot eExcept i on or a subclass, the mapped exception is returned,;
otherwise, it is thrown.

The wr i t eAny method writes the Java object obj to the output stream out in the
form of a GIOP any. The contents of the GIOP any are determined by applying the
Javato IDL mapping rules to the actual runtime type of obj . If obj isnull, thenitis
written as follows: the TypeCode is tk_abstract_interface, the repository ID is

“1 DL: ong. or g/ CORBA/ Abstract Base: 1. 0", the name string is“ *, and the
any's value is a null abstract interface type (encoded as a boolean discriminant of
false followed by along value of 0x00000000).

The r eadAny method reads a GIOP any from the input stream i n and unmarshals it
as a Java object, which is returned. The following TypeCodes are valid for the GIOP
any: tk_value, tk_value box, tk_objref, and tk_abstract_interface. For each of
these types, both null and non-null values are valid. If the TypeCode is anything other
than these, a MARSHAL exception is thrown.

Thewr i t eRenpt eCbj ect method is a utility method for use by stubs when writing
an RMI/IDL object reference to an output stream. If obj is a stub object,

wr it eRenot eObj ect simply writesobj toout.wite_Cbject. However, if
obj isan exported RMI/IDL implementation object, then wr i t eRenpt eCbj ect
allocates (or reuses) a suitable Ti e (see Section 1.4.4, “Allocating Ties for Remote
Values,” on page 1-33), plugs together the tie with obj , and writes the object reference
for thetieto out . wri t e_(hj ect. This method cannot be used to write a JRMP
object reference to an output stream.

Thewr it eAbstract Obj ect method is another similar utility method for use by
stubs. If obj is avalue object, or a stub object, wri t eAbst r act Obj ect simply
writes obj toout.wite_abstract _interface. However, if obj isan
exported RMI/IDL implementation object, then wr i t eAbst r act Cbj ect allocates
(or reuses) a suitable Ti e (see Section 1.4.4, “Allocating Ties for Remote Values,” on
page 1-33), plugs together the tie with obj , and writes the object reference for the tie
totheout . wite _abstract interface. This method cannot be used to write a
JRMP object reference to an output stream.

Ther egi st er Tar get method is needed to support unexport Cbj ect . Because
unexport Qbj ect takes atarget implementation object as its parameter, it is
necessary for the Ut i | class to maintain a table mapping target objects back to their

Javato IDL Mapping January 2002

1

1517

associated Ti es. It isthe responsibility of the code that allocates a Ti e to also call the
regi st er Tar get method to notify the Ut i | class of the target object for a given
tie. Ther egi st er Tar get method will call the Ti e. set Tar get method to notify
the tie object of its target object.

Theunexport Gbj ect method deactivates an implementation object and removes its
associated Ti e from the table maintained by the Ut i | class. If the abject is not
currently exported or could not be deactivated, a NoSuchObj ect Excepti on is
thrown.

The get Ti e method returns the tie object for an implementation object t ar get , or
null if no tieis registered for the t ar get object.

The cr eat eVal ueHandl er method returns a singleton instance of a class that
implements the Val ueHandl er and Val ueHandl er CodeBaseDel egat e
interfaces.

The wr apExcept i on method wraps an exception thrown by an implementation
method. It returns the corresponding client-side exception. See Section 1.4.8.1,
“Mapping of UnknownExceptioninfo Service Context,” on page 1-36 for details.

The copyQbj ect method is used by local stubs to copy an actual parameter, result
object, or exception. The copyObj ect s method is used by local stubs to copy any
number of actual parameters, preserving sharing across parameters as necessary to
support RMI/IDL semantics. The actual parameter Cbj ect [] array holds the method
parameter objects that need to be copied, and the result Obj ect [] array holds the
copied results.

The copyObj ect and copyObj ect s methods ensure that remote call semantics are
observed for local calls. They observe copy semantics for value objects that are
equivalent to marshaling, and they handle remote objects correctly. Stubs must either
call these methods or generate inline code to provide equivalent semantics.

Thei sLocal method has the same semantics as the Cbj ect | nmpl . _i s_I ocal
method, except that instead of throwing an or g. ong. CORBA. Syst enExcept i on,
it throwsaj ava. rm . Renpt eExcept i on that is the result of passing the

Syst enExcept i on to the mapSyst enExcept i on method.

