Architecture-driven Modernization
(ADM): Knowledge Discovery Meta-
model (KDM) Specification

This OMG document replaces the submission document (ad/06-03-01) and the Draft Adopted
specification (ptc/06-05-02). It is an OMG Final Adopted Specification and is currently in the
finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by September 4, 2006.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on December 18,
2006. If you are reading this after that date, please download the available specification from the
OMG Specifications Catalog.

OMG Adopted Specification
ptc/06-06-07

Date: June 2006

Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM)

OMG Adopted Specification
ptc/06-06-07

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics

Copyright © 2006, Klocwork, Inc.

Copyright © 1997-2006, Object Management Group.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML™ Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

e 1] = Vo = P Xiil
i Y o 0] 01 <P 1
P O Y 0} (0] 1 4= T o Yo = P 1
2.1 KDM DOMAINS ..ouiiiiiiiiiie et e e e e e e e e e e e e e e e e e e et e s e e e e e eeaaeeeeeaeenenens 1

2.2 COMPUANCE LEVEIS ..ottt e e e e e e e e aeeeenees 2

2.2.1 Meaning and Types of COMPIANCEcoooiiiiiiiiiii e 3

3 NOIrMAtiVE REFEIENCES ..eeiiiiiiiie ettt e e e 5
4 Terms and DefinitiONScooiiiiii e e 5
5 SYMOIS e 5
6 Additional INTormation ... 5
6.1 Changes to Other OMG SpecCIfiCatioNsSccoviviiiiiiiiiiiiiiiiee e 5

6.2 How to Read this SPecCificationccccooiiiiiiiiiiiiiiece e 5

6.3 ACKNOWIEAGEIMENTS ..ot 7

7 SPECITICAtION OVEIVIEW ...coieiiiiiiiieieeiii et e e e e et e e e e eaa e e e e eeannas 9
B K DM e 11
8.1 OVEIVIEW ..ottt e et e e e e e e e ettt e e e e e e e e e e e e e e e e e e e ae et b as st e e e e eaeeaeaeaaaeeeees 11

8.2 Organization of the KDM PacCKagescccccuuuumiiiiiiiiiiiiiiieee e 11

9 COore PaCKAQgEcoooiiiiiiiii i 13
9.1 OVEIVIEW ..ottt e e et e e e e e e e et e e e e e e e e e e e e e e e e e e esaeeea e s e eeeeeeeeaeeeseeesnnnnnnns 3

9.2 Organization of the Core Packagecccccoovviiiiiiiiiiiiii e 13

9.3 CoreEntities Class DIagramcoooeiiiiiiiiiiiiiiiii et a e 13

9.3.1 Element Class (ADSIIACL)oovvuiiiiiiiiiie e 14

9.3.2 ModelElement Class (ADSIFACE)cvvvviiiiiiiiiiiiis i e e e e e 14

9.3.3 KDMERLity Class (ADSIIACL)cevveeieiiiiiiiiiiiis s e s e e e e e e e e e ee e e e a e e e e e aaaa e 14

9.3.4 KDMContainer Class (ADSIFACL)uuuriiiiiiiirieieie et n e e e e e e e e e e 15

9.3.5 KDMGroup Class (ADSIFACE)cccoviiiiiiiieiiiiiie s e e e e a e e e e e 16

9.4 CoreRelations Class Diagramoooiiiiiiiiiiiiiiiiiiiieeee e 16

9.4.1 KDMRelationship Class (ADSIIACt)cccvuviiiiiiiiiiee e r e e e e e 17

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification i

9.4.2 KDMENtity (additional ProPerti€S)ccccviiiiiiiiiiiiiiiiiie i e se e s e e e e e e e e e e e e e e e e e e eeee e 18

9.5 AggregateRelations Class Diagramcoooviiiiiiiiiiiiiiiiiiiiiieirie e e e e 18
9.5.1 KDMAggregatedRelationship ClIassScooviiiiiiiiiiiiiiieeee e e e e e e 19

9.5.2 KDMERtity (additional PrOPErti€S)uuueeeeiiiieeeeeiiiiiiiieiieeeeeeee e e s e s ssseanaeneeeeeeeaeeesesannnnnes 21

9.6 Datatypes Class DIagramceeeiiiiiieiiiiiiiiiiiiiirrre e e e e e e e e e e e s 21
9.6.1 InstanceKind Data Type (ENUMETAtiON)ccoiiiiiieriiiiiiierieeee e e e e e s s e e ereeeeeeseeaans 21

9.6.2 Boolean TYPEe (AAtAtYPE) ..eeeeeeeiiieiiiieiieeiee e e e e e e e s e s ettt r e e e e e e e e e s s s s e e eeeeeaaaeeeeeeannns 22

9.6.3 StrNG TYPE (AALALYPE) .evvieeieeeeeiiiiiiiieiiite e e e e e e e e e s s s st r e e e e e e e e e e e s s nnrrbeeerrenaaaeeesaeaans 22

L Lol (= To [g Y/ o To I (o = L= 10 o 1) SRR 22

9.7 EXtensions Class DIAgIamuuuuiiiiiiiee ettt a e e e e e e e e e e eeeeeeeeeeennnnns 22
9.7.1 StErEOtYPE ClASS ...coiiiiiiiiii ittt e e e e 23

9.7.2 TaggedDEefiNItIoN CIASScvveiiieiiiiie ettt et e e e sebaeeee e 24

9.7.3 EXtenSionFamily ClASScuuuiiiiiiiiiii e 24

9.7.4 TAQUEAVAIUE CIASS ...eeiiiiiiiiiiiie ettt ettt e st e e s st b e e e s abeaee e e aas 25

9.7.5 ModelElement (additional Properti€S)ccooiieiiiiiiiiiiee e 26

9.8 Annotations Class DIagramcccoiiieiiieieeeeeiie s e e e e e e e e e e e e e eeeaeneanaaaa 26
9.8.1 AHFIIDULE CIASS ...ttt ettt e e e e e e e s e s e bbbt e baeeeeaaaeaesannns 27

9.8.2 ANNOLALION CIASS ...uuititiiiiiitiaiae ettt e e e e e e ettt et e e e e e e e e s e e e nabbsbeeaeeeeaaaeeeaaaanne 27

9.8.3 Element (additional PrOPEItIES)eeeeeiiiiiia ettt e e e e e e e e e ae e e e e e e aaaes 28

O N 1 = Tod = T 1= PP 29
L0.1 OVEIVIEBW .eeeiiiiiiiiittiteee e ettt et e e e e e e e e e e e e s e s s s e s bbbttt ettt e e e e e e aaeeaeaeeaeassaaaannnsneerenees 29
10.2 Organization of the Kdm Packageccccccuiiiiiiiiiiiiiiiieeeeeeee 29
10.3 Framework Class DIagramuuuuueiiiiiieeeeeeeeeeeeeeeeiiieseisnsssseseeeeeeseeeeeeeeennnes 30
10.3.1 KDMFramework Class (AhSIraCt)uuuueicieiiiiiei et e e e e e e 30

10.3.2 KDMModel Class (ADSIIACE)cuuuuriiiiiiiiiiieieie e et e e e e e e e e e e e e 31

10.3.3 KDMSEQMENL CIASS ...cciiiiiiiiiii it s e e e e e e e e e e e e et e s s a e e e e e e e aaeaeaeees 31

10.3.4 KDMROOL CIASSeeviiiiiiiiiieiiiiriie ettt e s e e s e e s 32

10.4 ModelR0Ot Class DIagramccooeiiiiiiiiiiiiiiiiiei e e e e e e e e 32
10.4.1 ModelR0Ot Class (ADSIIACE)uuuureriiiiiiii i e e e e e e e e e e e e eraeenes 33

10.5 AUdit Class DIAQIaAIMcoeiiiiiiiiiiiiiiiia i e e e e e e 33
L0.5.2 AUIL CIASS ..eiiiiieieiiiee ittt ettt st st s e s nn e e e s e e e s e e nnne e e nnneeen 34

10.5.2 KDMFramework (additional Properti€S)uieeeeeiiiiiiiiiiiieiieeieeee e s eee e e e e e e 34

11 SOUICE PACKAGE ..oiieiiiiiiiieiiiie ettt e e e e e e b e e e e eaanas 35
3 R 1Y V= P 35
11.2 Organization of the Source Packageccccccevviiiiiiiiiiiiiiiiie e 35
11.3 SourceRef Class DIagramccoeuuuuuuuiiiiiiieeee e e et eeae e e e e eeees 35
11.3.1 SOUICERES CIASS ..iiiiiieeii ittt e e e e e e e e e s e s s areeeeeeaees 36

11.3.2 CodeElement (additional PropertieS)cc.eeeeeiiiiiiieiiiiiee e 37

11.3.3 DataElement (additional Properti€S)cccuueeeeiiiiiieeiiiiiee e 37

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

11.3.4 UIElement (additional Properti€S)vuuuuurumiiiiiii e i e e e e e ee e 37

11.4 SourceRegion Class DIiagramccccciuiririiiiiiiiieieiee e e e e e e e e e e 37
11.4.1 SOUICEREQION CIASS ..uuuuuiiiiiiiiiiieeee i et iectieere et e e e e e e s s s st e e e e e eeeeessasnannreaerereeaeeeeseannns 38

12 COAE PACKAGE ..uuiiiieeitie e 41
2 R O 1Y 1 RSP 41
12.2 Organization of the Code Packageccceeeiiiiiiiiieciiiiiieeeie e 41
12.3 Codelnheritances Class DIiagramcccooiieeeeeeiieeieeeeiiiiiiee e eaeaeeeeees 41
12.4 CodeModel Class DIagramcooocuuuuiiiiiiiiiiiieeie e e 42
I oo [V oo [=] I O =] PP PPT PP 43

12.4.2 CodeElement Class (ADSIract)cccccvvuiiiiiiiiie e s e e e e e e 44

12.4.3 CodeResource Class (AhStracCt)cccvvuiiiiiiiiie e 44

D N N @ To [T €] o 10 o O - TSP 44

12.4.5 CodeContainer Class (ADSIrAaCt)c.uuuvrriiiiiiiiieiee e e e s e e e e e e 45

12.4.6 TypeElement Class (ADSIracCt)cooccuviiiiiiiiieec e e e 45

12.4.7 TypeContainer Class (ADStraCt)........ccccvvuiiiiiiiiie e 45

12.5 CodeRelations Class Diagramccccccuriiiiiiiiiiiiieieee e e 46
12.5.1 InterfaceRelationship Class (AbStract)ccccceoviiiciiiiiiiirc e 46

12.5.2 TemplateRelationship Classcoocciiiiiiiiiic e a7

12.5.3 TypeReElatioNShiP CIASSuvuiiiiiiiieeiiii it e e e e e e e aeeeeeean a7

12.5.4 PrototypeRelationship Classcccciiiiiiiiiiiiiec e e e e e e e a7

12.6 CallableUnits Class Diagramuuuueuiiiiiieeeeeeeeeeeeeeeeieiiie e e e e e e e e e 47
12.6.1 CallableEIEMENE CIASS ...uviiiiiiiiieeiiiiiiite ettt er e e e e e e e e s e ee e e e eeeeeeeannns 48

12.6.2 CallableUNit CIASSuueiiiiiiiiiiiee ettt e e e e e ettt r e e e e e e e e s s s sanb e e eeeaaeeeeeeannns 48

12.6.3 BIOCKUNIL ClASScoiiiiiiiieieiiie ettt et e e e e e e e e s e s e eeeeaeeeeeeaanes 49

12.6.4 MethOAUNIL CIASSvvviiiiiiiiiiiieee ittt e et e e e e e e e e e e e s e areeeaeaeeeeeeannn 49

12.6.5 CONSIIUCIOTUNIE CIASS ..vvviiiiiiiieeeiiiiiieetitiee e te e e e e e s e s st eer et e e e e e e s e s rreeeeaeeeaeeeanans 49

12.6.6 OPEratOrUNit CIASSeeiiiiiiiiiieiiiii ittt ettt ettt e e s bbb e e e s aanneeeas 49

12.7 Module Class Diagram..........ccooiiiiiiiiiiiiicccee e e e e e e e e e 49
2 T Y o To [Lo = T OO PPPRERRRR 50

12.7.2 CoMPIlatioNUNIt CIASSvveieeiiiiiiie ittt e e e e 50

2 e B o = T =T [0 T O = T PSPPSR 51

12.7.4 COAEASSEMDIY ClASSciiiiiiiiiiiiiite e 51

12.8 Prototype Class DIiagramcoooviiiiiiiiiiiiiiiieeeeee e e e e e e e e e e 51
12.8.1 ProtOtyPEUNIE CIASSutitiiiiiiiieiieaei ettt ettt e e e e e e e e e e ab e e eeaaaaeae e s 51

12.8.2 ProtOtyPeABY CIASSuutiiiiiiiiiiaiaii ittt ettt e e e e e e e e e s e eiabb e e e eeaaeaaaeeeaaans 52

12.8.3 CodeElement Class (additional properties)ccccuveeieeiiiieeeoniiiiiieieeee e 52

12.9 MacCro Class Diagramcccoceeiiiiiiiiiieiiiiirs e e e e e e e e e e e e e e e e e eeaaes 52
12.9.1 MACIOUNIE CIASS ...uuetitiiiiieiiieeae ettt ettt e e e e e e e ettt e e e e e e e et e e asanbbnb b e e eeeeeaeeeesaaannaes 53

12.10 Template Class DIiagramcooeeuuuiiiiiiiiiiieeeeeeeeeeeeereeeeeseenrn e e e aeaaaees 53
12.10.1 TemplateUnIt ClassSccooiiiiiiiiiieeeee s e et 54

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification i

12.10.2 TemplateParameter ClassSuuuuuuiiiiiiiiieiii e e e e e e e e e e e e e 54

12.10.3 TeMPIatelNStANCe CIASSuuuiuuiuiiiiiiiii i e e e e e e aeeaaaeeeeeeanenes 55
12.11 TemplateRelations Class Diagramcccccueiiiiiiimiiiiiiieeeeeee e 55
12.12.1 INSEANTALES ClASS ..eiiiereieireieiieie ittt r e e s e e s e e e nnneeans 56
12.11.2 INSEANCEOS ClASS ...eiiireiiiriie ettt nn e e s nnnee e 56
12.11.3 CodeResource (additional Properties)uueeeverieeeeeiiiiiiiiiiiieieeer e e e e e e s s ssnereereeee e 57
12.12 SimpleTypes Class DIiagramcoooiiiiiumiiiiiiiiiiiiieeiee e e e e e 57
12.12.1 SIMPIETYPEUNIL CIASS ..rvviiiiieiieeeiii i e e e e e e e s s s er e e e e e e e e e e s e s e areeaeeeaees 58
12.12.2 NamMedTYPEUNIL CIASS ...uviiiiieiieeeii ettt e e e s st e e e e e e e e e e e s e e eeaeaees 58
12.12.3 PredefinedTypeEIemMent Classoooiiiiiiiiiiiiiieece e 58
12.13 PredefinedTypes Class DIiagramcccccoooeooeiiiiiiiiiiiiiiiiiiir e eeeee 58
12.13.1 SHNQUNIE CIASS ..eeiiiiiiiiiiieiiiiei ettt e e e s bt e e e e b e e e e e nenas 59
12.13.2 INEGEIUNIL ClASS ..eeiiiiiiiiiiieiiitiee ettt s b e 59
I I T B @ = 1 1 A - T RSP 59
12.13.4 BOOIEANUNIL CIASS ...uueeiiiiiiiiiiiieeee e ettt e e e e e e e s st e e e e e e e e e e s e s snnnnbeereeeeeeaeens 59
12.13.5 FIOAtUNIE CIASS ..ciiiiieiiieiieiiie it e s ettt e e e e e e e e st e e et e e e e e e s e e s snbnnbeaaeeeeaaaeess 60
12.13.6 FIXEAPOINTUNIL ClASSvvviiiiiiiieeeiieiiiiiiiiee et e e s s st e e e e e e e e e e s eaneeeeeeaeeas 60
12.13.7 DeCIMAlUNIL ClIASSueeiieiiiiiiiiieee e ettt e e e e e e et e e e e e e e e e e e s s s nnnnbrareeeeeeeeens 60
12.13.8 DAtEUNIL CIASS ..coeeiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e s e aeeeeaeaee s 60
12.13.9 TIMEUNIE CIASS ..ciiiiiiiiiiiiiiiiie et ettt e e e e e e s s e st r e et e e e e e e s e e s snnbnbreaeeeeaeaaeeas 60
12.14 DerivedTypes Class Diagramccccciieeeeeeeiiiiiiiieieeiiiiiiss e s e e e e e e e e e e aeeeeeennnnns 61
12.14.1 DerivedTypeEIemMENt CIAasSooiiiiiiiiiiiiiie e e e 61
12.14.2 RefINeMENtTYPE ClIASS ...eiiiiiiiiiiii ittt eea e e 62
12.14.3 POINEITYPE ClASS ...ttt e e e e e e e e e e e e s neeeeeeeas 62
12.04.4 AITAYTYPE ClASS ...ttt ettt e e e e e ettt e e e e e e e e e s s e bbb e eeeeaeaaaeeas 62
12.15 EnumerationTypes Class Diagramcccccoeeeiiiiiiiiiieiiiiiiiiseee e e e e eeeee 62
12.15.1 ENUMErAtEAUNIT CIASS ...vteiiiiiiieiieeei ettt ettt e e e e e e e et aeeeeeeas 63
12.15.2 EnumeratedLiteral ClaSSeeeeiiiioiiiiiiiiiiie ittt ee e 63
12.16 CompositeTypes Class DIiagramccccoeeiieeeeeeeiiieieeeeeeiiinee e e e e e e e eeaaeeeees 64
12.16.1 Composite TYPEEIEMENL ClAaSSuuveiiiiiiii i e e e e e e e e e e aeeaes 64
12.16.2 UNIONUNIE CIASS ...eiiiiiriieiie ittt e e s e e e e e 64
12.16.3 CoMPOSItEUNIL ClASSccoeieeeeceieee e e e e e e aaaes 65
12.17 ClassTypes Class DIiagramoooooiiiiiiiiiiiiiiiiiiieieee e e e e 65
12.17.1 ClasSUNIE CIASScivuiriiiiiiiieie ettt e e e 65
12.18 Signature Class DIagramccooeiiiiiiiiiiiiiiiiiiiiiie e e e e e e e e e 66
12.18.1 SigNALUIE ClASScceeveiiiiiiiiieiie s e et e e e e e e e e s s s e e e e e ae e e s s e s snnnnbenreeeneeaeees 66
12.19 Interface Class DIagramcooouuuuiiuiiiiiiieee et e e e e e e e eees 67
12.19.1 INEEIACE CIASS ...oeeiiie ittt e e e e e e s e e e e e e e e e e s e et eeeeaaee s 67
12.20 InterfaceRelations Class DIiagramcccoeeeeoiiiiiiiiiiiiii e 68
12.20.2 IMPIEMENLS CIASS ...iiiiiiieiiiiiie ettt ettt s et e e e e e e e e neees 68
12.20.2 ImplementatioNOf ClaSSuviiiiiiiiiiee e 69
12.20.3 CodeResource (additional Properties)cccoovieiieiiiiiieee e 69

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

12.20.4 Interface (additional Properties)ccoeieiiiiiiiiieiecrrr e 69

12.20.5 Signature (additional Properties)ccooiiviiiiiiiieiiiicrirs e e e 70

12.21 TypeRelations Class DIiagrameeeceoiiieeieeeeeeeeieeeeiiiiiiinnaa e e e eeaeeaeeeees 70
2 I T T Y o 1T O = 1S RESRRR 70

12.21.2 CodeResource (additional Properti€S)cocccvrriiieiriiieeeee s e e e e e e e s 71

12.21.3 TypeElement (additional Properti€s)cccoviicceiiiieiiieiieee e ee s e e e e e e e e 71

12.22 ClassRelations Class DIiagrameecciiiiiieeeeeeieeeeeeceeeiiineinnae e eeaeeeeees 71
I R 4 (=TT [O = 1= PP RPTR 72

12.22.2 TypeElement (additional PropertieS)ccooveeccuririeeiieiieee e ee s e e e e e e e e 72

12.23 Comment Class DIiagramcooieeiiiiiiiiie e e e e e eens 72
12.23.1 CommMENTUNIL CIASSiiiiiiiiiiiieeeeeeeee et e e e e e e e e e e e e e e et e bbb as 73

12.24 Visibility Class DIiagramoooiiiiiiiiiiiiiiiiiee e eeee e e e e e e e e e e 73
D S R VA1 o] L= [O = T 74

12.24.2 NAMESPACE ClASS ...uuuuutiiiiiiiiiiaae ettt e e e e e e ettt e e e e e e s e e s e bt be e eeaaaaaaaaaaan 74
12.24.3 CodeResource (additional Properties)ooocuuiiriiiiieiiee e 74

13 ACHION PACKAQE ...ccoeiiiiii it 75
R I 1V = 1 RSP 75
13.2 Organization of the Action Packageccceeeeiiiiiiiiiiiiiiieeee 75
13.3 ActionRelations Class DIiagrameeuiioiiiieeeeeeeeeeeeeeeeiiiss e e e e eeaeaaeeeees 75
13.3.1 ActionRelationship Class (abStract).............uuuuiviiiiiiiiiiiie e 76

13.3.2 FlowRelationship Class (abSIracCt)uuuvuiiiiiiiiiiii e e 76

13.3.3 MacroRelationship Class (abSLracCt)uuuuueiiiiiiiiiiiiiee e 76

13.3.4 CallableRelationship Class (abStract)ciiiiiiiiiiiei e 77

13.3.5 DataRelationship Class (abStract)ooeveeiiiiiiiiiiiiiii e 77

13.3.6 ImportRelationship Class (abStract)ooeeviviiiiiiiiiiii e 77

13.4 ActionModel Class DIagramccoccuuuuiiiiiiiiieieei it e e e 77
13.4.1 ACHONEIEMENT CIASS ...eiiiiiiiieiiiiiite ettt e e e e e e e e e e e e nnaes 78

R S AV od 1 0] €T (o 10 I F= 1= 78

13.4.3 CallableElement (additional properties)..........ccceceiiiiieiieeeeeieeeeeeeeee e 79

13.4.4 CodeModel (additional PropPerti©S)c.euvueeruueimiiiiiiieieeiee e e e e e e e s 79

13.5 AcCtiONFIOW Class Diagram........cccoevveeeiiiiiiiiiiiiee e e e e e e s e e eeeeeanenennenan e e e e eeeeaes 79
13.5.1 CONLIOIFIOW CIASS ..ooiiivieiiie ittt e e et e e s bbb e e e s snaneeeas 80

13.5.2 ENYFIOW CIASS ..ceoiiiiiiiiiieieeeie ettt e e e e e e e e s e st e e e e e e e e e e s e s e nnnrnaaneeeaaeeeeeenanes 80

13.5.3 ActionElement Class (additional properti€s)ccccvurreerreieeeeieiiiiciiirieeee e e e e e 81

13.5.4 CallableElement Class (additional properties)eeeeeeeeeeeeiiiiiiiiiniiieeeeeeeeeeeees s 81

13.5.5 FIOW Class (ADSITACL)uuvvriiiiiiiiee i e ie e s st r e e e e e e e e s e are e e e aeeeeeeanans 81

13.5.6 TrueFlow Class (DSIracCt)ccccciviiiiiiiiieiee e e e e e e e e s s e e e e e e e e e e e e e 82

13.5.7 FalseFlow Class (ADSIrACt)ccceiiiiiiiiiiiiiiiie e e e e e e e e e e s 82

13.5.8 GuardedFIow Class (ADSIraCt)cccccuruuiiiiiiiiie e e s e e e rr e e e e e e e e e 82

13.6 CallableRelations Class Diagramcccccoviiiiiiiieeiiiiiin e e e e eeanns 82
13.6.1 CaAllS CIASS ...cevvviiiiiiiiiiii e ettt s e e e e e e e e e e e e e e e e e eeeeeeeee e b b e b nnaaas 83

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification \Y

13.6.2 USESCAllAbIE ClASS ...uuieeeiiiiceie et e e e e s aa e e eaaas 84

13.6.3 INVOKES CIASS ...eiiiiiiiieeiii ittt e e e e e et r e e e e e e e e e e e anabbn e e eeaeaee s 84

13.6.4 CallableElement (additional properties)ccccceieeeeeiiiiiiie e 84

13.6.5 ActionElement Class (additional properties)cccceeeeveiiiiieeeeeeiecr e 85

13.6.6 NamedTypeElement (additional properties)ccccceeeeeeieiiiiiieeeeeeer e 85

13.7 DataRelations Class Dialgramcoooiiiiimiiiiiiiiiiiieiiee e 85
13.7. 1 REAAS ClASS ..oiiiiiiiiiii ittt ettt s st e e sttt e e e e e b be e e e e naes 86

L13.7.2 WITLES ClIASS .eeiiiiiiiiiie ettt ettt ettt e e sttt e s et e e e s s bbbt e e e et b e e e e e e nnbbe e e e e eres 86

13.7.3 USESDALA ClASSuveieiieiiiiiiiie ittt s 87

13.7.4 Creates ClASS ..oiiueiiiiiiiiiiiie ettt ettt e s sttt e e s e bbbt e e e nb bt e e e e e nbbae e e e e nneees 87

13.7.5 DESIIOYS ClASS ..eeeiiiiieiii ittt e e e e e e s e e e e e e e e s e e a e are e 88

13.7.6 INILIANIZES ClASSeveiiiiiiiiiiie et b e e eeaees 88

13.7.7 StorableElement (additional Properti€S)ceeveeeeieiiiiicciiiieeireeee e e e 88

13.7.8 ActionElement Class (additional properti€s)ccoevviiiccivrreeieeeiee s e e e 89

13.8 PrototypeRelations Class Diagramcccccoeeeeieeoieiiiieiiiiiiiininn e ee e 89
R I8 T RO Y] o (0] 0] 3 o L= 4 - TSP 20

13.8.2 ActionElement Class (additional properti€s)ccoooivvveeivireeiieeieee e ceerneeeee e ee e 90

13.8.3 PrototypeUnit Class (additional Properties)cceeeeeiiiiiiiiiiiieeieeeee e cseseenee e e eee s 91

13.9 ImportRelations Class Diagramcccooeeiiiiiiiiieceeeiiiee e e eeaans 91
13.9.1 IMPOIDIFECLIVE ClASSeeiiiiiiiiiiiie ittt e b e e e 91

13.9.2 IMPOIS CIASS ieieiiiiiie ettt ettt e et e e s st b e e e e et e e e e annbee e e e e enes 92

13.9.3 CodeResource Class (additional properties)ceoivuiireeiiiieieeenieee e 92

13.10 TypeRelations Class Diagramccccooeeeeeeeiiiiiieieiiieiiiessse e e e e e e e eeeeeeeannens 92
13.10.1 USESTYPE ClIASS iuuiiitiiiiiiiiaiae e et e ettt et e e e e e e e e s e s bbb e ee e e e e e e e e e e s e s ababbraseeeaaaaaeas 93

13.10.2 ActionElement Class (additional properties)cccuuueeeeeeiiiieaaneeiiiiiiieieeee e 93

13.10.3 TypeElement Class (additional properties)cc..ueeieeeiiiiieeiiiniiiiiiieeee e 94

13.11 MacroRelations Class Diagramcccccooeeieeiiiiiiieeiieiiiess e es e e e e e e e e e eeeeeeeaannns 94
13.12.7 EXPANAS CIASS ..ottt ettt e et e e e e e e e e e ea e eaaaae s 94

13.11.2 MacroUnit Class (additional Properties)coouiiiiiiiiiiiiiieeieeee e 95

I Y U] o B = o &= Vo PR 97
L14.L OVEIVIEW ..eeeeeeitiiee et e et e e e e et ee et e aaa e e e e aeeaaaeaaaeeeees 97
14.2 Organization of the Build Packagecooouuiiiiiiiiiiiiiiiceeceiie e 97
14.3 BuildIinheritances Class Diagramcccccuuruiiimiiiiiieiiee e e e 97
14.4 BuildModel Class DIagramuuueiiiiiiiiieeeeeeeeeeeeeeeeves s e s e e e e e e e aaeeeeeeaannns 98
14.4.1 BUIIAMOEI CIASScoiiiiiiieeiie st e e e e s e e e e e e e e e e e aeaeaeees 99

14.4.2 BUIIAEIEMENT CIASSoeveeeieiiiiiiiiici s s e e e e e ettt e s e s e e e e e e e aeaaaeaaeeeeaeanes 99

14.4.3 BUIIAGIOUP CIASS ..oeiieeiiiiiiiiitette ettt e e e e e e e e sttt e e e e e e ae e e e e e s e nnnbeeneees 100

14.4.4 BUIIARESOUICE CIASScoiviiiiiiiiiiiiiiiiii e ie i e e e e e e e e et ettt s s e s e e e e aeeaaaaaaeeeeeranes 100

I R B £ =Ty (o] A O - T S PP PPPT PR 101

I o G @ o o I 4 = 1 PP PP PR 101

I S o To | B 1 = TSP 101

Vi Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

14.5 BuildResources Class DIiagramcccccuueeeereeieiiiiieaeeaaeaaaeeaeaaseeeneeneeeeeees 101

14.5.1 BuildResource Class (additional properti€S)cceeeeereeeeeeiiiiiiiiiiiiieeeeeeeeeesessennnns 102

14.5.2 SOUICERIIE ClASS ...eiiiiiiiiiiie ittt st e e s et e e e e e e 102

14.5.3 INtermMediateFile CIaSScciiiueiiiiiiiiiie e 102

14.5.4 BUIldCOMPONENE CIASS ...vvvviiiieiieieeiiieiiiiie et e e e e e e s s s st er e e e e e e e e e s s e snnne e eareeaees 103

14.5.5 BUIlADESCIIPLION ClASSvvvviiiieieeieiiiieeiiiie et e s e st r e e e e e e e s e e s raarreereaeees 103

14.5.6 SYMDBONCLINK CIASS ..uvvuiiiiiiiiiieie e i s ittt e s s s e e e e e e e e e e s s s eeeeeeaeees 103

T 1 - Vo [T O - 1 PP 103

14.6 BuildRelations Class Diagramcccceeueeiiriiiiiiiiieeeeeeee e 103
14.6.1 BuildRelationship Class (aDSIract)c.euueeiiiiieeoiiiiiiiiiieeere e e e 104

