

Date: January 2008

Java to IDL Language Mapping, Version 1.4

OMG Available Specification
with change bars

OMG Document Number: formal/2008-01-15
OMG IDL (summary): formal/2008-01-19
Standard document URL: http://www.omg.org/spec/JAV2I/1.4/PDF

Copyright © 1997, 1998, 1999, BEA Systems, Inc.
Copyright © 1995, 1996, BNR Europe Ltd.
Copyright © 1998, Borland International
Copyright © 1991, 1992, 1995, 1996, Digital Equipment Corporation
Copyright © 1995, 1996, Expersoft Corporation
Copyright © 1996, 1997, FUJITSU LIMITED
Copyright © 1996, Genesis Development Corporation
Copyright © 1989, 1990, 1991, 1992, 1995, 1996, Hewlett-Packard Company
Copyright © 1991, 1992, 1995, 1996, HyperDesk Corporation
Copyright © 1998, Inprise Corporation
Copyright © 1996, 1999, International Business Machines Corporation
Copyright © 1995, 1996, ICL, plc
Copyright © 1995, 1996, IONA Technologies, Ltd.
Copyright © 1996, 1997, Micro Focus Limited
Copyright © 1991, 1992, 1995, 1996, NCR Corporation
Copyright © 1995, 1996, Novell USG
Copyright © 1991,1992, 1995, 1996, by Object Design, Inc.
Copyright © 2008, Object Management Group, Inc.
Copyright © 1996, Siemens Nixdorf Informationssysteme AG
Copyright © 1991, 1992, 1995, 1996, Sun Microsystems, Inc.
Copyright © 1995, 1996, SunSoft, Inc.
Copyright © 1996, Sybase, Inc.
Copyright © 1998, Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright © 1996, Visual Edge Software, Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for

 commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically
terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any
copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (OMG IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is and
shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use certification
marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if the
software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim compliance
or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface...iii

1 Scope .. 1
1.1 Alignment with CORBA ... 1

2 Conformance/Compliance ... 1
2.1 Definition of CORBA Compliance ... 1

3 Additional Information .. 3
3.1 Acknowledgements ... 3

4 Java to IDL Language Mapping Specification ... 3
4.1 Introduction ... 3
4.2 The RMI/IDL Subset of Java ... 3

 4.2.1 Overview of Conforming RMI/IDL Types ... 3
 4.2.2 Primitive Types .. 3
 4.2.3 RMI/IDL Remote Interfaces ... 4
 4.2.4 RMI/IDL Value Types ... 5
 4.2.5 RMI/IDL Arrays .. 6
 4.2.6 RMI/IDL Exception Types .. 6
 4.2.7 CORBA Object Reference Types .. 6
 4.2.8 IDL Entity Types .. 6

4.3 The IDL Mapping ... 7
 4.3.1 Overview ... 7
 4.3.2 Mapping Java Names to IDL Names .. 7
 4.3.3 Mappings for Primitive Types .. 10
 4.3.4 Mapping for RMI/IDL Remote Interfaces ... 10
 4.3.5 Mapping for RMI/IDL Value Types .. 14
 4.3.6 Mapping for RMI/IDL Arrays .. 20
 4.3.7 Mapping RMI/IDL Exceptions .. 21
 4.3.8 Mapping CORBA Object Reference Types ... 24
 4.3.9 Mapping IDL Entity Types ... 24
 4.3.10 Mapping for Non-conforming Classes and Interfaces ... 25
 4.3.11 Mapping Abstract Interfaces ... 27
 4.3.12 Mapping Implementation Classes ... 28

4.4 Run-Time Issues ... 29
 4.4.1 Subclasses of Value Objects .. 29
 4.4.2 Locating Stubs for Remote References .. 29
 4.4.3 Narrowing .. 30
 4.4.4 Allocating Ties for Remote Values ... 30
 4.4.5 Wide Character Support .. 30
 4.4.6 Locating Stubs and Ties .. 30
Java to IDL Language Mapping, v1.4 i

 4.4.7 Mapping RMI Exceptions to CORBA Exceptions.. 31
 4.4.8 Code Downloading .. 33
 4.4.9 Custom Marshaling Format ... 36
 4.4.10 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component 37
 4.4.11 RMICustomMaxStreamFormat Service Context ... 37
 4.4.12 Marshaling RMI/IDL Arrays ... 37

4.5 Portability Interfaces .. 38
 4.5.1 Portability APIs .. 38
 4.5.2 Generated classes .. 48
 4.5.3 Replaceability of API Implementations .. 53

4.6 Application Programming Interfaces ... 56
 4.6.1 PortableRemoteObject .. 56

4.7 Generated IDL File Structure ... 58
 4.7.1 The Java Definition ... 60
 4.7.2 The Generated OMG IDL Definition .. 60
ii Java to IDL Language Mapping, v1.4

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
• CORBAservices
Java to IDL Language Mapping, v. 1.4 iii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

Java to IDL Roadmap
Requirements for Java to IDL language mapping were originally specified by:

orbos/96-12-12 (Java Language Mapping RFP)
orbos/97-08-06 (Joint Revised Submission)
orbos/98-07-19 (RTF Update)

The history of the Java to IDL language mapping specification:

Version 1.0: formal/99-07-59
Version 1.1: formal/01-06-07
Version 1.2: formal/02-08-06
Version 1.3: formal/03-09-04

The source documents for this version include:

formal/03-09-04 (version 1.3)
ptc/2007-02-07 (RTF Report)
iv Java to IDL Language Mapping, v. 1.4

1 Scope

The CORBA Language Mapping specifications contain language mapping information for several languages. Each
language is described in a separate stand-alone volume.

This particular specification explains how OMG IDL constructs are mapped to the constructs of the Java to IDL
programming language.

1.1 Alignment with CORBA
This language mapping is aligned with CORBA, v3.1.

2 Conformance/Compliance

For each OMG IDL and CORBA construct, the Java to IDL mapping explains the syntax and semantics of using the
construct from Java to IDL. A client or server program conforms to this mapping (is Java to CORBA-IDL compliant) if
it uses the constructs as described in the Java to IDL mapping clauses. An implementation conforms to this mapping if it
correctly executes any conforming client or server program. A conforming client or server program is therefore portable
across all conforming implementations.

2.1 Definition of CORBA Compliance
The minimum required for a CORBA-compliant system is adherence to the specifications in CORBA Core and one
mapping. Each additional language mapping is a separate, optional compliance point. Optional means users aren’t
required to implement these points if they are unnecessary at their site, but if implemented, they must adhere to the
CORBA specifications to be called CORBA-compliant. For instance, if a vendor supports C++, their ORB must comply
with the OMG IDL to C++ binding specified in this specification.

Interoperability and Interworking are separate compliance points. For detailed information about Interworking
compliance, refer to CORBA, v3.1, Part 2- Interoperability: Conformance and Compliance clause.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core and components. Likewise, the body
of CORBA specifications is divided into core and component-like specifications. The CORBA specifications are divided
into these volumes:

1. The CORBA/IIOP Specification (Common Object Request Broker Architecture), v3.1 that includes the following
parts and clauses:

• Part I - CORBA Interfaces
• Scope
• Conformance and Compliance
• References
• Terms and Definitions
• Symbols
• The Object Model
• CORBA Overview
Java to IDL Language Mapping, v1.4 1

• OMG IDL Syntax and Semantics
• ORB Interface
• Value Type Semantics
• Abstract Interface Semantics
• Dynamic Invocation Interface
• Dynamic Management of Any Values
• The Interface Repository
• The Portable Object Adapter
• Portable Interceptors
• CORBA Messaging

• Part II - CORBA Interoperability
• Scope
• Conformance and Compliance
• References
• Terms and Definitions
• Symbols
• Interoperability Overview
• ORB Interoperability Architecture
• Building Inter-ORB Bridges
• General Inter-ORB Protocol
• Secure Interoperability
• Unreliable Multicast Inter-ORB Protocol

• Part III - Component Model
• Scope
• Conformance and Compliance
• References
• Terms and Definitions
• Symbols
• Component Model
• OMG CIDL Syntax and Semantics
• CCM Implementation Framework
• The Container Programming Model
• Integrating with Enterprise JavaBeans
• Interface Repository Metamodel
• CIF Metamodel
• Lightweight CCM Profile
• Deployment PSM for CCM
• Deployment IDL for CCM
• XML Schema for CCM
2 Java to IDL Language Mapping, v1.4

2. The Language Mapping Specifications, which are organized into the following stand-alone volumes:

• Ada Mapping to OMG IDL

• C Mapping to OMG IDL

• C++ Mapping to OMG IDL

• COBOL Mapping to OMG IDL

• IDL Script Mapping

• IDL to Java Mapping

• Java Mapping to OMG IDL

• Lisp Mapping to OMG IDL

• Python Mapping to OMG IDL

• Smalltalk Mapping to OMG IDL

3 Additional Information

3.1 Acknowledgements
The following companies submitted the specification that was approved by the Object Management Group to become the
Java to IDL Language Mapping specification:

• BEA Systems, Inc.

• IBM Corporation

• IONA Technologies Ltd.

• Visigenic Software, Inc.
Java to IDL Language Mapping, v1.4 3

4 Java to IDL Language Mapping, v1.4

4 Java to IDL Language Mapping Specification

4.1 Introduction
The Java distributed programming community has until now been forced to choose between two different mechanisms for
distributed programming, Java Remote Method Invocation (RMI) and OMG IDL.

The RMI style of distributed programming has proven extremely popular because it is easy to use and avoids the need for
Java programmers to learn a separate interface definition language. However, RMI lacks interoperability with other
languages and it is not currently supported over standard protocols.

The mapping from Java RMI to OMG IDL and IIOP described in this clause is intended to unify the ease-of-programming
of Java RMI with support for cross-language operation (through OMG IDL) and support for standard protocols (through
IIOP).

To encourage convergence between the RMI and CORBA programming communities, it is important to define a solution
that is both fully compatible with current RMI semantics and fully compatible with OMG IDL, IIOP, and the CORBA
object model.

The subset of Java that meets these goals is referred to as RMI/IDL.

4.2 The RMI/IDL Subset of Java
This sub clause describes the subset of Java RMI that is mapped to IDL and can run over GIOP.

4.2.1 Overview of Conforming RMI/IDL Types
A conforming RMI/IDL type is a Java type whose values may be transmitted across an RMI/IDL remote interface at run-
time.

A Java data type is a conforming RMI/IDL type if it is:

• one of the Java primitive types (see “Primitive Types” on page 5).

• a conforming remote interface (as defined in “RMI/IDL Remote Interfaces” on page 6).

• a conforming value type (as defined in “RMI/IDL Value Types” on page 7).

• an array of conforming RMI/IDL types (see “RMI/IDL Arrays” on page 8).

• a conforming exception type (see “RMI/IDL Exception Types” on page 8).

• a conforming CORBA object reference type (see “CORBA Object Reference Types” on page 8).

• a conforming IDL entity type (see “IDL Entity Types” on page 8).

4.2.2 Primitive Types
All the standard Java primitive types are supported as part of RMI/IDL. These are:

• void, boolean, byte, char, short, int, long, float, double
Java to IDL Language Mapping, v1.4 5

4.2.3 RMI/IDL Remote Interfaces
An RMI remote interface defines a Java interface that can be invoked remotely. A Java interface is a conforming RMI/
IDL remote interface if:

1. The interface is or inherits from java.rmi.Remote either directly or indirectly.

2. All methods in the interface are defined to throw java.rmi.RemoteException or a superclass of
java.rmi.RemoteException. Throughout this sub clause, references to methods in the interface include
methods in any inherited interfaces.

3. There are no restrictions on method arguments and result types. However at run-time, the actual values passed as
arguments or returned as results must be conforming RMI/IDL types (see “Overview of Conforming RMI/IDL
Types” on page 5). In addition, for each RMI/IDL remote interface reference, the actual value passed or returned
must be either a stub object or a remote interface implementation object (see “Stubs and remote implementation
classes” on page 7).

4. All checked exception classes used in method declarations (other than java.rmi.RemoteException and its
subclasses) are conforming RMI/IDL exception types (see “RMI/IDL Exception Types” on page 8).1

5. Method names may be overloaded. However, when an interface directly inherits from several base interfaces, it is
forbidden for there to be method name conflicts between the inherited interfaces. This outlaws the case where an
interface A defines a method “foo,” an interface B also defines a method “foo,” and an interface C tries to inherit
from both A and B.

6. Constant definitions in the form of interface variables are permitted. The constant value must be a compile-time
constant of one of the RMI/IDL primitive types or String.

7. Method and constant names must not cause name collisions when mapped to IDL (see “Names that would cause
OMG IDL name collisions” on page 12).

The following is an example of a conforming RMI/IDL interface definition:

// Java
public interface Wombat extends java.rmi.Remote {

String BLEAT_CONSTANT = “bleat”;
boolean bleat(Wombat other)
throws java.rmi.RemoteException;

}

While the following is an example of a non-conforming RMI/IDL interface:

// Java
// IllegalInterface fails to extend Remote!!
public interface IllegalInterface {

// illegalExceptions fails to throw RemoteException.
void illegalExceptions();

}

1. Because unchecked exception classes and java.rmi.RemoteException and its subclasses are not mapped to IDL exceptions,
it is not necessary for them to be conforming RMI/IDL exception types.
6 Java to IDL Language Mapping, v1.4

4.2.3.1 Stubs and remote implementation classes

At run time, when a reference to an RMI/IDL remote interface is passed across a remote interface, the class of the actual
object that is passed must be either a stub class or a remote implementation class.

A stub class is a class that has been created (normally by tools) to manage a remote object reference.

A remote implementation class is a class that acts as the server side implementation for a given RMI/IDL remote
interface.

A given remote implementation class may implement several distinct RMI/IDL interfaces.

4.2.4 RMI/IDL Value Types
An RMI/IDL value type represents a class whose values can be moved between systems. So rather than transmitting a
reference between systems, the actual state of the object is transmitted between systems. This requires that the receiving
system have an analogous class that can be used to hold the received value.

Value types may be passed as arguments or results of remote methods, or as fields within other objects that are passed
remotely.

A Java class is a conforming RMI/IDL value type if the following applies:

1. The class must implement the java.io.Serializable interface, either directly or indirectly, and must be
serializable at run-time. It may serialize references to other RMI/IDL types, including value types and remote
interfaces.

2. The class may implement java.io.Externalizable. (This indicates it overrides some of the standard
serialization machinery.)

3. If the class is a non-static inner class, then its containing class must also be a conforming RMI/IDL value type.

4. A value type must not either directly or indirectly implement the java.rmi.Remote interface. (If this were
allowed, then there would be potential confusion between value types and remote interface references.)

5. A value type may implement any interface except for java.rmi.Remote.

6. There are no restrictions on the method signatures for a value type.

7. There are no restrictions on static fields for a value type.

8. There are no restrictions on transient fields for a value type.

9. Method, constant, and field names must not cause name collisions when mapped to IDL (see “Names that would
cause OMG IDL name collisions” on page 12).

Here is an example of a conforming RMI/IDL value type:

// Java
public class Point implements java.io.Serializable {

public final static int CONSTANT_FOO = 3+3;
private int x;
private int y;
public Point(int x, y) { ... }
public int getX() { ... }
Java to IDL Language Mapping, v1.4 7

public int getY() { ... }
}

4.2.4.1 The Java String Type

The java.lang.String class is a conforming RMI/IDL value type following these rules. Note, however, that
String is handled specially when mapping Java to OMG IDL (see “Mapping for java.lang.String” on page 21).

4.2.5 RMI/IDL Arrays
Arrays of any conforming RMI/IDL type are also conforming RMI/IDL types. So int[] and String[][][] are
conforming RMI/IDL types. Similarly if Wombat is a conforming RMI/IDL interface type, then Wombat[] is a
conforming RMI/IDL type.

4.2.6 RMI/IDL Exception Types
An RMI/IDL exception type is a checked exception class (as defined by the Java Language Specification). Since checked
exception classes extend java.lang.Throwable, which implements java.io.Serializable, it is unnecessary
for an RMI/IDL exception class to directly implement java.io.Serializable.

A type is a conforming RMI/IDL exception if the class:

• is a checked exception class.

• meets the requirements for RMI/IDL value types defined in Section 4.2.4, “RMI/IDL Value Types,” on page 7.

Here’s an example of a conforming RMI/IDL exception type:

// Java
public class MammalOverload extends MammalException {

public MammalOverload(String message) {
super(message);

}
}

4.2.7 CORBA Object Reference Types
A conforming CORBA object reference type is either

• the Java interface org.omg.CORBA.Object, or

• a Java interface that extends org.omg.CORBA.Object directly or indirectly and conforms to the rules specified in
the Java Language Mapping (i.e., could have been generated by applying the mapping to an OMG IDL definition).