The get Codebase method returns the Java codebase for the Class object cl z asa
space-separated list of URLSs. See Section 1.4.9.2, “Codebase Selection,” on page 1-37
for details.

The | oadCl ass method loads a Java class object for the Java class name
cl assNan®e, using additional information passed in the r enot eCodebase and
| oader parameters. See Section 1.4.9.5, “Codebase Usage,” on page 1-38 for details.

Additional Portability APls

The Java Language to IDL Mapping uses the following portability APIswhich are also
used by the OMG IDL to Java Mapping.

JavatoIDL Mapping Portability Interfaces January 2002 1-53

1-54

or g. ong. CORBA. portabl e. | nput St r eam

or g. ong. CORBA. port abl e. Qut put St ream

org. ong. CORBA 2 3. portable. | nput Stream

org. ong. CORBA 2_3. port abl e. Qut put St r eam
or g. ong. CORBA. port abl e. Obj ect | npl

or g. ong. CORBA. port abl e. Del egat e

org. ong. CORBA 2_3. portabl e. Cbject! npl

org. ong. CORBA 2 3. portabl e. Del egate

or g. ong. CORBA. port abl e. | nvokeHandl| er

or g. ong. CORBA. port abl e. ResponseHandl er

or g. ong. CORBA. portabl e. Appl i cati onException
or g. ong. CORBA. port abl e. Remar shal Excepti on
or g. ong. CORBA. port abl e. UnknownExcept i on
or g. ong. CORBA. portabl e. I ndi recti onException
or g. ong. CORBA. port abl e. Ser vant Cbj ect

or g. ong. CORBA. port abl e. Ser vant Obj ect Ext

These APIs are described in the IDL to Java Language Mapping document.

1.5.2 Generated classes

1521

There are two kinds of classes generated as part of this specification.

1. Stub classes. These are used by RMI/IDL clients to send calls to a server. A stub
classis required for each RMI/IDL remote interface.

2. Tie classes. These are used to process incoming calls and dispatch the calls to a
server implementation class. A tie class is required for each RMI/IDL
implementation class.

No generated classes are required for RMI/IDL value types, exceptions, etc.

Sub classes

For each RMI/IDL remote interface Foo there will be a stub class _Foo_ St ub that
extends j avax. r m . CORBA. St ub and implements Foo.

The stub class supports stub methods for all the RMI/IDL remote methods in the
RMI/IDL remote interfaces that it implements, and must have a public no-argument
constructor.

Here is a simple RMI/IDL interface and an example stub class:

/1 Java
public interface Aardvark extends java.rni.Renote {
public int echo(int x) throws java.rm . RenoteException
Booner ang;

}

public class _Aardvark_Stub extends javax.rm .CORBA. Stub
i mpl enents Aardvark {

Javato IDL Mapping January 2002

public _Aardvark_Stub() {} // inmplicit or explicit

public int echo(int x) throws java.rm . RenoteException,
Booner ang {
org.ong. CORBA 2 3.portable.lnputStreamin = null;
try {

try {
or g. ong. CORBA. Qut put Stream out =

_request (“echo”, true);

out.wite long(x);

in = (org.ong. CORBA 2 3.portable.lnputStream
_invoke(out);

return in.read_| ong();

} catch (org. ong. CORBA. portabl e.
Appl i cationException ex) {

in = (org.ong. CORBA 2 3.portable.lnputStream
ex. get I nput Strean();

String id = in.read_string();

if (id.equals("IDL:BoonerangEx/1.0")) {
t hrow (Boorerang)in. read_val ue();

} else {
throw new java. rm . Unexpect edException(id);

} catch (org. ong. CORBA. portabl e. Remar shal Excepti on
ex) {

return echo(x);

}
} catch (org. ong. CORBA. Syst enException ex) {

throw javax. rm . CORBA. Uil . napSyst enExcepti on(ex);

} finally {
_rel easeRepl y(in);
}

1.5.2.2 Local Subs

The stub class may provide an optimized call path for local server implementation
objects. For amethod echo(i nt x) of aremote interface Aar dvar k, the
optimized path does the following:

1. Find out if the servant islocal by calling Uti | . i sLocal ()

2. If the servant islocal, call t hi s. _servant _prei nvoke("echo",
Aar dvar k. cl ass)

3. If _servant _prei nvoke returned a non-null ServantObject so, do the

following:
a. Cdl ((Aardvark)so. servant). echo(x)

JavatoIDL Mapping Portability Interfaces January 2002 1-55

1-56

b. If the invocation on the servant completed without throwing an exception, and so
is an instance of Ser vant Obj ect Ext , then call so. nor mal Conpl eti on()

c. If the invocation on the servant threw exception exc, and so is an instance of
Ser vant Qbj ect Ext , then call so. except i onal Conpl eti on(exc)

d. Cal this. _servant _postinvoke(so)

4. If _servant _prei nvoke returned null, repeat step 1. The call to
Util.isLocal () will return false, causing the non-optimized path to be
followed.

The _servant _prei nvoke method returns non-null if, and only if, an optimized
local call may be used. It performs any security checking that may be necessary. If the
_servant _pr ei nvoke method returns non-null, then the ser vant field of the
returned Ser vant Qbj ect must contain an object that implements the RMI/IDL
remote interface and can be used to call the servant implementation

Local stubs are responsible for performing copying of method parameters, results and
exceptions, and handling remote objects correctly in order to provide remote/local-
transparent RMI/IDL semantics.

The following is an example of a stub class that provides this optimized call path.

/1 Java
i mport org.ong. CORBA. portabl e. Servant Obj ect Ext ;

public class _Aardvark_Stub extends javax.rm .CORBA. Stub
i mpl enents Aardvark {

public int echo(int x) throws java.rm . RenoteException,
Booner ang {
if (!javax.rm .CORBA Uil .isLocal (this)) {
/1 renmote call path
org.ong. CORBA 2 3.portable.lnputStreamin = null;
try {

try {
or g. ong. CORBA. port abl e. Qut put Stream out =

_request ("echo", true);
out.wite |ong(x);
in = (org.ong. CORBA 2 3.portable.lnputStream
_invoke(out);
return in.read_| ong();
} catch (org. ong. CORBA. portabl e.
Appl i cati onException ex) {
in = (org.ong. CORBA 2 3.portable.lnputStream
ex. get I nput Strean();
String id = in.read_string();
if (id.equals("IDL:BoonerangEx/1.0")) {
t hrow (Boorerang)i n. read_val ue();
} else {
throw new java. rm . Unexpect edException(id);
}

} catch (org. ong. CORBA. portabl e. Remar shal Excepti on

Javato IDL Mapping January 2002

ex) {

return echo(x);

} catch (org. ong. CORBA. Syst enException ex) {
throw javax. rm . CORBA. Uil .nmapSyst enExcepti on(ex);

} finally {
_rel easeRepl y(in);
}

} else {
/1 local call path
or g. ong. CORBA. port abl e. Servant Cbj ect so =
_servant _prei nvoke("echo", Aardvark.cl ass);

if (so == null)
return echo(x);
try {

int result = ((Aardvark)so.servant). echo(x);
if (so instanceof Servant bjectExt)

((Servant Obj ect Ext) so). nor mal Conpl etion();
return result;

} catch (Throwabl e ex) {

if (so instanceof Servant QbjectExt)

((Servant Obj ect Ext) so).

exceptional Conpl eti on(ex);

Thr owabl e ex2 = (Throwabl e)

javax.rm . CORBA. Util.copyQbject(ex, _orb());
i f (ex2 instanceof Boonerang)

t hrow (Boorner ang) ex2;

el se
throw javax. CORBA. Uti | .w apException(ex2);
} finally {
_servant _postinvoke(so);
}
}
}
}

1.5.2.3 Tieclasses

For each RMI/IDL implementation class there will be a corresponding tie class that
implements j avax. r m . CORBA. Ti e. Thetie class is called by the ORB to process
an incoming call and to pass the call through to an associated target implementation
object.

After the Ti e object has been constructed, the target implementation object must be
set withacal onUtil . registerTarget.