I I | Y o Y 4 = 1 PR PRP 104

I ST B LT o= o £ @ T - T OO PPREE 105

14.6.4 GeNEratedBY ClasSSccccccvriiiiiiiieiee i e e e e e e e e e e s s s ss e e e e ae e e s e e an e rareeeeees 105

14.6.5 BuildElement (additional ProPerti€Ss)euueeeiieieeeeeiiieiiciriieeer e e e s e e e e e 105

14.6.6 SymbolicLink (additional ProPerti€S)euieeeeeeiiiiiiiiieiieee e e e e e e e e e 106

15 Data PaCKageooooiieiiiiii e 107
L15.1 OVEIVIEW ..ottt e et e e e e et e e e e e e e e e e e e e et e e e e e sssa e e eeeestaaaeaaeees 107
15.2 Organization of the Data Packagecccccceviiiiiiiiiiiiiiiee e 107
15.3 Data INNEIMEANCEvvveiiiii i e e e e e 107
15.4 Data Model Class DIagramcccccouuiuiiiiiiiiiiieiieee e e 108
15.4.1 DAtaMOE] CIASS ...eeiiiiiiiiiieiiiiieie ettt s et e e s e e e e e e nbbe e e e e ennees 109

15.4.2 DAtaEIEMENE CIASSvvieiiiiiiiiiiie ettt st s e e s st e e e e 109

15.4.3 DAtaGrouP ClASScciicicieiiiiiieii ettt e e e e e e e s e e e e e e e e e e e araeaaeas 110

15.4.4 DataCoNntAINEr ClIASSuveiiiiiiiiiiei ittt et et s e e s s e e e s e nbre e e e e snnees 110

15.5 Keylndex Class DIiagramccoooiiiiiiiiiiiiiiiaaae e e e e eeeeiererrnina e e e e e e e 111
L15.5. 2 INAEX ClASS .eviieeeeiiiiiitit ettt e ettt e e e e e e e s e s st eeeeeeeaeeesesseannntbereeeeeaeeens 111

15.5.2 UNIQUEKEY CIASSoiiiiiiiiiieiiiitiee ettt ettt e e e e b e e e e 111

15.5.3 RefErenCeKEY ClASScciiiiiiiiiiii ittt 112

15.6 RelationalData Class Diagramuieiiiiiiiiiieeeeeeeeeeeeieeeiene e e e e 112
15.6.1 Cata@log ClASSueeiiiiiiiiiiiiie ettt 113

15.6.2 DBSCNEMA ClASSccccuiieiiiiiiiiieiee ettt e e e e e e e st e e e e ae e e s e e snnnnnbreeeeeneaaeens 113

15.7 ColumnSet Class DIagramoooovuiiiiiiiiiiiiiiii e eeeeee e e e e e 113
15.7.0 COIUMNSEL ..ottt e e e e e e e e e e et b e et e e e e e e e e e e e e nnnnbbebeeeaaaaaess 114

I A - 10| [O - 1 S PP 114

L15.7.3 VIBW ClASS ..coiiiiiiiiiiite ettt ettt e e bbbttt et e e e e e e e s e s s bbb b eareeeaaaaaeas 114

15.8 RecordData Class Diagramcceeuuuriuiiiiiiiiiieeeeeeeeeeseeeeisinnsnnnneeeeeeeeaaaaees 115
15.8.1 RECOIAFIIE CIASS ...ciiiiiiiiieeiee ettt e e e e e e e e e e e e e e eeeeas 115

15.9 XMLData Class DIiagramccoeeiiiiiiiiiiiiiiiinieseeeeeeeeeeeeeesesssnnne e e e aeeaaes 116
ST 1 IS od =T o - 116

15.10 XMLElements Class Diagramcccccuuurimiiiieiiiiiieeeeeeee e 116

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification Vii

15.10.1 XMLSIMPIETYPE verveveeeeeeeeeeereeeeeseeeeeeeseeeseeseeeseeseseeesesseeseesse st eese et eeseeseesseeesssens 117

15.20.2 XMLRESIFCHION .oeiiieiieiiiieite ettt ettt e e et e et e e e e e e e s e e s annnnbeeneees 117

15.10.3 XML COMPIEXTYPE ..iieieeeeeeieee ettt s s s e e e e e e e e e e et et e e e et s s e s e e e eaaaaaaaaaeeanes 118

ST O B I AN | 1 = TSP 118

15.10.5 XMLSEQ ClASS .uuuuuuiiiiiiiiiiiieei ettt s s s e s e e e e e e e e e e e e e e e e e ae e et e et aa e s e s eaaaaeeas 118

15.10.6 XMLCRNOICE CIASSuuuiittiiiiiieiieaee e e ettt e e e e e e ettt e e e e e e e e e e s e e e snnabeeneees 118

15.20.7 XMLOCCUIS CIASS ...ciiuititetieeiteite e e e e e sttt e e e e e e e e e s et et e e e e e e e e e e e e s e s s aannnbreneees 119

15.10.8 XMLGIOUP ClaSS .iiiiiiieiiiiiiiii ettt s st e e e e e e e e e e e e e e e et s s s e e e e e e aaaaeeeees 119

15.10.9 XMLARNY ClASS ..uuuiiiiiiiei it s s e s e e e e e e e e e e e e e et et e et s e e e s e s e aaaaaees 119

15.11 ProgramElements Class Diagramcccccuuuiiiiiiiiiiiiiieieee e 119
15.11.1 StoredProCedure CIASScueiiieiiiiiiieeeiiiiiie e eieeee ettt e e e s sbbe e e e s sbaeee e e s snbeeeeesannes 120

L T I 7 @ 10 = A - TSP 120

15.11.3 DBTHQUET ClASSccccueveeiiiiiiiiieie e e e e e s ee sttt et e e e e e e e s e s s st e e e e aeeaeeeeseeennennnenneees 120

15.12 Key Relations class diagramccceoeeiiiieeiiiiiiiieeeiiiisss e e e e e e eeeeeeeeens 121
15.12.1 UniqueKey Class (additional properti€S)ccccccceeviiiiiciiiiieiieiieeee e eesssesienneenees 121
15.12.2 ReferenceKey Class (additional properties)ccoovvvvvcciviieiieiieeeee e seseevnneeeees 121
15.12.3 KeYREIAtIONSNIP CIASS ..vvviiiiiiiieeeiii ittt e e e e e e e e e e e e s aaneeeee s 122

16 StruCture PACKagecoiiiiiiiiiiiiii et 123
L16.1 OVEIVIEW ...t ettt e e e et e e e e e e et e e e e e e ee st e e e e esaata e eeeeestaaeeaaeees 123
16.2 Organization of the Structure Packagecccccvvvvviiiiiiiiiiiiiie e 123
16.3 Structurelnheritances Class Diagramcccccovviviviiiiiiiiiiiieieee e, 123
16.4 StructureModel Class DIagramcccooiieeeeeeeeiiiiiieeeeiiisss e e e e e e e eeeeeeeennees 124
16.4.1 StructureMOdEl CIASSueiiiiiiiiiiee ettt e et e e e e e 125

16.4.2 StruCtUreEIEMENT CIASSuviiiiiiiiiiie ittt e e e e e 125

16.4.3 StruCtUreGroUP ClAsScoccuriiiiiiiie e st e e e e e e e s s e e e e e e e e e s s e snnenaneeeeees 125

16.4.4 StructureCoNtAINET ClIASSveiiiiiiiiiieee ittt e et e e st e e e e s srbeeeeeeanees 126

16.4.5 SUDSYSIEM CIASS ..eiiiiiieiiiiiiiiiiiiiie et e s s et e e e e e e e e e s s et e e e e e aeaeeeessnnnnnrrnneees 126

ISR I = O - 1R 126

16.4.7 COMPONENE CIASS ...eeeeeeiiiiiciiiiiiie ettt e e e e e e e s s e s e e e e e e e e e e sessnnreraneeeees 126

16.4.8 SOftWareSYSIEM CIASS ...iocceeiiiiiiiiiie i s e e e e e s s e e e e e e e e e e s s e raeeeeees 127

16.4.9 CodeResource (additional Properties)ccuuevereeiieeeeeiieiiiiiieiieeereree e e e e e s e e sneenseeneees 127

17 EVENt PACKAQE ... 129
L17.1 OVEIVIEW ...ttt e e e e et e e e e e et e e e e e e e et e e e e esaata e eeeesstanaaeaaeees 129
17.2 Organization of the Event Packageccccoviiiiieieeiiicciciee e 129
17.3 Eventlnheritances Class Diagramccccccoeeeeiiiiiiieeceeiieesss e e ee e 129
17.4 EventModel Class DIiagramcoooouiiiiiiiiiiiiiiiiiiiee et e e 129
17.4.1 EVENIMOAE] CIASSeiiiiiiiiiii ettt et bbe e e e e nees 130

17.4.2 EventElement Class (ADSraCt)ccooiviiiiiiiiiiiiiee e e 130

I B Y =T | (] (o TUT o N @ - TSP 131

17.4.4 EVENtCONLAINET ClASSvviiiiiiiiiiiee ettt ettt e sttt e e st e e e e s snbbeeeeeee 131

viii

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

17.5 EventElements Class DIagramcccccuuuurimiiiiiiiiieeeeeeeeeee e 132

A T80 R I T To 1= G T OSSP 132

17.5.2 MESSAQE ClASSccceeeiiiiiiiiiie et e e e e s e e e e e e e e e e e e raaaaes 132

L1753 UIEVENE CIASS ...eviiiiiiiiiiiiie ittt ettt et e e e st e e e e nbe e e e s e ennees 132

17.6 EventRelations Class Diagrameeeuiiiiiiieeeeeeeeeeeieeeeiinniniinsneeeeeeeeeeaees 133
17.6.1 EventRelationship Class (ADSIract)cccccccvvieeiiiiiiie e 133

17.6.2 EventElement Class (additional Properti€S)cccccccceeieeeeeiiiiiieiiiiieeeee e e e e e e e e e 134

A T T I o To 1= G O =TT PP 134

17.6.4 CallableElement (additional Properti€S)eeeeeiiiiiciiiiiieiiiieee e e e 134

18 UIPACKAQE ..o e 135
L18.1 OVEIVIEW .oeeiiiieieieeiiieeees e e e e e e e e e e e e e et e ettt e e e e e e e e e e e e e eeeeeesasaasaannaaeaeaaaaeaeeas 135
18.2 Organization of the Ul Packageccccciiiiiiiiiiiee e 135
18.3 Ullnheritances Class DIiagramuuuuiiiiiiiiiieieeeeeeeeeeeeeearne e e e e e e 135
18.4 UIModel Class DIAgIamcoouiiiioiiiiiiiiiiieiiee ettt ee e e e e e e e e e e e eeees 136
18.4. 1 UIMOUEI CIASS ...veeiiiiiiiiiiie ittt ettt e bt e e s st a e s e eabe e e e s e neees 136

18.4.2 UIEIEMENT CIASS ..eeiiiiiiiiiiiieiitiiiee ettt e st e e s et e e e e enbreee e e ennees 136

18.4.3 UICONTAINET CIASSuvviiiiiiiiiiiieee ittt ettt e ettt e s st e e e st e e e s s nbbe e e e s e nnees 137

18.5 Display Class DIiagramcoooiiiiiiiiiiiiiiiiiiiae et e e 137
18.5.1 DiISPIAY CIASSueeeeiiiiiiiiiii ettt 138

18.5.2 SCIEEMN ClASS ..eeiiiiiieeiiiii ittt e e e e e e et e et e e e e e e s s s st eeeeaeaeeeessannsnnreneeeeeees 138

18.5.3 REPOI CIASSeeeeiiiiiiiiiiie ettt e bt s ettt e e s et e e s e nab e e e e e e 138

18.6 DisplayUnits Class Diagramccccccuuuiiiiiiiiiiiiiiiieee e 139
18.6.1 DiISPIAYUNIt CIASSuuttiiiiiiiiiiaaaei ittt e e e et e et e e e e e e e e e s aanbb b eeeeeaaaaaeeas 139

18.6.2 FixedDiSPlayUNit CIASSuueeiiiiiiaaiii ittt e e e e e e e e e aeeeeeaaaens 140

18.6.3 VariableDisplayUnit ClasSccouiiuiiiiiiiiiiee e 140

18.6.4 UIRelationship Class (aDSLract)coovoiiiiiiiiiiiiiie e 140

18.6.5 DiSplaysSData ClIASSeeiiiiiiiiiieiiiiiiiie ettt a b e 140

18.6.6 USESIMAGE ClASS ..oiiiiiiiiiiieiiiiiiie ettt e et e e e 141

18.6.7 StorableElement Class (additional properties) ... 141

18.6.8 Image Class (additional Properti€S)ccueeeeiiiiiieiiiie e 141

18.7 UIRelations Class Diagramccccouvuiiiiiiiiiiiiiiieeeeee e e e e e e e e sssssssssesssnsneeeeeeees 142
L18.7. 1 UIFIOW ClIASS ..iieiiiiiiiiiittt ettt ettt e e e e e e e e bbbt e et e e e e e e e e e e s nanbbareeeeaaaaaas 142

18.7.2 RENAEIS ClASS ...ttt ettt e e e e e e e e e bbb a e e e aaaaaeeeas 143

18.7.3 DISPIAYS CIASS .. .ciiiiiiiiiite ettt e et e e e e e e e e eeaaaaaaa s 143

18.7.4 Display Class (additional Properties)oooiiiiiiiiiiiiiiiiei e 143

18.7.5 UlElement Class (additional propertieS)coooiiiiiiiiiiiiiiiieeeaeeeeee e 144

18.7.6 CallableElement (additional Properti€S)coooiiiiiiiiiiiiiieeee e 144

18.7.7 UlElement Class (additional propertieS)coooiiiiiiiiiiiiiieeieeee e 144

18.8 UlLayout Class DIiagramccooeviririimiiiiiiiiieeeeeeeeeeeeeeeeeesannnsnnnn e e e aeeaaeees 144
18.8.1 USESLAYOUL CIASS ...evvviruiiiiiiiiii i e ee ettt s e aeaeanaeernnnnnns 145

18.8.2 Display Class (additional properti€S)ccooviiiiriieeeiiiiieiiiiris s s e e e e e e e e e e e e eeavaaeennes 145

18.8.3 UlContainer Class (additional properties)uuuveriiiiiiiniiiieieeeeeeeeee e 146

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification iX

19 Platform PacCKagecooe i 147

19,1 OVEIVIEW ...ttt et e e e e e e e e e ettt e e e e e e ab e e e e eeata e eaeeeeenaes 147
19.2 Organization of the Platform Packagecccccovvrmiiiiiiiiiiiiiiiie e, 147
19.3 Platforminheritances Class Diagramcccccoevvviiviiieiiiiiiieceiee e, 147
19.4 PlatformModel Class DIiagramcoooioiiiiiiiiiiiiiiiiieeee e 148
19.4.1 PlatformMOdel CIASSoiiiiiiiiiiieiiiiiie ettt e e e s neb e e e anes 149
19.4.2 PlatformElement Class (ADSIract)ccoccuiiiiiiiieiie e 149
19.4.3 PlatformGroup CIaSScccccueiiiiiiiiiiiie s e rr e e e e e e s e s er e e e e e e e e e s e s anneaaneeneees 150
19.4.4 PlatformContainer Class (abStract)ccccuviiiiiiiiiie e 150
19.5 PlatformResources Class DIiagramcooooeiiiiiiiiiiiiiiiiiiaas e eee e eeeeeeeens 151
19.5.1 PlatformPart ClassScccuuiiiiiiiiiiiiee ettt e e e e e e e e e s e e 151
19.5.2 RESOUICEEIEMENT CIASS ...uuviiiiiiiiiiiiiie et e e e e e eee e 152
19.5.3 RESOUICEINSIANCE ClASSuvvviiiiiiiiieeeeiiiiiciiiiie it et e e e e e r e e e e e e s e s s aeeeeeeas 152
19.5.4 RESOUICETYPE CIASS ...utiiiiiiiiiiiiiie ittt ettt ettt et e e et e e e sabeeeeeeanes 153
19.5.5 ResourceDEfiNItION ClaSSuuuuiiiiiiieeiiiiiiiieiie et e e e e eeees 153
19.6 ResourceTypes Class Diagramcccccooeiiiiieeeiiiiiiececeeiiisies e e e e e e e e aeeee 154
19.6.1 NamiNGRESOUICE CIASSueeiiiiiiiiiaiiiei ettt 154
19.6.2 MarshaledReESOUICE CIASSccciiiiiiiiiiiiiiie et 154
19.6.3 MeSSagINGRESOUICE ClASSuueiiiiiiiiiiiiii ittt e e e ee e 155
19.6.4 DAtaRESOUICE ClIASS ...ttt e e e e e e e e e s aeeeeaeas 155
19.6.5 EXECUtIONRESOUICE ClASS ...ciiiiiiiiiiiii ittt 155
19.6.6 DataPOrtRESOUICE CIASSuuiiiiiiiiiieieeai ittt e e e e e e e e e e b eee e 155
19.6.7 DYNAMICDAta CIASSccieeitiiieiiiiei ettt e et e e e e e e e e e e e e e enbe e e e eeeeas 156
19.6.8 DAtaMANAQGE! CIASSuuiiiiiiiiiiiiieiee e ettt e e e e e e st b b e e e e e e e e e e e e s e e anbbbbeeeeeeas 156
19.7 ExternalActors Class DIiagramcccceoiiiiiiieeeiiiiiieeeeeeeissis e e e e e e aeeee 156
19.7.1 EXIErNAIACIOr ClASSccoiiiiiiiiiieeee ettt e e e e e e e e e e e e e eeeeas 157
19.7.2 ExternalRelations Class (aDSIract)cccuueiiiiiiiiiiiiaie e 157
LO.7.3 USES CIASS ..tttttiiiiiiiiaaaee ettt ettt e e e e e e e e ettt et e e e aa e e e e e s e aa bbb be e et e e aaaaeaeeaaannnbeneeas 157
19.7.4 Resourcelnstance (additional Properties)ceeeieeeaiiiiiiiiiiiiieiee e 158
19.8 Platforminterfaces Class Diagramcccooeeeiiiiiiiiiceeiiiiiisee e e e e e e e e e eeeee 158
19.8.1 ComMPIESTO ClASSccoeiiiiiieiieiei e s e s e e e e e e eaaaeeaeeaeeeanes 158
19.8.2 Resourcelnstance (additional PropertieS)ccccocveieee e 159
19.8.3 Interface (additional PrOPEITIES)evvverriiiiiiiii it e e e e e e e e e eeaees 159
19.9 PlatformRelations Class Diagramccccoeeeeieiiiiiieiiiiiiies e e e e e ee e eeeeeenens 159
19.9.1 BINASTO ClASS ..ceiiieiiiiiiiiiette ettt e e et e et e e e e e e e s e e nnabrene e 160
19.9.2 Resourcelnstance (additional PropertieS)cccocveieee e 161
19.9.3 CodeResource (additional ProPertie©S)ucceieieieie i e e e e e 161
19.10 ProvisioningRelations Class Diagramccccovvveeiieeiiiiiiiininnneeeeeeeeeeeeeeeeee 161
19.10.1 PlatformProvider CIASScuueeieiiiiiiiee et eiieee et e et e e e s sbaee e e e sebeeeeeesnnes 162
19.10.2 TechnologyRelationship Class (abStract)cccccccvvviiiiiiiiiiiirieee e 162
I B K0 TR = L= o [(=T O = TS 163
19.10.4 Provides CIASSccciiiiiiiieiiiiiiie ettt ettt et 163

X Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

19.10.5 PlatformElement (additional properties)cccccceveiiiiiiiiiieiiieeeeceeeeee 164

19.10.6 DeployedComponent (additional properties)ccccccceeveeeeeiiiiiiciieeeeeeen, 164

19.11 PlatformActions Class Diagrameeeeiiiiiiiieeeeeeeiieeeeiiiiiniinn e e e e eeeeeens 164
19.11.1 PlatfOrMSErVICE CIASS ...cccoiiiiiiieiiiiiiiee ettt e e e 165

19.11.2 MarshaledCall CIASScccoiiiiiiieiiiiie ettt 166
19.11.3 ASYNCNCAII CIASSueeiiiiiiiiiiiie e e e e e e e e e e e e s e e s reeeraeeees 166

19.11.4 ReQiStration ClaSSccccvuiiriiiiieiee e e i s st e e e e e e e s s s ss e e e e ae e e e s s snasnnreraeeeeeees 166
19.11.5 ACHIVALION CIASS ..eeiiiiiiiiiieiiiiit ettt s s bbb e e st re e e s e e 166

19.11.6 ResourceRelationship Class (abStract)ccccovieciiiiiiiiiiie e 167

19.11.7 Resourcelnstance (additional Properties)ooveccieiiieiiireeeee e e e e 167

20 RUNEIME PACKAGE ..oovviiiieiiiiii et e 169
20.1 OVEIVIEWiiiieiiiie ettt e e e e e et e e e e e et e e e e e e ee st e e e e e s aata e eeeesasaeaeeaeees 169
20.2 Organization of the Runtime Packageccccovvvriiiiiciiiie e, 170
20.3 Runtimelnheritances Class Diagramccoooiiiiiiiiiiiiiiiiiinne e eeeeeeeeeeeieeens 171
20.4 RuntimeModel Class DIiagramcccooeoeieeeeeeeieeeeieeeieiiiinnaasseeeeeeeeeeeeeeeeenne 171
20.4.1 RUNIMEMOAEI CIASSuviiieiiiiiiiie ettt et e e st e e e e 172

20.4.2 RuntimeElement Class (abStracCt)ccccuviiiiiiiiiiiee e 172

20.4.3 RuntimeContainer Class (abStracCt)ccccoviiiiiiiieee e e 173

20.4.4 RUNIMEGIOUP CIASS ...uuvvriiiiiiiiieieeeeieisisiitiereer e e e e e e e e s e s st ae e e eeaeaeeeesessaannsennneneeees 173

20.5 Runnable Class DIagramcooooooiiiiiiiiiiiiiieieiiee e e e e e e e e e e 174
20.5.1 RunnableElement (@DSIract)cccoeiiiiiiiiiiiiieeee e 174

20.5.2 ProCeSS ClASS ...coiiuveiiie ittt ettt ettt ettt e e e 174

20.5.3 THIEAU CIASS ..eiiiiiitiiiieeiiiiii ettt ettt e sttt e e s s bbb e e e s s bt e e e e e nnbeeeeeeenene 175

20.6 Deployment Class DIAgramoioorioeeeeeeeieeeeiiieeiiiiiiaas e s e e e e e eeeeeeeeeeeneens 175
20.6.1 DeployedComponent ClasScoiiiiiiieiiiiiiieee it 176

20.6.2 DeployedSoftwareSystem ClassSccooiiiiiiiiiiiiiiie e 177

20.6.3 MACKINE CIASS ...eeeiiiieiiciitiiitie ettt e e e e e e e e s s et ereeaaeeeeesssannsenaeeeneees 177

20.6.4 DeployedRESOUICE CIASScvveiieiiiiiiiie ettt e et e e e 178

20.7 RuntimeActions Class Diagramccovieeeeiiiiiiiieeecce s es e e e e e e e e eeeeeaanens 178
20.7.1 RuntimeRelation Class (ADSIraCE)ccouiiiiiiiiiiiie e 179

20.7.2 RUNIIMESEIVICE CIASS ..iiiiiiiiiiiiiiiiitieee et e e e ettt e e e ae e e e e s s st e e e eaeaeeeessannnnreeneees 179

20.7.3 LoAdINGSEIVICE CIASSuueiiiiiiiiiiee ittt e e s b e e e ees 180

PO A B o = o ES N O =]SSPSR 180

20.7.5 SPAWNINGSEIVICE CIASS ...eeiiiiiiiiieeeiiiiiiee ettt e e e e e e e eaees 180

20.7.6 SPAWNS CIASS ...ceiitiiiieiiittii ettt e bt e e e et bt e e e et et e e e s e e e e e b e e e e anees 181

20.7.7 DeployedComponent (additional Properties)coocvveeeeriiiiiieeeiniiieee e 181

20.7.8 RunnableElement (additional Properties)ccceeeviiiriiieniiiiiiie e 181

21 Conceptual PaCKageccoouuiiiiiiiiis e 183
3 O R @ 1Y =T VT PSSP 183
21.2 Organization of the Conceptual Packagecccccccvvvviiiiiiiieeee e 184

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification Xi

21.3 Conceptuallnheritances Class Diagramccccccuiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeens 184

21.4 ConceptualModel Class Diagramccoovvveiieieiiiiiiiiiiie e e e ee e e e e eeeeeeeeeaenennans 185
21.4.1 CONCEPLUAIMOMEN ..ot e e e e e e e 185

21.4.2 ConceptualElement (ADSIrACE)uueiiiiiiiiiiiiiieee e 186

21.4.3 CONCEPLUAICONTAINET ...ciiiiiieiiiiiieiitt ettt e ettt et e e e e e e e s et bbb eaeeeeaaaaaeesaas 186

21.4.4 CONCEPLUAIGIOUP ..eeeiiiiieeeieiieiiitt ettt e e e e ettt e e e e e e e e e e s e s e anbb et aeeeeeeaaaaaaasaaanns 187

2145 TEIMUNIL L.eeiiiiiiieiie ettt et e et e e e st e e s bbb e e e e asb e e e s nannnee s 187

214,68 FACLUNIL ...eeiii ittt ettt ettt ettt et e e et e e e s ebb e e e sbb e e e esbe e e sabe e e s abeeeeanneea 187

22 Behavior PACKage ... 189
22.1 OVEIVIEW ...etiiiieiieitt ettt e ettt e e e ekttt e e e st e e e e e e bbb e e et e e e e annb e e e e e e e e annnneeas 189
22.2 Organization of the Behavior Packageuuuuuiiiiiiiiiieeeieeeeeeeeeeiiiiiiienns 190
22.3 Behaviorinheritances Class DIiagramccccccuiiiiiiiiiiiiieieeeeeee e e 190
22.4 BehaviorModel Class Diagramcooeeeiiiiiiiiiieiiiiiies e e e e e e e ee e 191
22.4.1 BENAVIOIMOUTEI ...ttt 192

22.4.2 BehaviorElement (ADSEracCt)oooiiiiiiiiiiiiie e 192

22.4.3 BENAVIOIGIOUD .ttt e e e e e e ettt e e e e e e e e e e sabbbebaeeeaaaaeaeaaas 192

22.4.4 BENAVIOTCONTAINETueiiiiiiiiiieie ettt ettt skt et e e e e e s s nbr e e e s annneeeas 193

22.4.5 BENAVIOTUNIL ...eeiiiiiiiiiiie ettt ettt et e s s e e e eas 193

22.4.6 SCENATOUNITeeiiiiiiiiiie ettt ettt e et e e s s sb e e s ssbb e e e e s annreeeas 193

22.4.7 RUIBURNIL ..ttt ettt e ek e e st e e e s ittt e s nbe e e e be e e s sabe e e anneeaa 194

Xii

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
e Specialized CORBA specifications
e CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

Xiii

. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.0rg

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

Xiv

1 Scope

This specification defines a meta-model for representing information related to existing software assets and their
operational environments (referred to as the Knowledge Discovery Meta-model (KDM)). This is the first in the series of
specifications related to Architecture-Driven Modernization (ADM) activity. ADM facilitates modernization projects by
insuring interoperability for exchange of data between tools provided by different vendors.

One common characteristic of various tools that address the ADM challenge is that they analyze the existing software
assets (for example, source code modules, database descriptions, build scripts, etc.) to obtain existing systems knowledge.
Each tool implements a portion of the knowledge about existing software assets. Such tool-specific knowledge may be
implicit ("hard-coded" in the tool), restricted to a particular source language and/or particular transformation and/or
operational environment. All the above may hinder interoperability between different tools. The meta-model for
Knowledge Discovery shall provide a common repository structure that will facilitate the exchange of data contained
within individual tool models that represent existing software assets. The meta-model represents the physical and logical
assets at various levels of abstraction. The primary purpose of this meta-model is to promote a common interchange
format that will allow interoperability between existing modernization tools, services and their respective models.

2 Conformance

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications or programming
languages. The primary goal of KDM is provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers by allowing integration information about a complex enterprise application from
multiple sources, as the complexity of modern Enterprise application involves multiple platform technologies and
programming languages. In order to achieve interoperability and especially the integration of information about different
facets of an Enterprise application from multiple analysis tools, this specification defines several of compliance levels
thereby increasing the likelihood that two or more compliant tools will support the same or compatible meta-model
subsets. This suggests that the meta-model should be structured modularly, following the principle of separation of
concerns, with the ability to select only those parts of the meta-model that are of direct interest to a particular tool
vendor.. Consequently, the definition of compliance for KDM requires a balance to be drawn between modularity and
ease of interchange. Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

2.1 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). A KDM domain consists of a collection of tightly-coupled KDM packages that provide users with the
capability to represent aspects of the system under study according to a particular paradigm or formalism. KDM domains
correspond to the well-known concept of architecture views. For example, the Structure domain enables users to discover
architectural elements of source code from the system under study, while the Business Rules domain provides users with
behavioral elements of the same system such as features or process rules.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Build,
Structure, Data, Business Rules, Ul and Platform.

From the user's perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user's repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 1

effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy
would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Levels of compliance

1.2 = all KDM domains
4—/\—~
Build Structure Data Business Rules I Flatform
domain domain domain domain domain domain
Conceptual uI RunTime
i + %

L1 = i Structure Diata

Lemitl:l Behavior Event Platform
Lo =» Core + kdm + Source + Code + Action

Domain of compliance

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are two KDM compliance levels:

« Level 0 (LO) - This compliance level contains the following KDM packages: Core, kdm, Source, Code and Action
packages. It provides an entry-level of knowledge discovery capability. More importantly, it represents a common
denominator that can serve as a basis for interoperability between different categories of KDM tools.

To be LO compliant, a tool must completely support all model elements within all packages for LO level.

e Level 1 (L1) - This level addresses KDM domains and extends the capabilities provided by Level 0. Specifically, it
adds the following packages: Build, Structure, Data, Behavior, Conceptual, Ul, Event, Runtime and Platform. These
packages are grouped to form above-mentioned domains. More importantly, this level represents a layer where tools
could be complimentary since their focus would be in different areas of concern. This would be additional reason why
LO interoperability (which at this level would be viewed as information sharing between tools) is mandated. In this
case interoperability at this level would be viewed as correlation between tools to complete knowledge puzzle that end
user might need to perform particular task.

To be L1 compliant for a given KDM domain, a tool must completely support all model elements within all packages
for that domain.

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

¢ Level 2 (L2) - This level is the union of L1 levels for all KDM domains.

Package System allows integration of KDM models representing separate facets of knowledge of the same application.
Therefore, package System is part of LO compliance.

2.2.1 Meaning and Types of Compliance

Compliance to Level 1 (L1) for a certain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0O)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, "full realization” for a KDM domain means supporting the complete set of concepts defined for that

KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, there are:

« the capability to analyze physical artifacts of existing applications and output models based on the XMI schema
corresponding to that compliance level.