4.2.8 IDL Entity Types
A Java class is a conforming IDL entity type if it extends org.omg.CORBA.portable.IDLEntity and conforms to
the rules specified in the Java Language Mapping (i.e., could have been generated by applying the mapping to an OMG
IDL definition) and is not an OMG IDL user exception.
8 Java to IDL Language Mapping, v1.4

4.3 The IDL Mapping

4.3.1 Overview
This sub clause defines the mapping between RMI/IDL data types and OMG IDL. It includes general rules for mapping
Java names to OMG IDL and mappings for:

• Primitive types

• RMI/IDL remote interfaces

• RMI/IDL value types

• RMI/IDL arrays

• RMI/IDL exception types

• CORBA object reference types

• IDL entity types

• Java types that are referenced in RMI/IDL remote interfaces or inherited by RMI/IDL value types, but which are not
themselves conforming RMI/IDL types.

• RMI/IDL abstract interfaces

• RMI/IDL implementation classes

4.3.1.1 Summary of Special Case Mappings

Some standard Java class and interface types benefit from special case mappings to specific CORBA types. These are
described in the appropriate sub clauses below, but for convenience Table 4.1 summarizes these mappings:

4.3.2 Mapping Java Names to IDL Names
In general, each Java name is mapped to an equivalent OMG IDL name. However, there are some exceptions when the
Java name is not a legal identifier in OMG IDL.

Table 4.1- Special Case Mappings

Java OMG IDL

java.lang.Object ::java::lang::_Object
java.lang.String ::CORBA::WStringValue or wstringa

a.String constants are mapped differently than String variables. See “Mapping for
java.lang.String” on page 21.

java.lang.Class ::javax::rmi::CORBA::ClassDesc
java.io.Serializable ::java::io::Serializable
java.io.Externalizable ::java::io::Externalizable
java.rmi.Remote ::java::rmi::Remote
org.omg.CORBA.Object Object
Java to IDL Language Mapping, v1.4 9

4.3.2.1 Mapping packages to modules

We map Java package names to OMG IDL modules. Each Java package becomes a separate OMG IDL module. Packages
within packages are represented as modules within modules.

So a Java package a.b.c would turn into an OMG IDL module ::a::b::c.

4.3.2.2 Java names that clash with IDL keywords

For Java names that collide with OMG IDL keywords, the Java names are mapped to OMG IDL by adding a leading
underscore. So the Java name oneway is mapped to the OMG IDL identifier _oneway (an escaped identifier).

4.3.2.3 Java names with leading underscores

For Java names that have leading underscores, the leading underscore is replaced with “J_”. So _fred is mapped to
J_fred.

4.3.2.4 Java names with illegal IDL identifier characters

Given the current lack of support for Unicode in OMG IDL, we define a simple name mangling scheme to support the
mapping of Java identifiers to OMG IDL identifiers.

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ or Unicode characters outside of
ASCII, any such illegal characters are replaced by “U” followed by the 4 hexadecimal characters (in upper case)
representing the Unicode value. So, the Java name a$b is mapped to aU0024b and x\u03bCy is mapped to xU03BCy.

4.3.2.5 Names for inner classes

When mapping names for Java inner classes, a composite name is formed by concatenating the name for the outer class,
two underscores, and the name of the inner class. The corrections for illegal OMG IDL identifiers described above are
then applied.

For example, an inner class Fred inside a class Bert will get mapped to an OMG IDL name of Bert__Fred.

4.3.2.6 Overloaded method names

If a Java RMI/IDL method isn’t overloaded, then the same method name is used in OMG IDL as was used in Java.

Given the absence of overloaded methods in current OMG IDL, we define a simple name mangling for overloaded
methods.

Note that a method may be uniquely defined in a base interface (and therefore its name will not be mangled in that
interface) and then be overloaded in a derived interface (in which case the name will be mangled in the derived interface).

For overloaded RMI/IDL methods, the mangled OMG IDL name is formed by taking the Java method name and then
appending two underscores, followed by each of the fully qualified OMG IDL types of the arguments (removing any
leading “::” and replacing embedded “::” with “_”) separated by two underscores. Any spaces (such as in the OMG IDL
type long long) are replaced with underscores, and any leading underscores in OMG IDL escaped identifiers are
removed.

For example, the four overloaded Java methods:
10 Java to IDL Language Mapping, v1.4

void hello();
void hello(int x, a.b.c y, int z);
void hello(int z[]);
void hello(Object o);

are mapped to the OMG IDL methods:

void hello__();
void hello__long__a_b_c__long(in long x, in ::a::b::c y, in long z);
void hello__org_omg_boxedRMI_seq1_long(

in ::org::omg::boxedRMI::seq1_long x);
void hello__java_lang_Object(in ::java::lang::_Object o);

4.3.2.7 Names differing only in case

While Java supports case-sensitive names, OMG IDL does not. Therefore, a general name mangling rule is provided to
allow unique OMG IDL identifiers to be generated for Java names that differ only in case.

To simplify the mapping, the use of Java package names differing only in case is not supported. Nor do we support the
use of class or interface names within the same package that differ only in case. Both of these are treated as errors.

For other case-sensitive collisions, the rule is that if two (or more) names that need to be defined in the same OMG IDL
name scope differ only in case, then a mangled name is generated consisting of the original name followed by an
underscore, followed by an underscore separated list of decimal indices into the string, where the indices identify all the
upper case characters in the original string. Indices are zero based.

Thus if a Java remote interface has methods jack, Jack, and jAcK these names are mapped to jack_, Jack_0, and
jAcK_1_3.

4.3.2.8 Method names that collide with other names

In some cases, applying these rules for name mappings would generate OMG IDL with collisions between method names
and constant or field names. This is because Java constants and fields can have the same names as methods, but OMG
IDL constants and fields cannot. The following rules are used to avoid such name collisions in OMG IDL:

• Method names are mapped unchanged (subject to other mangling rules).

• Java constant or field names whose mapped name collides with the mapped name of a Java method (or would collide if
the Java method were mapped to OMG IDL) are mapped with an additional trailing underscore.

For example, if a Java class has both a constant foo and a method foo, the OMG IDL method is called foo (if it is
mapped) and the OMG IDL constant is called foo_ (whether or not the method foo is mapped).

4.3.2.9 Container names that clash with their members

In some cases, applying these rules for name mappings would generate OMG IDL with collisions between a container
name and members of the container. This is because a Java member can have the same name as its container, but OMG
IDL members cannot. The following rules are used to avoid such name collisions in OMG IDL:

• Container names are mapped unchanged (subject to other mangling rules).

• Java method, constant, or field names whose mapped name collides with the mapped name of their Java container are
mapped with an additional trailing underscore.
Java to IDL Language Mapping, v1.4 11

For example, if a remote Java interface Foo has a method foo, the OMG IDL interface is called Foo and the OMG IDL
operation is called foo_.

4.3.2.10 Names that would cause OMG IDL name collisions

If the name mappings defined in this specification would produce OMG IDL method, constant, field, or attribute names
that are not unique within their declared scope, this is treated as an error. For example, if a Java remote interface has
methods foo(), foo(int x), and foo__long(), the corresponding OMG IDL names would be foo__, foo__long,
and foo__long, which is not legal OMG IDL.

4.3.3 Mappings for Primitive Types
Here are the OMG IDL mappings for the Java primitive types:

The mappings for the Java void, boolean, short, int, long, float, and double types are straightforward as they
have exact OMG IDL analogues.

The 8 bit signed Java type byte is mapped to the 8 bit unsigned OMG IDL type octet. The mapping is bit-for-bit so that
Java byte value “-1” is transmitted as GIOP octet “0xFF,” and the GIOP octet “0xFF” is mapped back to the Java byte
value “-1.” Thus when using this mapping, we will preserve full value and sign information when using RMI/IDL
between a Java client and a Java server over GIOP.

The 16 bit Java Unicode char type is mapped to the OMG IDL wchar type.

4.3.4 Mapping for RMI/IDL Remote Interfaces
An RMI/IDL remote interface is mapped into an OMG IDL interface with the corresponding name (see “Mapping Java
Names to IDL Names” on page 9) in the OMG IDL module corresponding to the Java interface’s package name (see
“Mapping packages to modules” on page 10).

4.3.4.1 Special case for java.rmi.Remote

As a special case, any explicit use of java.rmi.Remote as a parameter, result, or field is mapped to the OMG IDL
type ::java::rmi::Remote, which is defined as follows:

Java OMG IDL
void void
boolean boolean
char wchar
byte octet
short short
int long
long long long
float float
double double
12 Java to IDL Language Mapping, v1.4

// IDL
module java {
module rmi {

typedef Object Remote;
};
};

All RMI/IDL remote interfaces inherit from java.rmi.Remote. This inheritance is represented in the RMI to OMG
IDL mapping as the implicit inheritance of IDL interface types from CORBA::Object.

4.3.4.2 Inherited interfaces

Each inherited interface (other than java.rmi.Remote) in the Java interface is represented by an equivalent inherited
interface in the OMG IDL interface. If the inherited interface is an RMI/IDL remote interface, then it is mapped as
specified here. If not, it is mapped as specified in “Mapping Abstract Interfaces” on page 30.

4.3.4.3 Property accessor methods

Methods that follow the JavaBeans™ design patterns for simple read-write properties or simple read-only properties are
mapped to OMG IDL interface attributes. No special mapping is done for indexed properties or write-only properties.

Read-Write properties

If an RMI/IDL remote interface has a pair of methods get<name> and set<name> where

• the get<name> method has no arguments,

• the set<name> method has a single argument and a void return type,

• the result type of the get<name> method is the same as the argument type of the set<name> method,

• get<name> and set<name> do not throw any checked exceptions except for java.rmi.RemoteException
and its subclasses,

then this is mapped to an OMG IDL read-write attribute where the attribute has the OMG IDL type corresponding to the
set<name> method’s argument type.

Read-only properties

If there is a get<name> method that

• has no arguments,

• has a non-void return type,

• does not throw any checked exceptions except for java.rmi.RemoteException and its subclasses,

but if there is no corresponding set<name> method that satisfies the rules defined in “Read-Write properties” on
page 13, then the get<name> method is mapped to a read-only OMG IDL attribute whose type is obtained by mapping
the method’s return type.

Boolean properties

For boolean properties an is<name> method may take the place of the get<name> method. For example, a pair of
methods, as shown below, define a read-write attribute foo.
Java to IDL Language Mapping, v1.4 13

boolean isFoo() throws java.rmi.RemoteException;
void setFoo(boolean b) throws java.rmi.RemoteException;

The is<name> method may be provided instead of a get<name> method, or it may be provided in addition to a
get<name> method. In either case, if the is<name> method is present for a boolean property then is<name> will be
mapped to the OMG IDL attribute <name> and get<name> (if present) will be mapped to an OMG IDL operation
get<name>. For example, the following Java methods:

// Java
boolean getBar();
boolean isBar();
void setBar(boolean x);

are mapped to the following OMG IDL:

// IDL
boolean getBar();
attribute boolean bar;

Attribute names

The JavaBeans design pattern for property names is that the property name is obtained from the method name(s) by:

• Extracting the characters after the initial “get,” “is,” or “set” of the method name.

• Converting the first character to lower case unless both the first and second characters are upper case.

So the getFoo method implies a “foo” property, the setX method implies an “x” property, and the getURL method
implies a “URL” property.

The OMG IDL attribute name is obtained by taking the JavaBeans property name and applying the normal mapping rules
(see “Mapping Java Names to IDL Names” on page 9). However, if this OMG IDL attribute name conflicts with an OMG
IDL method name, then an extra pair of underscores “__” is added to the end of the attribute name to attempt to
disambiguate it.

4.3.4.4 Methods

Except for property accessors (see “Property accessor methods” on page 13), each method in the interface is mapped to
an OMG IDL method where:

1. The OMG IDL method name is generated as described in “Overloaded method names” on page 10.

2. The Java return type is mapped to the corresponding OMG IDL return type.

3. Each Java argument is mapped to an OMG IDL in parameter with the corresponding OMG IDL type.

4. The OMG IDL parameters may be given arbitrary names, but it is recommended that, where possible, the OMG IDL
names should be obtained by mapping the Java argument names.2

5. Each declared RMI/IDL exception (other than java.rmi.RemoteException and its subclasses) is mapped to
the corresponding OMG IDL exception.

2. This is not always possible, since Java method argument names do not appear in the .class file output from the javac compiler.
14 Java to IDL Language Mapping, v1.4

6. java.rmi.RemoteException and its subclasses, and unchecked exception classes, are assumed to be mapped
to the implicit CORBA system exception, and are therefore not explicitly declared in OMG IDL.

4.3.4.5 Constants

Compile-time constants (“public final static” fields with compile-time constant values) for primitive types and
Strings are mapped to similarly named IDL constants in the target interface with the same values, except for byte
constants which are mapped bit-for-bit. For example, -1 maps to 255. Individual wstring and wchar character values
may need to be escaped as defined in the OMG IDL specification.

4.3.4.6 Repository ID

A #pragma ID is generated to assign each mapped OMG IDL interface type an RMI Hashed format repository ID
derived from the Java interface name using the rules specified in The Common Object Request Broker Architecture: Core
Specification, Interface Repository clause, with a hash code of zero and no SUID. See “Repository ID” on page 19 for
more information.

4.3.4.7 An example

Here is an example of an RMI/IDL remote interface:

// Java
package alpha.bravo;
public interface Wombat extends java.rmi.Remote,

omega.Wallaby {
String BLEAT_CONSTANT = “bleat”;
void chirp(int x) throws RemoteException;
void buzz() throws RemoteException, omega.MammalOverload;
int getFoo() throws RemoteException;
void setFoo(int x) throws RemoteException;
String getURL() throws RemoteException;
void eat() throws Exception;
void drink() throws RemoteException,

java.rmi.NoSuchObjectException;
}

that gets mapped to the following IDL:

// IDL
module alpha {
module bravo {

interface Wombat: ::omega::Wallaby {
Java to IDL Language Mapping, v1.4 15

const wstring BLEAT_CONSTANT = “bleat”;
void chirp(in long arg0);
void buzz() raises (::omega::MammalOverloadEx);
attribute long foo;
readonly attribute ::CORBA::WStringValue URL;
void eat() raises (::java::lang::Ex);
void drink();

};
#pragma ID Wombat “RMI:alpha.bravo.Wombat:0000000000000000”
};
};

Note that String constants are mapped differently than String variables. See “Mapping for java.lang.String” on
page 21.

4.3.5 Mapping for RMI/IDL Value Types
This sub clause covers the general mapping for RMI/IDL value types, including inner classes and conforming exception
classes that are not RMI/IDL exception types. However, note that there are special case mappings for
java.lang.String (see “Mapping for java.lang.String” on page 21), java.lang.Class (see “Mapping for
java.lang.Class” on page 21), “Mapping for java.lang.Enum” on page 22, and “Mapping for Java enum types” on
page 22).

RMI/IDL value classes that implement org.omg.CORBA.portable.IDLEntity and
org.omg.CORBA.portable.ValueBase directly or indirectly are not mapped to OMG IDL, because these Java
classes correspond to existing OMG IDL value types that were mapped to Java using the OMG IDL to Java mapping.
Instead, the original OMG IDL definitions are used.

Exception classes that implement org.omg.CORBA.portable.IDLEntity may appear only in Java throws
clauses. This is because they correspond to existing OMG IDL exception types, and OMG IDL exception types may
appear only in IDL raises clauses.

Each RMI/IDL value class (except for those mapped from OMG IDL using the OMG IDL to Java mapping) is mapped to
an OMG IDL value type with the corresponding OMG IDL name (see “Mapping Java Names to IDL Names” on page 9)
in the OMG IDL module corresponding to the Java class’s package name (see “Mapping packages to modules” on
page 10).

4.3.5.1 Inherited base class

If the RMI/IDL class extends some base class (other than java.lang.Object), then this inheritance is represented by
having the OMG IDL value type inherit from an IDL value type corresponding to the base class. See “module org {” on
page 28 for details.

4.3.5.2 Inherited interfaces

Each inherited interface (other than java.io.Serializable and java.io.Externalizable) in the Java class is
represented by an equivalent inherited or supported type in the mapped OMG IDL type. If the inherited interface is
mapped to an OMG IDL abstract valuetype, then it is inherited by the mapped OMG IDL type. If the inherited interface
is mapped to an OMG IDL abstract interface, then it is supported by the mapped OMG IDL type. It is not possible for the
16 Java to IDL Language Mapping, v1.4

inherited interface to be mapped to a non-abstract OMG IDL interface, because RMI/IDL value types cannot implement
RMI/IDL remote interfaces (see “RMI/IDL Value Types” on page 7). See “module org {” on page 28 for details of how
inherited interfaces are mapped.

4.3.5.3 Methods

It is not required that methods in RMI/IDL value classes be mapped into OMG IDL.