Here is a simple RMI/IDL interface and an example Ti e class:

JavatoIDL Mapping Portability Interfaces January 2002 1-57

/1 Java
public interface Aardvark extends java.rni.Renote {
public int echo(int x) throws java.rm . RenoteException
Booner ang;

}

public class _Aardvark Tie
ext ends org. ong. Port abl eServer. Servant
i mpl enents javax.rm .CORBA. Tie {
private Aardvark target;

public void setTarget(java.rm.Renote targ) {
target = (Aardvark) targ;

}

public java.rmn.Renote getTarget () {
return target;

}

public org. ong. CORBA. Qut put Stream _i nvoke(Stri ng net hod,
org. ong. CORBA. | nput Stream i n,
or g. ong. CORBA. port abl e. ResponseHandl er rh) {

try {
i f (method. equal s(“echo”)) {

try {
int x = in.read_long();
int result = target.echo(x);
org. ong. CORBA 2_3. port abl e. Qut put St r eam out
= (org.ong. CORBA 2_ 3. portabl e. Qut put Stream
rh.createReply();
out.wite long(result);
return out;
} catch (Boonerang ex) {
String exid = "I DL: Boormer angEx/ 1. 0";
org. ong. CORBA 2_3. port abl e. Qut put St r eam out
= (org.onmg. CORBA 2_ 3. portabl e. Qut put Stream
rh. creat eExcepti onReply();
out.wite_string(exid);
out.wite_val ue(ex);
return out;

}
} else {
t hrow new or g. ong. CORBA. BAD_OPERATI ON() ;
}
} catch (org. ong. CORBA. Syst emException ex) {
t hrow ex;

} catch (Throwabl e ex) {
t hrow new
or g. ong. CORBA. port abl e. UnknownExcepti on(ex) ;

1-58 Javato IDL Mapping January 2002

public org.ong. CORBA Object thisject() { ... }
public void deactivate() { ... }

public org.ong. CORBA.ORB orb() { ... }

public void orb(org. ong. CORBA.ORB orb) { ... }

1.5.3 Replaceability of API Implementations

1531

A framework is provided to enable vendor-specific implementations of the Java
Language to IDL Mapping Portability Interfaces and Application Programming
Interfaces. The affected classes are:

j avax. rm . CORBA. St ub

javax. rm . CORBA Uil
j avax. rm . Port abl eRenpt ebj ect

These classes are able to optionally delegate their methods to separate implementation
classes, which can be provided by ORB vendors.

SubDelegate

The implementation delegate class for j avax. r mi . CORBA. St ub must implement
the following interface for per-instance delegation:

package javax.rm . CORBA;

public interface StubDel egate {
i nt hashCode(Stub sel f);
bool ean equal s(Stub self, java.lang. Object obj);
String toString(Stub self);

voi d connect (Stub self, org.ong. CORBA. ORB orb)
throws java.rm . Renot eException;

void witeCbject(Stub self, java.io.ObjectQutputStream s)
throws java.io.| OException;

voi d readoj ect (Stub self, java.io.ObjectlnputStreams)

throws java.io.| OException,
Cl assNot FoundExcept i on;

JavatoIDL Mapping Portability Interfaces January 2002 1-59

The above methods are called by the corresponding methods of
j avax. rm . CORBA. St ub when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

1.5.3.2 UtilDelegate

The implementation delegate class for j avax. rni . CORBA. Ut i | must implement
the following interface for per-class delegation:

package javax. rm . CORBA;
public interface Wil Del egate {

java. rm . Renot eExcepti on nmapSyst enExcepti on(
or g. ong. CORBA. Syst enExcepti on ex);

void witeAny(org.ong. CORBA. portabl e. Qut put Stream out,
j ava. | ang. Obj ect obj);

java. | ang. Obj ect readAny(
org. ong. CORBA. portabl e. | nput Streamin);

void witeRenot eObj ect (
or g. ong. CORBA. port abl e. Qut put St ream out,
j ava. | ang. Obj ect obj);

void witeAbstract Object(
or g. ong. CORBA. port abl e. Qut put St ream out,
j ava. | ang. Obj ect obj);

void registerTarget(Tie tie, java.rni.Renpte target);

voi d unexport Cbject(java.rm . Renpote target)
throws java.rm . NoSuchObj ect Excepti on;