« the capability to import models based on the XMI schema corresponding to that compliance level and perform
operations suggested by the corresponding packages.

Table 2.1 - Compliance Statements

Compliance Statement

Compliance Level

Import-Analysis Import API

Export

operations of existing tool to support
elements of the Structure package.

import;Support KDM API as
defined by the Structure
package.

LO Import KDM models based on Import KDM models based Provide capability to analyze
complete KDM XMI schema into on complete KDM XMI artifacts of an application for
existing tool; schema; specified programming
support specified mapping between support KDM API defined language or multiple
KDM and existing model in the tool; by the KDM Core package; languages;
extend operations of existing tool to support KDM framework as Generate XMI documents
support elements of KDM framework; defined in the Kdm corresponding to the KDM XMl
extend operations of existing tool to package; schema;
support elements of Code and Action support KDM API defined Support KDM framework as
packages; by the Code and Action defined by the Kdm package;
extend operations of existing tool to packages; Support Code and Action
traceability to the physical artifacts of support traceability to the packages;
the application from Source package. physical artifacts of the Provide traceability back to the

application as defined inthe | physical artifacts as defined by
Source package. the Source package.
L1 STRUCTURE LO compliance for analysis;extend LO compliance for LO compliance for

export;Provide capability to
analyze architecture
components of existing
application and generate KDM
Structure model according to
Structure package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Table 2.1 - Compliance Statements

DATA LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support elements of the Data package. | defined by the Data persistent data components of

package. existing application for

specified database system and
generate KDM Data model
according to Data package.

PLATFORM LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support elements of the Platform and defined by the Platform and platform artifacts for specified
Runtime packages. Runtime packages. platform and generate KDM

Platform model according to
Platform package.

Provide capability to analyze
Runtime artifacts for specified
platform; generate KDM
Runtime model according to
Runtime package.

BUILD LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support elements of the Build package. | defined by the Build build artifacts for specified

package. build environment and

generate KDM Build model
according to Build package.

ul LO compliance analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support elements of the Ul and Event defined by the Ul and Event | user interface artifacts for
packages. package. specified user interface system

and generate KDM Ul model
according to Ul package;

generate KDM Event model
according to Event package.

BUSINESS LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support elements of the Conceptual defined by the Conceptual conceptual artifacts (e.g.,
and Behavior packages. and Behavior packages. domain concepts) of existing

application and generate KDM
Conceptual model according to
Conceptual package;

Provide capability to analyze
behavior artifacts (e.g.,
business rules, scenarios) of
existing application and
generate KDM Behavior model
according to Behavior

package.
L2 LO import compliance for analysis; LO compliance for import; LO export compliance;
L1 import-analysis compliance for all Support KDM API as L1 export compliance for all
KDM domains. defined by all KDM KDM domains.

packages.

4 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of any of these publications do not apply.

e UML 2. Infrastructure Specification

* MOF 2.0 Specification

4 Terms and Definitions

There are no special terms or definitions in this specification.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Other OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.
Chapter 7. Specification overview
Provides design rationale for the KDM specification
Chapter 8. KDM
Gives the overview of the packages of KDM
Chapter 9. Core package

Describes foundation constructs for creating and describing meta-model classes in other KDM packages. Classes
and associations of the Core package determine the structure of KDM models, provide meta-modeling services to other
classes and define fundamental constraints.

Chapter 10. kdm package

Describes the key infrastructure elements that determine patterns for constructing KDM models and integrating
them. This package defines several static elements that are shared by all KDM models. This package determines the
queries against KDM models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 5

Chapter 11. Source package

This package describes meta-model elements for specifying the linkage between the KDM model artifacts and
their physical implementations in the artifacts of existing software. Elements of the Source package allow viewing the
source code, corresponding to KDM model elements.

Chapter 12. Code package

Describes meta-model elements that capture programming artifacts as provided by programming languages, such
as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package

Describes the meta-model elements related to the behavior of applications. Action package defines detailed
endpoints for most KDM relations. The key element related to behavior is a KDM action. Other packages depend on the
Action package to use actions in further modeling aspects of existing applications such as features, scenarios, business
rules, etc.

Chapter 14. Build package

Describes the meta-model elements for representing the artifacts involved in building the software system (the
engineering view of the software system).

Chapter 15. Data package

Describes the Data domain of KDM, aiming primarily at databases and other ways of organizing persistent data
in enterprise applications independent of a particular technology, vendor and platform.

Chapter 16. Structure package

Describes the meta-model elements for representing the logical organization of the software system in terms of
logical subsystems, architectural layers, components and packages.

Chapter 17. Event package

Describes meta-model elements that represent basic elements related to behavior of applications in terms of
events, messages and responses.

Chapter 18. Ul package

Describes the meta-model elements to represent knowledge related to user interfaces, including their logical
composition, sequence of operations, etc.

Chapter 19. Platform package

Describes the meta-model elements for representing operating environments of existing software systems.
Application code is not self-contained, as it depends not only on the selected programming language, but also on the
selected Runtime platform. Platform elements determine the execution context for the application. Platform package
provides meta-model elements to address the following:

» Resources that Runtime platforms provide to components
« Services that are provided by the platform to manage the life-cycle of each resource
« Control-flow between components as it is determined by the platform

« Error handling across application components

6 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

« Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while
the Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 20. Runtime package

Provides meta-model elements for representing the physical aspects of operating environments of software
systems.

Chapter 21. Conceptual package

Describes the meta-model elements for representing business domain knowledge about existing applications in
the context of other KDM views.

Chapter 22. Behavior package

Describes the meta-model elements for representing high-level behavior knowledge about existing software
systems in the context of other KDM views.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

e Allen Systems Group, Inc
* BluePhoenix
e EDS
e Flashline
e IBM
¢ Klocwork, Inc.
* KDM Analytics
» SoftwareRevolution
e Tactical Strategy Group, Inc
e Unisys
The following persons were members of the core team that designed and wrote this specification: Nikolai Mansurov,

Michael Smith, Djenana Campara, Larry Hines, William Ulrich, Howard Hess, Henric Gomez, Chris Caputo, Vitaly
Khusidman, Barbara Errickson-Connor.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Pete Rivett, Adam Neal, Sumeet Malhotra, Jim Rhyne, Mark Dutra, Sara Porat, Fred
Cummins, Manfred Koethe.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 7

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

7 Specification Overview

This specification defines a meta-model for representing information related to existing software assets and their
operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM promotes a common interchange format that will allow interoperability between existing modernization tools,
services, and their respective models. More specifically, (KDM) provides a common repository structure that facilitates
the exchange of data currently contained within individual tool models that represent existing software assets. The meta-
model represents the physical and logical software assets at various levels of abstraction as entities and relations.

KDM separates knowledge about existing systems into four orthogonal dimensions: Structure, Behavior, Data, and User
Interface (UI) (refer to Figure 7.1). These dimensions represent well-known concerns in software engineering and
correspond to Architecture Views.

structure

»data

architecture

behavior
ul

Figure 7.1 - Separation of concerns in software systems

Each of these dimensions contains large amounts of information, impossible to be processed at once by human beings. To
overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to different
levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information: primary
and aggregate information. Primary information is assumed to be automatically extracted from the source code and other
artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files. Some (or
even all) primary information can be provided manually by analysts and experts. Aggregate information is obtained from
primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependant
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 9

10

KDM is a MOF model

Common KDM defines additional semantic layer for interoperability on top of basic entity and relationships
KDM can be extended to capture language-specific and application-specific entities and relationships
Defines multiple hierarchies of entities via containers

Defines composition of relationships

For each entity there is a single predefined (home) hierarchy

There are no arbitrary associations

KDM models are composable (it is possible to group several entities into a typed container, that will further on
represent the entire collection of grouped entities via derived relationships)

Models are actionable

Analyst is able to refactor the model (for example, by moving entities between containers) and map changes in the
model to changes in the software through links

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

8

8.1

KDM

Overview

KDM specifies the core concepts required for understanding existing software in preparation for its modernization and
provides infrastructure to support more detailed definitions of Knowledge Discovery.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

Highefr-lewvel, iraplicit,
experfs, analysts

Event Ul Platform Runtime
Data Build Structure
A Code Actions
autoratically extrac ted
Source

meta-raodel ~
Core

kdm

Conceptual | Behavior

Figure 8.1 - Structure of KDM Packages

The KDM contains 14 packages; each package is defined by one or more class diagrams that refer to classes from other
packages.

Core KDM package defines the basic meta-classes (entity, relationship, container hierarchies, etc.) and well-formedness
rules of KDM models, including the lightweight extension mechanism.

8.2

Organization of the KDM Packages

The KDM is a collection of classes and associations that are described together because they provide meta-model
constructs for defining existing software artifacts as entities and relations.

The KDM package has the following organization:

L]

The Core package defines the basic abstractions of KDM
The Kdm package provides static context shared by all KDM models
The Source package defines references to the source code

The Code package defines the low-level building blocks of application source files, such as procedures, datatypes,
classes, etc. (as determined by a programming language)

Action package defines end points of relations, and the majority of KDM relations

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 11

12

Build package defines the artifacts related to engineering of an application

Data package defines the persistent data aspects of an application

Structure package defines the architectural components of existing application, subsystems, layers, packages, etc.
Event package defines a common concept related to event-based programming

Ul package defines the user-interface aspects of the application

Platform package defines artifacts, related to the run time platform of the enterprise application

Runtime package defines artifacts that are related to the run-time of an application on the target platform
Conceptual package defines the domain-specific elements of an application

Behavior package defines the scenario model

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

9 Core Package

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classes in all other KDM packages.
Classes of the Core package determine the structure of KDM models and define fundamental modeling constraints.

9.2 Organization of the Core Package

The KDM uses packages to control complexity and create groupings of logically interrelated classes. The Core package is
a collection of classes and associations that are described together because they provide meta-model constructs for other
KDM packages.

The KDM Core classes are further grouped into the following 6 class diagrams:
e CoreEntities - a class diagram that represents key meta-model elements
¢ CoreRelations - a class diagram that represents key meta-model associations

« AggregatedRelations - a class diagram that represents the key analysis mechanism of KDM - the so-called aggregated
relations

« Datatypes - a class diagram that defines utility data types
e Extensions - a class diagram that defines light-weight extension mechanism of KDM
« Annotations - a class diagram that provides user-defined attributes and annotations to the modeling elements

The Core package depends on no other packages.

9.3 CoreEntities Class Diagram
The Core class diagram defines key meta-model elements of KDM models.

The classes and associations that make up the CoreEntities class diagram are shown in Figure 9.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 13

Element

~

ModelElament

KOMEnR&ity
¢name . String

+aroupedElement

o {union}
o.*
+owrnedElement
{union}
KOMCanfainer o1
- Howmer
{unien} HKOMGroup

Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (Abstract)

An element is an atomic constituent of a model. In the meta-model, an Element is the top metaclass in the metaclass
hierarchy. Element is an abstract metaclass.

Semantics
9.3.2 ModelElement Class (Abstract)

A model element is an element that is an abstraction drawn from the system being modeled.

In the meta-model, a ModelElement is the base for all modeling metaclasses in the KDM. All other modeling metaclasses
are either direct or indirect subclasses of ModelElement.

A ModelElement can be extended through the lightweight extension mechanism.

Superclass

Element

Semantics

9.3.3 KDMEntity Class (Abstract)

A KDM entity is a named model element that represents an artifact of existing software system.

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

In the meta-model, KDMEntity is a subclass of ModelElement. Each KDM package defines some specific KDM entities
that are direct or indirect subclasses of KDMEntity. Also, each KDM package defines some specific KDM relations that
are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are typed
associations between some specific subclasses of KDMEntity.

Superclass

ModelElement

Attributes
name: Name

Associations

owner:KDMContainer[0..1]

group:KDMGrouplO0..*]

Constraints

Semantics

An identifier for the KDM entity.

KDM container to which the current element belongs. This property determines a meta-level
interface to KDM entities. This property is a derived union. Every specific KDM container
defines a concrete set of owned elements that are subtypes of KDMEntity. In KDM this is
represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The owner of a KDM
entity is defined as the container for which the given entity is an owned entity.

KDM groups with which the current element is associated. This property determines a meta-
level interface to KDM entities. This property is a derived union. Every specific KDM group
defines a concrete set of grouped elements that are the subtypes of KDMEntity. In KDM this
is represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The group of a KDM
entity is defined as the group for which the given entity is a grouped entity. Each KDM
entity can be associated with multiple groups.

9.3.4 KDMContainer Class (Abstract)

The KDMContainer is a part of a model that contains a set of KDMEntities.

In the meta-model, a KDMContainer is a KDMEntity that can own other KDMEntities. Each KDM entity can be owned
by exactly one KDM container.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 15

Associations

ownedElement : KDMEntity[O..*] Entities that are associated with the container. This property determines a meta-level
interface to KDM containers. This property is a derived union. Every specific KDM
container defines a concrete set of owned elements that are subtypes of KDMEntity.
In KDM this is represented by the CMOF “derived union” mechanism. Concrete
properties subset the “union” properties of the parent classes, defined in the Core
package.

Constraints

KDMEntity should be owned by exactly one KDMContainer.

Semantics

9.3.5 KDMGroup Class (Abstract)
The KDMGroup is a part of a model that contains a set of KDMEntities.

In the meta-model, a KDMGroup is a KDMEntity that can be associated with other KDMEntities. Each KDM entity can
be associated with multiple KDM groups.

Superclass

KDMEntity

Associations

groupElement: KDMEntity[0..*] KDM entities associated with the given group. This property determines a meta-level
interface to KDM groups. This property is a derived union. Every specific KDM
group defines a concrete set of grouped elements that are the subtypes of KDMEntity.
In KDM this is represented by the CMOF “derived union” mechanism. Concrete
properties subset the “union” properties of the parent classes, defined in the Core
package.

Constraints

Semantics

9.4 CoreRelations Class Diagram
The Core class diagram defines key meta-model associations of KDM models.

The classes and associations that make up the CoreRelations class diagram are shown in Figure 9.2.

16 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

ModelElement

?

HKOMRelationship

0=
+foutbound
{union}

+inbound

{union}

funion}

HKONMERTIfy

Figure 9.2 - CoreRelations Class Diagram

9.4.1 KDMRelationship Class (Abstract)

A KDM relationship is a model element that represents primitive semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Also, each KDM package defines some specific
KDM entities that are direct or indirect subclasses of KDMEntity. Specific subclasses of KDMRelationship are typed
associations between some specific subclasses of KDMEntity.

Superclass

ModelElement

Associations

to : KDMEntity[1]

The target entity (also referred to as the to-endpoint of the relationship). This property determines
a meta-level interface to KDM relationships. This property is a derived union. Every specific
KDM relationship redefines the to-endpoint to a particular subtype of KDMEntity. In KDM this
is represented by the CMOF “redefines” mechanism. Concrete properties redefine the “union”
properties of the parent classes, defined in the Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 17

from:KDMEntity[1] The source entity (also referred to as the from-endpoint of the relationship). This property
determines a meta-level interface to KDM relationships. This property is a derived union. Every
specific KDM relationship redefines the from-endpoint to a particular subtype of KDMEntity. In
KDM this is represented by the CMOF “redefines” mechanism. Concrete properties redefine the
“union” properties of the parent classes, defined in the Core package.

Constraints

To- and from-endpoints should be distinct.

Semantics

9.4.2 KDMENntity (additional properties)

Associations

inbound: KDMRelationship[0..*] Primitive KDM relationships for which the given entity is the target. This
property is an opposite of the to-endpoint of a KDMRelationship. This property
determines a meta-level interface to KDM entities. This property is a derived
union. Every specific KDM relationship redefines the from-endpoint to a
particular subtype of KDMEntity. In KDM this is represented by the CMOF
“derived union” mechanism. Each concrete property subsets the “union” inbound
property of the parent class, defined in the Core package.

outbound:KDMRelationship[0..*] Primitive KDM relationships for which the given entity is the source. This
property is an opposite of the from-endpoint of a KDMRelationship. This
property determines a meta-level interface to KDM entities. This property is a
derived union. Every specific KDM relationship redefines the to-endpoint to a
particular subtype of KDMEntity. In KDM this is represented by the CMOF
“derived union” mechanism. Each concrete property subsets the “union” inbound
property of the parent class, defined in the Core package.

Semantics

9.5 AggregateRelations Class Diagram

The AggregateRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationship are part of
the “meta-level” interface to KDM models, along with interface defined by KDMContainer, KDMGroup, KDMEntity, and
KDMRelationship.

Overall management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity
class.

The classes that make up the AggregateRelations class diagram are shown in Figure 9.3.

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Elameni

RelafionSet

+aggregate

FOMAgaregatedRelationship

@density | Integer

Dasfination

KOMEnR£ity

$createAggregation(’
*deleteAggregation()

+relaion KOMRelationshin

Figure 9.3 - AggregatedRelations Class Diagram

9.5.1 KDMAggregatedRelationship Class

The KDMAggregatedRelationship represents the set of aggregated relationships of the given entity. The set of derived
relationships consists of the primitive relationships of the current entity and of all primitive relationships of the entities
that are recursively contained in the current entity. This is a concrete class, because an AggregatedRelationship can be
instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and exchanged too, if necessary).
Overall management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity

class.

Superclass

Element

Attributes

density:Integer

Associations

relation:KDMRelationship[0..*]

to : KDMEntity[1]

The number of primitive relationships in the aggregated set.

The set of primitive KDM relationships represented by the aggregated relationship.

The target container of the relationships in the aggregated set. All relations in the
aggregated set should terminate at the target container or at some entity that is
contained directly or indirectly in the target container.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 19

from:KDMEntity[1] The source container of the relationships in the aggregated set. All relationships in
the aggregated set should originate from the source container or from some entity
that is contained directly or indirectly in the source container.

Operations
createAggregation(otherEntity:KDMEntity) This operation creates an aggregated relationship such that the
current entity is the from-endpoint of the aggregated relation and the
“otherEntity” is the to-endpoint. The new aggregated relationship is
owned by the model to which owns the current entity (either directly
or indirectly through container ownership).
deleteAggregation This operation deletes the given aggregated relationship.

(aggregatedRelation:KDMAggregatedRelationship)

Constraints

To- and from-endpoints should be distinct.

The density should be greater than or equal to 1.

The density should be the same as the number of primitive relations represented by the given aggregated relationship.

The to- and from- endpoints of each relation should be the same as in the aggregated relationship.

Semantics
AggregatedRelations are determined by the grouping of elements into containers in the following way.

1. AggregatedRelationship between two entities (no owned elements) represents the set of regular KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container represents the set of all regular KDM relationships such
that the given entity is the from-endpoint and the to-endpoint is any entity that is owned by the given container
(directly or indirectly).

3. AggregatedRelationship between a container and an entity represents the set of all regular relationships such that
the to-endpoint is the given entity and the from-endpoint is any entity that is owned by the given container
(directly or indirectly).

4. AggregatedRelation between two containers represents the set of all regular KDM relations such that the from-
endpoint is an entity owned by the first container and the to-endpoint is an entity owned by the other container.

A regular KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an implied
density of 1. An AggregatedRelationship represents a set of regular KDM relationships. It has density of greater or equal
than 1 and no concrete type (as it may represent regular KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no regular KDM relationships between
them (according to the definition above).

20 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

9.5.2 KDMEntity (additional properties)

Associations

inAggregated:KDMAggregatedRelationship[0..*] Aggregated KDM relationships for which the given entity is the

target.

outAggregated:KDMAggregatedRelationship[0..*] Aggregated KDM relationships for which the given entity is the

Semantics

source.

9.6 Datatypes Class Diagram

The Datatypes class diagram collects together utility data types for the Core package. Each class at the Datatypes class
diagram is a subclass of MOF DataType class. The classes that make up the Datatypes class diagram are shown in Figure

9.4.

<<ghumeration==
Instancekind

¢global
local
<field
eformal
otype
¢constant
eobject
edynamic

<<datat ype>>
<<datatypes> Boolean
String

<<datatypes=
Integer

Figure 9.4 - Datatypes Class Diagram

9.6.1 InstanceKind Data Type (enumeration)

The meta-model InstanceKind defines an enumeration that clarifies the role of a data type. The values are defined below.
The InstanceKind is used by TypeElement in Code package.

Literal Values

global
local
field

formal

type

The data unit represents a global variable.

The data unit represents a local variable.

The data unit represents a field in a composite type or a class.
The data unit represent a formal parameter.

The data unit represents a type.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

21

constant The data unit represents a constant.

object The data unit represents an instance of a class.
dynamic The data unit represents a dynamically created instance.
Semantics

9.6.2 Boolean Type (datatype)

The meta-model uses the Boolean type to represent some KDM attributes, KDM operations, and their parameters.
Semantics

9.6.3 String Type (datatype)

The meta-model uses the String type to represent some KDM attributes, KDM operations, and their parameters.
Semantics

9.6.4 Integer Type (datatype)

The meta-model uses the Integer type to represent some KDM attributes, KDM operations, and their parameters.

Semantics

9.7 Extensions Class Diagram

The Extensions class diagram collects together classes and associations of the Core package that define the lightweight
extension mechanism of KDM.

The classes and associations that make up the Extensions diagram are shown in Figure 9.5.

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Elerment

q\ KDMExtensionFamily

\MadeiElamant ¢name : String

n.*

+axpndedElsmeant
Steraotvoes

ElameniExiension

ewalle | String

TaggddalueDefinifion
1,/ +tag

TagDefi.nih'on +tag Stereotype
stag: Strlng = o ¢baseClass String
otype: String 0+ 1| ¢name : Sting

Tan Definifions

Figure 9.5 - Extensions Class Diagram

9.7.1 Stereotype Class

The stereotype concept provides a way of branding (classifying) model elements so that they behave as if they were the
instances of new virtual meta-model constructs. These model elements have the same structure (attributes, associations,

operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional required
tagged values that apply to model elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

In the meta-model the Stereotype is a subclass of ModelElement. Stereotype is a named model element. TaggedValues
attached to a Stereotype apply to all ModelElements branded by that Stereotype.

A Stereotype keeps track of the base classes to which it may be applied.

Superclass

Element

Attributes
baseClass: String Specifies the name of the model element to which the stereotype applies.
name:String Specifies the name of the stereotype.

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 23

extendedElement:ModelElement[1] Designates the model element branded by the stereotype. Must be a model
element of the kind specified by the baseClass attribute

Constraints
Tags associated with model element should not clash with any meta attributes associated with this model element.
A model element should have at most one tagged value with a given tag name.

A stereotype should not extend itself.

Semantics

9.7.2 TaggedDefinition Class

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships and attributes for a
particular programming language, runtime platform or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
information about existing software systems to only those tools that share a common understanding of the specific tagged
value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass
Element
Attributes
tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.
type:String Specifies the type of the value attribute.

Constraints

Semantics

9.7.3 ExtensionFamily Class

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and the corresponding tag definitions.

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

In the meta-model, TaggedValue is a subclass of Element.

Superclass

Element

Attributes

name:String Provides the name of the extension family.

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged
values associated with the model elements that are branded with the given
stereotype.

extendedElement:ModelElement[1] Designates the model element branded by the stereotype. Must be a model element
of the kind specified by the baseClass attribute.

Constraints

Semantics

9.7.4 TaggedValue Class

A tagged value allows information to be attached to any model element in the form of a “tagged value” pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships and attributes for a
particular programming language, runtime platform or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition. In the meta-model, TaggedValue is a subclass of
Element.

Superclass
Element
Attributes
tag:Name Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.
Value:String Contains the current value of the TaggedValue.

Associations

tag:TagDefinition[1] The TagDefinition of this TaggedValue

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 25

Constraints

Semantics

9.7.5 ModelElement (additional properties)

Associations

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

extension:Stereotype|[0..1] The stereotype

Constraints

Each tagged value added to a ModelElement must conform to a certain tag definition owned by the stereotype of that
ModelElement (the tag association of the TaggedValue should refer to a TaggedDefinition that is owned by a Stereotype
of the ModelElement). A tagged value conforms to a tag definition when the value conforms to the type. Conformance of
lightweight extensions can only be validated dynamically, since lightweight extensions are not defined by the KDM
standard.

Semantics

9.8 Annotations Class Diagram

The Annotations class diagram collects together classes and associations of the Core package that provide user-defined
attributes and annotations to the modeling elements.

The classes and associations that make up the Annotations diagram are shown in Figure 9.6.

Element

Attribute Annaotation
stag : String onote | String
evalue : String

o 0.
+annotation
+attribute
Elementiifttibute Elemedtinnotation
1

+owvner +owWhner
1 FElarmant

Figure 9.6 - Annotations Class Diagram

26 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

9.8.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define virtual new
model element, and tagged values specify additional attributes of these virtual model elements). Tagged values are only
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

The interpretation of attribute semantics is outside the scope of KDM. It must be determined by the user or tool
conventions. It is expected that some tools will provide capability to add arbitrary attributes to the instances of the model
to supply information needed for their operations beyond the basic semantics of KDM. Such information could support
analysis of KDM models by analysis, etc.

In the meta-model, TaggedValue is a subclass of Element.

Superclass
Element
Attributes
tag:Name Contains the name of the attribute. This name determines the semantics that are applicable to the
contents of the value attribute.
value:String Contains the current value of the attribute.

Constraints
Semantics

9.8.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element. The meta-model Annotation
class is a subclass of Element.

Superclass

Element

Attributes

note:String Contains the textual description of the target model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 27

Constraints

Semantics

9.8.3 Element (additional properties)

Associations

attribute:Attribute[0..*] The set of attributes owned by the given element.

annotation:Annotation[0..*] The set of annotations owned by the given element.

Constraints

Semantics

28

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

10 KDM Package

10.1 Overview

The Kdm package defines key infrastructure elements that determine patterns for constructing KDM models, composition
and integration of KDM models, and consequently the queries against KDM models.

10.2 Organization of the Kdm Package

The Kdm package is a collection of classes and associations that define the overall structure of KDM models. The key
KDM artifact is referred to as “a KDM model.” A KDM model is the minimal unit of exchange. A KDM model
corresponds to one particular view of the existing system being modeled. A model segment is a coherent collection of one
or more related models that represents a self-contained perspective on the artifacts of the existing system. It is expected
that a complete segment be extracted as a unit. It is expected that each model segment describe artifacts that involve a
single programming language and a single platform.

An enterprise application may involve multiple model segments that are exported by separate extractor tools, and may
need to be integrated to provide a coherent holistic view. The integration tool will define the model Root that further
refers to multiple segments.

Thus the KDMRoot element is an n entry point into a KDM model. Each model Segment includes one or more KDM
models.

Root element may also contain one or more KDM maodels that are “global” (shared between multiple model segments).
For example, all Platform, Runtime, Conceptual, and Behavior models can be associated with the Root element to avoid
duplication in individual model segments.

Root, Segment, and individual KDM models are static element of KDM models that are not dependent of the software
systems that are being modeled by KDM. In the meta-model these classes are subclasses of Element, rather than of
ModelElement. They determine the overall infrastructure of KDM, as opposed to the model elements from the Core
package that determine the structure of the existing application being modeled.

The Kdm package consists of the following class diagrams:
* Framework — defines the elements of the kdm framework.
* ModelRoot — defines the individual KDM models and how they are associated with the framework.
* Audit —defines audit information for KDM model elements.

The Kdm package depends on the following packages:

org.omg::ADM::KDM::Action
org.omg::ADM::KDM::Behavior
org.omg::ADM::KDM::Build
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Conceptual
org.omg::ADM::KDM::Data
org.omg::ADM::KDM::Event
org.omg::ADM::KDM::Platform

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 29

org.omg::ADM::KDM::Runtime
org.omg::ADM::KDM::Structure
org.omg::ADM::KDM::Ul

10.3 Framework Class Diagram
The Framework class diagram defines the model Segment.

The classes and association of the Framework diagram are shown in Figure 10.1.

Elarmant
(from Gore)
Extensions
KOMERTEy
extension 1 {from Care)
0. gname ;. String
KDMExtensionFarmily KDMPramework _
{from Care) ¢name ;. String *createAggregation()
*deleteAggregation()
/d +ownedElement
KDMModeiRoot 0+ {union}
/Y7 Y\ +model
{union}
HDMR oot KDMSegmert 0.1
- KDMMods!
oot ’ ! Ssgmenis ,ceqment 71 . !
fnodel 1
+model

{union}

KOMReiationshin 0.7

(from Core)

Aggregated Relations

+ownedRelation
{union} 0.

+faggregatedRelation

KDOMAggregatedRelationship

(frarn Core)
¢density | Integer

Figure 10.1 - Framework Class Diagram
10.3.1 KDMFramework Class (abstract)
The KDMFramework element is the common parent for the KDM framework classes.

Superclass

Element

Attributes

name: String [0..*] The name of the framework element.

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

extension: ExtensionFamily [0..%] Extensions for the current model segment.

Constraints

Semantics

10.3.2 KDMModel Class (Abstract)

A KDM model represents a certain architecture view of software systems. Each KDM model completely describes certain
aspects of software systems according to the separation of concerns principle. KDM model is a minimal unit of
exchanging information between tools.

KDM defines several specific KDM models.

In the meta-model, KDMModel extends the Element class. A KDM package defines a subclass of KDMModel and the
corresponding specific subclasses of KDMEntity and KDMRelationship. Specific subclasses of KDMModel serve as
typed containers for some specific subtypes of KDMEntity and KDMRelationship. KDMModel serves as the container for
KDMAggregatedRelationships.

Superclass

KDMFramework

Associations

ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM
model defines specific subclasses of KDMEntity class.

ownedRelation:KDMRelationship[0..*] Instances of KDM relationships owned by the model. Each
KDM model defines specific subclasses of KDMRelationship
class.

aggregatedRelation:KDMAggregatedRelationship[0..*] Instances of KDM aggregated relations owned by the model.

Constraints

Semantics

10.3.3 KDMSegment Class

The KDMSegment element represents a coherent set of related KDM models representing an existing software system.
KDMSegment is a typical unit of exchange between tools.

Superclass

KDMModelRoot

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 31

10.3.4 KDMRoot Class

The KDMRoot element represents a coherent set of related KDM models representing an existing software system.
KDMRoot is a typical unit of exchange between tools.

Superclass

KDMModelRoot

Associations

segment: KDMSegment[0..*] Instances of KDM entities owned by the model. Each KDM model defines specific
subclasses of KDMEntity class.

Constraints

Semantics

10.4 ModelRoot Class Diagram
The ModelRoot class diagram defines the ModelRoot element.

The classes and associations of the ModelRoot diagram are shown in Figure 10.2.