This is partly due to concern that an automatic mapping would have a spaghetti effect, where referencing a single value
type would result in mappings for methods that would pull in other RMI/IDL types, that would pull in other value types.

In addition, many of the methods in common Java value types cannot be mapped usefully to OMG IDL (because they
reference non RMI/IDL types) or to other languages.

However, there may be cases where it is useful to map value type methods to OMG IDL and tools may choose to support
options to map methods. In those cases, each mapped method in a Java value type is mapped to an OMG IDL method
using the rules specified in “Property accessor methods” on page 13 and “Methods” on page 14.

Java private methods are not mapped to OMG IDL.

4.3.5.4 Constructors

As with methods, it is not required that RMI/IDL value type constructors be mapped to OMG IDL. However, in those
cases where constructors are mapped to OMG IDL (including the default constructor, if any), we require that the
following mapping be used:

Each mapped constructor in a Java value type is mapped to an OMG IDL initializer where:

1. If there is a single IDL initializer, its name is create. If there are multiple IDL initializers, this name is mangled as
specified in “Overloaded method names” on page 10.

2. Each Java argument is mapped to an IDL in parameter with the corresponding IDL type.

3. The OMG IDL parameters may be given arbitrary names, but it is recommended that, where possible, the OMG IDL
names should be obtained by mapping the Java argument names.

4. Each declared RMI/IDL exception type (other than java.rmi.RemoteException and its subclasses) is mapped
to the corresponding OMG IDL exception.

5. java.rmi.RemoteException and its subclasses, and unchecked exception classes, are not explicitly declared
in OMG IDL.

Java private constructors are not mapped to OMG IDL. For example, the Java classes:

// Java
public class foo implements java.io.Serializable {
 foo(int x);
}
public class bar implements java.io.Serializable {
 bar(int x);
 bar(char y);
}

would be mapped to the OMG IDL valuetypes:
Java to IDL Language Mapping, v1.4 17

// IDL
valuetype foo {
 factory create(in long x);
};
valuetype bar {
 factory create__long(in long x);
 factory create__wchar(in long y);
};

4.3.5.5 Constants

Compile-time constants (“public final static” fields with compile-time constant values) for primitive types and
Strings are mapped to similarly named IDL constants in the target value type with the same values. Individual wstring
and wchar character values may need to be escaped as defined in the OMG IDL specification.

4.3.5.6 Data

If the class implements java.io.Externalizable, then the serialized state of the Java class is treated as an opaque
type, and it is defined as an OMG IDL “custom valuetype.” Java non-static non-transient public fields are mapped
to OMG IDL public data members, and other Java fields are not mapped.

If the class does not implement java.io.Externalizable but does have a writeObject method, or extends such
a class directly or indirectly, then it is mapped to an OMG IDL “custom valuetype” using the rules for mapping data
members specified below. An additional IDL custom valuetype in the module ::org::omg::customRMI is also generated
to assist with marshaling and unmarshaling instances of the class. See Section 4.3.5.8, “Secondary custom valuetype,” on
page 19 for details. In this case, and for Java classes that implement java.io.Externalizable, all the semantics of
java.io.ObjectOutputStream and java.io.ObjectInputStream supported by RMI over JRMP are
supported over IIOP.

If the class does not implement java.io.Externalizable and has a declared private static final field
named serialPersistentFields of type java.io.ObjectStreamField[], then the mapping of data fields to
OMG IDL is governed by the value of that field. If the Java class has no writeObject method, then each
ObjectStreamField instance in the array must correspond to a declared field in the class with the same name and the
same declared type. For each ObjectStreamField instance osf in the array, there is an OMG IDL data member with
name equal to osf.getName() and type equal to the standard mapping of the Java type
osf.getType().getName() to OMG IDL. If the corresponding field exists in the Java class and is declared
public, then the OMG IDL field is also declared public; otherwise, the OMG IDL field is declared private.

If the class does not implement java.io.Externalizable and does not have a declared private static
final field named serialPersistentFields of type java.io.ObjectStreamField[], then each non-static
non-transient field of the Java class is mapped to a corresponding OMG IDL data member with the same name, with the
corresponding OMG IDL type. Java public fields are mapped to OMG IDL public data members. Non-public Java
fields are mapped to OMG IDL private data members.

The following rules apply to the ordering of fields in an OMG IDL value type mapped from Java.

• All non-constant fields whose Java type is a primitive precede all other non-constant fields.

• The non-constant primitive fields are ordered by sorting their Java field names in increasing order. The sort compares
the field name strings lexicographically. The comparison is based on the Unicode value of each character in the strings.
18 Java to IDL Language Mapping, v1.4

• The non-constant non-primitive fields are ordered by sorting their Java field names in the same way as non-constant
primitive fields.

An RMI/IDL value type that has a writeReplace or readResolve method is mapped to an OMG IDL valuetype using the
same mapping rules that apply to other RMI/IDL value types.

4.3.5.7 Repository ID

To allow reliable detection of version mismatches, a #pragma ID is generated to assign each value type a specific
repository ID string with a specific version string.

The syntax of the repository ID is the standard OMG RMI Hashed format, with an initial “RMI:” followed by the Java
class name, followed by a hash code string, followed optionally by a serialization version UID string.

For Java identifiers that contain illegal OMG IDL identifier characters such as ‘$’ or Unicode characters outside of ISO
Latin 1, any such illegal characters are replaced by “\U” followed by the 4 hexadecimal characters (in upper case)
representing the Unicode value. The use of a “\” is legal within a repository ID and it allows a reliable demangling from
a repository ID back to the Java class name.

For example, the Java type java.util.Hashtable would be mapped to the OMG IDL type ::java::util::Hashtable
with a repository ID of “RMI:java.util.Hashtable:C03324C0EA357270:13BB0F25214AE4B8.”

Similarly, a Java class a.x\u03bCy might be mapped to the OMG IDL type ::a::xU03BCy with repository ID
“RMI:a.x\U03BCy:0123456789ABCDEF:123456789ABCDEF0.”

4.3.5.8 Secondary custom valuetype

In addition to the primary mapping described above, an RMI/IDL value type containing a writeObject method is
mapped to a secondary IDL custom valuetype. The module name for this valuetype is formed by taking the
::org::omg::customRMI prefix and then adding the primary mapped type’s module name. The name of the secondary
valuetype is the same as the name of the primary IDL custom value type to which the RMI/IDL value type was mapped.
The secondary valuetype has no inheritance, data members, methods, or initializers. It has a #pragma ID specifying a
repository ID formed by taking the repository ID of the primary custom valuetype and prefixing the Java package name
with "org.omg.customRMI." The secondary custom valuetype represents the enclosure of writeObject data that is
written to the serialization stream when the primary custom valuetype or any of its subclasses is serialized using format
version 2, as described in item 1d of “Custom Marshaling Format” on page 39.

For IDL custom marshaling and unmarshaling of the primary mapped IDL valuetype, the marshal and unmarshal
methods can call write_Value() and read_Value() to write and read the nested valuetype enclosure. This will cause the
marshal and unmarshal methods of the secondary mapped IDL valuetype to be called to write and read the custom
serialized data.

4.3.5.9 Example without writeObject

The RMI/IDL value type:

// Java
package alpha.bravo;
public class Hedgehog extends Warthog

 implements java.io.Serializable {
public final static short MAX_WARTS = 12;
private int length;
Java to IDL Language Mapping, v1.4 19

protected boolean foobah;
int height;
public int size;
public void snuffle() { ... }
public int getLength() { ... }

}

gets mapped to the IDL value type:

// IDL
module alpha {
module bravo {

valuetype Hedgehog: ::alpha::bravo::Warthog {
const short MAX_WARTS = 12;
private boolean foobah;
private long height;
private long length_;
public long size;
// mapping of methods, attributes, and initializers is optional
void snuffle();
readonly attribute long length();
factory create();

};
#pragma ID Hedgehog

“RMI:alpha.bravo.Hedgehog:12345678ABCDEF00:0123456789ABCDEF”
};
};

4.3.5.10 Example with writeObject

The RMI/IDL value type:

// Java
package alpha.bravo;
public class Kangaroo extends Wallaby

implements java.io.Serializable {
private int length;
private Kangaroo(int length) { ... }
private void writeObject(java.io.ObjectOutputStream s)

{ ... }
public int hop() { ... }

}

gets mapped to the IDL value types:
20 Java to IDL Language Mapping, v1.4

// IDL
module alpha {
module bravo {

custom valuetype Kangaroo: ::alpha::bravo::Wallaby {
private long length;
// mapping of methods shown below is optional
long hop();

};
#pragma ID Kangaroo

“RMI:alpha.bravo.Kangaroo:87654321ABCDEF01:9876543210FEDCBA”
};
};

module org {
module omg {
module customRMI {
module alpha {
module bravo {

custom valuetype Kangaroo {};
#pragma ID Kangaroo

"RMI:org.omg.customRMI.alpha.bravo.Kangaroo:87654321ABCDEF01:
9876543210FEDCBA"
};
};
};
};
};

4.3.5.11 Mapping for java.lang.String

When used as a parameter type, return type, or data member, the Java String type is mapped to the type
::CORBA::WStringValue. However when mapping Java String constant definitions, a Java String is simply
mapped to a wstring.

::CORBA::WStringValue is a standard type that is part of the CORBA module. It is defined as

valuetype WStringValue wstring;

which is semantically equivalent to:

valuetype WStringValue {
public wstring data;

};

4.3.5.12 Mapping for java.lang.Class

When used as a parameter type, return type, or data member, the Java Class type is mapped to the OMG IDL type
::javax::rmi::CORBA::ClassDesc. This OMG IDL type is the result of mapping the following Java class to OMG
IDL:
Java to IDL Language Mapping, v1.4 21

// Java
package javax.rmi.CORBA;
public class ClassDesc implements java.io.Serializable {

public String repid;
public String codebase; // space-separated list of URLs
static final long serialVersionUID

= -3477057297839810709L;
}

4.3.5.13 Mapping for java.lang.Enum

The class java.lang,Enum is mapped to OMG IDL following the rules for mapping RMI/IDL value types defined in
previous sub clauses, with the exception that the ordinal field is not mapped to an OMG IDL data member.

For example, this class could be mapped to the following OMG IDL:

// IDL
module java {
module lang {

valuetype _Enum ::java::lang::Comparable {
private ::CORBA::WStringValue name_;
::CORBA::WStringValue name ();

};
#pragma ID _Enum “RMI:java.lang.Enum:CA9967EE1176F5B3:0000000000000000”
};
};

4.3.5.14 Mapping for Java enum types

Java enum types are mapped to OMG IDL following the rules for mapping RMI/IDL value types defined in previous sub
clauses, with the exception that their fields are not mapped to OMG IDL data members.

For example, the Java enum

public enum Direction {
NORTH (0),
SOUTH (180),
EAST (90),
WEST (270) ;
public final int bearing;
Direction (int bearing) {

this.bearing = bearing;
}

}

could be mapped to the following OMG IDL:
22 Java to IDL Language Mapping, v1.4

// IDL
valuetype Direction: ::java::lang::_Enum ();
#pragma ID Direction “RMI:Direction:332C04E72E3DB2A1:0000000000000000”

// IDL
module java {
module lang {

valuetype _Enum ::java::lang::Comparable {
private ::CORBA::WStringValue name_;
::CORBA::WStringValue name ();

};
#pragma ID _Enum “RMI:java.lang.Enum:CA9967EE1176F5B3:0000000000000000”
};
};

4.3.6 Mapping for RMI/IDL Arrays
An RMI/IDL array is mapped to a “boxed” value type containing an IDL sequence. We use the syntax “valuetype xyz
foo” as a shorthand for defining a value type named “xyz” that contains a single field of type “foo.”

The module for each such value type is determined by the IDL type of the array element. For multi-dimensional arrays,
this is the type of the innermost array element, after all the dimensions are resolved.

Primitive OMG IDL types such as long, boolean, etc. are mapped directly into the ::org::omg::boxedRMI module.
For other types, a module name is formed by taking the ::org::omg::boxedRMI prefix and then adding the type’s
existing module name to identify a sub-module. So the type ::a::b::c is mapped into the module
::org::omg::boxedRMI::a::b.

For each “boxed” value type generated for a Java array, a #pragma ID is generated to specify an RMI Hashed format
repository ID for the IDL type.

The OMG IDL value type name within the module is formed by prefixing the OMG IDL element type name with
“seq<n>_” where <n> is the number of dimensions of the array. Any spaces (such as in the OMG IDL type long long)
are replaced with underscores.

Some example value definitions resulting from Java arrays:

boolean[] => in the module ::org::omg::boxedRMI the definition:
valuetype seq1_boolean sequence<boolean>;

long[] => in the module ::org::omg::boxedRMI the definition:
valuetype seq1_long_long sequence<long long>;

a.b.C[] => in the module ::org::omg::boxedRMI::a::b the definition:
valuetype seq1_C sequence<::a::b::C>;

x.Y[][] => in the module ::org::omg::boxedRMI::x the definitions:
valuetype seq1_Y sequence<::x::Y>;
valuetype seq2_Y sequence<seq1_Y>;
Java to IDL Language Mapping, v1.4 23

4.3.6.1 Preventing redefinitions of boxed sequence types

Each generated boxed sequence type must be protected against multiple definitions and there are various ways in which
this could be accomplished. For example, each generated boxed sequence type could be wrapped in an #ifndef and
#endif pair where the tag of the #ifndef is the fully scoped name of the sequence value type, replacing the leading ‘::’
with two underbars, replacing each inner ‘::’ with one underbar, and adding two underbar characters at the end. The
#ifndef would be followed by a #define of the tag, followed by the sequence definition, followed by an #endif.

A definition for a sequence of boolean that uses this approach would be wrapped in a preamble of

#ifndef __org_omg_boxedRMI_seq1_boolean__
#define __org_omg_boxedRMI_seq1_boolean__

and would be followed by an

#endif

4.3.6.2 Array example

Here’s a more complete example. The Java definition:

// Java
package alpha.bravo;
public class Charlie implements java.io.Serializable {

public omega.Dolphin fins[];
}

would result in the following OMG IDL definition:

// IDL
#ifndef __org_omg_boxedRMI_omega_seq1_Dolphin__
#define __org_omg_boxedRMI_omega_seq1_Dolphin__
module org {
module omg {
module boxedRMI {
module omega {

valuetype seq1_Dolphin sequence<::omega::Dolphin>;
#pragma ID seq1_Dolphin

“RMI:[Lomega.Dolphin;:ABCDEF0123456789:01ABCDEF23456789”
};
};
};
};
#endif
24 Java to IDL Language Mapping, v1.4

module alpha {
module bravo {

valuetype Charlie {
 public ::org::omg::boxedRMI::omega::seq1_Dolphin fins;

};
#pragma ID Charlie

“RMI:alpha.bravo.Charlie:0123456789ABCDEF:ABCDEF9876543210”
};
};

4.3.7 Mapping RMI/IDL Exceptions
OMG IDL does not allow subclassing of exception types. By contrast Java programmers tend to make heavy use of
exception subclassing, and the Java type system is used to distinguish different flavors of exceptions at run time. It is very
common for a Java interface to say it raises a fairly generic exception (such as java.io.IOException) but for
implementations to throw more specific sub-types (such as java.io.InterruptedIOException) and for clients to
use the Java instanceof operator to check for specific subtypes. In addition, RMI/IDL exceptions can be passed as
normal value types, whereas OMG IDL exceptions can only be used in raises clauses.

This mismatch of exception styles makes the mapping of RMI/IDL exception types to OMG IDL problematic.

To allow full support for subclassing when communicating Java to Java we use a mapping where an RMI/IDL exception
type is mapped to both a specific OMG IDL exception and to an OMG IDL value type that allows subclassing. The OMG
IDL exception has a single field that holds the corresponding value object.

This solution allows RMI/IDL to support the normal idiomatic use of Java exceptions, while still being correctly
mappable into OMG IDL.

4.3.7.1 The IDL value type

Each RMI/IDL exception type is mapped to an OMG IDL value type in the OMG IDL module corresponding to the Java
exception’s package name (see “Mapping packages to modules” on page 10). The value type’s name is formed by taking
the RMI/IDL exception name and applying the normal corrections for illegal IDL names (see “Mapping Java Names to
IDL Names” on page 9).

The OMG IDL value type inherits from an OMG IDL parent value type that corresponds to the base class of the RMI/IDL
exception class. If an RMI/IDL exception type Fred extends Bert, then its OMG IDL value type Fred will inherit
Bert.

The mapping of the fields, methods, constants, and inherited interfaces to the OMG IDL value type follow the same rules
defined for other RMI/IDL value types in “Inherited interfaces” on page 16 through “Repository ID” on page 19.