Tie getTie(java.rni.Renpte target);

Val ueHandl er creat eVal ueHandl er () ;

String get Codebase(d ass cl z);

Class | oadCl ass(String classNanme, String renoteCodebase,
Cl assLoader | oader)

throws C assNot FoundExcepti on;

bool ean isLocal (Stub stub)
throws java.rm . RenoteException;

java.rm . Renot eExcepti on w apExcepti on(Throwabl e obj);

1-60 Javato IDL Mapping January 2002

1533

1534

j ava. | ang. Obj ect copyObj ect (j ava. | ang. Obj ect obj,
or g. ong. CORBA. ORB or b)
throws java.rm . Renot eException;

java.l ang. Object[] copyObjects(java.lang. Cbject[] obj,
or g. ong. CORBA. ORB or b)
throws java.rm . Renot eException;

}

The above methods are called by the corresponding methods of
javax. rm . CORBA. Uti | when delegation has been specified as described in
Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

PortableRemoteObjectDelegate

The implementation delegate class for j avax. rm . Port abl eRenpt eChj ect
must implement the following interface for per-class delegation:

package javax.rm . CORBA;
public interface Portabl eRenpt eCbj ect Del egate {

voi d export Qbj ect(java.rm . Renote obj)
throws java.rm . Renot eException;

java.rm . Rempte toStub (java.rmi . Renote obj)
t hrows NoSuchObj ect Excepti on;

voi d unexport Cbj ect(j ava.rm . Renote obj)
t hrows NoSuchObj ect Excepti on;

java.l ang. Qbj ect narrow (java.l ang. Qbj ect narrowrFrom
Cl ass narrowlo)
throws C assCast Excepti on;

voi d connect (java.rm .Renpte target,
java.rm . Renpte source)
throws java.rm . Renot eException;

}

The above methods are called by the corresponding methods of
javax. rm . Port abl eRenot eObj ect when delegation has been specified as
described in Section 1.5.3.4, “Delegation Mechanism,” on page 1-61.

Delegation Mechanism

Alternate implementations of the standard API classes are enabled by setting system
properties or placing entries in the orb.properties file. The names of the new system
properties are:

JavatoIDL Mapping Portability Interfaces January 2002 1-61

javax. rm . CORBA. St ubd ass
javax.rm . CORBA. Uil d ass
j avax. rm . CORBA. Port abl eRenpot ehj ect d ass

For security reasons, each replaceable API class reads its implementation delegate
class system property at static initialization time and uses this information to set up
implementation delegation if this has been specified. The delegation arrangement thus
established cannot be changed subsequently. The search order for implementation
delegate class names is:

1. The system properties
2. The orb.properties file

For each implementation delegate class, an instance is created using the

Cl ass. newl nst ance() method. For the Ut i | and Port abl eRenpt eCbj ect
delegate classes, this is a singleton instance. For the St ub delegate class, there is one
delegate instance per stub object. The methods in the standard API classes test if a
delegate instance exists and if so, forward the method call on to the delegate instance.

1.6 Application Programming Interfaces

One new API class is introduced to support RMI/IDL implementations.

1.6.1 PortableRemoteObject

Thej avax. rni. Port abl eRenot eCbj ect classisintended to act as a base class
for RMI/IDL server implementation classes (see Section 1.2.3.1, “ Stubs and remote
implementation classes,” on page 1-4).

/1 Java
public class Portabl eRenpt elbj ect {

prot ect ed Port abl eRenpt etbj ect ()
throws java.rm . RenoteException { ... }

public static void exportCbject(java.rm .Renote obj)
throws java.rm . RenoteException { ... }

public static java.rm .Renpte toStub(java.rn .Renote obj)
throws java.rm . NoSuchObj ect Exception { ... }

public static void unexportQbject(java.rn.Renote obj)
throws java.rm . NoSuchObj ect Exception { ... }

public static java.lang. Qbject narrow(

java. |l ang. Obj ect obj, O ass newd ass)
throws C assCast Exception { ... }

1-62 Javato IDL Mapping January 2002

public static void connect(
java.rm .Renpte target, java.rni.Renpte source)
throws java.rm . RenoteException { ... }

}

The protected constructor is called by the derived implementation class to initialize the
base class state.