Codehodel
- (from Code)
Buildhodel Datatdodel
(frorn Build) {frorn Data)
+Ircodeiodel
+buildvodel ”
o.r +dataiodel

Codefodei

BehaviorModel
Behaviorhodel

+structuredodel +hehavioriodal ifrom Behavior)
StructureModel +owner fier =
{frorm Structure) e——? KDOMModslRoot |17 ConcepiualiMode!
. .. o _FOWNEr
n. ’01\ Conceptualiodel
StructureModel FOWNer omner 0 4 (from Conceptual)

+conceptualtodel

Eventhodel
(frorn Event)

+uihodel i ehdodel

Runtimehodel
{frarn Runtirme)

el 0
UiModel Platformtdodel
{frarn LI {from Platfarm)

Figure 10.2 - ModelRoot Class Diagram

32 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

10.4.1 ModelRoot Class (abstract)

ModelRoot element is the entry point into a KDM model. This is an infrastructure element that provides links to the
“global” KDM models that are shared among multiple model segments, as well as to the set of segments of the model.

Superclass

KDMFramework

Associations

codeModel: CodeModel[0..*] Represents basic program elements and their relations in the target
Segment. For example, data types, procedures, variables, classes, methods.

dataModel: DataModel [0..*] Represents basic elements of persistent storage and their relations in the
target Segment.

platformModel:PlatformModel[0..*] Represents platform elements used by individual model Segment. For
example, platform-specific definitions of resources and corresponding
relations.

runtimeModel:RuntimeModel[0..*] Represents physical deployment of the software system as well as the
dynamic structures and the corresponding relations.

conceptualModel:ConceptualModel[0..*] Represents domain-specific entities and relations.

behaviorModel:BehaviorModel[0..*] Represents domain specific rules and scenarios.

structureModel:StructureModel[0..*] Represents architecture components that are shared by individual model
Segments.

uiModel: UIModel [0..*] Represents basic elements of the user interface and their relations.

eventModel: EventModel [0..%] Represents basic events and their relations in the target Segment.

buildModel:BuildModel[0..*] Represents basic elements of the build and their relations for the target
Segment.

Constraints

Semantics

10.5 Audit Class Diagram

The Audit class diagram collects together classes and associations of the Core package that defines audit information for
KDM model elements.

The classes and associations that make up the Audit class diagram are shown in Figure 10.3.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 33

Element
(from Gore)

KOMFramework

Audifs 0.r
+audit TN
¢descripion: String
¢duthor: String
@date | String

Figure 10.3 - Audit Class Diagram

10.5.1 Audit Class

Audit class represents basic audit information associated with KDM models.

Superclass

Element

Attributes

description:String

author:String

date:String

Constraints

Semantics

Contains the description of the model element.

Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.

Contains the date when the model element was created.

10.5.2 KDMFramework (additional properties)

Associations

audit:Audit[0..*]

Constraints

Semantics

34

This association links a KDMFramework element with the set of audit attributes.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

11 Source Package

11.1 Overview

The Source package provides meta-model constructs for specifying the link between the model artifacts and their physical
representation by the artifacts of the existing system. It represents the convergence between the model representation and
the application source.

The Source package offers two capabilities for linking KDM model to the corresponding artifacts:

« Inlining the corresponding source code in the form of a “snippet” into KDM models

¢ Linking a KDM element to a region of the source code within some physical artifact of the system being modeled
A given KDM model can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

e The link can utilize the element of the KDM build model to identify the particular physical artifact, in which case the
path to the artifact is determined through the Build Model.

e The link can be made stand-alone and explicitly specify the path to the artifact.

The nature of the “source code” that implements a particular KDM element is outside of the scope of KDM. In KDM, this
is indicated by the “language” attribute.

11.2 Organization of the Source Package
The Source package consists of two diagrams:

» SourceRef — the link between a model element and the source code.
» SourceRegion — the link between a model element and the corresponding physical artifact.

The Source package depends on the following packages:

org.omg::ADM::KDM::Build
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Core
org.omg::ADM::KDM::Data
org.omg::ADM::KDM::UlI

11.3 SourceRef Class Diagram

The SourceRef class diagram defines classes and associations that link elements of the KDM model of an existing
software system to the physical artifacts of that system.

The class diagram shown in Figure 11.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 35

Elgment
(fram Core)

DataElement
(frove Data)

UIElement
(from LI} 1

FSource +source ™
0.4

UiSource
SourceRef

¢language ;. String
<snippet . String

wﬁ's@ume
nq
CodeElement

1 (frorn Code)

Figure 11.1 - SourceRef Class Diagram

11.3.1 SourceRef Class

The SourceRef class represents the link between a particular model element and the corresponding source code.

Superclass
Element
Attributes
language: String Optional attribute. Indicates the source language of the snippet attribute.
shippet:String Optional attribute. The source snippet for the given KDM element. The snippet may have

some internal structure, for example XML tags corresponding to an abstract syntax tree
of the code fragment. The interpretation of code snippets is outside the scope of the
KDM.

Constraints
Language indicator has to be provided using at least one of the following methods:
» Asthe attribute of the SourceRef element.
« As the attribute of the SourceRegion element.
« As the attribute of the SourceFile element (part of the Build Model), accessible via the SourceRegion element.

If both the snippet and the language attributes of the SourceRef element are present, then the language attribute should
describe the nature of the code snippet, in which case the nature of the source code region accessible through the
SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not present, then the
language attribute of the SourceRef element overrides the language attribute of the SourceRegion element, which in turn
overrides the one at the SourceFile element.

36 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics
11.3.2 CodeElement (additional properties)
This association links a particular CodeElement to its source code.

Associations

source: SourceRef[0..1] Source for the given KDM element.

Semantics
11.3.3 DataElement (additional properties)
This association links a particular DataElement to its source code.

Associations

source: SourceRef[0..1] Source for the given KDM element.

Semantics
11.3.4 UlElement (additional properties)
This association links a particular UIElement to its source code.

Associations

source: SourceRef[0..1] Source for the given KDM element.

Semantics

11.4 SourceRegion Class Diagram

The SourceRegion class diagram defines classes and associations. that define links between KDM model elements and the

physical artifacts of the existing system.

The class diagram shown in Figure 11.2 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

37

Elarmeant
(from Cara)

o

SourceRef

elanguage : String
@snippet : String

SourceRegion

+region 1
& SourceRegions

estartline : Integer
@endLine : Integer

¢language : String
¢path : String

estartPosition : Integer

¢endPosition: Integer

{ordered}

o+

Nﬁ
SourceFile SourceFile

0.1 {fram Build)
¢language : String

Figure 11.2 - SourceRegion Class Diagram

11.4.1 SourceRegion Class

The SourceRegion class provides a pointer to a single region of source. The SourceRegion element provides the capability
to precisely map model elements to a particular region of source which is not necessarily text. The nature of the source
code within the physical artifact is indicated by the language attribute of the SourceRegion element or the language

attribute of the SourceFile element. The language attribute of the SourceRegion element overrides that of the SourceFile

element if both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass

Element

Attributes

startLine: Integer
startPosition:Integer
endLine:Integer
endPosition:Integer
language:String

path:String

The line number of the first character of the source region.

Provides the position of the first character.of the source region.

The line number of the last character of the source region.

The position of the last character of the source region.

Optional attribute. The language indicator of the source code for the given source region.

Optional attribute. The location of the physical artifact that contains the given source
region.

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

file:SourceFile[0..1] This association allows zero or more SourceRegion elements to be associated with a
single SourceFile element of the Build Model.

Constraints

The location of the source file should be provided using at least one of the following methods:
« Path attribute of the SourceRegion element.
 Path attribute of the SourceFile element of the Build model.

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

The path attribute should uniquely identify the physical artifact. The nature of the path attribute is outside of the scope of
the KDM. For example, this can be a URI.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 39

40

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

12 Code Package

12.1 Overview

The Code package contains meta-model classes and associations capturing system artifacts to model the structure of

programming languages and their relationships. It includes classes to model structural programming artifacts such as data

types, data items, classes, procedures, macros, prototypes, and templates.

12.2 Organization of the Code Package

The Code package consists of the following class diagrams:

L]

The Code package depends on the following packages:

12.3 Codelnheritances Class Diagram

The Codelnheritances class diagram define how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.1 captures these relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Codelnheritances
CodeModel
CodeRelations
CallableUnits
Modules
Prototype

Macro

Template
TemplateRelations
SimpleTypes
PredefinedTypes
DerivedTypes
CompositeTypes
ClassTypes
EnumeratedTypes
Signature
Interface
ClassRelations
TypeRelations
InterfaceRelations
Comment
Visibility

org.omg::ADM::KDM::Action
org.omg::ADM::KDM::Source
org.omg::ADM::KDM::Core

41

KDMMoadel KDMEntity .
{from kdm) (fram Core) KDMContainar KOMGroup
(frorm Corel (frorm Cores)
Codeldodel % [%
CodeContainer CodeGroup

StorableElement

CodeElement R

TynaEfarmant

Figure 12.1 - Codelnheritances Class Diagram

12.4 CodeModel Class Diagram

The CodeModel class diagram collects together classes and associations of the Code package. They provide basic meta-
model constructs to define a language-independent structure of code artifacts.

The CodeModel diagram describes the following types:
« CodeModel — a class representing a model for CodeElement.
» CodeElement — a class representing an abstract parent class for all KDM entities that can be used to model code.
« CodeResource — is the key abstract class that represents structural elements determined by a programming language
« CodeGroup — a class representing a grouping of CodeElement.

» CodeContainer — a class representing a container for CodeElement allowing composition and a hierarchical structure
of CodeElement.

« TypeElement — a subclass of CodeResource that represents data items and type definitions.

« TypeContainer — a subclass of CodeContainer and TypeElement representing a container for TypeElement allowing
composition and hierarchical structure of TypeElement.

The class diagram shown in Figure 12.2 captures these classes and their relations.

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

+model
{subsets model} CodeReiationshio

CodeModel |5 o1

+codeRelation
{subsets ownedRelation}

+model

{subsets model}

{subsets ownedElement}

+codsElement CodeEement

+codeElement
CodeResource 0..7subsets groupedElement}

7

CodeConfainar

0.

ZF CodeGroup
+codeGroup

; TvpeElement
TvpeContainer | L okind - Instancekind

{subsets group}

Figure 12.2 - CodeModel Class Diagram

12.4.1 CodeModel Class

The CodeModel is the specific KDM model for the Code package.
Superclass

KDMModel

Associations

codeElement:CodeElement[0..*] The set of the top-level elements that are defined in this code model. The
CodeModel element is the owner of such CodeElement. Some of these
elements may be CodeContainers that own additional CodeElements. This
property subsets the ownedElement property of KDMModel derived union.

codeRelation:CodeRelation[0..*] The set of CodeRelations owned by this code model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

12.4.2 CodeElement Class (abstract)

The CodeElement is an abstract class representing any generic determined by a programming language.

Superclass

KDMEntity
Constraints

Semantics

CodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the Code
model.

12.4.3 CodeResource Class (abstract)

CodeResource class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are CodeElements that are not CodeResources, for example ActionElements that are defined in
the Action package. CodeResource can be arranged in CodeGroup and organized in a hierarchy using CodeContainer.

Associations

codeGroup:CodeGroup|0..*] The set of CodeGroup with which the current CodeResource is associated.

Semantics

CodeResource is an abstract class that is used to constrain the owned elements of some KDM containers in the Code
model.

12.4.4 CodeGroup Class

The CodeGroup is a general purpose grouping of CodeElement. This allows a CodeElement to be arranged in multiple
CodeGroups. CodeGroup subclasses the KDMGroup and constraints the groupedElement property. Instead of any
KDMElement, a CodeGroup can contain only CodeElement.

Superclass
CodeElement

KDMGroup

Associations

groupedElement:CodeElement[0..*]

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

CodeGroup is a concrete KDM modeling element.

12.4.5 CodeContainer Class (abstract)

The CodeContainer is a container for CodeElement. It allows composition and hierarchical structure. CodeContainer is
further subclassed by more specific containers that subset the ownedElement property of the KDMContainer class.

Superclass
CodeElement
KDMContainer
Constraints

Semantics

CodeContainer is an abstract class that is used to define containers in the Code model with constrained owned elements.

12.4.6 TypeElement Class (abstract)

The TypeElement is a generic meta-model element that represents type entities of software systems. In the meta-model a
TypeElement is a subclass of KDMEntity.

Superclass
CodeElement
KDMEntity

StorableElement

Attributes

kind : InstanceKind The indicator of the kind of the data item represented by this element.

Constraints

Semantics

TypeElement is an abstract class that is used to constrain owned elements in KDM containers that represent complex
types.

12.4.7 TypeContainer Class (abstract)

The TypeContainer is a meta-model element that provides generic grouping capabilities for TypeElements. TypeContainer
owns a set of TypeElements. A TypeElement can be associated with a single TypeContainer.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 45

In the meta-model TypeContainer is a subclass of KDMContainer. It is also a subclass of TypeElement. TypeContainer
class is further sub-classed by several specific KDM type container classes.

Superclass
CodeContainer
TypeElement
Constraints

Semantics

TypeContainer is an abstract class that is used to represent KDM containers with restricted owned elements.

12.5 CodeRelations Class Diagram

The CodeRelations class diagram defines several abstract classes that represent various KDM relationship families. The
class diagram shown in Figure 12.3 captures these classes and their relations.

KOMRelationshin

(from Gorg)

&

CodeRelationship

inferfaceRalalionship

FrofolvpeRelalionship

TemplateRelationship

TypeRealalionship

Figure 12.3 - CodeRelations Class Diagram

12.5.1 InterfaceRelationship Class (abstract)

The InterfaceRelationship class is an abstract class that represents the family of KDM relations describing the usages of
interfaces.

Superclass

KDMRelationship

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

12.5.2 TemplateRelationship Class

The TemplateRelationship class is an abstract class that represents the family of KDM relations describing the usages of
templates.

Superclass

KDMRelationship

Semantics

12.5.3 TypeRelationship Class

The TypeRelationship class is an abstract class that represents the family of KDM relations describing the usages of types.

Superclass

KDMRelationship
Semantics

12.5.4 PrototypeRelationship Class

The PrototypeRelationship class is an abstract class that represents the family of KDM relations describing the usages of
prototypes.

Superclass

KDMRelationship

Semantics

12.6 CallableUnits Class Diagram

The CallableUnits class diagram defines basic meta-model constructs to represent CallableElement, such as procedures,
functions, methods, etc. The class diagram shown in Figure 12.4 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 47

CodeConlainer

2

CallableElement
¢isExternal . Boolean

+ovner
{suhsets awner}

CodeElsment

D -
+codeElement
{subsets ownedElement}

OperatorUnit ConstructorlUnit

hethodUnit

CallablelUnit

Blockl nit

Figure 12.4 - CallableUnits Class Diagram

12.6.1 CallableElement Class

The CallableElement class is a common superclass that defines attributes for callable code elements. In the meta-model it
has the role of an endpoint for some KDM relations.

Superclass

CodeContainer

Attributes and Associations

isExternal:Boolean Provides Boolean value to define if the element represents an external service.
codeElement:CodeElement[0..*] Represents owned elements, such as local definitions and actions.
Constraints
Semantics
12.6.2 CallableUnit Class
The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

CodeElement

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics
12.6.3 BlockUnit Class
The BlockUnit represents a block of code for block-structured programming languages.

Superclass

CodeElement

Semantics

12.6.4 MethodUnit Class

The MethodUnit represents member functions owned by a ClassUnit.

Superclass

CodeElement
Semantics

12.6.5 ConstructorUnit Class

The ConstructorUnit represents the object oriented language concept constructor called when an object is created. The
ConstructorUnit is owned by the ClassUnit.

Superclass

CallableElement
Semantics

12.6.6 OperatorUnit Class

The OperatorUnit is a CallableElement. It is used to model the object oriented language concept of a user-defined
operator.

Superclass

CallableElement

Semantics

12.7 Module Class Diagram

The Module class diagram collects together classes and associations of the Code package that represent packaging aspects
of programming languages, such as compilation units, shared files, and binary components. The class diagram shown in
Figure 12.5 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 49

CadeConiainer

1

Module

01

+OWH$3F
{subsets owner}

CompilationlUnit

?

SharedUnit 0=

CodehAssembly

+codeElement
{SubSﬂ}s ownedElement}

CodeElement

Figure 12.5 - Module Class Diagram

12.7.1 Module Class

The Module is a subtype for CodeContainer to model a software module or component, which either requires building or
is used by the build process, and which can be allocated to deployed components. Module owns CodeElements and
determines relations between them.

Superclass

CodeContainer

Associations

ownedElement:CodeElement[0..*] The set of owned CodeElement.

Semantics

12.7.2 CompilationUnit Class

The CompilationUnit is a subtype for Module to model the source file as an owner of certain code elements, determined
by the build process.

Superclass

Module

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics
12.7.3 SharedUnit Class
The SharedUnit is a subtype for Module to model the shared source files as determined by the build process.

Superclass

Module

Semantics

12.7.4 CodeAssembly Class

The CodeAssembly is a subtype for Module to model the binary object file resulting of a build process.

Superclass

Module

Semantics

12.8 Prototype Class Diagram

The Prototype class diagram provides basic meta-model constructs to define the relationship between PrototypeUnit and
CodeElement. The class diagram shown in Figure 12.6 captures these classes and their relations.

ProfolyneRelalionship

CodeResource

+from
{redefines from} rototypedBy
bound}
FrototypedBy
- 1
Prototypelnit +inPrototypedBy
+to {subsets inbound}
{redefines to}

Figure 12.6 - Prototype Class Diagram

12.8.1 PrototypeUnit Class

The PrototypeUnit is a CodeElement and is used to model prototype constructs. Prototype constructs are declaration
directives in programming languages used by compilers to verify argument lists and definition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 51

Superclass

CodeElement

Associations

inPrototypedBy:PrototypedBy|[0..*] The incoming PrototypedBY relations.

Constraints

Semantics

12.8.2 PrototypedBy Class

The PrototypedBYy is an association class to provide linkages between CodeElement and PrototypeUnit.

Superclass

PrototypeRelationship

Associations

from:CodeElement[1]

to:PrototypeUnit[1]

Constraints

Semantics

12.8.3 CodeElement Class (additional properties)

Associations
outPrototypedBy:PrototypedBy[0..*]

Constraints

Semantics

12.9 Macro Class Diagram

The Macro class diagram provides basic meta-model constructs to define macroprocessing capabilities that are provided
by certain programming languages. The class diagram shown in Figure 12.7 captures these classes and their relations.

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

CodeConfainer

Macrolnit

0.1
+OWwer
{subsets owner}

+codeElement

{subsets ownedElerment}n +

CodeElement

Figure 12.7 - Macro Class Diagram

12.9.1 MacroUnit Class

The MacroUnit is a CodeContainer. MacroUnit is used to model macro type constructs used by programming languages

to define a sequence of code that is replaced and expanded during pre-processing of the code by the compiler or
interpreter.

Superclass

CodeElement

Associations

codeElement:CodeElement[0..*]

Constraints

Semantics

12.10 Template Class Diagram

The Template class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. The class diagram shown in Figure 12.8 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

53

CodeContainer

CodeResource

Templatelnstance

TemplatelUnit

1 +0owner

+owner
{subsets. twner}

0.1
subsets owner}
+oiner

ubsets owner}

+instance

TemplateParameter

{subsets ownedElement}

CodeResource

Figure 12.8 - Template Class Diagram
12.10.1 TemplateUnit Class
The TemplateUnit is a CodeContainer and allows composition for TemplateParameter and arbitrary CodeResource.

Superclass

CodeContainer

Associations

parameter:TemplateParameter[0..*]

TemplateElement:CodeResource[0..*]

Constraints

Semantics

12.10.2 TemplateParameter Class

The TemplateParameter is a CodeElement and is a parameter for TemplateUnit.

Superclass
CodeResource

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

12.10.3 Templatelnstance Class

The Templatelnstance is a CodeContainer representing the instantiation of a TemplateUnit. Template instance contains all
instances resulting from the template instantiation because they are endpoints of the actual relations.

Superclass

CodeContainer

Associations

instance:CodeResource[0..*]

Constraints

Semantics

12.11 TemplateRelations Class Diagram

The TemplateRelations class diagram defines meta-model constructs to define KDM relationships between templates and
instanciations of templates.

The TemplateRelations diagram describes the following types:
 Instantiates — an association class linking TemplateUnit to Templatelnstance.
* ProgramElement — an interface for Templatelnstance to enable instantiation.
¢ InstanceOf — an association class linking ProgramElement instances to Templatelnstance.

The class diagram shown in Figure 12.9 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 55

InstanceOf

TemplateRelationship

0.* .
+inlnstanceCf A

+to
{redefines to}

CodeResource

Templatelnstance

- +from
TemplateUnit 9 .- {redefires from}
+0 o ; -
{redefines to} Instantiates +outinstantiates
+inlnstantiates {subsets outbound}

{subsets inbound}
Figure 12.9 - TemplateRelations Class Diagram

12.11.1 Instantiates Class

The Instantiates is a subtype of TemplateRelationship and is used to provide linkages between TemplateUnit and
Templatelnstances.

Superclass

TemplateRelationship

Associations

from:Templatelnstance[1]

to:TemplateUnitUnit[1]

Constraints
Semantics

12.11.2 InstanceOf Class

The InstanceOf represents a relationship between a CodeResource that is part of a Templatelnstance and the
corresponding definition in the TemplateUnit.

Superclass

TemplateRelationship

56 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

from:CodeResource[1]

to:CodeResource[1]

Constraints

Semantics

12.11.3 CodeResource (additional properties)

Associations

outinstanceOf:InstanceOf[0..*]

ininstanceOf:InstanceOf[0..*]

Constraints

Semantics

12.12 SimpleTypes Class Diagram

The SimpleTypes class diagram defines meta-model element that represent simple data elements and data type elements

as determined by programming languages. The classes and associations that make up the SimpleTypes diagram are
shown in Figure 12.10.

TyvpeElameni

|

SimpleTypeElement

N

NamedTypelnit PredefinedTypeElsment

Figure 12.10 - SimpleTypes Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

57

12.12.1 SimpleTypeUnit Class

The SimpleTypeUnit is a meta-model element that represents an instance of a type. SimpleTypeUnit is a common
superclass for PredefinedTypeElement that represents instances of built-in types determined by programming languages,
and NamedTypeUnit, that represents user-defined types. Depending on the context, this can represent a variable
definition, an element of a complex data type, such as a field in a record, a formal parameter of a signature, etc.

Superclass
TypeElement
Constraints

Semantics

12.12.2 NamedTypeUnit Class

The NamedTypeUnit is a meta-model element that represents an instance of a user-defined (named) type. Depending on
the context, this can represent a variable definition, an element of a complex data type, such as a field in a record, a
formal parameter of a signature, etc.

Superclass
SimpleTypeElement

Constraints

12.12.3 PredefinedTypeElement Class

The PredefinedTypeElement is a generic meta-model element that represents predefined data types provided by a
programming language.

In the meta-model PredefinedTypeElement is a subclass of SimpleTypeElement, which allows it to be the endpoint of
various type relationships. This class is an extension point. In KDM PredefinedTypeElement is subclassed by several
specific classes.

Superclass

SimpleTypeElement

Semantics

12.13 PredefinedTypes Class Diagram

The PredefinedTypes class diagram defines model elements that represent predefined types common to various
programming languages. The classes and association that make up the PredefinedTypes diagram are shown in Figure
12.11.

58 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

PredefinedTypeElement

/V' A e
FixedPointUnit

BoolsanUnit
Floatlnit
StringUnit
CharUnit Iﬁ{\e\,gerUnlt TimelUnit
Ciecimal DatelUnit

Unit

Figure 12.11 - PredefinedTyped Class Diagram
12.13.1 StringUnit Class
The StringUnit is a meta-model element that represents string data type common to various programming languages.

Superclass

Predefined TypeElement

Semantics

12.13.2 IntegerUnit Class

The IntegerUnit is a meta-model element that represents integer data type common to various programming languages.

Superclass

PredefinedTypeElement

Semantics

12.13.3 CharUnit Class

The CharUnit is a meta-model element that represents character data types common to various programming languages.

Superclass

PredefinedTypeElement

Semantics

12.13.4 BooleanUnit Class

The BooleanUnit is a meta-model element that represents Boolean data types common to various programming languages.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 59

Superclass

PredefinedTypeElement

Semantics

12.13.5 FloatUnit Class

The FloatUnit is a meta-model element that represents float data types common to various programming languages.

Superclass

PredefinedTypeElement
Semantics

12.13.6 FixedPointUnit Class

The FixedPointUnit is a meta-model element that represents fixed point data types common to various programming
languages.

Superclass

PredefinedTypeElement

Semantics

12.13.7 DecimalUnit Class

The DecimalUnit is a meta-model element that represents decimal data types common to various programming languages.

Superclass

PredefinedTypeElement

Semantics

12.13.8 DateUnit Class

The DateUnit is a meta-model element that represents built-in data types related to dates.

Superclass

PredefinedTypeElement

Semantics

12.13.9 TimeUnit Class

The TimeUnit is a meta-model element that represents built-in data types related to time.

Superclass

Predefined TypeElement

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

12.14 DerivedTypes Class Diagram

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. The classes and associations that make up the DerivedTypes diagram are shown in Figure 12.12.

TvpeCaontainer

+owner
TvpeElerment 1 {subsets owner) 4‘1

DerivedTypeElement

0.1
+baseType
{subsets ownedElement} /

Refineme ntUnit

ArraylUnit

Fointerlnit

Figure 12.12 - DerivedTypes Class Diagram

12.14.1 DerivedTypeElement Class

The DerivedTypeElement is a meta-model element that represents user-defined types that are derived from a certain base
type.

In the meta-model the RefinementType is a subclass of TypeContainer. It is associated with the corresponding base type.
This class is subclassed by several more specific KDM classes.

Superclass

TypeContainer

Associations

baseType:TypeElement[1] The TypeElement that is the base class of the derived type.

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 61

12.14.2 RefinementType Class

The RefinementType is a meta-model element that represents refinement types derived from a certain base type. In the
meta-model the RefinementType is a subclass of DerivedTypeElement. It is associated with the corresponding base type.

Superclass

DerivedTypeElement
Constraints
Semantics

12.14.3 PointerType Class

The PointerType is a meta-model element that represents pointer datatypes. In the meta-model PointerType is a subclass
of DerivedTypeElement.

Superclass

DerivedTypeElement
Constraints
Semantics

12.14.4 ArrayType Class

The ArrayType is a meta-model element that represents array datatypes. In the meta-model ArrayType is a subclass of
DerivedTypeElement.

Superclass

DerivedTypeElement
Constraints

Semantics

12.15 EnumerationTypes Class Diagram

The EnumerationTypes class diagram defines meta-model elements that represent enumeration types, which are common
to various programming languages. The classes and associations that make up the EnumerationTypes diagram are shown
in Figure 12.13.

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

TypeContalner

TypeElament

Enumeratednit

+Owrer
{subsets awner}

+literal
{subsets ownedElement}

EnumeratedLiteral

Figure 12.13 - EnumerationTypes Class Diagram

12.15.1 EnumeratedUnit Class

The EnumeratedUnit is a meta-model element that represents user-defined enumeration data types. EnumeratedUnit
datatype defines the set of enumeration literals.

Superclass

TypeContainer

Associations

literal:EnumerationLiteral[1..*] The set of enumeration literals defined for the target EnumerationType.

Semantics
12.15.2 EnumeratedLiteral Class
The EnumeratedLiteral is a meta-model element that represents enumeration literals.

Superclass

TypeElement
Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

63

12.16 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages.

The classes and association that make up the StructuredTypes diagram are shown in Figure 12.14.

TwpeCohfainer

4 Raslnl=l
{subgets owner}

CompositeTypeElement TypeElement
-— -

0.1 0.
/7 \\“\ “field

CompositeUnit UnionUnit {subsets ownedElament}

Figure 12.14 - CompositeTypes Class Diagram

12.16.1 CompositeTypeElement Class

The CompositeTypeElement is a meta-model element that represents user-defined composite datatypes, such as records,
structures and unions. This element is further subclassed by more specific KDM classes.

Superclass

TypeContainer

Associations

field:TypeElement[0..*] The set of contained datatypes.

Constraints
Semantics

12.16.2 UnionUnit Class

The UnionUnit is a meta-model element that represents user-defined union datatypes. A union datatype defines an ordered
collection of variants. Each union variant is a named type element that is associated with a particular datatype.

Superclass

CompositeTypeElement
Constraints

Semantics

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

12.16.3 CompositeUnit Class

The CompositeUnit is a meta-model element that represents user-defined composite datatypes. A composite datatype
defines an ordered collection of named fields where each field is a named element that has a specific data type.

Superclass

CompositeTypeElement
Constraints

Semantics

12.17 ClassTypes Class Diagram

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by

various programming languages. The classes and association that make up the ClassTypes diagram are shown in Figure

12.15.
TypeContalner

ClassUnit
¢isAbstract | Boolean
visinterface : Boolean

t,
+owner 0.1
{subsets owner} FoWner .
{ subsets quwner
+member
{subsets ownedElement}
TvpeElemeant

FConstructor
o {suh\/ets ownedElement}

Constructorlnit

+Operator
sets ownedElement}

CperatorlJnit

+

~ +method
bsets ownedElement}

IethodUnit

Figure 12.15 - ClassTypes Class Diagram

12.17.1 ClassUnit Class

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A composite

datatype defines an ordered collection of named fields where each field is a named element that has a specific data type.

Superclass

TypeContainer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

65

Attributes

isAbstract:Boolean The indicator of an abstract class.

isinterface:Boolean The indicator of an interface class.

Associations

members:TypeElement[0..*] The set of member datatypes
constructors:ConstructorUnit[1..*] The set of constructors
methods:MethodUnit[0..*] The set of methods
operators:OperatorUnit[0..*] The set of operators

Constraints

Semantics

12.18 Signature Class Diagram

The Signature class diagram defines meta-model elements that represent the signature concept common to various
programming languages. The classes and associations that make up Signature diagram are shown in Figure 12.16.

TypeContaingr

i

Signature +Owiner

A
{subsets owner}

{subsets owner}
+parameter

{subsets ownedElerment
o+ ordered}
0.1

+return
{subsets ownedElement}

TvpeEement

Figure 12.16 - Signature Class Diagram

12.18.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature which is common to various
programming languages.

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

TypeContainer

Associations

parameter:TypeElement[0..*] The set of parameter types that are associated with the current Signature.

return:TypeElement[0..1] The return type for the current Signature.

Constraints

Semantics

12.19 Interface Class Diagram

The Interface class diagram defines meta-model elements that represent the concept of an interface common to various
programming languages. The classes and association that make up the Interface diagram are shown in Figure 12.17.