4.3.7.2 The IDL exception

Each RMI/IDL exception type is also mapped to an OMG IDL exception in the OMG IDL module corresponding to the
Java exception’s package name (see “Mapping packages to modules” on page 10). The OMG IDL exception name is
formed from the Java exception name by

• removing any trailing “Exception” suffix.

• adding an “Ex” at the end of the name.
Java to IDL Language Mapping, v1.4 25

• applying the normal corrections for illegal OMG IDL names (see “Mapping Java Names to IDL Names” on page 9).

If applying the above rules yields the same OMG IDL name for more than one Java exception name (e.g., there are Java
exception names foo and fooException, which both map to the OMG IDL name fooEx), then this is treated as an
error.

For example:

java.lang.IllegalAccessException is mapped to ::java::lang::IllegalAccessEx
alpha.bravo.Foo is mapped to ::alpha::bravo::FooEx

This OMG IDL exception name can then be used in the raises clause of OMG IDL method definitions.

The OMG IDL exception type is defined with a single data member named value that has the type of the associated value
object.

4.3.7.3 Mapping References to RMI/IDL Exceptions

Whenever an RMI/IDL exception is used in a Java throws clause, it is mapped to a use of the corresponding OMG IDL
exception type in the OMG IDL raises clause.

Whenever an RMI/IDL exception is used as a data field or as a method argument, it is mapped to the corresponding OMG
IDL value type.

4.3.7.4 Example

The Java RMI/IDL definitions:

// Java
package omega;
public class FruitbatException extends MammalException {

public FruitbatException(String message, int count) {
...

}
public int getCount() { ... }
private int count;

}

public interface Thrower extends java.rmi.Remote {
void doThrowFruitbat() throws FruitbatException,

RemoteException;
FruitbatException getLastException()

throws RemoteException;
}

are mapped to OMG IDL as:

// IDL
module omega {
26 Java to IDL Language Mapping, v1.4

valuetype FruitbatException: ::omega::MammalException {
private long count_;
// mapping of attributes shown below is optional
readonly attribute long count();

};
#pragma ID FruitbatException

“RMI:omega/FruitbatException:1234567899775511:3344556645678901”

exception FruitbatEx {
FruitbatException value;

};

interface Thrower {
void doThrowFruitbat() raises (FruitbatEx);
readonly attribute FruitbatException lastException;

};
#pragma ID Thrower “RMI:omega.Thrower:0000000000000000”
};

4.3.8 Mapping CORBA Object Reference Types
A CORBA object reference type is mapped directly to its corresponding OMG IDL interface or to Object if it is
org.omg.CORBA.Object.

4.3.9 Mapping IDL Entity Types
An IDL entity type that is not a CORBA object reference type is mapped to a “boxed” value type containing the IDL
entity type, except as specified in “Mapping for RMI/IDL Value Types” on page 16 and “Mapping for Non-conforming
Classes and Interfaces” on page 28.

The containing module for the boxed type is determined by the IDL entity type’s containing module. A module name is
formed by taking the ::org::omg::boxedIDL prefix and appending the IDL entity type’s fully scoped IDL module name.
A boxed value type corresponding to the IDL entity type is defined within this module. The name of the value type is the
same as the name of the IDL definition it is boxing.

For example, assume we have the following IDL and the Java class that results from applying the forward mapping:

// IDL
module hello {

struct world {
short x;

};
};

// Java
package hello;
public final class world implements

org.omg.CORBA.portable.IDLEntity {
...

}

Java to IDL Language Mapping, v1.4 27

Now assume that hello.world is used as an argument to a method or as a member of an RMI/IDL value type. The
Java class hello.world is mapped as follows:

module org {
module omg {
module boxedIDL {
module hello {

valuetype world ::hello::world;
#pragma ID world “RMI:hello.world:1234567890ABCDEF”
};
};
};
};

The exact mechanism by which the IDL for ::hello::world is created is a tools issue and is not specified.

These generated types must be protected against multiple definitions. See “Preventing redefinitions of boxed sequence
types” on page 24 for an example of an approach that could be used.

The IDL entity types org.omg.CORBA.Any and org.omg.CORBA.TypeCode are mapped as follows:

module org {
module omg {
module boxedIDL {
module CORBA {

valuetype _Any any;
#pragma ID _Any “RMI:org.omg.CORBA.Any:0000000000000000”
};
};
};
};
module org {
module omg {
module boxedIDL {
module CORBA {

valuetype _TypeCode ::CORBA::TypeCode;
#pragma ID _TypeCode

“RMI:org.omg.CORBA.TypeCode:0000000000000000”
};
};
};
};

4.3.10 Mapping for Non-conforming Classes and Interfaces
In addition to generating OMG IDL for each conforming RMI/IDL type, OMG IDL definitions are also required for each
Java class or interface that

• is inherited (either directly or indirectly) by another Java type that has been mapped to OMG IDL.

• is specified as an argument type or as a result type to an RMI/IDL remote interface method.
28 Java to IDL Language Mapping, v1.4

• has been mapped to a data member of an OMG IDL value type.

Each such Java class or interface (except for interfaces that extend org.omg.CORBA.portable.IDLEntity directly
or indirectly) is mapped to an OMG IDL type with the corresponding name (see “Mapping Java Names to IDL Names”
on page 9) in the OMG IDL module corresponding to the Java type’s package name (see “Mapping packages to modules”
on page 10).

Java interfaces that extend org.omg.CORBA.portable.IDLEntity directly or indirectly are not mapped to OMG
IDL, because these Java interfaces correspond to existing OMG IDL interfaces that were mapped to Java using the OMG
IDL to Java mapping.

Non-conforming Java classes are mapped to OMG IDL abstract value types with no data members. Non-conforming Java
interfaces are mapped as follows:

• Java interfaces whose method definitions (including inherited method definitions) all throw
java.rmi.RemoteException or a superclass of java.rmi.RemoteException are RMI/IDL abstract
interfaces. They are mapped to OMG IDL abstract interfaces as described in “Mapping Abstract Interfaces” on
page 30.

• All other Java interfaces are mapped to OMG IDL abstract value types with no data members.

4.3.10.1 java.io.Serializable and java.io.Externalizable

As a special case, any uses of java.io.Serializable or java.io.Externalizable as a parameter, result, or
field are mapped to the OMG IDL types ::java::io::Serializable and ::java::io::Externalizable respectively.

These OMG IDL types are defined as follows:

// IDL
module java {
module io {

typedef any Serializable;
typedef any Externalizable;

};
};

4.3.10.2 Mapping for java.lang.Object

The Java type java.lang.Object is mapped to the OMG IDL type ::java::lang::_Object, which is defined as
follows:

// IDL
module java {
module lang {

typedef any _Object;
};
};

This is used when java.lang.Object is specified as the type of a parameter, result, or field. All Java classes
implicitly inherit from java.lang.Object, but this implicit inheritance is not exposed as part of the RMI to OMG
IDL mapping.
Java to IDL Language Mapping, v1.4 29

4.3.10.3 Inherited interfaces

Each inherited Java class or interface (other than java.io.Serializable and java.io.Externalizable) in the
Java type is represented by an equivalent inherited value type or abstract interface type in OMG IDL.

4.3.10.4 Methods and constants

The methods and constants in these classes and interfaces are mapped as specified for value classes in “Methods” on
page 14 and “Constants” on page 15.

4.3.10.5 Examples

The following non-conforming Java types:

// Java
package alpha.bravo;
public interface Mammal {

public int getSize();
}

public class PolarBear {
private int length;
public int weight;
public PolarBear(int length, int weight) { ... }
public int getSize() { ... }
public int getWeight() { ... }

}

get mapped to the OMG IDL value types:

// IDL
module alpha {
module bravo {

abstract valuetype Mammal {
};

abstract valuetype PolarBear {
};

};
};

4.3.11 Mapping Abstract Interfaces
Java interfaces that do not extend java.rmi.Remote directly or indirectly and whose method definitions (including
inherited method definitions) all throw java.rmi.RemoteException or a superclass of
java.rmi.RemoteException are mapped to OMG IDL abstract interfaces. Java interfaces that do not extend
java.rmi.Remote directly or indirectly and have no methods are also mapped to OMG IDL abstract interfaces.
30 Java to IDL Language Mapping, v1.4

4.3.11.1 Inherited interfaces

Each inherited Java interface in the Java type is represented by an equivalent inherited abstract interface in the OMG IDL
type.

4.3.11.2 Methods and constants

Methods and constants are mapped according to the rules specified in “Property accessor methods” on page 13,
“Methods” on page 14, and “Constants” on page 15.

4.3.11.3 Examples

The following Java type:

// Java
package alpha.bravo;
public interface Bear {

public int getSize() throws
java.rmi.RemoteException;

}

gets mapped to the OMG IDL type:

// IDL
module alpha {
module bravo {

abstract interface Bear {
readonly attribute long size();

};
#pragma ID Bear “RMI:alpha.bravo.Bear:0000000000000000”
};
};

4.3.12 Mapping Implementation Classes
In general, mapping RMI implementation classes to OMG IDL is not needed. However, if a given RMI implementation
class implements multiple distinct RMI/IDL remote interfaces, then it is necessary to generate an OMG IDL type that
represents the unification of the distinct RMI/IDL types.

Any such composite RMI/IDL implementation class is mapped into an OMG IDL interface with the corresponding name
(see “Mapping Java Names to IDL Names” on page 9) in the OMG IDL module corresponding to the Java class’s package
name (see “Mapping packages to modules” on page 10).

Each inherited RMI/IDL remote interface (other than java.rmi.Remote) inherited by the Java implementation class is
represented by an equivalent inherited interface in the OMG IDL interface. Inherited classes and inherited interfaces that
are not RMI/IDL remote interfaces are ignored.

At run time, any instances of the composite implementation class must, from a CORBA perspective, implement the
corresponding composite OMG IDL interface. This implies, for example, they must return true to any calls of “is_a” on
any of the OMG IDL interfaces associated with the distinct RMI/IDL interfaces.
Java to IDL Language Mapping, v1.4 31

4.3.12.1 Example

The RMI/IDL implementation class alpha.bravo.AB that implements the RMI/IDL remote interfaces
alpha.bravo.A and alpha.bravo.B:

// Java
package alpha.bravo;
public class AB extends javax.rmi.PortableRemoteObject

 implements alpha.bravo.A, alpha.bravo.B {
...

}

is mapped to the OMG IDL:

// IDL
module alpha {
module bravo {

interface AB: ::alpha::bravo::A, ::alpha::bravo::B {
};

#pragma ID AB “RMI:alpha.bravo.AB:0000000000000000”
};
};

4.4 Run-Time Issues
In addition to the RMI/IDL mapping there are also run-time issues about how to implement Java RMI/IDL calls over
GIOP.

4.4.1 Subclasses of Value Objects
It should be possible to send a subclass of an RMI/IDL value type where a base value type was specified in the OMG
IDL.

If this occurs, the recipient is responsible for locating a suitable implementation subclass to represent the value object
subtype. In cases where a Java virtual machine is available, this might include attempting to load Java bytecodes for the
subclass. In the Java to C++ case this might involve attempting to locate a suitable C++ subclass.

The name of the subclass can be obtained by parsing the value object’s repository ID, which must be in the standard
OMG RMI Hashed format (see “Repository ID” on page 19).

If a suitable subclass is not available, then the recipient must raise an exception. It is not acceptable for an implementation
to attempt to substitute a base class of the subclass value that was transmitted.

4.4.2 Locating Stubs for Remote References
When receiving an IOR from another system, it is the responsibility of the receiving system to know which RMI/IDL type
is expected. The receiving system should be prepared to use stubs associated with this RMI/IDL type to manage the
received object reference. However, the receiving system may also optionally use the Repository ID of the incoming IOR
to locate and use stubs that more accurately reflect the true run-time type of the object reference.
32 Java to IDL Language Mapping, v1.4

4.4.3 Narrowing
To narrow an RMI/IDL object reference to a different type, application programmers must use the static narrow method
provided by the javax.rmi.PortableRemoteObject class (see “PortableRemoteObject” on page 59).

Thus for example they might do:

// Java
alpha.bravo.Mammal m = getMammal();
try {

b = (alpha.bravo.Bandicoot)
javax.rmi.PortableRemoteObject.narrow(

m, alpha.bravo.Bandicoot.class);
} catch (ClassCastException ex) {

...
}

4.4.4 Allocating Ties for Remote Values
Following normal RMI semantics, an RMI server-side implementation object may be passed across an RMI remote
interface as though it were a remote reference.

The javax.rmi.CORBA.Util.writeRemoteObject method checks whether a transmitted object is an
implementation object and if so, allocates or reuses a suitable tie object. The type of the tie object should correspond to
the OMG IDL type that the implementation object implements.

This tie class is located at run time by finding the class of the implementation object and checking for a corresponding tie
class (see “Locating Stubs and Ties” on page 33). If no suitable tie class is found, the check is repeated on the
implementation class’s base class and so on up the inheritance chain, excluding java.lang.Object. If no suitable tie
class is found, a marshaling error occurs.

4.4.5 Wide Character Support
Since Java supports Unicode characters and strings, ORBs supporting RMI/IDL must provide some form of wide
character support.

Note that as part of IIOP code set negotiation, ORBs are required to accept Unicode UTF16 for use as a fallback
transmission format for wide characters, though they may negotiate to use other formats.

4.4.6 Locating Stubs and Ties
At various times it may be necessary for the ORB to locate either a stub class for a given RMI/IDL remote interface or
abstract interface, or a tie class for a given RMI/IDL implementation class. The name of the stub class is formed by taking
the name of the RMI/IDL interface, prepending “_” and appending “_Stub.” The name of the tie class is formed by taking
the name of the RMI/IDL implementation class, prepending “_” and appending “_Tie.” For RMI/IDL implementation
classes that are mapped to IDL (see “Mapping Implementation Classes” on page 31), the name of the stub class for the
composite interface is formed by taking the name of the RMI/IDL implementation class, prepending “_” and appending
“_Stub.”
Java to IDL Language Mapping, v1.4 33

The stub class corresponding to an RMI/IDL interface or implementation class may either be in the same package as its
associated interface or class, or may be further qualified by the org.omg.stub package prefix. For example, the stub
class for an RMI/IDL interface class a.b.Fred would be named either a.b._Fred_Stub or
org.omg.stub.a.b._Fred_Stub. For an RMI/IDL implementation class x.y.Z, the tie class would be named
x.y._Z_Tie.

When loading a stub class corresponding to an interface or class <packagename>.<typename>, the class
<packagename>._<typename>_Stub shall be used if it exists; otherwise, the class
org.omg.stub.<packagename>._<typename>_Stub shall be used.

A given Java virtual machine may have several different “class loaders” active simultaneously. Each of these class
loaders provides a separate naming context for Java classes. For example, a browser might be running applets from
several different hosts. To avoid class name conflicts it will run the applets in different class loaders. Thus, two different
applets might both reference a class called Foo, but each of them will get its own version of the Foo class from its own
class loader.

The java.lang.Class.getClassloader method returns the class loader for a given Class. So given one Class
it is possible to generate new class names and then attempt to load those additional classes from the original class’s class
loader.

It is important in Java APIs to use an appropriate class loader when trying to locate a named class. To ease this problem
in the ORB Portability APIs we normally pass around java.lang.Class objects rather than simply class names.
When it is necessary to load named classes, runtime code should take care to use an appropriate class loader (e.g., by
using one from an existing Class object).

4.4.7 Mapping RMI Exceptions to CORBA Exceptions
To ensure correct RMI exception passing semantics when running over IIOP, all Java exceptions thrown by the server
implementation must be passed back to the client. Any exception that is an instance of an RMI/IDL exception type declared
by the method or any subclass of such a type (other than java.rmi.RemoteException and its subclasses) is marshaled
as the mapped IDL exception corresponding to the declared RMI/IDL exception (see “The IDL exception” on page 25)
containing a mapped IDL valuetype corresponding to the actual runtime RMI/IDL exception type (see “The IDL value type”
on page 25). On the client side, the mapped IDL valuetype is unmarshaled and thrown back to the application.

For example, if a method in an RMI/IDL remote interface declares an exception type MammalException and its
implementation throws an instance of WombatException (a subclass of MammalException), then this exception is
marshaled as an IDL exception MammalEx containing an IDL valuetype WombatException, and a
WombatException is thrown to the client application.

All other Java exceptions are marshaled as CORBA UNKNOWN system exceptions whose GIOP Reply message includes
an UnknownExceptionInfo service context containing the marshaled Java exception thrown by the server
implementation. The Java exception is marshaled using the rules for CDR marshaling of value types as defined by the
GIOP specification, applied in conjunction with the rules for mapping RMI/IDL value types to IDL as defined in
“Mapping for RMI/IDL Value Types” on page 16 of this specification.