Server side implementation objects may either inherit from

javax.rm . Port abl eRenpt eObj ect or they may simply implement an
RMI/IDL remote interface and then use the export Cbj ect method to register
themselves as a server object.

A call to export Obj ect with no objects exported creates a non-daemon thread that
keeps the Java virtual machine alive until all exported objects have been unexported by
caling unexport Chj ect .

It is up to the implementation to decide when to actually export (i.e., connect) remote
objects. It may be done in the Por t abl eRenpt eChj ect constructor (for objects
that subclass Por t abl eRenot eChj ect) or in the export Cbj ect method, or it
may be deferred until the remote object is actually written to an Qut put St r eam

It is an error to call export Cbj ect on an object that is already exported.

The t oSt ub method takes a server implementation object and returns a stub object
that can be used to access that server object. The argument object must currently be
exported, either because it is a subclass of Por t abl eRenot eObj ect or by virtue of
aprevious call to Por t abl eRenpt eObj ect . export Obj ect . If the object is not
currently exported, a NoSuchObjectException is thrown. The returned stub
implements the same RMI/IDL remote interfaces as the implementation object. If an
RMI/IDL Tieclassis available for the given object, thet oSt ub method will return an
[1OP stub; otherwise, it will return a JRMP stub. Thet oSt ub method may be passed
a stub, in which case it simply returns this stub.

The stub returned by t oSt ub has the same connection status as the target
implementation object passed to t oSt ub. So if the target object is connected, the
returned stub is connected to the same ORB. If the target object is unconnected, the
returned stub is unconnected.

The unexport Obj ect method is used to deregister a currently exported server
object from the ORB runtimes, allowing the object to become available for garbage
collection. If the object is not currently exported, a NoSuchObjectException is
thrown. This is implemented by calling through to Ut i | . unexport Obj ect .

The nar r ow method takes an object reference or an object of an RMI/IDL abstract
interface type and attempts to narrow it to conform to the given newCl ass RMI/IDL
type. If the operation is successful, the result will be an object of type newC ass;
otherwise, an exception will be thrown. If obj is null, then nar r ow returns null.

The connect method makes the remote object t ar get ready for remote
communication using the same communications runtime® as sour ce. Connection
normally happens implicitly when the object is sent or received as an argument on a
remote method call, but it is sometimes useful to do this by making an explicit call.

Javato DL Mapping Application Programming Interfaces January 2002 1-63

Thet ar get object may be either an RMI/IDL stub or an exported RMI/IDL
implementation object, and the sour ce object may also be either an RMI/IDL stub or
an exported RMI/IDL implementation object.

If t ar get isaready connected to the same communications runtime as sour ce, then
connect takesno action. Otherwise, t ar get must be an unconnected object (i.e., an
RMI/IDL CORBA stub without a delegate or an implementation object whose
RMI/IDL tie has not been associated with an ORB), and sour ce must be a connected
object (i.e,, an RMI/IDL CORBA stub with a delegate or an implementation object
with an RMI/IDL tie that has been associated with an ORB), or else a
RemoteException is thrown. Thet ar get object is connected to the same ORB as
sour ce by calling the St ub. connect method if it is a stub (see Section 1.5.1.2,
“Stub,” on page 1-44) or by associating its tie with an ORB if it is an implementation
object.

RMI/IDL implementation objects may be connected implicitly by being passed to
Uil.witeRenoteObject orUil.witeAbstractObject.RMI/IDL stubs
may be connected implicitly by being passed to Qut put St ream write_Cbj ect.
Connecting an implementation object is not the same as exporting it, and RMI/IDL
implementation objects may be unconnected when first exported. RMI/IDL
implementation objects are implicitly connected when they are exported to JRMP, and
RMI-JRMP stubs are implicitly connected when they are created.

1.7 Generated IDL File Sructure

1-64

This section is not part of the formal specification of the Java Language to OMG IDL
Mapping, but it contains some suggestions for generated file structure.

Tool vendors may choose to map each RMI/IDL interface, value type, or exception
type to a separate .idl file. This follows the normal Java style and may be easier for
Java RMI/IDL programmers to maintain than requiring that (say) all OMG IDL
definitions be put into a single OMG IDL file.