TypeContainer

+owmer f]

{subsets owner} 0.1 Interface

+owiner

{subsets owner}
0.
+signature

{subsets ownedElemept}

+ype

{subsets ownedElement}

TypeElarnent

Figure 12.17 - Interface Class Diagram

12.19.1 Interface Class
The Interface is a meta-model element that represents the interface concept common to various programming languages.

In the meta-model Interface is a subclass of TypeContainer. Interface is a set of TypeElements (representing data types
and Signatures).

Superclass

TypeContainer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 67

Associations

type:TypeElement|[0..*] The set of TypeElements which are associated with the target Interface.

signature: TypeElement[0..*] The set of signatures which are associated with the target Interface.

Constraints

Semantics

12.20 InterfaceRelations Class Diagram

The Interface class diagram defines KDM relationships that are related to the concept of an interface. The classes and
association that make up the Interface diagram are shown in Figure 12.18.

InferfaceRelationship

Interface
1 Signature
+to .
{redefine s to} o.. 1
+inlmplements mplements 0. P odefines to}
{subsets inbound} : +inimplementation
o= ImplementationOf | /o psets inbound}
+outinterfac y

0.
+autlmplementation

{subsets outbound} subsets outbound}

+from
{redefines from}
+from 1

{redefines from}

CodeResource

Figure 12.18 - InterfaceRelations Class Diagram

12.20.1 Implements Class

The Implements is a meta-model element that represents “implementation” relation between a CodeResource (for
example, a ClassUnit) and an Interface. In the meta-model Implements is a subclass of InterfaceRelationship.

Superclass

InterfaceRelationship

68 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

from:CodeResource[1] The CodeResource which implements Interface.

to:Interface[1] The Interface which is being implemented by CodeResource.

Constraints
Semantics

12.20.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” relation between a CodeResource (for
example, a MethodUnit) and a Signature. In the meta-model ImplementationOf is a subclass of InterfaceRelationship.

Superclass

InterfaceRelationship

Associations

from:CodeResource[1] The CodeResource which implements Interface.

to:Signature[1] The Signature which is being implemented by CodeResource.

Constraints

Semantics
12.20.3 CodeResource (additional properties)

Associations

outinterface:Implements[0..*]

Outlmplementation:ImplementationOf[0..*]

Constraints

Semantics

12.20.4 Interface (additional properties)

Associations

inimplements:Implements[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 69

Constraints

12.20.5 Signature (additional properties)

Associations
inimplementation:ImplementationOf[0..*]

Constraints

12.21 TypeRelations Class Diagram

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations that make up the TypeRelations diagram are shown in Figure 12.19.

TypeRelafionship
f 1 Tyvpe Elemeant
HasType | O I"skind: InstanceKind
) +0
0.* +inHasType {redefines to}

{subsets inbound}

+outHasTyEe "
oul

{subsets out

+rom
{redefines from} 1

CodeResource

Figure 12.19 - TypeRelations Class Diagram

12.21.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element. In the meta-model HasType is a subclass of TypeRelationship.

Superclass

TypeRelationship

Associations

from:CodeElement[1] The source data element (represented by a Datalnterface).

to:TypeElement[1] The target type element (represented by a TypeElement).

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics
12.21.2 CodeResource (additional properties)
Associations
outHasType:HasType[0..*]
Constraints
Semantics
12.21.3 TypeElement (additional properties)
Associations

inHasType:HasType[0..*]

Constraints

Semantics

12.22 ClassRelations Class Diagram

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations that make up the ClassRelations diagram are shown in Figure 12.20.

TyneRelafionshin
+to +inExtends
{redefines ta} {subsets inbound}
1
0.
TvpaElemeant Extends
1 o=
+from
+outExtends
{redefines from} {subsets outhound}

Figure 12.20 - ClassRelations Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

71

12.22.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a subclass) extends another class (called its parent class) through inheritance, common to object-oriented
languages.

In the meta-model Extends is a subclass of TypeRelationship.

Superclass

TypeRelationship

Associations

from:TypeElement[1] The subclass Class (represented by a TypeElement)

to:TypeElement[1] The parent Class (represents by a TypeElement)

Constraints
Semantics
12.22.2 TypeElement (additional properties)

Associations

outExtends:Extends[0..*] The set of outbound Extends relations

inExtends:Extends[0..*] The set of inbound Extends relations

Constraints

Semantics

12.23 Comment Class Diagram

The Comment class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations that make up
the Comment diagram are shown in Figure 12.21.

72 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

TypeEk ment

CommentUnit

Figure 12.21 - Comment Class Diagram

12.23.1 CommentUnit Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a subclass) extends another class (called its parent class) through inheritance, common to object-oriented
languages.

In the meta-model Extends is a subclass of TypeRelationship.

Superclass

TypeElement
Constraints

Semantics

12.24 Visibility Class Diagram

The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.22.

Protolype Relafionship

+
{refcqgmes frormd

+outisible 1 CodeResource
{subsets outhound}

Wisibleln

+invisible
{subsets inbound}

MNamespacelnit

Figure 12.22 - Visibility Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 73

12.24.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code resources, where one
provides the restricted visibility context for another resource. In the meta-model Visibleln is a subclass of
PrototypeRelationship.

Superclass

PrototypeRelationship

Associations

from:CodeResource[1] The CodeResource visibility of which is specified.

to:CodeResource[1] The CodeResource that provides the visibility context.

Constraints

Semantics

12.24.2 Namespace Class

The Namespace is a specific meta-model element that represents can be the target of the Visibleln KDM relation.

Superclass

CodeResource
Constraints

Semantics

12.24.3 CodeResource (additional properties)

Associations

outVisible:VisibleIn[0..*] The set of outbound Visibleln relations

inVisible:VisibleIn[0..*] The set of inbound Visibleln relations

Constraints

Semantics

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

13 Action Package

13.1 Overview

The Action package contains model classes and associations capturing system artifacts to model the behavior of

programming languages such as statements, features, business rules, and their relationships. It includes specific classes to

model behavior related to calls, data accesses, prototypes, and control-flow.

13.2 Organization of the Action Package

The Action package is a collection of classes and associations that are described together because they provide meta-

model constructs for defining behavior of programming languages artifacts and their relationships to the Code package.

The Action package consists of the following class diagrams:

* ActionModel

e ActionFlow

« ActionRelations

» CallableRelations
« DataRelations

¢ ImportRelations

* MacroRelations

« TypeRelations

¢ PrototypeRelations

The Action package depends on the following packages:
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Source
org.omg::ADM::KDM::Core

13.3 ActionRelations Class Diagram

The ActionRelations class diagram abstract classes for representing several families of KDM relations. The class diagram

shown in Figure 13.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

75

KOMRelationshio

(from Corg)

ActionRelationshin

7R

FiowRelalionship \WacroRelationship
3
5

\

ImporRelafionshio

CallableRelationship

DataRelalionship

Figure 13.1 - ActionRelations Class Diagram
13.3.1 ActionRelationship Class (abstract)
The ActionRelationship is the parent class representing various relations involving ActionElements.

Superclass

KDMRelationship

Constraints

Semantics

13.3.2 FlowRelationship Class (abstract)

The FlowRelationship class represents the family of control flow relations between ActionElements.

Superclass

ActionRelationship

Constraints

Semantics

13.3.3 MacroRelationship Class (abstract)

The MacroRelationship class represents the family of relations corresponding to the usage of MacroUnits.

Superclass

ActionRelationship

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

13.3.4 CallableRelationship Class (abstract)

The CallableRelationship class represents the family of relations between ActionElements and CallableElements.

Superclass

ActionRelationship
Constraints

Semantics

13.3.5 DataRelationship Class (abstract)

The DataRelationship class represents the family of relations between ActionElements and TypeElements.

Superclass

ActionRelationship
Constraints

Semantics

13.3.6 ImportRelationship Class (abstract)

The ImportRelationship class represents the family of relations corresponding to import of declarations between modules.
Superclass

ActionRelationship

Constraints

Semantics

13.4 ActionModel Class Diagram

The ActionModel class diagram provides basic meta-model constructs to define basic unit of behavior and allows
grouping.

ActionElements are part of CodeModels. ActionElements can be contained in some CodeContainers as well as in
CallableUnits.

The class diagram shown in Figure 13.2 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 77

CodeElemant CodeModel
(from Code) (fram Code)
0.1
K(‘?MGCW“;Q +actionElermnent +madel
rom Core
{subsets groupedElement} 0+ {subsets model}

ActionElement actionRelation

{subsgts ownedRelation}

ActionRelationship

+actignGroup

ubsets group} CallableElement
0.7

(frorm Code)

ActionGroup

Flo

+HlowRelatidn
0

FlowRelationship

Figure 13.2 - ActionModel Class Diagram

13.4.1 ActionElement Class

The ActionElement is class to describe a basic unit of behavior. ActionElements are endpoints for primitive relations.
ActionElement is linked to SourceRef from the Source package.

Superclass

CodeElement

Associations

actionGroup:ActionGroup[0..*]

Constraints

Semantics

13.4.2 ActionGroup Class

The ActionGroup is a grouping of ActionElement.

Superclass

KDMGroup

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

ActionElement

Associations

groupedElement:ActionElement[0..*]

Constraints

Semantics

13.4.3 CallableElement (additional properties)

Associations

flowRelation:FlowRelationship[0..*]

Constraints

Semantics

13.4.4 CodeModel (additional properties)

Associations

actionRelation:ActionRelationship[0..*]

Constraints

Semantics

13.5 ActionFlow Class Diagram

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow of ActionElement. The

class diagram shown in Figure 13.3 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

79

CallableElement
(from Code)
sisExternal : Boolean

FlowRelaltionshin

1
+fram
{redefines fom}

HNFlowy
{subsgets inb

defines t
ControlFlow (edefines to}

ActionElement +oUtEntry

{subsdts outhound}

1

+o

{redefines ta} 0.~

{redefines from} +inEntry 0.7 EntryFlow
{subsets inbound}

Flongy

FalseFlow

TrueFlow

GuardedFlow

Figure 13.3 - ActionFlow Class Diagram
13.5.1 ControlFlow Class
The ControlFlow is an association class representing the control flow between ActionElements.

Superclass

ActionRelationship

Associations

from:ActionElement[1]

to:ActionElement[1]

Constraints

Semantics

13.5.2 EntryFlow Class

The ControlFlow is an association class representing the control flow between ActionElements.

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

ActionRelationship

Associations

from:CallableElement[1]

to:ActionElement[1]

Constraints
Semantics
13.5.3 ActionElement Class (additional properties)

Associations

inFlow:ControlFlow[0..*]
outFlow:ControlFlow[0..*]

inEntry:EntryFlow[0..*]

Constraints
Semantics
13.5.4 CallableElement Class (additional properties)

Associations

outEntry:EntryFlow[0..*]

Constraints

Semantics

13.5.5 Flow Class (abstract)

The ImportRelationship class represents the family of relations corresponding to import of declarations between modules.

Superclass

ActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 81

Constraints

Semantics

13.5.6 TrueFlow Class (abstract)

The ImportRelationship class represents the family of relations corresponding to import of declarations between modules.

Superclass

ActionRelationship
Constraints

Semantics

13.5.7 FalseFlow Class (abstract)

The ImportRelationship class represents the family of relations corresponding to import of declarations between modules.

Superclass

ActionRelationship
Constraints

Semantics

13.5.8 GuardedFlow Class (abstract)

The ImportRelationship class represents the family of relations corresponding to import of declarations between modules.
Superclass

ActionRelationship

Constraints

Semantics

13.6 CallableRelations Class Diagram

The CallableRelations class diagram collects together classes and associations of the Action package. They provide basic
meta-model constructs to define call type behavior and link ActionElement to CodeElement.

The CallableRelations diagram describes the following types:
» CodeRelationship — an association class subtyping KDMRelationship.
« Calls —an association class representing a call type relationship between an ActionElement and a Callablelnterface.
« ActionElement — a class representing a basic unit to describe behavior.

« UsesCode — a class representing an association class to link ActionElement to CodeElement.

82 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

The class diagram shown in Figure 13.4 captures these classes and their relations.

CallableRelalionship

ﬁia"able \

LsesCallable {pubsets outbound} Calls
. utCalls
..
* n.=
0. +rom .
defines from} +nCalls
+inlJsesCallable 1 1 {subsets inbound}
{subsets inbopnd} ActionElement tedefines fiom} .
1 1 {redefines to}

+o

redefines ta} CallableElement

(from Code)

+fra
{redefinesfrom}

1

CallableElement
(frarm Code)

+outinvokes ek +nlnvokes

{subsets outbound} subsets inbound}
0.
1
+t

0
{redefines to} MamedTypelnit
(from Code)

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

The Calls class is a subtype of CodeRelationship and provides linkages between ActionElement and Callablelnterface for

the situations when an ActionElement performs a call to the CallableElement.

Superclass

CallableRelationship

Associations

from:ActionElement[1]

to:CallableElement[1]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

83

Constraints

Semantics

13.6.2 UsesCallable Class

The UsesCallable is an association class to provide linkages between ActionElement and CodeElement for any references
to a CallableElement, other than performing a call.

Superclass

CallableRelationship

Associations

from:ActionElement[1]

to:CodeElement[1]

Constraints

Semantics

13.6.3 Invokes Class

The Invokes represents a relationship between an ActionElement and a NamedType when an ActionElement accesses an
instance of a class to invoke a method or access an attribute of a class.

Superclass

CallableRelationship

Associations

from:ActionElement[1]

to:NamedTypeElement[1]

Constraints
Semantics
13.6.4 CallableElement (additional properties)

Associations

inCalls:Calls[0..*]

inUsesCallable:UsesCallable[0..*]

84 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics
13.6.5 ActionElement Class (additional properties)

Associations

outCalls:Calls[0..*]
outUsesCallable:UsesCallable[0..*]

outinvokes:Invokes|0..*]
Constraints
Semantics
13.6.6 NamedTypeElement (additional properties)
Associations

inlnvokes:Invokes|[0..*]

Constraints

Semantics

13.7 DataRelations Class Diagram

The DataRelations class diagram collects together classes and associations of the Action package. They provide basic
meta-model constructs to define data specific CRUD like relationships between ActionElement and Datalnterface. The
class diagram shown in Figure 13.5 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

85

DafaRelationship

StorabieElament

+o
1 {fram Codg)

{redefines to}

UsesData - +o 0,/ 1 1
0. redefiies to} Tredefines to}
0.* . 1o +to
+outUsedData +inRead edefines {0} {radefines ta}
Eubsets inbound
{subsets outbouhd Reads o+

+o
{redefings to}

+HNWWrites
Isubsets imbound}

*

Writes 0. +inlnitialf?es
subsets inboynd}
o

Ltyrites Initializes

ubszets outbound}
o.*

L 0+
sz outbound} Creates

+ (%rs;%?stnsno d}
o.=

+HinDestroys
{subzets inbound}

+ (=1=3 .
+rom {subsets outbound} 0.+
ActionElemeht 1 s Jitfth Desiioys
fredefinesfoml (rodafines fam) +outDestroys
1 {subsets outbound}

Figure 13.5 - DataRelations Class Diagram
13.7.1 Reads Class
The Reads association provides linkages between ActionElement and StorableElement modeling a read access.

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]

Constraints

Semantics

13.7.2 Writes Class

The Writes association provides linkages between ActionElement and StorableElement modeling a write access.

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]

Constraints

Semantics

13.7.3 UsesData Class

The UsesData association provides linkages between ActionElement and StorableElement modeling a use access.

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]

Constraints

Semantics

13.7.4 Creates Class

The Creates association provides linkages between ActionElement and StorableElement modeling a create access.

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

87

Constraints

Semantics

13.7.5 Destroys Class

The Destroys association provides linkages between ActionElement and StorableElement modeling a destroy access.

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]

Constraints
Semantics

13.7.6 Initializes Class

The Initializes association provides linkages between ActionElement and StorableElement modeling an initialization
access.

Superclass

DataRelationship

Associations

from:ActionElement[1]

to:StorableElement[1]
Constraints
Semantics

13.7.7 StorableElement (additional properties)

Associations

inReads:Reads[0..*]
inWrites:Writes[0..*]

inUsesData:UsesData[0..*]

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

inCreates:Creates[0..*]
inDestroys:Destroys[0..*]

inInitializes:Initializes[0..*]

Constraints

Semantics

13.7.8 ActionElement Class (additional properties)

Associations

outReads:Reads|[0..*]
outWrites:Writes[0..*]
outUsesData:UsesData[0..*]
outCreates:Creates[0..*]
outDestroys:Destroys[0..*]

outlnitializes:Initializes[0..*]

Constraints

Semantics

13.8 PrototypeRelations Class Diagram

The PrototypeRelations class diagram defines basic meta-model constructs to model prototype relationships between
ActionElement and CodeElement. The class diagram shown in Figure 13.6 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

89

ProtofypeRe lation ship
(from Code)

5

I JsesPrototype

+outUsesPrototype
{subsets outhound} o

+inlJsesPrototype

+from
{redefines from} {subsets inbound}

ActionElement

+o
{redefines to}

PrototypelUnit
(from Code)

Figure 13.6 - PrototypeRelations Class Diagram

13.8.1 UsesPrototype Class

The UsesPrototype is an association class to provide linkages between ActionElement and PrototypeUnit.

Superclass

PrototypeRelationship

Associations

from:ActionElement[1]

to:PrototypeUnit[1]

Constraints

Semantics

13.8.2 ActionElement Class (additional properties)

Associations

outUsesPrototype:UsesPrototype[0..*]

90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics
13.8.3 PrototypeUnit Class (additional properties)

Associations
inUsesPrototype:UsesPrototype[0..*]

Constraints

Semantics

13.9 ImportRelations Class Diagram

The ImportRelations class diagram provides basic meta-model constructs to define relationships between ImportDirective
and CodeResource

The class diagram shown in Figure 13.7 captures these classes and their relations.

imporRelationship

/

ActionElement Imports +inlmports
{subsets inbound}
+outimportg” 0. 87 o
{subsets outbound} redefines to}
1
CodeResource
1 {from Code)

ImportDirective |{ritimes forn)

Figure 13.7 - ImportRelations Class Diagram

13.9.1 ImportDirective Class

The ImportDirective is a subtype of ActionElement representing the import concept used in object-oriented languages.

Superclass

ActionElement

Associations

outlmports:Imports[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 91

Constraints

Semantics

13.9.2 Imports Class

The Imports association provides linkages between ImportDirective and CodeResource.

Superclass

ImportRelationship

Associations

from:ImportDirective[1]

to:CodeResource[1]
Constraints
Semantics
13.9.3 CodeResource Class (additional properties)
Associations

inlmports:Imports[0..*]

Constraints

Semantics

13.10 TypeRelations Class Diagram

The TypeRelations class diagram collects together classes and associations of the Action package. They provide basic
meta-model constructs to define relationships between ActionElement and TypeElement. The class diagram shown in
Figure 13.8 captures these classes and their relations.

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

TypeRelafionship

(from Cock)
UsesType
+outllsesType +inUsesType
{subsets outhoun 0. . {subsets inbound}

1

+to
ActionElement +rom 1
{redefines from} {redefines ta}
TypeElement

(frore Cods)

Figure 13.8 - TypeRelations Class Diagram

13.10.1 UsesType Class

The UsesType association provides linkages between ActionElement and TypeElement.

Superclass

TypeRelationship

Associations

from:ActionElement[1]

to:TypeElement[1]

Constraints

Semantics

13.10.2 ActionElement Class (additional properties)

Associations

outUsesType:UsesType[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

93

Constraints

Semantics
13.10.3 TypeElement Class (additional properties)
Associations

inUsesType:UsesType[0..*]

Constraints

Semantics

13.11 MacroRelations Class Diagram

The MacroRelations class diagram provides basic meta-model constructs to define relationships between ActionElement
and MacroUnit. The class diagram shown in Figure 13.9 captures these classes and their relations.

MacraRelationship

% +ips'§é?e?ggn%ound}

Expands
L 3*\\\1 MacraUnit
ActionElement 1 0. v {frarn Code)

+outExpands +o
{subsets outhound} {redefines ta}

+from

{redefines fram}

Figure 13.9 - MacroRelations Class Diagram
13.11.1 Expands Class
The Expands association provides linkages between ActionElement and MacroUnit.

Superclass

MacroRelationship

Associations

from:ActionElement[1]

to:MacroUnit[1]

94 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

The endpoint can be only MacroUnit

Semantics

13.11.2 MacroUnit Class (additional properties)

Associations

inExpands:Expands|0..*]

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

95

96

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

14 Build Package

14.1 Overview

The Build package represents the artifacts that model the engineering view of a particular existing system. The Build
package also includes the entities to model objects that are generated by the build process.

14.2 Organization of the Build Package

The Build package is a collection of classes and associations that are described together because they provide a meta-
model for defining the constructs required to model the building of a software system.

The Build package consists of the following class diagrams:

« BuildInheritances
e BuildModel

« BuildResources

« BuildRelations

The Build package depends on the following packages:

org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Core

14.3 BuildInheritances Class Diagram

The BuildInheritances Class Diagram shown in Figure 14.1 depicts how various build classes extend other KDM classes.
Each of the classes shown is this diagram inherits properties from classes found in the KDM Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 97

KOMMo dal KDMEntity KOMGroup KOMContainer
(from kdm) {from Cors) {frorm Gorg) tfrom Core)
BuildModel BuildEisment Bf][lildGrl?up
i Il

BuildC ontainer

KON Relationship -
{fram Core) BuildArea
BuildResource
@version _String
BulidRelafionshin ¢path ; String

Figure 14.1 - BuildInheritances Class Diagram

14.4 BuildModel Class Diagram

The BuildModel class diagram provides basic meta-model constructs to model the engineering view of a particular
existing software system within the KDM framework. The class diagram shown in Figure 14.2 captures these classes and

their relations.

98 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Buildhdodel | 1 0.7 BuildRelalionship

1 +model -
+model {subsets model} +relation

{subsets rhodel) {subsets ownedRelation}

+buildElement
{subsets gwnedElement}

+hbuildElement *

{subsets ownedElement} g « - +buildE lerment
= BuildElement {subsets groupedElement}
0.*
+buildGroup
{su;siﬁn:v;ner ! {subsets group}
B - 0.
EuildContainer
BuildGroup

7

Directory
¢path - String

BuildResource

Crigin

Tool

Figure 14.2 - BuildModel Class Diagram

14.4.1 BuildModel Class

The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMModel

Associations

buildElement:BuildElement[0..*] The set of BuildElements

Relation:BuildRelation[0..*] The set of build relations

Constraints

Semantics

14.4.2 BuildElement Class

The BuildElement is the abstract base class from which all other build model elements are extended.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

99

Superclass

KDMEntity

Associations

model:BuildModel[1]
owner:BuildContainer[0..1]

buildGroup:BuildGroup[0..*]

Constraints

Semantics

14.4.3 BuildGroup Class

The BuildGroup is a container class, which is used to aggregate groups of build elements.

Superclass
BuildElement

KDMContainer

Associations

elements:BuildElement[0..*] BuildElement is the class from which all other build model elements are
extended.

Constraints

Semantics

14.4.4 BuildResource Class

The BuildResource class is the parent class, which represents build entities. This class is then extended to concrete
entities representing artifacts such as source files. Build entities are groups for code elements.

Superclass
BuildElement

KDMGroup

Attributes

version:String Provides the ability to track version or revision numbers.

path:String Location of the build resource.

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics
14.4.5 Directory Class
The Directory class represents directories as they are used to group together related files.

Superclass

BuildContainer

Attributes

path:String Location of the directory.

Semantics
14.4.6 Origin Class
The Origin class models producers of the 31 party software components as they contribute to the build process.

Superclass

BuildElement

Semantics

14.4.7 Tool Class

The Tool class represents software tools as they are used in the build process.

Superclass

BuildElement

Semantics

14.5 BuildResources Class Diagram

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 14.3 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 101

BuildResource

eversion : String thuildResource
¢path . String {subsets gradp

+codeElement
0.7 {subsets groupedFlement}
Muodule

p.~| (fom Code)

SourceFile
¢language : String

Symbaliclink BuildDescription
BuildZ ompo
Intermediat Image nent
eFile

Figure 14.3 - BuildResources Class Diagram

14.5.1 BuildResource Class (additional properties)

Associations

codeElement:Module[0..*] BuildResource references code elements

Semantics

14.5.2 SourceFile Class

The SourceFile class represents source files. This class can be used to provide links between code elements and their
physical implementations using the SourceRegion mechanism from the Source package.

Superclass

BuildResource

Attributes

language:String Indicates the language of the source file.
Semantics
14.5.3 IntermediateFile Class

The IntermediateFile represents intermediate binary files, for example relocatable object files.

Superclass

BuildResource

Semantics

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

14.5.4 BuildComponent Class

The BuildComponent class represents binary files that correspond to deployable components, for example executable

files.

Superclass

BuildResource

Semantics

14.5.5 BuildDescription Class

The BuildDescription class is used to model objects such as make files or ant scripts, which describe the build process

itself.

Superclass

BuildResource

Semantics

14.5.6 SymbolicLink Class

The SymbolicLink is used to represent symbolic links.

Superclass

BuildResource

Semantics

14.5.7 Image Class

The Image is used to represent image files.

Superclass

BuildResource

Semantics

14.6 BuildRelations Class Diagram

The BuildRelations class diagram defines the various build related relationships.

The class diagram shown in Figure 14.4 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

103

BuildRelalionshin

= t——— | DependsOn

R =

Transformsinto +outDepe

0.+ 0.

+outTraﬁ5f rmsinto {subsets inbound}

LinksTo {subset§ inbound}

. =+
+outLinksTo [9- o0
{subsets outhound}

+from
{redefines from}

SymbolicLink

BuildElement

Figure 14.4 - BuildRelations Class Diagram
14.6.1 BuildRelationship Class (abstract)
The BuildRelationship class is the abstract base class from which all other build relationship classes are extended.

Superclass

KDMRelationship

Semantics

14.6.2 LinksTo Class

The LinksTo class models the relationship between two linked build resources.

Superclass

BuildRelationship

Associations

from:SymbolicLink[1]

to:BuildElement[1]

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics

14.6.3 DependsOn Class

The DependsOn class models build dependencies between build elements. These dependencies can be to third party
components or other components within the same system.

Superclass

BuildRelationship

Associations

from:BuildElement[1]

to:BuildElement[1]

Constraints
Semantics

14.6.4 GeneratedBy Class

The GeneratedBy class models the relationship between build elements and the artifacts they produce as a result of the
build process.

Superclass

BuildRelationship

Associations

from:BuildElement[1]

to:BuildElement[1]

Constraints

Semantics

14.6.5 BuildElement (additional properties)

Associations

inLinksTo:LinksTo[0..*]

inGeneratedBy:GeneratedBy][0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 105

outGeneratedBy:GeneratedBy[0..*]
inDependsOn:DependsOn[0..*]

outDependsOn:DependsOn|[0..*]

Constraints

Semantics

14.6.6 SymbolicLink (additional properties)

Associations

outLinksTo:LinksTo[O..*]

Constraints

Semantics

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

15 Data Package

15.1 Overview

The KDM Data Package describes the meta-model elements that represent persistent data within a system.

15.2 Organization of the Data Package

The Data package describes KDM classes and associations that represent persistent data aspects of enterprise applications
within the common KDM framework.

The Data package consists of the following class diagrams:

¢ Data Inheritance
« Data Model

¢ Keylndex

¢ KeyRelations

¢ RelationalData

¢ ColumnSet

« RecordData

e XMLData

¢ XMLElements

* ProgramElements

The Data Package depends on the following packages:
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Core

15.3 Data Inheritance

The Data Inheritance Diagram shown in Figure 15.1 depicts how various data classes derive from the Core KDM classes.
Each of the Data Package classes within this diagram inherits certain properties from KDM classes defined within the
KDM Core Package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 107

KDMMaodel KDMContainer KDMEntity KDMGroup

(from kdm) {from Core) {from Core) {from Core)
DatatModel DataCaontainer DataGroup

ProgramElement
StorableElement
{from Code)
KOMRelationshio =
{from Corel DataElement
CodeResource
S ffrorm Code)

DataRelation

Figure 15.1 - Datalnheritance Diagram

The Data Inheritance Diagram in Figure 15.1 depicts the following properties of inheritance from the KDM Model.

DataModel — A class representing a type of KDM Model that owns logical representation of data within a system.

DataContainer — A class representing a type of KDM Container. Within the Data Model, a Data Container contains
data found within a system.

DataElement — A class representing a type of KDM Entity that was derived from the analysis of data representations
within a system. A Data Element is the centerpiece of the Data Package and discussed further later in this chapter.
DataElement inherits from a ProgramElement class (from Code package) as well as from StorableElement class (from
Action package).

DataGroup — A class representing a type of KDM Group where data or entities are collected and grouped together. A
Data Group is a special kind of element that contains other elements. Data Groups are also discussed later in this
chapter.

DataRelation — A class representing a type of KDM Relationship where a key is used to access data in ways other than
sequentially accessing data. Relations are established via Keys and are discussed later in this chapter.

15.4 Data Model Class Diagram

The Data Model Diagram in Figure 15.2 depicts the central concept of a Data Element, types of Data Elements.

108

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Datamodel | 01

HDataFeiation

0.

+model $0.1 +model -
{subsets model {subsets model} +relation
{subsets ownedRelation}

+dataE lement

subsets owne dElermn ent
{ ! o+ +dataElement

{subsets groupedElerment}
DaltaElement

0=

+dataGroup
{subsets group}

DataConfainer b7

DataGroup

Figure 15.2 - Data Model

15.4.1 DataModel Class

The DataModel Class represents a logical Data Model of an existing system. A Data Model is composed of Data
Elements, as shown in Figure 15.2.

Superclass

KDMModel

Associations

dataElement :DataElement[0..*]

relation:DataRelation[0..*] Data relations that are owned by this Data Model

Constraints

Semantics

15.4.2 DataElement Class

The DataElement Class represents the discreet instance of a given data element within a system. For example, a
Customer_Number is one type of data element that might be found within a system. Data Element interfaces with the
Code Package through the class entitled Program Element. DataElement interfaces with the Code Package through the
class called StorableElement.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 109

Code::StorableElement

ProgramElement

Associations

model: DataModel[1] The model that owns the current element
dataGroup:DataGroup[0..*] The set of groups to which the current element belongs
Constraints

Semantics

15.4.3 DataGroup Class

A Data Group represents a collection of data elements. A Data Group results when an analyzer finds a Data Element that
contains other Data Elements. Artifacts from which a group would be derived include tables, records, segments and
related structures that represent a collection of data elements. A Data Group can be a part of another Data Group. A
DataElement can be associated with multiple DataGroups.