In order to support versioning of the Java exception marshaled within an UnknownExceptionInfo service context, a
SendingContextRunTime service context must previously have been processed for the connection. If a GIOP message
carrying both an UnknownExceptionInfo service context and a SendingContextRunTime service context is
received, and no SendingContextRunTime service context has previously been processed for this connection, then the
SendingContextRunTime service context must be processed before the data within the UnknownExceptionInfo
service context is unmarshaled.
34 Java to IDL Language Mapping, v1.4

4.4.8 Mapping CORBA System Exceptions to RMI Exceptions
In general CORBA system exceptions are simply mapped to instances of java.rmi.RemoteException; however,
some CORBA system exceptions are mapped to more specific subclasses of RemoteException. These are listed in
Table 4.2.

In all cases, the RMI exception is created with a detail string that consists of:

• the string “CORBA”

• followed by the CORBA name of the system exception

• followed by a space

• followed by the hexadecimal value of the system exception’s minor code

• followed by a space

• followed by the completion status of “Yes,” “No,” or “Maybe.”

Thus a CORBA UNKNOWN system exception with a minor code of 0x31 and a completion status of Maybe would be
mapped to a RemoteException with the following detail string:

“CORBA UNKNOWN 0x31 Maybe”

The RemoteException returned by mapSystemException must preserve the original CORBA system exception as
the detail field, except when the original CORBA system exception is BAD_PARAM with a minor code of 6, which is
mapped to java.io.NotSerializableException.

Table 4.2- CORBA and RMI Exceptions

CORBA Exception RMI Exception

COMM_FAILURE java.rmi.MarshalException

INV_OBJREF java.rmi.NoSuchObjectException

NO_PERMISSION java.rmi.AccessException

MARSHAL java.rmi.MarshalException

BAD_PARAM java.rmi.MarshalException

OBJECT_NOT_EXIST java.rmi.NoSuchObjectException

TRANSACTION_REQUIRED javax.transaction.TransactionRequiredException

TRANSACTION_ROLLEDBACK javax.transaction.TransactionRolledbackException

INVALID_TRANSACTION javax.transaction.InvalidTransactionException

INVALID_ACTIVITY javax.activity.InvalidActivityException

ACTIVITY_COMPLETED javax.activity.ActivityCompletedException

ACTIVITY_REQUIRED javax.activity.ActivityRequiredException
Java to IDL Language Mapping, v1.4 35

4.4.8.1 Mapping of UnknownExceptionInfo Service Context

CORBA UNKNOWN exceptions whose GIOP Reply message includes an UnknownExceptionInfo service context
containing a marshaled instance of java.lang.Throwable or one of its subclasses are mapped to RMI exceptions
according to the type of the object contained in the service context, as shown in Table 4.3.

4.4.9 Code Downloading
Class downloading is supported for stubs, ties, values, and value helpers. The specification has been designed to be
implementable using either JDK 1.1.6 or Java 2 APIs, allows transmission of codebase information on the wire for stubs
and ties, and enables usage of pre-existing ClassLoaders when relevant.

4.4.9.1 Definitions

“codebase” - A java.lang.String containing a space-separated array of URLs (e.g., “http://acme.com/classes” or
“http://abc.net/classes http://abc.net/ext/classes”).

“localCodebase” - The System Property “java.rmi.server.codebase” whose value is a codebase or null. Defaults to null.

“remoteCodebase”- The codebase transmitted from a remote system. May be null.

“useCodebaseOnly” - The System Property “java.rmi.server.useCodebaseOnly” whose value is either “true” or “false.”
Defaults to “false.” If “true” (ignoring case), any remote codebase is ignored and only the local codebase used.

“loader” - A class loader that specifies a context within which class loading is initiated. May be null.

4.4.9.2 Codebase Selection

The Util.getCodeBase(Class clz) method (see “Util” on page 48) performs codebase selection.

On Java 2, this method returns the same string as

java.rmi.server.RMIClassLoader.getClassAnnotation(clz)

On JDK 1.1, this method works as follows:

1. If the name of clz has a top-level package qualifier of java, then return null, else...

2. If clz has a ClassLoader with a URL security context, then return this URL, else...

3. If there is a security manager with a URL security context, then return this URL, else...

4. Return localCodebase.

Table 4.3- UnknownExceptionInfo and RMI Exceptions

UnknownExceptionInfo RMI Exception

java.lang.Error (or subclass) java.rmi.ServerError

java.rmi.RemoteException (or subclass) java.rmi.ServerException

java.lang.RuntimeException (or subclass) java.rmi.ServerRuntimeException (JDK 1.1)
java.lang.RuntimeException (Java 2)
36 Java to IDL Language Mapping, v1.4

When sending RMI/IDL values from Java, the codebase transmitted over GIOP must be the codebase that this method
would return for the value’s class.

When sending RMI/IDL object references from Java, the codebase transmitted over GIOP is selected by calling the
method

org.omg.CORBA_2_3.portable.ObjectImpl._get_codebase() on the stub object.

4.4.9.3 Codebase Transmission

For values and value helpers, the codebase is transmitted after the value tag.

For stubs and ties, the codebase is transmitted as the TaggedComponent TAG_JAVA_CODEBASE in the IOR profile,
where the component_data is a CDR encapsulation of the codebase written as an IDL string. The codebase is a space-
separated list of one or more URLs.

In all cases, the SendingContextRunTime service context may provide a default codebase that is used if not
overridden by a more specific codebase encoded in a valuetype or IOR.

For object references created using InputStream.read_Object or
InputStream.read_abstract_interface, the transmitted codebase is stored in the object reference (stub) and
can be retrieved subsequently using the

org.omg.CORBA_2_3.portable.ObjectImpl._get_codebase() method, described below.

If no codebase was transmitted, localCodebase is stored in the object reference (stub).

4.4.9.4 Codebase Access

In the event that PortableRemoteObject.narrow() must load a stub, it needs to call a portable API to extract
codebase information from the original stub. This API is also used by the OutputStream methods write_Object
and write_abstract_interface to obtain the codebase to be transmitted in the TAG_JAVA_CODEBASE
TaggedComponent. The API that is provided for these purposes is the _get_codebase() method of the
org.omg.CORBA_2_3.portable.ObjectImpl class. See the IDL/Java Language Mapping specification.

4.4.9.5 Codebase Usage

The following method (see “Util” on page 48) is used to load classes.

Util.loadClass(String className,
String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException { ... }

On Java 2, this method works as follows:

1. Find the first non-null ClassLoader on the call stack and attempt to load the class using this ClassLoader. If this fails...

2. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass

(remoteCodebase, className)

3. If remoteCodebase is null or useCodebaseOnly is true, then call
Java to IDL Language Mapping, v1.4 37

java.rmi.server.RMIClassLoader.loadClass(className)

4. If a class was not successfully loaded by step 1, 2, or 3, and loader is non-null, then call
Class.forName(className, false, loader).

5. If a class was successfully loaded by step 1, 2, 3, or 4, then return the loaded class.

On JDK 1.1, this method works as follows:

1. If className is an array type, extract the array element type. If this is a primitive type, then call
Class.forName(className), else proceed using the array element class name as className.

2. Search the call stack for the first non-null ClassLoader. If a ClassLoader is found, then attempt to load the class using
this ClassLoader, else attempt to load the class using Class.ForName(className). If this fails...

3. If remoteCodebase is non-null and useCodebaseOnly is false, then call
java.rmi.server.RMIClassLoader.loadClass(codebaseURL, className) for each remote
codebase URL in the remoteCodebase string until the class is found.

4. If remoteCodebase is null or useCodebaseOnly is true, then call
java.rmi.server.RMIClassLoader.loadClass(className).

5. If a class was not successfully loaded by step 1, 2, 3, or 4, and loader is non-null, then call
loader.loadClass(className).

6. If a class was successfully loaded by step 1, 2, 3, 4, or 5, then return the loaded class, unless the className
parameter was a non-primitive array type, in which case return a suitably dimensioned array class for the element
class that was loaded.

When loading classes for RMI/IDL values, stubs, and ties, the class loaded must be the same as that returned by this
method except where stated below.

For values and their helper classes, remoteCodebase is the codebase that was transmitted in the GIOP valuetype
encoding (if any), or else the codebase obtained from the SendingContextRunTime service context associated with
the IIOP connection. (loader is null or the class loader of the expected value class, if known.)

For ties created by PortableRemoteObject.exportObject, remoteCodebase is obtained by calling
Util.getCodebase on the class of the implementation object. (loader is null.)

For stubs created by InputStream.read_Object(), remoteCodebase is the codebase transmitted in the IOR
TaggedComponent TAG_JAVA_CODEBASE (if any), or else the codebase obtained from the
SendingContextRunTime service context associated with the IIOP connection. This method may either create a
generic stub for subsequent narrowing or may attempt to create a stub by loading a stub class that matches the
RepositoryId in the IOR. (loader is null.)

For stubs created by InputStream.read_Object(clz), remoteCodebase is the same as for
InputStream.read_Object(). If clz is a stub class, then the implementation of read_Object(clz) may
either use the actual parameter clz to create a stub or may attempt to create a stub by loading a stub class whose name
is derived from the RepositoryId in the IOR. If clz is an RMI/IDL remote interface, then the implementation of
read_Object(clz) creates a stub whose class name is derived from either the name of the interface type clz or the
RepositoryId in the IOR. (loader is clz.getClassLoader().)
38 Java to IDL Language Mapping, v1.4

For stubs created by PortableRemoteObject.narrow, remoteCodebase is obtained from the narrowFrom
object by calling the ObjectImpl._get_codebase() method. For stubs created by
PortableRemoteObject.toStub, Util.writeRemoteObject or Util.writeAbstractObject,
remoteCodebase is obtained by calling Util.getCodebase() on the class of the implementation object. (loader
is narrowFrom.getClassLoader().)

For all stubs, remoteCodebase is stored by the Delegate and can be retrieved subsequently using the
ObjectImpl._get_codebase() method.

4.4.10 Custom Marshaling Format
When an RMI/IDL value type is custom marshaled over GIOP, the following data is transmitted:

a. octet - Format version. 1 or 2.

For serializable objects with a writeObject method:

b. boolean - True if defaultWriteObject or WriteFields was called, false otherwise.

c. (optional) Data written by defaultWriteObject. The ordering of the fields is the same as the order in
which they appear in the mapped IDL valuetype, and these fields are encoded exactly as they would be if the
class did not have a writeObject method.

d. Additional data written by writeObject, encoded as specified below. For format version 1, this data is
optional and if present must be written “as is.” For format version 2, if optional data is present then it must be
enclosed within a CDR custom valuetype with no codebase and repid "RMI:org.omg.custom.<class>"
where <class> is the fully-qualified name of the class whose writeObject method is being invoked. For
format version 2, if optional data is not present then a null valuetype (0x00000000) must be written to indicate
the absence of optional data.

For externalizable objects:

b. (optional) Data written by writeExternal, encoded as specified below.

Primitive Java types are marshaled as their corresponding IDL primitives (see “Mappings for Primitive Types”
on page 12). Java strings written by the java.io.ObjectOutputStream.writeUTF() method and read
by the java.io.ObjectInputStream.readUTF() method are marshaled as IDL wstrings. Java ints
and Strings written by the writeByte, writeChar, writeBytes, and writeChars methods of
java.io.ObjectOutputStream are marshaled as specified by the definitions of these methods in the
java.io.DataOutput interface. Other Java objects are marshaled in the form of a union with a boolean
discriminator containing either an object reference if the discriminator is true or a value type if the discriminator
is false.3

RMI/IDL stubs, RMI/IDL remote implementations, and IDL stubs are marshaled as object references (IORs).
All other Java objects are marshaled as value types. The value type encoding is determined from the object's
runtime type by applying the mappings specified in “Mapping for RMI/IDL Value Types” on page 16 and
“Mapping for RMI/IDL Arrays” on page 23.

3. This marshaling format happens to be the same as that used for OMG IDL abstract interface types. Despite this similarity, these
objects are not mapped to OMG IDL abstract interface types and they should not be treated as abstract interface types when they
are unmarshaled.
Java to IDL Language Mapping, v1.4 39

The default custom stream format is 1 for GIOP 1.2 and 2 for GIOP 1.3. For RMI/IDL custom value types
marshaled within GIOP requests, a format version not greater than the default for the GIOP message level must
be sent, except where the TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
“TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component” on page 40) is part of the IOR profile. For
RMI/IDL custom value types marshaled within GIOP replies (including the UnknownExceptionInfo service
context), a format version not greater than the default for the GIOP message level must be sent, except where the
RMICustomMaxStreamFormat service context (see “RMICustomMaxStreamFormat Service Context” on
page 40) was sent on the associated GIOP request

4.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
Although the IIOP level of an IOR specifies a default maximum stream format version for RMI/IDL custom value types
marshaled as part of GIOP requests to this IOR, there are cases when it may be necessary to override this default.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component has an associated value of type octet, encoded as a
CDR encapsulation, designating the maximum stream format version for RMI/IDL custom value types that can be used in
GIOP messages sent to this IOR.

The TAG_RMI_CUSTOM_MAX_STREAM_FORMAT component can appear at most once in any IOR profile. For
profiles supporting IIOP 1.2 or greater, it is optionally present. If this component is omitted, then the default maximum
stream format version for RMI/IDL custom value types sent to this IOR is 1 for IIOP 1.2 and 2 for IIOP 1.3.

4.4.12 RMICustomMaxStreamFormat Service Context
Although the GIOP level of a request specifies a default maximum stream format version for RMI/IDL custom value types
marshaled as part of the associated reply, there are cases when it may be necessary to override this default.

RMICustomMaxStreamFormat identifies a CDR encapsulation of a single octet that specifies the highest RMI/IDL
custom stream format version that can be used for RMI/IDL custom valuetypes marshaled within a GIOP reply associated
with the GIOP request that carries this service context. If this service context is omitted from a GIOP request, then the
default maximum stream format version for RMI/IDL custom value types marshaled within a GIOP reply associated with
this request is 1 for GIOP 1.2 and 2 for GIOP 1.3.

4.4.13 Marshaling RMI/IDL Arrays
RMI/IDL arrays must be marshaled with a repository ID indicating their runtime type. Also, RMI/IDL arrays must be
unmarshaled according to the type specified in the repository ID.

4.4.14 Creating ORB Instances
The Portability APIs (see “Portability Interfaces” on page 41) and Application Programming Interfaces (see “Application
Programming Interfaces” on page 59) in the java.rmi.CORBA package define functionality that is not part of the ORB
and requires the use of an existing ORB instance for certain operations. Nothing in this specification requires an
implementation of these javax.rmi.CORBA APIs to create a new ORB instance.

4.4.15 Runtime Limitations
Our mapping implies three runtime limitations relative to current Java RMI.
40 Java to IDL Language Mapping, v1.4

Shared reference objects

In Java, remote object references are represented as Java objects. This means that there can be several Java pointers to
one object reference. This pointer sharing may be lost when transmitting graphs of Java objects across RMI/IDL.

In practice this is likely to have only very minor impact on Java programmers.

Distributed garbage collection

Java provides automatic garbage collection and RMI using its native protocol extends this to the net with distributed
garbage collection.

CORBA does not currently provide support for distributed garbage collection; therefore, distributed garbage collection is
not supported as part of RMI/IDL. It is instead each server’s responsibility to maintain references to any server objects it
wishes to keep active, and to free these references when it wishes the server object to be garbage collected. This is done
using the exportObject and unexportObject methods of javax.rmi.PortableRemoteObject (see
“PortableRemoteObject” on page 59).

Narrowing

Java provides type-checked casts as part of the language. RMI using its native protocol dynamically downloads stubs that
accurately reflect the RMI interface types of each remote object reference, thereby allowing Java language casts to be
used to narrow remote object references.

Downloadable stubs are not required by the CORBA object model. Since we cannot rely on downloadable stubs, we
cannot rely on simple Java casts to implement narrowing of object references. We have therefore defined an explicit
narrow method (see “Narrowing” on page 33) that programmers must use when narrowing portable RMI object
references.

4.5 Portability Interfaces
This sub clause describes extensions to the portable stubs and skeletons architecture defined in the IDL/Java language
mapping. These extensions allow stubs and skeletons to be created for this Java to IDL mapping that can rely on a
standard set of Java ORB Portability APIs, including APIs for serializing Java objects to GIOP format.

These ORB portability APIs also allow alternative implementations of the RMI/IDL APIs.

See “Stub classes” on page 51 and “Tie classes” on page 54 for simple example stubs and ties.

4.5.1 Portability APIs

4.5.1.1 Tie

The interface javax.rmi.CORBA.Tie defines methods that all RMI/IDL server side ties must implement.

The javax prefix indicates these classes are part of a standard extension. The use of this prefix allows these interfaces
and classes to be delivered as an add-on to existing JDKs. Security checks in the browsers prevent downloading of classes
whose top-level package qualifier is java, so Sun has defined the convention of using a top-level qualifier of javax for
extensions.