This approach does raise some issues for the generated OMG IDL, which are briefly
worth mentioning.

First, the use of separate .idl files requires the use of “reopenable’” modules, so that
separate files can have separate free-standing module definitions.

Second, although OMG IDL permits forward references to OMG IDL interfaces, it
does not support forward references to structs or exceptions, and there are some limits
on the use of interface references. Any forward references to interfaces must be
satisfied by later definitions of those interfaces.

3.For I1OP, the communications runtimeisan ORB; for JRMP, it isthe JRM P transport
subsystem.

Javato IDL Mapping January 2002

1

One possible way of dealing with these difficulties is to use an OMG IDL file layout
similar to the following:

1

The entire OMG IDL definition is bracketed in standard C pre-processor boilerplate
used to guarantee it is only included once;

#ifndef _ foo_
#define _ foo_

#endif

An OMG IDL forward reference is generated for each OMG IDL interface that is
referenced. (This may require entering and exiting the appropriate target module.)

An OMG IDL forward reference is generated for each OMG IDL value type that is
referenced. (This may require entering and exiting the appropriate target module.)

Each exception referenced in the OMG IDL is #included, in arbitrary order.
If the generated OMG IDL is an interface, then #include any inherited interfaces.

If the generated OMG IDL is a value type, then #include any inherited value
types.

If there are any references to the OMG IDL types ::java::rmi::Remote,
java::io::Serializable, ::java::io::Externalizable, or ::java::lang::_Object,
then generate the following bracketed definitions as required.

#ifndef __java_rmi_Remote
#define __java_rmi_Remote
module java {
module rmi {
typedef Object Remote;
b
¥
#endif

#ifndef __java_io_Serializable
#define __java io_Serializable
module java {
moduleio {
typedef any Serializable;
b
b
#endif

#ifndef __java_io_Externalizable
#define __java io_Externalizable
module java {
moduleio {

typedef any Externalizable;

h

Javato DL Mapping Generated IDL FileSructure January 2002 1-65

b
#endif

#ifndef __java_lang_Object___
#define __java lang_Object__
module java {
module lang {
typedef any _Object;
3
h
#endif

This allows different OMG IDL files in the same module to independently define
any necessary typedefs.

8. For each OMG IDL sequence type that is referenced, generate a bracketed value
definition similar to the following.

#ifndef __org_omg_boxedRMI_fred seql Stuff

#define __org_omg_boxedRMI_fred_seql_Stuff

module org {

module omg {

module boxedRMI {

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

b
h
}.

h
#endif

This allows different OMG IDL files to independently define any necessary
sequence val uetypes.

9. Generate the target OMG IDL in the appropriate module.
10. #include any interfaces to which forward references have been declared.
11. #include any value types to which forward references have been declared.

Below is an example of how achunk of RMI/IDL code would be mapped to OMG IDL
using this approach.

1.7.1 The Java Definition

Here's a sample RMI/IDL interface, where the referenced type f r ed. St uf f isan
RMI/IDL valuetype, fred. Test 1 and f r ed. Test 2 are RMI/IDL remote interface
types, and f r ed. Qur Except i on isan RMI/IDL exception type.

1-66 Javato IDL Mapping January 2002

/1 Java
package fred;

i mport java.rm.*;

public interface Test extends Testl {
voi d noop() throws RenoteException;

String echo(String arg) throws RenoteException;

Stuff echoStuff(Stuff p) throws RenoteException;

Test echoTest (Test t) throws RenoteException;

int[] echolnts(int args[]) throws RenoteException;
Stuff[] echoStuffs(Stuff args[]) throws RenoteException;

voi d manyArgs(char a, byte b, short ¢, int d,
long e,float f, double g) throws RenoteException;

Test2 fetchTest2(Obj ect x) throws RenoteException;

voi d t hrowAnException() throws RenoteException,
Qur Excepti on;

1.7.2 The Generated OMG IDL Definition

// DL
#ifndef _ fred Test
#define _ fred_Test

#include “orb.idl”

module fred {
interface Test2;
valuetype Stuff;

b

#include “fred/OurEx.idl”
#include “fred/Testl.idl”

#ifndef __java_lang_Object___
#define __java lang_Object__
module java {
module lang {

typedef any _Object;