Superclass
KDMGroup

DataElement

Associations

dataElement :DataElement[0..*]

Constraints

Semantics

15.4.4 DataContainer Class

A DataContainer Class is a type of DataElement. A Data Container owns Data Elements, as shown in Figure 15.2

Superclass
KDMContainer

DataElement

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

15.5 KeylIndex Class Diagram

The Keylindex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The KeylIndex diagram describes the following types:
« BuildRelationship — an abstract class representing a generic build relationship.

« LinksTo — a class representing a build resource, which is linked to another, build resource as in a symbolic link in
UNIX.

< DependsOn - a class representing a build dependency such as a dependency on a particular third party library.
« GeneratedBy — a class representing an artifact, which is produced as a result of the build process.

The class diagram shown in Figure 15.3 captures these classes and their relations.

DataGroup

e

Uniquekey

Index

Referenceley

Figure 15.3 - KeyIndex Class Diagram

15.5.1 Index Class

An Index is a way to access data within an array or table. An Index is a type of Data Group. An Index is also a type of

Data Element.

Superclass

DataGroup

Semantics

15.5.2 UniqueKey Class

A UniqueKey is a way to define one or more Data Elements as a unique key into an array or table. A UniqueKey is a type

of Data Group.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

111

Superclass

DataGroup

Constraints

Semantics

15.5.3 ReferenceKey Class

A ReferenceKey is a way to access unique keys within an array or table. A ReferenceKey is a type of Data Group.

Superclass

DataGroup
Constraints

Semantics

15.6 RelationalData Class Diagram

The RelationalData class diagram provides basic meta-model constructs to relational databases within the KDM
framework. The class diagram shown in Figure 15.4 captures these classes and their relations.

DataContainer

+procedure
{subsets ownedElement} StoredProc
+schema +schema edure
{subsets ownedElerment} {Suubsa?ts owner} o+
Catalog N -
DBSchema
0.1 a.r
+Owner 1 tschema
{subsets owner} {subsets ownar
ema +schama
{subgets owner} {subsetg owner} Hii
gder

+columnSet ubsets ow*ned erment}

{subsets ownedElement}

DETrigger

ColumnSet

Figure 15.4 - RelationalData Class Diagram

112 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

15.6.1 Catalog Class

The Catalog class is the top level container that represents a relational database.

Superclass

DataContainer

Associations

schema :DBSchemal0..*] Schemas of relational database that are owned by this catalog.

Semantics
15.6.2 DBSchema Class
The DBSchema class is a relational database schema.

Superclass

DataContainer

Associations

columnSet :ColumnSet[0..*] Tables and Views owned by this schema
index:Index[0..*] Indices owned by this schema
trigger:DBTrigger[0..*]

procedure:StoredProcedure[0..*]

Constraints

An index can only refer to the columns owned by the same database schema.

Semantics

15.7 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model constructs to define the tables and views of relational databases

as collections of columns. The class diagram shown in Figure 15.5 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

113

DataContainer

A

ColumnSet

+owner
subsets owner}

+column
subsets ownedElerment o
ordered} a

PredefinedTypeElement
{from Code)

Wi ew Table

Figure 15.5 - ColumnSet Class Diagram
15.7.1 ColumnSet
The ColumnSet class represents tables and views as collections of columns. Columns are modeled as TypeElements.

Superclass

DataContainer

Associations

column :PredefinedTypeElement[0..*] Individual columns owned by this ColumnSet are represented as
predefined type elements

Semantics
15.7.2 Table Class
A Table is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Constraints

Semantics

15.7.3 View Class

A View class is a specific subclass of the ColumnSet class that represents Views of relational databases.

Superclass

ColumnSet

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

15.8 RecordData Class Diagram

The RecordData class diagram provides basic meta-model constructs to define the indexed files and other kinds of file
storage.Usually there is no explicit DataDefinition Language for indexed files. Records are defined by datatypes of the

programming language that is selected to work with the indexed file. KDM provides explicit modeling elements. This

allows representing the structure of an index file independent on the programming language as well as to precisely define

indices of the index files.

The class diagram shown in Figure 15.6 captures these classes and their relations.

DataContainar

RecordFile

o ner

{subsets owner}

+recordrile
{subsets owner}

.

Index

+index
{subsets ownedElement}

1
0.*

+record CompositeTypeElement
{subsets ownedElernent} {fram Code)

Figure 15.6 - RecordData Class Diagram

15.8.1 RecordFile Class

The RecordFile class represents indexed files.

Superclass

DataContainer

Associations

record :Composite TypeElement[0..*] Individual columns owned by this ColumnSet are represented as predefined

index:Index[0..*]

type elements.

Indices that are defined for this indexed file.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

115

Constraints

An index can only refer to the elements of the record owned by the same file.

Semantics

15.9 XMLData Class Diagram

The XMLData class diagram provides basic meta-model constructs to define the XML files that can be used by enterprise
applications for persistent storage or as an exchange mechanism between components. The class diagram shown in Figure
15.7 captures these classes and their relations.

DataContainer

HMLSchema

T\ XMLElement

+schema o
{subsets owner) N
+mlElement

{subsets ownedElement}
Figure 15.7 - XMLData Class Diagram

15.9.1 XMLSchema

The XMLSchema class represents the top level container for a KDM metamodel of an XML document.

Superclass

DataContainer

Associations
xmlElement :XMLElement[0..*] Individual XML element owned by this Schema

Semantics

15.10 XMLElements Class Diagram

The XMLElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 15.8 captures these classes and their relations.

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

H0LElemeant

ownedEl nt}

HMLSimmiple
Type
+owiner

{subsets ownger} 0.1

LAy

XMLComplexType

) +ype
{subsets ownedElement}

HMLAI - SimpleTypeElement
ML Choice {fror Code)
+type i
HWLSeq FMLGroup {subsets owneul}gjlemen1t}\0: }{M(;E)ﬁsh’l
+owner
HMLOccurs {subsets owner}

Figure 15.8 - XMLElements Class Diagram
15.10.1 XMLSimpleType
The XMLSimpleType class represents Simple Types of an XML schema definition.

Superclass

XMLElement

Associations

type :SimpleTypeElement[1] Type of the XML element as Code::SimpleTypeElement

Semantics
15.10.2 XMLRestriction
The XMLRestriction class represents Simple Types with restrictions.

Superclass

XMLElement

Associations

type :SimpleTypeElement[1] Type of the XML element as Code::SimpleTypeElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

117

Semantics

15.10.3 XMLComplexType

The XMLComplexType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of XMLComplexType.

Superclass

XMLElement

Associations

element :XMLElement[0..*] Owned XML elements
attribute:Simple TypeElement[0..*] Owned XML attributes
Semantics

15.10.4 XMLAII Class

An XMLAII class is a specific subclass of the XMLComplexType class that represents complex types with the “all” order
indicator.

Superclass

XMLComplexType
Constraints
Semantics

15.10.5 XMLSeq Class

An XMLSeq class is a specific subclass of the XMLComplexType class that represents complex types with the
“sequence” order indicator.

Superclass

XMLComplexType
Constraints
Semantics

15.10.6 XMLChoice Class

An XMLChoice class is a specific subclass of the XMLComplexType class that represents complex types with the
“choice” order indicator.

Superclass

XMLComplexType

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics

15.10.7 XMLOccurs Class

An XMLOccurs class is a specific subclass of the XMLComplexType class that represents complex types with the
“occurs” occurence indicator.

Superclass

XMLComplexType
Constraints
Semantics

15.10.8 XMLGroup Class

An XMLGroup class is a specific subclass of the XMLComplexType class that represents complex types with the “group”
group indicator.

Superclass

XMLComplexType
Constraints
Semantics

15.10.9 XMLAny Class

An XMLAny class is a specific subclass of the XMLElement class that represents the XML *“any” type extension
mechanism of XML Schemas.

Superclass

XMLElement
Constraints

Semantics

15.11 ProgramElements Class Diagram

The ProgramElements class diagram provides basic meta-model constructs to define the various program elements related
to persistent data. The class diagram shown in Figure 15.9 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 119

CallableElement
(from Code) ActionElement
@i sExemal - Boolean (from Action)
Queny
EventElement
(fram Event) StoredProcedure

DETrigger

Figure 15.9 - ProgramElements Class Diagram
15.11.1 StoredProcedure Class
The StoredProcedure class extends the Code::CallableElement to represent stored procedures.

Superclass

CallableElement

Semantics

15.11.2 Query Class

The Query class extends the Action::ActionElement class to represent database queries.

Superclass

ActionElement

Semantics

15.11.3 DBTrigger Class

The DBTrigger class extends the Event::EventElement class to represent the database triggers.

Superclass

EventElements

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

15.12 Key Relations class diagram

Figure 15.10 depicts the key relations within the Data Package. A Key is a way to access data without reading through an

entire data structure sequentially.

Uniquekey {redefines to}

DataRelation

.

KeyRelation

{re d_'é?i[;]oery from}

Referencelkey

Figure 15.10 - KeyRelations Class Diagram

A KeyRelation class associates a UniqueKey in one data container, which means that there is one and only one key value
for that data, with a ReferenceKey in another container.

15.12.1 UniqueKey Class (additional properties)

Associations

inKey : KeyRelationship[0..*]

Constraints

Semantics

15.12.2 ReferenceKey Class (additional properties)

Associations

outKey : KeyRelationship[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

121

Constraints
Semantics

15.12.3 KeyRelationship Class

A KeyRelationship is a way to associate ReferenceKey with the corresponding UniqueKey. A KeyRelationship is a type
of KDMRelationship.

Superclass

DataRelationship

Associations

from : ReferenceKey[1]

to: UniqueKey[1]

Constraints

Semantics

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

16 Structure Package

16.1 Overview

Structure package defines constructs for defining the high level abstraction of the organization of a software system. The
Structure model constructs specify how the software’s divisions and subdivisions down to the modules defined in the
Code Package.

The form of the system may be presented as a single form or a set of layers components, subsystems, or packages. The
reach of this representation extends from a uniform architecture to entire family of module-sharing subsystems.

The Structure model is a collection of StructuralElement instances. A StructuralElement is either a StructuralGroup or a
Package.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

StructuralGroup recursively gathers StructuralElements to portray various architectural divisions. The Software System
subclass of StructuralGroup supplies a gathering point for all the system’s packages directly or indirectly through other
StructuralGroups. The packages may be further separated into Subsystems, Layers, and Components.

16.2 Organization of the Structure Package

The Structure package is a collection of classes and associations that are described together because they provide meta-
model constructs for defining a software system’s architectural organization.

The Structure package depends on the following packages:
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Core

16.3 Structurelnheritances Class Diagram

The Structurelnheritances class diagram shown in Figure 16.1 depicts how various data classes are types of Core KDM
classes. Each of the Structure Package classes within this diagram inherits certain properties from KDM classes defined
within the KDM Core Package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 123

KOMNModel HOMERiify
{From k) (from Gors) KOMContainar
(frowm Core)

KOMGrouo

(from Cora)

Structurehodel

StructureElament

StructureContainer

StructureGroup

Figure 16.1 - Structurelnheritances Class Diagram

16.4 StructureModel Class Diagram

The StructureModel class diagram collects together classes and associations of the Structure package. They provide basic
meta-model constructs to define. The class diagram shown in Figure 16.2 captures these classes and their relations.

Structurebdodel

+model 1
{subsets model}
+structureElement
+structureElement

bset dEl t {subsets ownedElement}
{subsets awnedElement) StructureElement o
+oner 0 —, +structureElerment
{subsets ownpr} p {subsets groupedElement}
0.1
StructureCont +structureGroup
ainer o {subsets group}

StructureGroup
+structureGro
o=

{subsets group}

SoftwareSystem

+codeElement

{subsets groupedElement}

Subsystem Layer

+

CodeResource
{frorn Code)

Component

Figure 16.2 - StructureModel Class Diagram

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

16.4.1 StructureModel Class

The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all
of the system’s StructuralElements.

Superclass

KDMModel

Associations
structureElement:StructureElement[0..*]

Constraints
Semantics

16.4.2 StructureElement Class

The StructureElement represents an architectural part, which directly or indirectly presents an organization of the system’s
code modules.

Superclass

KDMEntity

Associations
structureGroup:StructureGroup[0..*]

Constraints

Semantics

16.4.3 StructureGroup Class

The StructureGroup class facilitates a hierarchy or grouping of organization parts within the Structure model.

Superclass
KDMGroup

StructureElement

Associations

codeElement:Code::CodeResource[0..*]

StructureElement:StructureElement[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 125

Constraints

Semantics

16.4.4 StructureContainer Class

The StructureContainer class facilitates a hierarchy or grouping of organization parts within the Structure model.

Superclass
KDMContainer

StructureElement

Associations
structureElement:Code::StructureElement[0..*]

Constraints

Semantics

16.4.5 Subsystem Class

The Subsystem collects the architectural parts of a software subsystem. The parts may be any other StructuralElement.

Superclass

StructureGroup
Semantics

16.4.6 Layer Class

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other StructuralElement.

Superclass

StructureGroup
Semantics

16.4.7 Component Class

The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

Superclass

StructureGroup

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

16.4.8 SoftwareSystem Class

The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

StructureGroup

Semantics

16.4.9 CodeResource (additional properties)

Associations
structureGroup:StructureGroup|0..*]

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 127

128 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

17 Event Package

17.1 Overview

The Event package provides a way for KDM to represent information about the behavior of applications, in particular
about the ways in which systems and user interfaces can generate and respond to events and messages.

17.2 Organization of the Event Package

The Event package is a collection of classes and associations that are described together because they provide meta-model
constructs for defining the ways in which events and messages are generated and handled by existing systems.

The Event package depends on the following packages:

org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Core

17.3 Eventinheritances Class Diagram

The Eventlnheritances class diagram defines how classes of the Event package inherit core meta-model classes from
KDM Core package. The classes and associations that make up the Eventinherita nces diagram are shown in Figure 17.1.

KOMMode!
(from kdrm) KOMGroun HKIONMConfainer -
{fror Corel {fram Cora) KDMEnlity
? (from Core)
Ewventhodel f Zﬁ Zﬁ
EventGroup EwentContainsr EventElement

KOMRalationship

(frorm Cora)

EveniRelationship

Figure 17.1 - Eventinheritances Class Diagram

17.4 EventModel Class Diagram

The EventModel class diagram collects together classes and associations of the Event package. They provide basic meta-
model constructs to define event model and event elements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 129

The class diagram shown in Figure 17.2 captures these classes and their relations.

+model
{subsets model}
Eventiodel - EventRelafionship
1 0.
o1 +relation
+model {subsets ownedRelation}

{subsets modsl}

+eventElemen

+
{subsets owned Iement}{ eventElerment
o+

subsets groupedElerment}

EventElemeant

+eventGroup
{subsets group}
0.5 0.*
+eventEle EventGroup

{subsets owngdElermerii}

+owner

(subsets owner} EventContai ner

Figure 17.2 - EventModel Class Diagram

17.4.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMModel

Associations

eventElement:EventElement[0..*]

Relation:EventRelation[0..*]
Constraints
Semantics

17.4.2 EventElement Class (abstract)

The EventElement represents elementary events such as Trigger instances, or compound events such as EventGroup and
EventContainer instances.

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

KDMEntity

Associations

eventGroup:EventGroup[0..*] The set of EventGroups to which the current EventElement belongs.

Constraints
Semantics

17.4.3 EventGroup Class

The EventGroup provides a means to group EventElements in a structure orthogonal to the containment relationship
captured by EventContainer.

Superclass
KDMGroup

EventElement

Associations

eventElement:EventElement[0..*]

Constraints

Semantics

17.4.4 EventContainer Class

The EventContainer represents the ownership hierarchy of events.

Superclass
KDMContainer

EventElement

Associations

eventElement:EventElement[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 131

Constraints

Semantics

17.5 EventElements Class Diagram

The EventElements class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures these
classes and their relations.

EveniElement

Trigger

Meggage UIEvent

Figure 17.3 - EventElements Class Diagram
17.5.1 Trigger Class
The Trigger is the generic EventElement that can be instantiated in KDM instances.

Superclass

EventElement

Constraints

Semantics

17.5.2 Message Class

The Message is the specific EventElement related to asynchronous message-passing communication mechanisms.

Superclass

EventElement
Constraints

Semantics

17.5.3 UIlEvent Class

The UlEvent is the specific EventElement related to the events of the user interfaces.

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

EventElement
Constraints

Semantics

17.6 EventRelations Class Diagram

The EventRelations class diagram defines basic KDM relations between events and other KDM metamodel elements.
The class diagram shown in Figure 17.4 captures these classes and their relations.

TypeRelafionshin EvaeniRelafionshin
{from Code)

{recira;{r%r-gfrum} 0.1

EvaniElament ~—1—————_~—_P
+fror +outTriggers 0.7 +inTriggers

{redeines fio 1 {subsets outhoundiS bsets inbaund}
.=
+gltHasSignature

HasSignature {subsets outhound}

Triggers

0.

+inHasSignature +Ho
{gubsets inbound} 1 redefines to}

CalableElement
(from Code)

1 +o i
Iredefines to} ¢isExternal | Boolean
Signature
(from Code)

Figure 17.4 - EventRelations Class Diagram

17.6.1 EventRelationship Class (abstract)

The EventRelationship is the superclass of associations within the Event model, which are modeled as classes. Its
subclass is Triggers. This is a generic meta-model element for representing various relations involving events.

Superclass

KDMRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 133

Semantics

17.6.2 EventElement Class (additional properties)

Associations

outHasSignature:HasSignature[0..*] The signature of the trigger

outTriggers:Triggers[0..*] The set of outbound Triggers relations

Constraints

Semantics

17.6.3 Triggers Class

The Triggers represents the relationship between an EventElement and the CallableElement it causes to be invoked.

Superclass

EventRelationship

Associations
from:EventElement[1]
to:CallableElement[1]

Constraints

Semantics

17.6.4 CallableElement (additional properties)
Associations

inTriggers:Triggers[0..*]

Constraints

Semantics

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

18 Ul Package

18.1 Overview

The Ul package provides a way for KDM to represent multiple facets of information about user interfaces, including their
composition, their sequence of operations, and their relationships to the underlying software systems.

18.2 Organization of the Ul Package

The Ul package is a collection of classes and associations that are described together because they provide meta-model
constructs for defining the content and behavior of user interfaces.

The Ul package depends on the following packages:

org.omg::ADM::KDM::Action
org.omg::ADM::KDM::Build
org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Event
org.omg::ADM::KDM::Core

18.3 Ulinheritances Class Diagram

The Ullnheritances class diagram defines how classes of the Ul package subclass core meta-model elements from the
KDM Core package. The classes and associations that make up the UlInheritances class diagram are shown in Figure
18.1.

KOMContainar ROMG KOMERtEy
KON Moder ffrom Corel o c?,;p tfrom Core)
(fromm Edm) f
Ulviodel UCeiEiner UlFlement

UlGroup

KOMRelafionship

(from Cora)

i

UlRelalionship

Figure 18.1 - Ulinheritances Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 135

18.4 UlIModel Class Diagram

The UIModel class diagram collects together classes and associations of the Ul package. They provide basic meta-model
constructs to define a static model of the principal components of a user interface. The class diagram shown in Figure
18.2 captures these classes and their relations.

1 0.+ : ,
- UlIRelalion shi
Ulhodel fe
+model -
+model T {subsets model} +relation
{subsets mads} {subsets ownedRelation]

+UiElgrent

+UiElement

{subsets ownedEleme +onwiner

ubsets owner}
0.1

UlContainer UIEvent

D {fram Event)

0.1 o=

+Owner
{subsets owner}

+event
{subsets ownedElement }

{subsets group}

UlGroup

Figure 18.2 - UIModel Class Diagram
18.4.1 UlModel Class
The UlModel is the specific KDM model that represents system’s user interface.

Superclass

KDMModel

Associations

uiElement:UIElement[0..*]

relation:UIRelationship[0..*]

Constraints
Semantics

18.4.2 UlElement Class

The UlElement is the superclass of DisplayUnit and UlContainer. As such, it is the class that represents both compound
and elementary items in a model of a system’s user interface.

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

KDMEntity

Associations
uiGroup:UIGroup[0..1]

Constraints
Semantics

18.4.3 UlContainer Class

The UlContainer is the superclass of Display. It represents a composite of instances of UIElement and Trigger — the
information that may be presented on a Screen or Report, and the events that may be generated by a Screen.

Superclass
KDMContainer

UIElement

Associations

uiElement:UIElement[0..*]

event:Event::UIEvent[0..*]

Constraints

Semantics

18.5 Display Class Diagram

The Display class diagram defines several specific KDM containers that own collections of user interface elements. The
class diagram shown in Figure 18.3 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 137

UlContainer

Display

AN

Screen Repart

Figure 18.3 - Display Class Diagram
18.5.1 Display Class
The Display is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UlContainer
Semantics

18.5.2 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of UIElement and its subclasses.

Superclass
Display
Semantics

18.5.3 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of UIElement and its subclasses.

Superclass

Display

138 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

18.6 DisplayUnits Class Diagram

The DisplayUnits class diagram provides basic meta-model constructs to define the binding between elements of a display

and their content. The class diagram shown in Figure 18.4 captures these classes and their relations.

UiRelationshin

LIElement

3

Displaylnit

+from
{redefines fram}

Useslmage

+inlmag

0.
{subsets ihbound}

VariableDisplaylnit

FixedDisplayUnit

+o
{redefines to] 4 +fram
Image fredefines from}
{frorn Build) 0-

DisplaysData

=

0.* " +inDisplay
{subsets inbdund}
+t0
{redefines to 1

StorableElament
[fram Code)

Figure 18.4 - DisplayUnits Class Diagram

18.6.1 DisplayUnit Class

The DisplayUnit is an elementary unit of display, such as a control on a form, a text field on a character-mode terminal,

or a field printed on a report. It has two subclasses: FixedDisplayUnit, which is for static content, and

VariableDisplayUnit, which is for dynamic content.

Superclass

UlIElement

Associations

outimage:Usesimage[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

139

Constraints

Semantics

18.6.2 FixedDisplayUnit Class

The FixedDisplayUnit represents an element of a user interface that displays static content.
Superclass

DisplayUnit

Semantics

18.6.3 VariableDisplayUnit Class

The VariableDisplayUnit represents an element of a user interface, which displays dynamic content, which is obtained
from an instance of Datalnterface, which is associated with the VariableDisplayUnit by an instance of the DisplaysData
relationship.

Superclass
DisplayUnit

Associations
outDisplay:DisplaysData[0..*]

Constraints
Semantics

18.6.4 UlRelationship Class (abstract)

The UlRelationship is the superclass of associations within the Ul model that are modeled as classes. Its subclasses
include DisplaysData, Useslmage, Displays, UsesLayout, UIFlow, and Renders.

Superclass

KDMRelationship
Semantics

18.6.5 DisplaysData Class

The DisplaysData captures the relationship between a data source — an instance of Datalnterface — and its presentation on
a user interface — an instance of VariableDisplayUnit.

Superclass

UlIRelationship

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

from:VariableDisplayUnit[1]

to:Type::StorableElement[1]

Constraints

Semantics

18.6.6 Useslmage Class

The UsesIimage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass

UlRelationship

Associations

from:DisplayUnit[1]
to:Build::Image[1]
Constraints
Semantics
18.6.7 StorableElement Class (additional properties)
Associations
inDisplay:DisplaysData[0..*]
Constraints
Semantics
18.6.8 Image Class (additional properties)

Associations

inimage:Usesimage|0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 141

Constraints

Semantics

18.7 UlRelations Class Diagram

The UlRelations class diagram defines several KDM relations for the Ul package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may
generate.

The class diagram shown in Figure 18.5 captures these classes and their relations.

Trigger
(from Event) UiRelafionshin
; +Hram
\ed{ﬂnes from} / +inUIFlow
{subsets outhound} . le
+outRenders | Renders {subsets inboun 0.7

outlIF lowy
+ol 1 {subdets outbound}
+inRendears {redefines ta}
{subsets frﬂ:oun 1 -
Display
1 +rom

R +1o {redefines from}
+inDisplays Ledefines to}

{subsets inbound} Displays

1 +
/ 0.7 % +outDisplays

+H0o subsets outbound}
{redefines to}

UIElement

+from
1 {redefines from}

CallableElement
(frarm Code)

Figure 18.5 - UIRelations Class Diagram

18.7.1 UlFlow Class

The UlIFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

UlRelationship

Associations

from:Display[1]

to:Display[1]

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics

18.7.2 Renders Class

The Renders relationship class captures the behavior of the user interface as the collection of Display instances that may
be presented as the result of a Trigger.

Superclass

UlIRelationship

Associations

from:Event::UIElement[1]

to:Display[1]

Constraints
Semantics

18.7.3 Displays Class

The Displays relationship class represents the relationship between an instance of Callablelnterface and the instance of
UlElement that is presented on the interface as a result of the execution of the Callablelnterface.

Superclass

UlRelationship

Associations

from:CallableElement[1]

to:UIElement[1]

Constraints

Semantics

18.7.4 Display Class (additional properties)

Associations

inRenders:Renders[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 143

Constraints
Semantics
18.7.5 UlElement Class (additional properties)

Associations

outRenders:Renders|0..*]

inDisplays:Displays[0..*]

Constraints
Semantics
18.7.6 CallableElement (additional properties)

Associations
outDisplays:Displays|0..*]

Constraints

Semantics

18.7.7 UlElement Class (additional properties)

Associations
inDisplays:Displays|[0..*]

Constraints

Semantics

18.8 UlLayout Class Diagram

The UlLayout class diagram collects together classes and associations of the Ul package. It provides basic meta-model
constructs to define the relationships between user interface content and layout.

The UlLayout diagram describes the following types:

« UsesLayout — a class representing the relationship between two instances of Display: One that captures the content of
a Screen or Report, and another that captures information on its layout or format.

The class diagram shown in Figure 18.6 captures these classes and their relations.

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

UlRelationshin

Display

Useslayout

+tgl HIContainer

-
0.* 1

+inUsesLayout

Figure 18.6 - UlLayout Class Diagram

18.8.1 UseslLayout Class

The UsesLayout relationship class captures an association between two instances of Display — one that defines the content

for a portion of a user interface, and one that defines its layout.

Superclass

UlRelationship

Associations

from:Display[1]

to:UIContainer[1]

Constraints

Semantics

18.8.2 Display Class (additional properties)

Associations

outUsesLayout:UsesLayout[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

145

Constraints

Semantics

18.8.3 UlContainer Class (additional properties)

Associations
inUsesLayout:UsesLayout[0..*]

Constraints

Semantics

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

19 Platform Package

19.1 Overview

Platform package provides meta-model constructs for representing operating environments of software systems.
Application code is not self-contained as it not only depends on the selected programming language, but also on the
selected Runtime platform. Platform elements determine the execution context for the application. Platform package
defines meta-model elements that represent common Runtime platform concerns:

* Runtime platform consists of many diverse elements (platform parts).

« Platform provides resources to deployment components.

« Platform provides services that are related to resources.

« Application code invokes services to manage the life-cycle of a resource.

< Control flow between application components is often determined by the platform.
« Platform provides error handling across application components.

« Platform provides integration of application components.

19.2 Organization of the Platform Package

The Platform package is a collection of classes and associations that are described together because they provide meta-
model constructs for defining common Runtime platform concerns. The meta-model elements from the Platform package
are closely related to the Runtime package, which provides additional meta-model constructs for representing physical
deployment of application components and platform elements.

The Platform package depends on the following packages:

org.omg::ADM::KDM::Code
org.omg::ADM::KDM::Runtime
org.omg::ADM::KDM::Core

19.3 PlatformInheritances Class Diagram

The Platforminheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations that make up the PlatformInheritances diagram are shown in Figure 19.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 147

KOMGroup -
KOMModel firorn Core) KDMER(tify
(fram Ldm) KDOMCaoniainer (frorm Core)
(from Core)
PlatformModel PIatformGroudl; PlatformEiameant

I

|

FlafformContainer

ResourceDefinition E)gfq{;rnaIActor
7 /_\(\ /]
PlatformPart /)
ResourceElerment ResourcePfovider
I
R T I
KDMRelationship CS0UIe Ype

{from Core) Resourcelnstance

&

FlaffarmRelalionship

JT

Tech;}éiogy}?eiaﬂonsmp ExtarnalRelaions
Fil

/

ResourceRelalionship

Figure 19.1 - PlatformInheritances Class Diagram

19.4 PlatformModel Class Diagram

The PlatformModel class diagram provides basic meta-model elements that represent platform concerns. The classes and
associations that make up the PlatformModel diagram are shown in Figure 19.2.

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Platformhdodel

| 1‘__—_———% PlatformRelation shio
0.

{SUhSE‘t‘—SmI’T%%gI} +model
{subsets model}

+relation
subsets ownedRelation
+platformElerent { !

{subsets ownedElement}
o

. platformElement
PlatformElement 0. {subsets groupedElement}

+platformGroup
0.+ {eubsets group}

PlatformGroup

FialformContainer

Figure 19.2 - PlatformModel Class Diagram

19.4.1 PlatformModel Class

The PlatformModel is a model element that represents common platform elements and their relationships. Platform model
defines one of the architectural views in support of the principle of separation of concerns in KDM models.

In the meta-model, PlatformModel is a subclass of KDMModel.

Superclass

KDMModel

Associations

platformElement:PlatformElement[0..*]

relation:PlatformRelation[0..*]

Constraints
Semantics

19.4.2 PlatformElement Class (abstract)

The PlatformElement is a meta-model element that represents entities of the operating environments of software systems.
In the meta-model a PlatformElement is a subclass of KDMEntity.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 149

Associations

platformGroup:PlatformGroup[0..*] The set of PlatformGroups with which the current element is associated.

Constraints

Semantics

19.4.3 PlatformGroup Class

The PlatformGroup is a meta-model element that provides generic grouping capabilities for PlatformElements.
PlatformGroup is associated with a set of PlatformElements. A PlatformElement can be associated with multiple
PlatformGroups. In the meta-model PlatformGroup is a subclass of KDMGroup.

A PlatformElement can be associated with multiple PlatformGroups. The association between the PlatformGroup and the
PlatformElements that are associated with that group is one directional.

Superclass
KDMGroup

PlatformElement

Associations

platformElement:PlatformElement[0..*] The set of PlatformElements associated with the current PlatformGroup.

Constraints

Semantics

19.4.4 PlatformContainer Class (abstract)

The PlatformContainer is a meta-model element that provides generic grouping capabilities for PlatformElements.
PlatformContainer owns a set of PlatformElements. A PlatformElement can be associated with a single
PlatformContainer. In the meta-model PlatformContainer is a subclass of KDMContainer. It is also a subclass of
PlatformElement.