// Java
public interface Tie extends
Java to IDL Language Mapping, v1.4 41

org.omg.CORBA.portable.InvokeHandler {

org.omg.CORBA.Object thisObject();

void deactivate() throws java.rmi.NoSuchObjectException;

org.omg.CORBA.ORB orb();

void orb(org.omg.CORBA.ORB orb);

void setTarget(java.rmi.Remote target);

java.rmi.Remote getTarget();
}

The thisObject method returns an object reference for the target object represented by the Tie. It is semantically
equivalent to the _this_object() method of the org.omg.PortableServer.Servant class.

The deactivate method deactivates the target object represented by the Tie. It is semantically equivalent to the
deactivate_object method of the org.omg.PortableServer.POA class. If the target object could not be
deactivated (e.g., because it is not currently active), a NoSuchObjectException is thrown.

The orb() method returns the ORB for the Tie. It is semantically equivalent to the _orb() method of the
org.omg.PortableServer.Servant class.

The orb(ORB orb) method sets the ORB for the Tie. It is semantically equivalent to calling
ORB.set_delegate() with an actual parameter of type org.omg.PortableServer.Servant.

The setTarget method must be implemented by tie classes. It will be called by Util.registerTarget to notify
the tie of its registered target implementation object.

The getTarget method must be implemented by tie classes. It returns the registered target implementation object for
the tie.

4.5.1.2 Stub

The class javax.rmi.CORBA.Stub is the standard base class from which all RMI/IDL stubs must inherit. Its main
reason for existence is to act as a convenience base class to handle stub serialization.

// Java
public abstract class Stub

extends org.omg.CORBA_2_3.portable.ObjectImpl
implements java.io.Serializable {

private static final long serialVersionUID =
1087775603798577179L;

public int hashCode() { ... }
public boolean equals(java.lang.Object obj) { ... }
public String toString() { ... }

public void connect(org.omg.CORBA.ORB orb)
42 Java to IDL Language Mapping, v1.4

throws java.rmi.RemoteException { ... }

private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException { ... }

private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException,
ClassNotFoundException { ... }

}

The hashCode method shall return the same hash code for all stubs that represent the same remote object. The equals
method shall return true when used to compare stubs that represent the same remote object, and false otherwise. The
toString method shall return the same string for all stubs that represent the same remote object.

The connect method makes the stub ready for remote communication using the specified ORB object orb. Connection
normally happens implicitly when the stub is received or sent as an argument on a remote method call, but it is sometimes
useful to do this by making an explicit call (e.g., following deserialization). If the stub is already connected to orb (i.e.,
has a delegate set for orb), then connect takes no action. If the stub is connected to some other ORB, then a
RemoteException is thrown. Otherwise, a delegate is created for this stub and the ORB object orb.

The Stub.connect method is not intended to be called directly by application code. Instead, application code should
call the PortableRemoteObject.connect method (see “PortableRemoteObject” on page 59), which will in turn
call the Stub.connect method. This allows the application code to remain portable between IIOP and JRMP. RMI/
IDL stubs may also be connected to an ORB implicitly by being passed to OutputStream.write_Object.

The writeObject and readObject methods support stub serialization and deserialization by saving and restoring the
IOR associated with the stub. The writeObject method writes the following data to the serialization stream:

1. int - length of IOR type id

2. byte[] - IOR type ID encoded using ISO 8859-1 (written using a write call, not a writeObject call)

3. int - number of IOR profiles

4. For each IOR profile:

a. int - profile tag

b. int - length of profile data

c. byte[] - profile data (written using a write call, not a writeObject call).

4.5.1.3 ValueOutputStream

The interface org.omg.CORBA.portable.ValueOutputStream defines methods that allow serialization of
custom-marshaled RMI/IDL objects to GIOP streams.

// Java
public interface ValueOutputStream {

void start_value(java.lang.String rep_id);
void end_value();

}

Java to IDL Language Mapping, v1.4 43

The start_value method ends any currently open chunk, writes a valuetype header for a nested custom valuetype
(with a null codebase and the specified repository ID), and increments the valuetype nesting depth.

The end_value method ends any currently open chunk, writes the end tag for the nested custom valuetype, and
decrements the valuetype nesting depth.

4.5.1.4 ValueInputStream

The interface org.omg.CORBA.portable.ValueInputStream defines methods that allow deserialization of
custom-marshaled RMI/IDL objects from GIOP streams.

// Java
public interface ValueInputStream {

void start_value();
void end_value();

}

The start_value method reads a valuetype header for a nested custom valuetype and increments the valuetype nesting
depth.

The end_value method reads the end tag for the nested custom valuetype (after skipping any data that precedes the end
tag) and decrements the valuetype nesting depth.

4.5.1.5 ValueHandler and Related Interfaces

The interfaces javax.rmi.CORBA.ValueHandler, javax.rmi.CORBA.ValueHandlerMultiFormat, and
javax.rmi.CORBA.ValueHandlerCodeBaseDelegate define methods that allow serialization of Java objects to
and from GIOP streams.

// Java
public interface ValueHandler {

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value);

java.io.Serializable readValue(
org.omg.CORBA.portable.InputStream in,
int offset,
Class clz,
String repositoryID,
org.omg.SendingContext.RunTime sender);

String getRMIRepositoryID(Class clz);

boolean isCustomMarshaled(Class clz);

/**
*@deprecated
*/
org.omg.SendingContext.RunTime getRunTimeCodeBase();
44 Java to IDL Language Mapping, v1.4

java.io.Serializable writeReplace(
java.io.Serializable value);

}

public interface ValueHandlerMultiFormat
extends ValueHandler {

byte getMaximumStreamFormatVersion();

void writeValue(org.omg.CORBA.portable.OutputStream out,
java.io.Serializable value,
byte streamFormatVersion);

}

public interface ValueHandlerCodeBaseDelegate {
org.omg.SendingContext.CodeBaseOperations

getRunTimeCodeBaseDelegate();
}

The writeValue method can be used to write GIOP data, including RMI remote objects and serialized data objects, to
an underlying portable OutputStream.

The implementation of the writeValue method interacts with the core Java serialization machinery. The data generated
during serialization is written using the underlying OutputStream object.

The readValue method can be used to read GIOP data, including RMI remote objects and serialized data objects, from
an underlying portable InputStream. The offset parameter is the offset in the stream of the value being
unmarshaled. The clz parameter is the Java class of the value to be unmarshaled. The repositoryID parameter is the
repository ID unmarshaled from the value header by the caller of readValue. The sender parameter is the sending
context object passed in the optional service context tagged SendingContextRunTime in the GIOP header, if any, or
null if no sending context was passed. If clz is an enum class, readValue returns the singleton enum constant that is
the result of calling the java.lang.Enum.valueOf() method passing clz and the string name of the enum constant
unmarshaled from the mapped enum valuetype in the stream.

The implementation of the readValue method interacts with the core Java serialization machinery. The data required
during deserialization is read using the underlying InputStream object.

The getRMIRepositoryID method returns the RMI-style repository ID string for clz. If clz is an anonymous class
for an enum constant with a class body (i.e., its superclass is not java.lang.Enum), then the getRMIRepositoryID
method returns the RMI-style repository ID string for the named superclass of clz.

The isCustomMarshaled method returns true if the value is custom marshaled and therefore requires a chunked
encoding, and false otherwise.

The getRunTimeCodeBase method returns the ValueHandler object's SendingContext::RunTime
object reference, which is used to construct the SendingContextRunTime service context.

The writeReplace method returns the serialization replacement for the value object. This is the object returned by
calling value.writeReplace(), if value has a writeReplace method.
Java to IDL Language Mapping, v1.4 45

The ValueHandlerMultiFormat interface introduces a method getMaximumStreamFormatVersion that returns
the maximum stream format version for RMI/IDL custom value types that is supported by this ValueHandler object. The
ValueHandler object must support the returned stream format version and all lower versions. The format versions
currently defined are 1 and 2. See “Custom Marshaling Format” on page 39 for more details.

The ValueHandlerMultiFormat interface introduces an overloaded writeValue method that allows the ORB to
pass the required stream format version for RMI/IDL custom value types. If the ORB calls this method, it must pass a stream
format version between 1 and the value returned by the getMaximumStreamFormatVersion method inclusive, or else
a BAD_PARAM exception with standard minor code 39 must be thrown. If the ORB calls the
ValueHandler.writeValue method, stream format version 1 is implied.

The valueHandlerCodeBaseDelegate interface introduces a method getRunTimeCodeBaseDelegate. This
method returns an implementation delegate that an ORB can use to create a SendingContext::RunTime object reference
and a SendingContextRunTime service context. This method replaces the ValueHandler.getRunTimeCodeBase
method, which is deprecated. The ValueHandler object returned by the Util.createValueHandler method must
also implement the ValueHandlerCodeBaseDelegate interface.

Execution model for Serialization

Sun will provide an implementation of the ValueHandler interface that handles writing and reading RMI/IDL objects
by making calls to lower-level CORBA OutputStream and InputStream objects, which can be provided by an
independent ORB vendor. The Sun-provided implementation will handle the interactions with the Java serialization
machinery and will write any serialized data through to the lower level stream.

Typically the ORB vendors will implement their own GIOP input and output streams. Before transmitting RMI/IDL data
they will create an object that supports the ValueHandler interface by calling the createValueHandler method of
the javax.rmi.CORBA.Util class (see “Util” on page 48). When they need to marshal a non-IDL value, they will call
ValueHandler.writeValue, and when they need to unmarshal a non-IDL value, they will call
ValueHandler.readValue.

The ORB output stream passed to the ValueHandlerMultiFormat.writeValue method must implement the
ValueOutputStream interface (see “ValueOutputStream” on page 43), and the ORB input stream passed to the
ValueHandler.readValue method must implement the ValueInputStream interface (see “ValueInputStream”
on page 44).

Value Marshaling

When marshaling an RMI value, the ORB stream must call Util.getCodeBase to get the codebase string,
ValueHandler.getRMIRepositoryID to get the repository ID string, and
ValueHandler.isCustomMarshaled to see if the value is custom marshaled and therefore requires a chunked
encoding.

The ORB stream writes the value tag, codebase (if any), and repository ID. It calls ValueHandler.writeValue to
write the state of the value. The ORB stream deals with nulls, indirections, chunking, and end tags.

The ORB casts the ValueHandler object to type ValueHandlerCodeBaseDelegate and calls its
getRunTimeCodeBaseDelegate method to obtain an implementation delegate of type CodeBaseOperations. The
ORB creates a SendingContextRunTime service context containing an object reference for a tied implementation whose
delegate is this CodeBaseOperations object. Clients must send this service context on the first GIOP request that
flows over a connection that may be used to send RMI values to the server. Servers must send this service context on the
first GIOP reply that flows over a connection that may be used to send RMI values to the client.
46 Java to IDL Language Mapping, v1.4

The ORB calls the writeReplace method before calling writeValue. The result from calling this method is passed
to ValueHandler.writeValue unless either

• it is a previously marshaled value, in which case it is marshaled as an indirection, or

• its class implements org.omg.CORBA.Object, in which case it is marshaled as an object reference.

An ORB stream instance must only call writeReplace once for each value that it marshals.

Before calling the writeValue method of the ValueHandler object, the ORB must determine the stream format
version to be used. This is the maximum format version that is supported by both the local ValueHandler object and
the remote connection endpoint. The maximum local format version is the value returned by the
getMaximumStreamFormatVersion method of the ValueHandler object, or 1 if the ValueHandler object
doesn't support the ValueHandlerMultiFormat interface. The maximum remote format version is 1 for GIOP 1.2
messages and 2 for GIOP 1.3 messages, except where these default values are overridden by either the
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT TaggedComponent (see
“TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component” on page 40) or the RMICustomMaxStreamFormat
service context (see “RMICustomMaxStreamFormat Service Context” on page 40). For GIOP 1.2 messages, recognition
of these overrides is optional.

If the stream format version computed in this way is 2 or greater, the ORB must call the
ValueHandlerMultiFormat.writeValue method, passing this value. If the stream format version computed in
this way is 1, the ORB may call either the ValueHandlerMultiFormat.writeValue method (with stream format
1) or the ValueHandler.writeValue method.

If the ORB’s call to the ValueHandler object’s writeValue method specified RMI/IDL custom value type stream
format version 2, then the ValueHandler object must call the ValueOutputStream.start_value and
ValueOutputStream.end_value methods of the ORB stream before and after writing the data specified by item 1d
of “Custom Marshaling Format” on page 39. The rep_id string passed to the start_value method must be
"RMI:org.omg.custom.<class>:<hashcode>:<suid>" where <class> is the fully-qualified name of the
class whose writeObject method is being invoked and <hashcode> and <suid> are the class's hashcode and SUID.
For format version 2, if the ORB stream passed to the ValueHandler object doesn't support the
ValueOutputStream interface, then a BAD_PARAM exception with standard minor code 40 must be thrown.

Value Unmarshaling

When unmarshaling an RMI value, the ORB stream must read the value tag, codebase (if any), and repository ID. The
ORB stream calls Util.loadClass to load the value’s class, passing the Java class name contained in the RMI-style
repository ID and the codebase string from the value’s GIOP encoding (if present) or the SendingContextRunTime
service context.

The ORB stream calls ValueHandler.readValue to read the state of the value, passing the current stream offset, the
class returned by Util.loadClass, the repository ID, and the sender’s SendingContext::RunTime object reference.
The repository ID is needed so that the ValueHandler object can determine if the class passed in is structurally
identical to the class used by the sender to marshal the value. The ORB stream deals with nulls, indirections, chunking,
and end tags.

The ValueHandler object may receive an org.omg.CORBA.portable.
IndirectionException from the ORB stream. The ORB input stream throws this exception when it is called to
unmarshal a value encoded as an indirection that is in the process of being unmarshaled. This can occur when the ORB
stream calls the ValueHandler object to unmarshal an RMI value whose state contains a recursive reference to itself.
Java to IDL Language Mapping, v1.4 47

Because the top-level ValueHandler.readValue call has not yet returned a value, the ORB stream’s indirection
table contains no entry for an object with the stream offset specified by the indirection tag. This stream offset is returned
in the exception’s offset field.

If the ValueHandler object receives an IndirectionException, it is responsible for ensuring that the correct Java
object reference is assigned to the value field that would have held the result returned by the ORB stream if an
IndirectionException had not occurred. The manner in which this is done (e.g., eager or lazy) is not specified. If
the offset in an IndirectionException does not correspond to any offset previously passed to the ValueHandler
object in a ValueHandler.readValue method call, the ValueHandler.readValue method shall throw a
MARSHAL exception.

If the RMI/IDL custom data unmarshaled from the input stream was encoded using stream format 2, then the
ValueHandler object must call the ValueInputStream.start_value and ValueInputStream.end_value
methods of the ORB stream before and after reading the data specified by item 1d of “Custom Marshaling Format” on
page 39. For format version 2, if the ORB stream passed to the ValueHandler object doesn’t support the
ValueInputStream interface, then a BAD_PARAM exception with standard minor code 41 must be thrown. If the
format version unmarshaled by the ValueHandler object is greater than the maximum version that it supports, then a
MARSHAL exception with standard minor code 7 must be thrown.

When using stream version 2, the ORB input stream must throw a MARSHAL exception with standard minor code 10 to
signal an incompatibility between the custom data on the wire and read operations from the ValueHandler object until
end_value is called. This can occur when a sender’s version of a class does not write custom data, but the receiver’s
version attempts to perform a read operation.

4.5.1.6 Util

A utility class javax.rmi.CORBA.Util provides methods that can be used by stubs to perform common operations.

// Java
public class Util {

public static java.rmi.RemoteException
mapSystemException(org.omg.CORBA.SystemException ex)

{ ... }

public static void writeAny(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj){ ... }

public static java.lang.Object readAny(
org.omg.CORBA.portable.InputStream in) { ... }

public static void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj) { ... }

public static void registerTarget(Tie tie,
48 Java to IDL Language Mapping, v1.4

java.rmi.Remote target) { ... }

public static void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException
{ ... }

public static Tie getTie(java.rmi.Remote target) { ... }

public static ValueHandler createValueHandler() { ... }

public static java.rmi.RemoteException wrapException(
Throwable obj) { ... }

public static java.lang.Object copyObject(
java.lang.Object obj, org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException { ... }

public static java.lang.Object[] copyObjects(
java.lang.Object[] obj, org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException { ... }

public static boolean isLocal(Stub s)
throws java.rmi.RemoteException { ... }

public static String getCodebase(Class clz) {... }

public static Class loadClass(String className,
String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException { ... }
}

The mapSystemException method maps a CORBA system exception to a java.rmi.RemoteException or a
java.lang.RuntimeException. The mapping is described in “Mapping CORBA System Exceptions to RMI
Exceptions” on page 35. If the mapped exception is an instance of java.rmi.RemoteException or a subclass, the
mapped exception is returned; otherwise, it is thrown.