Javato DL Mapping Generated IDL FileSructure January 2002 1-67

#endif

#ifndef __org_omg_boxedRMI_seql_long
#define __org_omg_boxedRMI_seql_long
module org {
module omg {
module boxedRMI {

valuetype seql_long sequence<long>;
#pragma ID segl_long “RMI:[I:0000000000000000”
I3
I3
h
#endif

#ifndef __org_omg_boxedRMI_fred_seql_ Stuff _

#define __org_omg_boxedRMI_fred_seql_Stuff

module org {

module omg {

module boxedRMI {

module fred {
valuetype seql_Stuff sequence<::fred::Stuff>;

#pragma ID seql_Stuff
“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654"

endif

}
}
}.
}

module fred {
interface Test: Test1 {
void noop();

::CORBA::WStringValue echo(in ::CORBA::WStringValue arg0);
::fred::Stuff echoStuff(in ::fred::Stuff arg0);
::‘fred::Test echoTest(in ::fred::Test arg0);

:rorg::omg::boxedRMI::seql_long echolnts(
in ::org::omg::boxedRMI::seql_long arg0);

:rorg::omg::boxedRMI::fred::seql_Stuff echoStuffs(
in ::org::omg::boxedRMI::fred::seql_Stuff arg0);

void manyArgs(
in wchar argO,
in octet arg1,
in short arg2,
in long arg3,
in long long arg4,

1-68 Javato IDL Mapping January 2002

in float arg5,
in double arg6);

.:fred::Test2 fetchTest2(::java::lang::_Object);
void throwAnException() raises (::fred::Ourgx);
h
#pragma ID Test “RMI:fred.Test:0000000000000000”
h

#include “fred/Test2.idl”
#include “fred/Stuff.idl”

#endif

JavatoIDL Mapping Generated IDL FileSructure January 2002 1-69

	Java‘ Language to IDL Mapping
	1.1 Overview
	1.2 The RMI/IDL Subset of Java
	1.2.1 Overview of Conforming RMI/IDL Types
	1.2.2 Primitive Types
	1.2.3 RMI/IDL Remote Interfaces
	1.2.4 RMI/IDL Value Types
	1.2.5 RMI/IDL Arrays
	1.2.6 RMI/IDL Exception Types
	1.2.7 CORBA Object Reference Types
	1.2.8 IDL Entity Types

	1.3 The IDL Mapping
	1.3.1 Overview
	1.3.2 Mapping Java Names to IDL Names
	1.3.3 Mappings for Primitive Types
	1.3.4 Mapping for RMI/IDL Remote Interfaces
	1.3.5 Mapping for RMI/IDL Value Types
	1.3.6 Mapping for RMI/IDL Arrays
	1.3.7 Mapping RMI/IDL Exceptions
	1.3.8 Mapping CORBA Object Reference Types
	1.3.9 Mapping IDL Entity Types
	1.3.10 Mapping for Non-conforming Classes and Interfaces
	1.3.11 Mapping Abstract Interfaces
	1.3.12 Mapping Implementation Classes

	1.4 Run-Time Issues
	1.4.1 Subclasses of Value Objects
	1.4.2 Locating Stubs for Remote References
	1.4.3 Narrowing
	1.4.4 Allocating Ties for Remote Values
	1.4.5 Wide Character Support
	1.4.6 Locating Stubs and Ties
	1.4.7 Mapping RMI Exceptions to CORBA Exceptions
	1.4.8 Mapping CORBA System Exceptions to RMI Exceptions
	1.4.9 Code Downloading
	1.4.10 Custom Marshaling Format
	1.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
	1.4.12 RMICustomMaxStreamFormat Service Context
	1.4.13 Marshaling RMI/IDL Arrays
	1.4.14 Creating ORB Instances
	1.4.15 Runtime Limitations

	1.5 Portability Interfaces
	1.5.1 Portability APIs
	1.5.2 Generated classes
	1.5.3 Replaceability of API Implementations

	1.6 Application Programming Interfaces
	1.6.1 PortableRemoteObject

	1.7 Generated IDL File Structure
	1.7.1 The Java Definition
	1.7.2 The Generated OMG IDL Definition