A PlatformElement can be owned by at most one PlatformContainer. The optional character of ownership is intended as a
convenience to tools, allowing them to create PlatformElements prior to linking them to the owning PlatformContainer.
PlatformElements without an owner PlatformContainer also capture the top level element (especially PlatformContainers
and PlatformGroups).

PlatformContainer is an abstract class. The actual associations are defined by its subclasses.
Superclass
PlatformElement

KDMContainer

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

19.5 PlatformResources Class Diagram

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations that make up the PlatformResources diagram are shown in Figure 19.3.

PlatformPart

+owiner 1
{subsets owner}

+resourceType
{subsets ownedElement} Jyg
+definition
RISSOUIS [jge 1{Subsets ownedElement}
+resource Type .
{subsets owner} [su %gtguor\f\:,ﬁer}
ResourceDefi
+binding nition
{subsets ownedEle +resource
{subsets group}
o.*

+slement
0. kedbsets groupedElernent}

+hinding inst
+Instance
{subsets awner} {subsets ownedElement} CodeResource
0. {from Codg)
+instance ., Resourcelnstance

{subsets ownedElermen

Figure 19.3 - PlatformResources Class Diagram

19.5.1 PlatformPart Class

The PlatformPart is a meta-model element that represents a coherent set of resources that application components can
manage and share. Platform parts can be further subdivided into smaller groups of services (resource types). Platform
parts are usually grouped into platform stacks. Platform part is an element of the overall platform used by a particular
system. Complete Platform is the entire collection of platform parts used by the segments of the system. Platform Part
may be associated with logical packages for a particular programming language.

Examples of Platform Parts include UNIX OS File System, UNIX OS process management system, Windows 2000, OS/
390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, CORBA,
HTTP, TCP/IP, Eclipse, EJB, JMS, Database middleware, Servlets.

In the meta-model PlatformPart is a subclass of PlatformContainer.

Superclass

PlatformContainer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 151

Associations

resourceType:ResourceType|0..%] The set of ResourceTypes owned (supported) by the target PlatformPar.

Constraints

Semantics

19.5.2 ResourceElement Class
The ResourceElement is a meta-model element that represents an instance of a resource type.

In the meta-model Resourcelnstance is a subclass of PlatformContainer. KDM makes distinction between
Resourcelnstance and ResourceElement. A ResourceElement is a globally known instance of a resource type. A
Resourcelnstance is a locally known resource instance as seen by a component. The binding between components and
Resourcelnstances is expected to be resolved within a single model Segment while the binding between
Resourcelnstances and ResourceElements is expected to be resolved during integration of multiple model segments.

Superclass

PlatformContainer

Associations

instance:Resourcelnstance[0..*] The set of Resourcelnstances that are owned by the target
ResourceElement (matched to represent the same global resource entity).

Constraints

Semantics

19.5.3 Resourcelnstance Class
The Resourcelnstance is a meta-model element that represents an instance of a resource type.

In the meta-model Resourcelnstance is a subclass of PlatformElement. Resourcelnstance is the endpoint of relations. It
represents a local view of a certain resource type, as seen by a component. The binding between components and
Resourcelnstances is expected to be resolved within a single model Segment. In order to support integration of KDM
models within KDM, it is important to support partial views. The distinction between Resourcelnstance and
ResourceElement is as follows:

« A ResourceElement is a globally known instance of a resource type.

» A Resourcelnstance is a locally known resource instance. Often, components are integrated by glue-ware, e.g., Jcl
scripts, which provide the binding between local resource names.

Separation between ResourceElement and Resourcelnstance support matching of instances to elements within KDM.
When a Resourcelnstance is contained in ResourceElement, it is "matched"” to that element. If it is not matched to any
ResourceElement, it is unmatched (yet). Therefore it is possible to have a ResourceElement without any
Resourcelnstances - this represents, e.g., the view of an integration glue-ware, without the actual components.

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

PlatformElement
Constraints

Semantics

19.5.4 ResourceType Class

The ResourceType is a meta-model element that represents platform resource. In the meta-model ResourceType is a
subclass of PlatformContainer. The purpose of a platform is to simplify application development by closing the gap
between the application domain and the facilities that are available to application programmers. The latter are referred to
as platform resources. Examples of resource types include UNIX File, UNIX 10 Stream, UNIX socket, UNIX Process,
UNIX thread, AWT widget, CICS File, CICS transaction, UNIX semaphore, UNIX shared memory segment, OS/390
VSAM file, JIDBC connection, HTTP session, HTTP request, UNIX memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource. KDM only allows distinguishing platform resources with different type
names, but the definition of the semantics of a resource type is beyond the scope of KDM.

Superclass

PlatformContainer

Associations

binding:ResourceElement[0..*] The set of ResourceElements that are owned by the target ResourceType.

instance:Resourcelnstance[0..*] The set of Resourcelnstances that are owned by the target ResourceType
and not associated with a particular ResourceElement.

resource: ResourceDefinition[0..*] The set of ResourceDefinitions that provide logical definitions of the
resources of the target ResourceType.

Constraints

Semantics

19.5.5 ResourceDefinition Class

The ResourceDefinitions is a meta-model element that represents a collection of code resource associated with a
particular platform resource type. In the meta-model ResourceType is a subclass of PlatformGroup.

Superclass

PlatformGroup

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 153

Associations
element:CodeResource|0..*] The set of CodeResources that are owned by the target ResourceType.
Constraints

19.6 ResourceTypes Class Diagram

The ResourceTypes class diagram defines several basic subclasses of ResourceType. The classes and associations that
make up the ResourceTypes diagram are shown in Figure 19.4.

ResourceType

/ \ Datahianager

MamingResource DataP onResource

Mayfshalledl?esourc‘é\ |
7 n DataResource

WessagingResource / ~[~| SlorableElement

(from Code)

ExecutionResource

CrynamicData

Figure 19.4 - ResourceTypes Class Diagram

19.6.1 NamingResource Class

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of ResourceType.

Superclass

ResourceType

Semantics

19.6.2 MarshaledResource Class

MarshaledResource represents platform resources that provide intercomponent communication via remote synchronous
calls. For example, RPC, CORBA method call, Java remote method invocation. In the meta-model MarshaledResource is
a subclass of ResourceType.

Superclass

ResourceType

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Semantics

19.6.3 MessagingResource Class

MessagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

In the meta-model MessagingResource is a subclass of ResourceType.
Superclass
ResourceType

Semantics

19.6.4 DataResource Class

DataResource represents platform resources that provide any non-database related storage. In the meta-model the
DataResource class is a subclass of ResourceType. It also implements the Datalnterface so that this class can be the
endpoint of Data relations.

Superclass
StorableElement

ResourceType

Semantics

19.6.5 ExecutionResource Class

ExecutionResource represents dynamic Runtime elements (e.g., process or thread). In the meta-model ExecutionResource
is a subclass of ResourceType.

Superclass

ResourceType

Semantics

19.6.6 DataPortResource Class

DataPortResource represents a platform resource that provides communication between components of the system and
external entities in the operating environment of the system. In the meta-model the DataPortResource class is a subclass
of ResourceType. It also implements the Datalnterface so that this class can be the endpoint of Data relations.

Superclass
StorableElement

ResourceType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 155

Semantics

19.6.7 DynamicData Class

DynamicData represents dynamic data elements (e.g., string buffers). In the meta-model the DynamicData class is a
subclass of ResourceType. It also implements the Datalnterface so that this class can be the endpoint of Data relations.

Superclass
StorableElement

ResourceType

Semantics

19.6.8 DataManager Class

DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager. In the meta-model the DataManager class is a
subclass of ResourceType. It also implements the Datalnterface so that this class can be the endpoint of Data relations.

Superclass
StorableElement

ResourceType

Semantics

19.7 ExternalActors Class Diagram

The ExternalActors class diagram defines the environment of the system. It introduces meta-model elements for
representing entities outside of the system and relations between external entities and the system.

The classes and associations that make up the External Actors diagram are shown in Figure 19.5.

ExtarnalRelalions

&

Uoss +inlJses
+outlses o subsets inbound}
{subsets outbound .~ h 1
: g Inst
es50urceinstance
External Actor +from {redsfines 1o

{redefines from}

Figure 19.5 - ExternalActors Class Diagram

156 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

19.7.1 ExternalActor Class

External Actor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model External Actor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformElement

Associations

outUses:Uses[0..*] The set of Uses relationships that originate from the target External Actor.

Constraints
Semantics

19.7.2 ExternalRelations Class (abstract)

ExternalRelations is a generic meta-model element that represents various relationships between the software system and
its environment. In the meta-model the ExternalRelations class is a subclass of KDMRelationship. This class is an
extension point. In KDM there is only one subclass of ExternalRelations — the class UsesActor.

Superclass

KDMRelationship
Semantics

19.7.3 Uses Class

Uses class is a meta-model element that represents associations between external actors outside of the software system
and the entities inside the system. External actors always interact through the Runtime platform. In the meta-model the
Uses class is a subclass of ExternalRelations class.

Superclass

ExternalRelations

Associations

from:ExternalActor[1] The External Actor which is the origin of the target Uses relation (the from-endpoint).

to:Resourcelnstance[1] The Resourcelnstance which is the target of the Uses relation (the to-endpoint).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 157

Constraints

Semantics
19.7.4 Resourcelnstance (additional properties)
Associations
inUses:Uses[0..*] The inbound Uses relationships for which the target Resourcelnstance is the to-endpoint

Constraints

Semantics

19.8 Platforminterfaces Class Diagram

The Platforminterfaces class diagram defines meta-model associations between platform elements and interfaces. The
classes and associations that make up the Platforminterfaces diagram are shown in Figure 19.6.

InferfaceRelalionship
(from Code)

]

CompliesTo

w0 . .
+outCo pﬂies +inComplies
{subsets outhound} {subsets inbound}

+rom +o
Interface

redefines to
redefines from} { } {fram Code)
1

Resourcelnstance

Figure 19.6 - PlatformInterfaces Class Diagram

19.8.1 CompliesTo Class

CompliesTo class defines semantic relationship between a resource instance and an Interface class from Code package.
The CompliesTo relationship represents the fact that a certain resource instance complies with a certain interface.

In the meta-model CompliesTo class is a subclass of InterfaceRelation, defined in the Code package.

Superclass

InterfaceRelationship

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations
from:Resourcelnstance[1] The source Resourcelnstance
to:Code::Interface[1] The target Interface class

Constraints

Semantics

19.8.2 Resourcelnstance (additional properties)

Associations

outComplies:CompliesTo[0..*] The outbound CompliesTo relationships for which the target Resourcelnstance is the
from-endpoint.

Constraints

Semantics
19.8.3 Interface (additional properties)
Associations
inComplies:CompliesTo[0..*]
Constraints

Semantics

19.9 PlatformRelations Class Diagram

The PlatformRelations class diagram defines associations between Resourcelnstances and CodeResource (the so-called
bindings of Resourcelnstances to CodeResources).

The classes and associations that make up the PlatformRelations diagram are shown in Figure 19.7.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 159

Resource Relalionship

il

BindsTo +inBinds

{subsets inbound}

+outBinds
{subsets outbound} CodeResource
(from Code)
1 +o
+rom defines 1
{redefines from 1 {redefines to}
Resourcelnstance +from +oUtResource

-

{redefines fram} {subsets outbound}

s 1 BindsReso
{redefines to} drets
0

+inResource
{subsets inbound}

Figure 19.7 - PlatformRelations Class Diagram

19.9.1 BindsTo Class

BindsTo defines a semantic relationship between a Resourcelnstance and a CodeResource. The CodeResource represents
a callback (the so called “reversed” control flow) associated with the target Resourcelnstance. Major platform parts
support componentization by “reversing” some of the control flows. “Reversed” control flows reduce coupling between
components (but not necessarily eliminate it). Deployment components are usually plugins into the platform code.
Initially, control belongs to the platform code. Platform code activates deployment components through various kinds of
callback mechanisms, etc. A BindsTo relation represents these platform-specific activations. There are several activation
models:

 Interruptible (processes, threads) vs. run-to-completion (application frameworks)
« Synchronous vs. asynchronous

Knowledge of platform-specific activations is essential for understanding a software system as it provides execution
context for understanding flow of control through the software system.

Superclass

ResourceRelationship

Associations

from:Resourcelnstance[1] The Resourcelnstance which is the source of the relationship (the from-endpoint).

to:CodeResource[1] The CodeResource which is the target of the relationship (the to-endpoint).

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

19.9.2 Resourcelnstance (additional properties)

Associations

outBinds:BindsTo[0..*] The outbound BindsTo relationships for which the target Resourcelnstance is the from-
endpoint.

Constraints

Semantics
19.9.3 CodeResource (additional properties)
Associations

inBinds:BindsTo[0..*]

Constraints

Semantics

19.10 ProvisioningRelations Class Diagram

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations that make up the ProvisioningRelations diagram are shown in Figure 19.8.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 161

TechnologyRelationship

’ - +oUtRequires
+inRequires] Requires {redefines fram}
{subsets inbound—[
+o g+ 0.*
{redefines to} " 1 DeployedComponent
ResourceProvider | 1 {subsets sttbound) (from Runtirme)
+rom-!
{redefines from} 0+
+outProvides !
Provides
{subsets outhound} | PlafformEierment

. 1
+inProvides +Ho
{subsets inbound} (redefines to}

Figure 19.8 - ProvisioningRelations Class Diagram

19.10.1 PlatformProvider Class

PlatformProvider is a meta-model element that represents physical entities of the Runtime platform that provide certain
services and manage resources.

Superclass

KDMEntity

Associations

outProvides:Provides[0..*] The set of Provides relationships which originate at the target PlatformProvider.
inRequires:Requires[0..*] The set of Requires relationships for which the target PlatformProvider is the to-
endpoint.

Constraints

Semantics

19.10.2 TechnologyRelationship Class (abstract)

TechnologyRelationship is a generic meta-model element that defines semantic associations related to provisioning of
platform services to applications.

In the meta-model the TechnologyRelationship is a subclass of KDMRelationship. It is further subclassed by concrete
KDM technology relationships. It provides an extension point for lightweight extensions.

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

KDMRelationship
Semantics
19.10.3 Requires Class

Requires defines semantic relationship between a DeployedComponent and a PlatformProvider.

In the meta-model Requires is a subclass of TechnologyRelationship.

Superclass

TechnologyRelationship

Associations

from:DeployedComponent[1] The DeployedComponent which is the source of the relationship (the from-
endpoint).
to:PlatformProvider[1] The PlatformProvider which is the target of the relationship (the to-endpoint) .

Constraints
Semantics
19.10.4 Provides Class

Provides defines semantic relationship between a PlatformProvider and a PlatfromElement.

In the meta-model Provides is a subclass of TechnologyRelationship.

Superclass

TechnologyRelationship

Associations

from: PlatformProvider [1] The PlatformProvider which is the source of the relationship (the from-endpoint).

to: PlatformElement [1] The PlatformElement which is the target of the relationship (the to-endpoint).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 163

Constraints

Semantics

19.10.5 PlatformElement (additional properties)

Associations

inProvides:Provides[0..*] The set of Provides classes (a subclass of TechnologyRelation) that represent inbound
relationships from various PlatformProvider classes for which the target
PlatformElement is the to-endpoint. This association is defined in the
ProvisioningRelations class diagram of the Platform package.

Constraints

Semantics

19.10.6 DeployedComponent (additional properties)

Associations

outRequires:Requires|0..*] The set of Requires classes (a subclass of TechnologyRelation) that represent outbound
relationships from various DeployedComponent classes for which the target
PlatformElement is the to-endpoint. This association is defined in the
ProvisioningRelations class diagram of the Platform package.

Constraints

Semantics

19.11 PlatformActions Class Diagram

The PlatformActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime and Platform relationships. The elements of this diagram extend ActionElement from the KDM Action
package.

The classes and associations that make up the PlatformActions diagram are shown in Figure 19.9.

164 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

ResourceRelationship

ActionElement
(frorm Action) ﬂ
sesResource
+outlsesResource
{subsets outhound}
0. u inUsesResource
| subsets inbound}
PlaformService
+from
Tredefines from}
+t0
1 {redefines to}
MarshalledCar“ Registration Resourcelnstance
!

AgynchCall

Activation

Figure 19.9 - PlatformActions Class Diagram

19.11.1 PlatformService Class
The PlatformService is a generic meta-model element that represents various endpoints of ResourceRelation.

In the meta-model PlatformService is a subclass of ActionElement. This class is an extension point. In KDM
PlatformService is subclassed by several specific concrete actions that correspond to specific ResourceRelations.

Currently specific subclasses of PlatformService are not strongly typed because KDM does not provide any subclasses of
ResourceRelationship class and no specific subclasses of Resourcelnstance that correspond to concrete ResourceType.
PlatformService element directly references ResourceRelationship element. Later KDM will introduce more specific
subclasses of Resourcelnstances and corresponding subclasses of ResourceRelationships, which will allow stronger typing
of specific subclasses of PlatformService.

Superclass

ActionElement

Associations

outResource:ResourceRelationship[0..*] The set of outbound ResourceRelationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 165

Constraints

Semantics

19.11.2 MarshaledCall Class

The MarshaledCall is a meta-model element that represents the action endpoint of a “marshaled call” relation to some
instance of marshaled resource. Marshaled call is some kind of a remote procedure call, supported by the platform.
“Marshaled call” relation abstracts proxies, stubs and the corresponding platform code. Examples of marshaled calls
include CORBA method invocations, RMI method calls, RPC, COM method calls, database notifications via callbacks.

In the meta-model MarshaledCall is a subclass of a generic PlatformService element.
Superclass

PlatformService

Semantics

19.11.3 AsynchCall Class

The AsynchCall is a meta-model element that represents the action endpoint of an “asynchronous message passing”
relation to some instance of messaging resource. Asynchronous call is some kind of a messaging, supported by the

platform. “Asynchronous call” relation abstracts proxies, stubs, and the corresponding platform code. Examples of

asynchronous calls include IBM MQSeries messaging, Microsoft MSMQ messaging, BEA Tuxedo.

In the meta-model AsynchCall is a subclass of a generic PlatformService element.
Superclass

PlatformService

Semantics

19.11.4 Registration Class

The Registration is a meta-model element that represents the action endpoint of a “naming service registration and
lookup” relation to some instance of haming resource. Registration is some kind of a naming service operation, supported
by the platform. Examples of registration include Java registries, Windows registries, CORBA naming service.

In the meta-model Registration is a subclass of a generic PlatformService element.

Superclass

PlatformService
Semantics

19.11.5 Activation Class

The Activation is a meta-model element that represents the action endpoint of an “execution” relation to some instance of
executable resource. Execution is some kind of a component invocation operation, supported by the platform. Examples
of activation include system() calls on UNIX, script activations.

166 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

In the meta-model Activation is a subclass of a generic PlatformService element.

Superclass

PlatformService

Semantics

19.11.6 ResourceRelationship Class (abstract)
The ResourceRelationship is a generic meta-model element that represents various platform-specific relations.

In the meta-model ResourceRelationship is a subclass of KDMRelationship. Currently KDM does not provide any
subclasses of ResourceRelationship class as there are no specific subclasses of Resourcelnstance that correspond to
concrete ResourceTypes which are introduced in the Platform package. ResourceRelationship directly references
Resourcelnstance element. Later KDM will introduce more specific subclasses of Resourcelnstances and corresponding
subclasses of ResourceRelationships.

Superclass

KDMRelationship

Associations

from:PlatformService[1] The PlatformService endpoint

to:Resourcelnstance[1] The Resourcelnstance

Constraints

Semantics

19.11.7 Resourcelnstance (additional properties)

Associations

inResource:ResourceRelationship[0..*] The set of inbound ResourceRelationships

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 167

168 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

20 Runtime Package

20.1 Overview

The Runtime package provides meta-model constructs for representing the physical aspects of operating environments of
software systems. Application code is not self-contained as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Runtime package defines meta-model elements that represent common physical aspects of Runtime platform concerns:

¢ Runtime platform consists of many diverse elements (platform parts)

« Platform provides resources to deployment components

< Platform provides services that are related to resources

« Application code invokes services to manage the life-cycle of a resource

< Control flow between application components is often determined by the platform

< Platform provides error handling across application components

« Platform provides integration of application components
Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically

created instances of processes and threads are essential part of the knowledge of existing system. Pure logical perspective
in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding (or delay it).

A binding is a common way of referring to a certain irrevocable implementation decision.

Too much binding is often referred to as “hardcoding”. This often results in systems that are difficult to maintain and
reuse. They are often also difficult to understand.

Too little binding leads to dynamic systems, where everything is resolved at run time (as late as possible). This often
results in systems that are difficult to understand and error-prone.

Modern platforms excel in ingenious ways to manage binding time. Usually binding is managed at deployment time.

Large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture.

Efficient management of binding time is often called platform independence.
Binding time

¢ Generation time binding
e Language & platform design binding
e \ersioning time
e Compile time binding, including
* macro expansion
« Templates

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 169

« Product line variants defined by conditional compilation

e Link time binding

« Deployment time binding
« Initialization time binding
* Runtime

Binding Time

What

Result

Generation time

Syntax, variant, pattern, mapping, etc.

Generated code

Language & platform design

Syntax, entities and relations,
including platform resource types

Source code

\ersioning Module source files Module version

Compile time Intra-module relations (def-use) Module

-- Macro Syntax, macro to expanded code Expanded macro (source code)
-- Template Template parameters Template instance

-~ Product line variant defined by
conditional compilation and includes

Conditional compilation, macro,
includes, symbolic links

Component Variant

(static) Link time

Intra-component relations within
deployable component

Deployed Component

Deployment time

Resource names to resources (using
platform-specific configuration files)

Deployed System

Initialization time

Component implementation to
component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files)

System

Run time

User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

20.2 Organization of the Runtime Package

The Runtime package is a collection of classes and associations that are described together because they provide meta-
model constructs for defining common physical aspects of Runtime platform concerns. The meta-model elements from
the Runtime package are closely related to the Platform package, which provides additional meta-model constructs for
representing logical aspects of Runtime platforms.

The Runtime package depends on the following packages:

org.omg::ADM::KDM::Platform
org.omg::ADM::KDM::Structure

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

org.omg::ADM::KDM::Action
org.omg::ADM::KDM::Core

20.3 Runtimelnheritances Class Diagram

The Runtimelnheritances class diagram collects together classes and associations of the Runtime package. They provide
basic meta-model constructs to define The classes and associations that make up Runtimelnheritances diagram are shown

in Figure 20.1.

KDOMModel
(frorm Edm)

3

KOMERty

(frorn Core)

KOMGroup

$name : tring

(frorn Core)

Funtimehlodel

p

RunfimeElement

Deployed Component

KDMRelalionshin

(from Corel

RuntimeGroup

I

!

RunfimeRelation

DeployédSomNareSystem
N

KOMCaontalner

(fram Corel

[

I

DeployedResource

R

RunfimeContainer

N
Ilachine

RunnableElement

Figure 20.1 - Runtimelnheritances Class Diagram

20.4 RuntimeModel Class Diagram

The RuntimeModel class diagram provides basic meta-model elements that represent physical Runtime concerns. The

classes and associations that make up the RuntimeModel diagram are shown in Figure 20.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

171

Runtimehodel +relation

) {subsets ownedRelation}

+model q i
{subsets model}; 1 +rmodel 0.7 RurimelReietion

{subsets model}

+runtimeElement
{subsets ownedElement} 0=

RuntimeElement

LEAN
{subsgts group} \

RunfimeContalner

+runtimeElement
{subsets groupedEleme

+runtimeGroug_ RuniimeGroup

Figure 20.2 - RuntimeModel Class Diagram

20.4.1 RuntimeModel Class

The RuntimeModel is a model element that represents generic Runtime elements and their relationships. Runtime model
defines one of the so-called KDM views that support separation of concerns in KDM models.

In the meta-model, RuntimeModel is a subclass of KDMModel. RuntimeModel is associated with the Root element.

Superclass

KDMModel

Associations

runtimeElement:RuntimeElement[0..*]

relation:RuntimeRelation[0..*]

Constraints
Semantics

20.4.2 RuntimeElement Class (abstract)

The RuntimeElement is a generic meta-model element that represents physical entities of the operating environments of
software systems. In the meta-model a RuntimeElement is a subclass of KDMEntity.

Superclass

KDMEntity

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Associations

runtimeGroup:RuntimeGroup|0..*] The set of Runtime groups with which the current element is associated.

Constraints

Semantics

20.4.3 RuntimeContainer Class (abstract)

The RuntimeContainer is a meta-model element that provides generic grouping capabilities for RuntimeElements.
RuntimeContainer owns a set of RuntimeElements. A RuntimeElement can be associated with a single RuntimeContainer.

In the meta-model RuntimeContainer is a subclass of KDMContainer. It is also a subclass of RuntimeElement. Several
concrete KDM Runtime container classes further subclass RuntimeContainer class.

A RuntimeElement can be owned by at most one RuntimeContainer. The optional character of ownership is intended as a
convenience to tools, allowing them to create RuntimeElements prior to linking them to the owning RuntimeContainer.
RuntimeElements without an owner RuntimeContainer also capture the top-level element (especially RuntimeContainers
and RuntimeGroups).

Superclass

KDMContainer
RuntimeElement

Constraints

Semantics

20.4.4 RuntimeGroup Class

The RuntimeGroup is a meta-model element that provides generic grouping capabilities for RuntimeElements.
RuntimeGroup is associated with a set of RuntimeElements. A RuntimeElement can be associated with multiple
RuntimeGroups. In the meta-model RuntimeGroup is a subclass of KDMGroup.

Superclass

KDMGroup
RuntimeElement

Associations

runtimeElement:RuntimeElement[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 173

Constraints

Semantics

20.5 Runnable Class Diagram

The Runnable class diagram defines meta-model elements that represent dynamic structures (instances of some logical
entities and their relationships) that emerge at the so-called “run time” of the software system. For example, dynamic
entities include processes and threads. Instances of processes and threads can be created dynamically and in many cases
relations between the dynamically created instances of processes and threads are an essential part of the knowledge of
existing systems. Another example of dynamic structures involves deployed components that are loaded dynamically.

The classes and associations that make up the Runnable diagram are shown in Figure 20.3.

FunnableElement

N

Frocess

+owner
{subsets er}1

0.1

{subsets owne

+Componant
{subsets owner}

Thread (0.7

sthread DeployedComponent
{subsets ownedElement}

Figure 20.3 - Runnable Class Diagram

20.5.1 RunnableElement (abstract)

The RunnableElement is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RunnableElement is subclassed by Process and Thread. In the meta-model RunnableElement
is used as the endpoint of certain RuntimeRelations.

Superclass

RuntimeContainer

Semantics

20.5.2 Process Class
The Process is a meta-model element that represents instances of processes.

In the meta-model Process is a subclass of RuntimeComponent. It is also a subclass of RunnableElement, which is a
common superclass of both a Process and a Thread. In the meta-model RunnableElement is used as the endpoint of
certain RuntimeRelations.

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Superclass

RunnableElement

Associations

thread:Thread[0..*]

component:DeployedComponent[0..*]

Constraints

Semantics

20.5.3 Thread Class
The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

In the meta-model Thread is a subclass of a RuntimeContainer. It is also a subclass of RunnableElement, which is a
common superclass of both a Process and a Thread. In the meta-model RunnableElement is used as the endpoint of
certain RuntimeRelations.

Superclass

RunnableElement
Constraints

Semantics

20.6 Deployment Class Diagram

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations that make up the Deployment diagram are shown in Figure 20.4.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 175

DeployedS oftwareSystem

0.*

+deployment
{subsets group}

{subsets groupedElement} +CO
{subse

0.*

+machine
{subsets owner

Wachine

+machine
{subsets owner}

0.1
+resource
{subsets ownedElement}

ownedElerment}

0=

{subsets gn

+gystem 0.7
{subsets groupedEjement} DeployedComponent
1
SoftwareSystem o
(frorn Structure) +deployfnent

{subsels group}

+component
{subsets groupedElement}
a.*

Codefssembly
(frorm Code)

Figure 20.4 - Deployment Class Diagram

20.6.1 DeployedComponent Class

+deployment

group} +provider

{subsets groupedElement}
+deployment

ResourceElement
{frorm Platform)

0.7
{subsets group} -
ResourceProvider
{frorm Platformm)
+instance
{subsets groupedElement}
0.

Resourcelnstance
{from Platform)

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform parts
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

In the meta-model DeployedComponent is a subclass of RuntimeGroup.

Superclass

RuntimeGroup

Associations

component:Code::CodeAssembly|[0..*] The code components which are deployed to the target

DeployedComponent.

machine:Machine[0..1] The Machine onto which the target DeployedComponent is

deployed.

Deployment:DeployedSoftwareSystem [1]

176 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

20.6.2 DeployedSoftwareSystem Class

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. The logical view of KDM model describes one or more SoftwareSystems.
Each SoftwareSystem involves one or more Components. Some components can be involved in more than one
SoftwareSystem (allowing description of the so-called Software Product Lines). Each Component involves one or more
model Modules. Again, each Module can be involved in more than one Component. Component is a unit of deployment.
Each logical component can be deployed multiple times, each time represented by a unique DeploymentComponent
element. DeployedSoftwareSystem is a counterpart of the corresponding logical SoftwareSystem.

Superclass

RuntimeGroup

Associations

system:Structure::SoftwareSystem[0..1] The logical system that is deployed.

component:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

Constraints
Semantics

20.6.3 Machine Class

The Machine is a meta-model element that represents the hardware node which hosts deployed components. In the meta-
model Machine is a subclass of RuntimeContainer.

Superclass

RuntimeContainer

Associations

component:DeployedComponent[0..*]

resource:DeployedResource[0..*]

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 177

20.6.4 DeployedResource Class

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of ResourceElements,
Resourcelnstances, and PlatformProviders. DeployedResource provides a unique physical context for a logical resource,
as each logical resource can be associated with multiple DeployedResource.

In the meta-model Deployed Resource is a subclass of RuntimeGroup.

Superclass

RuntimeGroup

Associations

Machine:Machine[1] The Machine onto which the target DeployedResource is deployed.

element:Platform::ResourceElement[0..*] The set of ResourceElements which are deployed into the target
DeployedResource.

instance:Platform::Resourcelnstance|[0..*] The set of Resourcelnstances which are deployed into the target
DeployedResource.

provider:Platform::ResourceProvider[0..*] The set of PlatformProviders which are deployed into the target
DeployedResource.

Constraints

Semantics

20.7 RuntimeActions Class Diagram

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 20.5.