The writeAny method writes the Java object obj to the output stream out in the form of a GIOP any. The contents of
the GIOP any are determined by applying the Java to IDL mapping rules to the actual runtime type of obj. If obj is
null, then it is written as follows: the TypeCode is tk_abstract_interface, the repository ID is “IDL:omg.org/CORBA/
AbstractBase:1.0”, the name string is ““, and the any’s value is a null abstract interface type (encoded as a
boolean discriminant of false followed by a long value of 0x00000000).

The readAny method reads a GIOP any from the input stream in and unmarshals it as a Java object, which is returned.
The following TypeCodes are valid for the GIOP any: tk_value, tk_value_box, tk_objref, and tk_abstract_interface.
For each of these types, both null and non-null values are valid. If the TypeCode is anything other than these, a
MARSHAL exception is thrown.
Java to IDL Language Mapping, v1.4 49

The writeRemoteObject method is a utility method for use by stubs when writing an RMI/IDL object reference to an
output stream. If obj is a stub object, writeRemoteObject simply writes obj to out.write_Object. However,
if obj is an exported RMI/IDL implementation object, then writeRemoteObject allocates (or reuses) a suitable Tie
(see “Allocating Ties for Remote Values” on page 33), plugs together the tie with obj, and writes the object reference for
the tie to out.write_Object. This method cannot be used to write a JRMP object reference to an output stream.

The writeAbstractObject method is another similar utility method for use by stubs. If obj is a value object, or a
stub object, writeAbstractObject simply writes obj to out.write_abstract_interface. However, if obj
is an exported RMI/IDL implementation object, then writeAbstractObject allocates (or reuses) a suitable Tie (see
“Allocating Ties for Remote Values” on page 33), plugs together the tie with obj, and writes the object reference for the
tie to the out.write_abstract_interface. This method cannot be used to write a JRMP object reference to an
output stream.

The registerTarget method is needed to support unexportObject. Because unexportObject takes a target
implementation object as its parameter, it is necessary for the Util class to maintain a table mapping target objects back
to their associated Ties. It is the responsibility of the code that allocates a Tie to also call the registerTarget
method to notify the Util class of the target object for a given tie. The registerTarget method will call the
Tie.setTarget method to notify the tie object of its target object.

The unexportObject method deactivates an implementation object and removes its associated Tie from the table
maintained by the Util class. If the object is not currently exported or could not be deactivated, a
NoSuchObjectException is thrown.

The getTie method returns the tie object for an implementation object target, or null if no tie is registered for the
target object.

The createValueHandler method returns a singleton instance of a class that implements the ValueHandler and
ValueHandlerCodeBaseDelegate interfaces.

The wrapException method wraps an exception thrown by an implementation method. It returns the corresponding
client-side exception. See “Mapping of UnknownExceptionInfo Service Context” on page 36 for details.

The copyObject method is used by local stubs to copy an actual parameter, result object, or exception. The
copyObjects method is used by local stubs to copy any number of actual parameters, preserving sharing across
parameters as necessary to support RMI/IDL semantics. The actual parameter Object[] array holds the method
parameter objects that need to be copied, and the result Object[] array holds the copied results.

The copyObject and copyObjects methods ensure that remote call semantics are observed for local calls. They
observe copy semantics for value objects that are equivalent to marshaling, and they handle remote objects correctly. For
non-immutable parameters, results and exceptions (including remote objects), stubs must either call these methods or
generate inline code to provide equivalent semantics.

The isLocal method has the same semantics as the ObjectImpl._is_local method, except that instead of
throwing an org.omg.CORBA.SystemException, it throws a java.rmi.RemoteException that is the result of
passing the SystemException to the mapSystemException method.

The getCodebase method returns the Java codebase for the Class object clz as a space-separated list of URLs. See
“Codebase Selection” on page 36 for details.

The loadClass method loads a Java class object for the Java class name className, using additional information
passed in the remoteCodebase and loader parameters. See “Codebase Usage” on page 37 for details.
50 Java to IDL Language Mapping, v1.4

4.5.1.7 Additional Portability APIs

The Java Language to IDL Mapping uses the following portability APIs that are also used by the OMG IDL to Java
Mapping.

org.omg.CORBA.portable.InputStream
org.omg.CORBA.portable.OutputStream
org.omg.CORBA_2_3.portable.InputStream
org.omg.CORBA_2_3.portable.OutputStream
org.omg.CORBA.portable.ObjectImpl
org.omg.CORBA.portable.Delegate
org.omg.CORBA_2_3.portable.ObjectImpl
org.omg.CORBA_2_3.portable.Delegate
org.omg.CORBA.portable.InvokeHandler
org.omg.CORBA.portable.ResponseHandler
org.omg.CORBA.portable.ApplicationException
org.omg.CORBA.portable.RemarshalException
org.omg.CORBA.portable.UnknownException
org.omg.CORBA.portable.IndirectionException
org.omg.CORBA.portable.ServantObject
org.omg.CORBA.portable.ServantObjectExt

These APIs are described in the IDL to Java Language Mapping specification.

4.5.2 Generated classes
There are two kinds of classes generated as part of this specification.

1. Stub classes. These are used by RMI/IDL clients to send calls to a server. A stub class is required for each RMI/IDL
remote interface.

2. Tie classes. These are used to process incoming calls and dispatch the calls to a server implementation class. A tie
class is required for each RMI/IDL implementation class.

No generated classes are required for RMI/IDL value types, exceptions, etc.

4.5.2.1 Stub classes

For each RMI/IDL remote interface Foo there will be a stub class _Foo_Stub that extends javax.rmi.CORBA.Stub
and implements Foo.

The stub class supports stub methods for all the RMI/IDL remote methods in the RMI/IDL remote interfaces that it
implements, and must have a public no-argument constructor.

Here is a simple RMI/IDL interface and an example stub class:

// Java
public interface Aar‘dvark extends java.rmi.Remote {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

Java to IDL Language Mapping, v1.4 51

public class _Aardvark_Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public _Aardvark_Stub() {} // implicit or explicit

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {

org.omg.CORBA_2_3.portable.InputStream in = null;
try {

try {
org.omg.CORBA.OutputStream out =

_request(“echo”, true);
out.write_long(x);
in = (org.omg.CORBA_2_3.portable.InputStream)

_invoke(out);
return in.read_long();

} catch (org.omg.CORBA.portable.
ApplicationException ex) {

in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getInputStream();

String id = in.read_string();
if (id.equals("IDL:BoomerangEx/1.0")) {
throw (Boomerang)in.read_value();
} else {
throw new java.rmi.UnexpectedException(id);

}
} catch (org.omg.CORBA.portable.RemarshalException

ex) {
return echo(x);

}
} catch (org.omg.CORBA.SystemException ex) {

throw javax.rmi.CORBA.Util.mapSystemException(ex);
} finally {

_releaseReply(in);
}

}
}

4.5.2.2 Local Stubs

The stub class may provide an optimized call path for local server implementation objects. For a method echo(int x)
of a remote interface Aardvark, the optimized path does the following:

1. Find out if the servant is local by calling Util.isLocal().

2. If the servant is local, call this._servant_preinvoke("echo", Aardvark.class).

3. If _servant_preinvoke returned a non-null ServantObject so, do the following:

a. Call ((Aardvark)so.servant).echo(x).
52 Java to IDL Language Mapping, v1.4

b. If the invocation on the servant completed without throwing an exception, and so is an instance of
ServantObjectExt, then call so.normalCompletion().

c. If the invocation on the servant threw exception exc, and so is an instance of ServantObjectExt, then
call so.exceptionalCompletion(exc).

d. Call this._servant_postinvoke(so).

4. If _servant_preinvoke returned null, repeat step 1. The call to Util.isLocal() will return false, causing
the non-optimized path to be followed.

The _servant_preinvoke method returns non-null if, and only if, an optimized local call may be used. It performs
any security checking that may be necessary. If the _servant_preinvoke method returns non-null, then the servant
field of the returned ServantObject must contain an object that implements the RMI/IDL remote interface and can be
used to call the servant implementation.

Local stubs are responsible for performing copying of method parameters, results and exceptions, and handling remote
objects correctly in order to provide remote/local-transparent RMI/IDL semantics. Local stubs are not required to copy
immutable objects.

The following is an example of a stub class that provides this optimized call path.

// Java
import org.omg.CORBA.portable.ServantObjectExt;

public class _Aardvark_Stub extends javax.rmi.CORBA.Stub
implements Aardvark {

public int echo(int x) throws java.rmi.RemoteException,
Boomerang {

if (!javax.rmi.CORBA.Util.isLocal(this)) {
// remote call path
org.omg.CORBA_2_3.portable.InputStream in = null;
try {

try {
org.omg.CORBA.portable.OutputStream out =

_request("echo", true);
out.write_long(x);
in = (org.omg.CORBA_2_3.portable.InputStream)

_invoke(out);
return in.read_long();

} catch (org.omg.CORBA.portable.
ApplicationException ex) {

in = (org.omg.CORBA_2_3.portable.InputStream)
ex.getInputStream();

String id = in.read_string();
if (id.equals("IDL:BoomerangEx/1.0")) {
throw (Boomerang)in.read_value();

} else {
throw new java.rmi.UnexpectedException(id);

}
} catch (org.omg.CORBA.portable.RemarshalException
Java to IDL Language Mapping, v1.4 53

ex) {
return echo(x);

}
} catch (org.omg.CORBA.SystemException ex) {

throw javax.rmi.CORBA.Util.mapSystemException(ex);
} finally {

_releaseReply(in);
}

} else {
// local call path
org.omg.CORBA.portable.ServantObject so =

_servant_preinvoke("echo", Aardvark.class);
if (so == null)

return echo(x);
try {

int result = ((Aardvark)so.servant).echo(x);
if (so instanceof ServantObjectExt)

((ServantObjectExt)so).normalCompletion();
return result;

} catch (Throwable ex) {
if (so instanceof ServantObjectExt)

((ServantObjectExt)so).
exceptionalCompletion(ex);

Throwable ex2 = (Throwable)
javax.rmi.CORBA.Util.copyObject(ex, _orb());

if (ex2 instanceof Boomerang)
throw (Boomerang)ex2;

else
throw javax.CORBA.Util.wrapException(ex2);

} finally {
_servant_postinvoke(so);

}
}

}

}

4.5.2.3 Tie classes

For each RMI/IDL implementation class there will be a corresponding tie class that implements
javax.rmi.CORBA.Tie. The tie class is called by the ORB to process an incoming call and to pass the call through to
an associated target implementation object.

After the Tie object has been constructed, the target implementation object must be set with a call on
Util.registerTarget.

Here is a simple RMI/IDL interface and an example Tie class:

// Java
public interface Aardvark extends java.rmi.Remote {
54 Java to IDL Language Mapping, v1.4

public int echo(int x) throws java.rmi.RemoteException,
Boomerang;

}

public class _Aardvark_Tie
extends org.omg.PortableServer.Servant
implements javax.rmi.CORBA.Tie {
private Aardvark target;

public void setTarget(java.rmi.Remote targ) {
target = (Aardvark) targ;
}

public java.rmi.Remote getTarget() {
return target;

 }

public org.omg.CORBA.OutputStream _invoke(String method,
org.omg.CORBA.InputStream in,
org.omg.CORBA.portable.ResponseHandler rh) {

try {
if (method.equals(“echo”)) {

try {
int x = in.read_long();
int result = target.echo(x);
org.omg.CORBA_2_3.portable.OutputStream out

= (org.omg.CORBA_2_3.portable.OutputStream)
rh.createReply();
 out.write_long(result);

return out;
} catch (Boomerang ex) {

String exid = "IDL:BoomerangEx/1.0";
org.omg.CORBA_2_3.portable.OutputStream out

= (org.omg.CORBA_2_3.portable.OutputStream)
rh.createExceptionReply();

out.write_string(exid);
out.write_value(ex);
return out;

}
} else {

throw new org.omg.CORBA.BAD_OPERATION();
}

} catch (org.omg.CORBA.SystemException ex) {
throw ex;

} catch (Throwable ex) {
throw new

org.omg.CORBA.portable.UnknownException(ex);
}

}

public org.omg.CORBA.Object thisObject() { ... }
Java to IDL Language Mapping, v1.4 55

public void deactivate() { ... }

public org.omg.CORBA.ORB orb() { ... }

public void orb(org.omg.CORBA.ORB orb) { ... }
}

4.5.3 Replaceability of API Implementations
A framework is provided to enable vendor-specific implementations of the Java Language to IDL Mapping Portability
Interfaces and Application Programming Interfaces. The affected classes are:

javax.rmi.CORBA.Stub
javax.rmi.CORBA.Util
javax.rmi.PortableRemoteObject

These classes are able to optionally delegate their methods to separate implementation classes, which can be provided by
ORB vendors.

4.5.3.1 StubDelegate

The implementation delegate class for javax.rmi.CORBA.Stub must implement the following interface for per-
instance delegation:

package javax.rmi.CORBA;

public interface StubDelegate {

int hashCode(Stub self);

boolean equals(Stub self, java.lang.Object obj);

String toString(Stub self);

void connect(Stub self, org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

void writeObject(Stub self, java.io.ObjectOutputStream s)
throws java.io.IOException;

void readObject(Stub self, java.io.ObjectInputStream s)
throws java.io.IOException,

ClassNotFoundException;
}

The above methods are called by the corresponding methods of javax.rmi.CORBA.Stub when delegation has been
specified as described in “Delegation Mechanism” on page 58.
56 Java to IDL Language Mapping, v1.4

4.5.3.2 UtilDelegate

The implementation delegate class for javax.rmi.CORBA.Util must implement the following interface for per-class
delegation:

package javax.rmi.CORBA;

public interface UtilDelegate {

java.rmi.RemoteException mapSystemException(
org.omg.CORBA.SystemException ex);

void writeAny(org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

java.lang.Object readAny(
org.omg.CORBA.portable.InputStream in);

void writeRemoteObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void writeAbstractObject(
org.omg.CORBA.portable.OutputStream out,
java.lang.Object obj);

void registerTarget(Tie tie, java.rmi.Remote target);

void unexportObject(java.rmi.Remote target)
throws java.rmi.NoSuchObjectException;

Tie getTie(java.rmi.Remote target);

ValueHandler createValueHandler();

String getCodebase(Class clz);

Class loadClass(String className, String remoteCodebase,
ClassLoader loader)

throws ClassNotFoundException;

boolean isLocal(Stub stub)
throws java.rmi.RemoteException;

java.rmi.RemoteException wrapException(Throwable obj);

java.lang.Object copyObject(java.lang.Object obj,
org.omg.CORBA.ORB orb)

throws java.rmi.RemoteException;

java.lang.Object[] copyObjects(java.lang.Object[] obj,
Java to IDL Language Mapping, v1.4 57

org.omg.CORBA.ORB orb)
throws java.rmi.RemoteException;

}

The above methods are called by the corresponding methods of javax.rmi.CORBA.Util when delegation has been
specified as described in “Delegation Mechanism” on page 58.

4.5.3.3 PortableRemoteObjectDelegate

The implementation delegate class for javax.rmi.PortableRemoteObject must implement the following
interface for per-class delegation:

package javax.rmi.CORBA;
public interface PortableRemoteObjectDelegate {

void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException;

java.rmi.Remote toStub (java.rmi.Remote obj)
throws NoSuchObjectException;

void unexportObject(java.rmi.Remote obj)
throws NoSuchObjectException;

java.lang.Object narrow (java.lang.Object narrowFrom,
Class narrowTo)

throws ClassCastException;

void connect (java.rmi.Remote target,
 java.rmi.Remote source)

throws java.rmi.RemoteException;
}

The above methods are called by the corresponding methods of javax.rmi.PortableRemoteObject when
delegation has been specified as described in “Delegation Mechanism” on page 58.

4.5.3.4 Delegation Mechanism

Alternate implementations of the standard API classes are enabled by setting system properties or placing entries in the
orb.properties file. The names of the new system properties are:

javax.rmi.CORBA.StubClass
javax.rmi.CORBA.UtilClass
javax.rmi.CORBA.PortableRemoteObjectClass

For security reasons, each replaceable API class reads its implementation delegate class system property at static
initialization time and uses this information to set up implementation delegation if this has been specified. The delegation
arrangement thus established cannot be changed subsequently. The search order for implementation delegate class names
is:

1. The system properties
58 Java to IDL Language Mapping, v1.4

2. The orb.properties file

For each implementation delegate class, an instance is created using the Class.newInstance() method. For the
Util and PortableRemoteObject delegate classes, this is a singleton instance. For the Stub delegate class, there is
one delegate instance per stub object. The methods in the standard API classes test if a delegate instance exists and if so,
forward the method call on to the delegate instance.