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

ActionElement
{fram Action)

RunfimeRsiation

+o
{redefines to}

RuntimeService

Loads

DeployedComponent

+outloads /; -) L d
bsets outhouhd) ~ tINLoA
{subsets outboyfnd} {subsets inbound}

+rom
1 {redefines from}

LoadingService e —
0 o +inSpawns
+OULSpawns - {subsets inbound}
SpawningService 1 {subsets autbound}
+from +o]
{redefines from} {redefines to

RunnahleElament

Figure 20.5 - RuntimeActions Class Diagram

20.7.1 RuntimeRelation Class (abstract)

The RuntimeRelation is a generic meta-model element that represents various relationships between the physical
instances at Runtime.

In the meta-model the RuntimeRelations class is a subclass of KDMRelationship. This class is an extension point. In
KDM RuntimeRelations is subclassed by several specific concrete relationships.

Superclass

KDMRelationship
Semantics
20.7.2 RuntimeService Class

The RuntimeService is a generic meta-model element that represents various endpoints of RuntimeRelation.

In the meta-model RuntimeService is a subclass of ActionElement. This class is an extension point. In KDM
RuntimeService is subclassed by several specific concrete actions that correspond to specific RuntimeRelations.

Superclass

ActionElement

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 179

20.7.3 LoadingService Class

The LoadingService is a meta-model element that represents the endpoint of Loads relation. In the meta-model
LoadingService is a subclass of a generic element RuntimeService.

Superclass

RuntimeService

Associations

outLoads:Loads][0..*] The set of outbound Loads relationships to DeployedComponents.

Constraints
Semantics

20.7.4 Loads Class

The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

RuntimeRelation

Associations

from:LoadingService[1] The LoadingService endpoint
to:DeployedComponent[1] The DeployedComponent which is being loaded.
Constraints
Semantics

20.7.5 SpawningService Class

The SpawningService is a meta-model element that represents the endpoint of Spawns relation. In the meta-model
SpawningService is a subclass of generic element RuntimeService.

Superclass

RuntimeService

Associations

outSpawns:Spawns|0..*] The set of outbound Spawns relationships to Runnablelnterface.

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints
Semantics

20.7.6 Spawns Class

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation”
relationship between a SpawningService action endpoint and the Runnableinterface (Process or Thread). In the meta-
model Spawns is a subclass of a generic element RuntimeRelationship.

Superclass

RuntimeRelation

Associations

from:SpawningService[1] The SpawningService endpoint

to:RunnableElement[1] The Runnable element (Process or Thread) which is being spawned.

Constraints

Semantics
20.7.7 DeployedComponent (additional properties)
Associations
inLoads:Loads|0..*] The set of inbound Loads relationships to DeployedComponent.

Constraints

Semantics
20.7.8 RunnableElement (additional properties)
Associations
inSpawns:Spawns[0..*] The set of inbound Spawns relationships to Runnablelnterface.

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

181

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

21 Conceptual Package

21.1 Overview

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes — TermUnit and FactUnit facilitating mapping to SBVR.

Future versions of KDM Conceptual package may provide additional “concept” classes facilitating mapping to other
specifications. These meta-model objects and relationships between them will be used to define mapping between KDM
“concepts” and SBVR.

The KDM Conceptual Model refers to two “concepts”: Term and Fact. The following is a mapping of this KDM
“concepts” to the SBVR terminology:

e Term -> SBVR Noun (collectively referring to SBVR Terms and SBVR Names)
* Fact-> SBVR Fact

The SBVR vocabulary “concepts” (i.e., Term and Fact) are not defined in KDMInstead, the KDM Conceptual Model
defines the implementations of these “concepts” - TermUnit and FactUnit. The mapping between KDM and SBVR is
facilitated with the help of (0..*) to (0..*) relationships between pairs (i.e., <Term, TermUnit> and <Fact, FactUnit>) as
shown in Figure 21.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 183

SBVR

Term Fact
(frorn SBYR) (from SBVE)
+term |07 +fact | 0.7
|
Conceptual
+temmimplementation | g + +factimplementation | 0..n

TermUnit FactUnit
(from Conceptual) (from Conceptual)

Figure 21.1 - Mapping between KDM and SBVR

21.2 Organization of the Conceptual Package

The Conceptual package is a collection of classes and associations that are described together because they provide meta-
model constructs for defining. The Conceptual package depends on the following packages:

org.omg::ADM::KDM::Core
org.omg::ADM::KDM::Code
21.3 Conceptuallnheritances Class Diagram

The Conceptuallnheritances class diagram describes the inheritance relationships between children classes introduced in
the Conceptual package and the parent classes defined in other packages. The Conceptuallnheritances class diagram is
shown in Figure 21.2.

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

KOMMaode! KOMGroup KOMContainer

(from kdm) {from Core) {from Core)

i

ConceptualZontainer

Conceptualéodel

ConcapiuaiElameant

Figure 21.2 - Conceptuallnheritances Class Diagram

21.4 ConceptualModel Class Diagram

The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They

provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships

between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code.

The class diagram shown in Figure 21.3 captures these classes and their relations.

Conceptualhodsl

1
+model
{subsets model}

+conceptualElkment
{subsets owrledElernent}
+conceptualElement
{subsets ownedElementiConcepiualElemeani

ProgramElement
(from Data)

+definition
subsets groupedElement}

0=

conceptualZroup
Conceptual | {subssts group}
+conceptualGroup g Group

ConceptualCo {subsets group}

ntainer ﬁ Q

Termlnit Factlnit

Figure 21.3 - ConceptualModel Class Diagram

21.4.1 ConceptualModel

The ConceptualModel holds the metadata of the conceptual model created by a mining tool.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

185

Superclass

Core::KDMModel

Associations

conceptualElement:ConceptualElement[0..*] Identifies the root “concept” elements of the hierarchy of the
conceptual elements contained in the model. The ConceptualModel
can contain zero or more such trees.

Constraints

Semantics

21.4.2 ConceptualElement (abstract)

The ConceptualElement class is used to facilitate a hierarchy and grouping of “concepts” within Conceptual Model.

Superclass

Core::KDMEntity

Associations

conceptualGroup:ConceptualElement[0..*] Recursively identifies the embedded “concept” element. This
containment relationship enables creation of a tree-like hierarchy of
conceptual elements.

Constraints

Semantics

21.4.3 ConceptualContainer

The ConceptualContainer class is used to facilitate a hierarchy and grouping of “concepts” within Conceptual Model.

Superclass

Core::KDMEntity

Associations

conceptualElement:ConceptualElement[0..*] Recursively identifies the embedded “concept” element. This
containment relationship enables creation of a tree-like hierarchy of
conceptual elements.

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

Constraints

Semantics

21.4.4 ConceptualGroup

The ConceptualGroup class is used to facilitate a hierarchy and grouping of “concepts” within Conceptual Model.

Superclass

Core::KDMEntity

Associations

conceptualGroup:ConceptualElement[0..*] Recursively identifies the embedded “concept” element. This
containment relationship enables creation of a tree-like hierarchy of
conceptual elements.

definition:ProgramElement[0..*]

Constraints

Semantics

21.4.5 TermUnit

The TermUnit class represents an implementation of a “concept” used for mapping to the SBVR Term.

Superclass

ConceptualGroup

Semantics

21.4.6 FactUnit

The FactUnit class represents an implementation of a “concept” used for mapping to the SBVR Fact.

Superclass

ConceptualGroup

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 187

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

22 Behavior Package

22.1 Overview

The Behavior Model defined in the KDM Behavior package provides constructs for creating a behavior model during the
analysis phase of knowledge discovery from existing code.

The BehaviorModel enables mapping of KDM compliant model to models compliant to other specifications. It provides
“behavior” types — BehaviorUnit, ScenarioUnit and RuleUnit facilitating mapping to various external models including
but not limited to activities/flow chart and swim lane diagrams, use case scenarios, SBVR, etc.

The following explains the difference between these “behavior” types:

BehaviorUnit represents a behavior graph with all possible paths through the application logic and associated
conditions. The conditions responsible for navigation between alternative paths within the graph are supported by
RuleUnits.

ScenarioUnit represents a singe path through the behavior graph where all navigational conditions are resolved.
RuleUnit represents a condition, group of conditions, or constraint.

RuleUnit responsible for navigation within behavior graph controls the BehaviorUnit. If these conditions are
resolved we are dealing with a ScenarioUnit.

RuleUnit type supports mapping to SBVR. The KDM RuleUnit is mapped to the SBVR Rule.

The SBVR Rule is not defined in KDM. Instead, the KDM BehaviorModel package defines the implementations of the
SBVR Rule - RuleUnit. The mapping between KDM RuleUnit and an SBVR Rule is facilitated with the help of (0..*) to
(0..*) relationships between them as shown in Figure 22.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 189

SEVR

Rule
(from SBWVR)

+ryle | 0.7

[1

Behavior

+rulelmplementation | g «

Rulelnit

{frorn Behaviar)

Figure 22.1 - Mapping between KDM and SBVR

22.2 Organization of the Behavior Package

The Behavior package is a collection of classes and associations that are described together because they provide meta-
model constructs for defining. The Behavior package depends on the following packages:

org.omg::ADM::KDM::Core
org.omg::ADM::KDM::Action
org.omg::ADM::KDM::Code

22.3 Behaviorinheritances Class Diagram

The Behaviorlnheritances class diagram describes the inheritance relationships between children classes introduced in the
Behavior package and the parent classes defined in other packages. The Behaviorlnheritances class diagram is shown in
Figure 22.2.

190 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

KDMMode! KDMGrowup
fFrom kel {from Core)
HOMContalner
(from Core)
Behaviorhodel BehaviorGroup

KOMERTify
{(from Carel BehaviorContainer

1

BehaviorEleameant

Figure 22.2 - Behaviorinheritances Class Diagram

22.4 BehaviorModel Class Diagram

The BehaviorModel class diagram collects together all classes and associations of the Behavior package. They provide
basic meta-model constructs to define specialized “behavior” types. These meta-model objects and relationships between
them will be used as a foundation for a behavior model built by a mining tool as a result of knowledge discovery from

existing code.

The class diagram shown in Figure 22.3 captures these classes and their relations.

Behawioriodel

0.

A
+model

{subsets model}

+behaviorElement
{subsets ownedElement} 0.

+hehaviorElement
BehaviorElement {subsets ownedElement}

+OwWne .

{subsets|owner} +hetiev orBlement
1 ubsets groypedElement} ActionElement
: o {frarm Action)

EehaviorCon +hehaviorGroup
tainer {5ubW

0.
+actionElement

BehaviorGroup 0.
0.4 {subsets groupedElement
v ordered}
+behaviorGroup
{subsets group}
Behaviorlnit ScenariolUnit Fulelnit

Figure 22.3 - BehaviorModel Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 191

22.4.1 BehaviorModel

The BehaviorModel holds the metadata of the behavior model created by a mining tool.

Superclass

Core::KDMModel

Associations

behaviorElement:BehaviorElement[0..*] Identifies the root behavior element of the hierarchy of the behavior
entities making contained in the model. The Behavior Model can
contain zero or more such trees.

Constraints

Semantics

22.4.2 BehaviorElement (abstract)

The BehaviorElement class is used to facilitate a hierarchy and grouping of “behavior” types within Behavior package.

Superclass

Core::KDMEntity

Associations

behaviorGroup:BehaviorGroup|0..*] Recursively identifies the embedded behavior element. This containment
relationship enables creation of a tree-like hierarchy of behavior
elements.

Constraints

Semantics

22.4.3 BehaviorGroup

The BehaviorGroup class is used to facilitate a hierarchy and grouping of “behavior” types within Behavior package.

Superclass

Core::KDMEntity

Associations

behaviorElement:BehaviorElement[0..*] Recursively identifies the embedded behavior element. This containment
relationship enables creation of a tree-like hierarchy of behavior
elements.

192 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

actions:Action::ActionElement[0..*]{ordered} Identifies the action element. This containment relationship provides
traceability from the behavior elements to the actions, which make up
these behavior entities. Action elements in turn are associated with the
code (Code::CodeElement) which actually implements them. That is
defined in the Action package.

Constraints

Semantics

22.4.4 BehaviorContainer

The BehaviorContainer class is used to facilitate a hierarchy and grouping of “behavior” types within Behavior package.

Superclass

Core::KDMContainer

Associations

behaviorElement:BehaviorElement[0..*] Recursively identifies the embedded behavior element. This containment
relationship enables creation of a tree-like hierarchy of behavior
elements.

Constraints

Semantics

22.4.5 BehaviorUnit

The BehaviorUnit class represents a description of the behavior graph with multiple paths and associated conditions.

Superclass

BehaviorGroup
Semantics

22.4.6 ScenarioUnit

The ScenarioUnit class represents a description of a single path through a behavior graph where all graph navigation
conditions are resolved.

Superclass

BehaviorGroup

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification 193

Semantics

22.4.7 RuleUnit

The RuleUnit class represents a description of a condition or a constraint implemented in the existing code and discovered
by a Mining Tool.

Superclass
BehaviorGroup

Semantics

194 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM) Adopted Specification

	Preface
	1 Scope
	2 Conformance
	2.1 KDM Domains
	2.2 Compliance Levels
	2.2.1 Meaning and Types of Compliance

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Other OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 Specification Overview
	8 KDM
	8.1 Overview
	8.2 Organization of the KDM Packages

	9 Core Package
	9.1 Overview
	9.2 Organization of the Core Package
	9.3 CoreEntities Class Diagram
	9.3.1 Element Class (Abstract)
	9.3.2 ModelElement Class (Abstract)
	9.3.3 KDMEntity Class (Abstract)
	9.3.4 KDMContainer Class (Abstract)
	9.3.5 KDMGroup Class (Abstract)

	9.4 CoreRelations Class Diagram
	9.4.1 KDMRelationship Class (Abstract)
	9.4.2 KDMEntity (additional properties)

	9.5 AggregateRelations Class Diagram
	9.5.1 KDMAggregatedRelationship Class
	9.5.2 KDMEntity (additional properties)

	9.6 Datatypes Class Diagram
	9.6.1 InstanceKind Data Type (enumeration)
	9.6.2 Boolean Type (datatype)
	9.6.3 String Type (datatype)
	9.6.4 Integer Type (datatype)

	9.7 Extensions Class Diagram
	9.7.1 Stereotype Class
	9.7.2 TaggedDefinition Class
	9.7.3 ExtensionFamily Class
	9.7.4 TaggedValue Class
	9.7.5 ModelElement (additional properties)

	9.8 Annotations Class Diagram
	9.8.1 Attribute Class
	9.8.2 Annotation Class
	9.8.3 Element (additional properties)

	10 KDM Package
	10.1 Overview
	10.2 Organization of the Kdm Package
	10.3 Framework Class Diagram
	10.3.1 KDMFramework Class (abstract)
	10.3.2 KDMModel Class (Abstract)
	10.3.3 KDMSegment Class
	10.3.4 KDMRoot Class

	10.4 ModelRoot Class Diagram
	10.4.1 ModelRoot Class (abstract)

	10.5 Audit Class Diagram
	10.5.1 Audit Class
	10.5.2 KDMFramework (additional properties)

	11 Source Package
	11.1 Overview
	11.2 Organization of the Source Package
	11.3 SourceRef Class Diagram
	11.3.1 SourceRef Class
	11.3.2 CodeElement (additional properties)
	11.3.3 DataElement (additional properties)
	11.3.4 UIElement (additional properties)

	11.4 SourceRegion Class Diagram
	11.4.1 SourceRegion Class

	12 Code Package
	12.1 Overview
	12.2 Organization of the Code Package
	12.3 CodeInheritances Class Diagram
	12.4 CodeModel Class Diagram
	12.4.1 CodeModel Class
	12.4.2 CodeElement Class (abstract)
	12.4.3 CodeResource Class (abstract)
	12.4.4 CodeGroup Class
	12.4.5 CodeContainer Class (abstract)
	12.4.6 TypeElement Class (abstract)
	12.4.7 TypeContainer Class (abstract)

	12.5 CodeRelations Class Diagram
	12.5.1 InterfaceRelationship Class (abstract)
	12.5.2 TemplateRelationship Class
	12.5.3 TypeRelationship Class
	12.5.4 PrototypeRelationship Class

	12.6 CallableUnits Class Diagram
	12.6.1 CallableElement Class
	12.6.2 CallableUnit Class
	12.6.3 BlockUnit Class
	12.6.4 MethodUnit Class
	12.6.5 ConstructorUnit Class
	12.6.6 OperatorUnit Class

	12.7 Module Class Diagram
	12.7.1 Module Class
	12.7.2 CompilationUnit Class
	12.7.3 SharedUnit Class
	12.7.4 CodeAssembly Class

	12.8 Prototype Class Diagram
	12.8.1 PrototypeUnit Class
	12.8.2 PrototypedBy Class
	12.8.3 CodeElement Class (additional properties)

	12.9 Macro Class Diagram
	12.9.1 MacroUnit Class

	12.10 Template Class Diagram
	12.10.1 TemplateUnit Class
	12.10.2 TemplateParameter Class
	12.10.3 TemplateInstance Class

	12.11 TemplateRelations Class Diagram
	12.11.1 Instantiates Class
	12.11.2 InstanceOf Class
	12.11.3 CodeResource (additional properties)

	12.12 SimpleTypes Class Diagram
	12.12.1 SimpleTypeUnit Class
	12.12.2 NamedTypeUnit Class
	12.12.3 PredefinedTypeElement Class

	12.13 PredefinedTypes Class Diagram
	12.13.1 StringUnit Class
	12.13.2 IntegerUnit Class
	12.13.3 CharUnit Class
	12.13.4 BooleanUnit Class
	12.13.5 FloatUnit Class
	12.13.6 FixedPointUnit Class
	12.13.7 DecimalUnit Class
	12.13.8 DateUnit Class
	12.13.9 TimeUnit Class

	12.14 DerivedTypes Class Diagram
	12.14.1 DerivedTypeElement Class
	12.14.2 RefinementType Class
	12.14.3 PointerType Class
	12.14.4 ArrayType Class

	12.15 EnumerationTypes Class Diagram
	12.15.1 EnumeratedUnit Class
	12.15.2 EnumeratedLiteral Class

	12.16 CompositeTypes Class Diagram
	12.16.1 CompositeTypeElement Class
	12.16.2 UnionUnit Class
	12.16.3 CompositeUnit Class

	12.17 ClassTypes Class Diagram
	12.17.1 ClassUnit Class

	12.18 Signature Class Diagram
	12.18.1 Signature Class

	12.19 Interface Class Diagram
	12.19.1 Interface Class

	12.20 InterfaceRelations Class Diagram
	12.20.1 Implements Class
	12.20.2 ImplementationOf Class
	12.20.3 CodeResource (additional properties)
	12.20.4 Interface (additional properties)
	12.20.5 Signature (additional properties)

	12.21 TypeRelations Class Diagram
	12.21.1 HasType Class
	12.21.2 CodeResource (additional properties)
	12.21.3 TypeElement (additional properties)

	12.22 ClassRelations Class Diagram
	12.22.1 Extends Class
	12.22.2 TypeElement (additional properties)

	12.23 Comment Class Diagram
	12.23.1 CommentUnit Class

	12.24 Visibility Class Diagram
	12.24.1 VisibleIn Class
	12.24.2 Namespace Class
	12.24.3 CodeResource (additional properties)

	13 Action Package
	13.1 Overview
	13.2 Organization of the Action Package
	13.3 ActionRelations Class Diagram
	13.3.1 ActionRelationship Class (abstract)
	13.3.2 FlowRelationship Class (abstract)
	13.3.3 MacroRelationship Class (abstract)
	13.3.4 CallableRelationship Class (abstract)
	13.3.5 DataRelationship Class (abstract)
	13.3.6 ImportRelationship Class (abstract)

	13.4 ActionModel Class Diagram
	13.4.1 ActionElement Class
	13.4.2 ActionGroup Class
	13.4.3 CallableElement (additional properties)
	13.4.4 CodeModel (additional properties)

	13.5 ActionFlow Class Diagram
	13.5.1 ControlFlow Class
	13.5.2 EntryFlow Class
	13.5.3 ActionElement Class (additional properties)
	13.5.4 CallableElement Class (additional properties)
	13.5.5 Flow Class (abstract)
	13.5.6 TrueFlow Class (abstract)
	13.5.7 FalseFlow Class (abstract)
	13.5.8 GuardedFlow Class (abstract)

	13.6 CallableRelations Class Diagram
	13.6.1 Calls Class
	13.6.2 UsesCallable Class
	13.6.3 Invokes Class
	13.6.4 CallableElement (additional properties)
	13.6.5 ActionElement Class (additional properties)
	13.6.6 NamedTypeElement (additional properties)

	13.7 DataRelations Class Diagram
	13.7.1 Reads Class
	13.7.2 Writes Class
	13.7.3 UsesData Class
	13.7.4 Creates Class
	13.7.5 Destroys Class
	13.7.6 Initializes Class
	13.7.7 StorableElement (additional properties)
	13.7.8 ActionElement Class (additional properties)

	13.8 PrototypeRelations Class Diagram
	13.8.1 UsesPrototype Class
	13.8.2 ActionElement Class (additional properties)
	13.8.3 PrototypeUnit Class (additional properties)

	13.9 ImportRelations Class Diagram
	13.9.1 ImportDirective Class
	13.9.2 Imports Class
	13.9.3 CodeResource Class (additional properties)

	13.10 TypeRelations Class Diagram
	13.10.1 UsesType Class
	13.10.2 ActionElement Class (additional properties)
	13.10.3 TypeElement Class (additional properties)

	13.11 MacroRelations Class Diagram
	13.11.1 Expands Class
	13.11.2 MacroUnit Class (additional properties)

	14 Build Package
	14.1 Overview
	14.2 Organization of the Build Package
	14.3 BuildInheritances Class Diagram
	14.4 BuildModel Class Diagram
	14.4.1 BuildModel Class
	14.4.2 BuildElement Class
	14.4.3 BuildGroup Class
	14.4.4 BuildResource Class
	14.4.5 Directory Class
	14.4.6 Origin Class
	14.4.7 Tool Class

	14.5 BuildResources Class Diagram
	14.5.1 BuildResource Class (additional properties)
	14.5.2 SourceFile Class
	14.5.3 IntermediateFile Class
	14.5.4 BuildComponent Class
	14.5.5 BuildDescription Class
	14.5.6 SymbolicLink Class
	14.5.7 Image Class

	14.6 BuildRelations Class Diagram
	14.6.1 BuildRelationship Class (abstract)
	14.6.2 LinksTo Class
	14.6.3 DependsOn Class
	14.6.4 GeneratedBy Class
	14.6.5 BuildElement (additional properties)
	14.6.6 SymbolicLink (additional properties)

	15 Data Package
	15.1 Overview
	15.2 Organization of the Data Package
	15.3 Data Inheritance
	15.4 Data Model Class Diagram
	15.4.1 DataModel Class
	15.4.2 DataElement Class
	15.4.3 DataGroup Class
	15.4.4 DataContainer Class

	15.5 KeyIndex Class Diagram
	15.5.1 Index Class
	15.5.2 UniqueKey Class
	15.5.3 ReferenceKey Class

	15.6 RelationalData Class Diagram
	15.6.1 Catalog Class
	15.6.2 DBSchema Class

	15.7 ColumnSet Class Diagram
	15.7.1 ColumnSet
	15.7.2 Table Class
	15.7.3 View Class

	15.8 RecordData Class Diagram
	15.8.1 RecordFile Class

	15.9 XMLData Class Diagram
	15.9.1 XMLSchema

	15.10 XMLElements Class Diagram
	15.10.1 XMLSimpleType
	15.10.2 XMLRestriction
	15.10.3 XMLComplexType
	15.10.4 XMLAll Class
	15.10.5 XMLSeq Class
	15.10.6 XMLChoice Class
	15.10.7 XMLOccurs Class
	15.10.8 XMLGroup Class
	15.10.9 XMLAny Class

	15.11 ProgramElements Class Diagram
	15.11.1 StoredProcedure Class
	15.11.2 Query Class
	15.11.3 DBTrigger Class

	15.12 Key Relations class diagram
	15.12.1 UniqueKey Class (additional properties)
	15.12.2 ReferenceKey Class (additional properties)
	15.12.3 KeyRelationship Class

	16 Structure Package
	16.1 Overview
	16.2 Organization of the Structure Package
	16.3 StructureInheritances Class Diagram
	16.4 StructureModel Class Diagram
	16.4.1 StructureModel Class
	16.4.2 StructureElement Class
	16.4.3 StructureGroup Class
	16.4.4 StructureContainer Class
	16.4.5 Subsystem Class
	16.4.6 Layer Class
	16.4.7 Component Class
	16.4.8 SoftwareSystem Class
	16.4.9 CodeResource (additional properties)

	17 Event Package
	17.1 Overview
	17.2 Organization of the Event Package
	17.3 EventInheritances Class Diagram
	17.4 EventModel Class Diagram
	17.4.1 EventModel Class
	17.4.2 EventElement Class (abstract)
	17.4.3 EventGroup Class
	17.4.4 EventContainer Class

	17.5 EventElements Class Diagram
	17.5.1 Trigger Class
	17.5.2 Message Class
	17.5.3 UIEvent Class

	17.6 EventRelations Class Diagram
	17.6.1 EventRelationship Class (abstract)
	17.6.2 EventElement Class (additional properties)
	17.6.3 Triggers Class
	17.6.4 CallableElement (additional properties)

	18 UI Package
	18.1 Overview
	18.2 Organization of the UI Package
	18.3 UIInheritances Class Diagram
	18.4 UIModel Class Diagram
	18.4.1 UIModel Class
	18.4.2 UIElement Class
	18.4.3 UIContainer Class

	18.5 Display Class Diagram
	18.5.1 Display Class
	18.5.2 Screen Class
	18.5.3 Report Class

	18.6 DisplayUnits Class Diagram
	18.6.1 DisplayUnit Class
	18.6.2 FixedDisplayUnit Class
	18.6.3 VariableDisplayUnit Class
	18.6.4 UIRelationship Class (abstract)
	18.6.5 DisplaysData Class
	18.6.6 UsesImage Class
	18.6.7 StorableElement Class (additional properties)
	18.6.8 Image Class (additional properties)

	18.7 UIRelations Class Diagram
	18.7.1 UIFlow Class
	18.7.2 Renders Class
	18.7.3 Displays Class
	18.7.4 Display Class (additional properties)
	18.7.5 UIElement Class (additional properties)
	18.7.6 CallableElement (additional properties)
	18.7.7 UIElement Class (additional properties)

	18.8 UILayout Class Diagram
	18.8.1 UsesLayout Class
	18.8.2 Display Class (additional properties)
	18.8.3 UIContainer Class (additional properties)

	19 Platform Package
	19.1 Overview
	19.2 Organization of the Platform Package
	19.3 PlatformInheritances Class Diagram
	19.4 PlatformModel Class Diagram
	19.4.1 PlatformModel Class
	19.4.2 PlatformElement Class (abstract)
	19.4.3 PlatformGroup Class
	19.4.4 PlatformContainer Class (abstract)

	19.5 PlatformResources Class Diagram
	19.5.1 PlatformPart Class
	19.5.2 ResourceElement Class
	19.5.3 ResourceInstance Class
	19.5.4 ResourceType Class
	19.5.5 ResourceDefinition Class

	19.6 ResourceTypes Class Diagram
	19.6.1 NamingResource Class
	19.6.2 MarshaledResource Class
	19.6.3 MessagingResource Class
	19.6.4 DataResource Class
	19.6.5 ExecutionResource Class
	19.6.6 DataPortResource Class
	19.6.7 DynamicData Class
	19.6.8 DataManager Class

	19.7 ExternalActors Class Diagram
	19.7.1 ExternalActor Class
	19.7.2 ExternalRelations Class (abstract)
	19.7.3 Uses Class
	19.7.4 ResourceInstance (additional properties)

	19.8 PlatformInterfaces Class Diagram
	19.8.1 CompliesTo Class
	19.8.2 ResourceInstance (additional properties)
	19.8.3 Interface (additional properties)

	19.9 PlatformRelations Class Diagram
	19.9.1 BindsTo Class
	19.9.2 ResourceInstance (additional properties)
	19.9.3 CodeResource (additional properties)

	19.10 ProvisioningRelations Class Diagram
	19.10.1 PlatformProvider Class
	19.10.2 TechnologyRelationship Class (abstract)
	19.10.3 Requires Class
	19.10.4 Provides Class
	19.10.5 PlatformElement (additional properties)
	19.10.6 DeployedComponent (additional properties)

	19.11 PlatformActions Class Diagram
	19.11.1 PlatformService Class
	19.11.2 MarshaledCall Class
	19.11.3 AsynchCall Class
	19.11.4 Registration Class
	19.11.5 Activation Class
	19.11.6 ResourceRelationship Class (abstract)
	19.11.7 ResourceInstance (additional properties)

	20 Runtime Package
	20.1 Overview
	20.2 Organization of the Runtime Package
	20.3 RuntimeInheritances Class Diagram
	20.4 RuntimeModel Class Diagram
	20.4.1 RuntimeModel Class
	20.4.2 RuntimeElement Class (abstract)
	20.4.3 RuntimeContainer Class (abstract)
	20.4.4 RuntimeGroup Class

	20.5 Runnable Class Diagram
	20.5.1 RunnableElement (abstract)
	20.5.2 Process Class
	20.5.3 Thread Class

	20.6 Deployment Class Diagram
	20.6.1 DeployedComponent Class
	20.6.2 DeployedSoftwareSystem Class
	20.6.3 Machine Class
	20.6.4 DeployedResource Class

	20.7 RuntimeActions Class Diagram
	20.7.1 RuntimeRelation Class (abstract)
	20.7.2 RuntimeService Class
	20.7.3 LoadingService Class
	20.7.4 Loads Class
	20.7.5 SpawningService Class
	20.7.6 Spawns Class
	20.7.7 DeployedComponent (additional properties)
	20.7.8 RunnableElement (additional properties)

	21 Conceptual Package
	21.1 Overview
	21.2 Organization of the Conceptual Package
	21.3 ConceptualInheritances Class Diagram
	21.4 ConceptualModel Class Diagram
	21.4.1 ConceptualModel
	21.4.2 ConceptualElement (abstract)
	21.4.3 ConceptualContainer
	21.4.4 ConceptualGroup
	21.4.5 TermUnit
	21.4.6 FactUnit

	22 Behavior Package
	22.1 Overview
	22.2 Organization of the Behavior Package
	22.3 BehaviorInheritances Class Diagram
	22.4 BehaviorModel Class Diagram
	22.4.1 BehaviorModel
	22.4.2 BehaviorElement (abstract)
	22.4.3 BehaviorGroup
	22.4.4 BehaviorContainer
	22.4.5 BehaviorUnit
	22.4.6 ScenarioUnit
	22.4.7 RuleUnit