4.6 Application Programming Interfaces
One new API class is introduced to support RMI/IDL implementations.

4.6.1 PortableRemoteObject
The javax.rmi.PortableRemoteObject class is intended to act as a base class for RMI/IDL server
implementation classes (see “Stubs and remote implementation classes” on page 7).

// Java
public class PortableRemoteObject {

protected PortableRemoteObject()
throws java.rmi.RemoteException { ... }

public static void exportObject(java.rmi.Remote obj)
throws java.rmi.RemoteException { ... }

public static java.rmi.Remote toStub(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static void unexportObject(java.rmi.Remote obj)
throws java.rmi.NoSuchObjectException { ... }

public static java.lang.Object narrow(
java.lang.Object obj, Class newClass)

throws ClassCastException { ... }

 public static void connect(
java.rmi.Remote target, java.rmi.Remote source)

throws java.rmi.RemoteException { ... }
}

The protected constructor is called by the derived implementation class to initialize the base class state.

Server side implementation objects may either inherit from javax.rmi.PortableRemoteObject or they may
simply implement an RMI/IDL remote interface and then use the exportObject method to register themselves as a
server object.

A call to exportObject with no objects exported creates a non-daemon thread that keeps the Java virtual machine
alive until all exported objects have been unexported by calling unexportObject.
Java to IDL Language Mapping, v1.4 59

It is up to the implementation to decide when to actually export (i.e., connect) remote objects. It may be done in the
PortableRemoteObject constructor (for objects that subclass PortableRemoteObject) or in the
exportObject method, or it may be deferred until the remote object is actually written to an OutputStream.

It is an error to call exportObject on an object that is already exported.

The toStub method takes a server implementation object and returns a stub object that can be used to access that server
object. The argument object must currently be exported, either because it is a subclass of PortableRemoteObject or
by virtue of a previous call to PortableRemoteObject.exportObject. If the object is not currently exported, a
NoSuchObjectException is thrown. The returned stub implements the same RMI/IDL remote interfaces as the
implementation object. If an RMI/IDL Tie class is available for the given object, the toStub method will return an IIOP
stub; otherwise, it will return a JRMP stub. The toStub method may be passed a stub, in which case it simply returns
this stub.

The stub returned by toStub has the same connection status as the target implementation object passed to toStub. So
if the target object is connected, the returned stub is connected to the same ORB. If the target object is unconnected, the
returned stub is unconnected.

The unexportObject method is used to deregister a currently exported server object from the ORB runtimes, allowing
the object to become available for garbage collection. If the object is not currently exported, a
NoSuchObjectException is thrown. This is implemented by calling through to Util.unexportObject.

The narrow method takes an object reference or an object of an RMI/IDL abstract interface type and attempts to narrow
it to conform to the given newClass RMI/IDL type. If the operation is successful, the result will be an object of type
newClass; otherwise, an exception will be thrown. If obj is null, then narrow returns null.

The connect method makes the remote object target ready for remote communication using the same
communications runtime4 as source. Connection normally happens implicitly when the object is sent or received as an
argument on a remote method call, but it is sometimes useful to do this by making an explicit call. The target object
may be either an RMI/IDL stub or an exported RMI/IDL implementation object, and the source object may also be
either an RMI/IDL stub or an exported RMI/IDL implementation object.

If target is already connected to the same communications runtime as source, then connect takes no action.
Otherwise, target must be an unconnected object (i.e., an RMI/IDL CORBA stub without a delegate or an
implementation object whose RMI/IDL tie has not been associated with an ORB), and source must be a connected
object (i.e., an RMI/IDL CORBA stub with a delegate or an implementation object with an RMI/IDL tie that has been
associated with an ORB), or else a RemoteException is thrown. The target object is connected to the same ORB as
source by calling the Stub.connect method if it is a stub (see “Stub” on page 42) or by associating its tie with an
ORB if it is an implementation object.

RMI/IDL implementation objects may be connected implicitly by being passed to Util.writeRemoteObject or
Util.writeAbstractObject. RMI/IDL stubs may be connected implicitly by being passed to
OutputStream.write_Object. Connecting an implementation object is not the same as exporting it, and RMI/IDL
implementation objects may be unconnected when first exported. RMI/IDL implementation objects are implicitly
connected when they are exported to JRMP, and RMI-JRMP stubs are implicitly connected when they are created.

4. For IIOP, the communications runtime is an ORB; for JRMP, it is the JRMP transport subsystem.
60 Java to IDL Language Mapping, v1.4

4.7 Generated IDL File Structure
This sub clause is not part of the formal specification of the Java Language to OMG IDL Mapping, but it contains some
suggestions for generated file structure.

Tool vendors may choose to map each RMI/IDL interface, value type, or exception type to a separate .idl file. This
follows the normal Java style and may be easier for Java RMI/IDL programmers to maintain than requiring that (say) all
OMG IDL definitions be put into a single OMG IDL file.

This approach does raise some issues for the generated OMG IDL, which are briefly worth mentioning.

First, the use of separate .idl files requires the use of “reopenable” modules, so that separate files can have separate free-
standing module definitions.

Second, although OMG IDL permits forward references to OMG IDL interfaces, it does not support forward references to
structs or exceptions, and there are some limits on the use of interface references. Any forward references to interfaces
must be satisfied by later definitions of those interfaces.

One possible way of dealing with these difficulties is to use an OMG IDL file layout similar to the following:

1. The entire OMG IDL definition is bracketed in standard C pre-processor boilerplate used to guarantee it is only
included once:

#ifndef __foo__
#define __foo__

...
#endif

2. An OMG IDL forward reference is generated for each OMG IDL interface that is referenced. (This may require
entering and exiting the appropriate target module.)

3. An OMG IDL forward reference is generated for each OMG IDL value type that is referenced. (This may require
entering and exiting the appropriate target module.)

4. Each exception referenced in the OMG IDL is #included, in arbitrary order.

5. If the generated OMG IDL is an interface, then #include any inherited interfaces.

6. If the generated OMG IDL is a value type, then #include any inherited value types.

7. If there are any references to the OMG IDL types ::java::rmi::Remote, java::io::Serializable,
::java::io::Externalizable, or ::java::lang::_Object, then generate the following bracketed definitions as
required.

#ifndef __java_rmi_Remote__
#define __java_rmi_Remote__
module java {
module rmi {
Java to IDL Language Mapping, v1.4 61

typedef Object Remote;
};
};
#endif
#ifndef __java_io_Serializable__
#define __java_io_Serializable__

module java {
module io {

typedef any Serializable;
};
};
#endif

#ifndef __java_io_Externalizable__
#define __java_io_Externalizable__
module java {
module io {

typedef any Externalizable;
};
};
#endif

#ifndef __java_lang_Object__
#define __java_lang_Object__
module java {
module lang {

typedef any _Object;
};
};
#endif

This allows different OMG IDL files in the same module to independently define any necessary typedefs.

8. For each OMG IDL sequence type that is referenced, generate a bracketed value definition similar to the following.

#ifndef __org_omg_boxedRMI_fred_seq1_Stuff__
#define __org_omg_boxedRMI_fred_seq1_Stuff__
module org {
module omg {
module boxedRMI {
module fred {

valuetype seq1_Stuff sequence<::fred::Stuff>;
#pragma ID seq1_Stuff

“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654”
};
};
};
};
#endif

This allows different OMG IDL files to independently define any necessary sequence valuetypes.

9. Generate the target OMG IDL in the appropriate module.
62 Java to IDL Language Mapping, v1.4

10. #include any interfaces to which forward references have been declared.

11. #include any value types to which forward references have been declared.

Below is an example of how a chunk of RMI/IDL code would be mapped to OMG IDL using this approach.

4.7.1 The Java Definition
Here’s a sample RMI/IDL interface, where the referenced type fred.Stuff is an RMI/IDL value type, fred.Test1
and fred.Test2 are RMI/IDL remote interface types, and fred.OurException is an RMI/IDL exception type.

// Java
package fred;

import java.rmi.*;

public interface Test extends Test1 {
 void noop() throws RemoteException;

 String echo(String arg) throws RemoteException;

 Stuff echoStuff(Stuff p) throws RemoteException;

 Test echoTest(Test t) throws RemoteException;

 int[] echoInts(int args[]) throws RemoteException;

 Stuff[] echoStuffs(Stuff args[]) throws RemoteException;

 void manyArgs(char a, byte b, short c, int d,
 long e,float f, double g) throws RemoteException;

 Test2 fetchTest2(Object x) throws RemoteException;

 void throwAnException() throws RemoteException,
 OurException;

}

4.7.2 The Generated OMG IDL Definition

// IDL
#ifndef __fred_Test__
#define __fred_Test__

#include “orb.idl”
Java to IDL Language Mapping, v1.4 63

module fred {
interface Test2;
valuetype Stuff;

};

#include “fred/OurEx.idl”
#include “fred/Test1.idl”

#ifndef __java_lang_Object__
#define __java_lang_Object__
module java {
module lang {

typedef any _Object;
};
};
#endif

#ifndef __org_omg_boxedRMI_seq1_long__
#define __org_omg_boxedRMI_seq1_long__
module org {
module omg {
module boxedRMI {

valuetype seq1_long sequence<long>;
#pragma ID seq1_long “RMI:[I:0000000000000000”
};
};
};
#endif

#ifndef __org_omg_boxedRMI_fred_seq1_Stuff__
#define __org_omg_boxedRMI_fred_seq1_Stuff__
module org {
module omg {
module boxedRMI {
module fred {

valuetype seq1_Stuff sequence<::fred::Stuff>;
#pragma ID seq1_Stuff

“RMI:[Lfred.Stuff;:0123456789012345:9876543210987654”
};
};
};
};
#endif

module fred {
interface Test: Test1 {

void noop();

::CORBA::WStringValue echo(in ::CORBA::WStringValue arg0);

::fred::Stuff echoStuff(in ::fred::Stuff arg0);
64 Java to IDL Language Mapping, v1.4

::fred::Test echoTest(in ::fred::Test arg0);

::org::omg::boxedRMI::seq1_long echoInts(
in ::org::omg::boxedRMI::seq1_long arg0);

::org::omg::boxedRMI::fred::seq1_Stuff echoStuffs(
in ::org::omg::boxedRMI::fred::seq1_Stuff arg0);

void manyArgs(
in wchar arg0,
in octet arg1,
in short arg2,
in long arg3,
in long long arg4,
in float arg5,
in double arg6);

::fred::Test2 fetchTest2(::java::lang::_Object);

void throwAnException() raises (::fred::OurEx);
};

#pragma ID Test “RMI:fred.Test:0000000000000000”
};

#include “fred/Test2.idl”
#include “fred/Stuff.idl”

#endif
Java to IDL Language Mapping, v1.4 65

66 Java to IDL Language Mapping, v1.4

INDEX

A
Abstract interfaces 27
Acknowledgements 3
API class 56
Arrays 6, 20
ASCII 8

B
Boolean properties 11

C
Case-sensitive names 9
Class 5
Class downloading 33
Class loaders 31
Codebase access 34
Codebase selection 33
Codebase transmission 34
Compile-time constants 13, 16
compliance 1
Conformance 1
Constant foo 9
Constants 13
Constructors 15
Containing module 24
CORBA

contributors 3
CORBA Object Reference Types 24
core, compliance 1
Custom marshaling format 36

D
Data member 19
Delegation mechanism 55

E
Entity Types 6, 24
Exception subclassing 21
Exception type 22
exception type 6
Exceptions 21

G
Generated IDL file structure 58
Generated OMG IDL definition 60

I
IDL names 7
IIOP 3
Illegal characters 8
Implementation Classes 28
Inherited base class 14
Inherited interfaces 11, 14
Inner classes 8
interoperability, compliance 2
IOR 29

J
Java class 5
Java definition 60
Java names 7
Java names that clash with IDL keywords 8
Java names with illegal IDL identifier characters 8
Java names with leading underscores 8
Java Remote Method Invocation (RMI) 3
Java String Type 6
java.lang.Class 19
java.lang.String 19
java.rmi.Remote 10

L
Leading underscore 8
Local stubs 49

M
Mapping CORBA Object Reference Types 24
Mapping for java.lang.Class 19
Mapping for java.lang.String 19
Mapping for Non-conforming Classes and Interfaces 25
Mapping for RMI/IDL Arrays 20
Mapping for RMI/IDL Remote Interfaces 10
Mapping for RMI/IDL Value Types 14
Mapping IDL Entity Types 24
Mapping Implementation Classes 28
Mapping Java Names to IDL Names 7
Mapping packages to modules 8
Mapping RMI/IDL Exceptions 21
Mappings for Primitive Types 10
Marshaling 43
Method foo 9
method names 8
Method names that collide with other names 9
Methods 12

N
Names for inner classes 8
Non-conforming Classes and Interfaces 25
Non-conforming Java classes 26

O
object reference type 6
OMG IDL 3
Opaque type 16
ORB instances 37
Overloaded method names 8

P
Packages 8
Parameter type 19
Portability Interfaces 38
PortableRemoteObject 56
PortableRemoteObjectDelegate 55
Primitive fields 17
Primitive Types 3, 10
Property accessor methods 11
Public fields 16

R
Read-only properties 11
Java to IDL Language Mapping, v1.4 67

Read-write properties 11
remote implementation class 5
Remote Interfaces 5, 10
Repository ID 13, 17
Restrictions 5
Return type 19
RMI remote interface 4
RMI/IDL Subset of Java 3
RMI/IDL value type 5
Run-Time Issues 29
Runtime limitations 37

S
Scope 1
Special Case Mappings 7
Stub class 5, 30
Stub classes 48
StubDelegate 53
Subclassing 22
Subclassing of exception types 21

T
TAG_RMI_CUSTOM_MAX_STREAM_FORMAT

component 37
Tie classes 30, 48

U
Underscores 8
Unicode 8
UNKNOWN exceptions 33
Unmarshaling 44
UtilDelegate 54

V
Value type 5, 22
Value Types 14

W
writeObject 18
68 Java to IDL Language Mapping, v1.4

Java to IDL Mapping, v1.4
Reference Sheet

The following OMG documents were used to produce this version of the specification:

• ptc/07-02-08 - RTF Final report

• ptc/07-02-08 - Convenience document

	1 Scope
	1.1 Alignment with CORBA

	2 Conformance/Compliance
	2.1 Definition of CORBA Compliance

	3 Additional Information
	3.1 Acknowledgements

	4 Java to IDL Language Mapping Specification
	4.1 Introduction
	4.2 The RMI/IDL Subset of Java
	4.2.1 Overview of Conforming RMI/IDL Types
	4.2.2 Primitive Types
	4.2.3 RMI/IDL Remote Interfaces
	4.2.4 RMI/IDL Value Types
	4.2.5 RMI/IDL Arrays
	4.2.6 RMI/IDL Exception Types
	4.2.7 CORBA Object Reference Types
	4.2.8 IDL Entity Types

	4.3 The IDL Mapping
	4.3.1 Overview
	4.3.2 Mapping Java Names to IDL Names
	4.3.3 Mappings for Primitive Types
	4.3.4 Mapping for RMI/IDL Remote Interfaces
	4.3.5 Mapping for RMI/IDL Value Types
	4.3.6 Mapping for RMI/IDL Arrays
	4.3.7 Mapping RMI/IDL Exceptions
	4.3.8 Mapping CORBA Object Reference Types
	4.3.9 Mapping IDL Entity Types
	4.3.10 Mapping for Non-conforming Classes and Interfaces
	4.3.11 Mapping Abstract Interfaces
	4.3.12 Mapping Implementation Classes

	4.4 Run-Time Issues
	4.4.1 Subclasses of Value Objects
	4.4.2 Locating Stubs for Remote References
	4.4.3 Narrowing
	4.4.4 Allocating Ties for Remote Values
	4.4.5 Wide Character Support
	4.4.6 Locating Stubs and Ties
	4.4.7 Mapping RMI Exceptions to CORBA Exceptions
	4.4.8 Mapping CORBA System Exceptions to RMI Exceptions
	4.4.9 Code Downloading
	4.4.10 Custom Marshaling Format
	4.4.11 TAG_RMI_CUSTOM_MAX_STREAM_FORMAT Component
	4.4.12 RMICustomMaxStreamFormat Service Context
	4.4.13 Marshaling RMI/IDL Arrays
	4.4.14 Creating ORB Instances
	4.4.15 Runtime Limitations

	4.5 Portability Interfaces
	4.5.1 Portability APIs
	4.5.2 Generated classes
	4.5.3 Replaceability of API Implementations

	4.6 Application Programming Interfaces
	4.6.1 PortableRemoteObject

	4.7 Generated IDL File Structure
	4.7.1 The Java Definition
	4.7.2 The Generated OMG IDL Definition

